
I M P L E M E N T I N G D E M P S T E R - S H A F E R T H E O R Y F O R I N E X A C T

R E A S O N I N G I N E X P E R T S Y S T E M S

Thomas Michael Froese

B. A . Sc. (Civil Engineering) University of British Columbia, 1986

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

DEPARTMENT OF CIVIL ENGINEERING

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

August 1988

© Thomas Michael Froese, 1988

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the

University of British Columbia, I agree that the Library shall make it freely available for refer

ence and study. I further agree that permission for extensive copying of this thesis for scholarly

purposes may be granted by the head of my department or by his or her representatives. It

is understood that copying or publication of this thesis for financial gain shall not be allowed

without my written permission.

Department of Civil Engineering

The University of British Columbia

1956 Main Mall

Vancouver, Canada

Date:

Abstract

The work described in this thesis stems from the idea that expert systems should be able

to accurately and appropriately handle uncertain information. The traditional approaches to

dealing with uncertainty are discussed and are shown to contain many inadequacies.

The Dempster-Shafer, or D-S, theory of evidence is proposed as an appealing theoretical basis

for representing uncertain knowledge and for performing inexact reasoning in expert systems.

The D-S theory is reviewed in some detail; including its approaches to representing concepts,

to representing belief, to combining belief and to performing inference.

The D-S implementation approaches pursued by other researchers are described and critiqued.

Attempts made early in the thesis research which failed to achieve the important goal of con

sistency with the D-S theory are also reviewed.

Two approaches to implementing D-S theory in a completely consistent manner are discussed

in detail. It is shown that the second of these systems, a frame network approach, has led to

the development of a fully functional prototype expert system shell called FRO. In this system,

concepts are represented using D-S frames of discernment, belief is represented using D-S belief

functions, and inference is performed using stored relationships between frames of discernment

(forming the frame network) and D-S belief combination rules. System control is accomplished

using a discrete rule-based control component and uncertain input and output are performed

through an interactive belief interface system called IBIS. Each of these features is reviewed.

Finally, a simple but detailed example of an application of a frame network expert system is

provided. The FRO system user's documentation is provided in the appendix.

i i

Table of Contents

Abstract i i

List of Tables be

List of Figures x i

Acknowledgement x i i

1 Introduction 1

1.1 Introduction to Inexact Reasoning in Expert Systems 1

1.2 Introduction to the Research Project 2

1.3 Introduction to this Thesis 5

2 Uncertainty in Expert Systems 7

2.1 Probability Theory 7

2.2 Certainty Factors 10

2.3 Comparison of D-S with Other Theories 14

2.4 Conclusion 15

3 D-S Theory I: Concept Representation 17

iii

3.1 Frames of Discernment and Propositions 17

3.2 Frame Refining and Frame Coarsening 20

4 D-S Theory LI: Belief Representation 24

4.1 Measures of Belief 24

4.2 Simple and Separable Support Functions 30

4.3 Consistent Belief 32

4.4 Specifying Support Functions 33

4.5 Classes of Belief 36

4.5.1 Ignorance 36

4.5.2 Certain Belief 37

4.5.3 Bayesian Belief 38

4.5.4 Consonant Belief 38

4.5.5 Belief Arising from Experiments 40

5 D-S Theory III: Belief Combination 42

5.1 Dempster's Rule 42

5.2 Other Combination Rules 44

6 D-S Theory I V : Inference 51

6.1 Performing Inference in D-S theory 51

7 "Various D-S Interpretations 55

iv

7.1 Barnett 55

7.2 Garvey, Lowrance and Fischler 56

7.3 Gordon and Shortliffe 58

7.4 Lu and Stehanou 59

7.5 Lowrance, Garvey and Strat 61

7.6 Zadeh 62

7.7 Other Related Work 65

7.8 Conclusion 66

8 Non-Consistent Implementations 67

8.1 A D-S Inexact Reasoning Module 68

8.2 A Simple Support Function Approach 70

8.2.1 Restrictions . , -70

8.2.2 SSF Approach to Inference 71

8.2.3 Comparison of the SSF System and M Y C I N 74

8.2.4 Representation of Uncertainty 75

8.2.5 The Inexact Reasoning Process 76

8.2.6 Belief Decomposition 79

8.3 Conclusion 80

9 Global Frame Approach 81

v

9.1 Overview of Global Frame Approach 81

9.2 Concept Representation 83

9.3 Inference Knowledge Representation 83

9.4 Belief Representation 86

9.5 Reasoning 86

9.5.1 Basic Reasoning 86

9.5.2 Extended Reasoning 87

9.6 Belief Refinement 88

9.7 Comparison with Other Systems 91

9.8 System Speed and Efficiency 92

9.9 Exponential Growth Problems 93

9.10 Conclusion 94

10 A Frame Network Approach 95

10.1 System Overview 95

10.2 Frames of Discernment and Belief Functions 97

10.3 Inference and Links 99

10.3.1 Performing Inference 99

10.3.2 Links 100

10.4 Frame Networks 103

10.4.1 Belief propagation in frame networks 103

vi

10.4.2 Belief propagation algorithm 105

10.4.3 A Propagation Example 107

10.4.4 Network Design 110

10.5 Control 112

10.6 Further Enhancements 114

10.7 Conclusion 115

11 Working wi th Belief Functions 116

11.1 Entering Belief Functions 116

11.1.1 Theoretical Basis for a Simple Belief Input System 116

11.1.2 Attributes for the Implementation of a Belief Input Scheme 121

11.1.3 The Prototype System : 123

11.1.4 Additional Features 127

11.2 Expressing Relational Belief 128

11.3 Evaluating Output Belief Functions 134

11.3.1 Determining the BEST Alternative 135

11.3.2 Determining the Reliability of the Best Alternative Selection .137

11.4 Conclusion 141

12 Using a D-S based System 144

12.1 Illustration of D-S Implementation . 144

vii

12.2 A Note On Belief Functions 148

12.3 Illustration of Reasoning with a D-S Representation 151

12.4 Example Problem 154

12.5 Incorporating Uncertainty in Knowledge Base Design 157

12.6 Conclusion 160

13 Summary 161

Bibliography 163

Appendix A : The F R O System User's Documentation 172

viii

List of Tables

2.1 Comparison of Uncertainty Theories 15

2.2 Inexact Reasoning Approaches used in ARITY Expert System Shell 16

7.1 Modified Doctor's Example 65

10.1 Specifications of Our D-S Implementation 97

10.2 Frames for table lamp example 108

11.1 Possible belief relationships 136

ix

List of Figures

3.1 Graphical representation of the discernment space 2 B m a t b r i a l ; . . . 19

4.1 Dempster-Shafer Belief Parameters 25

4.2 BPA #1 in Diagrammatic Form 30

5.1 BPA #2 . 43

5.2 The Result of Combining BPA #1 and BPA #2 44

6.1 Summary of Belief Propagation for an Excavation Example 54

9.1 Flow chart for the Basic Reasoning Procedure in a Global Frame Approach

System . 82

9.2 Some propositions with aliases for the discernment space 2 U m a t b r ' a l 90

10.1 Schematic of a Hypothetical Frame Network 104

10.2 Belief Propagation Algorithm 106

10.3 Simplification of the Network Structure through the use of Conditional Indepen

dence I l l

10.4 Components of Our Expert System Shell 113

11.1 Initial belief input screen 124

x

11.2 Belief input screen expressing some support for "cloudy" 125

11.3 Belief input screen warning of constraint 126

11.4 An example belief input screen 126

11.5 A Relational BPA 133

11.6 Examples of Nominal Belief 136

11.7 Low Confidence in the BEST alternative because of a large amount of uncertainty

in the belief function 138

11.8 Low Confidence in the BEST alternative because of a large amount of disconso-

nance in the belief function 138

11.9 Quality factor from equation 11.9 142

ll.lOQuality factor from equation 11.10 142

11.11 Quality factor from equation 11.11 . . 143

11.12Quality factor from equation 11.12 143

12.1 Initial uncertainty input screen 146

12.2 Intermediate uncertainty input screen . . . 148

12.3 Final uncertainty input screen 148

12.4 Link uncertainty input screen 153

12.5 Belief output screen 156

xi

Acknowledgement

The results reported in this thesis stem from a collaborative effort by Dr. William Caselton,

Dr. Alan Russell, and myself. Dr. Russell and Dr. Caselton conceived, initiated, and obtained

funding for the research project. I wish to thank them for their guidance and their contributions

and for providing a productive and pleasant working environment.

I would also like to thank my friends, my family, and especially my wife for providing an ideal

personal environment to complement my ideal professional environment.

Finally, the financial support provided by the Natural Sciences and Engineering Research Coun

cil of Canada, Strategic Grant G1417-Advanced Planning Technologies for Construction Pro

ductivity Improvement, is gratefully acknowledged.

Thomas Froese, August 1988.

xii

Chapter 1

Introduction

This thesis reports on a research project which explored the use of the Dempster-Shafer theory

for inexact reasoning in expert systems. This chapter provides introductions to the field of

inexact reasoning, to the background of the research project, and to the structure of the thesis

itself.

1.1 Introduction to Inexact Reasoning in Expert Systems

The field of artificial intelligence (AI) can be though of as the art and science of making

a computer model human thinking. Two clear motivations for studying AI are first, to use

computer models to achieve a better understanding of human thinking and second, to make

computers more efficient, since the human brain is an extremely effective computer for most

tasks. Under the latter category, the most direct application of AI approaches and techniques

has been in the field of expert systems. Expert systems are computer programs which are

used to solve problems or perform other reasoning tasks in a manner analogous to the way a

human expert solves problems. The term "expert system" better describes a programming style

or approach than a radically new and identifiable class of programs. Some characteristics of

this style are that the code is written out in an English-like, modular way (rules, for example)

which mimics the way a human might describe what he knows; that the program communicates

with the user in an English-like and easy to understand manner; that the performance of the

program depends first on shear volume of code (as much of the human's knowledge as possible

1

Chapter 1. Introduction 2

should be encoded) and only secondly on the efficient structuring of the program (which is the

essence of performance in most programs); that the program can explain and justify its results

to some extent; and, finally, that the program can deal with uncertain and missing information.

This last characteristic is of particular importance for expert systems in construction man

agement, since decision making and problem solving in this field are invariably founded on

uncertain information-often exclusively so. In order for a construction management expert

system to approach human-like (or even useful) performance, then, it must accurately reflect

uncertainty in its expert knowledge, it must accommodate uncertain input from the user, it

must accurately account for these uncertainties in its reasoning, and it must rationally interpret

and report the resulting uncertainty in its conclusions. The performance of all these tasks is

called inexact reasoning.

Several approaches to inexact reasoning have been proposed for use in expert systems. In

general, only the simplest of these have achieved any widespread usage. Yet the performance of

these simple popular approaches falls far short of current state-of-the-art techniques. One such

advanced technique is based on a theory outlined by Glen Shafer in his book, A Mathematical

Theory of Evidence [57]. This theory has come to be known as the Dempster-Shafer, or D - S ,

theory. D-S theory is richly expressive and academically impressive. However the development

of acceptable implementations of the theory for inexact reasoning is not straightforward and

has been somewhat slow in coming. The research described by this thesis has made several

significant steps towards the rectification of this situation.

1.2 Introduction to the Research Project

The research project documented in this thesis was initiated in the spring of 1986 by Dr. Alan

Russell and Dr. William Caselton (both Associate Professors in the department of Civil Engi

neering at the University of British Columbia). The initial goal of the project was to explore the

opportunities offered by the new field of expert systems to the field of construction management.

Chapter 1. Introduction 3

Thomas Froese was hired as the research engineer for the project.

It was found that almost all published work in expert systems for civil engineering dealt with

the development of expert system prototypes for specific engineering applications. While these

works generally advance the state-of-the-art in available solution approaches for the areas of

application, they rarely contribute to the discipline of engineering expert systems in general.

It was therefore decided that this research project should examine "lower level" issues and

focus on some aspect of the expert systems themselves rather than on a specific application.

In particular, it was decided that the ability of expert systems to deal with uncertainty was

vital to most civil engineering and project management applications and should be examined

in some detail.

This line of inquiry was pursued for a period of over two years and focused primarily on the

implementation of a D-S based inexact reasoning system. More specifically, the following topics

were addressed; with efforts ranging from theoretical enhancements of the D-S theory itself to

purely practical implementation and programming concerns:

• It was determined that D-S theory held great potential as the basis for an expert system

which managed uncertainty in such a way that the user could place utmost confidence in

the accuracy and reasonableness of the results.

• It was found that it is possible to create a system in which all belief representation and

inference is fully consistent with the D-S theory, though most previous implementation

attempts have not succeeded in doing so. It was determined that full consistency is of

utmost importance in creating a reliable system. The development of a fully consistent

D-S system became the prime goal of the research project.

• A functional, fully consistent implementation was eventually developed. This implemen

tation took the form of an expert system shell program which could be used to create

expert systems for any specific applications.

Chapter 1. Introduction 4

• User interface issues for D-S belief were examined in some detail and an interactive graph

ical belief interface approach was developed.

• It was determined that a D-S representation is not well suited for representing procedural

knowledge in an expert system. The shell program therefore incorporates a separate

rule-based component which performs the procedural or control functions of the system.

The results of the research include the following achievements:

• At least four papers published or submitted for publication (these are listed in section 1.3).

• An Interactive Belief Interface System, or IBIS , which provides a simple graphical input

and output of uncertain belief using a D-S representation.

• A full-featured rule-based expert system shell program which can be used either as a

control module for a D-S based system or can be used as a stand-alone shell comparable

with many commercially available shells. This program is called R O for Rules Only.

RO was used by Barry Chilibeck in the Civil Engineering Department at UBC to create

W A S T E , a significant environmental engineering expert system.

• A fully consistent D-S based expert system shell. Since the knowledge representation in

the shell incorporates both D-S frames of discernment and control rules, the program

is called F R O , for Frame-Rule Organizer. FRO utilizes both IBIS and RO as well as

a automated knowledge base creation system called M K B , for Make Knowledge Base.

The FRO program represents the culmination of the research project's accomplishments.

Chapter 1. Introduction 5

1.3 Introduction to this Thesis

This Thesis is structured as follows:

Chapter 2 discusses the traditional approaches to handling uncertainty in expert systems. These

include Bayesian probability theory and MYCIN certainty factor theory.

Chapters 3 through 6 provide a thorough examination of D-S theory. These chapters cover

concept representation, belief representation, belief combination and inference respectively.

Chapter 7 reviews other researchers' efforts at interpreting and implementation D-S theory for

inexact reasoning. Most of these systems are found to be non-consistent with D-S theory-

the distinction between non-consistent and consistent Bystems arises in this chapter and the

advantages of the latter approach are stressed.

Chapter 8 discusses non-consistent implementation attempts made early in this research project.

Chapter 9 describes the project's first major consistent implementation attempt. This is referred

to as the global frame approach.

Chapter 10 provides a detailed account of the frame network implementation approach. The

frame network approach to inexact reasoning incorporates all of the achievement of the research

project. This approach forms the basis of the FRO expert system shell.

Chapter 11 focuses on several aspects of working with belief functions, including the specification

of both evidential and relational belief functions and the interpretation of system conclusions

expressed in terms of belief functions. The IBIS belief input system is introduced in this chapter.

Chapter 12 illustrates the use of a D-S based expert system through a detailed example taken

from the field of construction management. Some issues of incorporating uncertainty in knowl

edge base design are also discussed.

Chapter 13 provides a brief summary and conclusion.

Chapter 1. Introduction 6

The appendix to this thesis contains the complete user documentation for the FRO expert

system shell. This document provides a detailed examination of the entire system from a user's

point of view.

Note that chapters 2 through 7 inclusive incorporate review and critique of other researchers'

work (with the notable exceptions of section 4.5 on classes of support function, section 5.2

on alternative belief combination rules and, to some extent, chapter 6 in D-S inference). The

material described in the remaining chapters represents the efforts of this research project.

Finally, much of this thesis is based on material first written for publication elsewhere. These

include the following:

• Sections 3.2, 4.1, 4.4, 5.1, 6.1, and 11.2 are based on "Belief Input Procedures for

Dempster-Shafer Based Expert Systems," by W.F. Caselton, T . M . Froese, A.D. Russell,

and W. Luo, Presented at AIENG88, the Third International Conference on Applications

of Artificial Intelligence in Engineering, Palo Alto, CA, August, 1988; and published in

Artificial Intelligence in Engineering: Robotics and Processes, Computational Mechanics

Publications, Southampton, 1988, pp.351-370

• Chapter 12 is derived from "A Dempster-Shafer Based Construction Expert System" by

A.D. Russell, T . M . Froese and W.F. Caselton, presented at the Third International Con

ference on Computing in Civil Engineering, Vancouver, B.C. , August 1988, and published

in the accompanying proceedings.

• Section 5.2 and chapter 10 stem from "Implementation Strategies for Dempster-Shafer

Based Inexact Reasoning" by T . M . Froese, A.D. Russell, and W.F. Caselton. Submitted

for publication to the International Journal of Intelligent Systems in July, 1988.

• Section 4.3 and 11.1 are from "An Interactive Belief Interface System" by T . M . Froese,

W.F. Caselton, and A.D. Russell. To be submitted for publication.

Chapter 2

Uncertainty in Expert Systems

This chapter briefly outlines the techniques which were first developed for handling uncertainty

in expert systems and which are still most commonly found in practice. These include proba

bili ty theory (which is described in section 2.1) and M Y C I N certainty factors (described

in section 2.2). A brief comparison of D-S theory with these other approaches is provided in

section 2.1.

2.1 Probabil i ty Theory

The broad field of probability theory is, perhaps, the most commonly used general approach to

dealing with any type of uncertainty in a systematic mathematical way. Not surprisingly then,

the first attempts to incorporate uncertainty into the reasoning processes of expert systems were

based on probability theory. The most significant of these early probability-based attempts was

the P R O S P E C T O R system created by Duda, Hart and others (see Duda et al [17]). Rather

than focussing on the specific approach adopted in PROSPECTOR, this section deals with

some of the fundamental problems of probability theory for use in expert systems.

Probability theory (in the sense that it is used here) provides for the specification of the prob

ability, P{h), of some hypothesis h, where P(h) is a real number between zero and one which

represents a measure of belief in the hypothesis. Since the acquisition of new evidence, e, can

change our belief about some hypothesis, a prior probability, P(h), can be modified to become

the conditional or posterior probability, P(h\e), that is, the probability of the hypothesis h

7

Chapter 2. Uncertainty in Expert Systems 8

in light of the evidence e.

For expert systems based on rules of the form "conclusion c IF premise p", applying probability

theory to a rules involves the calculation of the probability of the conclusion c given that the

premise p is true. Applying a rule, therefore, calls for the calculation of P{c\p). P(c\p) is

calculated using Bayes' theorem. Given the prior probability P(c,) of each possible conclusion

c,- and the probability of a particular premise p when c, is true, P(p|c,), then the probability

P(c\p) for some particular conclusion c is given by:

One problem with this technique is that it requires a considerable amount of probabilistic

information. For n possible conclusions and m possible premises, we need n(m+l) probabilities

to be able to use Bayes' theorem as above. When there are two premises pi and ps which both

confirm the same conclusion, the Bayesian combination is given by:

' • M » * r t - r y , < ' r) c (* ' ? . (2.2)
£iI P{P2\Ci it Pi) P{ci\Pi)

In this case, n(m 2 + m + 1) probabilities are required. These overwhelming information re

quirements effectively prevent probability from being directly applied for expert systems as

shown here. In the PROSPECTOR system, the problem was avoided by making the following

assumptions:

P(pi\p2 k c) = P(Pl\c) (2.3)

P{pi\p2 & not c) = P(pi|not c) (2.4)

These assumptions, while they seem to comprise reasonable approximations, stem from an

assumption of conditional independence between the two premises. This assumption has been

Chapter 2. Uncertainty in Expert Systems 9

shown to be clearly false for general expert systems applications (see Quinlan [54, p.257]). Thus

one of the main advantages of using probability theory for inexact reasoning-the fact that it is

fully consistent with a sound and applicable underlying theory-is lost.

Apart from problems of finding a feasible and applicable implementation approach, the use

of probability numbers themselves have shown to be unsatisfactory for representing uncertain

belief in expert systems, as outlined in the following objections:

1. Probabilities don't convey the precision of the uncertainty measurement. We can't discern

between the probability P(a) = 0.500 ± 0.001 and the probability P(a) = 0.5 ± 0.3.

2. Probabilities don't discern the difference between evidence for and against a proposition.

The probability P(a) = 0.5 does not discern between "moderate evidence for (a) and no

evidence against (a)" and "strong evidence for (a) and moderate evidence against (a)".

3. A lack of evidence for a proposition implies evidence against that proposition. In other

words, the probability P(a) = 0.4, implies that there is a probability P(not a) = 0.6. The

disadvantage of such a result is illustrated by Carl Hempel's Paradox of the Ravens:

"Let hi be the statement that 'all ravens are black* and /12 the statement that

'all nonblack things are nonravens.' Clearly hi is logically equivalent to hj.

If one were to draw an analogy with conditional probability, it might at first

seem valid, therefore, to assert that C[/ii,e] (a measure of confirmation of the

hypothesis h given some body of evidence e) = C[hi,e] for all e. However, it

appears counter-intuitive to state that the observation of a green vase supports

hi, even though the observation does seem to support h2- C[h,e] is therefore

different from P{h\e) for it seems wrong that an observation of a vase could

logically support an assertion about ravens." (from Buchanan and Shortliffe

[4, p.244]).

Chapter 2. Uncertainty in Expert Systems 10

Thus a direct application of probability theory, while providing an obvious and useful starting

point, clearly does not provide a satisfactory scheme for dealing with uncertainty in expert

systems. This is not to say that probability theory cannot lead to a useful technique for inexact

reasoning. A great deal of work continues on altering the knowledge representation approach

so that Bayesian probabilities are both feasible and appropriate. Indeed D-S theory which

provides the subject for most of this thesis is closely related to probability theory (although the

exact nature of the relationship is debatable). The most significant development path to date,

however, has not involved finding a more complex and consistent implementation-rather it has

been the simplification and approximation of probability theory leading to the certainty factor

approach (which is described in the next section).

For introductory material on probability approaches and comparison with other schemes, see

Buchanan and Shortliffe [4, pp.233-237], Lee et al [40], and Quinlan [54]. For discussion of

state-of-the-art probability approaches, see Charniak [7], Nilsson [47], and almost anything by

Pearl ([50] ,[51], and [52]).

2.2 Certainty Factors

Like PROSPECTOR, the M Y C I N system was a "landmark" expert system developed in

the mid-seventies by a group at Stanford University (see Buchanan and Shortliffe [4]). Also

like PROSPECTOR, the group working on MYCIN considered the problem of incorporating

uncertainty and looked first to probability theory. Unlike the PROSPECTOR project, however,

probability theory was used only as an approximate guideline from which the new and simple

theory of certainty factors was developed. The certainty factor approach was loosely created

from a series of intuitive concepts rather than from a formal cohesive underlying theory.

In the theory of certainty factors, every proposition (a) is assigned two values: a M E A S U R E

O F B E L I E F - M B (a), which is a numerical value between zero and one proportional to the

Chapter 2. Uncertainty in Expert Systems 11

amount of evidence to support the proposition (a), and a M E A S U R E OF D I S B E L I E F -

MD(a) , which measures the evidence against (a). For each proposition, belief can be summed

up by one value, the C E R T A I N T Y F A C T O R - CF(a) , which is a number between negative

one and one and is calculated from the difference between the measure of belief and the measure

of disbelief, that is:

For a simple expert system rule of the form "conclusion c IF premise p", the belief in the

conclusion can be obtained directly from the belief in the premise by setting:

However, rules are typically of a more complex form and the M Y C I N system includes formulae

for accommodating these:

1. Conjunctive Premises.

For a rule of the form:

CF(o) = MB (a) - MD(a) (2.5)

MB(c) = MB(p) (2.6)

MD(c) = MD{p) (2.7)

conclusion c IF premise pi AND premise p2

We can calculate the belief in the combined premise from the following equations:

MB(pi AND p2) = min (MB{Pl),MB(p2j)

MD{pi AND pi) = max{MD{px),MD{p2))

(2.8)

(2.9)

Chapter 2. Uncertainty in Expert Systems 12

2. Disjunctive Premises.

For a rule of the form:

conclusion c IF premise pi OR premise pi

Belief in the combined premise is calculated from the following equations:

MBfa OR p2) = max (MB(pi) ,MB(p 2))

MD{pi OR pj) = min ^MD{pl),MD{p2))

(2.10)

(2.11)

3. Weak Inference.

If there is any uncertainty about the strength of the rule itself, we can assign two measures

of belief to the rule: MB' and MUf - corresponding to our belief and disbelief in the

conclusion assuming complete belief in the premise. These measures of belief can then

be combined with the actual belief in the premise to determine the resulting belief in the

conclusion, according to the following equations:

4. Combining Evidence.

If one rule reaches a conclusion c with belief MBi(c) and MD\{c) and a second rule reaches

the same conclusion with belief MB2{c) and MD2{c), then the resulting combined belief

can be derived from the following equations:

(2.12)

(2.13)

(2.14)

(2.15)

Chapter 2. Uncertainty in Expert Systems 13

The certainty factor approach alleviates the problem found in probability theory of distinguish

ing between belief and disbelief, However the theory does cause the following problems:

1. Like probability numbers, certainty factors cannot distinguish the precision of the mea

sures of belief.

2. The use of maximum and minimum operators leads to discontinuities and non-intuitive

results for general cases where the premise constituents are not fully dependant. For

example, suppose we have the following rule:

IF the temperature i s below freezing

AND there i s prec ipi ta t ion

THEN there w i l l be snow.

Then the CF for snow will be identical for the following two cases:

CF(the temperature i s below freezing) = 1.0

CF (there i s precipitation) = 0.5

and:

CF(the temperature i s below freezing) = 0.5

CF(there i s precipitation) = 0.5

This is a counter-intuitive result.

3. The following two rules:

IF there i s r a in

THEN there i s prec ip i ta t ion .

IF there i s snow

THEN there i s prec ip i ta t ion .

Chapter 2. Uncertainty in Expert Systems 14

Should be identical to the following single rule:

IF there i s r a in

OR there i s snow

THEN there i s prec ip i ta t ion .

Yet these two representations of the same information will lead to two completely different

combination rules being used in determining the CF for precipitation based on the CF'a

for rain and snow.

4. Perhaps the major criticism against this system is that it has no adequate theoretical

basis (in fact, the theory of certainty factors has been shown to be essentially the same as

probability theory with the assumption of conditional independence, see Buchanan and

Shortliffe [4, Ch.12], although this is of academic interest since we have already shown

the assumption of conditional independence to be generally invalid).

Regardless of these difficulties, MYCIN did seemed to perform well in real world medical sit

uations. M Y C I N was eventually distributed without it's knowledge base as E M Y C L N (for

Empty MYCIN) to become one of the first expert system shells. Not only the basic format of

rules but also the uncertainty handling of most present expert system shells are derived directly

from M Y C I N and its certainty factor approach.

2.3 Comparison of D-S wi th Other Theories

In comparison with the uncertainty handling theories presented in this chapter, the D-S theory

fares well. D-S achieves flexibility by using a less restrictive representation of uncertainty than

does, for example, Bayesian analysis. D-S belief is normally expressed in terms of two belief

parameters and belief can be assigned to various levels of granularity or precision. This gives

D-S the expressive power to represent nuances of uncertain belief which cannot be captured by

Chapter 2. Uncertainty in Expert Systems 15

MYCIN-like certainty factors, for instance. Shenoy and Shafer [68] suggest that D-S provides

a useful compromise between the lack of structure offered by the use of certainty factors in

production rules and the unrealistic demands for structure often made by Bayesian schemes.

Finally, D-S provides a very rigorous theoretic foundation for both representing knowledge

and for processing that knowledge. Dubois and Prade [15] have suggested that an approach

such as fuzzy set theory which offers "multiple points of view on combination" more closely

models human reasoning; however we believe that for use in engineering problems at least, an

approach which is rigorously derivable from a cohesive underlying theory is required to give

confidence in the accuracy of the uncertain output (fuzzy set theory is not discussed in this

thesis, although section 7.6 deals with comments made by L. Zadeh, the originator of fuzzy set

theory). Table 2.3 provides a summary comparison of D-S with three other major approaches

for handling uncertainty in expert systems. See Lee et al [40] for an introduction to and further

comparison with these other systems.

Table 2.1: Comparison of Uncertainty Theories

Certainty Bayesian Fuzzy Set Dempster-Shafer
Factors Probability Theory Theory

Flexibility high low high high
Expressive power low low high high
Theoretical Background weak strong moderate strong

(based on Lee et al [40])

2.4 Conclusion

This chapter has dealt with two approaches to performing inexact reasoning in expert systems.

It has been shown that although there are many problems associated with both approaches,

both have been successfully applied and, in the case of certainty factors particularly, have

become the "industry standard".

Chapter 2. Uncertainty in Expert Systems 16

Perhaps a fitting summary to the current state of inexact reasoning in practical expert systems

is illustrated by considering a feature offered by the ARITY expert system shell. This shell

offers three different approaches to handling uncertainty, referred to in the documentation as

a standard M Y C I N approach, a fuzzy set theory approach, and a probability approach. Each

approach uses simple CP ' s in conjunction with normal rules. Table 2.2 summarizes how each

approach combines the CP 's of conjunctive and disjunctive premise terms, how each includes

a C P assigned to the rule itself, and how each combines positive and negative CP 's (or MB's

and MB'B) to get a single combined CF.

Table 2.2: Inexact Reasoning Approaches used in ARITY Expert System Shell

Method Conjunctive
Premise

Disjunctive
Premise

Combining
C P of Rule

Combining
Pos & Neg

Standard Minimum Maximum CFRVLE x C PpREM Pos + Neg
Fuzzy Minimum Maximum C PRULE Largest abs. value
Prob. Ax B A + B x (1 - A) C P R U L E X C P P R E M Pos + Neg

(from the Arity Expert Systems Development Package Documentation [1, p.201])

Each of the three approaches outlined in table 2.2 uses identically defined sets of certainty

numbers, but each method performs different operations on them. While it is claimed that

having several alternative calculations makes for a powerful system, it could be interpreted

more critically as proof that these numbers provide an extremely ad hock approach to inexact

reasoning at best, and that there is no reliable formal method for using them.

Chapter 3

D-S Theory I: Concept Representation

In the 1960's, Arthur Dempster at Harvard originated a body of work which extended classical

probability theory so that it could be brought to bear on a set representation rather then a

point representation [12]. Glen Shafer at Princeton continued this work and, in 1975, published

a book entitled A Mathematical Theory of Evidence [57], which describes in some detail a

comprehensive, powerful, intuitively satisfying and mathematically rigorous theory of evidence.

The work of these two mathematicians has lead to a body of knowledge commonly referred to

as the Dempster- Shafer or D-S theory (sometimes also referred to as the theory of belief

functions). This thesis deals primarily with the application of D-S theory for performing inexact

reasoning in expert systems.

The following four chapters provide a thorough outline of D-S theory. These chapters deal with

the representation of concepts, the representation of belief, the combination of belief, and D-S

based inference respectively.

3.1 Frames of Discernment and Propositions

Shafer defines a frame of discernment, 6 , as a set of possible answers to some question, or

a set of possible values for some variable. In any situation, one and only one of the frame of

discernment's elements, 0, may represent the "truth"- that is, the elements must be exhaustive

and mutually exclusive. We can then define a proposition, A , as a subset of 6 and we say

that A is true if the true value of G lies within A. The set of all propositions derived from a

17

Chapter 3. D-S Theory I: Concept Representation 18

frame of discernment 6 is denoted 2 , we call this set of propositions the discernment space.

Among the propositions in 2 e are the frame itself, the singletons (or sets containing a single

element only), and the empty set, 0 (which can be thought of as the set with no elements).

A discernment space, then, is a structured collection of propositions.

For the purposes of this thesis, we will denote the names of elements within a proposition

with lower case italic letters and denote the names of propositions themselves with upper case

italic letters. In some cases, we may want to give a single proposition several names or aliases

corresponding to several logically equivalent concepts. The following, for example, are logically

equivalent names for some proposition whose elements are a list of North American countries:

{canada,usa,mexico} = NORTH AMERICAN COUNTRIES

The logical relationships between propositions can be found using formal set theory. For exam

ple, the logical notions of conjunction, disjunction, implication and negation translate

into the Bet-theoretic notions of intersection, union, inclusion and complementation (fl,

U , C and in our notation). Note that in the context of D-S theory, two propositions are

said to conflict if they have no common elements, that is if their intersection equals 0. These

basic building blocks of concept representation are illustrated in the following example.

Example 3.1 Suppose that we are interested in the type of ground material

that we might encounter during excavation on a construction project. We might

decide that the possible ground types are rock, soil, or sand. For simplicity, we will

assume that these alternatives are mutually exclusive and exhaustive (e.g. there

can be no mixture of rock and soil nor any other materials such as clay). Our frame

of discernment in this case would then be:

^MATERIAL = {rock, soil, sand}

where rock, soil and sand are the elements of the frame. Any subset of 6jyf ATE RIAL

Chapter 3. D-S Theory I: Concept Representation

is a proposition representing some concept. For example, the subset {rock} is a sin

gleton proposition symbolizing the concept that the ground material is rock. The

subset {soil, sand} is a proposition denoting the idea that the ground is either soil or

sand. We might want to assign the name or alias "EARTH" to this last set. The set

of all possible propositions for this problem is the discernment space 2 B m a t b r i a l ,

shown graphically as a line diagram in figure 3.1.

^MATERIAL =
{rock, soil, sand}

{rock} {soil} {sand}

Figure 3.1: Graphical representation of the discernment space 2 & M A T B R l A L

The logical relationships between propositions can be illustrated by observing

that the logical notion of "not sand" is represented by the set {sand}, the set-

complement of the proposition {sand}, which is equivalent to {rock, soil}. The

logical "soil or sand" becomes the union {soil} U {sand}, the value of which is

the proposition {soil, sand} or EARTH. Similarly, "earth and not sand" becomes

the intersection {soil, sand} n {sand}, or {soil, sand} D {rock, soil} which yields

the proposition {soil}. Finally, the logical relationship "sand implies earth" is

represented by the fact that the proposition {sand} is included in the proposition

EARTH or {soil, sand} (i.e. {sand} C {soil, sand}).

Chapter 3. D-S Theory I: Concept Representation 20

3.2 Frame Refining and Frame Coarsening

We have sectioned our knowledge about the problem domain into a set of propositions. However

we may find that our assignment of propositions is not precise or exact enough to discern some

difference between two concepts (in the sense that the proposition "car" is not precise enough

to distinguish between a Volkswagon and a Rolls Royce). We can therefore divide some of the

elements from a frame 6 up into sets of smaller elements and use these to create a second,

expanded and more precise frame fi called a refinement.

We can specify this process by assigning, for each element 6 € 6, a refinement statement of

the following form:

« (W) = * (3-1)

In such statements, the proposition X C 0 is comprised of all the new elements into which 0

has been partitioned. The statements (one for every singleton) can then be used to define a

refinement statement for every proposition A C 6, according to the formula:

« (A) = L M W) (3- 2)

This gives the new proposition <JJ[A) C fi obtained by the partitioning of the elements in

proposition A (these two propositions, then, are logically equivalent and the proposition name A

can be assigned as an alias to the proposition OJ(A)). The use of equation 3.2 to refine the full

set 6 yields the set corresponding to the new frame Q:

0,(6) = 0 = (J u({6}) (3-3)
tee

The collection of the refinement statements for all of the propositions in the discernment space

Chapter 3. D-S Theory I: Concept Representation 21

makes up a mapping, called a refining, w : 2 e —• 2 n , which thoroughly describes the partition

ing. In refining some frame of discernment, then, we use new knowledge to create a new frame

which can not only discern every proposition from the original frame, but can also discern the

difference between more precise concepts which were indistinguishable in the original frame.

In addition to making the elements of a single frame more precise, frame refinement arises in

a more general case when we are interested in exploring the relationships between propositions

which are contained in two totally separate frames of discernment. To accomplish this, we

require one new frame which is a refinement of two original frames and as such will discern all

of the propositions from both initial discernment spaces as well as the correct set relationships

between them. This frame will not be just a cross product of the two original frames, for

it is created using new knowledge which indicates how the various propositions are related.

Although there could be many frames which meet this criteria, there will be one unique frame

called a minimal refinement, denoted G/>®GQ for two original frames Gp and G Q , which has

fewer elements than all the rest (that is, all other such frames are a refinement of the minimal

refinement). A convenient notation for the elements of a minimal refinement Gp ® G<j is to

use ordered pairs (p, q). An ordered pair is included in the frame only if it corresponds to a

possible conjunctive combination of the elements p € Gp and q € QQ: that is, if it is logically

possible for the concepts represented by p and q to exist simultaneously:

Op ® GQ = {(p,g)| p € Gp, q € G Q , p and q can coexist} (3.4)

Any number of frames can be combined into one minimal refinement in a similar manner.

The inverse of the refinement process is to modify a larger frame to produce a smaller, less

precise one. This is called frame coarsening or reduction, 6 : 2 n —• 2 e and it is defined for

any proposition A C Cl by the equation:

Chapter 3. D-S Theory I: Concept Representation

6(A) = {6 e 6j u({6}) n A ± 0}

Example 3.2 Referring to example 3.1, we may now decide that the element

"rock" is not precise enough but that we should be able to distinguish between "bed

rock" and "aggregate". We can refine our frame of discernment by specifying the

refinement statements:

w({rock}) = {bed rock,aggregate}

u({soil}) = {soil}

u({sand}) = {sand}

We can now create the complete refining w : 2 B m a t b r i a l -* 2 n M A T B R I A L using

equation 3.2, thereby yielding the new frame:

Cl MATE RIAL = {bed rock, aggregate, soil, sand}

Finally, we may identify a separate frame which discerns all the possible exca

vation methods:

^METHOD = {dig, blast, rip}

The minimal refinement of these two frames would discern all of the possible

material types, the possible excavation methods, and the proper relationships be

tween them. If, for example, bed rock could be excavated by blasting or ripping,

soil by ripping or digging, and aggregate or Band by digging only, then the minimal

refinement frame would consist of the following ordered pairs:

Chapter 3. D-S Theory I: Concept Representation 23

^MATERIAL ® &METHOD = { (bed rock, bloat),

(bed rock, rip),

(aggregate, dig),

(soil, rip),

(soil, dig),

(sand, dig) }

Chapter 4

D-S Theory II: Belief Representation

The previous chapter introduced an approach for representing concepts or variables and their

possible values. This chapter discusses how to represent uncertain belief about which values

are true for some particular situation.

4.1 Measures of Belief

The D-S theory utilizes several distinct parameters for describing the belief associated with a

proposition. These parameters are all real numbers on the interval [0,1]. Figure 4.1 introduces

some of these parameters and illustrates the relationships between them.

The support, 5(A), in some proposition A is perhaps the simplest measure of belief. It is

defined formally as a number on the interval [0,1] which measures the degree to which we

believe that the true value for the frame lies within set A. We can notice that 5(0) = 0.0 and

5(0) = 1.0 since 0 is false and 0 is true by their definitions. The uncertainty, U(A), in a

proposition A, measures the degree to which we believe that the true value could be within A,

but could also be outside of A (i.e. the degree to which we don't know if A is true or not). The

doubt, Dou(A), in proposition A is the degree to which we are certain that the true value is

not within set A. Because the elements in the frame of discernment are exhaustive, the doubt

in A is equal to the support in not A. As shown above, the support, the uncertainty, and the

doubt for any proposition must sum to 1.0.

24

Chapter 4. D-S Theory II: Belief Representation 25

For any proposition A, the belief parameters assigned to A can be illustrated by:

Where:

m(A):

5(A):

U(A):

Dou(A):

Pl(A):

Q(A):

• the basic probability of A,
• m(A) < 5(A),
• indicates the belief which is assigned exactly to A; that is, belief in the statement

"I believe that one of the elements of A is true, but I have no evidence to support
one of these elements over another".

• the support for A,
• indicates the total belief that A is true.
• equals the belief exactly for A or for any subset of A (see equation 4.1).

• the uncertainty in A,
• indicates belief which is uncertain as to whether A is true or not.

• the doubt in A,
• Dou(A) = 5(A),
• indicates belief that A is not true.

• the plausibility of A,
• Pl(A) = 5(A) + U(A),
• Pl(A) = 1 - Dou(A),
• indicates belief that A could be true.

• the commonality of A,
. m(A) < Q(A)< Pl[A),
• equals the belief exactly for A or for any superset of A (see equation 4.3).

Figure 4.1: Dempster-Shafer Belief Parameters

Chapter 4. D-S Theory II: Belief Representation 26

In comparison to 5(A) which describes our belief that A is definitely true, the plausibil

ity, Pl(A), describes our belief that A could be true. We can see from figure 4.1 that Pl(A) is

equal to 5(A) + U(A), which shows that plausibility represents the maximum degree of belief

that could be expected if all the uncertainty in A were resolved in favour of A. Pl(A) is also

equal to 1 — Dou(A) or the degree to which we don't doubt A. It is not unusual for several

propositions to have zero support but to have different, non-zero plausibilities. Thus PI (A)

can be just as important as 5(A). Because 5(A) and Pl(A) can be regarded as a lower and an

upper bound on our belief in A, we often refer to [5(A), Pl(A)] as a support interval.

Belief that the true value lies within a proposition implies that it also lies within every superset

of that proposition. Therefore we would like some way of reflecting the level of precision, or the

granularity, to which the belief is most accurately assigned. This information is provided by

the basic probability number, m(A), of a proposition A which is defined as the support which

is assigned exactly to A, and cannot be assigned to any more precise subset of A. According to

this definition, it can be shown that m(A) = 5(A) for all singletons. Support values and basic

probability numbers are related to each other according to the equations:

BCA

where the term \A — B\ is the cardinality of the difference between sets A and B.

Finally, the commonality, Q(A) of a proposition A is the support assigned exactly to the

proposition A or to some superset of A. This belief parameter does not correspond to any

intuitive concept of belief, but it proves to be useful for certain computational processes (see

section 5.2, for example). The following equations relate commonality numbers to basic prob

ability numbers and to support values:

(4.1)
BC A

(4.2)

Chapter 4. D-S Theory II: Belief Representation 27

Q(A) = £ m{B) (4.3)
Bee
AcB

m = £ _ (- l) | B | Q (B) (4.4)
BCA

Q(A) = £ ("1) | B | 5(B) (4.5)
BCA

A l l of the above belief parameters are associated with some function which expresses their

value for every proposition in a frame of discernment. For example, a basic probability

assignment or B P A , defined over the frame 0, is denoted m :29 -* [0,1]. A BPA gives the

basic probability number for each proposition A in a frame 0 in accordance with the following

equations:

m(0) = 0 (4.6)

0<m(A) < 1 (4.7)

E MM = 1 (4-8)
AC&

A support function, S : 2 e —• [0,1], gives the support for every proposition A in 0. Support

functions must obey the following formula:

5(0) = 0.

5(0) = 1.

(4.9)

(4.10)

Chapter 4. D-S Theory II: Belief Representation 28

and, for every positive integer n and every collection A\t..., An of subsets of 6:

5(A! U . . . U An) > £ (- l) l ' l + 1 s(r|A) (4.H)
JC{1 n} V,-67 /

Plausibility functions, commonality functions, etc. can be similarly defined. It should be noted

that any one of these functions carries the entire information associated with some body of

belief and can be used to calculate all other parameters for each proposition. We also note that

Shafer introduces support and plausibility numbers [57, p.144] as restrictions of more general

degree of belief, Bel(A), and upper probability, P*{A) values. However the restriction of

degrees of belief to support is applicable to all information which might reasonably stem from

real bodies of evidence, and in this thesis we will generally refer only to the later. Further

Shafer defines a belief function as the set of degrees of belief for every proposition in a frame

of discernment. In this thesis we will refer to a belief function in slightly more general terms

as any D-S expression of some body of evidence, regardless of which D-S parameter is used for

the representation.

We call all propositions with non-zero basic probability numbers in a belief function the focal

propositions.

Different formulations of a body of belief can be used in different situations. For example,

belief is usually solicited from the user or reported by system in the form of support functions

or support intervals. However we have found BPA's to be the most useful form for internal

processing, so the degree of belief or plausibility values are converted to basic probability after

being entered into the system. We can illustrate a BPA diagrammatically in a manner similar

to a Venn diagram by:

1. showing each element in a frame of discernment as a point in space,

2. representing the basic probability numbers by drawing boundaries or closed lines around

the elements included in the focal propositions,

Chapter 4. D-S Theory II: Belief Representation 29

3. labeling these boundaries with the corresponding basic probability numbers.

If we wish, we can use these diagrams to obtain the support for a proposition by totaling all

of the basic probability numbers assigned exactly to that proposition or to some subset of

it. Alternatively, we can derive the plausibility of a proposition by totaling all of the basic

probability numbers which have any shared elements with that proposition

Example 4.1 Suppose that after a cursory examination of the construction site

introduced in example 3.1, we suspected (support of 0.5) that the ground type was

rock and we were almost certain (support of 0.9) that it was either rock or soil. This

belief could be expressed by the belief function:

S({rock}) = 0.5, reflecting some belief specifically in rock

5({soi7}) = 0.0, reflecting no belief specifically for soil

5({sand}) = 0.0, reflecting no belief for sand

S({rock,8oil}) = 0.9, reflecting strong belief in either rock or soil

S({rock, sand}) = 0.5, reflecting belief specifically in rock which implies be

lief in the superset {rock, sand}

S({8oil, sand}) — 0.0, reflecting no specific belief for either soil or sand

S ({rock, soil, sand}) = 1.0, reflecting full belief that the ground type is either

rock, soil or sand

= S(BMATERIAL)

This belief could also be summarized by the support intervals for the singletons

[S({ I ,}) ,P / ({ I ,})] (we show in section 11.1 that most bodies of belief can be fully

Chapter 4. D-S Theory II: Belief Representation 30

expressed by giving the belief intervals for the singletons only):

{rock}: [0.5,1.0]

{soil} : [0.0,0.5]

{sand} : [0.0,0.1]

Note that there is no support for the material being either soil or sand; yet we

can still use the plausibilities to show that the former is much more likely. We could

further convert the information into a basic probability assignment (which we will

call mi : 2 B m a t b r ' a l) with the following focal propositions:

mi({rock}) = 0.5,

mi({rock, soil}) — 0.4,

mi({rock, soil, sand}) = 0.1.

We can then show this BPA in diagrammatic form as follows:

Figure 4.2: BPA #1 in Diagrammatic Form

4.2 Simple and Separable Support Functions

The simplest type of belief function is one in which some belief is assigned to a single propo

sition (or focus) with all of the remaining belief being assigned to the frame 6 itself. Such a

Chapter 4. D-S Theory II: Belief Representation 31

belief function is called a simple support function and is defined by the basic probability

assignment:

0 < m(A) < 1 (4.12)

m(6) = 1 - m(A) (4.13)

m(B) = 0 (4.14)

For some frame ©, some focus A C 8, and all other propositions B c 6 .

Since a simple support function with focus A can essentially be described by the one basic

probability number m(A), we will call this value the simple support number, ss(A).

In the combination of two or more simple support functions both with the same focus A and

the basic probability assignments mi(A),rri2(A),...; Dempster's rule of combination (which is

discussed in section 5.1) yields the special case:

m(A) = 1 - (1 - mi(A)) x (1 - m 2 (A)) . . . (4.15)

m(8) = (1 - rm(A)) x (1 - m 2(A)) . . . (4.16)

The result is itself a simple support function with the same focus A. It is interesting to note

that this formula matches the rule of evidence combination identified by James Bernoulli in the

16th century.

Chapter 4. D-S Theory II: Belief Representation 32

A simple support function or the combination of two or more simple support functions (not

necessarily containing the same focal element) is called a separable support function. While

not all belief functions that are appropriate for the representation of evidence fall into the class

of separable support function, any body of evidence that is obtained by the combination of

simple support functions-a situation corresponding to the incremental gathering of single pieces

evidence-will yield a separable support function.

In addition to the combination of any group of simple support functions to create one separable

support function, it is possible to decompose any separable support function into a unique set

of simple support functions. While the general formula is slightly more complex and will not

be given here, it is important for us to note that there exists a one-to-one correlation between

any separable support function and the set of simple support functions into which it would

decompose. If we examine the relationship between the separable support function's m(A)

value for some focus A and the simple support number »s(A), then we find that both values

represent the total evidence in support of exactly A. However m(A) is adjusted to reflect the

magnitude of evidence relative to the amount of evidence for all other propositions while ee(A)

carries no indication of its relative support-we need to consider the simple support functions

for all propositions in order to observe the impact of relative degrees of support.

4.3 Consistent Belief

In the case of a frame refinement w : 2 e —+ 2 n , we can say that the two support functions

S0 : 2 e and S : 2° are consistent (i.e. they do not represent conflicting bodies of knowledge) if

S0(A) = S(OJ(A)), for all A c © . When this equality holds, we refer to S0 as a restriction of S

to G, or 5 |2 e ; likewise the corresponding basic probability assignment m„ : 2 e is a restriction

of m : 2 n to G or m|2 e . Given such a basic probability assignment m0) we can calculate a

corresponding basic probability assignment m which meets the restriction criteria (m|2 e) by

setting:

Chapter 4. D-S Theory II: Belief Representation 33

m(w(A)) = m 0 (A), VA C 6 (4.17)

Thus m : 2 n will represent the same body of belief as m0 : 2® but it will be discerned on the

new frame of discernment.

In contrast to frame refinement, we may have performed the frame coarsening procedure given

in equation 3.5; in which case we can derive a coarser basic probability assignment m0 : 2 e

which is consistent with some finer basic probability assignment m : 2 n from the formula:

m0 = X) m (B) (4 1 8)
B e n

A=u>{B)

Example 4.2 Suppose that we refine the frame described in the previous ex

amples to distinguish between the bed rock and aggregate (as in example 3.2). We

can use equation 4.17 to calculate a basic probability assignment 7712 : 2 t t K t A T E R I A L

which conveys the identical belief as mi : 2 B m a t e r , a l (i.e. it is a restriction

m2\® MATERIAL)'-

m2[{bed rock, aggregate}) = 0.5,

rri2({bed rock, aggregate, soil}) = 0.4,

mi({bed rock, aggregate, soil, sand}) = 0.1.

4.4 Specifying Support Functions

We would like to find a way of specifying support functions which allows the user to enter

functions into an expert system in a way which is simple, expressive and theoretically correct.

Any general support function can be expressed by providing the degree of belief for every

proposition in a frame of discernment. While this approach enables any support function to be

Chapter 4. D-S Theory II: Belief Representation 34

entered into the system, the specification of functions in this manner is typically an onerous

task. This is because of the large number of propositions in a frame of discernment (for a frame

with n elements, there are 2 n propositions). We have determined that specifying the support

for the focal propositions only is sufficient to completely specify any support function, as shown

in the following proof:

Theorem 4.1 Proof that specifying only the support values for the focal proposi

tions is sufficient to fully specify a support function:

A basic probability assignment can be specified by providing:

where m(A) is the basic probability number for any proposition A in a frame of discernment 0 .

(note that for this theorem only we distinguish between proper subsets, C , and improper sub

sets, Q) . More succinctly, we need only provide:

where F is any focal proposition in 0 . This is because the basic probability numbers for any

propositions not specifically provided could be assumed to be zero. An input system could confirm

when a complete set of values had been received by checking that the specified values summed to

one.

Now equation 4.1 gives:

m(A), V A C 0 (4.19)

m(F), V F C 6 (4.20)

S(A) = £ m{B)
BCA

but m(A) = 0 for all non-focal propositions, so we can say:

Chapter 4. D-S Theory II: Belief Representation 35

5(A) = £ m(F) (4.21)
FCA

where F is any focal proposition. Furthermore, we can say:

5(A) = m(A) + £ m(F) (4.22)
FCA

or:

m(A) = 5(A) - £ m(F) (4.23)
FCA

or, for any focal proposition G:

m(G) = 5(G) - £ m (F) (4-24)

Thus for any focal proposition G, we can determine m(G) from 5(G) and the basic probability

numbers of true focal subsets ofG. Furthermore, the lowest cardinality propositions in any belief

function have no focal subsets and their basic probability numbers can thus be derived directly

from 5(G). It is therefore evident that equation 4.24 can be used to evaluate m(G) for every

focal proposition G from only the focal degrees of belief by employing a "bottom-up" approach.

That is, evaluate m(G) for the lowest propositions first and then progress to the higher ones.

Once we have all of the m(G) values, we can obtain all m(A) values where A is any proposition

in Q, because m(A) = 0 for all non-focal A's. Further, the set of all m(A)'s can be used to

derive all 5(A)'s from equation 4.1. Thus the information contained in the support values for

focal propositions only is sufficient to define the entire corresponding support function.

An improvement to the input approach of specifying support values for every proposition in a

frame, then, is to supply the support for the focal propositions only. Section 11.1 will introduce

Chapter 4. D-S Theory II: Belief Representation 36

a scheme which allows belief input to be simpler still.

4.5 Classes of Belief

Some classes of belief functions which appear to be pertinent to conveying belief in many

practical contexts are described below. The minimum inputs, necessary constraints, and the

support and plausibility implications are described for each class.

4.5.1 Ignorance

Ignorance can arise in response to a request for belief on some specific question when the user

has no information to offer. This corresponds to a response of "unknown" in a typical expert

system. The appropriate response by the user is to select the vacuous support function in

which the frame of discernment 0 receives full support (S(0) and P1(0) = 1.0) while all other

propositions receive zero support and full plausibility (S(A) = 0.0, P1(A) — 1.0). The BPA

corresponding to a vacuous support function consists of a single basic probability number of

1.0 assigned to 0 .

This response would be constrained so that:

m(0) = 1.0,

m(A) = 0 for all other A C 0

In Bayesian methods an assignment of equal positive probabilities to all elements, i.e. a uniform

prior distribution, is often used as an expression of ignorance, but this does not necessarily

constitute an informationless input. The vacuous support function avoids an assignment of

support to any specific elements but it does give full support to the idea that the true event

lies within the frame 0.

Chapter 4. D-S Theory II: Belief Representation 37

For example, a construction engineer may be asked to express his belief in the delivery perfor

mance of a supplier. If the frame 6 consists of the three elements:

® PERFORMANCE = {On time, Within 1 week, Within 1 to 2 weeks}

then, in expressing ignorance of the supplier's performance and returning a vacuous support

function, he is tacitly agreeing that this supplier can deliver neither early nor later than 2

weeks. The plausibility of each of the three delivery possibilities is thus 1.0. A more complete

expression of ignorance would be possible if the frame of discernment had also included the

element "early, or later than 2 weeks" and the vacuous support function was again entered.

4.5.2 Certain Belief

If the user wishes to express perfect knowledge or an absolute conviction, for example in response

to a question concerning the number of floors in a high rise building, then this can be reflected

by a support of 1.0 for the one singleton representing the truth.

If the true element is i , then this certain response would be:

S({*,}) = 1.0

This belief response would imply that the support and plausibility for the certain element X{

are both 1.0 and that the supports and plausibilities for all other singletons are zero.

The input constraints would be:

m({*,}) = 1.0,

m(A) = 0.0 for all A ^ { I f } .

A similar situation is when the user has perfect knowledge that the truth lies within a known

subset of elements, but has no knowledge as to which of the elements within that subset are

true. Thus, if he wished to express the fact that a crew size for a particular job must include

Chapter 4. D-S Theory II: Belief Representation 38

either 8, 9 or 10 workers while the frame of discernment invites belief response for possible crew

sizes of 5, 6, 7, 8, 9, 10, 11 or 12 then, by assigning a support of 1.0 to the proposition {8,9,10},

he provides certain support for a crew size in the range of 8 to 10 workers.

Once the proposition A\ for which we have certain belief is established, we would set the support

and the plausibility of A,- to 1.0. Then we would have S({x,}) = 0, Pl({x,}) = 1.0 for all x,- G A,-,

while S({xj}) and Pl({x ;}) = 0 for all xy £ A,-.

The input constraints would be:

m(A.) = 1.0,

m(A) = 0.0 for all other A.

4.5.3 Bayesian Belief

Bayesian belief parallels the one support function which can be represented with a conventional

discrete probability distribution. The support values assigned to the singletons must sum to

1.0. In this support function, the support equals the plausibility for each singleton, i.e.:

m({x,}) = S({x,}) = Pl({x,}), for all x,- G 0

The constraint set for this class of support function is:

m({x,}) > 0.0, for all x,- G 0

E x , e e m({x,}) = 1.0

m(A) = 0.0, for all non-singleton propositions A

4.5.4 Consonant Belief

The Bayesian support function partitions belief into parcels which are assigned to separate

elements. This implies that the evidence upon which the belief is based is able to simultaneously

Chapter 4. D-S Theory II: Belief Representation 39

support a number of disparate and possibly conflicting conclusions. The quality of evidence

which leads to conflicting conclusions might well be suspect. Much greater credibility might be

attached to evidence which, although not precise enough to support just a single conclusion,

was able to support a number of conclusions which were in general agreement with each other.

The belief derived from evidence of this type is described by the consonant support structure.

A consonant support structure is one in which the elements can be ordered so as to obtain:

S{{*i}) < S{{xlt z 2 }) < . . < 5({xx, z 2 , . . . * „ })

The input response required to enter a consonant support function requires specification of the

support for the single element x\ together with the plausibility values for all elements.

While some have suggested that this is the only kind of evidence and support structure which

should be entertained (see Cohen [9] and Shackle [56]), others have expressed the view that

such a position is unrealistic. Regardless of the relative merits of these arguments, the conso

nant support structure does have considerable appeal in engineering situations, and it is also

attractive from the user input standpoint as it is simple to specify and highly constrained.

In engineering applications, belief must often be expressed in the value of a variable which

exists on, and is normally measured on, a continuum. In such a case the elements of the

frame of discernment would represent a discretization of this variable. If consonant belief

applied, it would be reasonable in most situations to expected that it would reflect the ordering

of the elements along the scale. This would be achieved by constraining the distribution of

plausibilities to the ordered elements to be unimodal with the mode occurring at the single

element to which support is assigned (i.e. in the above notation, the mode would occur at x\,

and the labelling of the I 'S on the continuum is not necessarily contiguous).

Chapter 4. D-S Theory II: Belief Representation 40

4.5.5 Belief Aris ing from Experiments

In a conventional application of Bayes equation, a prior discrete probability distribution is

specified for some uncertain parameter. This is combined with information concerning an

investigation or experiment, expressed in the form of sample likelihoods, and the outcome

of the investigation or experiment. The sample likelihoods are expressed as probabilities of

obtaining the outcome conditional upon being given each of the possible values for the unknown

parameter. The combining operation, using Bayes' equation, produces a revised, or posterior,

probability distribution for the uncertain parameter.

In the D-S scheme, sample likelihoods can be emulated by adopting a frame of discernment

with elements corresponding to the possible discretized parameter values. A consonant support

function is adopted. In an engineering context we feel that it is appropriate to refer to this as

an experimental support function.

Support for the nested subsets are related to the likelihoods by Shafer ([57]) according to:

max p[e|x,-]

S(A) = 1 (4.25)
max p[e|x,-]

where p[e|x,-] represents the likelihood of the experimental result c given the parameter value

represented by the element x,.

The corresponding BPA values for the focal propositions are then derived by successive sub

traction.

Once an experimental support function had been selected the input would be requested in the

form of a set of sample likelihoods. These would not be subject to any input constraints. A l l

other appropriate constraining effects would occur automatically when the above equation is

Chapter 4. D-S Theory II: Belief Representation 41

applied.

When an experimental support function is combined with a prior belief, which is a Bayesian

support function, then the resulting posterior belief values for the elements of © will be nu

merically identical to the conventional Bayesian posterior probabilities. It is not necessary in

the D-S scheme, however, to restrict the prior belief in this fashion and it is likely in most

situations that other than a Bayesian support function would more realistically describe the

prior knowledge.

Chapter 5

D-S Theory EQ: Belief Combination

This chapter deals with the combination of two or more belief functions. Dempster's rule of

combination is presented first, followed by a discussion of alternative belief combination routines

which have been developed for cases in which Dempster's rule is not applicable.

5.1 Dempster's Rule

Dempster's rule of combination provides a method of combining two independent bodies of

belief, (e.g. belief functions from two independent, equally credible experts) to get an aggregated

basic probability assignment or orthogonal sum. The orthogonal sum of the two BPA's,

mi : 2 e and m 2 : 2 e , for example, is mi © mj : 2 e , and is defined by:

mi ©m 2 (0) = 0 (5.1)

m i © m 2 (A) = (1-Jb)-. 1 Y, mjfBy) (5.2)

where k -]T mi(A,) • m2(Bj) (5.3)

The orthogonal combination procedure may try to attribute some belief to the empty set 0.

However the belief in 0 must be zero by definition (since the set of singletons is exhaustive, the

42

Chapter 5. D-S Theory III: Belief Combination 43

truth must be represented by one of them and not 0). The equation therefore sets m(0) to zero

and normalizes all of the other basic probability numbers using the factor k defined above. This

factor also enables us to measure the degree to which the functions being combined represent

conflicting evidence. For this purpose, the weight of conflict between m\ and can be

defined as follows:

The rule can be used to sequentially perform the combination of any number of basic probability

assignments; in which case the order of combination is unimportant. The following example

illustrates Dempster's combination in diagrammatic form.

weight of conflict = — log(l — k) (5.4)

Example 5.1 If the BPA shown in figure 4.2 is combined with a BPA which

attributes most of its belief to a ground type of either soil or sand:

Figure 5.1: BPA #2

The following BPA is obtained:

Chapter 5. D-S Theory III: Belief Combination 44

Figure 5.2: The Result of Combining BPA #1 and BPA #2

5.2 Other Combination Rules

In D-S, two belief functions can be combined using Dempster's rule of combination. Dempster's

rule is intended for combining two belief functions which are independent-they arise out of

completely distinct bodies of evidence-and conjunctive-both are thought to be true, even if

they are partially contradictory to each other. As such, Dempster's rule amplifies belief which

is common to the two input belief functions and attenuates belief which is exclusive to a

single belief function. Dubois and Prade [15] have proven the unicity of Dempster's rule up

to the normalization stage for the conjunctive combination of independent belief functions.

However within a general D-S implementation, some combinations may not be conjunctive

and some belief functions may not be independent; either condition renders Dempster's rule

invalid. Therefore the identification of alternative combination rules which apply under different

conditions, but which are still consistent with D-S, is highly desirable (see Dubois and Prade [15]

and Yager [75] for further discussion of alternative combination schemes). Several rules have

been developed during this research project which address these conditions. While these rules

have been tested under a variety of combination scenarios and are believed to be valid for

the applications proposed herein, no formal mathematical proofs are provided. This section

introduces these rules and subsequent sections illustrate their use.

Chapter 5. D-S Theory III: Belief Combination 45

A dependant conjunctive combination deals with two different belief functions which stem

from the same source of evidence and therefore provide two different representations of the

same information. For the application intended here (described in section 10.4.2), both belief

functions can be taken to be valid representations of the single body of evidence, thus the belief

functions should not contradict each other. According to this usage of "valid," for example,

one belief function cannot display full support (1.0) for singleton {a} while the other function

exhibits full support for singleton {6}. Yet the application proposed here (and the definition of

a valid representation of the evidence) allows either belief function to contain more uncertainty

than the evidence warrants-that is, either function may be unduly vague or imprecise. This

vagueness is manifested in belief being assigned upwards to a superset of some proposition A

while, according to the evidence, it is A itself which most deserves the support. For example,

one belief function might show full support for singleton {a} while the other function indicates

full support for the proposition {a, b} (in which case the former allocation of belief as being

would be referred to as more precise).

Given two valid but possibly vague and dependent input belief functions, it can be observed

that the level of support for any proposition will never be too high but can be too low. It can

also be observed that since the two input functions are dependent, belief in some proposition

should not be increased just because it is common to the two functions; this would amount to

double-counting the effects of the evidence. Rather, the belief should be set to be equal to the

more precise of the two input belief functions since the assumption that the input functions are

completely valid but potentially vague leaves the assessment of their relative quality to be based

on their precision alone; with greater precision being taken as better. Thus for two dependent

belief functions S\ and S2 on frame 6, the appropriate operation to produce a combined support

S (A) for some proposition A might be expected to be as follows:

5(A) = max (S!(A),5 2 (A)) , V A C 9 (5.5)

Chapter 5. D-S Theory III: Belief Combination 46

However this operation does not necessarily produce a legitimate belief function as output. For

example, when this operation is used to combine the following two belief functions which are

known to have originated from the same source of evidence:

5 1 ({ a » = 0, 51({6}) = 0, 51({c}) = 0,

Si({a,6}) = 1.0, 51({a,c}) = 0, Si({6,c}) = 0,

51({a,6,c}) = 1.0

52({a}) = 0, 52({6}) = 0, 52({c}) = 0,

S2({a,6}) = 0, 52({o,c}) = 0, 52({6,c}) = 1.0,

5 2 ({a ,6 ,c» = 1.0

The resulting combined belief function is:

5({a}) = 0, S({b}) = 0, 5({c}) = 0,

5({a,6}) = 1.0, 5({a,c}) = 0, 5({6, c}) = 1.0,

S({a,b,c}) = 1.0

This is not an allowable belief function according to Shafer's formal definition [57, p.39]. The

correct result must be as follows:

S({a}) = 0, S({b}) = 1-0, S({c}) = 0,

5({a, b}) = 1.0, 5({a, c}) = 0, S({b, c}) = 1.0,

5({a,6,c}) = 1.0

Chapter 5. D-S Theory III: Belief Combination 47

The error in equation 5.5 can be traced to the fact that the support value for a proposition

reflects the belief which is attributed exactly to that proposition or to some subset of that

proposition. That is, the support S(A) for some proposition A is obtained from the basic

probability assignment m according to the following formula:

Thus when vagueness in both input belief functions causes belief which should be assigned to

some proposition A to be re-assigned to supersets of A, the support values for A in both input

functions contain no evidence of that belief. Consequently, the application of equation 5.5 cannot

show that A is the more precise origin of that belief. A solution, then, is to base the operation

on the commonality number, Q(A), of a proposition which reflects the belief attributed exactly

to that proposition or to some superset of that proposition. That is:

Belief which is assigned to a superset of some proposition A, then, is fully reflected in the

commonality number of A. Thus when a comparison of the two input belief functions shows that

some belief has been assigned to unduly vague propositions (supersets of A), the commonality

numbers will lead to A as the more precise origin of that belief. It can be further noted

that a conjunctive combination operation should minimize the commonality numbers of two

dependant belief functions. This is because excessive imprecision causes belief to be re-assigned

upwards to larger propositions, thereby allowing this belief to contribute to the commonality

numbers of more propositions. Vagueness therefore leads to larger commonality numbers, and

the more precise of two dependant input functions is obtained by minimizing the commonality

numbers. Using a commonality number representation therefore, the conjunctive combination

of the two dependent belief functions Q\ and Q2 on frame 6 is correctly expressed by the

(5.6)
BcA

(5.7)
B e e
ACB

Chapter 5. D-S Theory III: Belief Combination 48

following formula:

Q(A) = min (Q 1 (A) ,g 2 (A)) , V A c 6 (5.8)

This formulation may be used to combine the following two belief functions which are the

commonality equivalent of the support functions given in the example described above:

Qi({a}) = 1.0, Qi({6})=1.0, Qi({c}) = 0,

Q1({o,6}) = 1.0, Qi({a,c}) = 0, Qi({b,c}) = 0,

Qi({a,b,c}) = 0

Q2({a}) = 0, Q2({6}) = 1.0, Q2({c}) = 1.0,

Q2({a,6}) = 0, Q2({o,c}) = 0, Q2({b,c}) = 1.0,

Q2({a,b,c}) = 0

producing the following commonality function:

<?({«}) = 0, Q({6» = 1.0, g({c}) = 0,

Q({a,6}) = 0, Q({a,c}) = 0, Q({6,c}) = 0,

Q({a,b,c}) = 0

which is the desired result.

In contrast to the conjunction combination case in which both input belief functions are thought

to be valid, a case will be demonstrated in section 10.3.2 in which one of two belief functions

is believed to bear on the situation at hand, though it is not know which one. Under these

Chapter 5. D-S Theory III: Belief Combination 49

circumstances, one can only justifiably assert a combined belief function that reflects the belief

which is common to both of the input belief functions. Thus the combined support for some

proposition should be taken as the minimum of the support assigned to that proposition by the

two input functions. Following a similar line of reasoning to that used for the conjunctive case,

it can be shown here that support numbers may be used for the operation whereas commonality

numbers may not. The disjunctive combination of the two input belief functions Si and S 2 on

frame 0 is therefore given by the following formula:

S(A) = min (Si(A),S 2(A)) , V A c 0 (5.9)

It can be further noted that the plausibility value for some proposition reflects all belief which

is not assigned to the complement of that proposition or to any subset of the complement. That

is, plausibility reflects the belief in both the subsets and the supersets of the proposition and

therefore provides the basis for alternative combination formulations which are comparable to

equations 5.8 and 5.9. It can be observed that for two dependant belief functions, the more

vague function will have equal or higher plausibility values. For example, a belief function

which represents complete ignorance has a plausibility of 1.0 for all propositions; while a belief

function which does not reflect complete ignorance exhibits plausibilities of less than 1.0 for

those propositions which have some evidence against them. For two input belief functions Ply

and P / 2 on frame 0, then, an alternative form of the dependent conjunctive combination

(equation 5.8) which also produces legitimate results is obtained by taking the minimum of the

plausibility values to obtain the more precise belief, as follows:

P/(A) = min (P*i(A), P/ 2 (A)) , V A C © (5.10)

A fully equivalent alternative form of the disjunctive combination (equation 5.9) is defined by

taking the maximum of the plausibilities to obtain the more vague belief:

Chapter 5. D-S Theory III: Belief Combination 50

P1(A) = max (Ph(A),Pl2(A)) , V A C 6 (5.11)

Note that equation 5.11 is equivalent to the following equation:

1 - 5 (A) = max (l - 5i (A) , 1 - S2 (A V A C 0 (5.12)

where 5, Si, and S2 are the support function equivalents to PI, Pl\ and Pl2 respectively and

A is the set complement of A. Further, equation 5.12 is equivalent to the following equation:

which is equivalent to equation 5.9 since both equations maximize the support for every propo

sition in the frame. This proves the equivalence of equations 5.9 and 5.11.

Finally, note that the combination of several dependent input belief functions can be performed

through the successive application of any of the above combination formulae. For example, the

conjunctive combination of the three dependent belief functions Q\, Q2 and Q$ on frame © can

be accomplished by the following operation:

(5.13)

Q(A) = min min (g 1 (A) ,Q 2 (A)) ,Q3(A)) , V A C 0 (5.14)

Chapter 6

D-S Theory I V : Inference

This chapter provides a brief example of how D-S theory can be used to perform inference.

Much of the ensuing chapters deals with work which was performed before this methodology

of performing consistent inference was known. Yet the technique is presented here so that the

early work can be compared with this technique.

6.1 Performing Inference in D-S theory

Suppose that we have a frame OA with elements o, and propositions A, and a second, related

frame OB with elements bj and propositions By. If a belief function which describes some body

of evidence (an evidential belief function) is entered for the frame OA, one might wish to

determine the impact of this knowledge on the propositions of the second frame 6#. This

can be done by creating the minimal refinement of the two frames, 9^ ® 9 B or ®(A,B)> which

incorporates all of the elements from both initial frames. An element (a, 6) in the minimal

refinement frame 9(A,B) corresponds to the concept that the element a is the true value of

frame OA while the element 6 is the true value of frame 9 B - Likewise, a proposition (A,B) in

the frame &(A,B) 1 3 * r u e * n e proposition A in frame QA is true and B in frame 9 B is true.

It was stated in section 3.2 that the minimal refinement consists of only those pairs of elements

which can logically coexist. In order to simplify the process, the assumption will be made here

that the two initial frames are fully independent, and that minimal refinement is simply the

cross product of the two frames. Later, a relational belief function will be added to the

51

Chapter 6. D-S Theory IV: Inference 52

minimal refinement which states categorically that those pairs which cannot logically co-exist

are impossible. Thus the minimal refinement defined in section 3.2 and the fully independent

minimal refinement with the added relational belief function described here are functionally

equivalent.

The next step is to extend the evidential belief function associated with frame 0 A to the

frame 0(A,B)- That is, every basic probability number attributed to a proposition A is assigned

to the corresponding proposition in the frame ©(x.B) (recall that the elements of ©A are fully

discerned by 0(A,B))- The extended belief function is then the restriction of the initial evidential

belief function to 0^, as defined by equation 4.17.

This extension of the evidential belief function is then combined, using Dempster's rule, with a

relational belief function discerned on frame 0(A,B}- The relational belief function embodies the

inference relationships between the elements in ©x and 6#. These relational belief functions will

be discussed in more detail in section 11.2. The belief function resulting from the combination

now incorporates both the evidential belief about the ©^ elements and the implied belief about

the Qg elements. —

Finally, the resulting belief function is coarsened or marginalized from the frame ©(A,B) to

the frame ©#, producing a new evidential belief function on 65 (as in equation 4.18).

Thus, using only the tools of the D-S theory, belief concerning elements in the frame ©# has

been inferred from belief about the elements in frame ©A and belief about the relationships

between the two frames. Note that in the context of an expert system, the evidential belief in

frame ©x would be input from the user, the relational belief would be stored by the knowledge

engineer in the system's knowledge base, the propagation procedure would be performed by

the system's inference engine (possibly with the guidance of a "control knowledge base" which

defines which propagations to make in various situations) and the resulting evidential belief in

frame &B would be either output to the user, or an intermediate point for further propagation.

Example 6.1 illustrates the belief propagation process.

Chapter 6. D-S Theory IV: Inference

Example 6.1 Suppose that we have a frame which discerns the type of ground

found on a construction site where the ground could be either rock or soil:

^MATERIAL = {rock, soil}

A second frame discerns the excavation method that we will use on the project,

either blasting or digging:

&METHOD = {blast, dig}

These two frames would yield the minimal refinement:

Q(MATERlALMETHOD) = {(rock, blast), (rock, dig), {soil, blast),{soil, dig)}

The minimal refinement completely contains both initial frames. For example

the proposition {(rock, blast), (rock,dig)} in the frame 0{MATERIAL,METHOD) *S

equivalent to the proposition {rock} in the frame ^MATERIAL- Likewise, the propo

sition {(rock,blast), (soil,blast)} in the frame 9(MATERIALMETHOD) corresponds

to the proposition {blast} in the frame &METHOD-

D-S inference, or belief propagation, for these frames is illustrated in figure 6.1.

Chapter 6. D-S Theory TV: Inference

Starting with an
Evidential Belief Function

on frame 8 M ATERIAL
(entered by the user):

and a
Relational Belief Function

on frame &(MATERIAL,METHOD)
(stored in the knowledge base):

0.4 — -^rock^

0.6 soil •
We can extend the

Evidential Belief Function
to frame Q(MATERIAL,METHOD) '•

^ (rock,dig) (rock,fe/ost)^- — 0.4

(soil, dig) (soil, blast) J— 0.6

r
Then combine the extended Evidential Belief Function with

the Relational Belief Function using Dempster's Rule:

0.08 — 4 (rock,dxg)

0.48

^rock, blast)

(soil, blast)

0.32

0.12

•
And Reduce the result to produce an
inferred Evidential Belief Function

on frame & MET HOD'

0.68 dig blast W-0.32

Figure 6.1: Summary of Belief Propagation for an Excavation Example

Chapter 7

Various D-S Interpretations

One of the first references to D-S theory in an artificial intelligence context was in 1981 at the

Seventh Joint International Conference on A l in Vancouver, B.C. (IJCAI-81). Since that time,

a good deal of work has focused on the theory and on how to implement it. This chapter briefly

reviews a few of the important papers published in this field by others.

7.1 Barnett

Jeffrey Barnett presented a paper at IJCAI-81 entitled "Computational Methods for a Math

ematical Theory of Evidence" which dealt exclusively with D-S Theory. There were two main

points to Barnett's paper; the first was simply to present D-S theory as a possible scheme for

dealing with uncertainty. The second point was to modify the process in an attempt to change

the processing time for reasoning problems from a duration that is exponentially dependant on

the size of the problem to one that is linear.

Barnett showed that the calculation of both the support and the plausibility numbers from

a basic probability assignment as well as the combination of basic probability assignments all

require processing time exponential with the size of the frame of discernment. He produced

variations which he claimed reduce these to linear, however to do this he restricts the allowable

propositions to only singletons, the negation of singletons and the full frame itself.

Several criticisms can be directed against such an approach. First, the computational problem

does not seem to be as bad as Barnett suggests, as discussed in sections 9.8 and 9.9. Second,

55

Chapter 7. Various D-S Interpretations 56

the restrictions that Barnett places on the theory severely limit the power of the system's

representation scheme and almost totally remove that ability to deal with belief of various

precision. Third, the restrictions seem to lead to violations of the theory's underlying axioms.

For example; suppose we have a frame {a,6,e,d}, a basic probability assignment that assigns

belief only to the proposition NOT {a} or {6,c,d} and a second basic probability assignment

that assigns belief only to NOT {d} or {a,b,c}. Then the legitimate combination of the two

basic probability assignments would result in all belief being assigned to the intersection of these

two sets-which turns out to be {b,c}, a set which is not allowed according to the restrictions.

7.2 Garvey, Lowrance and Fischler

Another paper presented at IJCAI-81 which dealt with D-S Theory was "An Inference Technique

for Integrating Knowledge from Disparate Sources" by T. Garvey, J . Lowrance and M . Fischler.

This paper, like that of Barnett, is largely devoted to a good, simple explanation of portions of

the D-S theory. It then goes on to give a number of allowable inference rules; for example:

Theorem 7.1 Given a support interval for proposition A of [S(A),Pl(A)] and a support in

terval for proposition B of [S(B), Pl(B)], we can infer a support for proposition (A & B) of

[S(A& B),Pl(Ak B)] from the following equations:

These equations can be shown to be clearly incorrect. For example, consider a frame of dis

cernment {a,b,c}. Let the proposition {a,6} be A and the proposition {o,c} be B. Then the

proposition {a} is A n B (or A & B). Thus we can see that:

(7.1)

(7.2)

Chapter 7. Various D-S Interpretations 57

S (A n B) = S({a}) = m({«}) (7.3)

However equation 7.1 states that:

S(A n B) = max (o, 5(A) + S{B) - l)

= max (O, S({a,b}) + 5({a,c}) - l)

= max (o, (m({a, b}) + m({o}) + m({6»)

+ {m({a,c}) + m{{a}) + m({c}))

- (m({a}) + m({c}) + m({*})

+m({a, 6}) + m({o, c}) + m({b, c}) + m({a, 6, c}))

Equation 7.1, then, is incorrect.

These equations are valid, however, when they are not taken as equalities (as stated) but rather

as inequalities (e.g. S(AizB) > max(0, 5(A) + 5(B) - 1)). The paper does not go on to show

clearly how such statements can be used in a reasoning system and furthermore, it seems that

they could only be of use when complete basic probability assignments are not available in the

first place (there is no apparent benefit of allowing fragments of basic probability assignments).

The final portion of the paper by Garvey et al works through an example of using D-S theory

to combine different types of evidence about an electronic signal in order to determine which of

several possible sources it was emitted from. This example incorporates "dependency graphs"

which are equivalent to the minimal refinement of all input frames. This example is one of the

few cases in the literature which proceeds in a manner which is truly consistent with Shafer,

rather than reaching outside of D-S theory for reasoning procedures. This paper, then, contains

useful results and provides the first glimpse of a consistent D-S approach; but it makes little

progress towards a general implementation technique of D-S theory for expert systems.

* » » ({ « » (as per equation 7.3)

Chapter 7. Various D-S Interpretations 58

7.3 Gordon and Shortliffe

One of the first attempts to try to create a simple implementation of the D-S theory in a

rule-base expert system was made by Gordon and Shortliffe who looked at the theory for

improving the MYCIN system described in section 2.2 (see Buchanan and Shortliffe [4, Ch.13]).

In their approach, a single frame of discernment was constructed from a list of all of the

diseases known to the system. Rules were then constructed exactly as in their initial system,

including the formulas for conjunctions and disjunctions in the premise and for weak inference.

The difference was that the resulting certainty factors were now taken to be basic probability

numbers. Dempster's Rule was then used for combining these bodies of evidence. In this

system, Barnett's simplifying assumptions were adopted.

Later, Gordon and Shortliffe [27] dropped Barnett's schemes and revised the system to deal

with an entire frame of discernment rather than just the singletons and their complements.

However they made a different restriction that only those propositions which formed a true

hierarchy or a tree instead of a lattice could be used. These restrictions alter rather than

solve the problems arising from Barnett's schemes since legitimate combinations still lead to

illegal propositions. This problem is dealt with by making approximations which remove the

belief from any such illegal propositions but, as a result, the ability to accurately calculate the

plausibility of propositions is lost. Also, Shafer and Logan [65] later pointed out that if the

discernment space is, in fact, truly hierarchical, then Dempster's rule is much more efficient

than in the general case anyway, so Gordon and Shortliffe's approximation technique is not

necessary.

While Gordon and Shortliffe's techniques are consistent with the D-S theory (except for the

restrictions mentioned above), they deal only with combining multiple sources of evidence

regarding possible conclusions. In no way do they mention how these sources of evidence are

arrived at in the first place. In fact, the impression is given that the sources of evidence are the

results of applying rules in exactly the same manner as certainty factors. If this is the intended

Chapter 7. Various D-S Interpretations 59

approach, it marks the genesis of a very important class of D-S implementation approaches-

namely non-consistent implementations. Such implementations use portions of the D-S

knowledge representation scheme and often employ Dempster's rule for combining multiple

sources of belief. But the techniques used for inferring belief (using rules) and performing weak

inference (adding uncertainty to the rules themselves) are founded wholly outside of D-S theory.

This class of D-S implementations is useful because it generally results in systems which are

quite simple and practically implementible and their results are at least as good (most likely

better) than those of simple certainty factors. However they miss the very important mark of

providing systems which are fully consistent with a single reliable underlying theory, and thus

cannot offer the reliability and confidence of truly consistent approaches. The system developed

by Lu and Stehanou (described in the next section) is a typical non-consistent implementation.

7.4 L u and Stehanou

Lu and Stehanou [44] have proposed a system which uses D-S frames to represent so-called

input and output spaces. Inference is accomplished by defining mappings between input space

propositions and related output space propositions. Whenever a non-zero level of belief is

encountered for an input space proposition, that belief is multiplied by a measure of uncertainty

associated with the mapping itself and then assigned to the related output space proposition in

the form of an independent belief function (with any remaining belief attributed to ignorance).

This approach is intuitively sound and is adaptable to rule-based expert systems. But the

mappings and their associated uncertainty values are basically ad hoc and they have no foun

dation in D-S. The following is an example of the problems which can result from this type of

approach:

Example 7.1 Suppose that we attempt to implement a one-to-one or identity

relationship between the input and the output propositions. For example, we might

Chapter 7. Various D-S Interpretations

have two input elements I\ and I2, two output elements 0\ and O2, and the identity

set of mappings UI\ implies Oi with certainty 1.0" and UI2 implies 0 2 with certainty

1.0". Then the following input belief function:

S{h) = 0.5, S(/ 2) = 0.5, S(Ii,I2) = 1.0

would, through the two mappings, yield the following two output belief functions:

5(Oi) = 0.5, S{02) = 0.0, S (O i ,0 2) = 1.0

and

Sid) = 0.0, 5(0 2) = 0.5, S{Ou02) = 1.0

Note that the support value of 1.0 for "Oi,C? 2" in each of these belief functions

comes from a 0.5 basic probability number assigned to one of the singletons and a

0.5 basic probability number assigned to " O i , 0 2 " itself as a result of attributing re

maining belief to ignorance. These belief functions would combine under Dempster's

rule to yield the overall output belief function:

S(Oi) = 0.333, 5(0 2) = 0.333, 5 (Oi ,0 2) = 1.0

Here, the support value of 1.0 for " O i , 0 2 " is a result of summing the 0.333

basic probability numbers assigned to each of the three propositions. Thus the set

of identity mappings did not operate correctly since the output belief function is

not a one-to-one mapping of the input belief function. Not only do we get different

levels of belief for the two singletons, but we produce a level of uncertainty where

none originally existed. Note that a different propagation approach could have

been employed in which the two rule's assertions do not make up different basic

probability assignments but are simply two components of a single assignment. This

solution is no better, for a set of assertions about the propositions in the output

Chapter 7. Various D-S Interpretations 61

space need not all come from the same input space frame, so we cannot simply state

that all such assertions are basic probability numbers in the same basic probability

assignment because they then will generally not add up to one.

These inconsistencies are not fundamental faults with systems which only partially adopt D-S

theory, and solutions can be derived which deal with these particular problems. However these

are typical of the types of problems that arise from the lack of a single, coherent underlying

theory for the entire reasoning process.

7.5 Lowrance, Garvey and Strat

J . Lowrance, T. Garvey and T. Strat presented a paper at the National Conference on Artificial

Intelligence in 1986 (AAAI-86) entitled "A Framework for Evidential-Reasoning Systems" [42].

This paper gives a detailed description of a reasoning system which, like the one presented by

Garvey, Lowrance and Fischler at IJCAI-81, seems to be fully consistent with D-S theory. To

solve a reasoning problem in their system, they first partition some propositional space into

appropriate frames of discernment. Next, they represent their knowledge about which propo

sitions from one frame are compatible with propositions in another frame (that is, which pairs

of propositions from the two frames could be true simultaneously). This knowledge takes the

form of a set called a compatibility relation which consists of ordered pairs corresponding

to these compatible pairs of propositions. From this compatibility relationship, a set of map

pings is defined which can be used to transfer belief between frames of discernment. Thus, to

determine our belief in the propositions for some frame, we transfer the belief from any related

frames to our frame of interest and combine all of this belief, yielding our current combined

belief.

We have stated that this approach is consistent with D-S techniques for reasoning. However the

system, as we've described it, uses mappings to transfer belief between frames of discernment

Chapter 7. Various D-S Interpretations 62

(as did earlier non-consistent systems such as Lu and Stehanou described above). The difference

between this system and earlier systems is that the compatibility relation set used by Lowrance

for transferring belief is exactly equivalent to Shafer's minimal refinement frame and the entire

mapping process is mathematically equivalent to using Shafer's techniques to define a minimal

refinement of two frames, transfer any belief from the two original frames to the refinement,

combine the belief and then coarsen the minimal refinement frame so that we are left with a

frame which is identical to the one that we were originally planning to transfer our belief to.

In chapter 10, several comparisons are offered between this D-S implementation approach and

the one developed during the thesis research project.

7.6 Zadeh

Lotfi Zadeh is the father of fuzzy logic theory, one of the main "competitors" of D-S theory for

inexact reasoning in expert systems. Fuzzy logic theory will not be discussed here, but Zadeh

has frequently commented on D-S theory and these comments are discussed in this section.

Although Zadeh's comments have been, for the most part, cautiously positive, he takes strong

issue with the normalization process from Dempster's rule and he has aggressively criticizing

the theory on that basis (see Zadeh [82] and [83]). However the examples that Zadeh's uses to

make his point consistently show that he has failed to grasp some of the basic concepts of the

theory. For example, Zadeh gives the following example:

"Assume that Country X believes that a submarine, S, belonging to Country Y is

hiding in X'B territorial waters. The Minister of Defense of X summons a group

of experts, E\,... ,En, and asks each one to indicate the possible locations of S.

Assume that the possible locations specified by the experts E\,..., Em, m < n,

are L \ , L m , respectively, where Li, i = 1,...,m, is a subset of the territorial

waters; the remaining experts, E m + i , E n , assert that there is no submarine in

Chapter 7. Various D-S Interpretations 63

the territorial waters, or, equivalently, that Lm+i = • • • = Ln = 0, where 0 is the

empty set." [83, p.81].

Zadeh goes on to show that the because the D-S theory allows no belief in the empty set and

therefore eliminates any such values and normalizes all other belief, the opinion of those experts

who said that there is no submarine is completely disregarded. His criticism is summed up by

his assertion that "Normalization throws out the opinion of those experts who assert that the

object under consideration does not exist." [83, p.82]

If we question why D-S disallows belief in the empty set, however, we remember that one of

the most basic requirements of a frame of discernment is that the elements make up a mutually

exclusive and exhaustive set. If all possible solutions are represented by the elements of the

frame, then any belief about what is true must be represented by some proposition and cannot

be represented by the empty set unless we have belief in something which we have deemed to

be impossible.

The question remains, then, of how the situation outlined in the above example could arise.

Shafer gives the solution to this question in chapter twelve of his book. A frame of discernment,

he shows, is based on many assumptions. For example, we have previously defined a frame which

discerns whether a person is left handed or right handed. This frame assumes that the person

was not ambidextrous. Assumptions are, in fact, a requirement of reasoning. For example,

we also assume in this frame that a particular person exists and is not just some figment of

our imagination; if we had to consider all such options then we would rarely be able to gather

strong enough evidence to prove that anything were true. Never-the-less, we may find that some

particular assumption is not valid and so we must redefine the frame to include that option.

This is what has happened in Zadeh's example; the frame of discernment which is made up of

possible locations of the submarine in the country's territorial waters is clearly based on the

assumption that a submarine is in those waters. The existence of an expert opinion that says

there is no submarine is not an indication of some level of belief in the empty set, it is an

Chapter 7. Various D-S Interpretations 64

indication that the frame of discernment has been incorrectly defined and it must be revised to

include an element corresponding to "there is no submarine".

In the D-S theory, then, we can never assert any level of belief in the empty set. However

we still need to be able to deal with such belief because it is generated by Dempster's rule

when combining two bodies of evidence that contain belief which is, to some extent, conflicting.

Zadeh gives a second example in the same paper which criticizes this procedure:

"Suppose that a patient, P, is examined by two doctors, A and B. A's diagnosis is

that P has either meningitis, with probability 0.99, or a brain tumor, with proba

bility 0.01. B agrees with A that the probability of brain tumor is 0.01, but believes

that it is the probability of concussion rather than meningitis that is 0.99. Applying

the Dempster rule to this situation leads to the conclusion that the belief that P

has a brain tumor is 1.0-a conclusion that is clearly counter-intuitive.. ."[83, p.82]

These results certainly demand a second look, however in so doing the problem is again found in

the example, not in the theory. The belief from the first doctor states that the diagnosis could

possibly be either meningitis or a brain tumor (with the former being much more probable

than the latter) and that all other diagnosis are untrue with certainty (i.e. impossible). The

second doctor stated that a concussion and a tumor are possible but that all other diagnosis

are impossible. Since the first doctor has conclusively ruled out a concussion and the second

doctor has conclusively ruled out meningitis, the only possible diagnosis is a tumor.

This example, then, does not illustrate an inherent problem with the D-S theory but rather

illustrates the fact that claims of certainty are taken literally in the theory. In fact, the D-S the

ory would itself identify this example as being questionable in that an extremely high weight of

conflict would be produced in the combination which would flag the fact that highly conflicting

information was being combined. Furthermore, if the example were a more realistic one, the

evidence that lead the first doctor to place a certainty of 0.99 in meningitis would very likely

Chapter 7. Various D-S Interpretations 65

have caused the second doctor to admit at least some possibility of meningitis and vise-versa.

If even so slight a possibility of 0.01 were thus allowed, the results would be quite different; as

illustrated in table 7.1.

Table 7.1: Modified Doctor's Example

1st Doctor 2nd Doctor Combined belief
m(meningitis) 0.98 0.00 0.490

m(tumor) 0.01 0.01 0.015
m(concussion) 0.00 0.98 0.490

m(meningitis, tumor,
or concussion) 0.01 0.01 0.005

The results shown in table 7.1 are, of course, much more appealing. They do point out, however,

that there can be a significant (although not discontinuous) difference between very small levels

of belief and zero belief. Again, this is due to the fact that categorical statements are taken

literally and two categorical belief statements which conflict indicate an impossible situation-

one or both of the functions must be discounted or discredited to some extent.

7.7 Other Related Work

This section lists a few of the other important works relating to D-S theory without discussing

their content.

• Thomas Strat presented a paper entitled "Continuous Belief Functions for Evidential

Reasoning" [70] at AAAI-84. This paper describes a very interesting and useful extension

of D-S frames of discernment from discrete to continuous variables.

• After writing " A Mathematical Theory of Evidence" in 1979, Glen Shafer participated

very little in work relating artificial intelligence applications of his theory (his 1976 book

itself was not intended for an A l audience). By the mid-1980's, however, he seems to have

Chapter 7. Various D-S Interpretations 66

been energetically drawn into the fray. Most of the works which he has since prepared or

collaborated on are important references for this field. See, for example, [11], [60], [61],

[63], [64], [65], [66], [67], and [68].

• Ronald R. Yager has produced a large amount of work on uncertainty in artificial intel

ligence. His work has focused on D-S theory in addition to fuzzy set theory and other

approaches. Most of Yager's work is at a fairly theoretical level. See [72], [73], [74], [75],

[76], [77], [78], and [79].

7.8 Conclusion

This chapter has reviewed some of the important work performed in the area of applying D-S

theory to inexact reasoning in expert systems. A general observation of these works is that

they each seem to follow one of two distinct paths. The first path borrows such components

of D-S theory as proves advantages for simple, rule-like reasoning approaches: such systems

are non-consistent. The second path strives to produce truly consistent D-S implementations.

The common thread among these works is that they don't go very far in uncovering a general,

practical application approach which remains true to the goal of consistency. A clear objective

of work in this field is to bring these two paths back together to produce a simple, practical

application approach which remains truly consistent with D-S theory.

Chapter 8

Non-Consistent Implementations

This chapter deals with the non-consistent implementation attempts made early in the research

project. While some of the work outlined in the previous chapter was available when the project

began, most of it was not. Based on the material which was available from the outset and on

a rudimentary understanding of the D-S theory, the project began with the idea that a simple

MYCIN-like expert system could be created in which certainty factors were replaced with D-S

belief functions. In a MYCIN-like system, the function of a rule is to determine the level of

belief in its premise and assert a corresponding level of belief for its conclusion. Further, the

abilities exist to handle conjunction, disjunction and negation in the premise; to incorporate

some level of uncertainty in the validity of the rule itself; and to combine the effects of several

rules all dealing with the same conclusion.

If, as in the approach described by Gordon and Shortliffe (section 7.3), the measure of belief

resulting from the application of a rule is taken to be a D-S belief function (focused exactly for

or against some singleton) rather than a certainty factor, then the combination of several rules'

results can be performed using Dempster's rule.

Using this approach for combining the results of multiple rules and using the normal MYCIN

formulae for all other operations, a simple rule-based system can be constructed. An attempt

at such an approach is described in section 8.1. However this technique has two main problems.

First, the application of Dempster's rule requires two or more belief functions as input, not

simply two single measures of belief (i.e. two support numbers). The assumption made by

Lu and Stehanou (section 7.4) that the support value for any premise proposition can be

67

Chapter 8. Non-Consistent Implementations 68

assigned to a conclusion proposition with remaining belief assigned to the frame itself will

result in a belief function as the rule's output, but the belief function is created according to an

arbitrary convention. It is this arbitrary process that leads to the problem previously described

in example 7.1. Second, all of the other processes in the system have no connection with D-S

theory, thus the system is non-consistent regardless of the first problem.

While the first problem was overcome by using an approach described in section 8.2, it was

eventually realized that any approach which closely followed the MYCIN-like rule format could

never be fully consistent with D-S theory. The resulting consistent work is described in the

subsequent chapters.

8.1 A D-S Inexact Reasoning Module

If an expert system is created using PROLOG predicates as rules, an additional set of predicates

can be written which collaborates with the rule predicates to manage uncertainty. This set

of uncertainty handling predicates forms an independent module which can be modified to

accommodate a variety of inexact reasoning techniques. This is the approach suggested in a

paper by Lecot and Parker entitled "Control over Inexact Reasoning" (published in AI Expert

magazine in 1986 [39]). Lecot and Parker refer to the set of inexact reasoning predicates as

an inexact reasoning module, or I R M . The predicates in an IRM operate on measures of

uncertainty, U, the structure of which depends on the inexact reasoning approach being used.

If a MYCIN-like approach is adopted, for example, the structure of U will be a certainty factor

(a number between negative one and one). As described by Lecot and Parker, an IRM, must

contain at least the following main predicates:

1. certainty-and(Ui, U2, t/3). Produces the uncertainty measure, C/3, resulting from a premise

of the form °term-l AND term-2", where Ui and U2 are the measures of uncertainty

associated with each term respectively.

Chapter 8. Non-Consistent Implementations 69

2. certainty.or(Ui, U2, Us). Produces the uncertainty measure, Us, resulting from a premise

of the form "term-1 OR term-2", where U\ and U2 are the measures of uncertainty asso

ciated with each term respectively.

3. certainty.not(Ui, U2). Produces the uncertainty measure, U2) resulting from a premise of

the form "NOT term", where Ui is the measures of uncertainty associated with the term.

4. certainty.rule(V\, U2, Us). Produces the uncertainty measure, Us, resulting from a rule

where U\ is the uncertainty associated with the premise and U2 is the uncertainty asso

ciated with the rule itself.

5. certainty.combine(U\, U2, Us). Produces the combined uncertainty measure, Us, resulting

from the application of two rules with their associated measures of uncertainty U\ and U2

respectively (Lecot and Parker included both the certainty-rule and the certainty.combine

operations into a single predicate).

For example, in a M Y C I N certainty factor IRM, the prolog predicates for the certainty.and and

certainty.or operations are as follows:

cer ta inty_and(cf(A),c i (B) ,c l (C)) : -

number_min(A,B,C).

eertainty_or(ci(A) ,ei(B) ,cf (O) : -

number.max(A,B,C).

where "number_min" and "number_max" simply assign the minimum and maximum of A and B

to C respectively. Note that this is not quite equivalent to the actual M Y C I N system which

keeps measures of belief and measures of disbelief separately.

This general approach is easily implementable and the first forays into D-S implementation

made by during the thesis research were to adapt D-S concepts to this format. The resulting

Chapter 8. Non-Consistent Implementations 70

D-S IRM successfully implemented Gordon and Shortliffe's combination approach described

in section 7.3 (which is, recall, consistent as far as it goes) as well as MYCIN'S formulae for

conjunctive and disjunctive premises and for weak inference as described in section 2.2 (these,

of course, are non-consistent with D-S theory). The details of this implementation here will not

be provided in this thesis.

The resulting D-S IRM produced results which seemed to be richer, or better able to describe

the uncertainty, than did the results from the normal certainty factor IRM. However using the

D-S version was slightly more complicated than the certainty factor version. Of greater interest

to us, however, was the observation that the system would produce apparently inconsistent

results at times, like those described in example 7.1 for instance. The investigation of these

results lead to a new implementation approach which came closer to (but did not fully achieve)

the goal of a consistent implementation. This system is described in the following section.

8.2 A Simple Support Function Approach

As previously mentioned, the approach outline in the preceding section produced incongruous

results because of the arbitrary manner in which belief in a premise proposition was translated

into a belief function for the conclusion. The approach outlined in this chapter corrects this

problem by basing the inference process on simple support functions (as defined in section 4.2).

We therefore call this approach the simple support function, or SSF , approach.

8.2.1 Restrictions

The SSF approach places two main restrictions on the use of D-S theory. Not only do these

restrictions enable the approach to solve some of the problems associated with the D-S IRM

approach, but they enable Barnett's simplified calculations (section 7.1) to be used. These

restrictions are as follows.

Chapter 8. Non-Consistent Implementations 71

The first of these restrictions consists of confining the allowable subsets of a frame 6 to the

singletons, the compliments of the singletons and 6 itself. This restriction admittedly invali

dates the D-S theory advantage of being able to assign belief to any level of precision (i.e. any

possible subset of 6). However the advantages of accommodating ignorance and of resulting in

uncertainty intervals remain intact.

The second restriction is that all pieces of evidence being added to a body of knowledge must

be in the form of simple support functions. As mentioned in section 4.2, this reflects the

process of incrementally acquiring single pieces of evidence and is appropriate for modeling

expert behavior. If the computational and representational burden were ignored, both of these

restrictions could be discarded and the following theory should hold: we have not, however,

attempted to identify or implement the general formulae.

8.2.2 S S F Approach to Inference

The SSF approach to inference can be observed by examining the behavior of the simplest

type of rule-one in which the premise is a single proposition in one frame (&PREMISE)> the

conclusion is a proposition in a different frame (^CONCLUSION) and there is no uncertainty

attached to the rule itself. We then wish to determine a degree of belief for the conclusion

which reflects the extent of our belief in the premise. The conclusion's degree of belief will then

act as a single new piece of evidence to be combined with the knowledge already collected for

^CONCLUSION- As we have seen in section 4.2, the belief function representation of a single

piece of evidence is a simple support function. Therefore, the conclusion of the rule must be

in the form of a simple support function (in fact, this is one of the computational restrictions

that we have placed on the system). Recalling that a single simple support function can be

fully represented by a simple support number, we set the output of our rule to be a proposition

with an attached measure of belief consisting of the simple support number 88(concluaion).

Knowing that the degree of belief in the conclusion is in the form of a simple support number

Chapter 8. Non-Consistent Implementations 72

and that this number is (in this simple case) proportional only to the degree of belief in the

premise, it becomes clear that we should set:

8s(conclu8ion) = ««(premi«e) (8-1)

In order to use this rule, then, we must first determine ««(premise). We could calculate the

simple support number for the premise by taking all the pieces of evidence we have for every

proposition in ^PREMISE, combining them using Dempster's rule of combination to get a

separable support function, decomposing this function into its unique set of simple support

functions, and extracting the desired simple support number. However, we can perform this

process in such way as to first combine all evidence (in the form of simple support functions,

recall) for each allowable proposition in the frame, thereby producing one intermediate simple

support function for every such proposition. These intermediate would then, in the process

outlined above, be combined to create a single separable support function and then decomposed

to produce a unique set of single support functions. It can be determined, however, that the

final unique set of simple support functions will be identical to the intermediate set of simple

support functions; the combination and decomposition is therefore unnecessary. If it is only

aa(premise) that we are after, then, we only need to combine any pieces of evidence (each

a simple support number) for the one proposition contained in the rule's premise using the

simplified special case of Dempster's rule given in equations 4.15 and 4.16.

For this simple, single proposition rule, then, the SSF approach offers a consistent (though

restricted) techniques for inferring belief about the conclusion from belief about the premise.

The following example shows how this technique prevails over the approaches described in

sections 7.4 and 8.1:

Example 8.1 Suppose that we have two frames of discernment; ^PREMISE =

{0,6} and ^CONCLUSION = {x,v}- We may, as in example 7.1, wish to specify a

Chapter 8. Non-Consistent Implementations

set of rules which imply that our belief in x iB exactly our belief in a and our belief

in y is exactly our belief in b. With this identity rule set, then, we expect our belief

in ^CONCLUSION to exactly equal our belief in QPREMISE- NOW suppose that our

belief in QPREMISE is described by the basic probability assignment:

m(a) = 0.5, m(b) = 0.3, m(a, b) = 0.2

The D-S IRM system described in section 8.1 would assert that m(x) = 0.5

and m(y) = 0.3, but these assertions would have to be made in the form of simple

support functions. These functions, along with the corresponding combination from

Dempster's rule, are:

m(x) = 0.50, m(y) = 0.00,m(x,y) = 0.50

m(x) = 0.00, m(y) = 0.30,m(x,y) = 0.70

m(x) - 0.41, m(y) = 0.18, m(x,y) = 0.41

Thus our belief in the conclusion does not equal our belief in the premise.

However, if we redo the example using simple support numbers, our belief in

©PREMISE would be expressed in the form of a set of simple support numbers

corresponding to the above belief function; 88(a) = 0.714 and 88(b) = 0.6. The

rules then make the assertions AS(X) = 0.714 and ss(y) = 0.6 or, in the form of

simple support functions with the corresponding dempster combination:

m(x) = 0.714, m(y) = 0.000, m(x,y) = 0.286

m(x) = 0.000, m(y) = 0.600, m(x,y) = 0.400

m(x) = 0.500, m(y) = 0.300, m(x, y) = 0.200

Thus our belief in the conclusion does equal our belief in the premise in this

case.

Chapter 8. Non-Consistent Implementations 74

The underlying inexact reasoning mechanism in the SSF system, then, consists of obtaining

knowledge about various frames of discernment and storing it in the form of simple support

numbers. Rules are used to chain from frame to frame by combining all of the simple support

numbers for some proposition and asserting the combined value as a simple support number

for a new proposition.

8.2.3 Comparison of the SSF System and M Y C I N

It is interesting to note that the inexact reasoning process of combining simple support numbers

for both singletons and the compliments of singletons using the special case of Dempster's com

bination rule corresponds exactly to MYCIN'S combination of MB and MD factors (Measure

of Belief and Measure of Disbelief respectively). This similarity leads to an assumption that

the success of MYCIN'S inexact reasoning system would likely be at least equaled by the SSF

system.

The similarity between our D-S based system and MYCIN, however, also points out a seemingly

confusing aspect of our system. Although an underlying concept of the D-S theory is that belief

in any proposition within some frame of discernment is normalized to reflect belief relative to

the belief in all propositions in that frame, our system (like MYCIN) determines its belief

in a rule's premise from evidence concerning that specific proposition only. The solution to

—this apparent problem is that the simple support numbers used by the rules, while alone they

carry no indication their relative support, can be used to construct a fully normalized separable

support function if and only if the set of simple support functions is complete. This means that

if we relate one frame of discernment to another with a set of rules that is complete though

not redundant, then we would be able to supply information about the first frame and obtain

a separable support function from inferred facts about the second frame just as if our relative

belief in all the propositions of the first frame were somehow transferred to the second.

The difference between the two reasoning mechanisms is that, while both systems propagate

Chapter 8. Non-Consistent Implementations 75

degrees of confidence for and against propositions in the same way, MYCIN interprets these

confidences by simply subtracting the level of disbelief from the level of belief to obtain a single

ad hoc parameter. Our system, on the other hand, will combine our belief for and against each

proposition with the belief for all related propositions in a mathematically coherent way. The

result is an interpretation of the various degrees of belief that reflects our relative belief in each

proposition, the precision of belief in each proposition, and the extent of our ignorance about

each proposition.

Having now outlined the theoretical approach employed by the SSF system, we now supply

some of the details of its implementation.

8.2.4 Representation of Uncertainty

In our implementation of a SSF system, a frame of discernment is made up of all the possible

VALUE'S of some OBJECT,ATTRIBUTE combination. The singletons of the frame, then,

would be represented by associative triples of the form "the ATTRIBUTE of the OBJECT

is VALUE" along with an associated uncertainty measure comprised of a simple support num

ber. For each singleton in the frame, there is a corresponding compliment. Support for these

compliments could be represented in the form of an associative triple with the same VALUE

as the singleton, but with a negative sign in front of the simple support number (although the

difference is slight, these should be read as support for the negation of the singleton, not nega

tive support for the singleton). Thus all knowledge is stored as an associative triple statement

with a single valued degree of belief.

In the SSF approach, uncertainty in rules themselves is represented by simply incorporating a

single valued uncertainty measure U in each rule such that:

0 < URULE < 1

Chapter 8. Non-Consistent Implementations 76

8.2.5 The Inexact Reasoning Process

In our SSF approach, the inexact reasoning (or uncertainty propagation) process involves the

following steps:

1. Determine the belief in each premise proposition:

A l l evidence in favor of each of the premise's propositions must be obtained. This en

tails combining the simple support numbers for each piece of evidence that supports the

proposition:

2. Determine the overall belief in compound premises:

A compound premise is made up of several propositions related by the Boolean operators

AND, OR or NOT. For each of these relationships, we need a formula for combining

the simple support numbers of the associated propositions. A criticism of many systems

between the propositions when they derive these formulae. We can avoid this problem by

providing a different formula for each different level of dependency and then specifying

the most appropriate formula to use in any given rule. The appropriate formulae, then,

for deriving the simple support number, »«(P), for the compound premise, P , from the

set of premise propositions Pi,P2> • • - Pn> are:

88(A) = ! - (! - 881(A)) x (1 - 882(A))... (8.2)

(consistent and non-consistent alike) is that they assume a certain level of dependency

AND: P conjoins dependent (pi,p2, • • -Pn)

(8.3)

P conjoins independent (pi,P2, • • - Pn)

**(P) = T[ss(Pi) (8.4)

Chapter 8. Non-Consistent Implementations 77

OR: P disjoins dependent (pi,p2,.. -Pn),

8s(P) = max (8.5)

P disjoins independent (pi,p2> • ••Pn),

88 \p)=i - n (i - «(w)) (8.6)

P disjoins exclusive (pi,P2> • • - Pi

se(P) = max (8.7)

NOT: P negates p,

«fi(P) = se(-p) (8.8)

Within each operator class, the formulae are listed in order of increasing strength. For a

given set of propositions, for example, the value of the premise's support will be lower if

the disjoin dependent formula is used than if the disjoin independent formula is used, and

in turn the disjoin independent formula will yield a lower value than the disjoin exclusive

formula. This means than if the relationship between the propositions is not known, the

weakest formulae (the dependent case) can safely be used as a lower bound.

3. Check premise acceptance:

Once the degree of support for the rules premise is known, it must be checked against

some minimum threshold value. This is so a rule will not be used if there is not sufficient

evidence that the premise is true. The value of this threshold has typically been set

arbitrarily. If the acceptance threshold is set too high, possibly correct solutions would

be ignored if they have low initial support. If the threshold is too low, the system will

try to examine far too many incorrect solutions, leading to increased running time and

irrelevant questioning of the user. In the absence of any theoretically correct value, the

value of 0.2 which has proven acceptable in the MYCIN system seem reasonable:

Use rule if 8a(premi8e) > 0.2

Chapter 8. Non-Consistent Implementations 78

4. Determine the belief in the conclusion:

We have seen that in the case of a rule known with certainty, we set the simple support

number of the conclusion to be equal to the simple support number of the premise. In

the more general case, we wish the support for the conclusion to also reflect the degree of

belief in the rule itself. This is achieved by using the formula:

aa(conclu8ion) = aa(premiae) x URULE (8.9)

5. Combine uncertainty from various sources:

If we wish to determine the system's overall belief in some proposition at any given time,

we must combine all the sources of evidence from all related statements using Dempster's

rule of combination. The procedure involves three steps:

(a) For each VALUE (A) in the frame of the proposition in question, combine the sim

ple support numbers for all statements supporting that VALUE to obtain a new

simple support number. Likewise, combine all of the simple support numbers from

statements supporting that VALUE'S compliment (A):

«s(A) = l - (l - « « i (A)) x (l - « f i 2 (A)) . . . ' (8.10)

««(A) = l - (l - * » i (A)) x (1 - 882(A))... (8.11)

(b) Combine the simple support number for each VALUE in the frame with the simple

support number for that VALUE'S compliment to get one separable support function.

The separable support function can be described in terms of the basic probability

numbers m(A) and m(A) as well as the parameters r(A) and d(A) as defined below:

_ aa(A) x (1 - aa(A))
1 - 88(A) X 88(A)

(8.12)

Chapter 8. Non-Consistent Implementations 79

.—. 88(A) X (l - 88(A)) .
m(A) = v ' , \ \=J± (8.13)

v ' 1 - 8s{A) x ««(A) v y

r(A) = 1 - m(A) - m(A) (8.14)

d(A) = 1 - m(A) (8.15)

(c) Combine all of the separable support functions into one function, and describe it in

terms of a series of support intervals:

support interval of (A) = [5(A), P/(A)]

where:

5(A) = K x (m(A) x d(B) + r(A) x J[m{B)) (8.16)

p(A) = 1 - K x (n <*(C) x £ (^) + m(A) x JI < W - II (817)

K = n ^) x (i + E (f ()) - n m (c) (8 " 1 8)

for all B ^ A and all C C 6

8.2.6 Belief Decomposition

The decomposition of a separable support function into a set of simple support functions is a

process which the system can use in two ways. First, a user may wish to enter his belief about a

set of proposition as a separable support function so that he can more easily specify his relative

support for the different hypotheses and for ignorance. However we have restricted the addition

of new information to the system to simple support functions. The user could only enter his

belief in the form of a separable support function if the system were to decompose the function

before it added the evidence to its body of knowledge.

The decomposition process could also be used in a manner pointed out by Lu and Stehanou [44]

as a tool for adjusting the certainty factors attached to rules. An expert could describes his

Chapter 8. Non-Consistent Implementations 80

belief about the propositions in one frame of discernment and then a set of rules could infer a

state of belief about a second frame. The expert who has written the set of rules could then

compare the rule's separable support function for the second frame with his own belief about

what the inferred belief should be. If he decides that the rules have not performed satisfactorily,

however, he cannot tell what the impact of each rule has been. He must therefore decompose

both the rule's and his own simple support functions to see which propositions contain the

conflicting levels of belief. Now each proposition corresponds to one specific rule which can be

adjusted to improve the inference.

8.3 Conclusion

This chapter has discussed two non-consistent D-S implementation attempts. Both the D-S

IRM and the SSF approaches use frames of discernment to represent system variables, though

both apply restrictions to which of the frame's propositions can be used. The D-S IRM sys

tem combines the results of multiple rules in a manner which is consistent with D-S theory.

However the formulae for using each individual rule are non-consistent. The SSF approach

goes one step further in that it performs inference for simple rules is a consistent manner.

However non-consistent techniques are still used for dealing with compound premises and for

incorporating uncertainty in a rule itself. Neither approach, then, reaches the goal of complete

consistency with the D-S theory-thus neither approach was pursued further during the thesis

research. However both approaches can be implemented in a simple and robust way and are

likely to perform better then simple certainty factors. Anyone interested in developing practical

expert systems with moderate uncertainty handling capabilities might find either one of these

approaches to be extremely useful.

Chapter 9

Global Frame Approach

The previous chapter dealt with various non-consistent attempts to implement D-S theory for

inexact reasoning. During the testing of the SSF approach system, it was realized that all

of the capabilities required for inexact reasoning (namely inferring belief in a conclusion from

belief in a premise, obtaining a combined belief in a premise with several terms, incorporating

uncertainty in the inference rule itself, and aggregating the results of several inferences rules) can

all be performed in a manner completely consistent with D-S theory. This discovery rendered

the SSF and earlier non-consistent approaches essentially obsolete, and further research work

on such systems ceased. Yet the discovery also created more problems than it solved since,

while the theoretical feasibility of a consistent system seemed clear, the specific implementation

approach remained quite complex conceptually and extremely onerous computationally. This

chapter deals with an initial complete implementation prototype which is based on a "global

frame of discernment" approach.

9.1 Overview of Global Frame Approach

The general approach to reasoning in a global frame system is to provide the system with

enough information to define one large frame which can discern all propositions that might

be of interest as well as the relationships between them. Then all known belief about the

problem can be specified. A current state of belief about all of our propositions is maintained

by combining all belief into a single basic probability assignments on the one large frame of

81

Chapter 9. Global Frame Approach 82

U S E R S Y S T E M

Define Propositions
and Frames

Define I
Relatic

aference
>nships

•

Provide Measures
of Belief

Request Support Interval
For Any Proposition

Construct Internal
Representation of

Propositions and Frames

Combine Frames

Combine Al l Belief

Interpret Resulting Basic
Probability Assignment

Figure 9.1: Flow chart for the Basic Reasoning Procedure in a Global Frame Approach System

discernment. We can then interpret this global belief, producing a support interval for any

proposition discerned by the system.

Implementing this approach involves conveying to the system our knowledge about what con

cepts exist, about how concepts are related, and about the levels of belief that we have in

these concepts. The system can then manipulate these three types of knowledge to perform

reasoning. A flow chart of the basic reasoning process is shown in figure 9.1; each phase of the

process is described in greater detail in the subsequent sections.

Chapter 9. Global Frame Approach 83

9.2 Concept Representation

The first step in setting up an inexact reasoning problem in a global frame system is to specify

a series of frames of discernment such that every proposition that we might be interested in will

be represented in some discernment space. Concepts which are of interest for some reasoning

problem are identified and sorted into like groups. In cases where groups of concepts make up a

set of mutually exclusive options, they can become the elements of a single frame of discernment

(if the set is not exhaustive, an "all other options" element could be added). In cases where

groups of concepts make up non-mutually exclusive options, each concept can form a separate

frame containing two elements corresponding to that concept's truth or falsity. In addition to

supplying the elements of a frame, we can also specify any aliases which we may want to assign

to various propositions (aliases are used by the system to reference propositions in input/output

operations).

The process of specifying the frames of discernment is not a trivial one. Each frame is based

on a number of assumptions. For example, a frame containing possible locations of a ship may

assume that the ship is in the water even though it could possibly have been hauled up on

land; perhaps for repairs. Such assumptions seem reasonable when we first define our frame

and in fact they are a requirement of reasoning. However in some cases we will find that our

assumptions about a frame are wrong and we will need to change our frame (not just refine

it) to suit the circumstances. The task of defining the frames of discernment, then, is both a

creative and an iterative process.

9.3 Inference Knowledge Representation

The second step in resolving an inexact reasoning problem is to represent our knowledge about

which concepts imply other concepts. This step is similar to the specification of inference rules

in a typical rule-based expert system. The inference knowledge which we wish our system to

Chapter 9. Global Frame Approach 84

capture can usually be put into the form "if PREMISE is true then CONCLUSION is true," or

"PREMISE => CONCLUSION". We can interpret this as meaning that, if we have some level

of belief in the premise, then we will have at least that much belief to the conclusion.

This interpretation leads to the result that inference can be represented in a D-S representation

by set inclusion. If some proposition A is a subset of proposition X, then any belief attributed

to A will simultaneously be attributed to X. Thus we satisfy our interpretation of logical

inference by setting the proposition which represents the PREMISE concept to be a subset

(not necessarily a proper subset) of the proposition which represents the CONCLUSION.

Representing inference knowledge, then, is a matter of specifying the correct set relationships

between propositions. When both the premise and the conclusion propositions are within the

same discernment space, we can initially construct our frame of discernment such that these

relationships will be incorporated. However any two propositions are generally not initially

within the same discernment space. We must therefore create a new frame which discerns both

propositions and correctly incorporates the known inference relationships between them. This

frame is the minimal refinement.

Although Shafer indicates that the minimal refinement is an appropriate medium for exploring

the relations among different frames, he does not specifically show how knowledge about these

relationships can be used to create the minimal refinement. The global frame system approach

for accomplishing this is to list inference knowledge in the form of logical implication statements

or inference statements wherein the knowledge that proposition A C implies proposition

X C Qx i f l represented by the statement:

A=> X

Such statements are quite generally applicable. If we have inference knowledge in which the

premise or the conclusion involve logical operators such as AND, OR or NOT, then the propo

sition A or X correspond simply to the sets resulting from the use of the corresponding set

Chapter 9. Global Frame Approach 85

operators intersection, union, or complementation. However, the inference statements are re

stricted by the requirements that the X proposition should be the finest proposition which is

known to be implied by A without being so fine as to overstate what we can logically infer

and, within a set of statements which completely describe the known relationships between two

frames, all of the elements belonging to both 6 A and Ox must be included at least once.

Once these relationships are known to the system they can be used to generate the refinement

statements which define the minimal refinement 6 A ® Ox and allow the proposition names and

measures of belief contained in the original frames to be mapped to the minimal refinement;

thus allowing all further reference to these propositions to be made in terms of the new refined

frame and allowing the original frames to be removed from the system's memory. The refinement

statements for the refining u : 2&A —• 2 : e -*® e * are given by:

w(o) = {(a,x)\a e A, x G X, A X}

And the refinement statements for the refining w : 2® x —• 2 : e * ® e * are given by:

u(z) = {{a,x)\aeA,x€X,A^X} (9.2)

In the system proposed by Lowrance, Garvey and Strat, (see section 7.5 and ref.[42]) the

minimal refinement is also used to represent knowledge about the relationships between frames

(they have called it a compatibility relation). However they do not propose a scheme for

generating the minimal refinement frame from inference knowledge, rather they require the

user to provide the system with the entire frame directly. This is done, it is suggested, by

considering each of the elements in a cross product of the initial frames and rejecting those

which represent an impossible combination of concepts. For the minimal refinement of small

frames, this method likely works well. With more sizable frames, however, the cross product

from which the set of possible elements must be selected grows unmanageably large.

(9.1)

Chapter 9. Global Frame Approach 86

9.4 Belief Representation

We have now conveyed to the system our knowledge about possible concepts and their inter

relationships. The next step in resolving an inexact reasoning problem using the global frame

approach is to represent the belief that we have in these various propositions. This belief is

simply stated in the form of basic probability assignments, or as support functions which the

system would translate directly into basic probability assignments. This task of translating all

of our belief about some problem into numerical values for particular propositions will likely

comprise a significant, though not complex, portion of the entire process.

9.5 Reasoning

We have now provided the system with the three types of domain knowledge which it requires

to perform reasoning: the specification of all propositions in which we are interested, the

relationships between these propositions and any levels of belief that we have in them. The

system can proceed with the reasoning process then, by accepting the proposition definitions,

using the inference statements to combine all of the initial frames into one large frame, and

accepting, combining and interpreting the given basic probability assignments.

9.5.1 Basic Reasoning

First, the system reads in the frame specifications so that it will have an internal representation

of all the proposition names and their relative positions in the set hierarchy of each frame.

Second, the system attempts to create the one minimal refinement of all of the initial frames

by using the inference statements to repeatedly replace pairs of frames with their minimal

refinement. If, for example, we have sets of inference statements which relate the frames

© A =» ©JB, ©x =>• ©c and ©B => ©c> then using the first set of statements would remove the

Ch&pter 9. Global Frame Approach 87

frames 0> and 0jg and would create the frame 0(A,B)- The remaining two sets of statements

could then be grouped together as both being equivalent to 0(A,B) ©c and this group could

be used to replace the frames 0(A,B) and 0 c with the frame 0(A P B,C)- The order of combination

is not important in such an operation.

Third, the system reads in all known basic probability assignments and combines them, resulting

in one assignment which fully describes our belief about the problem domain. At any point, the

system can be asked for an interpretation of this belief. The system, having once calculated the

support and plausibility numbers for the single all-encompassing frame of discernment (only

the basic probability numbers are required during the process of reading and combining belief)

can then provide the user with the support interval for any proposition discerned anywhere in

the system without further calculations.

9.5.2 Extended Reasoning

The process outlined above illustrates the system's most basic form of reasoning. Many varia

tions and extensions to this process could be used to make reasoning more efficient and flexible.

A few such examples are listed below:

• In addition to using inference statements to manipulate frames of discernment, statements

may be given to refine propositions (thus increasing their precision without relating them

to other frames) or to coarsen a frame (thereby reducing its size and precision). These

options allow greater control over the makeup of the frames.

• We can introduce a method for dealing with weak implication. Suppose, for example,

that we state "A => X with certainty 0.7" This can be interpreted to mean that 70% of

our belief in A implies X and 30% implies ignorance, 0 . In order to derive new belief

from this known relationship, then, we first refine the proposition, x(A) = {AX,AQ}. We

then use a belief refinement procedure outline in section 9.6 to transfer our belief in A

Chapter 9. Global Frame Approach 88

to these refinements. Finally we make the inferences Ax => X and A© => 0 . The result

will be a frame of discernment in which 70% of our belief in A will imply X and 30% will

imply 0 or ignorance.

• Question definition statements can be used (in addition to the initial basic probability

assignments) to provide the system with the capability of asking the user to input belief

information. This is just one of any number of operations that could be implemented to

improve the user interface of an inexact reasoning system.

• Frame manipulation statements, basic probability assignments and question definition

statements can be made conditional so that they will not take effect unless certain condi

tions, such as the achievement of some requisite belief threshold, are met (thereby keeping

the system from asking irrelevant questions or from refining those propositions which are

known to be false, for example). Such statements effectively provide meta-knowledge or

knowledge about how to reason in specific cases.

9.6 Belief Refinement

This section described a belief refinement procedure which we have developed to allow weak

inference with the global frame approach (as mentioned in the previous section). We illustrated

in section 4.3 how a belief function could be transferred from some frame to a finer minimal

refinement of that and some other frame. However, this direct transfer of belief from a coarse

frame to a finer one cannot take advantage of the new frame's extra precision unless additional,

more precise belief is added to the system. We have identified a procedure whereby this addi

tional belief can be assigned to a new frame at the time of refinement, causing all future belief

transferred to that frame to be shifted downwards towards more precise propositions. We call

such a procedure a belief refinement.

Suppose, for example, that a frame 0 = {a, 6} is refined to a frame ft = {01,02,6}. Recall that

Chapter 9. Global Frame Approach 89

the support for the proposition A = {01,02} in frame 0 is the sum of the basic probability

numbers m({oi}),fn({o2}) and m({ai,a2}). However the direct transfer of belief from 6 to f)

results in belief that can be no more precise than m({ai,a2}). We may have some evidence to

suggest that whenever we have belief in A, that at least a certain portion of that belief will be

due to belief in {ai}. Such belief is captured by a proposition which states that belief may be

assigned to {ai} or to any non-A proposition but not to {02}: that is, we assign this belief to

the proposition {a\,b} which can be given the more intuitive alias "ai IF A " . This belief can

now be combined (using the Dempster's belief combination procedure outlined in section 5.1)

with any belief which is transferred to f l , yielding the appropriately precise results.

In general, for any new element 9{ in some refinement of proposition {9} to {0i, 02,0s,...}, we

can assign both the alias "0,- IF 9" and our associated level of belief to the new proposition

corresponding to {0,-} U {$}.

Example 9.1 In example 4.2 we calculated the restriction m2|6MATERIAL-

However, we may want to incorporate the additional knowledge that ground material

is more likely to be bed rock than aggregate. We can therefore attach aliases to

some of the propositions in the refined frame as shown in figure 9.2.

We could then define the basic probability assignment m 3 : 2nMATBRlAL which

would, for example, convey the belief that 40% of all future belief in ROCK will be

allocated more specifically to bed rock while the rest will remain at ROCK:

M3 {^MATERIAL) = 0.6,

ms[bed rock IF ROCK) = 0.4.

Now if we again transferred mi : 2 B m a t e r ' a l to frame fl as in example 4.2, and

combined the result with 1713 : 2 n M A T E R l A L (using Dempster's rule) we would get a

Chapter 9. Global Frame Approach

{bed rock, aggregate, soil, sand}
= ^MATERIAL

= bed rock IF ROCK U aggregate IF ROCK

{bed rock) {aggregate} {soil} {sand}

Figure 9.2: Some propositions with aliases for the discernment space

Chapter 9. Global Frame Approach 91

more precise basic probability assignment:

m^MATERIAL) 0.06,

ir»4({6ed rock, aggregate, soil}) 0.24,

rrn(ROCK) 0.30,

rrn({bed rock, soil, sand}) 0.04,

m^bed rock, soil}) 0.16,

mt({bed rock}) 0.20.

9.7 Comparison wi th Other Systems

We have mentioned in section 9.3 that the system presented by Lowrance, Garvey and Strat

accepts a minimal refinement directly from the user rather than generating it from given rela

tionships, as done in our global frame system. However a more significant difference is that,

rather than using the minimal refinements to group all propositions together under one large

frame, their system maintains all propositions in terms of the originally specified frames and

uses the minimal refinement to define a series of mapping relationships which are stored and

later used in transferring belief between these original frames. This difference has several

consequences; including the fact that, by not utilizing a minimal refinement as a frame of dis

cernment, the system is effectually throwing away more precise knowledge. This leads to the

system's inability to return the same level of precision which had been made available to it

and, in some instances, it can be shown to give erroneous results (Shafer [57, p.175] shows that,

"Dempster's rule of Combination may give inaccurate results when it is applied in too coarse

a frame of discernment."). Another problem arising from this treatment of frames is presented

in the Lowrance paper itself [42, p.898]. The results obtained from relating some frame 0^. to

a frame 0# and then relating frame 0 B to a frame 0 c may not match the results obtained

from relating frame &A to frame 0 c directly. This problem does not arise in the global frame

system.

Chapter 9. Global Frame Approach 92

However there is another consequence of this difference between the systems which is perhaps

even more fundamental. In our system, belief is read into the system as a basic probability

assignment on the single large frame. As soon as it enters the system and is combined with

the existing basic probability assignment, its impact on every proposition in the system is

immediately felt and all future interaction with the system will include the contribution of this

belief. In their system, the identical basic probability assignment is read into the system in

terms of the original frame and its effect on the belief in any other frame is only discerned as the

user tells the system what frames to transfer it to and what other basic probability assignments

to combine it with. Thus their system requires the input of a fourth body of knowledge-the

knowledge about how to proceed with the given reasoning problem at hand (this knowledge

makes up an analysis in their notation)-whereas this knowledge is inherent in our system.

9.8 System Speed and Efficiency

Although our goal in pursuing the D-S theory concentrated on finding a sound and consistent

theoretical basis for inexact reasoning, a few observations regarding the computational speed

and efficiency of such a system may be made. The use of one large frame of discernment for

the entire problem domain suggests that the time required for the reasoning process grows

exponentially with the number of propositions in the problem. However, "our concept of the

use of such a system is that this large frame could be initially defined and assembled for some

domain and then stored intact. This frame need not be regenerated for each problem within the

domain (although it could still be easily modified and enlarged in the face of new information).

Furthermore, only singletons and those propositions which possess either aliases or some basic

probability number need be stored. Once this frame is stored, the computational time required

for the reasoning process is proportional to the number of propositions in which we have some

belief rather than in the total number of propositions in the system. Finally, meta-knowledge

can be used were necessary to coarsen frames and thereby reduce their size.

Chapter 9. Global Frame Approach 93

9.9 Exponential Growth Problems

The following example illustrates the creation of a minimal refinement frame from two initial

frames:

Example 9.2 Suppose some frame OA consists of singletons { o i , a2, a$} and

frame 6 # consists of singletons { fci, 62,^3}. If we tell the system that a\ implies

61, b\ implies a i , and so on for 02,62 and 0 3 ,63 ; then the minimal refinement frame

6 c = ®(A,B) would consist of singletons:

{ c i , C 2 , C s } ,

where c\ = a\ = b\t c2 = a2 = b2, and 03 = 03 = 63.

However if we stated that none of the a's implied anything about the 6's and

vise-versa, the singletons of 6 c would be:

{ c i , C2, C 3 , C4, C g , Ce , C7 , C g , C g } ,

where c\ = a i D fcj, C2 = O i D b2,..., C4 = 02 n 6 1 , . . . etc.

also c i U c2 U Cs = 0 1 , . . . , C i U C4 U C7 = 6 1 , etc.

This example shows that for one frame of size (or cardinality) n\ and a second frame of size n2,

the combined frame has a size of between m a x (n i , n 2) and (n i x TI2). That is the combined

frame has a size of order 0(n\ x n2). More generally, for m frames of size n,-, (for 1 = 1 to m),

the size of the resultant full frame is of the order 0 (« i x n2 x . . . x n m) . The size of the full

frame, then, grows exponentially.

However the size of the resulting frame is not of direct consequence because we need not store

every proposition in the frame nor even every singleton. We need only store those propositions

which have some "name" or some basic probability number assigned to them: neither of these

Chapter 9. Global Frame Approach 94

axe functions of the size of the frame. Never-the-less, there are indirect reasons for us to be

interested in the size of the frame. Specifically, the size of propositions themselves grows. In

the example above, the proposition {ai} was represented in the minimal refinement frame by

either {ci} or {ci,ct,Cs}, depending on the relationships between 6^ and &B- In general,

adding a frame 6^ to an existing global frame of size n results in an increase in the size of O^'s

singletons to the order O(n). This growth has a direct impact on the set theory operations

which are used for the calculation of support and plausibility and for Dempster's rule. This

exponential growth problem, then, causes inevitable size "explosion" in systems which directly

implement a global frame approach.

Although the details will not be provided here, an alternative global frame representation

scheme was developed which eliminated growth problems arising from combining frames into

one large minimal refinement. Using this approach, however, the application of Dempster's rule

itself lead to problems. Specifically, if one basic probability assignment with n focal propositions

is combined with a second containing m focal propositions, the resulting basic probability

assignment has a number of focal propositions of the order O(nxm), This exponential growth

problem could not be overcome.

9.10 Conclusion

Although the global frame approach is fully consistent with D-S theory and is theoretically

feasible, exponential growth problem could not be fully overcome and the entire approach was

eventually abandoned in favor of the frame network approach described in the next chapter.

Chapter 10

A Frame Network Approach

In the global frame approach described in the previous chapter, all frames of discernment

involved in some problem are combined into one large global frame. It has been shown that

although this produces a consistent implementation, it exhibits growth characteristics which

severely limit its practicality. A refinement to the global frame approach which overcomes these

problematic characteristics is the frame network approach. The frame network approach

is the basis for the D-S based FRO expert system shell. This chapter described this expert

system shell and the theory behind the frame network approach.

10.1 System Overview

The format of our D-S implementation is an expert system shell. With our shell program, the

designer of an expert system application (or knowledge engineer) works in conjunction with the

domain expert to create a knowledge base which describes the expert's solution approach for the

problem at hand. A user can then direct the shell program to read and execute this knowledge

base file, thus invoking the specific expert system. Our system is written in PROLOG running

on an IBM-AT type machine which has proved to be adequate for prototyping.

Concepts used in the knowledge base are represented by D-S frames of discernment; in this

chapter we will refer to these simply as frames.

In D-S, belief about the truth of propositions can be represented by several different types of

belief expressions. Our system utilizes several of these expressions including basic probability

95

Chapter 10. A Frame Network Approach 96

assignments or BPA's and commonality functions, as well as support and plausibility functions

which are used for most input and output. Each of these expressions embody exactly the same

information, but the different representations offer different perspectives and advantages. As

mentioned previously, we will refer to a body of belief as a belief function, regardless of the

belief expression being used to represent it (this contrasts slightly with Shafer's more specific

definition of a belief function, [57, p.39]). A belief function can be translated from any one

representation expression to any other.

Our implementation approach also employs a variety of techniques for combining belief func

tions. These include Dempster's rule of combination as well as various dependent combination

rules (see section 5.2) which we have developed for use in situations where Dempster's rule is

not valid.

The relationships between propositions in different frames are stored in structures which we

call links. The system uses links to infer belief about one frame from given belief about another

frame. We will show that inference accomplished using links is completely compatible with

D-S.

Using the frame and link representations, the knowledge engineer specifies all of the variables

required to solve a problem and the appropriate relationships between them; thus establishing

a graph structure which we call the frame network. During the execution of the resulting expert

system, belief is added to certain frames and propagated throughout the frame network. We

refer to the development of a correct and efficient frame network for an expert system as the

system design.

We have found that the D-S representation works well for the relational information which makes

up the expert system design. However, there is an additional body of knowledge which must

go into the creation of an expert system—the control knowledge. Control knowledge involves

the determination of which questions should be asked, which conclusions should be drawn, and

when these actions should be performed. Control knowledge embodies procedural rather than

Chapter 10. A Frame Network Approach 97

relational knowledge and is not well suited for D-S representation. We have therefore chosen

to represent the control knowledge in a separate, rule-based component of our shell. Since our

system combines frame-based design with rule-based control, we have called the program F R O ,

for Frame-Rule Organizer.

Finally, we have found that the user interface is extremely important in a D-S based system.

Our work in this area has lead to useful and relatively simple belief interfaces. We address this

issue in chapter 11.

The specifications of our system are outlined in table 10.1. We will now proceed to deal with

each of these topics in greater detail.

Table 10.1: Specifications of Our D-S Implementation

Format: Expert System Shell
Concept Representation: D-S Frames of Discernment

Belief Representation: D-S Belief Functions
Inference Operation: "Links"

Design Representation: Frame Network
Control Representation: Separate Rule-Based System

10.2 Frames of Discernment and Belief Functions

The basic form of concept representation in D-S, and correspondingly in our system, is the

frame of discernment. The knowledge engineer defines frames by interacting with the system

and supplying a name for each frame and for each of the frame's elements or alternatives. These

definitions are written out to a file which can later be edited. This knowledge base input scheme,

or system development interface, represents an attempt to provide a simple, knowledge-based

component which queries the knowledge engineer or expert in order to help construct a new

expert system (see chapter 15 of the appendix).

Chapter 10. A Frame Network Approach 98

Within our shell program, frames are recorded by storing the knowledge engineer's definitions

using PROLOG atoms to represent names and PROLOG list structures to represent sets. The

frame definitions are also cross referenced with any associated belief functions or links. Through

out the system, propositions are represented by subsets of these initially defined frames—that

is, by lists of the element names which were originally entered for each frame. Using this

representation for propositions, the set theory operations of union, intersection, exclusion and

inclusion which are frequently employed in D-S have been implemented in a straightforward

manner.

Any legitimate D-S frame of discernment can be used in our system. Furthermore, propositions

of any size or cardinality may be utilized throughout the system. Thus the concept representa

tion scheme used in our system is consistent with D-S and places no limiting restrictions on it.

This cannot be said of some other implementations, as in the system proposed by Gordon and

Shortliffe [27] which permits the use of only those propositions which form a strict hierarchy

(see section 7.3).

Like concept representation, belief representation is performed by our system in strict accor

dance with D-S. During both the creation of the knowledge base by the knowledge engineer and

the execution of the completed expert system by the user, uncertain belief is entered via an in

teractive graphic interface which employs support and plausibility values (or support intervals)

for specific propositions. Our interface techniques are discussed in chapter 11. Immediately

after a belief function is entered into our system, it is usually converted to its equivalent BPA

form; the format used internally for most belief. BPA's are stored as a list of propositions,

each with an accompanying basic probability number. When belief is output to the user, it is

usually converted back into a series of support intervals (depending upon the instructions of

the knowledge engineer). Thus it is possible for any legitimate D-S belief function to be entered

and stored in our system, again providing consistent and un-restricted conformance with D-S.

Chapter 10. A Frame Network Approach 99

10.3 Inference and Links

10.3.1 Performing Inference

While frames of discernment and belief functions are explicitly defined by Shafer in refer

ence [57], a method for applying these to a general inexact reasoning procedure applicable to

expert systems is not. At the root of this process is simple inference: given some level of belief

in proposition A, what should we believe about proposition B? When A and B are both propo

sitions in the same frame, inference is derived from set theory. Belief in A implies belief in B if

A is a subset of B, belief in A implies belief in not B if A is a subset of the set complement of

B. These relationships are inherent to the definition of belief functions and require no specific

implementation. However in the general case, A and B may be propositions in different frames

and so a general procedure for transferring belief from A to B is required.

We have found that the resolution of this inference process is the primary obstacle to imple

menting D-S for an expert system. In this section we discuss some of the different methods

explored by ourselves and others and we give a detailed account of the technique now used in

our system.

We first note that the inference procedure must be based on D-S theory. This is often neglected.

Problems with the system proposed by Lu and Stehanou [44], for example, have already been

discussed in section 7.4. This is but one illustration of how the use of D-S representations

without a D-S based inference procedure can lead to inconsistent results and does not provide

the theoretic rigor which we seek.

Performing inference between frames, then, should be derived from formal D-S, even though

the theory does not explicitly show how. The theory does outline one process which does not

involve the transfer of belief among general frames at all, but rather requires the combination of

the frames into one larger one first, and then performs all inference operations upon that single

frame. This is the global frame of discernment approach described in the previous chapter.

Chapter 10. A Frame Network Approach 100

As shown, global frames suffer from an overwhelming problem of exponential growth in the

number of propositions and, although we were able to overcome many aspects of this problem,

exponential growth finally caused us to abandon the global frame approach.

10.3.2 Links

A refinement of the global frame method which avoids the exponential growth problem involves

producing the minimal refinement of two frames, transferring an input belief function from the

first frame to the minimal refinement, and then reducing the belief function from the minimal

refinement to the second frame, thereby producing an output belief function containing all belief

about the second frame which can legitimately be inferred from the input belief. The minimal

refinement frame can then be removed from memory, leaving only the initial frames along with

the newly inferred belief. We can accommodate weak inference by adding a belief function to

the minimal refinement which contains uncertain belief about the relationships between the

frames. Shafer [11] has described an approach to propagation which is similar to this.

We have further modified this process for computational efficiency by deriving a single procedure

which produces the identical numerical results without actually creating the minimal refinement

frame (The system created by Lowrance et al, section 7.5, employs in an approach which is

mathematically equivalent to this). In our system, a belief function defined on one frame is

combined with a previously stored set of uncertain relationships to produce an inferred belief —

function on a second frame. Inference performed in this manner is completely consistent with

D-S since its results exactly match those of the minimal refinement approach. —

We call the stored set of relationships between two frames a link. Conceptually, a link between

two frames contains the same information as a belief function defined on the minimal refinement

which describes the relationships between the frames. In section 11.2 we discuss in some detail

how such relational belief functions defined on the minimal refinement frame can be generated

and used to perform inference. However, since the minimal refinement is not actually generated

Chapter 10. A Frame Network Approach 101

by the system described here, the link must be represented in terms of the initial frames only.

In order to represent links in our system, then, we list the names of the two frames involved

and, for each element in the first frame, we provide a belief function which describes what we

would believe about the second frame if that element were known to be the true value of the

first frame. A link, in other words, has the following form:

link: 6 A —• 6 B :

° 2 " 5 U n k

where: ©A is the input frame

6,0 is the output frame

Oi is an element of 8A

^Unk w a " l i 1 1 ^ support function", a belief function on OB

represented in the form of a support function which is

implied by complete certainty that a, is the true value for 6 A

This technique of supplying a link support function for each element in the first frame greatly

simplifies the process of creating links. In our system, links are created through interactive

sessions with the knowledge engineer and the expert who enter the uncertain link belief through

a graphical interface. More importantly, this format is sufficient to represent any possible set

of relationships between the propositions in the two frames.

Using this representation for links, the system can transfer belief from one frame to another in

the following way:

1. The system recalls the known belief function (in the form of a BPA) for the first frame.

Chapter 10. A Frame Network Approach 102

2. The system considers each basic probability number in this BPA. Only the focal propo

sitions (those with non-zero basic probability numbers) need be considered.

3. The system refers to the link to obtain the link support function corresponding to each

element in the focal proposition.

4. Al l of the resulting link support functions for the proposition are combined using the

disjunctive combination rule shown in equation 5.9. This combination must be disjunctive

because belief exactly for that proposition implies belief that one of the elements in the

proposition will be true, though it is not known which one.

5. The single resulting support function on the second frame is weighted according to the

basic probability number for the focal proposition on the first frame. This, then, yields

the contribution of that focal proposition to the inferred belief about the second frame.

6. These normalized support functions are summed, leaving a single, formally correct and

logically implied support function on the second frame.

This process is formalized in the following theorem:

Theorem 10.1 Suppose that Sfink is the link support function over an output frame 6a for

any element a,- i n the input frame SA- That is, Sfink represents what we would believe about

frame 63 if we knew with certainty that the proposition {04} was the true value of the input

frame 6>.

Further, for any focal proposition At in an input BPA m , n on 6 A , where Ak is some disjunctive

set { 0 1 U ai U • • • U ay U • • • U a n } ; the link support function for At is S^k representing the belief

about the output frame 0£ which is implied by certain belief that Ak is the true value of 6A-

^Unk c a n ̂ e obtained by combining all Sfink, for j = 1 to n, using the dependent disjunctive

combination of equation 5.9 and the multiple combination principle of equation 5.14.

Chapter 10. A Frame Network Approach 103

Then, the output belief function Sout on which is implied by the input BPA m , n on &A

defined by:

Sout(B) = £ m , n (A t) sfck(B) (10.1)
AkeeA

for all propositions B in &B and all focal propositions A* in QA-

Note that links, as they are denned here, are only valid for inference in a single direction; from

OA to &B but n o * vice-versa, for example. A pair of links (one in each direction) must be

denned if the expert believes that inference in either direction is valid.

Again, it should be emphasized that through the use of the links to represent inference knowl

edge and the use of the process outlined above to transfer belief, the system can perform

inference in accordance with D-S.

10.4 Frame Networks

10.4.1 Belief propagation in frame networks

A D-S based expert system will encompass many frames with numerous links between them.

These make up a graph with frames as the nodes and links as the arcs—we call this graph the -----

frame network (figure 10.1 illustrates a hypothetical frame network). The frame network is the

complete representation of all variables or concepts in the system, and of the logical relationships

between them. The network is represented in the system only through its constituent frames

and links, it is not treated as a separate entity. Operators act on the network to enter belief

functions, to propagate belief around the network, and to retrieve the resulting belief about

conclusions. The conceptual aspects of frame networks are further discussed in section 10.4.4,

but we first examine the mechanics of propagating belief around the network.

Chapter 10. A Frame Network Approach 104

A A A legend:
^ - Frame
—*~ - Link

A
*" A *~ A

A A

A A

Figure 10.1: Schematic of a Hypothetical Frame Network

When a belief function is added to a frame in the network, the system must combine the

new belief with what is already known about the frame. Also, the system must use the links

emanating from that frame to perform any legitimate inferences, thereby adding new belief

to other frames and causing the cycle to be repeated. The repetition of this process for all

appropriate frames is what we refer to as the propagation of belief throughout the network.

In our system, newly added belief is propagated to all relevant frames before it is combined

with the previously existing belief. To this end, the system stores two belief functions for each

frame. One, the current belief, represents belief arising from the most recently added belief

function only. The current belief for every frame is reset to represent complete ignorance before

a new belief function is added to the system. When belief is added and propagated around the

network, its effect on each frame is temporarily stored as the current belief function for that

frame. After propagation has been completed, the current belief for each frame is combined

with the second belief function, the total belief, which represents the resultant of all belief

previously added to the system. The resulting belief function is then stored as the new total

belief.

Chapter 10. A Frame Network Approach 105

When propagating belief throughout the network in this fashion, the following two major prob

lems arise:

1. A belief function entered on one frame by the user can be propagated to another frame

via more than one path in the frame network. How should this situation be handled?

2. Belief propagated from frame to frame in the network can become so imprecise as to add

no new information to subsequent frames. How can we detect and avoid this unnecessary

propagation?

We have developed a belief propagation algorithm which resolves both problems. This algorithm

is described in section 10.4.2 and a propagation example is given in section 10.4.3.

10.4.2 Belief propagation algorithm

An outline of our propagation algorithm is provided in PROLOG-like pseudo-code in figure 10.2.

This algorithm accomplishes the propagation of a newly added belief function throughout the

network. ..

Referring to figure 10.2, it can be seen that a belief function is obtained from the user (line 2)

and combined with the frame's current belief (line 9) using a dependent conjunctive combination

scheme (equation 5.8). —When the new belief is first propagated to some frame, that frame's

current belief function will represent total ignorance and the dependent combination reduces

to the trivial case in which the ignorance has no effect on the propagated belief. However

if the newly added belief has previously been propagated to the frame by some other path,

then that frame's current belief will already represent the effects of the new belief. With two

belief functions originating from the same source, the appropriate operation must be a fully

dependent conjunctive combination. Thus we have a solution to problem number 1.

The belief function resulting from the dependent combination is compared with the frame's

Chapter 10. A Frame Network Approach 106

Line #: (bf = belief function, Capital letters = dummy variables)

(1) enter new belief into network:
(2) get bf A for frame B from user,
(3) add bf A to frame B, (line 7)
(4) combine belief on a l l frames, (line 27)
(5) stop.
(6)
(7) add bf C to frame D:
(8) get current bf E for frame D,
(9) dependent combine bf C with bf E to get bf F,

(10) if bf F equals bf E,
(11) then terminate propagation and return,
(12) otherwise,
(13) store bf F as the new current bf,
(14) propagate bf F from frame D, (line 17)
(15) return.
(16)
(17) propagate bf G from frame H:
(18) i f there are no more links from frame H,
(19) then return,
(20) otherwise,

~ (21) get the next link from frame H which is to frame I,
(22) transfer bf G from frame H to get new bf J on frame I,
(23) add bf J to frame I. (line 7)
(24) propagate bf G from frame H, (line 17)
(25) return.

(27) combine belief on a l l frames:
(28) for every frame which has been affected,
(29) combine current belief with total belief,
(30) store the result as new total belief,
(31) reset the current belief to ignorance,
(32) return.

Figure 10.2: Belief Propagation Algorithm

Chapter 10. A Frame Network Approach 107

current belief function (line 10). If they are the same, then the propagate belief has added

no new information to the current belief, and any further propagation would be redundant

(line 11). However, if the belief functions differ, then new information has been added and

propagation continues outwards from that frame (line 14). This approach is applicable for

both the initial propagation of the new belief to any frame and for subsequent propagations

to the same frame by way of different network paths. We have, then, an indication of when

a particular propagation path has become redundant and can be terminated, thereby solving

problem number 2.

We note that both of these propagation problems occur during the special case of a propagation

path looping back onto itself. Not only must we accommodate the propagation of a belief

function onto the same frame twice, but failure to terminate redundant propagation would

result in a continuous processing loop. Fortunately, a propagated belief function which has

looped back onto some frame can contain no more precise information than it did on its initial

pass. This is because propagation can only result in a loss of precision, it cannot acquire added

precision. Thus any loops in the propagation path are immediately terminated by the general

propagation algorithm, they need not be given special treatment.

Finally, we note that our propagation algorithm involves the recursion necessary to propagate

the belief along every applicable path, regardless of the configuration of the network (lines 23

and 24). In the algorithm, the transfer of belief from one frame to another (line 22) uses the

approach described in section 10.3.2 and the combination of the current belief with the total

belief (line 29) uses Dempster's rule .

10.4.3 A Propagation Example

The following qualitative example illustrates the propagation process. Suppose that a system

contains three frames pertaining to the correction of problems with an ordinary table lamp (see

table 10.2). Suppose also that there are appropriate links between these frames. A possible

Chapter 10. A Frame Network Approach 108

propagation session might involve the following steps:

Table 10.2: Frames for table lamp example

Frame Element
A: Light bulb condition a\\ bulb burned out

o 2: bulb O.K.
B: Response to turning switch on bi: light goes on

62: nothing happens
C: Required action for bulb c\\ replace bulb

c2: no action required

1. The current belief function for each of the three frames is reset to complete ignorance.

2. The user of the system declares with certainty that the light bulb is burned out causing

the corresponding belief function to be added to frame A.

3. The newly added belief function is dependently combined with frame A's current belief.

Since the current belief represents complete ignorance, the newly added belief function

remains unchanged and becomes the new current belief function.

4. This new current belief function for frame A is propagated to frame B resulting in a belief

function which shows certainty for 62 (that is, certainty that nothing happens when the

switch is turned on).

5. The newly added belief function on frame B becomes the new current belief function after

being unchanged by the dependent combination process.

6. This new belief about the response to the light switch is, in turn, transferred to frame C

creating a belief function which shows some level of belief for c\. However the links do

not allow the system to infer with certainty that the bulb should be replaced since, based

only on the response to the switch, we are not sure that the problem lies with the bulb.

7. Again, the newly added belief becomes the new current belief function for frame C.

Chapter 10. A Frame Network Approach 109

8. The belief function is further propagated back to frame A. During this transfer, the belief

which is already less than certain becomes even less precise. This is because knowledge

that the bulb should be replaced does not categorically imply that the bulb is burned out

(it could, for example, require replacing because it's the wrong wattage).

9. This time, dependent combination of the newly propagated belief function with frame A's

current belief function results in no change to the current belief. Thus the propagated

belief has added no new information and the propagation path can terminate. This

is an occurrence of the circular propagation problem and its solution as described in

section 10.4.2.

10. Next, the system returns to step 4 but this time it propagates the belief along the second

path to frame C. In this case, the knowledge of a burned out bulb results in certain

support for the bulb's replacement.

11. The newly propagated belief function is combined with frame C's current belief function

which, although it no longer represents complete ignorance, is still sufficiently imprecise so

as to cause no change in the propagated belief, which therefore becomes the new current

belief function. This is an occurrence of propagation problem number 1 and its solution

through the use of dependent combination.

12. Next, the belief is further propagated to frame B. Since knowledge that the bulb should be

replaced does not necessarily imply that nothing will happen when the switch is turned on

(again the bulb might be the wrong wattage, for example), the belief function transferred

to frame B will convey less than certain support for bj.

13. The dependent combination of this newly propagated belief with the current belief func

tion for frame B will not alter the current belief (which already shows certain support

for b2). Therefore this propagation path will terminate, as will the entire propagation

process since this was the last possible propagation path. This illustrates propagation

problem number 2 and its solution.

Chapter 10. A Frame Network Approach 110

14. Finally, the current belief functions are combined with the total belief on each frame using

Dempster's rule. The total belief functions will then represent the resultant of all belief

in the system and will show with certainty, for example, that the bulb is burned out, that

it should be replaced, and that nothing will happen when the switch is turned on.

10.4.4 Network Design

In creating an expert system, the knowledge engineer and the expert must decide what the

specific goal of the system is, what the important variables of the problem are, how these

variables are related to each other, and how knowledge about these variables can lead to useful

conclusions. We refer to the solution of these collective issues as the design of the expert system.

The frame network can be said to be the representation of the system's design. It is important

to recognize that the design of a system is not merely a listing of all possible frames and links;

it also involves ensuring that the network is complete but not redundant, that it is organized

in such a way that the belief can be propagated efficiently, and that issues of dependency are

addressed.

Of course, a complete and non-redundant network must be achieved through a detailed study of

the particular problem domain. Shafer points out that "In Dempster-Shafer theory, the design

comes from an analysis of our evidence" [11, p.122]. A possible interpretation of this concept

is that we must wait for a specific domain situation to arise before we can begin to create our

design. The system described by Lowrance et al [42] adopts just such an approach. However we

contend that in an engineering expert system context, the knowledge engineer and the expert

can anticipate what bodies of evidence might reasonably be brought to bear on the problem,

and can therefore base the design on these potential sources of information.

Perhaps the most important factor in creating an efficient design is to take advantage of every

opportunity to reduce the frame network from a general graph structure to a tree structure.

While neither structure poses a theoretical problem for the system, trees provide significantly

Chapter 10. A Frame Network Approach 111

less possible propagation paths and therefore they require much less time to process. The

elimination of any redundant frames and links will contribute to a tree-like structure, as will

the exploitation of conditional independence.

While the process of creating a link between two frames is not constrained by issues of depen

dency, it can be observed that complete independence between two frames is properly repre

sented by the absence of a link. Of coarse, this provides the most computationally efficient

situation and this efficiency is delivered from conditional as well as absolute independence. For

example, the scenario described in section 10.4.3 involves three frames. If a link existed in both

directions between each of the frames, there would be a total of six links making up a graph

structure. However, the required action for the light bulb (frame C) is completely independent

of the response to turning on the switch (frame B) if we already know the condition of the bulb

(frame A). Thus C is independent of B conditional on A: we need not provide the links between

C and B and the structure of the network is reduced to that of a chain (Bee figure 10.3). The

appropriate exploitation of conditional independence, then, can lead to significant increases in

efficiency.

Frame
A

Frame
B

Frame
A

Frame
C

Frame Frame
B C Structure of the network

simplified though the
use of conditional independence.

General graph structure
for frame network.

Figure 10.3: Simplification of the Network Structure through the use of Conditional Indepen
dence

Chapter 10. A Frame Network Approach 112

Dependance plays a second role in the expert system design. Recall that when belief is added

to the system, it is first propagated and then combined with the previously known belief using

Dempster's rule. Dempster's rule assumes independence of the input belief functions, and

therefore our system is valid only if each belief function added to the system is completely

independent of every other input. One way to help ensure that this condition is met is to ensure

that the frames which will be used for input from the user are independent of each other. For

example, designing the system to accept input for both of the two dependent variables "month

of the year" and "season* would likely lead to the input of dependent belief functions; designing

for input about both "month of the year" and "day of the week" would not. The application

of this principle will also precipitate a more tree-like network with the accompanying benefits

in efficiency.

10.5 Control

The design of the expert system knowledge base encompasses the specification of the frames

and links in the frame network. It can be said that the design captures the relational knowledge.

However the relational knowledge is only a portion of the total knowledge required. We must

also include information about what specific questions to ask and when to ask them. We must

specify when an acceptable conclusion has been reached and how to report the conclusion. In

short, we must provide the procedural knowledge. Whereas relational knowledge is captured by — — -

the system design, procedural knowledge is captured by the system control.

A frame network representation is well suited for the design knowledge, but it does not seem to

be a useful representation for the control information. Rather than trying to force the control

knowledge into an inappropriate representation, we have chosen to handle control in an entirely

separate system which interfaces with the frame network. For simplicity, we have chosen a

rule-based representation for control.

The knowledge engineer and the expert, then, incorporate control knowledge into the expert

Chapter 10. A Frame Network Approach 113

system by creating a second knowledge base file which is made up of rule and question definition

statements. The function of these statements is to ask the user for belief input at the appropriate

time and in the appropriate manner; to pass this information on to the frame network; to obtain

belief about conclusions from the network; and to use this information to guide subsequent

processing or to inform the user of the appropriate conclusions and recommendations. In

order to achieve these functions, our system provides a set of interface routines between the

control rules and the design frame network which are used in conjunction with the features

normally found in backwards-chaining rule-based expert system shells. It is also possible for the

control component to interact with external processing routines to obtain additional certain or

uncertain information. This is particularly useful for engineering situations where the results of

traditional computer programs are a normal component of the expert decision making process.

We have found that the separate rule-based component provides a simple yet powerful approach

to the management of system control. Figure 10.4 depicts the various components of our system.

D-S Frame Network
Representation Control/

Design
Interface

Rule-Based
Representation External

Routines Design Design
Knowledge Operators

Base

Control Control
Knowledge Operators

Base

System Development
Interface

User
Interface

I
Knowledge Engineer

and Expert
User

Figure 10.4: Components of Our Expert System Shell

Chapter 10. A Frame Network Approach 114

10.6 Further Enhancements

We have produced a prototype expert system shell based on the implementation approach

described above. This system has operated successfully for some small initial problems and we

are encouraged by the results to date. We see the next steps along this line of inquiry to be as

follows:

At present, our system uses approximations to equations 5.8 and 5.9. These approximations

are implemented in terms of basic probability numbers for the focal propositions only. As

such, they greatly simplify the calculations. In future work, we hope to reformulate the exact

equations 5.8 and 5.9 in such a way as to allow their efficient implementation in the system.

The dependent conjunctive combination (equation 5.8) used in the propagation algorithm could

be further utilized by enabling the creation of pre-specified dependent links in the frame network.

A dependent link could be used to relate frames which are expected to receive dependent belief

inputs. By employing dependent combination rather than Dempster's rule to merge the current

and the total belief functions, a dependent link could eliminate the requirement that all belief

functions entered into the system be independent.

Another feature which would promote efficient knowledge base design is a technique for handling

conjunctive inference components. That is, in order to represent the assertion that "A and B

imply C," where A , B and C are propositions in different frames, the present system requires

the knowledge engineer to define a minimal refinement of the frames containing A and B, to link

these initial frames to the refinement, and then to link the refinement to the frame containing C.

While this is not a theoretical problem with the scheme proposed here, the process could be

streamlined to provide much more efficiency in defining and processing such relationships.

Further, a technique for tracking the reasoning performed by the system and reporting the

reasoning to the user would be very useful. Such a capability would assist in debugging the

system, in explaining to the user how conclusions where reached, and in providing the user with

Chapter 10. A Frame Network Approach 115

some feeling for the sensitivity of the reasoning to various belief inputs.

Finally, the entire approach must be tested with problems of increasing size and complexity in

order to determine what type of constraints are placed on the system by practical processing

limits. In turn, work will continue on enabling the system to operate efficiently with large

knowledge bases.

10.7 Conclusion

This chapter has provided an overview of a frame network D-S implementation approach and

has examined details of strategies for overcoming certain obstacles. Namely, descriptions have

been provided of the representation of the various types of knowledge, of the approach to D-S

based inference and belief propagation, and of both system design and control issues. The D-S

implementation approach outlined in this chapter has been implemented in the FRO expert

system shell. Finally, several issues which have yet to be explored were outlined.

Chapter 11

Working wi th Belief Functions

The previous chapter outlined the theoretical approach and the implementation details for rep

resenting knowledge and for performing reasoning in a frame network D-S system. It has been

shown that this type of a system offers extremely advanced uncertainty handling capabilities.

However it must be realized that advanced expert system features will find very little usage if

the are notably more complicated to use than existing systems. Thus D-S uncertainty handling

capabilities must be accompanied by interface techniques which are simple and straight-forward

to use without restricting the system's power. This chapter provides an examination of high

level interface procedures. Section 11.1 presents an graphical interactive belief interface system

called IBIS which enables users to communicate their uncertain belief to the system in a simple

manner. Section 11.2 described how knowledge about the relationships between frames can be

specified and entered into the system. Finally, section 11.3 describes how conclusions expressed

in terms of belief functions can be evaluated by the system.

11.1 Entering Belief Functions

11.1.1 Theoretical Basis for a Simple Belief Input System

It was shown in section 4.4 that specifying the support for the focal propositions only is sufficient

to completely specify any support function. Yet asking a user to express support values for

each focal proposition is not a sufficiently simple way of entering belief for two main reasons.

First, when belief is expressed in terms of support rather then basic probability numbers, it

116

Chapter 11. Working with Belief Functions 117

is not intuitively obvious which propositions are focal. Second, this approach involves the

specification of support for joint propositions. We have found joint propositions to be awkward

to deal with; both for implementing an interface design and for expressing one's belief. In

terms of implementation, difficulties arise because the names of joint propositions can consist

of lengthy lists of element names and they must be entered by the user rather then selected the

from a list or menu (since there are generally too many propositions to offer in a list). With

regards to expressing belief, we have found that asserting belief for a singleton (i.e. belief that

a particular alternative is the correct answer) is far more natural for users then asserting belief

for a joint proposition (i.e. belief that one of a set of alternatives is the correct answer). It

would be preferable, then, to enter belief only at the singleton level. It is vital to realize that

this does not mean we wish to revert back to a conventional discrete probability assignment for

representing belief. Rather we simply wish to imply our joint proposition belief by asserting

our singleton belief.

In order to achieve the desired simplicity, then, we would like to devise an input scheme which

consists only of the user entering support intervals for singletons. This section examines whether

such an approach is theoretically consistent-or if not, what restrictions must be imposed to make

it so.

Singleton support intervals can be calculated for any support function. Therefore, if we can

show that any particular set of singleton support intervals can arise only from one unique and

derivable support function, we will know that our simple scheme is consistent and sufficient to

specify and enter any general support function. Belief which leads to support for some singleton

must be assigned exactly to that singleton. Thus singleton support is associated with a unique

belief assignment. However, some or all of the user's belief may not be assigned to singletons.

Such belief will manifest itself as uncertainty for the singletons (that is, as a difference between

their plausibility and support values). Singleton uncertainty cannot be traced to a unique belief

assignment. For example, suppose that we have two quite different support functions on the

Chapter 11. Working with Belief Functions 118

frame {a,b,c}. The first assigns all belief to the proposition {a,b,c}. The second assigns equal

belief to the three propositions {a,6}, {a,c}, and {b,c}. Both functions will lead to support

intervals of [0,1] for each of the three singletons. We therefore need to impose some additional

requirements in order to obtain a unique solution.

Suppose, then, that out of all the possible support functions which could produce these support

intervals, we select the one which expresses the least internal conflict. We will argue that this

is both a reasonable and appropriate choice.

This one support function with minimum uncertainty conflict will, in fact, exhibit no conflict

at all; and the belief leading to singleton uncertainty can thus be termed consonant according

to the definition in section 4.5.4. We therefore refer to this conflict minimization assumption

as the assumption of consonant uncertainty. We believe that this assumption is not at all

unrealistic. In fact, it has been suggested (see Cohen [9] and Shackle [56]) that all belief should

be consonant, since some body of evidence should not simultaneously lead to two mutually

exclusive conclusions. While Shafer disagrees with this restriction, it does seem that it will

be the exception which will violate consonance to any large degree. Furthermore, consonant

uncertainty is less restrictive than full consonance since belief assigned to singletons may be

disconsonant under the former category.

Through the application of a single reasonable restriction, then, the consonant uncertainty

principle achieves the outstanding practical result of always producing a unique support function -

from a set of legitimate singleton support intervals. This entire approach is analogous to

statements by Shafer [57, p.221] in which he shows that a truly consonant belief function can

be determined by the plausibilities awarded to the singletons, and that a consonant belief

function is essentially a point function rather than a set function. Note that the approach

described here is somewhat less constrained than fully consonant and that singleton support

intervals are required to define a belief function rather than just singleton plausibility values.

Our approach to belief input, then, is to first allow the user to enter support intervals for every

Chapter 11. Working with Belief Functions 119

singleton in a frame of discernment, and then convert this input into the corresponding unique

support function by invoking consonant uncertainty in a manner which can be formalized as

follows:

The elements of a frame are first relabelled to reflect the ranking of the singleton uncertainties.

Thus, the elements are relabelled 61,02,6$,... ,0n such that:

UW2}) > U({03})

Then the BPA values for the joint propositions are:

m({9i,9*,8s,...M) = U({$n})

m({« i , « , , • » , . . . , » n - i } j = U{{9n-i})-V{{9n})

m ({ 0 1 (0 2 » = U{{0t))-U{{ea})

These basic probability numbers, then, will always form nested propositions as required by

consoriance/"(Note that the next equation in this sequence would be m({0i}) = =

— ^({^2}) which would result in the assignment of singleton support greater than

that specified by the user. In such a case the derived support function would not reflect the

user's belief. This situation is therefore prevented by the restriction that U({0i}) = U({02})>

as shown above).

The basic probability assignment is completed by including the basic probability numbers aris

ing from the singleton support values, that is:

Chapter 11. Working with Belief Functions 120

Example 11.1 Suppose that the user has entered the following singleton sup

port intervals for a frame containing the four elements {a,b,c,d}:

S({a}) = 0.1 P/ ({«» = 0.7

5({6}) = 0.3 Pl{{b}) = 0.9

5({c}) = 0.0 P/({c}) = 0.5

S{{d}) = 0.0 Pl{{d}) = 0.2

The singleton support values lead to the following basic probability numbers:

m({a})= 5({o}) =0.1

m({6})= S({b}) =0.3

m({c})= S({c}) =0.0 (ignore)

m({d})= S({d}) =0.0 (tonore)

Further, we can calculate the following singleton uncertainties:

U({a}) =0.6

U({b}) =0.6

• ._. V{{c}) =0.5

- . =0.2

Ranking these uncertainties leads to the relabelling of the elements $i = a,

$2 = 6, 0s = c, and $4 = d. Equation 11.2 then gives:

m({9lt02,ezM) = W) =0.2

m({ei,9i,$s}) = U({9i}) - U{{04}) =0.5-0 .2 =0.3

m({e1)92}) = U{{62}) - U{{0!i}) =0.6-0.5 =0.1

Thus the complete basic probability assignment derived from the user's input of

singleton supports intervals is:

Chapter 11. Working with Belief Functions 121

m({b})

m({a,b})

0.1

0.3

0.1

m({a,fc,c})

m({a,b,c,d})

0.3

0.2

with all other propositions having zero basic probability.

11.1.2 Attributes for the Implementation of a Belief Input Scheme

We have determined that a simple and consistent belief input scheme can be achieved through

the application of consonant uncertainty. This section describes additional attributes which

should be incorporated into a belief interface scheme. The implementation of these ideas into

an actual belief entry scheme are described in section 11.1.3. The first attributes deal with the

efficient management of constraints:

1. Exploit applicable classes of belief:

The belief input scheme proposed in the previous section relies for its effectiveness on

the constraints imposed by consonant uncertainty. In general, each additional constraint

imposed results in a simpler input scheme, since constraints limit the user's options.

Whenever the belief to be entered into a system is known or expected to belong to a

certain class of support functions (classes of belief were discussed in section 4.5), then,

the constraints which can be ascribed to those classes should be exploited in the input

scheme. If belief is to be entered for which no uncertainty should exist, for example,

the response need only consist of selecting one of the alternatives and no support or

plausibility values are required.

Chapter 11. Working with Belief Functions 122

2. Avoid overconstraint:

It is very important, however, not to unnecessarily overconstrain the input. For example,

imposing the class of certain support when the user is, in fact, quite uncertain about

the answer to some question would result in a very inappropriate support function being

entered into the system. Classes of belief should only be exploited when there is a rea

sonable expectation that they will apply (and even then it should be possible to override

such constraints).

The following attributes deal with the actual processes of entering values into the computer

program:

1. Allow user to select from options:

A user interface will be generally be much simpler to use if the user is allowed to select

options offered to him rather than being required to remember the correct format, syntax,

order, and so on for the values being entered. This will only be possible when there are not

too many options from which to choose, but the restriction to singleton support intervals

only should ensure that this condition is met. Since belief input is specified in terms of

real number values, allowing the user to select a value is best achieved through the use

of a graphical interface. We propose that support and plausibility values be entered by

allowing the user to adjust bars on a bar chart to the desired magnitude.

2. Establish a valid support function in response to every incremental belief entry:

To encourage convergence upon a satisfactory support function it is preferable that, during

the entire process of providing inputs of belief values for a single support function, the

consequences of the each entry are presented in the context of a valid support function.

This requirement also applies to the initialized state of a support function before the first

user belief input is entered. In most cases this requirement is met with a belief function

Chapter 11. Working with Belief Functions 123

corresponding to complete ignorance-a belief assignment of 1.0 to the full frame, and a

consequent plausibility of 1.0 for all singletons.

Furthermore, if a class of belief has been selected, the support function should be auto

matically constrained accordingly. As well, the system should automatically reject, with

an explanatory warning, any attempt to enter values which violate the general require

ments of a support function or any constraint applicable to a chosen belief class. For

example, if a consonant belief structure had been selected then, any attempt to enter

belief in a second singleton, or any attempt to deviate from a plausibility value of 1.0 for

the focal singleton should be resisted.

3. Permit support and plausibility to be increased or decreased:

The entry of support or plausibility implies the act of adding belief or plausibility to

propositions, usually singletons. It is essential that it also be possible to deduct support

or plausibility from any singleton or proposition. This provides an opportunity to correct

entries which are sensed to be inappropriate. It also allows, in conjunction with the

immediate adjustment of the support function to constraints as suggested above, some

indication of the sensitivity of the complete support function to current belief value entry.

11.1.3 The Prototype System

In the previous section we have discussed what we feel to be the important attributes of a

support function interface system. In this section we give a description of the system developed

for use in our prototype D-S based expert system shell. We show how our system attempts to

fulfill the ideal attributes given above and present our plans for some future modifications to

our system. This system is called the Interactive Belief Interface System, or IBIS .

Questions which allow uncertain responses return a complete support function rather than just

Chapter 11. Working with Belief Functions 124

a single value. Internally they might be defined as:

question 13:

weather.tomorrow

ask.uncertainty "What w i l l tomorrow's weather be l i k e ? "

alternatives (sunny, cloudy, ra in ing, snowing).

In this case, the alternatives are a set of mutually exclusive and exhaustive propositions for a

previously stored frame "weather-tomorrow''. When the expert system needs to know what

the expected weather will be for the next day, the question is presented graphically to the user

in the initial form shown in figure 11.1:

What w i l l tomorrow's weather be l ike?

Enter support and p l a u s i b i l i t y values
1. sunny
2. cloudy
3. ra ining
4. snowing ;".

.6- -4.0

| : support, the X certainty that this is the correct alternative.
|~~| : plausibility, the X certainty that this could be the correct alternative.

Figure 11.1: Initial belief input screen

This screen states the question, lists the possible alternatives, and displays the support and

plausibility values associated with each alternative in the form of a bar-chart. The support

and plausibility values presented initially reflect a belief of absolute ignorance regarding the

question. The user can alter the values on the bar chart by first selecting the corresponding

support or plausibility bar with a mouse cursor. The support or plausibility represented by

the bar can then be decreased or increased by moving the cursor to the left or right. The

system employs the previously discussed simplifying technique of confining entries of supports

and plausibilities to singletons.

Chapter 11. Working with Belief Functions 125

Visualization of the support function is encouraged by providing a fully interactive graphical

interface. The system automatically and immediately applies the appropriate constraints and

warns the user of attempted violations. For example, the requirement that the sum of all implied

BPN's must equal one is automatically maintained. If the first entry made was to increase the

support for tomorrow's weather being cloudy up to 0.4, the remaining uncommitted belief must

be 0.6 and plausibility in all other alternatives must equal 0.6. Thus the plausibilities for all

other weather alternatives will be reduced to 0.6 and the input scheme automatically responds

with the display shown in figure 11.2:

What w i l l tomorrow's weather be l ike?

Enter support and p l a u s i b i l i t y values
1. sunny
2. cloudy
3. ra in ing
4. snowing

0 .2 .4 . 6—
j i i i i i i

— .8 1.

i
— .8 1.

i i i i i i f
h—i—i—i—i—i—f

| : support, the % certainty that th i s is the correct a l ternat ive.
(~~| : plausibility, the % certainty that th i s could be the correct a l ternat ive.

Figure 11.2: Belief input screen expressing some support for "cloudy"

Other support function constraints, such as the belief cannot be greater than the plausibility

for that proposition, are automatically checked and enforced. If the user attempts to violate

these constraints, a warning is given and he is not allowed to make the incorrect entry. For

example, if the user attempts to reduce the plausibility of cloudy weather to less than 0.4, the

following warning would appear, as shown in figure 11.3:

The above mentioned constraints are fundamental to support function theory-all legitimate

support functions must obey them. After the user is satisfied with the values displayed and

actuates the "Cl ick here when finished" box, the system takes the users input, applies the

consonant uncertainty constraint and derives the complete support function. This is entered

Chapter 11. Working with Belief Functions 126

What w i l l tomorrow's weather be l ike?

Enter support and p l a u s i b i l i t y values Q
1. sunny
2. cloudy
3. ra ining
4. snowing

.6- .8- • 4 . 0 i

• 1

•

***** W A R N I N G - P1(A) cannot be less than S(A) *****

| : support, the X certainty that this is the correct alternative.
J~l : plausibility, the X certainty that this could be the correct alternative.

Figure 11.3: Belief input screen warning of constraint

internally to the expert system but, if requested, the focal joint and singleton propositions

with their corresponding basic probability numbers can also be displayed on screen. This

reinforces the fact that neither consonant uncertainty, nor the input system itself, confine the

focal propositions to singletons. For example, if the user is quite confident that tomorrow's

weather will be raining or snowing but he has no idea which, he would enter this belief by

reducing the plausibility of both sunny and cloudy while leaving full plausibility for raining or

snowing. Such an entry would be as shown in figure 11.4: - - . - -

What w i l l tomorrow's weather be l ike?

Enter support and p l a u s i b i l i t y values Q
1. sunny
2. cloudy
3. ra ining
4. snowing ,

.6- - 4 . a .

1 — r

I : support, the X certainty that this is the correct alternative.
[I : plausibility, the X certainty that this could be the correct alternative.

Figure 11.4: An example belief input screen

Such an entry would cause the following support function to be entered into the system:

Chapter 11. Working with Belief Functions 127

m({raining, snowing}) = 0.9

m({sunny, cloudy, raining, snowing}) = 0.1

The IBIS interface is illustrated and described further in chapter 12 and in chapter 14 of the

appendix.

11.1.4 Additional Features

This section discusses some features which are not currently implemented in the IBIS system,

but which could be added to enhance its performance.

Additional belief classes could be investigated, and possibly subclasses governed by belief and

plausibility profile shapes, and the circumstances which would prompt their use. For example,

in the case of propositions which are formed by discretization along a continuum, a subclass

might be specified which requires the belief and plausibility distributions to be unimodal. When

the knowledge engineer programs questions into the knowledge base, he would have the option

of stating that the response should fit into one of a group of belief classes or possibly subclasses.

In turn the user would respond with his choice of belief class or subclass before entering be

liefs. Once a belief class has been selected then the appropriate additional constraints would be

applied during input and when calculating the complete support function once input is com-

pleted. An option for the user to enter a completely general support function is not precluded

but, because of the high dimensionality of the inputs involved, this would probably necessitate a

non-graphics based entry scheme and would require the user to enter basic probability numbers

for all focal singleton and joint propositions.

It is possible that even greater feedback can be provided to the user during belief entry. A

measure of the degree of conflict within the support function as it is being entered could easily

be provided. Similarly, a measure of the quality of information contained in the support function

Chapter 11. Working with Belief Functions 128

(as described in section 11.3) might be useful under some circumstances. Once the user became

familiar with these feedback parameters, he could use them as a check of whether his input

corresponded well with his feelings about the question, and he could modify his response if this

was not the case.

It has been very apparent through using the input scheme described that it rapidly improves

familiarity with the D-S expression of belief. An effective tutorial program could be built around

the graphical input scheme and would demonstrate the concept of D-S belief, the consequences

of belief combination, and so on. This would be invaluable for building the users confidence in

expressing his beliefs.

Finally, all of these additional features could be made optional and passive (i.e. they would only

be provided if requested). The system has the virtue of being functional with the simplest of

inputs and only an elementary understanding of belief by the user. Refinement of the interface

to capture more subtle nuances of belief and provide greater feedback for the more sophisticated

user should not be at the expense of this simplicity when it is appropriate.

11.2 Expressing Relational Belief

Belief which must be entered into a D-S based expert system can be classified as either eviden

t ial belief or relational belief. Evidential belief expresses some body of evidence pertaining

to the true value of some frame of discernment. This type of belief is most commonly sup

plied by the user in response to some question. In the FRO expert system shell, evidential

belief is entered using the IBIS system described in the previous section. Relational belief,

on the other hand, is belief about how propositions in one frame are related to propositions

in a different frame. This type of belief is usually entered by the expert and the knowledge

engineer during the creation of the knowledge base. This section provides some insight into

the meaning of relation belief functions by showing how they can be expressed in the form of

simple "IF. . . T H E N . . . " rules.

Chapter 11. Working with Belief Functions 129

Formally, a relational belief function is defined on a minimal refinement frame. Therefore the

function assigns belief to elements of the form (x,y), or "x is the true value of frame Qx and

y is the true value of the frame 6y." It can be shown that this is a suitable representation for

relational information. However, it is not an intuitive way of describing our relational belief.

We would like to find an equivalent form which would allow us to give a more natural expression

of our belief about relationships.

We have found that the most common form of representing relationships in expert systems,

namely "IF. . . T H E N . . . " type rules, provides a representation form which is acceptable to

both the expert's intuition and the belief function theory. Specifically, suppose we have the

rule "if A then B" where A is a proposition in the frame Ox and £ is a proposition from the

frame 6 B . This rule is equivalent to the conditional statement "if A is true then B is true",

which is equivalent to the unconditional statement UA is true and B is true, or not A is true.*

In this last statement, the "A is true and B is true" component is directly equivalent to the

proposition (A,B) in the minimal refinement frame 6(A,B) - The "not A is true" component

corresponds exactly to the set complement of proposition A in the initial frame ©x, and must

therefore exist in the minimal refinement which completely discerns the initial frames. This

conversion from rules to minimal refinement propositions is shown in example 11.2.

Example 11.2 For the frames given in example 3.2, we could define a rule:

"If rock, then blast." ~~~

This rule is equivalent to the statement:

"If rock is true, then blast is true."

Which is equivalent to the statement:

"rock is true and blast is true, or not rock is true."

Which is equivalent to the statement:

Chapter 11. Working with Belief Functions 130

"rock is true and blast is true, or soil is true."

Which is equivalent to the statement:

"rock is true and blast is true,

or soil is true and blast is true,

or soil is true and dig is true."

Which is equivalent to the proposition:

{(rock, blast), (soil, blast), (soil, dig)}

Thus the rule "If rock, then blast" corresponds directly to the proposition

{(rock, blast), (soil, blast), (soil, dig)} in the frame 0(MATERIALMETHOD)-

Using this conversion from rules to minimal refinement propositions, we can see that a rule

statement exhibits the same basic set theory characteristics as propositions. For example, an

"Ai or A j " expression in a rule corresponds to the union of the propositions A\ and A2, while

an " A i and As" expression in a rule corresponds to the intersection of A\ and A2. It should

be noted that we can refer to an "A and B " expression where the propositions A and B are

from different initial frames. For example, we could use a rule "if A and B then C" (where

A is a proposition in frame 6 A , B in frame 6 B and C in frame 6c) by relating the minimal

refinement of frames 6 A and 6 B to frame 6 c ; i.e. the rule would be equivalent to a proposition

on the frame 6 ((A , B , C) -

We can also see that one rule can imply another rule in a manner analogous to the set inclusion

property of propositions, as shown in the following example. This concept becomes impor

tant when we begin to assign belief to rules (as shown below) and we must observe the same

constraints as for evidential belief functions.

Chapter 11. Working with Belief Functions 131

Example 11.3 Suppose we have three rules:

Rule 1: if A then B% and B2

Rule 2: if A then B\

Rule 3: if A then Bi or B%

Where A is any proposition in frame &A and Bi, B2 and B3 are any propositions

in frame 0 £ . These rules can be converted into propositions on the frame 6 (X , B) -

Thus if Rule 1 yielded some proposition labeled (A, B)i, Rule 2 yielded (A,B)2 and

Rule 3 yielded (A, .8)3, it can then be shown that:

(A,B)x C {A,B)2 c (A, B)s

or alternatively:

(A, B)i implies (A,B)2 which implies (A, B)s

Therefore, we can say that:

Rule 1 implies Rule 2 which implies Rule 3

This result can also be derived directly from the logical relationships between

the rules. For example, if the rule "if A then B\ and B2 is true, then the less

precise rule "if A then Bi* must also be true; that is: " r

"If A then Bx and B2"

implies "If A then Bi"

which similarly implies "If A then B\ or Bs"

The same argument can be used to show that:

"If A i or A2 then B "

implies "If A i then B"

which implies "If A\ and A2 then J5"

Chapter 11. Working with Belief Functions 132

Using this approach, we can define an approach to specifying relation belief which consists

of supplying a series of rules pertaining to two related frames of discernment, with a single

support number assigned to each rule (each rule would represent a focal proposition in the

relational belief function, so specifying the support for each rule would fully specify the belief

function). A rule with support of 1.0, for example, would apply categorically, while a rule with

near zero support would result in only negligible inferences. Example 11.4 shows a set of rules

with associated support numbers and the relational belief function (in the form of a BPA).

Example 11.4 Suppose the possible types of ground on a construction site are

rock, soil, or sand:

frame ^MATERIAL = {rock,soil, sand}

and the possible excavation methods are digging, blasting, or ripping:

frame QMETHOD = {^9> blast, rip}

Then the rules:

If rock then blast, with support 0.5,

If rock then blast or rip, with support 0.8

if soil or sand then dig, with support 0.9.

could be transformed into a relational belief function on the minimal refinement

frame &(MATERIALMETHOD) which, when converted to a BPA, would give us the

following belief:

Support associated with rules carry the normal constraints for belief functions. For example,

the support must be a number on the range 0 to 1.0; the support for one rule can not exceed the

support for a second rule if the first rule implies the second; and the sum of support numbers

Chapter 11. Working with Belief Functions 133

(rock,rip)

(soil,rip)

0.3

0.5 (sand,blast) (sand,rip) <>-0.1

Figure 11.5: A Relational BPA

for complementary rules (i.e. two rules for which the intersection equals 0) must not exceed 1.0.

Furthermore, a vacuous relational belief function (i.e. a complete lack of information about a

set of relationships) corresponds to the case of completely independent frames of discernment.

Finally, we should note that a relational belief function provides knowledge which can allow

belief propagation between two frames in either direction. This can be a problem if we wish

to be able to infer belief about a frame 9 B from the elements of a frame © A , but we do not

believe that reverse inferences should be made. Suppose, for example, that in the scenario

outlined in example 11.4, we had no information as to the ground type, but we decided to try

a ripping method of excavation because we owned the appropriate equipment. Then, knowing

the excavation method, the given relational belief function would yield some unfounded belief

in the ground type.

This problem stems from the fact that a rule of the type "if rock then rip" is a subset of a rule

which would fully describe the known relationships, for example:

"if rock

or appropriate equipment is available

or other factors exist which imply rip

then rip"

Chapter 11. Working with Belief Functions 134

It can be shown that the rule "if rock then rip" is a completely valid and sufficient subset for

belief propagation from frame 6 A to frame 6 B , but that the rule gives incorrect relationships

when propagating belief in the opposite direction. We have found that a feasible solution to

this problem is to provide a different relational belief function for propagating belief in each

direction. In this system, then, belief about frame 6 A would be combined with the stored

6A-6# relational belief function to derive belief about 9 B . Conversely, belief about frame 6 B

would be combined with a completely different © B - 6 A relational belief function to derive belief

about frame 6 A -

In summary, relational belief can be expressed in terms of simple rules. This form provides the

most insight into the meaning of relation belief functions expressed on a minimal refinement

frame. However the FRO frame network system employs a more simple form of relation belief

input using IBIS screens in a similar manner to the technique used for entering evidential

belief. The theoretical basis for this approach was described in section 10.3.2 and the resulting

implementation is illustrated in chapter 12 and in chapter 15 of the appendix.

11.3 Evaluating Output Belief Functions

The role of belief functions for belief input has been discussed. In a frame network system, belief

functions are also produced as output. Given belief output, the main question to be resolved

is usually to determine the "best" alternative. It is also important to know how reliable this

selection of best is. It is not obvious how the information contained in support and plausibility

numbers should be used to make these determinations. The following provides some possible

approaches when the output is provided in the previously described form of singleton support

intervals.

Chapter 11. Working with Belief Functions 135

11.3.1 Determining the B E S T Alternative

If there were no uncertainty in a belief function, all alternatives would have a single support

number. The alternative with the highest support could then easily be chosen as best (this

is analogous to a Bayesian probability distribution). Similarly, if each alternative has only

plausibility numbers and no direct support, we could simply take the alternative with the

highest plausibility as the best. In general, however, we need a single measure of belief which

is a function of both the support and plausibility. Suppose we call this parameter the nominal

belief of the proposition, NB(A):

Best A = A with max(JVB(A)) (11.4)

where NB(A) = F (S (A) > P , (A)) (11.5)

Suppose we take the nominal belief to be the simple linear average of the support and plausibility

numbers:

NB(A) = F { S W i P l { A)) = S { A) +

i)

P l { A) (11-6)

Figure 11.6 shows some examples of nominal belief.

This equation for nominal belief is completely arbitrary but it seems to be suitable for a first

attempt. For example, given two propositions A and B, there are five possible types of belief

relationships between them. We can check the results of using a linear averaging equation for

each of these general classes, as shown in table 11.1.

Chapter 11. Working with Belief Functions 136

(X) S{X) NB(X) Pl{X)

A 0.0 0.0 0.0

B 0.0 0.4 0.8

C 0.4 0.6 0.8

D 0.7 0.7 0.7

r-0 .6- .8 l . O i

T
lll!
i — r
IIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII1IIIIIIIIIIIIIIIIIIII

i — — r

Y::::::::V:::::::1

Support HI Nominal Belief = sW+pl{A) H Plausibil i ty

Figure 11.6: Examples of Nominal Belief

Table 11.1: Possible belief relationships

Relationships between
belief for A and B

Relative values using:
NB(X) -

5(A) = S(B), PL(A) = PL(B)
S{A) = 5(B), PL{A) > PL(B)
5(A) > 5(B), PL(A) = PL{B)
5(A) > 5(B), PL(A) > PL{B)
5(A) > 5(B), PL(A) < PL[B)

A equal to B
A better than B
A better than B
A better than B

depends
(and opposites which are symmetric)

Chapter 11. Working with Belief Functions 137

The first four cases shown in table 11.1 are correct by inspection. The last case (which is

probably atypical in practice) does not have an obvious result. However we cannot simply say

that the proposition is better whenever the support is higher because if S(A) > S(B) and

PI (A) < Pl(B) then there is both more support for A and more support against A. The use

of a linear average for the nominal belief will cause the support for and the support against

a proposition to carry equal weight in resolving these cases. Other combining functions could

place greater emphasis on one or the other of these supports (which is not likely to be valid).

In any event, the determination of the nominal belief upon which we base our selection of best

alternative is not particularly critical if we have a reasonably accurate method of determining

our confidence in (or reliability of) the "best" selection, as shown in the next section.

11.3.2 Determining the Reliability of the Best Alternative Selection

For some belief functions it may be very easy to determine which alternative is best, but we

may have a very low confidence about the selection. There are two sources of such doubt. First,

we can lack confidence if there is much uncertainty in the belief function. Figure 11.7 shows

such a situation. Second, we can be doubtful if the categorical belief for the best alternative is

only marginally higher than it is for the next best, as in figure 11.8.

Ronald Yager [73] discusses both of these source of doubt. He introduces two parameters which

describe howinformative a belief function is.

First, he introduces the specificity, Sm, of a belief function as a measure of the degree to

which belief is assigned to large sets of elements. That is, the specificity measures the precision

expressed in the belief function, with imprecision contributing to uncertainty.

Second, Yager proposes the entropy, Em, as a measure of the degree to which the belief is

distributed among disjoint sets. The following phenomena are all manifestations of this type of

Chapter 11. Working with Belief Functions 138

1. a proposition
2. the BEST proposition
3. a proposition
4. a proposition
5. a proposition

.2-
i

.6- - i .Oi

•
support, the X certainty that th i s is the correct a l ternat ive,
plausibility, the X certainty that th i s could be the correct al ternat ive.

Figure 11.7: Low Confidence in the BEST alternative because of a large amount of uncertainty
in the belief function

2. the BEST proposition

rO .2 .4

M i l l rn
• 6— • 8— —1 °1

| : support, the X certainty that th i s is the correct a l ternat ive.
[~| : plausibility, the X certainty that th i s could be the correct al ternative.

Figure 11.8: Low Confidence in the BEST alternative because of a large amount of disconso-
nance in the belief function

Chapter 11. Working with Belief Functions 139

doubt: a belief function which distributes belief among disjoint sets; one which discerns signif

icant conflict; one which is disconsonant; and one in which there is relatively small differences

in support between the main focal propositions.

A measure of our confidence in the selection of best alternative, then, must combine measures

of uncertainty and consonance; or entropy and specificity to use Yager's terms. Yager derived

specific formulae for deriving his specificity and entropy parameters, however he was using

them as measures of how informative overall belief functions are. We are interested in finding

parameters which tell us how confident our assignment of the best alternative is. This goal

requires different formula for specificity and entropy parameters than Yager's.

1. Measuring Specificity:

A measure of specificity must indicate the relative amount of uncertainty assigned to our

best alternative. A useful definition seems to be:

The specificity Sp(A) of the best alternative A is the percentage of the belief

function's uncertainty which could be resolved against A before A is no longer

considered "best".

However this is not a very easy definition to implement, we have rather adopted the

definition:

The specificity Sp(A) of the best alternative A is the support for A as a per

centage of the plausibility for A:

SrM = | $ L (n.7)

This is an arbitrary definition, but it reasonably exhibits the expected traits of being

directly proportional with the amount of uncertainty in the proposition and being zero

for total ignorance and one for total certainty.

Chapter 11. Working with Belief Functions 140

2. Measuring Entropy:

The measure of entropy must indicate the degree to which the belief in the best alternative

is greater than the belief for other alternatives. A simple definition is:

The entropy E(A) of the best alternative A is the difference between the nominal

belief in A and the nominal belief in the next best alternative, B, as a percentage

of the nominal belief in A:

Again, this arbitrary definition satisfies the expected traits of being directly proportional

to the difference between the best and next best alternatives, being zero for two or more

"equally good" propositions and one for total full support of a single proposition.

3. Combining Specificity and Entropy:

The specificity and the entropy can be combined into a single measure of the quality

of the "best" selection. We want our quality parameter, Q{A), to range from zero to

one and to be directly proportional to both the specificity and the entropy. Figures 11.9

through 11.12 show four arbitrary formulae for this combination. For a given E and

- Spy the value of Q can be obtained from the graph's "quality contours" for the following

formulae:

Q' = S-?±* (n. 9)

0 = ^ (n.io)

Q = Spx E (1111)

Q2 = SpxE (11.12)

Chapter 11. Working with Belief Functions 141

Again, the specific formula is not especially critical because the way we use the quality (to

compare it with thresholds etc.) will vary with which ever characteristics the parameter

possesses. Nevertheless, we should try to make the quality parameter intuitively appro

priate. For this reason, the formulae shown in figures 11.9 and 11.10 should be rejected

because a relatively high Q can be obtained when one of the E or Sp is high even if the

other is zero. The formulae illustrated in figure 11.11 seems more reasonable. Notice that

both E and Sp need to be high in order for a moderate Q to be obtained. The formulae

illustrated in figure 11.12 is more lenient in that a moderate E and a moderate Sp can

lead to a moderate Q. Testing could be performed to show which alternative more closely

mimics human feeling. The approach shown in figure 11.11 has been implemented in the

FRO system illustrates the best combination.

11.4 Conclusion

This chapter has outlined techniques for working with belief functions which simplify both

evidential and relational belief input and which help to evaluate inferred belief functions. These

simplifying procedures are required to counteract the increase in complexity caused by the use

of a powerful and complex knowledge representation and reasoning scheme like D-S. Most of

the approaches outlined in this chapter are implemented in the FRO expert system shell.

142

Figure 11.10: Quality factor from equation 11.10

143

Chapter 12

Using a D-S based System

This chapter provides an extended example of an expert system based on the D-S frame network

approach such as that implemented in the FRO shell program. The point of view for this chapter

is mainly that of the user. Some issues of incorporating uncertainty in knowledge base design

are also discussed in section 12.5.

12.1 Illustration of D-S Implementation

Consider a scenario in which an innovative contractor is selecting his construction strategy

for a high-rise project to be built in Vancouver, B.C. A preliminary schedule indicates that

the concrete superstructure will be built from mid-November through to mid-February. The

contract stipulates that time is of the essence and that days lost due to cold and excessively wet

weather must be minimized. The contractor's expert system has been appraised of the time

frame and contractual obligations and has initiated a series of questions and responses dealing

with cold weather concrete practices (for the reader unfamiliar with Vancouver weather, the

climate is temperate and extended periods of substantially below-freezing temperatures are

unusual). The goal of the session is to identify the most suitable strategy to achieve acceptable

cure times in order to maintain a four day cycle time. The system starts by querying the user

regarding long range weather forecasts. Specifically, the system might first pose the following

question:

144

Chapter 12. Using a D-S based System 145

What is the long range forecast for cold weather conditions

for the construction period Nov. 15 1088 to Feb. 15 1089 ?

The system also offers the user a number of possible answers to the question. In this case, the

following forecast descriptions might be presented:

1. Mild.

2. Normal.

3. Severe.

"Explanation" capabilities built into the system could define the specific meteorological mean

ings of each of these descriptions.

In this format, the set of alternatives for a particular question makes up a D-S frame of dis

cernment while each individual alternative is a singleton. Since frame of discernment should

be exhaustive and mutually exclusive, one and only one of the alternatives must be the correct

answer.

If the user was completely certain that one of these alternatives was the correct answer to

the question, then he could simply select that alternative. However, as is often the case in

civil engineering problems and construction ones in particular, the user may not be completely

certain. Thus his response could only accurately reflect his belief if it conveyed his uncertainty -

about the answer.

The system, then, must be able to accept the user's uncertain input. With a numerical scheme

such as D-S, this input can become a fairly complex procedure, so it is critical that the uncer

tainty input method of any expert system be as simple and as easily understood as possible.

We believe that considerable attention must be directed to developing interfaces which are nat

ural to engineering and construction practitioners. Our approach to this problem is to use a

graphical representation and to add certain minor constraints to the general D-S theory (see

Chapter 12. Using a D-S based System 146

the description of the IBIS input system in section 11.1). The input format developed is shown

in figure 12.1.

What is the long range forecast for cold weather conditions for the
construction period Nov. 16 1988 to Feb. 16 1989 ?

Enter support and plausibility values
1. Mild
2. Normal
3. Severe

r 0 .2 .4 .6 .8 1.0

H '• support, the X certainty that th i s is the correct a l ternat ive .
f~l : plausibility, the X certainty that th i s could be the correct a l ternat ive.

Figure 12.1: Initial uncertainty input screen

In this form, the same question is asked, the same alternatives are offered, but instead of asking

the user to select the single best alternative, the system now asks the user to enter two values

for each alternative. These values, represented by a bar chart in figure 12.1, are defined as

follows:

Support: a number between zero and one reflecting the user's belief that the particular al

ternative is the correct alternative. The support is represented by a solid black bar in

figure 12.1 which shows a value of zero for each alternative.

Plausibil i ty: a number between zero and one reflecting the user's belief that the particular

alternative could be the correct alternative. The plausibility is represented by a white bar

in figure 12.1 which shows a value of 1.0 for each alternative.

The support and plausibility values for each alternative of a particular question make up a

belief function for that frame of discernment.

The fact that every alternative listed in figure 12.1 has zero support and full (1.0) plausibility

indicates that none of the alternatives are known to be the one correct alternative, yet each

Chapter 12. Using a D-S based System 147

is believed to be entirely possible. This state accurately represents total ignorance about the

question (the appropriate status of the system before the user has entered any belief). In

contrast, a Bayesian based system would overstate what is known by assigning an equal, non

zero level of belief to each alternative even though none had received any belief from the user. We

will elaborate on the definitions of support and plausibility numbers and on their relationship

to probabilities below, but first we will extend our example in order to illustrate the use of

belief functions.

Our user may decide that based on the unusually hot weather experienced in Vancouver during

the summer, he expects the winter to be a mild one. He therefore increases the support value for

the "mild" alternative (in the case of our system, this is done by sliding the corresponding bar

with the mouse cursor). Because the contractor realizes that this is not a very reliable estimate

of the winter's weather, he may only increase the support to 0.2. Suppose that the user also

decides to obtain better information by telephoning Environment Canada. He is informed by

these experts that all meteorological indications point to a very normal winter. This influences

him to increase the support value for the "normal" alternative of the question to a value of,

say, 0.5.

The result of adjusting the support values for these two alternatives is shown in figure 12.2.

Notice that by expressing some support for one particular alternative being the correct answer,

the user implies the same amount of belief that all of the other alternatives must not be correct.

This results in the lowered plausibility values shown in figure 12.2. The user does not have to

consciously make this adjustment since it is performed by the system automatically.

Finally, from both his own observations and from the advice of Environment Canada, the

contractor is fairly confident that the winter's weather will not be severe. He expresses this by

lowering the plausibility of the "severe" alternative to a low value of 0.1. Figure 12.3 shows the

resulting levels of belief. It can now be said that the values shown are an accurate reflection of

the contractor's belief about the long range weather forecast; these numbers can therefore be

Chapter 12. Using a D-S based System

returned to the system as the complete response to the question.

148

What is the long range forecast for cold weather conditions for the
construction period N O T . 15 1988 to Feb. 16 1989 ?

Enter support and plausibility values
1. Mild
2. Normal
3. Severe

r 0 .2 .4 .6 .8 1.0

| : support, the X certainty that this is the correct alternative.
: plausibility, the X certainty that this could be the correct alternative.

Figure 12.2: Intermediate uncertainty input screen

What is the long range forecast for cold weather conditions for the
construction period Nov. 15 1988 to Feb. 15 1989 ?

Enter support and plausibility values
1. Mild
2. Normal
3. Severe

r 0 .2 .4 .6 .8 1.0

| : support, the X certainty that this is the correct alternative.
|~~| : plausibility, the X certainty that this could be the correct alternative.

Figure 12.3: Final uncertainty input screen

12.2 A Note On Belief Functions

Belief functions expressed using the system described must conform to the D-S definitions

described in earlier chapters. As such, they obey the following equations:

Chapter 12. Using a D-S based System 149

If: a, = one of the alternatives

a, = not a, = the set containing all alternatives except a,-

<5(a,) = * n e support for a,-

^(o,) = * n e plausibility for a,-

Then entering belief in our system will be governed by:

0 < 5 (a.) < P/ (a .) < 1.0 (12.1)

(12.2)
Va,-

= 1 - E *(«,) (12.3)
V i y , W

Even the simple set of relationships given here need not be learnt by a user of the system,

however. This is because the system automatically adjusts the plausibility values to account

for equation 12.3 (as described above) in addition to issuing warning messages if the user tries

to violate the constraints imposed by equations 12.1 or 12.2.

Although this input scheme is fairly easy to use, it is extremely powerful in terms of the

spectrum of belief that can be expressed. To illustrate this flexibility, consider the following

classes of belief:

Ignorance: We have shown in figure 12.1 that our input scheme can be" used to represent

ignorance about a question. It is worth noting that in the absence of any support for

some alternative, we can still differentiate between disbelief (belief that the alternative

is not correct) and ignorance (a lack of belief for or against the alternative). In a belief

function, disbelief is manifested as zero support and zero plausibility while ignorance is

expressed by zero support and high plausibility. No such distinctions can be made by

assigning a single probability value to each alternative.

Certainty: Complete certainty about a single alternative is represented by increasing the

support for that alternative to 1.0. This automatically forces the plausibility of all other

Chapter 12. Using a D-S based System 150

alternatives to zero. We can also express certainty that the correct answer lies within

some particular sub-group of alternatives, though we may have no belief about which

of these alternatives is the best answer. This is represented by a plausibility of 1.0 for

each alternative in the sub-group and plausibility of zero for each alternative not in the

sub-group. The ability to deal with sets of alternatives is a particular strength of the

D-S theory (although our representation tends to de-emphasize this strength by using the

list of singletons as the basic input format, as opposed to one which allows the explicit

assignment of support values to sets of alternatives).

Consonance and Disconsonance: Figure 12.3 illustrates typical belief which lies between

complete ignorance and complete certainty. It can be observed that this belief function

displays "conflict" in that the support for the mild weather alternative says that the

weather will be mild and therefore not normal (or severe). This conflicts with the other

support value which dictates that the weather will be normal. Belief functions are said

to be consonant if they show no such conflict and disconsonant if they do. Conso

nance is normally appropriate for expressing belief which stems from a single body of

evidence, since such evidence should not simultaneously point to two mutually exclusive

conclusions. Disconsonance is appropriate in the case of our example, however, since the

user was expressing his combined belief based on two distinct and conflicting sources on

information.

A Bayesian probability distribution can be entered into the system by entering £(0i.) =

P/(„(.) = Probability of a,- for each alternative. However such a belief function displays

complete disconsonance. This may be appropriate for statistical information based on

large numbers of observed outcomes, but it does not seem to be appropriate for the

general case.

In our example, the user considers two distinct bodies of evidence in order to answer the

question. He enters into the system his combined belief about the answer, based on these two

Chapter 12. Using a D-S based System 151

information sources. It is interesting to note that the expert system in this example could

equally have been designed to ask the user two separate questions relating to these two specific

bodies of evidence (e.g. "What has the summer's weather been like?"), in which case the system

would have performed the process of combining the two sources of belief. There are no fixed

boundaries between what information should be combined in the mind of the user and what

information should be combined by the system, rather the question depends mainly on which

portions of the entire reasoning process the system designer wishes to capture in the expert

system. We feel that the flexibility in this boundary between the user's role and the system's

role provides some indication of success in the modeling of human reasoning characteristics by

the system.

To summarize our belief input methodology, the system starts by listing the mutually exclusive

and exhaustive alternative answers to some question and by assigning ignorance values to each

corresponding S(0i.) and P/(0 |). The user then responds to the system by altering these values

to accurately model his uncertain belief about which alternative is the correct answer.

12.3 Illustration of Reasoning wi th a D-S Representation

Using the representation scheme outlined in the previous section, we now give a brief overview

of how the D-S theory can be used to perform reasoning in an expert system. We begin with

three steps which, taken together, comprise the process of creating the system's knowledge base.

First, a frame of discernment is defined for each item in a particular problem that might be

uncertain. This involves providing a name for the frame and a list of the possible alternatives.

In our example, the previously described frame would have the name "winter weather" and

the following list of alternatives:

Chapter 12. Using a D-S based System 152

mild,

normal,

severe.

Based on the advice of a human expert, a second frame describing all practical cold weather

concreting strategies might have the name "concrete strategy" and the following list of

possibilities:

use standard mix design only,

modify mix design only,

modify mix b use selective heating,

some mix modification k f u l l heat.

Second, any logical relationships between different frames are defined. This step is analogous

to specifying the rules in a rule-based expert system. For example, we might want to express

the relationship that if the weather is mild, use a standard mix design only. This type of

relationship is recorded in the form of a l ink between the two frames. In this case, the result

of creating a link is that any belief in mild weather would automatically lead to belief in using

standard mix design only.

Third, levels of belief can be assigned to the actual links if the relationships which they represent

are themselves not certain. Like the belief values entered by the user in response to questions,

these levels of belief in links make up true D-S belief functions. This is illustrated by the fact

that levels of belief can be obtained from the expert in the same graphical format as shown

above (figure 12.4 shows a belief input screen that could have been used to construct the expert

system knowledge base described in our example).

By answering this question, the expert conveys to the system his belief about the relationship

between mild winter weather and the best concreting strategy (a similar process would be

Chapter 12. Using a D-S based System 153

followed for normal and severe weather forecasts in order to completely define the relationships

between winter weather and concreting strategy).

These three steps are provided by the expert and the knowledge engineer, or designer of the

expert system, who work together to create the system's knowledge base. The final ingredient

required to perform reasoning is a method for combining belief functions. This procedure is

provided by Dempster's combination rule, which is incorporated into the expert system shell.

Which concrete strategy i s implied by a mild winter weather?

Enter support and p l a u s i b i l i t y values
1. Use standard mix design only
2. Modify mix design only
3. Modify mix & use selective heating .
4. Some mix modification k f u l l heat . .

| : support, the % certainty that th i s is the correct a l ternat ive.
| | : plausibili ty, the % certainty that thiB could be the correct a l ternat ive.

Figure 12.4: Link uncertainty input screen

A l l of the necessary components are now in place. The expert system can proceed to infer

belief in the second frame from the user's belief about the first by performing the following

procedures:

1. Obtain input from the user in the form of belief functions. " ~"

2. Use Dempster's combination rule to combine these input belief functions with those de

scribing belief in the link relationships, resulting in a new function describing belief about

the related frame.

In our simple example, this is all that is required to produce the required results about pre

ferred concreting techniques. However the general case would involve many more frames of

discernment with numerous interconnecting links. The general reasoning capability needed to

Chapter 12. Using a D-S based System 154

cope with such a "frame network" is constructed from the foregoing two procedures by adding

the following steps:

3. After inferring a new belief function (as in step 2), combine it with any belief which may

have previously been assigned to the second frame.

4. Repeat the above procedures until all possible inferences have been made.

The result of this process will be belief profiles for a number of possible conclusions. One of the

strengths of this scheme is that it doesn't merely produce a single "best" conclusion by aggre

gating all uncertainty. Rather it simply represents the uncertainty in each conclusion, enabling

the system designer to decide how best to proceed in the face of the resulting uncertainty.

12.4 Example Problem

To conclude, we will show exactly how the example scenario discussed throughout this paper

would be incorporated into an actual expert system using our shell. First, the contents of the

D-S knowledge base would be entered. The knowledge, as previously shown, is expressed in the

form of two frame definitions and the link relationship between them. These are shown here in

a form which can be interpreted by our shell:

1. frame: winter weather " mild, normal, or severe.

2. frame: concrete strategy •

use standard mix design only,

modify mix design only,

modify mix b use selective heating, or

some mix modification b f u l l heat.

Chapter 12. Using a D-S based System 155

3. link: winter weather, concrete strategy,

if mild then use standard mix design only,

if mild then modify mix design only,

s(0.7). pl(l.O).

s(O.O). pl(0.3),

i f normal then use standard mix design only, a(0.2). pi(0.6),

i f normal then modify mix design only, s(0.4), pl(0.8),

i f normal then modify mix k use selective heating, s(0.0), pi(0.2),

i f severe then modify mix design only, s(0.0), pl(0.2),

i f severe then modify mix k use selective heating, s(0.1), pi(0.7),

if severe then some mix modification k fu l l heat, s(0.3), pl(0.9).

In addition to the D-S knowledge base file, a control knowledge base file must be created. In

this simplified case, the control file would contain a statement which shows that the goal of the

system is to check the concrete strategy. A second statement would be a rule asserting that

the concrete strategy has been checked if the user has been asked about the weather and if he

has been shown the resulting belief about strategies. Notice that the belief about concreting

strategies is inferred automatically from belief about weather since this relationship is contained

in the D-S knowledge base, the inference procedure does not have to be expressed in the control

rule. A final statement defines the question to be asked in order to solicit information about

the weather. In a form which could be read by the shell, this file would look like the following:

Chapter 12. Using a D-S based System 156

1. goal: concrete strategy is checked

2. rule: concrete strategy is checked

i f query winter weather

and show concrete strategy,

message "The best strategy to use for maintaining

acceptable cure times this winter is:".

3. question: winter weather

ask "What is the long range forecast for cold weather conditions

for the construction period Nov. 16 1088 to Feb. 15 1989 ?".

Now, in order to use the system, the shell program is run. Both knowledge bases are first

loaded into the shell program. Once this is done and execution has begun, the question about

the weather is asked in the manner discussed above (suppose that the response is as shown in

figure 12.3). The system then proceeds to determine the belief in concreting strategies and the

result is displayed. In this case, the output would be as shown in figure 12.5.

The best strategy to use for maintaining acceptable cure times this winter
i s :

1. Use standard mix design only
2. Modify mix design only
3. Modify mix k use selective heating
4. Some mix modification k ful l heat .

r 0 .2- .4- .6- .8- -4.On
i i ' < ' ' ' '

| : support, the % certainty that this is the correct alternative.
| | : plausibility, the % certainty that this could be the correct alternative.

Figure 12.5: Belief output screen

Chapter 12. Using a D-S based System 157

The contractor's conclusion from the output shown in figure 12.5 would be confidence that he

will not need to use heating equipment in order to maintain his cycle schedule. This could

be an important determination if, for example, there was a very long lead time required to

obtain high output propane heaters and tarps for such a process. However, since there are only

marginal differences in both the support and plausibility values for the first two alternatives,

the contractor could not confidently assert whether or not he should modify the mix design.

This would suggest to him that he does not yet have sufficient information to resolve the mix

design question. Finally, we can note that the decision of what to do in the face of different

uncertain outcomes is likely to be part of the expertise of the human or humans who created

the system. If this expertise is built into the system, then the user of the system will never

have to face the question of how to interpret the output.

Many issues remain to be examined before the D-S theory could provide a practical, generally

applicable approach to dealing with uncertainty in expert systems. However our work to-date

indicates that the goal of using the D-S theory to represent and manipulate realistic amounts

of uncertain information in working expert systems may not be far away.

12.5 Incorporating Uncertainty in Knowledge Base Design

It has been shown that a frame network based expert system with interactive belief input and

rule-based control can be used to perform inexact reasoning. But these features alone does not

ensure appropriate treatment of uncertainty in an expert system. The expert system's treatment

of uncertainty also depends on the way in which the knowledge engineer and the human expert

decide to employ the uncertainty handling capabilities of the system. The example discussed

in the previous sections, for instance, illustrates a very simple use of inexact reasoning (there

is only one input and one conclusion). This section describes a series of knowledge base design

approaches which form a hierarchy of sophistication in their treatment of uncertainty:

Chapter 12. Using a D-S based System 158

1. No Uncertainty:

At the simplest level, the existence of all uncertainty in an application can be ignored and

all input and inference can be restricted to purely categorical processes.

2. Simple Uncertain Input and Inference:

The first steps to incorporating uncertainty are to allow both uncertain input and uncer

tain inference. This is as described in the example of the preceding sections.

3. Multiple Uncertain Inputs and Inference:

A more advanced design involves allowing multiple uncertain inputs which produce mul

tiple uncertain inferences about one or more conclusions. Referring to the previously

described example, for instance, it could be stated that the appropriate concreting strat

egy is based not only on the expected winter weather, but also on the local costs of the

various alternatives, on the experience of the labour force, on the type of structure being

built, and so on. Inputs could be accepted relating to each of these factors which would

result in several different belief functions for concreting strategies. Each of these inferred

belief functions would be combined to give the overall resulting belief.

4. Simple Evaluation of Uncertain Output:

The combination of multiple uncertain inputs and inferences results in a belief function

representation of the system's conclusions. A refinement to the direct output of these belief

functions in the form of IBIS screens is to perform simple evaluation of the information in

order to provide a best alternative. This is done in the manner described in section 11.3.

5. Assignment of Verbal Qualifiers:

An alternative to providing numeric output of either belief functions or of the evaluations

of belief functions is to translate the information into verbal qualifiers. For example, if it

is concluded that some proposition A is the best alternative with a degree of confidence of

0.95 (as outlined in section 11.3), then the system could report that it is very certain that

Chapter 12. Using a D-S based System 159

A is the best answer. On the other hand, if the system's confidence is only 0.2 then it

could report that it is has only a small amount of confidence that A is the best alternative.

These verbal qualifiers can be obtained from a "look-up table" in the knowledge base.

6. Using Uncertain Results to Guide Reasoning:

The results of the system's inexact reasoning can be used in a simple manner to guide the

problem solution by adding control knowledge which checks the degree of confidence in

the selection of the best alternative. If the degree of confidence in the answer is sufficiently

high, the reasoning can be stopped. If the degree of confidence in the solution is too low,

however, the system can continue to ask additional questions in an attempt to better

resolve the issue.

7. Fully Incorporating Uncertainty into the Expert Knowledge:

Finally, the uncertainty can be fully incorporated into the reasoning process. The way

in which the solution should proceed in the face of certain types of uncertainty is as

much a part of the expert's domain knowledge as is any other information; it cannot

be resolved in a general sense. Since a frame network D-S system is fully capable of

representing uncertainty, rules can be added to the knowledge base which state that if the

system's subconclusions exhibit certain forms of uncertainty, then specific actions should

be pursued in order to reach the final result.

—• Taken to the extreme, this approach would require an extremely large amount of input —

pertaining to the expert's solution approaches. However, it is exactly through the accurate

modelling of expert techniques using this form of very "knowledge intensive" programming .

that expert systems achieve their power. D-S based systems posses a unique capability

for representing and processing uncertain information in a manner which is rich enough

to allow for the detailed incorporation of uncertainty into the knowledge base.

Chapter 12. Using a D-S based System 160

12.6 Conclusion

This chapter has illustrated the application of a frame network expert system to a simple

example problem. It has been shown that the system allows accurate expression of uncertain

knowledge while remaining relatively simple to use for the user as well as for the knowledge

engineer and the human expert.

Chapter 13

S u m m a r y

The work described in this thesis stems from the idea that expert systems should be able to

accurately and appropriately handle uncertain information. The traditional approaches for

dealing with uncertainty were discussed and are shown to contain many inadequacies.

The Dempster-Shafer, or D-S, theory of evidence was proposed as an appealing theoretical basis

for representing uncertain knowledge and for performing inexact reasoning in expert systems.

The D-S theory was reviewed in some detail; including its approaches to representing concepts,

to representing belief, to combining belief and to performing inference.

The D-S implementation approaches pursued by other researchers were described and critiqued.

Attempts made early in the thesis research which failed to achieve the important goal of con

sistency with the D-S theory were also reviewed.

Two approaches to implementing D-S theory in a completely consistent manner were discussed

in detail. It was shown that the second of these systems, a frame network approach, led to

the development of a fully functional prototype expert system shell called FRO. In this system,

concepts are represented using D-S frames of discernment, belief is represented using D-S belief

functions, and inference is performed using stored relationships between frames of discernment

(forming the frame network) and D-S belief combination rules. System control is accomplished

using a discrete rule-based control component and uncertain input and output are performed

through an interactive belief interface system called IBIS. Each of these features is reviewed.

Finally, a simple but detailed example of an application of a frame network expert system is

161

Chapter 13. Summary 162

provided. The appendix of this thesis contains the entire FRO system user's documentation.

Bibliography

[l] Arity Corporation, The Arity Expert Systems Development Package, Arity Corporation,

Concord, MASS, 1986.

[2] Barnett, J.A. "Computational Methods For A Mathematical Theory of Evidence." Pro

ceedings of IJCAI-81, The Seventh International Joint Conference on Aritificial Intelli

gence, Vancouver, B.C., Aug. 1981. pp.868-875.

[3] Bonissone, P.P. and Tong, R . M . "Editorial: Reasoning with Uncertainty in Expert Sys

tems." International Journal of Man-Machine Studies. Vol. 22. March 1985. pp. 241-250.

[4] Buchanan, B.G. and Shortliffe, E.H. (Eds.). Rule-Based Expert Systems: MYCIN Exper

iments. Reading, M.A. : Addison Wesley, 1984.

[5] Buckley, J.J. and Tucker, D. "The Utility of Information and Risk-Taking Fuzzy Expert

Systems," International Journal of Intelligent Systems Vol.3, No.2, Summer 1988. pp.179-

197.

[6] Caselton, W.F., Froese, T .M. , Russell, A .D. and Luo, W. "Belief Input Procedures for

Dempster-Shafer Based Expert Systems," Artificial Intelligence in Engineering: Robotics

and Processes, (the proceedings of AIENG-88, the Third International Conference on

Applications of Artificial Intelligence in Engineering, Palo Alto, CA, August, 1988) Com

putational Mechanics Publications, Southampton, 1988. pp. 351-370.

[7] Charniak, E. "The Bayesian Basis of Common Sense Medical Diagnosis", Proceedings of

AAAI-8S, the Third National Conference on Artificial Intelligence, Washington, D.C.,

1983. pp.70-73.

163

[8] Cheeseman, P. "In Defense of Probability," Proceedings of AAAI-88, the Third National

Conference on Artificial Intelligence, Washington, D.C., 1983. pp.1002-1009.

[9] Cohen, L.J . "A Note on Inductive Logic", The Journal of Philosophy, L X X X , 1973.

pp.27-40.

[10] Cohen, P.R. Heuristic Reasoning about Uncertainty: An Artificial Intelligence Approach.

North-Holland, 1985.

[11] Cohen, P.R. and Shafer, G.A. Managing Uncertainty, AAAI-87, the Sixth National Con

ference on Artificial Intelligence, Seattle, WA, Conference Tutorial Program, 1987.

[12] Dempster, A.P. "Upper and lower probabilities induced by a multivariate mapping,"

Annals of Mathematical Statistics, Vol. 38, 1976. pp.325-339.

[13] Driankov, D. "Uncertainty Calculus with Verbally Defined Belief-Intervals," International

Journal of Intelligent Systems, Vol. 1, No. 4, Winter 1986. pp.219-246.

[14] Dubois, D. and Prade, H. "Combination and Propagation with Belief Functions - A

Reexamination," Proceedings of IJCAI-85, The Ninth International Joint Conference on

Aritificial Intelligence, Los Angles, CA, Aug. 1985. pp. 111-113.

[15] Dubois, D. and Prade, H. "On the Unicity of Dempster Rule of Combination," Interna

tional Journal of Intelligent Systems Vol.1, No.2, Summer 1986. pp.133-142.

[16] Dubois, D. and Prade, H. "The Treatment of Uncertainty in Knowledge-based Systems

using Fuzzy Sets and Possibility Theory," International Journal of Intelligent Systems

Vol.3, No.2, Summer 1988. pp.141-165.

[17] Duda, R.O., Hart, P.E., and Nilsson, N.J. "Subjective Bayesian methods for rule-based

inference systems." AFIPS Conference Proceedings, New York City, NY, June 1976.

pp.1075-1082.

164

[18] Esmo, L. , Saitta, L. and Torasso, P. "Evidence Combination in Expert Systems," Inter

national Journal of Man-Machine Studies Vol. 22. March 1985. pp. 307-326.

[19] Fall, T.C., "Evidential Reasoning with Temporal Aspects," Proceedings of AAAI-86, the

Fifth National Conference on Artificial Intelligence, Philadelphia, PA, 1986. pp.210-214.

[20] Friedman, L. "Extended Plausible Inference." Proceedings of IJCAI-81, The Seventh

International Joint Conference on Aritificial Intelligence, Vancouver, B.C., Aug. 1981.

pp.487-495.

[21] Froese, T .M. , Caselton, W.F., and Russell, A.D. "An Interactive Belief Interface System,"

To be submitted for publication.

[22] Froese, T . M . "Applied Inexact Reasoning in Civil Engineering," Campus Computing, The

University of British Columbia Computing Center, Vol. 2, No. 4, April 1987. pp. 13-15.

[23] Froese, T .M. , Russell, A.D. and Caselton, W.F. "Implementation Strategies for Dempster-

Shafer Based Inexact Reasoning," Submitted for publication to the International Journal

of Intelligent Systems in July, 1988.

[24] Froese, T .M. , Caselton, W.F., and Russell, A .D. "Knowledge Representation and Inexact

Reasoning consistent with the Dempster-Shafer Theory," unpublished, 1987.

[25] Garvey, T.D., Lowrance, J.D. and Fischler, M.A. "An Inference Technique for Integrating

Knowledge from Disparate Sources." Proceedings of IJCAI-81, The Seventh International

Joint Conference on Aritificial Intelligence, Vancouver, B.C., Aug. 1981. pp.319-325.

[26] Ginsberg, M.L . "Non-monotonic Reasoning using Dempster's Rule." Proceedings of

AAAI-8S, the Fourth National Conference on Artificial Intelligence, Austin, T X , Aug.

1984. pp.126-129.

[27] Gordon, J . and Shortliffe, E.H. "A Method for Managing Evidential Reasoning in a

Hierarchical Hypothesis Space," Artificial Intelligence, Vol. 26, July, 1985. pp.323-357.

[28] Gray, C. "Intelligent Construction Time and Cost Analysis," Construction Management

and Economics, Vol. 4, 1986. pp.135-150.

[29] Guth, M.A. "Uncertainty Analysis of Rule-Based Expert Systems with Dempster-Shafer

Mass Assignments," International Journal of Intelligent Systems Vol.3, No.2, Summer

1988. pp.123-139.

[30] Haddawy, P. "Implementaion of and Experiments with a Variable Percision Logic In

ference System," Proceedings of AAAI-86, the Fifth National Conference on Artificial

Intelligence, Philadelphia, PA, 1986. pp.238-242.

[31] Hal pern, J .Y. and Rabin, M.O. "A Logic to Reason about Likelihood," Artificial Intelli

gence, Vol. 32, 1987. pp.379-405.

[32] Hendrickson, C , Martinelli, D., and Rehak, D. "Hierarchical Rule-Based Activity Dura

tion Estimation," Journal of Construction Engineering and Management, Vol. 113, No.

2, June 1987. pp.288-301.

[33] Horvitz, E.J. , Heckerman, D.E., and Langlotz, C P . "A Framework for Comparing Alter

native Formalisms for Plausible Reasoning," Proceedings of AAAI-86, the Fifth National

Conference on Artificial Intelligence, Philadelphia, PA, 1986. pp.210-214.

[34] Hudson, D.L. and Cohen, M.E. "Approaches to Management of Uncertainty in an Expert

System," International Journal of Intelligent Systems Vol.3, No. l , Spring 1988. pp.45-58.

[35] Ishizuka, M . , Fu, K.S., and Yao, J.T.P. "Inference Procedures under Uncertainty for

Problem-Reduction Method," Information Sciences, Vol. 28, 1982. pp. 179-206.

[36] Kong, A . Multivariate Belief Functions and Graphical Models, Doctoral Dissertation,

Department of Statistics, Harvard University.

[37] Kosko, B. "Fuzzy Knowledge Combination," International Journal of Intelligent Systems

Vol.1, No.4, Winter 1986. pp.293-320.

166

[38] Lauritzen, S.L. and Spiegelhalter, D.J. "Fast manipulation of probabilities with local

representations - with applications to expert systems," Institute of Electronic Systems,

Aalborg University, Alborg, Denmark.

[39] Lecot, K . and Parker, D.S. "Control Over Inexact Reasoning." AI Expert, Premier, 1986.

pp. 32-43.

[40] Lee, N.S., Grize, Y .L . , and Dehnad, K. "Qualitative Models for Reasoning under Uncer

tainty in Knowledge-Based Expert Systems," International Journal of Intelligent Systems

Vol.2, No. l , Spring 1987. pp.15-38.

[41] Liu, G.S. "Causual and Plausible Reasoning in Expert Systems." Proceedings of AAAI-86,

the Fifth National Conference on Artificial Intelligence, Philadelphia, PA, 1986. pp.220-

225.

[42] Lowrance, J.D., Garvey, T.D. and Strat, T .M. "A Framework For Evidential-Reasoning

Systems," Proceedings of AAAI-86, the Fifth National Conference on Artificial Intelli

gence, Philadelphia, PA, 1986. pp.896-903.

[43] Lowrance, J.D. Dependency-Graph Models of Evidential Support. PhD thesis, Dept. of

Computer and Information Science, University of Massachusetts, Amherst, M A , 1982.

[44] Lu, S.Y. and Stehanou, E. "A Set-Theoretic Framework for the Processing of Uncer

tain Knowledge." Proceedings of AAAI-8S, the Fourth National Conference on Artificial

Intelligence, Austin, T X , Aug. 1984. pp.216-221.

[45] Mangiaracina, S. and Beni, G. "On the Logical and Physical Combination of Evidence in

Intelligent Machines," International Journal of Intelligent Systems Vol.1, No.2, Summer

1986. pp.143-152.

[46] Martin-Clouaire, R. and Prade, H. "On the Problems of Representation and Propagation

of Uncertainty in Expert Systems," International Journal of Man-Machine Studies, Vol.

22. March 1985. pp.251-264.

167

[47] Nilsson, N.J. "Probabilistic Logic," Artificial Intelligence, Vol. 28, 1986. pp.71-87.

[48] Ogawa, H. , Fu, K.S., and Yao, J.T.P. "An Inexact Inference For Damage Assessment

Of Existing Structures," International Journal of Man-Machine Studies, Vol. 22. March

1985. pp.295-306.

[49] Ogawa, H. , Fu, K.S., and Yao, J.T.P. "Speril-II: An Expert System for Damage Assess

ment of Existing Structures," Approximate Reasoning in Expert Systems, North-Holland,

1985. pp.731-744.

[50] Pearl, J . "Distributed Revision of Composite Beliefs," Artificial Intelligence, Vol. 33,

1987. pp. 173-216.

[51] Pearl, J . "Fusion, propagation, and structuring in belief networks" Artificial Intelligence,

Vol. 29, 1986. pp. 241-288.

[52] Pearl, J . "On Evidential Reasoning in a Hierarchy of Hypotheses," Artificial Intelligence,

Vol. 28, 1986. pp.9-15.

[53] Prade, H. "A Computational Approach to Approximate and Plausibile Reasoning with

Applications to Expert Systems," IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. PAMI-7, No. 3, May 1985. pp.260-282.

[54] Quinlan, J.R. "Inferno: A Cautious Approach To Uncertain Inference." The Computer

Journal, Vol 26, No. 3, Aug. 1983. pp.255-269.

[55] Russell, A.D. , Froese, T .M. and Caselton, W.F. "A Dempster-Shafer Based Construction

Expert System," Proceedings of the Third International Conference on Computing in Civil

Engineering, Vancouver, B.C., August 1988.

[56] Shackle, G.L.S. Decision, Order and Time in Human Affairs, Cambridge, Second Edition.

1969.

168

[57] Shafer, G.A. A Mathematical Theory of Evidence, Princeton University Press, Princeton,

NJ, 1976.

[58] Shafer, G.A. "Belief Functions and Parametric Models," The Journal of the Royal Sta

tistical Society, Series B, Vol. 44, 1982. pp.322-352.

[59] Shafer, G.A. "Belief Functions and Possibility Measures," Analysis of Fuzzy Information,

Vol. 2, CRC Press.

[60] Shafer, G.A. "Hierarchical Evidence," Proceddings of The Second Conference on Arti

ficial Intelligence Applications - The Engineering of Knowledge-Based Systems, IEEE

Computer Society Press, 1985. pp. 16-25.

[61] Shafer, G.A. "Probability Judgement in AI and Expert Systems," Statistical Science,

1987.

[62] Shafer, G.A. "Savage revisited" Statistical Scie nee, Vol 1, 1986. pp. 463-501.

[63] Shafer, G.A. "The Combination of Evidence," International Journal of Intelligent Systems

Vol.1, No.3, Fall 1986. pp.155-179.

[64] Shafer, G.A. "The Problem of Dependent Evidence," Working paper No. 164, School of

Business, University of Kansas, 1985.

[65] Shafer, G.A., and Logan, R. "Implementing Dempster's Rule For Hierarchical Evidence,"

Artificial Intelligence, Vol. 33, 1987. pp.271-298.

[66] Shafer, G.A. and Tversky, A. "Languages and Design for Probability Judgment," Cogni

tive Science, Vol.9, 1985. pp.309-339.

[67] Shafer, G.A., Shenoy, P., and Mellouli, K. "Propagating belief functions in qualitative

Markov trees," Working paper No. 186, School of Business, University of Kansas.

169

[68] Shenoy, P.P. and Shafer, G.A. "Propagating Belief Functions with Local Computations,"

IEEE Expert, Fall, 1986. pp.43-52.

[69] Smets, P. "The Degree of Belief in a Fuzzy Event," Information Science, Vol. 25, 1981.

pp.1-19.

[70] Strat, T . M . "Continuous Belief Functions For Evidential Reasoning." Proceedings of

AAAI-88, the Fourth National Conference on Artificial Intelligence, Austin, T X , Aug.

1984. pp.308-313.

[71] Warszawski, A . "Decision Models and Expert Systems in Construction Management,"

Building and Environment, Vol. 20, No. 4, 1985. pp.201-210.

[72] Yager, R.R. "Aggregating Evidence Using Quantified Statements," Information Sciences,

Vol. 36, 1985. pp.179-206.

[73] Yager, R.R. "Entropy and Specificity in a Mathematical Theory of Evidence", Interna

tional Journal of General Systems, Vol. 9, 1983. pp.249-260.

[74] Yager, R.R. "Generalized Probabilities of Fuzzy Events from Fuzzy Belief Structures,"

Information Sciences, Vol. 28, 1982. pp.45-62.

[75] Yager, R.R. "On the Dempster-Shafer Framework and New Combination Rules," Infor

mation Sciences, Vol. 41, 1987. pp.93-137.

[76] Yager, R.R. "Set-based Representations of Conjunctive and Disjunctive Knowledge," In

formation Sciences, Vol. 41, 1987. pp.1-22.

[77] Yager, R.R. "The Entailment Principle for Dempster-Shafer Granules," International

Journal of Intelligent Systems Vol.1, No.4, Winter 1986. pp.247-262.

[78] Yager, R.R. "Toward a General Theory of Reasoning with Uncertainty. LNonspecificity

and Fuzziness," International Journal of Intelligent Systems Vol.1, No. l , Spring 1986.

pp.45-67.

170

[79] Yager, R.R. "Using Approximate Reasoning to Represent Default Knowledge," Research

Note, Artificial Intelligence, Vol. 31, 1987. pp.99-112.

[80] Yen, J . "A Reasoning Model Based on an Extended Dempster-Shafer Theory," Proceedings

of AAAI-86, the Fifth National Conference on Artificial Intelligence, Philadelphia, PA,

1986. pp.125-131.

[81] Zadeh, L A . ' l ' A Computational Theory of Dispositions," International Journal of Intel

ligent Systems Vol.2, No. l , Spring 1987. pp.39-63.

[82] Zadeh, L .A. "A Simple View of the Dempster-Shafer Theory of Evidence and its Impli

cation for the Rule of Combination," AI Magazine, Summer, 1986. pp.85-90.

[83] Zadeh, L .A. "Book Review of A Mathematical Theory of Evidence," The AI Magazine,

Fall 1984. pp.81-83.

171

APPENDIX A:

F R O
An Expert System Shell

S Y S T E M D O C U M E N T A T I O N

172

APPENDIX A: Preface 173

Preface

F R O is an expert system shell written in PROLOG. It was created at the
Department of Civil Engineering, UBC for use in expert systems research. FRO
can be used at two levels.

First, FRO can be used as a shell program for creating rule-based expert systems.
In this role, FRO behaves much like other commercially available shell programs.
This use of the program is discussed in Part I, Rule-Based FRO.

Second, FRO can be used to create expert systems which provide sophisticated
handling of uncertainty based on the Dempster-Shafer (D-S) theory of evidence.
In these systems, the program employs both a frame representation for D-S
components and a rule representation for system control—therefore the program
is aFrame/Rule Organizer, hence F R O . This use of FRO is discussed in Part II,
Frame-Based FRO.

Please note the following type style conventions used in this manual. Typewriter
s tyle type lace is used for text that appears exactly as it would be entered
into the system (or displayed by the system). Items written in SLANTED
UPPER CASE TYPE FACE are not entered into the system exactly as they
appear, but rather they are replaced with the appropriate term as described in

-the text. . .

Contents

Preface 173

I Rule-Based F R O 179

1 Overview 180

1.1 Introduction 180

1.2 Knowledge Representation 180

1.3 Solving Goals 181

1.4 Memory 181

1.5 Rules . . _ 181

1.6 Questions 181

2 Problem Files 182

3 Propositions 183

4 Goal Statements 185

5 Fact Statements 186

6 Rule Statements 187

7 Question Statements 189

7.1 Basic Question Statements 189

174

APPENDIX A: Contents 175

7.2 The Question Character String 190

7.3 Alternative Lists 190

7.4 Return Alternative Lists 191

7.5 Yes/No Questions 191

7.6 Question Explanations 192

7.7 Question Options Sequence 192

8 Advanced Features 193

8.1 Proposition Attributes 193

8.2 Variables 194

8.3 Not 196

8.4 Known 196

8.5 Command Propositions 197

8.5.1 DOS Shell 197

8.5.2 Explanations 197

8.5.3 Fail 198

8.5.4 Garbage Collection 198

8.5.5 Loading Additional Problem Files _ 198

8.5.6 Print to the Screen 199

8.5.7 Print to File 200

8.5.8 Reading a term from a file 200

8.5.9 Removing a Term from the Database 200

8.5.10 Restoring the Knowledge Base 201

8.5.11 Saving the Knowledge Base in Binary Form 201

8.5.12 Storing Terms in the Database 202

8.5.13 Succeed : 202

8.5.14 Write Term to File 203

8.6 Custom Help Information 203

8.7 Print Strings 204

APPENDIX A: Contents 176

8.8 Math Operators 205

8.9 Hidden Statements 207

9 Excluded Features 209

9.1 View Knowledge Base 209

9.2 Uncertainty 209

9.3 Multi-Valued Propositions 209

10 Problem Design 211

11 Running FRO 212

11.1 Starting FRO 212

11.2 The Main Screen 213

11.2.1 F l - HELP 213

11.2.2 F2 - FILES 213

11.2.3 F3 - E X E C U T E , 214

11.2.4 F4 - SAVE 214

11.2.5 F5 - T R A C E 214

11.2.6 F 6 - QUIT . . 214

11.2.7 F9 - STATISTICS 215

11.3 The Execution Screen 215

11.3.1 F l - HELP 215

11.3.2 F 2 - E X P L A I N . . . 215

11.3.3 F4 - WHY . 215

11.3.4 F5 - T R A C E 216

11.3.5 F6 - QUIT 216

11.3.6 F9 - STATISTICS 216

11.4 Tracing 216

11.5 Errors and Memory Management 217

12 Sample Files 219

APPENDIX A: Contents 177

12.1 Sample file 1: Wine Selection 219

12.2 Sample file 2: Golf Club Selection 221

I I Frame-Based F R O 225

13 Overview of frame-based F R O 226

14 The IBIS Belief Interface 228

14.1 Belief Input 228

14.2 Belief Output 231

15 Using M K B 233

16 Design Problem Files 250
16.1 Adding Frames 250
16.2 Adding Links 251

16.3 Adding Initial Belief 252

17 Control Problem Files 253

17.1 Question Statements for Uncertainty 253

17.2 Additional Command Propositions 255

17.2.1 Loading the Design Problem File 255

17.2.2 Asking Questions ._ 255

17.2.3 Printing Uncertain Belief 255

17.2.4 Retrieving Uncertain Belief 257

17.2.5 Storing Uncertain Belief 257

17.2.6 Retrieving the Best Alternative 257

18 Running F R O 259

19 Sample Files 260

19.1 Sample file 1: Design Knowledge Base 260

APPENDIX A: Contents 178

19.2 Sample file 2: Control Knowledge Base 262

19.3 Sample file 3: Revised Control Knowledge Base 263

APPENDIX A: PART I. RULE-BASED FRO 179

PART I

RULE-BASED FRO

The discussion of the rule-based portion of the FRO program begins with a
description of the system's underlying theory and instructions for creating a
problem file; this comprises chapters 1 through 10. Chapter 11 describes how to
actually run the FRO program once a problem file has been created. Chapter
12 lists several sample problem files. The recommended approach to learning
the system is to alternate between reading this manual, examining the sample
files, and experimenting with the program itself.

APPENDIX A: Chapter 1. Overview 180

Chapter 1; Overview

• 1.1 Introduction

FRO is a tool for building expert systems. An expert system created using
FRO is made up of two major parts; the inference engine, which performs
reasoning, and the knowledge base, which contains the expert knowledge.

The compiled FRO program makes up the inference engine portion of the expert
system. This inference engine uses backward chaining, depth-first search to
provide expert system reasoning. This means that the system is given some
goal or conclusion which it tries to prove to be true using the information which
is made available to it. A problem file which is written by the user and read
as input by FRO makes up the knowledge base.

The various components of the inference engine and knowledge base are briefly
outlined below and then discussed more fully in subsequent chapters.

• 1.2 Knowledge Representation

In FRO, most knowledge is stored using in the form:

CONCEPT i s VALUE

Where CONCEPT is the name of some concept or variable which is of interest to
us and VALUE is the name of some value which can be assigned to that concept.
We can call this knowledge representation unit a proposition. Some examples
of propositions are:

gravity i s 9.81
'your name' i s George
'a solution can not be found' i s true

APPENDIX A: Chapter 1. Overview 181

• 1.3 Solving Goals

FRO'8 basic task is to solve goals. A primary goal is defined in a problem file.
In order to solve this primary goal, FRO may need to first solve other sub-goals
which may, in turn, require the investigation of still more goals. It is through
this recursive goal solving process that the system performs reasoning. The
methodology is analogous to that of a decision tree, though the expert system
is a more flexible and powerful problem solver.

In FRO, a goal is composed of a proposition. A goal is considered to be solved if
the system can determined that the proposition is correct. There are three ways
the system can determine the correctness of a proposition; it can check with its
memory, it can check with the user, or it can infer the correctness from rules.

• 1.4 Memory

Whenever a proposition is asserted in the problem file, stated by the user in
response to a question, or inferred by the system using a rule; it is stored in the
system's data base. It thereby becomes part of FRO's memory or knowledge.
If the system is trying to solve a goal which relates to that proposition, it will
be able to refer to the stored value as a known statement of fact. This is the
system's basic form of memory.

• 1.5 Rules

If FRO has not succeeded in solving a goal by referring to its memory, it will
search the problem file for an applicable rule statement. These statements take
the form "CONCLUSION i f PREMISE If the conclusion of a rule relates to
the system's present goal, the system will take the premise as it's new goal. By
proving that the premise is true, the system can determine that the conclusion
is also true; thereby proving or disproving its initial goal. This is the system's
basic form of reasoning.

• 1.6 Questions

Finally, if FRO cannot solve some goal by referring to stored values or stored
rules, it will check to see if the problem file contains a question statement
relating to the goal proposition. If such a statement does exist, it will supply
the system with a question which can be used to illicit the correct value from
the user. This is the system's basic form of user input.

APPENDIX A: Chapter 2. Problem Files 182

Chapter 2; Problem Files

The knowledge base for a FRO expert system takes the form of a problem file.
This problem file is a standard ASCII text file created by the user with any file
editor or any word processor which produces ASCII files. The problem file can
have any name.

Comments and notes can be entered into a problem file by beginning a comment
line with a % character or by enclosing any number of comment lines between
a / * symbol and a * / symbol.

Apart from comments, the problem file is made up of statements. There are
four allowable types of statements: Goal statements, Fact statements, Rule
statements, and Question statements. Statements can begin with a type dec
laration (i.e. a word stating which type the statement is) and a statement
number. It is recommended that type declarations and statement numbers be
used so that it will be easier for users to understand and refer to the knowl
edge base. However, statements can also be given without type declarations or
numbers in which case the system assigns its own number and determines the
type from the statement syntax. The syntax for each statement type is given
in chapters 4 through 7, but first chapter 3 discusses propositions which are the
basic building blocks of statements. Note that each statement must end with a
period. . _

Spaces, tabs and blank lines are ignored in the problem file, although they are
very important for making the problem file legible to users. No special end-of-file
marker is needed. Chapter 12 contains sample problem files.

APPENDIX A: Chapter 3. Propositions 183

chapter 3; Propositions

The statements in the problem file are made up mostly of propositions (the basic
unit of knowledge in FRO). As stated previously, proposition are of the form:

CONCEPT i s VALUE

Where CONCEPT is some concept or variable of interest to us and VALUE is a
value which can be assigned to the concept. Some examples of propositions are:

gravity i s 0.81
'your name' i s George
'a solut ion can not be found' i s true

In a proposition, both the CONCEPT and the VALUE must be either a single
atom or a single string. An atom is a basic symbolic unit in FRO. Atoms can
be made up of any letters, numbers, or symbols. However, an atom must be
enclosed inside a set of apostrophes if it contains capital letters, combinations of
letters and numbers, spaces, or any non alpha-numeric symbols other than the
underscore symbol . The following are examples of legal atoms.

true
the _c onsult at i on
0.81 - —
'George'
'GEORGE'
"the number of apples'

An atom can be enclosed in apostrophes even if it does contain only lower case
letters; in which case the system recognizes both forms as being equivalent.
Atoms can be up to 255 characters long. If an apostrophe is desired within
an atom, it must be represented by a pair of apostrophes. For example, the
possessive form of ' George' is:

'George' 's '

APPENDIX A: Chapter 3. Propositions 184

Strings are similar to atoms except that they are always enclosed inside a pair
of dollar signs. Some examples are:

$Btring$
$This 1B also a Btring$
$1,000,000$

Strings take up more memory than atoms but they can be up to 16 kilobytes
long. A dollar sign contained within a string must be represented by a pair of
dollar signs "$$".

Note that a string is not recognized as being the same as an atom even if they
are made up of identical characters. In most cases it doesn't matter whether an
atom or a string is used for a particular situation as long a string is not used
to represent something which is represented elsewhere in a problem file by an
atom (and vise-versa). A useful convention is to use atoms for most general
terms in propositions but to use strings for longer terms which are intended to
be written as messages to the screen (printing message to the screen will be
discussed later).

Often the only appropriate values for a proposition are true and false. For
efficiency, FRO allows any proposition of the form:

CONCEPT i s true

To be entered simply as:

CONCEPT

The " i s true" part is assumed. The following are examples of this special
proposition form where the part in braces "{ }" need not be written by the user
because it is assumed by the system:

the-consultation-is-f inished {is true}
• 'b i rds f l y ' { is true}

As a final point about propositions, it should be noted that the words and
names used in propositions don't have any meaning to the system; they are just
arbitrary symbols. Nevertheless it is important that the propositions should be
worded so as to accurately and precisely reflect the concepts that they are being
used to represent. This will allow the system to come as close as possible to an
accurate and precise reflection of the captured human knowledge and reasoning.
It will also make the knowledge base more intuitive and easier for users to
understand.

APPENDIX A: Chapter 4. Goal Statements 185

Chapter 4; Goal Statements

Each problem file must contain a single goal statement of the form:

g o a l # : : PROPOSITION.

where the word "goal" declares the statement type, the "#" is a statement
number, and PROPOSITION is the top-level goal which FRO is being asked to
solve.

A statement number is an arbitrary number assigned to each statement by the
user. Statement numbers can be any alpha-numeric atom, with the only restric
tions being that negative integers should not be used (as these are used by the
system when no number is supplied by the user) and the same number should
not be used for two different statements of the same type (in which case the
system will ignore the second statement number and assign one itself). State
ment numbers are used by the system when referring the user to a particular
statement.

A goal can be given without a statement number in the following form:

g o a l PROPOSITION.

Unlike other statement types, a goal statement can not be given without a type
declaration. Some examples of goal statements are:

goal 1 : consultation i s f inished,
goal find-the-problem.

Recall that in the second example goal statement the proposition is assumed to
mean "find-the-problem i s true" and that in both examples the statement
must be followed by a period.

APPENDIX A: Chapter 5. Fact Statements 186

Chapter 5: Fact Statements

The problem file may contain fact statements consisting solely of a proposition
followed by a period:

fact # : : PROPOSITION.

Or simply:

PROPOSITION.

examples:

fact 13 : 'the 1st month' i s January,
number-of-items i s 6.
'birds f l y ' .

These facts are stored in the system's data base and can be recalled at any time to
solve a goal. These statements are usually domain knowledge in that they are
valid for all problems covered by the knowledge base, not context knowledge
which are statements that may only relate to the particular situation at hand
(once in the system's memory, all facts are treated identically).

APPENDIX A: Chapter 6. Rule Statements 187

Chapter 6; Rule Statements

Rule statements allow the system to perform reasoning by storing inferential
knowledge (or knowledge about how different propositions are related) and
procedural control knowledge (or knowledge concerning how to go about
solving a problem). A rule is written in the form:

rule # : : CONCLUSION i f PREMISE

Or:

CONCLUSION i f PREMISE

for example:

rule 42 : ' t y p i c a l weather' i s sunny i f season i s summer.

rule 18 : :
'the animal can f l y '

i f 'the animal type' i s b i r d .

consultation i s f inished
i f problem i s ident i f ied

and problem i s solved
and user i s sa t i s f ied .

The CONCLUSION of the rule is made up of a single proposition (i.e. the CON
CLUSION is of the form "CONCEPT i s VALUE"). If the CONCEPT of the goal
matches the CONCEPT of the rule's CONCLUSION, then the system will take
the rule's PREMISE as its new goal. If the system can solve the PREMISE, the
CONCLUSION proposition is first stored in the knowledge base as a known fact
and then used to try to solve the goal. If the PREMISE can't be solved, the goal
neither succeeds nor fails and the system looks for other means of solving it.

The PREMISE is made up of one or more propositions. A PREMISE consisting
of a single proposition becomes the new goal directly. The PREMISE can also
consist of several propositions joined by the word "and" in which case each

APPENDIX A: Chapter 6. Rule Statements 188

proposition is taken as a separate goal in turn and each one must succeed in
order for the entire PREMISE to succeed; or it can consist of several propositions
joined by the word "or" in which case the success of any proposition allows the
entire PREMISE to succeed. Combinations of "and" and "or" can also be used
in the premise; "and" has a higher precedence than "or" (so, for example, "a
and b or c" is interpreted as "(a and b) or c") but parenthesis should be
used to avoid confusion. Some examples of possible PREMISES in rules are:

rule 21 : : CONCLUSION i f today is 'Sunday'.

rule 5 : : CONCLUSION i f f inished.

CONCLUSION i f 'Part 1' and 'Part 2 ' .

rule 8 :
CONCLUSION

i f 'the animal type' is b i rd
or 'the animal type' is insect .

CONCLUSION
i f (today is 'Saturday'

or today is 'Sunday')
or (today is 'a weekday'

and today is ' a ho l iday ') .

Note that in these examples a period is placed at the end of each rule and
the assumed "is true" VALUE is sometimes used. Again, line feeds (and/or
carriage returns) and extra spaces are ignored. In order to make the problem file
easy to understand and debug, rules should be well laid out with ample white
space and comments. Rules should also be kept fairly short, using a hierarchy
of smaller sub-rules rather than one long rule.

APPENDIX A: Chapter 7. Question Statements 189

Chapter 7: Question Statements

• 7.1 Basic Question Statements

In order for the system to be able to ask the user about the value of some
goal's CONCEPT, the problem file must contain a Question statement for
that concept. The question statement defines the question to be asked of the
user and may supply the allowable responses. A question is written in the form:

question # : : CONCEPT ask QUESTION.

Or:

CONCEPT ask QUESTION.

Where CONCEPT is identical to the CONCEPT of the goal being solved and
QUESTION is a question that the system will ask of the user (usually given in
the form of a character string). For example:

question 88 : : weather ask $What i s today's weather l ike?$.

weather ask $What i s today's weather l ike?$.

Thus, if the system is trying to solve the goal "weather i s sunny'' but it finds
no facts or rules pertaining to weather, then it will find the question statement
shown above (in either form) and will write on the screen:

What i s today's weather l ike?

The user can then enter a VALUE which is assigned to the CONCEPT, creating
a proposition which is stored in the knowledge base. For example, if the user
responds with "sunny", then the proposition "weather i s sunny" will be stored
in the knowledge base. After the question is asked and a proposition is stored,
the systems tries to solve the goal again and this time the goal will succeed or
fail based on the newly stored proposition (e.g. in this case the original goal
"weather i s sunny" will succeed because this fact has just been stored).

APPENDIX A: Chapter 7. Question Statements 190

Note that if the system finds no question pertaining to the goal (having already
found no applicable facts or rules), then the goal will fail.

In addition to the basic form of question statement just discussed, there are
several optional parameters that can be used with question statements. These
are discussed below (here we show only the form containing statement numbers,
though either form is acceptable in each case).

• 7.2 The Question Character String

As mentioned, the QUESTION term of the question statement is a character
string which is printed on the screen. If desired, special formatting control com
mands can be included in these strings. Section 8.7 describes these commands
in detail.

• 7.3 Alternative Lists

Rather than allowing the user to give any response to a question, it will fre
quently be more convenient to supply the user with a list of alternative responses
from which he can select the best choice. This can be done by using a question
statement of the form:

question # : : CONCEPT ask QUESTION a l t (ALT 1,ALT 2,...) .

where CONCEPT and QUESTION are the same as in the basic form discussed in
section 7.1. and (ALT 1,ALT 2,...) is a list of the possible alternatives enclosed
in parentheses and separated by commas. For example, the statement:

question 6 :
weather

_. _ ask $What i s today's weather l ike?$
a l t (sunny, rainy, foggy, snowing).

would allow the system to ask the user the following question:

What i s today's weather l i ke?
1. sunny
2. rainy
3. foggy
4. snowing
» »

The user would enter the number of the best alternative (or select that al
ternative with the mouse). The system would then assign the corresponding

APPENDIX A: Chapter 7. Question Statements 191

alternative to the question's CONCEPT in the same way as described above.

7.4 Return Alternative Lists

The terms in the alternative list need to be sufficiently descriptive to allow the
user to understand their exact meaning. However, these terms are returned as a
value in a proposition and long descriptive values are awkward to work with in
the knowledge base. To circumvent this conflict, it is possible to supply two lists
of terms; one descriptive list of alternatives to appear on the screen for the user
and a second, terser list of corresponding "return alternatives" that are assigned
to the CONCEPT in the proposition. The syntax is:

question # :
CONCEPT

ask QUESTION
a l t (ALT 1, ALT 2, ...)

r a i t {RALT l.RALT 2,...) .

Where (ALT 1, ALT 2, ...) is the list of alternatives to appear on the screen and
(RALT1, RALT 2,...) is the list of return alternatives. An typical question using
this feature might look like the following:

question 99 :
weather

ask $What is today's weather like?$
alt ($Clear and Sunny$,

$Overcast or rainy$,
$Foggy$,
$Hailing or Snowing$)

rait (sunny, rainy, foggy, snowing).

Because simple yes/no questions are common, they can be treated as a special
case and can be defined in the form:

question # : : CONCEPT ask QUESTION a l t yn.

In this case the two alternatives asked of the user will be "yes" and "no"
while the return alternative values assigned to the CONCEPT will be "true"
or "false".

APPENDIX A: Chapter 7. Question Statements 192

• 7.6 Question Explanations

It is possible to assign an explanation to a question statement. If a question
statement contains an explanation (which is a character string) then when the
question is asked of the user, he has the option of selecting "EXPLAIN" from
the menu rather than answering the question. If he does so, a pop-up window
appears with the explanation term in it. The creator of the knowledge base can
use this explanation term to give a more detailed description of what the question
means,, to explain each alternative more fully, to describe why the question is
being asked, etc. When the user finishes reading the explanation, he is asked
the question again. If the user never selects "EXPLAIN", there is no difference
from normal questions. The syntax for explanations is:

question # : : CONCEPT ask QUESTION expl EXPLANATION.

in which the EXPLANATION term is a character string that will be printed
on the screen if requested. This term may contain the formatting commands
described in section 8.7.

• 7.7 Question Options Sequence

While the additional question features described above are all optional, they
must appear in the correct order if the are used. This order is:

question # : :
CONCEPT

ask QUESTION
a l t (ALT J, ALT 2, ...)

r a i t (.RALT 1,RALT 2,...)
expl EXPLANATION.

APPENDIX A: Chapter 8. Advanced Features 193

Chapter 8: Advanced Features

FRO provides many advanced features in addition to the basic abilities described
previously. These advanced features are described in this chapter.

8.1 Proposition Attributes

Propositions, as they've been described previously, are knowledge couples in that
they consist of two pieces of information (the concept and the value). However
knowledge is not inherently two part; in general, knowledge can be described
as an n-tuple, having n parts to each knowledge proposition. For example, we
might want to refer to a three part proposition of the form "the ATTRIBUTE
of the OBJECT is VALUE " as in "the color of the dog is brown". In
FRO, n-tuple propositions can be used by assigning attributes to the CONCEPT
portion of the standard knowledge couple proposition. The syntax is:

CONCEPTUTTRIB-l,ATTRIB-2,...) is VALUE

where "ATTJUB-l,ATTJtJB-2,..." are an arbitrary number of attributes or pa
rameters of the proposition. For example, rather than using the propositions:

'the shape of block 1' is 'square'
'the shape of block 2' is 'round' - - -
'the shape of block 3' is ' t r iangular '

the following propositions which have a single attribute could be used:

'the shape o f ' (' b lock 1') is 'square'
'the shape o f ' (' b lock 2') is 'round'
'the shape o f ' (' b lock 3') is ' t r iangular '

The advantages of this form become more clear in the next section when we
introduce variables, but to preview these benefits we can point out that by
using the attribute format, a single rule could be written to calculate the area of
any block based on its shape (and dimensions) whereas the former format would

APPENDIX A: Chapter 8. Advanced Features 194

have required a separate area calculation rule for each block.

The use of multiple attributes also has the advantage of simple brevity. For
example the fact statements:

'the shape of block 1' i s rectangular,
'the height of block 1' i s 12.
'the width of block 1' i s 6.
'the colour of block 1' i s blue,

could be replaced by the single statement:

description('block 1', 'shape i s rectangular ' ,
•height i s 12 ' , 'width i s 6 ' , 'colour i s b l u e ') .

Note that a proposition with attributes will only match with another proposition
if they have an identical number of attributes, each of equal value. Propositions
with concept attributes can be used to replace normal propositions anywhere in
the system.

Finally, it is possible to assign attributes to the VALUE of the proposition in the
same way as the CONCEPT, should this prove desirable.

8.2 Variables

The flexibility and power of rules can be greatly increased by using variables. A
variable must start with a capital letter or an underscore symbol (with no $
or ' symbols). Some examples of variables are:

I
VARIABLE
Block.no -

A variable can be used as a value or an attribute in a premise statement. If this
premise statement becomes the current goal of the system, it will succeed if any
fact, rule or question can be found that matches all non-variable portions of the
statement. In the process of succeeding, the variables will adopt the values of
the proposition which matched with the goal. For the remainder of the premise
and for the value returned in the conclusion, these variables have fixed values
and they act in every way as normal atoms. For example, consider the following
statements:

http://Block.no

APPENDIX A: Chapter 8. Advanced Features 195

rule 1 :
'number of sides of block 1' is N

i f 'shape of block 1' is SHAPE
and 'number of sides of a'(SHAPE) is N.

fact 1 : : 'shape of block 1' is rectangle.

fact 2 : : 'number of sides of a'(triangle) is 3.

fact 3 : : 'number of sides of a'(rectangle) is 4.

fact 4 : : 'number of sides of a'(pentagon) is 5.

The rule could be called upon if the system has reached a goal pertaining to the
number of sides of block 1. In evaluating the rule, the first sub-goal, "'shape
of block 1' is S", will succeed by matching with the first fact causing the
variable "SHAPE" to adopt the value "rectangle". The next sub-goal, therefore,
will effectively become "'number of sides of a'(rectangle) is N". This, of
course, will succeed by matching with fact number 3, resulting in the value "4"
being assigned to the variable "N". Thus the use of this rule will result in the
fact "'number of sides of block 1' is 4" being stored in the memory.

An alternative way of using variables is for value passing. This is when variables
are used as attributes in the conclusions of rules. In this way, a single rule can be
used in more than one situation and the variables in the conclusion are assigned
values by the goal which has called the rule, thus allowing values to be passed
from the goal to the rule. To illustrate, we can recast the example above so that
it can be used for any block, not just for block 1:

rule 1 : :
'number of sides of block'(B) is N

i f 'shape of block'(B) is SHAPE _
and 'number of sides of a'(SHAPE) is N.

fact 1 : : 'shape of block'(1) is rectangle.

fact 2 : : 'shape of block'(2) is t r iangle .

etc.

Now this rule would match with goals pertaining to the number of sides of
block 1, block 2, or so on.

Sometimes, variables can be used as an attribute or value in a premise proposi-

APPENDIX A : Chapter 8. Advanced Features 196

tion simply because we are not interested in that value or attribute and we don't
want to be required to find an exact match in order to succeed. The underscore
character alone "_" can be used for this purpose as an un-named variable, or one
which will match with anything but will not retain the matching value. This is
illustrated in the following example:

rule 1 :
'object shape' i s SHAPE

i f object(SHAPE >.._,_).

fact 1 : : object(tr iangle, large,blue,1.0) .

It is important to remember that once a particular variable has been assigned
a value, it will no longer act as a variable but will act as a constant valued
term for the remainder of the current rule. However the variable does not retain
that value for any other rule in the system. Therefore there is no relationships
between some variable name in one rule and the same name used for a variable
in another rule.

Although this explanation of variables may seem confusing, the concept behind
their use is fairly simple. An examination of the examples given above and of
the sample files in chapter 12 should help to clarify the use of variables.

• 8.3 Not

syntax: not CONCEPT i s VALUE

A proposition of this form may be used in a premise. When such a proposition
becomes a goal, the system first tries to solve the proposition "CONCEPT i s
X" in the normal way and stores the result as a fact in the knowledge base. Then
the goal succeeds if the VALUE given in the goal is not the same as the value

—stored. The goal fails if the values are the same or if the proposition "CONCEPT —
i s X" cannot be solved.

• 8.4 Known

syntax: CONCEPT i s known

"is known" propositions may be used in any premise. When used as a goal,
the system first tries to solve the goal "CONCEPT i s X". If the system is able
to solve this goal for any value of X, the proposition "CONCEPT i s known"
succeeds, otherwise it fails.

APPENDIX A: Chapter 8. Advanced Features 197

• 8.5 Command Propositions

Although they are of minimal importance to the theory of expert systems, much
of the practical power of systems created with FRO stems from the use of com
mand propositions. Command propositions can be used in the premise of any
rule. If, through the normal reasoning process, a command proposition becomes
the system's current goal, it normally succeeds. However in the process of be
ing evaluated as a goal, some useful by-product is performed, such as printing
a message on the screen. The command propositions which are recognized by
FRO are listed here in alphabetical order.

| 8.5.1 DOS Shell

syntax: dos DOS-COMMAND

The DOS shell command proposition provides access to other programs and utili
ties through DOS from within an operating expert system. The DOS-COMMAND
is a character string representing the exact characters that would normally be
typed in at the dos prompt. When this command is executed, the screen is
cleared and the dos program is run. When the external program is finished, the
screen returns to the state it was in before the dos shell command was encoun
tered. For example, it may be possible to use an external graphics program to

-display pictures to the user during the expert system execution. If some graph
ics display program is run from dos by the command "display dataf i l e .pic",
then this program would be called from within a FRO system by the rule:

'show graphics' i f dos $display da taf i le .p ic$.

There is no guarantee that any particular external program will be compatible
with this technique. In particular, there will be much less system memory
available to the external program than there would be if it where executed
from dos normally.

| 8.5.2 Explanations

syntax: explanation EXPLANATION

The explanation command is similar to the explain option in question state
ments. It allows the user to access additional, optional information from the
knowledge base. When the explanation command becomes a current goal, the
system pauses (the message "Press any key to continue. . ." appears on the
screen). In addition, the "EXPLAIN" option appears on the menu. If the user
simply presses any key or any mouse button, the goal succeeds and system con-

APPENDIX A: Chapter 8. Advanced Features 198

tinues. However if the user selects "EXPLAIN" from the menu, a pop-up window
appears and the EXPLANATION character string term is printed in it. After the
user has finished reading the explanation, he presses any key to continue, the
goal succeeds, and the system continues.

Typically, the explanation command will be used right after a print statement
which has printed some conclusion, recommendation, etc. on the screen. The
knowledge base designer will use the EXPLANATION term to include some ad
ditional detail about the conclusion or some explanation of how the conclusion
has been justified. The EXPLANATION term may contain all of the formatting
commands described in section 8.7.

| 8.5.3 F a i l

syntax: f a i l

The fail command always fails when it becomes the current goal. This might be
useful, for example, in forcing the reasoning to abandon the current attempt to
prove some goal and to try to find alternative paths of proving the goal true.

I 8.5.4 Garbage Co l l ec t ion

syntax: gc -

Writing information to the screen causes FRO's memory to temporarily fill up
with information which it subsequently does not need. This is normally of no
concern to the user because every time the system asks a question it clears out
this un-needed memory. However if a problem file causes the system to perform
a large amount of printing with no questions in between, a garbage collection
command should occasionally be placed between print statements to force this
corrective action. ...

| 8.5.5 L o a d i n g A d d i t i o n a l P r o b l e m Fi les

syntax: load FILE-NAME

When the FRO shell program is first called from DOS, one of the first things the
user does is to load in the main problem file using the main menu (as explained
in Chapter 11). However it is possible to have the expert system load in more
facts, rules or questions during execution. The FILE-NAME is a character string
consisting of the name of the additional problem file to be loaded in to the
system. The format of these additional problem files is identical to the initial
one, except that a top level goal will not normally be included. This feature can

APPENDIX A : Chapter 8. Advanced Features 199

be useful, for example, if the knowledge base is quite large but if most of it is
only used under certain circumstances. In this case the knowledge base can be
partitioned into smaller files; the main file will be loaded and executed initially
and it will make initial queries of the user to determine what additional portions
of the knowledge base will be required. The main problem file will then go on
to load these additional files and continue execution. The following example
illustrates such a situation:

File MAIN.KB:

goal 1 : : 'solve problem'.

ru le 1 :
'solve problem'

i f ('problem type* i s 'type A'
and load $TYPE-A.KB$
and 'solve type A problem')

or ('problem type' i s 'type B'
and load $TYPE-B.KB$
and 'solve type B problem') .

question 1 :
'problem type'

ask $What problem type do you want solved?$
a l t ('type A ' , ' t ype B ') .

File TYPE-A.KB;

rule 2 : : 'solve type A problem' i f etc. 1

File TYPE-B KB:

rule 3 : : 'solve type B problem' i f . . . etc.

I 8.5.6 Print to the Screen

syntax: pr in t PRINT

The print command is the most common command proposition. The PRINT
term is a character string or a list of character strings to be printed to the
screen. When the command proposition becomes a goal, the PRINT term is
written to the screen and the goal succeeds. Special command characters can

APPENDIX A: Chapter 8. Advanced Features 200

be embedded in the character strings to provide line feeds, indents, and so on;
these are described in section 8.7 which deals with print strings.

Normally, the PRINT term is printed on a new line of the screen. However if
desired, the system can be forced to print the string right after the previous
screen output by including a "+" in front of the print string, for example:

pr in t +$a continuation of the previous str ing$.

I 8,5,7 Print to File

syntax: p r in t f (FILE-NAME,PRINT)

The printf command is similar to the print command except that it is for printing
information to a file or to the printer rather than to the screen. The FILE-NAME
term must either be set to the name of a file (if the file exists, the PRINT term
will be appended to the end of it, if the file doesn't exist, a new file of that
name will be created) or it can be set to "pro" to direct output to the printer.
The PRINT term may not contain the same control characters used by the print
command, the term is copied exactly as it is given with the following exceptions:
First, lists may be used in which case each of the items in the list will be printed
out in turn (in this context, a list is a series of terms to be printed, each separated
by commas; the entire list should have square brackets on either side). Second,
the atom "nl" (for new line) can be included as an item in the print list or as
the sole item in the PRINT term. This will produce a carriage return and line
feed. Note that if output is sent to the printer, it may remain in the printer's
buffer and not be printed out until a "n l" is sent.

| 8.5.8 Reading a term from a file

Byntax: read-term (FILEJfAME, TERM)

The "read-term" command can be used to read a single statement from a file.
FILE-NAME is the name of the file containing the term to be read and TERM
will return the term. The term must be a legitimate statement as defined by
the statement syntax described in the preceding chapters.

| 8.5.9 Removing a Term from the Database

syntax: remove (TERM)

The remove command can be used to remove a previously stored goal, rule,
question, or fact term from the database. The TERM term is given in exactly

APPENDIX A: Chapter 8. Advanced Features 201

the same form as is used for defining a statement in the problem file except that
the ending period is not required. For example, suppose that the following rule
succeeded based on some information which was assumed rather than known
with certainty:

rule 42 : weather i s raining i f

If it is later determined that the assumption was incorrect, the fact "weather
i s raining", which will have been placed in the database by the success of the
rule, could be removed by including the following term in the premise of a later
rule:

remove (weather i s raining)

| 8.5.10 Restoring the Knowledge Base

syntax: rest ore _kb NAME

If a knowledge base has been stored in binary form (using the "save_kb" com
mand discussed in section 8.5.11) it can be restored using the "restoreJcb"
command. The NAME term is the name which was used for storing the knowl
edge base. Once a previously stored knowledge base is restored, the entire
contents of the current knowledge base is lost with the exception of immediate
set of goals being solved. See the example under section 8.5.11.

I 8.5.11 Saving the Knowledge Base in Binary Form

syntax: save_kb NAME
The entire contents of the system's knowledge base can be saved in binary form
using the "saveJcb" command. The NAME term provides a name used for stor
ing the data; it can be up to eight letters using the same allowable characters as
regular file names (do not use the names "fro" or "fro_save"). This procedure
produces files called NAME.IDB and NAME.P00 in the current directory. The
advantage of this form of saving files is that they can be reloaded into the system
very quickly using the "restore-kb" command. The disadvantage is that they
cannot be viewed or edited in any way. The following is an example of a problem
file which contains an expert system knowledge base and a top level goal which
saves the entire problem in binary form, as well as a second file which reloads
the knowledge base and executes it:

APPENDIX A: Chapter 8. Advanced Features 202

Problem file #1: (saves the knowledge base after it is loaded)

goal l a : : save.kb teBt.

rule 1 : : 'solve problem' i f . . .
(typica l problem f i l e) .

Problem file #2: (restores the knowledge base and then executes it)

goal lb : restore_kb test
and 'solve problem'.

I 8.5.12 Storing Terms in the Database

syntax: store (TERM)

When a problem file is loaded into the system, the goal, rule, question, and fact
statements are stored in the knowledge base. Also, every time a rule succeeds
or a question is answered a new fact is generated and is stored in the database.
However it may occasionally be beneficial to explicitly tell the system to store
a term in the database. This can be done with the store command. The TERM
term is given in exactly the same format as is used for defining statements in
the knowledge base except that an ending period is not needed. For example, if
a certain response from the user can generate several conclusions, all of which
the system designer would like to store as facts without writing a separate rule
for each, the following rule could be used:

rule 1 :
'check for only c h i l d '

i f 'subject i s an only c h i l d ' i s true
and store ('subject has s i s t e r s ' i s false)
and store ('subject has brothers' i s false)
and store ('subject has twin ' i s false) .

Note that goals, rules, and questions can be stored in the same manner as the
facts shown here.

| 8.5.13 Succeed

syntax: succeed

The succeed command always succeeds as a goal. For example, if a rule involves
terms which the knowledge base designer thinks may fail, yet he doesn't want
the rule to fail, he can add "or succeed" as the last premise term of the rule.

APPENDIX A: Chapter 8. Advanced Features 203

8.5.14 Write Term to File

syntax: write.term {FILE. NAME,TERM)

The write.term command is similar to the printf command in that it writes in
formation to a file. However unlike the printf command, write_term is designed
for writing knowledge base terms into a file which can later be loaded as a prob
lem file itself. This could be used, for example, to add configuration information
specific to each user to the main problem file or possibly even to create a system
which automatically generates new systems.

The FILE. NAME term is a string or atom corresponding to the name of a file.
If the file exists, the term will be added to the end of the file, otherwise the
file will be created. The TERM term should be in exactly the same form as is
normally used for a problem file, for example:

write.term ($TEST.KB$, goal test i s completed)

A period and a line feed are automatically added to the end of the term in to
file.

8.6 Custom Help Information

During the execution of the FRO program, the user may select the "HELP"
-alternative from the menu. This will be explained more fully in Chapter 11,
however this section explains briefly how the help information shown to the user
can be modified from within the problem file. When the FRO system first starts
up, a fact is stored in the knowledge base of the form:

help i s HELPJ5TRING

.Where HELPJ5TRING is a character string containing the help information.
When the user selects help from the menu, the program retrieves this term
and prints the HELPJSTRING to the screen. It is therefore possible to change
the information printed to the screen from within some rule by removing this
term using the "remove" command and adding a new term using the "store"
command. For example, the following rule will achieve this:

rule 1 : :
'change help '

i f remove (help i s _)
and store (help i s $New HELP information!) .

The character string stored can use all of the formatting commands described in
the next section on print strings (including the "pause" if more than one screen

APPENDIX A: Chapter 8. Advanced Features 204

full of information is desired). This technique can be used once at the beginning
of a system to create help that better suits a particular application or it can be
used frequently throughout the system to create context sensitive help.

8.7 Print Strings

As mentioned in several sections above, print strings (or character strings which
are to be printed to the screen) may have special control characters imbedded
in them. Print strings are given these special capabilities largely because it is
not convenient to write out the strings in the knowledge base in exactly the
same way that they should appear on the screen during program execution. For
example, terms in the knowledge base should be written out making liberal use of
indentation to make the knowledge base clear, yet this should not cause the print
strings to be similarly indented on the screen during execution. Furthermore,
it may not be clear while writing the knowledge base what width of window
certain print strings will appear in.

When printing out character strings to the screen, FRO gets around these prob
lems by using spaces, tabs and carriage returns only to determine the ends of
words. Once it has a list of the words in the print string, it ignores all spaces
and so on. FRO then prints this list with a single space between each word
and with automatic word-wrap (end-of-line identification). However, this pro
cess results in the user losing the power to put in intentional spaces, tabs, and
carriage returns. FRO therefore gives the user back this power by allowing him
to insert special control characters in print strings to achieve these and other
actions. Most control characters begin with a A symbol followed by a lower case
letter and sometimes an integer number. For example, if the command a A t "
(which stands for a 5 space tab) is included in a print string, the system will
print out five spaces in its place. The complete list of the allowable print string
commands is as follows (the # symbol stands for some integer number): ~ '

A c# - causes the next word to be printed starting in column #
A l # - sets a left indent of # spaces (indent begins to take affect

after the first line feed subsequent to the command)
A n - new line
Ap _ pause
A r# - sets a right indent of # spaces
A*# " prints # fixed spaces
A t - tab (five spaces)
A A _ prints a A symbol

APPENDIX A: Chapter 8. Advanced Features 2 0 5

A | - prints a | symbol
| - (ASCII 1 2 4) alternative symbol for a new line

- (ASCII 2 5 0) alternative symbol for fixed space

Also, where ever a print string is allowed, a list of print strings may also be
given, according to the form:

[PRINT STRING l.PRINT STRING 2 ,]

In which case each of the print strings will be printed one after another in turn.
The main use for such lists is when printing a mixture of constant print strings
and variables, as in the following example portion of a rule:

and 'the shape of o b j e c t ' (O B J J I U M B E R) i s S H A P E

and pr in t [$The shape of object number $,
O B J - K U M B E R , $ i s $. S H A P E]

• 8.8 Math Operators

Mathematical operations can be incorporated into a FRO expert systems to
perform calculations. This is done by using a mathematical comparison as a
proposition in the premise of some rule. A mathematical comparison has the
simple form:

::;: EXPRESSION COMPARISON.OPERATOR EXPRESSION

Allowable EXPRESSIONS and COMPARISON-OPERATORS will be described be
low, but some example are:

A G E > 6 5

E N E R G Y - M A S S * S P E E D - O F L I G H T A 2 ^

When a mathematical comparison becomes a goal, both expressions are eval
uated and are then compared according to the comparison operator. If the
comparison is true the goal succeeds, if not the goal fails. In some cases (de
scribed below) the left expression may be a variable, in which case it is assigned
a value which makes the comparison true and the goal succeeds. The allowable
comparison operators are:

= - left equal to right

\ = left not equal to right
left greater than right
left greater than or equal to right
left less than right

>

>=
<

APPENDIX A: Chapter 8. Advanced Features 206

X
X
X
X

+ Y
- T
* Y
/ Y

=< - left less than or equal to right

For the operator, the left expression may be a variable which will be assigned
the value of the right expression when the proposition becomes a goal. Also, with
the operator only, any non-numeric expressions may be used, for example
the goal will succeed if two identical character strings are compared. In every
other case, non-variable numbers must be used on both right and left sides (recall
that variables which have been used previously in the same premise and have
thus been assigned values may be used since they are now effectively constant
valued terms). Numbers may be either integers or real numbers. With real
numbers, the decimal place must have at least one digit on either side of it (e.g.
0.1 or 1.0 rather than .1 or 1.). The allowable numeric operators are:

Addition
Subtraction
Multiplication
Ordinary division - returns a floating point num
ber
Integer division - returns an integer. If a floating
point number is supplied as an argument, only
the integer portion will be used for the division
Exponentiation . _ _. ..
Unary minus (negative of X)
Returns the remainder of X divided by Y (inte
gers only)
Absolute value of X
Arc cosine of X
Arc sine of X
Arc tangent of X —--• •

Cosine of X
e raised to the power of X
Logarithm base e
Logarithm base 10
Sine of X
Square root of X
Tangent of X
X rounded to N decimal places (N between 0
and 15).

X / / Y

X Y
- X
X mod Y

abs(X)
acos(X)
asin(X)
atan(X)
cos(X)
exp(X)
ln(X)
log(X)
Bin (X)

sqrt(X)
tan(X)
round(X,N)

APPENDIX A: Chapter 8. Advanced Features 207

The following example uses a few of the mathematical features in a rule:

rule 42 :
'the size of the object' i s SIZE

i f 'the Bhape of the object* i s SHAPE
and ((SHAPE » square

and ' length of a s ide ' i s L
and AREA - L " 2)

or (SHAPE - t r iangle
and ' length of base' i s BASE
and 'length of height' i s HEIGHT
and AREA « (BASE * HEIGHT)/2) ')

and ((AREA < 1 . 0
and SIZE • small)

or (AREA >- 1 . 0
and SIZE - large)) .

8.9 Hidden Statements

It has been shown that the use of a rule or question statement to solve a goal
results in a new fact being stored in the knowledge base. This is so that the
system will not have to infer or ask about the same information twice, should
it be needed a second time. However it is sometimes desirable to prevent such
facts from being stored. This can be done by using hidden statements. The
syntax for hidden rules is: '" ~ ~ ~

rule # : : hide CONCLUSION i f PREMISE

and for hidden questions: r .

question # : : hide CONCEPT ask QUESTION.

In both cases, the statement type and statement number can be left off; in the
case of the question statements, lists of alternatives and explanations can be
-added as in chapter 7.

Hidden statements are useful when some rule or question can be used repeatedly
for different situations within the expert system. For example, the following rule
and question statements could be used to ask the user whether or not he wishes
to continue. If these statements were not declared as hidden, the could only be
used once since subsequently the values obtained from their first use would be
stored in the system's memory.

APPENDIX A : Chapter 8. Advanced Features 208

rule 12 : : hide
'what to do next' i s VALUE

i f 'users wish' i s VALUE
and ((VALUE - continue

and pr int $Very we l l , l e t ' s continue. . . .$)
or (VALUE • stop

and pr int $0.K., w e ' l l stop now.$)) .

question 12 : : hide
'users wish'

ask $What would you l i k e to do now?$
a l t (continue, stop).

APPENDIX A: Chapter 9. Excluded Features 209

Chapter 9; Excluded Features

For the sake of comparison with other expert system shells it is worthwhile
mentioning some typical expert system features which are not included in FRO.
The reason for most of these exclusions is simply that this system is not intended
to be all encompassing and, in fact, is not even intended primarily as a stand
alone program. Rather it is intended as an experimental control system for the
more advanced Dempster-Shafer based uncertain reasoning system described in
Part II. Never-the-less these features would be useful in FRO and may be added
at some later date.

• 9.1 View Knowledge Base

This feature involves the ability to stop the reasoning process at any point and
scan or view the contents of the knowledge base.

• 9.2 Uncertainty

Many expert systems include simple forms of handling uncertainty using cer
tainty factors. Since FRO is actually designed for use in conjunction with the
Dempster-Shafer based uncertainty features, there is no point in including cer
tainty factors in the rule-based portion.

• 9.3 Multi-Valued Propositions

One side effect of the fact that rule-based FRO is fundamentally intended as
a categorical control system for Dempster-Shafer based reasoning is that each
proposition CONCEPT is assumed to have only one possible VALUE. This means,
for example, that if a goal matches with the CONCEPT of some rule but the
VALUE does not match, then the goal to fail rather than search for some other
rule which might allow the goal to succeed. This can also be troublesome where

APPENDIX A: Chapter 9. Excluded Features 210

some CONCEPT is not inherently single-valued, but could have several different
values simultaneously. For example, the VALUE of the CONCEPT "today's
weather" could be both "raining" and "cold" at the same time. Multi-valued
propositions may be incorporated at a later date.

APPENDIX A: Chapter 10. Problem Design 211

chapter 10: Problem Design

As a final comment on problem files, a few brief notes should be made about
good problem file style and about application development techniques.

• Create a very small and simple knowledge base at the very beginning of the
application development process. Having a working system, even though
it is simplified to the extreme, provides a vital focus for the process of
obtaining and organizing knowledge.

• Proceed using an iterative process of expanding the prototype system in
both knowledge breath and knowledge depth. That is, early prototypes
should contain a little knowledge about all aspects of the problem and a
large amount of knowledge about a few specific aspects of the problem.

• The first goal of the system should be to try and make the knowledge
base model the way that a human expert would actually try to solve the
problem. Only secondly should "programming tricks" and so on be used
to try to make the knowledge base more efficient.

• Look for repetition in the solution process and exploit it using variables
and the other tools described in this documentation.

• Provide abundant information back to the user to inform him of the status
of the solution, of any sub-conclusions, and so on.

• Experimenting with different approaches is the best way to find the best
way of solving problems.

APPENDIX A: Chapter 11. Running FRO 212

Chapter 11: Running FRO

Thus far, we have discussed the underlying theory of the FRO system and the
techniques for developing a problem file. In this chapter we discuss the actual
process of running FRO after the problem file exists.

• 11.1 Starting FRO

The FRO system is written for an IBM PC, IBM AT or compatible computer.
It should operate correctly with either floppy diskettes or with a hard disk and
with any type of monitor. It is designed for 512K or more of system memory
but it may function with as little as 256K (see section 11.5). FRO is designed
to work with a Microsoft compatible mouse, although a mouse is not required.
The system is written in ARITY PROLOG version 4.0. The program consists of
three mandatory files, FRO.EXE, FRO.IDB, and FRO.P00. Al l three files must
be in the current directory for the program to operate correctly. In addition,
there may be a configuration file called FRO.ENV which must be in the same
directory to be effective. To start up FRO, simply go to the directory containing
the FRO program files and at the DOS prompt type:

FRO <enter>

If a mouse is not being used, the following should be typed:

FRO / n <enter>

The main screen should then appear.

It is also possible to use the command line (or the DOS command which calls
FRO) to supply the name of the problem file which should be used. The syntax
is:

FRO FILE-NAME <enter>

where FILE-NAME is the name of the problem file. For example:

FRO TEST.KB <enter>

APPENDIX A: Chapter 11. Running FRO 213

or, if a mouse is not being used:

FRO TEST.KB / n <enter>

When a problem file is named in this way, the system does not go to the main
menu, but rather loads the file and begins execution directly as described in
section 11.3.

• 11.2 The Main Screen

The main screen consists of the main menu across the top, a large dialog area
underneath, and a border all around. The main menu contains the following
options:

F l HELP
F2 FILES
F3 EXECUTE
F4 SAVE
F5 TRACE
F6 QUIT

A main menu option can be selected with the keyboard by pressing the function
key corresponding to the desired command or with the mouse by pointing to the
option with the mouse cursor and pressing any button. Each option is explained
below.

I U.2.1 F l - HELP

- "HELP" will cause a pop-up window to appear which contains information de
scribing what the user's options are.

| 11.2,? F3- FILES

This option is used for loading problem files into the system. When "FILES"
is selected, the system asks the user for the name of a problem file. The user
must enter the name of a problem file, including the file name extension and
the path if the file is not in the current directory. When the user presses enter,
the problem file is loaded into the system's memory. The message "Loaded!"
appears when the loading is complete. More than one file can be loaded in
sequentially if several files are used for one problem (and if the first file does not
itself contain instructions to load the other files). See section 11.5. for possible

APPENDIX A: Chapter 11. Running FRO 214

errors that could occur at this point.

I 11.2.3 F3 - E X E C U T E

Once a problem file has been loaded into the system, selecting "EXECUTE" will
begin the problem execution. See Section 11.5 for an explanation of possible
error messages that can occur at this point. The execution of a problem is
described more fully in Section 11.3 below.

The "SAVE" option is a special feature of FRO that allows systems to be created
which load quickly and are self-starting; this can be thought of as compiling a
problem file. To use this feature, a normal problem file is written and debugged.
The FRO program is then started and the problem file is loaded into the system
as described above. The "SAVE" option is then selected from the main menu.
This causes the entire knowledge base to be saved in the files FRO-SAVE.POO
and FRO-SAVE.IDB. When FRO is started thereafter, it finds that these files
exist and goes on to restore the saved knowledge base and begin execution,
rather than going to the main menu.

The advantage of this procedure is that after the initial saving, the knowledge
base loads much faster and begins execution automatically. The disadvantage is
that the knowledge base saved in this way cannot be viewed or edited with an
ASCII editor (although the original problem file still exists and can be re-loaded
at any time).

To cancel the automatic restoration and execution of a previously stored knowl
edge base, simple delete the FRO.SAVE.P00 and FRO-SAVE.IDB files from the
current directory and FRO will revert to normal operation.

Selecting "TRACE" from the main menu turns on the tracing facilities. No ob
servable changes appear at this point other than a confirmation message. The
tracing features of FRO are explained in Section 11.4. Selecting "TRACE" a
second time toggles the tracing off.

| U.2.4 F 4 - S A V E

I U .2 t 5 F5 - TP-ACE

I 11.2.6 F6 - QUIT

If "QUIT" is selected from the main menu (or from anywhere else in the system)

APPENDIX A: Chapter 11. Running FRO 215

execution will halt and control will return to DOS. It is preferable to exit FRO
in this manner rather than by pressing "CONTROL-BREAK" or "CONTROL-
ALT-DEL" .

11.2.7 F9 - STATISTICS

Although it does not appear on the main menu, pressing F9 will bring up the
memory statistics window. This is explained in Section 11.5.

11.3 The Execution Screen

Once "EXECUTE" is selected from the main menu, the main screen will be re
placed with the execution screen which looks very similar but has a slightly
different menu across the top. At this point the program will begin execution
and messages or questions will begin to appear on the screen.

To answer questions, the user must simply type the number which appears next
to the best alternative and press enter or alternatively he must point to the best
alternative with the mouse cursor and press any mouse button. If an incorrect
answer is given, the question is asked again. If the system asks a question which
does not have a list of alternatives, the user types in his response and presses
enter.

In addition to answering questions, the user may select commands from the
execution menu, as explain below.

11.3.1 F l - H E L P

"HELP" will cause a pop-up window to appear which contains help information.

11.3.2 F2 - E X P L A I N

As described above, it is possible to attach explanations to questions and propo
sitions in the knowledge base which are displayed only upon the user's request.
When the system encounters such an explanation term, the "EXPLAIN" alterna
tive appears in the execution menu. The user may select this alternative with the
mouse or the keyboard. The explanation will then appear in a pop-up window.

11.3.3 F4 - W H Y

Whenever the system asks the user a questions, the option "WHY?" appears on

APPENDIX A : Chapter 11. Running FRO 216

the menu. If the user wishes to find out more about why the system is asking
this particular question, he may select this option from the menu. If he does
so, a window will appear which displays the goal which the system is trying to
solve and the number of the rule which is currently being used to try to solve the
goal. The system then gives the user the option of viewing the rule, of asking
why the system wants to prove that goal to be true (thus allowing the user to
view the entire chain of goals up to the top-level goal), or of continuing with the
question.

Selecting "TRACE" from the execution menu turns on the tracing facilities. The
main window will then split in half, creating a second tracing window. The
tracing features of FRO are explained in Section 11.4. Selecting "TRACE" a
second time toggles the tracing off and closes the tracing window.

If "QUIT" is selected from the execution menu execution will halt and control
will return to DOS. It is preferable to exit FRO in this manner rather than by
pressing "CONTROL-BREAK" or "CONTROL-ALT-DEL".

Although it does not appear on the execution menu, pressing F9 will bring up
the memory statistics window. This is explained in Section 11.5.

• 11.4 Tracing

FRO includes tracing capabilities which are useful (if not essential) for debugging
problem files. By tracing the reasoning during the execution of a problem file,
the user can see which goals are failing unexpectedly (often an indication of
incorrect syntax), can observe the values adopted by variables, can check the
precedence of "and" and "or" terms, and so on.

Once tracing has been turned on and execution has begun, the screen splits into
a dialog screen and a tracing screen. Every time the system finds a goal which it
must solve, the goal is printed out in the tracing window and the system pauses.
The user allows the system to proceed by pressing any keyboard key (except
"s") or by pressing the LEFT mouse button. The system will then go ahead
and attempt to solve the goal. It will display a message stating whether it found

I 11.3.4 F5 - T R A C E

I 11.3.5 F6 - Q U I T

I 11.3.6 F9 - STATISTICS

APPENDIX A: Chapter 11. Running FRO 217

a rule, a fact, a question, or nothing that successfully matches with the goal.
After resolving the matching term (possibly causing more sub-goals to first be
evaluated and traced) a message appears in the tracing window stating whether
the goal succeeded or failed. Whenever the system comes across terms that
require user interaction, this occurs in the dialog window in the normal fashion.
In this way, the user can follow the step-by-step reasoning of the system.

One additional useful feature is skipping. When a goal is found and displayed
in the tracing window, the user may press "s" or the RIGHT mouse button
which causes the system to proceed without tracing until that goal succeeds or
fails. This allows the user to move quickly through branches of the reasoning
tree which he is not interested in tracing. With this skipping feature and with
the ability to turn the tracing on and off at any time, the user may trace the
reasoning quite efficiently even in very large systems .

It should be noted that when terms are written out in the tracing window,
variables do not retain the names given to them in the problem file but rather
appear as a hexadecimal number preceded by an underscore (e.g. -00A39). Once
variables have adopted some value, that value appears in the tracing window in
place of the variable.

• 11.5 Errors and Memory Management

There are two main areas which can lead to problems with the FRO program.
The first and most frequent is errors in the problem file. Many syntactical
errors will cause PROLOG error messages to appear when the problem file is
first loaded. The message will likely say "error using operators" and will list
the offending statement. This points the user to the term that needs correcting,
although it does not indicate the exact error. The user should look for spelling
mistakes in key words, incorrect use of parenthesis, and so on. Occasionally,
if no apparent errors can be found, additional parentheses should be added to
clarify precedence intentions, for example the term:

remove goal run

should be replaced with:

remove (goal run)

Once syntax is correct, the problem file should load correctly. There still could
be errors in the problem file. For example, proposition concepts or values could
be spelt differently in different places. The use of tracing should help to clarify
these errors. Finally, there could be some problems with memory management.
This topic will be discussed at a later date.

APPENDIX A: Chapter 11. Running FRO 218

The FRO program requires two adjustable memory areas, one for stack space
and one for database worlds. The amount of memory assigned to the system for
each of these uses is displayed when the user presses F9 will running the system.

Stack space relates to the basic operational memory requirements of the system.
The system must be allotted enough stack memory to operate, but if more stack
memory is assigned than is needed, less memory will be available for database
memory, leading to slow system operation.

APPENDIX A: Chapter 12. Sample Files 219

chapter 12: Sample Files

12.1 Sample file 1: Wine Selection

The following is a simple system which gives advice on which colour of wine
should accompany a meal. It uses only FRO's basic capabilities.

%%%% Problem File: SAMPL-01.KB
%%%% Sample Expert System Number 1

m%
%%%% System to suggest the best colour of wine to accompany a meal.

m%
%%%% This system uses only basic goal, rule, and question statements,
%%%% along with the "print" command proposition.
%%%%

%%%% The Goal Statement
goal 1 :: 'the session' is complete.

%%%% The Rule Statements,
rule 1 :

'the session' is complete
i f print $This expert system will suggest the best colour

of wine to go with your meal.$
and 'the best colour' is suggested.

rule 2 :
'the best colour' is suggested

if 'the main component' is meat
and print $A red wine is generally best with meat.$.

APPENDIX A: Chapter 12. Sample Files 220

rule 3 : :
'the best colour ' i s suggested

i f 'the main component' i s f i s h
and pr in t $The best wine with f i s h i s white.$.

rule 4 :
'the best colour ' i s suggested

i f 'the main component' i s poultry
and (('meal has turkey'

and pr int $A red wine i s preferable with turkey.$)
or ('meal has turkey' i s false

and pr int $A white wine would best sui t th i s meal.$)) .

%%%% The question Statements,
question 1 : :

'the main component'
ask $What i s the main component on th i s meal?$
a l t (meat, f i s h , poul t ry) .

question 2 : :
'meal has turkey'

ask $Wil l the meal contain turkey?$
a l t yn.

APPENDIX A: Chapter 12. Sample Files

12.2 Sample file 2: Golf Club Selection

221

This simple problem file deals with selecting the best golf club for a particular
shot. The knowledge which is to be incorporated into the system is summa
rized below. The knowledge base, which consists mainly of FRO's most simple
features, is given on the following pages.

Location; Best Club;

on the green putter

in a sand trap sand wedge

on the fairway Distance to hole:
less than 100 yards pitching wedge
between 100 and 130 yards #8 iron
between 130 and 155 yards #5 iron
between 155 and 180 yards #3 iron
more than 180 yards #3 wood

at the tee Par:
par 3 #5 iron
par 4 driver
par 5 driver

APPENDIX A: Chapter 12. Sample Files 222

XXXX Problem File: SAMPL-02.KB
XXXX Sample Expert System Number 2
XXXX
XXXX System to suggest the best golf club to use
XXXX for a particular shot.
XXXX
XXXX This system uses explanations and
XXXX variables in the 'Fairway shot' rules.
XXXX

xxx
XXXX The Goal Statement
goal 1 :: 'best club' is known.

mmmmmm%xxx%mmmmxmmmm%%%%%m%m%
XXXX The Rule Statements.
XXXX PUTTING XXXXXXXXXXXXXXXXX
rule pi :

'best club' is putter
if location is 'on the green'

and print $The best club for this shot is a putter$
and explanation $Once on the green, you should be

putting. Therefore use a putter$.

XXXX WEDGE SHOTS xxxxxxxxxxxxx
rule wl :

'best club' is 'sand wedge'
if location is 'in a sand trap'

and print $The best club for this shot is a sand wedge$
and explanation $The loft provided by the wedge is needed

to l i f t the ball out of the sand trap$.

XXXX TEE SHOTS xxxxxxxxxxxxxxx
rule t l ::

•best club' is '#5 iron'
if location is 'the tee'

and par is 'par 3'
and print $The best club for this shot is a #5 iron$
and explanation $For short tee shots (par 3) a #5 iron

will provide the correct distance!.

APPENDIX A: Chapter 12. Sample Files 223

rule t2 :
'best club' is driver

if location is 'the tee'
and (par is 'par 5'

or par is 'par 4')
and print $The best club for this shot is a driver!
and explanation $For long tee shots (par 4 or 5) a

driver will provide the required
distance!.

m% FAIRWAY SHOTS XXXXXXXXXXX

rule f1 ::
'best club' is CLUB

if location is 'on the fairway'
and 'best fairway club' is CLUB
and print [$The best club for this shot is a $,CLUB]
and explanation $This club is most likely to provide

the correct distance for the
fairway shot$.

rule f2 :
'best fairway club' is 'pitching wedge'

i f distance is 'less than 100 yards'.

rule f3 :
'best fairway club' is '#8 iron'

if distance is 'between 100 and 130 yards'.

rule f4 :
'best fairway club' is '#5 iron'

if distance is 'between 130 and 155 yards'.

rule f6 :
'best fairway club' is '#3 iron'

if distance is 'between 155 and 180 yards'.

rule f6 :
'best fairway club* is '#3 wood*

if distance is 'more than 180 yards'.

APPENDIX A: Chapter 12. Sample Files 224

mmmm%%mmmmmmmmmmmmmmmn5
%V,%% The Question Statements,
question 1 :

distance ask $How far is i t to the hole?$
alt ('less than 100 yards',

'between 100 and 130 yards',
'between 130 and 155 yards',
'between 155 and 180 yards',
'more than 180 yards')

expl $Distance is one of the primary factors
in selecting the best club$.

question 2 :
par ask $What is the par for this hole?$

alt ('par 3','par 4','par 5')
expl $The par of the hole gives an indication of

the distance and hence the club required$.

question 3 :
location ask $Where are you making this shot from?$

alt ('the tee'.
'on the fairway',
'in a sand trap',
'on the green')

expl $The different locations have characteristics
which suit some clubs better than others$.

APPENDIX A: PART II. FRAME-BASED FRO 225

PART II

FRAME-BASED FRO

The frame-based portion of the FRO expert system shell can be used in con
junction with the rule-based portion (described in Part I of this documentation)
to facilitate inexact reasoning based on the Dempster-Shafer (or D-S) theory of
evidence. This document will not provide a review of this theory, rather it will
describe how to use frame-based FRO, including a brief introduction (chapter
13) , a description of the interactive belief interface system used by FRO (chapter
14) , an example of the M K B program which assists in the creation of problem
files for frame-based FRO applications (chapter 15), an explanation of both de
sign problem files (chapter 16) and control problem files (chapter 17), a brief
comment on running frame-based applications (chapter 18) and a listing of some
sample problem files (chapter 19). The recommended approach to learning the
system is to learn the rule-based portion of FRO first (see Part I of this manual)
and then to alternate between reading this part of the manual, examining the
sample files, and experimenting with the program itself.

APPENDIX A: Chapter 13. Overview of frame-based FRO 226

Chapter 13: Overview of frame-based FRO

This section provides a brief overview of how FRO uses D-S theory to represent
uncertain information and perform inexact reasoning.

The basic knowledge representation scheme for the frame-based portion of FRO
is quite different from the rule-based portion. In the frame-based portion of
FRO, each major concept or variable is represented by a frame of discernment
(which we commonly refer to as simply a frame). Each frame is represented
in the system by a name and a list of possible alternatives or values. These
alternatives must be exhaustive and mutually exclusive (that is, one and only
one of them may be true). Knowledge about how the alternatives for one frame
imply knowledge about the alternatives in another frame is stored in structures
called links. The knowledge contained in links may be certain or uncertain. The
collection of all the frames defined for some problem and the links connecting
the frames to each other makes up a graph structure called a frame network.
The frame network with its constituent frames and links, then, makes up the
representation of all the variables involved for some problem, all the possible
values for these variables, and all of the inferential relationships between these
values.

Belief about which value for some variable is though to be true or which values
are known to be false is represented by a belief function. When the system
asks a user for information about some variable, the response is provided in the
form of a belief function. This belief function is added to the frame which is
being asked about. At the same time, the links connected to that frame are
used to infer belief about any related frames. Whenever the user responds to a
frame-based question, then, both his answer and any information which can be
inferred from his answer is added to the system. In this way inexact reasoning
is accomplished.

The frame network approach is well suited for representing concepts, the rela
tionships between them, and the belief about them. We call this knowledge the
design knowledge. However it is not well suited for representing procedural or

APPENDIX A: Chapter 13. Overview of frame-based FRO 227

control knowledge which makes up information about when to ask questions,
when to draw conclusions, etc. In FRO, this function is performed by the rule-
based portion of the program (in fact, this is why the rule-based portion was
created in the first place). The rule-based portion and the frame-based portion
can interact with each other through a series of interface command propositions
which can be embedded in the rule-based problem file.

In order to use FRO to create an expert system with inexact reasoning, then, the
expert and the knowledge engineer must create at least two problem files. The
first, the design problem file defines each frame that relates to the problem,
the links that relate the frames, and an initial belief that should be assigned to
the frames. The second file, the control problem file, contains the procedural
rules about which questions to ask, when to ask them, which frames to consult
for conclusions, how to interpret the conclusions for particular situations, etc.
This dichotomy between the two types of knowledge is fairly transparent to the
user of the system who operates the finished product in almost exactly the same
way that he operates a rule-only system, with the exception of the uncertain
belief input/output interface which is discussed in the following chapter.

APPENDIX A: Chapter 14. The IBIS Belief Interface 228

chapter 14: The IBIS Belief Interface

A l l uncertain communication between the FRO system and the user is accom
plished with the aid of FRO's unique belief interface. This interface allows the
relatively simple input and output of complicated D-S belief functions. The
interface is called IBIS , for Interactive Belief Interface System. This chapter
explains how to use the IBIS interface.

• 14.1 Belief Input

When FRO needs to obtain uncertain input from the user, it first asks the user
a question in exactly the same form as is used for categorical questions. If the
system is trying to find the user's preferred vacation destination, for example,
it might ask the user the following question:

Where would you prefer to go?
1. Paris
2. New York
3. Hawaii
4. Australia
» »

Note that the alternatives for these questions are exhaustive and mutually ex
clusive. That is, one and only one of the alternatives represents the best or
correct answer to the question. If the user has a categorical response, he would
be allowed to answer this question in exactly the same manner as for rule-based
FRO. However an important difference is that an "UNCERTAINTY" option will ap
pear on the menu while the question is being asked. If the user is not completely
certain about his response, he may select this option. When this occurs, a pop
up window appears and the question is re-asked in a different format shown in
figure 14.1.

As shown in figure 14.1, the same question is asked and the same alternatives are
offered. However a bar-chart style graph appears beside the list of alternatives;

APPENDIX A: Chapter 14. The IBIS Belief Interface 229

Where would you prefer to go?

Enter support and plausibility values
1. Paris

r O .2 .4 .6 .8 1.01

j i i i i i i i i i i

Where would you prefer to go?

Enter support and plausibility values
1. Paris
2. New York j 1 i i i i i ' ' ' i

1 i i i i i i i i i r

J 1 i i i i i i ' ' T

" i i i i i i i i i - f

fH : support, the % certainty that this is the correct alternative.
• : plausibility, the X certainty that this could be the correct alternative.

Figure 14.1: Initial belief input screen

two bars are shown for each alternative. The bars on the graph can be moved
up or down by selecting the bar with the mouse and sliding the bar up or
down. In this way the bars allow the user to enter two belief parameters for each
alternative. One bar (the white bar in figure 14.1) represents the plausibility
of the alternative which is the user's percent certainty that the alternative could
be the correct answer to the question. The plausibility is initially set to 1.0 for
each alternative indicating that each of the alternatives is initially considered to
be equally possible by the system. The other bar (the black bar in figure 14.1)
represents the support of the alternative which is the user's percent certainty
that the alternative is the correct answer to the question. The support is initially
set to 0 for each alternative representing the fact that the system initially has no
specific belief for any one of the alternatives over any other. The initial state of
the system, then, is one of complete ignorance about the answer to the question.

If the user has some level of belief that one of the alternatives is the best answer
to the question, then he may point to the "support bar" on the graph adjacent
to that alternative with the mouse cursor. He then presses and holds down any
of the mouse buttons (the mouse cursor will change shape if he has successfully
selected a bar). He may then move the cursor in one direction or the other in
order to change the support value for that alternative. For the example given
above, the user may feel somewhat sure that she would like to go to Hawaii
(with a percent certainty of 0.4, say). Figure 14.2 shows the result of the user
entering this level of belief.

Notice that in figure 14.2 the plausibility values for all alternatives other than
Hawaii are lowered to 0.6. This has been done automatically by the system after
the user entered a support of 0.4 for Hawaii because belief indicating that one
particular alternative is the correct answer implies the same amount of belief

APPENDIX A: Chapter 14. The IBIS Belief Interface 230

Where would you prefer to go?

Enter support and plausibility values
1. Paris
2. New York
3. Hawaii
4. Australia

r 0 .2 .4 .6 .8 1.0

| : support, the % certainty that this is the correct alternative.
Q : plausibility, the % certainty that this could be the correct alternative.

Figure 14.2: Belief input screen showing some support for "Hawaii"

that all other alternatives are not possible, and thus their plausibilities should
be lowered correspondingly.

Suppose also, for this example, that the user's husband would prefer to go to
Australia but that he is not vary committed to this location because it would
be quite expensive. This would lead to a level of support of, say, 0.2 for the
alternative "Australia", as shown in figure 14.3.

Where would you prefer to go?

Enter support and plausibility values rO .2 .4 . 6—

i ; ; ; i
• 8—

1

—1 °1

2. New York i ; ; ;

• 8—

1

—1 °1

3. Hawaii ^ — 1 — 1 — 1

8—

1

—1 °1

4. Australia — 1 • —)

8—

1

—1 °1 8—

1

—1 °1

| : support, the X certainty that this is the correct alternative.
| | : plausibility, the % certainty that this could be the correct alternative.

Figure 14.3: Belief input screen showing support for both "Hawaii" and "Aus
tralia"

Figure 14.3 shows how the plausibility values will be lowered further by this
additional assignment of support. Finally, suppose that the user is completely
sure that she does not want to go to Paris since she doesn't speak french. She
could therefore lower the plausibility of the alternative "Paris" to 0, indicating
that this is not a possible best location. This is shown in figure 14.4.

APPENDIX A: Chapter 14. The IBIS Belief Interface 231

Where would you prefer to go?

Enter support and p l a u s i b i l i t y values
1. Paris
2. New York
3. Hawaii
4. Aust ra l ia

r 0 .2 .4 .6 .8 l .Oi

| : support, the % certainty that th i s is the correct a l ternat ive.
f~l : plausibility, the % certainty that th i s could be the correct al ternat ive.

Figure 14.4: Final belief input screen

Figure 14.4, then, represents the final belief input screen for this example. The
user would then point with the mouse cursor to a place on the screen which
displays "Cl ick here when finished" and press any of the mouse buttons.
The belief input window would then disappear and the system would continue.

It should be noted that there are several things which the user is not allowed
to do when entering belief. He cannot, for example, move any of the values
below 0.0 nor above 1.0. Nor can he increase the support value greater than the
support value. If the user attempts to perform any of these or other un-allowed
operations, the system will prevent the move and a warning message will appear.

There are also a great many things which the user may do when entering belief;
that is, the scheme provides a very flexible tool for the representing the user's
belief. The best way for a user to understand the possibilities of the input
scheme is to experiment with entering belief for a simple sample system.

• 14.2 Belief Output

The FRO system can output uncertain belief using the same format which is
used for entering uncertain belief. Figure 14.5 shows such an output screen.

For belief output, the user may not alter the values shown. However, two options
will appear in a pop-up menu. One will allow the user to view the output in the
form of a numerical rather than a graphical output. The second option allows
the user to continue with the session. Both options are selected by pointing to
the appropriate box with the mouse cursor and by pressing any of the mouse
buttons.

APPENDIX A: Chapter 14. The IBIS Belief Interface 232

I recommend that the best location for your holiday i s :

r 0 .2 .4 .6 .
^ 1 M i | I

8— —1 °1

2. New York

8— —1 °1

H ^ ^ ^ H H p i ^ ^ ^ H H H I M

8— —1 °1 8— —1 °1

1 1 f

8— —1 °1

K : support, the X certainty that th i s is the correct a l ternat ive.
| | : plausibility, the % certainty that th i s could be the correct a l ternat ive.

Figure 14.5: Belief output screen

APPENDIX A: Chapter 15. Using MKB 233

Chapter 15; Using M K B

M K B (which stands for Make Knowledge Base) is an expert system written
for the FRO shell which is designed to help create problem files for new FRO
expert systems. Since the syntax of FRO design problem files is much more
complex and awkward than FRO control knowledge bases, M K B is by far the
easiest way of creating simple frame based systems. While M K B is not fully
implemented yet, those features which are available are described below

In order to operate M K B , all FRO files as well as the following M K B files should
be in the current DOS directory:

MKB
MKB-CREA
MKB-EDIT
MKB-LOAD
MKB-STOR

M K B is the main problem file and will load the other files as needed. To begin
execution, simply follow normal FRO procedures and, at the DOS prompt, type:

FRO MKB <enter>

Note that a mouse must be used for rule-based FRO. After FRO and M K B
have been loaded, the M K B main menu will appear. The system is menu driven
and is fairly self-explanatory once the user is familiar with some D-S theory and
with the uncertainty interface. The following is a listing of a sample session
in which a system is being created to help select the best vacation destination.
In this example, it is being assumed that the possible vacation destinations
are Paris, New York, Hawaii, or Australia. It is also being assumed that the
factors which determine the best alternative are the main attraction of the area
(with the possible alternatives being either shopping and nightlife or sunshine
and beaches) and cost (with the possible alternatives being cheap, medium, or
expensive). These frames and alternatives are entered into the system first,
followed by the uncertain relationships between them. Note that illustrations of
the pop-up windows which are used in defining these relationships are given after

APPENDIX A: Chapter 15. Using MKB 234

the entire session listing. The session continues with the definition of some initial
level of belief stating belief that users will generally prefer cheaper vacations.
Finally, all of the information entered into the system is written out to files,
one corresponding to the design knowledge base and one corresponding to the
control knowledge base.

APPENDIX A: Chapter 15. Using MKB 235

* MAKE-KB *

* A B y s t e m to help construct the *
* knowledge base for expert systems *
* which use D-S uncertainty *

version 1.00

**** MAIN SYSTEM MENU ****
What do you want to do?

1. Go through tutorial session
2. Create a new knowledge base
3. Load an existing knowledge base
4. View and/or Edit a knowledge base
5. Save a knowledge base
6. Finish

» » 2
(create)

**
SECTION NUMBER 1 : SET UP
**

Enter a short description of what the expert system will be about.

» » Chosing a Vacation Destination

If desired, MAKE-KB can construct a simple "control knowledge base"
which can be used along with the "design (uncertainty) knowledge base"
to complete an expert system. Do you want a control knowledge base?

1. yes
2. no

» » 1

APPENDIX A: Chapter 15. Using MKB 236

**
SECTION NUMBER 2 : FRAME DEFINITION
**

The first step is to define each "concept" and its possible values
which might be used in the system. This is done by defining "frames".
We will now begin entering the names and the possible values of
frames.

Enter a name for frame number 1
(or just press "enter" i f a l l frames have been given)

» » MAIN ATTRACTION

Enter alternative number 1 for frame "MAIN ATTRACTION"
(or just press "enter" i f a l l alternatives have been given)

» » shopping and nightlife

Enter alternative number 2 for frame "MAIN ATTRACTION"
(or just press "enter" if a l l alternatives have been given)

» » sunshine and beaches

Enter alternative number 3 for frame "MAIN ATTRACTION"
(or just press "enter" i f a l l alternatives have been given)

APPENDIX A: Chapter 15. Using MKB 237

What will the frame "MAIN ATTRACTION" be used for?

1. Accepting information input from the user
2. Providing conclusion output to the user
3. Both input and output
4. Neither input nor output (e.g. intermediate conclusions)
5. Unknown

» » 1
(input).

*** The frame "MAIN ATTRACTION" has been defined.

Enter a name for frame number 2
(or just press "enter" if a l l frames have been given)

» » COSTS

Enter alternative number 1 for frame "COSTS"
(or just press "enter" if a l l alternatives have been given)

» » cheap

Enter alternative number 2 for frame "COSTS"
(or just press "enter" i f a l l alternatives have been given)

» » medium

Enter alternative number 3 for frame "COSTS"
(or just press "enter" if a l l alternatives have been given)

» » expensive

APPENDIX A : Chapter 15. Using MKB 238

Enter alternative number 4 lor frame "COSTS"
(or just press "enter" if a l l alternatives have been given)

What will the frame "COSTS" be used for?

1. Accepting information input from the user
2. Providing conclusion output to the user
3. Both input and output
4 . Neither input nor output (e.g. intermediate conclusions)
5. Unknown

» » 1
(input).

*** The frame "COSTS" has been defined.

Enter a name for frame number 3
(or just press "enter" if a l l frames have been given)

» » LOCATION

Enter alternative number 1 for frame "LOCATION"
(or just press "enter" if a l l alternatives have been given)

» » Paris

Enter alternative number 2 for frame "LOCATION"
(or just press "enter" if a l l alternatives have been given)

» » New York

APPENDIX A: Chapter 15. Using MKB 2 3 9

Enter alternative number 3 for frame "LOCATION"
(or just press "enter" if a l l alternatives have been given)

» » Hawaii

Enter alternative number 4 for frame "LOCATION"
(or just press "enter" if a l l alternatives have been given)

» » Australia

Enter alternative number 6 for frame "LOCATION"
(or just press "enter" if a l l alternatives have been given)

What will the frame "LOCATION" be used for?

1. Accepting information input from the user
2. Providing conclusion output to the user
3. Both input and output
4. Neither input nor output (e.g. intermediate conclusions)
5. Unknown

» » 2
(output).

*** The frame "LOCATION" has been defined.

Enter a name for frame number 4
(or just press "enter" if a l l frames have been given)

» »

*** Al l frames have been defined

APPENDIX A: Chapter 15. Using MKB 240

**
SECTION NUMBER 3
**

The next step is to define the relationships between each of the
frames

Select a frame which should have a link to another frame,
(or select alternative #1 i f a l l links have been given)

(MAIN ATTRACTION).

Which frame should "MAIN ATTRACTION" be linked to?

1. COSTS
2. LOCATION

» » 2
(LOCATION) .

Which propositions from frame "LOCATION" are IMPLIED BY the
proposition "shopping and nightlife" from frame "MAIN ATTRACTION"?

1. Paris
2. New York
3. Hawaii
4. Australia

» » (Uncertainty entered) . (see figure 15.1)

1.
2. 1
3. i

4.]
» » 2

*** Finished defining links ***
MAIN ATTRACTION
COSTS
LOCATION

APPENDIX A: Chapter 15. Using MKB 241

Which propositions from frame "LOCATION" are IMPLIED BY the
proposition "sunshine and beaches" from frame "MAIN ATTRACTION"?

1. Paris
2. New York
3. Hawaii
4. Australia

» » (Uncertainty entered) . (see figure 15.2)

*** The link number 1 has been defined.

Select a frame which should have a link to another frame,
(or select alternative #1 i f a l l links have been given)

1. *** Finished defining links ***
2. MAIN ATTRACTION
3. COSTS
4. LOCATION

» » 3
(COSTS).

Which frame should "COSTS" be linked to?

1. MAIN ATTRACTION
2. LOCATION

» » 2
(LOCATION).

APPENDIX A: Chapter 15. Using MKB 242

Which propositions from frame "LOCATION" are IMPLIED BY the
proposition "cheap" from frame "COSTS"?

1. Paris
2. New York
3. Hawaii
4. Australia

» » (Uncertainty entered). (see figure 15.3)

Which propositions from frame "LOCATION" are IMPLIED BY the
proposition "medium" from frame "COSTS"?

1. Paris
2. New York
3. Hawaii
4. Australia

» » (Uncertainty entered) . (see figure 15.4)

Which propositions from frame "LOCATION" are IMPLIED BY the
proposition "expensive" from frame "COSTS"?

1. Paris
2. New York
3. Hawaii
4. Australia

» » (Uncertainty entered) . (see figure 15.5)

*** The link number 2 has been defined.

APPENDIX A: Chapter 15. Using MKB 243

Select a frame which should have a link to another frame,
(or select alternative #1 if a l l links have been given)

1. *** Finished defining links ***
2. MAIN ATTRACTION
3. COSTS
4. LOCATION

» » 1
(*** Finished defining links ***).

**
SECTION NUMBER 4 : INITIAL BELIEF

If you have some belief about any of the frames, you can add that
belief into the system now, do you wish to do so?

1. yes
2. no

» » 1
(desired).

Select a frame which should have a link to another frame,
(or select alternative #1 if a l l links have been given)

1. *** Finished specifying init ial belief ***
2. MAIN ATTRACTION
3. COSTS
4. LOCATION

» » 3
(COSTS).

APPENDIX A: Chapter 15. Using MKB 244

Which do believe to be the best alternative for frame "COSTS"?

1. cheap
2. medium
3. expensive

» » (Uncertainty entered) . (see figure 15.6)

*** Your belief about frame "COSTS" has been defined.

Select a frame which should have a link to another frame,
(or select alternative #1 i f a l l links have been given)

1. *** Finished specifying init ial belief ***
2. MAIN ATTRACTION
3. COSTS
4. LOCATION

» » 1
(*** Finished specifying init ial belief ***).

*** Al l init ial belief has been defined

**** MAIN SYSTEM MENU ****
What do you want to do?

1. Go through tutorial session
2. Create a new knowledge base
3. Load an existing knowledge base —
4. View and/or Edit a knowledge base
5. Save a knowledge base
6. Finish

» » 5

APPENDIX A : Chapter 15. Using MKB 245

SECTION NUMBER 6 : WRITING INFORMATION INTO KB FILES

Enter a file name to use for creating the design knowledge base.

» » SAMPL-ll.DKB

Enter a fi le name to use for creating the control knowledge base.

» » SAMPL-ll.CKB

Creating design knowledge base....
adding frame:MAIN ATTRACTION
adding frame:COSTS
adding frame:LOCATION
adding link:MAIN ATTRACTION to LOCATION
adding link:COSTS to LOCATION

Creating control knowledge base....

**** MAIN SYSTEM MENU ****
What do you want to do?

1. Go through tutorial session
2. Create a new knowledge base
3. Load an existing knowledge base
4. View and/or Edit a knowledge base
5. Save a knowledge base
6. Finish

» » 6

(finish).

*** Session Completed ***

APPENDIX A: Chapter 15. Using MKB 246

Which propositions from frame "LOCATION" are IMPLIED BY the proposition
"shopping and nightlife" from frame "MAIN ATTRACTION"?

Enter support and plausibility values
1. Paris
2. New York
3. Hawaii
4. Australia

| : support, the X certainty that this is the correct alternative.
: plausibility, the X certainty that this could be the correct alternative.

Figure 15.1: Entering the relationship between "shopping and nightlife" and the
best vacation location

Which propositions from frame "LOCATION" are IMPLIED BY the proposition
"sunshine and beaches" from frame "MAIN ATTRACTION"?

Enter support and plausibility values
1. Paris
2. New York
3. Hawaii

----- 4.-Australia . r . .

*jf| : support, the X certainty that this is the correct alternative.
| | : plausibility, the X certainty that this could be the correct alternative.

Figure 15.2: Entering the relationship between "sunshine and beaches" and the
best vacation location

APPENDIX A: Chapter 15. Using MKB 247

Which propositions from frame "LOCATION" are IMPLIED BY the proposition
"cheap" from frame "COSTS"?

Enter support and plausibility values
1. Paris
2. New York
3. Hawaii
4. Australia

| : support, the X certainty that this is the correct alternative.
| | : plausibility, the % certainty that this could be the correct alternative.

Figure 15.3: Entering the relationship between "cheap" cost and the best vaca
tion location

Which propositions from frame "LOCATION
"medium" from frame "COSTS"?

Enter support and plausibility values
1. Paris

" are IMPLIED BY the proposition

r 0 .2 .4 .6 .8 l.Oi

i : : : > i i i i i i
2. New York J 1 I I I 1 1 I 1 I L

3. Hawaii
1 1 1 1 1 1 1 1 1 1

fc=l 1

| : support, the % certainty that this is the correct alternative.
f~| : plausibility, the % certainty that this could be the correct alternative.

Figure 15.4: Entering the relationship between "medium" cost and the best
vacation location

APPENDIX A: Chapter 15. Using MKB 248

Which propositions from frame "LOCATION" are IMPLIED BY the proposition
"expensive" from frame "COSTS"?

Enter support and plausibility values
1. Paris
2. New York
3. Hawaii
4. Australia

| : support, the X certainty that this is the correct alternative.
: plausibility, the X certainty that this could be the correct alternative.

Figure 15.5: Entering the relationship between "expensive" cost and the best
vacation location

Which do believe to be the best alternative for frame "COSTS"?

Enter support and plausibility values
1. cheap
2. medium
3. expensive

i-0 .2 .4 .6 .8 1.0,

| : support, the X certainty that this is the correct alternative.
| | : plausibility, the X certainty that this could be the correct alternative.

Figure 15.6: Entering the initial belief about desired vacation cost

APPENDIX A: Chapter 15. Using MKB 249

M K B is designed to incorporate many more features than initial knowledge base
creation, as can be seen from the options listed on the main menu. However
several of these capabilities are not yet implemented in the system. While M K B
will load existing knowledge bases and display their frames and links, it will not
provide the tutorial session or edit existing terms. The user is free to explore
the menu options of M K B as those options which are not yet implemented will
display suitable messages.

APPENDIX A: Chapter 16. Design Problem Files 250

chapter 16: Design Problem Files
As stated in the previous section, the execution of the M K B program results in
the creation of two problem files. Since these are standard ASCII files, they can
also be created initially without the aid of M K B . Regardless of how they are
first created, the problem files can be accessed and altered with any ASCII file
editor. The control problem file is much like the problem files described in Part I
of this manual and will be examined in subsequent chapters. This chapter deals
with the design problem file which, while it too consists of a series of statements,
is quite different in form from the control problem file.

The design problem file may contain comments using the same syntax as de
scribed for rule-based problem files in Part I. Apart from comments, the three
types of statements which can be used are add_f rame. add_link, and addJbpa.
Each of these statement types is described below. Generally, the problem file
should contain all of the add_f rame statements first, followed by the add-link
and then add_bpa statements. More precisely, an add-link or add-bpa state
ment cannot be given before any of the frames mentioned in the statement have
been defined with an add-frame statement.

• 16.1 Adding Frames

The first type of statements to appear in a FRO design problem file are add-frame
statements which define the frames which will be used in the system. These
statements supply the name to be used and the names of each of the possible
alternatives. The syntax for add-frame statements is as follows:

add_f rame (.NAME, [ALT 1, ALT 2, ...]) .

Where NAME is the name of the frame and [ALT 1, ALT 2, ...] is the list of
names for the possible alternatives. Both the frame name and the alternative
names must be atoms or strings (both of which were defined in Part I). An
example of an add-frame statement is as follows:

add_frame('LOCATION'.
[•Par is ' .

APPENDIX A: Chapter 16. Design Problem Files 251

•New York ' ,
•Hawaii ' .
•Aus t r a l i a ']) .

It can be seen that this is a less English-like syntax than those used in the rule-
based problem files. Like rule-based statements, though, spaces and carriage
returns are ignored by the system and the end of the statement is indicated by
a period. The example above is an add J ram e statement created by M K B and
thus it shows MKB's style convention for adding spaces, carriage returns, etc.
A similar style is recommended for legibility of the problem file though it is not
required. For example, if the place names were not capitalized in the statement
given above, then the following statement would produce equivalent results:

add_frame('LOCATION',[paris,'new york ' .hawai i .aus t ra l ia]) .

• 16.2 Adding Links

The second type of statement in the design problem file is the add-link state
ment. These statements are used to define the uncertain inferential relationships
between two frames. These are the most complex statements and are best cre
ated using the graphical interface of M K B , however they can also be created
and manipulated directly. The format for an add-link statement is as follows:

add-link (FRAME A, FRAME B,
HALT AI, BPA BI) , (ALT A2, BPA B2)]) .

This statement shows how the alternatives of a first frame (FRAME A) imply
belief about the alternatives of a second frame (FRAME B). FRAME A and
FRAME B, then, are the names of these two frames. Next, for each of FRAME A's
alternatives, the statement gives the name of that alternative, ALT AI, and
a corresponding basic probability assignment BPA Bl stating what should be
believed about the alternatives of FRAME B if it were known with certainty that
alternative ALT AI where the correct answer for FRAME A. A basic probability
assignment has the following syntax:

KlALTil,ALTi2. . . .] , Mi) . ([ALTjl, ALTj2, . . .] . Mj)]

Where [ALT il, ALT i2, . . .] is a list of alternatives which make up a D-S propo
sition (i.e. the correct alternative is believed to be in this list) and Mi is a real
number representing the basic probability number for that proposition. The
sum of all basic probability numbers for the entire basic probability assignment
must equal 1.0. An example of an add-link statement is as follows:

APPENDIX A: Chapter 16. Design Problem Files 252

add.linkCMAIN ATTRACTION', 'LOCATION*,
[('shopping and n i g h t l i f e ' ,

[(['New York ' , ' P a r i s '] , 0.7),
([' A u s t r a l i a ' , 'New York ' , "Pa r i s '] , 0.2) .
([' A u s t r a l i a ' , 'Hawai i ' . 'New York ' , ' P a r i s '] . 0 .1)]) ,

('sunshine and beaches',
[(['Hawai i '] . 0.3) .
([' A u s t r a l i a ' , 'Hawai i '] , 0.7)])

]) .

This statement is created by M K B and is, in fact, the statement generated
by figures 15.1 and 15.2. Notice again that while spaces and carriage returns
are ignored by the system, they are very important for making the statement
legible. It should be noted that while add-link statements can be created with
very little understanding of D-S theory using M K B , this cannot be said when
the statements are accessed directly as shown here.

• 16.3 Adding Initial Belief

The final statement type is the add-bpa statement. These statements can be
used for adding uncertain belief about the best alternative for some frame, should
such belief be known at the time of the problem file development. The format
for add.bpa statements is as follows:

add-bpa (FRAME, BPA).

Where FRAME is the name of the frame to which the belief is being added and
BPA is a basic probability assignment on that frame defined using the same
syntax as shown above. An example of an add-bpa statement which represents
the uncertain belief displayed in figure 15.6 is as follows:

add.bpa('COSTS'.
[(['cheap'] , 0.1),
(['cheap' , 'medium']. 0 .1) .
(['cheap' , •expensive', 'medium'], 0 .8)]) .

APPENDIX A: Chapter 17. Control Problem Files 253

chapter 17: Control Problem Files
The previous chapter described the design problem file which defines all of the
major uncertain variables in the system and the relationships between them.
It has been stated earlier that when the user enters belief for some frame, the
system automatically propagates the belief to every related frame. However
the design knowledge base contains no information about which questions to
ask, when to ask questions, and how to output or interpret the results. These
functions are performed by the control problem file.

The control problem file for problems which contain uncertainty is largely the
same as the rule-based problem files described in Part I of this manual. Control
problem files contain goal statements, fact statements, rule statements, and
questions statements in exactly the same format as outlined in Part I. However
certain additional features may be used. First, an alternative form of question
definition statement may be used for enabling the system to use IBIS screens
to ask questions with uncertainty. Second, an additional series of command
proposition terms may be used for adding uncertain belief to the frame network
and for obtaining resultant belief back from it. These features are described in
the following sections.

• 17.1 Question Statements for Uncertainty

In order for the FRO system to ask questions involving uncertainty, it must
know the exact wording of the question to ask, the possible alternatives, and so
on. This information is, in many ways, similar to the information required for
asking categorical questions as defined in Part I. As such, an uncertain question
definition statement must be defined which is similar to the categorical question
definition statement defined in Part I. The syntax for an uncertain question
definition statement is as follows:

question-un # :
FRAME

ask-un QUESTION
a l t [ALT 1, ALT 2, ...]

APPENDIX A: Chapter 17. Control Problem Files 254

r a i t IRALT 1, RALT 2, ...]
expl EXPLANATION.

or, alternatively:

FRAME
ask-un QUESTION
a l t [ALT 1, ALT 2, ...]

r a i t IRALT 1, RALT2,...]
expl EXPLANATION.

In these statements, is the statement number assigned to the statement
by the user, "FRAME " is the name of the frame which is being asked about,
"QUESTION " is the actual question which should be asked of the user, [ALT 1,
ALT 2, ...] is the list of alternatives which the system offers the user as the
possible answers to the question, [RALT 1, RALT 2, ...] is the list of return
alternatives the system uses internally to represent the possible alternatives, and
EXPLANATION is an explanation of the question which the user can access upon
request. Both the list of return alternatives and the explanation are optional, but
if they are used they must appear in the order shown here. If the list of return
alternatives is used, then it must correspond exactly to the list of alternatives
used to define the frame and the list of alternatives may contain any character
strings. If the list of return alternatives is not used, then the list of alternatives
must correspond exactly to the list used to define the frame. Note that both of
these lists must be enclosed in square brackets, not parentheses.

Consider, for example, a question statement that is to be used to inquire about
some frame 'LOCATION' which offered the following list of alternatives: [paris,
'new york ' , hawaii, austra l ia] . Either of the following statements, then,
would adequately define an appropriate question:

'LOCATION' ask.un $Where would you prefer to go?$
a l t [paris, 'new york ' , hawaii, aus t ra l ia] .

question_un 42 :
•LOCATION'
ask.un $Where would you prefer to go?

a l t [$Paris, France!,
$New York, U S A $,
$Hawaii. U S A $.
$Austral ia , (the grand Australian tour)$]

r a i t [paris, 'new york ' , hawaii, austra l ia]
expl $The system would l i k e to know where your preferred

vacation destination i s . Your options are l imi ted

APPENDIX A: Chapter 17. Control Problem Files 255

to one and only one of the locations l i s t e d here.f.

• 17.2 Additional Command Propositions

| 17.2.1 Loading the Design Problem File

syntax: load-un FILE-NAME

A FRO-based system which includes uncertainty is executed by loading the rule-
based control problem file in the same manner as described in Part I. One of
the first tasks of the control problem file is to load the design problem file. For
example, if the design problem file is called SAMPLE.DKB, the first few lines of
the control problem file may be the following:

goal 1 : : session i s completed.

rule 1 :
session i s completed

i f load.un $SAMPLE.DKB$
and

etc ...

| 17.2.2 Asking Questions

syntax: query.un FRAME

As shown above, question definition statements are included in the control prob
lem file for uncertainty questions in a similar manner to that of categorical
questions. However the circumstances under which these questions are asked is
quite different in the two systems. While the system automatically asks cate
gorical questions whenever they concern the current goal, the system must be
instructed exactly when to ask uncertainty questions. This is done through the
use of the query_un command. When the system encounters such a command in
the premise of some rule, it will locate the uncertainty question corresponding
to the FRAME name supplied in the query_un command and proceed to ask the
question. The user's response is then automatically added to the frame and the
belief is propagated around the frame network.

I 17.2.3 Printing Uncertain Belief

APPENDIX A: Chapter 17. Control Problem Files 256

syntax: print.un(AfESSAGE, FRAME, PROP-LIST)

The print.un command can be used to instruct FRO to report the uncertain
belief for any frame. The belief is displayed in a pop-up IBIS window as described
in chapter 14. MESSAGE is a character string message which is printed across
the top of the pop-up window, FRAME is the name of the frame which is to be
reported on, and PROP-LIST is a list of the propositions for which the belief is
to be given. The syntax for the PROP-LIST is as follows:

IALT1 . IALT2\. ...]

where " [[ALT 1] , [ALT 2] , . . .] " is a list of the alternatives which make up
some proposition. For example, the print.un statement which was generated
by the M K B session shown in chapter 15 is as follows:

and pr int .un ($The best alternative for "LOCATION" i s : $,
•LOCATION*.

[[' P a r i s '] ,
['New Y o r k '] ,
['Hawai i '] .
['Aust ra l ia ']])

While this is the most common usage of the print.un command, some variations
also exist, as follows:

syntax: print.un(MESSAGE, BELIEF.FN)

This form of print.un can be used to display a belief function directly, rather
than referring to a frame from which to retrieve a belief function for display. In
this form, MESSAGE is a message to appear at the top of the pop-up window
and BELIEF-FN is a belief function which has the following syntax:

(lALTl . Sl.PLl). ([ALT 2] . S2, PL2). ...]

Where " [ALT 1] " is an alternative, SI is a real number representing the support
value for that alternative, and PLl is a real number representing the plausibility
value. Note that this is not the form of a true D-S belief function, but rather it
is more akin to a "singleton support interval function". It should also be noted
that this form of print.un would probably be used very rarely.

syntax: print.un (MESSAGE, BPA, PROPXIST)

This form of print.un is similar to the previous form but it can be used when
the information to be displayed is in the form of a basic probability assignment
rather than a belief function. The syntax for both BPA's and PROP-LIST'B has
been given previously.

APPENDIX A: Chapter 17. Control Problem Files 257

| 17.2.4 Retrieving Uncertain Belief

syntax: get.bp&.rmiQUESTION, PROP-LIST) is BPA

This command allows the system to obtain uncertain input from the user without
automatically adding that belief to a frame and causing it to be propagated
around the frame network. The QUESTION statement provides the text of the
question to be asked of the user and the PROP-LIST (the syntax of which is
given above) provides the alternatives to offer. The information entered by the
user is returned in the value of the proposition is the form of a basic probability
assignment, BPA (note that this is the only command proposition which has a
value other than an assumed "is true").

| 17.2.5 Storing Uncertain Belief

syntax: store_un(FRAME, BPA)

This command causes a basic probability assignment to be added to a frame
and propagated around the frame network. FRAME is the name of the frame
to which the belief is to be added and BPA is the basic probability assignment
being added (the syntax for basic probability assignments is given above).

I 17.2.6 Retrieving the Best Alternative

syntax: best_un(FKAME, PROP-LIST, BEST-PROP, QUALITY)

This command accesses the frame network to obtain the alternative which has
the most belief for being the correct answer, as well as a measure of how much
confidence can be placed on the assessment. The FRAME is the name of the
frame for which the best alternative is desired and the PROP-LIST is the list
of alternatives for that frame (syntax as above). The BEST-PROP and the
QUALITY are supplied as variables in the control problem file and when the
term is solved as the current goal they will have the correct values assigned to
them (BEST-PROP is returned as the name of an alternative enclosed in square
brackets and QUALITY is returned as a real number between 0 and 1). The rule
in following example obtains the best value for some frame and then prints that
information on the screen:

rule 42 :
the_best_alternative is found

i f best_un('LOCATION',
[[' P a r i s '] .

APPENDIX A: Chapter 17. Control Problem Files 258

['New York'],
['Hawaii'],
['Australia']]. [BEST], QUALITY)

and print [$The best location for your vacation would be $,
BEST, $ and my degree of confidence in this
decision is $, QUALITY].

APPENDIX A: Chapter 18. Running FRO 259

Chapter 18; Running FRO

A FRO program which includes frame-based inexact reasoning is operated in an
identical manner to rule-only FRO programs (described in Part I, chapter 11 of
this documentation). The only difference is the use of IBIS input screens, which
has been described in chapter 14. Note that because of these screens, a mouse is
required for operating frame-based FRO whereas it is an option with rule-based
FRO. Note also that although the control rules used in a frame-based FRO
application can be traced, "why" queried, and so on, there is no real tracing of
the D-S belief propagation at FRO's present stage of development.

APPENDIX A: Chapter 19. Sample Files 260

chapter 19; Sample Files

• 19.1 Sample file 1: Design Knowledge Base

The following is a simple design knowledge base created by the MKB session
listed in chapter 15. The domain is selecting an appropriate vacation destination.

File: " S A M P L - 1 1 .DKB"

mmmm S A M P L - U . D K B mmmm
XXX Chosing a vacation destination

xxxxxxxxxxxx frames xxxxxxxxxxxx
add.frame('MAIN ATTRACTION',

['shopping and nightlife',
'sunshine and beaches']),

add.frame('COSTS'.
['cheap',
'medium',
'expensive']). —

add.f rame ('LOCATION'. — .'.
['Paris'.
•New York'.
•Hawaii'.
'Australia']).

XXXXXXXXXXXX links xxxxxxxxxxxx
add_link('MAIN ATTRACTION', 'LOCATION',

[('shopping and nightlife',
[(['New York'. 'Paris']. 0 . 7) ,
(['Australia', 'New York', 'Paris']. 0 . 2) ,
(['Australia', 'Hawaii'. 'New York'. 'Paris'], 0 . 1)]) ,

APPENDIX A: Chapter 19. Sample Files 261

('sunshine and beaches',
[(['Hawaii'], 0.3),
(['Australia', 'Hawaii'], 0.7)])

add.link('COSTS', 'LOCATION'.
[('cheap',

[(['New York'], 0.1),
(['Hawaii'. 'New York']. 0.8).
(['Hawaii'. 'New York'. 'Paris']. 0.1)]).

— ('medium', - - —
[(['Hawaii'. 'New York']. 0.6),
(['Hawaii*. 'New York', 'Paris'], 0.3),
(['Australia'. 'Hawaii', 'New York'. 'Paris']. 0.1)]).

('expensive',
[(['Australia']. 0.4).
(['Australia', "Paris'], 0.4),
(['Australia'. 'New York', 'Paris'], 0.2)]) _

]) .

XXXXXXXXXXXX init ial BPA's xxxxxxxxxxxx
add.bpaCCOSTS',

[(['cheap'], 0.1).
(['cheap', 'medium'], 0.1),
(['cheap', 'expensive', 'medium'], 0.8)]).

APPENDIX A: Chapter 19. Sample Files 262

• 19.2 Sample file 2: Control Knowledge Base

The following is the control knowledge base created by the MKB session listed in
chapter 15 which accompanies the design knowledge base listed in the previous
section.

File: "SAMPL-ll.CKB"

mmmm S A M P L E - H . C K B XXXXXXXXXXXX
XXX Chosing a vacation destination

mmmm g o a l mmmm
goal session is complete.

XXXXXXXXXXXX rules XXXXXXXXXXXX
rule session is complete

if load.un $SAMPL-11.DKB$
and query_un 'MAIN ATTRACTION'
and query_un 'COSTS'
and print.un ($The best alternative for "LOCATION'* is:$,

'LOCATION'. [
['Paris'].
['New York'].
['Hawaii'],
['Australia']]). _

XXXXXXXXXXXX questions XXXXXXXXXXXX
'MAIN ATTRACTION' ask.un $What is the best alternative for "MAIN
ATTRACTION"?! - ~:

ait [_ _ _ . ; i ;
'shopping and nightlife',
'sunshine and beaches'].

'COSTS' ask.un $What is the best alternative for "C0STS"?$
alt [

'cheap'.
'medium*,
'expensive'] .

APPENDIX A: Chapter 19. Sample Files 263

19.3 Sample file 3: Revised Control Knowledge Base

The following is a revision of the previously listed control knowledge base which
is customize for the particular application. The wording of the questions has
been changed and the uncertain D-S results are interpreted by the program.

File: "SAMPL-12.CKB"

XXXXXXXXXXXX SAMPLE-ll.CKB XXXXXXXXXXXX
XXX Chosing a vacation destination

XXXXXXXXXXXX goal XXXXXXXXXXXX
goal 1 :: location is suggested.

XXXXXXXXXXXX rules XXXXXXXXXXXX
rule 1 :

location is suggested
i f load.un $SAMPL-11.DKB$

and query_un 'MAIN ATTRACTION*
and query_un 'COSTS*
and best.un ('LOCATION*.

[['Paris'].
['New York*].
['Hawaii'].
['Australia']], [BEST].QUALITY)

and result(BEST.QUALITY) 1B analyzed.

rule 2 :: T ' ~~ ~
result(LOCATION.QUALITY) is analyzed

If QUALITY > 0.7
and print [$I can strongly recommend that you go to $,LOCATION].

rule 3 ::
resuit(LOCATION.QUALITY) is analyzed

i f QUALITY > 0.4
and print [$My best guess is that you try $.LOCATION].

rule 4 :
result(LOCATION,.) is analyzed

i f print [$It seems as though $,LOCATION,
$ would suit your needs, but I suggest that

APPENDIX A: Chapter 19. Sample Files 264

you try to get some more information first
because I'm not very sure$].

xxxxxxxxxxxx questions xxxxxxxxxxxx
'MAIN ATTRACTION' ask.un $What is the main attraction that you

are interested in?$
alt ['shopping and nightlife',

'sunshine and beaches'].

'COSTS' ask.un tWhat price range are we talking about?$
alt ['cheap',

'medium',
'expensive'].

