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Abstract 

The work described in this thesis stems from the idea that expert systems should be able 

to accurately and appropriately handle uncertain information. The traditional approaches to 

dealing with uncertainty are discussed and are shown to contain many inadequacies. 

The Dempster-Shafer, or D-S, theory of evidence is proposed as an appealing theoretical basis 

for representing uncertain knowledge and for performing inexact reasoning in expert systems. 

The D-S theory is reviewed in some detail; including its approaches to representing concepts, 

to representing belief, to combining belief and to performing inference. 

The D-S implementation approaches pursued by other researchers are described and critiqued. 

Attempts made early in the thesis research which failed to achieve the important goal of con­

sistency with the D-S theory are also reviewed. 

Two approaches to implementing D-S theory in a completely consistent manner are discussed 

in detail. It is shown that the second of these systems, a frame network approach, has led to 

the development of a fully functional prototype expert system shell called FRO. In this system, 

concepts are represented using D-S frames of discernment, belief is represented using D-S belief 

functions, and inference is performed using stored relationships between frames of discernment 

(forming the frame network) and D-S belief combination rules. System control is accomplished 

using a discrete rule-based control component and uncertain input and output are performed 

through an interactive belief interface system called IBIS. Each of these features is reviewed. 

Finally, a simple but detailed example of an application of a frame network expert system is 

provided. The FRO system user's documentation is provided in the appendix. 
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Chapter 1 

Introduction 

This thesis reports on a research project which explored the use of the Dempster-Shafer theory 

for inexact reasoning in expert systems. This chapter provides introductions to the field of 

inexact reasoning, to the background of the research project, and to the structure of the thesis 

itself. 

1.1 Introduction to Inexact Reasoning in Expert Systems 

The field of artificial intelligence (AI) can be though of as the art and science of making 

a computer model human thinking. Two clear motivations for studying AI are first, to use 

computer models to achieve a better understanding of human thinking and second, to make 

computers more efficient, since the human brain is an extremely effective computer for most 

tasks. Under the latter category, the most direct application of AI approaches and techniques 

has been in the field of expert systems. Expert systems are computer programs which are 

used to solve problems or perform other reasoning tasks in a manner analogous to the way a 

human expert solves problems. The term "expert system" better describes a programming style 

or approach than a radically new and identifiable class of programs. Some characteristics of 

this style are that the code is written out in an English-like, modular way (rules, for example) 

which mimics the way a human might describe what he knows; that the program communicates 

with the user in an English-like and easy to understand manner; that the performance of the 

program depends first on shear volume of code (as much of the human's knowledge as possible 

1 



Chapter 1. Introduction 2 

should be encoded) and only secondly on the efficient structuring of the program (which is the 

essence of performance in most programs); that the program can explain and justify its results 

to some extent; and, finally, that the program can deal with uncertain and missing information. 

This last characteristic is of particular importance for expert systems in construction man­

agement, since decision making and problem solving in this field are invariably founded on 

uncertain information-often exclusively so. In order for a construction management expert 

system to approach human-like (or even useful) performance, then, it must accurately reflect 

uncertainty in its expert knowledge, it must accommodate uncertain input from the user, it 

must accurately account for these uncertainties in its reasoning, and it must rationally interpret 

and report the resulting uncertainty in its conclusions. The performance of all these tasks is 

called inexact reasoning. 

Several approaches to inexact reasoning have been proposed for use in expert systems. In 

general, only the simplest of these have achieved any widespread usage. Yet the performance of 

these simple popular approaches falls far short of current state-of-the-art techniques. One such 

advanced technique is based on a theory outlined by Glen Shafer in his book, A Mathematical 

Theory of Evidence [57]. This theory has come to be known as the Dempster-Shafer, or D - S , 

theory. D-S theory is richly expressive and academically impressive. However the development 

of acceptable implementations of the theory for inexact reasoning is not straightforward and 

has been somewhat slow in coming. The research described by this thesis has made several 

significant steps towards the rectification of this situation. 

1.2 Introduction to the Research Project 

The research project documented in this thesis was initiated in the spring of 1986 by Dr. Alan 

Russell and Dr. William Caselton (both Associate Professors in the department of Civil Engi­

neering at the University of British Columbia). The initial goal of the project was to explore the 

opportunities offered by the new field of expert systems to the field of construction management. 
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Thomas Froese was hired as the research engineer for the project. 

It was found that almost all published work in expert systems for civil engineering dealt with 

the development of expert system prototypes for specific engineering applications. While these 

works generally advance the state-of-the-art in available solution approaches for the areas of 

application, they rarely contribute to the discipline of engineering expert systems in general. 

It was therefore decided that this research project should examine "lower level" issues and 

focus on some aspect of the expert systems themselves rather than on a specific application. 

In particular, it was decided that the ability of expert systems to deal with uncertainty was 

vital to most civil engineering and project management applications and should be examined 

in some detail. 

This line of inquiry was pursued for a period of over two years and focused primarily on the 

implementation of a D-S based inexact reasoning system. More specifically, the following topics 

were addressed; with efforts ranging from theoretical enhancements of the D-S theory itself to 

purely practical implementation and programming concerns: 

• It was determined that D-S theory held great potential as the basis for an expert system 

which managed uncertainty in such a way that the user could place utmost confidence in 

the accuracy and reasonableness of the results. 

• It was found that it is possible to create a system in which all belief representation and 

inference is fully consistent with the D-S theory, though most previous implementation 

attempts have not succeeded in doing so. It was determined that full consistency is of 

utmost importance in creating a reliable system. The development of a fully consistent 

D-S system became the prime goal of the research project. 

• A functional, fully consistent implementation was eventually developed. This implemen­

tation took the form of an expert system shell program which could be used to create 

expert systems for any specific applications. 
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• User interface issues for D-S belief were examined in some detail and an interactive graph­

ical belief interface approach was developed. 

• It was determined that a D-S representation is not well suited for representing procedural 

knowledge in an expert system. The shell program therefore incorporates a separate 

rule-based component which performs the procedural or control functions of the system. 

The results of the research include the following achievements: 

• At least four papers published or submitted for publication (these are listed in section 1.3). 

• An Interactive Belief Interface System, or IBIS , which provides a simple graphical input 

and output of uncertain belief using a D-S representation. 

• A full-featured rule-based expert system shell program which can be used either as a 

control module for a D-S based system or can be used as a stand-alone shell comparable 

with many commercially available shells. This program is called R O for Rules Only. 

RO was used by Barry Chilibeck in the Civil Engineering Department at UBC to create 

W A S T E , a significant environmental engineering expert system. 

• A fully consistent D-S based expert system shell. Since the knowledge representation in 

the shell incorporates both D-S frames of discernment and control rules, the program 

is called F R O , for Frame-Rule Organizer. FRO utilizes both IBIS and RO as well as 

a automated knowledge base creation system called M K B , for Make Knowledge Base. 

The FRO program represents the culmination of the research project's accomplishments. 
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1.3 Introduction to this Thesis 

This Thesis is structured as follows: 

Chapter 2 discusses the traditional approaches to handling uncertainty in expert systems. These 

include Bayesian probability theory and MYCIN certainty factor theory. 

Chapters 3 through 6 provide a thorough examination of D-S theory. These chapters cover 

concept representation, belief representation, belief combination and inference respectively. 

Chapter 7 reviews other researchers' efforts at interpreting and implementation D-S theory for 

inexact reasoning. Most of these systems are found to be non-consistent with D-S theory-

the distinction between non-consistent and consistent Bystems arises in this chapter and the 

advantages of the latter approach are stressed. 

Chapter 8 discusses non-consistent implementation attempts made early in this research project. 

Chapter 9 describes the project's first major consistent implementation attempt. This is referred 

to as the global frame approach. 

Chapter 10 provides a detailed account of the frame network implementation approach. The 

frame network approach to inexact reasoning incorporates all of the achievement of the research 

project. This approach forms the basis of the FRO expert system shell. 

Chapter 11 focuses on several aspects of working with belief functions, including the specification 

of both evidential and relational belief functions and the interpretation of system conclusions 

expressed in terms of belief functions. The IBIS belief input system is introduced in this chapter. 

Chapter 12 illustrates the use of a D-S based expert system through a detailed example taken 

from the field of construction management. Some issues of incorporating uncertainty in knowl­

edge base design are also discussed. 

Chapter 13 provides a brief summary and conclusion. 
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The appendix to this thesis contains the complete user documentation for the FRO expert 

system shell. This document provides a detailed examination of the entire system from a user's 

point of view. 

Note that chapters 2 through 7 inclusive incorporate review and critique of other researchers' 

work (with the notable exceptions of section 4.5 on classes of support function, section 5.2 

on alternative belief combination rules and, to some extent, chapter 6 in D-S inference). The 

material described in the remaining chapters represents the efforts of this research project. 

Finally, much of this thesis is based on material first written for publication elsewhere. These 

include the following: 

• Sections 3.2, 4.1, 4.4, 5.1, 6.1, and 11.2 are based on "Belief Input Procedures for 

Dempster-Shafer Based Expert Systems," by W.F. Caselton, T . M . Froese, A.D. Russell, 

and W. Luo, Presented at AIENG88, the Third International Conference on Applications 

of Artificial Intelligence in Engineering, Palo Alto, CA, August, 1988; and published in 

Artificial Intelligence in Engineering: Robotics and Processes, Computational Mechanics 

Publications, Southampton, 1988, pp.351-370 

• Chapter 12 is derived from "A Dempster-Shafer Based Construction Expert System" by 

A.D. Russell, T . M . Froese and W.F. Caselton, presented at the Third International Con­

ference on Computing in Civil Engineering, Vancouver, B.C. , August 1988, and published 

in the accompanying proceedings. 

• Section 5.2 and chapter 10 stem from "Implementation Strategies for Dempster-Shafer 

Based Inexact Reasoning" by T . M . Froese, A.D. Russell, and W.F. Caselton. Submitted 

for publication to the International Journal of Intelligent Systems in July, 1988. 

• Section 4.3 and 11.1 are from "An Interactive Belief Interface System" by T . M . Froese, 

W.F. Caselton, and A.D. Russell. To be submitted for publication. 



Chapter 2 

Uncertainty in Expert Systems 

This chapter briefly outlines the techniques which were first developed for handling uncertainty 

in expert systems and which are still most commonly found in practice. These include proba­

bili ty theory (which is described in section 2.1) and M Y C I N certainty factors (described 

in section 2.2). A brief comparison of D-S theory with these other approaches is provided in 

section 2.1. 

2.1 Probabil i ty Theory 

The broad field of probability theory is, perhaps, the most commonly used general approach to 

dealing with any type of uncertainty in a systematic mathematical way. Not surprisingly then, 

the first attempts to incorporate uncertainty into the reasoning processes of expert systems were 

based on probability theory. The most significant of these early probability-based attempts was 

the P R O S P E C T O R system created by Duda, Hart and others (see Duda et al [17]). Rather 

than focussing on the specific approach adopted in PROSPECTOR, this section deals with 

some of the fundamental problems of probability theory for use in expert systems. 

Probability theory (in the sense that it is used here) provides for the specification of the prob­

ability, P{h), of some hypothesis h, where P(h) is a real number between zero and one which 

represents a measure of belief in the hypothesis. Since the acquisition of new evidence, e, can 

change our belief about some hypothesis, a prior probability, P(h), can be modified to become 

the conditional or posterior probability, P(h\e), that is, the probability of the hypothesis h 

7 
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in light of the evidence e. 

For expert systems based on rules of the form "conclusion c IF premise p", applying probability 

theory to a rules involves the calculation of the probability of the conclusion c given that the 

premise p is true. Applying a rule, therefore, calls for the calculation of P{c\p). P(c\p) is 

calculated using Bayes' theorem. Given the prior probability P(c,) of each possible conclusion 

c,- and the probability of a particular premise p when c, is true, P(p|c,), then the probability 

P(c\p) for some particular conclusion c is given by: 

One problem with this technique is that it requires a considerable amount of probabilistic 

information. For n possible conclusions and m possible premises, we need n(m+l) probabilities 

to be able to use Bayes' theorem as above. When there are two premises pi and ps which both 

confirm the same conclusion, the Bayesian combination is given by: 

' • M » * r t - r y , < ' r ) c ( * ' ? . (2.2) 
£iI P{P2\Ci it Pi) P{ci\Pi) 

In this case, n(m 2 + m + 1) probabilities are required. These overwhelming information re­

quirements effectively prevent probability from being directly applied for expert systems as 

shown here. In the PROSPECTOR system, the problem was avoided by making the following 

assumptions: 

P(pi\p2 k c) = P(Pl\c) (2.3) 

P{pi\p2 & not c) = P(pi|not c) (2.4) 

These assumptions, while they seem to comprise reasonable approximations, stem from an 

assumption of conditional independence between the two premises. This assumption has been 
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shown to be clearly false for general expert systems applications (see Quinlan [54, p.257]). Thus 

one of the main advantages of using probability theory for inexact reasoning-the fact that it is 

fully consistent with a sound and applicable underlying theory-is lost. 

Apart from problems of finding a feasible and applicable implementation approach, the use 

of probability numbers themselves have shown to be unsatisfactory for representing uncertain 

belief in expert systems, as outlined in the following objections: 

1. Probabilities don't convey the precision of the uncertainty measurement. We can't discern 

between the probability P(a) = 0.500 ± 0.001 and the probability P(a) = 0.5 ± 0.3. 

2. Probabilities don't discern the difference between evidence for and against a proposition. 

The probability P(a) = 0.5 does not discern between "moderate evidence for (a) and no 

evidence against (a)" and "strong evidence for (a) and moderate evidence against (a)". 

3. A lack of evidence for a proposition implies evidence against that proposition. In other 

words, the probability P(a) = 0.4, implies that there is a probability P(not a) = 0.6. The 

disadvantage of such a result is illustrated by Carl Hempel's Paradox of the Ravens: 

"Let hi be the statement that 'all ravens are black* and /12 the statement that 

'all nonblack things are nonravens.' Clearly hi is logically equivalent to hj. 

If one were to draw an analogy with conditional probability, it might at first 

seem valid, therefore, to assert that C[/ii,e] (a measure of confirmation of the 

hypothesis h given some body of evidence e) = C[hi,e] for all e. However, it 

appears counter-intuitive to state that the observation of a green vase supports 

hi, even though the observation does seem to support h2- C[h,e] is therefore 

different from P{h\e) for it seems wrong that an observation of a vase could 

logically support an assertion about ravens." (from Buchanan and Shortliffe 

[4, p.244]). 
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Thus a direct application of probability theory, while providing an obvious and useful starting 

point, clearly does not provide a satisfactory scheme for dealing with uncertainty in expert 

systems. This is not to say that probability theory cannot lead to a useful technique for inexact 

reasoning. A great deal of work continues on altering the knowledge representation approach 

so that Bayesian probabilities are both feasible and appropriate. Indeed D-S theory which 

provides the subject for most of this thesis is closely related to probability theory (although the 

exact nature of the relationship is debatable). The most significant development path to date, 

however, has not involved finding a more complex and consistent implementation-rather it has 

been the simplification and approximation of probability theory leading to the certainty factor 

approach (which is described in the next section). 

For introductory material on probability approaches and comparison with other schemes, see 

Buchanan and Shortliffe [4, pp.233-237], Lee et al [40], and Quinlan [54]. For discussion of 

state-of-the-art probability approaches, see Charniak [7], Nilsson [47], and almost anything by 

Pearl ([50] ,[51], and [52]). 

2.2 Certainty Factors 

Like PROSPECTOR, the M Y C I N system was a "landmark" expert system developed in 

the mid-seventies by a group at Stanford University (see Buchanan and Shortliffe [4]). Also 

like PROSPECTOR, the group working on MYCIN considered the problem of incorporating 

uncertainty and looked first to probability theory. Unlike the PROSPECTOR project, however, 

probability theory was used only as an approximate guideline from which the new and simple 

theory of certainty factors was developed. The certainty factor approach was loosely created 

from a series of intuitive concepts rather than from a formal cohesive underlying theory. 

In the theory of certainty factors, every proposition (a) is assigned two values: a M E A S U R E 

O F B E L I E F - M B (a), which is a numerical value between zero and one proportional to the 
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amount of evidence to support the proposition (a), and a M E A S U R E OF D I S B E L I E F -

MD(a) , which measures the evidence against (a). For each proposition, belief can be summed 

up by one value, the C E R T A I N T Y F A C T O R - CF(a) , which is a number between negative 

one and one and is calculated from the difference between the measure of belief and the measure 

of disbelief, that is: 

For a simple expert system rule of the form "conclusion c IF premise p", the belief in the 

conclusion can be obtained directly from the belief in the premise by setting: 

However, rules are typically of a more complex form and the M Y C I N system includes formulae 

for accommodating these: 

1. Conjunctive Premises. 

For a rule of the form: 

CF(o) = MB (a) - MD(a) (2.5) 

MB(c) = MB(p) (2.6) 

MD(c) = MD{p) (2.7) 

conclusion c IF premise pi AND premise p2 

We can calculate the belief in the combined premise from the following equations: 

MB(pi AND p2) = min (MB{Pl),MB(p2j) 

MD{pi AND pi) = max{MD{px),MD{p2)) 

(2.8) 

(2.9) 
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2. Disjunctive Premises. 

For a rule of the form: 

conclusion c IF premise pi OR premise pi 

Belief in the combined premise is calculated from the following equations: 

MBfa OR p2) = max (MB(pi ) ,MB(p 2 ) ) 

MD{pi OR pj) = min ^MD{pl),MD{p2)) 

(2.10) 

(2.11) 

3. Weak Inference. 

If there is any uncertainty about the strength of the rule itself, we can assign two measures 

of belief to the rule: MB' and MUf - corresponding to our belief and disbelief in the 

conclusion assuming complete belief in the premise. These measures of belief can then 

be combined with the actual belief in the premise to determine the resulting belief in the 

conclusion, according to the following equations: 

4. Combining Evidence. 

If one rule reaches a conclusion c with belief MBi(c) and MD\{c) and a second rule reaches 

the same conclusion with belief MB2{c) and MD2{c), then the resulting combined belief 

can be derived from the following equations: 

(2.12) 

(2.13) 

(2.14) 

(2.15) 
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The certainty factor approach alleviates the problem found in probability theory of distinguish­

ing between belief and disbelief, However the theory does cause the following problems: 

1. Like probability numbers, certainty factors cannot distinguish the precision of the mea­

sures of belief. 

2. The use of maximum and minimum operators leads to discontinuities and non-intuitive 

results for general cases where the premise constituents are not fully dependant. For 

example, suppose we have the following rule: 

IF the temperature i s below freezing 

AND there i s prec ipi ta t ion 

THEN there w i l l be snow. 

Then the CF for snow will be identical for the following two cases: 

CF(the temperature i s below freezing) = 1.0 

CF (there i s precipitation) = 0.5 

and: 

CF(the temperature i s below freezing) = 0.5 

CF(there i s precipitation) = 0.5 

This is a counter-intuitive result. 

3. The following two rules: 

IF there i s r a in 

THEN there i s prec ip i ta t ion . 

IF there i s snow 

THEN there i s prec ip i ta t ion . 
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Should be identical to the following single rule: 

IF there i s r a in 

OR there i s snow 

THEN there i s prec ip i ta t ion . 

Yet these two representations of the same information will lead to two completely different 

combination rules being used in determining the CF for precipitation based on the CF'a 

for rain and snow. 

4. Perhaps the major criticism against this system is that it has no adequate theoretical 

basis (in fact, the theory of certainty factors has been shown to be essentially the same as 

probability theory with the assumption of conditional independence, see Buchanan and 

Shortliffe [4, Ch.12], although this is of academic interest since we have already shown 

the assumption of conditional independence to be generally invalid). 

Regardless of these difficulties, MYCIN did seemed to perform well in real world medical sit­

uations. M Y C I N was eventually distributed without it's knowledge base as E M Y C L N (for 

Empty MYCIN) to become one of the first expert system shells. Not only the basic format of 

rules but also the uncertainty handling of most present expert system shells are derived directly 

from M Y C I N and its certainty factor approach. 

2.3 Comparison of D-S wi th Other Theories 

In comparison with the uncertainty handling theories presented in this chapter, the D-S theory 

fares well. D-S achieves flexibility by using a less restrictive representation of uncertainty than 

does, for example, Bayesian analysis. D-S belief is normally expressed in terms of two belief 

parameters and belief can be assigned to various levels of granularity or precision. This gives 

D-S the expressive power to represent nuances of uncertain belief which cannot be captured by 
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MYCIN-like certainty factors, for instance. Shenoy and Shafer [68] suggest that D-S provides 

a useful compromise between the lack of structure offered by the use of certainty factors in 

production rules and the unrealistic demands for structure often made by Bayesian schemes. 

Finally, D-S provides a very rigorous theoretic foundation for both representing knowledge 

and for processing that knowledge. Dubois and Prade [15] have suggested that an approach 

such as fuzzy set theory which offers "multiple points of view on combination" more closely 

models human reasoning; however we believe that for use in engineering problems at least, an 

approach which is rigorously derivable from a cohesive underlying theory is required to give 

confidence in the accuracy of the uncertain output (fuzzy set theory is not discussed in this 

thesis, although section 7.6 deals with comments made by L. Zadeh, the originator of fuzzy set 

theory). Table 2.3 provides a summary comparison of D-S with three other major approaches 

for handling uncertainty in expert systems. See Lee et al [40] for an introduction to and further 

comparison with these other systems. 

Table 2.1: Comparison of Uncertainty Theories 

Certainty Bayesian Fuzzy Set Dempster-Shafer 
Factors Probability Theory Theory 

Flexibility high low high high 
Expressive power low low high high 
Theoretical Background weak strong moderate strong 

(based on Lee et al [40] ) 

2.4 Conclusion 

This chapter has dealt with two approaches to performing inexact reasoning in expert systems. 

It has been shown that although there are many problems associated with both approaches, 

both have been successfully applied and, in the case of certainty factors particularly, have 

become the "industry standard". 
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Perhaps a fitting summary to the current state of inexact reasoning in practical expert systems 

is illustrated by considering a feature offered by the ARITY expert system shell. This shell 

offers three different approaches to handling uncertainty, referred to in the documentation as 

a standard M Y C I N approach, a fuzzy set theory approach, and a probability approach. Each 

approach uses simple CP ' s in conjunction with normal rules. Table 2.2 summarizes how each 

approach combines the CP 's of conjunctive and disjunctive premise terms, how each includes 

a C P assigned to the rule itself, and how each combines positive and negative CP 's (or MB's 

and MB'B) to get a single combined CF. 

Table 2.2: Inexact Reasoning Approaches used in ARITY Expert System Shell 

Method Conjunctive 
Premise 

Disjunctive 
Premise 

Combining 
C P of Rule 

Combining 
Pos & Neg 

Standard Minimum Maximum CFRVLE x C PpREM Pos + Neg 
Fuzzy Minimum Maximum C PRULE Largest abs. value 
Prob. Ax B A + B x (1 - A) C P R U L E X C P P R E M Pos + Neg 

(from the Arity Expert Systems Development Package Documentation [1, p.201]) 

Each of the three approaches outlined in table 2.2 uses identically defined sets of certainty 

numbers, but each method performs different operations on them. While it is claimed that 

having several alternative calculations makes for a powerful system, it could be interpreted 

more critically as proof that these numbers provide an extremely ad hock approach to inexact 

reasoning at best, and that there is no reliable formal method for using them. 



Chapter 3 

D-S Theory I: Concept Representation 

In the 1960's, Arthur Dempster at Harvard originated a body of work which extended classical 

probability theory so that it could be brought to bear on a set representation rather then a 

point representation [12]. Glen Shafer at Princeton continued this work and, in 1975, published 

a book entitled A Mathematical Theory of Evidence [57], which describes in some detail a 

comprehensive, powerful, intuitively satisfying and mathematically rigorous theory of evidence. 

The work of these two mathematicians has lead to a body of knowledge commonly referred to 

as the Dempster- Shafer or D-S theory (sometimes also referred to as the theory of belief 

functions). This thesis deals primarily with the application of D-S theory for performing inexact 

reasoning in expert systems. 

The following four chapters provide a thorough outline of D-S theory. These chapters deal with 

the representation of concepts, the representation of belief, the combination of belief, and D-S 

based inference respectively. 

3.1 Frames of Discernment and Propositions 

Shafer defines a frame of discernment, 6 , as a set of possible answers to some question, or 

a set of possible values for some variable. In any situation, one and only one of the frame of 

discernment's elements, 0, may represent the "truth"- that is, the elements must be exhaustive 

and mutually exclusive. We can then define a proposition, A , as a subset of 6 and we say 

that A is true if the true value of G lies within A. The set of all propositions derived from a 

17 
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frame of discernment 6 is denoted 2 , we call this set of propositions the discernment space. 

Among the propositions in 2 e are the frame itself, the singletons (or sets containing a single 

element only), and the empty set, 0 (which can be thought of as the set with no elements). 

A discernment space, then, is a structured collection of propositions. 

For the purposes of this thesis, we will denote the names of elements within a proposition 

with lower case italic letters and denote the names of propositions themselves with upper case 

italic letters. In some cases, we may want to give a single proposition several names or aliases 

corresponding to several logically equivalent concepts. The following, for example, are logically 

equivalent names for some proposition whose elements are a list of North American countries: 

{canada,usa,mexico} = NORTH AMERICAN COUNTRIES 

The logical relationships between propositions can be found using formal set theory. For exam­

ple, the logical notions of conjunction, disjunction, implication and negation translate 

into the Bet-theoretic notions of intersection, union, inclusion and complementation (fl, 

U , C and in our notation). Note that in the context of D-S theory, two propositions are 

said to conflict if they have no common elements, that is if their intersection equals 0. These 

basic building blocks of concept representation are illustrated in the following example. 

Example 3.1 Suppose that we are interested in the type of ground material 

that we might encounter during excavation on a construction project. We might 

decide that the possible ground types are rock, soil, or sand. For simplicity, we will 

assume that these alternatives are mutually exclusive and exhaustive (e.g. there 

can be no mixture of rock and soil nor any other materials such as clay). Our frame 

of discernment in this case would then be: 

^MATERIAL = {rock, soil, sand} 

where rock, soil and sand are the elements of the frame. Any subset of 6jyf ATE RIAL 
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is a proposition representing some concept. For example, the subset {rock} is a sin­

gleton proposition symbolizing the concept that the ground material is rock. The 

subset {soil, sand} is a proposition denoting the idea that the ground is either soil or 

sand. We might want to assign the name or alias "EARTH" to this last set. The set 

of all possible propositions for this problem is the discernment space 2 B m a t b r i a l , 

shown graphically as a line diagram in figure 3.1. 

^MATERIAL = 
{rock, soil, sand} 

{rock} {soil} {sand} 

Figure 3.1: Graphical representation of the discernment space 2 & M A T B R l A L 

The logical relationships between propositions can be illustrated by observing 

that the logical notion of "not sand" is represented by the set {sand}, the set-

complement of the proposition {sand}, which is equivalent to {rock, soil}. The 

logical "soil or sand" becomes the union {soil} U {sand}, the value of which is 

the proposition {soil, sand} or EARTH. Similarly, "earth and not sand" becomes 

the intersection {soil, sand} n {sand}, or {soil, sand} D {rock, soil} which yields 

the proposition {soil}. Finally, the logical relationship "sand implies earth" is 

represented by the fact that the proposition {sand} is included in the proposition 

EARTH or {soil, sand} (i.e. {sand} C {soil, sand}). 
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3.2 Frame Refining and Frame Coarsening 

We have sectioned our knowledge about the problem domain into a set of propositions. However 

we may find that our assignment of propositions is not precise or exact enough to discern some 

difference between two concepts (in the sense that the proposition "car" is not precise enough 

to distinguish between a Volkswagon and a Rolls Royce). We can therefore divide some of the 

elements from a frame 6 up into sets of smaller elements and use these to create a second, 

expanded and more precise frame fi called a refinement. 

We can specify this process by assigning, for each element 6 € 6, a refinement statement of 

the following form: 

« ( W ) = * (3-1) 

In such statements, the proposition X C 0 is comprised of all the new elements into which 0 

has been partitioned. The statements (one for every singleton) can then be used to define a 

refinement statement for every proposition A C 6, according to the formula: 

« ( A ) = L M W ) ( 3- 2) 

This gives the new proposition <JJ[A) C fi obtained by the partitioning of the elements in 

proposition A (these two propositions, then, are logically equivalent and the proposition name A 

can be assigned as an alias to the proposition OJ(A)). The use of equation 3.2 to refine the full 

set 6 yields the set corresponding to the new frame Q: 

0,(6) = 0 = ( J u({6}) (3-3) 
tee 

The collection of the refinement statements for all of the propositions in the discernment space 
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makes up a mapping, called a refining, w : 2 e —• 2 n , which thoroughly describes the partition­

ing. In refining some frame of discernment, then, we use new knowledge to create a new frame 

which can not only discern every proposition from the original frame, but can also discern the 

difference between more precise concepts which were indistinguishable in the original frame. 

In addition to making the elements of a single frame more precise, frame refinement arises in 

a more general case when we are interested in exploring the relationships between propositions 

which are contained in two totally separate frames of discernment. To accomplish this, we 

require one new frame which is a refinement of two original frames and as such will discern all 

of the propositions from both initial discernment spaces as well as the correct set relationships 

between them. This frame will not be just a cross product of the two original frames, for 

it is created using new knowledge which indicates how the various propositions are related. 

Although there could be many frames which meet this criteria, there will be one unique frame 

called a minimal refinement, denoted G/>®GQ for two original frames Gp and G Q , which has 

fewer elements than all the rest (that is, all other such frames are a refinement of the minimal 

refinement). A convenient notation for the elements of a minimal refinement Gp ® G<j is to 

use ordered pairs (p, q). An ordered pair is included in the frame only if it corresponds to a 

possible conjunctive combination of the elements p € Gp and q € QQ: that is, if it is logically 

possible for the concepts represented by p and q to exist simultaneously: 

Op ® GQ = {(p,g)| p € Gp, q € G Q , p and q can coexist} (3.4) 

Any number of frames can be combined into one minimal refinement in a similar manner. 

The inverse of the refinement process is to modify a larger frame to produce a smaller, less 

precise one. This is called frame coarsening or reduction, 6 : 2 n —• 2 e and it is defined for 

any proposition A C Cl by the equation: 
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6(A) = {6 e 6j u({6}) n A ± 0} 

Example 3.2 Referring to example 3.1, we may now decide that the element 

"rock" is not precise enough but that we should be able to distinguish between "bed 

rock" and "aggregate". We can refine our frame of discernment by specifying the 

refinement statements: 

w({rock}) = {bed rock,aggregate} 

u({soil}) = {soil} 

u({sand}) = {sand} 

We can now create the complete refining w : 2 B m a t b r i a l -* 2 n M A T B R I A L using 

equation 3.2, thereby yielding the new frame: 

Cl MATE RIAL = {bed rock, aggregate, soil, sand} 

Finally, we may identify a separate frame which discerns all the possible exca­

vation methods: 

^METHOD = {dig, blast, rip} 

The minimal refinement of these two frames would discern all of the possible 

material types, the possible excavation methods, and the proper relationships be­

tween them. If, for example, bed rock could be excavated by blasting or ripping, 

soil by ripping or digging, and aggregate or Band by digging only, then the minimal 

refinement frame would consist of the following ordered pairs: 
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^MATERIAL ® &METHOD = { (bed rock, bloat), 

(bed rock, rip), 

(aggregate, dig), 

(soil, rip), 

(soil, dig), 

(sand, dig) } 
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D-S Theory II: Belief Representation 

The previous chapter introduced an approach for representing concepts or variables and their 

possible values. This chapter discusses how to represent uncertain belief about which values 

are true for some particular situation. 

4.1 Measures of Belief 

The D-S theory utilizes several distinct parameters for describing the belief associated with a 

proposition. These parameters are all real numbers on the interval [0,1]. Figure 4.1 introduces 

some of these parameters and illustrates the relationships between them. 

The support, 5(A), in some proposition A is perhaps the simplest measure of belief. It is 

defined formally as a number on the interval [0,1] which measures the degree to which we 

believe that the true value for the frame lies within set A. We can notice that 5(0) = 0.0 and 

5(0) = 1.0 since 0 is false and 0 is true by their definitions. The uncertainty, U(A), in a 

proposition A, measures the degree to which we believe that the true value could be within A, 

but could also be outside of A (i.e. the degree to which we don't know if A is true or not). The 

doubt, Dou(A), in proposition A is the degree to which we are certain that the true value is 

not within set A. Because the elements in the frame of discernment are exhaustive, the doubt 

in A is equal to the support in not A. As shown above, the support, the uncertainty, and the 

doubt for any proposition must sum to 1.0. 

24 
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For any proposition A, the belief parameters assigned to A can be illustrated by: 

Where: 

m(A): 

5(A): 

U(A): 

Dou(A): 

Pl(A): 

Q(A): 

• the basic probability of A, 
• m(A) < 5(A), 
• indicates the belief which is assigned exactly to A; that is, belief in the statement 

"I believe that one of the elements of A is true, but I have no evidence to support 
one of these elements over another". 

• the support for A, 
• indicates the total belief that A is true. 
• equals the belief exactly for A or for any subset of A (see equation 4.1). 

• the uncertainty in A, 
• indicates belief which is uncertain as to whether A is true or not. 

• the doubt in A, 
• Dou(A) = 5(A), 
• indicates belief that A is not true. 

• the plausibility of A, 
• Pl(A) = 5(A) + U(A), 
• Pl(A) = 1 - Dou(A), 
• indicates belief that A could be true. 

• the commonality of A, 
. m(A) < Q(A)< Pl[A), 
• equals the belief exactly for A or for any superset of A (see equation 4.3). 

Figure 4.1: Dempster-Shafer Belief Parameters 
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In comparison to 5(A) which describes our belief that A is definitely true, the plausibil­

ity, Pl(A), describes our belief that A could be true. We can see from figure 4.1 that Pl(A) is 

equal to 5(A) + U(A), which shows that plausibility represents the maximum degree of belief 

that could be expected if all the uncertainty in A were resolved in favour of A. Pl(A) is also 

equal to 1 — Dou(A) or the degree to which we don't doubt A. It is not unusual for several 

propositions to have zero support but to have different, non-zero plausibilities. Thus PI (A) 

can be just as important as 5(A). Because 5(A) and Pl(A) can be regarded as a lower and an 

upper bound on our belief in A, we often refer to [5(A), Pl(A)] as a support interval. 

Belief that the true value lies within a proposition implies that it also lies within every superset 

of that proposition. Therefore we would like some way of reflecting the level of precision, or the 

granularity, to which the belief is most accurately assigned. This information is provided by 

the basic probability number, m(A), of a proposition A which is defined as the support which 

is assigned exactly to A, and cannot be assigned to any more precise subset of A. According to 

this definition, it can be shown that m(A) = 5(A) for all singletons. Support values and basic 

probability numbers are related to each other according to the equations: 

BCA 

where the term \A — B\ is the cardinality of the difference between sets A and B. 

Finally, the commonality, Q(A) of a proposition A is the support assigned exactly to the 

proposition A or to some superset of A. This belief parameter does not correspond to any 

intuitive concept of belief, but it proves to be useful for certain computational processes (see 

section 5.2, for example). The following equations relate commonality numbers to basic prob­

ability numbers and to support values: 

(4.1) 
BC A 

(4.2) 
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Q(A) = £ m{B) (4.3) 
Bee 
AcB 

m = £ _ ( - l ) | B | Q ( B ) (4.4) 
BCA 

Q(A) = £ ("1) | B | 5(B) (4.5) 
BCA 

A l l of the above belief parameters are associated with some function which expresses their 

value for every proposition in a frame of discernment. For example, a basic probability 

assignment or B P A , defined over the frame 0, is denoted m :29 -* [0,1]. A BPA gives the 

basic probability number for each proposition A in a frame 0 in accordance with the following 

equations: 

m(0) = 0 (4.6) 

0<m(A) < 1 (4.7) 

E MM = 1 (4-8) 
AC& 

A support function, S : 2 e —• [0,1], gives the support for every proposition A in 0. Support 

functions must obey the following formula: 

5(0) = 0. 

5(0) = 1. 

(4.9) 

(4.10) 
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and, for every positive integer n and every collection A\t..., An of subsets of 6: 

5(A! U . . . U An) > £ (- l ) l ' l + 1 s(r|A) (4.H) 
JC{1 n} V,-67 / 

Plausibility functions, commonality functions, etc. can be similarly defined. It should be noted 

that any one of these functions carries the entire information associated with some body of 

belief and can be used to calculate all other parameters for each proposition. We also note that 

Shafer introduces support and plausibility numbers [57, p.144] as restrictions of more general 

degree of belief, Bel(A), and upper probability, P*{A) values. However the restriction of 

degrees of belief to support is applicable to all information which might reasonably stem from 

real bodies of evidence, and in this thesis we will generally refer only to the later. Further 

Shafer defines a belief function as the set of degrees of belief for every proposition in a frame 

of discernment. In this thesis we will refer to a belief function in slightly more general terms 

as any D-S expression of some body of evidence, regardless of which D-S parameter is used for 

the representation. 

We call all propositions with non-zero basic probability numbers in a belief function the focal 

propositions. 

Different formulations of a body of belief can be used in different situations. For example, 

belief is usually solicited from the user or reported by system in the form of support functions 

or support intervals. However we have found BPA's to be the most useful form for internal 

processing, so the degree of belief or plausibility values are converted to basic probability after 

being entered into the system. We can illustrate a BPA diagrammatically in a manner similar 

to a Venn diagram by: 

1. showing each element in a frame of discernment as a point in space, 

2. representing the basic probability numbers by drawing boundaries or closed lines around 

the elements included in the focal propositions, 
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3. labeling these boundaries with the corresponding basic probability numbers. 

If we wish, we can use these diagrams to obtain the support for a proposition by totaling all 

of the basic probability numbers assigned exactly to that proposition or to some subset of 

it. Alternatively, we can derive the plausibility of a proposition by totaling all of the basic 

probability numbers which have any shared elements with that proposition 

Example 4.1 Suppose that after a cursory examination of the construction site 

introduced in example 3.1, we suspected (support of 0.5) that the ground type was 

rock and we were almost certain (support of 0.9) that it was either rock or soil. This 

belief could be expressed by the belief function: 

S({rock}) = 0.5, reflecting some belief specifically in rock 

5({soi7}) = 0.0, reflecting no belief specifically for soil 

5({sand}) = 0.0, reflecting no belief for sand 

S({rock,8oil}) = 0.9, reflecting strong belief in either rock or soil 

S({rock, sand}) = 0.5, reflecting belief specifically in rock which implies be­

lief in the superset {rock, sand} 

S({8oil, sand}) — 0.0, reflecting no specific belief for either soil or sand 

S ({rock, soil, sand}) = 1.0, reflecting full belief that the ground type is either 

rock, soil or sand 

= S(BMATERIAL) 

This belief could also be summarized by the support intervals for the singletons 

[S({ I ,} ) ,P / ({ I ,} ) ] (we show in section 11.1 that most bodies of belief can be fully 
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expressed by giving the belief intervals for the singletons only): 

{rock}: [0.5,1.0] 

{soil} : [0.0,0.5] 

{sand} : [0.0,0.1] 

Note that there is no support for the material being either soil or sand; yet we 

can still use the plausibilities to show that the former is much more likely. We could 

further convert the information into a basic probability assignment (which we will 

call mi : 2 B m a t b r ' a l ) with the following focal propositions: 

mi({rock}) = 0.5, 

mi({rock, soil}) — 0.4, 

mi({rock, soil, sand}) = 0.1. 

We can then show this BPA in diagrammatic form as follows: 

Figure 4.2: BPA #1 in Diagrammatic Form 

4.2 Simple and Separable Support Functions 

The simplest type of belief function is one in which some belief is assigned to a single propo­

sition (or focus) with all of the remaining belief being assigned to the frame 6 itself. Such a 



Chapter 4. D-S Theory II: Belief Representation 31 

belief function is called a simple support function and is defined by the basic probability 

assignment: 

0 < m(A) < 1 (4.12) 

m(6) = 1 - m(A) (4.13) 

m(B) = 0 (4.14) 

For some frame ©, some focus A C 8, and all other propositions B c 6 . 

Since a simple support function with focus A can essentially be described by the one basic 

probability number m(A), we will call this value the simple support number, ss(A). 

In the combination of two or more simple support functions both with the same focus A and 

the basic probability assignments mi(A),rri2(A),...; Dempster's rule of combination (which is 

discussed in section 5.1) yields the special case: 

m(A) = 1 - (1 - mi(A)) x (1 - m 2 (A) ) . . . (4.15) 

m(8) = (1 - rm(A)) x (1 - m 2(A)) . . . (4.16) 

The result is itself a simple support function with the same focus A. It is interesting to note 

that this formula matches the rule of evidence combination identified by James Bernoulli in the 

16th century. 
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A simple support function or the combination of two or more simple support functions (not 

necessarily containing the same focal element) is called a separable support function. While 

not all belief functions that are appropriate for the representation of evidence fall into the class 

of separable support function, any body of evidence that is obtained by the combination of 

simple support functions-a situation corresponding to the incremental gathering of single pieces 

evidence-will yield a separable support function. 

In addition to the combination of any group of simple support functions to create one separable 

support function, it is possible to decompose any separable support function into a unique set 

of simple support functions. While the general formula is slightly more complex and will not 

be given here, it is important for us to note that there exists a one-to-one correlation between 

any separable support function and the set of simple support functions into which it would 

decompose. If we examine the relationship between the separable support function's m(A) 

value for some focus A and the simple support number »s(A), then we find that both values 

represent the total evidence in support of exactly A. However m(A) is adjusted to reflect the 

magnitude of evidence relative to the amount of evidence for all other propositions while ee(A) 

carries no indication of its relative support-we need to consider the simple support functions 

for all propositions in order to observe the impact of relative degrees of support. 

4.3 Consistent Belief 

In the case of a frame refinement w : 2 e —+ 2 n , we can say that the two support functions 

S0 : 2 e and S : 2° are consistent (i.e. they do not represent conflicting bodies of knowledge) if 

S0(A) = S(OJ(A)), for all A c © . When this equality holds, we refer to S0 as a restriction of S 

to G, or 5 |2 e ; likewise the corresponding basic probability assignment m„ : 2 e is a restriction 

of m : 2 n to G or m|2 e . Given such a basic probability assignment m0) we can calculate a 

corresponding basic probability assignment m which meets the restriction criteria (m|2 e) by 

setting: 
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m(w(A)) = m 0 (A), VA C 6 (4.17) 

Thus m : 2 n will represent the same body of belief as m0 : 2® but it will be discerned on the 

new frame of discernment. 

In contrast to frame refinement, we may have performed the frame coarsening procedure given 

in equation 3.5; in which case we can derive a coarser basic probability assignment m0 : 2 e 

which is consistent with some finer basic probability assignment m : 2 n from the formula: 

m0 = X ) m ( B ) ( 4 1 8 ) 
B e n 

A=u>{B) 

Example 4.2 Suppose that we refine the frame described in the previous ex­

amples to distinguish between the bed rock and aggregate (as in example 3.2). We 

can use equation 4.17 to calculate a basic probability assignment 7712 : 2 t t K t A T E R I A L 

which conveys the identical belief as mi : 2 B m a t e r , a l (i.e. it is a restriction 

m2\® MATERIAL)'-

m2[{bed rock, aggregate}) = 0.5, 

rri2({bed rock, aggregate, soil}) = 0.4, 

mi({bed rock, aggregate, soil, sand}) = 0.1. 

4.4 Specifying Support Functions 

We would like to find a way of specifying support functions which allows the user to enter 

functions into an expert system in a way which is simple, expressive and theoretically correct. 

Any general support function can be expressed by providing the degree of belief for every 

proposition in a frame of discernment. While this approach enables any support function to be 
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entered into the system, the specification of functions in this manner is typically an onerous 

task. This is because of the large number of propositions in a frame of discernment (for a frame 

with n elements, there are 2 n propositions). We have determined that specifying the support 

for the focal propositions only is sufficient to completely specify any support function, as shown 

in the following proof: 

Theorem 4.1 Proof that specifying only the support values for the focal proposi­

tions is sufficient to fully specify a support function: 

A basic probability assignment can be specified by providing: 

where m(A) is the basic probability number for any proposition A in a frame of discernment 0 . 

(note that for this theorem only we distinguish between proper subsets, C , and improper sub­

sets, Q ) . More succinctly, we need only provide: 

where F is any focal proposition in 0 . This is because the basic probability numbers for any 

propositions not specifically provided could be assumed to be zero. An input system could confirm 

when a complete set of values had been received by checking that the specified values summed to 

one. 

Now equation 4.1 gives: 

m(A), V A C 0 (4.19) 

m(F), V F C 6 (4.20) 

S(A) = £ m{B) 
BCA 

but m(A) = 0 for all non-focal propositions, so we can say: 
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5(A) = £ m(F) (4.21) 
FCA 

where F is any focal proposition. Furthermore, we can say: 

5(A) = m(A) + £ m(F) (4.22) 
FCA 

or: 

m(A) = 5(A) - £ m(F) (4.23) 
FCA 

or, for any focal proposition G: 

m(G) = 5(G) - £ m ( F ) (4-24) 

Thus for any focal proposition G, we can determine m(G) from 5(G) and the basic probability 

numbers of true focal subsets ofG. Furthermore, the lowest cardinality propositions in any belief 

function have no focal subsets and their basic probability numbers can thus be derived directly 

from 5(G). It is therefore evident that equation 4.24 can be used to evaluate m(G) for every 

focal proposition G from only the focal degrees of belief by employing a "bottom-up" approach. 

That is, evaluate m(G) for the lowest propositions first and then progress to the higher ones. 

Once we have all of the m(G) values, we can obtain all m(A) values where A is any proposition 

in Q, because m(A) = 0 for all non-focal A's. Further, the set of all m(A)'s can be used to 

derive all 5(A)'s from equation 4.1. Thus the information contained in the support values for 

focal propositions only is sufficient to define the entire corresponding support function. 

An improvement to the input approach of specifying support values for every proposition in a 

frame, then, is to supply the support for the focal propositions only. Section 11.1 will introduce 
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a scheme which allows belief input to be simpler still. 

4.5 Classes of Belief 

Some classes of belief functions which appear to be pertinent to conveying belief in many 

practical contexts are described below. The minimum inputs, necessary constraints, and the 

support and plausibility implications are described for each class. 

4.5.1 Ignorance 

Ignorance can arise in response to a request for belief on some specific question when the user 

has no information to offer. This corresponds to a response of "unknown" in a typical expert 

system. The appropriate response by the user is to select the vacuous support function in 

which the frame of discernment 0 receives full support (S(0) and P1(0) = 1.0) while all other 

propositions receive zero support and full plausibility (S(A) = 0.0, P1(A) — 1.0). The BPA 

corresponding to a vacuous support function consists of a single basic probability number of 

1.0 assigned to 0 . 

This response would be constrained so that: 

m(0) = 1.0, 

m(A) = 0 for all other A C 0 

In Bayesian methods an assignment of equal positive probabilities to all elements, i.e. a uniform 

prior distribution, is often used as an expression of ignorance, but this does not necessarily 

constitute an informationless input. The vacuous support function avoids an assignment of 

support to any specific elements but it does give full support to the idea that the true event 

lies within the frame 0. 
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For example, a construction engineer may be asked to express his belief in the delivery perfor­

mance of a supplier. If the frame 6 consists of the three elements: 

® PERFORMANCE = {On time, Within 1 week, Within 1 to 2 weeks} 

then, in expressing ignorance of the supplier's performance and returning a vacuous support 

function, he is tacitly agreeing that this supplier can deliver neither early nor later than 2 

weeks. The plausibility of each of the three delivery possibilities is thus 1.0. A more complete 

expression of ignorance would be possible if the frame of discernment had also included the 

element "early, or later than 2 weeks" and the vacuous support function was again entered. 

4.5.2 Certain Belief 

If the user wishes to express perfect knowledge or an absolute conviction, for example in response 

to a question concerning the number of floors in a high rise building, then this can be reflected 

by a support of 1.0 for the one singleton representing the truth. 

If the true element is i , then this certain response would be: 

S({*,}) = 1.0 

This belief response would imply that the support and plausibility for the certain element X{ 

are both 1.0 and that the supports and plausibilities for all other singletons are zero. 

The input constraints would be: 

m({*,}) = 1.0, 

m(A) = 0.0 for all A ^ { I f } . 

A similar situation is when the user has perfect knowledge that the truth lies within a known 

subset of elements, but has no knowledge as to which of the elements within that subset are 

true. Thus, if he wished to express the fact that a crew size for a particular job must include 
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either 8, 9 or 10 workers while the frame of discernment invites belief response for possible crew 

sizes of 5, 6, 7, 8, 9, 10, 11 or 12 then, by assigning a support of 1.0 to the proposition {8,9,10}, 

he provides certain support for a crew size in the range of 8 to 10 workers. 

Once the proposition A\ for which we have certain belief is established, we would set the support 

and the plausibility of A,- to 1.0. Then we would have S({x,}) = 0, Pl({x,}) = 1.0 for all x,- G A,-, 

while S({xj}) and Pl({x ;}) = 0 for all xy £ A,-. 

The input constraints would be: 

m(A.) = 1.0, 

m(A) = 0.0 for all other A. 

4.5.3 Bayesian Belief 

Bayesian belief parallels the one support function which can be represented with a conventional 

discrete probability distribution. The support values assigned to the singletons must sum to 

1.0. In this support function, the support equals the plausibility for each singleton, i.e.: 

m({x,}) = S({x,}) = Pl({x,}), for all x,- G 0 

The constraint set for this class of support function is: 

m({x,}) > 0.0, for all x,- G 0 

E x , e e m({x,}) = 1.0 

m(A) = 0.0, for all non-singleton propositions A 

4.5.4 Consonant Belief 

The Bayesian support function partitions belief into parcels which are assigned to separate 

elements. This implies that the evidence upon which the belief is based is able to simultaneously 
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support a number of disparate and possibly conflicting conclusions. The quality of evidence 

which leads to conflicting conclusions might well be suspect. Much greater credibility might be 

attached to evidence which, although not precise enough to support just a single conclusion, 

was able to support a number of conclusions which were in general agreement with each other. 

The belief derived from evidence of this type is described by the consonant support structure. 

A consonant support structure is one in which the elements can be ordered so as to obtain: 

S{{*i}) < S{{xlt z 2 }) < . . < 5({xx, z 2 , . . . * „ } ) 

The input response required to enter a consonant support function requires specification of the 

support for the single element x\ together with the plausibility values for all elements. 

While some have suggested that this is the only kind of evidence and support structure which 

should be entertained (see Cohen [9] and Shackle [56]), others have expressed the view that 

such a position is unrealistic. Regardless of the relative merits of these arguments, the conso­

nant support structure does have considerable appeal in engineering situations, and it is also 

attractive from the user input standpoint as it is simple to specify and highly constrained. 

In engineering applications, belief must often be expressed in the value of a variable which 

exists on, and is normally measured on, a continuum. In such a case the elements of the 

frame of discernment would represent a discretization of this variable. If consonant belief 

applied, it would be reasonable in most situations to expected that it would reflect the ordering 

of the elements along the scale. This would be achieved by constraining the distribution of 

plausibilities to the ordered elements to be unimodal with the mode occurring at the single 

element to which support is assigned (i.e. in the above notation, the mode would occur at x\, 

and the labelling of the I 'S on the continuum is not necessarily contiguous). 
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4.5.5 Belief Aris ing from Experiments 

In a conventional application of Bayes equation, a prior discrete probability distribution is 

specified for some uncertain parameter. This is combined with information concerning an 

investigation or experiment, expressed in the form of sample likelihoods, and the outcome 

of the investigation or experiment. The sample likelihoods are expressed as probabilities of 

obtaining the outcome conditional upon being given each of the possible values for the unknown 

parameter. The combining operation, using Bayes' equation, produces a revised, or posterior, 

probability distribution for the uncertain parameter. 

In the D-S scheme, sample likelihoods can be emulated by adopting a frame of discernment 

with elements corresponding to the possible discretized parameter values. A consonant support 

function is adopted. In an engineering context we feel that it is appropriate to refer to this as 

an experimental support function. 

Support for the nested subsets are related to the likelihoods by Shafer ([57]) according to: 

max p[e|x,-] 

S(A) = 1 (4.25) 
max p[e|x,-] 

where p[e|x,-] represents the likelihood of the experimental result c given the parameter value 

represented by the element x,. 

The corresponding BPA values for the focal propositions are then derived by successive sub­

traction. 

Once an experimental support function had been selected the input would be requested in the 

form of a set of sample likelihoods. These would not be subject to any input constraints. A l l 

other appropriate constraining effects would occur automatically when the above equation is 
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applied. 

When an experimental support function is combined with a prior belief, which is a Bayesian 

support function, then the resulting posterior belief values for the elements of © will be nu­

merically identical to the conventional Bayesian posterior probabilities. It is not necessary in 

the D-S scheme, however, to restrict the prior belief in this fashion and it is likely in most 

situations that other than a Bayesian support function would more realistically describe the 

prior knowledge. 



Chapter 5 

D-S Theory EQ: Belief Combination 

This chapter deals with the combination of two or more belief functions. Dempster's rule of 

combination is presented first, followed by a discussion of alternative belief combination routines 

which have been developed for cases in which Dempster's rule is not applicable. 

5.1 Dempster's Rule 

Dempster's rule of combination provides a method of combining two independent bodies of 

belief, (e.g. belief functions from two independent, equally credible experts) to get an aggregated 

basic probability assignment or orthogonal sum. The orthogonal sum of the two BPA's, 

mi : 2 e and m 2 : 2 e , for example, is mi © mj : 2 e , and is defined by: 

mi ©m 2 (0) = 0 (5.1) 

m i © m 2 ( A ) = (1-Jb)-. 1 Y, mjfBy) (5.2) 

where k - ]T mi(A,) • m2(Bj) (5.3) 

The orthogonal combination procedure may try to attribute some belief to the empty set 0. 

However the belief in 0 must be zero by definition (since the set of singletons is exhaustive, the 
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truth must be represented by one of them and not 0). The equation therefore sets m(0) to zero 

and normalizes all of the other basic probability numbers using the factor k defined above. This 

factor also enables us to measure the degree to which the functions being combined represent 

conflicting evidence. For this purpose, the weight of conflict between m\ and can be 

defined as follows: 

The rule can be used to sequentially perform the combination of any number of basic probability 

assignments; in which case the order of combination is unimportant. The following example 

illustrates Dempster's combination in diagrammatic form. 

weight of conflict = — log(l — k) (5.4) 

Example 5.1 If the BPA shown in figure 4.2 is combined with a BPA which 

attributes most of its belief to a ground type of either soil or sand: 

Figure 5.1: BPA #2 

The following BPA is obtained: 
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Figure 5.2: The Result of Combining BPA #1 and BPA #2 

5.2 Other Combination Rules 

In D-S, two belief functions can be combined using Dempster's rule of combination. Dempster's 

rule is intended for combining two belief functions which are independent-they arise out of 

completely distinct bodies of evidence-and conjunctive-both are thought to be true, even if 

they are partially contradictory to each other. As such, Dempster's rule amplifies belief which 

is common to the two input belief functions and attenuates belief which is exclusive to a 

single belief function. Dubois and Prade [15] have proven the unicity of Dempster's rule up 

to the normalization stage for the conjunctive combination of independent belief functions. 

However within a general D-S implementation, some combinations may not be conjunctive 

and some belief functions may not be independent; either condition renders Dempster's rule 

invalid. Therefore the identification of alternative combination rules which apply under different 

conditions, but which are still consistent with D-S, is highly desirable (see Dubois and Prade [15] 

and Yager [75] for further discussion of alternative combination schemes). Several rules have 

been developed during this research project which address these conditions. While these rules 

have been tested under a variety of combination scenarios and are believed to be valid for 

the applications proposed herein, no formal mathematical proofs are provided. This section 

introduces these rules and subsequent sections illustrate their use. 
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A dependant conjunctive combination deals with two different belief functions which stem 

from the same source of evidence and therefore provide two different representations of the 

same information. For the application intended here (described in section 10.4.2), both belief 

functions can be taken to be valid representations of the single body of evidence, thus the belief 

functions should not contradict each other. According to this usage of "valid," for example, 

one belief function cannot display full support (1.0) for singleton {a} while the other function 

exhibits full support for singleton {6}. Yet the application proposed here (and the definition of 

a valid representation of the evidence) allows either belief function to contain more uncertainty 

than the evidence warrants-that is, either function may be unduly vague or imprecise. This 

vagueness is manifested in belief being assigned upwards to a superset of some proposition A 

while, according to the evidence, it is A itself which most deserves the support. For example, 

one belief function might show full support for singleton {a} while the other function indicates 

full support for the proposition {a, b} (in which case the former allocation of belief as being 

would be referred to as more precise). 

Given two valid but possibly vague and dependent input belief functions, it can be observed 

that the level of support for any proposition will never be too high but can be too low. It can 

also be observed that since the two input functions are dependent, belief in some proposition 

should not be increased just because it is common to the two functions; this would amount to 

double-counting the effects of the evidence. Rather, the belief should be set to be equal to the 

more precise of the two input belief functions since the assumption that the input functions are 

completely valid but potentially vague leaves the assessment of their relative quality to be based 

on their precision alone; with greater precision being taken as better. Thus for two dependent 

belief functions S\ and S2 on frame 6, the appropriate operation to produce a combined support 

S (A) for some proposition A might be expected to be as follows: 

5(A) = max (S!(A),5 2 (A)) , V A C 9 (5.5) 
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However this operation does not necessarily produce a legitimate belief function as output. For 

example, when this operation is used to combine the following two belief functions which are 

known to have originated from the same source of evidence: 

5 1 ( { a » = 0, 51({6}) = 0, 51({c}) = 0, 

Si({a,6}) = 1.0, 51({a,c}) = 0, Si({6,c}) = 0, 

51({a,6,c}) = 1.0 

52({a}) = 0, 52({6}) = 0, 52({c}) = 0, 

S2({a,6}) = 0, 52({o,c}) = 0, 52({6,c}) = 1.0, 

5 2 ({a ,6 ,c» = 1.0 

The resulting combined belief function is: 

5({a}) = 0, S({b}) = 0, 5({c}) = 0, 

5({a,6}) = 1.0, 5({a,c}) = 0, 5({6, c}) = 1.0, 

S({a,b,c}) = 1.0 

This is not an allowable belief function according to Shafer's formal definition [57, p.39]. The 

correct result must be as follows: 

S({a}) = 0, S({b}) = 1-0, S({c}) = 0, 

5({a, b}) = 1.0, 5({a, c}) = 0, S({b, c}) = 1.0, 

5({a,6,c}) = 1.0 
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The error in equation 5.5 can be traced to the fact that the support value for a proposition 

reflects the belief which is attributed exactly to that proposition or to some subset of that 

proposition. That is, the support S(A) for some proposition A is obtained from the basic 

probability assignment m according to the following formula: 

Thus when vagueness in both input belief functions causes belief which should be assigned to 

some proposition A to be re-assigned to supersets of A, the support values for A in both input 

functions contain no evidence of that belief. Consequently, the application of equation 5.5 cannot 

show that A is the more precise origin of that belief. A solution, then, is to base the operation 

on the commonality number, Q(A), of a proposition which reflects the belief attributed exactly 

to that proposition or to some superset of that proposition. That is: 

Belief which is assigned to a superset of some proposition A, then, is fully reflected in the 

commonality number of A. Thus when a comparison of the two input belief functions shows that 

some belief has been assigned to unduly vague propositions (supersets of A), the commonality 

numbers will lead to A as the more precise origin of that belief. It can be further noted 

that a conjunctive combination operation should minimize the commonality numbers of two 

dependant belief functions. This is because excessive imprecision causes belief to be re-assigned 

upwards to larger propositions, thereby allowing this belief to contribute to the commonality 

numbers of more propositions. Vagueness therefore leads to larger commonality numbers, and 

the more precise of two dependant input functions is obtained by minimizing the commonality 

numbers. Using a commonality number representation therefore, the conjunctive combination 

of the two dependent belief functions Q\ and Q2 on frame 6 is correctly expressed by the 

(5.6) 
BcA 

(5.7) 
B e e 
ACB 
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following formula: 

Q(A) = min (Q 1 (A) ,g 2 (A)) , V A c 6 (5.8) 

This formulation may be used to combine the following two belief functions which are the 

commonality equivalent of the support functions given in the example described above: 

Qi({a}) = 1.0, Qi({6})=1.0, Qi({c}) = 0, 

Q1({o,6}) = 1.0, Qi({a,c}) = 0, Qi({b,c}) = 0, 

Qi({a,b,c}) = 0 

Q2({a}) = 0, Q2({6}) = 1.0, Q2({c}) = 1.0, 

Q2({a,6}) = 0, Q2({o,c}) = 0, Q2({b,c}) = 1.0, 

Q2({a,b,c}) = 0 

producing the following commonality function: 

<?({«}) = 0, Q({6» = 1.0, g({c}) = 0, 

Q({a,6}) = 0, Q({a,c}) = 0, Q({6,c}) = 0, 

Q({a,b,c}) = 0 

which is the desired result. 

In contrast to the conjunction combination case in which both input belief functions are thought 

to be valid, a case will be demonstrated in section 10.3.2 in which one of two belief functions 

is believed to bear on the situation at hand, though it is not know which one. Under these 
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circumstances, one can only justifiably assert a combined belief function that reflects the belief 

which is common to both of the input belief functions. Thus the combined support for some 

proposition should be taken as the minimum of the support assigned to that proposition by the 

two input functions. Following a similar line of reasoning to that used for the conjunctive case, 

it can be shown here that support numbers may be used for the operation whereas commonality 

numbers may not. The disjunctive combination of the two input belief functions Si and S 2 on 

frame 0 is therefore given by the following formula: 

S(A) = min (Si(A),S 2(A)) , V A c 0 (5.9) 

It can be further noted that the plausibility value for some proposition reflects all belief which 

is not assigned to the complement of that proposition or to any subset of the complement. That 

is, plausibility reflects the belief in both the subsets and the supersets of the proposition and 

therefore provides the basis for alternative combination formulations which are comparable to 

equations 5.8 and 5.9. It can be observed that for two dependant belief functions, the more 

vague function will have equal or higher plausibility values. For example, a belief function 

which represents complete ignorance has a plausibility of 1.0 for all propositions; while a belief 

function which does not reflect complete ignorance exhibits plausibilities of less than 1.0 for 

those propositions which have some evidence against them. For two input belief functions Ply 

and P / 2 on frame 0, then, an alternative form of the dependent conjunctive combination 

(equation 5.8) which also produces legitimate results is obtained by taking the minimum of the 

plausibility values to obtain the more precise belief, as follows: 

P/(A) = min (P*i(A), P/ 2 (A)) , V A C © (5.10) 

A fully equivalent alternative form of the disjunctive combination (equation 5.9) is defined by 

taking the maximum of the plausibilities to obtain the more vague belief: 
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P1(A) = max (Ph(A),Pl2(A)) , V A C 6 (5.11) 

Note that equation 5.11 is equivalent to the following equation: 

1 - 5 ( A ) = max ( l - 5i ( A ) , 1 - S2 (A V A C 0 (5.12) 

where 5, Si, and S2 are the support function equivalents to PI, Pl\ and Pl2 respectively and 

A is the set complement of A. Further, equation 5.12 is equivalent to the following equation: 

which is equivalent to equation 5.9 since both equations maximize the support for every propo­

sition in the frame. This proves the equivalence of equations 5.9 and 5.11. 

Finally, note that the combination of several dependent input belief functions can be performed 

through the successive application of any of the above combination formulae. For example, the 

conjunctive combination of the three dependent belief functions Q\, Q2 and Q$ on frame © can 

be accomplished by the following operation: 

(5.13) 

Q(A) = min min (g 1 (A) ,Q 2 (A)) ,Q3(A)) , V A C 0 (5.14) 



Chapter 6 

D-S Theory I V : Inference 

This chapter provides a brief example of how D-S theory can be used to perform inference. 

Much of the ensuing chapters deals with work which was performed before this methodology 

of performing consistent inference was known. Yet the technique is presented here so that the 

early work can be compared with this technique. 

6.1 Performing Inference in D-S theory 

Suppose that we have a frame OA with elements o, and propositions A, and a second, related 

frame OB with elements bj and propositions By. If a belief function which describes some body 

of evidence (an evidential belief function) is entered for the frame OA, one might wish to 

determine the impact of this knowledge on the propositions of the second frame 6#. This 

can be done by creating the minimal refinement of the two frames, 9^ ® 9 B or ®(A,B)> which 

incorporates all of the elements from both initial frames. An element (a, 6) in the minimal 

refinement frame 9(A,B) corresponds to the concept that the element a is the true value of 

frame OA while the element 6 is the true value of frame 9 B - Likewise, a proposition (A,B) in 

the frame &(A,B) 1 3 * r u e * n e proposition A in frame QA is true and B in frame 9 B is true. 

It was stated in section 3.2 that the minimal refinement consists of only those pairs of elements 

which can logically coexist. In order to simplify the process, the assumption will be made here 

that the two initial frames are fully independent, and that minimal refinement is simply the 

cross product of the two frames. Later, a relational belief function will be added to the 
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minimal refinement which states categorically that those pairs which cannot logically co-exist 

are impossible. Thus the minimal refinement defined in section 3.2 and the fully independent 

minimal refinement with the added relational belief function described here are functionally 

equivalent. 

The next step is to extend the evidential belief function associated with frame 0 A to the 

frame 0(A,B)- That is, every basic probability number attributed to a proposition A is assigned 

to the corresponding proposition in the frame ©(x.B) (recall that the elements of ©A are fully 

discerned by 0(A,B))- The extended belief function is then the restriction of the initial evidential 

belief function to 0^, as defined by equation 4.17. 

This extension of the evidential belief function is then combined, using Dempster's rule, with a 

relational belief function discerned on frame 0(A,B}- The relational belief function embodies the 

inference relationships between the elements in ©x and 6#. These relational belief functions will 

be discussed in more detail in section 11.2. The belief function resulting from the combination 

now incorporates both the evidential belief about the ©^ elements and the implied belief about 

the Qg elements. — 

Finally, the resulting belief function is coarsened or marginalized from the frame ©(A,B) to 

the frame ©#, producing a new evidential belief function on 65 (as in equation 4.18). 

Thus, using only the tools of the D-S theory, belief concerning elements in the frame ©# has 

been inferred from belief about the elements in frame ©A and belief about the relationships 

between the two frames. Note that in the context of an expert system, the evidential belief in 

frame ©x would be input from the user, the relational belief would be stored by the knowledge 

engineer in the system's knowledge base, the propagation procedure would be performed by 

the system's inference engine (possibly with the guidance of a "control knowledge base" which 

defines which propagations to make in various situations) and the resulting evidential belief in 

frame &B would be either output to the user, or an intermediate point for further propagation. 

Example 6.1 illustrates the belief propagation process. 
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Example 6.1 Suppose that we have a frame which discerns the type of ground 

found on a construction site where the ground could be either rock or soil: 

^MATERIAL = {rock, soil} 

A second frame discerns the excavation method that we will use on the project, 

either blasting or digging: 

&METHOD = {blast, dig} 

These two frames would yield the minimal refinement: 

Q(MATERlALMETHOD) = {(rock, blast), (rock, dig), {soil, blast),{soil, dig)} 

The minimal refinement completely contains both initial frames. For example 

the proposition {(rock, blast), (rock,dig)} in the frame 0{MATERIAL,METHOD) *S 

equivalent to the proposition {rock} in the frame ^MATERIAL- Likewise, the propo­

sition {(rock,blast), (soil,blast)} in the frame 9(MATERIALMETHOD) corresponds 

to the proposition {blast} in the frame &METHOD-

D-S inference, or belief propagation, for these frames is illustrated in figure 6.1. 
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Starting with an 
Evidential Belief Function 

on frame 8 M ATERIAL 
(entered by the user): 

and a 
Relational Belief Function 

on frame &(MATERIAL,METHOD) 
(stored in the knowledge base): 

0.4 — -^rock^ 

0.6 soil • 
We can extend the 

Evidential Belief Function 
to frame Q(MATERIAL,METHOD) '• 

^ (rock,dig) (rock,fe/ost)^- — 0.4 

(soil, dig) (soil, blast) J— 0.6 

r 
Then combine the extended Evidential Belief Function with 

the Relational Belief Function using Dempster's Rule: 

0.08 — 4 (rock,dxg) 

0.48 

^rock, blast) 

(soil, blast) 

0.32 

0.12 

• 
And Reduce the result to produce an 
inferred Evidential Belief Function 

on frame & MET HOD' 

0.68 dig blast W-0.32 

Figure 6.1: Summary of Belief Propagation for an Excavation Example 



Chapter 7 

Various D-S Interpretations 

One of the first references to D-S theory in an artificial intelligence context was in 1981 at the 

Seventh Joint International Conference on A l in Vancouver, B.C. (IJCAI-81). Since that time, 

a good deal of work has focused on the theory and on how to implement it. This chapter briefly 

reviews a few of the important papers published in this field by others. 

7.1 Barnett 

Jeffrey Barnett presented a paper at IJCAI-81 entitled "Computational Methods for a Math­

ematical Theory of Evidence" which dealt exclusively with D-S Theory. There were two main 

points to Barnett's paper; the first was simply to present D-S theory as a possible scheme for 

dealing with uncertainty. The second point was to modify the process in an attempt to change 

the processing time for reasoning problems from a duration that is exponentially dependant on 

the size of the problem to one that is linear. 

Barnett showed that the calculation of both the support and the plausibility numbers from 

a basic probability assignment as well as the combination of basic probability assignments all 

require processing time exponential with the size of the frame of discernment. He produced 

variations which he claimed reduce these to linear, however to do this he restricts the allowable 

propositions to only singletons, the negation of singletons and the full frame itself. 

Several criticisms can be directed against such an approach. First, the computational problem 

does not seem to be as bad as Barnett suggests, as discussed in sections 9.8 and 9.9. Second, 
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the restrictions that Barnett places on the theory severely limit the power of the system's 

representation scheme and almost totally remove that ability to deal with belief of various 

precision. Third, the restrictions seem to lead to violations of the theory's underlying axioms. 

For example; suppose we have a frame {a,6,e,d}, a basic probability assignment that assigns 

belief only to the proposition NOT {a} or {6,c,d} and a second basic probability assignment 

that assigns belief only to NOT {d} or {a,b,c}. Then the legitimate combination of the two 

basic probability assignments would result in all belief being assigned to the intersection of these 

two sets-which turns out to be {b,c}, a set which is not allowed according to the restrictions. 

7.2 Garvey, Lowrance and Fischler 

Another paper presented at IJCAI-81 which dealt with D-S Theory was "An Inference Technique 

for Integrating Knowledge from Disparate Sources" by T. Garvey, J . Lowrance and M . Fischler. 

This paper, like that of Barnett, is largely devoted to a good, simple explanation of portions of 

the D-S theory. It then goes on to give a number of allowable inference rules; for example: 

Theorem 7.1 Given a support interval for proposition A of [S(A),Pl(A)] and a support in­

terval for proposition B of [S(B), Pl(B)], we can infer a support for proposition (A & B) of 

[S(A& B),Pl(Ak B)] from the following equations: 

These equations can be shown to be clearly incorrect. For example, consider a frame of dis­

cernment {a,b,c}. Let the proposition {a,6} be A and the proposition {o,c} be B. Then the 

proposition {a} is A n B (or A & B). Thus we can see that: 

(7.1) 

(7.2) 



Chapter 7. Various D-S Interpretations 57 

S ( A n B ) = S({a}) = m({«}) (7.3) 

However equation 7.1 states that: 

S(A n B ) = max (o, 5(A) + S{B) - l ) 

= max (O, S({a,b}) + 5({a,c}) - l ) 

= max (o, (m({a, b}) + m({o}) + m({6») 

+ {m({a,c}) + m{{a}) + m({c})) 

- (m({a}) + m({c}) + m({*}) 

+m({a, 6}) + m({o, c}) + m({b, c}) + m({a, 6, c})) 

Equation 7.1, then, is incorrect. 

These equations are valid, however, when they are not taken as equalities (as stated) but rather 

as inequalities (e.g. S(AizB) > max(0, 5(A) + 5(B) - 1)). The paper does not go on to show 

clearly how such statements can be used in a reasoning system and furthermore, it seems that 

they could only be of use when complete basic probability assignments are not available in the 

first place (there is no apparent benefit of allowing fragments of basic probability assignments). 

The final portion of the paper by Garvey et al works through an example of using D-S theory 

to combine different types of evidence about an electronic signal in order to determine which of 

several possible sources it was emitted from. This example incorporates "dependency graphs" 

which are equivalent to the minimal refinement of all input frames. This example is one of the 

few cases in the literature which proceeds in a manner which is truly consistent with Shafer, 

rather than reaching outside of D-S theory for reasoning procedures. This paper, then, contains 

useful results and provides the first glimpse of a consistent D-S approach; but it makes little 

progress towards a general implementation technique of D-S theory for expert systems. 

* » » ( { « » (as per equation 7.3) 
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7.3 Gordon and Shortliffe 

One of the first attempts to try to create a simple implementation of the D-S theory in a 

rule-base expert system was made by Gordon and Shortliffe who looked at the theory for 

improving the MYCIN system described in section 2.2 (see Buchanan and Shortliffe [4, Ch.13]). 

In their approach, a single frame of discernment was constructed from a list of all of the 

diseases known to the system. Rules were then constructed exactly as in their initial system, 

including the formulas for conjunctions and disjunctions in the premise and for weak inference. 

The difference was that the resulting certainty factors were now taken to be basic probability 

numbers. Dempster's Rule was then used for combining these bodies of evidence. In this 

system, Barnett's simplifying assumptions were adopted. 

Later, Gordon and Shortliffe [27] dropped Barnett's schemes and revised the system to deal 

with an entire frame of discernment rather than just the singletons and their complements. 

However they made a different restriction that only those propositions which formed a true 

hierarchy or a tree instead of a lattice could be used. These restrictions alter rather than 

solve the problems arising from Barnett's schemes since legitimate combinations still lead to 

illegal propositions. This problem is dealt with by making approximations which remove the 

belief from any such illegal propositions but, as a result, the ability to accurately calculate the 

plausibility of propositions is lost. Also, Shafer and Logan [65] later pointed out that if the 

discernment space is, in fact, truly hierarchical, then Dempster's rule is much more efficient 

than in the general case anyway, so Gordon and Shortliffe's approximation technique is not 

necessary. 

While Gordon and Shortliffe's techniques are consistent with the D-S theory (except for the 

restrictions mentioned above), they deal only with combining multiple sources of evidence 

regarding possible conclusions. In no way do they mention how these sources of evidence are 

arrived at in the first place. In fact, the impression is given that the sources of evidence are the 

results of applying rules in exactly the same manner as certainty factors. If this is the intended 
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approach, it marks the genesis of a very important class of D-S implementation approaches-

namely non-consistent implementations. Such implementations use portions of the D-S 

knowledge representation scheme and often employ Dempster's rule for combining multiple 

sources of belief. But the techniques used for inferring belief (using rules) and performing weak 

inference (adding uncertainty to the rules themselves) are founded wholly outside of D-S theory. 

This class of D-S implementations is useful because it generally results in systems which are 

quite simple and practically implementible and their results are at least as good (most likely 

better) than those of simple certainty factors. However they miss the very important mark of 

providing systems which are fully consistent with a single reliable underlying theory, and thus 

cannot offer the reliability and confidence of truly consistent approaches. The system developed 

by Lu and Stehanou (described in the next section) is a typical non-consistent implementation. 

7.4 L u and Stehanou 

Lu and Stehanou [44] have proposed a system which uses D-S frames to represent so-called 

input and output spaces. Inference is accomplished by defining mappings between input space 

propositions and related output space propositions. Whenever a non-zero level of belief is 

encountered for an input space proposition, that belief is multiplied by a measure of uncertainty 

associated with the mapping itself and then assigned to the related output space proposition in 

the form of an independent belief function (with any remaining belief attributed to ignorance). 

This approach is intuitively sound and is adaptable to rule-based expert systems. But the 

mappings and their associated uncertainty values are basically ad hoc and they have no foun­

dation in D-S. The following is an example of the problems which can result from this type of 

approach: 

Example 7.1 Suppose that we attempt to implement a one-to-one or identity 

relationship between the input and the output propositions. For example, we might 
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have two input elements I\ and I2, two output elements 0\ and O2, and the identity 

set of mappings UI\ implies Oi with certainty 1.0" and UI2 implies 0 2 with certainty 

1.0". Then the following input belief function: 

S{h) = 0.5, S(/ 2 ) = 0.5, S(Ii,I2) = 1.0 

would, through the two mappings, yield the following two output belief functions: 

5(Oi) = 0.5, S{02) = 0.0, S (O i ,0 2 ) = 1.0 

and 

Sid) = 0.0, 5(0 2 ) = 0.5, S{Ou02) = 1.0 

Note that the support value of 1.0 for "Oi,C? 2" in each of these belief functions 

comes from a 0.5 basic probability number assigned to one of the singletons and a 

0.5 basic probability number assigned to " O i , 0 2 " itself as a result of attributing re­

maining belief to ignorance. These belief functions would combine under Dempster's 

rule to yield the overall output belief function: 

S(Oi) = 0.333, 5(0 2 ) = 0.333, 5 (Oi ,0 2 ) = 1.0 

Here, the support value of 1.0 for " O i , 0 2 " is a result of summing the 0.333 

basic probability numbers assigned to each of the three propositions. Thus the set 

of identity mappings did not operate correctly since the output belief function is 

not a one-to-one mapping of the input belief function. Not only do we get different 

levels of belief for the two singletons, but we produce a level of uncertainty where 

none originally existed. Note that a different propagation approach could have 

been employed in which the two rule's assertions do not make up different basic 

probability assignments but are simply two components of a single assignment. This 

solution is no better, for a set of assertions about the propositions in the output 



Chapter 7. Various D-S Interpretations 61 

space need not all come from the same input space frame, so we cannot simply state 

that all such assertions are basic probability numbers in the same basic probability 

assignment because they then will generally not add up to one. 

These inconsistencies are not fundamental faults with systems which only partially adopt D-S 

theory, and solutions can be derived which deal with these particular problems. However these 

are typical of the types of problems that arise from the lack of a single, coherent underlying 

theory for the entire reasoning process. 

7.5 Lowrance, Garvey and Strat 

J . Lowrance, T. Garvey and T. Strat presented a paper at the National Conference on Artificial 

Intelligence in 1986 (AAAI-86) entitled "A Framework for Evidential-Reasoning Systems" [42]. 

This paper gives a detailed description of a reasoning system which, like the one presented by 

Garvey, Lowrance and Fischler at IJCAI-81, seems to be fully consistent with D-S theory. To 

solve a reasoning problem in their system, they first partition some propositional space into 

appropriate frames of discernment. Next, they represent their knowledge about which propo­

sitions from one frame are compatible with propositions in another frame (that is, which pairs 

of propositions from the two frames could be true simultaneously). This knowledge takes the 

form of a set called a compatibility relation which consists of ordered pairs corresponding 

to these compatible pairs of propositions. From this compatibility relationship, a set of map­

pings is defined which can be used to transfer belief between frames of discernment. Thus, to 

determine our belief in the propositions for some frame, we transfer the belief from any related 

frames to our frame of interest and combine all of this belief, yielding our current combined 

belief. 

We have stated that this approach is consistent with D-S techniques for reasoning. However the 

system, as we've described it, uses mappings to transfer belief between frames of discernment 
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(as did earlier non-consistent systems such as Lu and Stehanou described above). The difference 

between this system and earlier systems is that the compatibility relation set used by Lowrance 

for transferring belief is exactly equivalent to Shafer's minimal refinement frame and the entire 

mapping process is mathematically equivalent to using Shafer's techniques to define a minimal 

refinement of two frames, transfer any belief from the two original frames to the refinement, 

combine the belief and then coarsen the minimal refinement frame so that we are left with a 

frame which is identical to the one that we were originally planning to transfer our belief to. 

In chapter 10, several comparisons are offered between this D-S implementation approach and 

the one developed during the thesis research project. 

7.6 Zadeh 

Lotfi Zadeh is the father of fuzzy logic theory, one of the main "competitors" of D-S theory for 

inexact reasoning in expert systems. Fuzzy logic theory will not be discussed here, but Zadeh 

has frequently commented on D-S theory and these comments are discussed in this section. 

Although Zadeh's comments have been, for the most part, cautiously positive, he takes strong 

issue with the normalization process from Dempster's rule and he has aggressively criticizing 

the theory on that basis (see Zadeh [82] and [83]). However the examples that Zadeh's uses to 

make his point consistently show that he has failed to grasp some of the basic concepts of the 

theory. For example, Zadeh gives the following example: 

"Assume that Country X believes that a submarine, S, belonging to Country Y is 

hiding in X'B territorial waters. The Minister of Defense of X summons a group 

of experts, E\,... ,En, and asks each one to indicate the possible locations of S. 

Assume that the possible locations specified by the experts E\,..., Em, m < n, 

are L \ , L m , respectively, where Li, i = 1,...,m, is a subset of the territorial 

waters; the remaining experts, E m + i , E n , assert that there is no submarine in 
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the territorial waters, or, equivalently, that Lm+i = • • • = Ln = 0, where 0 is the 

empty set." [83, p.81]. 

Zadeh goes on to show that the because the D-S theory allows no belief in the empty set and 

therefore eliminates any such values and normalizes all other belief, the opinion of those experts 

who said that there is no submarine is completely disregarded. His criticism is summed up by 

his assertion that "Normalization throws out the opinion of those experts who assert that the 

object under consideration does not exist." [83, p.82] 

If we question why D-S disallows belief in the empty set, however, we remember that one of 

the most basic requirements of a frame of discernment is that the elements make up a mutually 

exclusive and exhaustive set. If all possible solutions are represented by the elements of the 

frame, then any belief about what is true must be represented by some proposition and cannot 

be represented by the empty set unless we have belief in something which we have deemed to 

be impossible. 

The question remains, then, of how the situation outlined in the above example could arise. 

Shafer gives the solution to this question in chapter twelve of his book. A frame of discernment, 

he shows, is based on many assumptions. For example, we have previously defined a frame which 

discerns whether a person is left handed or right handed. This frame assumes that the person 

was not ambidextrous. Assumptions are, in fact, a requirement of reasoning. For example, 

we also assume in this frame that a particular person exists and is not just some figment of 

our imagination; if we had to consider all such options then we would rarely be able to gather 

strong enough evidence to prove that anything were true. Never-the-less, we may find that some 

particular assumption is not valid and so we must redefine the frame to include that option. 

This is what has happened in Zadeh's example; the frame of discernment which is made up of 

possible locations of the submarine in the country's territorial waters is clearly based on the 

assumption that a submarine is in those waters. The existence of an expert opinion that says 

there is no submarine is not an indication of some level of belief in the empty set, it is an 
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indication that the frame of discernment has been incorrectly defined and it must be revised to 

include an element corresponding to "there is no submarine". 

In the D-S theory, then, we can never assert any level of belief in the empty set. However 

we still need to be able to deal with such belief because it is generated by Dempster's rule 

when combining two bodies of evidence that contain belief which is, to some extent, conflicting. 

Zadeh gives a second example in the same paper which criticizes this procedure: 

"Suppose that a patient, P, is examined by two doctors, A and B. A's diagnosis is 

that P has either meningitis, with probability 0.99, or a brain tumor, with proba­

bility 0.01. B agrees with A that the probability of brain tumor is 0.01, but believes 

that it is the probability of concussion rather than meningitis that is 0.99. Applying 

the Dempster rule to this situation leads to the conclusion that the belief that P 

has a brain tumor is 1.0-a conclusion that is clearly counter-intuitive.. ."[83, p.82] 

These results certainly demand a second look, however in so doing the problem is again found in 

the example, not in the theory. The belief from the first doctor states that the diagnosis could 

possibly be either meningitis or a brain tumor (with the former being much more probable 

than the latter) and that all other diagnosis are untrue with certainty (i.e. impossible). The 

second doctor stated that a concussion and a tumor are possible but that all other diagnosis 

are impossible. Since the first doctor has conclusively ruled out a concussion and the second 

doctor has conclusively ruled out meningitis, the only possible diagnosis is a tumor. 

This example, then, does not illustrate an inherent problem with the D-S theory but rather 

illustrates the fact that claims of certainty are taken literally in the theory. In fact, the D-S the­

ory would itself identify this example as being questionable in that an extremely high weight of 

conflict would be produced in the combination which would flag the fact that highly conflicting 

information was being combined. Furthermore, if the example were a more realistic one, the 

evidence that lead the first doctor to place a certainty of 0.99 in meningitis would very likely 



Chapter 7. Various D-S Interpretations 65 

have caused the second doctor to admit at least some possibility of meningitis and vise-versa. 

If even so slight a possibility of 0.01 were thus allowed, the results would be quite different; as 

illustrated in table 7.1. 

Table 7.1: Modified Doctor's Example 

1st Doctor 2nd Doctor Combined belief 
m(meningitis) 0.98 0.00 0.490 

m(tumor) 0.01 0.01 0.015 
m(concussion) 0.00 0.98 0.490 

m(meningitis, tumor, 
or concussion) 0.01 0.01 0.005 

The results shown in table 7.1 are, of course, much more appealing. They do point out, however, 

that there can be a significant (although not discontinuous) difference between very small levels 

of belief and zero belief. Again, this is due to the fact that categorical statements are taken 

literally and two categorical belief statements which conflict indicate an impossible situation-

one or both of the functions must be discounted or discredited to some extent. 

7.7 Other Related Work 

This section lists a few of the other important works relating to D-S theory without discussing 

their content. 

• Thomas Strat presented a paper entitled "Continuous Belief Functions for Evidential 

Reasoning" [70] at AAAI-84. This paper describes a very interesting and useful extension 

of D-S frames of discernment from discrete to continuous variables. 

• After writing " A Mathematical Theory of Evidence" in 1979, Glen Shafer participated 

very little in work relating artificial intelligence applications of his theory (his 1976 book 

itself was not intended for an A l audience). By the mid-1980's, however, he seems to have 
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been energetically drawn into the fray. Most of the works which he has since prepared or 

collaborated on are important references for this field. See, for example, [11], [60], [61], 

[63], [64], [65], [66], [67], and [68]. 

• Ronald R. Yager has produced a large amount of work on uncertainty in artificial intel­

ligence. His work has focused on D-S theory in addition to fuzzy set theory and other 

approaches. Most of Yager's work is at a fairly theoretical level. See [72], [73], [74], [75], 

[76], [77], [78], and [79]. 

7.8 Conclusion 

This chapter has reviewed some of the important work performed in the area of applying D-S 

theory to inexact reasoning in expert systems. A general observation of these works is that 

they each seem to follow one of two distinct paths. The first path borrows such components 

of D-S theory as proves advantages for simple, rule-like reasoning approaches: such systems 

are non-consistent. The second path strives to produce truly consistent D-S implementations. 

The common thread among these works is that they don't go very far in uncovering a general, 

practical application approach which remains true to the goal of consistency. A clear objective 

of work in this field is to bring these two paths back together to produce a simple, practical 

application approach which remains truly consistent with D-S theory. 



Chapter 8 

Non-Consistent Implementations 

This chapter deals with the non-consistent implementation attempts made early in the research 

project. While some of the work outlined in the previous chapter was available when the project 

began, most of it was not. Based on the material which was available from the outset and on 

a rudimentary understanding of the D-S theory, the project began with the idea that a simple 

MYCIN-like expert system could be created in which certainty factors were replaced with D-S 

belief functions. In a MYCIN-like system, the function of a rule is to determine the level of 

belief in its premise and assert a corresponding level of belief for its conclusion. Further, the 

abilities exist to handle conjunction, disjunction and negation in the premise; to incorporate 

some level of uncertainty in the validity of the rule itself; and to combine the effects of several 

rules all dealing with the same conclusion. 

If, as in the approach described by Gordon and Shortliffe (section 7.3), the measure of belief 

resulting from the application of a rule is taken to be a D-S belief function (focused exactly for 

or against some singleton) rather than a certainty factor, then the combination of several rules' 

results can be performed using Dempster's rule. 

Using this approach for combining the results of multiple rules and using the normal MYCIN 

formulae for all other operations, a simple rule-based system can be constructed. An attempt 

at such an approach is described in section 8.1. However this technique has two main problems. 

First, the application of Dempster's rule requires two or more belief functions as input, not 

simply two single measures of belief (i.e. two support numbers). The assumption made by 

Lu and Stehanou (section 7.4) that the support value for any premise proposition can be 

67 
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assigned to a conclusion proposition with remaining belief assigned to the frame itself will 

result in a belief function as the rule's output, but the belief function is created according to an 

arbitrary convention. It is this arbitrary process that leads to the problem previously described 

in example 7.1. Second, all of the other processes in the system have no connection with D-S 

theory, thus the system is non-consistent regardless of the first problem. 

While the first problem was overcome by using an approach described in section 8.2, it was 

eventually realized that any approach which closely followed the MYCIN-like rule format could 

never be fully consistent with D-S theory. The resulting consistent work is described in the 

subsequent chapters. 

8.1 A D-S Inexact Reasoning Module 

If an expert system is created using PROLOG predicates as rules, an additional set of predicates 

can be written which collaborates with the rule predicates to manage uncertainty. This set 

of uncertainty handling predicates forms an independent module which can be modified to 

accommodate a variety of inexact reasoning techniques. This is the approach suggested in a 

paper by Lecot and Parker entitled "Control over Inexact Reasoning" (published in AI Expert 

magazine in 1986 [39]). Lecot and Parker refer to the set of inexact reasoning predicates as 

an inexact reasoning module, or I R M . The predicates in an IRM operate on measures of 

uncertainty, U, the structure of which depends on the inexact reasoning approach being used. 

If a MYCIN-like approach is adopted, for example, the structure of U will be a certainty factor 

(a number between negative one and one). As described by Lecot and Parker, an IRM, must 

contain at least the following main predicates: 

1. certainty-and(Ui, U2, t/3). Produces the uncertainty measure, C/3, resulting from a premise 

of the form °term-l AND term-2", where Ui and U2 are the measures of uncertainty 

associated with each term respectively. 
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2. certainty.or(Ui, U2, Us). Produces the uncertainty measure, Us, resulting from a premise 

of the form "term-1 OR term-2", where U\ and U2 are the measures of uncertainty asso­

ciated with each term respectively. 

3. certainty.not(Ui, U2). Produces the uncertainty measure, U2) resulting from a premise of 

the form "NOT term", where Ui is the measures of uncertainty associated with the term. 

4. certainty.rule(V\, U2, Us). Produces the uncertainty measure, Us, resulting from a rule 

where U\ is the uncertainty associated with the premise and U2 is the uncertainty asso­

ciated with the rule itself. 

5. certainty.combine(U\, U2, Us). Produces the combined uncertainty measure, Us, resulting 

from the application of two rules with their associated measures of uncertainty U\ and U2 

respectively (Lecot and Parker included both the certainty-rule and the certainty.combine 

operations into a single predicate). 

For example, in a M Y C I N certainty factor IRM, the prolog predicates for the certainty.and and 

certainty.or operations are as follows: 

cer ta inty_and(cf(A),c i (B) ,c l (C)) : -

number_min(A,B,C). 

eertainty_or(ci(A) ,ei(B) ,cf (O) : -

number.max(A,B,C). 

where "number_min" and "number_max" simply assign the minimum and maximum of A and B 

to C respectively. Note that this is not quite equivalent to the actual M Y C I N system which 

keeps measures of belief and measures of disbelief separately. 

This general approach is easily implementable and the first forays into D-S implementation 

made by during the thesis research were to adapt D-S concepts to this format. The resulting 
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D-S IRM successfully implemented Gordon and Shortliffe's combination approach described 

in section 7.3 (which is, recall, consistent as far as it goes) as well as MYCIN'S formulae for 

conjunctive and disjunctive premises and for weak inference as described in section 2.2 (these, 

of course, are non-consistent with D-S theory). The details of this implementation here will not 

be provided in this thesis. 

The resulting D-S IRM produced results which seemed to be richer, or better able to describe 

the uncertainty, than did the results from the normal certainty factor IRM. However using the 

D-S version was slightly more complicated than the certainty factor version. Of greater interest 

to us, however, was the observation that the system would produce apparently inconsistent 

results at times, like those described in example 7.1 for instance. The investigation of these 

results lead to a new implementation approach which came closer to (but did not fully achieve) 

the goal of a consistent implementation. This system is described in the following section. 

8.2 A Simple Support Function Approach 

As previously mentioned, the approach outline in the preceding section produced incongruous 

results because of the arbitrary manner in which belief in a premise proposition was translated 

into a belief function for the conclusion. The approach outlined in this chapter corrects this 

problem by basing the inference process on simple support functions (as defined in section 4.2). 

We therefore call this approach the simple support function, or SSF , approach. 

8.2.1 Restrictions 

The SSF approach places two main restrictions on the use of D-S theory. Not only do these 

restrictions enable the approach to solve some of the problems associated with the D-S IRM 

approach, but they enable Barnett's simplified calculations (section 7.1) to be used. These 

restrictions are as follows. 
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The first of these restrictions consists of confining the allowable subsets of a frame 6 to the 

singletons, the compliments of the singletons and 6 itself. This restriction admittedly invali­

dates the D-S theory advantage of being able to assign belief to any level of precision (i.e. any 

possible subset of 6). However the advantages of accommodating ignorance and of resulting in 

uncertainty intervals remain intact. 

The second restriction is that all pieces of evidence being added to a body of knowledge must 

be in the form of simple support functions. As mentioned in section 4.2, this reflects the 

process of incrementally acquiring single pieces of evidence and is appropriate for modeling 

expert behavior. If the computational and representational burden were ignored, both of these 

restrictions could be discarded and the following theory should hold: we have not, however, 

attempted to identify or implement the general formulae. 

8.2.2 S S F Approach to Inference 

The SSF approach to inference can be observed by examining the behavior of the simplest 

type of rule-one in which the premise is a single proposition in one frame (&PREMISE)> the 

conclusion is a proposition in a different frame (^CONCLUSION) and there is no uncertainty 

attached to the rule itself. We then wish to determine a degree of belief for the conclusion 

which reflects the extent of our belief in the premise. The conclusion's degree of belief will then 

act as a single new piece of evidence to be combined with the knowledge already collected for 

^CONCLUSION- As we have seen in section 4.2, the belief function representation of a single 

piece of evidence is a simple support function. Therefore, the conclusion of the rule must be 

in the form of a simple support function (in fact, this is one of the computational restrictions 

that we have placed on the system). Recalling that a single simple support function can be 

fully represented by a simple support number, we set the output of our rule to be a proposition 

with an attached measure of belief consisting of the simple support number 88(concluaion). 

Knowing that the degree of belief in the conclusion is in the form of a simple support number 
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and that this number is (in this simple case) proportional only to the degree of belief in the 

premise, it becomes clear that we should set: 

8s(conclu8ion) = ««(premi«e) (8-1) 

In order to use this rule, then, we must first determine ««(premise). We could calculate the 

simple support number for the premise by taking all the pieces of evidence we have for every 

proposition in ^PREMISE, combining them using Dempster's rule of combination to get a 

separable support function, decomposing this function into its unique set of simple support 

functions, and extracting the desired simple support number. However, we can perform this 

process in such way as to first combine all evidence (in the form of simple support functions, 

recall) for each allowable proposition in the frame, thereby producing one intermediate simple 

support function for every such proposition. These intermediate would then, in the process 

outlined above, be combined to create a single separable support function and then decomposed 

to produce a unique set of single support functions. It can be determined, however, that the 

final unique set of simple support functions will be identical to the intermediate set of simple 

support functions; the combination and decomposition is therefore unnecessary. If it is only 

aa(premise) that we are after, then, we only need to combine any pieces of evidence (each 

a simple support number) for the one proposition contained in the rule's premise using the 

simplified special case of Dempster's rule given in equations 4.15 and 4.16. 

For this simple, single proposition rule, then, the SSF approach offers a consistent (though 

restricted) techniques for inferring belief about the conclusion from belief about the premise. 

The following example shows how this technique prevails over the approaches described in 

sections 7.4 and 8.1: 

Example 8.1 Suppose that we have two frames of discernment; ^PREMISE = 

{0,6} and ^CONCLUSION = {x,v}- We may, as in example 7.1, wish to specify a 
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set of rules which imply that our belief in x iB exactly our belief in a and our belief 

in y is exactly our belief in b. With this identity rule set, then, we expect our belief 

in ^CONCLUSION to exactly equal our belief in QPREMISE- NOW suppose that our 

belief in QPREMISE is described by the basic probability assignment: 

m(a) = 0.5, m(b) = 0.3, m(a, b) = 0.2 

The D-S IRM system described in section 8.1 would assert that m(x) = 0.5 

and m(y) = 0.3, but these assertions would have to be made in the form of simple 

support functions. These functions, along with the corresponding combination from 

Dempster's rule, are: 

m(x) = 0.50, m(y) = 0.00,m(x,y) = 0.50 

m(x) = 0.00, m(y) = 0.30,m(x,y) = 0.70 

m(x) - 0.41, m(y) = 0.18, m(x,y) = 0.41 

Thus our belief in the conclusion does not equal our belief in the premise. 

However, if we redo the example using simple support numbers, our belief in 

©PREMISE would be expressed in the form of a set of simple support numbers 

corresponding to the above belief function; 88(a) = 0.714 and 88(b) = 0.6. The 

rules then make the assertions AS(X) = 0.714 and ss(y) = 0.6 or, in the form of 

simple support functions with the corresponding dempster combination: 

m(x) = 0.714, m(y) = 0.000, m(x,y) = 0.286 

m(x) = 0.000, m(y) = 0.600, m(x,y) = 0.400 

m(x) = 0.500, m(y) = 0.300, m(x, y) = 0.200 

Thus our belief in the conclusion does equal our belief in the premise in this 

case. 
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The underlying inexact reasoning mechanism in the SSF system, then, consists of obtaining 

knowledge about various frames of discernment and storing it in the form of simple support 

numbers. Rules are used to chain from frame to frame by combining all of the simple support 

numbers for some proposition and asserting the combined value as a simple support number 

for a new proposition. 

8.2.3 Comparison of the SSF System and M Y C I N 

It is interesting to note that the inexact reasoning process of combining simple support numbers 

for both singletons and the compliments of singletons using the special case of Dempster's com­

bination rule corresponds exactly to MYCIN'S combination of MB and MD factors (Measure 

of Belief and Measure of Disbelief respectively). This similarity leads to an assumption that 

the success of MYCIN'S inexact reasoning system would likely be at least equaled by the SSF 

system. 

The similarity between our D-S based system and MYCIN, however, also points out a seemingly 

confusing aspect of our system. Although an underlying concept of the D-S theory is that belief 

in any proposition within some frame of discernment is normalized to reflect belief relative to 

the belief in all propositions in that frame, our system (like MYCIN) determines its belief 

in a rule's premise from evidence concerning that specific proposition only. The solution to 

—this apparent problem is that the simple support numbers used by the rules, while alone they 

carry no indication their relative support, can be used to construct a fully normalized separable 

support function if and only if the set of simple support functions is complete. This means that 

if we relate one frame of discernment to another with a set of rules that is complete though 

not redundant, then we would be able to supply information about the first frame and obtain 

a separable support function from inferred facts about the second frame just as if our relative 

belief in all the propositions of the first frame were somehow transferred to the second. 

The difference between the two reasoning mechanisms is that, while both systems propagate 
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degrees of confidence for and against propositions in the same way, MYCIN interprets these 

confidences by simply subtracting the level of disbelief from the level of belief to obtain a single 

ad hoc parameter. Our system, on the other hand, will combine our belief for and against each 

proposition with the belief for all related propositions in a mathematically coherent way. The 

result is an interpretation of the various degrees of belief that reflects our relative belief in each 

proposition, the precision of belief in each proposition, and the extent of our ignorance about 

each proposition. 

Having now outlined the theoretical approach employed by the SSF system, we now supply 

some of the details of its implementation. 

8.2.4 Representation of Uncertainty 

In our implementation of a SSF system, a frame of discernment is made up of all the possible 

VALUE'S of some OBJECT,ATTRIBUTE combination. The singletons of the frame, then, 

would be represented by associative triples of the form "the ATTRIBUTE of the OBJECT 

is VALUE" along with an associated uncertainty measure comprised of a simple support num­

ber. For each singleton in the frame, there is a corresponding compliment. Support for these 

compliments could be represented in the form of an associative triple with the same VALUE 

as the singleton, but with a negative sign in front of the simple support number (although the 

difference is slight, these should be read as support for the negation of the singleton, not nega 

tive support for the singleton). Thus all knowledge is stored as an associative triple statement 

with a single valued degree of belief. 

In the SSF approach, uncertainty in rules themselves is represented by simply incorporating a 

single valued uncertainty measure U in each rule such that: 

0 < URULE < 1 



Chapter 8. Non-Consistent Implementations 76 

8.2.5 The Inexact Reasoning Process 

In our SSF approach, the inexact reasoning (or uncertainty propagation) process involves the 

following steps: 

1. Determine the belief in each premise proposition: 

A l l evidence in favor of each of the premise's propositions must be obtained. This en­

tails combining the simple support numbers for each piece of evidence that supports the 

proposition: 

2. Determine the overall belief in compound premises: 

A compound premise is made up of several propositions related by the Boolean operators 

AND, OR or NOT. For each of these relationships, we need a formula for combining 

the simple support numbers of the associated propositions. A criticism of many systems 

between the propositions when they derive these formulae. We can avoid this problem by 

providing a different formula for each different level of dependency and then specifying 

the most appropriate formula to use in any given rule. The appropriate formulae, then, 

for deriving the simple support number, »«(P), for the compound premise, P , from the 

set of premise propositions Pi,P2> • • - Pn> are: 

88(A) = ! - ( ! - 881(A)) x (1 - 882(A))... (8.2) 

(consistent and non-consistent alike) is that they assume a certain level of dependency 

AND: P conjoins dependent (pi,p2, • • -Pn) 

(8.3) 

P conjoins independent (pi,P2, • • - Pn) 

**(P) = T[ss(Pi) (8.4) 
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OR: P disjoins dependent (pi,p2,.. -Pn), 

8s(P) = max (8.5) 

P disjoins independent (pi,p2> • ••Pn), 

88 \p)=i - n (i - «(w)) (8.6) 

P disjoins exclusive (pi,P2> • • - Pi 

se(P) = max (8.7) 

NOT: P negates p, 

«fi(P) = se(-p) (8.8) 

Within each operator class, the formulae are listed in order of increasing strength. For a 

given set of propositions, for example, the value of the premise's support will be lower if 

the disjoin dependent formula is used than if the disjoin independent formula is used, and 

in turn the disjoin independent formula will yield a lower value than the disjoin exclusive 

formula. This means than if the relationship between the propositions is not known, the 

weakest formulae (the dependent case) can safely be used as a lower bound. 

3. Check premise acceptance: 

Once the degree of support for the rules premise is known, it must be checked against 

some minimum threshold value. This is so a rule will not be used if there is not sufficient 

evidence that the premise is true. The value of this threshold has typically been set 

arbitrarily. If the acceptance threshold is set too high, possibly correct solutions would 

be ignored if they have low initial support. If the threshold is too low, the system will 

try to examine far too many incorrect solutions, leading to increased running time and 

irrelevant questioning of the user. In the absence of any theoretically correct value, the 

value of 0.2 which has proven acceptable in the MYCIN system seem reasonable: 

Use rule if 8a(premi8e) > 0.2 
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4. Determine the belief in the conclusion: 

We have seen that in the case of a rule known with certainty, we set the simple support 

number of the conclusion to be equal to the simple support number of the premise. In 

the more general case, we wish the support for the conclusion to also reflect the degree of 

belief in the rule itself. This is achieved by using the formula: 

aa(conclu8ion) = aa(premiae) x URULE (8.9) 

5. Combine uncertainty from various sources: 

If we wish to determine the system's overall belief in some proposition at any given time, 

we must combine all the sources of evidence from all related statements using Dempster's 

rule of combination. The procedure involves three steps: 

(a) For each VALUE (A) in the frame of the proposition in question, combine the sim­

ple support numbers for all statements supporting that VALUE to obtain a new 

simple support number. Likewise, combine all of the simple support numbers from 

statements supporting that VALUE'S compliment (A): 

«s(A) = l - ( l - « « i ( A ) ) x ( l - « f i 2 ( A ) ) . . . ' (8.10) 

««(A) = l - ( l - * » i ( A ) ) x (1 - 882(A))... (8.11) 

(b) Combine the simple support number for each VALUE in the frame with the simple 

support number for that VALUE'S compliment to get one separable support function. 

The separable support function can be described in terms of the basic probability 

numbers m(A) and m(A) as well as the parameters r(A) and d(A) as defined below: 

_ aa(A) x (1 - aa(A)) 
1 - 88(A) X 88(A) 

(8.12) 
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.—. 88(A) X (l - 88(A)) . 
m(A) = v ' , \ \=J± (8.13) 

v ' 1 - 8s{A) x ««(A) v y 

r(A) = 1 - m(A) - m(A) (8.14) 

d(A) = 1 - m(A) (8.15) 

(c) Combine all of the separable support functions into one function, and describe it in 

terms of a series of support intervals: 

support interval of (A) = [5(A), P/(A)] 

where: 

5(A) = K x (m(A) x d(B) + r(A) x J[ m{B)) (8.16) 

p(A) = 1 - K x (n <*(C) x £ (^) + m(A) x JI < W - II (817) 

K = n ^ ) x ( i + E ( f ( ) ) - n m ( c ) ( 8 " 1 8 ) 

for all B ^ A and all C C 6 

8.2.6 Belief Decomposition 

The decomposition of a separable support function into a set of simple support functions is a 

process which the system can use in two ways. First, a user may wish to enter his belief about a 

set of proposition as a separable support function so that he can more easily specify his relative 

support for the different hypotheses and for ignorance. However we have restricted the addition 

of new information to the system to simple support functions. The user could only enter his 

belief in the form of a separable support function if the system were to decompose the function 

before it added the evidence to its body of knowledge. 

The decomposition process could also be used in a manner pointed out by Lu and Stehanou [44] 

as a tool for adjusting the certainty factors attached to rules. An expert could describes his 
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belief about the propositions in one frame of discernment and then a set of rules could infer a 

state of belief about a second frame. The expert who has written the set of rules could then 

compare the rule's separable support function for the second frame with his own belief about 

what the inferred belief should be. If he decides that the rules have not performed satisfactorily, 

however, he cannot tell what the impact of each rule has been. He must therefore decompose 

both the rule's and his own simple support functions to see which propositions contain the 

conflicting levels of belief. Now each proposition corresponds to one specific rule which can be 

adjusted to improve the inference. 

8.3 Conclusion 

This chapter has discussed two non-consistent D-S implementation attempts. Both the D-S 

IRM and the SSF approaches use frames of discernment to represent system variables, though 

both apply restrictions to which of the frame's propositions can be used. The D-S IRM sys­

tem combines the results of multiple rules in a manner which is consistent with D-S theory. 

However the formulae for using each individual rule are non-consistent. The SSF approach 

goes one step further in that it performs inference for simple rules is a consistent manner. 

However non-consistent techniques are still used for dealing with compound premises and for 

incorporating uncertainty in a rule itself. Neither approach, then, reaches the goal of complete 

consistency with the D-S theory-thus neither approach was pursued further during the thesis 

research. However both approaches can be implemented in a simple and robust way and are 

likely to perform better then simple certainty factors. Anyone interested in developing practical 

expert systems with moderate uncertainty handling capabilities might find either one of these 

approaches to be extremely useful. 



Chapter 9 

Global Frame Approach 

The previous chapter dealt with various non-consistent attempts to implement D-S theory for 

inexact reasoning. During the testing of the SSF approach system, it was realized that all 

of the capabilities required for inexact reasoning (namely inferring belief in a conclusion from 

belief in a premise, obtaining a combined belief in a premise with several terms, incorporating 

uncertainty in the inference rule itself, and aggregating the results of several inferences rules) can 

all be performed in a manner completely consistent with D-S theory. This discovery rendered 

the SSF and earlier non-consistent approaches essentially obsolete, and further research work 

on such systems ceased. Yet the discovery also created more problems than it solved since, 

while the theoretical feasibility of a consistent system seemed clear, the specific implementation 

approach remained quite complex conceptually and extremely onerous computationally. This 

chapter deals with an initial complete implementation prototype which is based on a "global 

frame of discernment" approach. 

9.1 Overview of Global Frame Approach 

The general approach to reasoning in a global frame system is to provide the system with 

enough information to define one large frame which can discern all propositions that might 

be of interest as well as the relationships between them. Then all known belief about the 

problem can be specified. A current state of belief about all of our propositions is maintained 

by combining all belief into a single basic probability assignments on the one large frame of 

81 
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Figure 9.1: Flow chart for the Basic Reasoning Procedure in a Global Frame Approach System 

discernment. We can then interpret this global belief, producing a support interval for any 

proposition discerned by the system. 

Implementing this approach involves conveying to the system our knowledge about what con­

cepts exist, about how concepts are related, and about the levels of belief that we have in 

these concepts. The system can then manipulate these three types of knowledge to perform 

reasoning. A flow chart of the basic reasoning process is shown in figure 9.1; each phase of the 

process is described in greater detail in the subsequent sections. 
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9.2 Concept Representation 

The first step in setting up an inexact reasoning problem in a global frame system is to specify 

a series of frames of discernment such that every proposition that we might be interested in will 

be represented in some discernment space. Concepts which are of interest for some reasoning 

problem are identified and sorted into like groups. In cases where groups of concepts make up a 

set of mutually exclusive options, they can become the elements of a single frame of discernment 

(if the set is not exhaustive, an "all other options" element could be added). In cases where 

groups of concepts make up non-mutually exclusive options, each concept can form a separate 

frame containing two elements corresponding to that concept's truth or falsity. In addition to 

supplying the elements of a frame, we can also specify any aliases which we may want to assign 

to various propositions (aliases are used by the system to reference propositions in input/output 

operations). 

The process of specifying the frames of discernment is not a trivial one. Each frame is based 

on a number of assumptions. For example, a frame containing possible locations of a ship may 

assume that the ship is in the water even though it could possibly have been hauled up on 

land; perhaps for repairs. Such assumptions seem reasonable when we first define our frame 

and in fact they are a requirement of reasoning. However in some cases we will find that our 

assumptions about a frame are wrong and we will need to change our frame (not just refine 

it) to suit the circumstances. The task of defining the frames of discernment, then, is both a 

creative and an iterative process. 

9.3 Inference Knowledge Representation 

The second step in resolving an inexact reasoning problem is to represent our knowledge about 

which concepts imply other concepts. This step is similar to the specification of inference rules 

in a typical rule-based expert system. The inference knowledge which we wish our system to 
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capture can usually be put into the form "if PREMISE is true then CONCLUSION is true," or 

"PREMISE => CONCLUSION". We can interpret this as meaning that, if we have some level 

of belief in the premise, then we will have at least that much belief to the conclusion. 

This interpretation leads to the result that inference can be represented in a D-S representation 

by set inclusion. If some proposition A is a subset of proposition X, then any belief attributed 

to A will simultaneously be attributed to X. Thus we satisfy our interpretation of logical 

inference by setting the proposition which represents the PREMISE concept to be a subset 

(not necessarily a proper subset) of the proposition which represents the CONCLUSION. 

Representing inference knowledge, then, is a matter of specifying the correct set relationships 

between propositions. When both the premise and the conclusion propositions are within the 

same discernment space, we can initially construct our frame of discernment such that these 

relationships will be incorporated. However any two propositions are generally not initially 

within the same discernment space. We must therefore create a new frame which discerns both 

propositions and correctly incorporates the known inference relationships between them. This 

frame is the minimal refinement. 

Although Shafer indicates that the minimal refinement is an appropriate medium for exploring 

the relations among different frames, he does not specifically show how knowledge about these 

relationships can be used to create the minimal refinement. The global frame system approach 

for accomplishing this is to list inference knowledge in the form of logical implication statements 

or inference statements wherein the knowledge that proposition A C implies proposition 

X C Qx i f l represented by the statement: 

A=> X 

Such statements are quite generally applicable. If we have inference knowledge in which the 

premise or the conclusion involve logical operators such as AND, OR or NOT, then the propo­

sition A or X correspond simply to the sets resulting from the use of the corresponding set 
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operators intersection, union, or complementation. However, the inference statements are re­

stricted by the requirements that the X proposition should be the finest proposition which is 

known to be implied by A without being so fine as to overstate what we can logically infer 

and, within a set of statements which completely describe the known relationships between two 

frames, all of the elements belonging to both 6 A and Ox must be included at least once. 

Once these relationships are known to the system they can be used to generate the refinement 

statements which define the minimal refinement 6 A ® Ox and allow the proposition names and 

measures of belief contained in the original frames to be mapped to the minimal refinement; 

thus allowing all further reference to these propositions to be made in terms of the new refined 

frame and allowing the original frames to be removed from the system's memory. The refinement 

statements for the refining u : 2&A —• 2 : e -*® e * are given by: 

w(o) = {(a,x)\a e A, x G X, A X} 

And the refinement statements for the refining w : 2® x —• 2 : e * ® e * are given by: 

u(z) = {{a,x)\aeA,x€X,A^X} (9.2) 

In the system proposed by Lowrance, Garvey and Strat, (see section 7.5 and ref.[42]) the 

minimal refinement is also used to represent knowledge about the relationships between frames 

(they have called it a compatibility relation). However they do not propose a scheme for 

generating the minimal refinement frame from inference knowledge, rather they require the 

user to provide the system with the entire frame directly. This is done, it is suggested, by 

considering each of the elements in a cross product of the initial frames and rejecting those 

which represent an impossible combination of concepts. For the minimal refinement of small 

frames, this method likely works well. With more sizable frames, however, the cross product 

from which the set of possible elements must be selected grows unmanageably large. 

(9.1) 
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9.4 Belief Representation 

We have now conveyed to the system our knowledge about possible concepts and their inter­

relationships. The next step in resolving an inexact reasoning problem using the global frame 

approach is to represent the belief that we have in these various propositions. This belief is 

simply stated in the form of basic probability assignments, or as support functions which the 

system would translate directly into basic probability assignments. This task of translating all 

of our belief about some problem into numerical values for particular propositions will likely 

comprise a significant, though not complex, portion of the entire process. 

9.5 Reasoning 

We have now provided the system with the three types of domain knowledge which it requires 

to perform reasoning: the specification of all propositions in which we are interested, the 

relationships between these propositions and any levels of belief that we have in them. The 

system can proceed with the reasoning process then, by accepting the proposition definitions, 

using the inference statements to combine all of the initial frames into one large frame, and 

accepting, combining and interpreting the given basic probability assignments. 

9.5.1 Basic Reasoning 

First, the system reads in the frame specifications so that it will have an internal representation 

of all the proposition names and their relative positions in the set hierarchy of each frame. 

Second, the system attempts to create the one minimal refinement of all of the initial frames 

by using the inference statements to repeatedly replace pairs of frames with their minimal 

refinement. If, for example, we have sets of inference statements which relate the frames 

© A =» ©JB, ©x =>• ©c and ©B => ©c> then using the first set of statements would remove the 
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frames 0> and 0jg and would create the frame 0(A,B)- The remaining two sets of statements 

could then be grouped together as both being equivalent to 0(A,B) ©c and this group could 

be used to replace the frames 0(A,B) and 0 c with the frame 0(A P B,C)- The order of combination 

is not important in such an operation. 

Third, the system reads in all known basic probability assignments and combines them, resulting 

in one assignment which fully describes our belief about the problem domain. At any point, the 

system can be asked for an interpretation of this belief. The system, having once calculated the 

support and plausibility numbers for the single all-encompassing frame of discernment (only 

the basic probability numbers are required during the process of reading and combining belief) 

can then provide the user with the support interval for any proposition discerned anywhere in 

the system without further calculations. 

9.5.2 Extended Reasoning 

The process outlined above illustrates the system's most basic form of reasoning. Many varia­

tions and extensions to this process could be used to make reasoning more efficient and flexible. 

A few such examples are listed below: 

• In addition to using inference statements to manipulate frames of discernment, statements 

may be given to refine propositions (thus increasing their precision without relating them 

to other frames) or to coarsen a frame (thereby reducing its size and precision). These 

options allow greater control over the makeup of the frames. 

• We can introduce a method for dealing with weak implication. Suppose, for example, 

that we state "A => X with certainty 0.7" This can be interpreted to mean that 70% of 

our belief in A implies X and 30% implies ignorance, 0 . In order to derive new belief 

from this known relationship, then, we first refine the proposition, x(A) = {AX,AQ}. We 

then use a belief refinement procedure outline in section 9.6 to transfer our belief in A 
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to these refinements. Finally we make the inferences Ax => X and A© => 0 . The result 

will be a frame of discernment in which 70% of our belief in A will imply X and 30% will 

imply 0 or ignorance. 

• Question definition statements can be used (in addition to the initial basic probability 

assignments) to provide the system with the capability of asking the user to input belief 

information. This is just one of any number of operations that could be implemented to 

improve the user interface of an inexact reasoning system. 

• Frame manipulation statements, basic probability assignments and question definition 

statements can be made conditional so that they will not take effect unless certain condi­

tions, such as the achievement of some requisite belief threshold, are met (thereby keeping 

the system from asking irrelevant questions or from refining those propositions which are 

known to be false, for example). Such statements effectively provide meta-knowledge or 

knowledge about how to reason in specific cases. 

9.6 Belief Refinement 

This section described a belief refinement procedure which we have developed to allow weak 

inference with the global frame approach (as mentioned in the previous section). We illustrated 

in section 4.3 how a belief function could be transferred from some frame to a finer minimal 

refinement of that and some other frame. However, this direct transfer of belief from a coarse 

frame to a finer one cannot take advantage of the new frame's extra precision unless additional, 

more precise belief is added to the system. We have identified a procedure whereby this addi­

tional belief can be assigned to a new frame at the time of refinement, causing all future belief 

transferred to that frame to be shifted downwards towards more precise propositions. We call 

such a procedure a belief refinement. 

Suppose, for example, that a frame 0 = {a, 6} is refined to a frame ft = {01,02,6}. Recall that 
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the support for the proposition A = {01,02} in frame 0 is the sum of the basic probability 

numbers m({oi}),fn({o2}) and m({ai,a2}). However the direct transfer of belief from 6 to f) 

results in belief that can be no more precise than m({ai,a2}). We may have some evidence to 

suggest that whenever we have belief in A, that at least a certain portion of that belief will be 

due to belief in {ai}. Such belief is captured by a proposition which states that belief may be 

assigned to {ai} or to any non-A proposition but not to {02}: that is, we assign this belief to 

the proposition {a\,b} which can be given the more intuitive alias "ai IF A " . This belief can 

now be combined (using the Dempster's belief combination procedure outlined in section 5.1) 

with any belief which is transferred to f l , yielding the appropriately precise results. 

In general, for any new element 9{ in some refinement of proposition {9} to {0i, 02,0s,...}, we 

can assign both the alias "0,- IF 9" and our associated level of belief to the new proposition 

corresponding to {0,-} U {$}. 

Example 9.1 In example 4.2 we calculated the restriction m2|6MATERIAL-

However, we may want to incorporate the additional knowledge that ground material 

is more likely to be bed rock than aggregate. We can therefore attach aliases to 

some of the propositions in the refined frame as shown in figure 9.2. 

We could then define the basic probability assignment m 3 : 2nMATBRlAL which 

would, for example, convey the belief that 40% of all future belief in ROCK will be 

allocated more specifically to bed rock while the rest will remain at ROCK: 

M3 {^MATERIAL) = 0.6, 

ms[bed rock IF ROCK) = 0.4. 

Now if we again transferred mi : 2 B m a t e r ' a l to frame fl as in example 4.2, and 

combined the result with 1713 : 2 n M A T E R l A L (using Dempster's rule) we would get a 
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{bed rock, aggregate, soil, sand} 
= ^MATERIAL 

= bed rock IF ROCK U aggregate IF ROCK 

{bed rock) {aggregate} {soil} {sand} 

Figure 9.2: Some propositions with aliases for the discernment space 
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more precise basic probability assignment: 

m^MATERIAL) 0.06, 

ir»4({6ed rock, aggregate, soil}) 0.24, 

rrn(ROCK) 0.30, 

rrn({bed rock, soil, sand}) 0.04, 

m^bed rock, soil}) 0.16, 

mt({bed rock}) 0.20. 

9.7 Comparison wi th Other Systems 

We have mentioned in section 9.3 that the system presented by Lowrance, Garvey and Strat 

accepts a minimal refinement directly from the user rather than generating it from given rela­

tionships, as done in our global frame system. However a more significant difference is that, 

rather than using the minimal refinements to group all propositions together under one large 

frame, their system maintains all propositions in terms of the originally specified frames and 

uses the minimal refinement to define a series of mapping relationships which are stored and 

later used in transferring belief between these original frames. This difference has several 

consequences; including the fact that, by not utilizing a minimal refinement as a frame of dis­

cernment, the system is effectually throwing away more precise knowledge. This leads to the 

system's inability to return the same level of precision which had been made available to it 

and, in some instances, it can be shown to give erroneous results (Shafer [57, p.175] shows that, 

"Dempster's rule of Combination may give inaccurate results when it is applied in too coarse 

a frame of discernment."). Another problem arising from this treatment of frames is presented 

in the Lowrance paper itself [42, p.898]. The results obtained from relating some frame 0^. to 

a frame 0# and then relating frame 0 B to a frame 0 c may not match the results obtained 

from relating frame &A to frame 0 c directly. This problem does not arise in the global frame 

system. 
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However there is another consequence of this difference between the systems which is perhaps 

even more fundamental. In our system, belief is read into the system as a basic probability 

assignment on the single large frame. As soon as it enters the system and is combined with 

the existing basic probability assignment, its impact on every proposition in the system is 

immediately felt and all future interaction with the system will include the contribution of this 

belief. In their system, the identical basic probability assignment is read into the system in 

terms of the original frame and its effect on the belief in any other frame is only discerned as the 

user tells the system what frames to transfer it to and what other basic probability assignments 

to combine it with. Thus their system requires the input of a fourth body of knowledge-the 

knowledge about how to proceed with the given reasoning problem at hand (this knowledge 

makes up an analysis in their notation)-whereas this knowledge is inherent in our system. 

9.8 System Speed and Efficiency 

Although our goal in pursuing the D-S theory concentrated on finding a sound and consistent 

theoretical basis for inexact reasoning, a few observations regarding the computational speed 

and efficiency of such a system may be made. The use of one large frame of discernment for 

the entire problem domain suggests that the time required for the reasoning process grows 

exponentially with the number of propositions in the problem. However, "our concept of the 

use of such a system is that this large frame could be initially defined and assembled for some 

domain and then stored intact. This frame need not be regenerated for each problem within the 

domain (although it could still be easily modified and enlarged in the face of new information). 

Furthermore, only singletons and those propositions which possess either aliases or some basic 

probability number need be stored. Once this frame is stored, the computational time required 

for the reasoning process is proportional to the number of propositions in which we have some 

belief rather than in the total number of propositions in the system. Finally, meta-knowledge 

can be used were necessary to coarsen frames and thereby reduce their size. 
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9.9 Exponential Growth Problems 

The following example illustrates the creation of a minimal refinement frame from two initial 

frames: 

Example 9.2 Suppose some frame OA consists of singletons { o i , a2, a$} and 

frame 6 # consists of singletons { fci, 62,^3}. If we tell the system that a\ implies 

61, b\ implies a i , and so on for 02,62 and 0 3 ,63 ; then the minimal refinement frame 

6 c = ®(A,B) would consist of singletons: 

{ c i , C 2 , C s } , 

where c\ = a\ = b\t c2 = a2 = b2, and 03 = 03 = 63. 

However if we stated that none of the a's implied anything about the 6's and 

vise-versa, the singletons of 6 c would be: 

{ c i , C2, C 3 , C4, C g , Ce , C7 , C g , C g } , 

where c\ = a i D fcj, C2 = O i D b2,..., C4 = 02 n 6 1 , . . . etc. 

also c i U c2 U Cs = 0 1 , . . . , C i U C4 U C7 = 6 1 , . . . . . . . etc. 

This example shows that for one frame of size (or cardinality) n\ and a second frame of size n2, 

the combined frame has a size of between m a x (n i , n 2 ) and ( n i x TI2). That is the combined 

frame has a size of order 0(n\ x n2). More generally, for m frames of size n,-, (for 1 = 1 to m), 

the size of the resultant full frame is of the order 0 ( « i x n2 x . . . x n m ) . The size of the full 

frame, then, grows exponentially. 

However the size of the resulting frame is not of direct consequence because we need not store 

every proposition in the frame nor even every singleton. We need only store those propositions 

which have some "name" or some basic probability number assigned to them: neither of these 
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axe functions of the size of the frame. Never-the-less, there are indirect reasons for us to be 

interested in the size of the frame. Specifically, the size of propositions themselves grows. In 

the example above, the proposition {ai} was represented in the minimal refinement frame by 

either {ci} or {ci,ct,Cs}, depending on the relationships between 6^ and &B- In general, 

adding a frame 6^ to an existing global frame of size n results in an increase in the size of O^'s 

singletons to the order O(n). This growth has a direct impact on the set theory operations 

which are used for the calculation of support and plausibility and for Dempster's rule. This 

exponential growth problem, then, causes inevitable size "explosion" in systems which directly 

implement a global frame approach. 

Although the details will not be provided here, an alternative global frame representation 

scheme was developed which eliminated growth problems arising from combining frames into 

one large minimal refinement. Using this approach, however, the application of Dempster's rule 

itself lead to problems. Specifically, if one basic probability assignment with n focal propositions 

is combined with a second containing m focal propositions, the resulting basic probability 

assignment has a number of focal propositions of the order O(nxm), This exponential growth 

problem could not be overcome. 

9.10 Conclusion 

Although the global frame approach is fully consistent with D-S theory and is theoretically 

feasible, exponential growth problem could not be fully overcome and the entire approach was 

eventually abandoned in favor of the frame network approach described in the next chapter. 



Chapter 10 

A Frame Network Approach 

In the global frame approach described in the previous chapter, all frames of discernment 

involved in some problem are combined into one large global frame. It has been shown that 

although this produces a consistent implementation, it exhibits growth characteristics which 

severely limit its practicality. A refinement to the global frame approach which overcomes these 

problematic characteristics is the frame network approach. The frame network approach 

is the basis for the D-S based FRO expert system shell. This chapter described this expert 

system shell and the theory behind the frame network approach. 

10.1 System Overview 

The format of our D-S implementation is an expert system shell. With our shell program, the 

designer of an expert system application (or knowledge engineer) works in conjunction with the 

domain expert to create a knowledge base which describes the expert's solution approach for the 

problem at hand. A user can then direct the shell program to read and execute this knowledge 

base file, thus invoking the specific expert system. Our system is written in PROLOG running 

on an IBM-AT type machine which has proved to be adequate for prototyping. 

Concepts used in the knowledge base are represented by D-S frames of discernment; in this 

chapter we will refer to these simply as frames. 

In D-S, belief about the truth of propositions can be represented by several different types of 

belief expressions. Our system utilizes several of these expressions including basic probability 

95 
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assignments or BPA's and commonality functions, as well as support and plausibility functions 

which are used for most input and output. Each of these expressions embody exactly the same 

information, but the different representations offer different perspectives and advantages. As 

mentioned previously, we will refer to a body of belief as a belief function, regardless of the 

belief expression being used to represent it (this contrasts slightly with Shafer's more specific 

definition of a belief function, [57, p.39]). A belief function can be translated from any one 

representation expression to any other. 

Our implementation approach also employs a variety of techniques for combining belief func­

tions. These include Dempster's rule of combination as well as various dependent combination 

rules (see section 5.2) which we have developed for use in situations where Dempster's rule is 

not valid. 

The relationships between propositions in different frames are stored in structures which we 

call links. The system uses links to infer belief about one frame from given belief about another 

frame. We will show that inference accomplished using links is completely compatible with 

D-S. 

Using the frame and link representations, the knowledge engineer specifies all of the variables 

required to solve a problem and the appropriate relationships between them; thus establishing 

a graph structure which we call the frame network. During the execution of the resulting expert 

system, belief is added to certain frames and propagated throughout the frame network. We 

refer to the development of a correct and efficient frame network for an expert system as the 

system design. 

We have found that the D-S representation works well for the relational information which makes 

up the expert system design. However, there is an additional body of knowledge which must 

go into the creation of an expert system—the control knowledge. Control knowledge involves 

the determination of which questions should be asked, which conclusions should be drawn, and 

when these actions should be performed. Control knowledge embodies procedural rather than 
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relational knowledge and is not well suited for D-S representation. We have therefore chosen 

to represent the control knowledge in a separate, rule-based component of our shell. Since our 

system combines frame-based design with rule-based control, we have called the program F R O , 

for Frame-Rule Organizer. 

Finally, we have found that the user interface is extremely important in a D-S based system. 

Our work in this area has lead to useful and relatively simple belief interfaces. We address this 

issue in chapter 11. 

The specifications of our system are outlined in table 10.1. We will now proceed to deal with 

each of these topics in greater detail. 

Table 10.1: Specifications of Our D-S Implementation 

Format: Expert System Shell 
Concept Representation: D-S Frames of Discernment 

Belief Representation: D-S Belief Functions 
Inference Operation: "Links" 

Design Representation: Frame Network 
Control Representation: Separate Rule-Based System 

10.2 Frames of Discernment and Belief Functions 

The basic form of concept representation in D-S, and correspondingly in our system, is the 

frame of discernment. The knowledge engineer defines frames by interacting with the system 

and supplying a name for each frame and for each of the frame's elements or alternatives. These 

definitions are written out to a file which can later be edited. This knowledge base input scheme, 

or system development interface, represents an attempt to provide a simple, knowledge-based 

component which queries the knowledge engineer or expert in order to help construct a new 

expert system (see chapter 15 of the appendix). 
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Within our shell program, frames are recorded by storing the knowledge engineer's definitions 

using PROLOG atoms to represent names and PROLOG list structures to represent sets. The 

frame definitions are also cross referenced with any associated belief functions or links. Through­

out the system, propositions are represented by subsets of these initially defined frames—that 

is, by lists of the element names which were originally entered for each frame. Using this 

representation for propositions, the set theory operations of union, intersection, exclusion and 

inclusion which are frequently employed in D-S have been implemented in a straightforward 

manner. 

Any legitimate D-S frame of discernment can be used in our system. Furthermore, propositions 

of any size or cardinality may be utilized throughout the system. Thus the concept representa­

tion scheme used in our system is consistent with D-S and places no limiting restrictions on it. 

This cannot be said of some other implementations, as in the system proposed by Gordon and 

Shortliffe [27] which permits the use of only those propositions which form a strict hierarchy 

(see section 7.3). 

Like concept representation, belief representation is performed by our system in strict accor­

dance with D-S. During both the creation of the knowledge base by the knowledge engineer and 

the execution of the completed expert system by the user, uncertain belief is entered via an in­

teractive graphic interface which employs support and plausibility values (or support intervals) 

for specific propositions. Our interface techniques are discussed in chapter 11. Immediately 

after a belief function is entered into our system, it is usually converted to its equivalent BPA 

form; the format used internally for most belief. BPA's are stored as a list of propositions, 

each with an accompanying basic probability number. When belief is output to the user, it is 

usually converted back into a series of support intervals (depending upon the instructions of 

the knowledge engineer). Thus it is possible for any legitimate D-S belief function to be entered 

and stored in our system, again providing consistent and un-restricted conformance with D-S. 
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10.3 Inference and Links 

10.3.1 Performing Inference 

While frames of discernment and belief functions are explicitly defined by Shafer in refer­

ence [57], a method for applying these to a general inexact reasoning procedure applicable to 

expert systems is not. At the root of this process is simple inference: given some level of belief 

in proposition A, what should we believe about proposition B? When A and B are both propo­

sitions in the same frame, inference is derived from set theory. Belief in A implies belief in B if 

A is a subset of B, belief in A implies belief in not B if A is a subset of the set complement of 

B. These relationships are inherent to the definition of belief functions and require no specific 

implementation. However in the general case, A and B may be propositions in different frames 

and so a general procedure for transferring belief from A to B is required. 

We have found that the resolution of this inference process is the primary obstacle to imple­

menting D-S for an expert system. In this section we discuss some of the different methods 

explored by ourselves and others and we give a detailed account of the technique now used in 

our system. 

We first note that the inference procedure must be based on D-S theory. This is often neglected. 

Problems with the system proposed by Lu and Stehanou [44], for example, have already been 

discussed in section 7.4. This is but one illustration of how the use of D-S representations 

without a D-S based inference procedure can lead to inconsistent results and does not provide 

the theoretic rigor which we seek. 

Performing inference between frames, then, should be derived from formal D-S, even though 

the theory does not explicitly show how. The theory does outline one process which does not 

involve the transfer of belief among general frames at all, but rather requires the combination of 

the frames into one larger one first, and then performs all inference operations upon that single 

frame. This is the global frame of discernment approach described in the previous chapter. 
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As shown, global frames suffer from an overwhelming problem of exponential growth in the 

number of propositions and, although we were able to overcome many aspects of this problem, 

exponential growth finally caused us to abandon the global frame approach. 

10.3.2 Links 

A refinement of the global frame method which avoids the exponential growth problem involves 

producing the minimal refinement of two frames, transferring an input belief function from the 

first frame to the minimal refinement, and then reducing the belief function from the minimal 

refinement to the second frame, thereby producing an output belief function containing all belief 

about the second frame which can legitimately be inferred from the input belief. The minimal 

refinement frame can then be removed from memory, leaving only the initial frames along with 

the newly inferred belief. We can accommodate weak inference by adding a belief function to 

the minimal refinement which contains uncertain belief about the relationships between the 

frames. Shafer [11] has described an approach to propagation which is similar to this. 

We have further modified this process for computational efficiency by deriving a single procedure 

which produces the identical numerical results without actually creating the minimal refinement 

frame (The system created by Lowrance et al, section 7.5, employs in an approach which is 

mathematically equivalent to this). In our system, a belief function defined on one frame is 

combined with a previously stored set of uncertain relationships to produce an inferred belief — 

function on a second frame. Inference performed in this manner is completely consistent with 

D-S since its results exactly match those of the minimal refinement approach. — 

We call the stored set of relationships between two frames a link. Conceptually, a link between 

two frames contains the same information as a belief function defined on the minimal refinement 

which describes the relationships between the frames. In section 11.2 we discuss in some detail 

how such relational belief functions defined on the minimal refinement frame can be generated 

and used to perform inference. However, since the minimal refinement is not actually generated 
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by the system described here, the link must be represented in terms of the initial frames only. 

In order to represent links in our system, then, we list the names of the two frames involved 

and, for each element in the first frame, we provide a belief function which describes what we 

would believe about the second frame if that element were known to be the true value of the 

first frame. A link, in other words, has the following form: 

link: 6 A —• 6 B : 

° 2 " 5 U n k 

where: ©A is the input frame 

6,0 is the output frame 

Oi is an element of 8A 

^Unk w a " l i 1 1 ^ support function", a belief function on OB 

represented in the form of a support function which is 

implied by complete certainty that a, is the true value for 6 A 

This technique of supplying a link support function for each element in the first frame greatly 

simplifies the process of creating links. In our system, links are created through interactive 

sessions with the knowledge engineer and the expert who enter the uncertain link belief through 

a graphical interface. More importantly, this format is sufficient to represent any possible set 

of relationships between the propositions in the two frames. 

Using this representation for links, the system can transfer belief from one frame to another in 

the following way: 

1. The system recalls the known belief function (in the form of a BPA) for the first frame. 
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2. The system considers each basic probability number in this BPA. Only the focal propo­

sitions (those with non-zero basic probability numbers) need be considered. 

3. The system refers to the link to obtain the link support function corresponding to each 

element in the focal proposition. 

4. Al l of the resulting link support functions for the proposition are combined using the 

disjunctive combination rule shown in equation 5.9. This combination must be disjunctive 

because belief exactly for that proposition implies belief that one of the elements in the 

proposition will be true, though it is not known which one. 

5. The single resulting support function on the second frame is weighted according to the 

basic probability number for the focal proposition on the first frame. This, then, yields 

the contribution of that focal proposition to the inferred belief about the second frame. 

6. These normalized support functions are summed, leaving a single, formally correct and 

logically implied support function on the second frame. 

This process is formalized in the following theorem: 

Theorem 10.1 Suppose that Sfink is the link support function over an output frame 6a for 

any element a,- i n the input frame SA- That is, Sfink represents what we would believe about 

frame 63 if we knew with certainty that the proposition {04} was the true value of the input 

frame 6>. 

Further, for any focal proposition At in an input BPA m , n on 6 A , where Ak is some disjunctive 

set { 0 1 U ai U • • • U ay U • • • U a n } ; the link support function for At is S^k representing the belief 

about the output frame 0£ which is implied by certain belief that Ak is the true value of 6A-

^Unk c a n ̂ e obtained by combining all Sfink, for j = 1 to n, using the dependent disjunctive 

combination of equation 5.9 and the multiple combination principle of equation 5.14. 
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Then, the output belief function Sout on which is implied by the input BPA m , n on &A 

defined by: 

Sout(B) = £ m , n (A t ) sfck(B) (10.1) 
AkeeA 

for all propositions B in &B and all focal propositions A* in QA-

Note that links, as they are denned here, are only valid for inference in a single direction; from 

OA to &B but n o * vice-versa, for example. A pair of links (one in each direction) must be 

denned if the expert believes that inference in either direction is valid. 

Again, it should be emphasized that through the use of the links to represent inference knowl­

edge and the use of the process outlined above to transfer belief, the system can perform 

inference in accordance with D-S. 

10.4 Frame Networks 

10.4.1 Belief propagation in frame networks 

A D-S based expert system will encompass many frames with numerous links between them. 

These make up a graph with frames as the nodes and links as the arcs—we call this graph the -----

frame network (figure 10.1 illustrates a hypothetical frame network). The frame network is the 

complete representation of all variables or concepts in the system, and of the logical relationships 

between them. The network is represented in the system only through its constituent frames 

and links, it is not treated as a separate entity. Operators act on the network to enter belief 

functions, to propagate belief around the network, and to retrieve the resulting belief about 

conclusions. The conceptual aspects of frame networks are further discussed in section 10.4.4, 

but we first examine the mechanics of propagating belief around the network. 
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A A A legend: 
^ - Frame 
—*~ - Link 

A 
*" A *~ A 

A A 

A A 

Figure 10.1: Schematic of a Hypothetical Frame Network 

When a belief function is added to a frame in the network, the system must combine the 

new belief with what is already known about the frame. Also, the system must use the links 

emanating from that frame to perform any legitimate inferences, thereby adding new belief 

to other frames and causing the cycle to be repeated. The repetition of this process for all 

appropriate frames is what we refer to as the propagation of belief throughout the network. 

In our system, newly added belief is propagated to all relevant frames before it is combined 

with the previously existing belief. To this end, the system stores two belief functions for each 

frame. One, the current belief, represents belief arising from the most recently added belief 

function only. The current belief for every frame is reset to represent complete ignorance before 

a new belief function is added to the system. When belief is added and propagated around the 

network, its effect on each frame is temporarily stored as the current belief function for that 

frame. After propagation has been completed, the current belief for each frame is combined 

with the second belief function, the total belief, which represents the resultant of all belief 

previously added to the system. The resulting belief function is then stored as the new total 

belief. 
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When propagating belief throughout the network in this fashion, the following two major prob­

lems arise: 

1. A belief function entered on one frame by the user can be propagated to another frame 

via more than one path in the frame network. How should this situation be handled? 

2. Belief propagated from frame to frame in the network can become so imprecise as to add 

no new information to subsequent frames. How can we detect and avoid this unnecessary 

propagation? 

We have developed a belief propagation algorithm which resolves both problems. This algorithm 

is described in section 10.4.2 and a propagation example is given in section 10.4.3. 

10.4.2 Belief propagation algorithm 

An outline of our propagation algorithm is provided in PROLOG-like pseudo-code in figure 10.2. 

This algorithm accomplishes the propagation of a newly added belief function throughout the 

network. .. 

Referring to figure 10.2, it can be seen that a belief function is obtained from the user (line 2) 

and combined with the frame's current belief (line 9) using a dependent conjunctive combination 

scheme (equation 5.8). —When the new belief is first propagated to some frame, that frame's 

current belief function will represent total ignorance and the dependent combination reduces 

to the trivial case in which the ignorance has no effect on the propagated belief. However 

if the newly added belief has previously been propagated to the frame by some other path, 

then that frame's current belief will already represent the effects of the new belief. With two 

belief functions originating from the same source, the appropriate operation must be a fully 

dependent conjunctive combination. Thus we have a solution to problem number 1. 

The belief function resulting from the dependent combination is compared with the frame's 
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Line #: (bf = belief function, Capital letters = dummy variables) 

(1) enter new belief into network: 
(2) get bf A for frame B from user, 
(3) add bf A to frame B, (line 7) 
(4) combine belief on a l l frames, (line 27) 
(5) stop. 
(6) 
(7) add bf C to frame D: 
(8) get current bf E for frame D, 
(9) dependent combine bf C with bf E to get bf F, 

(10) if bf F equals bf E, 
(11) then terminate propagation and return, 
(12) otherwise, 
(13) store bf F as the new current bf, 
(14) propagate bf F from frame D, (line 17) 
(15) return. 
(16) 
(17) propagate bf G from frame H: 
(18) i f there are no more links from frame H, 
(19) then return, 
(20) otherwise, 

~ (21) get the next link from frame H which is to frame I, 
(22) transfer bf G from frame H to get new bf J on frame I, 
(23) add bf J to frame I. (line 7) 
(24) propagate bf G from frame H, (line 17) 
(25) return. 

(27) combine belief on a l l frames: 
(28) for every frame which has been affected, 
(29) combine current belief with total belief, 
(30) store the result as new total belief, 
(31) reset the current belief to ignorance, 
(32) return. 

Figure 10.2: Belief Propagation Algorithm 
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current belief function (line 10). If they are the same, then the propagate belief has added 

no new information to the current belief, and any further propagation would be redundant 

(line 11). However, if the belief functions differ, then new information has been added and 

propagation continues outwards from that frame (line 14). This approach is applicable for 

both the initial propagation of the new belief to any frame and for subsequent propagations 

to the same frame by way of different network paths. We have, then, an indication of when 

a particular propagation path has become redundant and can be terminated, thereby solving 

problem number 2. 

We note that both of these propagation problems occur during the special case of a propagation 

path looping back onto itself. Not only must we accommodate the propagation of a belief 

function onto the same frame twice, but failure to terminate redundant propagation would 

result in a continuous processing loop. Fortunately, a propagated belief function which has 

looped back onto some frame can contain no more precise information than it did on its initial 

pass. This is because propagation can only result in a loss of precision, it cannot acquire added 

precision. Thus any loops in the propagation path are immediately terminated by the general 

propagation algorithm, they need not be given special treatment. 

Finally, we note that our propagation algorithm involves the recursion necessary to propagate 

the belief along every applicable path, regardless of the configuration of the network (lines 23 

and 24). In the algorithm, the transfer of belief from one frame to another (line 22) uses the 

approach described in section 10.3.2 and the combination of the current belief with the total 

belief (line 29) uses Dempster's rule . 

10.4.3 A Propagation Example 

The following qualitative example illustrates the propagation process. Suppose that a system 

contains three frames pertaining to the correction of problems with an ordinary table lamp (see 

table 10.2). Suppose also that there are appropriate links between these frames. A possible 
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propagation session might involve the following steps: 

Table 10.2: Frames for table lamp example 

Frame Element 
A: Light bulb condition a\\ bulb burned out 

o 2: bulb O.K. 
B: Response to turning switch on bi: light goes on 

62: nothing happens 
C: Required action for bulb c\\ replace bulb 

c2: no action required 

1. The current belief function for each of the three frames is reset to complete ignorance. 

2. The user of the system declares with certainty that the light bulb is burned out causing 

the corresponding belief function to be added to frame A. 

3. The newly added belief function is dependently combined with frame A's current belief. 

Since the current belief represents complete ignorance, the newly added belief function 

remains unchanged and becomes the new current belief function. 

4. This new current belief function for frame A is propagated to frame B resulting in a belief 

function which shows certainty for 62 (that is, certainty that nothing happens when the 

switch is turned on). 

5. The newly added belief function on frame B becomes the new current belief function after 

being unchanged by the dependent combination process. 

6. This new belief about the response to the light switch is, in turn, transferred to frame C 

creating a belief function which shows some level of belief for c\. However the links do 

not allow the system to infer with certainty that the bulb should be replaced since, based 

only on the response to the switch, we are not sure that the problem lies with the bulb. 

7. Again, the newly added belief becomes the new current belief function for frame C. 
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8. The belief function is further propagated back to frame A. During this transfer, the belief 

which is already less than certain becomes even less precise. This is because knowledge 

that the bulb should be replaced does not categorically imply that the bulb is burned out 

(it could, for example, require replacing because it's the wrong wattage). 

9. This time, dependent combination of the newly propagated belief function with frame A's 

current belief function results in no change to the current belief. Thus the propagated 

belief has added no new information and the propagation path can terminate. This 

is an occurrence of the circular propagation problem and its solution as described in 

section 10.4.2. 

10. Next, the system returns to step 4 but this time it propagates the belief along the second 

path to frame C. In this case, the knowledge of a burned out bulb results in certain 

support for the bulb's replacement. 

11. The newly propagated belief function is combined with frame C's current belief function 

which, although it no longer represents complete ignorance, is still sufficiently imprecise so 

as to cause no change in the propagated belief, which therefore becomes the new current 

belief function. This is an occurrence of propagation problem number 1 and its solution 

through the use of dependent combination. 

12. Next, the belief is further propagated to frame B. Since knowledge that the bulb should be 

replaced does not necessarily imply that nothing will happen when the switch is turned on 

(again the bulb might be the wrong wattage, for example), the belief function transferred 

to frame B will convey less than certain support for bj. 

13. The dependent combination of this newly propagated belief with the current belief func­

tion for frame B will not alter the current belief (which already shows certain support 

for b2). Therefore this propagation path will terminate, as will the entire propagation 

process since this was the last possible propagation path. This illustrates propagation 

problem number 2 and its solution. 
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14. Finally, the current belief functions are combined with the total belief on each frame using 

Dempster's rule. The total belief functions will then represent the resultant of all belief 

in the system and will show with certainty, for example, that the bulb is burned out, that 

it should be replaced, and that nothing will happen when the switch is turned on. 

10.4.4 Network Design 

In creating an expert system, the knowledge engineer and the expert must decide what the 

specific goal of the system is, what the important variables of the problem are, how these 

variables are related to each other, and how knowledge about these variables can lead to useful 

conclusions. We refer to the solution of these collective issues as the design of the expert system. 

The frame network can be said to be the representation of the system's design. It is important 

to recognize that the design of a system is not merely a listing of all possible frames and links; 

it also involves ensuring that the network is complete but not redundant, that it is organized 

in such a way that the belief can be propagated efficiently, and that issues of dependency are 

addressed. 

Of course, a complete and non-redundant network must be achieved through a detailed study of 

the particular problem domain. Shafer points out that "In Dempster-Shafer theory, the design 

comes from an analysis of our evidence" [11, p.122]. A possible interpretation of this concept 

is that we must wait for a specific domain situation to arise before we can begin to create our 

design. The system described by Lowrance et al [42] adopts just such an approach. However we 

contend that in an engineering expert system context, the knowledge engineer and the expert 

can anticipate what bodies of evidence might reasonably be brought to bear on the problem, 

and can therefore base the design on these potential sources of information. 

Perhaps the most important factor in creating an efficient design is to take advantage of every 

opportunity to reduce the frame network from a general graph structure to a tree structure. 

While neither structure poses a theoretical problem for the system, trees provide significantly 
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less possible propagation paths and therefore they require much less time to process. The 

elimination of any redundant frames and links will contribute to a tree-like structure, as will 

the exploitation of conditional independence. 

While the process of creating a link between two frames is not constrained by issues of depen­

dency, it can be observed that complete independence between two frames is properly repre­

sented by the absence of a link. Of coarse, this provides the most computationally efficient 

situation and this efficiency is delivered from conditional as well as absolute independence. For 

example, the scenario described in section 10.4.3 involves three frames. If a link existed in both 

directions between each of the frames, there would be a total of six links making up a graph 

structure. However, the required action for the light bulb (frame C) is completely independent 

of the response to turning on the switch (frame B) if we already know the condition of the bulb 

(frame A). Thus C is independent of B conditional on A: we need not provide the links between 

C and B and the structure of the network is reduced to that of a chain (Bee figure 10.3). The 

appropriate exploitation of conditional independence, then, can lead to significant increases in 

efficiency. 

Frame 
A 

Frame 
B 

Frame 
A 

Frame 
C 

Frame Frame 
B C Structure of the network 

simplified though the 
use of conditional independence. 

General graph structure 
for frame network. 

Figure 10.3: Simplification of the Network Structure through the use of Conditional Indepen­
dence 



Chapter 10. A Frame Network Approach 112 

Dependance plays a second role in the expert system design. Recall that when belief is added 

to the system, it is first propagated and then combined with the previously known belief using 

Dempster's rule. Dempster's rule assumes independence of the input belief functions, and 

therefore our system is valid only if each belief function added to the system is completely 

independent of every other input. One way to help ensure that this condition is met is to ensure 

that the frames which will be used for input from the user are independent of each other. For 

example, designing the system to accept input for both of the two dependent variables "month 

of the year" and "season* would likely lead to the input of dependent belief functions; designing 

for input about both "month of the year" and "day of the week" would not. The application 

of this principle will also precipitate a more tree-like network with the accompanying benefits 

in efficiency. 

10.5 Control 

The design of the expert system knowledge base encompasses the specification of the frames 

and links in the frame network. It can be said that the design captures the relational knowledge. 

However the relational knowledge is only a portion of the total knowledge required. We must 

also include information about what specific questions to ask and when to ask them. We must 

specify when an acceptable conclusion has been reached and how to report the conclusion. In 

short, we must provide the procedural knowledge. Whereas relational knowledge is captured by — — -

the system design, procedural knowledge is captured by the system control. 

A frame network representation is well suited for the design knowledge, but it does not seem to 

be a useful representation for the control information. Rather than trying to force the control 

knowledge into an inappropriate representation, we have chosen to handle control in an entirely 

separate system which interfaces with the frame network. For simplicity, we have chosen a 

rule-based representation for control. 

The knowledge engineer and the expert, then, incorporate control knowledge into the expert 
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system by creating a second knowledge base file which is made up of rule and question definition 

statements. The function of these statements is to ask the user for belief input at the appropriate 

time and in the appropriate manner; to pass this information on to the frame network; to obtain 

belief about conclusions from the network; and to use this information to guide subsequent 

processing or to inform the user of the appropriate conclusions and recommendations. In 

order to achieve these functions, our system provides a set of interface routines between the 

control rules and the design frame network which are used in conjunction with the features 

normally found in backwards-chaining rule-based expert system shells. It is also possible for the 

control component to interact with external processing routines to obtain additional certain or 

uncertain information. This is particularly useful for engineering situations where the results of 

traditional computer programs are a normal component of the expert decision making process. 

We have found that the separate rule-based component provides a simple yet powerful approach 

to the management of system control. Figure 10.4 depicts the various components of our system. 

D-S Frame Network 
Representation Control/ 

Design 
Interface 

Rule-Based 
Representation External 

Routines Design Design 
Knowledge Operators 

Base 

Control Control 
Knowledge Operators 

Base 

System Development 
Interface 

User 
Interface 

I 
Knowledge Engineer 

and Expert 
User 

Figure 10.4: Components of Our Expert System Shell 
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10.6 Further Enhancements 

We have produced a prototype expert system shell based on the implementation approach 

described above. This system has operated successfully for some small initial problems and we 

are encouraged by the results to date. We see the next steps along this line of inquiry to be as 

follows: 

At present, our system uses approximations to equations 5.8 and 5.9. These approximations 

are implemented in terms of basic probability numbers for the focal propositions only. As 

such, they greatly simplify the calculations. In future work, we hope to reformulate the exact 

equations 5.8 and 5.9 in such a way as to allow their efficient implementation in the system. 

The dependent conjunctive combination (equation 5.8) used in the propagation algorithm could 

be further utilized by enabling the creation of pre-specified dependent links in the frame network. 

A dependent link could be used to relate frames which are expected to receive dependent belief 

inputs. By employing dependent combination rather than Dempster's rule to merge the current 

and the total belief functions, a dependent link could eliminate the requirement that all belief 

functions entered into the system be independent. 

Another feature which would promote efficient knowledge base design is a technique for handling 

conjunctive inference components. That is, in order to represent the assertion that "A and B 

imply C," where A , B and C are propositions in different frames, the present system requires 

the knowledge engineer to define a minimal refinement of the frames containing A and B, to link 

these initial frames to the refinement, and then to link the refinement to the frame containing C. 

While this is not a theoretical problem with the scheme proposed here, the process could be 

streamlined to provide much more efficiency in defining and processing such relationships. 

Further, a technique for tracking the reasoning performed by the system and reporting the 

reasoning to the user would be very useful. Such a capability would assist in debugging the 

system, in explaining to the user how conclusions where reached, and in providing the user with 
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some feeling for the sensitivity of the reasoning to various belief inputs. 

Finally, the entire approach must be tested with problems of increasing size and complexity in 

order to determine what type of constraints are placed on the system by practical processing 

limits. In turn, work will continue on enabling the system to operate efficiently with large 

knowledge bases. 

10.7 Conclusion 

This chapter has provided an overview of a frame network D-S implementation approach and 

has examined details of strategies for overcoming certain obstacles. Namely, descriptions have 

been provided of the representation of the various types of knowledge, of the approach to D-S 

based inference and belief propagation, and of both system design and control issues. The D-S 

implementation approach outlined in this chapter has been implemented in the FRO expert 

system shell. Finally, several issues which have yet to be explored were outlined. 



Chapter 11 

Working wi th Belief Functions 

The previous chapter outlined the theoretical approach and the implementation details for rep­

resenting knowledge and for performing reasoning in a frame network D-S system. It has been 

shown that this type of a system offers extremely advanced uncertainty handling capabilities. 

However it must be realized that advanced expert system features will find very little usage if 

the are notably more complicated to use than existing systems. Thus D-S uncertainty handling 

capabilities must be accompanied by interface techniques which are simple and straight-forward 

to use without restricting the system's power. This chapter provides an examination of high 

level interface procedures. Section 11.1 presents an graphical interactive belief interface system 

called IBIS which enables users to communicate their uncertain belief to the system in a simple 

manner. Section 11.2 described how knowledge about the relationships between frames can be 

specified and entered into the system. Finally, section 11.3 describes how conclusions expressed 

in terms of belief functions can be evaluated by the system. 

11.1 Entering Belief Functions 

11.1.1 Theoretical Basis for a Simple Belief Input System 

It was shown in section 4.4 that specifying the support for the focal propositions only is sufficient 

to completely specify any support function. Yet asking a user to express support values for 

each focal proposition is not a sufficiently simple way of entering belief for two main reasons. 

First, when belief is expressed in terms of support rather then basic probability numbers, it 

116 
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is not intuitively obvious which propositions are focal. Second, this approach involves the 

specification of support for joint propositions. We have found joint propositions to be awkward 

to deal with; both for implementing an interface design and for expressing one's belief. In 

terms of implementation, difficulties arise because the names of joint propositions can consist 

of lengthy lists of element names and they must be entered by the user rather then selected the 

from a list or menu (since there are generally too many propositions to offer in a list). With 

regards to expressing belief, we have found that asserting belief for a singleton (i.e. belief that 

a particular alternative is the correct answer) is far more natural for users then asserting belief 

for a joint proposition (i.e. belief that one of a set of alternatives is the correct answer). It 

would be preferable, then, to enter belief only at the singleton level. It is vital to realize that 

this does not mean we wish to revert back to a conventional discrete probability assignment for 

representing belief. Rather we simply wish to imply our joint proposition belief by asserting 

our singleton belief. 

In order to achieve the desired simplicity, then, we would like to devise an input scheme which 

consists only of the user entering support intervals for singletons. This section examines whether 

such an approach is theoretically consistent-or if not, what restrictions must be imposed to make 

it so. 

Singleton support intervals can be calculated for any support function. Therefore, if we can 

show that any particular set of singleton support intervals can arise only from one unique and 

derivable support function, we will know that our simple scheme is consistent and sufficient to 

specify and enter any general support function. Belief which leads to support for some singleton 

must be assigned exactly to that singleton. Thus singleton support is associated with a unique 

belief assignment. However, some or all of the user's belief may not be assigned to singletons. 

Such belief will manifest itself as uncertainty for the singletons (that is, as a difference between 

their plausibility and support values). Singleton uncertainty cannot be traced to a unique belief 

assignment. For example, suppose that we have two quite different support functions on the 
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frame {a,b,c}. The first assigns all belief to the proposition {a,b,c}. The second assigns equal 

belief to the three propositions {a,6}, {a,c}, and {b,c}. Both functions will lead to support 

intervals of [0,1] for each of the three singletons. We therefore need to impose some additional 

requirements in order to obtain a unique solution. 

Suppose, then, that out of all the possible support functions which could produce these support 

intervals, we select the one which expresses the least internal conflict. We will argue that this 

is both a reasonable and appropriate choice. 

This one support function with minimum uncertainty conflict will, in fact, exhibit no conflict 

at all; and the belief leading to singleton uncertainty can thus be termed consonant according 

to the definition in section 4.5.4. We therefore refer to this conflict minimization assumption 

as the assumption of consonant uncertainty. We believe that this assumption is not at all 

unrealistic. In fact, it has been suggested (see Cohen [9] and Shackle [56]) that all belief should 

be consonant, since some body of evidence should not simultaneously lead to two mutually 

exclusive conclusions. While Shafer disagrees with this restriction, it does seem that it will 

be the exception which will violate consonance to any large degree. Furthermore, consonant 

uncertainty is less restrictive than full consonance since belief assigned to singletons may be 

disconsonant under the former category. 

Through the application of a single reasonable restriction, then, the consonant uncertainty 

principle achieves the outstanding practical result of always producing a unique support function -

from a set of legitimate singleton support intervals. This entire approach is analogous to 

statements by Shafer [57, p.221] in which he shows that a truly consonant belief function can 

be determined by the plausibilities awarded to the singletons, and that a consonant belief 

function is essentially a point function rather than a set function. Note that the approach 

described here is somewhat less constrained than fully consonant and that singleton support 

intervals are required to define a belief function rather than just singleton plausibility values. 

Our approach to belief input, then, is to first allow the user to enter support intervals for every 
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singleton in a frame of discernment, and then convert this input into the corresponding unique 

support function by invoking consonant uncertainty in a manner which can be formalized as 

follows: 

The elements of a frame are first relabelled to reflect the ranking of the singleton uncertainties. 

Thus, the elements are relabelled 61,02,6$,... ,0n such that: 

UW2}) > U({03}) 

Then the BPA values for the joint propositions are: 

m({9i,9*,8s,...M) = U({$n}) 

m({« i , « , , • » , . . . , » n - i } j = U{{9n-i})-V{{9n}) 

m ( { 0 1 ( 0 2 » = U{{0t))-U{{ea}) 

These basic probability numbers, then, will always form nested propositions as required by 

consoriance/"(Note that the next equation in this sequence would be m({0i}) = = 

— ^({^2}) which would result in the assignment of singleton support greater than 

that specified by the user. In such a case the derived support function would not reflect the 

user's belief. This situation is therefore prevented by the restriction that U({0i}) = U({02})> 

as shown above). 

The basic probability assignment is completed by including the basic probability numbers aris­

ing from the singleton support values, that is: 
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Example 11.1 Suppose that the user has entered the following singleton sup­

port intervals for a frame containing the four elements {a,b,c,d}: 

S({a}) = 0.1 P/ ({«» = 0.7 

5({6}) = 0.3 Pl{{b}) = 0.9 

5({c}) = 0.0 P/({c}) = 0.5 

S{{d}) = 0.0 Pl{{d}) = 0.2 

The singleton support values lead to the following basic probability numbers: 

m({a})= 5({o}) =0.1 

m({6})= S({b}) =0.3 

m({c})= S({c}) =0.0 (ignore) 

m({d})= S({d}) =0.0 (tonore) 

Further, we can calculate the following singleton uncertainties: 

U({a}) =0.6 

U({b}) =0.6 

• ._. V{{c}) =0.5 

- . =0.2 

Ranking these uncertainties leads to the relabelling of the elements $i = a, 

$2 = 6, 0s = c, and $4 = d. Equation 11.2 then gives: 

m({9lt02,ezM) = W ) =0.2 

m({ei,9i,$s}) = U({9i}) - U{{04}) =0.5-0 .2 =0.3 

m({e1)92}) = U{{62}) - U{{0!i}) =0.6-0.5 =0.1 

Thus the complete basic probability assignment derived from the user's input of 

singleton supports intervals is: 
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m({b}) 

m({a,b}) 

0.1 

0.3 

0.1 

m({a,fc,c}) 

m({a,b,c,d}) 

0.3 

0.2 

with all other propositions having zero basic probability. 

11.1.2 Attributes for the Implementation of a Belief Input Scheme 

We have determined that a simple and consistent belief input scheme can be achieved through 

the application of consonant uncertainty. This section describes additional attributes which 

should be incorporated into a belief interface scheme. The implementation of these ideas into 

an actual belief entry scheme are described in section 11.1.3. The first attributes deal with the 

efficient management of constraints: 

1. Exploit applicable classes of belief: 

The belief input scheme proposed in the previous section relies for its effectiveness on 

the constraints imposed by consonant uncertainty. In general, each additional constraint 

imposed results in a simpler input scheme, since constraints limit the user's options. 

Whenever the belief to be entered into a system is known or expected to belong to a 

certain class of support functions (classes of belief were discussed in section 4.5), then, 

the constraints which can be ascribed to those classes should be exploited in the input 

scheme. If belief is to be entered for which no uncertainty should exist, for example, 

the response need only consist of selecting one of the alternatives and no support or 

plausibility values are required. 
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2. Avoid overconstraint: 

It is very important, however, not to unnecessarily overconstrain the input. For example, 

imposing the class of certain support when the user is, in fact, quite uncertain about 

the answer to some question would result in a very inappropriate support function being 

entered into the system. Classes of belief should only be exploited when there is a rea­

sonable expectation that they will apply (and even then it should be possible to override 

such constraints). 

The following attributes deal with the actual processes of entering values into the computer 

program: 

1. Allow user to select from options: 

A user interface will be generally be much simpler to use if the user is allowed to select 

options offered to him rather than being required to remember the correct format, syntax, 

order, and so on for the values being entered. This will only be possible when there are not 

too many options from which to choose, but the restriction to singleton support intervals 

only should ensure that this condition is met. Since belief input is specified in terms of 

real number values, allowing the user to select a value is best achieved through the use 

of a graphical interface. We propose that support and plausibility values be entered by 

allowing the user to adjust bars on a bar chart to the desired magnitude. 

2. Establish a valid support function in response to every incremental belief entry: 

To encourage convergence upon a satisfactory support function it is preferable that, during 

the entire process of providing inputs of belief values for a single support function, the 

consequences of the each entry are presented in the context of a valid support function. 

This requirement also applies to the initialized state of a support function before the first 

user belief input is entered. In most cases this requirement is met with a belief function 
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corresponding to complete ignorance-a belief assignment of 1.0 to the full frame, and a 

consequent plausibility of 1.0 for all singletons. 

Furthermore, if a class of belief has been selected, the support function should be auto­

matically constrained accordingly. As well, the system should automatically reject, with 

an explanatory warning, any attempt to enter values which violate the general require­

ments of a support function or any constraint applicable to a chosen belief class. For 

example, if a consonant belief structure had been selected then, any attempt to enter 

belief in a second singleton, or any attempt to deviate from a plausibility value of 1.0 for 

the focal singleton should be resisted. 

3. Permit support and plausibility to be increased or decreased: 

The entry of support or plausibility implies the act of adding belief or plausibility to 

propositions, usually singletons. It is essential that it also be possible to deduct support 

or plausibility from any singleton or proposition. This provides an opportunity to correct 

entries which are sensed to be inappropriate. It also allows, in conjunction with the 

immediate adjustment of the support function to constraints as suggested above, some 

indication of the sensitivity of the complete support function to current belief value entry. 

11.1.3 The Prototype System 

In the previous section we have discussed what we feel to be the important attributes of a 

support function interface system. In this section we give a description of the system developed 

for use in our prototype D-S based expert system shell. We show how our system attempts to 

fulfill the ideal attributes given above and present our plans for some future modifications to 

our system. This system is called the Interactive Belief Interface System, or IBIS . 

Questions which allow uncertain responses return a complete support function rather than just 
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a single value. Internally they might be defined as: 

question 13: 

weather.tomorrow 

ask.uncertainty "What w i l l tomorrow's weather be l i k e ? " 

alternatives (sunny, cloudy, ra in ing, snowing). 

In this case, the alternatives are a set of mutually exclusive and exhaustive propositions for a 

previously stored frame "weather-tomorrow''. When the expert system needs to know what 

the expected weather will be for the next day, the question is presented graphically to the user 

in the initial form shown in figure 11.1: 

What w i l l tomorrow's weather be l ike? 

Enter support and p l a u s i b i l i t y values 
1. sunny 
2. cloudy 
3. ra ining 
4. snowing ;". 

.6- -4.0 

| : support, the X certainty that this is the correct alternative. 
|~~| : plausibility, the X certainty that this could be the correct alternative. 

Figure 11.1: Initial belief input screen 

This screen states the question, lists the possible alternatives, and displays the support and 

plausibility values associated with each alternative in the form of a bar-chart. The support 

and plausibility values presented initially reflect a belief of absolute ignorance regarding the 

question. The user can alter the values on the bar chart by first selecting the corresponding 

support or plausibility bar with a mouse cursor. The support or plausibility represented by 

the bar can then be decreased or increased by moving the cursor to the left or right. The 

system employs the previously discussed simplifying technique of confining entries of supports 

and plausibilities to singletons. 
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Visualization of the support function is encouraged by providing a fully interactive graphical 

interface. The system automatically and immediately applies the appropriate constraints and 

warns the user of attempted violations. For example, the requirement that the sum of all implied 

BPN's must equal one is automatically maintained. If the first entry made was to increase the 

support for tomorrow's weather being cloudy up to 0.4, the remaining uncommitted belief must 

be 0.6 and plausibility in all other alternatives must equal 0.6. Thus the plausibilities for all 

other weather alternatives will be reduced to 0.6 and the input scheme automatically responds 

with the display shown in figure 11.2: 

What w i l l tomorrow's weather be l ike? 

Enter support and p l a u s i b i l i t y values 
1. sunny 
2. cloudy 
3. ra in ing 
4. snowing 

0 .2 .4 . 6— 
j i i i i i i 

— .8 1. 

i 
— .8 1. 

i i i i i i f 
h—i—i—i—i—i—f 

| : support, the % certainty that th i s is the correct a l ternat ive. 
(~~| : plausibility, the % certainty that th i s could be the correct a l ternat ive. 

Figure 11.2: Belief input screen expressing some support for "cloudy" 

Other support function constraints, such as the belief cannot be greater than the plausibility 

for that proposition, are automatically checked and enforced. If the user attempts to violate 

these constraints, a warning is given and he is not allowed to make the incorrect entry. For 

example, if the user attempts to reduce the plausibility of cloudy weather to less than 0.4, the 

following warning would appear, as shown in figure 11.3: 

The above mentioned constraints are fundamental to support function theory-all legitimate 

support functions must obey them. After the user is satisfied with the values displayed and 

actuates the "Cl ick here when finished" box, the system takes the users input, applies the 

consonant uncertainty constraint and derives the complete support function. This is entered 
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What w i l l tomorrow's weather be l ike? 

Enter support and p l a u s i b i l i t y values Q 
1. sunny 
2. cloudy 
3. ra ining 
4. snowing 

.6- .8- • 4 . 0 i 

• 1 

• 

***** W A R N I N G - P1(A) cannot be less than S(A) ***** 

| : support, the X certainty that this is the correct alternative. 
J~l : plausibility, the X certainty that this could be the correct alternative. 

Figure 11.3: Belief input screen warning of constraint 

internally to the expert system but, if requested, the focal joint and singleton propositions 

with their corresponding basic probability numbers can also be displayed on screen. This 

reinforces the fact that neither consonant uncertainty, nor the input system itself, confine the 

focal propositions to singletons. For example, if the user is quite confident that tomorrow's 

weather will be raining or snowing but he has no idea which, he would enter this belief by 

reducing the plausibility of both sunny and cloudy while leaving full plausibility for raining or 

snowing. Such an entry would be as shown in figure 11.4: - - . - -

What w i l l tomorrow's weather be l ike? 

Enter support and p l a u s i b i l i t y values Q 
1. sunny 
2. cloudy 
3. ra ining 
4. snowing , 

.6- - 4 . a . 

1 — r 

I : support, the X certainty that this is the correct alternative. 
[ I : plausibility, the X certainty that this could be the correct alternative. 

Figure 11.4: An example belief input screen 

Such an entry would cause the following support function to be entered into the system: 
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m({raining, snowing}) = 0.9 

m({sunny, cloudy, raining, snowing}) = 0.1 

The IBIS interface is illustrated and described further in chapter 12 and in chapter 14 of the 

appendix. 

11.1.4 Additional Features 

This section discusses some features which are not currently implemented in the IBIS system, 

but which could be added to enhance its performance. 

Additional belief classes could be investigated, and possibly subclasses governed by belief and 

plausibility profile shapes, and the circumstances which would prompt their use. For example, 

in the case of propositions which are formed by discretization along a continuum, a subclass 

might be specified which requires the belief and plausibility distributions to be unimodal. When 

the knowledge engineer programs questions into the knowledge base, he would have the option 

of stating that the response should fit into one of a group of belief classes or possibly subclasses. 

In turn the user would respond with his choice of belief class or subclass before entering be­

liefs. Once a belief class has been selected then the appropriate additional constraints would be 

applied during input and when calculating the complete support function once input is com-

pleted. An option for the user to enter a completely general support function is not precluded 

but, because of the high dimensionality of the inputs involved, this would probably necessitate a 

non-graphics based entry scheme and would require the user to enter basic probability numbers 

for all focal singleton and joint propositions. 

It is possible that even greater feedback can be provided to the user during belief entry. A 

measure of the degree of conflict within the support function as it is being entered could easily 

be provided. Similarly, a measure of the quality of information contained in the support function 
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(as described in section 11.3) might be useful under some circumstances. Once the user became 

familiar with these feedback parameters, he could use them as a check of whether his input 

corresponded well with his feelings about the question, and he could modify his response if this 

was not the case. 

It has been very apparent through using the input scheme described that it rapidly improves 

familiarity with the D-S expression of belief. An effective tutorial program could be built around 

the graphical input scheme and would demonstrate the concept of D-S belief, the consequences 

of belief combination, and so on. This would be invaluable for building the users confidence in 

expressing his beliefs. 

Finally, all of these additional features could be made optional and passive (i.e. they would only 

be provided if requested). The system has the virtue of being functional with the simplest of 

inputs and only an elementary understanding of belief by the user. Refinement of the interface 

to capture more subtle nuances of belief and provide greater feedback for the more sophisticated 

user should not be at the expense of this simplicity when it is appropriate. 

11.2 Expressing Relational Belief 

Belief which must be entered into a D-S based expert system can be classified as either eviden­

t ial belief or relational belief. Evidential belief expresses some body of evidence pertaining 

to the true value of some frame of discernment. This type of belief is most commonly sup­

plied by the user in response to some question. In the FRO expert system shell, evidential 

belief is entered using the IBIS system described in the previous section. Relational belief, 

on the other hand, is belief about how propositions in one frame are related to propositions 

in a different frame. This type of belief is usually entered by the expert and the knowledge 

engineer during the creation of the knowledge base. This section provides some insight into 

the meaning of relation belief functions by showing how they can be expressed in the form of 

simple "IF. . . T H E N . . . " rules. 



Chapter 11. Working with Belief Functions 129 

Formally, a relational belief function is defined on a minimal refinement frame. Therefore the 

function assigns belief to elements of the form (x,y), or "x is the true value of frame Qx and 

y is the true value of the frame 6y." It can be shown that this is a suitable representation for 

relational information. However, it is not an intuitive way of describing our relational belief. 

We would like to find an equivalent form which would allow us to give a more natural expression 

of our belief about relationships. 

We have found that the most common form of representing relationships in expert systems, 

namely "IF. . . T H E N . . . " type rules, provides a representation form which is acceptable to 

both the expert's intuition and the belief function theory. Specifically, suppose we have the 

rule "if A then B" where A is a proposition in the frame Ox and £ is a proposition from the 

frame 6 B . This rule is equivalent to the conditional statement "if A is true then B is true", 

which is equivalent to the unconditional statement UA is true and B is true, or not A is true.* 

In this last statement, the "A is true and B is true" component is directly equivalent to the 

proposition (A,B) in the minimal refinement frame 6(A,B) - The "not A is true" component 

corresponds exactly to the set complement of proposition A in the initial frame ©x, and must 

therefore exist in the minimal refinement which completely discerns the initial frames. This 

conversion from rules to minimal refinement propositions is shown in example 11.2. 

Example 11.2 For the frames given in example 3.2, we could define a rule: 

"If rock, then blast." ~~~ 

This rule is equivalent to the statement: 

"If rock is true, then blast is true." 

Which is equivalent to the statement: 

"rock is true and blast is true, or not rock is true." 

Which is equivalent to the statement: 
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"rock is true and blast is true, or soil is true." 

Which is equivalent to the statement: 

"rock is true and blast is true, 

or soil is true and blast is true, 

or soil is true and dig is true." 

Which is equivalent to the proposition: 

{(rock, blast), (soil, blast), (soil, dig)} 

Thus the rule "If rock, then blast" corresponds directly to the proposition 

{(rock, blast), (soil, blast), (soil, dig)} in the frame 0(MATERIALMETHOD)-

Using this conversion from rules to minimal refinement propositions, we can see that a rule 

statement exhibits the same basic set theory characteristics as propositions. For example, an 

"Ai or A j " expression in a rule corresponds to the union of the propositions A\ and A2, while 

an " A i and As" expression in a rule corresponds to the intersection of A\ and A2. It should 

be noted that we can refer to an "A and B " expression where the propositions A and B are 

from different initial frames. For example, we could use a rule "if A and B then C" (where 

A is a proposition in frame 6 A , B in frame 6 B and C in frame 6c) by relating the minimal 

refinement of frames 6 A and 6 B to frame 6 c ; i.e. the rule would be equivalent to a proposition 

on the frame 6 ( ( A , B , C ) -

We can also see that one rule can imply another rule in a manner analogous to the set inclusion 

property of propositions, as shown in the following example. This concept becomes impor­

tant when we begin to assign belief to rules (as shown below) and we must observe the same 

constraints as for evidential belief functions. 
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Example 11.3 Suppose we have three rules: 

Rule 1: if A then B% and B2 

Rule 2: if A then B\ 

Rule 3: if A then Bi or B% 

Where A is any proposition in frame &A and Bi, B2 and B3 are any propositions 

in frame 0 £ . These rules can be converted into propositions on the frame 6 ( X , B ) -

Thus if Rule 1 yielded some proposition labeled (A, B)i, Rule 2 yielded (A,B)2 and 

Rule 3 yielded (A, .8)3, it can then be shown that: 

(A,B)x C {A,B)2 c (A, B)s 

or alternatively: 

(A, B)i implies (A,B)2 which implies (A, B)s 

Therefore, we can say that: 

Rule 1 implies Rule 2 which implies Rule 3 

This result can also be derived directly from the logical relationships between 

the rules. For example, if the rule "if A then B\ and B2 is true, then the less 

precise rule "if A then Bi* must also be true; that is: " r 

"If A then Bx and B2" 

implies "If A then Bi" 

which similarly implies "If A then B\ or Bs" 

The same argument can be used to show that: 

"If A i or A2 then B " 

implies "If A i then B" 

which implies "If A\ and A2 then J5" 
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Using this approach, we can define an approach to specifying relation belief which consists 

of supplying a series of rules pertaining to two related frames of discernment, with a single 

support number assigned to each rule (each rule would represent a focal proposition in the 

relational belief function, so specifying the support for each rule would fully specify the belief 

function). A rule with support of 1.0, for example, would apply categorically, while a rule with 

near zero support would result in only negligible inferences. Example 11.4 shows a set of rules 

with associated support numbers and the relational belief function (in the form of a BPA). 

Example 11.4 Suppose the possible types of ground on a construction site are 

rock, soil, or sand: 

frame ^MATERIAL = {rock,soil, sand} 

and the possible excavation methods are digging, blasting, or ripping: 

frame QMETHOD = {^9> blast, rip} 

Then the rules: 

If rock then blast, with support 0.5, 

If rock then blast or rip, with support 0.8 

if soil or sand then dig, with support 0.9. 

could be transformed into a relational belief function on the minimal refinement 

frame &(MATERIALMETHOD) which, when converted to a BPA, would give us the 

following belief: 

Support associated with rules carry the normal constraints for belief functions. For example, 

the support must be a number on the range 0 to 1.0; the support for one rule can not exceed the 

support for a second rule if the first rule implies the second; and the sum of support numbers 
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(rock,rip) 

(soil,rip) 

0.3 

0.5 (sand,blast) (sand,rip) <>-0.1 

Figure 11.5: A Relational BPA 

for complementary rules (i.e. two rules for which the intersection equals 0) must not exceed 1.0. 

Furthermore, a vacuous relational belief function (i.e. a complete lack of information about a 

set of relationships) corresponds to the case of completely independent frames of discernment. 

Finally, we should note that a relational belief function provides knowledge which can allow 

belief propagation between two frames in either direction. This can be a problem if we wish 

to be able to infer belief about a frame 9 B from the elements of a frame © A , but we do not 

believe that reverse inferences should be made. Suppose, for example, that in the scenario 

outlined in example 11.4, we had no information as to the ground type, but we decided to try 

a ripping method of excavation because we owned the appropriate equipment. Then, knowing 

the excavation method, the given relational belief function would yield some unfounded belief 

in the ground type. 

This problem stems from the fact that a rule of the type "if rock then rip" is a subset of a rule 

which would fully describe the known relationships, for example: 

"if rock 

or appropriate equipment is available 

or other factors exist which imply rip 

then rip" 
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It can be shown that the rule "if rock then rip" is a completely valid and sufficient subset for 

belief propagation from frame 6 A to frame 6 B , but that the rule gives incorrect relationships 

when propagating belief in the opposite direction. We have found that a feasible solution to 

this problem is to provide a different relational belief function for propagating belief in each 

direction. In this system, then, belief about frame 6 A would be combined with the stored 

6A-6# relational belief function to derive belief about 9 B . Conversely, belief about frame 6 B 

would be combined with a completely different © B - 6 A relational belief function to derive belief 

about frame 6 A -

In summary, relational belief can be expressed in terms of simple rules. This form provides the 

most insight into the meaning of relation belief functions expressed on a minimal refinement 

frame. However the FRO frame network system employs a more simple form of relation belief 

input using IBIS screens in a similar manner to the technique used for entering evidential 

belief. The theoretical basis for this approach was described in section 10.3.2 and the resulting 

implementation is illustrated in chapter 12 and in chapter 15 of the appendix. 

11.3 Evaluating Output Belief Functions 

The role of belief functions for belief input has been discussed. In a frame network system, belief 

functions are also produced as output. Given belief output, the main question to be resolved 

is usually to determine the "best" alternative. It is also important to know how reliable this 

selection of best is. It is not obvious how the information contained in support and plausibility 

numbers should be used to make these determinations. The following provides some possible 

approaches when the output is provided in the previously described form of singleton support 

intervals. 
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11.3.1 Determining the B E S T Alternative 

If there were no uncertainty in a belief function, all alternatives would have a single support 

number. The alternative with the highest support could then easily be chosen as best (this 

is analogous to a Bayesian probability distribution). Similarly, if each alternative has only 

plausibility numbers and no direct support, we could simply take the alternative with the 

highest plausibility as the best. In general, however, we need a single measure of belief which 

is a function of both the support and plausibility. Suppose we call this parameter the nominal 

belief of the proposition, NB(A): 

Best A = A with max(JVB(A)) (11.4) 

where NB(A) = F ( S ( A ) > P , ( A ) ) (11.5) 

Suppose we take the nominal belief to be the simple linear average of the support and plausibility 

numbers: 

NB(A) = F { S W i P l { A ) ) = S { A ) +

i )

P l { A ) (11-6) 

Figure 11.6 shows some examples of nominal belief. 

This equation for nominal belief is completely arbitrary but it seems to be suitable for a first 

attempt. For example, given two propositions A and B, there are five possible types of belief 

relationships between them. We can check the results of using a linear averaging equation for 

each of these general classes, as shown in table 11.1. 
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(X) S{X) NB(X) Pl{X) 

A 0.0 0.0 0.0 

B 0.0 0.4 0.8 

C 0.4 0.6 0.8 

D 0.7 0.7 0.7 

r-0 .6- .8 l . O i 

T 
lllllllllllllllllllllllllllllllllllllllll! 
i — r 
IIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII1IIIIIIIIIIIIIIIIIIII 

i — — r 

Y::::::::V:::::::1 

Support HI Nominal Belief = sW+pl{A) H Plausibil i ty 

Figure 11.6: Examples of Nominal Belief 

Table 11.1: Possible belief relationships 

Relationships between 
belief for A and B 

Relative values using: 
NB(X) -

5(A) = S(B), PL(A) = PL(B) 
S{A) = 5(B), PL{A) > PL(B) 
5(A) > 5(B), PL(A) = PL{B) 
5(A) > 5(B), PL(A) > PL{B) 
5(A) > 5(B), PL(A) < PL[B) 

A equal to B 
A better than B 
A better than B 
A better than B 

depends 
(and opposites which are symmetric) 



Chapter 11. Working with Belief Functions 137 

The first four cases shown in table 11.1 are correct by inspection. The last case (which is 

probably atypical in practice) does not have an obvious result. However we cannot simply say 

that the proposition is better whenever the support is higher because if S(A) > S(B) and 

PI (A) < Pl(B) then there is both more support for A and more support against A. The use 

of a linear average for the nominal belief will cause the support for and the support against 

a proposition to carry equal weight in resolving these cases. Other combining functions could 

place greater emphasis on one or the other of these supports (which is not likely to be valid). 

In any event, the determination of the nominal belief upon which we base our selection of best 

alternative is not particularly critical if we have a reasonably accurate method of determining 

our confidence in (or reliability of) the "best" selection, as shown in the next section. 

11.3.2 Determining the Reliability of the Best Alternative Selection 

For some belief functions it may be very easy to determine which alternative is best, but we 

may have a very low confidence about the selection. There are two sources of such doubt. First, 

we can lack confidence if there is much uncertainty in the belief function. Figure 11.7 shows 

such a situation. Second, we can be doubtful if the categorical belief for the best alternative is 

only marginally higher than it is for the next best, as in figure 11.8. 

Ronald Yager [73] discusses both of these source of doubt. He introduces two parameters which 

describe howinformative a belief function is. 

First, he introduces the specificity, Sm, of a belief function as a measure of the degree to 

which belief is assigned to large sets of elements. That is, the specificity measures the precision 

expressed in the belief function, with imprecision contributing to uncertainty. 

Second, Yager proposes the entropy, Em, as a measure of the degree to which the belief is 

distributed among disjoint sets. The following phenomena are all manifestations of this type of 
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1. a proposition 
2. the BEST proposition 
3. a proposition 
4. a proposition 
5. a proposition 

.2-
i 

.6- - i .Oi 

• 
support, the X certainty that th i s is the correct a l ternat ive, 
plausibility, the X certainty that th i s could be the correct al ternat ive. 

Figure 11.7: Low Confidence in the BEST alternative because of a large amount of uncertainty 
in the belief function 

2. the BEST proposition 

rO .2 .4 

M i l l rn 
• 6— • 8— —1 °1 

| : support, the X certainty that th i s is the correct a l ternat ive. 
[~| : plausibility, the X certainty that th i s could be the correct al ternative. 

Figure 11.8: Low Confidence in the BEST alternative because of a large amount of disconso-
nance in the belief function 
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doubt: a belief function which distributes belief among disjoint sets; one which discerns signif­

icant conflict; one which is disconsonant; and one in which there is relatively small differences 

in support between the main focal propositions. 

A measure of our confidence in the selection of best alternative, then, must combine measures 

of uncertainty and consonance; or entropy and specificity to use Yager's terms. Yager derived 

specific formulae for deriving his specificity and entropy parameters, however he was using 

them as measures of how informative overall belief functions are. We are interested in finding 

parameters which tell us how confident our assignment of the best alternative is. This goal 

requires different formula for specificity and entropy parameters than Yager's. 

1. Measuring Specificity: 

A measure of specificity must indicate the relative amount of uncertainty assigned to our 

best alternative. A useful definition seems to be: 

The specificity Sp(A) of the best alternative A is the percentage of the belief 

function's uncertainty which could be resolved against A before A is no longer 

considered "best". 

However this is not a very easy definition to implement, we have rather adopted the 

definition: 

The specificity Sp(A) of the best alternative A is the support for A as a per­

centage of the plausibility for A: 

SrM = | $ L (n.7) 

This is an arbitrary definition, but it reasonably exhibits the expected traits of being 

directly proportional with the amount of uncertainty in the proposition and being zero 

for total ignorance and one for total certainty. 
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2. Measuring Entropy: 

The measure of entropy must indicate the degree to which the belief in the best alternative 

is greater than the belief for other alternatives. A simple definition is: 

The entropy E(A) of the best alternative A is the difference between the nominal 

belief in A and the nominal belief in the next best alternative, B, as a percentage 

of the nominal belief in A: 

Again, this arbitrary definition satisfies the expected traits of being directly proportional 

to the difference between the best and next best alternatives, being zero for two or more 

"equally good" propositions and one for total full support of a single proposition. 

3. Combining Specificity and Entropy: 

The specificity and the entropy can be combined into a single measure of the quality 

of the "best" selection. We want our quality parameter, Q{A), to range from zero to 

one and to be directly proportional to both the specificity and the entropy. Figures 11.9 

through 11.12 show four arbitrary formulae for this combination. For a given E and 

- Spy the value of Q can be obtained from the graph's "quality contours" for the following 

formulae: 

Q' = S-?±* (n. 9 ) 

0 = ^ (n.io) 

Q = Spx E (1111) 

Q2 = SpxE (11.12) 
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Again, the specific formula is not especially critical because the way we use the quality (to 

compare it with thresholds etc.) will vary with which ever characteristics the parameter 

possesses. Nevertheless, we should try to make the quality parameter intuitively appro­

priate. For this reason, the formulae shown in figures 11.9 and 11.10 should be rejected 

because a relatively high Q can be obtained when one of the E or Sp is high even if the 

other is zero. The formulae illustrated in figure 11.11 seems more reasonable. Notice that 

both E and Sp need to be high in order for a moderate Q to be obtained. The formulae 

illustrated in figure 11.12 is more lenient in that a moderate E and a moderate Sp can 

lead to a moderate Q. Testing could be performed to show which alternative more closely 

mimics human feeling. The approach shown in figure 11.11 has been implemented in the 

FRO system illustrates the best combination. 

11.4 Conclusion 

This chapter has outlined techniques for working with belief functions which simplify both 

evidential and relational belief input and which help to evaluate inferred belief functions. These 

simplifying procedures are required to counteract the increase in complexity caused by the use 

of a powerful and complex knowledge representation and reasoning scheme like D-S. Most of 

the approaches outlined in this chapter are implemented in the FRO expert system shell. 
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Figure 11.10: Quality factor from equation 11.10 
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Chapter 12 

Using a D-S based System 

This chapter provides an extended example of an expert system based on the D-S frame network 

approach such as that implemented in the FRO shell program. The point of view for this chapter 

is mainly that of the user. Some issues of incorporating uncertainty in knowledge base design 

are also discussed in section 12.5. 

12.1 Illustration of D-S Implementation 

Consider a scenario in which an innovative contractor is selecting his construction strategy 

for a high-rise project to be built in Vancouver, B.C. A preliminary schedule indicates that 

the concrete superstructure will be built from mid-November through to mid-February. The 

contract stipulates that time is of the essence and that days lost due to cold and excessively wet 

weather must be minimized. The contractor's expert system has been appraised of the time 

frame and contractual obligations and has initiated a series of questions and responses dealing 

with cold weather concrete practices (for the reader unfamiliar with Vancouver weather, the 

climate is temperate and extended periods of substantially below-freezing temperatures are 

unusual). The goal of the session is to identify the most suitable strategy to achieve acceptable 

cure times in order to maintain a four day cycle time. The system starts by querying the user 

regarding long range weather forecasts. Specifically, the system might first pose the following 

question: 

144 
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What is the long range forecast for cold weather conditions 

for the construction period Nov. 15 1088 to Feb. 15 1089 ? 

The system also offers the user a number of possible answers to the question. In this case, the 

following forecast descriptions might be presented: 

1. Mild. 

2. Normal. 

3. Severe. 

"Explanation" capabilities built into the system could define the specific meteorological mean­

ings of each of these descriptions. 

In this format, the set of alternatives for a particular question makes up a D-S frame of dis­

cernment while each individual alternative is a singleton. Since frame of discernment should 

be exhaustive and mutually exclusive, one and only one of the alternatives must be the correct 

answer. 

If the user was completely certain that one of these alternatives was the correct answer to 

the question, then he could simply select that alternative. However, as is often the case in 

civil engineering problems and construction ones in particular, the user may not be completely 

certain. Thus his response could only accurately reflect his belief if it conveyed his uncertainty -

about the answer. 

The system, then, must be able to accept the user's uncertain input. With a numerical scheme 

such as D-S, this input can become a fairly complex procedure, so it is critical that the uncer­

tainty input method of any expert system be as simple and as easily understood as possible. 

We believe that considerable attention must be directed to developing interfaces which are nat­

ural to engineering and construction practitioners. Our approach to this problem is to use a 

graphical representation and to add certain minor constraints to the general D-S theory (see 
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the description of the IBIS input system in section 11.1). The input format developed is shown 

in figure 12.1. 

What is the long range forecast for cold weather conditions for the 
construction period Nov. 16 1988 to Feb. 16 1989 ? 

Enter support and plausibility values 
1. Mild 
2. Normal 
3. Severe 

r 0 .2 .4 .6 .8 1.0 

H '• support, the X certainty that th i s is the correct a l ternat ive . 
f~l : plausibility, the X certainty that th i s could be the correct a l ternat ive. 

Figure 12.1: Initial uncertainty input screen 

In this form, the same question is asked, the same alternatives are offered, but instead of asking 

the user to select the single best alternative, the system now asks the user to enter two values 

for each alternative. These values, represented by a bar chart in figure 12.1, are defined as 

follows: 

Support: a number between zero and one reflecting the user's belief that the particular al­

ternative is the correct alternative. The support is represented by a solid black bar in 

figure 12.1 which shows a value of zero for each alternative. 

Plausibil i ty: a number between zero and one reflecting the user's belief that the particular 

alternative could be the correct alternative. The plausibility is represented by a white bar 

in figure 12.1 which shows a value of 1.0 for each alternative. 

The support and plausibility values for each alternative of a particular question make up a 

belief function for that frame of discernment. 

The fact that every alternative listed in figure 12.1 has zero support and full (1.0) plausibility 

indicates that none of the alternatives are known to be the one correct alternative, yet each 
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is believed to be entirely possible. This state accurately represents total ignorance about the 

question (the appropriate status of the system before the user has entered any belief). In 

contrast, a Bayesian based system would overstate what is known by assigning an equal, non­

zero level of belief to each alternative even though none had received any belief from the user. We 

will elaborate on the definitions of support and plausibility numbers and on their relationship 

to probabilities below, but first we will extend our example in order to illustrate the use of 

belief functions. 

Our user may decide that based on the unusually hot weather experienced in Vancouver during 

the summer, he expects the winter to be a mild one. He therefore increases the support value for 

the "mild" alternative (in the case of our system, this is done by sliding the corresponding bar 

with the mouse cursor). Because the contractor realizes that this is not a very reliable estimate 

of the winter's weather, he may only increase the support to 0.2. Suppose that the user also 

decides to obtain better information by telephoning Environment Canada. He is informed by 

these experts that all meteorological indications point to a very normal winter. This influences 

him to increase the support value for the "normal" alternative of the question to a value of, 

say, 0.5. 

The result of adjusting the support values for these two alternatives is shown in figure 12.2. 

Notice that by expressing some support for one particular alternative being the correct answer, 

the user implies the same amount of belief that all of the other alternatives must not be correct. 

This results in the lowered plausibility values shown in figure 12.2. The user does not have to 

consciously make this adjustment since it is performed by the system automatically. 

Finally, from both his own observations and from the advice of Environment Canada, the 

contractor is fairly confident that the winter's weather will not be severe. He expresses this by 

lowering the plausibility of the "severe" alternative to a low value of 0.1. Figure 12.3 shows the 

resulting levels of belief. It can now be said that the values shown are an accurate reflection of 

the contractor's belief about the long range weather forecast; these numbers can therefore be 
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returned to the system as the complete response to the question. 

148 

What is the long range forecast for cold weather conditions for the 
construction period N O T . 15 1988 to Feb. 16 1989 ? 

Enter support and plausibility values 
1. Mild 
2. Normal 
3. Severe 

r 0 .2 .4 .6 .8 1.0 

| : support, the X certainty that this is the correct alternative. 
: plausibility, the X certainty that this could be the correct alternative. 

Figure 12.2: Intermediate uncertainty input screen 

What is the long range forecast for cold weather conditions for the 
construction period Nov. 15 1988 to Feb. 15 1989 ? 

Enter support and plausibility values 
1. Mild 
2. Normal 
3. Severe 

r 0 .2 .4 .6 .8 1.0 

| : support, the X certainty that this is the correct alternative. 
|~~| : plausibility, the X certainty that this could be the correct alternative. 

Figure 12.3: Final uncertainty input screen 

12.2 A Note On Belief Functions 

Belief functions expressed using the system described must conform to the D-S definitions 

described in earlier chapters. As such, they obey the following equations: 
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If: a, = one of the alternatives 

a, = not a, = the set containing all alternatives except a,-

<5(a,) = * n e support for a,-

^(o,) = * n e plausibility for a,-

Then entering belief in our system will be governed by: 

0 < 5 ( a.) < P/ ( a .) < 1.0 (12.1) 

(12.2) 
Va,-

= 1 - E *(«,) (12.3) 
V i y , W 

Even the simple set of relationships given here need not be learnt by a user of the system, 

however. This is because the system automatically adjusts the plausibility values to account 

for equation 12.3 (as described above) in addition to issuing warning messages if the user tries 

to violate the constraints imposed by equations 12.1 or 12.2. 

Although this input scheme is fairly easy to use, it is extremely powerful in terms of the 

spectrum of belief that can be expressed. To illustrate this flexibility, consider the following 

classes of belief: 

Ignorance: We have shown in figure 12.1 that our input scheme can be" used to represent 

ignorance about a question. It is worth noting that in the absence of any support for 

some alternative, we can still differentiate between disbelief (belief that the alternative 

is not correct) and ignorance (a lack of belief for or against the alternative). In a belief 

function, disbelief is manifested as zero support and zero plausibility while ignorance is 

expressed by zero support and high plausibility. No such distinctions can be made by 

assigning a single probability value to each alternative. 

Certainty: Complete certainty about a single alternative is represented by increasing the 

support for that alternative to 1.0. This automatically forces the plausibility of all other 
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alternatives to zero. We can also express certainty that the correct answer lies within 

some particular sub-group of alternatives, though we may have no belief about which 

of these alternatives is the best answer. This is represented by a plausibility of 1.0 for 

each alternative in the sub-group and plausibility of zero for each alternative not in the 

sub-group. The ability to deal with sets of alternatives is a particular strength of the 

D-S theory (although our representation tends to de-emphasize this strength by using the 

list of singletons as the basic input format, as opposed to one which allows the explicit 

assignment of support values to sets of alternatives). 

Consonance and Disconsonance: Figure 12.3 illustrates typical belief which lies between 

complete ignorance and complete certainty. It can be observed that this belief function 

displays "conflict" in that the support for the mild weather alternative says that the 

weather will be mild and therefore not normal (or severe). This conflicts with the other 

support value which dictates that the weather will be normal. Belief functions are said 

to be consonant if they show no such conflict and disconsonant if they do. Conso­

nance is normally appropriate for expressing belief which stems from a single body of 

evidence, since such evidence should not simultaneously point to two mutually exclusive 

conclusions. Disconsonance is appropriate in the case of our example, however, since the 

user was expressing his combined belief based on two distinct and conflicting sources on 

information. 

A Bayesian probability distribution can be entered into the system by entering £(0i.) = 

P/(„(.) = Probability of a,- for each alternative. However such a belief function displays 

complete disconsonance. This may be appropriate for statistical information based on 

large numbers of observed outcomes, but it does not seem to be appropriate for the 

general case. 

In our example, the user considers two distinct bodies of evidence in order to answer the 

question. He enters into the system his combined belief about the answer, based on these two 
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information sources. It is interesting to note that the expert system in this example could 

equally have been designed to ask the user two separate questions relating to these two specific 

bodies of evidence (e.g. "What has the summer's weather been like?"), in which case the system 

would have performed the process of combining the two sources of belief. There are no fixed 

boundaries between what information should be combined in the mind of the user and what 

information should be combined by the system, rather the question depends mainly on which 

portions of the entire reasoning process the system designer wishes to capture in the expert 

system. We feel that the flexibility in this boundary between the user's role and the system's 

role provides some indication of success in the modeling of human reasoning characteristics by 

the system. 

To summarize our belief input methodology, the system starts by listing the mutually exclusive 

and exhaustive alternative answers to some question and by assigning ignorance values to each 

corresponding S(0i.) and P/( 0 | ). The user then responds to the system by altering these values 

to accurately model his uncertain belief about which alternative is the correct answer. 

12.3 Illustration of Reasoning wi th a D-S Representation 

Using the representation scheme outlined in the previous section, we now give a brief overview 

of how the D-S theory can be used to perform reasoning in an expert system. We begin with 

three steps which, taken together, comprise the process of creating the system's knowledge base. 

First, a frame of discernment is defined for each item in a particular problem that might be 

uncertain. This involves providing a name for the frame and a list of the possible alternatives. 

In our example, the previously described frame would have the name "winter weather" and 

the following list of alternatives: 
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mild, 

normal, 

severe. 

Based on the advice of a human expert, a second frame describing all practical cold weather 

concreting strategies might have the name "concrete strategy" and the following list of 

possibilities: 

use standard mix design only, 

modify mix design only, 

modify mix b use selective heating, 

some mix modification k f u l l heat. 

Second, any logical relationships between different frames are defined. This step is analogous 

to specifying the rules in a rule-based expert system. For example, we might want to express 

the relationship that if the weather is mild, use a standard mix design only. This type of 

relationship is recorded in the form of a l ink between the two frames. In this case, the result 

of creating a link is that any belief in mild weather would automatically lead to belief in using 

standard mix design only. 

Third, levels of belief can be assigned to the actual links if the relationships which they represent 

are themselves not certain. Like the belief values entered by the user in response to questions, 

these levels of belief in links make up true D-S belief functions. This is illustrated by the fact 

that levels of belief can be obtained from the expert in the same graphical format as shown 

above (figure 12.4 shows a belief input screen that could have been used to construct the expert 

system knowledge base described in our example). 

By answering this question, the expert conveys to the system his belief about the relationship 

between mild winter weather and the best concreting strategy (a similar process would be 
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followed for normal and severe weather forecasts in order to completely define the relationships 

between winter weather and concreting strategy). 

These three steps are provided by the expert and the knowledge engineer, or designer of the 

expert system, who work together to create the system's knowledge base. The final ingredient 

required to perform reasoning is a method for combining belief functions. This procedure is 

provided by Dempster's combination rule, which is incorporated into the expert system shell. 

Which concrete strategy i s implied by a mild winter weather? 

Enter support and p l a u s i b i l i t y values 
1. Use standard mix design only 
2. Modify mix design only 
3. Modify mix & use selective heating . 
4. Some mix modification k f u l l heat . . 

| : support, the % certainty that th i s is the correct a l ternat ive. 
| | : plausibili ty, the % certainty that thiB could be the correct a l ternat ive. 

Figure 12.4: Link uncertainty input screen 

A l l of the necessary components are now in place. The expert system can proceed to infer 

belief in the second frame from the user's belief about the first by performing the following 

procedures: 

1. Obtain input from the user in the form of belief functions. " ~" 

2. Use Dempster's combination rule to combine these input belief functions with those de­

scribing belief in the link relationships, resulting in a new function describing belief about 

the related frame. 

In our simple example, this is all that is required to produce the required results about pre­

ferred concreting techniques. However the general case would involve many more frames of 

discernment with numerous interconnecting links. The general reasoning capability needed to 
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cope with such a "frame network" is constructed from the foregoing two procedures by adding 

the following steps: 

3. After inferring a new belief function (as in step 2), combine it with any belief which may 

have previously been assigned to the second frame. 

4. Repeat the above procedures until all possible inferences have been made. 

The result of this process will be belief profiles for a number of possible conclusions. One of the 

strengths of this scheme is that it doesn't merely produce a single "best" conclusion by aggre­

gating all uncertainty. Rather it simply represents the uncertainty in each conclusion, enabling 

the system designer to decide how best to proceed in the face of the resulting uncertainty. 

12.4 Example Problem 

To conclude, we will show exactly how the example scenario discussed throughout this paper 

would be incorporated into an actual expert system using our shell. First, the contents of the 

D-S knowledge base would be entered. The knowledge, as previously shown, is expressed in the 

form of two frame definitions and the link relationship between them. These are shown here in 

a form which can be interpreted by our shell: 

1. frame: winter weather " mild, normal, or severe. 

2. frame: concrete strategy • 

use standard mix design only, 

modify mix design only, 

modify mix b use selective heating, or 

some mix modification b f u l l heat. 
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3. link: winter weather, concrete strategy, 

if mild then use standard mix design only, 

if mild then modify mix design only, 

s(0.7). pl(l.O). 

s(O.O). pl(0.3), 

i f normal then use standard mix design only, a(0.2). pi(0.6), 

i f normal then modify mix design only, s(0.4), pl(0.8), 

i f normal then modify mix k use selective heating, s(0.0), pi(0.2), 

i f severe then modify mix design only, s(0.0), pl(0.2), 

i f severe then modify mix k use selective heating, s(0.1), pi(0.7), 

if severe then some mix modification k fu l l heat, s(0.3), pl(0.9). 

In addition to the D-S knowledge base file, a control knowledge base file must be created. In 

this simplified case, the control file would contain a statement which shows that the goal of the 

system is to check the concrete strategy. A second statement would be a rule asserting that 

the concrete strategy has been checked if the user has been asked about the weather and if he 

has been shown the resulting belief about strategies. Notice that the belief about concreting 

strategies is inferred automatically from belief about weather since this relationship is contained 

in the D-S knowledge base, the inference procedure does not have to be expressed in the control 

rule. A final statement defines the question to be asked in order to solicit information about 

the weather. In a form which could be read by the shell, this file would look like the following: 
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1. goal: concrete strategy is checked 

2. rule: concrete strategy is checked 

i f query winter weather 

and show concrete strategy, 

message "The best strategy to use for maintaining 

acceptable cure times this winter is:". 

3. question: winter weather 

ask "What is the long range forecast for cold weather conditions 

for the construction period Nov. 16 1088 to Feb. 15 1989 ?". 

Now, in order to use the system, the shell program is run. Both knowledge bases are first 

loaded into the shell program. Once this is done and execution has begun, the question about 

the weather is asked in the manner discussed above (suppose that the response is as shown in 

figure 12.3). The system then proceeds to determine the belief in concreting strategies and the 

result is displayed. In this case, the output would be as shown in figure 12.5. 

The best strategy to use for maintaining acceptable cure times this winter 
i s : 

1. Use standard mix design only . . . . . . . 
2. Modify mix design only 
3. Modify mix k use selective heating 
4. Some mix modification k ful l heat . 

r 0 .2- .4- .6- .8- -4.On 
i i ' < ' ' ' ' 

| : support, the % certainty that this is the correct alternative. 
| | : plausibility, the % certainty that this could be the correct alternative. 

Figure 12.5: Belief output screen 
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The contractor's conclusion from the output shown in figure 12.5 would be confidence that he 

will not need to use heating equipment in order to maintain his cycle schedule. This could 

be an important determination if, for example, there was a very long lead time required to 

obtain high output propane heaters and tarps for such a process. However, since there are only 

marginal differences in both the support and plausibility values for the first two alternatives, 

the contractor could not confidently assert whether or not he should modify the mix design. 

This would suggest to him that he does not yet have sufficient information to resolve the mix 

design question. Finally, we can note that the decision of what to do in the face of different 

uncertain outcomes is likely to be part of the expertise of the human or humans who created 

the system. If this expertise is built into the system, then the user of the system will never 

have to face the question of how to interpret the output. 

Many issues remain to be examined before the D-S theory could provide a practical, generally 

applicable approach to dealing with uncertainty in expert systems. However our work to-date 

indicates that the goal of using the D-S theory to represent and manipulate realistic amounts 

of uncertain information in working expert systems may not be far away. 

12.5 Incorporating Uncertainty in Knowledge Base Design 

It has been shown that a frame network based expert system with interactive belief input and 

rule-based control can be used to perform inexact reasoning. But these features alone does not 

ensure appropriate treatment of uncertainty in an expert system. The expert system's treatment 

of uncertainty also depends on the way in which the knowledge engineer and the human expert 

decide to employ the uncertainty handling capabilities of the system. The example discussed 

in the previous sections, for instance, illustrates a very simple use of inexact reasoning (there 

is only one input and one conclusion). This section describes a series of knowledge base design 

approaches which form a hierarchy of sophistication in their treatment of uncertainty: 
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1. No Uncertainty: 

At the simplest level, the existence of all uncertainty in an application can be ignored and 

all input and inference can be restricted to purely categorical processes. 

2. Simple Uncertain Input and Inference: 

The first steps to incorporating uncertainty are to allow both uncertain input and uncer­

tain inference. This is as described in the example of the preceding sections. 

3. Multiple Uncertain Inputs and Inference: 

A more advanced design involves allowing multiple uncertain inputs which produce mul­

tiple uncertain inferences about one or more conclusions. Referring to the previously 

described example, for instance, it could be stated that the appropriate concreting strat­

egy is based not only on the expected winter weather, but also on the local costs of the 

various alternatives, on the experience of the labour force, on the type of structure being 

built, and so on. Inputs could be accepted relating to each of these factors which would 

result in several different belief functions for concreting strategies. Each of these inferred 

belief functions would be combined to give the overall resulting belief. 

4. Simple Evaluation of Uncertain Output: 

The combination of multiple uncertain inputs and inferences results in a belief function 

representation of the system's conclusions. A refinement to the direct output of these belief 

functions in the form of IBIS screens is to perform simple evaluation of the information in 

order to provide a best alternative. This is done in the manner described in section 11.3. 

5. Assignment of Verbal Qualifiers: 

An alternative to providing numeric output of either belief functions or of the evaluations 

of belief functions is to translate the information into verbal qualifiers. For example, if it 

is concluded that some proposition A is the best alternative with a degree of confidence of 

0.95 (as outlined in section 11.3), then the system could report that it is very certain that 
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A is the best answer. On the other hand, if the system's confidence is only 0.2 then it 

could report that it is has only a small amount of confidence that A is the best alternative. 

These verbal qualifiers can be obtained from a "look-up table" in the knowledge base. 

6. Using Uncertain Results to Guide Reasoning: 

The results of the system's inexact reasoning can be used in a simple manner to guide the 

problem solution by adding control knowledge which checks the degree of confidence in 

the selection of the best alternative. If the degree of confidence in the answer is sufficiently 

high, the reasoning can be stopped. If the degree of confidence in the solution is too low, 

however, the system can continue to ask additional questions in an attempt to better 

resolve the issue. 

7. Fully Incorporating Uncertainty into the Expert Knowledge: 

Finally, the uncertainty can be fully incorporated into the reasoning process. The way 

in which the solution should proceed in the face of certain types of uncertainty is as 

much a part of the expert's domain knowledge as is any other information; it cannot 

be resolved in a general sense. Since a frame network D-S system is fully capable of 

representing uncertainty, rules can be added to the knowledge base which state that if the 

system's subconclusions exhibit certain forms of uncertainty, then specific actions should 

be pursued in order to reach the final result. 

—• Taken to the extreme, this approach would require an extremely large amount of input — 

pertaining to the expert's solution approaches. However, it is exactly through the accurate 

modelling of expert techniques using this form of very "knowledge intensive" programming . 

that expert systems achieve their power. D-S based systems posses a unique capability 

for representing and processing uncertain information in a manner which is rich enough 

to allow for the detailed incorporation of uncertainty into the knowledge base. 
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12.6 Conclusion 

This chapter has illustrated the application of a frame network expert system to a simple 

example problem. It has been shown that the system allows accurate expression of uncertain 

knowledge while remaining relatively simple to use for the user as well as for the knowledge 

engineer and the human expert. 



Chapter 13 

S u m m a r y 

The work described in this thesis stems from the idea that expert systems should be able to 

accurately and appropriately handle uncertain information. The traditional approaches for 

dealing with uncertainty were discussed and are shown to contain many inadequacies. 

The Dempster-Shafer, or D-S, theory of evidence was proposed as an appealing theoretical basis 

for representing uncertain knowledge and for performing inexact reasoning in expert systems. 

The D-S theory was reviewed in some detail; including its approaches to representing concepts, 

to representing belief, to combining belief and to performing inference. 

The D-S implementation approaches pursued by other researchers were described and critiqued. 

Attempts made early in the thesis research which failed to achieve the important goal of con­

sistency with the D-S theory were also reviewed. 

Two approaches to implementing D-S theory in a completely consistent manner were discussed 

in detail. It was shown that the second of these systems, a frame network approach, led to 

the development of a fully functional prototype expert system shell called FRO. In this system, 

concepts are represented using D-S frames of discernment, belief is represented using D-S belief 

functions, and inference is performed using stored relationships between frames of discernment 

(forming the frame network) and D-S belief combination rules. System control is accomplished 

using a discrete rule-based control component and uncertain input and output are performed 

through an interactive belief interface system called IBIS. Each of these features is reviewed. 

Finally, a simple but detailed example of an application of a frame network expert system is 
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provided. The appendix of this thesis contains the entire FRO system user's documentation. 
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Preface 

F R O is an expert system shell written in PROLOG. It was created at the 
Department of Civil Engineering, UBC for use in expert systems research. FRO 
can be used at two levels. 

First, FRO can be used as a shell program for creating rule-based expert systems. 
In this role, FRO behaves much like other commercially available shell programs. 
This use of the program is discussed in Part I, Rule-Based FRO. 

Second, FRO can be used to create expert systems which provide sophisticated 
handling of uncertainty based on the Dempster-Shafer (D-S) theory of evidence. 
In these systems, the program employs both a frame representation for D-S 
components and a rule representation for system control—therefore the program 
is aFrame/Rule Organizer, hence F R O . This use of FRO is discussed in Part II, 
Frame-Based FRO. 

Please note the following type style conventions used in this manual. Typewriter 
s tyle type lace is used for text that appears exactly as it would be entered 
into the system (or displayed by the system). Items written in SLANTED 
UPPER CASE TYPE FACE are not entered into the system exactly as they 
appear, but rather they are replaced with the appropriate term as described in 

-the text. . . 
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PART I 

RULE-BASED FRO 

The discussion of the rule-based portion of the FRO program begins with a 
description of the system's underlying theory and instructions for creating a 
problem file; this comprises chapters 1 through 10. Chapter 11 describes how to 
actually run the FRO program once a problem file has been created. Chapter 
12 lists several sample problem files. The recommended approach to learning 
the system is to alternate between reading this manual, examining the sample 
files, and experimenting with the program itself. 



APPENDIX A: Chapter 1. Overview 180 

Chapter 1; Overview 

• 1.1 Introduction 

FRO is a tool for building expert systems. An expert system created using 
FRO is made up of two major parts; the inference engine, which performs 
reasoning, and the knowledge base, which contains the expert knowledge. 

The compiled FRO program makes up the inference engine portion of the expert 
system. This inference engine uses backward chaining, depth-first search to 
provide expert system reasoning. This means that the system is given some 
goal or conclusion which it tries to prove to be true using the information which 
is made available to it. A problem file which is written by the user and read 
as input by FRO makes up the knowledge base. 

The various components of the inference engine and knowledge base are briefly 
outlined below and then discussed more fully in subsequent chapters. 

• 1.2 Knowledge Representation 

In FRO, most knowledge is stored using in the form: 

CONCEPT i s VALUE 

Where CONCEPT is the name of some concept or variable which is of interest to 
us and VALUE is the name of some value which can be assigned to that concept. 
We can call this knowledge representation unit a proposition. Some examples 
of propositions are: 

gravity i s 9.81 
'your name' i s George 
'a solution can not be found' i s true 
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• 1.3 Solving Goals 

FRO'8 basic task is to solve goals. A primary goal is defined in a problem file. 
In order to solve this primary goal, FRO may need to first solve other sub-goals 
which may, in turn, require the investigation of still more goals. It is through 
this recursive goal solving process that the system performs reasoning. The 
methodology is analogous to that of a decision tree, though the expert system 
is a more flexible and powerful problem solver. 

In FRO, a goal is composed of a proposition. A goal is considered to be solved if 
the system can determined that the proposition is correct. There are three ways 
the system can determine the correctness of a proposition; it can check with its 
memory, it can check with the user, or it can infer the correctness from rules. 

• 1.4 Memory 

Whenever a proposition is asserted in the problem file, stated by the user in 
response to a question, or inferred by the system using a rule; it is stored in the 
system's data base. It thereby becomes part of FRO's memory or knowledge. 
If the system is trying to solve a goal which relates to that proposition, it will 
be able to refer to the stored value as a known statement of fact. This is the 
system's basic form of memory. 

• 1.5 Rules 

If FRO has not succeeded in solving a goal by referring to its memory, it will 
search the problem file for an applicable rule statement. These statements take 
the form "CONCLUSION i f PREMISE If the conclusion of a rule relates to 
the system's present goal, the system will take the premise as it's new goal. By 
proving that the premise is true, the system can determine that the conclusion 
is also true; thereby proving or disproving its initial goal. This is the system's 
basic form of reasoning. 

• 1.6 Questions 

Finally, if FRO cannot solve some goal by referring to stored values or stored 
rules, it will check to see if the problem file contains a question statement 
relating to the goal proposition. If such a statement does exist, it will supply 
the system with a question which can be used to illicit the correct value from 
the user. This is the system's basic form of user input. 
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Chapter 2; Problem Files 

The knowledge base for a FRO expert system takes the form of a problem file. 
This problem file is a standard ASCII text file created by the user with any file 
editor or any word processor which produces ASCII files. The problem file can 
have any name. 

Comments and notes can be entered into a problem file by beginning a comment 
line with a % character or by enclosing any number of comment lines between 
a / * symbol and a * / symbol. 

Apart from comments, the problem file is made up of statements. There are 
four allowable types of statements: Goal statements, Fact statements, Rule 
statements, and Question statements. Statements can begin with a type dec­
laration (i.e. a word stating which type the statement is) and a statement 
number. It is recommended that type declarations and statement numbers be 
used so that it will be easier for users to understand and refer to the knowl­
edge base. However, statements can also be given without type declarations or 
numbers in which case the system assigns its own number and determines the 
type from the statement syntax. The syntax for each statement type is given 
in chapters 4 through 7, but first chapter 3 discusses propositions which are the 
basic building blocks of statements. Note that each statement must end with a 
period. . _ 

Spaces, tabs and blank lines are ignored in the problem file, although they are 
very important for making the problem file legible to users. No special end-of-file 
marker is needed. Chapter 12 contains sample problem files. 
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chapter 3; Propositions 

The statements in the problem file are made up mostly of propositions (the basic 
unit of knowledge in FRO). As stated previously, proposition are of the form: 

CONCEPT i s VALUE 

Where CONCEPT is some concept or variable of interest to us and VALUE is a 
value which can be assigned to the concept. Some examples of propositions are: 

gravity i s 0.81 
'your name' i s George 
'a solut ion can not be found' i s true 

In a proposition, both the CONCEPT and the VALUE must be either a single 
atom or a single string. An atom is a basic symbolic unit in FRO. Atoms can 
be made up of any letters, numbers, or symbols. However, an atom must be 
enclosed inside a set of apostrophes if it contains capital letters, combinations of 
letters and numbers, spaces, or any non alpha-numeric symbols other than the 
underscore symbol . The following are examples of legal atoms. 

true 
the _c onsult at i on 
0.81 - — 
'George' 
'GEORGE' 
"the number of apples' 

An atom can be enclosed in apostrophes even if it does contain only lower case 
letters; in which case the system recognizes both forms as being equivalent. 
Atoms can be up to 255 characters long. If an apostrophe is desired within 
an atom, it must be represented by a pair of apostrophes. For example, the 
possessive form of ' George' is: 

'George' 's ' 



APPENDIX A: Chapter 3. Propositions 184 

Strings are similar to atoms except that they are always enclosed inside a pair 
of dollar signs. Some examples are: 

$Btring$ 
$This 1B also a Btring$ 
$1,000,000$ 

Strings take up more memory than atoms but they can be up to 16 kilobytes 
long. A dollar sign contained within a string must be represented by a pair of 
dollar signs "$$". 

Note that a string is not recognized as being the same as an atom even if they 
are made up of identical characters. In most cases it doesn't matter whether an 
atom or a string is used for a particular situation as long a string is not used 
to represent something which is represented elsewhere in a problem file by an 
atom (and vise-versa). A useful convention is to use atoms for most general 
terms in propositions but to use strings for longer terms which are intended to 
be written as messages to the screen (printing message to the screen will be 
discussed later). 

Often the only appropriate values for a proposition are true and false. For 
efficiency, FRO allows any proposition of the form: 

CONCEPT i s true 

To be entered simply as: 

CONCEPT 

The " i s true" part is assumed. The following are examples of this special 
proposition form where the part in braces "{ }" need not be written by the user 
because it is assumed by the system: 

the-consultation-is-f inished {is true} 
• 'b i rds f l y ' { is true} 

As a final point about propositions, it should be noted that the words and 
names used in propositions don't have any meaning to the system; they are just 
arbitrary symbols. Nevertheless it is important that the propositions should be 
worded so as to accurately and precisely reflect the concepts that they are being 
used to represent. This will allow the system to come as close as possible to an 
accurate and precise reflection of the captured human knowledge and reasoning. 
It will also make the knowledge base more intuitive and easier for users to 
understand. 
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Chapter 4; Goal Statements 

Each problem file must contain a single goal statement of the form: 

g o a l # : : PROPOSITION. 

where the word "goal" declares the statement type, the "#" is a statement 
number, and PROPOSITION is the top-level goal which FRO is being asked to 
solve. 

A statement number is an arbitrary number assigned to each statement by the 
user. Statement numbers can be any alpha-numeric atom, with the only restric­
tions being that negative integers should not be used (as these are used by the 
system when no number is supplied by the user) and the same number should 
not be used for two different statements of the same type (in which case the 
system will ignore the second statement number and assign one itself). State­
ment numbers are used by the system when referring the user to a particular 
statement. 

A goal can be given without a statement number in the following form: 

g o a l PROPOSITION. 

Unlike other statement types, a goal statement can not be given without a type 
declaration. Some examples of goal statements are: 

goal 1 : consultation i s f inished, 
goal find-the-problem. 

Recall that in the second example goal statement the proposition is assumed to 
mean "find-the-problem i s true" and that in both examples the statement 
must be followed by a period. 
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Chapter 5: Fact Statements 

The problem file may contain fact statements consisting solely of a proposition 
followed by a period: 

fact # : : PROPOSITION. 

Or simply: 

PROPOSITION. 

examples: 

fact 13 : 'the 1st month' i s January, 
number-of-items i s 6. 
'birds f l y ' . 

These facts are stored in the system's data base and can be recalled at any time to 
solve a goal. These statements are usually domain knowledge in that they are 
valid for all problems covered by the knowledge base, not context knowledge 
which are statements that may only relate to the particular situation at hand 
(once in the system's memory, all facts are treated identically). 
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Chapter 6; Rule Statements 

Rule statements allow the system to perform reasoning by storing inferential 
knowledge (or knowledge about how different propositions are related) and 
procedural control knowledge (or knowledge concerning how to go about 
solving a problem). A rule is written in the form: 

rule # : : CONCLUSION i f PREMISE 

Or: 

CONCLUSION i f PREMISE 

for example: 

rule 42 : ' t y p i c a l weather' i s sunny i f season i s summer. 

rule 18 : : 
'the animal can f l y ' 

i f 'the animal type' i s b i r d . 

consultation i s f inished 
i f problem i s ident i f ied 

and problem i s solved 
and user i s sa t i s f ied . 

The CONCLUSION of the rule is made up of a single proposition (i.e. the CON­
CLUSION is of the form "CONCEPT i s VALUE"). If the CONCEPT of the goal 
matches the CONCEPT of the rule's CONCLUSION, then the system will take 
the rule's PREMISE as its new goal. If the system can solve the PREMISE, the 
CONCLUSION proposition is first stored in the knowledge base as a known fact 
and then used to try to solve the goal. If the PREMISE can't be solved, the goal 
neither succeeds nor fails and the system looks for other means of solving it. 

The PREMISE is made up of one or more propositions. A PREMISE consisting 
of a single proposition becomes the new goal directly. The PREMISE can also 
consist of several propositions joined by the word "and" in which case each 
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proposition is taken as a separate goal in turn and each one must succeed in 
order for the entire PREMISE to succeed; or it can consist of several propositions 
joined by the word "or" in which case the success of any proposition allows the 
entire PREMISE to succeed. Combinations of "and" and "or" can also be used 
in the premise; "and" has a higher precedence than "or" (so, for example, "a 
and b or c" is interpreted as "(a and b) or c") but parenthesis should be 
used to avoid confusion. Some examples of possible PREMISES in rules are: 

rule 21 : : CONCLUSION i f today is 'Sunday'. 

rule 5 : : CONCLUSION i f f inished. 

CONCLUSION i f 'Part 1' and 'Part 2 ' . 

rule 8 : 
CONCLUSION 

i f 'the animal type' is b i rd 
or 'the animal type' is insect . 

CONCLUSION 
i f ( today is 'Saturday' 

or today is 'Sunday') 
or ( today is 'a weekday' 

and today is ' a ho l iday ' ) . 

Note that in these examples a period is placed at the end of each rule and 
the assumed "is true" VALUE is sometimes used. Again, line feeds (and/or 
carriage returns) and extra spaces are ignored. In order to make the problem file 
easy to understand and debug, rules should be well laid out with ample white 
space and comments. Rules should also be kept fairly short, using a hierarchy 
of smaller sub-rules rather than one long rule. 



APPENDIX A: Chapter 7. Question Statements 189 

Chapter 7: Question Statements 

• 7.1 Basic Question Statements 

In order for the system to be able to ask the user about the value of some 
goal's CONCEPT, the problem file must contain a Question statement for 
that concept. The question statement defines the question to be asked of the 
user and may supply the allowable responses. A question is written in the form: 

question # : : CONCEPT ask QUESTION. 

Or: 

CONCEPT ask QUESTION. 

Where CONCEPT is identical to the CONCEPT of the goal being solved and 
QUESTION is a question that the system will ask of the user (usually given in 
the form of a character string). For example: 

question 88 : : weather ask $What i s today's weather l ike?$ . 

weather ask $What i s today's weather l ike?$ . 

Thus, if the system is trying to solve the goal "weather i s sunny'' but it finds 
no facts or rules pertaining to weather, then it will find the question statement 
shown above (in either form) and will write on the screen: 

What i s today's weather l ike? 

The user can then enter a VALUE which is assigned to the CONCEPT, creating 
a proposition which is stored in the knowledge base. For example, if the user 
responds with "sunny", then the proposition "weather i s sunny" will be stored 
in the knowledge base. After the question is asked and a proposition is stored, 
the systems tries to solve the goal again and this time the goal will succeed or 
fail based on the newly stored proposition (e.g. in this case the original goal 
"weather i s sunny" will succeed because this fact has just been stored). 
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Note that if the system finds no question pertaining to the goal (having already 
found no applicable facts or rules), then the goal will fail. 

In addition to the basic form of question statement just discussed, there are 
several optional parameters that can be used with question statements. These 
are discussed below (here we show only the form containing statement numbers, 
though either form is acceptable in each case). 

• 7.2 The Question Character String 

As mentioned, the QUESTION term of the question statement is a character 
string which is printed on the screen. If desired, special formatting control com­
mands can be included in these strings. Section 8.7 describes these commands 
in detail. 

• 7.3 Alternative Lists 

Rather than allowing the user to give any response to a question, it will fre­
quently be more convenient to supply the user with a list of alternative responses 
from which he can select the best choice. This can be done by using a question 
statement of the form: 

question # : : CONCEPT ask QUESTION a l t (ALT 1,ALT 2,...) . 

where CONCEPT and QUESTION are the same as in the basic form discussed in 
section 7.1. and (ALT 1,ALT 2,...) is a list of the possible alternatives enclosed 
in parentheses and separated by commas. For example, the statement: 

question 6 : 
weather 

_. _ ask $What i s today's weather l ike?$ . ... 
a l t (sunny, rainy, foggy, snowing). 

would allow the system to ask the user the following question: 

What i s today's weather l i ke? 
1. sunny 
2. rainy 
3. foggy 
4. snowing 
» » 

The user would enter the number of the best alternative (or select that al­
ternative with the mouse). The system would then assign the corresponding 
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alternative to the question's CONCEPT in the same way as described above. 

7.4 Return Alternative Lists 

The terms in the alternative list need to be sufficiently descriptive to allow the 
user to understand their exact meaning. However, these terms are returned as a 
value in a proposition and long descriptive values are awkward to work with in 
the knowledge base. To circumvent this conflict, it is possible to supply two lists 
of terms; one descriptive list of alternatives to appear on the screen for the user 
and a second, terser list of corresponding "return alternatives" that are assigned 
to the CONCEPT in the proposition. The syntax is: 

question # : 
CONCEPT 

ask QUESTION 
a l t (ALT 1, ALT 2, ...) 

r a i t {RALT l.RALT 2,...) . 

Where (ALT 1, ALT 2, ...) is the list of alternatives to appear on the screen and 
(RALT1, RALT 2,...) is the list of return alternatives. An typical question using 
this feature might look like the following: 

question 99 : 
weather 

ask $What is today's weather like?$ 
alt ($Clear and Sunny$, 

$Overcast or rainy$, 
$Foggy$, 
$Hailing or Snowing$) 

rait (sunny, rainy, foggy, snowing). 

Because simple yes/no questions are common, they can be treated as a special 
case and can be defined in the form: 

question # : : CONCEPT ask QUESTION a l t yn. 

In this case the two alternatives asked of the user will be "yes" and "no" 
while the return alternative values assigned to the CONCEPT will be "true" 
or "false". 
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• 7.6 Question Explanations 

It is possible to assign an explanation to a question statement. If a question 
statement contains an explanation (which is a character string) then when the 
question is asked of the user, he has the option of selecting "EXPLAIN" from 
the menu rather than answering the question. If he does so, a pop-up window 
appears with the explanation term in it. The creator of the knowledge base can 
use this explanation term to give a more detailed description of what the question 
means,, to explain each alternative more fully, to describe why the question is 
being asked, etc. When the user finishes reading the explanation, he is asked 
the question again. If the user never selects "EXPLAIN", there is no difference 
from normal questions. The syntax for explanations is: 

question # : : CONCEPT ask QUESTION expl EXPLANATION. 

in which the EXPLANATION term is a character string that will be printed 
on the screen if requested. This term may contain the formatting commands 
described in section 8.7. 

• 7.7 Question Options Sequence 

While the additional question features described above are all optional, they 
must appear in the correct order if the are used. This order is: 

question # : : 
CONCEPT 

ask QUESTION 
a l t (ALT J, ALT 2, ...) 

r a i t (.RALT 1,RALT 2,...) 
expl EXPLANATION. 
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Chapter 8: Advanced Features 

FRO provides many advanced features in addition to the basic abilities described 
previously. These advanced features are described in this chapter. 

8.1 Proposition Attributes 

Propositions, as they've been described previously, are knowledge couples in that 
they consist of two pieces of information (the concept and the value). However 
knowledge is not inherently two part; in general, knowledge can be described 
as an n-tuple, having n parts to each knowledge proposition. For example, we 
might want to refer to a three part proposition of the form "the ATTRIBUTE 
of the OBJECT is VALUE " as in "the color of the dog is brown". In 
FRO, n-tuple propositions can be used by assigning attributes to the CONCEPT 
portion of the standard knowledge couple proposition. The syntax is: 

CONCEPTUTTRIB-l,ATTRIB-2,...) is VALUE 

where "ATTJUB-l,ATTJtJB-2,..." are an arbitrary number of attributes or pa­
rameters of the proposition. For example, rather than using the propositions: 

'the shape of block 1' is 'square' 
'the shape of block 2' is 'round' - - -
'the shape of block 3' is ' t r iangular ' 

the following propositions which have a single attribute could be used: 

'the shape o f ' ( ' b lock 1') is 'square' 
'the shape o f ' ( ' b lock 2') is 'round' 
'the shape o f ' ( ' b lock 3') is ' t r iangular ' 

The advantages of this form become more clear in the next section when we 
introduce variables, but to preview these benefits we can point out that by 
using the attribute format, a single rule could be written to calculate the area of 
any block based on its shape (and dimensions) whereas the former format would 
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have required a separate area calculation rule for each block. 

The use of multiple attributes also has the advantage of simple brevity. For 
example the fact statements: 

'the shape of block 1' i s rectangular, 
'the height of block 1' i s 12. 
'the width of block 1' i s 6. 
'the colour of block 1' i s blue, 

could be replaced by the single statement: 

description( 'block 1', 'shape i s rectangular ' , 
•height i s 12 ' , 'width i s 6 ' , 'colour i s b l u e ' ) . 

Note that a proposition with attributes will only match with another proposition 
if they have an identical number of attributes, each of equal value. Propositions 
with concept attributes can be used to replace normal propositions anywhere in 
the system. 

Finally, it is possible to assign attributes to the VALUE of the proposition in the 
same way as the CONCEPT, should this prove desirable. 

8.2 Variables 

The flexibility and power of rules can be greatly increased by using variables. A 
variable must start with a capital letter or an underscore symbol (with no $ 
or ' symbols). Some examples of variables are: 

I 
VARIABLE 
Block.no -

A variable can be used as a value or an attribute in a premise statement. If this 
premise statement becomes the current goal of the system, it will succeed if any 
fact, rule or question can be found that matches all non-variable portions of the 
statement. In the process of succeeding, the variables will adopt the values of 
the proposition which matched with the goal. For the remainder of the premise 
and for the value returned in the conclusion, these variables have fixed values 
and they act in every way as normal atoms. For example, consider the following 
statements: 

http://Block.no
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rule 1 : 
'number of sides of block 1' is N 

i f 'shape of block 1' is SHAPE 
and 'number of sides of a'(SHAPE) is N. 

fact 1 : : 'shape of block 1' is rectangle. 

fact 2 : : 'number of sides of a'(triangle) is 3. 

fact 3 : : 'number of sides of a'(rectangle) is 4. 

fact 4 : : 'number of sides of a'(pentagon) is 5. 

The rule could be called upon if the system has reached a goal pertaining to the 
number of sides of block 1. In evaluating the rule, the first sub-goal, "'shape 
of block 1' is S", will succeed by matching with the first fact causing the 
variable "SHAPE" to adopt the value "rectangle". The next sub-goal, therefore, 
will effectively become "'number of sides of a'(rectangle) is N". This, of 
course, will succeed by matching with fact number 3, resulting in the value "4" 
being assigned to the variable "N". Thus the use of this rule will result in the 
fact "'number of sides of block 1' is 4" being stored in the memory. 

An alternative way of using variables is for value passing. This is when variables 
are used as attributes in the conclusions of rules. In this way, a single rule can be 
used in more than one situation and the variables in the conclusion are assigned 
values by the goal which has called the rule, thus allowing values to be passed 
from the goal to the rule. To illustrate, we can recast the example above so that 
it can be used for any block, not just for block 1: 

rule 1 : : 
'number of sides of block'(B) is N 

i f 'shape of block'(B) is SHAPE _ 
and 'number of sides of a'(SHAPE) is N. 

fact 1 : : 'shape of block'(1) is rectangle. 

fact 2 : : 'shape of block'(2) is t r iangle . 

etc. 

Now this rule would match with goals pertaining to the number of sides of 
block 1, block 2, or so on. 

Sometimes, variables can be used as an attribute or value in a premise proposi-
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tion simply because we are not interested in that value or attribute and we don't 
want to be required to find an exact match in order to succeed. The underscore 
character alone "_" can be used for this purpose as an un-named variable, or one 
which will match with anything but will not retain the matching value. This is 
illustrated in the following example: 

rule 1 : 
'object shape' i s SHAPE 

i f object(SHAPE >.._,_). 

fact 1 : : object( tr iangle, large,blue,1.0) . 

It is important to remember that once a particular variable has been assigned 
a value, it will no longer act as a variable but will act as a constant valued 
term for the remainder of the current rule. However the variable does not retain 
that value for any other rule in the system. Therefore there is no relationships 
between some variable name in one rule and the same name used for a variable 
in another rule. 

Although this explanation of variables may seem confusing, the concept behind 
their use is fairly simple. An examination of the examples given above and of 
the sample files in chapter 12 should help to clarify the use of variables. 

• 8.3 Not 

syntax: not CONCEPT i s VALUE 

A proposition of this form may be used in a premise. When such a proposition 
becomes a goal, the system first tries to solve the proposition "CONCEPT i s 
X" in the normal way and stores the result as a fact in the knowledge base. Then 
the goal succeeds if the VALUE given in the goal is not the same as the value 

—stored. The goal fails if the values are the same or if the proposition "CONCEPT — 
i s X" cannot be solved. 

• 8.4 Known 

syntax: CONCEPT i s known 

"is known" propositions may be used in any premise. When used as a goal, 
the system first tries to solve the goal "CONCEPT i s X". If the system is able 
to solve this goal for any value of X, the proposition "CONCEPT i s known" 
succeeds, otherwise it fails. 
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• 8.5 Command Propositions 

Although they are of minimal importance to the theory of expert systems, much 
of the practical power of systems created with FRO stems from the use of com­
mand propositions. Command propositions can be used in the premise of any 
rule. If, through the normal reasoning process, a command proposition becomes 
the system's current goal, it normally succeeds. However in the process of be­
ing evaluated as a goal, some useful by-product is performed, such as printing 
a message on the screen. The command propositions which are recognized by 
FRO are listed here in alphabetical order. 

| 8.5.1 DOS Shell 

syntax: dos DOS-COMMAND 

The DOS shell command proposition provides access to other programs and utili­
ties through DOS from within an operating expert system. The DOS-COMMAND 
is a character string representing the exact characters that would normally be 
typed in at the dos prompt. When this command is executed, the screen is 
cleared and the dos program is run. When the external program is finished, the 
screen returns to the state it was in before the dos shell command was encoun­
tered. For example, it may be possible to use an external graphics program to 

-display pictures to the user during the expert system execution. If some graph­
ics display program is run from dos by the command "display dataf i l e .pic", 
then this program would be called from within a FRO system by the rule: 

'show graphics' i f dos $display da taf i le .p ic$ . 

There is no guarantee that any particular external program will be compatible 
with this technique. In particular, there will be much less system memory 
available to the external program than there would be if it where executed 
from dos normally. 

| 8.5.2 Explanations 

syntax: explanation EXPLANATION 

The explanation command is similar to the explain option in question state­
ments. It allows the user to access additional, optional information from the 
knowledge base. When the explanation command becomes a current goal, the 
system pauses (the message "Press any key to continue. . ." appears on the 
screen). In addition, the "EXPLAIN" option appears on the menu. If the user 
simply presses any key or any mouse button, the goal succeeds and system con-
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tinues. However if the user selects "EXPLAIN" from the menu, a pop-up window 
appears and the EXPLANATION character string term is printed in it. After the 
user has finished reading the explanation, he presses any key to continue, the 
goal succeeds, and the system continues. 

Typically, the explanation command will be used right after a print statement 
which has printed some conclusion, recommendation, etc. on the screen. The 
knowledge base designer will use the EXPLANATION term to include some ad­
ditional detail about the conclusion or some explanation of how the conclusion 
has been justified. The EXPLANATION term may contain all of the formatting 
commands described in section 8.7. 

| 8.5.3 F a i l 

syntax: f a i l 

The fail command always fails when it becomes the current goal. This might be 
useful, for example, in forcing the reasoning to abandon the current attempt to 
prove some goal and to try to find alternative paths of proving the goal true. 

I 8.5.4 Garbage Co l l ec t ion 

syntax: gc -

Writing information to the screen causes FRO's memory to temporarily fill up 
with information which it subsequently does not need. This is normally of no 
concern to the user because every time the system asks a question it clears out 
this un-needed memory. However if a problem file causes the system to perform 
a large amount of printing with no questions in between, a garbage collection 
command should occasionally be placed between print statements to force this 
corrective action. ... 

| 8.5.5 L o a d i n g A d d i t i o n a l P r o b l e m Fi les 

syntax: load FILE-NAME 

When the FRO shell program is first called from DOS, one of the first things the 
user does is to load in the main problem file using the main menu (as explained 
in Chapter 11). However it is possible to have the expert system load in more 
facts, rules or questions during execution. The FILE-NAME is a character string 
consisting of the name of the additional problem file to be loaded in to the 
system. The format of these additional problem files is identical to the initial 
one, except that a top level goal will not normally be included. This feature can 
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be useful, for example, if the knowledge base is quite large but if most of it is 
only used under certain circumstances. In this case the knowledge base can be 
partitioned into smaller files; the main file will be loaded and executed initially 
and it will make initial queries of the user to determine what additional portions 
of the knowledge base will be required. The main problem file will then go on 
to load these additional files and continue execution. The following example 
illustrates such a situation: 

File MAIN.KB: 

goal 1 : : 'solve problem'. 

ru le 1 : 
'solve problem' 

i f ( 'problem type* i s 'type A' 
and load $TYPE-A.KB$ 
and 'solve type A problem' ) 

or ( 'problem type' i s 'type B' 
and load $TYPE-B.KB$ 
and 'solve type B problem' ) . 

question 1 : 
'problem type' 

ask $What problem type do you want solved?$ 
a l t ('type A ' , ' t ype B ' ) . 

File TYPE-A.KB; 

rule 2 : : 'solve type A problem' i f etc. 1 

File TYPE-B KB: 

rule 3 : : 'solve type B problem' i f . . . etc. 

I 8.5.6 Print to the Screen 

syntax: pr in t PRINT 

The print command is the most common command proposition. The PRINT 
term is a character string or a list of character strings to be printed to the 
screen. When the command proposition becomes a goal, the PRINT term is 
written to the screen and the goal succeeds. Special command characters can 
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be embedded in the character strings to provide line feeds, indents, and so on; 
these are described in section 8.7 which deals with print strings. 

Normally, the PRINT term is printed on a new line of the screen. However if 
desired, the system can be forced to print the string right after the previous 
screen output by including a "+" in front of the print string, for example: 

pr in t +$a continuation of the previous str ing$. 

I 8,5,7 Print to File 

syntax: p r in t f (FILE-NAME,PRINT) 

The printf command is similar to the print command except that it is for printing 
information to a file or to the printer rather than to the screen. The FILE-NAME 
term must either be set to the name of a file (if the file exists, the PRINT term 
will be appended to the end of it, if the file doesn't exist, a new file of that 
name will be created) or it can be set to "pro" to direct output to the printer. 
The PRINT term may not contain the same control characters used by the print 
command, the term is copied exactly as it is given with the following exceptions: 
First, lists may be used in which case each of the items in the list will be printed 
out in turn (in this context, a list is a series of terms to be printed, each separated 
by commas; the entire list should have square brackets on either side). Second, 
the atom "nl" (for new line) can be included as an item in the print list or as 
the sole item in the PRINT term. This will produce a carriage return and line 
feed. Note that if output is sent to the printer, it may remain in the printer's 
buffer and not be printed out until a "n l" is sent. 

| 8.5.8 Reading a term from a file 

Byntax: read-term ( FILEJfAME, TERM ) 

The "read-term" command can be used to read a single statement from a file. 
FILE-NAME is the name of the file containing the term to be read and TERM 
will return the term. The term must be a legitimate statement as defined by 
the statement syntax described in the preceding chapters. 

| 8.5.9 Removing a Term from the Database 

syntax: remove ( TERM ) 

The remove command can be used to remove a previously stored goal, rule, 
question, or fact term from the database. The TERM term is given in exactly 
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the same form as is used for defining a statement in the problem file except that 
the ending period is not required. For example, suppose that the following rule 
succeeded based on some information which was assumed rather than known 
with certainty: 

rule 42 : weather i s raining i f . . . . 

If it is later determined that the assumption was incorrect, the fact "weather 
i s raining", which will have been placed in the database by the success of the 
rule, could be removed by including the following term in the premise of a later 
rule: 

remove ( weather i s raining ) 

| 8.5.10 Restoring the Knowledge Base 

syntax: rest ore _kb NAME 

If a knowledge base has been stored in binary form (using the "save_kb" com­
mand discussed in section 8.5.11) it can be restored using the "restoreJcb" 
command. The NAME term is the name which was used for storing the knowl­
edge base. Once a previously stored knowledge base is restored, the entire 
contents of the current knowledge base is lost with the exception of immediate 
set of goals being solved. See the example under section 8.5.11. 

I 8.5.11 Saving the Knowledge Base in Binary Form 

syntax: save_kb NAME 
The entire contents of the system's knowledge base can be saved in binary form 
using the "saveJcb" command. The NAME term provides a name used for stor­
ing the data; it can be up to eight letters using the same allowable characters as 
regular file names (do not use the names "fro" or "fro_save"). This procedure 
produces files called NAME.IDB and NAME.P00 in the current directory. The 
advantage of this form of saving files is that they can be reloaded into the system 
very quickly using the "restore-kb" command. The disadvantage is that they 
cannot be viewed or edited in any way. The following is an example of a problem 
file which contains an expert system knowledge base and a top level goal which 
saves the entire problem in binary form, as well as a second file which reloads 
the knowledge base and executes it: 
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Problem file #1: (saves the knowledge base after it is loaded) 

goal l a : : save.kb teBt. 

rule 1 : : 'solve problem' i f . . . 
( typica l problem f i l e ) . 

Problem file #2: (restores the knowledge base and then executes it) 

goal lb : restore_kb test 
and 'solve problem'. 

I 8.5.12 Storing Terms in the Database 

syntax: store ( TERM ) 

When a problem file is loaded into the system, the goal, rule, question, and fact 
statements are stored in the knowledge base. Also, every time a rule succeeds 
or a question is answered a new fact is generated and is stored in the database. 
However it may occasionally be beneficial to explicitly tell the system to store 
a term in the database. This can be done with the store command. The TERM 
term is given in exactly the same format as is used for defining statements in 
the knowledge base except that an ending period is not needed. For example, if 
a certain response from the user can generate several conclusions, all of which 
the system designer would like to store as facts without writing a separate rule 
for each, the following rule could be used: 

rule 1 : 
'check for only c h i l d ' 

i f 'subject i s an only c h i l d ' i s true 
and store ( 'subject has s i s t e r s ' i s false ) 
and store ( 'subject has brothers' i s false ) 
and store ( 'subject has twin ' i s false ) . 

Note that goals, rules, and questions can be stored in the same manner as the 
facts shown here. 

| 8.5.13 Succeed 

syntax: succeed 

The succeed command always succeeds as a goal. For example, if a rule involves 
terms which the knowledge base designer thinks may fail, yet he doesn't want 
the rule to fail, he can add "or succeed" as the last premise term of the rule. 
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8.5.14 Write Term to File 

syntax: write.term {FILE. NAME,TERM) 

The write.term command is similar to the printf command in that it writes in­
formation to a file. However unlike the printf command, write_term is designed 
for writing knowledge base terms into a file which can later be loaded as a prob­
lem file itself. This could be used, for example, to add configuration information 
specific to each user to the main problem file or possibly even to create a system 
which automatically generates new systems. 

The FILE. NAME term is a string or atom corresponding to the name of a file. 
If the file exists, the term will be added to the end of the file, otherwise the 
file will be created. The TERM term should be in exactly the same form as is 
normally used for a problem file, for example: 

write.term ($TEST.KB$, goal test i s completed) 

A period and a line feed are automatically added to the end of the term in to 
file. 

8.6 Custom Help Information 

During the execution of the FRO program, the user may select the "HELP" 
-alternative from the menu. This will be explained more fully in Chapter 11, 
however this section explains briefly how the help information shown to the user 
can be modified from within the problem file. When the FRO system first starts 
up, a fact is stored in the knowledge base of the form: 

help i s HELPJ5TRING 

.Where HELPJ5TRING is a character string containing the help information. 
When the user selects help from the menu, the program retrieves this term 
and prints the HELPJSTRING to the screen. It is therefore possible to change 
the information printed to the screen from within some rule by removing this 
term using the "remove" command and adding a new term using the "store" 
command. For example, the following rule will achieve this: 

rule 1 : : 
'change help ' 

i f remove ( help i s _ ) 
and store ( help i s $New HELP information! ) . 

The character string stored can use all of the formatting commands described in 
the next section on print strings (including the "pause" if more than one screen 
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full of information is desired). This technique can be used once at the beginning 
of a system to create help that better suits a particular application or it can be 
used frequently throughout the system to create context sensitive help. 

8.7 Print Strings 

As mentioned in several sections above, print strings (or character strings which 
are to be printed to the screen) may have special control characters imbedded 
in them. Print strings are given these special capabilities largely because it is 
not convenient to write out the strings in the knowledge base in exactly the 
same way that they should appear on the screen during program execution. For 
example, terms in the knowledge base should be written out making liberal use of 
indentation to make the knowledge base clear, yet this should not cause the print 
strings to be similarly indented on the screen during execution. Furthermore, 
it may not be clear while writing the knowledge base what width of window 
certain print strings will appear in. 

When printing out character strings to the screen, FRO gets around these prob­
lems by using spaces, tabs and carriage returns only to determine the ends of 
words. Once it has a list of the words in the print string, it ignores all spaces 
and so on. FRO then prints this list with a single space between each word 
and with automatic word-wrap (end-of-line identification). However, this pro­
cess results in the user losing the power to put in intentional spaces, tabs, and 
carriage returns. FRO therefore gives the user back this power by allowing him 
to insert special control characters in print strings to achieve these and other 
actions. Most control characters begin with a A symbol followed by a lower case 
letter and sometimes an integer number. For example, if the command a A t " 
(which stands for a 5 space tab) is included in a print string, the system will 
print out five spaces in its place. The complete list of the allowable print string 
commands is as follows (the # symbol stands for some integer number): ~ ' 

A c# - causes the next word to be printed starting in column # 
A l # - sets a left indent of # spaces (indent begins to take affect 

after the first line feed subsequent to the command) 
A n - new line 
Ap _ pause 
A r# - sets a right indent of # spaces 
A*# " prints # fixed spaces 
A t - tab (five spaces) 
A A _ prints a A symbol 
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A | - prints a | symbol 
| - (ASCII 1 2 4 ) alternative symbol for a new line 

- (ASCII 2 5 0 ) alternative symbol for fixed space 

Also, where ever a print string is allowed, a list of print strings may also be 
given, according to the form: 

[PRINT STRING l.PRINT STRING 2 , . . . . ] 

In which case each of the print strings will be printed one after another in turn. 
The main use for such lists is when printing a mixture of constant print strings 
and variables, as in the following example portion of a rule: 

and 'the shape of o b j e c t ' ( O B J J I U M B E R ) i s S H A P E 

and pr in t [$The shape of object number $, 
O B J - K U M B E R , $ i s $. S H A P E ] 

• 8.8 Math Operators 

Mathematical operations can be incorporated into a FRO expert systems to 
perform calculations. This is done by using a mathematical comparison as a 
proposition in the premise of some rule. A mathematical comparison has the 
simple form: 

::;: EXPRESSION COMPARISON.OPERATOR EXPRESSION 

Allowable EXPRESSIONS and COMPARISON-OPERATORS will be described be­
low, but some example are: 

A G E > 6 5 

E N E R G Y - M A S S * S P E E D - O F L I G H T A 2 ^ 

When a mathematical comparison becomes a goal, both expressions are eval­
uated and are then compared according to the comparison operator. If the 
comparison is true the goal succeeds, if not the goal fails. In some cases (de­
scribed below) the left expression may be a variable, in which case it is assigned 
a value which makes the comparison true and the goal succeeds. The allowable 
comparison operators are: 

= - left equal to right 

\ = left not equal to right 
left greater than right 
left greater than or equal to right 
left less than right 

> 

>= 
< 
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X 
X 
X 
X 

+ Y 
- T 
* Y 
/ Y 

=< - left less than or equal to right 

For the operator, the left expression may be a variable which will be assigned 
the value of the right expression when the proposition becomes a goal. Also, with 
the operator only, any non-numeric expressions may be used, for example 
the goal will succeed if two identical character strings are compared. In every 
other case, non-variable numbers must be used on both right and left sides (recall 
that variables which have been used previously in the same premise and have 
thus been assigned values may be used since they are now effectively constant 
valued terms). Numbers may be either integers or real numbers. With real 
numbers, the decimal place must have at least one digit on either side of it (e.g. 
0.1 or 1.0 rather than .1 or 1.). The allowable numeric operators are: 

Addition 
Subtraction 
Multiplication 
Ordinary division - returns a floating point num­
ber 
Integer division - returns an integer. If a floating 
point number is supplied as an argument, only 
the integer portion will be used for the division 
Exponentiation . _ _. .. 
Unary minus (negative of X) 
Returns the remainder of X divided by Y (inte­
gers only) 
Absolute value of X 
Arc cosine of X 
Arc sine of X 
Arc tangent of X —--• • 

Cosine of X 
e raised to the power of X 
Logarithm base e 
Logarithm base 10 
Sine of X 
Square root of X 
Tangent of X 
X rounded to N decimal places (N between 0 
and 15). 

X / / Y 

X Y 
- X 
X mod Y 

abs(X) 
acos(X) 
asin(X) 
atan(X) 
cos(X) 
exp(X) 
ln(X) 
log(X) 
Bin (X) 

sqrt(X) 
tan(X) 
round(X,N) 
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The following example uses a few of the mathematical features in a rule: 

rule 42 : 
'the size of the object' i s SIZE 

i f 'the Bhape of the object* i s SHAPE 
and ( ( SHAPE » square 

and ' length of a s ide ' i s L 
and AREA - L " 2 ) 

or ( SHAPE - t r iangle 
and ' length of base' i s BASE 
and 'length of height' i s HEIGHT 
and AREA « (BASE * HEIGHT)/2 ) ' ) 

and ( ( AREA < 1 . 0 
and SIZE • small ) 

or ( AREA >- 1 . 0 
and SIZE - large ) ) . 

8.9 Hidden Statements 

It has been shown that the use of a rule or question statement to solve a goal 
results in a new fact being stored in the knowledge base. This is so that the 
system will not have to infer or ask about the same information twice, should 
it be needed a second time. However it is sometimes desirable to prevent such 
facts from being stored. This can be done by using hidden statements. The 
syntax for hidden rules is: '" ~ ~ ~ 

rule # : : hide CONCLUSION i f PREMISE 

and for hidden questions: r . 

question # : : hide CONCEPT ask QUESTION. 

In both cases, the statement type and statement number can be left off; in the 
case of the question statements, lists of alternatives and explanations can be 
-added as in chapter 7. 

Hidden statements are useful when some rule or question can be used repeatedly 
for different situations within the expert system. For example, the following rule 
and question statements could be used to ask the user whether or not he wishes 
to continue. If these statements were not declared as hidden, the could only be 
used once since subsequently the values obtained from their first use would be 
stored in the system's memory. 
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rule 12 : : hide 
'what to do next' i s VALUE 

i f 'users wish' i s VALUE 
and ( ( VALUE - continue 

and pr int $Very we l l , l e t ' s continue. . . .$ ) 
or ( VALUE • stop 

and pr int $0.K., w e ' l l stop now.$ ) ) . 

question 12 : : hide 
'users wish' 

ask $What would you l i k e to do now?$ 
a l t (continue, stop). 
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Chapter 9; Excluded Features 

For the sake of comparison with other expert system shells it is worthwhile 
mentioning some typical expert system features which are not included in FRO. 
The reason for most of these exclusions is simply that this system is not intended 
to be all encompassing and, in fact, is not even intended primarily as a stand­
alone program. Rather it is intended as an experimental control system for the 
more advanced Dempster-Shafer based uncertain reasoning system described in 
Part II. Never-the-less these features would be useful in FRO and may be added 
at some later date. 

• 9.1 View Knowledge Base 

This feature involves the ability to stop the reasoning process at any point and 
scan or view the contents of the knowledge base. 

• 9.2 Uncertainty 

Many expert systems include simple forms of handling uncertainty using cer­
tainty factors. Since FRO is actually designed for use in conjunction with the 
Dempster-Shafer based uncertainty features, there is no point in including cer­
tainty factors in the rule-based portion. 

• 9.3 Multi-Valued Propositions 

One side effect of the fact that rule-based FRO is fundamentally intended as 
a categorical control system for Dempster-Shafer based reasoning is that each 
proposition CONCEPT is assumed to have only one possible VALUE. This means, 
for example, that if a goal matches with the CONCEPT of some rule but the 
VALUE does not match, then the goal to fail rather than search for some other 
rule which might allow the goal to succeed. This can also be troublesome where 
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some CONCEPT is not inherently single-valued, but could have several different 
values simultaneously. For example, the VALUE of the CONCEPT "today's 
weather" could be both "raining" and "cold" at the same time. Multi-valued 
propositions may be incorporated at a later date. 
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chapter 10: Problem Design 

As a final comment on problem files, a few brief notes should be made about 
good problem file style and about application development techniques. 

• Create a very small and simple knowledge base at the very beginning of the 
application development process. Having a working system, even though 
it is simplified to the extreme, provides a vital focus for the process of 
obtaining and organizing knowledge. 

• Proceed using an iterative process of expanding the prototype system in 
both knowledge breath and knowledge depth. That is, early prototypes 
should contain a little knowledge about all aspects of the problem and a 
large amount of knowledge about a few specific aspects of the problem. 

• The first goal of the system should be to try and make the knowledge 
base model the way that a human expert would actually try to solve the 
problem. Only secondly should "programming tricks" and so on be used 
to try to make the knowledge base more efficient. 

• Look for repetition in the solution process and exploit it using variables 
and the other tools described in this documentation. 

• Provide abundant information back to the user to inform him of the status 
of the solution, of any sub-conclusions, and so on. 

• Experimenting with different approaches is the best way to find the best 
way of solving problems. 
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Chapter 11: Running FRO 

Thus far, we have discussed the underlying theory of the FRO system and the 
techniques for developing a problem file. In this chapter we discuss the actual 
process of running FRO after the problem file exists. 

• 11.1 Starting FRO 

The FRO system is written for an IBM PC, IBM AT or compatible computer. 
It should operate correctly with either floppy diskettes or with a hard disk and 
with any type of monitor. It is designed for 512K or more of system memory 
but it may function with as little as 256K (see section 11.5). FRO is designed 
to work with a Microsoft compatible mouse, although a mouse is not required. 
The system is written in ARITY PROLOG version 4.0. The program consists of 
three mandatory files, FRO.EXE, FRO.IDB, and FRO.P00. Al l three files must 
be in the current directory for the program to operate correctly. In addition, 
there may be a configuration file called FRO.ENV which must be in the same 
directory to be effective. To start up FRO, simply go to the directory containing 
the FRO program files and at the DOS prompt type: 

FRO <enter> 

If a mouse is not being used, the following should be typed: 

FRO / n <enter> 

The main screen should then appear. 

It is also possible to use the command line (or the DOS command which calls 
FRO) to supply the name of the problem file which should be used. The syntax 
is: 

FRO FILE-NAME <enter> 

where FILE-NAME is the name of the problem file. For example: 

FRO TEST.KB <enter> 
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or, if a mouse is not being used: 

FRO TEST.KB / n <enter> 

When a problem file is named in this way, the system does not go to the main 
menu, but rather loads the file and begins execution directly as described in 
section 11.3. 

• 11.2 The Main Screen 

The main screen consists of the main menu across the top, a large dialog area 
underneath, and a border all around. The main menu contains the following 
options: 

F l HELP 
F2 FILES 
F3 EXECUTE 
F4 SAVE 
F5 TRACE 
F6 QUIT 

A main menu option can be selected with the keyboard by pressing the function 
key corresponding to the desired command or with the mouse by pointing to the 
option with the mouse cursor and pressing any button. Each option is explained 
below. 

I U.2.1 F l - HELP 

- "HELP" will cause a pop-up window to appear which contains information de­
scribing what the user's options are. 

| 11.2,? F3- FILES 

This option is used for loading problem files into the system. When "FILES" 
is selected, the system asks the user for the name of a problem file. The user 
must enter the name of a problem file, including the file name extension and 
the path if the file is not in the current directory. When the user presses enter, 
the problem file is loaded into the system's memory. The message "Loaded!" 
appears when the loading is complete. More than one file can be loaded in 
sequentially if several files are used for one problem (and if the first file does not 
itself contain instructions to load the other files ). See section 11.5. for possible 
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errors that could occur at this point. 

I 11.2.3 F3 - E X E C U T E 

Once a problem file has been loaded into the system, selecting "EXECUTE" will 
begin the problem execution. See Section 11.5 for an explanation of possible 
error messages that can occur at this point. The execution of a problem is 
described more fully in Section 11.3 below. 

The "SAVE" option is a special feature of FRO that allows systems to be created 
which load quickly and are self-starting; this can be thought of as compiling a 
problem file. To use this feature, a normal problem file is written and debugged. 
The FRO program is then started and the problem file is loaded into the system 
as described above. The "SAVE" option is then selected from the main menu. 
This causes the entire knowledge base to be saved in the files FRO-SAVE.POO 
and FRO-SAVE.IDB. When FRO is started thereafter, it finds that these files 
exist and goes on to restore the saved knowledge base and begin execution, 
rather than going to the main menu. 

The advantage of this procedure is that after the initial saving, the knowledge 
base loads much faster and begins execution automatically. The disadvantage is 
that the knowledge base saved in this way cannot be viewed or edited with an 
ASCII editor (although the original problem file still exists and can be re-loaded 
at any time). 

To cancel the automatic restoration and execution of a previously stored knowl­
edge base, simple delete the FRO.SAVE.P00 and FRO-SAVE.IDB files from the 
current directory and FRO will revert to normal operation. 

Selecting "TRACE" from the main menu turns on the tracing facilities. No ob­
servable changes appear at this point other than a confirmation message. The 
tracing features of FRO are explained in Section 11.4. Selecting "TRACE" a 
second time toggles the tracing off. 

| U.2.4 F 4 - S A V E 

I U .2 t 5 F5 - TP-ACE 

I 11.2.6 F6 - QUIT 

If "QUIT" is selected from the main menu (or from anywhere else in the system) 
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execution will halt and control will return to DOS. It is preferable to exit FRO 
in this manner rather than by pressing "CONTROL-BREAK" or "CONTROL-
ALT-DEL" . 

11.2.7 F9 - STATISTICS 

Although it does not appear on the main menu, pressing F9 will bring up the 
memory statistics window. This is explained in Section 11.5. 

11.3 The Execution Screen 

Once "EXECUTE" is selected from the main menu, the main screen will be re­
placed with the execution screen which looks very similar but has a slightly 
different menu across the top. At this point the program will begin execution 
and messages or questions will begin to appear on the screen. 

To answer questions, the user must simply type the number which appears next 
to the best alternative and press enter or alternatively he must point to the best 
alternative with the mouse cursor and press any mouse button. If an incorrect 
answer is given, the question is asked again. If the system asks a question which 
does not have a list of alternatives, the user types in his response and presses 
enter. 

In addition to answering questions, the user may select commands from the 
execution menu, as explain below. 

11.3.1 F l - H E L P 

"HELP" will cause a pop-up window to appear which contains help information. 

11.3.2 F2 - E X P L A I N 

As described above, it is possible to attach explanations to questions and propo­
sitions in the knowledge base which are displayed only upon the user's request. 
When the system encounters such an explanation term, the "EXPLAIN" alterna­
tive appears in the execution menu. The user may select this alternative with the 
mouse or the keyboard. The explanation will then appear in a pop-up window. 

11.3.3 F4 - W H Y 

Whenever the system asks the user a questions, the option "WHY?" appears on 
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the menu. If the user wishes to find out more about why the system is asking 
this particular question, he may select this option from the menu. If he does 
so, a window will appear which displays the goal which the system is trying to 
solve and the number of the rule which is currently being used to try to solve the 
goal. The system then gives the user the option of viewing the rule, of asking 
why the system wants to prove that goal to be true (thus allowing the user to 
view the entire chain of goals up to the top-level goal), or of continuing with the 
question. 

Selecting "TRACE" from the execution menu turns on the tracing facilities. The 
main window will then split in half, creating a second tracing window. The 
tracing features of FRO are explained in Section 11.4. Selecting "TRACE" a 
second time toggles the tracing off and closes the tracing window. 

If "QUIT" is selected from the execution menu execution will halt and control 
will return to DOS. It is preferable to exit FRO in this manner rather than by 
pressing "CONTROL-BREAK" or "CONTROL-ALT-DEL". 

Although it does not appear on the execution menu, pressing F9 will bring up 
the memory statistics window. This is explained in Section 11.5. 

• 11.4 Tracing 

FRO includes tracing capabilities which are useful (if not essential) for debugging 
problem files. By tracing the reasoning during the execution of a problem file, 
the user can see which goals are failing unexpectedly (often an indication of 
incorrect syntax), can observe the values adopted by variables, can check the 
precedence of "and" and "or" terms, and so on. 

Once tracing has been turned on and execution has begun, the screen splits into 
a dialog screen and a tracing screen. Every time the system finds a goal which it 
must solve, the goal is printed out in the tracing window and the system pauses. 
The user allows the system to proceed by pressing any keyboard key (except 
"s") or by pressing the LEFT mouse button. The system will then go ahead 
and attempt to solve the goal. It will display a message stating whether it found 

I 11.3.4 F5 - T R A C E 

I 11.3.5 F6 - Q U I T 

I 11.3.6 F9 - STATISTICS 
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a rule, a fact, a question, or nothing that successfully matches with the goal. 
After resolving the matching term (possibly causing more sub-goals to first be 
evaluated and traced) a message appears in the tracing window stating whether 
the goal succeeded or failed. Whenever the system comes across terms that 
require user interaction, this occurs in the dialog window in the normal fashion. 
In this way, the user can follow the step-by-step reasoning of the system. 

One additional useful feature is skipping. When a goal is found and displayed 
in the tracing window, the user may press "s" or the RIGHT mouse button 
which causes the system to proceed without tracing until that goal succeeds or 
fails. This allows the user to move quickly through branches of the reasoning 
tree which he is not interested in tracing. With this skipping feature and with 
the ability to turn the tracing on and off at any time, the user may trace the 
reasoning quite efficiently even in very large systems . 

It should be noted that when terms are written out in the tracing window, 
variables do not retain the names given to them in the problem file but rather 
appear as a hexadecimal number preceded by an underscore (e.g. -00A39). Once 
variables have adopted some value, that value appears in the tracing window in 
place of the variable. 

• 11.5 Errors and Memory Management 

There are two main areas which can lead to problems with the FRO program. 
The first and most frequent is errors in the problem file. Many syntactical 
errors will cause PROLOG error messages to appear when the problem file is 
first loaded. The message will likely say "error using operators" and will list 
the offending statement. This points the user to the term that needs correcting, 
although it does not indicate the exact error. The user should look for spelling 
mistakes in key words, incorrect use of parenthesis, and so on. Occasionally, 
if no apparent errors can be found, additional parentheses should be added to 
clarify precedence intentions, for example the term: 

remove goal run 

should be replaced with: 

remove ( goal run ) 

Once syntax is correct, the problem file should load correctly. There still could 
be errors in the problem file. For example, proposition concepts or values could 
be spelt differently in different places. The use of tracing should help to clarify 
these errors. Finally, there could be some problems with memory management. 
This topic will be discussed at a later date. 
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The FRO program requires two adjustable memory areas, one for stack space 
and one for database worlds. The amount of memory assigned to the system for 
each of these uses is displayed when the user presses F9 will running the system. 

Stack space relates to the basic operational memory requirements of the system. 
The system must be allotted enough stack memory to operate, but if more stack 
memory is assigned than is needed, less memory will be available for database 
memory, leading to slow system operation. 



APPENDIX A: Chapter 12. Sample Files 219 

chapter 12: Sample Files 

12.1 Sample file 1: Wine Selection 

The following is a simple system which gives advice on which colour of wine 
should accompany a meal. It uses only FRO's basic capabilities. 

%%%% Problem File: SAMPL-01.KB 
%%%% Sample Expert System Number 1 

m% 
%%%% System to suggest the best colour of wine to accompany a meal. 

m% 
%%%% This system uses only basic goal, rule, and question statements, 
%%%% along with the "print" command proposition. 
%%%% 

%%%% The Goal Statement 
goal 1 :: 'the session' is complete. 

%%%% The Rule Statements, 
rule 1 : 

'the session' is complete 
i f print $This expert system will suggest the best colour 

of wine to go with your meal.$ 
and 'the best colour' is suggested. 

rule 2 : 
'the best colour' is suggested 

if 'the main component' is meat 
and print $A red wine is generally best with meat.$. 
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rule 3 : : 
'the best colour ' i s suggested 

i f 'the main component' i s f i s h 
and pr in t $The best wine with f i s h i s white.$. 

rule 4 : 
'the best colour ' i s suggested 

i f 'the main component' i s poultry 
and ( ( 'meal has turkey' 

and pr int $A red wine i s preferable with turkey.$ ) 
or ( 'meal has turkey' i s false 

and pr int $A white wine would best sui t th i s meal.$ ) ) . 

%%%% The question Statements, 
question 1 : : 

'the main component' 
ask $What i s the main component on th i s meal?$ 
a l t (meat, f i s h , poul t ry) . 

question 2 : : 
'meal has turkey' 

ask $Wil l the meal contain turkey?$ 
a l t yn. 
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12.2 Sample file 2: Golf Club Selection 

221 

This simple problem file deals with selecting the best golf club for a particular 
shot. The knowledge which is to be incorporated into the system is summa­
rized below. The knowledge base, which consists mainly of FRO's most simple 
features, is given on the following pages. 

Location; Best Club; 

on the green putter 

in a sand trap sand wedge 

on the fairway Distance to hole: 
less than 100 yards pitching wedge 
between 100 and 130 yards #8 iron 
between 130 and 155 yards #5 iron 
between 155 and 180 yards #3 iron 
more than 180 yards #3 wood 

at the tee Par: 
par 3 #5 iron 
par 4 driver 
par 5 driver 
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XXXX Problem File: SAMPL-02.KB 
XXXX Sample Expert System Number 2 
XXXX 
XXXX System to suggest the best golf club to use 
XXXX for a particular shot. 
XXXX 
XXXX This system uses explanations and 
XXXX variables in the 'Fairway shot' rules. 
XXXX 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
XXXX The Goal Statement 
goal 1 :: 'best club' is known. 

mmmmmm%xxx%mmmmxmmmm%%%%%m%m% 
XXXX The Rule Statements. 
XXXX PUTTING XXXXXXXXXXXXXXXXX 
rule pi : 

'best club' is putter 
if location is 'on the green' 

and print $The best club for this shot is a putter$ 
and explanation $Once on the green, you should be 

putting. Therefore use a putter$. 

XXXX WEDGE SHOTS xxxxxxxxxxxxx 
rule wl : 

'best club' is 'sand wedge' 
if location is 'in a sand trap' 

and print $The best club for this shot is a sand wedge$ 
and explanation $The loft provided by the wedge is needed 

to l i f t the ball out of the sand trap$. 

XXXX TEE SHOTS xxxxxxxxxxxxxxx 
rule t l :: 

•best club' is '#5 iron' 
if location is 'the tee' 

and par is 'par 3' 
and print $The best club for this shot is a #5 iron$ 
and explanation $For short tee shots (par 3) a #5 iron 

will provide the correct distance!. 
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rule t2 : 
'best club' is driver 

if location is 'the tee' 
and ( par is 'par 5' 

or par is 'par 4' ) 
and print $The best club for this shot is a driver! 
and explanation $For long tee shots (par 4 or 5) a 

driver will provide the required 
distance!. 

m% FAIRWAY SHOTS XXXXXXXXXXX 

rule f1 :: 
'best club' is CLUB 

if location is 'on the fairway' 
and 'best fairway club' is CLUB 
and print [$The best club for this shot is a $,CLUB] 
and explanation $This club is most likely to provide 

the correct distance for the 
fairway shot$. 

rule f2 : 
'best fairway club' is 'pitching wedge' 

i f distance is 'less than 100 yards'. 

rule f3 : 
'best fairway club' is '#8 iron' 

if distance is 'between 100 and 130 yards'. 

rule f4 : 
'best fairway club' is '#5 iron' 

if distance is 'between 130 and 155 yards'. 

rule f6 : 
'best fairway club' is '#3 iron' 

if distance is 'between 155 and 180 yards'. 

rule f6 : 
'best fairway club* is '#3 wood* 

if distance is 'more than 180 yards'. 
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mmmm%%mmmmmmmmmmmmmmmn5 
%V,%% The Question Statements, 
question 1 : 

distance ask $How far is i t to the hole?$ 
alt ('less than 100 yards', 

'between 100 and 130 yards', 
'between 130 and 155 yards', 
'between 155 and 180 yards', 
'more than 180 yards') 

expl $Distance is one of the primary factors 
in selecting the best club$. 

question 2 : 
par ask $What is the par for this hole?$ 

alt ('par 3','par 4','par 5') 
expl $The par of the hole gives an indication of 

the distance and hence the club required$. 

question 3 : 
location ask $Where are you making this shot from?$ 

alt ('the tee'. 
'on the fairway', 
'in a sand trap', 
'on the green') 

expl $The different locations have characteristics 
which suit some clubs better than others$. 
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PART II 

FRAME-BASED FRO 

The frame-based portion of the FRO expert system shell can be used in con­
junction with the rule-based portion (described in Part I of this documentation) 
to facilitate inexact reasoning based on the Dempster-Shafer (or D-S) theory of 
evidence. This document will not provide a review of this theory, rather it will 
describe how to use frame-based FRO, including a brief introduction (chapter 
13) , a description of the interactive belief interface system used by FRO (chapter 
14) , an example of the M K B program which assists in the creation of problem 
files for frame-based FRO applications (chapter 15), an explanation of both de­
sign problem files (chapter 16) and control problem files (chapter 17), a brief 
comment on running frame-based applications (chapter 18) and a listing of some 
sample problem files (chapter 19). The recommended approach to learning the 
system is to learn the rule-based portion of FRO first (see Part I of this manual) 
and then to alternate between reading this part of the manual, examining the 
sample files, and experimenting with the program itself. 
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Chapter 13: Overview of frame-based FRO 

This section provides a brief overview of how FRO uses D-S theory to represent 
uncertain information and perform inexact reasoning. 

The basic knowledge representation scheme for the frame-based portion of FRO 
is quite different from the rule-based portion. In the frame-based portion of 
FRO, each major concept or variable is represented by a frame of discernment 
(which we commonly refer to as simply a frame). Each frame is represented 
in the system by a name and a list of possible alternatives or values. These 
alternatives must be exhaustive and mutually exclusive (that is, one and only 
one of them may be true). Knowledge about how the alternatives for one frame 
imply knowledge about the alternatives in another frame is stored in structures 
called links. The knowledge contained in links may be certain or uncertain. The 
collection of all the frames defined for some problem and the links connecting 
the frames to each other makes up a graph structure called a frame network. 
The frame network with its constituent frames and links, then, makes up the 
representation of all the variables involved for some problem, all the possible 
values for these variables, and all of the inferential relationships between these 
values. 

Belief about which value for some variable is though to be true or which values 
are known to be false is represented by a belief function. When the system 
asks a user for information about some variable, the response is provided in the 
form of a belief function. This belief function is added to the frame which is 
being asked about. At the same time, the links connected to that frame are 
used to infer belief about any related frames. Whenever the user responds to a 
frame-based question, then, both his answer and any information which can be 
inferred from his answer is added to the system. In this way inexact reasoning 
is accomplished. 

The frame network approach is well suited for representing concepts, the rela­
tionships between them, and the belief about them. We call this knowledge the 
design knowledge. However it is not well suited for representing procedural or 
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control knowledge which makes up information about when to ask questions, 
when to draw conclusions, etc. In FRO, this function is performed by the rule-
based portion of the program (in fact, this is why the rule-based portion was 
created in the first place). The rule-based portion and the frame-based portion 
can interact with each other through a series of interface command propositions 
which can be embedded in the rule-based problem file. 

In order to use FRO to create an expert system with inexact reasoning, then, the 
expert and the knowledge engineer must create at least two problem files. The 
first, the design problem file defines each frame that relates to the problem, 
the links that relate the frames, and an initial belief that should be assigned to 
the frames. The second file, the control problem file, contains the procedural 
rules about which questions to ask, when to ask them, which frames to consult 
for conclusions, how to interpret the conclusions for particular situations, etc. 
This dichotomy between the two types of knowledge is fairly transparent to the 
user of the system who operates the finished product in almost exactly the same 
way that he operates a rule-only system, with the exception of the uncertain 
belief input/output interface which is discussed in the following chapter. 
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chapter 14: The IBIS Belief Interface 

A l l uncertain communication between the FRO system and the user is accom­
plished with the aid of FRO's unique belief interface. This interface allows the 
relatively simple input and output of complicated D-S belief functions. The 
interface is called IBIS , for Interactive Belief Interface System. This chapter 
explains how to use the IBIS interface. 

• 14.1 Belief Input 

When FRO needs to obtain uncertain input from the user, it first asks the user 
a question in exactly the same form as is used for categorical questions. If the 
system is trying to find the user's preferred vacation destination, for example, 
it might ask the user the following question: 

Where would you prefer to go? 
1. Paris 
2. New York 
3. Hawaii 
4. Australia 
» » 

Note that the alternatives for these questions are exhaustive and mutually ex­
clusive. That is, one and only one of the alternatives represents the best or 
correct answer to the question. If the user has a categorical response, he would 
be allowed to answer this question in exactly the same manner as for rule-based 
FRO. However an important difference is that an "UNCERTAINTY" option will ap­
pear on the menu while the question is being asked. If the user is not completely 
certain about his response, he may select this option. When this occurs, a pop­
up window appears and the question is re-asked in a different format shown in 
figure 14.1. 

As shown in figure 14.1, the same question is asked and the same alternatives are 
offered. However a bar-chart style graph appears beside the list of alternatives; 
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Where would you prefer to go? 

Enter support and plausibility values 
1. Paris 

r O .2 .4 .6 .8 1.01 

j i i i i i i i i i i 

Where would you prefer to go? 

Enter support and plausibility values 
1. Paris 
2. New York j 1 i i i i i ' ' ' i 

1 i i i i i i i i i r 

J 1 i i i i i i ' ' T 

" i i i i i i i i i - f 

fH : support, the % certainty that this is the correct alternative. 
• : plausibility, the X certainty that this could be the correct alternative. 

Figure 14.1: Initial belief input screen 

two bars are shown for each alternative. The bars on the graph can be moved 
up or down by selecting the bar with the mouse and sliding the bar up or 
down. In this way the bars allow the user to enter two belief parameters for each 
alternative. One bar (the white bar in figure 14.1) represents the plausibility 
of the alternative which is the user's percent certainty that the alternative could 
be the correct answer to the question. The plausibility is initially set to 1.0 for 
each alternative indicating that each of the alternatives is initially considered to 
be equally possible by the system. The other bar (the black bar in figure 14.1) 
represents the support of the alternative which is the user's percent certainty 
that the alternative is the correct answer to the question. The support is initially 
set to 0 for each alternative representing the fact that the system initially has no 
specific belief for any one of the alternatives over any other. The initial state of 
the system, then, is one of complete ignorance about the answer to the question. 

If the user has some level of belief that one of the alternatives is the best answer 
to the question, then he may point to the "support bar" on the graph adjacent 
to that alternative with the mouse cursor. He then presses and holds down any 
of the mouse buttons (the mouse cursor will change shape if he has successfully 
selected a bar). He may then move the cursor in one direction or the other in 
order to change the support value for that alternative. For the example given 
above, the user may feel somewhat sure that she would like to go to Hawaii 
(with a percent certainty of 0.4, say). Figure 14.2 shows the result of the user 
entering this level of belief. 

Notice that in figure 14.2 the plausibility values for all alternatives other than 
Hawaii are lowered to 0.6. This has been done automatically by the system after 
the user entered a support of 0.4 for Hawaii because belief indicating that one 
particular alternative is the correct answer implies the same amount of belief 
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Where would you prefer to go? 

Enter support and plausibility values 
1. Paris 
2. New York 
3. Hawaii 
4. Australia 

r 0 .2 .4 .6 .8 1.0 

| : support, the % certainty that this is the correct alternative. 
Q : plausibility, the % certainty that this could be the correct alternative. 

Figure 14.2: Belief input screen showing some support for "Hawaii" 

that all other alternatives are not possible, and thus their plausibilities should 
be lowered correspondingly. 

Suppose also, for this example, that the user's husband would prefer to go to 
Australia but that he is not vary committed to this location because it would 
be quite expensive. This would lead to a level of support of, say, 0.2 for the 
alternative "Australia", as shown in figure 14.3. 

Where would you prefer to go? 

Enter support and plausibility values rO .2 .4 . 6— 

i ; ; ; i 
• 8— 

1 

—1 °1 

2. New York i ; ; ; 

• 8— 

1 

—1 °1 

3. Hawaii ^ — 1 — 1 — 1 

8— 

1 

—1 °1 

4. Australia — 1 • — ) 

8— 

1 

—1 °1 8— 

1 

—1 °1 

| : support, the X certainty that this is the correct alternative. 
| | : plausibility, the % certainty that this could be the correct alternative. 

Figure 14.3: Belief input screen showing support for both "Hawaii" and "Aus­
tralia" 

Figure 14.3 shows how the plausibility values will be lowered further by this 
additional assignment of support. Finally, suppose that the user is completely 
sure that she does not want to go to Paris since she doesn't speak french. She 
could therefore lower the plausibility of the alternative "Paris" to 0, indicating 
that this is not a possible best location. This is shown in figure 14.4. 
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Where would you prefer to go? 

Enter support and p l a u s i b i l i t y values 
1. Paris 
2. New York 
3. Hawaii 
4. Aust ra l ia 

r 0 .2 .4 .6 .8 l .Oi 

| : support, the % certainty that th i s is the correct a l ternat ive. 
f~l : plausibility, the % certainty that th i s could be the correct al ternat ive. 

Figure 14.4: Final belief input screen 

Figure 14.4, then, represents the final belief input screen for this example. The 
user would then point with the mouse cursor to a place on the screen which 
displays "Cl ick here when finished" and press any of the mouse buttons. 
The belief input window would then disappear and the system would continue. 

It should be noted that there are several things which the user is not allowed 
to do when entering belief. He cannot, for example, move any of the values 
below 0.0 nor above 1.0. Nor can he increase the support value greater than the 
support value. If the user attempts to perform any of these or other un-allowed 
operations, the system will prevent the move and a warning message will appear. 

There are also a great many things which the user may do when entering belief; 
that is, the scheme provides a very flexible tool for the representing the user's 
belief. The best way for a user to understand the possibilities of the input 
scheme is to experiment with entering belief for a simple sample system. 

• 14.2 Belief Output 

The FRO system can output uncertain belief using the same format which is 
used for entering uncertain belief. Figure 14.5 shows such an output screen. 

For belief output, the user may not alter the values shown. However, two options 
will appear in a pop-up menu. One will allow the user to view the output in the 
form of a numerical rather than a graphical output. The second option allows 
the user to continue with the session. Both options are selected by pointing to 
the appropriate box with the mouse cursor and by pressing any of the mouse 
buttons. 
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I recommend that the best location for your holiday i s : 

r 0 .2 .4 .6 . 
^ 1 M i | I 

8— —1 °1 

2. New York 

8— —1 °1 

H ^ ^ ^ H H p i ^ ^ ^ H H H I M 

8— —1 °1 8— —1 °1 

1 1 f 

8— —1 °1 

K : support, the X certainty that th i s is the correct a l ternat ive. 
| | : plausibility, the % certainty that th i s could be the correct a l ternat ive. 

Figure 14.5: Belief output screen 
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Chapter 15; Using M K B 

M K B (which stands for Make Knowledge Base) is an expert system written 
for the FRO shell which is designed to help create problem files for new FRO 
expert systems. Since the syntax of FRO design problem files is much more 
complex and awkward than FRO control knowledge bases, M K B is by far the 
easiest way of creating simple frame based systems. While M K B is not fully 
implemented yet, those features which are available are described below 

In order to operate M K B , all FRO files as well as the following M K B files should 
be in the current DOS directory: 

MKB 
MKB-CREA 
MKB-EDIT 
MKB-LOAD 
MKB-STOR 

M K B is the main problem file and will load the other files as needed. To begin 
execution, simply follow normal FRO procedures and, at the DOS prompt, type: 

FRO MKB <enter> 

Note that a mouse must be used for rule-based FRO. After FRO and M K B 
have been loaded, the M K B main menu will appear. The system is menu driven 
and is fairly self-explanatory once the user is familiar with some D-S theory and 
with the uncertainty interface. The following is a listing of a sample session 
in which a system is being created to help select the best vacation destination. 
In this example, it is being assumed that the possible vacation destinations 
are Paris, New York, Hawaii, or Australia. It is also being assumed that the 
factors which determine the best alternative are the main attraction of the area 
(with the possible alternatives being either shopping and nightlife or sunshine 
and beaches) and cost (with the possible alternatives being cheap, medium, or 
expensive). These frames and alternatives are entered into the system first, 
followed by the uncertain relationships between them. Note that illustrations of 
the pop-up windows which are used in defining these relationships are given after 
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the entire session listing. The session continues with the definition of some initial 
level of belief stating belief that users will generally prefer cheaper vacations. 
Finally, all of the information entered into the system is written out to files, 
one corresponding to the design knowledge base and one corresponding to the 
control knowledge base. 
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************************************* 
* MAKE-KB * 
************************************* 
* A B y s t e m to help construct the * 
* knowledge base for expert systems * 
* which use D-S uncertainty * 
************************************* 

version 1.00 

**** MAIN SYSTEM MENU **** 
What do you want to do? 

1. Go through tutorial session 
2. Create a new knowledge base 
3. Load an existing knowledge base 
4. View and/or Edit a knowledge base 
5. Save a knowledge base 
6. Finish 

» » 2 
(create) 

************************************************** 
SECTION NUMBER 1 : SET UP 
************************************************** 

Enter a short description of what the expert system will be about. 

» » Chosing a Vacation Destination 

If desired, MAKE-KB can construct a simple "control knowledge base" 
which can be used along with the "design (uncertainty) knowledge base" 
to complete an expert system. Do you want a control knowledge base? 

1. yes 
2. no 

» » 1 
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************************************************** 
SECTION NUMBER 2 : FRAME DEFINITION 
************************************************** 

The first step is to define each "concept" and its possible values 
which might be used in the system. This is done by defining "frames". 
We will now begin entering the names and the possible values of 
frames. 

Enter a name for frame number 1 
(or just press "enter" i f a l l frames have been given) 

» » MAIN ATTRACTION 

Enter alternative number 1 for frame "MAIN ATTRACTION" 
(or just press "enter" i f a l l alternatives have been given) 

» » shopping and nightlife 

Enter alternative number 2 for frame "MAIN ATTRACTION" 
(or just press "enter" if a l l alternatives have been given) 

» » sunshine and beaches 

Enter alternative number 3 for frame "MAIN ATTRACTION" 
(or just press "enter" i f a l l alternatives have been given) 
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What will the frame "MAIN ATTRACTION" be used for? 

1. Accepting information input from the user 
2. Providing conclusion output to the user 
3. Both input and output 
4. Neither input nor output (e.g. intermediate conclusions) 
5. Unknown 

» » 1 
(input). 

*** The frame "MAIN ATTRACTION" has been defined. 

Enter a name for frame number 2 
(or just press "enter" if a l l frames have been given) 

» » COSTS 

Enter alternative number 1 for frame "COSTS" 
(or just press "enter" if a l l alternatives have been given) 

» » cheap 

Enter alternative number 2 for frame "COSTS" 
(or just press "enter" i f a l l alternatives have been given) 

» » medium 

Enter alternative number 3 for frame "COSTS" 
(or just press "enter" if a l l alternatives have been given) 

» » expensive 
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Enter alternative number 4 lor frame "COSTS" 
(or just press "enter" if a l l alternatives have been given) 

What will the frame "COSTS" be used for? 

1. Accepting information input from the user 
2. Providing conclusion output to the user 
3. Both input and output 
4 . Neither input nor output (e.g. intermediate conclusions) 
5. Unknown 

» » 1 
(input). 

*** The frame "COSTS" has been defined. 

Enter a name for frame number 3 
(or just press "enter" if a l l frames have been given) 

» » LOCATION 

Enter alternative number 1 for frame "LOCATION" 
(or just press "enter" if a l l alternatives have been given) 

» » Paris 

Enter alternative number 2 for frame "LOCATION" 
(or just press "enter" if a l l alternatives have been given) 

» » New York 
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Enter alternative number 3 for frame "LOCATION" 
(or just press "enter" if a l l alternatives have been given) 

» » Hawaii 

Enter alternative number 4 for frame "LOCATION" 
(or just press "enter" if a l l alternatives have been given) 

» » Australia 

Enter alternative number 6 for frame "LOCATION" 
(or just press "enter" if a l l alternatives have been given) 

What will the frame "LOCATION" be used for? 

1. Accepting information input from the user 
2. Providing conclusion output to the user 
3. Both input and output 
4. Neither input nor output (e.g. intermediate conclusions) 
5. Unknown 

» » 2 
(output). 

*** The frame "LOCATION" has been defined. 

Enter a name for frame number 4 
(or just press "enter" if a l l frames have been given) 

» » 

*** Al l frames have been defined 
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****************************************** 
SECTION NUMBER 3 
************************************************** 

The next step is to define the relationships between each of the 
frames 

Select a frame which should have a link to another frame, 
(or select alternative #1 i f a l l links have been given) 

(MAIN ATTRACTION). 

Which frame should "MAIN ATTRACTION" be linked to? 

1. COSTS 
2. LOCATION 

» » 2 
(LOCATION) . 

Which propositions from frame "LOCATION" are IMPLIED BY the 
proposition "shopping and nightlife" from frame "MAIN ATTRACTION"? 

1. Paris 
2. New York 
3. Hawaii 
4. Australia 

» » ( Uncertainty entered) . (see figure 15.1) 

1. 
2. 1 
3. i 

4. ] 
» » 2 

*** Finished defining links *** 
MAIN ATTRACTION 
COSTS 
LOCATION 
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Which propositions from frame "LOCATION" are IMPLIED BY the 
proposition "sunshine and beaches" from frame "MAIN ATTRACTION"? 

1. Paris 
2. New York 
3. Hawaii 
4. Australia 

» » ( Uncertainty entered) . (see figure 15.2) 

*** The link number 1 has been defined. 

Select a frame which should have a link to another frame, 
(or select alternative #1 i f a l l links have been given) 

1. *** Finished defining links *** 
2. MAIN ATTRACTION 
3. COSTS 
4. LOCATION 

» » 3 
(COSTS). 

Which frame should "COSTS" be linked to? 

1. MAIN ATTRACTION 
2. LOCATION 

» » 2 
(LOCATION). 
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Which propositions from frame "LOCATION" are IMPLIED BY the 
proposition "cheap" from frame "COSTS"? 

1. Paris 
2. New York 
3. Hawaii 
4. Australia 

» » ( Uncertainty entered). (see figure 15.3) 

Which propositions from frame "LOCATION" are IMPLIED BY the 
proposition "medium" from frame "COSTS"? 

1. Paris 
2. New York 
3. Hawaii 
4. Australia 

» » ( Uncertainty entered) . (see figure 15.4) 

Which propositions from frame "LOCATION" are IMPLIED BY the 
proposition "expensive" from frame "COSTS"? 

1. Paris 
2. New York 
3. Hawaii 
4. Australia 

» » ( Uncertainty entered) . (see figure 15.5) 

*** The link number 2 has been defined. 
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Select a frame which should have a link to another frame, 
(or select alternative #1 if a l l links have been given) 

1. *** Finished defining links *** 
2. MAIN ATTRACTION 
3. COSTS 
4. LOCATION 

» » 1 
(*** Finished defining links ***). 

************************************************** 
SECTION NUMBER 4 : INITIAL BELIEF 
************************************************* 

If you have some belief about any of the frames, you can add that 
belief into the system now, do you wish to do so? 

1. yes 
2. no 

» » 1 
(desired). 

Select a frame which should have a link to another frame, 
(or select alternative #1 if a l l links have been given) 

1. *** Finished specifying init ial belief *** 
2. MAIN ATTRACTION 
3. COSTS 
4. LOCATION 

» » 3 
(COSTS). 
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Which do believe to be the best alternative for frame "COSTS"? 

1. cheap 
2. medium 
3. expensive 

» » ( Uncertainty entered) . (see figure 15.6) 

*** Your belief about frame "COSTS" has been defined. 

Select a frame which should have a link to another frame, 
(or select alternative #1 i f a l l links have been given) 

1. *** Finished specifying init ial belief *** 
2. MAIN ATTRACTION 
3. COSTS 
4. LOCATION 

» » 1 
(*** Finished specifying init ial belief ***). 

*** Al l init ial belief has been defined 

**** MAIN SYSTEM MENU **** 
What do you want to do? 

1. Go through tutorial session 
2. Create a new knowledge base 
3. Load an existing knowledge base — 
4. View and/or Edit a knowledge base 
5. Save a knowledge base 
6. Finish 

» » 5 
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SECTION NUMBER 6 : WRITING INFORMATION INTO KB FILES 

Enter a file name to use for creating the design knowledge base. 

» » SAMPL-ll.DKB 

Enter a fi le name to use for creating the control knowledge base. 

» » SAMPL-ll.CKB 

Creating design knowledge base.... 
adding frame:MAIN ATTRACTION 
adding frame:COSTS 
adding frame:LOCATION 
adding link:MAIN ATTRACTION to LOCATION 
adding link:COSTS to LOCATION 

Creating control knowledge base.... 

**** MAIN SYSTEM MENU **** 
What do you want to do? 

1. Go through tutorial session 
2. Create a new knowledge base 
3. Load an existing knowledge base 
4. View and/or Edit a knowledge base 
5. Save a knowledge base 
6. Finish 

» » 6 

(finish). 

*** Session Completed *** 
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Which propositions from frame "LOCATION" are IMPLIED BY the proposition 
"shopping and nightlife" from frame "MAIN ATTRACTION"? 

Enter support and plausibility values 
1. Paris 
2. New York 
3. Hawaii 
4. Australia 

| : support, the X certainty that this is the correct alternative. 
: plausibility, the X certainty that this could be the correct alternative. 

Figure 15.1: Entering the relationship between "shopping and nightlife" and the 
best vacation location 

Which propositions from frame "LOCATION" are IMPLIED BY the proposition 
"sunshine and beaches" from frame "MAIN ATTRACTION"? 

Enter support and plausibility values 
1. Paris 
2. New York 
3. Hawaii 

----- 4.-Australia . r . . 

*jf| : support, the X certainty that this is the correct alternative. 
| | : plausibility, the X certainty that this could be the correct alternative. 

Figure 15.2: Entering the relationship between "sunshine and beaches" and the 
best vacation location 
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Which propositions from frame "LOCATION" are IMPLIED BY the proposition 
"cheap" from frame "COSTS"? 

Enter support and plausibility values 
1. Paris 
2. New York 
3. Hawaii 
4. Australia 

| : support, the X certainty that this is the correct alternative. 
| | : plausibility, the % certainty that this could be the correct alternative. 

Figure 15.3: Entering the relationship between "cheap" cost and the best vaca­
tion location 

Which propositions from frame "LOCATION 
"medium" from frame "COSTS"? 

Enter support and plausibility values 
1. Paris 

" are IMPLIED BY the proposition 

r 0 .2 .4 .6 .8 l.Oi 

i : : : > i i i i i i 
2. New York J 1 I I I 1 1 I 1 I L 

3. Hawaii 
1 1 1 1 1 1 1 1 1 1 

fc=l 1 

| : support, the % certainty that this is the correct alternative. 
f~| : plausibility, the % certainty that this could be the correct alternative. 

Figure 15.4: Entering the relationship between "medium" cost and the best 
vacation location 
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Which propositions from frame "LOCATION" are IMPLIED BY the proposition 
"expensive" from frame "COSTS"? 

Enter support and plausibility values 
1. Paris 
2. New York 
3. Hawaii 
4. Australia 

| : support, the X certainty that this is the correct alternative. 
: plausibility, the X certainty that this could be the correct alternative. 

Figure 15.5: Entering the relationship between "expensive" cost and the best 
vacation location 

Which do believe to be the best alternative for frame "COSTS"? 

Enter support and plausibility values 
1. cheap 
2. medium 
3. expensive 

i-0 .2 .4 .6 .8 1.0, 

| : support, the X certainty that this is the correct alternative. 
| | : plausibility, the X certainty that this could be the correct alternative. 

Figure 15.6: Entering the initial belief about desired vacation cost 
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M K B is designed to incorporate many more features than initial knowledge base 
creation, as can be seen from the options listed on the main menu. However 
several of these capabilities are not yet implemented in the system. While M K B 
will load existing knowledge bases and display their frames and links, it will not 
provide the tutorial session or edit existing terms. The user is free to explore 
the menu options of M K B as those options which are not yet implemented will 
display suitable messages. 
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chapter 16: Design Problem Files 
As stated in the previous section, the execution of the M K B program results in 
the creation of two problem files. Since these are standard ASCII files, they can 
also be created initially without the aid of M K B . Regardless of how they are 
first created, the problem files can be accessed and altered with any ASCII file 
editor. The control problem file is much like the problem files described in Part I 
of this manual and will be examined in subsequent chapters. This chapter deals 
with the design problem file which, while it too consists of a series of statements, 
is quite different in form from the control problem file. 

The design problem file may contain comments using the same syntax as de­
scribed for rule-based problem files in Part I. Apart from comments, the three 
types of statements which can be used are add_f rame. add_link, and addJbpa. 
Each of these statement types is described below. Generally, the problem file 
should contain all of the add_f rame statements first, followed by the add-link 
and then add_bpa statements. More precisely, an add-link or add-bpa state­
ment cannot be given before any of the frames mentioned in the statement have 
been defined with an add-frame statement. 

• 16.1 Adding Frames 

The first type of statements to appear in a FRO design problem file are add-frame 
statements which define the frames which will be used in the system. These 
statements supply the name to be used and the names of each of the possible 
alternatives. The syntax for add-frame statements is as follows: 

add_f rame (.NAME, [ALT 1, ALT 2, ... ] ) . 

Where NAME is the name of the frame and [ALT 1, ALT 2, ... ] is the list of 
names for the possible alternatives. Both the frame name and the alternative 
names must be atoms or strings (both of which were defined in Part I). An 
example of an add-frame statement is as follows: 

add_frame('LOCATION'. 
[ •Par is ' . 
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•New York ' , 
•Hawaii ' . 
•Aus t r a l i a ' ] ) . 

It can be seen that this is a less English-like syntax than those used in the rule-
based problem files. Like rule-based statements, though, spaces and carriage 
returns are ignored by the system and the end of the statement is indicated by 
a period. The example above is an add J ram e statement created by M K B and 
thus it shows MKB's style convention for adding spaces, carriage returns, etc. 
A similar style is recommended for legibility of the problem file though it is not 
required. For example, if the place names were not capitalized in the statement 
given above, then the following statement would produce equivalent results: 

add_frame('LOCATION',[paris,'new york ' .hawai i .aus t ra l ia ] ) . 

• 16.2 Adding Links 

The second type of statement in the design problem file is the add-link state­
ment. These statements are used to define the uncertain inferential relationships 
between two frames. These are the most complex statements and are best cre­
ated using the graphical interface of M K B , however they can also be created 
and manipulated directly. The format for an add-link statement is as follows: 

add-link ( FRAME A, FRAME B, 
HALT AI, BPA BI) , (ALT A2, BPA B2) . . . . ] ) . 

This statement shows how the alternatives of a first frame (FRAME A) imply 
belief about the alternatives of a second frame (FRAME B). FRAME A and 
FRAME B, then, are the names of these two frames. Next, for each of FRAME A's 
alternatives, the statement gives the name of that alternative, ALT AI, and 
a corresponding basic probability assignment BPA Bl stating what should be 
believed about the alternatives of FRAME B if it were known with certainty that 
alternative ALT AI where the correct answer for FRAME A. A basic probability 
assignment has the following syntax: 

KlALTil,ALTi2. . . . ] , Mi ) . ([ALTjl, ALTj2, . . . ] . Mj ) . ...] 

Where [ALT il, ALT i2, . . . ] is a list of alternatives which make up a D-S propo­
sition (i.e. the correct alternative is believed to be in this list) and Mi is a real 
number representing the basic probability number for that proposition. The 
sum of all basic probability numbers for the entire basic probability assignment 
must equal 1.0. An example of an add-link statement is as follows: 
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add.linkCMAIN ATTRACTION', 'LOCATION*, 
[('shopping and n i g h t l i f e ' , 

[(['New York ' , ' P a r i s ' ] , 0.7), 
( [ ' A u s t r a l i a ' , 'New York ' , "Pa r i s ' ] , 0.2) . 
( [ ' A u s t r a l i a ' , 'Hawai i ' . 'New York ' , ' P a r i s ' ] . 0 .1)] ) , 

('sunshine and beaches', 
[ ( [ 'Hawai i ' ] . 0.3) . 
( [ ' A u s t r a l i a ' , 'Hawai i ' ] , 0.7)]) 

] ) . 

This statement is created by M K B and is, in fact, the statement generated 
by figures 15.1 and 15.2. Notice again that while spaces and carriage returns 
are ignored by the system, they are very important for making the statement 
legible. It should be noted that while add-link statements can be created with 
very little understanding of D-S theory using M K B , this cannot be said when 
the statements are accessed directly as shown here. 

• 16.3 Adding Initial Belief 

The final statement type is the add-bpa statement. These statements can be 
used for adding uncertain belief about the best alternative for some frame, should 
such belief be known at the time of the problem file development. The format 
for add.bpa statements is as follows: 

add-bpa (FRAME, BPA). 

Where FRAME is the name of the frame to which the belief is being added and 
BPA is a basic probability assignment on that frame defined using the same 
syntax as shown above. An example of an add-bpa statement which represents 
the uncertain belief displayed in figure 15.6 is as follows: 

add.bpa('COSTS'. 
[([ 'cheap'] , 0.1), 
([ 'cheap' , 'medium']. 0 .1) . 
([ 'cheap' , •expensive', 'medium'], 0 .8)]) . 
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chapter 17: Control Problem Files 
The previous chapter described the design problem file which defines all of the 
major uncertain variables in the system and the relationships between them. 
It has been stated earlier that when the user enters belief for some frame, the 
system automatically propagates the belief to every related frame. However 
the design knowledge base contains no information about which questions to 
ask, when to ask questions, and how to output or interpret the results. These 
functions are performed by the control problem file. 

The control problem file for problems which contain uncertainty is largely the 
same as the rule-based problem files described in Part I of this manual. Control 
problem files contain goal statements, fact statements, rule statements, and 
questions statements in exactly the same format as outlined in Part I. However 
certain additional features may be used. First, an alternative form of question 
definition statement may be used for enabling the system to use IBIS screens 
to ask questions with uncertainty. Second, an additional series of command 
proposition terms may be used for adding uncertain belief to the frame network 
and for obtaining resultant belief back from it. These features are described in 
the following sections. 

• 17.1 Question Statements for Uncertainty 

In order for the FRO system to ask questions involving uncertainty, it must 
know the exact wording of the question to ask, the possible alternatives, and so 
on. This information is, in many ways, similar to the information required for 
asking categorical questions as defined in Part I. As such, an uncertain question 
definition statement must be defined which is similar to the categorical question 
definition statement defined in Part I. The syntax for an uncertain question 
definition statement is as follows: 

question-un # : 
FRAME 

ask-un QUESTION 
a l t [ALT 1, ALT 2, ...] 
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r a i t IRALT 1, RALT 2, ... ] 
expl EXPLANATION. 

or, alternatively: 

FRAME 
ask-un QUESTION 
a l t [ALT 1, ALT 2, ... ] 

r a i t IRALT 1, RALT2,...] 
expl EXPLANATION. 

In these statements, is the statement number assigned to the statement 
by the user, "FRAME " is the name of the frame which is being asked about, 
"QUESTION " is the actual question which should be asked of the user, [ALT 1, 
ALT 2, ...] is the list of alternatives which the system offers the user as the 
possible answers to the question, [RALT 1, RALT 2, ...] is the list of return 
alternatives the system uses internally to represent the possible alternatives, and 
EXPLANATION is an explanation of the question which the user can access upon 
request. Both the list of return alternatives and the explanation are optional, but 
if they are used they must appear in the order shown here. If the list of return 
alternatives is used, then it must correspond exactly to the list of alternatives 
used to define the frame and the list of alternatives may contain any character 
strings. If the list of return alternatives is not used, then the list of alternatives 
must correspond exactly to the list used to define the frame. Note that both of 
these lists must be enclosed in square brackets, not parentheses. 

Consider, for example, a question statement that is to be used to inquire about 
some frame 'LOCATION' which offered the following list of alternatives: [paris, 
'new york ' , hawaii, austra l ia] . Either of the following statements, then, 
would adequately define an appropriate question: 

'LOCATION' ask.un $Where would you prefer to go?$ 
a l t [paris, 'new york ' , hawaii, aus t ra l ia ] . 

question_un 42 : 
•LOCATION' 
ask.un $Where would you prefer to go? 

a l t [$Paris, France!, 
$New York, U S A $ , 
$Hawaii. U S A $ . 
$Austral ia , (the grand Australian tour)$ ] 

r a i t [paris, 'new york ' , hawaii, austra l ia ] 
expl $The system would l i k e to know where your preferred 

vacation destination i s . Your options are l imi ted 
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to one and only one of the locations l i s t e d here.f. 

• 17.2 Additional Command Propositions 

| 17.2.1 Loading the Design Problem File 

syntax: load-un FILE-NAME 

A FRO-based system which includes uncertainty is executed by loading the rule-
based control problem file in the same manner as described in Part I. One of 
the first tasks of the control problem file is to load the design problem file. For 
example, if the design problem file is called SAMPLE.DKB, the first few lines of 
the control problem file may be the following: 

goal 1 : : session i s completed. 

rule 1 : 
session i s completed 

i f load.un $SAMPLE.DKB$ 
and 

etc ... 

| 17.2.2 Asking Questions 

syntax: query.un FRAME 

As shown above, question definition statements are included in the control prob­
lem file for uncertainty questions in a similar manner to that of categorical 
questions. However the circumstances under which these questions are asked is 
quite different in the two systems. While the system automatically asks cate­
gorical questions whenever they concern the current goal, the system must be 
instructed exactly when to ask uncertainty questions. This is done through the 
use of the query_un command. When the system encounters such a command in 
the premise of some rule, it will locate the uncertainty question corresponding 
to the FRAME name supplied in the query_un command and proceed to ask the 
question. The user's response is then automatically added to the frame and the 
belief is propagated around the frame network. 

I 17.2.3 Printing Uncertain Belief 
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syntax: print.un(AfESSAGE, FRAME, PROP-LIST) 

The print.un command can be used to instruct FRO to report the uncertain 
belief for any frame. The belief is displayed in a pop-up IBIS window as described 
in chapter 14. MESSAGE is a character string message which is printed across 
the top of the pop-up window, FRAME is the name of the frame which is to be 
reported on, and PROP-LIST is a list of the propositions for which the belief is 
to be given. The syntax for the PROP-LIST is as follows: 

IALT1 . IALT2\. ...] 

where " [ [ALT 1] , [ALT 2] , . . . ] " is a list of the alternatives which make up 
some proposition. For example, the print.un statement which was generated 
by the M K B session shown in chapter 15 is as follows: 

and pr int .un ($The best alternative for "LOCATION" i s : $ , 
•LOCATION*. 

[ [ ' P a r i s ' ] , 
['New Y o r k ' ] , 
[ 'Hawai i ' ] . 
[ 'Aust ra l ia ' ] ]) 

While this is the most common usage of the print.un command, some variations 
also exist, as follows: 

syntax: print.un(MESSAGE, BELIEF.FN) 

This form of print.un can be used to display a belief function directly, rather 
than referring to a frame from which to retrieve a belief function for display. In 
this form, MESSAGE is a message to appear at the top of the pop-up window 
and BELIEF-FN is a belief function which has the following syntax: 

(lALTl . Sl.PLl). ( [ALT 2 ] . S2, PL2). ...] 

Where " [ALT 1] " is an alternative, SI is a real number representing the support 
value for that alternative, and PLl is a real number representing the plausibility 
value. Note that this is not the form of a true D-S belief function, but rather it 
is more akin to a "singleton support interval function". It should also be noted 
that this form of print.un would probably be used very rarely. 

syntax: print.un (MESSAGE, BPA, PROPXIST) 

This form of print.un is similar to the previous form but it can be used when 
the information to be displayed is in the form of a basic probability assignment 
rather than a belief function. The syntax for both BPA's and PROP-LIST'B has 
been given previously. 
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| 17.2.4 Retrieving Uncertain Belief 

syntax: get.bp&.rmiQUESTION, PROP-LIST) is BPA 

This command allows the system to obtain uncertain input from the user without 
automatically adding that belief to a frame and causing it to be propagated 
around the frame network. The QUESTION statement provides the text of the 
question to be asked of the user and the PROP-LIST (the syntax of which is 
given above) provides the alternatives to offer. The information entered by the 
user is returned in the value of the proposition is the form of a basic probability 
assignment, BPA (note that this is the only command proposition which has a 
value other than an assumed "is true"). 

| 17.2.5 Storing Uncertain Belief 

syntax: store_un(FRAME, BPA) 

This command causes a basic probability assignment to be added to a frame 
and propagated around the frame network. FRAME is the name of the frame 
to which the belief is to be added and BPA is the basic probability assignment 
being added (the syntax for basic probability assignments is given above). 

I 17.2.6 Retrieving the Best Alternative 

syntax: best_un(FKAME, PROP-LIST, BEST-PROP, QUALITY) 

This command accesses the frame network to obtain the alternative which has 
the most belief for being the correct answer, as well as a measure of how much 
confidence can be placed on the assessment. The FRAME is the name of the 
frame for which the best alternative is desired and the PROP-LIST is the list 
of alternatives for that frame (syntax as above). The BEST-PROP and the 
QUALITY are supplied as variables in the control problem file and when the 
term is solved as the current goal they will have the correct values assigned to 
them (BEST-PROP is returned as the name of an alternative enclosed in square 
brackets and QUALITY is returned as a real number between 0 and 1). The rule 
in following example obtains the best value for some frame and then prints that 
information on the screen: 

rule 42 : 
the_best_alternative is found 

i f best_un('LOCATION', 
[ [ ' P a r i s ' ] . 
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['New York'], 
['Hawaii'], 
['Australia'] ]. [BEST], QUALITY) 

and print [$The best location for your vacation would be $, 
BEST, $ and my degree of confidence in this 
decision is $, QUALITY]. 
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Chapter 18; Running FRO 

A FRO program which includes frame-based inexact reasoning is operated in an 
identical manner to rule-only FRO programs (described in Part I, chapter 11 of 
this documentation). The only difference is the use of IBIS input screens, which 
has been described in chapter 14. Note that because of these screens, a mouse is 
required for operating frame-based FRO whereas it is an option with rule-based 
FRO. Note also that although the control rules used in a frame-based FRO 
application can be traced, "why" queried, and so on, there is no real tracing of 
the D-S belief propagation at FRO's present stage of development. 
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chapter 19; Sample Files 

• 19.1 Sample file 1: Design Knowledge Base 

The following is a simple design knowledge base created by the MKB session 
listed in chapter 15. The domain is selecting an appropriate vacation destination. 

File: " S A M P L - 1 1 .DKB" 

mmmm S A M P L - U . D K B mmmm 
XXX Chosing a vacation destination 

xxxxxxxxxxxx frames xxxxxxxxxxxx 
add.frame('MAIN ATTRACTION', 

['shopping and nightlife', 
'sunshine and beaches']), 

add.frame('COSTS'. 
['cheap', 
'medium', 
'expensive']). — 

add.f rame ('LOCATION'. — .'. 
['Paris'. 
•New York'. 
•Hawaii'. 
'Australia']). 

XXXXXXXXXXXX links xxxxxxxxxxxx 
add_link('MAIN ATTRACTION', 'LOCATION', 

[('shopping and nightlife', 
[(['New York'. 'Paris']. 0 . 7 ) , 
(['Australia', 'New York', 'Paris']. 0 . 2 ) , 
(['Australia', 'Hawaii'. 'New York'. 'Paris'], 0 . 1 ) ] ) , 
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('sunshine and beaches', 
[(['Hawaii'], 0.3), 
(['Australia', 'Hawaii'], 0.7)]) 

add.link('COSTS', 'LOCATION'. 
[('cheap', 

[(['New York'], 0.1), 
(['Hawaii'. 'New York']. 0.8). 
(['Hawaii'. 'New York'. 'Paris']. 0.1)]). 

— ('medium', - - — 
[(['Hawaii'. 'New York']. 0.6), 
(['Hawaii*. 'New York', 'Paris'], 0.3), 
(['Australia'. 'Hawaii', 'New York'. 'Paris']. 0.1)]). 

('expensive', 
[(['Australia']. 0.4). 
(['Australia', "Paris'], 0.4), 
(['Australia'. 'New York', 'Paris'], 0.2)]) _ 

] ) . 

XXXXXXXXXXXX init ial BPA's xxxxxxxxxxxx 
add.bpaCCOSTS', 

[(['cheap'], 0.1). 
(['cheap', 'medium'], 0.1), 
(['cheap', 'expensive', 'medium'], 0.8)]). 
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• 19.2 Sample file 2: Control Knowledge Base 

The following is the control knowledge base created by the MKB session listed in 
chapter 15 which accompanies the design knowledge base listed in the previous 
section. 

File: "SAMPL-ll.CKB" 

mmmm S A M P L E - H . C K B XXXXXXXXXXXX 
XXX Chosing a vacation destination 

mmmm g o a l mmmm 
goal session is complete. 

XXXXXXXXXXXX rules XXXXXXXXXXXX 
rule session is complete 

if load.un $SAMPL-11.DKB$ 
and query_un 'MAIN ATTRACTION' 
and query_un 'COSTS' 
and print.un ($The best alternative for "LOCATION'* is:$, 

'LOCATION'. [ 
['Paris']. 
['New York']. 
['Hawaii'], 
['Australia'] ]). _ 

XXXXXXXXXXXX questions XXXXXXXXXXXX 
'MAIN ATTRACTION' ask.un $What is the best alternative for "MAIN 
ATTRACTION"?! - ~: 

ait [ _ _ _ . ; i ; 
'shopping and nightlife', 
'sunshine and beaches']. 

'COSTS' ask.un $What is the best alternative for "C0STS"?$ 
alt [ 

'cheap'. 
'medium*, 
'expensive'] . 
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19.3 Sample file 3: Revised Control Knowledge Base 

The following is a revision of the previously listed control knowledge base which 
is customize for the particular application. The wording of the questions has 
been changed and the uncertain D-S results are interpreted by the program. 

File: "SAMPL-12.CKB" 

XXXXXXXXXXXX SAMPLE-ll.CKB XXXXXXXXXXXX 
XXX Chosing a vacation destination 

XXXXXXXXXXXX goal XXXXXXXXXXXX 
goal 1 :: location is suggested. 

XXXXXXXXXXXX rules XXXXXXXXXXXX 
rule 1 : 

location is suggested 
i f load.un $SAMPL-11.DKB$ 

and query_un 'MAIN ATTRACTION* 
and query_un 'COSTS* 
and best.un ('LOCATION*. 

[ ['Paris']. 
['New York*]. 
['Hawaii']. 
['Australia'] ], [BEST].QUALITY ) 

and result(BEST.QUALITY) 1B analyzed. 

rule 2 :: T ' ~~ ~ 
result(LOCATION.QUALITY) is analyzed 

If QUALITY > 0.7 
and print [$I can strongly recommend that you go to $,LOCATION]. 

rule 3 :: 
resuit(LOCATION.QUALITY) is analyzed 

i f QUALITY > 0.4 
and print [$My best guess is that you try $.LOCATION]. 

rule 4 : 
result(LOCATION,.) is analyzed 

i f print [$It seems as though $,LOCATION, 
$ would suit your needs, but I suggest that 
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you try to get some more information first 
because I'm not very sure$]. 

xxxxxxxxxxxx questions xxxxxxxxxxxx 
'MAIN ATTRACTION' ask.un $What is the main attraction that you 

are interested in?$ 
alt [ 'shopping and nightlife', 

'sunshine and beaches']. 

'COSTS' ask.un tWhat price range are we talking about?$ 
alt [ 'cheap', 

'medium', 
'expensive']. 


