# SOME ASPECTS OF LOAD DURATION

BEHAVIOUR IN WOOD

by

KENNETH BRUCE CLARK

B.A.Sc. (1972)

The University of British Columbia

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE

in the Department

of

CIVIL ENGINEERING

We accept this thesis as conforming to the required standard

The University of British Columbia

April, 1975

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

#### K. B. Clark

Department of Civil Engineering

The University of British Columbia Vancouver 8, Canada

April 1975

## ABSTRACT

Present design stresses for structural timber include a reduction factor to account for the duration of loading. Recent studies have shown however that this factor does not apply to commercial grade timber containing knots and other irregularities of grain. It has also been shown that the apparent Young's modulus perpendicular to grain in clear material decreases greatly with longer durations of loading. It was therefore hypothesized that in commercial grade wood, stress concentrations are made less severe in long term loadings because of stress redistribution made possible by straining perpendicular to grain.

This thesis found experimentally that the amount of tensile straining perpendicular to grain around a knot in timber beams subjected to bending increased substantially with long duration loadings. In conjunction with this, a computer simulation of the material around a knot showed that a decreasing apparent Young's modulus perpendicular to grain reduces the stresses perpendicular to grain.

ii

# TABLE OF CONTENTS

|            | P                                       | age |
|------------|-----------------------------------------|-----|
| ABSTRACT . |                                         | ii  |
| TABLE OF ( | CONTENTS                                | ii  |
| LIST OF TA | ABLES                                   | vi  |
| LIST OF F  | IGURES                                  | ii  |
| ACKNOWLED  | GEMENTS                                 | ix  |
| CHAPTER    |                                         |     |
| 1.         | INTRODUCTION                            | 1   |
|            | 1.1 Background                          | 1   |
|            | 1.2 Recent Investigations               | 2   |
|            | 1.3 Purpose and Scope                   | 8   |
| 2.         | EXPERIMENTAL OBSERVATIONS               | 12  |
|            | 2.1 Introduction                        | 12  |
|            | 2.2 Selection of Method                 | 12  |
| :          | 2.3 Specimen Preparation                | 15  |
|            | 2.4 Loadings                            | 16  |
|            | 2.5 Instrumentation                     | 19  |
|            | 2.6 Test Set-Up                         | 20  |
|            | 2.7 Analysis                            | 20  |
|            | 2.8 Results                             | 31  |
|            | 2.9 Failure Modes                       | 37  |
|            | 2.10 Summary                            | 40  |
| 3.         | INFLUENCE OF STIFFNESS PERPENDICULAR TO |     |
|            | GRAIN                                   | 41  |
| · . ·      | 3.1 Introduction                        | 41  |

CHAPTER

.

Page

|           | ·                                          |
|-----------|--------------------------------------------|
|           | 3.2 The Finite Element 42                  |
|           | 3.3 The Problem                            |
|           | 3.4 Results of the Parametric Study 50     |
|           | 3.5 The $E_x/E_y$ Ratio • • • • • • • • 54 |
|           | 3.6 Shear Modulus Effect                   |
|           | 3.7 Summary 60                             |
| 4.        | CIRCULAR HOLE IN A FINITE PLATE HAVING     |
|           | GRAIN TYPE ORTHOTROPY                      |
|           | 4.1 Introduction                           |
|           | 4.2 The Problem                            |
|           | 4.3 Preliminary Tests                      |
|           | 4.4 Tension Zone Sizes and Positions 68    |
|           | 4.5 Stress Distribution on Axes of         |
|           | Symmetry                                   |
|           | 4.6 Summary                                |
| 5.        | CONCLUSIONS                                |
| REFERENCE | 5                                          |
| APPENDICE | 5                                          |
| А.        | THE FINITE ELEMENT                         |
|           | A.L The Potential Energy Theorem 94        |
|           | A.2 Derivation of the Six Node Plane       |
|           | Linearly Varying Strain Orthotropic        |
|           | Triangle                                   |
|           | A.3 Derivation of Strains and Stresses.109 |
| B.        | BEHAVIOUR AND TESTING OF THE FINITE        |
|           | FT.FMFNT                                   |

iv

.

| CHAPTER |     |               |     |    |   |    |   |    |   |   |   |   |   | Page        |
|---------|-----|---------------|-----|----|---|----|---|----|---|---|---|---|---|-------------|
|         | B.1 | Convergence.  | •   | •  | • | •  | • | •' | • | • | • | • | • | <b>11</b> 1 |
|         | B.2 | Testing       | • ' | •  | • | •  | • | •  | ٠ | • | • | • | • | 112         |
| C.      | THE | COMPUTER PROG | RAI | M. | • | •' | • | •  | • | • | • |   |   | 118         |

v

# TABLES

| Table                        | Page |
|------------------------------|------|
| I Testing Schedule           | 32   |
| II Tension Zone Areas        | 35   |
| III Parametric Analysis Data | 46   |
| IV Input Data: Hole in Plate | 70   |

vi

# FIGURES

| Figure |                                          | Page |
|--------|------------------------------------------|------|
| 1.1    | Madison Test                             | 3    |
| 1.2    | Duration of Maximum Load                 | 5    |
| 1.3    | Failure Loads: Clear                     | 6    |
| 1.4    | Failure Loads: No. 2 Construction        | ?    |
| 1.5    | Tension PerpFailure Stress: Commercial . | 9    |
| 1.6    | Tension PerpElastic Modulus: Clear       | 10   |
| 2.1    | Specimen Preparation                     | 17   |
| 2.2    | Specimen Control Point Layout            | 18   |
| 2.3    | Reference Frame                          | 21   |
| 2.4    | Test Set-Up                              | 22   |
| 2.5    | Validator Machine                        | 24   |
| 2.6    | Photograph Coordinates                   | 25   |
| 2.7    | Specimen P                               | 26   |
| 2.8    | Specimen 2                               | 27   |
| 2.9    | Specimen 3                               | 28   |
| 2.10   | Rapid Failure Mode                       | 38   |
| 2.11   | Slow Failure Mode                        | 39   |
| 3.1    | Typical Grain Pattern                    | 48   |
| 3.2    | 35 Element Model                         | 49   |
| 3.3    | Bending                                  | 51   |
| 3.4    | Bending X Strains                        | 52   |
| 3.5    | Bending Y Strains                        | 53   |
| 3.6    | Tension Loading X Strains                | . 57 |
| 3.7    | Tension Loading Y Strains                | . 58 |

| 3.8  | Bending 'Slow' Test Shear Modulus Effect                            | 61              |
|------|---------------------------------------------------------------------|-----------------|
| 3.9  | Tension Shear Modulus Effect                                        | 62              |
| 4.1  | 188 Element Model                                                   | 66              |
| 4.2  | Edge Stresses: X Direction                                          | 67              |
| 4.3  | Edge Stresses: Y Direction                                          | 69              |
| 4.4  | Stress Distribution X Direction Isotropic .                         | 72              |
| 4.5  | Stress Distribution X Direction $E_x/E_y = 20$ .                    | · 73            |
| 4.6  | Stress Distribution X Direction $E_x/E_y = 40$ .                    | 74              |
| 4.7  | Stress Distribution Y Direction Isotropic .                         | ' 75            |
| 4.8  | Stress Distribution Y Direction $E_x/E_y = 20$ .                    | 76              |
| 4.9  | Stress Distribution Y Direction $E_x/E_y = 40$ .                    | 77              |
| 4.10 | Strain Distribution X Direction Isotropic .                         | ' 79            |
| 4.11 | Strain Distribution X Direction $E_x/E_y = 20$ .                    | 80              |
| 4.12 | Strain Distribution X Direction $E_x/E_y = 40$ .                    | 81              |
| 4.13 | Strain Distribution Y Direction Isotropic .                         | 82              |
| 4.14 | Strain Distribution Y Direction $E_x/E_y = 20$ .                    | <sup>:</sup> 83 |
| 4.15 | Strain Distribution Y Direction $E_x/E_y = 40$ .                    | 84              |
| 4.16 | Stresses in the X Direction Side DE                                 | 85              |
| 4.17 | Stresses in the Y Direction Side DE $\cdot$ $\cdot$ $\cdot$ $\cdot$ | 87              |
| 4.18 | Stresses in the X Direction Side BC $\cdot$ $\cdot$ $\cdot$ .       | 88              |
| 4.19 | Stresses in the Y Direction Side BC $\therefore$                    | • 90            |
| A.1  | Element Configuration .' .' .'                                      | 97              |
| B.1  | Uniformly Loaded Membrane                                           | 113             |
| B.2  | 32 Element Cantilever                                               | • 114           |
| B.3  | Edge Stresses X Direction Isotropic 🔒 🔒                             | 116             |
| в.4  | Edge Stresses Y Direction Isotropic                                 | 117             |

viii

## ACKNOWLEDGEMENTS

I wish to thank my supervisors, Professor B. Madsen and Dr. M.D. Olson, for their advice and support throughout the preparation of this thesis. In addition, I would like in particular to thank Mr. Ron Ungless, the U.B.C. Civil Engineering Department program librarian, for advice and logistic assistance far beyond the duties of his office.

Two scholarships provided by the National Research Council of Canada enabled me to undertake these studies.

# April 1975

Vancouver, British Columbia

ix

#### CHAPTER 1

#### INTRODUCTION

# 1.1 Background

Timber is employed as the main structural , material in many houses, apartments, shopping centres and industrial buildings in British Columbia, and its production is a vital part of the province's economy. Until recently, allowable design stresses had been derived by extrapolation from laboratory data, and little effort had been made to understand the microscopic behavior of construction grade timber under load. Examination of this behavior may make possible more accurate and rational utilization of information derived from experimental studies of small wood specimens. Because allowable stresses for structural timber include reductions to account for long term loadings, the mechanisms that produce this effect deserve detailed The first major work on this subject was carried studv. out at the Forest Products Laboratory in Madison Wisconsin and was reported in 1951.<sup>1</sup> One hundred and twenty-six one inch by one inch matched clear specimens

of Douglas Fir were tested in bending. One of each pair was loaded to failure in a static test taking about five The matched specimen was then given a constant minutes. bending moment to produce a stress equal to from 60 to 95 per cent of the failure stress of its partner. Based on these results, some of which were obtained from 6 per cent and some from 12 per cent moisture content specimens, and some from heat treated specimens, Fig. 1.1 was obtained. It predicts that the long term strength of specimens (fifty years of applied load) is over 40 per cent lower than the short term strength (from a five minute test). This reduction, derived from bending tests on small clear specimens has been empirically applied to the bending, shear and tension perpendicular to grain strengths of full size timber containing knots, checks and adverse slopes of grain.

# 1.2 Recent Investigations

Investigations from 1970 to the present of the load duration effects on commercial grade wood have been carried out at the University of British Columbia, and have shown disagreement with the Madison Wisconsin results. In Madsen's (U.B.C.) experiments<sup>2,3,4,5</sup> several rates of stepwise ramp loading were used to study the strengths of clear and commercial grade full size lumber. One hundred and eighty-nine clear 2x6's and two hundred and eighty-five number two grade 2x6's were tested to failure in bending at six





ε

rates of loading such that failure occurred about 1; 10, 100, 1000, 10000 and 100000 minutes after initial load application. The number two grade specimens contained knots and other grain irregularities. Fig. 1.2, adapted from the Madison Wisconsin report, shows that approximately 80 per cent of the total strength reduction would occur within the longest of these time spans. From Fig. 1.3 and Fig. 1.4 it is apparent that while the load duration strength reduction effects predicted by Fig. 1.2 might represent the behaviour of clear material, they cannot be blindly applied to materials containing irregularities of grain. This is particularly true in the neighbourhood of the 5th percentile of strength, from which design stresses are derived. This should have been obvious since commercial material, containing knots and adverse slopes of grain, has different modes of failure that clear The latter often develops wrinkles in the material. compression zone as a prelude to final failure, while the former usually fails near one of the irregularities because of stress concentrations in the tension zone.2,3 Analagous results were obtained for dry lumber subjected to shear. 4 Dry lumber subjected to pure tension perpendicular to grain however exhibited considerable reductions in strength and apparent stiffness with time.<sup>5</sup> From a one minute test to a two month test, the average reduction in failure stress on the gross section for number two grade lumber was 33 per cent, of the same order as

STRESS FOR LONG-TIME LOADING - % 200 220 14 0 00 120 160 180 ISEC. 10<sup>-1</sup>MIN Fig. 1-2 100% I MIN. DURATION OF MAX. LOAD 92% IO MIN. 84.5 % IHOUR 10<sup>2</sup> MIN. 77% IO<sup>3</sup> MIN. I DAY 71% 10<sup>4</sup> MIN. 65.5 % IMONTH 10<sup>5</sup>MIN. 80% OF TOTAL STRENGTH LOSS I YEAR 10<sup>6</sup> MIN. **IO YEARS** 107 MIN. **50 YEARS** 

RATIO OF WORKING STRESS TO RECOMMENDED

Ş

.





δ



Figure I-4

~

the 35 per cent reduction predicted by the Madison test results of Fig. 1.2. The time dependent stiffness was however an average of approximately eight times smaller for a 100,000 minute test than for a 1 minute test. Stiffnesses were not considered in the Madison work. The strength phenomenon was shown by Fig. 1.5 for commercial material, and the time dependent stiffness reduction by Fig. 1.6 for clear material. In this paper, time dependent stiffness will refer to total strains (elastic and creep) while under load.

#### 1.3 Purpose and Scope

From these results, the hypothesis was drawn that the effects of stress concentrators like knots decrease with time because of redistributions of stress in material adjacent to irregularities of grain. This effect would increase the failure strength of commercial material to at least partially compensate for the strength reductions with time found in clear lumber by the Madison It was further hypothesized that the very large tests. reductions of the time dependent stiffness perpendicular to grain could, in a long term loading, permit extensive tensile straining perpendicular to grain and lead to some kind of flow in the material surrounding stress Stresses perpendicular to grain to cause concentrators. this straining would be set up by the more marked curvature of grain in commercial than in clear material.



TENSION PERP. - FAILURE STRESS COMMERCIAL

FIG. 1-5



The purpose of the present investigation was then twofold. The first purpose was to experimentally determine whether or not the amount of tensile straining perpendicular to grain in wood containing irregularities increases significantly with the duration of load. The second purpose was to discover through a computer simulation whether or not a time-dependent stiffness perpendicular to grain could produce a significant effect that di not exist in clear material.

#### CHAPTER 2

#### EXPERIMENTAL OBSERVATIONS

## 2.1 Introduction

The load duration behaviour of wood containing stress raisers has been observed to be different from that of straight grained material. A necessary part of the proving of the hypothesis involves an experimental investigation of the strains under load in irregular material. Strains parallel and perpendicular to the longitudinal axis (approximately parallel and perpendicular to the assumed grain pattern) of a beam having a single edge knot in the middle of an otherwise clear segment were studied. The measured strains included creep, if occurring, as inelastic mechanisms contribute to redistribution of stress.

# 2.2 Selection of Method

Although any method of testing would at best show only the behaviour of the surface plane of material, at the least an indication of the total strain distribution inside the board could be obtained. One constraint on the testing procedure was that the character of the wood surface should not be altered by attaching any material more stiff than the specimen itself. Anything coupled to the surface must be guaranteed to deform exactly as the material beneath it. As well, the grain pattern should be visible so that the point of failure initiation could be seen and so that strains could be related during analysis to the board configuration. Because the behaviour was not predictable, it was also desirable to have the capability of measuring strains at several stress levels. Finally, the strains had to be emenable to recording while the test was in progress without disturbing the specimen.

Strains could have been measured directly using strain gauges or brittle coatings. Displacements could have been measured by using moire grids. There were however objections and logistic difficulties to these methods. Because the number of strain gauges required would have obliterated the face of the specimen, and the gluing process could have changed the surface character, this method was discarded. Brittle coatings had several drawbacks. They crack only once at a prescribed strain, and further cracking occurs elsewhere only as this same strain is reached. A complete strain distribution cannot therefore be obtained at any time; the entire approach is iterative and the behaviour at any position after a crack has formed is unknown. As well, coating specifications indicated that viscous flow would occur during a slow

test to such an extent that straining due to creep would not be visible. The cracking process is irreversible; shock loadings resulting from settlement of the apparatus or tearing of a few fibres near the knot would cause permanent cracking although the board might rebound elastically. Finally, the coating is opaque and the cracks resulting from even extreme loadings were found not to be readily visible.

Using moire grids, contours of displacement can be obtained directly and strains can be calculated. Some problems were that it would have been logistically very difficult to maintain a reference grid and that rigid body rotations resulting from the unsymmetric curvature of a beam would appear as displacement fringes and would have to be subtracted from the results. In one attempt for this study, a lithographer duplicated two hundred line per inch screens onto transparent stripping Ideally the grid would have separated from the film film. after gluing so that only a matrix of lines would have remained on the board. Two problems arose however. First, the film did not strip cleanly, and second, the special stripping film cement caused the wood to expand in ridges. Undercoatings were used to prevent the glue moisture from penetrating the wood, but all waterproof varnishes cracked on loading thereby altering the character of the specimen face.

The method finally used was the most direct.

A two-dimensional grid of .013 inch diameter shallow holes spaced one-half inch centre to centre was punched into the surface of a board, and the distances between holes were measured before and after loading. During straining of course the holes were deformed, but if the deformation was assumed to be symmetric (a reasonable assumption over .013 inch) then the centre of the hole was a suitable point for measurement. A greater problem was that since the diameters were much larger that the displacements occurring between them, shear strains calculated from distances on the board face lacked significance although the normal strains were meaningful. Advantages of this method were that rigid body motions could be ignored, displacements at each stress level could be easily recorede on film, and the measurement process did not affect the sample once the holes had been punched. An experimental study of clear grained material was not undertaken because only the surface material was visible, and while the presence of a knot can be guaranteed through the thickness of a board, the absence of grain irregularities cannot.

### 2.3 Specimen Preparation

To minimize the number of unknowns in relating this work to that of Madsen, the aspect ratio of the specimens was made similar to that of a 2x6.<sup>3,4</sup> Pairs of specimens as nearly identical as possible were examined, one at a fast and one at a slow loading rate. Specimens

.625 inch by 2.500 inches having an aspect ratio of .250 (as compared to .273 for a 2x6), made by splitting 2x6's as in Fig. 2.1, were used. They were 84 inches long with a single approximately semicircular edge knot of .5 to 1.5 inch radius in the middle. The knot had to extend through the board with minimal change in diameter from one side to the other and have its longitudinal axis orthogonal to the faces of the specimen. To simplify the later modelling of the discontinuity on the computer, the knots chosen were as simple as possible with apparently smooth flowing grain around them.

The 2x6's were cut lengthwise to produce a section approximately 2.75 inches by 1.50 inches so as to create a half knot near the middle of one edge. This board was then jointed before being run lengthwise through a saw to become two sections 84 inches by 2.75 inches by .625 inch, which were mechanically planed to the final size. An eight inch long section in which the knot was centred was then finely sanded. A brass grid containing one hundred and eighty-five holes was clamped over this section and the .013 inch diameter holes were punched into the specimen using a special tool designed to ensure that penetration was perpendicular to the face of the board and of approximately .020 inch depth. The pattern of holes is illustrated in Fig. 2.2.

# 2.4 Loadings

To be consistent with previous work and because



Fig. 2 - I

 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

X

Specimen Control Point Layout . Fig.2-2

Y

it was the simplest type of arrangements, the specimens 2,3 were tested in uniform bending. Failure stresses at the extreme fibres of approximately 4000 psi were expected and at least five increments to failure were desirable if intermediate stress levels were to be examined. Stress increments of about 5000 psi on the gross section were therefore used. Rates of loading were selected so that failure could be expected in either approximately eight minutes or eight days. These rates, if uniform would have been equivalent to 480 psi/minute and 480 psi/day (or .33 psi/minute), producing a ratio of loadings of This ratio of loadings will be called the 1440 to 1. rate factor throughout this study. A preliminary set of specimens was tested to failure in order to see the type of results that would occur. When they were analyzed it became apparent that further tests would be required in order to establish significant results, The analysis however required monopolization of laboratory equipment. A total of three sets of specimens was loaded to failure.

# 2.5 Instrumentation

A reference frame, consisting of a thin aluminum border onto whose perimeter were glued steel rules marked in hundredths of an inch, rested on top of the specimen on a rocker and a roller so that the bending

was not restrained and the test region was surrounded as in Fig. 2.3. The specimens were photographed onto black and white film before and after every load increment by an Hasselblad E.L.M. single lens reflex camera with a 50 millimetre wide angle lens onto 2.25 inch square negatives. The camera was set on a tripod with three dimensional control so that its platform could be maintained horizontal while it was lowered to match the vertical deflexions of the specimens. This kept the negative face of the camera parallel to the face of the board.

# 2.6 Test Set-Up

The specimen, reference frame and loading pan were set up as in Fig. 2.4. The specimen board was supported on metal semicircles at each end and was restrained from lateral motion by plywood forks attached to a fixed support mechanism. The forks were spaced at sixteen inches centre to centre and were sufficiently deep to prevent instability type failures of the specimen. Loads were applied by twenty-five pound lead ingots laid on the loading pan shown in Fig. 2.4 so that a uniform bending moment resulted over the thirty-two inch long section in which the knot was centred.

#### 2.7 Analysis

The 2.25 inch square negatives of the test region were enlarged so that the specimen in the photograph was approximately twice life-size. The enlargements were



# Fig. 2-3 REFERENCE FRAME





then placed on a Browne and Sharpe Validator measuring machine equipped with a microscope (Fig. 2.5) so that the X- and Y- coordinates of the centre of each hole could be measured with an accuracy of .0002 inch and a precision of .0001 inch. The hole centre was located by an averaging of two readings as in Fig. 2.6.

Because of the small displacements occurring between any hole and those adjacent, only the preliminary photo and the final photo before visible cracking were useful for numerical analysis. The different stress levels this procedure produced for each pair of photographs was justified because the knots varied in size and the stresses calculated from the gross section only spproximated the true stresses near the knot. The stress levels used are shown in Figs. 2.7, 2.8 and 2.9. Calibration was performed on the Validator machine by comparing the distances on the reference frame scales with the true distances. A computer program was written which, given the photographic coordinate data, calculated strains in both the X and Y directions by dividing the calibrated displacements by the true distances between the centres of holes. The average strain from the end of each row or column to each point was also calculated but was not found to be a useful parameter.

Because of film over-exposure, the preliminary tests did not produce results as complete as those produced by later tests. The former did however show in





Fig. 2-6 PHOTOGRAPH COORDINATES







Y STRAINS - SLOW TEST 1920 PSI



Fig. 2 - 7


X STRAINS - FAST TEST 2880 PSI

Y STRAINS - FAST TEST 2880 PSI Y STRAINS - SLOW TEST 2880 PSI

2880 PSI



Fig. **2-8** 



X STRAINS-FAST TEST 1920 PSI X STRAINS - SLOW TEST 1920 PSI



Y STRAINS-FAST TEST 1920 PSI

1920 PSI

SPECIMEN 3 TENSION SHOWN SHADED

Fig. 2.7 that the hypothesis of an expanding tension region perpendicular to grain adjacent to a knot might have validity. The preliminary tests were useful as well in demonstrating how the experimental results could best be organized for reduction on the computer. The remaining four tests were performed and analyzed according to the method explained above.

The strains in the X and Y directions were plotted independently for each test, and the fast test results were compared with those for the slow tests. Attempts were initially made to plot contours of strain magnitude, but following an error analysis it was found that the strain magnitude at descrete points had less significance than the sizes of the regions in tension and compression, which were consistent through the error study. Because of errors inherent in the method, the calculated strains represented a set of numbers which was useful and consistent although individual strain magnitudes might not be strictly accurate. Strains between two points were plotted at the midpoint of the straight line joining them, and linear interpolation was used in separating the tension from the compression regions. Some discretion was used in smoothing the curves. Figs. 2.7, 2.8 and 2.9 represent identical faces of the specimens for both the fast and the slow test of each set. It can be noted from Fig. 2.1 that if the photographs had been used directly, mirror images of the strain fields would be shown. This correction was

made internally by the computer program.

Before discussing the results, some of the uncertainties in the analysis should be mentioned. The dots on the photographs had poorly defined edges so that they could not be trapped as precisely as in Fig. 2.6. After finishing the measurements on each photograph however, several points were remeasured and the positions of their centres were found to be in agreement to within .001 to .003 inches of the orginal readings. Any incremental error as readings were taken from one side of the photograph to the other was minimal since a given point was compared only with those immediately adjacent to it, and the positions of all points were independently related to the reference frame scale. Another possible error arose from the measurement of displacements in the X direction along straight lines rather than along curved lines parallel to an assumed neutral axis. This problem was examined and the differences between the method used and a more accurate one were found to be negligible in even the most severe cases.

The camera was set up only twenty inches horizontally form the specimen so that wide variations in calibration were observed over the area of the photograph and the linear interpolations used in calibrations may not have been strictly accurate. As well, the photographic enlargement process was carried out by a commercial establishment which, although doing everything possible to

maintain accuracy, could not guarantee the precision. All of these uncertainties were minor but could have had some effect on individual strain magnitudes. Any changes measured between the fast and slow tests were significant however since all of these considerations were consistent for all tests.

#### 2.8 Results

A summary of the specimen failure stresses and of the stresses on the gross section at which the strains were measured from the photographs is presented in Table The photographs measured were those showing the board 2.1. having only the weight of the loading frame applied and those at the maximum load before visible cracking. The latter were chosen because the largest possible displacements were desirable in order to give the greatest significance of results. Measuring visibly cracked material involved discontinuous displacements and would have precluded comparison with simple computer simulations as well as with structural material before failure. In design, the important stress level in a material is that which can be accepted prior to failure.

Specimen P had different loading rates, a different loading rate factor (as defined above), and a much smaller knot than did the specimens of series 2 and 3. The P series results indicated that the logistics of adjusting the camera required a slower fast test, and that a larger knot

| Specimen | Loading<br>Rate          | Failure Stress<br>on Gross Section<br>psi | Stress Increment on<br>Gross Section<br>Analyzed psi |
|----------|--------------------------|-------------------------------------------|------------------------------------------------------|
| P-1      | <u>480 psi</u><br>15 sec | 4800                                      | 4800                                                 |
| P-2      | <u>480 psi</u><br>24 hrs | 2880                                      | 1920                                                 |
| 2-1      | <u>480 psi</u><br>min    | 3360                                      | 2880                                                 |
| 2-2      | <u>480 psi</u><br>24 hrs | 2880                                      | 2880                                                 |
| 3-1      | <u>480 psi</u><br>min    | 2880                                      | 1920                                                 |
| 3-2      | <u>480 psi</u><br>24 hrs | 3360                                      | 1920                                                 |
|          |                          |                                           |                                                      |

## TESTING SCHEDULE

Table 2.1

,

.

was required if significant displacements were to be easily measured.

The strains in the X direction (i.e. perpendicular to grain immediately to the left and right of the knot and approximately parallel to grain elsewhere) ranged from approximately -.0150 to +.0200. The average X- strains in all regions were of similar magnitude although pockets of high tensile and compressive strains appeared near the The main difference in X- strain magnitudes from knots. fast to slow tests was a strong tendency toward increased tension (or reduced compression) in the latter. The size of this strain change varied from zero to about +.0020 although most of the regions enjoyed relatively small alterations of the order of +.0050. The area around the knot did not show any more of a difference in strain magnitudes in the X direction than did the rest of the board when the fast and slow series were compared.

The strain magnitudes in the Y direction (i.e. in general perpendicular to grain above the knot and some distance to the sides of it, and approaching parallel to grain immediately beside the knot) were of the order of -.0150 to +.0150 in fast tests, -.0200 to +.0200 in one slow test (specimen 2) and -.0100 to +.0070 in the other slow test (specimen 3). The difference in strain magnitudes was about three times greater for specimens 2 than for specimens 3, indicating perhaps that the creep effect perpendicular to grain was greatly accented by a higher

stress level. As well, in specimen 2 shown in Fig. 2.8, all of the differences were towards tensile strains while specimen 3, shown in Fig. 2.9, had some of its strains approach compression for the slow test as compared to the The general tendency for specimen 3 was howfast one. ever toward increased tension in the Y direction. For both series 2 and 3 the strains in the Y direction in the middle third of the test region, where the knot was located, were 75 per cent higher than were those farther away. This indicated that the presence of a knot greatly accents the straining perpendicular to grain. All series showed a marked increase for slow tests over fast tests in the magnitudes of the tensile strains and in the size of the tensile region in the Y direction.

The areas of the tensile regions in both the X and Y directions in the test area were measured using a planimeter on Figs. 2.7, 2.8 and 2.9. The results are presented in Table 2.2. The rate factor is the ratio of the loading rate in the fast case to that of the slow case. Tests P were not included in the averages because of the different loading rates, the smaller knot and the smaller number of points available for the calculation of strains.

Although the tensile strain area in the X direction experienced substantial magnification, it appeared that the majority of relaxation took place in the Y direction. Relaxation is defined here as a tendency

| Specimen | Rate<br>Factor | Fast Test<br>Per cent<br>Tension | Slow Test<br>Per cent<br>Tension | Magnification<br><u>% Slow Tension</u><br>% Fast Tension |
|----------|----------------|----------------------------------|----------------------------------|----------------------------------------------------------|
| P        | 5760           | 54                               | 8                                | .15                                                      |
| 2        | 1440           | 39                               | 82                               | 2.10                                                     |
| 3        | 1440           | 57                               | 65                               | 1.14                                                     |

TENSION ZONE AREAS

Average magnification of 2 and 3= 1.62

Table 2.2A X Direction

| Specimen | Rate<br>Factor | Fast Test<br>Per cent<br>Tension | Slow Test<br>Per cent<br>Tension | Magnification<br><u>% Slow Tension</u><br>% Fast Tension |
|----------|----------------|----------------------------------|----------------------------------|----------------------------------------------------------|
| P .      | 5760           | 14                               | 66                               | 4.71                                                     |
| 2        | 1440           | 23                               | 86                               | 3.74                                                     |
| 3        | 1440           | 34                               | 62                               | 1.82                                                     |

Average magnification of 2 and 3= 2.78

Table 2.2B Y Direction

toward inelastic straining under constant load. It does not imply that local stresses are constant. Examining Figs. 2.7, 2.8 and 2.9 for strains in the X direction, an increase in the size of the tensile strain zone adjacent to the knot can be seen for the slow tests. To the sides of each knot this strain in the X direction has a substantial component perpendicular to grain.

The tensile strain field areas in the Y direction were substantially larger for all specimens in the slow tests than in the fast tests as can be seen in Table 2.2. Further, the fields became more uniform in tension on the knot periphery. That is, the tensile zone tended to surround the knot rather than just abut onto it in places. The majority of the tension perpendicular to grain zone increase occurred above the knot and along the edges of the board. By combining the tension fields in the X direction beside the knot and in the Y direction above it a tremendous growth in the size of the region in tension perpendicular to grain can be seen for the slow tests over the fast tests. It was unfortunate that because of the small displacements observed it was impossible to examine intermediate stress levels to determine the stresses at which the majority of the straining perpendicular to grain took place.

The strain diagrams seem to show that the laws of equilibrium in bending have been violated. It was not clear exactly what caused this effect but it was seen in

all cases. Most likely, the strain pattern through the wood varies somewhat from that visible on the surface so that overall a typical bending strain distribution is present. This does not affect the significance of the measured increases in strain perpendicular to the surface grain.

#### 2.9 Failure Modes

The rapidly loaded specimen of series P failed away from the knot, but the five others broke adjacent Initiated usually by perpendicular to grain to it. cracking at the adverse grain slope adjacent to the knot, failure occurred in one of two ways. The first, which happened in fast tests, involved a rapid fracturing of material so that the board was broken explosively as in Fig. 2.10. The second, occurring in the slow tests, was preceded by a large amount of tensile straining perpendicular to grain above the knot. This caused a crack or cracks to open up above the knot, and this crack gradually spread along the grain with further applications of load until either a shear type failure occurred or the cracked grain reached the edge of the board. There was visible cracking for some time before final failure. An example of this second mode is shown in Fig. 2.11. These two types of failure reinforce the suspicion that since different modes of failure are likely to occur for different rates of loading, the effect of a knot or other dis-



CRACKS PROPPED OPEN BY SPACERS Fig. 2-11 SLOW FAILURE MODE





continuity on the strength will also vary with the rate of loading.

#### 2.10 Summary

The first part of the two part problem defined in section 1.3 has now been investigated within the scope of this present research. The tensile straining perpendicular to grain is significantly greater for slow loadings than for fast loadings in both magnitude and the size of the area which is affected. The majority of relaxation occurred perpendicular to grain above the knot, indicating that the presence of a grain irregularity increases the amount of straining and therefore the capability for stress redistribution. That some smoothing of stress raising irregularities occurs with long duration loadings is indicated by the greater uniformity of the shape of the tensile strain zones than with fast loading. The evidence of this smoothing effect is further reinforced by the 'softer' or more gradual type of failure experienced by slowly loaded specimens.

### CHAPTER 3

# INFLUENCE OF STIFFNESS PERPENDICULAR TO GRAIN

#### 3.1 Introduction

The work of the previous chapter showed that considerably more tensile straining perpendicular to grain occurred in slow tests than in rapid tests. The next stage in investigating the hypothesis of section 1.3 was to investigate whether or not a time dependent stiffness perpendicular to grain, such as found in pure specimens , would produce strain fields similar to those found experimently around a knot.

The procedure chosen for the investigation of the effect of stiffness perpendicular to grain was the finite element method. Plane stress behaviour in bodies of irregular shape can be thus programmed for solution on a computer. In this way as well, grain structure can be modelled and then assembled to form the final structure of the material.

#### 3.2 The Finite Element

The basic finite element theory is well known<sup>6</sup> so that only a brief description need be presented here. Consider a body subjected to stresses and displacements along parts of its boundary, and then consider dividing this domain into a number of subdomains with nodes along their edges. By deducing how each subdomain or element behaves in terms of displacements and forces at these nodes, and then combining all of these elements by matching degrees of freedom and summing corresponding forces at the nodes a solution can be obtained. This produces the standard stiffness problem and can be solved by traditional methods.

In order to model the in-plane behaviour of a beam, plane stress finite elements were used. The constraints on the particular element for this problem were that stiffnesses must be amenable to alteration parallel and perpendicular to the grain of the wood and not just to global axes, strings of elements must be able to change direction to model the curvature of the grain, the elements must be able to represent tension, compression and shear stresses, and there must be sufficient accuracy to ensure that the changing of a single elastic modulus will produce significant and consistent results. Constant strain triangles were initially used but were found to be grossly inaccurate when tested on a cantilever beam. A linear stress orthotropic six node triangle with

different elastic modulae parallel and perpendicular to one edge was therefore selected. The derivation of this element was carried out and the elements were tested in a few simple cases. Details are presented in Appendices A and B, and a copy of the computer program is enclosed as Appendix C.

#### 3.3 The Problem

To obtain satisfactory results and to model the grain curvature as accurately as possible, it was desirable to examine a fine mesh of finite elements. Because of the expense involved however, a parametric analysis was performed on a fairly coarse mesh in order to select the optimal modulae for input to a larger problem, to investigate how some of the elastic parameters affect the strain distribution around a knot, and to obtain some preliminary results for comparison with the experimentally obtained strain distributions.

It was beyond the scope and the purpose of this investigation to try to refine a finite element that would accurately reflect the behaviour of wood. One stage modelling only was used. Simplifications like assuming the same elastic modulae for wood in tension and compression and ignoring the effects of local fibre tearing were made. The sole purpose here was to examine the effect of one set of orthotropic stress-strain modulae on the overall strain pattern of the model described below.

Madsen's recent work has shown that the time dependent stiffness (combined elastic and inelastic straining) decreases with the rate of loading. Tests on material containing knots, adverse grain slope, and other discontinuities showed little variation in either the modulus parallel to grain or the bending strength, with the duration of load application for those boards in a sample which fail at the lower per centiles of strength. 2,3 The time dependent stiffness perpendicular to grain did however exhibit a very marked decrease as the duration of loading was lengthened. To repeat the original hypothesis then, large magnitude tensile straining perpendicular to grain might provide a mechanism for stress redistribution around discontinuities so as to minimize their effect on the strength of the material.

Decreasing the elastic stiffness perpendicular to grain in the finite elements was used to model the effects of long duration loadings on the stresses and strains around a simulated knot. Since in the parametric analysis of an elastic body all changes are relative and linear, it was found useful to arbitrarily fix the apparent modulus parallel to grain at  $1.8 \times 10^6$  psi and the Poisson's ratio for straining perpendicular to grain resulting from application of load parallel to grain at .30. The former is believed to decrease by only 10 to 20 per cent during the time periods examined here, and reliable information could not be found about the latter.

Table 3.1 shows the input data used for the main part of the investigation. The subscripts x and y on  $E_x$  and  $E_y$ refer to the element x and y axes, not to the global X and Y axes. A series of test calculations was run in which the ratio of Poisson's ratios  $\mathcal{L}_{yx}/\mathcal{L}_{xy}$  was varied and in which the shear modulus was increased by a factor of 10. In the 'slow-G reduced' test calculations, the shear modulus was reduced by 30 per cent to approximately model to findings of a previous study.

It was recognized that by altering the apparent Young's modulae without changing the Poisson's ratios, the laws of conservation of energy and in particular the reciprocal theorem were violated. This problem was ignored for two reasons. First, in the real material it was unclear how much each Poisson's ratio would change and second, the reduced apparent Young's modulus perpendicular to grain was in the real case likely caused by creep, an inelastic effect, so that conservation of energy did not apply. As well, a series of tests showed alterations in the Poisson's ratio to have had negligible effect on results in the program.

Using a high power microscope, the grain around five knots (that is, twenty quarters of knots) was traced. Using these tracings, the distance in radii from the knot centre to the beginning of grain curvature, and the angle of grain at specific normalized coordinate locations were measured for each case. After averaging

| Case<br>Name | E <sub>x</sub><br>psi | Ey<br>psi           | υ <sub>xy</sub> | $\mathcal{U}_{\mathrm{yx}}$ | G<br>psi             | E <sub>x</sub> /E <sub>y</sub> |
|--------------|-----------------------|---------------------|-----------------|-----------------------------|----------------------|--------------------------------|
| Isotropic    | 1.8x10 <sup>6</sup>   | 1.8x10 <sup>6</sup> | .30             | • 30                        | 6.90x10 <sup>5</sup> | 1                              |
| Fast         | 1.8x10 <sup>6</sup>   | .9x10 <sup>5</sup>  | .05             | • 30                        | 1.15x10 <sup>5</sup> | 20                             |
| Median       | 1.8x10 <sup>6</sup>   | .3x10 <sup>5</sup>  | .05             | .30                         | 1.15x10 <sup>5</sup> | 60                             |
| Slow         | 1.8x10 <sup>6</sup>   | .1x10 <sup>5</sup>  | .05             | • 30                        | 1.15x10 <sup>5</sup> | 180                            |
| Slow G red   | 1.8x10 <sup>6</sup>   | .1x10 <sup>5</sup>  | .05             | • 30                        | .85x10 <sup>5</sup>  | 180                            |

PARAMETRIC ANALYSIS DATA

 $E_x$  = Young's modulus parallel to grain  $E_y$  = Young's modulus perpendicular to grain  $U_{xy}$  = Poisson's ratio for straining parallel to grain caused by stress applied perpendicular to grain

$$U_{yx}$$
 = Poisson's ratio for straining perpendicular  
to grain caused by stress applied parallel  
to grain

Table 3.1

these parameters, the single quarter knot which most closely resembled the average was used for modelling. Unfortunately the grain density could not be directly measured. When lines were made continuous to follow the known directions of grain at every point however, a grain density resulted. Finally, an element mesh was drawn into the diagram and the result was a problem consisting of thirty-five elements and eighty-eight nodes. The resulting model is shown in Fig. 3.1. This was small enough to be solved in the core of the computer and was sufficiently inexpensive to run that it was suitable for a parametric study. Fig. 3.2 shows this mesh. The finite elements were placed into the modelled grain by forcing a certain edge of each element (the 1-2 edge in Appendix A) to be oriented parallel to the grain boundary. The elastic modulae of each element were oriented parallel and perpendicular to this edge. The edges parallel to grain have double lines in Fig. 3.2.

The loadings were of arbitrary magnitude and were applied in both bending and pure tension. The examination in bending was for comparison with experimental results and that in tension was to show a little more clearly the effects of parametric manipulations since the applied stress/strain gradient would be absent. Since the problem was programmed as linear elastic, a pure compression loading would have produced exactly the same results as for pure tension but with the signs reversed.

. . . . ٠. .•... •. . 、 · \* D\* ÷., ۰, :, · . . . . • . . ' 1.1.1 ÷  $x^{*}$ TYPICAL GRAIN PATTERN

Fig. 3-1

10





Symmetry was employed by forcing the nodes above the right hand edge of the knot to have zero horizontal displacement. Vertical support was supplied by restraining one of the nodes at the left hand side of the mesh. The boundary conditions did not provide any restraint along the bottom edge of the model.

#### 3.4 Results of the Parametric Study

The calculated results obtained directly were strains in the global X and Y directions at each node. By rotating all strains into these axes an average strain was obtained that could be presented in the same form as the experimental results. Using the strains in the global coordinate directions, plots showing the tension and compression regions of the model were drawn. These were important in showing those regions in which tension perpendicular to grain was produced and in which therefore large scale stress redistribution would be encouraged. The relative magnitudes of the strains were also examined.

Figures 3.3, 3.4 and 3.5 show the positions and sizes of the tension and compression regions for bending moment loading. Fig. 3.3 was produced for comparison with Figs. 2.7, 2.8 and 2.9. It may be observed that the tensile strain fields in the global Y direction grew laterally as the ratio of  $E_x/E_y$  was increased. Similarly, the strains in the global X direction tended to become more tensile beside the knot as  $E_x/E_y$  increased.



| (a),(b),(c),(d)<br>E.=1.8 × 10 <sup>6</sup> | TENSION SHOWN SHADED |
|---------------------------------------------|----------------------|
| * <sub>xy</sub> = .05                       | BENDING              |
| ×yx= 30                                     | Fig. <b>3 - 3</b>    |
| $G = 1.15 \times 10^6$                      |                      |

54

,



(a) Isotropic



(b) 'Fast' E<sub>y</sub>=.9 x 10<sup>5</sup>



(c)'Medium'  $E_y = .3 \times 10^5$ 



(d)'Slow'E<sub>y</sub>=.1 x 10<sup>5</sup>

| (a)                                                                            | (b),(c),(d)           | (e)                   |
|--------------------------------------------------------------------------------|-----------------------|-----------------------|
| E <sub>x</sub> =1.8 x 10 <sup>6</sup><br>E <sub>y</sub> =1.8 x 10 <sup>6</sup> | 1.8 x 10 <sup>6</sup> | 1.8×10 <sup>6</sup>   |
| <b>≠</b> xy=.30                                                                | .05                   | .05                   |
| *yx=.30                                                                        | .30                   | .30                   |
| G = 6.9 x 10 <sup>5</sup>                                                      | 1.15×10 <sup>5</sup>  | .85 x 10 <sup>5</sup> |



(e)'Slow - G Reduced  $E_y = .1 \times 10^5$ 

TENSION SHOWN SHADED BENDING X STRAINS Fig. 3-4







(b) 'Fast' E<sub>y</sub>= .9 x 10<sup>5</sup>



(c)'Medium' Ey=.3×10<sup>5</sup>



(d) 'Slow'  $E_y = .1 \times 10^5$ 

| (a)                                   | (b),(c),(d)            | (e)                   |
|---------------------------------------|------------------------|-----------------------|
| E <sub>x</sub> =1.8 x 10 <sup>6</sup> | 1.8 x 10 <sup>6</sup>  | 1.8 x 10 <sup>6</sup> |
| Ey=1.8 x 10 <sup>6</sup>              |                        |                       |
| ₽ <sub>xy</sub> =.30                  | .05                    | .05                   |
| ₽yx=.30                               | .30                    | .30                   |
| G = 6.9 x 10 <sup>5</sup>             | 1.15 x 10 <sup>5</sup> | .85×10 <sup>5</sup>   |



(e)'Slow - G Reduced'E<sub>y</sub> =  $1 \times 10^5$ 

TENSION SHOWN SHADED BENDING Y STRAINS Fig. 3-5

53

Adjacent to the knot, the strains in both the X and Y directions were tensile. These trends are the same as the experiment if one takes higher  $E_x/E_y$  ratios to represent slower test loadings. However the amount of tensile strain region growth here was not as much as in the experiments.

The disparities in the sizes of tension regions between the experiment and the finite element solution probably resulted from the crude modelling of the problem. In real material, the elastic modulae need not be identical throughout the specimen and may vary with changes in the grain density as it curves around the knot. As well, of course the modulae are not perfectly elastic in real material. Further the difference in the elastic modulae for tension and compression was not included. However the modelling did reproduce the experiment trends and therefore further work using this model seemed justified.

## 3.5 The $E_x/E_y$ Ratio

Under bending simulation, the strains in the X direction along the bottom of the board became smaller as the knot was approached, and the distance from the knot at which this decrease became significant increased with the  $E_x/E_y$  ratio. As the simulated knot was approached from the left the maximum tensile strains moved away from the base of the board toward the midheight until the knot was reached at which point the maximum strains in the X direction

occurred again at the bottom of the section (that is, directly above the knot). This effect was accentuated as  $E_{x}/E_{v}$  was increased indicating that the material immediately beside the knot was carrying less load as the stiffness perpendicular to grain was reduced, and that therefore the semicircular notch was becoming relatively more shallow and less of a stress or strain concentrator. Strains in the X direction near the knot were much larger than those away from it in the same grain in the tension region, and the strain concentration factor (comparing average strains in the bottom grain away from the knot with those in the same grain above the knot in an ad hoc manner) increased from 1.56 for the isotropic case to 2.88 for  $E_x/E_v = 20$  to 4.95 for  $E_x/E_v = 180$ . That is, reductions in  $E_y$ , the apparent stiffness perpendicular to grain, produced much greater changes in the X- strain in the curved area near the knot than in the straight grain farther away. The strains perpendicular to grain were also much greater near the knot than away from it, but strain concentration factors as calculated for the X direction could not be obtained here because at some ratios of  $E_x/E_v$  many of the nodal strains in the affected region were in compression. Figs. 3.4 and 3.5 show as well that the tensile strain fields both parallel and perpendicular to grain increased in size as the  $E_x/E_v$  ratio was increased.

With pure tension loading there was of course

no neutral axis. Figs. 3.6 and 3.7 show the tension regions loaded for this case. The uniform tensile strains in the X direction at the left hand edge of the model became concentrated toward the centre of the beam as the knot was approached. As in bending however, the maxima occurred immediately above the knot. With  $E_x/E_y = 20$  a compression zone existed to the left and slightly above the knot. Both the size of this compression zone and the magnitude of its strains decreased as the degree of orthotropy was increased. At the same time, the bottom edge of the board became less highly strained in the X direction. The strain concentration factors as defined above were for this case 2.77 for isotropic, 4.13 for  $E_x/E_v = 20$  and 7.18 for  $E_x/E_v = 180$  so that again increasing orthotropy had greater effect on strains near the knot than on those away from it. The strains in the Y direction were, as expected, in uniform compression away from the knot. As the knot was approached from the left, this compression became localized toward the centre of the board until near the knot the entire section went into Maximum strain magnitudes were found directly tension. above the knot and, as for bending, the sizes of the tension fields in both the X and Y directions increased with  $E_x/E_y$ .

The directions of principal stress and strain were produced by the computer program, but the coarseness of the mesh and the small number of points at which the stresses and strains were calculated made it impossible



(d) 'Slow' E<sub>y</sub> = 1 x 10<sup>5</sup>

TENSION SHOWN SHADED TENSION LOADING X STRAINS Fig. **3 - 6** 

57

 $\begin{array}{c|cccc} (a) & (b),(c),(d) \\ \hline E_x = 1.8 \times 10^6 & 1.8 \times 10^6 \\ \hline E_y = 1.8 \times 10^6 & \\ *_{xy} = .30 & .05 \\ *_{yx} = .30 & .30 \\ \hline G = 6.9 \times 10^5 & 1.15 \times 10^5 \end{array}$ 

(c) 'Medium' E<sub>y</sub> = 3 x 10<sup>5</sup>



(b),(c),(d)

1.8 x 10<sup>6</sup>

.05

.30

1.15 x 10<sup>5</sup>

(a)

Ex=1.8 x 10<sup>6</sup>

Ey=1.8 x 10<sup>6</sup>

G = 6.9 x 10<sup>5</sup>

₽<sub>xy</sub>=.30

≠<sub>yx</sub>=.30

TENSION SHOWN SHADED TENSION LOADING Y STRAINS Fig. 3 - 7

with this problem to produce a coherent plot of the results. This was done however for a larger problem which will be discussed in the next chapter. Under purely tensile modelling, the principal strains were parallel to grain throughout the mesh except for a region to the left of the knot where they seemed to tend towards being perpendicular to grain. This tendency and the size of the region increased with increasing levels of orthotropy. The same was true for the bending moment model except that because of the applied strain gradient the effects were a little more difficult to see directly. The amount of tension strain perpendicular to grain increased substantially as the apparent Young's modulus ratio was increased.

The principal stress directions in pure tension were parallel to grain throughout except near the knot and along the bottom of the beam as the knot was approached. The increase in orthotropy tended to take stress away from the bottom of the beam and redistribute it so that the principal lines of tension flowed smoothly around the knot and apparently made the section approach that of a beam with a gradually decreasing cross-section instead of that of a beam of constant cross-section having a semicircular notch. This same behaviour was visible in the moment loading case as well.

#### 3.6 Shear Modulus Effect

Arbitrarily increasing the shear modulus G by a factor of 10 also produced virtually the same result as with G left unchanged. It was found in general that the stiffer the model was in shear, the larger was the tensile strain field in the global X direction. Since the region of compressive strains in the X direction more closely approached the knot (in the region where X- strains approach being perpendicular to grain) when G was small, a more marked reduction in load with time might be expected for materials weak in shear. Fig. 3.8 shows these effects and indicates as well the danger involved in drawing conclusions from such a peripheral effect. Finally, a larger shear modulus produced a more uniform distribution of strains, and slightly smaller strains in the Y direction. Fig. 3.9 for tensile loading shows that the tension fields in the Y direction expand for 'slow' tests with the shear modulus magnified by 10, in the same manner as with the original shear modulus.

#### 3.7 Summary

From the preceding work a few conclusions were drawn. First, as the orthotropy of the model was increased, the material on the tension edge of a bending problem adjacent to the knot became relatively stressless and became thereby a less important part of the load carrying mechanism. Second, as this was happening, the tensile



(a) X Strains



(b) Y Strains



(c) X Strains



(d) Y Strains



BENDING 'SLOW' TEST SHEAR MODULUS EFFECT

Fig. **3 - 8** 

| (a),(b)                               | (c),(d)                |
|---------------------------------------|------------------------|
| Ex=1.8 x 10 <sup>6</sup>              | 1.8 x 10 <sup>6</sup>  |
| E <sub>y</sub> =. 1 x 10 <sup>5</sup> | . L x 10 <sup>5</sup>  |
| ν <sub>xy</sub> = .05                 | .05                    |
| ≠ <sub>yx</sub> = 30                  | .30                    |
| G = 1.15 x 10 <sup>5</sup>            | 1.15 x 10 <sup>6</sup> |



(a)'Fast'X Strains



(b)'Fast' Y Strains



(c)'Slow' X Strains

| (a),(b)                               | (c),(d)                |
|---------------------------------------|------------------------|
| E <sub>x</sub> =1.8 x 10 <sup>6</sup> | 1.8 x 10 <sup>6</sup>  |
| E <sub>y</sub> =.9 x 10 <sup>5</sup>  | . I x 10 <sup>5</sup>  |
| ₽ <sub>xy</sub> =.05                  | .05                    |
| v <sub>yx</sub> =.30                  | .30                    |
| G = 1. 15 x 10 <sup>6</sup>           | 1.15 x 10 <sup>6</sup> |



(d)'Slow' Y Strains

TENSION SHOWN SHADED TENSION SHEAR MODULUS EFFECT Fig. **3 - 9**
strains in the Y direction (roughly perpendicular to grain) were increasing in this region and could have been a factor in allowing stress redistribution. Therefore third, the effect of the knot as a stress raiser was being This bears out the results of previous studies decreased. which have shown construction grade material not to experience significant decreases in strength with time.<sup>2,3</sup> A rapidly loaded beam fails at a knot as if it had been notched, whereas slowly loaded beams have been found to fail in shear or at some adverse slope of grain away from These different failure mechanisms imply that a knot. material with defects cannot be considered to be the same as clear material into which a notch has been cut. Slope of grain apparently magnifies the tensile strain perpendicular to grain and contributes to a smoothing of discontinuities. The results indicated that the semicircular notch in the model tended to behave as a broader defect, avoiding the very high stress concentrations which occur at sharp corners.

#### CHAPTER 4

# CIRCULAR HOLE IN A FINITE PLATE HAVING GRAIN TYPE ORTHOTROPY

#### 4.1 Introduction\_

In Chapter 3, a finite element investigation was made of the effects of orthotropy on the stresses and strains around a semicircular notch on one edge of The model was subjected to uniform tensile a beam. stresses in one case and to a linearly varying stress gradient in another. These simulations were related to experimental work with an edge knot. In real material however, the knot or other discontinuity may occur away from an edge. As an approach to a more general case, a circular hole in a finite plate was modelled. Curving grain surrounded the hole so that the problem was different from that of a hole in a material having orthotropy relative to global X and Y axes. The elements were triangular and had their elastic modulae parallel and perpendicular to one edge. This edge (the 1-2 edge of Fig. A.1) was oriented along the local grain line. The model of this investigation was more detailed than

the 35 element simulation of Fig. 3.2.

#### 4.2 The Problem

The problem configuration was similar to that of Fig. 3.1. Fig. 4.1 shows the model used. It has 419 nodes and 188 elements. Double symmetry was employed by forcing the nodes along the bottom of the finite element mesh to have zero Y displacement and the nodes along the right hand side to have zero X displacement. A consistent uniform tensile load vector of arbitrary magnitude was applied to the left hand side of the model. The elements were those described in Section 3.2 and Appendix A.

#### 4.3 Preliminary Tests

The model was first examined in the isotropic and  $E_x/E_y = 100$  cases. The results were recorded in Figs. 4.2 and 4.3 for stresses in the X and Y directions respectively. Fig. 4.2 for stresses in the X direction shows that the finite element solution for Fig. 4.1 had good agreement with the analytic solution for an infinite plate when elastic modulae are isotropic. When a large orthotropy ( $E_x/E_y = 100$  with subscripts x and y referring to element axes) was applied, the region adjacent and to the left of the hole went into compression in the X direction. This would tend to decrease the likelihood of tensile cracking as a prelude to failure. In the region above the hole, the peak stress in the X direction was greatly magnified by the application of orthotropy.



Fig. 4-1 188 ELEMENT MODEL

CNTR

CLAR PLDI# 00839048.

## TENSION LOADING

TENSION

. Fig. 4-2

EDGE STRESSES X DIRECTION

INFINITE ISOTROPIC-ANALYTIC- PLATE ISOTROPIC-FINITE ELEMENT --- Ex/Ey=100-FINITE ELEMENT

67

11.1.

TENSION

The location of the peak stress (immediately above the hole) was unchanged.

Fig. 4.3 for stresses in the Y direction shows substantial differences between the finite element solution of Fig. 4.1, and the analytic solution for a hole in an infinite plate. This was because the finite element model was finite in the Y direction, although it could be considered infinite in the X direction. The distribution of stress was however similar in both cases, with peak stresses occurring in the same locations. With  $E_x/E_v = 100$ , the peak stresses along both edges of the model were reduced and the stresses in the Y direction above the hole oscillated before reaching zero at the top edge of the model. The Y stress immediately above the hole was non-zero, thereby apparently violating equilibrium. For this reason, further analysis was performed at  $E_x/E_v$  ratios of 1,20 and 40. At an orthotropic ratio of 40 it was found that the normal stress above the hole was approximately zero. At  $E_x/E_v = 20$ , the modulae in timber subjected to short duration loadings are approximately represented.

#### 4.4 Tension Zone Sizes and Positions

The elastic modulae input for the series of test calculations are given in Table 4.1. The G modulus for orthotropic cases was taken to represent the values found by Madsen. It was found in Madsen's tests that the shear modulus varies very little with the duration

TENSION LOADING TENSION TENSION

5

Fig. 4-3 EDGE STRESSES Y DIRECTION

| E <sub>x</sub> /E <sub>y</sub> | E <sub>x</sub><br>psi | E<br>y<br>psi | ху    | ух   | G<br>psi |
|--------------------------------|-----------------------|---------------|-------|------|----------|
| 1                              | 100                   | 100           | • 30  | • 30 | 38       |
| 20                             | 100                   | 5             | .015  | • 30 | 6        |
| 40                             | 100                   | 2.5           | .0075 | .30  | 6        |

 $E_x$  = apparent Young's modulus parallel to grain  $E_y$  = apparent Young's modulus perpendicular to grain

$$U_{xy}$$
= Poisson's ratio for straining parallel to  
grain caused by stress applied perpendicular  
to grain

 $U_{yx}$ = Poisson's ratio for straining perpendicular to grain caused by stress applied parallel to grain

Table 4.1 Input Data

of load.

The sizes and locations of the tensile stress zones in the X and Y directions are shown in Figs. 4.4 to 4.9 inclusive. A heavy line separates regions of tension and compression, and the tension zones are indicated. The numbers written at the element corners are relative values of stress. The arbitrary scale on which the values are measured is different for stresses in the Y direction than in the X direction. One unit of stress in the X direction is equivalent to ten units of stress in the Y direction.

Analagous to the results of Chapter 3, the stresses in the X direction as shown in Figs. 4.4, 4.5 and 4.6 indicate that the region immediately to the left of the hole became less highly stressed in tension as the degree of orthotropy was increased. This bore out the hypothesis that in general the material to the left of the hole contributes less to the load carrying capacity of the section as the degree of orthotropy is increased.

The stresses in the Y direction as presented in Figs. 4.7, 4.8 and 4.9 show that the size of the tension zones adjacent to the hole increase with increasing orthotropy. In the region above the hole the stresses in the Y direction (approximately perpendicular to grain) are significantly smaller for  $E_x/E_y = 40$  than for  $E_x/E_y = 20$ . As a crude measure of this, the average of all tensile Y strains above the hole in the former is 25, and in the latter is 30 ( the strains being relative only ). This



CLAR PLOT# 00839048.













reduction of stress perpendicular to grain with increasing orthotropy could tend to reduce the deleterious effect of curving grain on the strength perpendicular to grain in wood.

The strains in the X direction as shown in Figs. 4.10, 4.11 and 4.12 indicate that as the degree of orthotropy was increased, the region to the left of the hole was less highly strained in tension.

Figs. 4.13, 4.14 and 4.15 for strains in the Y direction show an expanding zone of tensile strains perpendicular to grain as the degree of orthotropy was increased. As discussed in previous chapters, the additional straining perpendicular to grain could assist in the redistribution of stresses. The magnitudes of the strains perpendicular to grain increased substantially as the apparent Young's modulus perpendicular to grain was reduced.

#### 4.5 Stress Distribution on Axes of Symmetry

Graphs were produced showing the stress distributions along edges BC and CD (see Fig. 4.1) of the model of this chapter. Distributions were shown for the finite element solutions of  $E_x/E_y$  equal to 1,20 and 40. In addition, the analytic solution for an infinite plate with a central hole was shown in Figs. 4.16 to 4.19 inclusive.

Along edge DE (above the hole) the stresses in the X direction were shown by Fig. 4.16 to have a fundamentally different distribution for orthotropic than













É8



ή8



for isotropic elastic modulae. The isotropic case had a relatively smooth decrease in stress from D towards E. The orthotropic cases experienced a large oscillation in stress parallel to the Y axis. The isotropic analytic solution was provided only for reference since it was calculated for an infinite plate and did not apply directly to the model of Fig. 4.1. From  $E_X/E_y = 20$  to  $E_X/E_y =$ 40, the change in behaviour was minimal although the peak stress did increase slightly with increasing orthotropy.

In Fig. 4.17 for stresses in the Y direction on side DE, a 60 per cent decrease in peak stress perpendicular to grain was experienced from the isotropic case to  $E_x/E_y =$ 20. A further 15 per cent decrease was experienced from  $E_x/E_y = 20$  to  $E_x/E_y = 40$ . The stress distribution was similar for all cases. The reduction in stress perpendicular to grain would diminish the likelihood of the cracking perpendicular to grain that was described in Chapter 2 as being the usual mode of failure initiation for slowly loaded timber containing knots.

Along edge BC to the left of the hole, the material was shown by Fig. 4.18 to be less highly stressed in the X direction as the degree of orthotropy was increased. In the isotropic case, all of the material along the edge was in tension. In going to  $E_x/E_y = 20$  and  $E_x/E_y = 40$ , the magnitudes of tensile stresses decreased and the magnitudes of tensile stresses decreased and the magnitudes of comp-

| $\epsilon_{\rm res}$                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X<br>X<br>TENSION                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D<br>D<br>ISOTROPIC-FINITE ELEMENTS           | S<br>E PLATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| OR7HO7R0PIC-E_/E_*20F/NH                      | TE ELEMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ORTHOTROPIC + ExVES +40FINIT                  | E ELEMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Fig. 4-17 STRESSES IN THE Y DIRECTION SIDE DE | And a second sec |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



ressive stresses adjacent to the hole increased.

Fig. 4.19 for stresses in the Y direction along edge BC showed a significant decrease in peak tensile stress perpendicular to grain near the hole in going from isotropic modulae to increasing levels of orthotropy. This was particularly apparent at section 1-1. The smaller stresses perpendicular to grain would inhibit the opening of cracks adjacent to the hole.

#### 4.6 Summary

The study of this chapter produced results analagous to those of Chapter 3. The material to the left of the hole became less highly stressed in the direction of load application as orthotropy was increased. The sizes of the regions in tension perpendicular to grain increased with increasing orthotropy. The most important result of this study was however the decrease in peak stress perpendicular to grain above and to the left of the hole as the orthotropy was increased. Since the degree of orthotropy is believed to increase with the duration of a loading, the opening of cracks perpendicular to grain would be inhibited in slow loadings. The stress reduction perpendicular to grain would therefore partially compensate in slow tests for the reduction in strength found in clear material by the Madison Tests.



#### CONCLUSIONS

The region surrounding an edge knot in a timber beam experienced greater tensile straining perpendicular to grain with long duration loadings than with short duration loadings. Both the size of the tensile strain zone perpendicular to grain and the magnitudes of its consituent strains increased for slower tests. In addition, the strain field became more uniform.

It was found, through a computer simulation of the physical tests, that a reduction of stiffness perpendicular to the lines of grain would reproduce the trends found experimentally. The area of the tension field perpendicular to grain increased with increasing orthotropy. A detailed modelling of a hole in the centre of a plate having grain type orthotropy showed an expanding tension field and increasing tensile strain perpendicular to grain. It also showed that if the material did behave elastically, the stresses perpendicular to grain above and beside the hole would be reduced with increasing levels of orthotropy.

These results provided some basis for the 2,3,4 findings of previous studies. Madsen's work at U.B.C. showed specimens subjected to tensile loadings perpendicular to grain to be accompanied by very

substantial decreases in stiffness perpendicular to grain as the duration of the loadings was increased. It was shown in this thesis that the increased straining perpendicular to grain also took place in beams subjected to long term bending applications. It was shown by modelling that this straining could be caused by decreasing stiffness perpendicular to grain. Large scale straining perpendicular to grain could be a mechanism to promote stress redistribution and reduce peak stresses perpendicular to grain. This would be a reason for the different behaviours found for clear material and material containing knots or other grain irregularities when load duration is considered.

#### REFERENCES

- 1. Lyman Wood. <u>Relation of Strength of Wood to</u> <u>Duration of Load</u>. Report 1916 Forest Products Laboratory, Madison Wisconsin, Forest Service, U.S. Department of Agriculture, 1951.
- 2. Borg Madsen. <u>Duration of Load Tests on Dry</u> <u>Lumber in Bending</u>. Structural Research Series Report No. 3., Department of Civil Engineering, University of British Columbia, 1971.
- 3. Borg Madsen. <u>Duration of Load Tests on Wet</u> <u>Lumber in Bending</u>. Structural Research Series Report No. 4, Department of Civil Engineering, University of British Columbia, 1972.
- 4. Borg Madsen. <u>Duration of Load Tests on Dry</u> <u>Lumber Subjected to Shear</u>. Structural Research Series Report No. 6, Department of Civil Engineering, University of British Columbia, 1972.
- 5. Borg Madsen. <u>Duration of Load Tests for Wood</u> <u>in Tension Perpendicular to Grain</u>. Structural Research Series Report No. 7, Department of Civil Engineering, University of British Columbia, 1972.
- 6. O.C. Zienkiewicz. <u>The Finite Element Method in</u> <u>Engineering Science</u>. McGraw-Hill, London, 1971.
- 7. H.K. Ha and R. Sen. "HASENSXNDS". Computer program, University of British Columbia Civil Engineering Department Program Library, 1970.
- 8. S.P. Timoshenko and J.N. Goodier. <u>Theory of</u> <u>Elasticity</u>. pp. 90 - 97, 3rd Ed., McGraw-Hill, Toronto, 1970.

#### Appendix A

#### The Finite Element

#### A.1 The Potential Energy Theorem

The finite elements used in this paper were derived from strain energy considerations so that, as an introduction, the potential energy theorem should be examined.

> Let  $\pi_e$  = potential energy of an element  $\pi$  = total potential energy  $\mathcal{U}$  = total strain energy W = total potential energy of the load

> > $U_e$  = strain energy of an element  $W_e$  = potential energy of the load for one element

{Pe} = matrix of loads acting on an element

 $\{\delta\}$  = vector of displacements for an element

 $[k_e]$  = elemental stiffness matrix

{X} = vector of displacements for the entire problem

[K] = master stiffness matrix

[P] = master load vector

The potential energy theorem states that of all the displacement fields which satisfy compatibility and kinematic boundary conditions, the true displacement

field which satisfies equilibrium and stress boundary conditions provides a minimum for the potential energy. The total potential energy of an element is a function of both the strain energy and the potential energy of the load such that

$$\pi_e = U_e - W_e$$
$$U_e = \frac{1}{2} \left\{ \delta \right\}^T \left[ k_e \right] \left\{ \delta \right\}$$
$$W_e = \left\{ P_e \right\}^T \left\{ \delta \right\}$$

It has been shown that given certain continuity between elements the elemental energies can be summed to produce the total potential energy of the problem.

$$\pi = \frac{1}{2} \{ X \}^{T} [K] \{ X \} - \{ P \}^{T} \{ X \}$$
(A.1)

Applying the calculus of variations (A.1) to get a minimum potential energy gives

$$[K] \{X\} - \{P\} = 0$$
 (A.2)

This is the standard form of the stiffness problem where  $\{P\}$  is the vector of external loads and [K] is a stiffness matrix which comes from the strain energy calculations.

# <u>A.2 Derivation of the Six - Node Plane Linearly Varying</u> Strain Orthotropic Triangle

Since it was necessary to be able to alter elastic modulae relative to the direction of the grain at every point, the element was derived in terms of its local coordinate axes. Fig. A.1 shows a typical element rotated at some angle to the global (X,Y) coordinate system.

- Let  $\mathcal{U}$  = displacement of a node in the global X direction
  - $\mathcal{V}$  = displacement of a node in the global Y direction
  - f = local coordinate axis parallel
     to the 1-2 side of the
     triangle
  - γ = local coordinate axis perpendicular to the f axis and passing through node 3
  - $\widetilde{\mathcal{U}}$  = displacement of a node in the local  $\xi$  direction.
  - $\tilde{\mathcal{V}}$  = displacement of a node in the local  $\eta$  direction

a,b,c = length of side

The provision of a linearly varying strain distribution in an element requires that the displacement field be quadratic in both directions.



# Fig. A-1

## ELEMENT CONFIGURATION

1

 $\tilde{u} = a_1 + a_2 \tilde{S} + a_3 \eta + a_4 \tilde{S}_{\eta} + a_5 \tilde{S}^2 + a_6 \eta^2$ 

(A.3)

(A.4)

$$\tilde{U} = a_{7} + a_{8} \tilde{S} + a_{9} \eta + a_{10} \tilde{S} \eta + a_{11} \tilde{S}^{2} + a_{12} \eta^{2}$$

The twelve degrees of freedom necessary to be associated with the twelve constants of (A.3) were provided by  $\tilde{\mathcal{U}}$ and  $\tilde{\mathcal{V}}$  degrees of freedom at each of six nodes. Nodes 4,5 and 6 were located at the midpoints of the sides of the triangle.

Given the global coordinates of the corner nodes, simple geometry was employed to calculate the length parameters a,b and c and the angle  $\Theta$ .

$$\cos \Theta = \frac{x_2 - x_1}{r}$$

$$sin \Theta = \frac{y_2 - y_1}{r}$$

$$a = \left[ (x_2 - x_3)(x_2 - x_1) - (y_3 - y_2)(y_2 - y_1) \right]/r$$

$$b = \left[ (x_3 - x_1)(x_2 - x_1) + (y_3 - y_1)(y_2 - y_1) \right]/r$$

$$c = \left[ (y_3 - y_1)(x_2 - x_1) - (x_3 - x_1)(y_2 - y_1) \right]/r$$

$$r = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

The polynomial coefficients  $a_i$  of equations (A.3) were expressed as functions of the nodal displacements through the creation of a transformation matrix.
$$\widetilde{u}_{,}$$
=  $\widetilde{u}(-b_{,0})$ =  $a_{,}$ - $a_{2}b$ + $a_{5}b^{2}$ 

(A.5)

$$\widetilde{\mathcal{U}}_{i} = \widetilde{\mathcal{U}}(-b, 0) = a_{i} - a_{i}b + a_{ii}b^{2}$$

and similarly for other displacements so that the form

 $\{\vec{\delta}\} = [T]\{A\} \quad \text{was obtained}$ where  $\{\vec{\delta}\}^{T} = (\vec{u}_{1}, \vec{v}_{1}, \vec{u}_{2}, \vec{v}_{2}, \dots, \vec{u}_{6}, \vec{v}_{6}) \quad (A.6)$  $\{A\}^{T} = (a_{1}, a_{2}, a_{3}, \dots, a_{11}, a_{12})$ 

|                   | 1       | -b              | . 0           | 0                    | b                              | 0               | 0 | 0             | 0             | 0              | 0                              | 0               |
|-------------------|---------|-----------------|---------------|----------------------|--------------------------------|-----------------|---|---------------|---------------|----------------|--------------------------------|-----------------|
|                   | 0       | 0               | 0             | 0                    | 0                              | 0               | / | -b            | 0             | 0              | b <sup>z</sup>                 | 0               |
| · .               | 1       | a               | 0             | 0                    | a                              | 0               | 0 | 0             | 0             | 0              | 0                              | 0               |
|                   | 0       | 0               | 0             | Ó                    | 0                              | 0               | 1 | a             | 0             | 0              | a²                             | 0               |
|                   | 1.      | 0               | с             | 0                    | 0                              | c ²             | 0 | 0             | 0             | 0              | 0                              | 0               |
| ſ <del>-</del> 1- | 0       | 0               | 0             | 0                    | 0                              | 0               | 1 | 0             | с             | 0              | 0                              | C2              |
| [ ] -             | 1       | $\frac{a-b}{2}$ | 0             | 0                    | $\left(\frac{a-b}{2}\right)^2$ | 0               | 0 | 0             | 0.            | 0              | 0                              | 0               |
|                   | 0       | 0               | 0             | 0                    | 0                              | 0               | 1 | <u>a-b</u>    | 0             | 0              | $\left(\frac{a-b}{2}\right)^2$ | Ö.              |
|                   | 1       | $\frac{a}{2}$   | $\frac{c}{2}$ | $\frac{\alpha c}{4}$ | $\frac{\alpha^2}{4}$           | $\frac{c^2}{4}$ | 0 | 0             | Ö             | 0              | 0                              | 0.              |
| •                 | 0       | 0               | 0             | 0                    | 0                              | 0               | 1 | $\frac{a}{2}$ | <u>c</u><br>2 | $\frac{ac}{4}$ | $\frac{a^2}{4}$                | $\frac{c^2}{4}$ |
|                   | 1       | $-\frac{b}{2}$  | $\frac{c}{2}$ | $-\frac{bc}{4}$      | $\frac{b^2}{4}$                | $\frac{c^2}{4}$ | 0 | 0             | 0             | 0              | 0                              | 0               |
|                   | 0       | 0               | 0             | 0                    | 0                              | 0               | 1 | - 67          | $\frac{c}{2}$ | - <u>bc</u>    | $\frac{b^2}{4}$                | $\frac{C^2}{4}$ |
|                   | <b></b> | L               |               |                      |                                | •               |   |               |               | L              | (A                             | .7)             |

The transformation matrix was inverted to give

{A} = [ T - 1] { S}

(A.S)

The strain energy equation for plane stress is

$$\mathcal{U} = \frac{1}{2} / \int_{V} (\mathcal{T}_{x} \mathcal{E}_{x} + \mathcal{T}_{y} \mathcal{E}_{y} + \mathcal{T}_{y}) dV \qquad (A.9)$$

where

$$\begin{aligned}
\mathcal{T}_{\chi} &= \frac{E_{\chi}}{1 - \mathcal{D}_{xy}\mathcal{D}_{y\chi}} \quad (\mathcal{E}_{\chi} + \mathcal{D}_{xy} \mathcal{E}_{y}) \\
\mathcal{T}_{y} &= \frac{E_{y}}{1 - \mathcal{D}_{xy}\mathcal{D}_{y\chi}} \quad (\mathcal{E}_{y} + \mathcal{D}_{y\chi} \mathcal{E}_{\chi}) \quad (A.10) \\
\mathcal{T} &= G \mathcal{Y}
\end{aligned}$$

and for this problem,

| $\mathcal{T}_{\mathbf{x}}$ = normal stress in the local |
|---------------------------------------------------------|
| <pre>\$ direction</pre>                                 |
| $     \mathcal{T}_{y}   $ = normal stress in the local  |
| 2 direction                                             |
| $\mathcal{T}$ = shear stress                            |
| $\mathcal{E}_{\star}$ = normal strain in the local      |
| 5 direction                                             |
| $\mathcal{E}_y$ = normal strain in the local            |
| 2 direction                                             |
| l = shear strain                                        |
| $E_{\chi}$ = Young's modulus in the local               |
| 5 direction                                             |
| $\mathcal{E}_{y}$ = Young's modulus in the local        |
| l direction                                             |
| G = shear modulus                                       |
| $\mathcal{U}_{xy}$ = Poisson's ratio defining           |
| the strain in the ${\mathcal S}$ direction              |
| resulting from stress in the                            |

Substituting (A.10) into (A.9) and assuming constant thickness of the element yielded

 $\mathcal{U} = \frac{t}{z} \iint \left[ \frac{E_x}{1 - \partial_{xy} \mathcal{L}_{yx}} \left( \mathcal{E}_x^2 + \mathcal{L}_{xy} \mathcal{E}_x \mathcal{E}_y \right) \right]$ 

(A.11)

 $+ \frac{E_y}{I - \mathcal{D}_{xy}\mathcal{D}_{yx}} \left( \mathcal{E}_y^2 + \mathcal{D}_{yx}\mathcal{E}_x\mathcal{E}_y \right) + G\mathcal{E}_x^2 dA$ 

The strains required in (A.11) were obtained in terms of the polynomial coefficients  $a_i$  from the assumed displacement fields (A.3)

$$\begin{aligned} \mathcal{E}_{x} &= \frac{J\tilde{u}}{J_{5}^{2}} = a_{2} + a_{4}\eta + 2a_{5}S \\ \mathcal{E}_{y} &= \frac{J\tilde{v}}{J\eta} = a_{9} + a_{10}S + 2a_{12}\eta \\ \chi &= \frac{J\tilde{u}}{J\eta} + \frac{J\tilde{v}}{J_{5}^{2}} = a_{3} + a_{8} + (a_{4} + 2a_{11})S + (2a_{6} + a_{10})\eta \end{aligned}$$
(A.12)

Substituting (A.12) into (A.10) gave

 $\mathcal{U} = \frac{1}{2} \iint [\beta_x (\alpha_2^2 + \omega_{xy} \alpha_2 \alpha_3) + \beta_y (\alpha_3^2 + \omega_{yx} \alpha_2 \alpha_3)]$  $+(a_{x}^{2}+a_{x}^{2}+2a_{z}a_{B})G]dA$ + $\frac{t}{2} \int \left( \eta \left[ 2\beta_x a_2 a_4 + 4\beta_y a_9 a_{12} + (\beta_x \mathcal{D}_{xy} + \beta_y \mathcal{D}_{yx}) a_4 a_9 \right] \right)$ +  $(2 \mathcal{L}_{xy} \beta_x + 2 \mathcal{L}_{yx} \beta_y) a_2 a_2 + 2G(2a_6a_3 + 2a_6a_8 + a_3a_{10} + a_8a_{10})] dA$ +  $\frac{t}{2} / \int_{A} S[4\beta_x a_2 a_5 + (\beta_x \omega_{xy} + \beta_y \omega_{yx}) a_2 a_{10} + 2(\beta_x \omega_{xy} + \beta_y \omega_{yx}) a_5 a_9$  $+2\beta_{y}a_{9}a_{10}+2G(a_{3}a_{4}+2a_{3}a_{11}+a_{4}a_{8}+2a_{8}a_{11})]dA$ + = // Sn [4Bx a, as + (Bx winy + By wyx) a, a, o + 4 (Bx wy + By wyx) as a, 2 + 4 By a10 a12 + 26 (2a1 a6 + a1 a10 + 4a6 a11 + 2a10 a11)] dA  $+\frac{t}{2} \int \int S^{2} [4\beta_{x} a_{s}^{2} + 2(\beta_{x} \cup_{xy} + \beta_{y} \cup_{yx}) a_{s} a_{10} + \beta_{y} a_{10}^{2}]$ (A.14) $+G(a_{1}^{2}+4a_{1}^{2}+4a_{1}a_{1})]dA$ + = // n² [ Bx a42 + 2 (Bx Uxy + By Uyx) a4 a12  $+G(4a_{1}^{2}+a_{10}^{2}+4a_{1}a_{10})] dA$ Bx = Ex I-DxuDux By = T-Uxy Dyx where

Equation (A.14) was integrated noting that

 $\iint_{A} f(S,\eta) dA = \iint_{a,n-a} f(S,\eta) dS d\eta$ (A.15)

to produce an elemental stiffness matrix  $[k_1]$  in terms of the polynomial coefficients  $a_1 \cdots a_{12}$ 

$$[k1] = \frac{t}{2} \begin{bmatrix} [k_{11}] & [k_{12}] \\ \\ [k_{21}] & [k_{22}] \end{bmatrix}$$

(A.16)

0 0 0 0 0 0 ų  $\beta_{x} \frac{(a+b)c^{2}}{6} \qquad \beta_{x} \frac{(a^{2}-b^{2})c}{3}$  $\beta_x \frac{a+b}{2}c$ 0 0 5  $G \frac{(a+b)c}{2} \quad G \frac{(a^{\frac{1}{2}}-b^2)c}{6}$  $G \frac{(a+b)C^2}{3}$ 0 [k<sub>1</sub>] =  $\beta_{x} \frac{(a+b)c^{3}}{12}$  $G \frac{(a^{3}+b^{3})c}{12} \beta_{x} \frac{(a^{2}-b^{2})c^{2}}{12} G \frac{(a^{2}-b^{2})c^{2}}{12}$ STAMETALC  $\beta_x \frac{(a^3-b^3)c}{3}$ Ò  $G \frac{(a+b)c^3}{3}$ (A.17)

|                      | 0 | 0                                    | 0                                                                                           | 0                                                                                                                                           | 0                                            | 0                                                                                                                                                                                     |
|----------------------|---|--------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | 0 | 0                                    | $\beta_x U_{xy} \frac{(a+b)c}{4}$ $\beta_y U_{yx} \frac{(a+b)c}{4}$                         | $\beta_{x} \mathcal{L}_{y} \frac{(a^{2}-b^{2})c}{12}$ $\beta_{y} \mathcal{L}_{yx} \frac{(a^{2}-b^{2})c}{12}$                                | 0                                            | β <sub>x</sub> U <sub>xy</sub> <u>(a+b)c</u> <sup>2</sup><br>β <sub>y</sub> U <sub>yx</sub> ( <u>a+b)c</u> <sup>2</sup><br>β <sub>y</sub> U <sub>yx</sub> ( <u>a+b)c</u> <sup>2</sup> |
|                      |   |                                      |                                                                                             |                                                                                                                                             |                                              |                                                                                                                                                                                       |
|                      | 0 | G ( <u>a+b)c</u><br>2                | 0                                                                                           | G <u>(a+b)c</u> <sup>2</sup><br>6                                                                                                           | $G \frac{(a^2-b^2)c}{3}$                     | 0                                                                                                                                                                                     |
| [ k <sub>12</sub> ]= | 0 | G (a <sup>2</sup> -b <sup>2</sup> )c | Bx chy ( <u>a+b)c<sup>2</sup></u><br>Bx chy <u>12</u><br>By clyx ( <u>a+b)c<sup>2</sup></u> | $\beta_{x} \mathcal{J}_{xy} \frac{(a^2 - b^2)c^2}{48}$ $\beta_{y} \mathcal{J}_{yx} \frac{(a^2 - b^2)}{48}c^2$ $G \frac{(a^2 - b^2)c^2}{24}$ | G <u>(a<sup>3</sup>+b<sup>3</sup>)c</u><br>6 | $\beta_{x \cup xy} \frac{(a+b)c^{3}}{12}$ $\beta_{y \cup yx} \frac{(a+b)c^{3}}{12}$                                                                                                   |
|                      | 0 | 0                                    | βxUxy <u>(a² b²)</u> c<br>βyUyx <u>(a² b²)</u> c<br>βyUyx <u>(a² b²)</u> c                  | βx Lyy 12<br>βy Lyy 12<br>βy Lyx 12                                                                                                         | - 0                                          | $\beta_{x} \mathcal{L}_{yy} \frac{(a^{2}-b^{2})c^{2}}{12}$ $\beta_{y} \mathcal{L}_{yx} \frac{(a^{2}-b^{2})c^{2}}{12}$                                                                 |
|                      | 0 | $G\frac{(a+b)c^2}{3}$                | 0                                                                                           | G <u>(a+b)c<sup>3</sup></u><br>6                                                                                                            | $G\frac{(a^2-b^2)c^2}{6}$                    | 0                                                                                                                                                                                     |

(A.18)

$$[k_{2i}]^{+}[k_{i2}]^{+}$$
 (A.19)

0 0 0 0 0 0 G <sup>(a²-b²)c</sup> G 3 G<sup>(a+b)c</sup> 2 6 (a+b)c2 0 0 By (a+b)c<sup>2</sup> 3 By Catb)c  $\beta_y \begin{pmatrix} a^2 - b^2 \end{pmatrix} c$ 0 [k22]= G (a+b) c<sup>3</sup> 12  $\beta_y \frac{(a^2-b^2)c^2}{12}$  $G \begin{pmatrix} (a^2-b^2)c^2 \\ 12 \end{pmatrix}$ By (a<sup>3</sup>+b<sup>3</sup>)c STAMPERIC  $G \frac{(a^3+b^3)c}{3}$ 0 *Ву* 3 (а+6)с<sup>3</sup>

(A.20)

The transformation matrix was employed to produce an elemental stiffness matrix in terms of the generalized displacements in the local system.

$$U = \frac{1}{2} \{A\}^{T} [k1] \{A\}$$

$$= \frac{1}{2} [[T^{-1}] \{\tilde{\delta}\}]^{T} [k1] [T^{-1}] \{\tilde{\delta}\} \qquad (A.21)$$

$$= \frac{1}{2} \{\tilde{\delta}\}^{T} [k2] \{\tilde{\delta}\}$$
where  $[k2] = [T^{-1}]^{T} [k1] [T^{-1}]$ 

In order to assemble the elements by matching displacements at the nodes it was then necessary to bring each elemental matrix into the global system.

$$\{\vec{\delta}\} - [R]\{\vec{\delta}\}$$
 (A.22)

Then 
$$U = \{\delta\}^{T} [k_{e}] \{\delta\}^{T}$$
  
where  $[k_{e}] \cdot [R]^{T} [T^{-1}]^{T} [k_{2}] [T^{-1}] [R]$  (A.23)

 $\{\delta\}$  \* vector of elemental displacements in the global system

|      | -    |      |      |      |      |      |
|------|------|------|------|------|------|------|
|      | [R,] | 0    | 0    | 0    | 0    | 0    |
|      | 0    | [R.] | 0    | 0    | 0    | 0    |
| [0]- | 0    | 0    | [R,] | 0    | 0    | 0    |
| [[]- | 0    | 0    | 0    | [R,] | 0    | 0    |
|      | 0    | 0    | 0    | 0    | [R,] | 0    |
|      | 0    | 0    | 0    | 0    | 0    | [R,] |

(A.24)

and

w

| rr7.    | cos O  | sin O | (A.25) |
|---------|--------|-------|--------|
| [ (()]- | -sin O | cos O | (,     |

and  $\Theta$  was defined in (A.4)

The matrix  $[k_e]$  is the elemental stiffness matrix used in the solution of the stiffness problem.

#### A.3 Derivation of Strains and Stresses

Strains at any point  $(\xi, q)$  in an element can be calculated from equations (A.12) once the polynomial coefficients  $\{A\}$  have been calculated. In this program, strains were evaluated at the nodes so that they could be averaged between elements. To solve for  $\{A\}$ , the deformations in the global system for a given element were retrieved and rotated back into the local coordinate system.

$$[A] = [T^{-1}][R][S]$$
 (A.26)

Using the strains, stresses were calculated using the orthotropic elasticity matrix for plane stress.

 $\{\sigma\} \in [D] \in S$ 

where

 $\{\sigma\}^{T} = (\sigma_x, \sigma_y, \tau)$  $\{\epsilon\} = (\epsilon_x, \epsilon_y, \ell)$ 

(A.27)

$$= \frac{\frac{E_{x}}{1 - \lambda_{xy} \partial_{yx}}}{\frac{1 - \lambda_{xy} \partial_{yx}}{1 - \lambda_{xy} \partial_{yx}}} = 0$$

$$= \frac{\frac{\lambda_{yx} E_{y}}{1 - \lambda_{xy} \partial_{yx}}}{\frac{1 - \lambda_{xy} \partial_{yx}}{1 - \lambda_{xy} \partial_{yx}}} = 0$$

$$(A.28)$$

$$G$$

A Mohr's circle approach was used to rotate these stresses into the global system for averaging at the nodes to produce a more accurate result. The averaged strains and stresses were then subjected to Mohr's circle in order to yield the directions and magnitudes of principal stresses and strains at the nodes.

[D]

#### Appendix B

#### Behaviour and Testing of the Element

#### B.1 Convergence

In order to converge onto a solution, the finite element displacement field assumed must provide strainfree rigid body motion, as well as constant strain modes. Further, plane stress finite elements require that the displacements in both the  $\xi$  and  $\eta$  directions be continuous along element edges. The first two criteria were clearly satisfied by the formulations of equations (A.3). To check the last criterion, the displacement along each edge of the triangle was found to be quadratic both parallel and perpendicular to the edge. Three constants were therefore required to define the displacement along the edge, and these were provided by the displacement in the appropriate direction along that edge at each of the three nodes. By forcing the displacements at each node along the edge of an element to match those of adjacent elements the criterion was automatically satisfied.

The rate of convergence was easily determined. Since the element displacement field was quadratic, the error from a Taylor's series truncation was of the order of some length parameter l cubed. Differentiating once gave an error in strain of the order of  $l^2$ . Strain is raised to the second power in the strain energy expression so that an error of the order of  $\ell$  to the fourth power results. If this length parameter is taken as the reciprocal of the number of elements along an edge, the strain energy should converge as the order of  $1/N^4$ .

#### B.2 Testing

The elements were tested in three cases. The first was the load case illustrated in Fig. B.1 where a uniformly distributed load was applied to the top edge of a membrane. This problem gave uniform vertical displacements, strains and stresses as required, of exactly the correct magnitudes. The second case was the thirtytwo element cantilever shown in Fig. B.2. Here the results did not agree exactly with theory but were within reason-The stress in the X direction was accurate able bounds. to within a maximum of 6 per cent and the shear stress was accurate to within a maximum of 17 per cent error. This problem was run in order to compare the element with an isotropic finite element which had been programmed previously by a different method. The results agreed exactly. A few other tests were run in which the modulae were reversed in some elements, and the results were as predicted by theory.

A third test of the program was made by modelling a circular hole in the centre of a plate that could be considered as infinitely long in the direction of loading,



Fig. B-1 UNIFORMLY LOADED MEMBRANE



Fig. B-2 32 ELEMENT CANTILEVER

and of finite length in the transverse direction. The grid used was that created for the analyses of chapter 4 and is illustrated in Fig. 4.1. Fig. B.3 and Fig. B.4 show stress comparisons of the finite element solution (for the finite plate) with the analytic solutions for a plate infinite in both directions.<sup>8</sup> This comparison was made for a uniform tensile loading along the left hand side of the model, the upper left hand corner of which is shown in Figs. B.3 and B.4. The results were very similar in pattern and magnitude for stresses in the X direction where the finite element model might be considered infinite. In the Y direction, the stresses showed the same type of variation as for an infinite plate, but were of different magnitudes because of the equilibrium requirement that the stresses in the Y direction be zero at the free boundaries.

In the program as written, all elements have the same elastic modulae relative to their local coordinate axes, although the direction of orthotropy can be rotated through ninety degrees when required for ease of assembling the elements. The system of equations was solved using a Choleski decomposition type library routine.

# TENSION LOADING TENSION Y TENSION

Fig. B-3 EDGE STRESSES X DIRECTION

-- FINITE ELEMENT

ISOTROPIC

ANALYTIC - INFINITE PLATE

• .



## Appendix C

### The Computer Program

|                                                                                                                                                                                                                            | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ·····                                                                                                                                                                                                                      | THELICIT REALME(A-F.C-7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3.3                                                                                                                                                                                                                        | DIMENSION X (430) + Y (430) + ICC (430 + 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ),1X(860),JX(860)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4                                                                                                                                                                                                                          | DINENSION F(12,12),S(32,12),T(12,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12),P(12,12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5 <b>.5</b>                                                                                                                                                                                                                | FIMENSICN / (90000) + LJ(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7                                                                                                                                                                                                                          | CINENSION DEL(12),AP(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3 3                                                                                                                                                                                                                        | $\Gamma I^{M} \overline{F}^{*} S I G N S I G X (6) \cdot S I G Y (6) \cdot T A U (6) \cdot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FPSX(1), FPSY(0), G/M(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8.5                                                                                                                                                                                                                        | CIMENSION EXX(43C), EYY(43C), EXY(4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20) en la construction de la |
| 9                                                                                                                                                                                                                          | CIPENSION SXX(436), SYY(430), SXY(4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30), MCOUNT(43))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                            | DIMENSION MULE (200), DDCS (32), SVEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 12                                                                                                                                                                                                                         | UJPEPSIUP 4085557860)<br>FINDASION SICEY(A).STEEV(A) TAUGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 13 19 19 C                                                                                                                                                                                                                 | DIMENSION X AND Y .GT. NUMBER CF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VICLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 14                                                                                                                                                                                                                         | F: PS=0.C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <u>15 C</u>                                                                                                                                                                                                                | CINENSICN ICC .GE. NUMBER OF DEGR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EFS OF FREEDOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 16 C                                                                                                                                                                                                                       | EINENSION IX AND JX «GE» NUMBER C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F DEGREES OF FREEDOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 18 C                                                                                                                                                                                                                       | TINENSION PN .GE. NUMBER OF FERRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EC LE EBERUNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 19C                                                                                                                                                                                                                        | ICC IS THE & NODE NUMBERS FLS EAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H ELEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2) C                                                                                                                                                                                                                       | LJ IS THE LIST OF DEGREES OF FREE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DOM FOR AN ELEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <u>21 (</u>                                                                                                                                                                                                                | CEL IS A MATRIX OF GLUBAL DEGREES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CF FFFFCOM FUR AN ELEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 22                                                                                                                                                                                                                         | 4P 13 A STOPAGE MATRIX USED IN TH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E STARSS SCRADTINE WHICH FOST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 23                                                                                                                                                                                                                         | . FUST RE LIMENSILATE SAME AS N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JMPER DE DEGREES DE ERCEDOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 23 C                                                                                                                                                                                                                       | PER ELEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JMOSE DE DEGREEN DE FREEDOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 23 C<br>24 C<br>25 C                                                                                                                                                                                                       | PER ELEMENT<br>NSIZ MUST HAVE THE SAME MAGNITUDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AS THE FIRST DIMENSION OF ICC IN M/PEOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 23 C<br>24 C<br>25 C<br>26                                                                                                                                                                                                 | PUST HE LIMENSIONEL SAME AS N<br><u>PER ELEMENT</u><br>NSIZ MUST HAVE THE SAME MAGNITUDE<br>FEWIND 2<br>FEWIND 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AS THE FIRST DIMENSION OF ICC IN M/PEOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 23 C<br>24 C<br>25 C<br>26<br>27<br>28                                                                                                                                                                                     | PUST HE LIMENSIONEL SAME AS N<br>PER ELEMENT<br>NSIZ MUST HAVE THE SAME MAGNITUDE<br>FEWIND 2<br>PEWIND 2<br>NSIZ=450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JMPER OF DEGREES OF FREEDOP<br>AS THE FIRST DIMENSION OF ICO IN M/PEOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23                                                                                                                                                                                                                         | POST HE LIMENSIONEL SAME AS N<br>PER ELEMENT<br>NSIZ MUST HAVE THE SAME MAGNITUDE<br>FEWIND 2<br>NSIZ=430<br>ILEPUG=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IMPER OF DEGREES OF FREEDOP<br>AS THE FIRST DIMENSION OF ICC IN M/PEOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23 C<br>24                                                                                                                                                                                                                 | PER ELEMENT<br>NSIZ MUST HAVE THE SAME MAGNITUDE<br>FEWIND 1<br>FEWIND 2<br>NSIZ=450<br>ILEPUG= 7<br>PEWIND 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IMPER OF DEGREES OF FREEDOP<br>AS THE FIRST DIMENSION OF ICC IN M/PEOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23                                                                                                                                                                                                                         | POST RE LIMENSIONEL SAME AS N<br><u>PER ELEMENT</u><br>NSIZ MUST HAVE THE SAME MAGNITUDE<br>FEWIND 2<br><u>PEWIND 2</u><br>NSIZ=420<br>ILEPUG=0<br><u>PEWIND 2</u><br>CC 200 I=1,50000<br>A(1)=0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IMPER OF DEGREES OF FREEDOP<br>AS THE FIRST DIMENSION OF ICC IN M/PEOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23                                                                                                                                                                                                                         | PUST RE LIMENSIUNEL SAME AS N<br>PER ELEMENT<br>NSIZ MUST HAVE THE SAME MAGNITUDE<br>FEWIND 2<br>NSIZ=420<br>ILEPLG=0<br>$P^{T}WI'D$ 2<br>DC 200 I=1,50000<br>A(I)=0.00<br>CGNTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IMPER OF DEGREES OF FREEDOP<br>AS THE FIRST DIMENSION OF ICC IN M/PEOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23                                                                                                                                                                                                                         | PER ELEMENT         PER ELEMENT         NSIZ MUST HAVE THE SAME MAGNITUDE         FEWIND 1         FEWIND 2         NSIZ=400         ILEPLG=3         PEWIND 2         CC 200 I=1,50000         A(I)=0.00         CC 235 I=1,430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IMPER OF DEGREES OF FREEDOP<br>AS THE FIRST DIMENSION OF ICC IN M/PEOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23 C<br>24 C<br>25 - C<br>26<br>27<br>28<br>28<br>28<br>29<br>29<br>21<br>32<br>20<br>33<br>35<br>20<br>35<br>20<br>35<br>20<br>35<br>20<br>35<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                 | PER ELEMENTIONEL SAME (AS N-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | JMPER OF DEGREES OF FREEDOP<br>AS THE FIRST DIMENSION OF ICC IN M/PEOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23                                                                                                                                                                                                                         | PER ELEMENTIONEL SAME AS NO         PER ELEMENT         NSIZ MUST HAVE THE SAME MAGNITUDE         FEWIND 2         NSIZ=400         ILEFLG=0         PEWIND 2         CC 200 I=1,50000         A(I)=0.00         CC 205 I=1,430         SXX(I)=0.00         SXY(I)=0.00         SXY(I)=0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JMPER OF DEGREES OF FREEDOM<br>AS THE FIRST DIMENSION OF ICC IN M/PEOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23                                                                                                                                                                                                                         | PER ELEMENTIONEL SAME (AS N.         PER ELEMENT         NSIZ MUST HAVE THE SAME MAGNITUDE         FEWIND 2         NSIZ=450         ILEFLG=0         PEWIND 2         CC 200 I=1,50000         A(I)=0.00         CMTINUE         DC 235 I=1,430         SXY(I)=0.00         SXY(I)=0.00         EXX(I)=0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | JMPER OF DEGREEN OF FREEDOM<br>AS THE FIRST DIMENSION OF ICC IN M/PEOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23                                                                                                                                                                                                                         | PER ELEMENTIONEL SAME (AS N.         PER ELEMENT         NSIZ MUST HAVE THE SAME MAGNITUDE         FEWIND 2         NSIZ=400         ILEPLC=0         PEWIND 2         CC 200 I=1,50000         A(I)=0.00         CGNTINUE         DC 235 I=1,430         SXY(I)=0.00         SXY(I)=0.00         EXX(I)=0.00         EXY(I)=0.00         EYY(I)=0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JMPER OF DEGREES OF FREEDOM<br>AS THE FIRST DIMENSION OF ICO IN M/PEOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23 C<br>24 C<br>25 C<br>26<br>27<br>28<br>23.25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25                                                                                                                      | PER ELEMENT         PER ELEMENT         NSIZ MUST HAVE THE SAME MAGNITUDE         FEWIND 2         NSIZ=400         ILEPLG=0         PEWIND 2         DCC 200 I=1,50000         A(I)=0.00         CCMTINUE         CC 205 I=1,430         SXY(I)=0.00         SXY(I)=0.00         EXY(I)=0.00         EXY(I)=0.00         EXY(I)=0.00         EXY(I)=0.00         EXY(I)=0.00         EXY(I)=0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | JMPER OF DEGREEN OF FREEDOM<br>AS THE FIRST DIMENSION OF ICC IN M/PEOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23 C<br>24 C<br>25 C<br>26<br>27<br>28<br>28 25<br>25<br>20<br>31<br>22 2C0<br>23<br>35<br>26<br>37<br>37.2<br>37.4<br>37.6<br>28<br>23<br>25<br>20<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25            | PER ELEMENT         PER ELEMENT         NSIZ MUST HAVE THE SAME MAGNITUDE         FEWIND 2         NSIZ=400         ILEPLG=0         PEWIND 2         DC 200 I=1,50000         A(I)=0.00         CC 305 I=1,430         SXY(I)=0.00         SXY(I)=0.00         EXY(I)=0.00         EXY(I)=0.00         EXY(I)=0.00         EXY(I)=0.00         EXY(I)=0.00         CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AS THE FIRST DIMENSION OF ICC IN M/PEOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 23 C<br>24                                                                                                                                                                                                                 | PUST RE LIMENSIUMEL SAME AS N<br>PER ELEMENT<br>NSIZ MUST HAVE THE SAME MAGNITUDE<br>FEWIND 2<br>FEWIND 2<br>NSJ2=420<br>ILEPLG= 3<br>PEWIND 2<br>EC 200 I=1,50000<br>A(I)=C.DC<br>CGNTINUE<br>DC 205 I=1,400<br>SXX(I)=0.DC<br>SXX(I)=0.CC<br>EXX(I)=0.CC<br>EXX(I)=0.CC<br>EXX(I)=0.CC<br>CCNTINUE<br>DC 206 I=1,760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MPER OF DEGREEN OF FREEDOP<br>AS THE FIRST DIMENSION OF ICC IN M/PEOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                                                                                                                                                                         | PUST PE LIMENSIUMEL SAME AS N<br>PER ELEMENT<br>NSIZ MUST HAVE THE SAME MAGNITUDE<br>FEWIND 2<br>NSIZ=420<br>ICEPLG= 7<br>PEWIND 2<br>CC 200 I=1,50000<br>A(I)=C.DC<br>CGMTINUE<br>DC 205 I=1,430<br>SXY(I)=7.C0<br>SXY(I)=7.C0<br>EXY(I)=7.C0<br>EXY(I)=7.C0<br>EXY(I)=7.C0<br>EXY(I)=7.C0<br>PY(I)=C.CC<br>CGNTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AS THE FIRST DIMENSION OF ICC IN M/PEOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 23 C<br>24                                                                                                                                                                                                                 | PUST PE LIMENSIUMEL SAME AS N<br>PER ELEMENT<br>NSIZ MUST HAVE THE SAME MAGNITUDE<br>FEWIND 2<br>NSIZ=4:0<br>ILEPLE=7<br>PEWIND 2<br>CC 200 I=1,50000<br>A(I)=C.DC<br>CCMTINUE<br>CC 235 I=1,430<br>SXX(I)=0.C0<br>SXY(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0                        | AS THE FIRST DIMENSION OF ICC IN M/PEOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 23                                                                                                                                                                                                                         | PUST RE LIMENSIUMEL SAME AS N<br>PER ELEMENT<br>NSIZ MUST HAVE THE SAME MAGNITUDE<br>FEWIND 2<br>NSIZ=400<br>ILEFUG=0<br>PEWIND 2<br>CC 200 I=1,50000<br>A(I)=C.DO<br>CCMTINUE<br>CC 205 I=1,400<br>SXY(I)=0.DO<br>SXY(I)=0.CO<br>EXX(I)=0.CO<br>EXX(I)=0.CO<br>EXX(I)=0.CO<br>EXX(I)=0.CO<br>CCNTINUE<br>CC 206 I=1,760<br>PM(I)=-1.FO<br>PM(2)=-4.DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AS THE FIRST DIMENSION OF ICC IN M/PEOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 23C<br>24C<br>25C<br>26<br>27<br>28<br>23.25<br>25<br>20<br>21<br>22<br>20<br>23<br>25<br>20<br>21<br>22<br>20<br>23<br>25<br>20<br>23<br>25<br>25<br>20<br>23<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25 | PUST RE LIMENSIUMEL SAME AS N<br>PER ELEMENT<br>NSIZ MUST HAVE THE SAME MAGNITUDE<br>FEWIND 2<br>NSIZ=450<br>ILEFUG=0<br>PEWIND 2<br>CC 200 I=1,50000<br>A(I)=C.D0<br>CC 200 I=1,50000<br>A(I)=C.D0<br>CC 205 I=1,430<br>SXX(I)=0.D0<br>SXY(I)=0.D0<br>SXY(I)=0.D0<br>SXY(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>CC 206 I=1,760<br>PM(I)=-1.F0<br>PM(I)=-2.C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AS THE FIRST DIMENSION OF ICC IN M/PEOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 23                                                                                                                                                                                                                         | PUST RE LIMENSIUMEL SAME AS N<br>PER ELEMENT<br>NSIZ MUST HAVE THE SAME MAGNITUDE<br>FEWIND 2<br>NSIZ=450<br>ILEPLG=D<br>PEWID 2<br>CC 200 I=1,50000<br>A(I)=0.00<br>CMTINUE<br>CC 235 I=1,430<br>SXY(I)=0.00<br>SXY(I)=0.00<br>SXY(I)=0.00<br>EXX(I)=0.00<br>EXX(I)=0.00<br>EXX(I)=0.00<br>EXX(I)=0.00<br>EXX(I)=0.00<br>EXX(I)=0.00<br>EXX(I)=0.00<br>EXX(I)=0.00<br>CC 236 I=1,860<br>PM(I)=-1.00<br>PM(2)=-4.00<br>FM(6)=-4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ANDER OF DEGREEN OF FREEDOP<br>AS THE FIRST DIMENSION OF ICC IN M/PEOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23                                                                                                                                                                                                                         | PER ELEMENT         NSIZ MUST HAVE THE SAME MAGNITUDE         FEWIND 2         NSIZ MUST HAVE THE SAME MAGNITUDE         PEWIND 2         NSIZ MUST HAVE THE SAME MAGNITUDE         CC 200 I=1,6000         SXY(I)=0.00         SXY(I)=0.00         SXY(I)=0.00         SXY(I)=0.00         EXX(I)=0.00         EXX(I)=0.00         EXY(I)=0.00         EXY(I)=0.00         EXY(I)=0.00         EXY(I)=0.00         FN(I)=0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ANDER OF DEGREEN OF FREEDOP<br>AS THE FIRST DIMENSION OF ICC IN M/PEOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23                                                                                                                                                                                                                         | PUST RE LIMENSIUMEL SAME AS N<br>PER ELEMENT<br>NSIZ MUST HAVE THE SAME MAGNITUDE<br>FEWIND 2<br>NSIZ=400<br>ILEPLC=D<br>PEWID 2<br>CC 200 I=1,50000<br>A(I)=C.DC<br>CGNTINUE<br>CC 235 I=1,430<br>SXY(I)=0.C0<br>SXY(I)=0.C0<br>SXY(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>CCNTINUE<br>CC 236 I=1,860<br>PK(I)=-1.F0<br>PN(2)=-4.D0<br>FM(4)=-2.F0<br>FM(2)=-4.C0<br>PK(1)=-2.F0<br>FM(2)=-4.C0<br>PK(1)=-2.F0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ANDER OF DEGREEN OF FREEDOP<br>AS THE FIRST DIMENSION OF ICC IN M/PEOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23 C<br>24                                                                                                                                                                                                                 | PUST RE LIMENSIUMEL SAME AS N<br>PER ELEMENT<br>NSIZ MUST HAVE THE SAME MAGNITUDE<br>FEWIND 2<br>NSIZ=400<br>ILEPLG=D<br>PEWID 2<br>CC 200 I=1,50000<br>A(I)=C CC<br>CGMTINUE<br>CC 235 I=1,430<br>SXY(I)=0.C0<br>SXY(I)=0.C0<br>SXY(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>EXX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0<br>FX(I)=0.C0 | ANDER OF DEGREEN OF FREEDOP<br>AS THE FIRST DIMENSION OF ICC IN M/PEOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23 C<br>24                                                                                                                                                                                                                 | PUST PE LIMENSIUMEL SAME AS N<br>PER ELEMENT<br>NSIZ MUST HAVE THE SAME MAGNITUDE<br>FEWIND 2<br>NSIZ=400<br>ILEPLG=0<br>PEWIND 2<br>CC 200 I=1,50000<br>A(I)=0.00<br>CGMTINUE<br>CC 205 I=1,400<br>SXY(I)=0.00<br>SXY(I)=0.00<br>SXY(I)=0.00<br>EXY(I)=0.00<br>EXY(I)=0.00<br>EXY(I)=0.00<br>EXY(I)=0.00<br>EXY(I)=0.00<br>EXY(I)=0.00<br>EXY(I)=0.00<br>EXY(I)=0.00<br>FX(I)=0.00<br>PM(I)=-1.00<br>PM(L)=-2.00<br>PM(L)=-2.00<br>PM(14)=-6.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.00<br>PM(14)=-3.0                                         | ANDER OF DEGREEN OF FREEDOP<br>AS THE FIRST DIMENSION OF ICC IN M/PEOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

.

48.7

48.81 48.82 48.82

 $Fr(20) = -2 \cdot fr$   $Fr(20) = -2 \cdot fr$   $Fr(20) = -6 \cdot fr$   $Fr(24) = -2 \cdot fr$   $Fr(24) = -6 \cdot fr$   $Fr(20) = -1 \cdot fr$ 

.

119

|                        |                                                 | •                                                       | . · ·                                               |                                               | 120                                     |       |
|------------------------|-------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|-----------------------------------------|-------|
|                        |                                                 | . · · ·                                                 |                                                     | •                                             |                                         |       |
|                        | •.<br>,                                         |                                                         |                                                     |                                               |                                         |       |
|                        |                                                 |                                                         |                                                     |                                               |                                         |       |
|                        |                                                 |                                                         | · ·                                                 |                                               | · · · · · ·                             |       |
|                        |                                                 |                                                         |                                                     |                                               | •                                       |       |
|                        |                                                 |                                                         | · · · · · · · · · · · · · · · · · · ·               |                                               |                                         |       |
| 49                     | NEITE(6,323)                                    |                                                         |                                                     |                                               |                                         |       |
| 51 323                 | - FERMAR (101,1M<br>- WFIT <sup>1</sup> (0,222) | (F4(L),L=1,200)                                         | GR • )                                              |                                               |                                         |       |
| 52<br>53               | CALL LAYOUT (X                                  | 3.67<br>(,Y,NSIZ,JCC,IX,                                | JX . NF . NN . NV4 F . I                            | MMAT, NDEC, NELR)                             | · · · · · · · · · · · · · · · · · · ·   |       |
| 55<br>55               | CALL BANEWH()                                   | CC, JX, NE, NVAR, N                                     | V3,NSIZ,LPANC,I                                     | NNUD)                                         |                                         | •_· , |
| 57                     | <u>PP 471 L=1,NN</u>                            | .e.,                                                    |                                                     |                                               |                                         |       |
| 56<br>55               | - J = 100 (1K + L)<br>- NCCLNT(JT) = NC         | CUNT (JT)+1                                             |                                                     |                                               |                                         |       |
| <u>61</u><br>470       | CONTINUE<br>CONTINUE                            | Ξ.                                                      | · · ·                                               | · · ·                                         |                                         |       |
| 62.25                  | IF (IEFFU(°FC°<br>LEITE(C°FC°                   | 6) 60 TO 211                                            |                                                     |                                               |                                         | · · · |
| 64 25 212              | FORMAT(11','E                                   | LEMENT NO. +,15)-                                       | ·<br>                                               | معريم مرتب المحادث                            |                                         |       |
| 65                     | C1 = ICO(L1, 1)<br>C2 = ICO(L1, 2)              |                                                         | · · · · · · · · · · · · · · · · · · ·               |                                               |                                         |       |
| 67                     | <u>C3=ICC(LL,3)</u><br>>1=>(C1)                 | ·····                                                   |                                                     |                                               |                                         | •     |
| 65<br>70               | >2=X(C2)<br>X2=X(C3)                            |                                                         |                                                     |                                               |                                         | • . • |
| 71<br>72<br>73         | Y1=Y(C1)<br>Y2=Y(C2)<br>Y3=Y(C3)                |                                                         |                                                     |                                               |                                         |       |
| 73•25<br>74            | IF(1D5PUG.FC.<br>VEIT5(5.209)                   | 0) GC TC 250                                            |                                                     | · · · ·                                       | · · · · · · · · · · · · · · · · · · ·   |       |
| 75 209<br>75-25 250    | EPEMAT('0','E                                   | LEMENT STIFFIES                                         | S MATRIX FCF. EL                                    | LEMÉNT 1, 15)                                 |                                         |       |
| 76                     | CALL-LST(X1,X<br>IE(ICEEUG.EC.                  | 2,X3,Y1,Y2,Y2,E)<br>0) GC TO 251                        | X, EY, LXY, LYX, R                                  | ,G,TL,LL,NELR,I                               | DEBUG)                                  |       |
| 77<br>7852 220<br>79   | WRITE(5,22C)<br>EGEMAT(* 15,15<br>VEITE(5,208)  | LEMENTAL STIFFUS<br>((R(L,M),M=1,12)                    | ESS MATRIX ')<br>),L=1,12)                          |                                               | ······································  | · · · |
| 80 2C8<br>80.25 251    | , FORMAT(' ',12<br>CONTINUE                     | 013-2)                                                  |                                                     |                                               |                                         |       |
| <u>81</u><br>82        | <u> </u>                                        | R<br>D                                                  |                                                     |                                               |                                         | ····· |
| 84                     | 11=(1-1)+U2=<br>LJ(N+J1)=JX(N                   | VAP#ICC(LL,J)-N                                         | VAR+N)                                              |                                               |                                         | ••    |
| 5.25<br>25             | IF (ICEEUC.EC.                                  | 0) GC TC 252                                            |                                                     |                                               |                                         |       |
| 87 300<br>87 25 252    | FEFMAT (*0*,*L                                  | J IS' + 1215)                                           | · · · ·                                             | · · ·                                         | · · ·                                   |       |
| <u>63</u><br>89<br>206 | CALL SETUP(A,                                   | NV3,LJ,R,LBAND,                                         | NSIZ)                                               |                                               |                                         | · · · |
| 8 <b>5</b> •25         | IF(IDEPUG.EG.<br>WEITE(S.FTC)                   | )) GC TC 253                                            |                                                     |                                               |                                         |       |
| <b>91</b> 320          | FCPMAT(11, M                                    | ASTEP STIFFNESS<br>+168+168+168+168                     | NATEIX!)<br>3.1.1.65.2)                             | · · · · · · · · · · · · · · · · · · ·         |                                         | · .   |
| 93.25 253              | CENTINUE<br>SATIC=1.E-16                        |                                                         | · · · · · · · · · · · · · · · · · · ·               |                                               |                                         |       |
| \$5<br>96<br>C         | NETE THAT DEP<br>15 NGT U                       | AND IS MORE EFFI                                        | ICIENT THAN DE/                                     | AND CNLY WHEN W                               | ATFIV                                   |       |
| 53<br>C                | CALL EFBAND (A<br>THE THIED ENTR<br>MATEIXNU    | •FM•NDEG•LFAND•1<br>Y IN CALL DBAND<br>ST RE EXACTLY TH | L,RATIC,EET,JE)<br>IS THE CREEF (<br>-E SAME AS THE | XP, ))<br>CF THE MASTER ST<br>NUMBER OF NON-2 | FIFFNESS                                |       |
|                        |                                                 | ······································                  |                                                     |                                               | - · · - · · · · · · · · · · · · · · · · |       |
|                        |                                                 | :<br>                                                   |                                                     |                                               | -                                       |       |
| 1                      |                                                 |                                                         | ·····                                               |                                               | · · · · · · · · ·                       |       |
|                        |                                                 |                                                         |                                                     |                                               |                                         |       |

.

|                                                  | 121                                                                                                               |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
|                                                  |                                                                                                                   |
|                                                  |                                                                                                                   |
|                                                  |                                                                                                                   |
|                                                  |                                                                                                                   |
|                                                  |                                                                                                                   |
|                                                  |                                                                                                                   |
|                                                  |                                                                                                                   |
|                                                  |                                                                                                                   |
|                                                  | DEPENDENCE PARTER A THE POCH IN                                                                                   |
| 103 C                                            | PRINCE CONTAINS THE SOLUTION DISPLACEMENTS A REAL STREAM STREAM                                                   |
| 101-25                                           | FEITC(6,250) DET                                                                                                  |
| 192                                              | CALL EXPAND (AGROSS, NMAT, NVAR, PM, IX)                                                                          |
| 102.25                                           | ALTELISTERS OF TO 254                                                                                             |
| 104 101                                          | FCRNfT(! !, 'NMAT=', 14)                                                                                          |
| <u></u>                                          | <u>kcits(s,102) (jx(i),1=1,NMAT)</u><br>ECENTI(1(1,2015)                                                          |
| 116.25 254                                       | CENTINUS                                                                                                          |
|                                                  | <u>VFITE(E,1C2) NVAR,NDEG</u><br>FORMAT('C', 'NVAR=',15, 'NDEC=',15)                                              |
| 109                                              | WFITF(6,201) LPAND                                                                                                |
| 110 201<br>7 9 111 24 201                        | WFITE(6,202) NV3                                                                                                  |
| 112 202                                          | FORNAT('0'; 'THERE ARE', 13, 1X, 'VARIAELES PER ELEMENT')                                                         |
| 114 779                                          | FCFMAT(*C',*FATIC=*,C20.10)                                                                                       |
| 115                                              | WRITE(6,758)<br>ECEMET(1)1, ISTERSEES BELATINE TO FLEWEAT AVECAN                                                  |
| 117                                              | PENIAC 1                                                                                                          |
|                                                  | REWIND 2<br>REWIND 7                                                                                              |
| 120                                              | <b>%FITE(6,232)</b>                                                                                               |
| 121 252                                          | FUPMAIL'U', 'CLEMENT',6X,'NGDE NUMBEF',6X,'SIGX',12X,'SIGY',12X,'TA<br>*U',12X,'EPSX',12X,'EPSY',12X,'GAMMA',///) |
| 123                                              | UC. 170 NA=1,NE                                                                                                   |
| 125 233                                          | $\frac{F(FNAT(1-1,15))}{F(FNAT(1-1,15))}$                                                                         |
| 126.25                                           | C/LL LSTRES(NA, PM, EX, EY, UXY, UYX, G, SXX, SYY, SXY, NE, ICO, NELP, EXX, FYY, #EXY, ICEBUG)                    |
| <u>127 170 </u>                                  | CCNTINLE                                                                                                          |
| 123                                              | DU 4/5 [=], NN<br>SXX(I)=SXX(I)/MCCUNT(I)                                                                         |
| <u>-6-130</u> (1697) / (1797)                    | $\frac{SYY(1)=SYY(1)/MCCUNT(1)}{SYY(1)=SYY(1)/MCCUNT(1)}$                                                         |
| 121.2                                            | EXX(I)=EXX(I)/MCOUNT(I)                                                                                           |
| <u>121.4</u>                                     | $\frac{FYY(I)=SYY(I)/NCCUNT(I)}{FXY(I)=SXY(I)/NCCUNT(I)}$                                                         |
| 132 475                                          | CONTINUE                                                                                                          |
| 134 5C5                                          | FURMAT(11,10X, PRINCIPAL STRESSES AND DIRECTION PRIATIVE TO THE                                                   |
| 135                                              | * CLCEAL SYSTEM )                                                                                                 |
| 137 C.                                           | NCW CALCULATE THE PRINCIPAL STRESSES                                                                              |
| 139                                              | EC 500 I=1,NN                                                                                                     |
| 140                                              | SF=(\$XX(I)-SYY(I))**2+4.00*\$XY(I)**2                                                                            |
| 2383 141 - 24 - 45 - 45 - 45 - 45 - 45 - 45 - 45 | RA=.5DC+CSCFT(SF)<br>C= (SXX(T)+SYV(T))/C_CC                                                                      |
| 143 C                                            | PSICX & FSICY ARE THE PRINCIPAL STRESSES                                                                          |
| 23144<br>145<br>145                              | ANOLE=ROTATION CLOCKWISE OF PRINCIPAL STRESSES FROM THE OLOBAL                                                    |
| 146                                              | FSICX=C+FA                                                                                                        |
| 147                                              | FSIGY=C-FA<br>TF=2.8C*SXY(T)/(SXX(T)-SXX(T))                                                                      |
| 145                                              | ANGLE=FATAN(TF)/2.CO/3.14155#180.CO                                                                               |
| 149.1                                            | IF(SX)(I).L7.SYY(I)) ANGLE=S0.D0+ANGLE-<br>WFITE(6,510) I,PSIGX.PSIGY.ANGLE                                       |
|                                                  |                                                                                                                   |
|                                                  |                                                                                                                   |
|                                                  |                                                                                                                   |
|                                                  | مەرىپەيەر ««««««»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»                                                                   |

| NEXTRACTION. M. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| 151 25 510      | - (HUPPA)(', ',14,F24-3,F20,3,F21,3) (And the state of th |                                                |
| 15125           | тина и стану конта ката на така на конструкција на селото на селото селото селото на конструкти на конструкти<br>19 км стану конструкција селото се                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |
| 152 510         | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |
| 152.25 C        | CALCULATE THE PRINCIPAL STRAINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| <u></u>         | WEITE (6,550) A CONTRACTOR CARD THE MAN AND THE MAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| 5,152.6. 550    | FORMARCIN, 10%, PEINCIPAL STRAINS AND DIRECTION RELATIVE TO THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| 1=2.0           | CULTELE STOLEN'S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ار میں ایک |
| 152.81 560      | FORMAT('0', ' NODE', 16X, 'PEPSX', 15X, 'REFSY', 14X, 'ANGLE-DEG-CLCC')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |
| 152.82          | Cr 570 I=1,NN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |
| 152.83          | EF=(CXX(I)-*YY(I))*+2+4.00+CXY(I)**2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |
| 152.84          | FAE=.5CO*CSCRT(EF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| 1:2.25          | $CI = (E,XX(I) + EYY(I)) / 2 \cdot DC$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |
| 152.87 SC       | ANGLE ROTATION CLOCKWISE OF PRINCIPAL STRAINS FROM THE CLOBAL AXE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · · · · · · · · · · · · · · · · · ·          |
| 152.88          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ನ ಗಳ ಕೆಂಗ್ರೆ                                   |
| <u>152.89</u>   | PFFSY=CF-FAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |
| 152.5           | $TFC=2 \cdot DO \neq EXY(I) / (E \times X(I) - HYY(I))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |
| 102-51          | AFGLF=DATAN(TFE)/2.DO/3.14159%180.CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |
| 152.52          | +ETTE(6.580) T.PEESY.EEESY.ANGLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |
| 152-93 580      | FCFMAT( 1,14,F23.5,F19.5,F23.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| 152, \$31       | +FIT((7,6(0) X(1),Y(1),ANGLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |
| 152.54 570      | CONTINUE of a water device so that a second so that the second so that the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · ·                                    |
|                 | $\mathbf{F}$ FIG(6,476)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |
| 155 2020        | KEITELE.4771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · ·          |
| 156 477         | FORMAT(1-1, NODE1, 15X, 'SIGX', 15X, 'SIGY', 15X, 'TAU')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |
| <u>157</u>      | [[ 479 I=1, NN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |
| 158             | <pre>kFITE(6,47E) I,SXX(I),SYY(I),SXY(I)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · · · ·                                      |
| 160 478         | F(FMF)(* *,14,F/2°C,2FI%6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · ·                                      |
| 160. 1419       | <b>NETTE(6.4E()</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                              |
| 160.2 480       | FORMAT (111, 15X, 'AVERAGE STRAINS AT THE NOCES !)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | و بناه سیسی سا                                 |
| 165.3           | <u>kFITF(6,481)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |
| 160.4 481       | FURMAT( 1-1, 'NGFE', 15X, 'EPSX', 15X, 'EPSY', 15X, 'GAMMA')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |
|                 | LU 4 $\mathcal{C}_{\mathcal{L}}$ 1=1,00 m m m m m m m m m m m m m m m m m m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |
| 160.7 483       | FUERAT(1, 1, 14, F2), 6, F15, 6, F15, 6), and a start of the Street of t |                                                |
| 160.8 482       | CENTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |
| 2161            | STCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |
| 162             | - EAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |
| 1/4             | TYPITCIT FEALX8(A-H.A-7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |
| 165 C           | X=X-COCREINATE OF EACH NODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |
| -116 C          | Y=Y-COCRDINATE OF EACH NODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |
| 267 M C .       | ICC=LIST CF NOCE NUMBERS FOR EACH ELEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                |
| .168 C          | IX=0 IF NCUAL DEGREE OF FREEDOM IS RESTRAINED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |
| 105             | IX=0[DEFED LIST OF THE DECDEES OF FESSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                |
| 171 Se C        | NETOTAL NUMBER OF FLENENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ······                                         |
| 172 C           | NN=TGTAL NUMBER OF NODES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |
| 173 C           | NVAF=NUMBER OF VAFIABLES PER NODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                |
| 174 C           | NNAT=TCTAL NUMPER CF UNKNOWNS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |
|                 | INTEGECOUNTER USED IN DETERMINING UX ENTRIES AND A DETERMINING UX ENTRIES AND A DETERMINING AND A DETERMINING A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| 177 C           | INTERESTANCE THAN BUTTER OF ELEMENTS<br>INTERESTANCE TO HAVE FLASTIC NOTIONAS EGUEDEIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · · · · · · · · · · · · · · · · · ·          |
| 178 C           | NELREV IS THE TOTAL NUMBER OF THESE ELEMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |
| 179 C           | THIS SUBROUTINE READS ELEMENT AND NODE DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |
| <b>经期的</b> 的过去式 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a 방법은 연습 방법을 위해 있는 것이라는 것이라. 전 가장 이 것이 가지 않는 것이 가지 않는 것이라. 이 것이 가지 않는 것이 하는 것이 하는 것이다. 이 것이 가지 않는 것이 하는 것이 같이 같이 같이 하는 것이 하는 것이 하는 것이 하는 것이 하는 것이 같이 하는 것이 같이 하는 것이 하는 것이 하는 것이 같이 같이 하는 것이 하는 것이 같이 하는 것이 같이 같이 하는 것이 같이 하는 것이 하는 하는 것이 같이 하는 것이 하는 것이 하는 것이 같이 하는 것이 같이 하는 것이 하는 것이 하는 것이 하는 것이 하는 것이 하는 것이 같이 하는 것이 같이 하는 것이 같이 하는 것이 하는 하는 것이 하는 하는 것이 하는 것이 하는 것이 같이 하는 것이 하는 하는 것이 하는 것<br>것이 같이 같이 않아, 것이 같이 않아, 것이 것이 같이 것이 같이 않아, 것이 않아, 것이 이 이 것이 같이 않아, 것이 않아, 것이 같이 않아, 것이 않아, 것이 같이 않아, 것이 않아, 것이 하는 것이 않아, 것이 않아, 것이 않아, 것이 않아, 것이 않아, 않아, 것이 않아, 것이 않아, 않이 않이 않 않아, 않아, 않이 않아, 않아, 않아, 것이 않아, 않아, 않이 않아, 않아, 않아, 않이 않아, 않아                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 에 있는 것 같은 것 같                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,此子的自己,但我们也不知道我们还是这些人,这些人,这些人,这都是这个意义。""你们的是你,我们就是你是我们的,你们就是你的,我们就是你不是我的,我们就是你们,<br>这一些我们就是你,我们就是你,我们就是你,我们就是你们的你们就是你们的你们就是你们就是你们的你们,你们就是你们的你们,你们就是你们的,你们就是你们的你们,你们就是                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 「「「「おし」」を使うのだ。」「ハーハンタボ」のとしてきない。 かいがい かいがい きょうない ほうごう かいがく かいしょう しょうしょう しょうしょう しょうしょう ひょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1852 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.11(FKF/1.14)12)。 "我们就是这个人的意思,我们就是这个人的问题,我们就是我们的问题。"<br>1.11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (FFIFIGG41) AT, NN, NVAR, ATLEIN OF THE ATLE AT A STATE AND A STATE AT A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 11123480700541 x *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PURPHILY/, FUIAL NULLE ELEMANNES (10) DA, NULLE NULLES (10) DA,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A VAFIENDESSER NHOR ', D,D,X,'NU. LE TECRENIS KIVESED',D,D,// TAKES AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (N) I (a) (42) sector and a contraction of the sector o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 100 - 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CY AND CY INDICATE CONSTANT OF THE LIEST AND SECOND PEOPEES OF EVEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TA AND OF INDICATE CONSTRAINT OF THE FIRST AND SECOND DEGREES CELEFEED AM 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FE NUDE<br>De A NUMERICAL DECCENDENTE DEAF IN IN AS A CINCLE DES VECTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THE A REPERTURE PRODUCTION TO NEED IN TAKES A STRUCT RUN VEGEUR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FOR STOR NODES CET Y AND Y 7500 AS THEY ADS NEWED I SED-EXHIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | THE STAR RUDES SEA A AND T ZERO AS THET AND HAVER COUTTOUS THE STAR AND THE STAR AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 105 300 240 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FEAD TA DUGNEPHT CUMUTTENS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - LU 1時(1年1月1日)、「小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IZ-NVARTA, SALASAN AND AN ANALYSIN AND ANALYSIN ANALYSIN AND ANALYSIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| < 100 - 37 - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - 5 C - | THE NORTHER ADDRESS AND AN TO KEEP CAPPS DECIDE RARIES OF STATES AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TREASTING NOTE NOTED A REPORT OF NET AND A CONTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FRENCH THE STATISTICS TO A STATE TO A STATE AND A STATE AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 201-202-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TY FOR FACE NOTE FAS THE SAME NUMBER OF ENTETES AS NUAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WEITE (4.44) T. X(T), Y(T) (11, (11, 14), 12) to the last of the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2/13 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ΓΓΕΝΤΙΙ ( ( ) + 1 / · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| · 214 ******10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CENTINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WE HTE ( € , 47 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 216 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FCRMAT(/+5X, 'ELEMENT', 5X, 'NODE NUMBERS')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2 ( 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INPLT FLEMENT DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 203 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FOR OPTHOTEOPIC TRIANGLES THE CEDER OF THE NODES INPUT MAY BE IMPORTANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 203 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FOR OPTHOTEOPIC TRIANGLES THE CEDER OF THE NODES INPUT MAY BE IMPORTANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 203 C<br>209 C<br>210 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FOR OPTHOTEOPIC TRIANGLES THE CEDER OF THE NODES INPUT MAY BE IMPORTANT<br>INFUT NODE FUMPERS ANTICLOCKWISE STARTING WITH THE TWO PARALLEL<br>TO THE BASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 203<br>209<br>210<br>211<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FOR OFTHOTEOPIC TRIANGLES THE CEDER OF THE NODES INPUT MAY BE IMPORTANT<br>INFUT NODE FUMPERS ANTICLOCKWISE STARTING WITH THE TWO PARALLEL<br>TO THE BASE<br>KK IS THE FLEMENT NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 203 C<br>209 C<br>210 C<br>211 C<br>212 C<br>212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FOR OFTHOTEOPIC TRIANGLES THE CEDER OF THE NODES INPUT MAY BE IMPORTANT<br>INFUT NODE FUMPERS ANTICLOCKWISE STARTING WITH THE TWO PARALLEL<br>TO THE DASE<br>KK IS THE FLEMENT NUMBER<br>EC 11 I=1,NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 203 C<br>209 C<br>210 C<br>211 C<br>212 C<br>212 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FOR OFTHOTEOPIC TRIANGLES THE CEDER OF THE NODES INPUT MAY BE IMPORTANT         JNEUT NODE FUMPERS ANTICLOCKWISE STARTING WITH THE TWO PARALLEL         TO THE BASE         KK IS THE FLEMENT NUMBER         CC 11 I=1,NE         FEAC(5,45) KK,(ICC(1,J),J=1,6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 203 C<br>209 C<br>210 C<br>211 C<br>212<br>213<br>213<br>214 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FOR OFTHOTEOPIC TRIANGLES THE OFDER OF THE NODES INPUT MAY BE IMPORTANT<br>INFUT NODE FUMPERS ANTICLOCKWISE STARTING WITH THE TWO PARALLEL<br>TO THE DASE<br>KK IS THE FLEMENT NUMBER<br>CC 11 I=1,NE<br>FEAC(5,45) KK,(ICC(I,J),J=1,6)<br>FCEMAT(7I5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 203 C<br>209 C<br>210 C<br>211 C<br>212<br>213<br>213<br>214<br>215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FOR OFTHOTEOPIC TRIANGLES THE OFDER OF THE NODES INPUT MAY BE IMPORTANT<br>INFUT NODE FUMPERS ANTICLOCKWISE STARTING WITH THE TWO PARALLEL<br>TO THE DASE<br>KK IS THE FLEMENT NUMBER<br>CC 11 I=1,NE<br>FEAC(5,45) KK,(ICC(I,J),J=1,6)<br>FORMAT(715)<br>VFITE(6.46) I,(ICC(I,J),J=1,6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 203     C       209     C       210     C       211     C       212     C       213     C       214     45       215     C       216     46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FOR OFTHOTEOPIC TRIANGLES THE OFDER OF THE NODES INPUT MAY BE IMPORTANT<br>INFUT NODE FUMPERS ANTICLOCKWISE STAPTING WITH THE TWO PARALLEL<br>TO THE DASE<br>KK IS THE FLEMENT NUMBER<br>CC 11 I=1,NE<br>FEAR(5,45) KK,(ICC(I,J),J=1,6)<br>FORMAT(715)<br>VFITE(6.46) I,(ICC(I,J),J=1,6)<br>FORMAT(5X,I5,5X,615)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 203     C       209     C       210     C       211     C       212     C       213     C       214     45       215     C       216     46       217     11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FOR OFTHOTEOPIC TRIANGLES THE OFDER OF THE NODES INPUT MAY BE IMPORTANT<br>INFUT NODE FUMPERS ANTICLOCKWISE STAPTING WITH THE TWO PARALLEL<br>TO THE DASE<br>KK IS THE FLEMENT NUMBER<br>CC 11 I=1,NE<br>FEAR(5,45) KK,(ICC(I,J),J=1,6)<br>FORMAT(715)<br>VFITE(6.46) I,(ICC(I,J),J=1,6)<br>FORMAT(5X,I5,5X,615)<br>CCNTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 203     C       209     C       219     C       212     C       213     C       213     C       214     45       215     C       216     46       217     11       218     C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FOR OFTHOTEOPIC TRIANGLES THE OFDER OF THE NODES INPUT MAY BE IMPORTANT<br>INFUT NODE FUMPERS ANTICLOCKWISE STAPTING WITH THE TWO PARALLEL<br>TO THE DASE<br>KK IS THE FLEMENT NUMBER<br>CC 11 I=1,NE<br>FEAR(5,45) KK,(ICC(I,J),J=1,6)<br>FORMAT(715)<br>VFITE(6.46) I,(ICC(I,J),J=1,6)<br>FORMAT(5X,I5,5X,615)<br>CCNTINUE<br>FC 55 J=1,NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 203         C           209         C           210         C           211         C           212         C           213         C           214         45           215         C           216         46           217         11           218         C           219         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FOR OFTHOTEOPIC TRIANGLES THE OFDER OF THE NODES INPUT MAY BE IMPORTANT<br>INFUT NODE FUMPERS ANTICLOCKWISE STAPTING WITH THE TWO PARALLEL<br>TO THE DASE<br>KK IS THE FLEMENT NUMBER<br>CC 11 I=1,NE<br>FEAC(5,45) KK,(ICC(I,J),J=1,6)<br>FORMAT(715)<br>VFITE(6.46) I,(ICC(I,J),J=1,6)<br>FORMAT(5X,I5,5X,615)<br>CCNTINUE<br>FC 55 J=1,NE<br>NFLP(J)=C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 203         C           209         C           210         C           211         C           212         C           213         C           214         45           215         C           216         46           217         11           218         C           219         55           201         55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <pre>FOR OPTHCTEOPIC TRIANGLES THE CEDER OF THE NODES INPUT MAY BE IMPOFTANT<br/>INFUT NODE NUMPERS ANTICLOCKWISE STAPTING WITH THE TWO PARALLEL<br/>TO THE BASE<br/>KK IS THE FLEMENT NUMBER<br/>CC 11 I=1,NE<br/>FEAR(5,45) KK,(ICC(I,J),J=1,6)<br/>FCFMAT(5,45) I+(ICC(I,J),J=1,6)<br/>FOFMAT(5x,F5,5x,615)<br/>CCNTINUE<br/>CC 55 J=1,NE<br/>NELP(J)=C<br/>CCNTINUE<br/>FEAR(55 ACDILL HEEFE AECESSARY)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 203     C       209     C       210     C       211     C       212     C       213     C       214     45       215     C       216     46       217     11       218     C       219     55       221     C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FOR OFTHOTEOPIC TRIANGLES THE OFDER OF THE NODES INPUT MAY BE IMPORTANT<br>INFUT NODE NUMPERS ANTICLOCKWISE STAPTING WITH THE TWO PARALLEL<br>TO THE BASE<br>KK IS THE FLEMENT NUMBER<br>CC 11 I=1,NE<br>FEAR(5,45) KK,(ICC(I,J),J=1,6)<br>FCERMAT(715)<br>FGERMAT(5X,F5,5X,615)<br>CCNTINUE<br>FC 55 J=1,NE<br>NFLP(J)=C<br>CCNTINUE<br>FFVGESE NCDULI WHEFE NECESSARY<br>IF(NELEFENCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 203     C       209     C       210     C       211     C       212     C       213     C       214     45       215     C       216     46       217     11       218     C       219     55       221     C       222     223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FOR OFTHOTEOPIC TRIANGLES THE OFDER OF THE NODES INPUT MAY BE IMPORTANT<br>INFUT NODE NUMPERS ANTICLOCKWISE STAPTING WITH THE TWO PARALLEL<br>TO THE BASE<br>KK IS THE FLEMENT NUMBER<br>CC 11 I=1,NF<br>FEAC(5,45) KK,(ICC(1,J),J=1,6)<br>FCFMAT(715)<br>VFITF(6.46) I,(ICC(I,J),J=1,6)<br>FCFMAT(5X,I5,5X,6I5)<br>CCNTINUE<br>FC 55 J=1,NF<br>NFLP(J)=C<br>(CNTINUE<br>PFV6/SE NCDULI WHEFE NECESSARY<br>IF(NELSEV.CC.U) GO TU 620<br>NFLF(6.420)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 203     C       209     C       211     C       212     C       213     C       214     45       215     C       216     46       217     11       218     C       219     255       221     55       221     C       222     223       224     C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FOR OFTHOTEOPIC TRIANGLES THE OFDER OF THE NODES INPUT MAY BE IMPORTANT<br>INFUT NODE NUMPERS ANTICLOCKWISE STAPTING WITH THE TWO PARALLEL<br>TO THE BASE<br>KK IS THE FLEMENT NUMBER<br>CC 11 1=1,NF<br>FEAC(5,45) KK,(ICC(1,J),J=1,6)<br>FCFMAT(715)<br>VFITE(6.46) I,(ICC(1,J),J=1,6)<br>FCFMAT(5X, F5,5X,6I5)<br>CCNTINUE<br>FCC 55 J=1,NE<br>NFLP(J)=C<br>(CNTINUE<br>FFV6LSE ACDULT WHEFE NECESSARY<br>IF(NELSEV.CC.U) GO TO 620<br>WFITE(6,620)<br>FCFMAT(1, THESE SIENENTS HAVE REVERSED MCCULT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FOR OFTHOTEOPIC TRIANGLES THE OFDER OF THE NODES INPUT MAY BE IMPORTANT<br>INFUT NODE NUMPERS ANTICLOCKWISE STAPTING WITH THE TWO PARALLEL<br>TO THE BASE<br>KK IS THE FLEMENT NUMBER<br><u>CC 11 1=1,NF</u><br>FEAC(5,45) KK,(ICC(1,J),J=1,6)<br>FCFMAT(715)<br>VFITF(6.46) I,(ICC(I,J),J=1,6)<br>FCFMAT(5X, F5,5X,615)<br>CC 55 J=1,NF<br>NFLP(J)=C<br>(CNTINUE<br><u>FFVEFSE NCDULT WHEFF NECESSARY</u><br>IF(NELFEV.CC.U) GO TO 620<br>WFITE(6,620)<br>FCFMAT('O', 'THESE ELEMENTS HAVE PEVERSED MCCULI')<br>FCF (J 1=1.MELREV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <pre>FOR OPTHCTEOPIC TRIANGLES THE CEDER OF THE NODES INPUT MAY BE IMPOFTANT<br/>INFUT NODE AUMPERS ANTICLOCKWISE STAPTING WITH THE TWO PARALLEL<br/>TO THE DASE<br/>KK IS THE FLEMENT NUMBER<br/>CC 11 1=1,NE<br/>FEERMAT(715)<br/>VFITF(6.46) I,(ICC(I,J),J=1,6)<br/>FOFMAT(5X,I5,5X,6I5)<br/>CCNTINUE<br/>FC 55 J=1,NE<br/>NELP(J)=C<br/>CC 55 J=1,NE<br/>NELP(J)=C<br/>CCNTINUE<br/>FFV(FSE MCDULT WHEFE MECESSARY<br/>IF(NELREV.CC.U) GD TO 620<br/>WFITE(6,620)<br/>FCCMAT(0','THESE ELEMENTS HAVE PEVERSED MCCULT')<br/>DC 6(1 J=1,NELREV<br/>FFV(FSE MCCULT)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 203       C         209       C         211       C         212       C         213       C         213       C         214       45         215       C         216       46         217       11         218       11         219       25         224       620         225       226         227       C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FOR OPTHOTEOPIC TRIANGLES THE CEDER OF THE NODES INPUT MAY BE IMPORTANT<br>INFUT NODE NUMBERS ANTICLOCKWISE STAPTING WITH THE TWO PARALLEL<br>TO THE BASE<br>KK IS THE FLEMENT NUMBER<br>EC 11 I=1,NF<br>FEAR(5,45) KK,(ICC(1,J),J=1,6)<br>FERMAT(715)<br>VFITE(6.46) I,(ICC(I,J),J=1,6)<br>FORMAT(5X,I5,5X,6I5)<br>CCNTINUE<br>FCFS J=1,NF<br>NFLP(J)=C<br>CCNTINUE<br>FFV6/FSE ACDULT WHEFE NECESSARY<br>IF(NELREV.CC.U) GO TO CEO<br>WFITE(6,620)<br>FORMAT('0','THEST ELEMENTS HAVE PEVERSED MCCULL')<br>CC 60 J=1,NELREV<br>PEAC(5,65) JFLPEV<br>WFITE(6,75) JFLPEV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 203       C         209       C         210       C         211       C         212       213         213       45         214       45         215       11         216       46         217       11         218       55         221       C         222       223         224       620         225       226         227       228         228       625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FOR OPTHOTEOPIC TRIALGLES THE OFDER OF THE NODES INPUT MAY BE IMPORTANT<br>INFUT NODE NUMBERS ANTICLOCKWISE STAPTING WITH THE TWO PARALLEL<br>TO THE PASE<br>KK IS THE FLEMENT NUMBER<br>CC 11 1=1,NE<br>FEAR(5,45) KK.(ICC(1,J),J=1,6)<br>FEERMAT(715)<br>VFITF(6.46) 1.(ICC(1,J),J=1,6)<br>FOFMAT(5X,15,5X,615)<br>CCNTINUE<br>FC 55 J=1,NE<br>NFLP(J)=C<br>CCNTINUE<br>FFVCFSE MCDULI WHEFE NECESSARY<br>IF(NELFEV.CC.U) GO TO 6:0<br>WFITE(6,620)<br>FORMAT('0', 'THESE ELEMENTS HAVE PEVERSED MCCULI')<br>DC 6(1 J=1,NELREV<br>PELT(5,65) JFLPEV<br>WFITH(6,625) JFLPEV<br>KEIFMAT('', 120)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <pre>FOR OPTHOTEOPIC TRIANGLES THE CEDER OF THE NODES INPUT MAY BE IMPOFTANT<br/>INFUT NODE NUMBERS ANTICLOCKWISE STAPTING WITH THE TWO PARALLEL<br/>TO THE PASE<br/>KK IS THE FLEMENT NUMBER<br/>EC 11 1=1,NE<br/>FEAR/AT(715)<br/>KF ITF(6.46) I.(ICC(1.J),J=1.6)<br/>FORMAT(5X,IE.5X,6I5)<br/>CCATINUE<br/>FC 55 J=1,NE<br/>NFLP(J)=C<br/>CCATINUE<br/>FFVCFSE ACDULT WHEFE NECESSARY<br/>IF(NELREV.EC.U) GO TO 620<br/>WF ITE(6.620)<br/>FCRMAT('O', THESE SLEMENTS HAVE REVERSED MCCULI')<br/>DC 6(1 J=1,NELREV<br/>PEAR('O', THESE SLEMENTS HAVE REVERSED MCCULI')<br/>DC 6(1 J=1,NELREV<br/>PEAR('O', 120)<br/>FCFMAT('O', 120)<br/>FCFMAT('O', 120)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <pre>FOR OPTHOTEOPIC TRIANGLES THE CEDER OF THE NODES INPUT MAY BE IMPOFTANT<br/>JNEUT NODE NUMBERS ANTICLOCKWISE STAPTING WITH THE TWO PARALLEL<br/>TO THE DASE<br/>KK IS THE FLEMENT NUMBER<br/>CC 11 1=1,NE<br/>FEAR AT (715)<br/>VF ITE(6.46) 1+(ICC(1,J),J=1,6)<br/>FGEMAT(5x,15,5x,6I5)<br/>CCNTINUE<br/>FF VELSE<br/>NELP(J)=C<br/>CCNTINUE<br/>FF VELSE ACOLLI WHEFE NECESSARY<br/>IF(NELREV.CC.U) GO TO 630<br/>WF ITE(6,620)<br/>FCEMAT('0', THESE ELEMENTS HAVE REVERSED MCCULI')<br/>DC 6() J=1,NELREV<br/>PEAR(5,65) JELPEN<br/>FCEMAT('1',120)<br/>FCEMAT('1',120)<br/>FCEMAT(I5)<br/>NELF(JFLEFV)=1</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FOR OPTHOTEOPIC TRIANGLES THE CFDER OF THE NODES INPUT MAY BE IMPORTANT         JNFLT NODE FUMPERS ANTICLOCKWISE STAPTING WITH THE TWO PARALLEL         TO THE BASE         KK IS THE FLEMENT NUMBER         CC 11 1=1,NE         FECRMAT(715)         YEITE(6.460)         JNFLT         NELPEJO         CCNTINUE         PFORE         CCNTINUE         PFORE         PFORE         CCNTINUE         PFORE         PFORE         CCNTINUE         PFORE         PFORE         PFORE         CE         VELONDIA         WHITE(6,620)         FORMAT('0', 'THESE ELEMENTS HAVE PEVERSED MCCULI')         CCNTINE         PEAC(5,65)         PETE(6.460)         FORMAT('0', 'THESE ELEMENTS HAVE PEVERSED MCCULI')         CCNTINE         PEAC(5,65)         PETER         PETER         PEAC(5,65)         PETER         PETER         PETER         PETER         PETER         PETER         PETER         PETER         PETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <pre>POR OPTHCTEOPIC TRIANGLES THE CFDER OF THE NODE'S INPUT MAY BE IMPOFTANT<br/>INFLT NOD: FUMPERS ANTICLOCKWISE STAFTING WITH THE TWO PARALLEL<br/>TO THE DASE<br/>KK IS THE FLEMENT NUMBER<br/>CC 11 I=1,NF<br/>FEARAT(715)<br/>KK,(ICC(I,J),J=1,6)<br/>FERMAT(715)<br/>KSITE(6.46) I+(ICC(I,J),J=1,6)<br/>FERMAT(5X,F5,5X,6I5)<br/>CCNTINUE<br/>FEVELSE NCDULI WHEFE NECESSARY<br/>IF(NELFEVSCOU) GC TO 670<br/>KFIP(J)=C<br/>CCNTINUE<br/>FERMAT('O', 'THESE SLEVENTS HAVE PEVERSED MCCULI')<br/>DC 60 J=1,NELR(V<br/>PEAR(S) JFLFEV<br/>WFIIH(C,625) JFLFEV<br/>KFIP(C,55) JFLFEV<br/>FERMAT('', 120)<br/>FERMAT('', 120)<br/>F</pre>                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FCR OPTHCTEOPIC TRIALGLES THE CPDER OF THE NODES INPUT MAY BE IMPOFTANT         INPLT NODE FUMPERS ANTICLOCKWISE STARTING WITH THE TWO PARALLEL         TO THE DASE         KK IS THE FLEMENT NUMBER         EC 11 1=1,NE         *EGRAAT(715)         *FITF(6.46) I,(ICC(I,J),J=1,6)         FCFKAT(5x, F5, 5x, 615)         CCATINUE         FC 55 J=1,NE         NFLP(J)=C         CCNTINUE         PFV6FSE MCDULT WHEFF NECESSARY         IF(NELEE*CC.aU) GO TO. 620         WFITE(6,620)         PEAMAT(*0', THESE ELEMENTS HAVE PEVERSED MCCULI*)         CD GO J=1,NELKEV         PEAMIC(.625) JFLPEN         HACCUSS JFLPEN         PEAMAT(*', ', 120)         FCFMAT(IS)         MELP(JFLFEV)=1         CCNTINUE         NMATENNAR/NN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FCR OPTHCTEOPIC TRIALGLES THE CPDER OF THE NODES INPUT MAY BE IMPOFTANT         INFLT NODE FUMPERS ANTICLOCKWISE STAFTING WITH THE TWO PARALLEL         TO THE PASE         KK IS THE FLEMENT NUMBER         CC 11 I=1,NE         PEARMAT(715)         FEERMAT(715)         FC 55 J=1,NE         NFLF(J)=C         CCNTINUE         PFVFISE MCCull wHEFE NECESSARY         IF (NELENANCOULL WHEFE NEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 203       C         209       C         210       C         211       C         212       213         213       45         214       45         215       46         217       11         218       55         221       C         222       23         223       55         226       23         223       625         226       65         227       625         226       65         227       625         226       65         227       625         226       65         227       625         226       65         227       630         231       6         253       630         234       235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <pre>FCR OPTHCTEOPIC TRIANGLES THE CFDER OF THE NODES INPUT MAY BE IMPOFTANT<br/>INFUT NODI FUMPERS ANTICLOCKWISE STAFTING WITH THE TWO PARALLEL<br/>TO THE BASE<br/>KK IS THE FLEMENT NUMBER<br/>FCC 11 1=1, NF<br/>*EARLAT(715)<br/>*FITF(6.46) 1,(ICC(1,J),J=1,6)<br/>FCFMAT(5x,15,5x,615)<br/>CCNTINUE<br/>FCC 55 J=1,NF<br/>NELP(J)=C<br/>CCNTINUE<br/>FFTVF(SE MCDULI WHEFF NECESSARY<br/>IF(NELFENEC.U) GO TO 620<br/>WFITE(6,622)<br/>FCFMAT(0,'THESS SLENENTS HAVE PEVERSED MCDULI')<br/>CC 60 J=1,NELREV<br/>PEARLS, JELPEN<br/>ME11E(6,625) JELPEN<br/>ME11E(6,625) JELPEN<br/>ME11E(6,625) JELPEN<br/>ME11E(6,625) JELPEN<br/>KEIPMAT('', 120)<br/>FCFMAT(15)<br/>MELF(JFLENEN<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>NMATENVARANN<br/>ACE(=7)<br/>NCK NUMBER CEGFFES CF FFSEDCM</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 203       C         209       C         210       C         211       C         212       213         214       45         215       46         217       11         218       219         220       55         221       C         222       23         224       620         225       226         226       227         228       625         229       65         220       531         6 <sup>(1</sup> )       22         231       6 <sup>(1</sup> )         223       630         213       234         235       C         236       236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <pre>PCR: OPTHCTEOPIC TRIANGLES THE. CFDEE OF THE NODES INPUT MAY BE IMPOFTANT<br/>INPUT MODE FUMPERS ANTICLOCKWISE STAPTING WITH THE TWO PARALLEL<br/>TO THE PASE<br/>KK IS THE FLEMENT NUMBER<br/>CC 11 1=1,NF<br/>FEAR(5,45) KK,(ICC(I,J),J=1,6)<br/>FEGRMAT(715)<br/>FEGRMAT(715)<br/>FEGRMAT(75,45) ST,615)<br/>CCNTINUE<br/>CCNTINUE<br/>FFORMESSE ACDULT WHEFE NECESSARY<br/>IF(NELEV=CC.U) GO TO 670<br/>FEGRMAT(0','THESS ELEMENTS HAVE PEVERSED MCCULI')<br/>CC 60 J=1,NELKV<br/>FEAR(16,62)<br/>FEGRMAT('', 120)<br/>FEGRMAT('', 120)<br/>FEGRMAT('', 120)<br/>FEFRMAT('', 120)<br/>FEFFAT(15)<br/>MELP(JFLFFV)=1<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNT</pre> |
| 203       C         209       C         210       C         211       C         212       C         213       C         214       45         215       C         216       46         217       11         218       219         220       55         221       C         222       223         224       620         225       226         226       227         228       625         229       65         229       65         229       65         229       630         223       630         223       630         234       235         236       237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FCR: OPTHCTROPIC TRIANGLES THE. CFDER OF THE NODES INPUT MAY BE IMPORTANT         INPLT NODE FUMPERS ANTICLOCKWISE STAPTING WITH THE TWO PARALLEL         TO THE PASE         KK IS THE FLEMENT NUMBER         CC 11 1=1,NF         *EAR(5,45) KK,(ICC(1,J),J=1,6)         FCFMAT(715)         *FITF(6.464) I,(ICC(1,J),J=1,6)         FCFMAT(715)         *FITF(6.464) I,(ICC(1,J),J=1,6)         FCFMAT(5x,I5,5x,615)         CCNTINUE         PFVEFSE NCDULI WHEFE NECESSARY         If(NELFEWSCC.U) GO TO 620         PFVEFSE NCDULI WHEFE NECESSARY         IF(NELFEWSCC.U) GO TO 620         PFVEFSE NCDULI WHEFE NECESSARY         PFVEFSE NCDULI WHEFE NECESSARY         IF(NELFEWSCC.U) GO TO 620         PFVEFSE NCDULI WHEFE NECESSARY         PFVEFSE NECESSARY <t< th=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 203       C         209       C         210       C         211       C         213       213         214       45         215       -         216       46         217       11         218       -         219       -         220       55         221       C         222       -         223       -         224       620         225       -         226       -         227       -         228       625         229       65         229       65         229       65         229       630         213       -         234       -         236       -         237       -         238       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <pre>FOR OPTHCTP.OPIC TRIALGLES THE CPDER OF THE NODES INPUT MAY BE IMPOFTANT<br/>INFUT NOD: FUMPERS ANTICLOCKWISE STAPTING with THE TWO PARALLEL<br/>TO THE PASE<br/>KK IS THE FLEMENT NUMBER<br/>CC 11 1=1,NE<br/>FERE/S,45) KK,(ICC(I,J),J=1,6)<br/>FERE/S,45) KK,(ICC(I,J),J=1,6)<br/>FERE/S,45) KK,(ICC(I,J),J=1,6)<br/>FCFMAT(5X,F5,5X,615)<br/>CCATINUE<br/>CC 55 J=1,NE<br/>NELP(J)=C<br/>CCATINUE<br/>FFUE/SCC(J) GO TO 420<br/>WRITE(6,622)<br/>FFORMAT(*0), THESS SLEVENTS HAVE PRVERSED MCDULI*)<br/>DC 60 J=1,NELREV<br/>PEAL(5,65) J=LPEV<br/>AFITE(6,622) J=LPEN<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFMAT(*,120)<br/>FCFM</pre>                                                                                                                                                                                                                                                     |
| 203       C         209       C         211       C         212       C         213       214         213       45         214       45         215       1         216       46         217       11         218       219         220       55         221       C         222       23         224       620         225       226         227       228         229       65         229       65         229       65         229       630         213       6(         223       234         236       3         238       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <pre>FOR OFTHCTECPIC TRIALGLES THE.CFDER.OF THE NODES INPUT MAY BE IMPOFTANT<br/>INFUT NODE FUMPERS ANTI(LOCKWISE STAPTING WITH THE TWO PARALLEL<br/>TO THE PASE<br/>KK IS THE FLEMENT NUMBER<br/>CC 11 1=1,NE<br/>ESAC(5,45) KK,(ICC(1,J),J=1,6)<br/>FGERAT(715)<br/>VFITE(6,46) 1,(ICC(1,J),J=1,6)<br/>FGERAT(5X,I5,5X,615)<br/>CCNTINUE<br/>FC 55 J=1,NE<br/>NELP(J)=C<br/>CCNTINUE<br/>FFNVE(5E FCDL11 WHEFE NECESSARY<br/>IF(NELFEV.CC.U) GO TO 630<br/>WRITE(6,620)<br/>FC FE FCDL11 WHEFE NECESSARY<br/>IF(NELFEV.CC.U) GO TO 630<br/>WRITE(6,620)<br/>FC FAT(5,65) J=LPEV<br/>MF11H(c(25) J=LPEV<br/>MF11H(c(25) J=LPEV<br/>FC FAT(15)<br/>FCFMAT(15)<br/>FCFMAT(15)<br/>FCFMAT(15)<br/>FCFMAT(15)<br/>FCFMAT(15)<br/>AFLP(JFUFFV)=1<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>CCNTINUE<br/>TIF(12,00)<br/>FFFEECCFFES CF FFEEDCM<br/>ACE(=7)<br/>NCK NUMBER ECCFFES CF FFEEDCM<br/>ACE(=7)<br/>NCK NUMBER ECCFFES CF FFEEDCM<br/>ACE(=1)<br/>NCK NUMBER ECCFFES CF FFEEDCM<br/>ACE(=</pre>                                                                                                                                                                                                                                                                                                                                         |
| 203       C         209       C         219       C         213       45         214       45         215       45         216       46         217       11         218       219         220       55         221       C         222       233         224       620         225       65         229       65         229       65         220       231         231       6 <sup>(1)</sup> 232       630         213       234         236       3         236       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FOR OPTHCREOPIC TRIANGLES THE OFDER OF THE NODES INPUT MAY BE IMPOFTANT<br>INFUT NODE NUMPERS ANTICLOCKWISE STAPTING WITH THE TWO PARALLEL<br>TO THE PASE<br>KK IS THE FLEMENT NUMBER<br>(C 11 I=1,NF<br>FERE(5,45) KK,(ICC(I,J),J=1,6)<br>FEGEMAT(715)<br>VFITE(6,46) I,(ICC(I,J),J=1,6)<br>FCFMAT(5x,15,5x,615)<br>(CCNTINUE<br>FFV6/5 E MCDULI WHEFE NECESSARY<br>IF(NELFEV.CC.U) GC TO C20<br>WFITE(6,620)<br>FFORMAT('0', THESE SLENENTS HAVE REVERSED MCDULI')<br>CC (0 J=1,NELR(V<br>PACIS.65) JFLFEV<br>MF11E(6,625) JFLFEV<br>MF11E(6,7)<br>NCV NUMBER EEGFEES CF FFEED(M<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]<br>MF1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

**.**.,

| :          |          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------|----------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | 240      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| • .        | - 2 7 2  | _                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | . 271    | 2                                        | JX(I)=C and the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ی' سنہ     | 242      |                                          | CCTC 12 I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| : .        | 243      | 1                                        | WRITF(6,17) ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | 244      | 17                                       | FERMATIZZ INDIT IN FOR DEGREE OF EFFERENTIALS . TIS NEGATIVELY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | . 274    | 17                                       | ALTER AN ANTIMET IN THE MEMORY OF THE AND ALTER AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | 245      | 12                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | 246      | <b>C</b>                                 | ACHO IS THE SIZE OF THE PROPLEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | 247      |                                          | RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | 248      |                                          | FNC States and s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | 240      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | 2 7 7    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | 25J      |                                          | 16PL1(11 * EAL*E(A+F,0+Z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | 251      |                                          | PE4F(5,6) TL,G,EX,EY,UXY,UYX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | 252      | 6                                        | FCFMAT(F10+5+3F10+5+2F10+5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| · .        | 263      |                                          | FTTE(4, 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | 222      |                                          | TO 17 ANT 17 IN ITVICENCES ON ICE 100 IEVE ON ITVE CO-10000 OV 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | 2.74     | <u> </u>                                 | FITE # 1 (//, 1X, ' ) FICKN-SS1, 2X, 'G', 10X, 'FX', 8X, 'ET', 37, 'UAT', 6A, 'CAT'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| •          | 255      |                                          | 🛪 ) - Change and an anna an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ۳ <b>:</b> | 256      | د به | WFITE((,)E) - Constant and the second fight of the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | 257      | 8                                        | EDEMAT (1-1-3X, 11NCFES1, 5X, 1PS11, 8X, 1PS11, 7X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | 255      |                                          | LPT T5 ( 4 , C 1 ) T1 - C - 5 Y - 5 Y - 1 YY - 1 YY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| •          |          | •                                        | $\frac{1}{2} = \frac{1}{2} \left( \frac{1}{2} + 1$ |
| •          | 2.24     |                                          | ·····································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | 260      | <u> </u>                                 | PETUEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 201        | 261      | 1                                        | ENDs is a present of the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | 262      |                                          | SLEPHUTINE EANEWH(ICO, JX, NE, NVAP, NV2, NSIZ, LBAND, NNCD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | 243      |                                          | 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | 200      | ~                                        | THE COLOUR CONCENTS LARS DAND WITTE LDALP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | 204      | L L                                      | IFIS FULLINE FINDS THE FREE BAND WIGHD LEAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | 265      | C ·                                      | JX ETC. AFE AS DEFINED IN LAYOUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ·          | 266      | <u> </u>                                 | NV3=NU.CF VIRIABLES PER ELEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | 267      | · .                                      | CIMENSION ICO(NSIZ, $\epsilon$ ), $J\lambda(1)$ , $LJ(12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | 263      |                                          | DINENSICE NSTEF(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | 240      | · ·                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | 203      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | 219      | · · ·                                    | UCIVALENCE (NSIFF)CJ(I))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | 271      | C ·                                      | NALUENCO LE ALCES FER ELEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | 272      | C                                        | DIMENSION LU FOR THE NUMBER OF LEGREES OF FREEDOM FERLELEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | 273      | •                                        | $N^{*} G t = t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | 274      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            |          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | 212      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ·          | 276      | •••                                      | SWE111(6,203)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| . *        | 277      | 203                                      | FORMAT('0','ELEMENT NC.',20X,'DEGREES OF FREEDOM')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | 278      | · · · ·                                  | PC 2 1=1, NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | 279      | C                                        | LETERNINE LJ= NG. OF DECHEE OF FREEDEM IN AN ELEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | 201      | ř                                        | LI+K1) IS THE NUMBER EREM 1 TO NUM OF THAT DERVEE OF EPSEDOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ,          | 201      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | 201      | · · · · ·                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| · ·        | 282      |                                          | LL 4 K=i,NNLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| :          | 283      |                                          | K1=(K−1)*NVAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | 284      | · ·                                      | $LJ(J+K^{2})=JX(NVAR \times ICG(I, k) - NVAR+J)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | 285      | 4                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | 201      | . 7                                      | N 2 - Γ VAD #NN Γ Π                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | 200      |                                          | N 12 - N 10 - N 0 - U<br>De 17 - 17 - 27 - 17 - 17 - 17 - 17 - 17 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | 287      |                                          | NY116(0+294) 1+(LJ(L)+L=1+NV5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | 288      |                                          | ▶FITF(2) (LJ(L),L=1,12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | 285      | 2:04                                     | FCFM1T(101,15,20X,1215)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | 20.1     | r .                                      | FIND CIFESEDNCES BETWEEN DECESS NUMBERS WITHIN THE SLEWENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | 2 717    | <u> </u>                                 | THE PERCENT OF THE AND LEASEN AND AND THE PARTY OF THE TELEVISION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | 291      | ι                                        | TIN IS SUME NUMBER GRIATER THAN THE CANUNISTIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | 292      |                                          | MAX=C Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | 293      |                                          | F1N=1.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| · ·        | 296      | ·                                        | FC 8 .1=1.1:V3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | 274      | r                                        | TE NO EDEDON AT SCHE CORDINATE THE BINE HIPTH DEES NET CHINEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | .257     | ι.                                       | IN REFERENCE AND LET CONDINATED TO BAR WILL'A DUES NET OFFICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | 296      | ····                                     | <u>ΙΕ(ΕJ(J)+(EV-)) 6U ΠΕ</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| •          | 257      |                                          | IF(LJ(J)-MAX) 6,6,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | 298      | · 5                                      | ма ха ( J ( J )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| •          | 250      | 6                                        | $1F(1,1(1)-MTA) = 7\cdot8\cdot F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |          | <u> </u>                                 | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| •          | - (s. 1) |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

|  | • |  |  |  |
|--|---|--|--|--|

|                                          | MINELU(3). A state of the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 301 8                                    | CENTINUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 302.00                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 203                                      | 11 (NF2.6). LEAND2 LEADD2 - NB2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| × 304 3                                  | CLAINE CONTRACT AND A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 205                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1992-06 M                                | RITLIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4207                                     | AMC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 378                                      | SUEFFULINF_L5T(X1,X2,X3,Y1,Y2,Y3,EX,YY,0XY,0YX,E,G,TL,LL,NELK,10EP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 308.25                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 309                                      | $1 \text{ FFL} \left[ 1 \right] + \text{ FL} \left[ 1 + \text{ FL} \left$ |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                          | 1970N310N P112777127791227917271279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                          | LIMPROIDE NELEX(200)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 1 m - 2 1 A - 2 + 5 - 5                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 216                                      | CENTEN / CLITZ/AJ, PL.CL.THETA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | SQUIVALENCE (STEPS(1,1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 318 3 C                                  | STIFFNESS MATEIX FOR THE ORTHOTEOPIC TRIANGULAR PLANE STRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 319 m C                                  | FLEMENT WITH LINEARLY VARYING STEESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5. 3204 Ser 3                            | CC 211 I=1,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 321                                      | $P(I) = C \cdot DC$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 222                                      | F(J)=2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 323 211                                  | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 224 C                                    | CALCULATE RELEVANT LENGTH PARAMETERS FOR THE SLEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u>325 C</u>                             | SL=LFNGTH CF SIDE 1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 326                                      | $SL = (X2 - X1)^{++} 2 + (Y2 - Y1)^{++} 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 827                                      | SI =DSCRT(SL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 223                                      | $AL = ((X_2 - X_3)^2 (X_2 - X_1) + (Y_2 - Y_3)^2 (Y_2 - Y_1))/SL$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 520                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                          | THETA=CAFCCS(CC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 334                                      | kFIT=(3) ABC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 335 5                                    | AREA=(AL+PL) +CL/2 +CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 235.25                                   | IF(IDEBUC.EC.O) GD TO 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 336                                      | <b>NFITE(9,215) LL, AFEA</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 215                                      | FORMAT(+ +, 'ELEMENT NC. ', 14,5%, 'APEA IS', F10.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 257.25 255                               | CENTINUE A CALL AND A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 338                                      | 11 (APEALE.C.U) (C 11 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 240 221                                  | NY 11, 15,2217 LL<br>Ceronative: Tanadasanden (F. F. Engent), 14,38,415 NFCATIVE*******)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 241 25                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 342 222                                  | WEITERSOULD AL BLACEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 343 210                                  | FCRMAT(101,14=1,F10.5,2X,18=1,F10.5,2X,1C=1,F10.5,2X,1C0S=1,F8.5,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 344                                      | x, 'SIN=', F8.5).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 344.25 256                               | CENTINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 345 (                                    | INITIALIZE P.S.T AND E MATRICES TO ZERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 343 346 C                                | R=FOTATICN MATEIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 347 Star C                               | T=TFANSFCPMATICN MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <u> </u>                                 | SEPECTLOT OF T INVESTED AND R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 249 🚓 C                                  | P=TFANSPCSE CF S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 353 👾 C                                  | T=INVERSE OF TPANSFERMATION MATRIX AFTEP INV. STATEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sa 617 5 1 1 1 1 1                       | <u>r(; 5 1=1,12</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ेल <b>ु 352</b>                          | EC 5 J=1,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1. <b>353</b> 1. 1                       | R(I,J)=0.DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 254                                      | $\mathbf{P} \cdot (1, \mathbf{J}) = \mathbf{C} \cdot \mathbf{D} \mathbf{\Omega}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

. . .

|                                       | • •                                          | •                                      |                                         | 126                                   |
|---------------------------------------|----------------------------------------------|----------------------------------------|-----------------------------------------|---------------------------------------|
| · · · · · · · · · · · · · · · · · · · |                                              |                                        |                                         | ł                                     |
|                                       |                                              |                                        | ·                                       |                                       |
| •                                     |                                              |                                        |                                         |                                       |
|                                       |                                              |                                        |                                         |                                       |
|                                       |                                              |                                        |                                         |                                       |
|                                       |                                              |                                        |                                         | •                                     |
|                                       | ······                                       | · · · · · · · · · · · · · · · · · · ·  |                                         |                                       |
| 355                                   | 21.J=0.[C                                    | · · · · · · · · · · · · · · · · · · ·  |                                         | ·                                     |
| 357                                   | T(1,J)=0,D0<br>F(1,J)=0,C0                   |                                        | , · · · · · · · · · · · · · · · · · · · |                                       |
| 358 5                                 | CENTINUE<br>FOTATE FLACTIC MODULE            | -                                      |                                         | · .                                   |
| 360                                   | IF(KEIR(LL).CC.1) CC                         | VE WHEN NECESSINY<br><u>TC 600</u>     |                                         |                                       |
| ?t2 600                               | GC TR 605<br>Stx=1x                          |                                        |                                         |                                       |
| 3(3                                   | EX=EY                                        | ······································ |                                         |                                       |
| 365                                   | SUXY=LXY                                     | •                                      |                                         |                                       |
| 365                                   | <u>LXY=IYX</u><br>LYX=SLXY                   |                                        |                                         |                                       |
| 368 605<br>769 C                      | CONTINUE<br>BUILD THE TRANSFORMAT            |                                        |                                         |                                       |
| 370                                   | PETEL TE TRANSFORMA                          | ILN MATRIX                             |                                         |                                       |
| 372                                   | C2=CL**2<br>_ <u>*2</u> =*(**2               |                                        |                                         | · ·                                   |
| 273                                   | - T(1,1)=1.CO<br>T(1,7)=-PI                  | · · · · · · · · · · · · · · · · · · ·  |                                         |                                       |
| 375                                   | T(1,5)=R2                                    |                                        | ·                                       |                                       |
| 277                                   | T(2,8)=T(1,2)                                |                                        | -                                       |                                       |
| <u> </u>                              | T(2,11)=B2                                   |                                        | ······································  | ·                                     |
| 280                                   | T(3,2)=AL                                    |                                        |                                         |                                       |
| 282                                   | T(3,7)=1.000                                 | · · · · · · · · · · · · · · · · · · ·  | ·                                       |                                       |
| 383<br>384                            | T (4, ε) = ΔL<br>T (4, 11) = Δ2              |                                        |                                         |                                       |
| 385<br>386                            | 7(5,1)=1.00<br>7(5,3)=01                     | ······································ |                                         |                                       |
| 267                                   | 715,6)=02                                    | · · · · ·                              | · •                                     |                                       |
| 389                                   | (6,/)=1.00<br>T(6,9)=CL                      |                                        |                                         |                                       |
| <u> </u>                              | $\frac{T(E, 12) = C2}{T(7, 1) = 1 \cdot C0}$ | ·                                      |                                         |                                       |
| 392<br>* 6 *                          | T(7,2)=(AL-FL)/2.EC                          | · · · · · · · · · · · · · · · · · · ·  |                                         |                                       |
| 394                                   | T(8,7)=1.FC                                  |                                        | ,,,,,,,                                 | ·····                                 |
| 355<br><u>356</u>                     | T(E,E)=*(7,2)<br><u>T(E,11)=T(7,5</u> )      |                                        |                                         |                                       |
| -397                                  | T(9,1)=1.00<br>T(5,2)=A1/2.00                |                                        |                                         |                                       |
| 799                                   | 7(5,3)=CL/2.Dg                               | 14 A                                   |                                         |                                       |
| 401                                   | $T(5,5) = 42/4 \cdot DC$                     | -                                      |                                         |                                       |
| 403                                   | $\frac{T(9,6)=C2/4*C0}{T(10,7)=1*C0}$        |                                        |                                         |                                       |
| 404                                   | T(10, E)=T(5,2)<br>T(10, B)=T(5,2)           |                                        |                                         |                                       |
| 466                                   | 1(1(,12)=T(5,4)                              |                                        |                                         |                                       |
| 468                                   | T(10+11)=T(5+5)<br>T(11+12)=T(5+6)           | · · ·                                  |                                         | · .                                   |
| 410<br>410                            | 7(11,1)=1+CC<br>T(11,2)=T(1,2)/2,0C          |                                        | · ·                                     |                                       |
| 411                                   | T(11,3) = T(9,3)                             |                                        | -                                       | •                                     |
| 413                                   | T(11,5)=P2/4.D0                              |                                        |                                         | · · · · · · · · · · · · · · · · · · · |
| 414                                   | T(11,6)=T(5,6)                               | ·                                      |                                         |                                       |
| •                                     |                                              | •••                                    | -                                       |                                       |
|                                       |                                              |                                        |                                         | . ·                                   |
| •                                     |                                              |                                        | · · · ·                                 | • • • • •                             |
|                                       |                                              |                                        |                                         | r i renerate car                      |

| 415                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 416                                                        | T(12,8)=T(11:2) 独立,是在方法的方法,在这个方法是有关于方法的方法。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 417                                                        | ka (12·2) = 7 (11·2) 풀고 (12·2) 등 전문                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 418                                                        | 新聞(12)(C)=(11)(1)()。然后は10~10日は10日に、10日に10日に、10日に、10日に、10日に、10日に、10日に、1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 415                                                        | 新聞(12)117日(11)2月18日)の1980年代の「新聞」では、1990年に、1990年代の1991年代に、1990年代に、1990年代の1991年代に、1991年代の1991年代の1991年代の1991年代の19<br>19月1日2月1日(11)2月1日(11)2月1日)の19月1日の19月1日の19月1日の19月1日の19月1日の19月1日の19月1日の19月1日の19月1日の19月1日の19月1日の19月1日の19月1日の19月1日の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2427 24 Martin C                                           | ALL OTHER ENTRIES AND TERM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 421.25                                                     | IF (ICEPUC.CC.C) GC IC 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 42                                                         | WFITE(\$,2)2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 423 212                                                    | FCRMAT('D', 'TFANSECRMATION MATRIX')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 424                                                        | 、 kF 17E (5,214) 1 ( (T (U; M), M=1,12), L=1,12)、 とうながない ないない かいかく かいかい かいかい しょう                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 425 214                                                    | FOFMAT( - ,/12F10.5) and the state of the st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 425.25 257                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 426                                                        | ANDY CALCULATE THE INVERSE OF THE TRANSFORMATION MATRIA 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 421 25                                                     | LECTOFFIC.FC.GI GO TO 258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 428                                                        | WEITE(S.300) DEET.ECOND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 429 300                                                    | FOPMAT( ' ', 'DDFT= ', D15, E, 'DCOND= ', D15, E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 430 A C                                                    | T NCH CENTAINS THE INVERTED TRANSFORMATION MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 451                                                        | • WRITE(\$,213)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 422-12 212                                                 | FORMAT('0', 'INVERSED TRANSFCEMATION MATRIX')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 433                                                        | WFITE(9,214) ((T(L,M),M=1,12),L=1,12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ☆433。25 ☆ 25と<br>◎ A = 10 000 000 000 000 0000000000000000 | CUNTINUE TARGET LE CONTINUE MATERIA DE L'ARTERIA DE L'ARTERIA DE L'ARTERIA DE L'ARTERIA DE L'ARTERIA DE L'ARTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 424 32 U                                                   | NUW CALCULATE THE RUTATION MAINIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 476                                                        | ■ F(1,2)=S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 437                                                        | F(2,1) = -SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 438                                                        | F(2;2)=CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 439                                                        | DC 7 I=1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 440                                                        | $\frac{[[] 7] J=1,2}{[]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 441                                                        | $[\mathbf{r} \in \mathbf{r} \setminus \mathbf{r} \in \mathbf{r} \setminus \mathbf{r} \in \mathbf{r} \mathbf{r} \in \mathbf{r} \mathbf{r} \in \mathbf{r} \in r$ |
| 442                                                        | P(174)J74)-P(1)J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 444 1 2 3                                                  | F(1+E+J+E) = F(1+J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 445                                                        | ا المائية التي المرتبي المرتبي المرتبي المرتبي المستقدمين المرتبي المرتبي (1, 1) R (1, 12) = R (1, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 446 7                                                      | CCNTINUE A ANALYSIA A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 447                                                        | VFI7E(\$,C7E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 447.25                                                     | IFTILEFUE_EE.0. GO TO 229 A AND A CONTRACT AND A CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 448 210                                                    | $F(F(F(A),C(A)) + F(A) + F(A)) = F(A) + F(\mathsf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 451 208                                                    | F(F(x) + 12(1), 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 451.25 250                                                 | CENTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ≫451;                                                      | MULTIPLY 7 BY F TO GET SHE AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>45</b> 2                                                | CALL DCMULT(T,F,S,12,12,12,12,12,12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4 2.25                                                     | <u>IF (IFFPUC.FC.6) GC IC 260</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 424                                                        | WEINE(\$,226) A second statement of the second state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 434 220                                                    | LETTER C 2771 (INVERSETE-57)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5~456 2× 227                                               | ECENAT(', ', 12(1), 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 456.25 260                                                 | CENTINES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 457                                                        | WFITE(1) ((S(1,J),I=1,12),J=1,12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 458 458 C                                                  | PEINITIALIZE PARAMANANANANANANANANANANANANANANANANANAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 455                                                        | . CC 12 J=1,12 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 461                                                        | <u>D[ 12 J=1,12</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 461                                                        | 出版(1,J)=0。E0 在于今天政府的建筑的基础的形式的工作和公司,在10 日本的公司,在10 日本的公司方向                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 462 12                                                     | CENTINES THE ELEMENT STRENTSS NATELY THITLENS CE DELVNOMTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <u>5 467 (</u>                                             | NUM FUL INTER THE THEFENE SHIFFACOS FFEELA IN TEFFS OF FULTNUM PU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 245 L                                                      | CLIFTICICULUUS CONTRACTOR CONTRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                            | 1、1997、1997、1997、1997、1997、1997、1997、19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| •                    | · · · ·                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          | •                                                                                                               | 128                                   |
|----------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|
|                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                                                                                 |                                       |
|                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                                                                                 |                                       |
|                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                                                                                 |                                       |
|                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                                                                                 |                                       |
|                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                                                                                 |                                       |
|                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                                                                                 |                                       |
|                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                                                                                 |                                       |
|                      |                                                                                        | and the second sec | an a | بالمرجب المنسية                                                                                                 |                                       |
|                      | مۇسىيە بەلەر ئىيىلىغا ئوللىكى مەرەپ ئەتەر بەرەپ بەرەپ بەرەپ بەرەپ بەرەپ<br>بەرەپ ئىلەر | a da ser en la compañía de la compañ<br>La compañía de la comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | الله ومنه مراجع کامیکی منتخط ا<br>ا      | at a second s |                                       |
|                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          | · · · ·                                                                                                         |                                       |
| 468                  |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          | · · · ·                                                                                                         |                                       |
| 469 C                | INTEGRATION FACTORS                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                        | · .                                                                                                             | •                                     |
| 471                  | C2=CL**2*(AL+FL)/12.DO                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                        | •                                                                                                               | · .                                   |
| 472                  | (3=CL*(AL**3+PL**3)/12.CO                                                              | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |                                                                                                                 |                                       |
| 474                  | C5=CL4+2*(AL+BL)/6.D)                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                                                                                 |                                       |
| 475                  | Cf=Cl*(4L**2-8L**2)/6.00                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                                                                 |                                       |
| 477                  | P(2+4)=C5" BX                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                                                                                 |                                       |
| 478                  | P(2,5)=C(*2.CC*BX                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                                                                                 |                                       |
| 4 80-                | $F(2,10) = C6/2 \cdot C(+(LEX+UEY))$                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          | • ·                                                                                                             |                                       |
| 482                  | P(2,72)=C5*(UP)+UBY)                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                                                                 | ·                                     |
| 483                  | F(3,4)=CE'G                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                                                                                 |                                       |
| 484                  | $\frac{P(2,6)=05(2,00+6)}{P(3,6)=P(3,3)}$                                              | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · .                                      |                                                                                                                 |                                       |
| 486                  | R(2,10)=C5*G                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                        |                                                                                                                 | •                                     |
| <u>487</u><br>488    | <u>F(4,4)=C2*EX+C3*G</u>                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                                                                                 |                                       |
| 485                  | $P_{1}(4,5) = C_{1}(4^{2}) = C_{2}(4^{2}) = C_{2}(4^{2})$                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                        |                                                                                                                 |                                       |
| 491                  | $R(4, \xi) = P(3, 4)$                                                                  | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . <del>.</del>                           | •                                                                                                               |                                       |
| 492<br>493           | F(4,5)=R(2,12)/2.DC<br>P(4,10)=C4/2.DC*(1EX+1)PV+2                                     | 2-50+6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          | · · · ·                                                                                                         |                                       |
| 454                  | $F(4,11) = (3 + 2 \cdot C + G)$                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          | •                                                                                                               | · · ·                                 |
| 455                  | P(5,5)=C3×4.C(*BX                                                                      | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                                                                 |                                       |
| 497                  | $R(5,5)=2.0 \times R(2,10)$                                                            | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · · · · · · · · · · · · · · · · · ·    | ·                                                                                                               |                                       |
| 495                  | $\frac{P(5,12) = (2 + (0 + 2 + 0 + 1))}{P(5,12) = (2 + 2 + 0 + 0 + 1)}$                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          | - · ·                                                                                                           | •                                     |
| 500 501              | $P(6,6)=C2^{4}4 \cdot C0^{4}G$                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          | · · · · ·                                                                                                       | · · ·                                 |
| 502                  | P(6,1C)=F(6,6)/2.DC                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          | ······································                                                                          | -                                     |
| 503<br>504           | $F(6,11)=2 \cdot EC^{2} \cdot B(4,6)$<br>B(8,5)=B(3,3)                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          | <del>ت.</del> .                                                                                                 |                                       |
| 505                  | R(E, 1C) = R(3, 1C)                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                                                                                 |                                       |
| 506<br>507           | F(8,11)=2.00*F(3,4)<br>F(5.5)=01*PY                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                                                                                 |                                       |
| 508                  | R(S,1C)=(6*FY                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                                                                                 | <b>**</b>                             |
| 509<br>513           | ₽(\$,12)=C5#2₀DC48Y<br>₽(1€,1C)=C2≠G+C3≠BY                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                                                                                 | · · · ·                               |
| 511                  | P(1(, 11) = S(4, 6)                                                                    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ······································   |                                                                                                                 | · · · · · · · · · · · · · · · · · · · |
| 512                  | P(11,11)=C3×4.F3*G                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                                                                                 |                                       |
| 514                  | R(12,12)=C2*4.C0*BY                                                                    | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·····                                    | •                                                                                                               | ·                                     |
| 516                  | CC \$CO 18=1,12                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                                                                                 |                                       |
| 517                  | $\frac{P(1F,1/)=P(1A,1B)}{P(1A,1B)}$                                                   | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                        | ·                                                                                                               | · · · · · · · · · · · · · · · · · · · |
| 515                  | EC 901 14=1+12                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          | •                                                                                                               |                                       |
| <u>52)</u>           | $\frac{[\Gamma \cap 1] IP=1,12}{[\Gamma \cap 1] IP=1,12}$                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · ·    |                                                                                                                 |                                       |
| 522 901              | CONTINUE                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                        |                                                                                                                 | •••                                   |
| <u>522.25</u><br>523 | IF(ICEPUC.5C.0) GC TC 261<br>VELTC(5.076)                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                                                                                 |                                       |
| 524 276              | FRENTLY I, UNTRANSFORMED                                                               | STIFFNESS MAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FIX!)                                    | •                                                                                                               |                                       |
| 525                  | WI 177 (9,278) ((?(1,J),J=1,                                                           | 12),[=1,12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          | -                                                                                                               |                                       |
|                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                                                                                 | 5 · ·                                 |
|                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                                                                                 |                                       |

•

|                                                              | 이 이 집 사람과 승규는 것이 같아요. 이 가지 않는 것이 가지 않는 것이 같이 있는 것이 같이 있는 것이 같이 있는 것이 같아요.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 新秋子·新秋子·马                                                    | としい 経済 繊維的 教堂 バリース おうぜん いっこうじゅう オート・アイト しょうしょう しょうしょう                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                              | 株式学校学校研究所の構成が非常になった業務についてのない。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 525.25 261                                                   | CONTINUE SAMA SAMA TANA A PARAMATANA A AMAMPINA AMAMPINA AMAMPINA AMAMPINA AMAMPINA AMAMPINA AMAMPINA AMAMPINA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 526 B 10                                                     | DE WILL CONTAIN THERTRANSPOSE CETSING MICHING TO WERE THE STREET STREET STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 527                                                          | CALL IDGTRAN(5)P,12,12,12,12,12,12,12,12,12,12,12,12,12,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 528 SA (                                                     | FECTURE THE FLOWENT STIFFNESS MATELY IN CLEAN COLONIAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 525                                                          | REINITIANTE TERPINGE AS AN INTERPETATE CTREASE MATTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5 F 2 A                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6 2 1 3 - 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 600                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                              | こと1947月24日を認識になるため、後のなる認識を認識する後期では、「よう」、「したたたい」、「「」でいたり、「特別語言」です                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 20                                                           | CENTINE CONTRACTOR AND A C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| د <b>به ک</b> ر در ۲                                         | CALL DCMULT(8, F, T, 12, 12, 12, 12, 12, 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 約535回線(約7) パント                                               | 100~21~11~1~1~2~4~4~2~4~2~4~4~4~1~1~1~1~1~1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <u>536</u>                                                   | <u>이 만 21 [J=1,12 문] 사람</u> 한 상소에서 비가가 가지 않는 것이 하는 것이 하는 것이 많다. 영상 문제 문제 관람이 말했다. 제품                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 537 att 14                                                   | F(I,J)=O.EO.monthship and the second se   |
| 538 21                                                       | - CENTINUE に対応認識であるとなったが、たちになったが、それに対応したができたというでも感染がないという。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 535                                                          | CALL DEMULT(T, S, B, 12, 12, 12, 12, 12, 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 54545 C.                                                     | R NOW CONTAINS THE STRAND STREEMESS MATRIX-IN CLOBAL COOPDINATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5417 -C                                                      | NOV CHANGE MODIAS BACK TO PRICINAL SER. THE NEXT ELEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 547                                                          | TEALS IS ALL 1. SOLTO AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 543                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 544 W 410                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ELS AND STORES                                               | · 같이 가지 않는 것은 것은 것은 것은 것은 것을 수 있는 것은 것은 것을 가지 않는 것을 것을 수 있는 것을 수 있는 것을 가지 않는 것을 것을 수 있는 것을 하는 것을 수 있는 것을 하는 것을 수 있는 것을 수 있는 것을 수 있는 것을 하는 것을 수 있는 것을 수 있다. 것을 것을 것을 것을 수 있는 것을 것을 수 있는 것을 수 있는 것을 수 있는 것을 것 같이 않는 것을 수 있는 것을 것 같이 없다. 것을 것 같이 것 같이 없는 것 같이 없는 것 같이 없다. 것 같이 것 같이 없는 것 같이 없는 것 같이 없다. 것 같이 없는 것 같이 없는 것 같이 없는 것 같이 없는 것 같이 않<br>것 같이 것 같이 않는 것 같이 없다. 것 같이 것 같이 것 같이 없는 것 같이 없는 것 같이 없다. 것 같이 것 같이 없는 것 같이 없는 것 같이 없다. 것 같이 것 같이 없는 것 같이 없다. 것 같이 않는 것 같이 없다. 것 같이 않는 것 같이 않는 것 같이 없다. 것 같이 않는 것 같이 없는 것 같이 없다. 것 같이 않는 것 같이 않는 것 않는 것 같이 없다. 것 같이 않는 것 같이 않는 것 같이 없다. 것 같이 않는 것 같이 없다. 것 같이 것 같이 않는 것 않는 것 같이 않는 것 같이 않는 것 같이 않는 것 같이 않는 것 않는 것 않는 것 같이 않는 것 않 |
| 545 200                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                              | · 美国王教教教会,这些人的意思,我们就是我们就是我们的人,我们就是这些人的人,我们就是我们的人,我们就是我们就是我们就是我们就是我们的人,我们不是你的人,不是不                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 247 222                                                      | SUXY=UXY HILL 的复数形式的复数形式 计传输机 在这些情况的问题,并且是非常能够加强的。他们就是是一个问题,并且不能能能                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 548                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 549                                                          | - LYX=SUXY についたい かがたい にかわる お見に いわれた たいかんたい かんたい 読む 教出語語 やうかん いいかみ しょうしゃう もうもう くうやう                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ☆ 55C将为22 ≥ 615                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                              | CCNTINUE 1000日日本目的目标是形式教育部员的建筑的特殊的特殊的情况和考虑的特别和自己提出上述是非正式的1000-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 550.25 C                                                     | CENTINES<br>CHECK TO SEE WHETHER INDIVIDUAL COLUMNS OF THE FLEMENTAL STIFFNESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <u>550.25 C</u><br>550.5 25 C                                | CENTINLE<br><u>CHFCK TO SEE WHETHER INCIVIDUAL COLUMNS OF THE ELEMENTAL STIFFNESS</u><br>MATRIX ARE IN EQUILIPEIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 550.25 C<br>550.5 C<br>550.51                                | CENTINLE<br><u>CFFCK TO SEE WHETHER INCIVIDUAL COLUMNS OF THE FLEMENTAL STIFFNESS</u><br>MATRIX ARE IN EQUILIPEIUM<br>IF(IDEPUG.EC.0) GC TC 262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 550.25 C<br>550.5 C<br>550.51<br>550.6                       | CENTINLE<br><u>CFFCK TO SEE WFETFER INCIVIDUAL COLUMNS OF THE ELEMENTAL STIFFNESS</u><br>MATRIX ARE IN EQUILIPEIUM<br>IF(IDEPUG.EC.O) GC TC 262<br>WF ITF(5,540)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 550.25 C<br>550.5 C<br>550.51<br>550.61<br>550.6<br>550.6    | CCNTINLE<br><u>CFFCK TO SEE WFETFER INCIVIDUAL COLUMNS OF THE FLEMENTAL STIFFNESS</u><br>MATRIX ARE IN EQUILIPEIUM<br>IF(IDEPUG.EC.O) GC TC 262<br><u>WFITF(S,S4C)</u><br>FCPMAT('1','DEGREE CF FFEEDOM',10X,'CCCS',10X,'EVENS')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 550.25 C<br>550.5 C<br>550.51<br>550.6<br>550.7 940<br>550.8 | CCNTINLE<br><u>CFCK TO SEE WFETFER INCIVIDUAL COLUMNS OF THE FLEMENTAL STIFFNESS</u><br>MATRIX ARE IN EQUILIPEIUM<br>IF(IDEPUG.EC.0) GC TC 262<br><u>WFITF(S,S40)</u><br>FCPMAT('1','DEGREE CF FFEEDOM',10X,'CCCS';10X,'EVENS')-<br>DC S80 M=1,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 550.25 C<br>550.5 C<br>550.51<br>550.6<br>550.7 940<br>550.8 | CCNTINLE<br>CFCK TO SEE WHETHER INCIVIDUAL COLUMNS' OF THE FLEMENTAL STIFFNESS<br>MATRIX ARE IN EQUILIPEIUM<br>IF(IDEPUG.EC.O) GC TC 262<br>WE ITF(5, 540)<br>FCPMAT('1','CECREE CF FFEEDOM', 10X, 'CCCS', 10X, 'EVENS')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 550.25 C<br>550.5 C<br>550.6<br>550.7 940<br>550.8<br>550.81 | CCNTINLE<br>CHECK TO SEE WHETHER INDIVIDUAL COLUMNS OF THE FLEMENTAL STIFFNESS<br>MATRIX ARE IN EQUILIPEIUM<br>IF(IDEPUG.EC.O) GC TC 262<br>WEITF(S, S4C)<br>FCPMAT('1','DEGREE CF FFEEDOM', 10X, 'EVENS')<br>DC S60 M=1,12<br>CCDS(M)=0.CC<br>EVENS(M)=0.CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

CC 91( J=1,12 557. 84 CC 92(-I=1,11,2 550.85 550-86 CDDS(J)=CDDS(J)+F(I,J) CENTINUE 920 D0 930 1=2,12,2 33. 29 FVENS(J) = EVENS(J) + F(I, J)930 CONTINUE <u>51</u> 910 CONTINUE.

DC 960 J=1,12 92 ŝ CPCS(J) WEITE(5,950) FVSNS 950 FCPM4T(! +,IS,D24.8,D15.8, 550.94 D40.8) CCNTINUE CCNTINUE 960 55 RETURN 552 ENE SLARGUTINE SETUPIA, NV3,1 554 IMPLICIT REAL#F(A-F,0-Z) 555 DIMENSION LU(1), A(SODO), R(12

 555
 C
 A=MASTER\_STIFFNESS\_MATRIX

 557
 C
 NV2=HC. OF VARIABLES PEF ELEMENT

 558
 C
 LJ=CCDE\_NUMFERS\_FCF\_THE ELEMENT

 555
 C
 F=FLEMENT\_STIFFNESS\_MATFIX

 559
 C
 F=FLEMENT\_STIFFNESS\_MATFIX

 550
 C
 F=FLEMENT\_STIFFNESS\_MATFIX

NF1=LPANC-1 EC 12 I=1,NV2 C J=CCLUMN NUMBER IN THE ELEMENT MATPIX

|                                                              | 130                                                                                                                                                                  |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                              |                                                                                                                                                                      |
|                                                              |                                                                                                                                                                      |
|                                                              |                                                                                                                                                                      |
| 5/3 50 5                                                     |                                                                                                                                                                      |
| 565 107<br>566 C<br>567 C<br>568 C                           | IF (LJC) 12,12,107<br>FC 21 J=1,NV2<br>J=F(& NUMPFF IN THE ELEMENT NATEIX<br>J VAFIES FFCM J TE NV3 SINCE WE WANT ENLY THE LOWER HALF OF THE MASTER<br>MATEIX STORED |
| 565<br>570<br>571<br>108                                     | LJF=LJ(J)<br>JF(LJF) 11,21,11C8<br>IF(LJC=LJF) 115,115,114                                                                                                           |
| 572 C.<br>572 112<br>574                                     | THIS PART OF THE SUBROUTINE IS ACAPTED FROM HOOLEY'S PLANE FROME NOTES<br>L=(LJC-1)*NP1+LJR<br>GO TO 115                                                             |
| 575 114<br>576 115<br>577 791                                | L=(LJF-1)*NE1+LJC<br>(L)=A(L)+P(J,1)<br>CCNTINLE                                                                                                                     |
| 578 11<br>579 12<br>58)                                      | - CENTINUE<br>CENTINUE<br>FETLEN                                                                                                                                     |
| 582,<br>562,25                                               | END<br>SUEFOUTINE LSTRES(NA, PM, EX, EY, LXY, UY), C, SXX, SYY, SXY, NE, ICO, NELR, EX.<br>*X, EYY, EXY, I LFPUG                                                     |
| 583<br>584<br>585                                            | IMPLICIT FEAL=E(A-F,O-Z)<br>CIMPNSICN LJ(12), PM(86C)<br>CIMPNSICN / FLF(200)                                                                                        |
| 580<br>587                                                   | LIMENSION DEL(12), AP(12)<br>CIMENSION STEF(144), NSTEF(12)<br><u>CIMENSION APC(4)</u>                                                                               |
| 5 90<br>5 91<br>5 91 2                                       | CIMENSION SIGX(6), SIGY(7), TAU(6), EPSX(7), EPSY(6), GAM(6), ICC(420,6)<br>CIMENSION SXX(430), SYY(430), SXY(430)<br>CIMENSION SIGLX(6), SIGLY(6), TAUGUT(6)        |
| 5 <b>5</b> 5 5 2 5 5 3 5 5 5 2 5 5 3 5 5 5 2 5 5 5 2 5 5 5 5 | CCMMCN /ELT1/S(12,12)                                                                                                                                                |
| 555<br>556<br>597                                            | ECUIVALENCE (STE, S(1,1))<br>ECUIVALENCE (NSTEF, LJ(1))                                                                                                              |
| 558 C<br>555 C                                               | THIS SUBROUTINE PRODUCES-STRESSES AT THE NODES RELATIVE TO<br><u>ELEMENT-NOT GLOBAL-AJES</u><br>S= T INVERSERE FOR FLEMENT NA                                        |
| 601 C<br>602 C<br>603 C                                      | NA=ELFMENT NCPRED CN<br><u>PM=DISPLACEMENT SOLUTION VECTOP</u><br>EX.STCABE FLASTIC CONSTANTS                                                                        |
| 604 C<br>605 C<br>605 C                                      | SIGX= STRFSS PAPALLEL TO THE LINE JOINING THE FIRST TWO NODES OF THE THE TRIANGLE                                                                                    |
| 667, C<br><u>668</u><br>609                                  | TAL=SHEAP STRESS<br><u>FFSA=STRAIN FAFALLEL TE SIGX</u><br><u>FFSY=STRAIN FAFALLEL TE SIGX</u>                                                                       |
| 610 C<br>611 C<br>612 C                                      | CANESHEAR STRAIN<br><u>CLEMATRIX CF GLOBAL DISPLACEMENTS FOR AN FLEMENT</u><br><u>APEMATRIX CF POLYNOMIAL COEFFICIENTS FOR AN FLEMENT</u>                            |
| 613 C<br>614 C<br>615                                        | NELE ARRAY KNOWS WHICH ELEMENTS FAVE FEVERSED MODULI<br>INITIALIZE                                                                                                   |
| 616<br>617<br>618 - 150                                      | <pre>FFL(1)=0.00</pre>                                                                                                                                               |
| 619                                                          | $\frac{\text{CC}}{\text{EPS} \times (1) = \text{C} \cdot \text{CC}}$                                                                                                 |
|                                                              |                                                                                                                                                                      |

| 北方にわれるのである。 |           |  |    |    |     |          |                      |     |                           | いないないないないないない | いたので、日本語をな        |                   | のないないというという |         | 「「「「「「「「」」」」 | いたのに、「「「「「「「」」」で、「」」 | よいそれ、「「「「「「「」」」 | いたですというながあるとなる |              |            |        |          |        |        |         |    |          |          |   |  |                     |  |            |  |  |        |      |       |  |  |         |       |      |   |      |              | ハー・ 一時の生い |
|-------------|-----------|--|----|----|-----|----------|----------------------|-----|---------------------------|---------------|-------------------|-------------------|-------------|---------|--------------|----------------------|-----------------|----------------|--------------|------------|--------|----------|--------|--------|---------|----|----------|----------|---|--|---------------------|--|------------|--|--|--------|------|-------|--|--|---------|-------|------|---|------|--------------|-----------|
|             | ξų.       |  |    | 1  |     |          | Ţ,                   |     | <u>الموتية.</u><br>1997 م |               | 7                 | ÿ                 | が現          |         |              | 2                    | 50              |                | 2            |            | rt.    |          |        |        |         |    | 2.<br>2. | <u> </u> |   |  | 5                   |  |            |  |  |        | <br> |       |  |  | ند<br>م | بيتته | <br> |   | ترين | يەسىد<br>بەر | Ţ         |
|             | 23425     |  |    | 48 | 1.1 |          | P<br>1<br>1<br>1     |     |                           |               | 1. O. 1. 1. O. U. | C .<br>C .<br>C . |             | 0000    |              |                      | 「おきないので、彼る」     | 一部にいた時間の見たい    | 「おおいたからなった。」 | いたいであるがある  |        |          |        |        |         |    |          |          |   |  |                     |  |            |  |  | の方に活生と |      |       |  |  |         | 5     |      |   |      |              |           |
| 2           | 27<br>2 É |  | С. |    |     | . F<br>1 | ₹ <b>Г</b> -'<br>  F | V F | 5 E (                     | 5 E<br>1 F    | (                 | N(<br>NA          | ] [<br>6 )  | ט:<br>• | L I<br>F (   | L.:                  | W<br>N          | F  <br>}       | ĘF<br>(      | 9 E<br>9 E | N<br>T | ۶ (<br>۲ | E<br>6 | S<br>O | 57<br>0 | ٩R | Y        |          | 5 |  | ي مي<br>مينه<br>مري |  | تن:<br>زر: |  |  |        |      | <br>5 |  |  |         |       |      | - |      |              |           |

605 CCNTINUE C PETRIEVE MATRICES FRCM MAIN PREGRAM FFAC(1) STF REAL(2) NSTFF REAL(2) NSTFF

647. 80 F(FMAT ('G','LJ FCF ELEMENT',14) (48 MFITF (S,1CC) (LJ(I),I=1,12) 645 100 FORMAT ('-',12110) (45.25 263 CCNTINLE

 (49.25
 263
 CCNTINUE

 (65)
 C
 REJEIEVE ELEMENTAL DISELACEMENTS IN GLOBAL-COCEDINATES FROM PM 

 (65)
 C
 110

 (65)
 C
 110

 (65)
 JL=LJ(I)

653 (IF (JL .CO.()) GO TG 180 654 CTL (I) = PM (JL) 655 GC TC 19C

 656
 180
 DEL(1)=0.00

 (57
 190
 CONTINUE

 (58
 110
 CONTINUE

 (59
 C
 CALCULATE MATFIX CF POLYNOMIAL COEFFICIENTS AP 

 (60
 C
 AF=T INVEFTEC\*F\*CEL

 660
 C
 AF=T INVERTED\*F\*CE1

 661
 CALL DGMULT(S+CEL,AF+12,12,12,12,12,12)

 661.25
 IF (ICEEUG.FC.C) GD TO 264

 662
 VPITF(S,130) NA

 662
 FPITF(5,136)
 NA

 663
 J36
 F(RMAT('C', 'PELYNEMIAL COEFFICIENTS FEF ELEMENT', 14)

 664
 WFITE(9,140)
 (AP(K), K=1, 12)

 665
 140
 FOFM(T('-', 6F15.6)

 665.25
 264
 CONTINUE

 666
 LN=1. DC-UXY\*UYX

 667
 C

 668
 FPSX(1)=AP(2)-2.DG#AP(5)#BL

 668
 FPSX(2)=AP(2)+2.DG#AP(5)#AL

 670
 Ff (SX(E) = AP(C) + AP(A) \* CL

 671
 EPSX(4) = AP(2) + AP(5) \* (AL - BL)

 672
 EPSX(5) = AP(2) + AP(4) \* CL/2 - CO + AF(5) \* AL

 673
 EPSX(5) = AP(2) + AP(4) \* CL/2 - CO + AF(5) \* AL

 674
 EPSY(1) = AP(S) - AP(1C) \* EL

 $\frac{\Gamma P S Y(2) = AP(S) + AP(1C) = AL}{SPSY(2) = AP(S) + 2 \circ DC = AP(12) = CL}$ 

|                                                                                                                |                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                       | 132                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
|                                                                                                                |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
|                                                                                                                |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
|                                                                                                                |                                                                                                               | e de la companya de l<br>La companya de la comp<br>La companya de la comp |                                                                                                                                                                                                                                    |
|                                                                                                                |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
|                                                                                                                |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                         | م این در مین در از                                                                                                                                                                             |
|                                                                                                                |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
|                                                                                                                |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 6.78                                                                                                           | <pre>LPSY(4)=AP(5)+AP(10)+(/L-UL)/2.(4) </pre>                                                                |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 6.75                                                                                                           | <pre>SP((,)=/P(5)-/P(10)*BL/2.CC+AP(12)*CL</pre>                                                              |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 681                                                                                                            | A2=AL(1C)+Z_CO3AR(6)                                                                                          |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 662                                                                                                            | A3=AP(4)+2.00×AP(11)<br>GAF(1)=A1−A2+BL (ためをおれた) (の) (の) (の) (の) (の) (の) (の) (の) (の) (の                       | and a second                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                    |
| 684 4.                                                                                                         | (AV(2) = A1 + A3 * A1)                                                                                        |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
|                                                                                                                | CAM(4)=A]+A=#(AL-BL)/2.DO                                                                                     |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 687                                                                                                            | C / Y ( f ) = A1 + A3 + A1 / 2° C0 + A2 * CL / 2° CC<br>C / N ( / ) = A3 - A2 * B1 / 2° C C + A2 * CL / 2° C0 |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 685                                                                                                            | EXMELX/UM                                                                                                     |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 691                                                                                                            | XYF X=UXYY E XM                                                                                               |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 692                                                                                                            | YXEY=UYX*EY                                                                                                   |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 654                                                                                                            | SF=C.DC                                                                                                       |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 6.6                                                                                                            | PHI = 0.00                                                                                                    |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 697                                                                                                            | FSI=C.CO                                                                                                      |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 6.55                                                                                                           | SIGX(J) = $EXM \neq EFSX(J) + XYEX \neq EPSY(J)$<br>SIGX(J) = $YXEY \neq EFSX(J) + EYM \neq EPSY(J)$          |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 701                                                                                                            | T/L(J)=G*GAN(J)                                                                                               |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
|                                                                                                                | <pre>FRI=PADJUS_DFMCHR'S_CIFCLE_FCR_UHIS_SIFESS_CASE SF=(SIGX(J)-SIGY(J))=#2+4.00*TAU(J)**2</pre>             |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 703.5                                                                                                          | SFSN=(EPSX(J)-EPSY(J))**2+4.CO*GAM(J)**2                                                                      |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 70+.5                                                                                                          | FASN=.500+[SCKT(SFSN)                                                                                         |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 705 <b>.</b> 1 C                                                                                               | FHIN-CRIGINAL ANGLE FROM PRINCIPAL STRAIN PLANE                                                               |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 705.2                                                                                                          | TFN=2.00464W(J)/(EFSX(J)-EPSY(J))                                                                             |                                                                                                                                                                                                                                                                                                                                                         | Calebratic Strength Strength State States                                                                                                                    |
| 765.4                                                                                                          | FSINANCLE FRCM CLCEAL SYSTEM TO PRINCIPAL STRAIN-PLAN                                                         | VE                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                    |
| 7.06                                                                                                           | TF=2.DC*TAU(J)/(SIGX(J)-SIGY(J))                                                                              |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 7C7<br>7C8                                                                                                     | PPI=CATAN(TF)<br>PSI=ANGLE FROM GLCEAL SYSTEM TO PFINCIFAL STRESS PLAN                                        | VE                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                    |
| 709                                                                                                            | +IF(SIGX(J).LT.SIGY(J)) PHI=PHI+3.14155                                                                       |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 711.5                                                                                                          | FSN=(FPSX(J)+FPSY(J))/2.DO                                                                                    |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 711.5                                                                                                          | $F = (SIGA(J) + SIGT(J))/2 \cdot LO$<br>$FSIN = PFIN - 2 \cdot CO = TFETA$                                    |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 712 C                                                                                                          | <u>SIGLX=NOFMAL_STRESS_IN_THE_GLOBAL_X-DIFECTION_ASAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA</u>                    |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 714 C                                                                                                          | TAUGL = SHEAR STR FSS RELATIVE TO GLOEAL AXES                                                                 |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 716                                                                                                            | SIGLA(J) = F - F D* CCGS(PSI)                                                                                 | ي.<br>يو موجوع في من من مركز في المركز المركز<br>المركز المركز                                                                                                                  |                                                                                                                                                                                                                                    |
| 717.7                                                                                                          | FSLX (J)=FSN+FASN+CCOS (PSIN)                                                                                 |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 717.2                                                                                                          | FPSLY(J)=FSN-PASN*CCOS(PSIN)                                                                                  |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 718                                                                                                            | <pre>hFIT-(6,231) ICC(NA,J),SIGX(J),SIGY(J),TAU(J),EPSX(J</pre>                                               | , EPSY(J), GAM(                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 719<br>720 231                                                                                                 | *J)<br>FCRMAT(' ',12x,15,2F16.2,2F16.8)                                                                       |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 721 230                                                                                                        | CENTINES                                                                                                      | nga nggawang ng ba                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                    |
| 723                                                                                                            | JI=ICC(NA,1)                                                                                                  |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
| 127724 1977 1978 1978 1978 1978 1978 1978 1978                                                                 |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
|                                                                                                                |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
|                                                                                                                |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                         | المواد المراجع والموجع والموجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع<br>مراجع المراجع ال |
| a are the second se | ション・ション ション・ション ション・ディー ロー・ション 加工 かくれた かいせいせいかく かくのう かくのう                                                     |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |

1.1

| and the second |                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 725                                                                                                              | JE=10C(NAE)                                                                                                                                        |
| - 726                                                                                                            | J4= ICC(N/,4)<br>IF= ICC(N/,5)                                                                                                                     |
| 729                                                                                                              | $J\ell = ICC(N\ell_1, C)$                                                                                                                          |
| 732                                                                                                              | <pre>SXX(J1)=SXX(J1)+S1CLX(1) syx(J2)=SXX(J2)+S1CLX(2)</pre>                                                                                       |
| 752                                                                                                              | SXX(JF)=SXX(JC)+SICUX(F)<br>SYY(JI)=SYY(JI)+SICUX(F)                                                                                               |
| 17. 7: 200 1. ANA                                                                                                | <u>YY(J2)=SYY(J2)+CICLY(2)</u>                                                                                                                     |
| 735                                                                                                              | SXY(J1)=SXY(J1)+TALEL(1)                                                                                                                           |
| 7:1:                                                                                                             | SXY(J2)=SXY(J2)+TAUGL(2)                                                                                                                           |
|                                                                                                                  | SXX(J4)=SXX(J4)+SICLX(4)<br>SXX(J5)=SXX(J5)+SICLX(4)                                                                                               |
| 740                                                                                                              | SXX(J6) = SXX(J6) + SICLX(6)                                                                                                                       |
| 742                                                                                                              | SYY(J5)=SYY(J5)+SIGLY(5)                                                                                                                           |
| .744                                                                                                             | SYY(JG)=SYY(JG)+SICLY(G)<br>SXY(J4)=SXY(J4)+TALGL(4)                                                                                               |
| 745                                                                                                              | <u> </u>                                                                                                                                           |
| 746.C5                                                                                                           | $FXX(J_2) = FXX(J_2) + EPSLX(1)$                                                                                                                   |
| 746.15                                                                                                           | Exx(J2)=Fxx(J3)+EFSLX(3)                                                                                                                           |
| 746.25                                                                                                           | <u>FXX(J5)=EXX(J5)+EPSLX(5)</u>                                                                                                                    |
| 746.35                                                                                                           | 2 XX (JE) = E XX (JE) + E PSLX (E)<br>EYY (J1) = E YY (J1) + E PSLY (1)                                                                            |
| 746.4 5.4 States                                                                                                 | -EYY(J2)=FYY(J2)+FFSLY(2)                                                                                                                          |
| 746.5                                                                                                            | CYY(J4)=EYY(J4)+EPSLY(4)<br>FYY(J5)=FYY(J5)+EFS(Y(5)                                                                                               |
| 746.6                                                                                                            | EYY(J6)=EYY(J6)+EPSLY(6)                                                                                                                           |
| 746.7                                                                                                            | EXY(J2) = EXY(J2) + GANL(2)                                                                                                                        |
| 746.8                                                                                                            | $+ x^{1}(J_{2}) = E x^{1}(J_{2}) + E x^{1}(L_{2})$<br>$+ E x^{1}(J_{4}) = F x^{1}(J_{4}) + E x^{1}(L_{4})$                                         |
| 746.5                                                                                                            | <u>FXY(JE)=FXY(JE)+GANL(5)</u> THE FXF WARTAN THE FAR AND THE FF WARDED WARDED AND THE FAR AND AND THE FAR AND |
| 747 C                                                                                                            | CHANGE MCDULI PACK FOR THE NEXT ELEMENT                                                                                                            |
| 749                                                                                                              | GC TC 615                                                                                                                                          |
| 751                                                                                                              |                                                                                                                                                    |
| 753                                                                                                              | SUNTELY                                                                                                                                            |
| 755                                                                                                              | LYX=SUXY                                                                                                                                           |
| 750 615<br>757                                                                                                   | PETLEN                                                                                                                                             |
| 759<br>759                                                                                                       | LI D<br>SUEFPUTINE EXPAND(AGEOSS, NMAT, NVAP, PM, IX)                                                                                              |
| 76 <u>3 C</u>                                                                                                    | THIS SUBPOUTINE SXFANDS THE SCLUTICE VECTOR OF SIZE NIET BACK TO                                                                                   |
| 162 Č                                                                                                            | KERE APPLIED AND FRINTS IT OUT                                                                                                                     |
| 764 C                                                                                                            | NEALS SET AF AND FUL SUIDILLA VECTUR TO HOS IZE NMATE (FETURNED) TO AN ANTE OF THE FROBLEM ANTE OF THE FROBLEM                                     |
| 765 C<br>766 C                                                                                                   | NVAP=NUMBER CF VARIABLES PER NCCE OF ELEMENT<br>FM=NFT SCLUTICN VECTOR CF SIZE NNET                                                                |
|                                                                                                                  |                                                                                                                                                    |

| the second s |                                                                             |                                             |                                       | •                                        | 1 34 |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------|---------------------------------------|------------------------------------------|------|
|                                                                                                                |                                                                             |                                             |                                       |                                          |      |
|                                                                                                                |                                                                             |                                             |                                       |                                          |      |
|                                                                                                                |                                                                             |                                             |                                       |                                          |      |
|                                                                                                                |                                                                             |                                             |                                       |                                          |      |
| 767 C<br>768 C<br>769 C                                                                                        | IX=PCUNDARY CONDITI<br>THIS SUBPOUTINE WOR<br>AFE EITHER EST                | ICN CCUE VECT<br>KS CNLY IF<br>KAINFD DF CN | OR<br>LL LFCREFS CF F<br>RESTRAINELSE | FEELCH AT A NUDE<br>E NDS BELLW          |      |
| 773<br>771<br>772                                                                                              | IMFLICIT REALERIA-<br>DIMENSION FM(1), ACF<br>LL=0                          | , (                                         |                                       |                                          |      |
| 773<br>174<br>775                                                                                              | CO 5 I=1, NKAT<br>LL=LL+IX(I)<br>AGFCSS(I)=0.CO                             |                                             |                                       |                                          |      |
| 776<br>777<br>778 5                                                                                            | IF(IX(I).EC.G) GC T<br>AGECSS(I)=FM(LL)<br>CCNTINUE                         | C 5                                         |                                       |                                          |      |
| 775<br>780<br>781 40                                                                                           | NF 5 = N MAT / N V A R<br>WF 5 TF ( 6, 40)<br>F( PM AT ( * * ; * NEE E* ; 1 | 5x, 'CELX',15                               | X; •• [FELY •]                        |                                          |      |
| 782<br>763<br>784                                                                                              | C( 10 I=1,NCS<br>I1=NV/R*(I-1)+1<br>I2=I1+NV/R-1                            |                                             |                                       |                                          |      |
| 765<br>766 41<br><u>767 10</u>                                                                                 | VFITE(6,41) 1,(AGFC<br>FCRMAT(15,2F20.5)<br>CCNTINUE                        | SS(J),J=I1,I                                | 2.)                                   |                                          |      |
| 788<br>785<br>END CF FILE                                                                                      | FEICEN                                                                      |                                             |                                       |                                          |      |
|                                                                                                                |                                                                             |                                             |                                       |                                          |      |
|                                                                                                                |                                                                             |                                             |                                       |                                          |      |
|                                                                                                                |                                                                             |                                             |                                       |                                          |      |
|                                                                                                                |                                                                             |                                             |                                       |                                          |      |
|                                                                                                                |                                                                             |                                             |                                       |                                          |      |
|                                                                                                                |                                                                             |                                             |                                       |                                          |      |
|                                                                                                                |                                                                             |                                             |                                       |                                          |      |
|                                                                                                                |                                                                             |                                             |                                       |                                          |      |
|                                                                                                                |                                                                             |                                             |                                       |                                          |      |
|                                                                                                                |                                                                             |                                             |                                       |                                          |      |
|                                                                                                                |                                                                             |                                             |                                       |                                          |      |
|                                                                                                                |                                                                             |                                             |                                       |                                          |      |
|                                                                                                                |                                                                             |                                             |                                       |                                          |      |
|                                                                                                                |                                                                             |                                             |                                       | an a |      |
|                                                                                                                | •                                                                           |                                             | •                                     |                                          |      |