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ABSTRACT

A modal finite element method is presented for the steady state and
transient analyses of the plane flow of incompressible Newtonian fluid.
The governing restricted func¢tional is discretized with a high precision
triangular stream function finite element. Eigenvalue analysis is
carried out oh the resulting discretized problem, under the assumption
that the nonlinear convective term is equaibto zero. After truncating
at various levels of approximation to obtain a reduced number of modes,
the transformation to the new vector space, spanned by these modes is
performed. Advantage is taken of the :symmetric and the antisymmetric
properties of the modes in order to simplify the calculations. The
Lagrange multipliers technique is employed to dncorporate the nonhomo-
geneous boundary conditions. The steady state analysis is carried out
by utilizing the Newton-Raphson iterative procedure. The algorithm for
transient analysis is based upon backward finite differences in time.
Numerical results are presented for the fully developed plane Poiseuille
flow, the flow in a square cavity, and the flow over a circular éy]inder
problems. These resultscifor the steady state are compared with the
results obtained by direct finite element approach on the same grids
and the results obtained by finite differences technique. It is concluded
that the number of modes, which are to be retained in the analysis in
order to achieve reasonable results, increases with the refinement of the
finite element grid. Furthermore, the choice of modes to be used depends

on the problem. Finally it is established, that this new modal method



yields good results in the range of moderate Reynolds numbers with about
50% or less of the modes of the problem. This, in turn, means that the
time integrations can be performed on a greatly reduced number of

equations and hence potential savings in computer time are significant.
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NOTATION

The specific use and meaning of symbols are defined in the text
where they are introduced. Indicial notation based upon the summation
convention is adopted throughout the text. Alternatively, the more
common matrix notation is also used when it results in equations written
more concisely, and for final expressions. Vector quantities are indicated
by a lower bar, matrices by two lower bars, and triply subscripted arrays
by three lower bars. When the arrays have to be written out in full,
vectors are denoted by { } brackets, matrices by [ ] brackets, and trans-
posed vectors by < > brackets. A comma followed by an index, appearing
as a subscript, designates a partial derivative with respect to a spatial
derivative in the direction of that index.

The Greek symbol ¢ implies 'belongs to' unless specified otherwise.
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CHAPTER 1

Introduction

The numerical analysis of the plane flow of incompressible Newtonian
fluid constitutes an important area in computational mechanics and engin-
eering practice. Traditionally, the most popular and thoroughly studied
methods for treating problems of this type have been the various techniques
based on finite difference discretization. The great progress in application
of finite element brocedures has been made only in the last few years. [1].

The purpose of this thesis is to establish whether it is feasible to
reduce the number of discrete variables appearing in finite element approach
by performing the transfiérmation to modal coordinates. This is especially
important in applications to transient problems where the cost of integrating
the discrete equations in time soon becomes prohibitively expensive.

Stream function alone approach is used for finite element modelling.
The restricted functional governing the problem is discretized with a high
precision finite element of Cl class. Eigenvalue analysis is carried out
on the resulting discretized problem under the assumption that the nonlinear
convective term is equal to zero. After truncating at various levels of
approximation to obtain a reduced number of modes, transformation to the
new basis defined by these modes is performed. It is shown that it is
computationally more efficient to employ transformation in conjunction with
Lagrange multipliers technique than transformation by condensation, even
though the system size is expanded and the system matrix is nonpositive-
definite. Steady state analysis is carried out by utilizing the Newton-
Raphson iterative procedure. Algorithms for transient analysis are based

upon. backward finite differences in time and differ only in how the nonlinear



term is treated. The pressure distribution is obtained by solving the
Poisson equation after all modal stream function variables in the finite
element coordinates have been found.

Numerical results are presented and discussed for the fully developed
Poiseuille flow, the flow in the square cavity and the flow over a circular
cylinder problemg, The results for the steady state are compared with the
results obtained by direct finite element approach on the same grids and

the results obtained by finite difference procedures.



CHAPTER 2

Basic Theory

In this chapter the partial differential equation governing the
problems of plane flow sf' incompressible Newtonian fluid and the restricted
variational principle derived from it are presented to recapitulate the

theoretical basis on which modal approach shall later be built.

2.1 Partial Differential Equation

The descriptive set governing the plane flow of incompressible
Newtonian fluid consists of: (a) the spatial equation of motion, derived
from the dynamics of flow considerations using the principle of conserva-

tion of linear momentum, and called Navier-Stokes equation:

3. L tu, L),3 >
3 (ui’J uJ’l),J xeQ, t>0 (1)
(b) the continuity equation derived from the kinematics of fluid flow via

the conservation of mass:

Veu=u, . =0 xefl, t>0. (2)

The appropriate boundary and initial conditions also have to be prescribed.
The equations are written in an Eulerian frame of reference fixed in space.
The normalizing system used in above equations is based on the convective
time scale L/U, where L is a characteristic length and U is a characteristic
velocity of the problem. Pressure is normalized with respect to the
reference pressure pU2. Re is the dimensionless Reynolds number defined

UL

as Re = R The other parameters of the problem are the density of the

fluid p, which is assumed constant and independent of temperature, the

\



absolute viscosity of the fluid u, and the kinematic viscosity defined as

v = £ ui(i = 1,2) are the components of velocity in x and y directions

Y
respectively, and Q is the domain under consideration with the boundary T.

: Viscous stresses for an isotropic Newtonian fluid are defined as:

T,, = . . +tou, 3
15 POy ) (3)

By introducing the stream- function concept the continuity
equation becomes exactly satisfied and the pressure is completely eli-
minated, leaving the stream function as the only dependent variable. The

stream function is defined as:

bo=u b o= -v. (4)

Then by cross-differentiating,Eq.7(1l).ifor each of the two
directions X and y to eliminate the pressure and By expressing the
velocities in terms of the stream function via Eq. (4), the following
single-variable fourth order partial differential equation is obtained:

(VY _ 3 Ao 3_3%oo 1 oy
ot N 8x(8yV v) + By(ayv ¥) + Re V. (5)

As
2.2 Restricted Variational Principle

As proven by Finlayson [2], no exact variational principle
exists for this equation due to the non-selfadjoint convective terms.
Therefore Olson [3] resorted to restricted variational principle.
Yamada et al. [4] point out that the paper [3] was "itself a break-
through in the application of the finite element method to field of
fluid dynamiés!'. The derivation of the principle is repeated here,

extended for the time dependent term, as this principle yields the



functional, which in its discretized form serves as the basis for the

modal approach.

If Eq. (5) is multiplied by 8y and integrated over the domain

2 the following varied integral is obtained:
Y T S 2000 - 2 _ 8 (y2
51, = [Jlg T + 0, 7R ) - y TR - 5 (A 10vde, (6)

Integrating Eq. (6) by parts twice for the viscous term and
once for the convective and the time dependent terms and employing the

Green-Gauss theorem yields the following variational statement:

ST, = 1 o2,u2 0g2,,0 09240
531y éf[Re VZPUESY + (uovAY) Sy - (WRVEL®) SY

2
+v¢§va¢]‘d9 + ¢[%g-33%5$l - V2y°nxvy° (7
T

_ 8 a(w®). _1 2
7 (o] swdr - o ? v2psy_dr

where the notation 6¢Il refers to variation in ¢ only, while ¢° is kept
fixed. After the variation Y is set equal to y° and the governing
differential equation (5) recovered as Euler equation.

If the vériational operation § is pulled in front of the integral

expression, and the boundary integrals neglected for now, the following

functional is obtained:

°y = [[ [-=— °og2y0 |
I1(¥50°) = éf [35e (T202) + ov2v®) v, (8)

_ 0n2.,0 )
(W V) b+ Tvhlda.



This functional yields the boundary conditioms:

1 g2 2 LY
either 8 = 0 or - iE-V wn + v wws + Y 0 9)
and either &y =0 or g = V2y = 0 (10)

where n is the direction of the outward normal on the boundary, sa- s
is the direction tangential to the boundary, and 7 represents the
vorticity. The left hand side conditions are the légical 'rigid' boundary
condditidbnss corresponding to specified stream function and its normal
derivative. The 'natural' boundary conditions on the right hand side are
not the ones that we would like to have, namely those of constant pressure
and zero shear stress.

These boundary conditions can be easily implemented though, by
simply adding the appropriate boundary integrals to the functional Eq. (8).
Aé we use triangular finite elements to be covered in more detail later,
the boundary integrals are added in such a way, that the natural boundary
conditions can be approximated only on one edge of the triangle. This
effectively means that only if a particular finite element is to be used
as boundary element with two of its vertices lying on the part of the
boundary, where any one or both '‘natural boundary conditions are prescribed,
these boundary integrals are added.

In order to simplify the equations we switch now to local
coordinates 7,n as shown in Fig. (1), and obtain the modified governing

functional as:

= 2 - 0g2,,0° 072,10
I°(¥,9°) If [ (72) (WEV2P°) b+ (WPV2°) b (11)
Q°®

tVEV] dgd, ¥ ,_‘b A o A 2 B 24 20 L 2



The functional yields the 'rigid' boundary conditionms:

S =0 and Gwn =0 (12)

and the 'natural' boundary conditions:

I

nt " Re V¥ =0 (13)

Pp =V Wegn * Yonn? T Yo¥en T Ve¥nn

1
= = — v )=
and T o (wnn wgg 0.

Both 'rigid' boundary conditions can be exactly satisfied for
a straight boundary, since stream function is uniquely determined by
w’wg and wgg at the two vertices lying on the boundary, and itsnnormal
derivative, a cubic, is uniquely determined by wn and wni at these
vertices. For curvéd boundaries, however, special provisions are
necessary, and the desired boundary conditions are realized exactly only
at discrete nodes. These provisions in the element area integrations
are included in this work, but they will not be reported, as they are well

documented in Tuann and Olson [5,6].



CHAPTER 3

Finite Element Formulation

By performing the aforementioned integration by parts the order of
the function space is lowered. This relaxation of the continuity require-
ments on the stream function is referred to as a 'weak' formulation of the

problem. It permits us to seek the solution in the Sobolev space W,, which

2
contains all functions, whose second derivatives are square integrable,
i.e. finite. In other words using classical finite element vocabulary we
need a finite element of Cl class. Such an element satisfies the 'compati-
bility' conditions, as it provides interelement continuity of ¢ and its
normal derivative and the governing functional contains derivatives Bf at
most second order.

In this chapter the derivation of the functional for an element
6E:Cl class is preéented. The procedure Qf finding the extremum of the

global functional resulting in the discretized equations of motion is

indicated.

3.1 Functional on Element Level

Here the triangular element derived by Cowper et al. [7] is
adopted. This element has since been recognized as one of the most accurate
finite elements available for plate bending problems, Gallagher [8]. It
should be noted, though, that this element requires a substantial formu-
lative effort. Olson was the first to modify it for application to the
steady state two-dimensional viscous flow problems. Only the relevant
steps in the element derivation areiincluded and for more details it is
referred to Olson [1,3].

The element and its nodal variables are shown in Fig. (2). The



field variable is interpolated within the element by a truncated quintic
polynomial:

20 m;ony
b= I aE " (14)

such that tangential velocity component along the edge 1-2 is a cubic in

g£. Eighteen relations expressing nodal variables yi in terms of polynomial
coefficients A can be established by differentiating y with respect to the
£,n coordinates and by substituting the local coordinates of the vertices.
Two additional relations are obtained by constraining the tangential velocity
to vary as a cubic along the remaining two edges, 2-3 and 3-1. This is

written in matrix form as:

<Wiaoao > = -Z é (15)

Inverting the above equation the vector of polynomial coefficient

A can be expressed in terms of the vector of nodal variables_gi as:

(16)

-1 . T _
A=T <?i’0’0> - 2291

1

where T, is 20 x 18 matrix consisting of the first 18 columns of Z_ .

2

The introduction of the transformation from local coordinates

g,n to global coordinates x,y in the form:

wl =Ry (17)

where ¢ is the vector of nodal variables in the global coordinate system

into Eq. (16) yiedds the following relation between y and A:

1>
It
U

Rp =59 (18)
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The element matrices are then obtained by substituting Eq. (14)
into the governing functional Eq. (11) and carrying out the integrations.
It should be noted, that the terms in the functional are first arranged in
such a way, that the resulting arrays are symmetric in their first two
indices. The functional on the element level can then be written in dis-

cretized form as:

e

e o = 1 °
(97 = Re Kk %f 13kw Mkjwkw (19)
where

e =
Kkj Srks_sjkrs ' (20)

is the element linear dissipative matrix

e .
Qijk - rk sj t%qrst (1)

is the element nonlinear convective matrix and

e _ )
Mkj ; Srkssjzrs (22)

is the element consistent mass matrix, and ¢ represents a time derivative.
In the above equations i,j,k take values from 1 to 18, and r,s,t from
1 to 20, respectively. The other arrays appearing in these equations are

defined as:

o
it

’L""" l./],'—'\ A_ PRI SR L= - .
s mrmS\K¥rl,Tlg (ms llm% F(mru+ my r4’ pr)+ ns)

+ nrns(nr - 1) (nS - 1) x F(mr + m_, B + n - 4y

(23)

+

(mr -1 (nS -1 + msnr (mS - 1) (nr - 1]

+ - +n - -
X F(mr m 2, n_+ o 2) + [mrnS (mr 1)

tmn m-1)]x6m +m -2, n +n -1)
S r s, . r . S . r s |



11

1
= - . — + - —
qrst 2 (nrm t mrnt) ms (ms 1 (nsmt msnt) mr (mr 1
xFm +m +m -3, n +n +n ) + l-(n m - m n.) n. (n -1)
T s t > Tr s t 2 V'rt Tt & s
- - ) - + + -
+ (nsmt msnt) n_ (nr 1) x F(mr + m + m, 1, n_+ o +mn 3)
- L mm (m +m +m -2) xGm +m +m -3,n +n +n)
2 rs T s t r s t r s t
- i-n n (m +m)xG6m +m +m_ -1, n +n +n - 2) (24)
2 rs T s T 3 t > Tr s t
% =mm XFm +m -2, n +n)+nn xFm +m,n +n
rs rs r s r s TS T s r s

2) (25)

where F and G represent the exact integral formulas obtained by carrying
out the integrations of the general term gmnn over the area of the triangle

and along the n = 0 edge, respectively.

F(m,n) = Cm+l[(a)m+l _ (__b)m+1](m $!§!+ 51 (26)
6,y =~ (@™ - (0™ 1£n =0

(27)
G(m,n) = 0 if n # 0.

3.2 Global Functional

The global governing functional for the entire problem in
discretized form is obtained by following the usual finite element assem-—
blage process. That is, the element matrices are appropriately summed
into the global matrices, taking into account the symmetry and bandedness
properties. The(homogeneous boundary conditions are introduced during

the process as well, by simply striking out rows and columns of the global
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arrays corresponding to the variables on the boundary with specified zero
value. The problem obtained in that manner, that is, the problem of the
order equal to the number of the nonzero nodal variables will be referred

to as the 'net' problem. It should be noted, that so far, the nonhomogeneous
boundary conditions have not been taken into account.

The aforementioned functional can be written as:

on _ _]___ 0,0 1,©
TW,¥°) = 735 Keg¥y¥e t Qijk“’i‘”j"fk T MgVt
(28)
i,j,k=1, . . .,r

where r is the''net' problem size, and Yy and yY° represent the global

vectors of nonzero nodal variables. The global dissipative matrix Kkj

and the global consistent mags matrix Mkj are each stored columnwise in

an one-dimensional array of size 1b. x r. The nonlinear convective matrix

Qijk is also storea in full, because it was found to be numerically more

efficient, than to recalculate it element by element. The matrix cannot

be accommodated in the core, because of its size, so it is stored slice

by slice columnwise in the order of the index k on the high speed disk.

Each one-dimensional slice is of size 1b x (2 1b - 1), or 1b x r, depending

on whether the 'net' size of the problem is bigger or smaller than the

bandwidth 2 1b - 1. The half-bandwidth of the problem is defined as 1b.
The: procedure of seeking the extremum of the global functional

Eq. (28) with respect to Yy, while keeping y° fixed, yields:
- _l_ 0,0 10 = |

where the indices, appearing as subscripts, i, j, and k take on,
successively, values from 1 to r, as before.

The restricted variational principle now permits to replace
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v° by ¥ and as ka is arbitrary, the set of first order nonlinear differen-

tial equations in discrete form for the r global variables y is obtained:

1 L

where the indices take on successively the same values, as in the previous
two equations.
The functional Eq. (28), or alternatively the system of differen-

tial equations Eq. (30), will serve as the basis for employing modal-approach. . -
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CHAPTER &

Modal Approach

The idéa to employ modal approach originates in the field of
structural dynamics where this approach has been applied successfully
for years to linear and mildly nonlinear problems and recently extended to
cover strongly nonlinear problems.

In the category of linear structural dynamics problems the
advantages of modal approach are quite obvious. Not only do the equations
of motion uncouple, under the assumption that damping matrix can be repre-
sented as a linear combination of stiffness and mass matrices, but also,
due to the fact that most of the frequency content of the loading is con-
tained in the lowest modes for many types of. practical loadings, only a
fraction of the total number of uncoupled equations in generalized coordinates
need be considered in order to obtain a reasonablé approximation to the
actual response of the system [9].

We define mmidXdlLy: nonlinear systems as those systems for which
nonlinear deformation mechanisms do not cause major changes in the deflection
patterns. For these systems the equations of motion are no longer uncoupled
due to off-diagonal terms appearing in the generalized stiffness matrix.

The response may still be evaluated, though, by direct integration of a
limited set of equations of motion in generalized coordinates.

In the category of strongly nonlinear problems modal analysis has
been tried, to my knowledge, only by Nickel [10]. He casts the dynamic
equations in the incremental form. After finding the initial modes and
frequencies he proceeds to compute the subsequent ﬁodal spectrum for non-
linear states, employing an extremely fast and efficient eigenprobi;m solver

that involves matrix multiplications only and uses the most recently computed
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spectrum as initial estimate. So he obtains the equations of motion in
the uncoupled form even when strong nonlinearities are present. The
advantage of his procedure gets more pronounced as the bandwidth of the
problém in the original finite element coordinates increases. It should
be noted though, that again the assumption is made, that the lowest natural
frequencies and associated modes dominate the incremental motion. This
assumption, which is essentially equivalent to the previous statement, that
the frequency content of the loading is contained the lowest modes, is
empirically verified for great many structural dynamics problems, notably
those of earthquake excitation.

Had the same been true for the problems of fluid dynamics, we
would have tried to perform the modal decomposition for nonlinear states
as well, employing only the lowest modes. Unfortunately, prior to this
work nothing was known about the application of medal analysis to fluids.
So the first fundamental question that we have attempted to answer was
how many modes were to be included in order to obtain a reasonable solution.
That is why we intentionally restricted the class of the problems that we
have been trying to solve to mildly nonlinear problems, that is, to the
range of low to moderage Reynolds numbers. Thus we needed to perform the
linear eigenvalue analysis only, but for all the modes. The eigenvalue
analysis for the subsequent nonlinear states, based upon the tangent matrix
obtained as a linear combination of the linear viscous matrix and the non-
linear convective matrix, evaluated with stream function values at a
previous time step; for all the modes, would have been prohibitively ex-
pensive, of course. The second fundamental question that we have tried to
answer-was, what was the maximum Reynolds number governing the nonlinear
behaviour, for which the linear modes could still predict the accurate

enough solution.
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In this chapter two procedures for employing modal analysis,
transformation by condensation and transformation in conjunction with
Lagrange multipliers technique will be presented. Both procedures shall in
turn be applied, the first one to Eq. (30), the second one to the functional
Eq. (28). It will be assumed, as already stated pfeviously, that the homo-
geneous boundary conditions have been taken account of, but not the non-
homogeneous ones. As a matter of fact, as must be obvious from Eq. (30),
which is homogeneous, the only 'loading' comes precisely from these non-
homogeneous boundary conditions, that is, from the prescribed nonzero

variables on the boundary.

4.1 Transformation by Condensation

In the following derivation the indices appearing as subscripts
i, j, and k take on successively values from 1 to s, where s is the total
number of unconstrained variables equal to the size of the problem, which
will be referred to as the 'net net' problem, the indices m and n values
frém 1 to p, Whefe p ig& the numb&E 6f congtraiiidd ?aﬁiébles.aﬁ tHeé Kinematic
and mixed boundaries, and the indices ®,B, and vy values from 1 to w, where
w is the number of the eigenvectors used. Throughout the derivation it will
be assumed that the number of the eigenvectors used w is equal to the size
of the 'net net' problem, so that the equations of motions in the generalized
coordinates are the exact equivalent of the same equations in finite element
.coordinates. Later in actual applications we shall obviously attempt to
reduce the number of eigenvectors used.

The equations of motion will be written for the unconstrained

variables only as follows:
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. l l
M5 Y Re Kiei¥s Qi Y Madn T Re KMot

(31)

* ankwnwj + Qimkwiwm +Q U)m =0

nmkwn

As there are p prescribed variables wm and wn the multiplications
involving these variables may be performed. Taking advantage:of the symmetry

of the array Q in the first two subscripts i and j, we can write:

Uicn?s * Umci¥n T Ggfe?s T a7 Gty (32)

By transposing all the known terms to the right hand side, the

following set of equations is obtained:

j 1 - T S =
Mkjwj + = Kkjwj + Cjkle *'-‘-Qijk"’i“’j F (33)

where Fk can be viewed as the 'loading' term defined by:

_ L -
Fk - —Mkmwm " Re Kkmwm Qnmkwnwm' (34)

We now propose to transform Eq. (33) using the following

transformation on the finite element stream function vector:

by (©) = Ey v () (35)

where Eja is a square matrix and Y, (t) is a time dependent vector of
the order s.

The matrix E is established by solving for:

Mqu;j + Kkjwj = 0. (36)

The solution can be postulated to be of the form:



18

Vv, =¢.e - (37)

where t is the time variable and X is a constant defined to represent
the time decay of the vector ¢.

By substituting Eq. (37) into Eq. (36) the generalized eigen-
value problem is obtained, from which the eigenvectors ¢ and the associated

eigenvalues A are to be determined:

1 -
(.Eé' KEJ - Mkj) ¢J = 0. , (38)

It is evident now that E is to be defined as a matrix whose

columns are just the eigenvectors ¢:

E = <9158y383s -+ +58.7 (39)

By introducing Eq. (35) into Eq. (33), we obtain:
. 1
MeiBia¥a TRe X070 T CiifiaYe T U giPisfiadeYe T Fke (40

By multiplying the above equation by E the equations of motion

kj

in the eigenvector basis are obtained in the form:

. 1 :
MkjEjaEkyy * Re KkjEjuEkyyu * CjkEjaEkyya
(41)
QB e 0Pk Yo¥e T byt
The above equation can be simplified taking into account the

orthonormal properties of the eigenvectors with respect to the mass matrix

Mkj' These properties can be expressed as follows:
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E = 'f =
MkjEkY o 1 if v o
= if
MkjEkYEja 0 if v £ a
(42)
E, = vy if vy = ¢
“uifiyie T MY Hys
KkjEkija =90 if v # a.
The equation of motion for the o-th generalized coordinate
y, can then be written as:
& + l—-x o + C, y +Q...E. E, E yy, =FE (43)
Re k JA jv’a ijk i jo ko' o’ B k"ko
or in the matrix form for the whole system:
.1 = ~ =
Iy + oy + G+ Qy = F (44)
where I is the identity matrix, i is the vector of first order time
derivatives of generalized coordinates, A is the diagonal matrix of
eigenvalues, y is the vector of generalized coordinates, Q = ETQE is the

square matrix,

and f = ETE is the load vector.

[I'e]]

= E QEE is the condensed nonlinear convective matrix,

It should be noted that the procedure laid out above is completely
analogous to the treatment of an arbitrary support excitation in structural
dynamics. This transformation by condensation procedure seems quite appeal-
ing. It uses the classical eigenvectors which satisfy the homogeneous
boundary conditions only. Unfortunately we have to deal with the nonlinear
convective matrix, as well, Although it is numerically quite easy to code
an integer vector to keep track of the prescribed values of the stream func-
tion on the boundary, even the process of forming the nonlinear matrix in

the finite element coordinates is an extremely complicated one, and breaking
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this matrix into four different arrays, as indicated in Eq. (31), to carry
out the multiplications of Eqs. (32) and (34), seemed quite hopeless. It
is because of these numerical difficulties that the procedure had to be
abandoned and we concentrated instead on the transformation in conjunction

with Lagrange multipliers technique.

4.2 Transformation in Conjunction with Lagrange Multipliers Technique

In this derivation the indices i, j, and k take on successively
values from 1 to r, where r is the size of the 'net' problem, the index
m values from 1 to p, where p is the number of constrained variables on the
kinematic and mixed boundaries, and the indices o,B, and vy values from 1
to w, where w is the number of eigenvectors used to approximate the solution.
Thréughout the derivation w will be taken equal to the size of the 'netﬂ
problem r in order to obtain the exact equivalent of the formulation of
the problem in the finite element coordinates,

The p linear constraints imposed upon the stream function

can be expressed in the form:

ank”bk - Tm =0 (45)
where Gmk is the rectangular matrix of constraints of size p x r with all
the entries equal to zero except for the diagonal entries corresponding
to the prescribed values of the stream function on the boundary, wk is the
vector of stream function variables of size r, and Tm is the vector of
these prescribed values of the stream function on the boundary of size p.
Then Eq. (45), multiplied by the vector of Lagrange multipliers
h of size p, is added to the global functional Eq. (28) and the augmented

functional obtained in the form:
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o __]__ 6,0 1,°
I(y,9°,h) = Re Kkjijk + Qijkwiijk * Mkjijk

(46)

+ G hh - Th =0.

The variation of the augmented functional defined by the above
equation, first with respect to Y whilevkeeping g° and h fixed and then

with respect to h while keeping y and g° fixed, yields:

3T . 1 _
awﬁ B Mkjwj t ke Kkjwj + Qijkwiwj + Gmkhm 0

(47)
L _ _
ahm - ijwj T 0

where in the first subset of the above set of equations y° has been
replaced by Y as permitted by the restricted variational principle, and
in the second subset the dummy subscript k has been replaced by j.

By employing the coordinate transformation indicated in Eq. (35),
with the matrix E established via Egs. (36) to (39), and by introducing

this transformation into Eq. (47) we obtain:

. 1 : ~
MeiBe¥a T Re Moo T Uikbiefie¥os t Citn T O
(48)
G .,E,y -T =0.
mj jo’o m

By multiplying the first subset of the above set of equations

by E and by taking advantage of the orthonormality properties of the

ky

eigenvectors with respect to the mass matrix Mkj as expressed in Eq. (42)

the following system of equations is obtained:

. 1 L =
yy + Re >\yyy + QijkEiBEjaEkyyaYB + GmkEkyhm =0
(49)

G iFja¥e = Tn = O
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or in the matrix form:

[T
1<
+
n>
I<
+
o1
I
1<
+
=
1=
Il
o

(50)

et
I
|
=3
1]
o

where I is the identity matrix, é is the diagonal matrix of eigenvalues,
g = ETQEE is the transformed nonlinear convective matrix, E is the matrix
of eigenvectors, and ET== Eg is the matrix consisting of the entries in
eigenvectors at the constrained degrees of freedom. The matrices I and )

are each of size w x w, the matrix is of size w Xx w X w, and the matrix

ol

is of size p x w.

[les]]

4.3 Final Remarks

It should be emphasized again, that while_in the first method,
the transformation by condensation, the general eigenvalue analysis is run
after the nonhomogeneous boundary conditions have been taken account of,
in the second method employing Lagrange muitipliers technique the generalized
eigenvalue analysis is run prior to taking account of the given values of
stream function on the boundary. Also, the first method contracts the size
of the system of equations to be solved to s = r - p, while the second
method expandsﬂthé size to g =r +.p, where r is the 'net' problem size,
and p is the number of constraints. This does not effect our choice of
the second method to a great extent, however, because in the fluid
problems the number of constraints is relatively small compared to the
size r and it can be further reduced by our numerical procedure through the
use of 'master slave' option.

If the number of eigenvectors is equal to the number of finite
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element degrees of freedom, mathematically the same space is spanned by
the eigenvectors as by the nodal point finite element stream function
variables and consequently the same solution must be obtained by both
analyses. But, employing all the eigenvectors of the linear eigenvalue
problem, would actﬁally be a step backward, because although the global
consistent mass matrix and the linear global dissipative matrix become
uncoupled, the equations in generalized coordinates are still coupled
through the global nonlinear convective matrix, which becomes full, whereas
it was banded in finite element coordinates. So, the modal approach can
only be more efficient, if a reasonable approximation of the solution of
finite element equations of motion Eq. (30) can be obtained by using a
significantly reduced number of eigenvectors. We note, that so far we
have only been concerned with the exact and approximate solutions of
these discretecequations. Whether a good approximation to the solution
of the actual continuum problem will be obtained, depends on the finite

elements employed, the finite element meshes, and the boundary conditions.
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CHAPTER 5

Solution of Nonlinear Equations in Time Dependent and Steady State Analyses

It is appropriate to note here, that in the classical computatiomal
fluid dynamics, based on finite differences, the studiesoc6f even steady state
problems are mostly based on the time dependent equations, because, firstly,
this time dependent approach does not postulate the existence of a steady
state solution, secondly, the precedure is more flexible in the sense, that
the transient solution can be achieved, if so desired, and thirdly and most
important, the unsteady equations in finite differences are easier to handle
and more stable than their steady counterparts. The steady state solution
is obtained, if it exists, as the asymptotic limit of the time integration.

In the finite element discretization of fluid dynamics problems,
the contrary seems to be true, that is, it is computationally more efficient
to seek the steady state solution only, if the transient solutions are of
no interest. As we are also confident, that the steady state solutions for
the problems, that we intend .to solve, do exist, and indeed, excellent
results have been obtained employing the same boundary conditions, the
same 18 d.o.f. triangular finite elements, and the same finite element
meshes by Olson [3], and Tuann and Olson [5,6], we shall implement the
time dependent, bﬁt also the steady state approach. The time dependent
approach will be used only for the numerical study of the flow around a
circular cylinder, where the transient solutions are desired, as oscil-
latory behaviour is to be expected at the critical value of the Reynolds
number.

As we propose to solve the governing set of nonlinear equations

in generalized coordinates Eq. (50) simultaneously, rather than to attempt
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a partitioned solution, we shall first cast Eq. (50) in the form of one

nonlinear time dependent matrix equation as follows:

, gl
+ | BT + 1 = 0. (51)

I
no
I<
=
1<
ol
(]
<

no
no
[N=x
[[1a]
no
[=x
I
[

Then the time dependent approach shall be applied directly to
the above equation, while the steady state approach shall be applied to
the steady equivalent of the same equation obtained by simply setting the

time dependent term equal to zero.

5.1 Time Dependent Approach

We shall assume linear time dependence of the vector of generalized

coordinates y over the time interval t, which can be written as:

y (0 =y, + 757 At (Yt+AtA = ¥ (52)

Differentiating the above equation with respect to 1, we obtain:

. 1
Y (0 = 37 Wkt ¥y (53)

or evaluating at time T = t + At

+ At-- vy ). (54)

. 1
y (e +8t) = 5% Gkt Ve

We note, that the above equation represents a backward £inite difference
scheme, which is unconditionally stable for linear problems. This very
useful feature cannot be ascertained for nonlinear problems, however,
and consequently the critical time step for those problems must be

determined by numerical experiments.
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If we introduce Eq. (54) into Eq. (51), evaluate at time t+At,
and add the appropriate terms, we obtain the following set of now algebraic

nonlinear equations:

1 ; 1 =T - 1

—T 4+ — ' =

res TR E Letat WerntLeae fe Atit
_ + = . (55)
E 9 Bitae 0 ' Tetat

Three time integration algorithms shall in turn be applied to
the above equation. These algorithms differ only in how the nonlinear
term is treated. All ofofhem are quite crude, but relatively cheap, and
we consider them sufficient for this work.

In the first algorithm we simply evaluate the nonlinear term for

the previous time step and move it to the right hand side to obtain:

|
|

Levat acle T W
= . (56)

t-lt-i-At -t+At

At= Rel

et
no
]

The system matrix of the above set of linear equations is square, real,
symmetric, and nonsingular, but it has an associated quadratic form which
is indefiniﬁe, so that Cholesky decomposition cannot be used. As this
matrix remains constant it needs be inverted only once and for the con-
secutive steps only the backsubstitution has to be performed.

In the second procedure the nonlinear term is evaluated as

g Y Y ipe? SO that the following system of linear equations for the

generalized coordinates ¥ and h is obtained:
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1 -, 1 = =T

Lt R T E Let+ht At_
- (57)
E 0 L Tetae

It should be noted, that the nonlinear term is treated in the above algorithm
in the same way as an Picard iteration or the method of successive substi-
tution. Here the iterations shall not be performed, because the cost would
be quite high, and consequently the dynamic equilibrium is again not exactly
satisfied. The algorithm can be very easily modified, though, to incorpor-
ate the iterative procedure. The system matrix,‘which has now become un-—
symmetric, has to be updated at each time step, but that allows the use of
much larger time step than in the first algorithm. A5 a matter of fact,
our experience has been that this second algorithm is numerically more
efficient.

In the third algorithm, following a proposal by Stricklin et. al.
[11], the nonlinear term is treated by transposing it to the right hand
side as additional 'pseudoload' vector, similarly as in the first algorithm.
But then the whole right hand side including the nonlinear term is expanded
into a first order Taylor series about the previous time step. Denoting

the right hand side vector as F, defined as:

l —
Att-1 Qytzt
v T (58)
-t
we can write:
F o+ At 2 F_. (59)
—-t+7T -t at -t
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By using a first order backward difference expression to approximate the

time derivative in the above equation, it becomes:

F = ngt - F (60)

~t+1 -t-1°

We note, that the use of Eq. (59) corresponds to a linear extrapolation
of the 'loads' at the two previous time steps. By introducing Eq. (60)

into Eq. (55), it can be written as:

-

T

+
L
el

Levat

St+At’ (61)

ez
no

bt+At

-

The above procedure cannot be started directly, so we start it by solving
for the first two time steps with the first algorithm.

In all three algorithms a test is included on whether the steady
state has been achieved.

In the first algorithm all the entries in the two consecutive
solution vectors are successively scanned, and if none of the absolute
differences in the two entries corresponding to the same coordinate exceeds
a preassigned value, we assume that the steady state has been achieved.

In the second algorithm the steady state has been obtained if

the test on the two consecutive determinants of the system matrix of Eq. (57)

!Dt+At _ Dt I

Dt

< € (62)

is satisfied,where € is a preassigned small value.
In the third procedure the entries in the two consecutive 'load'

vectors are compared and the maximum absolute difference in the two entries
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corresponding to the same coordinate is found. Then if this maximum
difference is smaller than a prescribed small value, we assume that the

steady state solution has been achieved.

5.2 Steady State Approach

We propose to solve the steady equivalent of Eq. (51) by
Newton-Raphson method, which seeks to exactly satisfy the equations of
equilibrium by iterating until a specified level of accuracy is attained.
We denote an approximate vector of generglized coordinates as y and an

approximate vector of Lagrange multipliers by h. Then the Vector of

residuals F(y,h) may be written as:

A EL
. .
F(y,h) = + : (63)
. -T

A Taylor series expansion of the vector of residuals around

WIH
=)
<
ol
1<
i<

n=
o
k=2

the position (Z’E) yields the following expression for the Vector of

residuals at an adjacent state (y + Ay, h + Ah)

3F  OF 5 2
F(y + 8y, b+ 0h) = F(z,h) + Sy + 5moh #(0[€ayRA0) 1. (64)

In the above equation the vector notation is used for simplicity. Partial
derivatives may be written more rigorously as:

3F F, 3F F

—Ay = —=Ay, and -—Ah = =—=Ah (65)

y = yj i oh - hk k

where the index i takes on successively values from 1 to wkp, the index
j values from 1 to w, and the index k values from 1 to p, where w is the
number of eigenvectors used, and p is the number of constraints in the

problem.,
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The conventional Newton-Raphson procedure retains only the terms
up to the first order partial derivatives in the Taylor expansion Eq. (64).
We assume, in addition, that the vector of residuals corresﬁonding to the
state (Z + Ay, h + AE) is zero. These assumptions allow to rewrite Eq. (64)
as:

oF oF

F(rh) + 558y + 5tk = 0. (66)

The partial derivatives appearing in the above equation may be

obtained by differentiating the steady equivalent of Eq. (51), as follows:

| T
5F  oF Re2 T QY Ay
3y 2 T Bho- 0 sh

By introducing Eqs. (63) and (67) into Eq. (66) we obtain the

!
+
V)
LO|
<
[|]=s]]

et
o

following system of linear equations:

i, - - W
1 = T T
Red + 2y Ay

=

+
[Real}
)
Nt

1<

It
1
wJ
1]
1}

AE o+l

[lleal]
no
ez
no
=p

ot
I<
<

- ) (68)

1=
1

=i

I<

where n is the iteration number.
The above equation is solved to determine the (nt+l) increments
in generalized coordinates and Lagrange multipliers. These increments

are then used to determine an improved vector of generalized coordinates
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Zn+l’ and an improved vector of Lagrange multipliers bn+l’ where:

Ikl ~ In + Azn+l
(69)

1-:1n+1 = hn + Ahn+l'

Equations (68) and (69) comprise the set of recurrence relations
needed in the Newton-Raphson procedure.

Beginning with an initial estimate of the vectors y and h, the
equations (68) and (69) are successively applied to yield better and better
approximation. The initial vector of generalized coordinates is obtained
by transforming to the eigenvector basis the initial guess on the stream
function vector, which consists of all zero entries except for the con-
strained ones, when the problem is started up with Re = 1.

The Jacobian of the system, that is, the determinant of the
system matrix, is used as a test on the convergence of the procedure.

At each iteration the Jacobian is recorded and compared with the Jacobian

of the previous iteration. The process is stopped when the test

< € (70)

is satisfied, where € is the preassigned accuracy criterion.

5.3 Final Remarks

In both transient and steady state analyses, after the generalized
coordinates have been computed, the corresponding nodal stream function
variables are obtained via Eq. (35). Then the stream function subvector,
consisting of the stream function and its first and second derivatives,

can be readily obtained at any point in the domain. It is done, element
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by element, by computing the polynomial coefficients for the element under
consideration using Eq. (18), then calculating the stream function subvector
in the local coordinate system via Eq. (14), and finally transforming this
subvector back to the global finite element coordinates. The interpolated
values of the stream function are needed, in particular, to plot the

streamlines. A rectangular grid is used for contour plotting.
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CHAPTER 6

Pressure Field

In our approach, based on the stream function only, the
dimensionless pressure field can be calculated when all the nodal
variables in the global finite element céordinates have been found.

The pressure is governed by the Poisson equation obtained by
taking the divergence of the momentum equations. By employing the con-
tinuity equation Eq. (2) the simplified expression for pressure is

obtained in the form:

Vo = ~2(uv, - uv) = 200

2
xxVyy T Yy

)T = £, (71)

The equivalent variational principle for the above equation

can be stated as:

1,002, = dp
m=ff (G(p)° + Fp) do - § =B pdr (72)
2 on
Q T
where g%-is calculated from the momentum equation Eq. (1) written for

the n direction:

3 _ _

(opn + Veag) * Wby = bv ) (73)

1
on Re snn
The functional on the element level in the local coordinates,

(Fig. 1), is defined by the following ¢x*presssdon:

1, 2 2 = 3p
n® = [f (E(pg + pn) + fp)dédn +.La'§% p
Qe ~b

| dz. (74)
n=0
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We adopt the same finite element mesh for pressure as we have
used for stream function, hence the source function f can be expressed,

via Eq. (14), as:

20 20
f=23 2 aamm -1n(n -1) -mmnan ]
; g EFsrrX s s rsrs

(75)
im +m -2 n +n -2
r s r s

g€ n

The pressure gradient along the boundary edge 1-2 is given by:

- - L -
Po Ly = 1 Re ege * Venn) * Cn¥ee ~ Vebe)] - (76)

It should be noted, that as the functional Eq. (73) contains
derivatives of p up to the first order, it would have been sufficient to
use any element of C0 class. Here in order to conform with the solution
--the same .truncated quintic polynomial is used for interpolation of pressure

within the element, that is:

20 m, n,
P=13 bg n L. (77)

i=1
By repeating the steps equivalent to those, indicated in Egs.
(15), (16), (17), and (18), substituting then Eqs. (75), (76), and (77)
into the functional Eq. (74), carrying out the integrations and trans-
forming to global finite element coordinates, the discretized functional

on the element level is obtained in the form:

(78)

o
N
(jfan]
i
s
+
o~
1ol
+
1H1
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where E is the element matrix, § is the load vector of 'body' load terms,
and E is the load vector of 'surface' load terms.
By forming the global problem in the usual manner the following

system of equations is obtained:
KP + F =0 (79)

where K is symmetric and positive definite matrix, and P is the solution
vector,

We note, that the functional Eq. (72) yields the Poisson equation

Eq. (71) as Euler equation, and the boundary conditions of

either %§'= %%— or §p = 0. (80)

Since the pressure gradient is known everywhere, via Eq. (73), all the
boundary conditions are of the Neumann type. That makes the solution of
Eq. (79) nonunique, however, because the system matrix K is singular.
To avoid this difficulty we have to impose a Dirichlet boundary condition
at an arbitrary node.

For more details, concerning the calculation of pressure field

it is referred to Tuann and Olson [5,6].
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CHAPTER 7

Numerical Implementation

All our programs are written in Fortran in double precision arithmetic.
. We employ the dynamic storage option, so that we can control the size of all
the arrays at execution time, rather than at compilation time. Thus we are
able to run probléms of various sizes without wasting any of the virtual
memory and we can accomodate in core a much bigger transformed nonlinear

matrix

M'e]]

As we have already mentioned previously we need to compute all the
modes of the general linear eigenvalue problem Eq. (38) in an efficient
manner. For this purpose we use the very fast direct eigenvalue solver
contained in the program DRSGAL. The eigenvalue problem is solved as follows.
Firstly, as the global consistent mass matrix is positive definite, its
inverse can be found by LU decomposition. Tke global linear dissipative
matrix K is premultiplied by this inverse to transform the general eigenvalue

problem to the simpler form

Rt

V=AY (81)

The symmetric matrix g, of the order N, is reduced to a symmetric tridiagonal
matrix, after N-2 orthogonal similarity transformations, using the Householder
method. The eigenvalues and the eigenvectors of the tridiagonal matrix are
found by QL transformafions, and transformed back to the eigenvectors of g.

The CPU time, in seconds, for the eigenvalue analysis, is about 1.8 x 10_5 X N3,
where N is the size of 'net' problem.

Then we solve the linear steady equivalent of Eq. (51) in order to determine

which modes give a reasonable representation of the solution of the linear
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problem with the convective terms taken equal to zero. This is conveniently
done by a direct solver which is based on Gaussian elimination. The CPU

time for this procedure, in seconds, is approximately 5.2 x 10_6 (NT)3, where
NT is equal to the number of the eigenvectors used plus the number of constraints
of the problem. We note, that it is particularly important to perform this
procedure ih the square .cavity flow problem, where, as it turns out, some
higher modes must be included in order to approximate even the solution of
the linear problem. The flow around a circular cylinder, on the other hand,
due to the less striggéntvboundary conditions, behaves much like the problems
encountered in structural dynamics, that is, the higher modes need not be
included.

After having established which modes we are going to use és the new basis,
we proceed to set -up the complete nonlinear problem in the finite element
coordinates. ThewCPU time for setting up the matrices is about 2.6 seconds
per each new group of elements, where a group consists of elements, which
have the same dimensions and the same orientation in space. We note, that
for the square cavity flow and the flow around a circular cylinder problems
we choose the origin of the global coordinate system, so that there exists
one axis of symmetry. Consequently, the modes are either symmetric or
antisymmetric, which results in some special properties of the transformed

nonlinear convective matrix len = QijkEilEijkn'

Namely, if all three of
the modes 1, m, and n are symmetric, or if any two 6f them are antisymmetric
and the third is symmetric, the corresponding entry in the transformed matrix
Q is zero, otherwise it is nonzero. Consequently, only the multiplications
in the transformation, which result in the nonzero entries, are performed

increasing the efficiency of the transformation procedure. The CPU time, in

seconds, for the transformation, can be estimated by the formula
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7.0 x 1070 x ¥ x [NE x LB3 x (LB3-1) + NEZ x LB3 + NEZ x (NE+1) / 2],

where N is the 'net' size of the problem, NE is the number of the modes
used in the transformation, and LB3 = 2 x LB - 1 is the bandwidth of the
problem in the finite element coordinates. We note, that the dynamic
storage option increased the number of modes, that can be used in the
analysis, to 62. This limit of maximum 62 modes is imposed by the capacity
of the wirtual memory of the IBM 370/168 machine at UBC, that is, the

maximum order of the transformed nonlinear matrix that can be kept in

ol

core if double precision arithmetic is used, even taking account of the
symmetry in the first two indices, is 62. Otherwise, auxiliary storage
locations have to be employed.

Having stored the global consistent mass ﬁatriig the eigenvalues and

the corresponding modes, and the transformed nonlinear matrix

ot

on tape,

we have all the arrays indicated in Eq. (50) and can run both steady state
and time dependent analyses. In both cases, due to the Lagrange multipliers
technique, the system matrix is nonpositive definite, although it is non-
singular. Accordingly, the Gaussian elimination with partial pivoting, and
forward and backward substitution is used to solve the resulting set of
linearized algebraic equations. The CPU time for one iteration of the

6 X (NT)3. For the

Newton-Raphson process, in seconds, is about 4.0 x 10~
first time dependent algorithm, with the nonlinear term transposed to the
right hand side, and evaluated at the preceding time step, the CPU time per
time step, in seconds, is,approximately 2.4 x 10--6 X (NT)B. The CPU time
for the second time dependent algorithm, where the system matrix is updated
at every time step, in seconds, is about 3.4 x 10_6 X (NT)3. As before,

NT denotes the number of eigenvectors plus the number of constraints.

The scalar vorticity ¢ = V2 Y is obtained by the interpolation program,
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which is used for plotting. After the stream function subvector has been
obtained at all points of a specified regular interpolation mesh, the
vorticity at each of those points is simply equal to the sum of the second
derivatives of the stream function wxx and wyy" The mesh is, in general,
nonuniform with variable spacings in x- and y- directions. The whole domain
can be covered by the mesh, or just some regions of interest. The stream-
lines, the pressure field, and the vorticities are then plotted using the
standard contour subroutines. We note, that while the stream function and
the velocities are continuous, the vorticity is only piecewise continuous,
which accounts for not so good vorticity plots, especially for crude finite
element grids. The pressure field representation is excéllent, however,

because the method for calculating pressures has a tendency of 'smearing out'
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CHAPTER 8

Example Applications

The foregoing modal finite element method has been used to solve several
example flow probléms. .Our criterion in choosing example problems has been
availability of known results, so that ready checks would be provided.

Numerical results for fully developed plane Poiseuille flow, circulatory
flow in a square cavity and the flow around a circular cylinder problems,
obtained by modal finite element method, are presented in this chapter. The
results for Poiseuille flow problem are compared with the exact closed form
solution. The steady state results for circulatory flow in a square cavity
and the flow around a circular cylinder problems are compared to the results
obtained by direct finite element approach using the same finite element grid
and to-the results obtained by various finite difference techniques, considered

exact herein, as no closed form solutions exist for these problems.

8.1 Fully Developed Plane Poiseuille Flow

The first example chosen was that of a fully developed flow between
parallel walls. The exact solution for this problem shows the flow laminar
and distributed parabolically between the walls, with a corresponding linear
pressure field decreasing downstream. The finite element grid used for this
problem is shown in Fig. (3). The follo&ing boundary conditions were used,
all of them kinematic in the sense of the restricted variational principle:

(a) on the stream function ; ¢ = Y(y) = 3y2 - 2y3 on the upstEeam section,

1]

Y = 1 on the upper wall, and ¥ 0 on the lower wall ; (b) on its normal
derivative ; wx = - v = 0 on the upstream and the downstream sections, and

wy = u = 0 on therupper and the lower wall. On the downstream section the
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natural boundary conditions of zero pressure gradient across the flow‘py'= 0
were to be approximated. The 'net' size of the problem was 12 with 4 constraints 5
Y =1 at nodes 2 and 5, ¥ = 6 at node 1, and y__ = -6 at node 2. We note,

yy yy
that because the finite element used contains a complete cubic for velocity
interpolation, it was capable of exaétly representing the parabolic velocity
profile and the downstream natural boundary conditions of constant pressure.

The 12 mode shapes from the linear eigenvalue analysis are shown
in Fig. (4), along with the corresponding eigenvalues for Re = 1. The curves
represent equal steps in stream function values.

These modes were then used to represent the nonlinear equations
indicated in Eq. (50). Both steady state and transient analyses were then
performed using 5,6,7,8,9,10,11, and 12 modes, respectively. We note, that
the lowest number 5 actually gave only one free mode, because of the 4 constraints
imposed on the problem. The calculations were started with all free nodal
variables equal to zero in both the analyses.

The Newton-Raphson steady state procedure converged in 3 or less
iterations in all cases.

This simple problem was also used to check the efficiency of the
thrée time integration algorithms. In the first and the third algorithms
we ‘'used the time step of 5At = Z/Amax' where Amax was the eigenvalue associated
with the highest mode kept in the analysis. In the second algorithm, due to
its greater numerical stability, we could use a bigger time step, so we
afbitrarily chose At = 0.15 seconds.

The first algorithm, with the nonlinear term transposed to the
right hand side and evaluated at the previous time step, converged to the

steady state in maximum 67 increments, when all 12 modes were used. We assumed

that the steady state was achieved, when the maximum absolute difference in
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. . -8
the two entries corresponding to the same coordinate did not exceed e = 10 .

In the second algorithm the steady state solution was attained in
7 increments, with ¢ of Eq. (62) prescribed as 10_7.'

When the exact solution was used as the initial guess the third
algorithm was able to reproduce this result in 3 steps. When all the free
nodal variables were zeroed, however, the algorithm did not converge.

On the basis of these calculations we decided tozemploy only the
first two algorithms in this work, although the third one might have converged,
as well, had the initial conditions been ciloser to the true solution.

The resulting streamlines and ;he predicted maximum velocities in
the direction of the flow at the midnode 3 for 5,6,7,9, and 12 modes,
respectively, are shown in Fig. (5). We see, that although the 5 mode
result is rather poor, the 6 mode one is already quite acceptable, and
compares very well with the exactrresult. As a matter of fact, as long as
at least first 9 modes are used the exact result is obtained and only the
generalized coordinates associated with modes 1,6, and 9 are finite, so that
just these modes contribute to the solution. The exact solution is namely
antisymmetric in stream function with respect to the axis z of Fig. (3), so

that none of the symmetric modes can affect it. Taking that into account we

reproduced the exact solution with just 5 modes, but we had to include modes

1,6, and 9, whichppossessathe antisymmetric properties, while the remaining
2 modes were arbitrary. The generalized coordinate associated with mode 1

is always predominant. All results are independent of the Reynolds number.

8.2  Circulatory Flow in a Square .Cavity

As the second problem we chose the flow within a square cdavity

which is bounded by three fixed walls and an upper 1lid moving with constant
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velocity in its own plane, shown in Fig.(sz}

Mathematical singularities are present in the problem in the regions
of the upper vertices, 2 and 4, where a fixed wall meets a moving 1lid, due
to the flow having to move without slip at the speed of the moving 1lid and yet
be zero at the fixed wall. To avoid this difficulty two extra nodes were
introduced close to the upper vertices, thus allowing for transition from
zero normal velocity at the fixed walls to the prescribed tangential velocity
of the moving lid at these new nodes., Two additional nodes were needed in
the neighbourhood of the upper vertices on the fixed walls, as well, because
of existing asymmetric pressure singularities.

All boundary conditions imposed on the problem were 'rigid' in
the senseof the restricted variational principle. Accordingly, the only
free nodal variable along the fixed walls 1-2 and 3-4 was wxx’ along the
bottom fixed wall 1-3 wyy’ while on the upper 1lid wy and wyy were the only
free nodal variables, so that the three fixed walls and the moving 1id actually
were zero streamlines,

The size of the cavity was assumed to be unity, and the_given
velocity of the moving lid was also taken to be unity in the direction to
the left. Thus, the Reynolds number was naturally defined as Re =-%.

The three finite element grids used are shown in Fig. (7) together
with the number of elements (NE), the number of nodes (NO), the size of the
'net' problem (NN), and the half bandwidth in the finite element coordinates
(LB). The number of constraints for all three grids was equal to 1, because
by using the 'master-slave' option we forced all the tangential velocity
degrees of freedom wy on the upper 1lid t6 be the same, thereby leaving only
free variables.

All 15 mode shapes with associated eigenvalues for SQCA 12-13 grid
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and the first 30 modes for SQCA 36-29 grid are shown in Fig. (8), arranged

in the order of the ascending eigenvalues. We note, that the shape of the
highest modes of the SQCA 12-13 grid is already influenced by the finite
element layout. The most noteworthy feature, valid for all grids, is the
strking increase in complexity of the modes with only one order of magnitude
increase in the corresponding eigenvalues. The lowest and the highest
eigenvalue for all three grids, together with the number of symmetric and
antisymmetric modes and the total number of modes are gi&en in Table (I).

The interval bounded by the lowest and the highest eigenvalue of the finer
grids also includes all the eigenvalues of the cruder grids, which serves

as a check on the eigenvalue solver. The lowest eigenvalue only changes
slightly from grid to grid, which seems to suggest that it is predicted
accurately enough even for the very crude SQCA 12-13 grid. The corresponding
modes are also almost identical. The modes are subdivided into the symmetric
and the antisymmetric ones with respect to the vertical y axis. Only the
symmetric modes are directly loaded by the velbdcityy constraint on the moving
1id, while the antisymmetric modes are excited only through nonlinear poupling.
It is then obvious that the antisymmetric modes do not contribute to the linear
solution for Re = 10—4; while without these modes no nonlinear behaviour can
be simulated.

When the modal approach was tried on this problem, we found that
reasonable results could only be obtained if some of the higher modes were
included in the analysis. This was true even for the linear problem with
Re = 0, so we included all the symmetric modes, whose generalized coordinates
were greater than some prescribed small value ¢ for Re = 0O decomposition.

The antisymmetric modes used corresponded to the lowest eigenvalues.
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On the SQCA 12-13 grid we used 15 and 11 modes, on the SQCA 36-29
grid 36 and 42 modes, and on the SQCA 26-53 grid 60 modes, respectively.
Only the Newton-Raphson steady state procedure was run. The calculations
were started with the Reynolds number RE = 10—4 using the null solution,
with all free variables equal to zero, as anﬁgaitidlguess in the finite
element coordinates. The transformation to the eigenvector basis using the
orthonormal properties of the eigenvectors had obviously to be performed
before the iterations were started to yield andnittiidl.guess in the generalized
coordinates, After the solution in the eigenvector basis had.been obtained
the transformation back to the finite element coordinates was performed
via Eq. (35) to yield the stream function solution. This solution was then
used as an initial guess for the next higher Reynolds number and the process
repeated. These steps were carried out at RE = 10_4, 1, 10, 20, 40, 100,
200 and 400 for all three grids. For SQCA 76-53 grid the rangée of Reynolds
numbers was extended to Re = 3000 with the addiﬁional steps carried out at
Re = 600, 1000, 1400, 1700, 2000, 2200, 2400, 2800 and 3000. The accuracy
test on the Jacobian ¢ of Eq. (70) was set equal to 10_6. Regardless of the
grid and the number of modes used, that is the problem size, convergent
solutions for the whole range of Reynolds numbers under consideration were
obtained in 3 to 6 idterations. We note that this held true even for
Reynolds numbers up to 3000, so it is concluded that numerical stability of
modal method is quite high.

When the Poisson equation, Eq. (79), was solved to obtain the
pressure field, the Dirichlet boundary condition p = 0 was imposed at the
node located in the middle of the bottom wall. This effectively means that
the pressurgdistribution is referenced to the pressure at the middle of

the bottom wall. All the other pressure nodal variables were left free,
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and accordingly, for all triangular finite elements with two of the vertices
located on. any part of the boundary, the boundary integral of Eq. (74) had
to be included in the element functional expression to conferm with the
variational principle.

Error in stream function at midnode 5 of the SQCA 12-13 grid for
various combinations of modes is listed in Table (II). We note that just
one antisymmetric mode is enough to produce results with maximum 1% error
for Reynolds numbers up to about 40, when compared to the direct finite
element solution on the same grid.

Complete results for Reynolds numbers. ‘Re = 0, 10, 20, 40, 100,

200 and 400 are plotted in Figs. (9) - (11). The total number of modes

" and the number of‘symmetric and antisymmetric modes, together with predicted
coordinates of the vortex centre and predicted values of stream function
vorticity and pressure at the vortex centre are listed in Table (II}). These
results are compared with the direct finite element results on the same grids
and with the Burggraf's finite differences results [12]. Some small dis-
crepancies between the direct finite element results reported here and the
ones of [5] are due to the different interpolation grids used. Namely, we
used crude 20x20 interpolation grid in this work, while [5] employed more
accurate irregular interpolation grid. Only the general shape of streamlines
from modal method and direct finite element approach can be compared with
Burggpéf’s results, because contour levels do not match. The vorticities

and the pressurescan be compared directly, however.

The SQCA 12-13 grid is too crude to produce accurate results even
for low Reynolds numbers and if the direct finite element approach is used.
This is especially true for the vorticity predictions, but also, for the

stream function and the pressure predictions, which are in general too high.
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The 11 modes results with just 1 antisymmetric mode do agree quite well with
the 15 modes results and the direct finite element approach results on the
same grid, which are of course identical, up to Re of about 40. For higher
Re the agreement rapidly deteriorates. In the 15 modes results the change
of position of the vortex centre with increasing Re is followed to some
extent,while 11 modes results show the vortex centre stationary for the
whole range of Re under consideration.

In the 60 modes results on the SQCA 76-53 grid the lower right
secondary vortex, which appears in the exact solution, does show at Re = 40,
then increases gradually at Re = 100 and 200, but disappears at Re = 400.
For all these Reynolds numbers the seconary vortex is shifted a little to
the left. The stronger lower left vortex of the exact solution does not show
at all. The vorticity contours are somewhat wavy in appearance, especially
in the region close the bottom wall, but the general trend seems to be
preserved. The pressure contours agree quite well with the exact results
except for the region close to the bottom wall. The pesition of the vortex
centre is predicted very well for the whole range of Reynolds numbers under
consideraﬁion. The same is true for the stream function and the pressure
values at: the vortex centre. The vorticity value at the vortex centre agrees
well with the exact result for Re up to about 20, while for higher Re the
predicted vorticity values are much too high.

B Best modal results are achieved with 36 modes and 42 modes on the SQCA
36-29 grid. Both the 36 modes and the 42 modes results appear to reproduce the
streamlines.predicted by the direct finite element appreach on the same grid
very well for the whole range of Reynolds numbers considered, especially near
the upper 1id where the gradients are high. They also compare reasonably well

with Burgerdf's results, considered exact herein, reproducing the lower right
gg P g
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secondary vortex, but not the stronger lower left secondary vortex. The
vorticity predictions also compare satisfactorily with the direct finite
element approach results and even Burggféf's results, considered exact
again, for the whole range of Reynolds numbers under consideration. The

42 modes results are slightly better than the 36 modes ones as could have
beeﬁ expected for both the stream function and the vorticity. The pressure
results are in excellent agreement with the results obtained for the full
SQCA 36-29 grid and even with the full SQCA 76-53 grid results, considered
exact herein, up to Re of about 100, For higher Re the agreement is
still fair, especially between modal results and the direct finite element
approach on the same grid with the 42 modes results again having a slight
edge over 36 modes résults.

From all these results we conclude that good agreement with the
fexact' solution of the discretized problem, obtained by difect finite element
appreach, for this range of Reynolds numbers, can be achieved by employing
about 507 of the modes, that is, the number of modes, which are required,
goes up with the refinement of the finite element mesh. That explains why
36 modes and 42 modes on the cfuder SQCA 36-29 grid yiéld better results
than 60 modes on the finer SQCA 76-53 grid, which contains much more degrees

of freedomn.

8.3 Flow Around a Circular Cylinder

The final example considered was the classical problem of the flow
around a circular cylindgr.

Physically the problem involves an infinitely long cylinder immersed
in a fluid medium of infinite extent. We adopted finite domains, however, as

it is usually done in computational fluid dynamics involving exterior flow.
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The first domain was used for numerical simulation of the steady
flow, while the second domain, obtained by extending the first domain for
six units downstream, was used for the transient flow simulation. Both domains
are shown in Fig. t12), together with the adopted finite elemenf grids, the
number of elements (NE), the number of modes (NO) and the central angle (AQ).
The céntre of the cylinder is located at the origin of the (x,y) plane for
both domains. The boundary is divided into the inflow section Fi, the outflow
section Po’ the cylinder wall Fw and the top and the bottom sections Fu parallel
to the incident uniform stream flow of unit velocity along the positive x-axis.
.The boundary conditions at the inflow section Fi were all 'rigid',
obtained by specifying the uniform stream flow defined by u=1 and v=0. The
stream function nodal variables, as the direct result of these 'rigid' boundary
conditions, were given as Y=y, wx=0, wy=1, wxy=0, and wyy=0, while wxx was left
free. On the outflow section Fo the 'rigid'boundary condition v=o was used
to pair up with the 'natural' boundary condition of constant pressure §y=0
in the steady case. These coinditions allowed the u=- velocity to develop
on this section. The v= —wx=0 'rigid' boundary condition implied that wxy=0,
which in turn indicated that wy was to be unknqwn. The 'matural' boundary
condition @§=0 required that Y and wyy were to be unknown. Accordingly, on
this section the boundary conditions in terms of nodal sktream function variables

were given as ¢x=0 and wxy=0 with ¥, wy’ P and wyy left free. The 'rigid'

XX
boundary conditions of no-slip ¢n=0 and ws=0 were directly imposed at each of
the nodes located on the cylinder wall PW. The ws=0 condition implied that

wns=0 and wss=0 on FW, and also that y was a constant, which was set equal to
zero. Accordingly, at any node on Pw of the six nodal variables in the local

(s,n) system, which was used in place of the global (x,y) system, only wnn

was retained while all others were zeroed and eliminated. This had the effect
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of satisfying the no-slip conditions exactly only at discrete nodes on the
cylinder wall, unlike the straight boundaries, where the prescribed boundary
conditions can be realized pointwise. bn.the top and the bottom sections Fu
the 'rigid' boundary condition of u=1 was set to.pair up with the 'natural'
bourdary condition of constant pressure px=0 for the steady state analysis.
These conditions allowed the v- component to develop along Tu. The u=wy=1
'rigid' boundary condition implied that wxy=0 which teqﬁiredwx to be unknown.
The 'naturalf boundary condition p§=0 indicated that ¢ and wxx had to be
unknown. Consequently, the boundary conditions in terms of nodal stream
function variables were given as wy=l and wxy=0 wiFh ¢, wx’ wxx and wyy left
free.

Alternatively, for the steady flow the assumption can be made that
the flow is symmetric with respect to the x-axis and so only flow in the
upper half domain y > O need be considered. The symmetrycof the flow implies
that u is an even function of y and v is an odd function ofAy, so that both
v and v, are odd and vanish on the x-axis. It follows that both y and z are
odd and therefore also vanish on y=0. So the 'rigid' boundary condition y=0
is imposed on the x-axis, which has become the part of the boundary, to pair
up with the 'natural' boundary condition of zero shear stress or z=0. The
'natural' boundary condition requires that wXX=0 and wyy=0,‘the latter of
which in turn implies that wy is unknown. Hence mky is also unknown, and
the boundary conditions in terms of nodal stream function variables are given
as =0, wx=Q, wxx=0 and wyy=0, with wy and wxy left free. We note that the
'natural' boundary condition £=0 holds only at the nodes.on x-axis.

The transient analysis requires the full domain to be represented,
since the symmetry has vanished. The same boundary conditions were imposed

on the inflow boundary Fi and the cylinder wall Fw as in the steady case.
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The top and the bottom sections Fu were assumed to be zero friction smooth
walls and so the 'rigid' boundary cqnditions Y=y and v=wy=1 were imposed
there. The nodal stream function variables on Pu’ as the direct result
of these 'rigid' boundary conditions, were given as Y=y, wx=0, wy=1, wxx=0
and wxy=0, while wyy was left free. On the outflow section Fo we needed
the flow to be as unconstrained as possible, so that the 'rigid' boundary
condition v=0 was definitely out of question. The best that we could do
was to leave all nodal stream function variables on'I‘o free, thus in lieu
of the governing restricted variational principle effectively specifying
the 'natural' boundary conditions of zero shear stress 1=0 and constant.
pressure py=0. We note, that even these less stringent boundary conddtions
are erroneous. That ié why we extended the computational domain for six
units downstream thus hoping to reduce the influence of the outflow boundary
conditions on the region of special interest behind the obstacle, where
unsteady behaviour was expected at a certain value of Reynolds number.

When the eigenvalue problem was solved the wy along the boundaries
Pi and Fu were constrained to be equal by using the 'master-slave' optiom.
For the CYLFL 92-63 grid the stream function § was also constrained to be
equal along the boundary Fu using thg same option. The number of unknowns
for the CYLFL 84-58 grid was 223 and for the CYLFL 92-63 grid 226. The first
15 mode shapeé, antisymmetric in stream function, with the associated eigen-
values, are shown in Fig. (13-1) for the CYLFL 84-58 grid. The first 20
mode shapes, antisymmetric in stream function with the associated eigenvalues,
and the first 10 mode shapes, symmetric in stream function, with the
associated eigenvalues, are shown in Fig. (13-2). The contour levels represent
equal steps in stream function and are plotted for the upper half domain y 20

to save space. The net for plotting was 26 x 48 for the CYLFL 84-58 grid and
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26 x 54 for the CYLFL 92-63 grid, with x- and y- spacings varying from 0.4
to 1.0, increasing outwardly from the centre of the cylinder, for both grids.
We observe that the eigenvalues increase quite rapidly with mode number
compared to the square cévity flow problem.

When modal appréach was tried on the CYLFL 84-58 grid for the steady
flow we observed that no higher modes were needed in order to attain reasonable
results. We ailso obsérved that the generalized coordinates associated with
the symmetric modes were all practically zero for the whole range of Reynolds
numbers considered, confirming that, as expected, the symmetric modes could
not contribute to the solution which was antisymmetric in stream function.
Hence, in all subsequent calculations reported herein, we used the upper
half domain y > 0 of Fig. (13-1) only, applying on the boundary defined by
the x-axis the boundary conditions as covered previously. The discrete
problem, thus obtained, had 104 degrees of freedom in the finite element
éoordinates, while the bandwidth was 48. The number of elements was 42 and
the numberlof nodes 34. 62 modes were used in the modal representatiomn, all
of them evidently antisymmetric in stream function. The number of constraints
in the problem was 3, ¥=3.0 apdvm=20.0 at the two nodes on the Pi boundary
obtained from the boundary condition Y=y there, and wy=l at all nodes located
on the Fi.and Fu boundaries. The calculations were started with Re = 1 using
the null solution with all variables, except for the constrained ones, zeroed
as an.initial guess in the finite element coordinates. This initial guess
vector was then transformed to the eigenvector basis to yield an initial
guess vector in the generalized coordinates. After the solution in terms
of generalized coordinates had been obtained by Newton-Raphson iterative
procedure, it was transformed back to the finite element coordinates via

Eg.(35) to yield the stream function solution. This solution was then used
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as an initial guess for next higher Re, and the process repeated. These

steps were carried out at Re = 1,5,7,10,20,40,70 and 100. Maximum 5 iteratioms

were needed to attain an accuracy of &:=10—6 in the whole range of Reynolds

numbers considered. No oscillatory solutions or instabilities were encounteréd.
The pressure field was computed only for the steady flow. The upper

half domain y > O only was considered. When the Poisson equation (79), was

solved for pressure, all the boundary conditions were of the Neumann type,

as already mentioned previously in Chapter (6). Tuann and Olson [6] found,

however, that the predicted pressure on the far boundaries Fi, Fu and Fo

was very nearly zero, as it should have been according to boundary conditions

imposed on the stream function Y. As all our boundary conditions on the

stream function Y are the same as those of [6], fof the steady flow, we

forced p to be identically zero on these boundaries. The symmetry condition

py=0 was also enforced all along the x-axis. The dimenéionless total drag

coefficient CD was obtained as the sum of the friction drag coefficient Cf

caleulated as C,. = 2 }“w $‘ sin 6d6, and the pressure drag coefficient.
£ Re o nn__ . : _
Cp’ given by the expression Cp = —éﬂ p costfd6. These line integrals were

only approximated, however, because the integrations were not performed along
the cylinder, but along the polygonal segments of the finite element grid
approximating the cylinder. The number of unknowns in the discrete problem
was 155, the bandwidth 50, while the number of elements and the number of
nodes were 42 and 34, respectively, that is the same as fof the stream
function calculations.

Complete stream function and vorticity results for steady flow for
Reynolds numbers Re = 1,5,7,10,20,40,70 and 100 are plotted in Figs. (14)
and (15), respectively. Only the region of interest is shown extending from
3 units upstream to 9 units downstream in the x direction measured from the

centre of the cylinder, and for 3 units in the direction of the positive
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y-axis measured from the x-axis. The interpolation net was 25 x 66 with

the x-spacings.varying from 0.1 to 0.4, and the y-spacings from 0.1 to 0.2,
both increasing outwardly from the centre of the cylinder. The net functions,
Y and g, at the interior points of the cylinder were set to zero. The
contour levels were specifiéd to_match those reported by Tuann and Olson [6],
so that direct comparisoncwould be possible. These modal results are
compared with the direct finite element results on the same grid [6] and

the finite difference results by Dennis and Chang [13] or Takami and Keller
[14,15].

The agreement between modal stream function results and stream function
results by the direct finite element method on the same grid is excellent up
to Re of about 40, although the first appearance of a negative valued stream
function becomes visible at Re = 10, Whereaé it is observable at Re = 7 in
the direct finite element results. At Re = 70 the zero streamline does not
extend far enough downstream and this trend gets even more pronounced at
Ré = 100 resulting in the wake being too short. The agreement between modal
and finite differences results is excellent up to Rebof>about 20. For higher
Re the length of the wakes and the positions of the vortex centre predicted
by modal method do not match those predicted by finite differences. This
discrepancy increases with Re, so that while modal results for Re = 40 are
still acéeptable, the predicted wakes at Re'= 70 and 100 are much too short.

" Modal vorticity predictions agree quite well with the direct finite
element approach.predictions again up to Re of about 40. The agreement
deteriorates with increasing Re, though, and while for higher Re in this
range modal values. in the regions of most interest behind and immediately
above the cylinder are very close to finite element values, in the region

in front and farther above the cylinder modal method predicts values which
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do not seem to exist in direct finite element results. At Re = 70 and 100
the predicted values in these regidns get even worse, but, while the values
in the regions of most interest behind and close above the cylinder are not
very.close to those predicted by direct finite element approach, the general
trend of equi-vorticity lines is still reproduced. Equi-vorticity lines
predicted by modal method agree with the finite differences results up to

Re = 20 in the regions of most interest. For higher Re modal results are
somewhat wavy and some equi=vorticity lines have kinks showing the influence.
of the grid. Again the discrepancies, as expected, increase with increasing
Re.

Equi-pressure lines were not plotted because no comparisons were
available. The friction dragbcoefficient Cﬁ, the pressure drag coefficient
Cp’ the total drag coefficient Cnyand the pfessure values at the leading edge
and the trailing edge of the cylinder are listed in Table (IV), however, and
compared to the direct finite element approach results’[6] and the finite
differences results [13,14]. All these results‘aré consistently lower than
the direct finite elemept results on the same grid for the whole range of
Reynolds numbers under consideration. The difference is drég coefficients,
Cf, Cp and CD’ increases with increasing Reynolds numbers With the maximum
difference of about 30% at Re = 100. The difference in the pressure value
at the leading edge of the cylinder is consistently'much higher than the
difference in the pressure value at the trailing edge. Modal results are
not consistently higher than the finite differences results, considered
exact herein, as the direct ‘finite element'results are. Amazingly enough,
though, all modal results for Re up -to 40 are closer to the finite differences
results than the difect finite element approach results on the same grid.

This can only be explained by reasoning that some. approximation errors
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introduced in the pressure calculations by finite element discretization
were cancelled by further approximation errors introduced by modal analysis.
From these results we conclude that good agreement witﬁ the direct
finite element approach results for the steady caée can be achieved by
modal method for Reynolds numbers up to about 20 by employing about 50%
of the modes. The agreement between modal resultg and the ‘'exact' results
obtained by finite differences is good for Reynolds numbers only up to about
40, as it is also a function of finite element discretization.
For the transient analysis on the CYLFL 92-63 gtid 62 modes were
employed. First 52 modes, aﬁtisymmetric in stream function, and first 10
modes symmetric in stream function. The transformation of the nonlinear
convective g_matrix to the eigenvector basis, spanned by these mddes, would
have been very expensive for the full grid. We succeeded, however, to reduce
the CPU time needed for the transformation. 3.5 times by making use of the
special properties of the transformed nonlinear convective g matrix, covered
in Chapter (7). It was done as follows.. Firstly, the g matrix was formed for
the upper half of the CYLFL 92-63 grid. All boundary conditions imposed on
the Pi, Po’ Fu and EW boundaries were the same as for the full grid, while
all nodal variables at the nodes located on the x-axis, which became a boundary,
ﬁere left free. The‘number of degrees of freedom for this grid was 139 and the
bandwidth was 48, while for the full grid they would have been 226 and 78,
respectively. Then the modes of the full grid were truncated, so that only
entries corresponding to the degrees of freedom of the half grid were retained
and the transformation performe& using these truncated modes. By multiplying
all entries of the resulting array by a factor of 2.0, the transformed nonlinear

convective matrix @ for the full grid was finally obtained. The mass matrix,

HIESS

needed in the time algorithms for transformation from finite element coordinates
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to generalized coordinates and vice versa, was computed for the full grid. -
The constraints on the stream function, obtained from the boundary condition
Y=y imposed on’ the Fi and Fu boundaries, were Y= 3.0 and ¢= -3.0 at the

two nodes located on the Fi boundary, ¢y= 20.0 at all nodes located on the
top Fu boundary and Y= -20.0 at all nodes located on the bottom Fu boundary.
In addition, the constraint ¢y=l was imposed at all nodes situated on both
the Fi and Fu boundaries, so that the total number of constraints in the
problem was 5.

The time integrations were started with an initial solution obtained
by perturbing the steady state results for a particular Reynolds number under
consideration. The constrained variables on the boundary were kept fixed
throughout the time integrations which in effect amounted to specifying time
independent boundary conditions.

The calculations at Re=20 were performed with two time integration
algorithms, thé first one defined by Eq. (56) and the second one by Eq. (57).
From these trial calculations we found, that while both algorithms yielded
the same results the second algorithm Was.more efficient, because a much
larger time step could be used.without endangering the numerical stability.
So, in all subsequent qalculations we exclusively used this algorithﬁ.

When the time analysis was performed at Re=20, 40 and 70 the steady state

was reached in all three cases. We would have expected that to happen at

Re=20 and 40, but not at Re=70, where the flow should have become unsteady

with oscillations of the downstream part pf the wake. We reasoned, that

this was the result of finite element discretization erfors and further
truncation errors introduced by modal analysis, which employed only 10 modes,
symmetric  in stream function. These errors introduced an 'artificial viscosity'

effect which lowered the 'effective' Reynolds number. This 'artificial



58

viscosity' was, we thought, the main cause of numerical over-stability of
our discrete problem, Eq. (50), as compared to the actual hydrodynamic
stability inhefent in the governing partial differential equation, Eq. (5).
So we decided to increase the Reynolds number, thus also hoping to increase
the 'effective' Reynolds number, and to pefform the time integratioms at
Re=140, although judging from the steady results reported in [6], the finite
element grid was too crude at such a high Re. The integrations were performed
with a time step At=0.15 seconds, while the test on whether the steady state
had been achieved, Eq. (62), was set to be 6%10‘6. The initial solution was
arbitrarily specified by perturbing the steady state stream function values
at the nodes located in the upper half domain y>0 upstream in the neighbour-
hood of the cylinder by 107% and at the mirror images of these nodés located
in the lower half domain y<0 by 15%. The stream function results‘at time
T=3, 6, 9, 12, and 16.5 seconds are plotted in Fig. (16). These results
seems to indicate expected oscillatory behaviour, but finally the steady
state solution, antisymmetric in stream function, was obtained, anyway.

We speculate that this happened primarily because of the wrong downstream
boundary conditions whose influence was reflected to the computational
domain forcing the flow back to steady state. Unfortunately, we could not
come up with any‘better downstream boundary conditions and this is left for
some future study.  We also note that the extension of the domain downstream,
indicated in Fig. (12-2) might not have been enough to reduce this boundary
conditions effect on.the region of interest. To summarize, it seems that
.the inability of our procedure to prediet the expected unsteady flow was
caused to some extent by truncation errors introduced by finite element
discretization and additional modal truncation errors, buf primarily by the

boundary conditions spec¢ified on the downstream boundary Fo.
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CHAPTER 9

Conclusions

A modal finite element method for the steady state and the
transient analyses of the plane flow of incompressible Newtonian fluid
has been presented. The governing restricted functional was discretized
with a high precision triangular stream function finite element of Cl class
E33ss. Eigenvalue analysis was carried out on the linear part of the
problem obtained by deleting the noniinear convective term. It was found
that the Lagrange multipliers technique was computationally more efficient
for incorporating the nonhomogeneous boundary conditions than the condensation
procedure. In the latter procedure numerical difficulties were encountered
when dealing with the nonlinear convective matrix. The matrix equations
to be solved, when the Lagrange multipliers teéhnique is applied, are
nonsingular but indefinite. We found that this posed no computational
difficulties as the Gaussian elimination with partial pivoting and forward
and backward substitution could conveniently be used to solve such equations.
The number of modes was restricted to 62 because of the computer core
capacity and this limitation has to be further explored. We found that
the computer time for the transformation of the nonlinear convective matrix
to modal coordinates could be significantly reduced by taking advantage of
the symmetric and antisymmetric properties of the modes. The transformation
procedure was still quite expensive. Therefore, it is concluded that there
will be some practical limit on the size of the problem that can be solved

by modal method.
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When modal method was applied to several flow problems we
found that the number of modes, which were to be retained in the analysis
in order to achieve reasonable results, increased with the refinement
of the finite element grid. Furthermore, tge choice of modes depended
on the problem. In the square cavity flow problem some higher modes had
to be included in order to approximate even the linear part, while for
the flow around a circular cylinder no higher modes needed to be included.

In the steady state analysis the convergent solution was obtained

in 6 or less iterations, for the whole range of Reynolds numbers considered,
regardless of the grid and the number of modes used. That is, numerical
instabilities frequently encountered in the finite difference method at
higher Reynolds numbers were never experienced. It is concluded, that this
new modal finite element method in general yields good results in the range
of moderate Reynolds numbers with about 50% or less of the total modes.

When the time dependent ahalysis was applied to the flow around
a circular cylinder it was conqluded that the inability to predict unsteady
behaviour, expected at higher Reynolds numbers, was primarily caused by
the outflow boundary conditions. This lends hope that once these boundary
conditions have been corrected or at least their influence reduced by
extending the computational domain further downstream, it will be hossible
to perform the time integrations on a greatly reduced number of equations
by employing modal analysis. Hence, significant savings in computer costs
can be achieved. Finally, as good results have been obtained in this thesis
for moderate Reynolds numbers employing a greatly reduced number of linear
modes, we speculate, that the extension of modal method to higher Reynolds
numbers is quite feasible. .It could be achieved, as suggested by Nickel *[10] ,
by introducing modal decompositions for the subsequent nonlinear states based

upon the tangent matrix.
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Number of Modes

Eigenvalues

Grid Symmetric Antisymmetric Total
Symm. Antisymm.| Total Lowest Highest Lowest Highest Lowest Highest
SQCA . 12-13 ‘ 10 5 15 53.3062 12799.6 108.352 9516.34 53.3062 12799.6
SQCA 36-29 40 31 71 51.6295 45973.8 92.4626 | 44085.0 51.6295 45973.8
SQCA 76-53 94 81 175 50.7516 49398.6 92.1604 | 48683.4 50.7516 49398.6
TABLE I Number of Symmetric and Antisymmetric Modes and Lowest and Highest Eigenvalues

for Three Finite Element Grids Used for Square Cavity Flow Problem Simulation

v9



Number of Modes

Reynolds Number, R

1 10 20 40 100 200 400
Symm. fAntisymm.| Total Error in 7% at Midnodes5
10 5 15 0.. 0. 0. 0. 0. 0. 0.
9 5 14 0.76 0.78 0.85 1.08 1.63 1.96 1.94
8 5 13 1.40 1.42 1.47 1.65 2,06 2.26 1.31
8 4 12 1.40 1.42 1.49 1.75 2.36 2.75 9.18
10 1 11 0. 0. 0.27 1.02 11.33 17.22 42.73
TABLE II Error in Stream Function at Midnode 5 for Various Numbér of Modes and Various

Reynolds Numbers for SQCA 12-13 Grid

S9



Number of Modes . ﬁ Crid
Method Crid Xv.c.' yv.c. v.C. Cv.c. v.Cc. for
. Plotting
Symm. [Antisymm| Total
10 5 15 0.0 0.25 0.1355 5.5225 0.0
SQCA 12-13
10 1 11 0.0 0.25 0.1355 5.5225 0.0
Modal - 27 15 42 0.0 0.25 0.0989 2.8059 -0.0892
SQCA 36-29
26 10 36 0.0 0.25 0.0984 1.8501 -0.0835
SQCA 76-53 39 21 60 0.0 0.25 0.1040 2.7424 -0.0003 20 x 20
SQCA 12-13- - - - 0.0 0.25 | 0.1355 5.225 0.0
Diftect )
Finite SQCA 36-29 - - - 0.0 0.25 0.0986 3.033 -0.0862
Element
Approac
SQCA 76-53 - - - 0.0 0.25 0.0996 2.9775 -0.0928
[12] 50 x 50 - - - 0.0 0.27 0.100 3.20 0.0
R=0

TABLE III Comparison of Numerical Results for Square Cavity Flow Problem
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Number of Modes , . 5 Crid
Method Crid V.C. v.C v.c v.C Plfor‘
Symm. Antisymm{ Total ~totting
10 5 15 0.25 0.1355 .5196 -2.3096
SQCA 12-13
10 1 11 0.25 0.1355 .5207 -2.3092
Modal 27 15 42 0.25 0.0988 .8050 -0.8911
SQCA 36-29
26 10 36 0.25 0.0984 .8494 -0.8347
SQCA 76-53 39 21 60 0.25 0.1040 .7276 -0.9828 20 x 20
SQCA 12-13 - - - 0.25 0.1355 .5196 £2.3096
Direct
Finite
Element SQCA 36-29 - - - 0.25 0.0985 .0090 -0.8607
Approach
SQCA 76-53 - - - 0.25 0.0995 . 9657 -0.9270
TABLE IITI (cont.) Comparison of Numerical Results for Square Cavity Flow Problem
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Number of Modes Grid
Method Grid v.c. .C. v.c v.c v.c or
Plotting
Symm. |Antisymm| Total
10 5 15 0.0 .25 .1355 5.5107 -4.6126
SQCA 12-13 4
10 1 11 0.0 .25 .1354 5.5157 -4.6096
Modal
27 15 42 -0.05 .25 .0987 2.2439 -1.2252
SQCA 36-29
26 10 36 -0.05 .25 .0986 1.9595 -1.1424
20 x 20
SQCA 76-53 39 21 60 -0.05 .25 .1046 2.8044 -1.5328
SQCA 12-13- - - - 0.0 .25 .1355 5.5107 -4.6126
Direct
Finite g on 36-29 - - - -0.05 .25 .0985 2.2887 -1.1057
Element
Approach
SQCA 76-53 - - - -0.05 .25 .0996 3.1068 -1.2662
R =

TABLE III (cont.)

Comparison of Numerical Results for Square Cavity Flow Problem
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TABLE ITI (cont.)

Comparison of Numerical Results for Square Cavity Flow Problem

Number of Modes zv.c. yv.c Wv.: ;v.c. pv. Grid
Method Grid V.Ce. vV.C V.C V.C «C. or
Plotting
Symm. |Antisymm| Total
10 5 15 0.0 0.25 0.1354 5.4729 -9.1711
SQCA 12-13-
10 1 11 0.0 0.25 0.1350 5.4965 -9.1518
Modal 27 15 42 -0.05 0.25 0.0995 2.2381 ~3.1196
SQCA 36-29
26 10 36 -0.05 0.25 0.0995 1.9080 -2.9461
20 x 20
SQCA 76-53 39 21 60 -0.10 0.25 0.1062 6.9153 -3.3526
SQCA 12-13 - - - 0.0 0.25 0.1354 5.4729 -9.1711
Direct
Finite oy - _ _ _ _ _
Element SQCA 36-29 0.05 0.25 0.0994 2.2729 3.0044
Approach
SQCA 76-53 - - - -0.05 0.25 0.1003 3.1277 -3.2471
R =

69



Number of Modes .
_ x c P Grid
Method Grid v.C .C. v.cC v.c V.C. for
Symm. Antisymm{ Total Plotting
10 5 15 0.0 .20 .1359 .1545 -21.0284
SQCA 12-13-
10 1 11 0.0 .25 .1331 .4002 -22.022
Modal 27 15 42 ~0.10 .20 .1045 .3892 -9.2827
SQCA 36-29
26 10 36 -0.10 .20 L1061 L4479 ~9,4048
20 x 20
SQCA 76-53 39 21 60 -0.10 .25 .1127 .1780 -12.3943
SQCA 12-13 - - - 0.0 .20 .1359 L1545 ~-21.0284
Direct
Finite | 500a 36-29 - - - ~0.10 .20 .1054 .0346 -9.8903
Element
Approach
SQCA 76-53 - - - -0.10 .25 .1037 .8612 -9.7013
[12] 50 x 50 - - - -0.13 .24 .101 14 -18.1
R = 100
TABLE :ITII (cont.) Comparison of Numerical Results for Square Cavity Flow Problem

0L



Number of Modes Crid
Method Grid Xv.c .C. v.C v.c pv.c. for
Plotting
Symm. [Antisymm} Total
10 5 15 0.0 .20 .1428 .9600 -42,3894
SQCA 12-13
10 1 11 0.0 .25 .1307 2643 -41.5979
Modal 27 15 42 -0.05 .15 .1152 .7952 -25.2413
SQCA 36-29
26 10 36 -0.10 .15 .1186 .9509 -23.4828 20 x 20
SQCA 76-53 39 21 60 -0.15 .15 .1202 . 7300 -26.6176
Direct | sQcaA 12-13 - - - 0.0 .20 .1428 .9600 ~42.3894
Finite
Element .
Approach|. SQCA 36-29 - - - -0.10 .15 .1182 .9340 -25.6447

TABLE III (cont.)

Comparison of Numerical Results for Square Cavity Flow Problem

Tz



Number of Modes

TABLE III (cont.)

Comparison of Numerical Results for Square Cavity Flow Problem

- Grid
Method . Grid v.c yV.c v.c v.cC pv.c. for
Plotting
Symm. [Antisymm} Total
10 5 15 0.0 0.15 .1703 .3450 -117.7910
SQCA 12-13
10 1 11 0.0 0.25 .1790 .1650 -78.950
Modal 27 15 42 -0.05 0.10 1246 .9322 -57.0767
SQCA 36-29
26 10 36 -0.05 0.05 .1279 .1609 -51.2457 20 x 20
SQCA 76-53 39 21 60 -0.05 0.05 .1315 .2139 -54.7102
‘| Direct |SQCA 12-13 - - - 0.0 0.15 .1703 +3450 -117.7910
Finite
Element
Approach SQCA 36-29 - - - -0.10 0.10 .1319 .6136 -58.6027
[5] SQCA 76-53 - - - -0.056 0.083 .1213 .5099 -49,8779 irregular
[12] Sqchs0 x 40 - - - -0.06 0.12 .102 .15 -71.7
R = 400

[4A
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Method Reynolds Number, R
& Grid 1 5 7 10 20 40 70 | 100
Friction Drag Coefficient; Cf
Modal CYLFL #42-'3%|7.525 | 2.301 | 1.816 | 1.408 | 0.848 | 0.506| 0.325| 0.239
[6] 42 7.573 | 2.386 | 1.918 1.529 |0.997 | 0.653| 0.447 | 0.347
[13] - 1.917 {1.553 | 1.246 [0.812 | 0.524| 0.360]| 0.282
Pressure Drag Coefficient, CP
Modal CYLFL 42-34|7.557 | 2.538 [ 2.089 [ 1.712 |1.199 | 0.896 | 0.737 | 0.654
(661 42 7.837 | 2.704 | 2.263 | 1.906 |1.443 | 1.149 | 0.965| 0.874
[13] - 2.199 | 1.868 | 1.600 {1.233 | 0.998 | 0.852 | 0.774
Drag Coefficient,-CD
Modal CYLFL 42-34{15.082 | 4.839 {3.905 |3.120 [2.047 | 1.402 {1.062 |0.893
[6] 42 15.410 | 5.091 |4.181 |3.435 |2.440 |1.802 [1.412 |1.221
[13]2 - 4,116 |3.421 |2.846 |(2.045 |1.522 |1.212 |1.056
[14] 10.109 - 3.303 [2.800 [2.013 | 1.536 - -
Pressure at Leading Edge, P (%)
Modal CYLFL 42-34| 5.602 | 2.004 |1.666 |1.375 [0.965 | 0.763 |0.708 |0.690
[6] 42 5.829 | 2.228 11.919 (1.678 [1.418 |1.351 |1.315 [1.282
[13] - 1.872 |1.660 |1.489 (1.269 | 1.144 [1.085 |1.060
[14] 3.905 - 1.637 [1.474 [1.261 |1.141 - -
Pressure at Trailing Edge, -P(0)
Modal CYLFL §5-3%| 3.876 |1.222 [1.013 |0.845 | 0.638 | 0.545 {0.502 |0.479
[6] 42 3.845 {1.242 |1.050 |0.896 | 0.698 {0.580 |0.488 [0.436
[13] - 1.044 (0.8700(0.742 | 0.589 | 0.509 |0.439 |0.393
[14] 2.719 - 0.783 [0.670 | 0.537 | 0.512 - -
TABLE IV Comparison of Numerical Results for Flow Around

4 Circular

Cylinder
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"Figure 9 Streamlines for Square Cavity Flow for

Various Reynolds Number§ R

Contours represent equal steps in stream function,
unless specified.otherwise. The vortex centre is
marked by a créss. The numbers below the figutes
refer to the number of modes used in the calculations,

while FE denotes the direct finite element approach.
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Figure 10

Equi-Vorticity Lines for Squate Cavity Flow

for Various Reynolds Numbers R

The vortex centre is marked by a cross. The numbers
below the figures refer to the number of modes used in
the calculations, while FE denotes the direct finite
element approach. Contour levels are labelled only on

the central figure. For R =0, 10,20,40 and 100,

Y =-1.0,0.0,1.0,3.0,5.0 contours are plotted, and for

R = 200 and 400, ¢ =-1.0,0.0,1.0,2.0,2.2, and 3.0

contours.
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Figure 11 Equi-Pressure Lines for Square Cavity Flow

for Various Reynolds Numbers R

The vortex centre is marked by a cross. The numbers
below the figures refer to the number of modes used

in the calculations, while FE denotes the direct finite
element approach. Contour levels are labelled only on
the central figure. For R = 0,10,20, and 40,

p = -20.0,-10.0,-5.0,-1.0,0.0,1.0,5.0,10.0, and 20.0,
contours are plotted, for R = 100 p = -15.0,-7.5,-0.5,
0.0 and 15.0 contours, for R = 200 p = -20.0,-10.0,
-5.0,-1.0,0.0,30.0, and 60.0 contours and for R = 400

p = -60.0,-30.0,0.0,30.0 and 60.0 contours.
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Figure 14
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Steamlines for Steady Flow Around

a Circular Cylinder for Various

Reynolds Numbers R

Values of the dimensionless stream function } are shown

for each streamline on the bottom figure. Values of ¥

for closed streamlines wc are given below for a specified

value of the Reynolds number

(4)
(5)
(6)
)
(8)

- 10 :

= 20 :

=-100:

40 :

70

-0.0002

- -0.0080, -0.0058
- -0.0328, -0.0246, -0.0164, -0.0082

- -0.07, -0.06, ~-0.035, -0.023

-0.1, -0.08, -0.05, -0.035

Tﬁe number below the top figure denotes the number of

modes used in the calculations, while Ref. ‘6 refers to

the direct finite element approach using the same grid.
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Figure 15 Equi-Vorticity Lines for Steady Flow Around

a Circular Cylinder for Various Reynolds

Numbers R

Values of the negative dimensionless vorticity ¢ are
shown for each equi-vorticity line. The number below
the top figure denotes the number of modes used in
the calculations, while Ref. 6 refers to the direct

finite element approach using the same grid.
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Figure 16 Streamlines for Transient Flow Around a
Circular Cylinder at Reynolds NomZcr.

1E=140 for Various Time Instants

The following streamlines are plotted
¥ = -0.631, -0.4115, -0.129, -0.03, -0.0175, -0/0115

0.0, 0.0115, 0.0175, 0.03, 0.129, 0.4115, 3nd30.631
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T =9 SECONDS

FIGURE 16 STREAMLINES FOR TRANSIENT FLOW
AROUND A CIRCULAR CYLINDER AT REYNOLDS NO.

R =140 FOR VARIOUS TIME INSTANTS
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T=16.5 SECONDS

FIGURE 16 ( CONT. ) STREAMLINES FOR TRANSIENT
FLOW AROUND A CIRCULAR CYLINDER AT REYNOLDS
NO. R = 140 FOR VARIOUS TIME INSTANTS



