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ABSTRACT 

A modal f i n i t e element method i s presented f o r the steady s t a t e and 

t r a n s i e n t analyses o f the plane f low of incompress ib le Newtonian f l u i d . 

The governing r e s t r i c t e d f u n c t i o n a l i s d i s c r e t i z e d w i t h a high p r e c i s i o n 

t r i a n g u l a r stream f u n c t i o n f i n i t e element. Eigenvalue a n a l y s i s i s 

c a r r i e d out on the r e s u l t i n g d i s c r e t i z e d problem, under the assumption 

tha t the non l inea r convec t ive term i s equal to z e r o . A f t e r t r u n c a t i n g 

at va r ious l e v e l s o f approximat ion to o b t a i n a reduced number o f modes, 

the t r ans fo rmat ion to the new vec to r space, spanned by these modes i s 

performed. Advantage i s taken o f the ..symmetric and the an t i symmetr ic 

p r o p e r t i e s o f the modes i n order to s i m p l i f y the c a l c u l a t i o n s . The 

Lagrange m u l t i p l i e r s technique i s employed to {incorporate the nonhomo-

geneous boundary c o n d i t i o n s . The steady s t a t e a n a l y s i s i s c a r r i e d out 

by u t i l i z i n g the Newton-Raphson i t e r a t i v e procedure. The a l g o r i t h m f o r 

t r a n s i e n t a n a l y s i s i s based upon backward f i n i t e d i f f e r e n c e s i n t ime . 

Numerical r e s u l t s are presented f o r the f u l l y developed plane P o i s e u i l l e 

f l o w , the f low i n a square c a v i t y , and the f low over a c i r c u l a r c y l i n d e r 

problems. These r e s u l t s c f o r the steady s t a t e are compared w i t h the 

r e s u l t s obta ined by d i r e c t f i n i t e element approach on the same g r i d s 

and the r e s u l t s obta ined by f i n i t e d i f f e r e n c e s technique . I t i s concluded 

tha t the number o f modes, which are to be r e t a i n e d i n the a n a l y s i s i n 

order to ach ieve reasonable r e s u l t s , inc reases w i t h the ref inement o f the 

f i n i t e element g r i d . Furthermore, the cho i ce of modes to be used depends 

on the problem. F i n a l l y i t i s e s t a b l i s h e d , tha t t h i s new modal method 
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y i e l d s good r e s u l t s i n the range of moderate Reynolds numbers w i t h about 

50% or l e s s o f the modes of the problem. T h i s , i n t u r n , means tha t the 

time i n t e g r a t i o n s can be performed on a g r e a t l y reduced number o f 

equations and hence p o t e n t i a l savings i n computer t ime are s i g n i f i c a n t . 
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NOTATION 

The s p e c i f i c use and meaning of symbols are defined i n the text 

where they are introduced. I n d i c i a l notation based upon the summation 

convention i s adopted throughout the text. A l t e r n a t i v e l y , the more 

common matrix notation i s also used when i t r e s u l t s i n equations written 

more concisely, and for f i n a l expressions. Vector quantities are indicated 

by a lower bar, matrices by two lower bars, and t r i p l y subscripted arrays 

by three lower bars. When the arrays have to be written out i n f u l l , 

vectors are denoted by { } brackets, matrices by [ ] brackets, and trans

posed vectors by < > brackets. A comma followed by an index, appearing 

as a subscript, designates a p a r t i a l d e r i v a t i v e with respect to a s p a t i a l 

d e r i v a t i v e i n the d i r e c t i o n of that index. 

The Greek symbol e implies 'belongs to' unless s p e c i f i e d otherwise. 
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CHAPTER 1 

Introduction 

The numerical analysis of the plane flow of incompressible Newtonian 

f l u i d constitutes an important area i n computational mechanics and engin

eering p r a c t i c e . T r a d i t i o n a l l y , the most popular and thoroughly studied 

methods for tr e a t i n g problems of t h i s type have been the various techniques 

based on f i n i t e d i f f e r e n c e d i s c r e t i z a t i o n . The great progress i n a p p l i c a t i o n 

of f i n i t e element procedures has been made only i n the l a s t few years. [1] . 

The purpose of t h i s thesis i s to e s t a b l i s h whether i t i s f e a s i b l e to 

reduce the number of d i s c r e t e v a r i a b l e s appearing i n f i n i t e element approach 

by performing the transformation to modal coordinates. This i s e s p e c i a l l y 

important i n applications to transient problems where the cost of integrating 

the d i s c r e t e equations i n time soon becomes p r o h i b i t i v e l y expensive. 

Stream function alone approach i s used for f i n i t e element modelling. 

The r e s t r i c t e d functional governing the problem i s d i s c r e t i z e d with a high 

p r e c i s i o n f i n i t e element of C 1 c l a s s . Eigenvalue analysis i s c a r r i e d out 

on the r e s u l t i n g d i s c r e t i z e d problem under the assumption that the nonlinear 

convective term i s equal to zero. A f t e r truncating at various l e v e l s of 

approximation to obtain a reduced number of modes, transformation to the 

new basis defined by these modes i s performed. It i s shown that i t i s 

computationally more e f f i c i e n t to employ transformation i n conjunction with 

Lagrange m u l t i p l i e r s technique than transformation by condensation, even 

though the system s i z e i s expanded and the system matrix i s nonpositive-

d e f i n i t e . Steady state analysis i s c a r r i e d out by u t i l i z i n g the Newton-

Raphson i t e r a t i v e procedure. Algorithms for transient analysis are based 

upon.backward f i n i t e differences i n time and d i f f e r only i n how the nonlinear 
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term i s treated. The pressure d i s t r i b u t i o n i s obtained by solving the 

Poisson equation a f t e r a l l modal stream function variables i n the f i n i t e 

element coordinates have been found. 

Numerical r e s u l t s are presented and discussed for the f u l l y developed 

P o i s e u i l l e flow, the flow i n the square cavity and the flow over a c i r c u l a r 

cylinder problems. The r e s u l t s f o r the steady state are compared with the 

r e s u l t s obtained by d i r e c t f i n i t e element approach on the same grids and 

the r e s u l t s obtained by f i n i t e d i f f e r e n c e procedures. 
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CHAPTER 2 

Basic Theory 

In t h i s chapter the p a r t i a l d i f f e r e n t i a l equation governing the 

problems of plane flow lafi incompressible Newtonian f l u i d and the r e s t r i c t e d 

v a r i a t i o n a l p r i n c i p l e derived from i t are presented to re c a p i t u l a t e the 

t h e o r e t i c a l basis on which modal approach s h a l l l a t e r be b u i l t . 

2.1 P a r t i a l D i f f e r e n t i a l Equation 

The d e s c r i p t i v e set governing the plane flow of incompressible 

Newtonian f l u i d consists of: (a) the s p a t i a l equation of motion, derived 

from the dynamics of flow considerations using the p r i n c i p l e of conserva

t i o n of l i n e a r momentum, and c a l l e d Navier-Stokes equation: 

3u. 
+ u u = -p,i, + — (u + u ) , i xefi, t>0 (1) 

pt 3 !>3 1 K
e !»3 3* 1 3 

(b) the continuity equation derived from the kinematics of f l u i d flow v i a 

the conservation of mass: 

V • u = u. . = 0 xefi, t>0. (2) x , i -

The appropriate boundary and i n i t i a l conditions also have to be prescribed. 

The equations are w r i t t e n i n an Eulerian frame of reference f i x e d i n space. 

The normalizing system used i n above equations i s based on the convective 

time scale L/U, where L i s a c h a r a c t e r i s t i c length and U i s a c h a r a c t e r i s t i c 

v e l o c i t y of the problem. Pressure i s normalized with respect to the 

reference pressure pU 2. Re i s the dimensionless Reynolds number defined 

as Re = ^p-. The other parameters of the problem are the density of the 

f l u i d p, which i s assumed constant and independent of temperature, the 



absolute v i s c o s i t y of the f l u i d y, and the kinematic v i s c o s i t y defined as 

v = —. u . ( i = 1,2) are the components of v e l o c i t y i n x and y d i r e c t i o n s 
P i 

r e s p e c t i v e l y , and 0, i s the domain under consideration with the boundary V 

: Viscous stresses for an i s o t r o p i c Newtonian f l u i d are defined a 

x. . = y(u. . + u. .) (3) 
i j i , J l o i 

By introducing the stream function concept the continuity 

equation becomes exactly s a t i s f i e d and the pressure i s completely e l i 

minated, leaving the stream function as the only dependent v a r i a b l e . The 

stream function i s defined as: 

f = u f = -v, (4) y x 

Then by c r o s s - d i f f e r e n t i a t i n g ,Eq. -:(1). J f or each of the two 

d i r e c t i o n s x and y to eliminate the pressure and by expressing the 

v e l o c i t i e s i n terms of the stream function v i a Eq. (4), the following 

s i n g l e - v a r i a b l e fourth order p a r t i a l d i f f e r e n t i a l equation i s obtained: 

^ - - + * h 'V <« 

As 

2.2 R e s t r i c t e d V a r i a t i o n a l P r i n c i p l e 

As proven by Finlayson [2], no exact v a r i a t i o n a l p r i n c i p l e 

e x i s t s for t h i s equation due to the non-selfadjoint convective terms. 

Therefore Olson [3] resorted to r e s t r i c t e d v a r i a t i o n a l p r i n c i p l e . 

Yamada et a l . [4] point out that the paper [3] was " i t s e l f a break

through i n the a p p l i c a t i o n of the f i n i t e element method to f i e l d of 

f l u i d dynamics". The d e r i v a t i o n of the p r i n c i p l e i s repeated here, 

extended for the time dependent term, as t h i s p r i n c i p l e y i e l d s the 



f u n c t i o n a l , which i n i t s d i s c r e t i z e d form serves as the basis for the 

modal approach. 

If Eq. (5) i s m u l t i p l i e d by Sty and integrated over the domain 

Q the following varied i n t e g r a l i s obtained: 

61 = Jf[±- vSjj + * VIM) - + V 2 ( i ) - -f- (vH)]6^dQ. (6) 
2 ^ K e x y y x dt 

Integrating Eq. (6) by parts twice for the viscous term and 

once for the convective and the time dependent terms and employing the 

Green-Gauss theorem y i e l d s the following v a r i a t i o n a l statement: 

+Vip0V6i!>]'dP. + f[^~ d ^ 2 ^ - 72iJ)0nx7i|>0 (7) 

where the notation r e f e r s to v a r i a t i o n i n 1J1 only, while IJJ° i s kept 

f i x e d . A f t e r the v a r i a t i o n i s set equal to IJJ° and the governing 

d i f f e r e n t i a l equation (5) recovered as Euler equation. 

If the v a r i a t i o n a l operation 6 i s p u l l e d i n front of the i n t e g r a l 

expression, and the boundary i n t e g r a l s neglected for now, the following 

f u n c t i o n a l i s obtained: 

= // [-5iT ( V 2* 2) + ( A 2 f ) i|/ (8) 
0 Z K y x 

- (i))°V2f) + Vif)°Vi|)]dfi. 
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This f u n c t i o n a l y i e l d s the boundary conditions: 

1 H]pn) 

either &\b = 0 or - — V 2 T J J + V 2 i M + — = 0 (9) Re n s 3t 

and e i t h e r S\\i = 0 or z, = V 2 I J J = 0 (10) 

where n i s the d i r e c t i o n of the outward normal on the boundary, San. u 

i s the d i r e c t i o n tangential to the boundary, and t, represents the 

v o r t i c i t y . The l e f t hand side conditions are the l o g i c a l ' r i g i d ' boundary 

conddta.6n>ss corresponding to s p e c i f i e d stream function and i t s normal 

d e r i v a t i v e . The 'natural' boundary conditions on the r i g h t hand side are 

not the ones that we would l i k e to have, namely those of constant pressure 

and zero shear s t r e s s . 

These boundary conditions can be e a s i l y implemented though, by 

simply adding the appropriate boundary i n t e g r a l s to the fu n c t i o n a l Eq. (8). 

As we use tr i a n g u l a r f i n i t e elements to be covered i n more d e t a i l l a t e r , 

the boundary i n t e g r a l s are added i n such a way, that the natural boundary 

conditions can be approximated only on one edge of the t r i a n g l e . This 

e f f e c t i v e l y means that only i f a p a r t i c u l a r f i n i t e element i s to be used 

as boundary element with two of i t s v e r t i c e s l y i n g on the part of the 

boundary, where any one or both 'natural' boundary conditions are prescribed, 

these boundary i n t e g r a l s are added. 

In order to sim p l i f y the equations we switch now to l o c a l 

coordinates £ ,n as shown i n F i g . (1), and obtain the modified governing 

f u n c t i o n a l as: 

i e 0 M ° ) = / / ( v 2 r0 - (4>°vV) ^ n + O ^ v V ) 4>5 (ID 

+ v^v*] d ? d n + r [iL. * j * - i r r + ^ ° n ) * ] n = 0 d 5 . 
- D 
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The f u n c t i o n a l y i e l d s the ' r i g i d ' boundary conditions; 

6^ = 0 and <5̂  = 0 
n 

(12) 

and the 'natural' boundary conditions: 

nnn 
) + \i> 4v - = 0 (13) 

and T = Re v%n = 0. 

Both ' r i g i d ' boundary conditions can be exactly s a t i s f i e d for 

a s t r a i g h t boundary, since stream function i s uniquely determined by 

and at the two v e r t i c e s l y i n g on the boundary, and itsnnormal 

d e r i v a t i v e , a cubic, i s uniquely determined by and ij; at these 

v e r t i c e s . For curved boundaries, however, s p e c i a l provisions are 

necessary, and the desired boundary conditions are r e a l i z e d exactly only 

at d i s c r e t e nodes. These provisions i n the element area integrations 

are included i n t h i s work, but they w i l l not be reported, as they are well 

documented i n Tuann and Olson [5,6]. 
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CHAPTER 3 

F i n i t e Element Formulation 

By performing the aforementioned i n t e g r a t i o n by parts the order of 

the function space i s lowered. This r e l a x a t i o n of the continuity require

ments on the stream function i s referred to as a 'weak' formulation of the 

problem. I t permits us to seek the s o l u t i o n i n the Sobolev space Ŵ , which 

contains a l l functions, whose second derivatives are square integrable, 

i . e . f i n i t e . In other words using c l a s s i c a l f i n i t e element vocabulary we 

need a f i n i t e element of c l a s s . Such an element s a t i s f i e s the 'compati

b i l i t y ' conditions, as i t provides interelement continuity of \j> and i t s 

normal d e r i v a t i v e and the governing fu n c t i o n a l contains derivatives of at 

most second order. 

In t h i s chapter the de r i v a t i o n of the fun c t i o n a l f o r an element 

dEclass i s presented. The procedure of f i n d i n g the extremum of the 

global functional r e s u l t i n g i n the d i s c r e t i z e d equations of- motion i s 

indicated. 

3.1 Functional on Element Level 

Here the tria n g u l a r element derived by Cowper et a l . [7] i s 

adopted. This element has since been recognized as one of the most accurate 

f i n i t e elements a v a i l a b l e f o r plate bending problems, Gallagher [8]. I t 

should be noted, though, that t h i s element requires a su b s t a n t i a l formu-

l a t i v e e f f o r t . Olson was the f i r s t to modify i t for a p p l i c a t i o n to the 

steady state two-dimensional viscous flow problems. Only the relevant 

steps i n the element d e r i v a t i o n areiaincluded and for more d e t a i l s i t i s 

referred to Olson [1,3]. 

The element and i t s nodal variables are shown i n Fig. (2). The 



f i e l d v a r i a b l e i s interpolated within the element by a truncated q u i n t i c 

polynomial: 

2 0 m. n. 
i|> = E a.?" V 1

 ( 1 4 ) 

1 = 1 1 

such that tangential v e l o c i t y component along the edge 1 - 2 i s a cubic i n 

£. Eighteen r e l a t i o n s expressing nodal variables ̂  i n terms of polynomial 

c o e f f i c i e n t s A can be established by d i f f e r e n t i a t i n g ip with respect to the 

E,,r) coordinates and by s u b s t i t u t i n g the l o c a l coordinates of the v e r t i c e s . 

Two a d d i t i o n a l r e l a t i o n s are obtained by constraining the tangential v e l o c i t y 

to vary as a cubic along the remaining two edges, 2 - 3 and 3 - 1 . This i s 

written i n matrix form as : 

< ^ , 0 , 0 T > = T A ( 1 5 ) 

Inverting the above equation the vector of polynomial c o e f f i c i e n t 

A can be expressed i n terms of the vector of nodal variables jp£ as: 

A = | " 1 < ^ I , 0 , 0 > T = T 2 ^ ( 1 6 ) 

where i s 2 0 x 1 8 matrix consisting of the f i r s t 1 8 columns of T 

The introduction of the transformation from l o c a l coordinates 

£,n, to global coordinates x,y i n the form: 

Jfe-L = R * ( 1 7 > 

where ip i s the vector of nodal variables i n the global coordinate system 

into Eq. ( 1 6 ) y i e l d s the following r e l a t i o n between jp and A: 

A = T 2 R I ( J = S jfc. ( 1 8 ) 
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The element matrices are then obtained by su b s t i t u t i n g Eq. (14) 

into the governing fu n c t i o n a l Eq. (11) and carrying out the integrations. 

It should be noted, that the terms i n the functional are f i r s t arranged i n 

such a way, that the r e s u l t i n g arrays are symmetric i n t h e i r f i r s t two 

indices. The fun c t i o n a l on the element l e v e l can then be written i n d i s 

c r e t i z e d form as: 

A M T ) = ii- j ^ v j +
 Q i J k ^ ? k + <3 V5 (19) 

where 

K?. = S , S .k (20) 
k3 rk S3 rs 

i s the element l i n e a r d i s s i p a t i v e matrix 

Q?., = S . S .S art . (21) 
^13 k r.k S3 t f ^ r s t 

i s the element nonlinear convective matrix and 

Mf. = S , S .1 (22) 
K3 rk S3 rs 

i s the element consistent mass matrix, and ij; represents a time de r i v a t i v e . 

In the above equations i , j , k take values from 1 to 18, and r , s , t from 

1 to 20, resp e c t i v e l y . The other arrays appearing i n these equations are 

defined as: 

k = m m 0Cm~l7(10-(m A-1);LDX -F(m + m- = 4-t n )+ n ) rs r s r r • 3 v s r V r s r ' r s 

+ n n (n - 1) (n - 1) x F(m + m , n + n - 4Y r s r s r s r s 

+ [m n (m - 1) (n - 1) + m n (m - 1) (n - 1) ] r s r s s r s r 

x F(m +m - 2 , n + n - 2) + [m n (m - 1 ) r s r s r s r 

+ m n ( m - l ) ] x G ( m + m -•2, n + n - 1 ) 
s r s r s r s 

(23) 



11 

q r s t = \ ( n r m t " m r I 1 t ) m s ( m
S " 1 } + ( n

S
m t " m

S
n t ) m r ( m r " 1 } 

x F(m +m + m - 3 , n + n + n ) + ( n m - m n ) n. ( n - 1 ) r s t ' r s t 2 v r t r t s s 

+ ( n ni - m n ) n ( n - l ) x F ( m +m + m - 1, n + n + n - 3 ) s t s t r r v r s t r s t 

- m m (m + m + m - 2 ) x G ( m +m + m - 3 , n + n + n ) 2 r s r s t r s t r s t 

- i n n (m + m ) x G(m + m + m - l , n + n + n - 2 ) (24) 2 r s r s r s t r s t 

£ = m m x F ( m +m - 2 , n + n ) + n n x F ( m + m , n + n rs r s r s r s r s r s r s 

- 2) (25) 

where F and G represent the exact i n t e g r a l formulas obtained by carrying 

out the integrations of the general term £ m n n over the area of the t r i a n g l e 

and along the n = 0 edge, respectively. 

w \ m + ± r / / i , \m+ln min! M n 

F(m,n) = c [(a) - (-b) J ( m + n + 2)! ^ ' 

G(m,n) = ̂  [ ( a ) m + 1 - (-b) 1^ 1] i f n = 0 

(27) 

G(m,n) = 0 i f n + 0. 

3.2 Global Functional 

The global governing f u n c t i o n a l f o r the enti r e problem i n 

d i s c r e t i z e d form i s obtained by following the usual f i n i t e element assem

blage process. That i s , the element matrices are appropriately summed 

into the glo b a l matrices, taking into account the symmetry and handedness 

properties. The homogeneous boundary conditions are introduced during 

the process as w e l l , by simply s t r i k i n g out rows and columns of the global 
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arrays corresponding to the variables on the boundary with s p e c i f i e d zero 

value. The problem obtained i n that manner, that i s , the problem of the 

order equal to the number of the nonzero nodal variables w i l l be referred 

to as the 'net' problem. It should be noted, that so f a r , the nonhomogeneous 

boundary conditions have not been taken into account. 

The aforementioned f u n c t i o n a l can be written as: 

K M H = h V A + W W k + V 3*k 

i>j»k 1, . . . , r 
(28) 

where r i s the''net' problem s i z e , and iji and represent the g l o b a l 

vectors of nonzero nodal v a r i a b l e s . The global d i s s i p a t i v e matrix 

and the g l o b a l consistent mass matrix M̂... are each stored columnwise i n 

an one-dimensional array of s i z e l b . x r. The nonlinear convective matrix 

Q „ k i s also stored i n f u l l , because i t was found to be numerically more 

e f f i c i e n t , than to r e c a l c u l a t e i t element by element. The matrix cannot 

be accommodated i n the core, because of i t s s i z e , so i t i s stored s l i c e 

by s l i c e columnwise i n the order of the index k on the high speed disk. 

Each one-dimensional s l i c e i s of s i z e lb x (2 lb - 1), or lb x r, depending 

on whether the 'net' s i z e of the problem i s bigger or smaller than the 

bandwidth 2 l b - 1. The half-bandwidth of the problem i s defined as l b . 

The procedure of seeking the extremum of the g l o b a l f u n c t i o n a l 

Eq. (28) with respect to while keeping f i x e d , y i e l d s : 

u1 = (i V J + v * ; ^ 0 + v? ̂  • ° (29) 

where the i n d i c e s , appearing as subscripts, i , j , and k take on, 

successively, values from 1 to r , as before. 

The r e s t r i c t e d v a r i a t i o n a l p r i n c i p l e now permits to replace 
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jf)° by and as Sip^ i s a r b i t r a r y , the set of f i r s t order nonlinear d i f f e r e n 

t i a l equations i n di s c r e t e form f or the r gl o b a l variables ip i s obtained: 

K . ip . + Q. .. ip . ip . + M . ip . = 0 (30) 

where the indices take on successively the same values, as i n the previous 

two equations. 

The f u n c t i o n a l Eq. (28), or a l t e r n a t i v e l y the system of d i f f e r e n 

t i a l equations Eq. (30),, w i l l serve as the basis f o r employing mbdauVvapproach. -
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CHAPTER 4 

Modal Approach 

The idea to employ modal approach originates i n the f i e l d of 

s t r u c t u r a l dynamics where t h i s approach has been applied s u c c e s s f u l l y 

f o r years to l i n e a r and mildly nonlinear problems and recently extended to 

cover strongly nonlinear problems. 

In the category of l i n e a r s t r u c t u r a l dynamics problems the 

advantages of modal approach are quite obvious. Not only do the equations 

of motion uncouple, under the assumption that damping matrix can be repre

sented as a l i n e a r combination of s t i f f n e s s and mass matrices, but also, 

due to the f a c t that most of the frequency content of the loading i s con

tained i n the lowest modes f o r many types of p r a c t i c a l loadings, only a 

f r a c t i o n of the t o t a l number of uncoupled equations i n generalized coordinates 

need be considered i n order to obtain a reasonable approximation to the 

actual response of the system [9]. 

We define Emidifclhy: nonlinear systems as those systems for which 

nonlinear deformation mechanisms do not cause major changes i n the d e f l e c t i o n 

patterns. For these systems the equations of motion are no longer uncoupled 

due to off-diagonal terms appearing i n the generalized s t i f f n e s s matrix. 

The response may s t i l l be evaluated, though, by d i r e c t i n t e g r a t i o n of a 

l i m i t e d set of equations of motion i n generalized coordinates. 

In the category of strongly nonlinear problems modal analysis has 

been t r i e d , to my knowledge, only by N i c k e l [10]. He casts the dynamic 

equations i n the incremental form. Af t e r f i n d i n g the i n i t i a l modes and 

frequencies he proceeds to compute the subsequent modal spectrum for non

l i n e a r states, employing an extremely fast and e f f i c i e n t eigenproblem solver 

that involves matrix m u l t i p l i c a t i o n s only and uses the most recently computed 
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spectrum as i n i t i a l estimate. So he obtains the equations of motion i n 

the uncoupled form even when strong n o n l i n e a r i t i e s are present. The 

advantage of h i s procedure gets more pronounced as the bandwidth of the 

problem i n the o r i g i n a l f i n i t e element coordinates increases. I t should 

be noted though, that again the assumption i s made, that the lowest natural 

frequencies and associated modes dominate the incremental motion. This 

assumption, which i s e s s e n t i a l l y equivalent to the previous statement, that 

the frequency content of the loading i s contained the lowest modes, i s 

empirically v e r i f i e d f o r great many s t r u c t u r a l dynamics problems, notably 

those of earthquake e x c i t a t i o n . 

Had the same been true for the problems of f l u i d dynamics, we 

would have t r i e d to perform the modal decomposition for nonlinear states 

as w e l l , employing only the lowest modes. Unfortunately, p r i o r to t h i s 

work nothing was known about the a p p l i c a t i o n of modal analysis to f l u i d s . 

So the f i r s t fundamental question that we have attempted to answer was 

how many modes were to be included i n order to obtain a reasonable s o l u t i o n . 

That i s why we i n t e n t i o n a l l y r e s t r i c t e d the class of the problems that we 

have been t r y i n g to solve to mildly nonlinear problems, that i s , to the 

range of low to moderate Reynolds numbers. Thus we needed to perform the 

l i n e a r eigenvalue analysis only, but f o r a l l the modes. The eigenvalue 

analysis f o r the subsequent nonlinear states, based upon the tangent matrix 

obtained as a l i n e a r combination of the l i n e a r viscous matrix and the non

l i n e a r convective matrix, evaluated with stream function values at a 

previous time step, for a l l the modes, would have been p r o h i b i t i v e l y ex

pensive, of course. The second fundamental question that we have t r i e d to 

answer was, what was the maximum Reynolds number governing the nonlinear 

behaviour, for which the l i n e a r modes could s t i l l p redict the accurate 

enough s o l u t i o n . 



16 

In t h i s chapter two procedures f o r employing modal a n a l y s i s , 

transformation by condensation and transformation i n conjunction with 

Lagrange m u l t i p l i e r s technique w i l l be presented. Both procedures s h a l l i n 

turn be applied, the f i r s t one to Eq. (30), the second one to the f u n c t i o n a l 

Eq. (28). I t w i l l be assumed, as already stated previously, that the homo

geneous boundary conditions have been taken account of, but not the non-

homogeneous ones. As a matter of f a c t , as must be obvious from Eq. (30), 

which i s homogeneous, the only 'loading' comes p r e c i s e l y from these non-

homogeneous boundary conditions, that i s , from the prescribed nonzero 

variables on the boundary. 

4.1 Transformation by Condensation 

In the following d e r i v a t i o n the indices appearing as subscripts 

i , j , and k take on successively values from 1 to s, where s i s the t o t a l 

number of unconstrained variables equal to the s i z e of the problem, which 

w i l l be referred to as the 'net net' problem, the indices m and n values 

from 1 to p, where p Is the number 6f constrained variables, on the kinematic 

and mixed boundaries, and the indices a,3, and y values from 1 to w, where 

w i s the number of the eigenvectors used. Throughout the de r i v a t i o n i t w i l l 

be assumed that the number of the eigenvectors used w i s equal to the s i z e 

of the 'net net' problem, so that the equations of motions i n the generalized 

coordinates are the exact equivalent of the same equations i n f i n i t e element 

coordinates. Later i n actual applications we s h a l l obviously attempt to 

reduce the number of eigenvectors used. 

The equations of motion w i l l be written for the unconstrained 

variables only as follows: 



17 

V j + fe V j + Q u k * l * J + V m + fe U 

njk n r j i m k r r m nmk n m 
(31) 

As there are p prescribed variables il> and ip the m u l t i p l i c a t i o n s 
m n 

involving these variables may be performed. Taking advantage^of the symmetry 

of the array Q i n the f i r s t two subscripts i and j , we can write: 

Q ..ip + Q. = Q ty. + Q V . = C..iJ).. (32) nik n j i m k I m njk n j njk n T j j k T j 

By transposing a l l the known terms to the r i g h t hand side, the 

following set of equations i s obtained: 

11 .iji. + K , + C., M -H- .;̂ Q. ip.\p. = F (33) V T J Re k j r j j k r j ^ i j k y x r j k 

where F̂  can be viewed as the 'loading' term defined by: 

F. = -M. i|» - | - K. ij) - Q , t|> i|> . (34) k l m m Re km m nmkTnTm 

We now propose to transform Eq. (33) using the following 

transformation on the f i n i t e element stream function vector: 

* J ( t ) - V y a C t ) ( 3 5 ) 

where E. i s a square matrix and y (t) i s a time dependent vector of 
3a a 

the order s. 

The matrix E i s established by solving f o r : 

V J + V J = ° * ( 3 6 ) 

The s o l u t i o n can be postulated to be of the form: 
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* =+ e'^ (37) 

where t i s the time var iab le and X i s a constant defined to represent 

the time decay of the vector <j>. 

By subs t i tu t ing Eq. (37) in to Eq. (36) the generalized eigen

value problem i s obtained, from which the eigenvectors cj) and the associated 

eigenvalues X are to be determined: 

^ ^ - v v 0 - (38) 

I t i s evident now that E i s to be defined as a matrix whose 

columns are jus t the eigenvectors <j>: 

E = < i 1 , * 2 , i 3 . • • • ,£s*.- (39) 

By introducing Eq. (35) into Eq. (33), we obtain: 

1 
M. .E . y +~— K . . E . y + C . . E . y + Q E E. y y = F . 

kj j a a Re kj j a a j k j a a xjk i f j a a p k 
(40) 

By mul t ip ly ing the above equation by E the equations of motion 
kj 

i n the eigenvector basis are obtained i n the form: 

M . . E . E. y + I - K . . E . E, y + C.. E. 'E, y 
KJ j a ky a Re KJ j a ky a j k j a ky a 

+ Q. .. E E . E y y . = F. E. . 
^xj k xB j a ky a 3 k ky 

(41) 

The above equation can be s impl i f i ed taking into account the 

orthonormal properties of the eigenvectors with respect to the mass matrix 

M^j . These properties can be expressed as fo l lows: 



19 

M, .E, E. 
kj ky jet 

M, .E, E. 
KJ ky j a 

K. .E, E. 
KJ ky jet 

K, .E. E. 
kj ky j a 

The equation of motion for the o-th generalized coordinate 

y can then be w r i t t e n as: o 

y + k~ x y + C.. E..E. y + Q. E..E. E. y y = F. E. (43) ^o Re o-'o j k j X j y a i j k ig j a ko^cr 3 k ko 

or i n the matrix form f o r the whole system: 

where J. i s the i d e n t i t y matrix, y i s the vector of f i r s t order time 

derivatives of generalized coordinates, X i s the diagonal matrix of 
T 

eigenvalues, y i s the vector of generalized coordinates, C = E CE i s the 
T 

square matrix, Q = E QEE i s the condensed nonlinear convective matrix, 
T 

and F = E F i s the load vector. 

I t should be noted that the procedure l a i d out above i s completely 

analogous to the treatment of an a r b i t r a r y support e x c i t a t i o n i n s t r u c t u r a l 

dynamics. This transformation by condensation procedure seems quite appeal

ing. I t uses the c l a s s i c a l eigenvectors which s a t i s f y the homogeneous 

boundary conditions only. Unfortunately we have to deal with the nonlinear 

convective matrix, as w e l l . Although i t i s numerically quite easy to code 

an integer vector to keep track of the prescribed values of the stream func

t i o n on the boundary, even the process of forming the nonlinear matrix i n 

the f i n i t e element coordinates i s an extremely complicated one, and breaking 

i f y = ct 

= 0 i f Y ^ ct 

(42) 

cr i f Y = ctY 

= 0 i f Y ^ ct. 
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t h i s matrix into four d i f f e r e n t arrays, as indicated i n Eq. (31), to carry 

out the m u l t i p l i c a t i o n s of Eqs. (32) and (34), seemed quite hopeless. I t 

i s because of these numerical d i f f i c u l t i e s that the procedure had to be 

abandoned and we concentrated instead on the transformation i n conjunction 

with Lagrange m u l t i p l i e r s technique. 

4.2 Transformation i n Conjunction with Lagrange M u l t i p l i e r s Technique 

In t h i s d e r i v a t i o n the indices i , j , and k take on successively 

values from 1 to r , where r i s the s i z e of the 'net' problem, the index 

m values from 1 to p, where p i s the number of constrained v a r i a b l e s on the 

kinematic and mixed boundaries, and the indices a,$, and y values from 1 

to w, where w i s the number of eigenvectors used to approximate the so l u t i o n . 

Throughout the de r i v a t i o n w w i l l be taken equal to the s i z e of the 'net' 

problem r i n order to obtain the exact equivalent of the formulation of 

the problem i n the f i n i t e element coordinates. 

The p l i n e a r constraints imposed upon the stream function 

can be expressed i n Che form: 

Gmk*k " Tm " ° C 4 5 ) 

where G ^ i s the rectangular matrix of constraints of s i z e p x r with a l l 

the entries equal to zero except f o r the diagonal entries corresponding 

to the prescribed values of the stream function on the boundary, ip, i s the 

vector of stream function variables of s i z e r, and T i s the vector of 
m 

these prescribed values of the stream function on the boundary of s i z e p. 

Then Eq. (45), m u l t i p l i e d by the vector of Lagrange m u l t i p l i e r s 

h of s i z e p, i s added to the global f u n c t i o n a l Eq. (28) and the augmented 

fu n c t i o n a l obtained i n the form: 
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+ G , h - T h = 0. 
mk k m mm 

(46) 

The v a r i a t i o n of the augmented f u n c t i o n a l defined by the above 

equation, f i r s t with respect to ip while keeping ip0 and h f i x e d and then 

with respect to h while keeping i|> and f i x e d , y i e l d s : 

3ijj£ V ) r j Re k j r j H i j k r i r j mk m 
(47) 

81 , h = G Ji " T = 0 9h mi ] m m J J 

where i n the f i r s t subset of the above set of equations has been 

replaced by as permitted by the r e s t r i c t e d v a r i a t i o n a l p r i n c i p l e , and 

i n the second subset the dummy subscript k has been replaced by j . 

By employing the coordinate transformation indicated i n Eq. (35), 

with the matrix E established v i a Eqs. (36) to (39), and by introducing 

t h i s transformation into Eq. (47) we obtain: 

M E. y +^-K..E. y + Q . E..E. y y . + G.h = 0 Tcj j a a Re kj j a a i j k l g j a a B mk m 
(48) 

G .E. y - T = 0. 
mj j a a m 

By m u l t i p l y i n g the f i r s t subset of the above set of equations 

by E^ and by taking advantage of the orthonormality properties of the 

eigenvectors with respect to the mass matrix M̂ _. as expressed i n Eq. (42) 

the following system of equations i s obtained: 

y + ^ ~ ^ y + Q. ., E.„E. E, y y„ + G . E. h = 0 
Y Re Y Y i j k l g j a ky a B mk ky m 

(49) 
G E. y - T = 0 
mj j a y a m̂ 
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or i n the matrix form: 

Iy + Xy + Qyy + | T h = 0 

(50) 
Ey - T = 0 

where I i s the i d e n t i t y matrix, A i s the diagonal matrix of eigenvalues, 
T 

Q = E QEE i s the transformed nonlinear convective matrix, E i s the matrix 
-T 

of eigenvectors, and E EG i s the matrix consisting of the entries i n 

eigenvectors at the constrained degrees of freedom. The matrices I and X 

are each of s i z e w x w, the matrix Q i s of s i z e w x w x w, and the matrix 

E i s of s i z e p x w. 

4.3 F i n a l Remarks 

It should be emphasized again, that while i n the f i r s t method, 

the transformation by condensation, the general eigenvalue analysis i s run 

a f t e r the nonhomogeneous boundary conditions have been taken account of, 

i n the second method employing Lagrange m u l t i p l i e r s technique the generalized 

eigenvalue analysis i s run p r i o r to taking account of the given values of 

stream function on the boundary. Also, the f i r s t method contracts the s i z e 

of the system of equations to be solved to s = r - p, while the second 

method expandsthe s i z e to q = r +.p, where r i s the 'net' problem s i z e , 

and p i s the number of constraints. This does not e f f e c t our choice of 

the second method to a great extent, however, because i n the f l u i d 

problems the number of constraints i s r e l a t i v e l y small compared to the 

s i z e r and i t can be further reduced by our numerical procedure through the 

use of 'master slave' option. 

If the number of eigenvectors i s equal to the number of f i n i t e 
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element degrees of freedom, mathematically the same space i s spanned by 

the eigenvectors as by the nodal point f i n i t e element stream function 

variables and consequently the same s o l u t i o n must be obtained by both 

analyses. But, employing a l l the eigenvectors of the l i n e a r eigenvalue 

problem, would a c t u a l l y be a step backward, because although the global 

consistent mass matrix and the l i n e a r global d i s s i p a t i v e matrix become 

uncoupled, the equations i n generalized coordinates are s t i l l coupled 

through the g l o b a l nonlinear convective matrix, which becomes f u l l , whereas 

i t was banded i n f i n i t e element coordinates. So, the modal approach can 

only be more e f f i c i e n t , i f a reasonable approximation of the s o l u t i o n of 

f i n i t e element equations of motion Eq. (30) can be obtained by using a 

s i g n i f i c a n t l y reduced number of eigenvectors. We note, that so far we 

have only been concerned with the exact and approximate solutions of 

these discretetequations. Whether a good approximation to the s o l u t i o n 

of the a c t u a l continuum problem w i l l be obtained, depends on the f i n i t e 

elements employed, the f i n i t e element meshes, and the boundary conditions. 
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CHAPTER 5 

Solution of Nonlinear Equations i n Time Dependent and Steady State Analyses 

I t i s appropriate to note here, that i n the c l a s s i c a l computational 

f l u i d dynamics, based on f i n i t e d i f f e r e n c e s , the studiesoof even steady state 

problems are mostly based on the time dependent equations, because, f i r s t l y , 

t h i s time dependent approach does not postulate the existence of a steady 

state s o l u t i o n , secondly, the procedure i s more f l e x i b l e i n the sense, that 

the transient s o l u t i o n can be achieved, i f so desired, and t h i r d l y and most 

important, the unsteady equations i n f i n i t e differences are easier to handle 

and more stable than t h e i r steady counterparts. The steady state s o l u t i o n 

i s obtained, i f i t e x i s t s , as the asymptotic l i m i t of the time i n t e g r a t i o n . 

In the f i n i t e element d i s c r e t i z a t i o n of f l u i d dynamics problems, 

the contrary seems to be true, that i s , i t i s computationally more e f f i c i e n t 

to seek the steady state s o l u t i o n only, i f the transient solutions are of 

no i n t e r e s t . As we are also confident, that the steady state solutions for 

the problems, that we intend-to solve, do e x i s t , and indeed, excellent 

r e s u l t s have been obtained employing the same boundary conditions, the 

same 18 d.o.f. t r i a n g u l a r f i n i t e elements, and the same f i n i t e element 

meshes by Olson [3], and Tuann and Olson [5,6], we s h a l l implement the 

time dependent, but also the steady state approach. The time dependent 

approach w i l l be used only f o r the numerical study of the flow around a 

c i r c u l a r c y l i n d e r , where the transient solutions are desired, as o s c i l 

l a t o r y behaviour i s to be expected at the c r i t i c a l value of the Reynolds 

numb er. 

As we propose to solve the governing set of nonlinear equations 

i n generalized coordinates Eq. (50) simultaneously, rather than to attempt 
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a p a r t i t i o n e d s o l u t i o n , we s h a l l f i r s t cast Eq. (50) i n the form of one 

nonlinear time dependent matrix equation as follows: 

~ t -2 y 

0 0 h 
_ _ 

+ 
Re= 
E 

E T 

0 

y Q y y 
+ 

h -T 
— 

= 0. (51) 

Then the time dependent approach s h a l l be applied d i r e c t l y to 

the above equation, while the steady state approach s h a l l be applied to 

the steady equivalent of the same equation obtained by simply s e t t i n g the 

time dependent term equal to zero. 

5.1 Time Dependent Approach 

We s h a l l assume l i n e a r time dependence of the vector of generalized 

coordinates y over the time i n t e r v a l t , which can be written as: 

T-t v (T) = v + — - (y + A t — y ) I K l J i t At Vit+At ltJ 
(52) 

D i f f e r e n t i a t i n g the above equation with respect to x, we obtain: 

v (T) = — (y + A t — y ) i ^ ; At ^t+At y-tJ 
(53) 

or evaluating at time T = t + At 

y (t + At) = — ( Z t + f o A t ~ y t ) (54) 

We note, that the above equation represents a backward f i n i t e d i f f e r e n c e 

scheme, which i s unconditionally stable for l i n e a r problems. This very 

useful feature cannot be ascertained f or nonlinear problems, however, 

and consequently the c r i t i c a l time step for those problems must be 

determined by numerical experiments. 
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I f we introduce Eq. (54) into Eq. (51), evaluate at time t+At, 

and add the appropriate terms, we obtain the fol lowing set of now algebraic 

nonlinear equations: 

1 1 -T TT I + ^ E At= Re= = ^t+At i^t+At^t+At It f-Y At- t 

T 
-t+At 

(55) 

Three time integrat ion algorithms s h a l l i n turn be applied to 

the above equation. These algorithms d i f f e r only i n how the nonlinear 

term i s treated. A l l b'fsthem are quite crude, but r e l a t i v e l y cheap, and 

we consider them suf f i c i en t for th i s work. 

In the f i r s t algorithm we simply evaluate the nonlinear term for 

the previous time step and move i t to the r ight hand side to obtain: 

1 1 -T f-rl- + —-X E At= Re= = ^t+At 

^t+At 

At^t i^t^t 

T 
-t+At 

(56) 

The system matrix of the above set of l i nea r equations i s square, r e a l , 

symmetric, and nonsingular, but i t has an associated quadratic form which 

i s i n d e f i n i t e , so that Cholesky decomposition cannot be used. As th is 

matrix remains constant i t needs be inverted only once and for the con

secutive steps only the backsubsti tut ion has to be performed. 

In the second procedure the nonlinear term i s evaluated as 

9. Y tY t +^ t» so that the fol lowing system of l inea r equations for the 

generalized coordinates y and h i s obtained: 
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E 

2 t+At 

T 
-t+At 

(57) 

I t should be noted, that the nonlinear term i s treated i n the above algorithm 

i n the same way as an Picard i t e r a t i o n or the method of successive s u b s t i 

t u t i o n . Here the i t e r a t i o n s s h a l l not be performed, because the cost would 

be quite high, and consequently the dynamic equilibrium i s again not exactly 

s a t i s f i e d . The algorithm can be very e a s i l y modified, though, to incorpor

ate the i t e r a t i v e procedure. The system matrix, which has now become un-

symmetric, has to be updated at each time step, but that allows the use of 

much larger time step than i n the f i r s t algorithm. As a matter of f a c t , 

our experience has been that t h i s second algorithm i s numerically more 

e f f i c i e n t . 

[11], the nonlinear term i s treated by transposing i t to the ri g h t hand 

side as a d d i t i o n a l 'pseudoload' vector, s i m i l a r l y as i n the f i r s t algorithm. 

But then the whole r i g h t hand side including the nonlinear term i s expanded 

into a f i r s t order Taylor ser i e s about the previous time step. Denoting 

the r i g h t hand side vector as F, defined as: 

In the t h i r d algorithm, following a proposal by S t r i c k l i n et. a l . 

(58) 

we can wri t e : 

= F + At 9t - f (59) 
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By using a f i r s t order backward diffe r e n c e expression to approximate the 

time d e r i v a t i v e i n the above equation, i t becomes: 

F = T2F - F -t+1 - t £ t - l (60) 

We note, that the use of Eq. (59) corresponds to a l i n e a r extrapolation 

of the 'loads' at the two previous time steps. By introducing Eq. (60) 

into Eq. (55), i t can be written as: 

1 1 -T 
At= Re= = -t+At 

^t+At 
= F 

-t+At 
(61) 

The above procedure cannot be started d i r e c t l y , so we s t a r t i t by solving 

for the f i r s t two time steps with the f i r s t algorithm. 

In a l l three algorithms a test i s included on whether the steady 

state has been achieved. 

In the f i r s t algorithm a l l the entries i n the two consecutive 

s o l u t i o n vectors are successively scanned, and i f none of the absolute 

differences i n the two entries corresponding to the same coordinate exceeds 

a preassigned value, we assume that the steady state has been achieved. 

In the second algorithm the steady state has been obtained i f 

the test on the two consecutive determinants of the system matrix of Eq. (57) 

| D t + A t - D ' l < e (62) 

i s satisfied,where e i s a preassigned small value. 

In the t h i r d procedure the entries i n the two consecutive 'load' 

vectors are compared and the maximum absolute difference i n the two entries 
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corresponding to the same coordinate i s found. Then i f t h i s maximum 

difference i s smaller than a prescribed small value, we assume that the 

steady state s o l u t i o n has been achieved. 

5.2 Steady State Approach 

We propose to solve the steady equivalent of Eq. (51) by 

Newton-Raphson method, which seeks to exactly s a t i s f y the equations of 

equilibrium by i t e r a t i n g u n t i l a s p e c i f i e d l e v e l of accuracy i s attained. 

We denote an approximate vector of generalized coordinates as y and an 

approximate vector of Lagrange m u l t i p l i e r s by h. Then the vector of 

residuals F(y,h) may be written as: 

F(y,h) = 

1 -T 
Re= = y 

h 
+ 

gZZJ 

-T 
(63) 

A Taylor ser i e s expansion of the vector of residuals around 

the p o s i t i o n (y,h) y i e l d s the following expression for the vector of 

residuals at an adjacent state (y + Ay, h + Ah) 

3 F 3 F ? 2 F(y + Ay, h + Ah) = F(y,h) + |-Ay + -^Ah *[0[£AyVAK) . ]. (64) 
d-

In the above equation the vector notation i s used for s i m p l i c i t y . P a r t i a l 

d e r i vatives may be written more rigorously as: 

3F 3F 
V~Ay = — A y . and -rr-Ah 8y J- y^ Jj 9h -

F. 
T - ^ A h h, k k 

(65) 

where the index i takes on successively values from 1 to w+p, the index 

j values from 1 to w, and the index k values from 1 to p, where w i s the 

number of eigenvectors used, and p i s the number of constraints i n the 

problem. 
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The conventional Newton-Raphson procedure retains only the terms 

up to the f i r s t order p a r t i a l d e r i v a t i v e s i n the Taylor expansion Eq. (64). 

We assume, i n addition, that the vector of residuals corresponding to the 

state (y + Ay, h + Ah) i s zero. These assumptions allow to rewrite Eq. (64) 

as: 

9F dF 
(66) 

The p a r t i a l derivatives appearing i n the above equation may be 

obtained by d i f f e r e n t i a t i n g the steady equivalent of Eq. (51), as follows: 

9F 9F 
• § 7 A y + 9 h ^ " 

Ay 

Ah 
(67) 

By introducing Eqs. (63) and (67) into Eq. (66) we obtain the 

following system of l i n e a r equations: 

1 
R e * + 2 2 Z = Ay 

n+1 

"1 

1 , ^T 
—X E Re= 

1 0 
_ • J 

Mn 

Qyy 

-T 
T - E y , 

(68) 

where n i s the i t e r a t i o n number. 

The above equation i s solved to determine the (n+1) increments 

i n generalized coordinates and Lagrange m u l t i p l i e r s . These increments 

are then used to determine an improved vector of generalized coordinates 



y n+^, and an improved vector of Lagrange m u l t i p l i e r s l} n +^> where: 

Zn+l = Y-n + A y-n+l 

h , T = h + Ah 1 . -n+1 -n -n+1 

Equations (68) and (69) comprise the set of recurrence r e l a t i o n s 

needed i n the Newton-Raphson procedure. 

Beginning with an i n i t i a l estimate of the vectors y and h, the 

equations (68) and (69) are successively applied to y i e l d better and better 

approximation. The i n i t i a l vector of generalized coordinates i s obtained 

by transforming to the eigenvector basis the i n i t i a l guess on the stream 

function vector, which consists of a l l zero entries except f o r the con

strained ones, when the problem i s started up with Re = 1. 

The Jacobian of the system, that i s , the determinant of the 

system matrix, i s used as a test on the convergence of the procedure. 

At each i t e r a t i o n the Jacobian i s recorded and compared with the Jacobian 

of the previous i t e r a t i o n . The process i s stopped when the test 

| j n + 1 - J n | 
a _ L < e (70) 

i s s a t i s f i e d , where e i s the preassigned accuracy c r i t e r i o n . 

5.3 F i n a l Remarks 

In both transient and steady state analyses, a f t e r the generalized 

coordinates have been computed, the corresponding nodal stream function 

variables are obtained v i a Eq. (35). Then the stream function subvector, 

con s i s t i n g of the stream function and i t s f i r s t and second d e r i v a t i v e s , 

can be r e a d i l y obtained at any point i n the domain. It i s done, element 
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(69) 
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by element, by computing the polynomial c o e f f i c i e n t s for the element under 

consideration using Eq. (18), then c a l c u l a t i n g the stream function subvector 

i n the l o c a l coordinate system v i a Eq. (14), and f i n a l l y transforming t h i s 

subvector back to the global f i n i t e element coordinates. The interpolated 

values of the stream function are needed, i n p a r t i c u l a r , to p l o t the 

streamlines. A rectangular g r i d i s used for contour p l o t t i n g . 
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C H A P T E R 6 

P r e s s u r e F i e l d 

I n o u r a p p r o a c h , b a s e d o n t h e s t r e a m f u n c t i o n o n l y , t h e 

d i m e n s i o n l e s s p r e s s u r e f i e l d c a n b e c a l c u l a t e d w h e n a l l t h e n o d a l 

v a r i a b l e s i n t h e g l o b a l f i n i t e e l e m e n t c o o r d i n a t e s h a v e b e e n f o u n d . 

T h e p r e s s u r e i s g o v e r n e d b y t h e P o i s s o n e q u a t i o n o b t a i n e d b y 

t a k i n g t h e d i v e r g e n c e o f t h e m o m e n t u m e q u a t i o n s . B y e m p l o y i n g t h e c o n 

t i n u i t y e q u a t i o n E q . (2) t h e s i m p l i f i e d e x p r e s s i o n f o r p r e s s u r e i s 

o b t a i n e d i n t h e f o r m : 

V 2 p = - 2 ( u v - u v ) = 2 0 ip - ) 2 = f . (71) 
r y x x y x x y y x y 

T h e e q u i v a l e n t v a r i a t i o n a l p r i n c i p l e f o r t h e a b o v e e q u a t i o n 

c a n b e s t a t e d a s : 

n = / / ( - j ( V p ) 2 + f p ) d f i - j> |2- pdr (72) 

a r 

w h e r e i s c a l c u l a t e d f r o m t h e m o m e n t u m e q u a t i o n E q . (1) w r i t t e n f o r 
dn 

t h e n d i r e c t i o n : 

| £ = - ^ - 0 + $ ) + V> - i») 1J1 ). (73) 9n R e s n n s s s n s s s s n 

T h e f u n c t i o n a l o n t h e e l e m e n t l e v e l i n t h e l o c a l c o o r d i n a t e s , 

( F i g . 1), i s d e f i n e d b y t h e f o l l o w i n g e x p E g s s i p n : 

n 6 = / / (y(P? + P 2 ) + fp)d5dn + | E - p | d £ . (74) 
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We adopt the same f i n i t e element mesh f o r pressure as we have 

used f o r stream function, hence the source function f can be expressed, 

v i a Eq. (14), as: 

2 0 2 0 
f = 2 E E a a m ( m - l ) n (n - 1) - m m n n ] r s r r s s r s r s r s 

(75) 

Cm +m - 2 n +n - 2 _ r s r s 

The pressure gradient along the boundary edge 1-2 i s given by: 

\[ 0 • t- h <•{«+ w + <v« - hh^- (76) 

I t should be noted, that as the fu n c t i o n a l Eq. (73) contains 

derivatives of p up to the f i r s t order, i t would have been s u f f i c i e n t to 

use any element of c l a s s . Here i n order to conform with the so l u t i o n 

the same.truncated q u i n t i c polynomial i s used f o r i n t e r p o l a t i o n of pressure 

within the element, that i s : 

2 0 m. n. 
p = Z h.K \ \ (77) 

i = l 1 

By repeating the steps equivalent to those, indicated i n Eqs. 

(15), (16), (17), and (18), s u b s t i t u t i n g then Eqs. (75), (76), and (77) 

into the fun c t i o n a l Eq. (74), carrying out the integrations and trans

forming to global f i n i t e element coordinates, the d i s c r e t i z e d f u n c t i o n a l 

on the element l e v e l i s obtained i n the form: 

n e = i g TKP + (G + F)P (78) 
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where K i s the element matrix, G i s the load vector of 'body' load terms, 

and F i s the load vector of 'surface' load terms. 

By forming the global problem i n the usual manner the following 

system of equations i s obtained: 

KP + F = 0 (79) 

where K i s symmetric and p o s i t i v e d e f i n i t e matrix, and P i s the s o l u t i o n 

vector. 

We note, that the f u n c t i o n a l Eq. (72) y i e l d s the Poisson equation 

Eq. (71) as Euler equation, and the boundary conditions of 

ei t h e r I2- = or <5p = 0. (80) an dn 

Since the pressure gradient i s known everywhere, v i a Eq. (73), a l l the 

boundary conditions are of the Neumann type. That makes the so l u t i o n of 

Eq. (79) nonunique, however, because the system matrix K i s singular. 

To avoid t h i s d i f f i c u l t y we have to impose a D i r i c h l e t boundary condition 

at an a r b i t r a r y node. 

For more d e t a i l s , concerning the c a l c u l a t i o n of pressure f i e l d 

i t i s re f e r r e d to Tuann and Olson [5,6]. 
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CHAPTER 7 

Numerical Implementation 

A l l our programs are written i n Fortran i n double p r e c i s i o n arithmetic. 

We employ the dynamic storage option, so that we can control the s i z e of a l l 

the arrays at execution time, rather than at compilation time. Thus we are 

able to run problems of various sizes without wasting any of the v i r t u a l 

memory and we can accomodate i n core a much bigger transformed nonlinear 

matrix Q. 

As we have already mentioned previously we need to compute a l l the 

modes of the general l i n e a r eigenvalue problem Eq. (38) i n an e f f i c i e n t 

manner. For t h i s purpose we use the very f a s t d i r e c t eigenvalue solver 

contained i n the program DRSGAL. The eigenvalue problem i s solved as follows. 

F i r s t l y , as the global consistent mass matrix i s p o s i t i v e d e f i n i t e , i t s 

inverse can be found by LU decomposition. The global l i n e a r d i s s i p a t i v e 

matrix K i s premultiplied by t h i s inverse to transform the general eigenvalue 

problem to the simpler form 

K lp = A lp (81) 

The symmetric matrix K, of the order N, i s reduced to a symmetric t r i d i a g o n a l 

matrix, a f t e r N-2 orthogonal s i m i l a r i t y transformations, using the Householder 

method. The eigenvalues and the eigenvectors of the t r i d i a g o n a l matrix are 

found by QL transformations, and transformed back to the eigenvectors of K. 
-5 3 

The CPU time, i n seconds, for the eigenvalue a n a l y s i s , i s about 1.-8 x 10 x N , 

where N i s the s i z e of 'net' problem. 

Then we solve the l i n e a r steady equivalent of Eq. (51) i n order to determine 

which modes give a reasonable representation of the solu t i o n of the l i n e a r 
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problem with the convective terms taken equal to zero. This i s conveniently 

done by a d i r e c t solver which i s based on Gaussian elimination. The CPU 
—6 3 

time f o r t h i s procedure, i n seconds, i s approximately 5.2 x 10 (NT) , where 

NT i s equal to the number of the eigenvectors used plus the number of constraints 

of the problem. We note, that i t i s p a r t i c u l a r l y important to perform t h i s 

procedure i n the square cavity flow problem, where, as i t turns out, some 

higher modes must be included i n order to approximate even the so l u t i o n of 

the l i n e a r problem. The flow around a c i r c u l a r c y l i n d e r , on the other hand, 

due to the l e s s stringent boundary conditions, behaves much l i k e the problems 

encountered i n s t r u c t u r a l dynamics, that i s , the higher modes need not be 

included. 

A f t e r having established which modes we are going to use as the new basis, 

we proceed to set up the complete nonlinear problem i n the f i n i t e element 

coordinates. ThewCPU time f o r s e t t i n g up the matrices i s about 2.6 seconds 

per each new group of elements, where a group consists of elements, which 

have the same dimensions and the same o r i e n t a t i o n i n space. We note, that 

for the square cavity flow and the flow around a c i r c u l a r cylinder problems 

we choose the o r i g i n of the global coordinate system, so that there e x i s t s 

one axis of symmetry. Consequently, the modes are eit h e r symmetric or 

antisymmetric, which r e s u l t s i n some s p e c i a l properties of the transformed 

nonlinear convective matrix Q. = Q.., E.,E. E, . Namely, i f a l l three of 
lmn l j k i i jm kn J 

the modes 1, m, and n are symmetric, or i f any two of them are antisymmetric 

and the t h i r d i s symmetric, the corresponding entry i n the transformed matrix 

Q i s zero, otherwise i t i s nonzero. Consequently, only the m u l t i p l i c a t i o n s 

i n the transformation, which r e s u l t i n the nonzero e n t r i e s , are performed 

increasing the e f f i c i e n c y of the transformation procedure. The CPU time, i n 

seconds, for the transformation, can be estimated by the formula 
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7.0 x 10~ 6 x N x [NE x LB3 x (LB3-1) + NE 2 x LB3 + NE 2 x (NE+1) / 2] , 

where N i s the 'net' s i z e of the problem, NE i s the number of the modes 

used i n the transformation, and LB3 = 2 x LB - 1 i s the bandwidth of the 

problem i n the f i n i t e element coordinates. We note, that the dynamic 

storage option increased the number of modes, that can be used i n the 

anal y s i s , to 62. This l i m i t of maximum 62 modes i s imposed by the capacity 

of the v i r t u a l memory of the IBM 370/168 machine at UBC, that i s , the 

maximum order of the transformed nonlinear matrix Q that can be kept i n 

core i f double p r e c i s i o n arithmetic i s used, even taking account of the 

symmetry i n the f i r s t two in d i c e s , i s 62. Otherwise, a u x i l i a r y storage 

locations have to be employed. 

Haying stored the global consistent mass matrix-* the eigenvalues and 

the corresponding modes, and the transformed nonlinear matrix Q on tape, 

we have a l l the arrays indicated i n Eq. (50) and can run both steady state 

and time dependent analyses. In both cases, due to the Lagrange m u l t i p l i e r s 

technique, the system matrix i s nonpositive d e f i n i t e , although i t i s non-

singular. Accordingly, the Gaussian elimination with p a r t i a l p i v o t i n g , and 

forward and backward s u b s t i t u t i o n i s used to solve the r e s u l t i n g set of 

l i n e a r i z e d algebraic equations. The CPU time f o r one i t e r a t i o n of the 
—6 3 

Newton-Raphson process, i n seconds, i s about 4.0 x 10 x (NT) . For the 

f i r s t time dependent algorithm, with the nonlinear term transposed to the 

ri g h t hand side, and evaluated at the preceding time step, the CPU time per 
—6 3 

time step, i n seconds, i s approximately 2.4 x 10 x (NT) . The CPU time 
for the second time dependent algorithm, where the system matrix i s updated 

—6 3 
at every time step, i n seconds, i s about 3.4 x 10 x (NT) . As before, 

NT denotes the number of eigenvectors plus the number of constraints. 
2 

The scalar v o r t i c i t y C, = V ^ i s obtained by the i n t e r p o l a t i o n program, 
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which i s used f o r p l o t t i n g . A f t e r the stream function subvector has been 

obtained at a l l points of a s p e c i f i e d regular i n t e r p o l a t i o n mesh, the 

v o r t i c i t y at each of those points i s simply equal to the sum of the second 

derivatives of the stream function il; and ib . The mesh i s , i n general, 
xx yy 

nonuniform with v a r i a b l e spacings i n x- and y- d i r e c t i o n s . The whole domain 

can be covered by the mesh, or j u s t some regions of i n t e r e s t . The stream

l i n e s , the pressure f i e l d , and the v o r t i c i t i e s are then plotted using the 

standard contour subroutines. We note, that while the stream function and 

the v e l o c i t i e s are continuous, the v o r t i c i t y i s only piecewise continuous, 

which accounts f o r not so good v o r t i c i t y p l o t s , e s p e c i a l l y for crude f i n i t e 

element g r i d s . The pressure f i e l d representation i s excellent, however, 

because the method f o r c a l c u l a t i n g pressures has a tendency of 'smearing out'. 
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CHAPTER 8 

Example Applications 

The foregoing modal f i n i t e element method has been used to solve several 

example flow problems. Our c r i t e r i o n i n choosing example problems has been 

a v a i l a b i l i t y of known r e s u l t s , so that ready checks would be provided. 

Numerical r e s u l t s f o r f u l l y developed plane P o i s e u i l l e flow, c i r c u l a t o r y 

flow i n a square cavity and the flow around a c i r c u l a r c y l i n d e r problems, 

obtained by modal f i n i t e element method, are presented i n t h i s chapter. The 

re s u l t s f o r P o i s e u i l l e flow problem are compared with the exact closed form 

s o l u t i o n . The steady state r e s u l t s f o r c i r c u l a t o r y flow i n a square cavity 

and the flow around a c i r c u l a r cylinder problems are compared to the r e s u l t s 

obtained by d i r e c t f i n i t e element approach using the same f i n i t e element grid 

and to the r e s u l t s obtained by various f i n i t e d i f f e r e n c e techniques, considered 

exact herein, as no closed form solutions e x i s t for these problems. 

8.1 F u l l y Developed Plane P o i s e u i l l e Flow 

The f i r s t example chosen was that of a f u l l y developed flow between 

p a r a l l e l w alls. The exact sol u t i o n for t h i s problem shows the flow laminar 

and d i s t r i b u t e d p a r a b o l i c a l l y between the walls, with a corresponding l i n e a r 

pressure f i e l d decreasing downstream. The f i n i t e element g r i d used for t h i s 

problem i s shown i n F i g . (3). The following boundary conditions were used, 

a l l of them kinematic i n the sense of the r e s t r i c t e d v a r i a t i o n a l p r i n c i p l e : 
2 3 

(a) on the stream function ; ip = ip(y) = 3y - 2y on the upstream section, 

ip = 1 on the upper w a l l , and ip = 0 on the lower w a l l ; (b) on i t s normal 

d e r i v a t i v e ; i p x = - v = 0 on the upstream and the downstream sections, and 

ip = u = 0 on therupper and the lower w a l l . On the downstream section the 
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natural boundary conditions of zero pressure gradient across the flow P y
 = 0 

were to be approximated. The 'net' s i z e of the problem was 12 with 4 constraints ; 

i p = 1 at nodes 2 and 5, i p = 6 at node 1, and i p = -6 at node 2. We note, 
yy yy 

that because the f i n i t e element used contains a complete cubic for v e l o c i t y 

i n t e r p o l a t i o n , i t was capable of exactly representing the parabolic v e l o c i t y 

p r o f i l e and the downstream natural boundary conditions of constant pressure. 

The 12 mode shapes from the l i n e a r eigenvalue analysis are shown 

i n F i g . (4), along with the corresponding eigenvalues f o r Re = 1. The curves 

represent equal steps i n stream function values. 

These modes were then used to represent the nonlinear equations 

indicated i n Eq. (50). Both steady state and transient analyses were then 

performed using 5,6,7,8,9,10,11, and 12 modes, re s p e c t i v e l y . We note, that 

the lowest number 5 a c t u a l l y gave only one free mode, because of the 4 constraints 

imposed on the problem. The c a l c u l a t i o n s were started with a l l free nodal 

variables equal to zero i n both the analyses. 

The Newton-Raphson steady state procedure converged i n 3 or les s 

i t e r a t i o n s i n a l l cases. 

This simple problem was also used to check the e f f i c i e n c y of the 

three time i n t e g r a t i o n algorithms. In the f i r s t and the t h i r d algorithms 

we used the time step of PAt = 2/X , where X was the eigenvalue associated 
max max 

with the highest mode kept i n the a n a l y s i s . In the second algorithm, due to 

i t s greater numerical s t a b i l i t y , we could use a bigger time step, so we 

a r b i t r a r i l y chose At-= 0.15 seconds. 

The f i r s t algorithm, with the nonlinear term transposed to the 

r i g h t hand side and evaluated at the previous time step, converged to the 

steady state i n maximum 67 increments, when a l l 12 modes were used. We assumed 

that the steady state was achieved, when the maximum absolute diff e r e n c e i n 
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the two e n t r i e s corresponding to the same coordinate did not exceed e = 10 

In the second algorithm the steady state s o l u t i o n was attained i n 

7 increments, with e of Eq. (62) prescribed as 10 ^. 

When the exact s o l u t i o n was used as the i n i t i a l guess the t h i r d 

algorithm was able to reproduce t h i s r e s u l t i n 3 steps. When a l l the free 

nodal variables were zeroed, however, the algorithm did not converge. 

On the basis of these c a l c u l a t i o n s we decided tosemploy only the 

f i r s t two algorithms i n t h i s work, although the t h i r d one might have converged, 

as w e l l , had the i n i t i a l conditions been closer to the true s o l u t i o n . 

The r e s u l t i n g streamlines and the predicted maximum v e l o c i t i e s i n 

the d i r e c t i o n of the flow at the midnode 3 f o r 5,6,7,9, and 12 modes, 

res p e c t i v e l y , are shown i n F i g . (5). We see, that although the 5 mode 

r e s u l t i s rather poor, the 6 mode one i s already quite acceptable, and 

compares very well with the e x a c t r r e s u l t . As a matter of f a c t , as long as 

at l e ast f i r s t 9 modes are used the exact r e s u l t i s obtained and only the 

generalized coordinates associated with modes 1,6, and 9 are f i n i t e , so that 

j u s t these modes contribute to the s o l u t i o n . The exact s o l u t i o n i s namely 

antisymmetric i n stream function with respect to the axis z of F i g . (3), so 

that none of the symmetric modes can a f f e c t i t . Taking that into account we 

reproduced the exact s o l u t i o n with j u s t 5 modes, but we had to include modes 

1,6, and 9, whichppossessathe antisymmetric properties, while the remaining 

2 modes were a r b i t r a r y . The generalized coordinate associated with mode 1 

i s always predominant. A l l r e s u l t s are independent of the Reynolds number. 

8.2 C i r c u l a t o r y Flow i n a Square Cavity 

As the second problem we chose the flow within a square cavity 

which i s bounded by three fixed walls and an upper l i d moving with constant 
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v e l o c i t y i n i t s own plane, shown i n Fig.(6). 

Mathematical s i n g u l a r i t i e s are present i n the problem i n the regions 

of the upper v e r t i c e s , 2 and 4, where a f i x e d wall meets a moving l i d , due 

to the flow having to move without s l i p at the speed of the moving l i d and yet 

be zero at the f i x e d w a l l . To avoid t h i s d i f f i c u l t y two extra nodes were 

introduced close to the upper v e r t i c e s , thus allowing for t r a n s i t i o n from 

zero normal v e l o c i t y at the f i x e d walls to the prescribed tangential v e l o c i t y 

of the moving l i d at these new nodes. Two a d d i t i o n a l nodes were needed i n 

the neighbourhood of the upper v e r t i c e s on the fixed walls, as w e l l , because 

of e x i s t i n g asymmetric pressure s i n g u l a r i t i e s . 

A l l boundary conditions imposed on the problem were ' r i g i d ' i n 

the sense of the r e s t r i c t e d v a r i a t i o n a l p r i n c i p l e . Accordingly, the only 

free nodal v a r i a b l e along the f i x e d walls 1-2 and 3-4 was ip , along the 

bottom f i x e d w a l l 1-3 ' P y y * while on the upper l i d if^ and T|I were the only 

free nodal v a r i a b l e s , so that the three fixed walls and the moving l i d a c t u a l l y 

were zero streamlines. 

The s i z e of the cavity was assumed to be unity, and the given 

v e l o c i t y of the moving l i d was also taken to be unity i n the d i r e c t i o n to 

the l e f t . Thus, the Reynolds number was n a t u r a l l y defined as Re = ^. 

The three f i n i t e element grids used are shown i n F i g . (7) together 

with the number of elements (NE), the number of nodes (NO), the s i z e of the 

'net' problem (NN), and the h a l f bandwidth i n the f i n i t e element coordinates 

(LB). The number of constraints for a l l three grids was equal to 1, because 

by using the 'master-slave' option we forced a l l the tangential v e l o c i t y 

degrees of freedom ip^ on the upper l i d to be the same, thereby leaving only 

free v a r i a b l e s . 

A l l 15 mode shapes with associated eigenvalues for SQCA 12-13 g r i d 
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and the f i r s t 30 modes for SQCA 36-29 g r i d are shown i n F i g . (8), arranged 

i n the order of the ascending eigenvalues. We note, that the shape of the 

highest modes of the SQCA 12-13 g r i d i s already influenced by the f i n i t e 

element layout. The most noteworthy feature, v a l i d f o r a l l g r i d s , i s the 

strk i n g increase i n complexity of the modes with only one order of magnitude 

increase i n the corresponding eigenvalues. The lowest and the highest 

eigenvalue f o r a l l three g r i d s , together with the number of symmetric and 

antisymmetric modes and the t o t a l number of modes are given i n Table ( I ) . 

The i n t e r v a l bounded by the lowest and the highest eigenvalue of the f i n e r 

grids also includes a l l the eigenvalues of the cruder g r i d s , which serves 

as a check on the eigenvalue sol v e r . The lowest eigenvalue only changes 

s l i g h t l y from g r i d to g r i d , which seems to suggest that i t i s predicted 

accurately enough even f o r the very crude SQCA 12-13 g r i d . The corresponding 

modes are also almost i d e n t i c a l . The modes are subdivided into the symmetric 

and the antisymmetric ones with respect to the v e r t i c a l y axis. Only the 

symmetric modes are d i r e c t l y loaded by the v e l o c i t y y constraint on the moving 

l i d , while the antisymmetric modes are excited only through nonlinear coupling. 

It i s then obvious that the antisymmetric modes do not contribute to the l i n e a r 
-4 

sol u t i o n f o r Re = 10 , while without these modes no nonlinear behaviour can 

be simulated. 

When the modal approach was t r i e d on t h i s problem, we found that 

reasonable r e s u l t s could only be obtained i f some of the higher modes were 

included i n the an a l y s i s . This was true even f o r the l i n e a r problem with 

Re = 0, so we included a l l the symmetric modes, whose generalized coordinates 

were greater than some prescribed small value e for Re = 0 decomposition. 

The antisymmetric modes used corresponded to the lowest eigenvalues. 
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On the SQCA 12-13 g r i d we used 15 and 11 modes, on the SQCA 36-29 

gr i d 36 and 42 modes, and on the SQCA 26-53 g r i d 60 modes, r e s p e c t i v e l y . 

Only the Newton-Raphson steady state procedure was run. The c a l c u l a t i o n s 
-4 

were started with the Reynolds number Re = 10 using the n u l l s o l u t i o n , 

with a l l free v a r i a b l e s equal to zero, as anxini,tia ,l guess i n the f i n i t e 

element coordinates. The transformation to the eigenvector basis using the 

orthonormal properties of the eigenvectors had obviously to be performed 

before the i t e r a t i o n s were started to y i e l d an^nitti-aU.guess i n the generalized 

coordinates. A f t e r the s o l u t i o n i n the eigenvector basis had been obtained 

the transformation back to the f i n i t e element coordinates was performed 

v i a Eq. (35) to y i e l d the stream function s o l u t i o n . This s o l u t i o n was then 

used as an i n i t i a l guess for the next higher Reynolds number and the process 
-4 

repeated. These steps were ca r r i e d out at RS = 10 , 1, 10, 20, 40, 100, 

200 and 400 for a l l three g r i d s . For SQCA 76-53 g r i d the rangee o>f Reynolds 

numbers was extended to Re = 3000 with the a d d i t i o n a l steps c a r r i e d out at 

Re = 600, 1000, 1400, 1700, 2000, 2200, 2400, 2800 and 3000. The accuracy 
—6 

test on the Jacobian e of Eq. (70) was set equal to 10 . Regardless of the 

gr i d and the number of modes used, that i s the problem s i z e , convergent 

solutions for the whole range of Reynolds numbers under consideration were 

obtained i n 3 to 6 i'iterations. We note that t h i s held true even f or 

Reynolds numbers up to 3000, so i t i s concluded that numerical s t a b i l i t y of 

modal method i s quite high. 

When the Poisson equation, Eq. (79), was solved to obtain the 

pressure f i e l d , the D i r i c h l e t boundary condition p = 0 was imposed at the 

node located i n the middle of the bottom wa l l . This e f f e c t i v e l y means that 

the pressure,distribution i s referenced to the pressure at the middle of 

the bottom w a l l . A l l the other pressure nodal variables were l e f t free, 
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and accordingly, for a l l t r iangular f i n i t e elements with two of the ver t ices 

located on.any part of the boundary, the boundary in tegra l of Eq, (74) had 

to be included i n the element funct ional expression to conform with the 

v a r i a t i o n a l p r i n c i p l e . 

Error i n stream function at midnode 5 of the SQCA 12-13 g r id for 

various combinations of modes i s l i s t e d i n Table ( I I ) . We note that jus t 

one antisymmetric mode i s enough to produce resul ts with maximum 1% error 

for Reynolds numbers up to about 40, when compared to the d i rec t f i n i t e 

element so lu t ion on the same g r i d . 

Complete resu l t s for Reynolds numbers. !Re = 0, 10, 20, 40, 100, 

200 and 400 are plot ted i n F igs . (9) - (11). The t o t a l number of modes 

and the number of symmetric and antisymmetric modes, together with predicted 

coordinates of the vortex centre and predicted values of stream function 

v o r t i c i t y and pressure at the vortex centre are l i s t e d i n Table ( I I I ) . These 

resul ts are compared with the d i rec t f i n i t e element resul ts on the same grids 

and with the Burg:graf's f i n i t e differences resul ts [12]. Some small d i s 

crepancies between the d i rec t f i n i t e element results reported here and the 

ones of [5] are due to the different in te rpo la t ion grids used. Namely, we 

used crude 20x20 in te rpola t ion gr id i n this work, while [5] employed more 

accurate i r r egu la r in te rpo la t ion g r i d . Only the general shape of streamlines 

from modal method and d i rec t f i n i t e element approach can be compared with 

Burggraf's r e s u l t s , because contour l eve l s do not match. The v o r t i c i t i e s 

and the pressures can be compared d i r e c t l y , however. 

The SQCA 12-13 gr id i s too crude to produce accurate resul ts even 

for low Reynolds numbers and i f the d i r ec t f i n i t e element approach i s used. 

This i s espec ia l ly true for the v o r t i c i t y predic t ions , but a l so , for the 

stream function and the pressure predic t ions , which are i n general too high. 
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The 11 modes r e s u l t s with j u s t 1 antisymmetric mode do agree quite w e l l with 

the 15 modes r e s u l t s and the d i r e c t f i n i t e element approach r e s u l t s on the 

same g r i d , which are of course i d e n t i c a l , up to Re of about 40. For higher 

Re the agreement r a p i d l y d e t e r i o r a t e s . In the 15 modes r e s u l t s the change 

of p o s i t i o n of the vortex centre with increasing Re i s followed to some 

extent,while 11 modes r e s u l t s show the vortex centre stationary f o r the 

whole range of Re under consideration. 

In the 60 modes r e s u l t s on the SQCA 76-53 g r i d the lower r i g h t 

secondary vortex, which appears i n the exact s o l u t i o n , does show at Re = 40, 

then increases gradually at Re = 100 and 200, but disappears at Re = 400. 

For a l l these Reynolds numbers the seconary vortex i s s h i f t e d a l i t t l e to 

the l e f t . The stronger lower l e f t vortex of the exact s o l u t i o n does not show 

at a l l . The v o r t i c i t y contours are somewhat wavy i n appearance, e s p e c i a l l y 

i n the region close the bottom w a l l , but the general trend seems to be 

preserved. The pressure contours agree xjuite w e l l with the exact r e s u l t s 

except for the region close to the bottom w a l l . The position of the vortex 

centre i s predicted very w e l l for the whole range of Reynolds numbers under 

consideration. The same i s true for the stream function and the pressure 

values at' the vortex centre. The v o r t i c i t y value at the vortex centre agrees 

well with the exact r e s u l t f or Re up to about 20, while for higher Re the 

predicted v o r t i c i t y values are much too high. 

B Best modal r e s u l t s are achieved with 36 modes and 42 modes on the SQCA 

36-29 g r i d . Both the 36 modes and the 42 modes r e s u l t s appear to reproduce the 

streamlines.predicted by the d i r e c t f i n i t e element approach on the same g r i d 

very w e l l for the whole range of Reynolds numbers considered, e s p e c i a l l y near 

the upper l i d where the gradients are high. They also compare reasonably well 

with Burggr.af's r e s u l t s , considered exact herein, reproducing the lower r i g h t 
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s e c o n d a r y v o r t e x , b u t n o t t h e s t r o n g e r l o w e r l e f t s e c o n d a r y v o r t e x . The 

v o r t i c i t y p r e d i c t i o n s a l s o compare s a t i s f a c t o r i l y w i t h t h e d i r e c t f i n i t e 

e l ement a p p r o a c h r e s u l t s and even B u r g g f f f ' s r e s u l t s , c o n s i d e r e d e x a c t 

a g a i n , f o r t h e w h o l e r ange o f R e y n o l d s numbers unde r c o n s i d e r a t i o n . The 

42 modes r e s u l t s a r e s l i g h t l y b e t t e r t h a n t h e 36 modes ones as c o u l d have 

been e x p e c t e d f o r b o t h t h e s t r e a m f u n c t i o n and t h e v o r t i c i t y . The p r e s s u r e 

r e s u l t s a r e i n e x c e l l e n t agreement w i t h t h e r e s u l t s o b t a i n e d f o r t h e f u l l 

SQCA 36-29 g r i d and even w i t h t h e f u l l SQCA 76-53 g r i d r e s u l t s , c o n s i d e r e d 

e x a c t h e r e i n , up t o Re o f about 100 . F o r h i g h e r Re t h e agreement i s 

s t i l l f a i r , e s p e c i a l l y be tween moda l r e s u l t s and t h e d i r e c t f i n i t e e l emen t 

a p p r o a c h on t h e same g r i d w i t h t h e 42 modes r e s u l t s a g a i n h a v i n g a s l i g h t 

edge o v e r 36 modes r e s u l t s . 

F rom a l l t h e s e r e s u l t s we c o n c l u d e t h a t good agreement w i t h t h e 

fexact' s o l u t i o n o f t h e d i s c r e t i z e d p r o b l e m , o b t a i n e d by d i r e c t f i n i t e e l ement 

a p p r o a c h , f o r t h i s r a n ge o f R e y n o l d s number s , c an be a c h i e v e d by e m p l o y i n g 

abou t 50% o f t h e modes, t h a t i s , t h e number o f modes, w h i c h a r e r e q u i r e d , 

goes up w i t h t h e r e f i n e m e n t o f t h e f i n i t e e l ement mesh. Tha t e x p l a i n s why 

36 modes and 42 modes on t h e c r u d e r SQCA 36-29 g r i d y i e l d b e t t e r r e s u l t s 

t h a n 60 modes on t h e f i n e r SQCA 76-53 g r i d , w h i c h c o n t a i n s much more d e g r e e s 

o f f r e e d o m . 

8.3 F l o w A round a C i r c u l a r C y l i n d e r 

The f i n a l example c o n s i d e r e d was t h e c l a s s i c a l p r o b l e m o f t h e f l o w 

a round a c i r c u l a r c y l i n d e r . 

P h y s i c a l l y t h e p r o b l e m i n v o l v e s an i n f i n i t e l y l o n g c y l i n d e r immersed 

i n a f l u i d medium o f i n f i n i t e e x t e n t . We a d o p t e d f i n i t e d o m a i n s , h oweve r , as 

i t i s u s u a l l y done i n c o m p u t a t i o n a l f l u i d dynamic s i n v o l v i n g e x t e r i o r f l o w . 
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The f i r s t domain was used for numerical simulation of the steady 

flow, while the second domain, obtained by extending the f i r s t domain for 

si x u nits downstream, was used for the transient flow simulation. Both domains 

are shown i n F i g . (12), together with the adopted f i n i t e element g r i d s , the 

number of elements (NE), the number of nodes (NO) and the c e n t r a l angle (AQ). 

The centre of the cylinder i s located at the o r i g i n of the (x,y) plane for 

both domains. The boundary i s divided into the inflow section I\, the outflow 

section T Q , the c y l i n d e r wall and the top and the bottom sections p a r a l l e l 

to the incident uniform stream flow of un i t v e l o c i t y along the p o s i t i v e x-axis. 

The boundary conditions at the inflow section r were a l l ' r i g i d ' , 
ft 

obtained by spec i f y i n g the uniform stream flow defined by u=l and v=0. The 

stream function nodal v a r i a b l e s , as the d i r e c t r e s u l t of these ' r i g i d ' boundary 

conditions, were given as ip=y, ip =0, il> =1, \b =0, and ip =0, while was l e f t 
J x ' r y ' Txy yy xx 

fre e . On the outflow section T q the 'rigid'boundary condition v=o was used 

to pair up with the 'natural' boundary condition of constant pressure Py=0 

i n the steady case. These conditions allowed the u=- v e l o c i t y to develop 

on t h i s section. The v= -ty^® ' r i g i d ' boundary condition implied that i»^=Q, 

which i n turn indicated that ip^ was to be unknown. The 'natural' boundary 

condition jp̂ =0 required that ib and lp were to be unknown. Accordingly, on 

thi s section the boundary conditions i n terms of nodal stream function v a r i a b l e s 
were given as \b =0 and \b =0 with lp, \b , ip and \b l e f t f r e e . The ' r i g i d ' x xy y xx yy 
boundary conditions of n o - s l i p i>n

=0 and <P.g
=0 were d i r e c t l y imposed at each of 

the nodes located- on the c y l i n d e r w a l l T ^ . The <Pg

=0 condition implied that 

ib =0 and ft =0 on r , and also that ip was a constant, which was set equal to 
rns r s s w r 

zero. Accordingly, at any node on of the s i x nodal v a r i a b l e s i n the l o c a l 

(s,n) system, which was used i n place of the global (x,y) system, only 

was retained while a l l others were zeroed and eliminated. This had the e f f e c t 
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of s a t i s f y i n g the n o - s l i p conditions exactly only at d i s c r e t e nodes on the 

cylinder w a l l , unlike the s t r a i g h t boundaries, where the prescribed boundary 

conditions can be r e a l i z e d pointwise. On.the top and the bottom sections 

the ' r i g i d ' boundary condition of u=l was set to pair up with the 'natural' 

boundary condition of constant pressure p =0 for the steady state a n a l y s i s . 

These conditions allowed the v- component to develop along T^. The u=iji =1 

' r i g i d ' boundary condition implied that ^ X y = 0 which required i p x to be unknown. 

The 'natural' boundary condition pv=0 indicated that i l l and iii had to be 
y xx 

unknown. Consequently, the boundary conditions i n terms of nodal stream 

function v a r i a b l e s were given as \b =1 and ip =0 with i l> , i i i , iji and i i i l e f t 
° y xy x xx yy 

fr e e . 

A l t e r n a t i v e l y , f o r the steady flow the assumption can be made that 

the flow i s symmetric with respect to the x-axis and so only flow i n the 

upper ha l f domain y > 0 need be considered. The symmetryoof the flow implies 

that u i s an even function of y and v i s an odd function of y, so that both 
v and v are odd and vanish on the x-axis. It follows that both i i i and £ are y x 

odd and therefore also vanish on y=0. So the ' r i g i d ' boundary condition ip=0 

i s imposed on the x-axis, which has become the part of the boundary, to pair 

up with the 'natural' boundary condition of zero shear stress or ?=0. The 

'natural' boundary condition requires that iii =0 and 1J1 =0, the l a t t e r of 
xx yy 

which i n turn implies that \\i i s unknown. Hence i i i - i s also unknown, and 

the boundary conditions i n terms of nodal stream function v a r i a b l e s are given 

as il>=0, <JJ =0, i l l =0 and i i i =0, with i i i and i i i l e f t f r e e . We note that the x xx yy y xy 

'natural' boundary condition £=0 holds only at the nodes.on x-axis. 

The transient analysis requires the f u l l domain to be represented, 

since the symmetry has vanished. The same boundary conditions were imposed 

on the inflow boundary r and the cylinder w a l l as i n the steady case. 
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The top and the bottom sections T were assumed to be zero f r i c t i o n smooth 
r u 

walls and so the ' r i g i d ' boundary conditions ip=y and v=ip^=l were imposed 

there. The nodal stream function v a r i a b l e s on T , as the d i r e c t r e s u l t 
u 

of these ' r i g i d ' boundary conditions, were given as ^=y, =0, ^ =1, tp =0 

and ii; =0, while \li was l e f t f r e e . On the outflow s e c t i o n T we needed 
Txy r y y o 

the flow to be as unconstrained as possi b l e , so that the ' r i g i d ' boundary 

condition v=0 was d e f i n i t e l y out of question. The best that we could do 

was to leave a l l nodal stream function v a r i a b l e s on T f r e e , thus i n l i e u 

of the governing r e s t r i c t e d v a r i a t i o n a l p r i n c i p l e e f f e c t i v e l y s pecifying 

the 'natural' boundary conditions of zero shear stress T=0 and constant 

pressure Py =0. We note, that even these less stringent boundary conditions 

are erroneous. That i s why we extended the computational domain for s i x 

units downstream thus hoping to reduce the influence of the outflow boundary 

conditions on the region of s p e c i a l i n t e r e s t behind the obstacle, where 

unsteady behaviour was expected at a c e r t a i n value of Reynolds number. 

When the eigenvalue problem was solved the i|> along the boundaries 

I\ and were constrained to be equal by using the 'master-slave' option. 

For the GYLFL 92-63 g r i d the stream function ip was also constrained to be 

equal along the boundary using the same option. The number of unknowns 

for the CYLFL 84-58 g r i d was 223 and for the CYLFL 92-63 g r i d 226. The f i r s t 

15 mode shapes, antisymmetric i n stream function, with the associated eigen

values, are shown i n F i g . (13-1) for the CYLFL 84-58 g r i d . The f i r s t 20 

mode shapes, antisymmetric i n stream function with the associated eigenvalues, 

and the f i r s t 10 mode shapes, symmetric i n stream function, with the 

associated eigenvalues, are shown i n F i g . (13-2). The contour l e v e l s represent 

equal steps i n stream function and are plotted for the upper ha l f domain y > 0 

to save space. The net f o r p l o t t i n g was 26 x 48 for the CYLFL 84-58 g r i d and 
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26 x 54 f o r t h e CYLFL 92-63 g r i d , w i t h x - and y - s p a c i n g s v a r y i n g f r o m 0.4 

t o 1 .0 , i n c r e a s i n g o u t w a r d l y f r o m t h e c e n t r e o f t h e c y l i n d e r , f o r b o t h g r i d s . 

We o b s e r v e t h a t t h e e i g e n v a l u e s i n c r e a s e q u i t e r a p i d l y w i t h mode number 

compared t o t h e s q u a r e c a v i t y f l o w p r o b l e m . 

When moda l a p p r o a c h was t r i e d on t h e CYLFL 84 -58 g r i d f o r t h e s t e a d y 

f l o w we o b s e r v e d t h a t no h i g h e r modes we re needed i n o r d e r t o a t t a i n r e a s o n a b l e 

r e s u l t s . We a l s o o b s e r v e d t h a t t h e g e n e r a l i z e d c o o r d i n a t e s a s s o c i a t e d w i t h 

t h e s y m m e t r i c modes were a l l p r a c t i c a l l y z e r o f o r t h e w h o l e r ange o f R e y n o l d s 

numbers c o n s i d e r e d , c o n f i r m i n g t h a t , a s e x p e c t e d , t h e s y m m e t r i c modes c o u l d 

no t c o n t r i b u t e t o t h e s o l u t i o n w h i c h was a n t i s y m m e t r i c i n s t r e a m f u n c t i o n . 

H e n c e , i n a l l s ub sequen t c a l c u l a t i o n s r e p o r t e d h e r e i n , we u sed t h e uppe r 

h a l f doma in y > 0 o f F i g . ( 13 -1 ) o n l y , a p p l y i n g on t h e bounda ry d e f i n e d by 

t h e x - a x i s t h e bounda r y c o n d i t i o n s as c o v e r e d p r e v i o u s l y . The d i s c r e t e 

p r o b l e m , t h u s o b t a i n e d , had 104 d e g r e e s o f f r eedom i n t h e f i n i t e e l e m e n t 

c o o r d i n a t e s , w h i l e t h e b a n d w i d t h was 48 . The number o f e l e m e n t s was 42 and 

t h e number o f nodes 34. 62 modes were u sed i n t h e m o d a l r e p r e s e n t a t i o n , a l l 

o f them e v i d e n t l y a n t i s y m m e t r i c i n s t r e a m f u n c t i o n . The number o f c o n s t r a i n t s 

i n t h e p r o b l e m was 3 , ip=3.0 and #=20.0 a t t h e two nodes on t h e I\ bounda ry 

o b t a i n e d f r o m t h e bounda ry c o n d i t i o n ifj=y t h e r e , and i|> =1 a t a l l nodes l o c a t e d 

on t h e T. and r b o u n d a r i e s . The c a l c u l a t i o n s were s t a r t e d w i t h Re = 1 u s i n g 
x u 

t h e n u l l s o l u t i o n w i t h a l l v a r i a b l e s , e x c e p t f o r t h e c o n s t r a i n e d o n e s , z e r o e d 

a s an i n i t i a l g ue s s i n t h e f i n i t e e l ement c o o r d i n a t e s . T h i s i n i t i a l g ue s s 

v e c t o r was t h e n t r a n s f o r m e d t o t h e e i g e n v e c t o r b a s i s t o y i e l d an i n i t i a l 

gues s v e c t o r i n t h e g e n e r a l i z e d c o o r d i n a t e s . A f t e r t h e s o l u t i o n i n t e rms 

of g e n e r a l i z e d c o o r d i n a t e s had been o b t a i n e d by Newton-Raphson i t e r a t i v e 

p r o c e d u r e , i t was t r a n s f o r m e d b a c k t o t h e f i n i t e e l ement c o o r d i n a t e s v i a 

E g . (35) t o y i e l d t h e s t r e a m f u n c t i o n s o l u t i o n . T h i s s o l u t i o n was t h e n u sed 
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as an i n i t i a l guess f o r next higher Re, and the process repeated. These 

steps were c a r r i e d out at Re = 1,5,7,10,20,40,70 and 100. Maximum 5 i t e r a t i o n s 

were needed to a t t a i n an accuracy of e=10 ^ i n the whole range of Reynolds 

numbers considered. No o s c i l l a t o r y solutions or i n s t a b i l i t i e s were encountered. 

The pressure f i e l d was computed only for the steady flow. The upper 

hal f domain y > 0 only was considered. When the Poisson equation (79), was 

solved for pressure, a l l the boundary conditions were of the Neumann type, 

as already mentioned previously i n Chapter (6). Tuann and Olson [6] found, 

however, that the predicted pressure on the f a r boundaries P., T and r 
r x u o 

was very nearly zero, as i t should have been according to boundary conditions 

imposed on the stream function IJJ. As a l l our boundary conditions on the 

stream function lb are the same as those of [6], for the steady flow, we 

forced p to be i d e n t i c a l l y zero on these boundaries. The symmetry condition 

Py=0 was also enforced a l l along the x-axis. The dimensionless t o t a l drag 

c o e f f i c i e n t C^ was obtained as the sum of the f r i c t i o n drag c o e f f i c i e n t C^ 
calculated as C,. = % k s i n 6d6, and the pressure drag c o e f f i c i e n t f Re o nn ' n=0 

0̂ , given by the expression C^ = -/ p cost,0d6. These l i n e i n t e g r a l s were 

only approximated, however, because the integrations were not performed along 

the c y l i n d e r , but along the polygonal segments of the f i n i t e element g r i d 

approximating the c y l i n d e r . The number of unknowns i n the d i s c r e t e problem 

was 155, the bandwidth 50, while the number of elements and the number of 

nodes were 42 and 34, r e s p e c t i v e l y , that i s the same as for the stream 

function c a l c u l a t i o n s . 

Complete stream function and v o r t i c i t y r e s u l t s f o r steady flow f o r 

Reynolds numbers Re = 1,5,7,10,20,40,70 and 100 are plotted i n F i g s . (14) 

and (15), r e s p e c t i v e l y . Only the region of i n t e r e s t i s shown extending from 

3 units upstream to 9 units downstream i n the x d i r e c t i o n measured from the 

centre of the c y l i n d e r , and for 3 units i n the d i r e c t i o n of the p o s i t i v e 
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y-axis measured from the x-axis. The i n t e r p o l a t i o n net was 25 x 66 with 

the x-spacings^varying from 0.1 to 0.4, and the y—spacings from 0.1 to 0.2, 

both increasing outwardly from the centre of the c y l i n d e r . The net functions, 

ib and t,, at the i n t e r i o r points of the cylinder were set to zero. The 

contour l e v e l s were s p e c i f i e d to match those reported by Tuann and Olson [6], 

so that d i r e c t comparisoncwould be p o s s i b l e . These modal r e s u l t s are 

compared with the d i r e c t f i n i t e element r e s u l t s on the same g r i d [6] and 

the f i n i t e d i f f e r e n c e r e s u l t s by Dennis and Chang [13] or Takami and K e l l e r 

[14,15]. 

The agreement between modal stream function r e s u l t s and stream function 

r e s u l t s by the d i r e c t f i n i t e element method on the same g r i d i s excellent up 

to Re of about 40, although the f i r s t appearance of a negative valued stream 

function becomes v i s i b l e at Re = 10, whereas i t i s observable at Re = 7 i n 

the d i r e c t f i n i t e element r e s u l t s . At Re = 70 the zero streamline does not 

extend f a r enough downstream and t h i s trend gets even more pronounced at 

Re = 100 r e s u l t i n g i n the wake being too short. The agreement between modal 

and f i n i t e d i f f e r e n c e s r e s u l t s i s excellent up to Re of about 20. For higher 

Re the length of the wakes and the p o s i t i o n s of the vortex centre predicted 

by modal method do not match those predicted by f i n i t e d i f f e r e n c e s . This 

discrepancy increases with Re, so that while modal r e s u l t s for Re = 40 are 

s t i l l acceptable, the predicted wakes at Re = 70 and 100 are much too short. 

Modal v o r t i c i t y predictions agree quite well with the d i r e c t f i n i t e 

element approach*,predictions again up to Re of about 40. The agreement 

deteriorates with increasing Re, though, and while for higher Re i n t h i s 

range modal values i n the regions of most i n t e r e s t behind and immediately 

above the cylinder are very close to f i n i t e element values, i n the region 

i n front and farther above the cylinder modal method predicts values which 
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do not seem to exist i n d i r e c t f i n i t e element r e s u l t s . At Re = 70 and 100 

the predicted values i n these regions get even worse, hut, while the values 

i n the regions of most i n t e r e s t behind and close above the c y l i n d e r are not 

very close to those predicted by d i r e c t f i n i t e element approach, the general 

trend of e q u i - v o r t i c i t y l i n e s i s s t i l l reproduced. E q u i - v o r t i c i t y l i n e s 

predicted by modal method agree with the f i n i t e d ifferences r e s u l t s up to 

Re = 20 i n the regions of most i n t e r e s t . For higher Re modal r e s u l t s are 

somewhat wavy and some e q u i - v o r t i c i t y l i n e s have kinks showing the influence, 

of the g r i d . Again the discrepancies, as expected, increase with increasing 

Re. 

Equi-pressure l i n e s were not plotted because no comparisons were 

a v a i l a b l e . The f r i c t i o n drag c o e f f i c i e n t Ĉ ,, the pressure drag c o e f f i c i e n t 

0^, the t o t a l drag c o e f f i c i e n t and the pressure values at the leading edge 

and the t r a i l i n g edge of the cylinder are l i s t e d i n Table (IV), however, and 

compared to the d i r e c t f i n i t e element approach r e s u l t s [6] and the f i n i t e 

d i fferences r e s u l t s [13,14], A l l these r e s u l t s are c o n s i s t e n t l y lower than 

the d i r e c t f i n i t e element r e s u l t s on the same g r i d for the whole range of 

Reynolds numbers under consideration. The d i f f e r e n c e i s drag c o e f f i c i e n t s , 

C^, 0^ and C^, increases with increasing Reynolds numbers with the maximum 

diff e r e n c e of about 30% at Re = 100. The d i f f e r e n c e i n the pressure value 

at the leading edge of the cylinder i s c o n s i s t e n t l y much higher than the 

d i f f e r e n c e i n the pressure value at the t r a i l i n g edge. Modal r e s u l t s are 

not c o n s i s t e n t l y higher than the f i n i t e differences r e s u l t s , considered 

exact herein, as the d i r e c t ' f i n i t e element'results are. Amazingly enough, 

though, a l l modal r e s u l t s f o r Re up to 40 are closer to the f i n i t e d i f f e r e n c e s 

r e s u l t s than the d i r e c t f i n i t e element approach r e s u l t s on the same g r i d . 

This can only be explained by reasoning that some approximation errors 
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introduced i n the pressure c a l c u l a t i o n s by f i n i t e element d i s c r e t i z a t i o n 

were cancelled by further approximation errors introduced by modal a n a l y s i s . 

From these r e s u l t s we conclude that good agreement with the d i r e c t 

f i n i t e element approach r e s u l t s f o r the steady case can be achieved by 

modal method for Reynolds numbers up to about 20 by employing about 50% 

of the modes. The agreement between modal r e s u l t s and the 'exact' r e s u l t s 

obtained by f i n i t e d i fferences i s good f o r Reynolds numbers only up to about 

40, as i t i s also a function of f i n i t e element d i s c r e t i z a t i o n . 

For the transient analysis on the CYLFL 92-63 g r i d 62 modes were 

employed. F i r s t 52 modes, antisymmetric i n stream function, and f i r s t 10 

modes symmetric i n stream function. The transformation of the nonlinear 

convective Q matrix to the eigenvector basis, spanned by these modes, would 

have been very expensive for the f u l l g r i d . We succeeded, however, to reduce 

the CPU time needed for the transformation:. 3.5 times by making use of the 

s p e c i a l properties of the transformed nonlinear convective § matrix, covered 

i n Chapter (7). I t was done as follows. F i r s t l y , the § matrix was formed for 

the upper h a l f of the CYLFL 92-63 g r i d . A l l boundary conditions imposed on 

the P., T , T and E boundaries were the same as for the f u l l g r i d , while l o u w 

a l l nodal v a r i a b l e s at the nodes located on the x-axis, which became a boundary, 

were l e f t f r e e . The number of degrees of freedom for t h i s g r i d was 139 and the 

bandwidth was 48, while for the f u l l g r i d they would have been 226 and 78, 

r e s p e c t i v e l y . Then the modes of the f u l l g r i d were truncated, so that only 

entries corresponding to the degrees of freedom of the half g r i d were retained 

and the transformation performed using these truncated modes. By multi p l y i n g 

a l l entries of the r e s u l t i n g array by a factor of 2.0, the transformed nonlinear 

convective matrix Q for the f u l l g r i d was f i n a l l y obtained. The mass matrix, 

needed i n the time algorithms for transformation from f i n i t e element coordinates 
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to generalized coordinates and v i c e versa, was computed for the f u l l g r i d . 

The constraints on the stream function, obtained from the boundary condition 

\\)=y imposed on the r and boundaries, were ip= 3.0 and ip= -3.0 at the 

two nodes located on the r boundary, IJJ= 20.0 at a l l nodes located on the 

top T u boundary and ip= -20.0 at a l l nodes located on the bottom boundary. 

In addition, the constraint ib =1 was imposed at a l l nodes situated on both 

the T and r boundaries, so that the t o t a l number of constraints i n the 
1 u 

problem was 5. 

-The time integrations were started with an i n i t i a l s o l u t i o n obtained 

by perturbing the steady state r e s u l t s for a p a r t i c u l a r Reynolds number under 

consideration. The constrained v a r i a b l e s on the boundary were kept f i x e d 

throughout the time integrations which i n e f f e c t amounted to s p e c i f y i n g time 

independent boundary conditions. 

The c a l c u l a t i o n s at Re=20 were performed with two time int e g r a t i o n 

algorithms, the f i r s t one defined by Eq. (56) and the second one by Eq. (57). 

From these t r i a l c a l c u l a t i o n s we found, that while both algorithms yielded 

the same r e s u l t s the second algorithm was more e f f i c i e n t , because a much 

larger time step could be used without endangering the numerical s t a b i l i t y . 

So, i n a l l subsequent c a l c u l a t i o n s we e x c l u s i v e l y used t h i s algorithm. 

When the time analysis was performed at Re=20, 40 and 70 the steady state 

was reached i n a l l three cases. We would have expected that to happen at 

Re=20 and 40, but not at Re=70, where the flow should have become unsteady 

with o s c i l l a t i o n s of the downstream part of the wake. We reasoned, that 

t h i s was the r e s u l t of f i n i t e element d i s c r e t i z a t i o n errors and further 

truncation errors introduced by modal analysis, which employed only 10 modes, 

symmetric i n stream function. These errors introduced an ' a r t i f i c i a l v i s c o s i t y ' 

e f f e c t which lowered the ' e f f e c t i v e ' Reynolds number. This ' a r t i f i c i a l 
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v i s c o s i t y ' was, we thought, the main cause of numerical o v e r - s t a b i l i t y of 

our d i s c r e t e problem, Eq. (50), as compared to the actual hydrodynamic 

s t a b i l i t y inherent i n the governing p a r t i a l d i f f e r e n t i a l equation, Eq. (5). 

So we decided to increase the Reynolds number, thus also hoping to increase 

the ' e f f e c t i v e ' Reynolds number, and to perform the time integrations at 

Re=140, although judging from the steady r e s u l t s reported i n [6], the f i n i t e 

element g r i d was too crude at such a high Re. The integrations were performed 

with a time step At=0.15 seconds, while the test on whether the steady state 

had been achieved, Eq. (62), was set to be e=10 - 6. The i n i t i a l s o l u t i o n was 

a r b i t r a r i l y s p e c i f i e d by perturbing the steady state stream function values 

at the nodes located i n the upper ha l f domain y>0 upstream i n the neighbour

hood of the cylinder by 10% and at the mirror images of these nodes located 

i n the lower ha l f domain y<0 by 15%. The stream function r e s u l t s at time 

T=3, 6, 9, 12, and 16.5 seconds are plotted i n F i g . (16). These r e s u l t s 

seems to indi c a t e expected o s c i l l a t o r y behaviour, but f i n a l l y the steady 

state s o l u t i o n , antisymmetric i n stream function, was obtained, anyway. 

We speculate that t h i s happened p r i m a r i l y because of the wrong downstream 

boundary conditions whose influence was r e f l e c t e d to the computational 

domain f o r c i n g the flow back to steady state. Unfortunately, we could not 

come up with any better downstream boundary conditions and t h i s i s l e f t for 

some future study. We also note that the extension of the domain downstream, 

indicated i n F i g . (12-2) might not have been enough to reduce t h i s boundary 

conditions e f f e c t on.the region of i n t e r e s t . To summarize, i t seems that 

the i n a b i l i t y of our procedure to predict the expected unsteady flow was 

caused to some extent by truncation errors introduced by f i n i t e element 

d i s c r e t i z a t i o n and a d d i t i o n a l modal truncation errors, but p r i m a r i l y by the 

boundary conditions s p e c i f i e d on the downstream boundary Tn. 
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CHAPTER 9 

Conclusions 

A modal f i n i t e element method for the steady state and the 

transient analyses of the plane flow of incompressible Newtonian f l u i d 

has been presented. The governing r e s t r i c t e d f u n c t i o n a l was d i s c r e t i z e d 

with a high p r e c i s i o n t r i a n g u l a r stream function f i n i t e element of C.̂  class 

_p3jiS.«L Eigenvalue analysis was c a r r i e d out on the l i n e a r part of the 

problem obtained by deleting the nonlinear convective term. I t was found 

that the Lagrange m u l t i p l i e r s technique was computationally more e f f i c i e n t 

for incorporating the nonhomogeneous boundary conditions than the condensation 

procedure. In the l a t t e r procedure numerical d i f f i c u l t i e s were encountered 

when dealing with the nonlinear convective matrix. The matrix equations 

to be solved, when the Lagrange m u l t i p l i e r s technique i s applied, are 

nonsingular but i n d e f i n i t e . We found that t h i s posed no computational 

d i f f i c u l t i e s as the Gaussian elimination with p a r t i a l p i v o t i n g and forward 

and backward s u b s t i t u t i o n could conveniently be used to solve such equations. 

The number of modes was r e s t r i c t e d to 62 because of the computer core 

capacity and t h i s l i m i t a t i o n has to be further explored. We found that 

the computer time for the transformation of the nonlinear convective matrix 

to modal coordinates could be s i g n i f i c a n t l y reduced by taking advantage of 

the symmetric and antisymmetric properties of the modes. The transformation 

procedure was s t i l l quite expensive. Therefore, i t i s concluded that there 

w i l l be some p r a c t i c a l l i m i t on the s i z e of the problem that can be solved 

by modal method. 
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When modal method was applied to several flow problems we 

found that the number of modes, which were to be retained i n the analysis 

i n order to achieve reasonable r e s u l t s , increased with the refinement 

of the f i n i t e element g r i d . Furthermore, the choice of modes depended 

on the problem. In the square c a v i t y flow problem some higher modes had 

to be included i n order to approximate even the l i n e a r part, while for 

the flow around a c i r c u l a r cylinder no higher modes needed to be included. 

In the steady state analysis the convergent so l u t i o n was obtained 

i h 6 or l e s s i t e r a t i o n s , for the whole range of Reynolds numbers considered, 

regardless of the gr i d and the number of modes used. That i s , numerical 

i n s t a b i l i t i e s frequently encountered i n the f i n i t e d ifference method at 

higher Reynolds numbers were never experienced. It i s concluded, that t h i s 

new modal f i n i t e element method i n general y i e l d s good r e s u l t s i n the range 

of moderate Reynolds numbers with about 50% or less of the t o t a l modes. 

When the time dependent analysis was applied to the flow around 

a c i r c u l a r c y l i n d e r i t was concluded that the i n a b i l i t y to predict unsteady 

behaviour, expected at higher Reynolds numbers, was pri m a r i l y caused by 

the outflow boundary conditions. This lends hope that once these boundary 

conditions have been corrected or at le a s t t h e i r influence reduced by 

extending the computational domain further downstream, i t w i l l be possible 

to perform the time integrations on a greatly reduced number of equations 

by employing modal an a l y s i s . Hence, s i g n i f i c a n t savings i n computer costs 

can be achieved. F i n a l l y , as good r e s u l t s have been obtained i n t h i s thesis 

for moderate Reynolds numbers employing a greatly reduced number of l i n e a r 

modes, we speculate, that the extension of modal method to higher Reynolds 

numbers i s quite f e a s i b l e . It could be achieved, as suggested by Nickel;/[10] , 

by introducing modal decompositions for the subsequent nonlinear states based 

upon the tangent"matrix. 
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Grid 

Number of Modes 
Eigenvalues 

Grid 

Number of Modes 

Symmetric Antisymmetric T o t a l Grid 

Symm. Antisymm. Tot a l Lowest Highest Lowest Highest Lowest Highest 

SQCA 12-13 10 5 15 53.3062 12799.6 108.352 9516.34 53.3062 12799.6 

SQCA 36-29 40 31 71 51.6295 45973.8 92.4626 44085.0 51.6295 45973.8 

SQCA 76-53 94 81 175 50.7516 49398.6 92.1604 48683.4 50.7516 49398.6 

Number of Symmetric and Antisymmetric Modes and Lowest and Highest Eigenvalues 

for Three F i n i t e Element Grids Used for Square Cavity Flow Problem Simulation 



Number of Modes 
Reynolds Number, R 

Number of Modes 

1 10 20 40 100 200 400 

Symm. Antisymm. Total Error i n % at Midnodes5 

10 5 15 0. P- 0. 0. 0. 0. 0. 

9 5 14 0.76 0.78 0.85 1.08 1.63 1.96 1.94 

8 5 13 1.40 1.42 1.47 1.65 2.06 2.26 1.31 

8 4 12 1.40 1.42 1.49 1.75 2.36 2.75 9.18 

10 1 11 0. 0. 0.27 1.02 11.33 17.22 42.73 

TABLE II Error i n Stream Function at Midnode 5 for Various Number of Modes and Various 

Reynolds Numbers for SQCA 12-13 Grid 

a-



Method Grid 

Number of Modes 
X 
v.c. y v . c . v.c. ^v. c. ^v. c. 

Grid 
for 

P l o t t i n g 
Method Grid 

Symm. Antisymm , Total 

X 
v.c. y v . c . v.c. ^v. c. ^v. c. 

Grid 
for 

P l o t t i n g 

Modal 

SQCA 12-13 
10 5 15 0.0 0.25 0.1355 5.5225 0.0 

20 x 20 

Modal 

SQCA 12-13 

10 1 11 0.0 0.25 0.1355 5.5225 0.0 

20 x 20 

Modal 

SQCA 36-29 
27 15 42 0.0 0.25 0.0989 2.8059 -0.0892 

20 x 20 

Modal 

SQCA 36-29 

26 10 36 0.0 0.25 0.0984 1.8501 -0.0835 

20 x 20 

Modal 

SQCA 76-53 39 21 60 0.0 0.25 0.1040 2.7424 -0.0003 20 x 20 

DMeet 
F i n i t e 
Element 

SQCA 12-13 - - - 0.0 0.25 0.1355 5.225 0.0 

20 x 20 

DMeet 
F i n i t e 
Element SQCA 36-29 - - - 0.0 0.25 0.0986 3.033 -0.0862 

20 x 20 

Approacl 
SQCA 76-53 - - - 0.0 0.25 0.0996 2.9775 -0.0928 

20 x 20 

[12] 50 x 50 - - - 0.0 0.27 0.100 3.20 0.0 

TABLE III 

R = 0 

Comparison of Numerical Results for Square Cavity Flow Probl 



Method Grid 

Number of Modes 
X 
V. c. ^v. c. v.c. Cv.c. P Grid 

for 
P l o t t i n g 

Method Grid 
Symm. Antisymm, Total 

X 
V. c. ^v. c. v.c. Cv.c. v. c. 

Grid 
for 

P l o t t i n g 

10 5 15 0.0 0.25 0.1355 5.5196 -2.3096 
SQCA 12-13 SQCA 12-13 

10 1 11 0.0 0.25 0.1355 5.5207 -2.3092 

Modal • 27 15 42 0.0 0.25 0.0988 2.8050 -0.8911 
SQCA 36-29 SQCA 36-29 

26 10 36 0.0 0.25 0.0984 1.8494 -0.8347 

SQCA 76-53 39 21 60 0.0 0.25 0.1040 2.7276 -0.9828 20 x 20 

SQCA 12-13 - — _ 0.0 0.25 0.1355 5.5196 92.3096 
Dire c t 
F i n i t e 

Element SQCA 36-29 - - - 0.0 0.25 0.0985 3.0090 -0.8607 
Approach Approach 

SQCA 76-53 - - - 0.0 0.25 0.0995 2.9657 -0.9270 

• R = 10 

TABLE III (cont.) Comparison of Numerical Results f o r Square Cavity Flow Problem 



Method Grid 
Number of Modes 

X 
v.c. y v . c . v.c. C 

v.c. ^v. c. 
Grid 
for 

P l o t t i n g 
Method Grid 

Symm. Antisymm Total 

X 
v.c. y v . c . v.c. C 

v.c. ^v. c. 
Grid 
for 

P l o t t i n g 

Modal 

SQCA 12-13 
10 5 15 0.0 0.25 0.1355 5.5107 -4.6126 

20 x 20 

Modal 

SQCA 12-13 

10 1 11 0.0 0.25 0.1354 5.5157 -4.6096 

20 x 20 

Modal 

SQCA 36-29 

27 15 42 -0.05 0.25 0.0987 2.2439 -1.2252 

20 x 20 

Modal 

SQCA 36-29 

26 10 36 -0.05 0.25 0.0986 1.9595 -1.1424 
20 x 20 

Modal 

SQCA 76-53 39 21 60 -0.05 0.25 0.1046 2.8044 -1.5328 

20 x 20 

Dire c t 
F i n i t e 

Element 
Approach 

SQCA 12-13 - - - 0.0 0.25 0.1355 5.5107 -4.6126 

20 x 20 

Dire c t 
F i n i t e 

Element 
Approach 

SQCA 36-29 - - - -0.05 0.25 0.0985 2.2887 -1.1057 

20 x 20 

Dire c t 
F i n i t e 

Element 
Approach 

SQCA 76-53 - - - -0.05 0.25 0.0996 3.1068 -1.2662 

20 x 20 

R = 20 

TABLE III (cont.) Comparison of Numerical Results f o r Square Cavity Flow Problem 



Method Grid 

Number of Modes " v . c . 
X 

v.c. 

" v 

' v . c . 
^v.c. 

v.c, 
v.c. 

7" 

v.c. 
? 
v.c. 

n 

^v. c. 
Grid 
for 

P l o t t i n g 
Method Grid 

Symm. Antisymm Total 

" v . c . 
X 

v.c. 

" v 

' v . c . 
^v.c. 

v.c, 
v.c. 

7" 

v.c. 
? 
v.c. 

n 

^v. c. 
Grid 
for 

P l o t t i n g 

Modal 

SQCA 12-13 
10 5 15 0.0 0.25 0.1354 5.4729 -9.1711 

20 x 20 

Modal 

SQCA 12-13 

10 1 11 0.0 0.25 0.1350 5.4965 -9.1518 

20 x 20 

Modal 

SQCA 36-29 
27 15 42 -0.05 0.25 0.0995 2.2381 -3.1196 

20 x 20 

Modal 

SQCA 36-29 
26 10 36 -0.05 0.25 0.0995 1.9080 -2.9461 

20 x 20 

Modal 

SQCA 76-53 39 21 60 -0.10 0.25 0.1062 6.9153 -3.3526 

20 x 20 

Dire c t 
F i n i t e 

Element 
Approach 

SQCA 12-13 - - - 0.0 0.25 0.1354 5.4729 -9.1711 

20 x 20 

Dire c t 
F i n i t e 

Element 
Approach 

SQCA 36-29 - - - -0.05 0.25 0.0994 2.2729 -3.0044 

20 x 20 

Dire c t 
F i n i t e 

Element 
Approach 

SQCA 76-53 - - - -0.05 0.25 0.1003 3.1277 -3.2471 

20 x 20 

R = 40 

TABLE III (cont.) Comparison of Numerical Results f o r Square Cavity Flow Probl em 



Method Grid 
Number of Modes 

X 
v.c. y v . c . v.c. ? 

v.c. '"'v.c. 
Grid 
for 

P l o t t i n g 

Method Grid 

Symm. Antisymm Total 

X 
v.c. y v . c . v.c. ? 

v.c. '"'v.c. 
Grid 
for 

P l o t t i n g 

Modal 

SQCA 12-13-
10 5 15 0.0 0.20 0.1359 5.1545 -21.0284 

20 x 20 

Modal 

SQCA 12-13-

10 1 11 0.0 0.25 0.1331 5.4002 -22.022 

20 x 20 

Modal 

SQCA 36-29 
27 15 42 -0.10 0.20 0.1045 2.3892 -9.2827 

20 x 20 

Modal 

SQCA 36-29 
26 10 36 -0.10 0.20 0.1061 2.4479 -9.4048 

20 x 20 

Modal 

SQCA 76-53 39 21 60 -0.10 0.25 0.1127 7.1780 -12.3943 

20 x 20 

Dire c t 
F i n i t e 

Element 
Approach 

SQCA 12-13 - - - 0.0 0.20 0.1359 5.1545 -21.0284 

20 x 20 

Dire c t 
F i n i t e 

Element 
Approach 

SQCA 36-29 - - - -0.10 0.20 0.1054 3.0346 -9.8903 

20 x 20 

Dire c t 
F i n i t e 

Element 
Approach 

SQCA 76-53 - - - -0.10 0.25 0.1037 2.8612 -9.7013 

20 x 20 

[12] 50 x 50 - - - -0.13 0.24 0.101 3.14 -18.1 

TABLE .III (cont.) 

R = 100 

Comparison of Numerical Results f o r Square Cavity Flow Problem 



Method Grid 
Number of Modes 

X 
v.c. y v . c . v.c. G 

v.c. 
P v . c . 

Grid 
for 

P l o t t i n g 
Method Grid 

Symm. Antisymm , Total 

X 
v.c. y v . c . v.c. G 

v.c. 
P v . c . 

Grid 
for 

P l o t t i n g 

Modal 

SQCA 12-13 
10 5 15 0.0 0.20 0.1428 4.9600 -42.3894 

20 x 20 

Modal 

SQCA 12-13 

10 1 11 0.0 0.25 0.1307 5.2643 -41.5979 

20 x 20 

Modal 

SQCA 36-29 
27 15 42 -0.05 0.15 0.1152 2.7952 -25.2413 

20 x 20 

Modal 

SQCA 36-29 
26 10 36 -0.10 0.15 0.1186 1.9509 -23.4828 20 x 20 

Modal 

SQCA 76-53 39 21 60 -0.15 0.15 0.1202 4.7300 -26.6176 

20 x 20 

Dire c t 
F i n i t e 
Element 
Approach 

SQCA 12-13 - - - 0.0 0.20 0.1428 4.9600 -42.3894 

20 x 20 

Dire c t 
F i n i t e 
Element 
Approach SQCA 36-29 - - - -0.10 0.15 0.1182 2.9340 -25.6447 

20 x 20 

R = 200 

TABLE III (cont.) Comparison of Numerical Results f o r Square Cavity Flow Problem 



Method. Grid 
Number of Modes 

X 
v.c. y v . c . W 

v.c. v.c. P v . c . 
Grid 
for 

P l o t t i n g 

Method. Grid 

Symm. Antisymm Total 

X 
v.c. y v . c . W 

v.c. v.c. P v . c . 
Grid 
for 

P l o t t i n g 

Modal 

SQCA 12-13 
10 5 15 0.0 0.15 0.1703 7.3450 -117.7910 

20 x 20 

Modal 

SQCA 12-13 

10 1 11 0.0 0.25 0.1790 5.1650 -78.950 

20 x 20 

Modal 

SQCA 36-29 
27 15 42 -0.05 0.10 0.1246 1.9322 -57.0767 

20 x 20 

Modal 

SQCA 36-29 
26 10 36 -0.05 0.05 0.1279 2.1609 -51.2457 20 x 20 

Modal 

SQCA 76-53 39 21 60 -0.05 0.05 0.1315 1.2139 -54.7102 

20 x 20 

D i r e c t 
F i n i t e 
Element 
Approach 

SQCA 12-13 - - - 0.0 0.15 0.1703 7.3450 -117.7910 

20 x 20 

D i r e c t 
F i n i t e 
Element 
Approach SQCA 36-29 - - - -0.10 0.10 0.1319 4.6136 -58.6027 

20 x 20 

[5] SQCA 76-53 - - • - -0.056 0.083 0.1213 2.5099 -49.8779 i r r e g u l a r 

[12] *QC40 x 40 - - - -0.06 0.12 0.102 2.15 -71.7 

TABLE III (cont.) 

R = 400 

Comparison of Numerical Results for Square Cavity Flow Problem 
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Method 
& Grid 

Reynolds Number, R Method 
& Grid 1 5 7 10 20 40 70 100 

F r i c t i o n Drag C o e f f i c i e n t , C f 

Modal CYLFL m~S% 7.525 2.301 1.816 1.408 0.848 0.506 0.325 0.239 

[6] 42 7.573 2.386 1.918 1.529 0.997 0.653 0.447 0.347 

[13] - 1.917 1.553 1.246 0.812 0.524 0.360 0.282 

Pressure Drag C o e f f i c i e n t , C 
P 

Modal CYLFL 42-34 7.557 2.538 2.089 1.712 1.199 0.896 0.737 0.654 

[C>6] 42 7.837 2.704 2.263 1.906 1.443 1.149 0.965 0.874 
[13] - 2.199 1.868 1.600 1.233 0.998 0.852 0.774 

Drag C o e f f i c i e n t , 

Modal CYLFL 42-34 15.082 4.839 3.905 3.120 2.047 1.402 1.062 0.893 
[6] 42 15.410 5.091 4.181 3.435 2.440 1.802 1.412 1.221 

[13]2 - 4.116 3.421 2.846 2.045 1.522 1.212 1.056 
[14] 10.109 - • 3.303 2.800 2.013 1.536 - -

Pressure at Leading Edge, P(if) 

Modal CYLFL '42-34 5.602 2.004 1.666 1.375 0.965 0.763 0.708 0.690 

[6] 42 5.829 2.228 1.919 1.678 1.418 1.351 1.315 1.282 

[13] - 1.872 1.660 1.489 1.269 1.144 1.085 1.060 

[14] 3.905 - 1.637 1.474 1.261 1.141 — — 

Pressure at T r a i l i n g Edge, -P(0) 

Modal CYLFL %$rl% 3.876 1.222 1.013 0.845 0.638 0.545 0.502 0.479 

[6] 42 3.845 1.242 1.050 0.896 0.698 0.580 0.488 0.436 
[13] - 1.044 0.8700 0.742 0.589 0.509 0.439 0.393 

[14] 2.719 - 0.783 0.670 0.537 0.512 - -

TABLE IV Comparison of Numerical Results for Flow Around 

.a C i r c u l a r Cylinder 
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i r / = 3 y 2 - 2 y 3 ^ 

z 
(parabolic 
velocity A 
prof i le ) - -^ I 

{unknown 
velocity 
profile ) 

FIGURE 3 POISEUILLE FLOW PROBLEM 
CONFIGURATION 
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E V - 9 . 8 7 4 7 1 5 . 7 2 7 4 0 . 9 5 3 

6 2 . 4 2 5 9 8 . 0 1 0 

1 1 4 . 7 0 1 2 6 . 7 4 1 2 6 . 9 2 

1 7 2 . 9 9 2 0 4 . 4 3 2 4 7 . 2 2 

F I G U R E 4 M O D E S H A P E S & E I G E N V A L U E S 

F O R P O I S E U I L L E F L O W 



5 M O D E S 

V 3 = - 1 . 5 7 8 0 8 

6 M O D E S 

V 3 = 1 . 5 7 5 2 4 

7 M O D E S 1 2 M O D E S 

V 3= 1.51168 V 3 = 1 . 5 0 0 0 0 

F I G U R E 5 S T R E A M L I N E S & V E L O C I T I E S 

A T M I D N O D E 3 F O R 

P O I S E U I L L E F L O W 
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FIGURE 6 CIRCULATORY FLOW INDUCED BY A 
MOVING LID OVER A SQUARE CAVITY 
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(a) 

S Q C A 13-12 
NE = 1 2 , NO = 13 
NNS=15, N N P = 7 7 
L B S =13, L B P = 5 4 

( b ) 

S Q C A 3 6 - 2 9 
N E = 3 6 , N O = 2 9 
NNS = 71 NNP=173 
L B S = 32 L B P = 7 8 

( c ) 

S Q C A 7 6 - 5 3 
N E = 7 6 , N O = 5 3 
NNS = 175 
L B S =44 

NNP = 317 
L B P = 7 8 

1 \0A. 1 

0 . 4 

NE= NO. O F E L E M E N T S , NO = NO. O F NODES 
NN = NET NO. O F UNKNOWNS 
L B = H A L F BANDWIDTH 
S = STREAM FUNCTION 
P = PRESSURE 

FIGURE 7 FINITE E L E M E N T GRIDS FOR 
SQUARE CAVITY FLOW 



80 n r 1 1 is fit. n r 

(cm) 1 1 fit. 

. E V = 5 3 . 3 0 6 9 9 . 8 0 4 1 0 8 . . 3 5 2 1 5 3 . 9 4 5 

i l l (ID i l l 
1 7 0 . 2 5 6 1 8 5 . 5 2 4 3 7 2 . 2 4 1 3 9 1 , 7 7 8 

4 0 8 . 2 8 4 7 9 6 . 3 8 9 1 5 7 4 . 9 2 9 0 2 4 . 0 2 

i 

^ ^ ^ ^ ^ ^ 

( S T 
9 5 1 6 . 3 4 1 0 0 1 5 . . 2 1 2 7 9 9 . 6 

F I G U R E , 8 - 1 M O D E S H A P E S & E I G E N V A L U E S 

F O R S Q C A 1 2 - 1 3 G R I D 
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EV= 51.629 8 1 . 9 8 0 9 2 . 4 6 2 

ail 
0 

1 5 3 . 5 6 9 ,--vv-, 1 6 5 . 7 3 5 3 . 1 2 4 

2 4 2 . 6 9 7 2 5 5 . 3 8 5 2 5 7 2 1 1 

m 
m 

1 2 9 . 1 6 4 

fit 
1 9 3 . 1 0 8 

IP m 
2 8 2 . 7 7 8 

2 9 2 . 5 9 9 3 4 4 . 6 7 3 3 4 8 . 5 7 9 3 5 6 . 8 6 2 ~ 

F I G U R E 8 - 2 F I R S T 3 0 M O D E S H A P E S & 

E I G E N V A L U E S F O R S Q C A 3 6 - 2 9 G R I D 
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3 7 5 . 3 0 6 4 2 4 . 8 1 8 4 2 6 . 4 8 5 

Star 
4 4 1 . 9 7 5 

479.444 4 8 2 . 6 3 9 5 1 8 . 4 9 8 5 5 3 . 0 7 9 

SSI 
i i H 

592.345 5 9 3 . 5 5 2 5 9 5 . 2 . 7 1 6 0 3 . 9 4 4 

6 5 9 3 2 3 6 7 9 . 2 8 4 

F I G U R E . 8 - 2 ( C O N T ) F I R S T 3 0 M O D E S H A P E S & 

E I G E N V A L U E S F O R S Q C A 3 6 - 2 9 G R I D 
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Figure 9 Streamlines for Square Cavity Flow for 

Various Reynolds Numbers R 

Contours represent equal steps i n stream function, 

unless s p e c i f i e d otherwise. The vortex centre i s 

marked by a cross. The numbers below the fig u r e s 

r e f e r to the number of modes used i n the c a l c u l a t i o n s , 

while FE denotes the d i r e c t f i n i t e element approach. 
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F I G U R E 9 -1 R = 0 
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FIGURE 9 - 2 R = 10 
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FIGURE 9 - 3 R=20 



87 



88 

FIGURE 9 - 5 R = 100 
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Figure 10 E q u i - V o r t i c i t y Lines for Square Cavity Flow 

for Various Reynolds Numbers R 

The vortex centre i s marked by a cross. The numbers 

below the figures r e f e r to the number of modes used i n 

the c a l c u l a t i o n s , while FE denotes the d i r e c t f i n i t e 

element approach. Contour l e v e l s are l a b e l l e d only on 

the c e n t r a l f i g u r e . For R = 0, 10,20,40 and 100, 

i|> = -1.0,0.0,1.0,3.0,5.0 contours are plotted, and for 

R = 200 and 400, i> = -1.0,0.0,1.0,2.0,2.2, and 3.0 

contours. 



( c ) 

6 0 F E R E F 1 2 

F I G U R E 1 0 - 1 R = 0 
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(a) 

11 15 FE 

(b) 

6 0 
FIGURE 10-6 R = 200 
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(a) 

11 15 FE 

(b) 

36 42 FE 

( O 

6 0 REF 5 REF 12 

FIGURE 10 -7 R = 4 0 0 
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F i g u r e 11 E q u i - P r e s s u r e L i n e s f o r Square C a v i t y F l o w 

f o r V a r i o u s R e y n o l d s Numbers R 

The v o r t e x c e n t r e i s marked by a c r o s s . The numbers 

b e l o w t h e f i g u r e s r e f e r t o t h e number o f modes u sed 

i n t h e c a l c u l a t i o n s , w h i l e FE d e n o t e s t h e d i r e c t f i n i t e 

e l emen t a p p r o a c h . C o n t o u r l e v e l s a r e l a b e l l e d o n l y on 

t h e c e n t r a l f i g u r e . F o r R = 0 , 1 0 , 2 0 , and 4 0 , 

p = - 2 0 . 0 , - 1 0 . 0 , - 5 . 0 , - 1 . 0 , 0 . 0 , 1 . 0 , 5 . 0 , 1 0 . 0 , and 2 0 . 0 , 

c o n t o u r s a r e p l o t t e d , f o r R = 100 p = - 1 5 . 0 , - 7 . 5 , - 0 . 5 , 

0 .0 and 15 .0 c o n t o u r s , f o r R = 200 p = - 2 0 . 0 , - 1 0 . 0 , 

- 5 . 0 , - 1 . 0 , 0 . 0 , 3 0 . 0 , and 60 .0 c o n t o u r s and f o r R = 400 

p = - 6 0 . 0 , - 3 0 . 0 , 0 . 0 , 3 0 . 0 and 60 .0 c o n t o u r s . 
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(a) 

11 15 FE 

( b ) 

60 F E 

FIGURE 11-4 R = 40 



(a) 

36 42 FE 

( c ) 

60 FE REF 12 

FIGURE 11 - 5 R=100 
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(a) 

11 15 FE 

(b) 

36 42 FE 

\ 
( c ) 

6 0 

FIGURE 1 1 - 6 R=200 





FIGURE 12-1 FINITE ELEMENT GRIDS FOR A FLOW 
AROUND A CIRCULAR CYLINDER 
C Y L F L 8 4 - 5 8 GRID 



FIGURE 12-2 FINITE ELEMENT GRIDS FOR A FLOW 
AROUND A CIRCULAR CYLINDER 
C Y L F L 92 -63 GRID ' 
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EV= 0.020 

0.248 

0.517 

0.826 

1.193 

FIGURE 13-1 

0.070 

0.378 

0.986 

1.424 

0.191 

0.428 

0.669 

1.085 

1.503 

FIRST 15 ANT ISYMMETRIC MODE 
SHAPES & EIGENVALUES FOR 
CYLFL 8 4 - 5 8 GRID 
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EV= 0.016 0.186 0.259 

0.397 0.510 0.614 

0 .774 0.795 1.020 

1.180 1.487 1.503 

1.730 1.849 2.051 

FIGURE 13-2 FIRST 20 ANTISYMMETRIC AND FIRST 10 
SYMMETRIC MODE SHAPES & EIGENVALUES 
FOR C Y L F L 9 2 - 6 3 GRID 



I l l 

EV= 2.450 2.844 2.955 

3.481 3.607 0 . 0 8 6 

0.137 0.186 0 . 3 8 9 

0.417 0.476 0.597 

0.706 0 . 8 9 0 0.962 

FIGURE 13-2 ( CONT. ) FIRST 20 ANTISYMMETRIC 
AND FIRST 10 SYMMETRIC MODE SHAPES & 
E IGENVALUES FOR C Y L F L 9 2 - 6 3 GRID 
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Figure 14 Steamlines for Steady Flow Around 

a C i r c u l a r Cylinder f o r Various 

Reynolds Numbers R 

Values of the dimensionless stream function ib are shown 

for each streamline on the bottom f i g u r e . Values of i|> 

for closed streamlines are given below for a s p e c i f i e d 

value of the Reynolds number 

(4) R - 10 : *c = -0.0002 

(5) R = 20 : *c =' -0.0080, -0.0058 

(6) R = 40 : V = -0.0328, -0.0246, -0.0164, -0 
(7) R = 70 : *c -0.07, -0.06,-0.035, -0.023 

(8) R = 100: -0.1, -0.08, -0.05, -0.035 

The number below the top f i g u r e denotes the number of 

modes used i n the c a l c u l a t i o n s , while Ref. 6 r e f e r s to 

the d i r e c t f i n i t e element approach using the same g r i d . 
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REF 14 

FIGURE 14-1 R=1 
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REE 13 

FIGURE 14-2 R=5 
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REF 13 

FIGURE 14-3 R = 7 



116 

REF 13 

FIGURE 14-4 R = 1 0 
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REF 13 

FIGURE 14 - 5 R=20 
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REF 13 

FIGURE 14-6 R=40 
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REF 13 

FIGURE 1 4 - 7 R = 70 
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REF 13 

FIGURE 14-8 R=100 
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Figure 15 Equi-Vorticity Lines for Steady Flow Around 

a Circular Cylinder for Various Reynolds 

Numbers R 

Values of the negative dimensionless vort ic i ty £ are 

shown for each equi-vorticity l ine . The number below 

the top figure denotes the number of modes used in 

the calculations, while Ref. 6 refers to the direct 

f in i te element approach using the same gr id . 
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L, 

Jo.s 

L, 

Jo.s 

REF 6 

FIGURE 1 5 - 2 R = 5 
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REF 14 

FIGURE 1 5 - 3 R=7 
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REF 15 

FIGURE 1 5 - 4 R = 10 
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REF 14 

FIGURE 15-5 R = 20 
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FIGURE 15-6 R= 40 
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REF 13 

FIGURE 1 5 - 7 R = 70 
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REF 13 

FIGURE 15-8 R = 100 
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Figure 16 Streamlines f o r Transient Flow Around a 

C i r c u l a r Cylinder at Reynolds Nonce'-. 

1T;=140 for Various Time Instants 

The following streamlines are plotted 

ii = -0.631, -0.4115, -0.129, -0.03, -0.0175, -0/0115 

0.0, 0.0115, 0.0175, 0.03, 0.129, 0.4115, 3nd30.631 
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T = 9 SECONDS 

FIGURE 16 STREAMLINES FOR TRANSIENT FLOW 
AROUND A CIRCULAR CYLINDER AT REYNOLDS NO. 
R = 140 FOR VARIOUS TIME INSTANTS 
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T = 16.5 SECONDS 

FIGURE 
FLOW 
NO. R 

16 ( CONT. ) STREAMLINES FOR TRANSIENT 
AROUND A CIRCULAR CYLINDER AT REYNOLDS 
= 140 FOR VARIOUS TIME INSTANTS 


