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CONVERGENCE OF MIXED METHODS
IN CONTINUUM MECHANICS
AND FINITE ELEMENT ANALYSIS

ABSTRACT

The energy convergence of mixed methods of approximate analysis
for problems involving linear self-adjoint operators is investigated. A
new energy product and the associated energy norm are defined for such
indefinite systems and then used in establishing the strain energy con-
vergence and estimation of error for problems in continuum mechanics.
In the process, the completeness requirements are laid out for approximate
solutions. Also established is the mean convergence of the basic wvariables,
e.g. displacements and stresses.

After accomplishing a new mathematical framework for the mixed
‘methods in continuum, the theory is then extended to the finite element
method. The completeness requirements,'convergence criteria and the
effect of continuity requirements on convergence are established. The
flexibility offered by the mixed methods in incorporating the boundary con-
ditions is also demonstrated. For stress singular problems, the strain
enefgy convergence is established and an energy release method for deter-

mining the crack intensity factor K. is presented.

I

A detailed eigenvalue-eigenvector analysis of the mixed finite
element matrix is carried out for various combinations of interpolations
for the plane stress linear elasticity and the linear part of the Navier-
Stokes equations. Also discussed is its relation to the completeness
requirements.

Finally, numerical results are obtained from applying the mixed

finite element method to several examples. These include beam bending,
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a plane stress square_plate with parabolically varying end loads, a plane
stress cantilever and plane strain stress concentration around a circular
hole. A plane stress example of a square plate with symmetric edge cracks
is also solved to study the strain energy convergence. Lastly, two rec-

tangular plates, one with symmetric edge cracks and the other with a

central crack are considered to determine the crack intensity factor KI'
In most of the examples, the strain energy convergence rates are predicted

and compared with the numerical results, and excellent agreement is observed.
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NOTATION

The specific use and meaning of symbols is defined in the text
where they are introduced.

The summation convention holds for subscripted variables with
repeated lower case indices; it does not apply to repeated upper case
indices. The range of summation is indicated where the variables are
first introduced.

The lower case letter £ which is also frequently used for
element length or diameter appears as 1 in the text and the tables and

as £ in the figures.

The Greek symbol € implies "belongs to'" unless otherwise

specified.
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CHAPTER 1

INTRODUCTION

1.1 Background
| The finite element method has proved to be an extremely powerful

tool for the analysis of engineering problems for which no closed form solu-
tions exist. A good introduction to the subject, which is still undergoing
continuing development, can be found in the books by Zienkiewicz [41],
Gallagher [9], Cook {4], Strang and Fix [33], Huebner [14], and Oden [19], etc.

For more than a decade now, the use of either displacement or
equilibrium finite element methods have dominated in the analysis of problems
in continuum and structural mechanics. These methods precipitate from well-
established extremum principlés; the displacement method from the principle
of minimum potential energy or Rayleigh-Ritz method and the equilibrium
method from the principle of miﬁimum complementary energy. Both energy
principles mentioned here, involve positive definite operators with well
developed mathematical properties, such as lower and upper bounds, complete-
ness requirements, convergence in the energy sense, etc., and provided
tremendous assistance in establishing the convergence of the displacement
and eduilibrium finite element methods. Hutton and Anderson [16] used the
Galerkin method in the finite element analysis and established the convergence
_properties for the problems which may not have any variational principle, i.e.
for non-self-adjoint operators. This encouraged many researchers to use the
Galerkin method in the finite element analysis of incompressible viscous flow
problems with velocities and pressure as basic dependent variables, Taylor
and Hood [34], Olson and Tuann [26], etc. But the use of pressure as a
dependent variable amounts to a mixed formulation which has caused some
difficulties regarding the degree of the polynomial assumed for pressure

within the element in relation to the polynomials used for approximating the



velocity field . This is also observed in the derivation of the variational
theorem for incompressible and nearly incompressible materials by Herrmann
[13] where the pressure, taken as the mean of the normal stresses, is consider-
ed as a dependent variable along with the displacements. lThe earlier appli-
cations of the mixed method in the finite element analysis date back to the
mid-1960's when the use of mixed finite element models for plate bending were
proposed, independently, by Herrmann [12] and Hellan [10]. These involved
the simultaneous approximation of two dependent variables, the bending moment
and the transverse deflection of thin elastic plates and were based on station-
ary rather than extremum variational principles. Dunham and Pister [6] used
the Hellinger-Reissner variational principle to develop mixed finite element
models for plane elasticity and plate bending problems while Wilnderlich [40!
exploited the idea of mixed models in a finite element analysis of non-linear
shell behaviour. Somewhat similar to mixed finite elements was the develop-
ment of the hybrid elements by Pian and Tong [28] and Tong [36]. However the
assumed approximations for stresses and displacements were not considered
over the entire domain as in the mixed finite elements mentioned above. In
all these studies, higher accuracies as well as rapid convergence were obtained
for certain quantities, e.g., stresses, than from the corregponding displace-
ment elements.

However, the mixed methods involve indefinite systems
and despite their wide spread use their mathematical properties are not as
well understood as those of the displacement and equilibrium methods. This
éituation has caused considerable difficulties in establishing completeness
requirements and convergence proofs for the mixed methods. Consequently the
theoretical basis for these methods is far behind that for the displacement
and equilibrium methods. See for example Tong and Pian [37] and Oliveira [25].

More recently, Oden [20] has discussed some generalizations of the



theory of mixed methods and Reddy and Oden [30] established the convergence

of dependent variables, i.e., stresses and displacements, by decomposing the
linear, positive definite operator into two self-adjoint linear operators
(A=T*T) and then applied the fheory of projections in order to formulate the
mixed method. However, their numerical examples were limited to one dimensional

problems and further, the convergence of the strain energy was not explored.

1.2 Purpose and Scope

The purpose of this thesis is to extend the work of previous in-
vestigators in the field of mixed finite element method and to define the
mathematical framework in which the procedure can be used most advantageously.

A new energy product and the associated energy norm are defined
which are then used in establishing the energy convergence of mixed methods
in continuum mechanics. The completeness requirements for the approximating
solutions are also established. The theory is then extended to its applica-
tion in the finite element analysis. The continuity requirement for displace-
ments and stresses and their influence on error in the energy product is also
discussed. The forced and natural boundary conditions seem to be inter—
changeable depending on the boundary integrals and how these are treated
during the derivation of the mixed variational principle. In the case of the
mixed Galerkin method, which provides exactly the same results as the mixed
variational principle for self-adjoint linear boundary-value problems, the
forced and natural boundary conditions will depend on'how the boundary
residuals are accounted for, i.e. either through the displacement boundary
residual or the stress boundary residual.

In the mixed finite element formulation, some approximations for
the dependent variables can lead to mechanisms in general and self-equilibrat-
ing systems for incompressible cases. In ordef to explain this, the eigen-

values and the composition of the eigenvectors for the linear elasticity plane



stress and linear part of the Navier-Stokes equations are studied for
various combinations of polynomial approximations of the dependent variables.
These are stress and displacement for plane stress, and stress, pressure and
velocity for the incompressible, viscous flow. The latter is very similar
to the planevstrain elasticity problem for incompressible material.

A number of numerical examples for one and two dimensional problems
are presented. In the one dimensional case, the fourth order beam equation
is first decomposed into two second order equations and then into four first
order equations. The different combinations of the forced boundary conditions
are also demonstrated for the beam problem. The plane stress mixed finite
element is formulated, using linear stresses and displacements, and used in
the analysis of a square plate with parabolically varying end loads, a canti-
lever with parabolic end load and a rectangular plate with symmetric edge
cracks. .Also, the plane strain problem of stresses around a circular hole,
both isotropic and orthotropic cases, is analysed. The latter orthotropic
case only requires slight édjustments to the element matrix of plane stress

case. Finally, the stress intensity factor K_ for both symmetric edge cracks

I

and a central crack is determined from the energy release rates.

1.3 Limitations

In the development, analysis and applications of the mixed methods
carried out in this thesis, the linear boundary-value problems of self-adjoint
operators are considered. These cover the largest class of problems in
continuum and structural mechanics. It is hoped that the theory developed
here will provide better grounds for extension to problems involving non-self-

adjoint non-linear operators.



CHAPTER 2

MATHEMATICAL PRELIMINARIES

In this chapter basic concepts, definitions and theorems are pre-
sented to recapitulate some of the mathematical fundamentals which shall be
used later in the development of the theory of mixed methods. For further
clarification and proofs of the theorems, the texts by Lorch [17], Mikhlin
[18], Balakrishnan [43] and Hellwig [11] are hereby referred to and shall not

be repeated again.

2.1 Basic Concepts

The first step in predicting the behaviour of a physical system by
mathematical analysis is to idealize the system so as to obtain a mathematical
model. In many cases it is a differential equation with some boundary condi-
tions. The purpose of the finite elemént method is to provide an approximate
solution to the differential equation and boundary conditions that will con-
verge to the right solution in some sense, e.g. energy, mean square, etc.

The solﬁtion of a given equation is obtained by finding that
function which, when acted upon by the given operator, yields a known function.
Attention will be restricted to those functions that are square integrable

over a given domain , i.e. functions u, such that the Lebesque integral
[o u,u,do < =, ' (2.1)
Q 11

The functions considered will, in general, be vector valued and ui is the

.th .
i component of a column vector u, i.e.
u=<u; Uy . . . >,

The class of square integrable functions over Q, denoted by L,(R), constitutes

a vector space over the field of real numbers.



In order to compare different approximations of a given equation,
it is necessary to introduce a norm. This can be accomplished by first

defining an inner product. (Only real vector spaces are considered.)

Definition 2.1.1

A real vector space H is called an inner product space (also pre-
Hilbert space) if there is defined a real-valued function of pairs of vectors
u and v in H denoted by (g,y) which satisfies the following conditions:
(1) (uptuy,v) = (ug,v) + (up,v)
(i1)  (ou,v) = a(u,v); a = a constant
(1ii) (u,v) = (v,u)

(iv) (u,u) > 0, where the equality holds if, and only if, u = 0.

Definition 2.1.2

An inner product space in which every Cauchy sequence is a con-
vergent sequence is said to be complete. A complete inner product space is

called a Hilbert space.

If the Ly norm of u is defined as

lu] = V(u,u) (2.2)

then the following theorem holds:

Theorem 2.1.1

For any vectors u, v and w ¢ H

(1) fu| > 0; and JJu] = 0, if, and only if, u = 0;

(i1) Jau] = |a| |ul; @ = constant;

(i11) | (u,v)| < [u] |lv] (Schwarz inequality);

(1v) Jutv] < Ju] + |vl (triangle inequality).

The difference between two approximating functions can be characterized by the

norm of their difference, i.e. ”g—y”.



2.2 The Limit Process in Hilbert Spaces

Definition 2.2.1

Let there be given a Hilbert space H and let {En} be a sequence of
its elements. This sequence converges, or tends to u if u is an element of
H and

lim "En_E" = 0. (2.3)

n-re

The element u is called the limit of the sequence {gn}, and 1is written as

u ~+u, limu = u.
n-ro

The following are examples of the above definition:

(a) In the space L, () the convergence En+2 means that

lim fQ IEn‘Blde =0

n>re«
i.e. that u ~converges to u in the mean.
(b) Convergence Eg(ﬂ)=w£(9) denotes convergence in the mean of the functions
of the sequence {En} and all their derivatives up to order r inclusive to

a limiting function and all its corresponding derivatives.

Theorem 2.2.1

If u and Yn £ LZ(Q) converge to u and v, respectively, in the Lj

norm, then

(u v ) > (u,v). (2.4)

Corollary 1., 1If u u then (En,y)+(g,y);

Corollary 2. If u ~u then "gn”+"g".

1f {gn} is a specified sequence in a Hilbert space H which converges
to an element u, then by definition 2.2.1 %ig"gn—g"=0. This means that for any
specified €>0 it is possible to find a number ng(e) such that for n>ng(e),

lu_-~ul<e.



Let k>n0(%) and n>n0(%D, then

“Ek‘E” <—§' and "-l-ln-l.‘l" < —;—.

Now, the norm of the difference of U and u can be estimated by
the triangular inequality
loul = 1 --Cu -0f < Ju -u] + [u-u] <.

The last equation by virtue of the arbitrariness of ¢ implies that

lim u -ul = 0. (2.5)
-k -n
koo
no<e
Thus if u_-u, then equation (2.5) is necessarily satisfied. Since, in the

space Ly(R), equation (2.5) necessitates the existence of a limiting element u,

the converse also holds.

2,3 Orthogonality and Orthonormal Basis

An important notion in any inner product space is that of ortho-
gonality. Two vector functions u and v are said to be orthogonal if their
inner product is zero, i.e.

(B)Y) = 0.

Definition 2.3.1.

The orthogonal complement of a set © in a Hilbert space is the set

of all elements orthogonal to every element in 0. It is denoted by ot.

Definition 2.3.2

An orthonormal set is one in which any two elements are orthogonal

to each other, and each element of the set is of unit norm.

Theorem 2.3.1

Every non-trivial Hilbert space has an orthonormal basis. (For

proof, see Balakrishnan [43]).



Definition 2.3.3

A set is said to be dense in a Hilbert space H, if its closure is

equal to H.

Definjtion 2.3.4

A Hilbert space is said to be separable if it has a countable dense

set.

Definition 2.3.5

A sequence of functions uyjup, . . . s Uy is said to be complete in L, ()
if for a function u with a finite L, norm and any €>0 it is possible to find

a natural number N and constants aj,os, . . “s0y such that

flu-(oquitoupt o . . +uNuN)” = "u—iilaiui” < e. (2.6)

Theorem 2.3.2

If an orthonormal sequence of functions ujw, . . .,uN is complete, then
N ,
the Fourier series I a,u; of some function u with a finite L, ncorm converges
i=1

to this function in L, norm. The coefficients a, are given by
a; = (u,ui). 2.7

In this case there occurs the so-called Parseval equation;

a2 = (u,u)2. (2.8)

Ho~ 8
o

He N
]

# ™8

i=1 i=1

2.4 Subspaces and Projections

Consider the space L,(Q) of scalar or vector functions which are
defined in a certain finite domain @ and have a finite L; norm. Select some
linear set of functions belonging to this class and add all of its limiting
elements to this set (i.e., functions which are the limits in the mean of a

sequence of functions belonging to the given linear set). Such linear sets
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of functions are called closed subspaces of the basic space L, (2) (e.g. Let
be equivalent to the segment (0,2r) of the x-axis. The set of functions whose
Fourier series contains only sin(nx),n=1,2, . . . constitute a subspace.
Obviously the fun;tions of this subspace are characterized by the fact that
they are orthogonal to the functions cos(nx),n=1,2, . . .). Sometimes the
linear set leads té a subspace which coincides with LZ(Q). Thus adding all
the limiting functions to the set of all polynomials (which is obviously
linear) would constitute the class L,(Q).

Let there be given a separable Hilbert space H and one of its sub-~
spaces Hj. Then fromdefinition 2.3.4, there exists in H) a cémplete finite
or enumerable orthonormalized system uj,up, . . .,un. Take an arbitrary
function u, which has a finite norm but does not necessarily belong to Hj,

and comstruct its Fourier series in terms of the functions uj,up;, . . L

(2]

T au;a = (u,un). (2.9)
n=1

The sequence {un} may be composed of a finite number of terms,

In such a case the sum in (2.9) will contain only a finite number of terms.

From theorem 2.3.2, the series converges in the L, norm. Let its sum be

0

denoted by u, that is, u= I au. In fact,'a is the limit as N

of the functions

which belong to the subspace Hj, since the sequence {un}e Hy. Therefore,

u € Hy.  The function u is called the orthogonal projection, or simply the

projection of the function u onto the subspace Hj. The difference U=u-u is

orthogonal to the subspace H;.
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Therefore any function u € H can be represented as the sum of two
terms, i.e, u=ﬁ+3, of which the first is the projection of the given function u
onto the given subspace H; and the second one is orthogonal to this subspace.

The projection of u onto H; does not change when one system of functions
{un}, which is complete and orthonormalized, is replaced by some other complete,
orthonormal system {wn} in Hy.

A projection possesses an extremal property. If u e L,(Q) and u
is the projection of the function u onto a subspace ﬁl, then the norm of the
difference u=u-v where v is an arbitrary function from H;, becomes a minimum
for v=u. 1In fact

lu—v]2 = Jut@)]2 = |of? + |u-v]? (2.10)
since (u-v) € H; and thus (:;G—v)=0. It becomes obvious now that ”u—v”2
becomes a minimum at v=u; this minimum equals “3"2..

Consider all possible functions u € L,(Q) and their projections u
onto a given subspace H;. The differences U=u-u constitute some new subspace
Hy. Every function from H; is orthogonal to-every function from H; and it is said
that the subspaces 1} and H, are orthogonal. Further, any function u e Ly (R)
expands into a sum u=ﬁ+§, where u ¢ H; and u e Hy. This fact is usually formulated
by saying that L,(Q) is an orthogonal sum of the subspaces H; and H,, and each of
the subspaces H; and H; is the orthogonal complement of the other subspace.

The properties mentioned about L,(Q) in this section apply without
change to any arbitrary Hilbert space. If a given Hilbert space is the
orthogonal sum of the subspaces H; and H, then it can be written as

H=H @H

or Hy = HO® Hyp; Hy = HO H;.
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2.5 Application to Linear Elasticity

A typical differential equation in linear elasticity is of the form
Aw = £ in Q (2.11)

where w and f are members of some Hilbert space H(Q) and f is known. A
solution W sought for the differential equation (2.11) will also be required
to satisfy certain boundary conditions. A class of functions that satisfy exactly
all the boundary conditions of the problem and possess sufficient continuity so
that Aw is defined is known as the field of definition of the operator A and is
denoted by DA' In general, A is considered defined for a dense set of H(Q).

For a large majority of problems in linear elasticity, the operator
A has the following properties:
(i) linear; A(autBv) = cAu + BAv; where a, B are constants and u, V€ DA;

(ii) symmetric; (ég,y) = (u,Av) for all u, e D

1<

A’

(iii) positive defimnite; (Au,u) > 0 for all

e

£ DA’ where the equality holds
if, and only if, u = 0;

(iv) positive bounded below; (AE’B) > rz(g,g) for all u e DA’ where r is a
positive constant.

Let u and v be two functions in D One convenient measure of

A
closeness of these functions is the square root of the energy of their difference,

i.e. the energy norm of u-v. This is now defined.

Definition 2.5.1

For a positive definite operator é, the energy product of functions

uand v € D, over 2 is given by

A

[w,v] = (Au,v) = [ v Auda. (2.12)
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The energy norm |E| is defined as
lul = /G- | (2.13
The energy product and the energy norm defined above satisfy the
properties of an inner product and a norm presented in definition 2.1.1 and
theorem 2.1.1, respectively. Thus a measure of closeness of the functions

u,v ¢ D, is
g 4 A

lu-y| = VTu-y,u-y] = YAGE-v,0-v). (2.14)

The space D, may be incomplete with respect to the energy norm,

A

i.e. not all Cauchy sequences in D, converge to a function in D, in the energy

A A

norm. If so, a function u is defined to be a member of the space DA by the
following limiting process:

IEn_E -0 as n > o, (2.15)

wherelﬂlis a typical member of a sequence {gn} e D Thus, the space D

A’ A

is completed by including all the limiting elements. The completed space so

obtained is a Hilbert space and is denoted by H

A to emphasize its dependence

upon the operator A. The definition of the energy product in equation (2.12)

can be extended to all functions in H . :

A
, T .
[g,y]A = lim (égn,yn) = lim IQ ynégndﬂ, ULV € DA' (2.16)
n->e N>
The completeness definition 2.3.5 and theorem 2.3.2 can now be
rewritten as:
Definition 2.5.2
A sequence of functions uj,us, . . -y is said to be complete in HA

if for a function u with a finite energy norm and any >0 it is possible to

find a natural number N and constants oj,0y, . . L such that

u-(ajurtasust . oL, +a u )l Iu— Z a u < g. (2.17)

i
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Theorem 2.5.1

If an orthonormal sequence of functions uj,u,, . . sy is complete,

N

then the Fourier series iZ with a finite energy

of some function u e HA

1 A%
norm converges to this function in the energy norm. The coefficients a, are
given by

a, = [u,ui]. (2.18)

In this case there occurs the so-called Parseval equation

ful2 = = [u,u,12. (2.19)
A i=1
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CHAPTER 3

MIXED METHODS

In this chapter, a brief introduction to the theory of mixed methods
is presented first. Then the definitions and theorems given in Chapter 2 are
used to establish the convergence of these mixed methods. Since these methods
involve indefinite operators, their fields of definition have to be restricted
in order to define their energy products and energy norms. The procedure for
doing this is illustrated for a typical indefinite operator, and the resulting
energy norm is then used to prove convergence in energy and to establish an
error estimate. In the process the éompleteness requirements are also laid out.

A remarkably large class of problems in mathematical physics involves
equationsof the form

-Au-f = 0 (3-13)
Bu-g; = 0 on 8R; and B*Tu-g, = 0 on 3Ry, (3.1b)
where u=u(§) is a function defined on a bougded region R of En; dR is the smooth
boundary of R. The operator A is assumed to have the following properties:
(i) A is factorable, i.e. A=T*T, and
(ii) A is positive definite;
B and B* are linear boundary operators. Thus equation (3.1la) can be written as
~-T*T-f = 0. (3.2)

Here T is a linear operator whose domain D, is in a Hilbert space U and its range

T
in another Hilbert space V. The operator T* is the formal adjoint of T; its
domain DT* is in V and its range is in U. If the boundary conditions in (3.1b)
are homogeneous then, as the operator T* is the formal adjoint of T, the
following Green's formula holds:
(Tu,v)v = (T*v,u)U {for every u € U and v ¢ V} (3.3)
where ( , )Uland (¢, )V represent inner products in the spaces U and V, respectively

Through equations of the form (3.2), by using direct integral methods,

a collection of variational principles can be develbped, Oden [21],
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which generalize the classical ones existing in the theory of linear elasticity.
In many cases, bounds on the solution or some other quantity of interest can

be obtained even if the problem is not explicitly solvable.

3.1 Mixed Variational Principle

A mixed variational principle associated with equation (3.2) can
be developed by splitting this equation into canonical form, equivalent to
the following pair of equations:

Tu = v in R; and B(u) = g; on 3R;
(3.4)
T*v = -f(u) in R; and B*(v) = g, on 3R,
where dR;+3Rp=3R, and the linear boundary operator B (and B*) depends upon T.
For the non-homogeneous boundary condition of (3.4), T* is the formal adjoint

of T if it satisfies the generalized Green's formula

(v,Tu)V = (u,T*v)U‘+ (V’BU)VBR (3.5)

where GuBu)VaR denotes an inner product in the space V associated with the
boundary terms. The only difference between (3.3) and (3.5) is the addition
of the boundary term to the right hand side. The boundary operator B* is the
adjoint of B in the sense that

= %
<V’BU)V3R (u,B V)UBR' (3.5a)

In certain cases it is also possible to write equations (3.4) in
a generalized Hamiltonian form. Assume that there exists a Gateaux
differentiable, (Balakrishnan [43]X bilinear functional H(u,v), called the

generalized Hamiltonian, whose total Gateaux differential is of the form

SH(u,vin,w) = (=£(u),n) + (v,w) (3.6)

where n is the variation of u and w that of v. 1In equation (3.6), H(u,v)

is assumed to have the property that its partial Gateaux derivatives with
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respect to u and v, §H/Su and §H/Sv, respectively, coincide with the right hand

sides of'the canonical equations (3.4), i.e.

ﬁi&gﬁL):V; QH—(%‘l’—\’—)-=—f(ﬁ). 3.

Then the generalized Hamiltonian forms are analogous to those of analytical

dynamics,
§H
Tu = Sv
(3.8)
S§H
*y = =
T#v 5u

with B(u) = g; on 3R} and B*(v) = g, on 9R,.
The direct integral method can now be employed to derive a func-
tional for (3.4) or (3.8). Let W denote the tensor product space,
W = UxV.
Then elements A of W are the ordered pairs
A= <u V>T; uevU, ve V. (3.9)
The equations (3.4) can be put into a compact form (Oden [21])
P(A) -T =0 (3.10)
where the matrix operator P and [ are:
0 T= ~f (u)

- P = and T = . (3.11)
0 v

=]

Similarly the general boundary conditions can be written symbolically as

B(A) - IBR = (0 on 9R (3.12)

where 0 B* g2
B = s T = . (3.13)

Tl o] TR g

Denote the inner product of elements A € W=UxV as

(QI,AZ) = (u13u2)U+ (VI’VZ)Va (3014)
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and A =<uy v1>T, Ag=<uy v2>T are the ordered pairs.
A functional can now be constructed by integrating
the inner product of the residual of equations (3.10) and (3.12) and a

variation of an arbitrary element 3A in W, i.e.

]

J(u,v) = J() = [ {(B(A)-T] + [B(A)-T, 1}6AdR

l/2(Tu,v)V + l/2(T*v,u)U + F(u) - 1/2(V,V)V
+ 1/2(B>’<v,u)U,aR2 - l/2(Bu,v)VaR2 - 1/2(g2’u)U8R2

+ 1/2(g1,v)VaR1 (3.15)

Here

F(u) = (f,u)U. (3.16)

In computing the boundary terms in (3.15), it is important to realize that
both B and B* depend upon T, Moreover B(u(x))=0 1if X € dRp and B*(v(x))=0
if x € 9R; for the boundary conditions given in (3.4).
In the formulation of the variational statement (3.15) inclusion of the
boundary terms is analogous' to the boundary residual concept presented by

Finlayson and Scriven [8] and to the principle of virtual work.

Theorem 3.1.1

The functional J(u,v) of (3.15) assumes a stationary value at the
point (u,v) which satisfies the canonical pair (3.4), where ‘the operator P

is defined for some dense set DX of ‘the gpace w.

Proof:

. - - 174
Let the varied solution be u=utan and v=v+fw, where u,n and v,w € DA.

Substitute it into the expression (3.15) for J(u,v),
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J(ﬁ+an,§+8w) = 1/2(T(G+an),§+6w) + 1/2(T*(§+Bw),a+an)u + F(utan)
- 1/2(§+sw,$+3w)v + 1/2(B*(§+ew),ﬁ+un)UaR2 - 1/2(13(G+om),x7+3w)V,aR1

- (gz,u+om)u3 ~+(g1,V+BW)VaR1. (3.17)

Ro
Then for a stationary point of J(utan,v+Bw);

lim 8J(G+anz;) + 1im 3J(G,G+Bw} = Q
a0 do g0 9B

83 (u,vin,w)

n

[1/2(Tu,w), + 1/2(T*v,n)  + (EQ),n) + 1/2 (BRv,n)

= 1/20Bu,w)pp = (B2om) e 1+ [1/2(Tuw) 4 1/2(THv,m)

V3R] U3R,

- (G,w)v + 1/2(B*§,n)UaR2 - 1/2(BG,W)V3 + (gl,w)VaRl]

Ry

[(TG’W)V = (‘_],W)V - (BG’W)VBR]_ + (glsw)VaRl] + [(T*;,n>(]

+ (f(a)’n)U + (B*;,n)UaRZ - (gz,n)UaRz]

[(TAP+E @) ), + (BR-g2,m) 1+ [0V,

- (Bu-gp,w) 1=0 : (3.18)

V3R,
Since the variations n and w are arbitrary, then from Lagrange's lemma
T*v + f(u) = 0; B*v = g> on dRs
Tu - v = 0; Bu = g1 on 3Rj.

Hence the equations obtained are the same as equations (3.4),

and therefore the sgolution at the stationary point (G,;) does satisfy the

canonical pair (3.4).

Boundary Conditions

Rewriting equation (3.5) by splitting the boundary inner product

= * *
(Tu,v)v {(u,T v)U + (B v,u)UaR2 + (Bu,v)VaR1 (3.19)

the variational statement in (3.15) can be rewritten as

J(u,v) = (Tu,V)V - 1/2(V,V)V + F(u) - (Bu—gl,v)VaR1 - (gz,u)UaR2 (3.20a)
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= (T* - Fygm
or J(u,v) (T v,u)U l/2(v,v)V + F(u) + (B*v gz,u)UaR2
- - *
(Bu gl’V)VaRl + (B v’u)vaRl' (3.20b)

The equivalent forms of J(u,v) in equations (3.20a) and (3.20b)
provide some flexibility as to how boundary conditions can be incorporated.
In (3.20a) the boundary integrals are extracted from the second of the
canonical pair (3.4) (the equilibrium equation), and in (3.20b), from the firs;
of (3.4) (the constitutive-compatibility combined equation). This idea shall
be explained later in detail (Chapter 5 on boundary conditions).

It is worthwhile noting that under the assumption Tu=v being
exactly satisfied, the functional (Ju,v) in (3.20a) reduces to

I(u) = 1/2(Tu,Tu) + F(u) - (gz,u)aR2 (3.21)

This is the functional for the principle of minimum potential energy, the
completeness, energy convergence and bounds for which are well established,

Mikhlin [18].

3.2 Projection Operators

The orthogonal projection, or projection of a function into
subspaces was discussed in Section 2.4. The method of dfthogonal projections
can also be used for estimating errors in approximations of linear boundary
value problems, Mikhlin [18]. The idea of projections of linear operators
has been exploited by Reddy and Oden [30] in establishing convergence
rates for the basic variables involved in the mixed methods.

In general, there exists a number of possible projections
for a given operator, e.g., T*T. The four important projections are cited

here:
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(1) Primal Projection (equivalent to the conventional Ritz=Galerkin approximation)
(ii) Dual Projection (similar to the Equilibrium Finite Element method)
(1ii) Primal-Dual Projection
. } (both together lead to the mixed formulation)
(iv) Dual-Primal Projection
Consider two linear vector spaces, U and V, defined over the same
field, and let {¢m}, (m=1,2, . . . M) denote a set of M linearly independent
elements in U and {wn}, (n=1,2, . . . N) a set of N linearly independent
elements in V. The sets {¢m} and {wn} define an M-dimensional subspace ¢M € U and

an N-dimensional subspace Y _ € V, respectively. The Gram matrices

N
associated with the subspaces ¢M and WN are
Gij = (¢i,¢j)U; Hij = (wi,wj>v (3.22)

which are not singular since {¢m} and'{wn} are linearly independent and the

biorthogonal bases can be computed directly

i i
=G6l¢,; ¢ = H Ly, . (3.23)
¢ 13%5° ¥ 1373

From equations (3.22) and (3.23), it can be seen that the bi-
orthoganality conditions are
(¢.,¢j) = Gq; (w.,wj) = 6?- .(Gq=l,'when i=j and zero otherwise). (3.24)
i U i i 14 i i
Note that there is no relation between the spaces U and V, and the biorthogonal
‘bases in ¢,k and WN are completely independent, unless some additional infor-

M

mation is provided.

Definition 3.2.1

The orthogonal projection operators I:U~+d,,  and P:V+WN can now be

M
defined in the following sense: if u is an arbitrary element in U and v i1s

an arbitrary element in V, the projection u of u into subspace @M and the

projection v of v into subspace WN are of the form
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[=9]
li

M(u) =

by (3.25)

[ ac <

ai¢i and P(v) = v

i=1 i

where ai = (u,¢i)U and bi = (v,wi). (3.26)

Now let U be a Hilbert space consisting of functions u defined on
a compact, convex subset R of E® with a smooth boundary 3R, and let T be a
bounded linear operator mapping U into another Hilbert space V, and T*:Vv > U
its formal adjoint satisfying equation (3.5) while B* and B are their boun-
dary operators which satisfy equation (3.5a). Consider the cases in which
@M € DT’ the domain of T, and WN € DT*' In general, T(@M) is not a subspace
of WN’ and T*(WN) is not a subspace of ¢M.
Operators T and T* can be approximated by projecting T(@M) into

Y . and T*(WN) into ¢ This projection process leads to rectangular

N M*

matrices of the following type:

PT(8): PT(s) =my)  (Dual-Primal)  (3.27)
MT*(¥y): IT*(y,) = n§¢j. (Primal-Dual) (3.28)

Here P:V+WN and H:U+®M are projection operators defined by bases ¢l and wl, and

i ot -
my o= (Toysb)ys mp = (TR ,6,),. (3.29)

Similar projections can also be obtained for B and B*.

3.3 Mixed Galerkin Method

Consider the problem of equation (3.4) where f is a function of

spatial coordinates x only. That is,

T*v + £

0 (3.30)

0. 4 (3.31)

Tu-=~ v
Choose linearly independent sequences of coordinate function ¢1,¢5, ¢M

€ Uq for approximating u and ¥y,¥o, . . . wN e V0 for v over the same
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domain R which are continuously differentiable in the closed domain R=R+3R
as many times as required for the specified problem, and satisfy all the

boundary conditions of the problem. Then the functions

w, =
(3.32)

where a and bi are arbitrary constants, also satisfy all the boundary
conditions of the problem.

In the mixed Galerkin method, the coefficients a, and bj are deter-
mined from the requirement that the residual of equation (3.30), is made
orthogonal to the coordinate functions for wy and the residual of equation (3.31)
is made orthogonal to the coordinate functions for v_ over R. This then

N

leads to the following system of algebraic equations:

jgl bj(T*wj,¢i) = —(f,¢i); i=1,2,3, . . . M - (3.33)
M N
jil ay(To,s9y) - kil byChyby) = 03
i=1,2,3 . . . N (3.34)
which consists of (M+N) equations with (M+N) unknowns <ai’ i=1,2, . . . M; ‘
b, 3=1,2, . . ).

For equations (3.30) and (3.31); the operator T and its
adjoint T* are defined for sets which are dense in some separable Hilbert

spaces v and VO, respectively, and the sequences {¢M} e D and'{wN}s

T

DT* are complete, The derivation of equations (3.33) and (3.34) is

the same as the estimation of T and T* by projection operators in the previous



24

section, equations (3.27) to (3.29), except here the baées are not bi-
orthogonal. Furthermore, equations (3.33) and (3.34) would be identi-
cal to those deriyed from the functional J(u,v) of equation (3.15), since
T* is the formal adjoint of T.

Before the completeness and the convergence of mixed methods are

presented, certain definitions and concepts have to be introduced.

3.4 Concepts and Definitions

The differential equations and boundary conditions in equation
(3.4) can be put into matrix forms somewhat similar to equations (3.10)

and (3.12) as

10 T*{{ u +f 0. B*| |u g1
= in R and = on 3R (3.35)
T -1 \ 0 ~|B O v 82
or AM = p in R and BA = g on 3R (3.36)
where 0 T* 0 B*
A= and B = (3.36a)
T -1 B O

which are linear operators,

u g1
A=9 08"
v 82
and +f
E =
0

where A forms ordered pairs <u v>T just like in equation (3.9).

Definition 3.4.1

The class of functions that satisfy all the boundary conditions of
the problem (3.35) and possess sufficient continuity to make the evalua-~

tion of AA possible is known as the field of definition of A and is denoted
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by WA. For example if A=T*T were a fourth order differential operator, then
T and T* would be second order differential operators and the functions u and

v in WA would have continuous second derivatives in R and would satisfy the

boundary conditions in (3.35) on 3R.

Definition 3.4.2

The operator A is called symmetric if for any elements A and A

from the field of definition of this operator WA’ the following identity

is wvalid:

Ah,0), = (4,AD, (3.37)

Theorem 3.4.1

Operator A as defined in (3.36a) is a symmetric operator.

Proof:

For é and Aew,, form the product

A
Aar,p = (Trv,d)  + (Tu-v,9)
A
= *v i 3 - 3
(T v,u)U + (Tu,v)V (V,V)V.
Using equation (3.5)
= _ i 5 3 *% - 5
(ah,0) (v,Bd) .+ (T8,v)  + (¥,Bu) .+ (T*3,u) - (v,¥) .

A
Since A and A satisfy the same boundary conditions, then

A = X7 G~ =. A
(éﬁ,/_\)wA (T*¥,u), + (T3-9,v) (I_X,AJ_\)WA

Hence, as long as T* is the formal adjoint of T, the operator A is symmetric.
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In order to define a norm in the product space , an inner

“a
product has to be introduced. In the following it is assumed that the

approximations and v,, given in equations (3.32) are to be used for
UM

N
u and v, respectively. Then when the Mixed Galerkin Method is applied

to equations (3.35), the second equation yields:

(vN,wj)V= (TuM,wj)V; j=1,2, . . .,N (3.38)

M
where uM = I

. ai¢i;¢i € U and wj e V.

1
This equation may be best understood by thinking of TuM as a known

function f. Then if the wj are orthonormal, equation (3.38) reduces to bj=

(f,wj)v, i.e. the Fourier coefficients. Further, if the sequence of functions

{wN} is complete and Tu, € V, then v

y can be made arbitrarily close to TuM,

Lorch [17].

However, in formulating an energy product for the mixed method,
another question arises and that is:i is TuM=O when vN=0? This may be
answered by noting that for vN=O (which implies that the coefficients bj=0),

equation (3.38) yields

(TuM,wj)V = 0, for each j. (3.39)

Then, if the sequence of functions {wN} is complete and if TuM is restricted

to be in Vv, TuM=0 necessarily, Lorch [17], This is now used to define a

W
A

restricted field of definition D, for the operator A.

Definition 3.4.3

The restricted field of definition DZ for the operator A is

defined as the product space U x V where the restricted spaces U and

~

V are subspaces of U and V, respectively. A sequence of functions {¢M} e U
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M

are used for the approximation of u, i.e. Uy = Z a.$¢,. Then the space Vv
i=1 11

may be defined somewhat arbitrarily provided it includes TuM. That is,

there is a minimum requirement that TuM € V. Thereafter, any sequence of

N
functions {wN} used for axproximating v, i.e. vy T ‘Zl b_wj, are assumed to
J=

be complete and to belong to VvV, i.e. {wN} € V. Conversely, any sequence
{wN} € V restricts the choice of {¢M} € U. Such restricted sequences {¢M} then

constitute the restricted subspace U, Furthermore equations (3.38) are

always to be enforced and therefore

(VN,VN); = (TuM,vN); (3.40)

W
where N and w, now belong to the restricted space DA.

Now the energy product can be defined for this restricted space.

Definition 3.4.4

The energy product is defined as

0 T* uy
(A4),4) = IR <up  vp? . dr
T - \A]

[A])ﬁz]

(3.41)

(T*Vlguz)& + (TUI’VZ); - (Vl,Vz);

where Aj=<uy v1>T and Ay=<up v2>T € DZ.

(Note: If Tu=v is satisfied exactly it can be shown that [A,A]=(Tu,Tu),

i.e. the‘above energy product is twice the strain energy).

The energy product so defined has to satisfy the properties

of an inner product in definition 2.1.1. The properties (i), (ii) and (iii)



28

follow from linearity and symmetry of the operator A whereas the property
(iv), which follows from positivity of the inner product, is not as obvious.
This is proved here.

The energy product in (3.41) can be rewritten as

[0,0] = (T#0,8)> + (T8,9)7 = (#,9)7; {4 ¢ DY = 0xv}. (3.41a)

>

Assuming homogeneous boundary conditions; therefore‘from (3.3)
(T%7,8) 7 = (Td,9)

and substitution into (3.4la) yields
[A,A] = 2(T8,9)° - (9,9)". (3.41b)

Since A € DZ and equation (3.40) is satisfied, replacing (Tﬁ,v); by (V,V);

in (3.41b) leads to

. (3.42)

The right hand side of (3.42) is always greater than zero and equals zero

w
A

if, and only if, ¥=0. Further, for any A in the restricted space D,, if
¥=0 then also Tia=0 and it follows from the homogeneous boundary conditions

that ©=0.

Hence; the positive definiteness of the mixed operator A, when
every A is chosen from the restricted space DZ, can be ascertained as
[A,A] > 0, where the equality holds if, and only if, A= 0. (3.43)

Further it is bounded below as

[A,A] > v2v]|? (3.43a)

where v is a positive constant. This then proves that the property (iv)
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of an inner product in definition 2.1.1 also holds.

The energy norm can now be defined as
[A] = VIEAT; {2 e D))

and the following theorem holds.

Theorem 3.4,.2

If the energy norm is defined as IQ' = V[ﬁ,ﬁ] and the conditions

of the energy product in definition 3.4.3 are satisfied, i.e. A is chosen from

w

the restricted space DA’ then

(i) IQI > 0, the equality holds if, and only if A = 0;
(ii) Iaﬁ' = |a[ |Q|, a = constant;

(iid) l[ﬁlﬁz]l < |ﬁ1| IQZ' (Schwarz inequality);

(iv) Iél + QZI < léll + IﬁZl' (triangle inequality).

Proof (i):
This property of the energy norm follows from the positive

definiteness of the energy product.

Proof (ii):
From linearity of the operator A and substituting Aj;=Aj=al in
equation (3.38), where a is constant
[aj_\)a/_\] = 32[{\_’&]0

By taking the square root of both sides

|an] = VTak,ak] = |a| [a].

Proof (iii):

Consider an arbitrary positive real number X and construct the
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non-zero function Aj;+AA,. The energy product of this function, by using
linearity and symmetry of the operator A yields

[A1+Afg, 81 +A0,] = [A1,05] + 2% [Ay,Ap] + A2[Ag,A,].
By viftue of property (i)
[A;+Adg, A+ A Al > 0. (3.44)
Therefore

[A1,03] + 2% [A1,A,1 + A2 [Ap,A,] > 0. (3.45)
The left hand side of (3.45) is quadratic in A, and all its values are
non-negative. Hence it follows that its discriminant is less than or equal
to zero |
[A1,821% = [A1,01]  [A2,82) <0
or [él,ﬁzlz < [A,01] [Ao,A5]
Taking the square root of both sides yields the required inequality

[[Ars82]] < [ar] JA2].

Proof (iv):
If A=1 in proof (iii), the following results:
[AyHho, A HAo] = ([A1LA ]+ 2[A3,8,] + [Ap,A,]
or [A1+a212 < |Ay)2 + 2| 141,051 + |A,]2.

Substituting the Schwarz inequality ’[él:ﬁzll < lﬁll IQZl;

A1+, ]2 < Ié1|2,+ 2fa1] |az] + [4,)2

or [a+0212 < (Jag] + Ja22.



31

Taking the square root of both sides gives the required inequality
Iaa+ia] < faa] + Jazl.
Similarly it can be shown that

[A-no) < [aq] + Jas].

3.5 Convergence of the Mixed Method

The mixed variational principle of equation (3.15) for homogeneous
boundary conditions, i.e., g;=g,=0 in equations (3.4), in lieu of definition
3.4.3 of the energy product, can be rewritten in the following form:

F(A) = (Ah,A) - 2(p",A) (3.46)

where ﬁ e D From theorem 3.1.1, let §O=(u0:V0) satisfy the canonical pair

w
é.

(3.4) for which the functicnal F(éo) assumes a stationary value, and has a

finite value in general. Then the matrix form (3.36) becomes

Ahg = p. (3.47)
Substituting for p in (3.46),
CFQ) = @10 - 20,8 = [0,0] 208,41 (3.48)
Adding and subtractiﬁg [Ag,Ap) from the right hand side of (3.48)
F(A) = [A,A] = 2[Ag,AT + [Ag,Aol - [AgsAo]
which can be formally shown to be
F(A) = [A-Ao,A-Ag] = [Ag,hpl. (3.49)
Now if A=Ay the exact solution, then
F(fo) = ~[Aoshol. (3.50)
Let d, some real number be the exact statiomary value of the functional.
Therefore

~d = F(dg) = -[Ag5hol. (3.51)
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In general, the functional F(A) does not lead to a minimum problem.
However, as a consequence of the conditions imposed'on the energy product, it's
positive definiteness provides the sufficient condition for the minimum.

Therefore the following minimum functional theorem is presented.

y

Theorem 3.5.1

Let A be a symmetric and indefinite operator as defined in equation
(3.35) and further that this equation has a solution. Then of all the values

which are given to the quadratic functional

F(A) = (Ah,4) - 2(pT,0) (3.52)

by all possible functions from the restricted field of definition DA of the

operator A, the actual minimum occurs only for the solution of equations

(3.35).

Converse:

W .
If there exists in DA a function Q=<u v>T which also satisfies

the conditions of the definition 3.4.3 and gives the minimal value to the

functional (3.52), then this function is also the solution of equation (3.35).

Proof:

Assume that A,A) € D" and A=<u vs L and Aj=<p n>T. Set A-Ap=Aq

A

where Ag is the solution of equations (3.35). Thus A=Agp+A;. Therefore

from linearity and symmetry of the operator,

F(A) = [A,A] - 2(p",0)

T .
(A(Ao+Ay) s Ap+A1) = 2(p7,Ap+Ay)

T T
(Agshgl = 2(p",Ap) + 2(AAg-p A1) + [Ag,44]

F(ho) + 2(Ahg-p,21) + [Ay501].
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But AAp-p=0 by hypothesis. Hence
F(0) = F(Ag) + [A1,0].

Now from positive definiteness of the energy product
[A1sA1] > 0, where the equality holds if, and only if, A;=0.
Thus F(A) > F(éo) with equality only valid if A;=0 or A=Aj. Hence the
functional attains its minimum value when §=§0 and from (3.49)
min F(A) = F(ho) = ~[Ag.ho] = =|Aq|2.
The converse follows from theorem 3.1.1. The functional
F(A) assumes a stationary value at A=<u v>T which satisfies the equation

(3.35) and further, this stationary value is a minimum when the conditions

74

of the definition 3.4.3 are satisfied. Therefore the function Ap € DA

which gives the functional in (3.52) the minimal value is also the solution

of equation (3.35).

Theorem 3.5.2

The approximate solution ég=<ﬁm §n>T € DZ of equation (3.35)

constitutes a minimizing sequence for the functional (3.52) provided that
equation (3.35) has a solution with finite energy and that the conditions

of definition 3.4.3 are satisfied.

Proof:
From theorem 3.5.1 let d be the minimum value of F(A), i.e.

d = min F(A) = -|no]2.

Let the approximation Q$=<Gm §n>T be given by

(3.53a)
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n ) n W - - R , ,
Therefore F(Am)zd, since Am £ DA and um and vrl are linear combinations of

the sequences {¢m} and {wn}, respectively, which enter into D"

% The quantity

d is the exact lower bound of the function F(Q). If € is an arbitrary small
positive number, then, by definition of the exact lower bound, there exists a

function A € DK such that d<F(§)<d+%. The task now reduces to choosing natural

numbers m and n and constants Uy,ls, « . ., ﬁm and ¥y,¥, . . ., ﬁn such that
they satisfy the inequality
PO - F(A) < £, (3.53b)
Using equation (3.49) this inequality reduces to
[A AO, —AO] - [A AO,A Agl < Eu (3.53¢)
Consider the left hand side

[An-hosA2-0o] = [A-Ro,A-nol = [A™g|2 - [A-no|?

~h ~ ~n ~
=(ag-tol + [a-ol3 (lan-nol = [a-1ol3. (3.54)
By the triangle inequality, property (iv) of theorem 2.4.2
[A7-8o] < |A2-A] + [a-no] -
I~n

AP-h].

Therefore |§§—§0| - |5—§0| <
Substitution into (3.54) yields
[yhosbo-to) = [h-foud=o] < {[ap=tol + [a-nol} |Ag-a].

Select m,n and coefficients uj,up, . . . U s VisVa, .. . v such that

A A < —n
-m -

The value of k will be chosen later. Also from the triangle inequality

|A2A] < A% + 2] .
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therefore  [AM-Ao| + IA-nol < |22] + [a] + 2|n,].
Now | aof < I8l + £
and [An-Ro.An-fo] = [8-Ro,A-Ro] < (2[A] + 2[ao] + <3 £, ©(3.562)

By taking k such that
1,47 1
E{zlél + 2IQOI +'%} <9

inequality (3.54a) reduces to (3.53), i.e.

“n “n N N 3
(A~hos2 ~Aol = [A-Rg,A-Rg] < 3.
Therefore F(QE) - F(Q) < %u
Hence, it follows that
n > 3
d < F(/_\m) s F(p) + 7 < d + €. (3.55)

Let Qg be the solution obtained by minimiéing the functional F(A) in (3.46).

Then
n n
d< F(A)) < F(AD) (3.56a)
or d< F(A)) s d+e. (3.56b)

n
Thus by letting €+0, the functional F(ém) converges to the exact value d,
. n_~- =T, . . ..
i.e. the sequence A =<u v > 1is minimizing.
-m m n

Rewriting inequality (3.56b) as
n
0 < F(ém) -d < e,

and using equations (3.49), (3.51) and positive definiteness of the energy

product, this inequality reduces to

[Ay-RosAn-hol < e,
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n
or |80l < e
Again as g0, therefore

[A%-nq] » 0. (3.57)

-m -

But from equation (3.42)
n n - -
(A Rosh ~Rol = (v =vq,v =vo) .
Therefore "Qm-vou >0 (3.58)

Hence convergence in energy also implies the mean square convergence of the approxi-
mating stress Gm to the exact value vg.
In order to show the mean convergence of the displacement, consider
a free vibration problem for which the equation (3.35) takes the form
0 T=* u 1 0 u
= w2 (3.59)
T -1 \ 10 0 v

where w is the frequency of vibration. Alternatively,

A\ = ABA. (3.60)

Here A is a symmetric operator as before, w?=\ and §=[% 8}.

Let Ay and Ag=<uyg V0>T be an eigenvalue and its eigenfunction,
respectively. Then
ééo = Xogéo, (3.61)

and substituting into the energy product (3.41) yields

[Ag,hp) = AO(BQO:QO)DW- (3.62)
A
But (§QO,AO)DW = (UOsUO)&- (3.63)
. A
[Ag,sAgl
Therefore Xo (3.64)

(UOsUO)U

~
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Since the energy product [Ag,Ap] represents strain energy, equation (3.64) is
similar to the Rayleigh's quotient. Further, from the positive definiteness
of [Qo,éo] and observing that (up,up) 1is always a positive number, Ay is also
a positive real number.

In general for any A € Dx,
[AA]
A= = (3.65)

(u,u)

the equation (3.64) can be rewritten as

Let Ag=<uy v0>T be the exact solution and consider the energy product of the
difference QE—QO, where Qg and Ay satisfy the same boundary conditions. Then
from symmetry of the operator A
n n n ,n n
[ém—ﬁo aém"{\_o] = [ém’ém] + [40’]_\0] - z[ﬁo,ém]-
Using equations (3.62), (3.64) and (3.65)
AR n = - - -
[—m—éo,l_\.m—ﬁo] = )\(um,um)U + >\0(U.O ,UO)U - 2)\0(1,10 ,um)U.
Therefore from equation (3.42)
(vn—vo,vn—vo)v = A(um,um)g + Ao(uo,uo)& - ZAO(UO,um)&.
Because of the definition 3.4.3, the problem becomes that of a minimum,
Therefore A>3 and replacing X by Ay yields the following inequality:
Ao(um—uo,um—uo); < (Vn‘VO’Vn“VO);
- T
ox woll3_-uol < ¥ ~vo|
Since wy is not zero, from (3.58) also

| am-uou + 0. (3.66)

Hence convergence in energy also implies the mean square convergence of the
approximation Gm to the exact value ug of the displacement.
The following theorem can now be stated for convergence of stress

and displacement when the approximate solution converges in the energy sense.
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Theorem 3.5.3

w

If the approximations Q$=<G §n>T € DA for the displacement and stress

m -
converge ;n the energy sense, i.e. l§$—§0l+0 as m and n + <, then it follows that
the displacement Gm and stress ;n converge to the exact values ujp and vy,
respectively, in the mean square sense.

So far the energy convergence and the convergence of displacement and
stress have been discussed in general terms. Now in order to establish the
completeness in energy, it is sufficient to reiterate the requirements in

definition 3.4.3. 1In defining the restricted space DZ’ it was required that

Tﬁm € V. Also the sequence of functions {wn} used for approximating v, i.e.

1Y

- n - ~
vn = _Elevj must belong to V. Thus, when the Mixed Galerkin Method 1s applied
J:

to equations (3.35) using .the approximations in (3.53a), the second equation yields

Il ~g

m
(wi,wj>vj = Z

,Té)u.; i=1,2,.. . ., n. 3.67
1 I T n (3.67)

J

~

Assuming wj ¢ V are orthonormal for convenience, i.e.
1 if i =3
W,s¥.) ={
o 0 if i # 3,

equation (3.67) then reduces to

(wi,T¢j)uj = (Tﬁm,wi). (3.67a)

\

These are the Fourier coefficients for Tﬁm with respect to the orthonormal se-
<3mnoe{¢&}e V. The equation (3.67a) can also be obtained by minimizing the

L, norm ”Tam—Gn”, Mikhlin [18], given by
HTGm—Gnﬂz = fR (Tﬁm-Gn)ZdR, (3.68)

with respect to the unknown constants vj. This represents the mean square

convergence of ;n to Tam and plays an important role in defining completeness

in energy of the mixed methods. Unless, for any Tam € V the set of functions
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{y_ } is complete for convergence in the mean square sense, the energy product

in definition 3.4.4 is not positive definite. Therefore, the mean square con-

n m
i f e. v_ = u u = ;
vefgence of the approximation of v, i.e v jilevj to Tum (um i£l¢iui, ¢i
€ U) acts as a prerequisite for completeness in energy.
3.6 Completeness
The sequences of functions ¢;,¢,, . . . and Y1s¥2, . . . are said

W
A

to be complete in D, if for a function A with a finite energy norm and any

€1>0, €2>0, it is possible to find positive integers M and N and constants

01,02, « « & aM; B1sB2s « .« . BN such that the following inequalitieé are
satisfied:
(1) ”TLLM-(8111)1+82\1)2+ .. .+BNwN)|I<eZ

GD) |-ty <ex
M

>T and GM= L a.d.,

- N
JI%50 Yy iE B. Y

T N - =
where A=<u v>", I_\M=<uM v Pivi

N

The first inequality (which comes from the second of equations
(3.35), the constitutive equation) implies that the approximation of the stress
- N
function v, i.e. v = z Biwi for finite N should contain all the stress modes
i=

that correspond to strain modes present in the strain TuM obtained from the

displacement approximation uM, and only then éﬂ will converge to é in energy.

3.7 Estimation of Error in the Energy Product

n w
It was shown in Section 3.5 that the mixed approximation Am € DA

of equation (3.53a) does converge in the energy sense. Therefore it is desir-
able to seek some estimate of error in the energy product (or strain energy).
From equation (3.41)
* a -
4] T Um UO

<G -u —-Vn> . dr
IR m 9 Vn 0

T -1 v Vg

[ -Rosn-1o]

i

-_ *—_ -~ —— —_ ~— __ —_ -
(um ug,T (Vn vo))U + (vn vO,T(um uo))v (vn VoV VO)V (3.69)
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[

where Ap=<ug V0>T is the exact solution. Consider homogeneous boundary

conditions. Therefore from (3.3)

a - *y — ~ = (v - u - ~
(um ug,T v vo)U (vn vo,Tum uo)V
and reduces equation (3.69) to
n n I - Y .
[ém~ﬁo,§m—§0] = 2(vn vO,Tum uO)V (vn v,V VO)V. (3.70)
But from (3.42)
(vn—VO,T(um—uO))& = (vn—vo,vn-vo);.
Substituting this into (3.70) yields
n n _ s T -
(A -RosA ~hol = (v _—vo,v_-vp)o.

Therefore, when the conditions in definition 3.4.3 of the energy product
are satisfied, the error in the enérgy product is given by the mean square

error in the stress v;
[An-Ro.An-ol = [[v ~vol2 (3.71)
and the error in the energy norm as
|A0-2ol = [V ~vo - (3.72)

Perhaps it should be noted that if the second of the matrix equations(3.35) is
satisfied exactly, the following are obtained for the energy product and
energy norm:

[ sA2-Ro] = (AGE_~ug),i ~ug) = || T4 ~Tuo|2,

and |5 -uo| = /AG -up),5 ~up) = | T5_~Tu| .

The last two equations can be recognized as the errors in the energy product
and the energy norm, respectively, as one would obtain in the Ritz method

where A is a positive definite operator as in equation (2.11).
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3.8 Extension

It can occur that for some functions f € W there does not exist a func-—

W

N that will satisfy equations (3.35).

tion A iﬁ the restricted field of definition D
Further, it is important that an approkimation be so chosen that only the
kinematic boundary conditions are required to be satisfied. Such situations
arise in the majority of problems in continuum mechanics. The governing
differential equations of the type in (3.35) are derived under the assumption
that the load f is continuous. This then requires that the field of defini-
tion of the operator A be the totality of functions u and v defined over
R=R+3R that possess continuous mth derivatives and satisfy all the boundary
conditions of the problem on u and v. Here m is the order of derivatives in T.

17
Thus if f is continuous then there exists a solution in DA but if £

is discontinuous, no solution can be found in D This difficulty can be

74
Al

overcome by considering limits of functions that lie in DZ. Then it is possible

to formulate the functional F(Q) in such a manner that a generalized solution
of equations (3.35) is obtained. Just as a discontinuous load may be con-
sidered as a limit of a sequence of continuous loads, so functions with

. . th . . . T
discontinuous m derivatives are introduced that are the limits of sequences

. . . th . . . .

of functions with continuous m derivatives. Thus it can be said that amongst
the new set of functions lies the solution (or generalized solution if it is

not in DZ) of equations (3.35) for any f ¢ HZ. These ideas are now developed.

Using equatioh (3.5), the first term on the right hand side in the

energy product of equation (3.41) is replaced by

(T*vl,uz)& = (VI,TUZ); - (VI’BUZ)V8R°

The boundary term is then deleted and the modified energy product in the

symmetric form, denoted by [ﬁl’ﬁzl is given By

A,
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[QI,QZ]A = (Vl,TuZ); + (Tul,vz)& - (Vl,Vz)&. (3.73)

T T
In which Ay=<u; wv;>" and Ap=<up; vy> ¢ DZ. The conditions of definition 3.4.3

are still required to be satisfied so that the positive definiteness holds.
The energy product in (3.73) also satisfies the properties of an inner product

(definition 2.1.1). The energy norm is now defined as

|Al, = YTA.AT, (3.74)

and also satisfies the axioms of a norm presented in theorem 3.4.2. The space

DZ may be incomplete with respect to the energy norm, i.e. not all Cauchy

W
sequences in ﬂZ converge to a function in Di. If this is so, DA is completed

by defining A to be a member of the space if
[A2 - A] >0, asm> = and n>w. (3.75)

n_ - - T W, - = . . .
Where Am=<um vn> € DA since um and vn are linear combinations of the

The com-

sequences {¢m} and {wn}, respectively, which are in DZ.

pleted cross product space so obtained is denoted by HZ where the

subscript emphasizes the dependence on the operator é. The

energy product in (3.73) is only defined for DZ but may now be extended for

all functions in HZ;

[Ai,Az] = lim {(v, ,Tu, )~ + (Tu,_,v. )~ = (v, ,v_. )~} (3.76)
A | 1n 2m v Im’ 2n v In” 2n v
n->ro
where Aj=<u v >T and A,=<u v >T € Dw. Thus the energy product and
- 1m in -2 2m 2n A
the energy norm have meaning for a function Ae HZ.

The field of definition of the functional F()) in equation (3.46)

can now be extended from DZ to HK and theorem 3.5.1 becomes:
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Theorem 3.8.1

For a symmetric and indefinite operator A as defined in equation

(3.35), of all the values which are given to the functional
T
F(A) = [A,A], = 2(p",0) (3.77)

by all possible functions A in HZ which also satisfy the conditions in
definition 3.4.3 of the energy product, the minimum occurs only for the

solution of equations (3.35).

Proof:

According to theorem 3.5.1 if equation (3.35) has a solution A in

DZ, this solution uniquely determines the minimum value of F(ﬁ) in DZ. It
will be shown that the minimum value of F(ﬁ) in the wider class HZ is not

altered and that the functions u and v only give this value.

W and d that in,HW.

Let d denote the minimum value of F(A) in DA "

/N

Then as HZ includes DW d d.

A’

Assume d < d.. Then there exists a function §=<G §>T € Hw such that

A
F(R) < d, i.e.
- - = T - - -
F(B) = [A,8] - 27,0 = |A]2 - 2(£,0) < d.
n W . n T w
But as A ¢ H, then there exist sequences A =<u_ v > € D, such that
- A ~-m m n A

|An—ﬁ|+0, Therefore from theorem 3.5.3 ”u —ﬁ”+0. Thus IAn|+|K| and (f,u )~
-m - m -m! - - m
(f,u). Therefore for sufficiently large m and n, F(@) and F(é;) differ by

an arbitrary small amount and it follows that F(ég) < d. This is impossible

n ——
as Am € DZ. Hence the contradiction shows that d=d.

To show that the minimum value of the functional is unique assume

W

that E £ HA also minimizes the functional. From the proof of theorem 3.1.1,

if the boundary conditions are homogeneous, equation (3.18) reduces to

[(T*v—f,n)& + (Tu—v,w);] = 0 (3.78)
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W
where u,n and v,w € DA

, and n and w are arbitrary variations of u and v,

regspectively. Equation (3.78) can also be written as

[A,A] = (pT,A) (3.79)

~

where A=<n w>T. If A is set equal to A, i.e. u=n, v=w, the equation (3.79)
becomes

[A,0] = (pT,0). (3.80)

Equation (3.79) is also valid for any function in HX. In fact if A € HZ

4

~ ~ . . ~ T A
A such that IQ—Q;|+O, "u—um"+0 and [Q,Q;]=(B ,Qg).

“n
then there exists Qm e D

Proceeding to the limit gives equation (3.79) which is also valid for

arbitrary functions in HZf Thus

(AR = (p7L0). (3.81)

By repeating the proof of theorem 3.1.1 with F(A) expressed in

(3.77) the relation [5,&] = (ET,A) is obtained where A=<n w>¢ is now an
arbitrary function in Z. Putting §=E and A separately yields
' - T
[A,A} = (p L, 0) (3.82)
- T
and (A, Al = (7,0 (3.83)

This implies that E=§. Therefore the minimum value of the functional and

4

which gives this minimum are the same as in D, and from

the function from H A

e =

theorem 3.5.1 such.a function is also the solution of the equations (3.35).
If the minimum of the functional F(A) in (3.77) is given by a

, . . W . . . ' .
function A that is not in DA’ then this function is known as a generalized
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solution of equation (3.35).
To illustrate these concepts, consider the example of uniaxial tension
of a bar with uniform cross-section. The differential equations are expressed

in the matrix form as

0 -D u f (%)
1 = . (3.84)
D -gx) U 0
and the boundary conditions are
u(0) = 0, P(L) = 0 (3.85)
where D=%;; P is the axial load; u, the elongation; f(x), the distributed
axial load and EA, the axial stiffness. For this example, the operators
A, T and T* and A, p are given by
0 -D T T
A= IRE T=-T*=D; A=<u P>" and B=<f(x)0> .
D -Ea
Now the energy product in (3.41) is given by
L PPy
[Al,éz] = fo {- UZDPl + P,Du; - FA }dx. (3.86)

Integrating by parts the first term on the right hand side yields
P,P
1, L 152
[A1,82] = - U2P1|0 + fo {P1Dup + PpDuy - —5—ldx,
and deleting the boundary term gives the modified, symmetric energy product
of (3.73);

PPy

L
[ﬁl’/_\2]A = IO {PIDU‘Z + P?_Dul - —E-A—-}dx. : (3.87)

The functional F(A) in (3.77), for the example considered, becomes

L P2 L
F(A) = jo {2PDu - Lx}dx - 2[0 f (x)udx. (3.88)



46

If the solution A for equation (3.84) with f(x) continuous and the boundary

conditions (3.85) was sought in DZ, then both boundary conditions on u

and P have to be satisfied by A € DK. However, the functions §=<G §>T in

HZ are defined such that

A

L LY A T u Y- i (Pup 32 ) ©
lé—éml = /?0 2(p Pn)D(u uﬁP A (P Pn) dx - 0; as m and n - (3.89)

. . n T W . .
in which A =<u P >” ¢ D, and therefore u and P have continuous first
~m m n A m n

derivatives and satisfy all the boundary conditions of the problem. Such a
definition means that functions u need only have generalized or piecewise
first derivatives which in this case implies that u itself be continuous and

5 . . . Fee n.7T W
P, piecewise continuous for A=<u P>~ ¢ HA.

While the boundary condition to
be satisfied is that on u only, e.g. kinematic boundary condition u(0)=0,
whereas P on the boundary turns out to be a natural boundary condition at the
extremum of F(A) and P need not satisfy P(L)=0.

In lieu of theorem 3.8.1, theorems 3.5.2 and 3.5.3 and the complete-
ness definition of section 3.6 still hold. The only changes needed are the

modified definition of the energy norm as in equation (3.74) and the extension

of the field of definition of the functional from DZ to HZ.

In concluding this chapter, it should be pointed out that in the
development of the theory and the consequent proofs of the theorems, the
problem considered involved single dependent variables, u for displacement
and v for stress. However, the theory is not limited to one dimensional
problems and the extension to problems involving multi-dependent variables

in displacements and stresses is only a simple matter.
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CHAPTER 4

FORMULATION AND CONVERGENCE OF

THE MIXED FINITE ELEMENT METHOD

It is well established that the formulation of a finite element
method is a purely topological constructién of a function sought as an
approximate solution of a well-posed problem in mathematical physics,

Oden [22,23]. The approximate solution is expressed in terms of known
coordinate fﬁnctions and unknown parameters which can be determined by
applying various different techniques, i.e. Ritz method, Galerkin method,
least square method, etc. The technique employed here is the mixed method
discussed in Chapter 3.

A complete formulation of the mixed finite element method, its
convergence and completeness criteria are presented in this chapter. The
strain energy convergence of the mixed finite element method for problems
with stress singularities is also established and a method for determining the

stress intensity factor KI is laid out.

4.1 Generation of a Finite Element Approximation

In the finite element method, the first step is to replace the
domain of the problem Q=0+S by ©* such that Q% may‘be exactly subdivided into
a number E of non-overlapping subdomains of simple geometrical forms called
elements. Here, Q is the closed domain;, 2, the open domain and S, the boundary.
The domain of a typical element will be denoted by 0% and adjacent elements are
specified to have a common boundary. Thus
gt N QM = 0, m # n; myn=1,2, . . . E

where 0O is the empty set, and

Further lim Q% = Q.
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The elements are chosen, if possible, such that Q% coincides
with 5, but if not, in such a manner that for a finite number E the error
in the last equation is acceptable. If so, for notation purposes Q and ©
will be used to represent Q% and Q*.

The second step in the method involves the assumption of approxi-

mate solutions for u and v in each of the elements and can be expressed in

the form
m
u® = 1 u§¢§
k=1
e=1,2, . . . E (4.1)
\ n
= 1 viwi
k=1
e e , . . . e e e
where ¢k and wk are the coordinate functions defined only in Q@  and U s vk

= -e . . . . .
are the values u® and v , or one of its derivatives, respectively, at certain
nodal points generally situated on the boundary of the element. For example,
. e -e .
if the Uy s k=1,2, . . . m correspond to the values of u~ at the nodes with

coordinates x? then
e =1, ifk=m
k=1,2, . . . M. (4.2)
=0, ifk#m

A similar relation also holds for wi. Such a definition ensufes that ¢§
and wi are linearly independent throughout q%. A polynomial, which always
contains linearly independent terms, with an appropriate number of coefficients
(i.e., equal to the number of degrees of freedom in u or v) can always be put-
into the form (4.1) and leads to linearly independent ¢§ and wi.

It is only necessary to assume coordinate functions defined over
individual elements to obtain a solution in the finite element procedure.
However, it can be rigorously shown that approximate solutions of the form

(4.1) in fact do lead to approximations of the form (3.32) in terms of

global degrees of freedom. It is convenient to introduce two functions
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¢§ and Wi defined over the entire domain @ such that
e e . —e
@k(xi) = ¢k(xi) for x; € 9]
(4.3)
=0 otherwise;
and
e - e —e
Wk(xi) wk(xi) for X, € Q
(4.4)
=0 otherwise;

where the xib represent a point in the domain. Then the assumed approxi-

mations for u and v throughout the whole domain § can be written as

E m
U= 3§ x u§¢§
e=1 k=1
(4.5)
E n
v= 1 I viwi.
e=]1 k=1

There has not been introduced any type of continuity in the
generation of approximate solutions u and v in (4.5). Clearly u has (mxE)
unknowns in'ui and v has (nxE) unknowns in vi. On interelement boundaries
where nodes of adjacent elements coincide, it is customary to specify that
these nodal values should be the same. Assume that there are M and N in-
dependent degrees of freedom for u and v over Q denoted by u, and V.o

respectively. Then the element degrees of freedom are related to the

global degrees of freedom by the relationship

e M e
U = O Fauy
i=1
(4.5a)
e N e
and v, = L G, v,
kg 3k
where - e o
F = 1, 1f nodal value u  coincides with u,
ik k i

]

0, otherwise.
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Similarly

G? = 1, 1if nodal value ve coincides with v,
jk k N

0, otherwise.

e e . . .
Therefore Fik and ij are rectangular matrices in general and compare with
the compatibility matrix one obtains in the usual displacement method

relating the element degrees of freedom to global degrees of freedom.

Then
_ E m M e e
u= I I I u Fo 0
e=1 k=1 j=1 JJ
_ E n N e e
and v = I z z v,G,ka.
e=1 k=1 j=1 I3
Defining
E om e e
6, = I L Fo o
I e=1 k=1 Ik K
E n e e
and wj = I I ijWk
e=1 k=1
allows equation (4.5) to be written as
M
u= I u,¢,
jo1 11
(4.6)
_ N
v= I vy,
j=1 J3J

in which ¢j and wj are linearly independent throughout Q.

Thus the finite element approximations of (4.6) have the same
form as (3.32). The approximations for u and v within each element are
chosen according to a certain continuity requirement and completeness so
that fhe convergence of the finite element method in some sense can be
guaranteed. This has been excluded in the discussion above and will be

discussed later.
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4.2 Generation of an Element Matrix

The derivation of an element matrix is described here for the
problem of equation (3.30) and (3.31) over Q¢

Ty — f = 0 (4.7)

il

Tu - v =0, (4.8)
The element matrix can be derived either by using the variational principle
F(ﬁ) of theorem 3.8.1 or by ﬁsing the mixed Galerkin method of section 3.3
in which both residuals, that of the differential equations within the open
domain 0% and boundary s® are included. Since the linear operators T and T*

are self-adjoint, the matrices obtained by both methods will be identical.

Consider the variational formulation

T
F(A) = [Q,/_HA - 2(p ,N) (4.9)
T T
where A=<u v>", p=<f 0> and
(4,01 = [, [2vTu - v2]dQ (4.10)
T -
(7,0 = [, fuda. (4.11)

Let u and v be approximated by 3%= % ¢eue and v°=_z weve within the element.
i=17i71 i=17i'1

Substitution of these into (4.10) yields,

e e m n n n e
(47,471, = [ 21 2 > T¢ u ve— R weveve]dQ
0% i=1 j=1 13 4o1 §-1 +
e ,e mon ee oo L. e e, e
or [A7,A ]A =25 I uyv, w T¢ 40 1 R O % IR O (4.12)
i=1 3=1 *3°g°® i=1 j=1 T 'q J
and (4.11) gives
T e moe e, e (4.13)
(p A7) = ¢ uif o fo.dom.
i=1 *g® ?t
e, . e e
Now F(A") in terms of uy and Vj takes the form
e m o e e e e e e, e
FIN®) =235 % uiv.f b T¢ ®dp®- z z ViV wiw.da
i=1 j=1 * 1o i=1 j=1 J
-2 z ui f¢§dae (4.14)

i=1
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F(A® A®
3 g—e) and 9F(27) must equal zero.

and for a stationary point its derivatives P
, u; :
i

This results in the following equations:

It

0; i=1,2, . . . m (4.15)

(| e I

e, e e e e e
i . T¢i¢jd9 vy - / o £07d0

i=1 '@ Q

0; i=1,2, . . . n. (4.16)

i M3

L[ wiTesdeul - & [ wividetvs
=1 % * 3 3 g=1 "@® *J J
Equations (4.15) and (4.16) together yield (mtn) equations for (m+n)

unknowns and can be put into a matrix form by defining aij and bij as

e _ e e.e ._
a s fﬂe To793da%; i=1,2, . . . m,
J=l,2, . n
e e e, e o
bij = fﬂe wiwjdn i i=j=1,2, . . . n (4.17}
p? = f f¢?dQe; i=1,2, m
i e i .
Q
The matrix form is
_ ] - r - ~ -
] e e
\ uy P1
! e e
| us P2
0 | a®
(mxm) I (mxm)
|
] . .
| e e
u P
B T T -2 = |- = (4.18)
|
] v? 0
|
1 Vg 0
I -
eT | _be
(nxm) : (nxn) .
1
|
! I
| e 0
] v
n
I . JL~) L




. e
In general m need not be equal to n and matrix a
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. . e . .
rectangular. Furthermore, from equations (4.17), matrix b~ is symmetric

and positive definite as long as the functions wi are square summable over

e

i.e.

r 1
|
1
1
0 ! ae
(mxm) : (mxn)
1
i
]
_ !
) F i
) |
|
|
|
I
éeT | _Ee
(nxm) i nxn
]
i
I
1
!
I
- |
(m¥n)

is symmetric but indefinite.

extremum character of the mixed operators.

4.3 Assemblage of Element Matrices

7. It can be observed that the matrix of coefficients of equation (4.18),

(4.19)

The latter property follows from the non-

In the displacement approach, the stiffness matrix relates the

nodal forces to nodal displacements.

Hence during assemblage of element

stiffness matrices, the addition of columns corresponds to equating the

nodal displacements of adjacent elements to achieve certain compatibility
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and adéition of rows corresponds to equilibrium of the nodal fqrces. In the
present case, the matrix of (4.19) relates both stresses and displacements

(v and u, respectively) to the generalized applied loads. Although, the
mechanics of the process of adding columns and rows is still the same, the
additions of both corresponding rows and columns of the element matrices are
due to equating the nodal variables in stresses and displacements with
respect to certain continuity requirements. This, in fact, transforms the
mixed problem of equation (4.14) from local (element) degrees of freedom in

u and v to globalAdegrees of freedom. This is analogous to the transformation
of approximate solutions for each element of (4.1) in ui and V? to approxi-
mate solutions in global degrees of freedom uj and vj of (4.6). Similarly
for the mixed Galerkin method, in which the residual of equation (4.7),

after substitution of an approximate sqlution is made orthogonal to ¢i

and that of equation (4.8) is made orthogonai to wi, the addition of corres-
ponding rows and columns extends the orthogonalizing process from the element
domain 9% to the overall domain Q.

The submatrices a and b can be assembled separately or the complete
matrix (4.10) can be assembled as a whole. The latter is used in this thesis
for analyzing problems. This requires interchanging of rows and columns of
the matrix so that the degrees of freedom in matrix equation (4.18) u?,ug,

. ue; v?,vg, T appear as u?,v?,ug,vg, e ue,ve,ve s o o+ e ve
m n m’ m’ mt+l n
for n m. This is demonstrated in Appendix A. By suitably arranging the
global degrees of freedom u, and vj the master matrix can be obtained in an
optimum banded form. It was mentioned in the previous section that the

matrix of (4.19) is indefinite. Therefore the method of Gaussian elimination

with partial pivoting is used to solve the global equations.
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4.4. Convergence Criteria

In Chapter 3 and especially section 3.8, the requirements that
would ensure energy convergence in mixed methods for a continuum were
presented. The same results are now used to provide sufficient convergence
criteria for a finite element approximation.

Theorem 3.8.1 implies that the convergence of the mixed approxi-
mation in the energy norm of equation (3.74) is ensured when applied to the

equations (4.7) and (4.8) if the coordinate functions ¢m £ UA and wn € VA

used for approximating u and v, respectively, are complete in HZ. This is

explained for a finite element approximation by considering the following
example (similar to (3.84)) representing the one dimensional linear elasticity
problem with unit stiffness LEA=1; u,v are displacement and stress, respec-

tively, and f(x) is the applied load in the x-direction.

-d
0 dx u
= (4.20)
d
a‘};—l v 0
Therefore T* --4 T = g—u (4.21)
dx’ dx )

The homogeneous boundary conditions are u(Q)=u(L)=0. It is convenient to

w_ > - s .
construct a cross product space H,=U,xV, in which

[al, = v 1A,A], v/ fl (2v———v2)dx . (4.22)

T f s
Then the functioms A=<u v>" that are in HA must satisfy the condition

n n n
d(8,07) = |A-A7[ > 0, as m > =, n > @5 A% e D (4.23)

w
~m é.
w
The space HA therefore contains the exact solution according to theorem 3.8.1.
Thus the convergence would be ensured if the coordinate functions ¢m and wn

are complete in HZ.
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From section 4.1, a finite element approximation for u and v is
obtained by dividing the interval (0,L) into E elements of lengths 1% and

within each element, assuming solutions of the form

~e T e
u = I ¢
k=1 k'k
e=1,2, . . . E. (4.24)
~-e e e
= I vy
k=1 k'k

The equations obtained within each element (section 4.2) are

D% ete. e 1°
2 [0 ¢; v.dxv. = [7 f¢.dx; i=1,2, . . . m (4.25)
j=1 0 1] J 0 1
T1® ee'. e R e, e
T[T wiel dxul - [T %faxv® = 0; i=1,2, . . . n (4.26)
j=1 0 173 I 4o 70 13

where the prime denotes a derivative with respect to x. The equations
(4.25) and (4.26) can be assembled to yield the following global equations:
N '

Yo v.dxv, = (Y fe dx; i=1,2, . . . M 4.27)

121 0 i’j J 0 i

J
[ ugean - 1 [
)) Y.¢.dxu, - T Yo, dxv, = 0; i=1,2, . . . N. (4.28)

j=1 00 T3 3 4o oI

Here ¢i and wj are the same as in equation (4.6) and M,N are the numbers of

global degrees of freedom in u and v, respectively. Thus the global approxi-

mate solutions for u and v

_ M
u= L ¢,u
=1 i1
(4.29)
_ N
v= I yY,v
i=1 7
converge in the energy norm if the ¢k and wk,afe complete in HZ. The condi-

tions that must be satisfied by the assumed solution within each element in

order to ensure that the coordinate functions defining the global solution
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be complete in HZ must therefore be established.

For the example considered, the equations (4.22) and (4.23)

suggest that functions ¢i in HK must have generalized first derivatives

. W
and therefore are continuous over (0,L). However, wj in HA over (0,L)

may only be piecewise continuous. Further, these functions must also
satisfy the forced boundary conditions as all functions in HZ are required
to do so, and since u on the bouﬁdary takes on forced or kin;matic boundary
conditions, therefore ¢i are to satisfy these conditions.

In order to establish a criterion which leads to satisfying the

completeness requirements of section 3.6, their definition in terms of

finite element approximations 1is necessary. This 1s done next.

Completeness for Finite Element Approximations

The finite element approximations for u and v as linear combinations

of sequences of functions ¢m and wn’ mand n= 1,2, . . ., in HZ are complete

if for a A with a finite energy norm and any €;>0, €,>0, there exists a
subdivision of the domain of the problem corresponding to M and N degrees

of freedom in u and v, respectively, such that

™=

Viwi" < €2

(1) 7wy, -

i=1

oy 1 LN
(i1) !& - éMl <8
: . T M N
vhere A=<t ¥>7, Ly=<uy v and wy=Egugbys VTR vy

\

i

Again, the completeness requirement (i) implies that the stress approximation,
N

VN=j§lvjwj’ should contain all the stress modes that correspond to strain
modes present in the strain TuM for finite degrees of freedom N in stress v.

If the operator T involves derivatives of order L then the energy
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product in equation (3.73) for /_\i=<ui vi>T and 1_\,=<uj v,>T

[Agshidy = CyppTuydy + Gy Tug )y - Vi Vindy (4.30)

is symmetric and involves derivatives of order m in u and zero in v. To
establish certain completeness criterion for finite element approximations
for u and v within each element, interest lies in the least requirement that
would allow the energy norm in (4.22) to be evaluated, i.e. requirement (ii),
and also enable the mean convergence of approximation for v to Tu, i.e.
requirement (i) of completeness. Therefore continuity of (mT—l) derivatives
is required for u. However v can be piecewise continuous.

Completeness criterion for the finite element approximations within
the element is presented in the following section for linear elasticity
plane stress. The explanation of the notation used for certain quantities can

be found in the beginning of Chapter 5.

4.5 Completeness Criterion

A general criterijon for completeness is stated and justified here
and is analogous to the one presented by Oliveira [24,25]. Let H%A be the
set of compatible and equilibrated elastic fields where u, have continuous
and bounded second order derivatives and A have continuous and bounded first
order derivatives within each element. It is to be demonstrated that the

- . . ne e e T e .
completeness for a finite element approximation Am =<u In> .where u, is the

vector of displacement components and Ii’ the stress components, within the
] T W ) .

element with respect to any A=<u 1> ¢ HOA will be obtained if:

(a) the general analytical expression for uy and Tij within each element

are polynomials with the number of arbitrary parameters equal to the

number of unit modes corresponding to the element,
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e
(b) the terms of degree higher than the first in ug and the constants in
Tij can vanish regardless of the values’taken‘by the constant terms
e
and the coefficients which affect the linear terms in ug and the constant

e
terms in T, ..
ij

(c) the constant terms and the coefficients which affect the linear terms

in ui and the constant terms in Tij are completely arbitrary.

(d) Te. should at least possess all the modes that are present in T

ue
i3 13737

The conditions (a) to (c¢) result in displacements ui or their

e
first derivatives and stresses Tij to take up any arbitrary value throughout
L e e .
the element. The condition (d) assures convergence of'Tij to Tijuj in the
mean square sense, i.e, completeness requirement (i).

The displacements u, belonging to H@A can be represented inside

Q¢ by the following Taylor's expansion

[

u

1 ui(P) + ui

P - P P
j(P)(xj—xj) + 1/2! “i,jk(P)(xj'Xj)(xk‘Xk (4.31)

b
where P and P are points in 0% and P depends upon the coordinates of the
point where the u, are to be determined. Similarly Tij can be represented

by the following Taylor's expansion

_ = 3 P
Tij = rij(P) + Tij,k(P)(xk Xk)' (4.32)

Now consider the displacement field with'components

e
= u, (P) +
u ui( ) u

P
1 P) (xj—xj) (4.33)

i,]
within 9% and call it a tangent field to u, at P. Similarly consider the
stress field

€. =1 ..(P) (4.34)

within ° and call it a constant field at P. From hypotheses, all second

derivatives of u and first derivatives of Tij are supposed to be bounded

inside ©%. Then equations (4.31) and (4.33) yield
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e
luy = ugyl <

i ti 21

d L5(1,)? (4.35)
where'L? is the upper bound for all the second derivatives of us le is the

maximum diameter of element e and d is the total number of second order

derivatives. Similarly from equations (4.32) and (4.34)

e e ‘
|Tij - Tcij| < fLy(1) (4.36)
where Lg is the upper bound for all f first derivatives of Tij.

By considering similar expansions for the first derivatives of ui,

it is possible to derive the inequality

lu, , - uS, .
i,] ti,j

A

dL?(le). (4.37)

The distance between A and A over the entire domain @ can be

evaluated from the energy norm of equation (3.74)

. - E . .
d(A,A) =\// T [A=A,A-A]
2.4 RORLELA T E L
e=1

. e T .
where E is the total number of elements and A=<u Ie> . By using equation

(5.13)

~

d(a,0) [ o 251D e - @D e Taet

1 Q

I
It

e
or

E
N e e,T e e e e eT e e e
d(r,h) < I [zlfQe (17-1) T(u-upda | + Ier (x-1 ) Clz =1 )de" 1.

As the operator T involves first derivatives and C is a compliance matrix

which involves no derivatives, by virtue of equations (4.36) and (4.37)

[ el e

d(h,h) < ({1102 + L§(1,)?10°]

e=1
for le sufficiently small, L% and Lﬁ are positive numbers. The inequality

above can be further simplified; ‘
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d(A, 1) <J(L +LL+)1 2y o (4.38)
e=1

where Lg,LE and ln denote the maximum values of L%,Ls and le in the whole set

of elements. Now if a=(L§+LB), then
a(a,h) < YaiZa. (4.39)

Therefore the energy distance between A and A tends to zero when the size of
elements decreases indefinitely or the number of elements E goes to infinity.

Consider now a type of element generating a sequence of families

of fields, HW

x whose completeness 1s to be investigated. Let A —<uM

be one of these fields whose generalized parameters or nodal degrees of
e
freedom take the same values as that of A from HgA, and Q; corresponds to

AM within If the general criterion is satisfied then A is one of the

family of fields which can occur within the finite element. Let such a

. e e .
field correspond to values Uik and Tcijk of the parameters, i.e.
e " ke e e
i, = b ¢i u s in Q-, (4.40)
k=1
e n ke e> e
?cij = kil wichijk; in @7, (4.41)

or Ke = <u® fc>T ; in Qe.
- -t -c
e
On the other hand for QZ ’
e m ke e e
UYmi o 2 ¢i Unik’ in @, (4.42)
k=1
e n ke e e
Tnij Z wiJ nle, in Q b (4-43)
k=1
ne e e T e
or A = <y T >3 in Q.
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From equations (4.40) and (4.42)

Leppwing

m
~e e _ ke , e e L s e
uti,j umij' = lkil ¢i,j(utik mik)l’ in Q. (4.448)
Similarly
7€ - 1€ | = | ; wke(Te - € )I' in 0°. (4.45)
cij nij k=1 ij " eijk nijk’ !’

ke

, . . ke ke . . .
Since the coordinate functions ¢i ,¢i j and wij can be expressed in dimension-

b

X
less form, i.e. as a function of -, these functions remain bounded as the

1
e
size of the element decreases. Assume that the moduli of the magnitudes of
all functions ¢?e,¢§ej and w?? remain below Lg, a positive number. Then
, .
e e e O e e
gy =gyl < L5 Tl -upd (4.46)
k=1
I e e l Le n e e
o =5 .
i, . -u,. .| < roul, - u | (4.47)
ti,j mi,j 1e k=1 tik mik
e e n e
%eiy - Thijl < Ls kil | cijk = Tnijk' (4.48)

e e
within Q.

. e . e
Since A and A~ take the same values at nodes, i.e. u$ and T

ik ijk’
equations (4.35) and (4.36) permit one to write
W - u | <18 )2 (4.49)
tik mik 2171 Ve )
e e e
chijk - Tnijkl < fLy(1,). (4.50)

Introducing (4.49) and (4.50) into (4.47) and (4.48) yields
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e e arSLe e e.e |
i - < =155y = .
85 5 umi’j| (1) = Lel (4.51)
e e e.e e = e_e
|Tcij - 'r-nij| < fLyLen(1") = Lyl . (4.52)

Equations (4.51) and (4.52) still hold even if umij and Tnij are discontinuous,
as long as they are bounded. From similarity between (4.36), (4.37) and

(4.52), (4.51), respectively, the following inequality which is analogous to

(4.39) can be written directly
~ N
d(h, N < VEIZ (4.53)

Combining equations (4.39) and (4.53) and using the triangle in-

equality of the energy norm

AN < AN + dh,0) < 1 /A0E + VB)

or |/_\§1 - Al < Ga+ VB)R). (4.54)

Equation (4.54) means that the energy distance between QN and A
tends to zero as the size of the largest'element decreases indefinitely.
Note, condition {(d) of completeness criterion is satisfied for the case where
ui,j and Tij are piecewise continuous and taken as constants within each
element, i.e. the best ui can represent is constant strain and Ti, constant
stress. Although, from the completeness criterion, continuity of Tij is not
required; improved accuracy in the energy convergence is observed in the
results (Chapter 7) by making Tij continuous across element boundaries.

Also, if the stresses Tij are not continuous, and completeness requirements

satisfied, the mixed finite element method yields the same results as the

digplacement method would using identical interpolations for the displacements.
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Theorem 4.5.1

The mixed finite element méthod, with approximations for the displacements
and stresses satisfying completeness requirements, yields exactly the same
results as the displacement method would using the same approximations for
displacements if the stresses were not continuous across the interelement
boundaries.

Suppose with the finite element solution of equations (4.5)
for u and v the functional F(Ae) of (4.9) has been arrived at. Using (4.17)
and f=0,F(§e) can be expressed in the matrix form

T T T T

F(A y = B éeye + Ye ée l_le _ Y b yT : (4.55)

Assume u and v to be continuous and let

€ = ru (4.56)

(N =]
Il

e

1<
i

sv (4.57)
where r and s relate the total element degrees of freedom ge and Ye to the
global degrees of»freedom u and v so as to restore interelement continuity

for u and v, respecéivély, equations. (4,54), Therefore F(ﬁg) for the entire

domain can be expressed as

F(AM) = u r asv + visTalry - vIsThsy (4.58)

where a and b matrices are formed by collecting the ge and Ee matrices for
each element in uncoupled form, respectively, and substituting (4.56) and
(4.57) to couple them. M and N are the global degrees of freedom in u and v,
respectively,
If only the displacement u is continuous, then
F(ANl) = uTrTav + v TaTru - v bO (4.59)

where Nj=eN because at common nodes the stresses are not equated.



65

But within each element

eT
a

e_.,e e
u®= p%
and since b is an (nxn) symmetric positive definite matrix, it can be

inverted to give

1<
o

also Ye =b aTru.‘ (4.60)
Substitution of (4.60) into (4.59) yields

F(Qﬂl) = ETEng‘lgTru + uTrTab‘laTru - uTrTab‘lgé'léTgu.

Since E"lé = I; therefore

F(Qﬁl) = ET£T§E"1§Tru. (4.61)

If it can be shown that the elimination of ye in the matrix equation (4.18),
i.e.

e

a®p®1a%Ty = k%® = p (4.62)

- - = -e
and that Ee is the same as the element stiffness matrix one would obtain
from the displacement method using the same approximation for ﬁ, then the
theorem would hold.

In a system of finite degrees of freedom, the requirement (i) of
completeness requires that the approximation for stress ;n should contain all
the modes present in Tﬁm, the strain field from Gm. Then no matter how much
better the stress field Gn is chosen to be, for discontinuous stress fields

across the element boundaries, the Fourier type convergence of the strain

field from ;n cannot be better than Tﬁm. Further, from equation (3.68)

I3 -

e
[ B =]
—
1
=

vib 2 = Jurl? -
. 1

2 =
A 0. (4.63)

du .
Here Tﬁm=a;3=5& for the example considered in equation (4.20).
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Then, for orthonormal wi, equation (4.28) yields

= —' . 1=
ve = () i=1,2, .. . on. (4.64)

Also matrix Ee is just an identity matrix I. Therefore

éehe_.léeT - éeIEeT - éeéeT. (4.65)
From (4.63)
n
lar2 = z 2. (4.66)
m 1=1 i
- T el e
But from (4.1), ué = I ¢i'u,, therefore
i=1 *
mom er ey e e
u'f2 = ¢ ¢ "¢ dx utuS
el i=1 j=1 Jeti'd; 1%
and from (4.64)
n m m o o
£ ovi= 1 L (¢; )W, .0 Juu; k=1,2, . . . n.
i=1 t q=14=1 1K KT A
For the problem considered
e _ er el
STREORDP
and - e _ er
aij = (¢1s‘p])-
Therefore the matrix form of equation (4.66) is
eT. e e eT e eT
u u =u aa u
- == - == e
or e e eT
k™ =a"a". (4.67)

The functions wfs used, were assumed to be orthonormal for convenience.
However, no generality is lost and for any linearly independent wi's equation
(4.67) can be written as

e, e-1 eT
a

K® =

o

(4.68)

Therefore equation (4.61) takes the form
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F(ﬁgl) = u r kru = u'Ku (4.69)

where k is the assembled uncoupled global stiffness matrix and K is
the coupled form as one would obtain from the disélacement approach.
Therefore, the energy convergenée cannot be any better in the mixed
method when the stresses are discontinuous across the interelement

boundaries. This then completes the proof.

4.6 Stress Singularities

Stress singularity at the crack tip in plane elasticity problems,
it's influence on strain energy convergence and estimation of its crack intensity
factor of mode type I (the opening mode, Figure 1) are considered in this
section. The displacements and stresses near the tip of a sharp crack

(mode type I) are given by

u KI/E;. (ZK—l)COS% - Cos%g
T 86/ o EXIOE (4.70)

v (2K+l)81n§ - Slni—

T Cos— (1- Slng Sln—-~)-l S W
XX 2 XX
X1 6 o .. 30

ol = VT Cos- (1+Sim-Sins=) | + syy + 0(/r). (4.71)
T Slng Cos9 Coség S
| %y L 2 2 2 J L XY

Here, KI is the stress intensity factor; x takes the value (3-4v) for plane

strain and (3-v)/(1+v) for plane stress state; v is Poisson's ratio and G,

the shear modulus. As for the constant stresses S__, S and S in equation
. XX Yy Xy

(4.71), the stress free condition on the crack surface near the tip leads to

Syy=Sxy=0, whereas the component Sxx in the direction of the crack line remains

unknown.
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The strain energy convergence of the mixed finite element method
for stress singular plane elasticity is established first, and then a

procedure for determining the stress intensity factor K_ is presented which

I
is somewhat similar to the one presented by Parks [27] for displacement

method.

4.6.A Strain Energy Convergence for Problems with Stress Singularity

In plane elasticity with stress singularities, the convergence
rate for the displacement finite element method is often controlled by the
nature of the solution near the singularities. Unless the singularities
are properly handled, the regular so~called high accuracy element will not
be able to improve the convergence rate. Tong and Pian [38] showed that
the convergence in strain energy for displacement and hybrid type elements
is only of order le or O(le) where le is the maximum size of the elements
near the crack tip. They established i; by arguing that in stress singular
problems, the typical polynomial type approximations for the displacements
lead to strain fields which exclude the singular stresses near the crack tip.
Hence the missing terms govern the error in strgin and consequently lead
to slower convergence of the strain energy.

A similar argument is followed for establishing the strain energy
convergence for mixed methods applied to problems with stress singularities.
In linear elasticity, twice the potential energy for zero body forces can be
written as (from equation (3.77))

F(A) = [4,A],- 2}’ST T uds (4.72)
where

[A,Al,= [y @lIel'z - T Coav | (4.73)

represents twice the strain energy and C, T*, T, u and T are the extensions
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to three dimensions from plane stress elasticity, equations (5.10) and Ti's
are the surface stresses specified on ST part of the boundary. Let A

=<y IO>T be the exact solution of the problem over a domain V. For
simplicity, assume that the solution is sufficiently smooth except that

ug = r g(x) (4.743a)

Tg =T h(g) (4.74b)
near the point of the singularity R in V. In equations (4.74), r is the
radial distance from R, g and h are smooth functions, X are the spatial co-
ordinates, a is not an integer and

p; +1>a +*% > land py + 2>« +'% 21 (4.75)

where n is the spatial dimension of the domain V, p; and p, are the degrees
of polynomials used as approximations for u and 1, (satisfying completeness)
respectively. The finite element approximations can be put into the form

(section 4.1)

¢, (Xuy

e
i
I ~mB

(4.76)

Wi(g)zi.

]
It
[ or B =]

i=1

Let the solution obtained from the mixed finite element method be

el
|
N~ s

o, (x)u
1=1 i-"-1

(4.77)

K=l
1
no~g

Y, (x)T,
q=1 L1701
and the solution by forcing the nodal degrees of freedom to take the exact

values of QO at the nodes, be



where A = <u

vibration frequency.

¢, )y

(Rt
!
Tt~ g

1

1
l
eI}

wi(E)ii"

i=1

Using equation (3.49), inequality (3.56a) yields

[A-Dg,B-A1 < [A-Ng,A-Dg]

N T T
™, /_\. = <1 _:f_> and /_\0 = <upy Tp”> .

Then from theorem 3.5.3

fV(Gi_uiO)Zdv < A [{\.'—./_\0 ,_1_\-{_\0]

— _ 2 "‘_ "‘-
'(V(Tij TijO) dv < )‘2[‘/_\‘ ‘/_\,O :é QO]

finite element solution is bounded by the rate at which |§—QOI approaches

and pp+l derivatives of 1o are bounded then it can be shown (section 4.5)

q .-u0 <« A0 .

lui,j ui,jl < Air in Vy
A hPl

~ 0 1 . .
G, ,-u¥Y | < in V-Vy3
| i,j 1,J| S Prtl-a '
|t,.-t0.] < B, x*7t in V;

1] 13 1]
|z, -1, ] ¢ —=l— in V-Vj.

ij ij rp2+2—u

(4.78)

(4.79)

(4.80)

(4.81)

where A, and A, are positive constants and A; depends on the lowest non-zero

The inequalities (4.79) to (4.81) show that the mixed

zero. If the interpolations are chosen such that the equations (4.78) can
exactly represent any polynomial of degree p; for displacements and p, for

stresses; further that way from the singularity, the p;+l1 derivatives of yj

(4.82)

(4.83)
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The positive constants Ai and Bij are, respectively, the combinations of the

upper bounds of all p;+1 derivatives in the Taylor expansions of ug and all

0

pptl derivatives for Tij'

V; is the domain covered by the elements adjacent
to R and h is the maximum size of .the elements.

From equation (4.73), the energy product for A-Ay is given by

[A-hgsh-hol, = [y (2[T(-ug) 1" (G-19) - (-19)T6(x-10)}av (4.84)

or [A-fg,A-no] < 2fy 11w 17| GG-10) v + [ | G100 " |c] GG-zp)fav.  (4.85)

As the operator T involves first derivatives and C is a positive definite

compliance matrix, by virtue of (4.82) and (4.83)

pP1tp2tl p2(P2+1)

[A—Ao ,A—Ao] < [ {Cer(a_l)""Cer(u_l)}dv + IV v {Clrp1+p2+3—2a + C2r2(p2+2—d)}dv
- -~ -Vl

Vi
(4.86)
The constants c; and cp are positive; ¢y depends on Ai and Bij and c, depends
on Bij and the compliance matrix C.
Assuming that the inequalities in (4.75) are satisfied, integration

of the right hand side of (4.86) yields

. - +po+l 2(po+l)
T 2(o~1)+n, . hP1 h
(A=Ro,A-Ao] < ky(erterdr o ) lrp1+p2+3-20t—n+k3c2r2(p2+2—a)-—n' (4.87)
min min

The constants kj,k, and k3 are also positive and depend on the geometry and

the arrangement of the finite element mesh; r and r , are the maximum and
max min

the minimum radial distances from R to the boundaries of V;, respectively.

From inequality (4.87), the contribution to error in the energy product from

the elements immediately adjacent to the point of singularity is of order
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-1+
riéi 1)4n and the contribution from the rest of the domain is of order either
p1tpotl 2(potl)
h or h whichever is smaller
rp1+p2+3—2a—n r2(p2+2—a)-—n’ s sma )
min min

Further, the main contribution from the latter part is from the elements that
are close to the singularity. In the finite element analysis, rax’ Tmin and

h are usually of the same order, i.e. r___~r . ~h. Thus inequality (4.87) can
max min
be rewritten as

2(a=-1)+n

[A-RgsA-g] < {cg (ki+kp) + cyp(kj+ks) Ih (4.88)

It should be noted that the constants ¢ and ¢ , through their dependence on
Ai and Bij’ also depend on the behaviour of u and _  near the point of

singularity. Now from inequality (4.79)

2(0-1)+n

[5—]_\‘0’;5—/_\0] < {Cl (k1+k2) +‘C2(k1+k3)}h (4.89)

Inéquality (4.89) shows that the order of convergence of the energy product
is controlled by the order of singularity, rather than by the order of the
polynomials used for interpolation of u and 1 provided the inequalities (4.75)
hold and completeness criterion (section 4.5) is satisfied.

For plane elasticity, from equations (4.70) and (4.71), n=2 and
0=1/2. Therefore 2(a~1)+n=1 and for any py;>l and p,»0, the inequalities

(4.75) are satisfied. Inequality (4.89) now becomes

[A-Ag,A-Ag] < {cy (ky+ky) + cp(ky+ks) Ih. (4.90)
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Therefore it can be concluded that the strain energy will converge at least
as h and perhaps faster if there is a cancellation of errors in the energy
product of (4.84) due to singular terms which are left out when regular

polynomials are used for approximating displacements and stresses.

4.6.B Determination of Stress Intensity Factor K

I

The crack intensity factor Ky (mode type I crack, Figure 1) is
related to the potential energy release rate GI’ i.e. the rate of change
in the potential energy due to crack extension, For plane stress and plane
strain problems with unit thickness; this relationship is given by the

following equation, Rice [29].

o oam _ (k410 ’
GI 3 3G KI (4.91)

where 7 is the potential energy, a the crack length and G and k are the same

as defined for equations (4.70) and (4.71). It has been concluded by many
investigators, Watwood [39], Anderson, et al. [1], Parks [27], etc. that the
most accurate finite element scheme for determining the stress intensity factor
is by means of the evaluation of the energy release rate without requiring

any special elements to model the stress singularities. This method is now
applied to determine KI for plane strain linear elasticity using the mixed

finite elements. For plane strain, the equation (4.91) reduces to

_oam (1-v2) 2
GI = - £ KI’ (4.92)

where E is the Young's modulus.

The procedure used in the application of the mixed finite element
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method is somewhat similar to the one presented by Parks [27]. For two

dimensional planar configurations, an alternative computation of GI can»be
based on the path independent J-integral, Rice [29];
_ Ju
J = [p Wdy - T.2ds. (4.93)

Here W is the strain energy density (W=1/2 Tijeij for linear elasticity);

I' is an arbitrary contour enclosing the crack tip, Figure 2; T is the
traction vector associated with n, the outward unit normal and u is the
displacement vector, and ds is an element of arc-length along I'. Near the
crack tip, the parametefs comprising the integrand of the J-integral as
determined from a finite element solution are likely to be in greatest
error. However, the path independence allows the contour to be chosen
farther away from the crack tip, hopefully resulting in improved accuracy.
Rice [29] also showed that the J—integfal in fact is equal to the potential

energy release rate, euation (4.91).

_ _ A=v2 o _ -8
J = G = ( = )kI = — (4.94)

Suppose that the finite element analysis has been performed on a
given planar linear elastic body of unit thickness containing a crack. 1In
the discrete form, the potential energy in the mixed method can be expressed
as

T

_ 1T T
Ty T T Au-TBT - fu (4.95)

where the matrices A and B are separately assembled element sub-matrices

ge and Ee of equation (4.18), f is the generalized load vector, and u and 1

are the solution vectors. The equation (4.95) is analogous to the expression
for twice the potential energy in a continuum, equation (5.12). The potential

energy release rate can now be obtained by differentiating w,, with respect

M
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to the crack length a:

am T T

M _ 3T ‘ du TJA 1 T3B of ‘
“3a aa[éE"gzl + [éz 5153 + I da— EI SEI da ="' (4.96)

But from the finite element analysis, Au=Bt and At=f; therefore the first

two terms on the right hand side are zero and (4.96) reduces to

. 0 A u T
- - - f
M _ ;(uT 1,9 _ ol . (4.97)
Jda 2 - -~ 3a T da -
A -B T

Furthermore, if the loading on the body is accomplished by surface tractions
applied on the boundary other than the crack face, then the load vector £

£
is independent of the infinitesimal crack advance, i.e. i)-==O. Therefore,

da
from the equations (4.94) and (4.97)
om 2 S
M_ 1-v2 ., _ 1 T T3Su
da ( E )kI 27 I >aa[r]’ (4.98)

where S5 is the master finite element matrix;

0 A

1
[

(4.99)
A" -B

and %: represents the change in the master finite element matrix per unit
crack advance. Aa, the infinitesimal extension of the crack tip can be
approximated by rigidly translating all nodes on and within a contour To
about the crack tip in the x-direction, Figure 3. All other nodes remain
in their initial positions. Thus the master finite element matrix, which
depends on individual element geometries and elastic material properties,
remains unchanged in the regions interior to I'y and exterior to'I';, and the

. , 39S .
only contributions to Sz-come from the band of elements between the contours

Fp and T;. Thus
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S T T EC 3§g a
—_— = <y T >—_—[—] = <" 27> I —"_[:] (4.100)
Ja’'t - - i=1 da "%

where @ and % are the nodal variables for the nodes on I'y and ry; EO is
the number of elements between the contours Iy and T'y; and §g their element

matrices. The change in the element matrices can be calculated directly as

3s0 3590 ax.
-1i -1 3

Y 8xj da (4.101)

where the nodal coordinates Xj are thought of as functions of the crack

length a. The derivatives ij/aa gre then unity or zero, depending

on whether or not xj is the x-coordinate of a node located on Ty, respectively.
Alternatively, agg/aa may be approximated by a simple forward finite difference

scheme

=L, =L 500 g0, (4.102)

Here §g are the element matrices for the elements between the contours I'g
a

and T;, calculated for the initial crack length a, and §g when x coordinate
atAa
of each of the nodes lying on I'g have been incremented by Aa.

The equations (4.98) and (4.100) suggest that to calculate the
stress intensity factor KI, the master finite element matrix equation need
only be solved once, i.e. for the initial crack length a. After obtaining
this solution, pre- and post-multiplying the differentiated element matrices
of equation (4.102) with the solution vectors for the corresponding nodal
variables and then summing these over all the elements between I'p and T
yields the rate of change of potential energy in the discrete sénse
AﬂM/Aa. Alternatively, the differentiated matrices can be assembled and then

pre- and post-multiplied by the solution vectors 4 and T for the nodal dis-

placements and stresses, respectively, for the nodes on g and Ty , as in
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equation (4.100)

0
AﬂM T T E 1

= = 0 _g0 178
pa - <0 > oISy §; 11 (4.103)

i=1 athAa a L

Finally, the stress intensity factor K., for plane strain state can be

I

computed from

AﬂM

E
Ky =/7152 [—Aa . (4.104)

The contour 'y to be translated is thus far arbitrary except for
the requirement that it be internal to the body and enclose the craék tip.
It can also be shrunk to a single node at the crack tip so that the sum-
mation in (4.100) extends over the elements adjacent to the crack tip only.
A glance at Figure 3 and the procedure outlined above for determining the
potential energy release rate indicate that it is an area-analogue of the

path independent J-integral.
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CHAPTER 5

APPLICATION OF BOUNDARY CONDITIONS

So far only the homogeneous boundary conditions have been
considered in the development of the theory of mixed methods. The treat-
ment of homogeneous, mixed homogeneous and non-homogeneous boundary condi-
tions, how these can be incorporated in the mixed finite element method, and
equivalence to boundary residual concept are presented in this chapter.

For illustration purposes the plane stress linear elasticity problem

with unit thickness is considered. The governing differential equations

are
_Tij,j = fi (5.1a)

Tij = 2u€ij + AekkGij (5.1b)

sij = 1/2(ui,j'+ uj,i) (5.1c)

where Tij and Eij are symmetric second order tensors, and i=j=1,2.
Equations (5.la) are the equilibrium equations relating stress gradients

to the body forces £ (5.1b) are the constitutive equations where \ and

1°
¢ are Lamés constants gnd (5.1c) are the kinematic equations relating
strains to displacement gradients. Assuming that the equations (5.l1c) are
satisfied identically equations (5.1) reduce to the following set of

equations

_Tij,j = fi; i=j=1,2 (5.2)

1/2(ui fu, L) = 0; i=j=k=1=1,2. (5.3)

5,17 7 Cigka "k
Where Cijkl is the fourth order compliance tensor. For E, the Young's

modulus and v, the Poisson's ratio defined as
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u(3x+y) | - A

E="0m ¢ V" 20w

the equations (5.2) and (5.3)) for a plane stress problem, can be written

in the following form:

-1 -1 = fx (5.4)
XX ,X XY,y
- -7 = fy (5.5)
Xy ,X Yyy
4, == (t__ -vr_) =0 (5.6)
’x  E T xx vy
v, - i-(—\)T +1 )=0 (5.7)
’y E XX vy '
w, +v, -2d™) vy, (5.8)
y X E Xy

0 o' o - T ][]

0 00 s vt

%?h 0 :—%- %. 0 Txx 0 (5.9)
0 g—y:YE— < 0 [ ]y 0

_—g; —g’;: 0o 0 "———2(?"’)_ B EN

which takes the equivalent form of (3.35) as

o Ix u £
= (5.10)
T —9 T 0
or AL = p. (5.10a)
Where u = <u ‘V>T; or uy = u and up; = v ’ (5.10b)
r= T’ (5.10¢)

T* = -7 = oy, (5.10d)
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A=<ul tT> and £ =<f £ 5T,
a - 1 L x Uy
and the compliance matrix C is a symmetric positive definite matrix
1 -v 0
' 1
C = 0 1 0 (5.10e)
0 0 2(1+v)
The energy product of definition 3.4.3, for umit thickness,
becomes
(80,8 = [A,0] = [0 [w'T#r +c'1u - clerlan. (5.11)

This, on integration by parts of the first term on the right hand side, yields

T T
[A,8] = - S“S Topd-nds - Sﬁs TheUrsds + [o [21 Tu-t CT]de (5.12)

where Ton and T,s 2re stresses normal and tangential to the boundary and n
and s are unit outward normal and tangential vectors, respectively. 1If the
boundary conditions are homogeneous, the boundary integrals in (5.12) can be

dropped resulting in the energy product of equation (3.73).

(4,41, = fo [21°Tu - «"crlde. (5.12a)
The mixed variational principle of (3.77) for plane stress linear elasticity

can now be written as
PO = [, (20 Tu-t"czlda - 2/, £ uda, (5.13)

and ﬁ=<g T>T e H, .

> I

5.1 Homogeneous Boundary Conditions

The homogeneous boundary conditions for plane stress can be

expressed as

13" ° T
(5.14)
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and S are the
u

where nj's are the components of unit outward normal, ST

portions of the boundgry S where the stresses and the displacements are
prescribed to be zero, respectively.

The element matrices can be generated directly from (5.13)
(Appendix A) and assembled by using the procedure discussed in Chapter 4.
Since the stresses are incorporated into the functional F(Q) as natural
boundary conditions oﬁly the kinematic boundary conditions on'g
are to be satisfied. This can be achieved by forcing the corresponding
displacement nodal variables to be zero on the boundary Su' The process is
identical to forcing the homogeneous kinematic boundary conditions in the

displacement method.

5.2 Homogeneous Mixed Boundary Conditions

The boundary conditions for the plane stress problem of equations

(5.4) to (5.8) in this case are

u, = 0 on S
i u
Tijnj =0 on ST (5.15)
T..n, +au, =0 on S
ij ] i M

where Su’ S.. and SM are the portions of the boundary S on which displacements,

T
stresses and mixed conditions are specified, respectively, and o is a constant.

Consider the emergy product of (5.11). Since the variable u and 1
are in the field of definition of operator A, they must satisfy all the

boundary conditions in equations (5.15). The energy product of two elements

A and A from DZ is

8,81 = [ [8'T%c + 21w - 2 crldn.

Integration by parts of the first two terms on the right hand side yields
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[A,A] = - ?; T o0 nds f ?Srnng-gds - ¢S T drsds + ¢; T u-sds

+fg lw'mat + T'18 - ticrldn. (5.16)

Since A and A satisfy the same bolundary conditions, the boundary integrals

above cancel each other. Further, since C is symmetric, therefore

TCr=1¢C
and
(4,41 = [ [u'T*2 + £'1a - £ ctlde
or [ﬁ,é] = [A9_1}]

which proves that the operator A is symmetric. Therefore the energy product

in the space HZ is given by

[A,0], = [ [20°Tu - 77Crlda + [ ouluds (5.17)
DAy Tl tar -t Sy o °

since the contribution to the line integral arises only from the S, part of

M
the boundary. 1In this case, the mixed boundary conditions give rise to a
line intégral in the energy product. The element matrices can be obtained
by substitution of the‘approkimate finite element solution into (5.17),
which would still be symmetric. However, some of the zero entries of the
matrix (4.19) are now replaced by the boundary contribution from the non-
zero line integral.

The energy convergence would be ensured if the coordinate functions

. w . A .
are complete in HA. Further, since the boundary conditions prescribed on §

T

and SM contain stress terms they are therefore natural. The coordinate
functions then need not satisfy these boundary conditions whereas the
homogeneous kinematic boundary conditions on S.u are enforced in the same

manner as discussed in section 5.1.
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83

The nonhomogeneous boundary conditions for a plane stress problem

are usually prescribed as

0
ui = ui o
0
T,.n, =T, 0
iji ] i
0
T..n, + au, = C, o
ij ] i i

(5.18a)

(5.18b)

(5.18¢c)

These can be incorporated by changing variables in such a way that the

problem reduces to one with homogeneous boundary

. T
assume that there exists functions A'=<u', 1'>",
Tij, both continuous, such that

u! = ul on
i i
1 = 70
T,.n, =T on
ii j i
t'.n, + ou' = ¢9 on
iji i i
Define new variables ui and Tij in the
u' = u, - u!
i i i
. =1, - 1!

or A=A - AT,

conditions.

i.e. function

T

SM.

following way

Thus,

s u'! and
i

(5.19)

(5.20)

(5.20a)

Substitutiné equations (5.20) into (5.2), (5.3) and (5.18) yields

-, . =f, + 1!, ="
17,3 1 ij,3] i
" + " - " - ] + 1 +
l/2(ui’j uj,i) Cijlekl l/2(ui,j uj,i)
u'" =0 on S
i
"n, =0 on S
171 3]
™.n, +aqu'f =0 on S

1 = 1"
Ciyak1 = B

(5.21)

(5.22)

(5.23)
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Thus the problem in A" has homogeneous boundary conditions, and the
only difference in (5.2), (5.3) and (5.21), (5.22), respectively, is the

introduction of the term Tij ., on the right hand side of (5.21) and [-1/2

b

1 ] + ] .
(ui,j+uj,i) Cijlekl] in (5.22). 1If these terms were known, it would be

possible to obtain an approximate solution for A" and convergence would be

w

ensured if the coordinate functions were complete in the space HA and the

associated energy product as given in equation (5.17).

Let the finite element approximations for A"= <§”'§“>T be

- M k-
u' r ¢, u" ; di=1,2. (5.24)
i k=1 i7ik
- N l -—
.= L L.tV i,3=1,2. (5.25)
ij 71=1 ij ij1
T
- _ NN
or A ?M Vi (5.26)
T
N© _ k 1
where QM = <¢i wij>
N = <t on T
and YM <uik Tijl> .

Then the required element matrix equation, from section 4.2, is

- N T _N
(3,01, = (7,8 (5.27)
here
f'' 0
T i
E = "
0 gij

Thus a solution for A" can be obtained such that

|&" - a"], > 0, as M and N > =, (5.28)

It is worth noting that here the kinematic nonhomogeneous boundary
conditions are conveniently incorporated through the load vector. Such a

procedure cannot be achieved in the displacement approach because it would
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require displacements to satisfy the nonhomogeneous boundary conditions
and have continuous first derivatives.
However, a solution may be obtained directly for u, and Tij

without actually knowing ﬁ'. This is accomplished by assuming approximations

for u, and 1,, as
i ij

- M -k
u, = L ¢,u,, ; i=1,2
i k=1 * ik
(5.29)
- N -1
T,, = L y,.t,,..; i,j,=1,2.
ij 1=1 ij 1j1
and | T ENT;’N
- -M =M
T
N -k =1
where gM = <¢i wij>
and ﬁN = <u f >T
-M ik ijl

w
A

The sets of functions {$k} and {@l} are complete in H, space considered with
respect to the nonhomogeneous boundary conditions. Therefore as the function
5”+§' satisfies such nonhomogeneous boundary conditions, it follows that

there exist u,, and 71,,., such that
» ik ij1

A - (A"+A')|, > 0, as M and N > =, (5.30)

Now the function E—(§”+§') has homogeneous forced boundary conditions;
therefore the energy product of it with any arbitrary function Qg in the space
W

HA, with homogeneous forced boundary conditions, would also vanish in lieu

of (5.30). Therefore

A AN N =
[r - G™A"), o], = 0. _ (5.31)

N
Since QM is arbitrary, it can be replaced by QN

M in (5.26) and equation (5.31)

can be written as
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(A - (§"+§'),9§]A = 0. (5.32)

From linearity of the operator A,

T gN = [A_pA1? M
[A",0,1, = [A-0',8.1, (5.33)
and substituting this into equation (5.27) yields
TN = (T N ,
[(R,2y], = (1,8 + [A',0], (5.34)
o [H 0 ][4
(.80 = [ S opdf
= -M Q 0 1" l’/l
813) ("1
or . (£14%)
(@, =/, ds.
"
(gljwlj)
Therefore from (5.21)
[, (£" s5rd0 = [o (£ + Tl )¢ e
Q i’fi
and integrating by parts the second term on the right hand side yields
Jo (Ee0aa = [ (£, 0% + 4 i o%ds
Q i’k 13 1 J j3tive
Using equations (5.19) and the fact that ¢§=0 on Su gives
[ (£" $dq = [ (£ o — 11 ¢% yan + / To¢kds + f (c0 - au!)o¥ds
o 1% Q “riti 13°1,7 Sy i'd Sy i i’%1
(5.35)
and from (5.22)
[q @utode = [0 (-1/2(u) _+ul ) + v an. (5.36)
ij 1] Q i,j j,1i 1Jk1 kl
Therefore
T N, _ k 0 k , N
(-8 = {J, £;0,d0 + fs ¢ kis + Is s, C.o.ds} - [A',2,], (5.37)

because, from (5.17)
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k
1 . \J
f lj¢l,J + fquui¢idS
N ,
1 =
(A0, . (5.38)
' ' _ q
fo 11/20u) s+ ) ) - €y gy 1oy a0
Now equation (5.37) enables (5.34) to be written as
[ £ o¥an + f T0¢kd + f C0¢kds (5.39)
- N o "i%i s, “1¥1%% T s ~i% :
[L\’q)M]A = T M

0
. .o . , 7_.- =T
which are the mixed Galerkin equations that govern a solution for A=<y 1>
in HZ when the boundary conditions are nonhomogeneous. Writing out in full

the equation (5.39)
[, 7,05 an+ [g ou $%ds = [ £.¢%a0 + [ T0¢kd + [ Co¢kds'
Q 'i5%1,7 Sy e A e Q “i%i Sp i'd s Sy 1777’

k=1,2, . . . M, (5.40)

fQ [1/2(Gi g * u, ) ]wq dQ = 0; q=1,2, . .. N (5.41)

j,i7 7 1Jkl kl
The equations (5.40) and (5.41) require that the approximate solution for Gi
given by (5.29) should satisfy the nonhomogeneous forced boundary conditions
and the coordinate functioné ¢§ the homogeneous forced boundary conditions
on Su'
In the finite element method it is not necessary to introduce
different approximations A corresponding tp gﬂ and §E coordinate functions.
The coordinate functions gﬂ of a finite element approximation associated
with the degrees of freedom that do not lie oﬁ Su satisfy homogeneous condi-
tions on Su’ i.e. vanish on Su' Therefore the equations (5.40) and (5.41)

can be solved by specifying the values of u,, of (5.29), the nodal degrees

ik
of freedom on Su' The remaining coordinate functions satisfy homogeneous

forced boundary conditions and thus only one set of coordinate functions need

be introduced.
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To show that the approximate solution E of (5.29) converges in

the energy norm, rewrite (5.31) from linearity of the operator A in the form

(R0, = [E"+a7,00) . (5.42)
Also from equation (5.20a)
’ 1,8yl = [Amn" 00 (5.43)

Subtracting (5.42) from (5.43) and from linearity of the operator A;

Y N = n_tn oN
(K01, = 11,000 .

Using property (iii) of theorem 3.4.2 (Schwarz inequality)

g N n N
("2 0, 1, | < 1a-E"], fol], -

But from (5.28), lé"—5"|+0; as M and N»«; therefore
[A-R GN] + 0, as M and N-,
=202yl ’

Since Qg is an arbitrary function with homogeneous forced boundary
conditions, it may be set equal to Q—E. Then

+ 0, as M and N->oo

which implies that

lé—@,A + 0, as M and N-w. ' (5.44)

That is, the approximate solution to the nonhomogeneous boundary condition

problem converges in the energy norm of HZ.

One of the advantages that the mixed method offers lies in different
ways of incorporating the boundary conditions. So far the natural boundary
conditions have been associated with stresses, a consequence of extracting
the boundary integrals from the equilibrium equations. This led to constrain-
ing of forced boundary conditions on u on Su through the nodal variables.

It will be demonstrated here that in fact all nonhomogeneous
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boundary conditions can be incorporated through boundary integrals from both
equilibrium and constitutive-kinematic equations through the Hellinger-
Reissner's mixed variational principle since it yields the same equations as
the mixed Galerkin method for T*T theory (Chapter 3).

The Hellinger-Reissner mixed variational principle for plane stress
with unit thickness and zero body forces fx and fy can be written as

1 2 2 2
= - P + +
I fQ [TXX x y xy(u +v, ) §E4Txx+Tyy szxxTyy 2(1+v) T4 }1dQ

- fsl (uEX+VEy)ds - fsz [(u—a)px+(v—;)py]ds (5.45)

where pi=Tijnj' S; is the portion of the boundary S on which the stresses

Tij or Bi are prescribed. The part S, has the displacements Gi (u and v)

prescribed on it. The stress boundary conditions of (5.18a) and (5.18b)

on ST and SM can be considered to be on part S; while Su would coincide with

So. Therefore

P =T = 70

pi Tijnj Ti on ST

- - 0 (5.46)
p, = Tijnj = Ci - au, on SM

and the first variation of I with respect to uy and Tij gives

= =+ + —_ 0
81 = [g [rg8uy 5140+ [o [1/2Cu; buy =Ciop) 11074548 - IsT T, (5.47)
_ 0_ - ~11 0 - =
Guids IS (Ci aui)dui fS (ui ui)d(Tijnj)ds fS ijnj(‘iu 0.
M U u

Now assume approximations for u; and Tij as
- M k
u, = I ¢,u, ; i=1,2. (5.48)

i k=1 * ik
N

and T,, = I wl T,..3 1,3=1,2. (5.49)

ES TS CRE S F A '
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Therefore
Mooy - N
Su, = I Su,. 3 6t,, = L C.8T (5.50)
i ¢1 k ij 1=1 wlj 1j1
- N k
and Su, , = L ¢, ,0u, . (5.51)
i,] k=1 i,j ik

Substitution of (5.48) to (5.51) into (5.47) yields
M

- k k - k
I = T [f dQ f Tg¢ids—fSM (Cg- ui)¢ids—fs

¢ ds]éu
k=1 Q ij i,

373

N
+ il [fQ {l/2(ui’j+u, )-C

q q 0,4
5,407 Cg1 i Vg 9% s uiwijnjds+jsu uj¥ygnyds]

§t,, =0. (5.52)
Since 81 vanishes for arbitrary variations Guik and dTijq’ the following
equations are obtained:

- k -k - k, _ 0.k 0.k, .
jQ 1J¢1,JdQ + f M aui¢ids fsu Tijnj¢ids = IST Ti¢ids + ISM Ci¢ids,

k=1,2, . . . M. (5.53)

[o W/2G o+ )

j,1i - ljkl Tk2

q _ q = 0,,9 .
]w dQ fsu ulwiJans fsu uiwijnjds,

q=1,2, . . . N. (5.54)
The equations (5.53) and (5.54) contain 2M+3N equations for 2ZM+3N unknowns
with a symmetric matrix of coefficients. It is interesting to note that the
nonhomogeneous forced boundary conditions are applied through the displace-
ment vector in (5.54) and hence need not be constrained as was done in the
previous case. Except for boundary integrals over Su these equations are

exactly the same as (5.40) and (5.41).
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5.4 Boundary Residual Concept

An alternate procedure for incorporating boundary conditions in
the mixed Galerkin method is similar to the boundary residual concept
presented by Finlayson and Scriveﬁ [8] and Finlayson [7] in which the
domain residual together with boundary residuals are made orthogonal to
the shape functions of the approximate solution.

Consider the plane stress linear elasticity problem of equation
(5.9) with nonhomogeneous boundary conditions of equations (5.18) and
approximations for uy and Tij of equations (5.48) and (5.49). The
substitution of u, and ¥ij into the field equations (5.9) and boundary

i
conditions (5.18) yields the following residuals:

R, = [—?ij,j—fi] ~ inQ (5.55)
R, = [1/2(Gi’j+ﬁj’i)—cijkl¥kl] in @ (5.56)
Rui = —[Gi—ug] on Su (5.57)
Ry, = [%ijnj—Tg] on S, (5.58)
RMi = [?ijnj+aai—cg] ‘on SM (5.59)

where Rei and Réi are the domain residuals for the equilibrium and kinematic-
constitutive equations, respectively; Ru, RT and RM are the boundary

residuals on Su’ S.. and SM’ respectively.

T

If the residuals Re from equation (5.55) along with RTi and RMi

i
from equations (5.58) and (5.59) are made orthogonal to the shape functions
for Gi and residuals RCi from (5.56) along with residual RUi from (5.57) to
the shape functions for ¥ij’ the following equations result:

[ (=T, .-f Y$<aq + Jo (1..0,-T9ds + [, (t,.n,+au ~c9)¢¥ds = 0;

Q ij,j "i°74 S “ij i i SM ii j i 7177 ?

k=1,2, . . . M. (5.60)
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- = } = 109 dg - = 049 n de = 0
IQ [l/z(ui,j+uj,i) Cijleij]wide fsu (ui ui)wijnj s = 0;

q=1,2, . . . N. (5.61)
Assuming fi=0; and applying Gauss' theorem to (5.60) yields
- .k -k - k 0.k
Q - = T +
IQ Tij¢i,jd + IS aui¢ids IS Tijnj¢ids fs i¢ids f
M u T
k=1,2, . . . M. (5.62)

- q - = .4 - 0,9 .
IQ [1/2(ui,j+uj,i) Cijlekl]wide fsu uiwijnjds fsu uiwijnjds,

g=1l,2, . . . N. (5.63)
The equations (5.62) and (5.63) are the same as equations (5.53) and (5.54)
in the previous section. Therefore in linear elasticity, the equations
obtained by the mixed Galerkin method, the mixed variational principle and
the boundary residual conceﬁt are the same. In the displacement approach,
Hutton [15] showed that the equations obtainedbfrom the Galerkin Method
and the boundary residual concept for approximations from wider class HA
would be identical if the forced boundary conditions were either homogeneous
or were identically satisfied by the finite element approximations when
nonhomogeneous. However, the flexibility offered by the mixed methods in
incorporating the bougdary conditions, forced or natural, provides a wider

equivalence.
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CHAPTER 6

EIGENVALUE ANALYSIS OF THE ELEMENT MATRIX

An eigenvalue-eigenvector analysis of the element matrix arising
from the mixed method is presented in this chapter. Various combinations of
displacement and stress approximations over a triangular and a rectangular
element are considered. Two problems are included, namely the linear
elasticity plane stress and the linear part of the Navier-Stokes equations.
It is anticlpated that the analysis of eigenvalues will provide some insight
as to choice of approximations for the dependent variables involved so that

completeness is achieved.

6.1 Linear Elasticity Problem

Consider the matrix equation (5.9) for the plane stress problem

with zero body forces, i.e. fx=fy=0,

o o -— 0 g-}—,- 1L1 [o
0 0 o g—;g—; v 0
%}; 0 %— % 0 T | = 10o]. (6.1)
0 g—y- £ -% 0 Tyy 0
_-3; %; 0 o‘——-——-z(é”)d ]

The variational principle for (6.1) with homogeneous boundary conditions

(section 5.1) can be written as

Vot (o2 42 2
v,y+Txy(u,y+v,x) ZE{T +1 ZvTXXTyy+2(l+v)Txy}]dQ. (6.2)

1= IQ [Txxu’x-iﬂr XX Yy

vy
Since 1 represents strain energy, inspection of the right hand side in (6.2)

suggests the following three rigid body modes which yileld zero strain energy:
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(i) u = constant, v = 0 5T =1 =7 = (

XX yy Xy
(ii) u=0 , V = constant; Tox = Tyy = Txy =0 (6.3)
(1ii) u = -cy , V= CX sy T =T =1 =0

XX vy Xy
These rigid body modes are expected to be removed by the specified kinematic
boundary conditions. Furthermore, it is required by the functional of
(6.2) that the displacements satisfy the kinematic boundary conditioné
while the stresses emerge as natural boundary conditions. Therefore the
finite element approximations should be in compliance with these requirements,
i.e. the matrix of equations (4.19) should exhibit the rigid body modes of
(6.3).

The independently chosen approximations for the stresses and the
displacements have to comply with the completeness requirement (i) of
section 4.4, The mean convergence of strains from the assumed stresses to
the strains derived from the assumed displacements would be assured for a
finite number of degrees of freedom if the former contains all the strain
modes and perhaps more than the strain modes in the latter. It is assumed
that the displacements possess all the rigid body and constant strain modes
and that the stresses possess all the constant stress modes. It is now
asserted that the violation of the completeness requirement_(i) results in
a hypersingular element matrix, i.e. the number of zero eigenvalues greater
than the rigid body modes expected in a problem. The eigenvectors for the
extra zero eigenvalues correspond to mechanisms which are defined as the
kinematic freedoms possible when the material has no elastic stiffness.

This is illustrated by the following example.
Consider one element domain 2° and the‘approximate solutions for

xx’Tyy and Txy as

U,V,T
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u = ax + by + cx? + dxy + ey2

v = bx + fy + gx2 + hxy + iy2

Tex = 3 (6.4)
T =k

yy

T = 1.

Xy

The polynomials for u and v are so chosen that the rigid body modes have been

eliminated by satisfying the kinematic boundary conditions. Therefore

Eex ~ Wy = 2 + 2cx + dy

€ = ;, = f + hx + 2iy (6.5)
yy X

ny = u,y + Vs = 2b + (d+2g)x + (2eth)y.

From the equations (6.5) the strains derived from u and v are complete linear

polynomials. Therefore the mean convergence of constant strains from ¥xx’

Tyy and ?xy in (6.4) to the.strains in (6.5) would not occur and the com-
pleteness requirement (i) is violated. The parameters in (6.4) are to be
determined from the variational formulation. The substitution of the ex-

pressions in equations (6.4) into (6.2) yields

I = [j(Aat2actBd) + k(Af+ah+28i) + 1(2Ab+ad+20g+2B8e+Bh)]
- ‘;—E[j2+k2—zvjk+z(1+v)12]. 6.6)
vhere A = [ da, o = o ¥d and 8 = f  yda.

Q Q Q
The system of equations governing the one element domain is obtained by making

I stationary with respect to the unknowns a,b,c,d, . . . 1. This is
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0 0o o 0 0 0 0 0 O : A 0 0 | [a
0o 0 0 0 0 0 0 0 : 0 0 2A b
0 0 0 0 0 0 O :2a 0 0 c
0 0 0 0 0 O : B 0 a d
0 0 0 0 O : 0 0 28 e
0 0 0 O : 0 A O £ =0 (6.7)
0 0 0 : 0 0 2o g
0 0 : 0 o B h
| symmetric O_:_O_ 28 0 i
e E 0 ||
g 2 0 k
_ A Y

It is observed that the first and the ﬁhird'rows; second, fifth and the
seventh rows; and sixth and the ninth rows are the same except for some
multiples, while the fourth and the eighth rows are linear combinations of

the first and the second rows and the second and the sixth.rows, respectively.
Therefore only six of the twelve equations in (6.7) are linearly independent.
Hence the element matrix has a rank of 6 instead of 12 and therefore is
singular. As a consequence c¢,d,e,g,h and i are indeterminate and these are
the coefficients of the quadratic terms in the polynomials for u and v,
equations (6.4).

For a matrix of the form (4.19),

0 a
S mXm mxXn
(mtn) X (o) = I (6.8)

nxm nxn
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which 1s real and symmetric, the eigenvalues are real and because of the
indefiniteness of the matrix these can be either positive, zero or negative.
Further, if the.anlzsubmatrix is positive definite and r the rank of the
matrix S, it is shown in Appendix B that the eigenvalue distribution is of
the following type:
(i) m positive and n negative eigenvalues if r=min;
(ii) (r-n) positive, (m+n-r) zero and n negative eigenvalues if
r<mtn.

Thus the matrix of equation (6.7) which has r=6, m=9, n=3, would yield three
positive, six zero and three negative eigenvalues. Also from the functional
in equation (6.6) with indeterminate c,d,e,g,h and i, for eigenvalues to be
zero, the stresses j,k and I must be zero. It is, therefore, obvious that
with the displacements and stresses of equations (6.4), the element can
strain with zero stresses (i.e. forming mechanisms). The non-stressing
strain modes arise from the quadratic terms in u and v giving rise to the
linear terms in strains, equations (6.5), which are not contained by the
assumed stresses. This violates the completeness requirement (i) and it
is this violation which leads to mechanisms. Further the number of mechanisms
corresponds to the number of terms present in the derived strains, equations
(6.5), but which are not included in the strains obtained from the assumed
stresses using the constitutive laws.

It was shown in the proof of theorem 4.5.1 that the elimination of
stresses from the matrix equation (4.18), i.e.

0 Ee Ee pe

(6.9)

gives

T
ab’a u =ku _ (6.10)
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where the matrix Ee is identical to the element stiffness matrix one would
obtain from the displacement finite element method using the same approxima-
ting polynomials for the displacements, provided the assumed displacements_
and stresses in the mixed method were complete.

In the example considered here, obviously the completeness is
violated. However, the static condensation of the matrix equation (6.7)
by eliminating stress degrees of freedom j,k and 1 is performed to obtain

the following matrix equation:

_—y

A 0 2a 8 0 VA 0 va 2vg] [a]

(I-v)A 0 (I-v)a 2(1-v)B 0 2(1-v)o (1-v)B 0 b

A A 0 2va 0 A A c
§f+(l—v)a2 (1-v)aB w8 (1-v)a? (1+v)aB 2vB? d
A 2A A A 2A A )
E 2(1-v)B2 0 2(1-v)aB (1-v)Bp?2 B
=3z N A n 0 el =0. (6.11)

A 0 o 28 f

symmetric
2(1-v)a?2 (1-v)aB
A A

o
oQ

gf+(l—v)62 208
A 2A A

4p2

- | ] Y
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The very same linear dependence of equations is observed in (6.11)
as was for (6.7) and again c¢,d,e,g,h and i are indeterminate. The rank of
the 9x9 matrix is 3 instead of 9. Therefore it cannot be the same matrix
as one would obtain from the displacement approach using the same approxima-
tionsfor u and v as in equations (6.4), since it is well known that the
stiffness matrix is positive definite after the rigid body modes have been
eliminated. Now if the quadratic terms in u and v were dropped, then
the completeness requirement (i) is satisfied thus resulting in the follow-

ing non-singular equation with rank 6.

o 0 0 A 0 0 a
O 0 0 0 0 2 b
0O 0 0 0 A 0 £| = o0. (6.12)
A 0 o -£ —‘-’% 0 3
o o a % -2 o k
0 24 0 0 o—"—z—(—éil’—)i“i 1

The matrix of equation (6.12) would yield three negative and three positive
eigenvalues. The static condensation of the matrix by elimination of the

stress degrees of freedom j,k and I gives

E A 0 VA a

1-v2
0 2(1-v)A O b| = Q. (6.12a)
VA 0 A f

The matrix of equation (6.12a) is exactly the same as the stiffnex matrix

one would obtain from the displacement approach for constant stress triangles.
To further demonstrate what has been explained so far, various

combinations of interpolations for the displacements and the stresses over

a triangular and a rectangular element are considered. The typical node
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numbering and nodal degrees of freedom for both triangular and rectangular
elements are shown in Figures 4 and 5. The derivation of the element
matrices is demonstrated in Appendix A. An eigenvalue routine, which uses

Householder transformations, is then used to solve the following eigenvalue

[s]{; —A[I] = 0. (6.13)

problem.

1o

T

o

where 6T=<uT VT> and TT=<TT T TT > and [S]= 2l as in (6.8), and
- - - - -XX -yy -Xy aT b

[I] is the identity matrix.

The qualitative description of the eigenvalues and the composition
of the eigenvectors for all the combinations of interpolations used for the
displacements and stresses over a triangular element appears in Table I
and that for a rectangular element is listed in Table II. For both triangu-
lar and rectangular elements, the number of.negative eigenvalues corresponded
to the number of stress degrees of freedom, whereas the three zero eigen-
values for thd expected rigid body modes are obtained only for the displace-
ment stress combinations which satisfy the completeness requirement (i). In
the cases where more than three zero eigenvalues are obtained the number of
extra zeroes corresponded to the number of modes present in the strains
derived from the assumed displacements that were not contained in the strains
from the assumed stresses. The eigenvectors are composed of the same dis-
tribution as the assumed approximations for displacéments and stresses in
all cases except for rigid body modes where u and v satisfied u,x=0, V,y=0,
u,y+v,x=0 and stresses were zero.

It is essential for comvergence in the energy sense that a mixed

finite element formulation conform to the completeness requirements of
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section 4.4, and be able to represent rigid body modes and the constant
strains (with completeness requirement (i) satisfied and assumed displace-
ments that possess constant strains, it is implied that the corresponding
assumed stresées would contain the constant stresses). To include rigid
body modes and constant strains in the assumed displacements is a simple
matter. However for certain combinations of assumed displacements and
stresses, 1t 1s not quite obvious that completeness is achieved, especially
for incomplete polynomials. For example using biquadratic displacements
and bilinear stresses over a rectangular element yields four zero eigen-
values. A scheme to check completeness requirement (i) and trace the
terms in the polynomials used for the displacements which correspond to
strains not included in the assumed stresses is presented here. The poly-
nomials considered are the ones mentioned in the example above.

The assumed biquadratic displacements u and v are

u = a1+a2x+a3y+aqx2+a5xy+a6y2+a7x2y+a8xy2
(6.14)
Vv = bytbox+b3ytb,x2+bsxy+bgy2+brx2y+bgxy?
and the bilinear stresses are
Tex = cy) .+ coX + c3y + cyXy
?yy = d; + dyx + d3y + dyxy (6.15)
:Exy = e + eosX + ey + eyxy.
The strains derived from u and v are
€x = G’x = ay+2a,x+asy+t2a,xytagy? (6.16a)
€ =7V, = bgtbsx+2bgy+bsx2+2bgxy (6.16b)
Yy y
Yy = G,y+\7,x = (agtbp)+(as+2by)x+(2ag+bs)y+asx2+2(agtbs) xy+bgy2. (6.16c)
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Now using the generalized Hooke's Law for the plane stress problem, the

strains corresponding to the assumed stresses in (6.15) are

- 1 .- - 1

€y = E{Txx—vryy] = E[(cl—vdl)+(c2—vd2)x+(03—vd3)y+(Cq—Vdu)XY] (6.17a)
- 1, - - 1

Eyy = f[~vTxx+Tyy] = E[ (dl-—\)cl)+(d2—\)cz)X+(d3—\)C3)y+(dy+—\)C|+>Xy] (6.17b)
- 2(1+v)- 2(14v)

ny = ——ir——qu =-——E———[e1+e2x+e3y+e4xy]. (6.17¢c)

If the displacements were assumed to be a complete polynomial of degree p
and stresses to be a complete polynomial of degree (p-1), then completeness
would be achieved. However, the polynomials considered here are not complete
and comparison of equations (6.16) with (6.17) shows that certain terms in
the derived strains are not contained in the corresponding strains from the
assumed stresses, i.e. asy2 in (6.16a), b7x2 (6.16b), a7x2 and bgy2 in (6.16c).
But ay and bg as coefficients of the biiinear terms in the derived strains
€ ix and Eyy match with the coefficients of the bilinear terms in gxx and €
of (6.17), respectively; while (agtay) appearing as coefficient of the
bilinear term in the derived shear strain ny matches with the coefficient
of the bilinear term in ;xy of (6.17). Iherefore only one of the coefficients
ay,ag,by aﬁd bg is indeterminate, hence it leads to only one mechanism besides
the three rigid body modes. This is confirmed by the results obtained for
biquadratic u and v and bilinear stresses over a rectangular element, Table II.
For the same combination, the mode shape for the mechanism after elimination
of the rigid body modes, is illustrated in Figure 6.

The static condensation by elimination of stresses was performed
for all of the combinations of displacements and stresses appearing in Tables
I and II. The condensed element matrix is found to be exactly the same as

the stiffness matrix one would obtain from the displacement method using

identical assumed displacements over an element except for the combinations
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where the completeness requirement (i) is violated which possess the same

number of mechanisms.

6.2 Linear Part of the Navier-Stokes Equations

The basic equations governing the two dimensional, steady, incom~

pressible flow are the well-known Navier-Stokes equations

- 24 = :
p(uu,x + vu,y) + Ps pV4u 0 in Q (6.18)
p(uv,X + VV,y) + p,y - uviv = 0 in Q (6.19)
u, + v,y =0 in (6.20)

where u,v are the x,y components of velocity, respectively, p is the fluid
density, p, the pressure, u, the dynamic viscosity, and © the open domain
of the problem. In terms of deviatoric stresses directly, the equations
(6.18) and (6.19) can be written as

p(uu,x + vu,y) + (p,x -1 -

XX, X Txy,y) =0 in @ (6.21)

- T -1 ) =0 in Q (6.22)
y Xy X Yy ¥y

D(uv,x + VV,y) + (p,
where Tox and Tyy are the normal deviatoric stresses in the x and y directions,

respectively; and Txy is the shear stress. The equations relating deviatoric

stresses to velocities for a Newtonian fluid are

_ 2
T = Eu(u,x + v,y) + 2uu,x (6.23)
T = - gu(u + v, ) + 2uv (6.24)
vy 37 7x 'y 'y
Txy = u(u,y + v,x). (6.25)

These equations can be put into an alternate form by solving for the velocity

gradients as



Vs

u,

1 1
< = u(Txx - ZTyy) in Q
1.1
= -— -+ i
u(-~~2-TXX Tyy) in 9
+ v, = }T in Q.
X U Xy
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(6.26)

Now the equations (6.21), (6.22), (6.20) and (6.26) can be put into the

matrix operator form for mixed formulation as

9 .3
p (ua x4‘\73—};) 0
d 3
0 p(u3x+v§;)
I 9
ox dy
)
90X 0
)
0 3y
a_ a
L dy X

a8 4 [,
9x ax 9y
) 3 d
oy 0 _ay ax| |
0 0 0 0 P =0 in Q.
4] .- L 0 T
u 2u XX
0 i1 0 T
VATRE vy
o 0o o -2«
WL XY

(6.27)

For steady creeping flow, a special case of incompressible, steady Newtonian

flow, the nonlinear part of the matrix operator above, which makes it non-

symmetric, can be dropped.

Thus the following first order, linear differen-

tial equations result and involve a symmetric matrix differential operator

0 0
0 0
I I
ox ay

9
9x 0
)
0 3y
3 23
| dy 9x

. o Ay ]
X o0X oy
d d 3
5y 0 Tiy Tax| |V
0 0 0 0 P =0 in Q3
o - L o]t

u 2u XX
0 L -L 0 T

2u U yy
0 0 0 1 T

LI_J _XY.J

(6.28)
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comprising six equations for six unknowns. Here, in lieu of T*T theory

3 _3_ 9

09X 09X 3y
T = _TT =

3 93

ay dy ox

and for u=<u v>T and 1=<p T T, the analogous form'of equations

T T >
XX yYy Xy

(6.28) to the plane stress elasticity equations (5.10) is

S B
=0 (6.29)
T -F] [
or AL =0 (6.29a)
where F = "0 0 0 0]
1 1
0O = -=— 0
W 2u
(6.30)
1
0 w 0
0 0 0 1
L o

which is a positive semidefinite matrix.

In tensor notation, the equaticns (6.28) take the form

p,i - Tij’j = 0; 1i=j=1,2; 1in Q (6.31a)
u, ., = 03 i=1,2; in Q (6.31b)
i,i ,
1
- + - = : ji=i=k=]= . i .
Z(Ui,j uj,i) Cijlekl 0; 1] k=1=1,2; in @ (6.31c)

and can be subjected to some boundary conditions analogous to equations

(5.18);
u, = u9 . on S
i i u
(- + = 70 .
( péij Tij)nj Ti on ST (6.32)
(-pé + 1, )n, + au, = C° on S
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where Su+ST+SM=S, the boundary of domain Q.

The matrix equation (6.28) is similar to matrix equation (6.1)
except for pressure p, the continuity equation as zero divergence of
velocities and the deviatoric normal stresses. The mixed variational
principle for these equations for homogeneous boundary conditions can be
derived as

I = jQ [—p(u,x + v,y) + ?xxu’x + Tyyv’y + Txy(u,y + v,x)

i
N[
=

2 + 12 -1 1 + 12 }1dQ (6.33)
XX yy XX yy Xy .

which is also similar to the mixed variational principle for the linear
elasticity plane stress problem in (6.2) except for the term p(u,X+v,y)
and requires velocities to satisfy the kinematic boundary conditions. The

variational principle of (6.33) also gives the three rigid body modes as in

(6.3);
1) u = constant, v = 03 T =T = T =0
XX yy Xy
(ii) u=20, v =constant; 1 =1 =71 _ =0 - (6.34)
, XX yy Xy
(iii) u = -cy; v = CX} T =T = T =0

XX yy Xy
while pressure can be arbitrary, since the incompressibility leads to the
divergence of u and v to be zero rather than be proportional to pressure.
If the finite element approximations.for the variables involved

. e
in (6.33) are chosen over an element domain Q as

— m ——
u= I ¢,u,
i=1 * 1
(6.35a)
- m =
v= 1 ¢,v,
i=1 * 7
p = .E P (6.35b)
i=1
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- n —
T = I Y,
XX , i xxi
i=1
— n —
T = L Y,T_ . (6.35¢)
Yy o o4oqp iyyi
— n —
= I VY.t .
Xy =1 1 Xyl

Then the substitution into the functional I of (6.33) and setting its first

variation §I to zero for stationmarity yields the following matrix equation:

0 0 e a2 0 bl fu]

0 0 f 0 b a v

ET £T 0 L O N

al o o -Y Lg o =0 (6.36)

- - - = 2u- - ~-XX -

0 b° 0 %—d a0 |t

- - - = ou= = -yy

b T o o o -k |t

LEEEI 2 |5

T T T

Here u=<uj up; . . . um> sy VSV Vo .. vm> s> p=<p1 P2 .+ . . pl> s

T .
T__=<T T e o o T >, etc., are the linear vectors of nodal degrees
—-XX xx1 xx2 XXn

of freedom. The submatrices g,E,g,g and f are obtained in the following

manner.
e
a,. = [ eb. _¥.d
3 TaTLxT) i=1,2, . . . m;
- e j=1,2, n.
®ij fﬂe¢i,yw3d9
d,, = [ ev,y,d0®  i,j=1,2, . . . n. (6.37)
ij Qe i J ’ [}
e
e,., = -j ed. .dQ
o TR 0, L
ant i=1,2, . . . 1.
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Note that the matrix d is symmetric and positive definite.

The matrix of equation (6.36) is symmetric, therefore the
eigenvalues of the matrix are real. Further, it is indefinite and if the
rank of the matrix is (2mt+I+3n), then from Appendix B it has 2m positive
and (I+3n) negative eigenvalues. The choicelof polynomials for U VLT s
Tyy and Txy still has to comply with the same completeness requirements
set out in the previous section. However the requirements on the pressure
field are dubious because it is not related to the strains. The obvious
question that arises here is: what are the completeness requirements on
p? Further it is not possible to ask for mean convergence of pressure to
the volumetric strain as was done for the stresses in the plane stress
linear elasticity problem because of the incompressibility constraint.

In the finite element application to the Navier-Stokes equations
(6.18) to (6.20) using the primitive dependent variables u,v and p, a
similar situation was faced by Taylor and Hood [34] and Olson and Tuann {26].
One of the possible variational principles for the linear part of these

equations used in the reference [26] is
J(u,v,p) = f [l"—-{u2 +v2 +l(u +v, )2} - p(u, +v, )1]d
b ] b Q Re ,X ’y 2 ’y ’x ’X ,y

- fg Ru+ Tv)ds (6.38)
T

where (i,?) are the specified traction on the boundary ST. The term

fQ p(u,X + v,y)dQ appears in both variational principles, I of (6.33) and
J(u,v,p) of (6.38). Therefore the requirement that the pressure interpolation
should be one degree less than those for the velocity components, as found

by Olson and Tuann [26], is also expected here and indeed confirmed by the
numerical results. A different explanation for such a requirement is pre-

sented here.
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Since the divergence of u and v in equation (6.20) is zero, it acts
as a constraint equation. If the approximations used for u and v involve
complete polynomials of degree m, then us and v,y would involve complete
polynomials of degree (m-1). Therefore the unknowns corresponding to the
(m-1) complete polynomial for Us must be related to the unknowns corresponding
to (m-1) complete polynomial for v,y in order to satisfy continuity in the
discrete sense, Assuming that u’V’Txx’Tyy and Txy have been chosen properly,
i.e. do not yield any mechanisms except for the rigid body modes, then the

discretized continuity equations

ic

LN L R (6.39)

{o
<

should have a rank not less than mtl

Cy,, i.e. combinations of (mt+l) taken 2
at a time. However in the finite element formulation, equation (6.36), the
number of discretized continuity equations is associated with the number of

c .. . mt1
degrees of freedom for pressure thus limiting it to Cy. As a consequence,

mtl .

the pressure should have degrees of freedom not more than Co, which
implies a complete polynomial of degree not higher than (m~1).

Consider the following schematic representation of the complete

polynomials for u,v and p.

Velocity u
1 Constant a,
X y Linear ap, aj
x? xy y? Quadratic ay, ag ag
(a)
x3 x2y xy? y3 Cubic ay ag ag ag
x* x3y x2y2 xy3 y* Quartic a)] ajp.ays ajy als

etc. etc. etc.
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Thus if the ai's are the coefficients of the polynomial for u, the complete
quadratic for u can be written as

u = a; + ayx + agy + ayx? + agxy + agy?. (6.40)
Replacing ai's by.bi's in scheme (a) for v; the complete quadratic for v is

v = by + bpx + b3y + byx? + bgxy + bgy?. (6.41)
Similarly for pressure p;

p = cy + cox + c3y + cyx® + csxy + cgy?. (6.42)
The partial derivatives Us and v,y can also be written schematically as

complete polynomials,

\ 0 U, \a1
\
1\0 Constant ap \as
- \
X y \O Linear 2a, a5 \ag
\ (®)
x2 xy y2 \O Quadratic 3ay 2ag aq \a10
' \
x3 x2y xy2 y3\\0 Cubic 4aj;3a;p 2ay3zajy\as
etc. etc. etc.
0, v,y by/
/ /
0/ 1 Constant by/ bj
/ /
0/ x 'y Linear by/bs 2bg
/ / (c)
0/ x2  xy y? Quadratic b7/bg 2bg 3bjg
/
0/ x3 x2y xy? y3 Cubic bylblz 2b133byubbys
etc. etc. etc.
Consider only the non~zero terms to obtain u,x+v,y as
(u’X+V’y)
1 Constant (aptby)
Xy Linear (2aytbsg) (agt2bg)
(d)
x?2 xy y2 Quadratic (3a7+bg) (2ag+2bg) (ag+3byg)

x3 x?y xy? y3 Cubic (4aji+bi,) (3a;,+2by3) (2a;4+3by,) (a,+4b, )

etc. etc. etc.
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and p;

Pressure p

1 Constant c1
X v ' Linear cp €3
x2 xy y2 Quadratic cy c¢5 cg
(e)
x3 x%2y xy? y3 Cubic €7 cg cg C1p
4 3 b

x* x3y x2y2 xy3 y* Quartic €11 €12 €13 €14 C15
etc. etc. etc.

The discretized continuity equations can now be obtained over the domain
in the following manner:

Ll e
EE; erp(u,X + V,y)dQ = Q. (6.43)
Let

a5 = erxiyde?; i=3=0,1,2,3, . . .

then from schemes (d) and (e) the following matrix form for the discretized
continuity equations is obtained;
[ago 2010 001 3020 2011 ®g2...000 @10 2001 %20 2011 3%02---| |a2
ayg 2o 011 3ago 2091 01p---01q G20 207) a3p 20p) 3oyp...| |ay
agy 2011 agz 3ap1 2012 agze--0gp 011 2002 0p1 2012 3ap3...| |as
azp Zo3g 01 3ayp 2031 Opp...G20 30 2021 Oug 2031 3022...| [a7
ar1 2021 012 3031 2app ajpz...op) 0p) 2032 @31 202 3033..-[ |as
0p2 2019 ag3 3020 2013 Ogu...002 012 2003 Gop 2073 30Qye. . ag | = 0. (6.44)
a3g 2040 o031 30sp 2041 G3p--.030 Gyo 203) 050 204) 3ogp...| |-
@1 2031 022 3au; 203y 023...021 031 2003 G4 2032 3023...) |b3
012 2097 @13 30030 2093 Qjnes.01p Gpp 20013 G332 2023 3014... bg

ag3 2013 agy 303 2014 0ps...003 @13 200y ap3 2a1y 30p5...] |bg




2

112

mtl

-+ .
Here N=n'AC2, where n is the degree of complete polynomial for p; Q= Co,

m being the degree of polynomials used for velocities u and v; e.g. for

u and v cubic, m=3 and Q=6. It can be observed that every (Q+j)th column

is either equal to or a simple multiple of the jth column. Therefore the

rank of the matrix of coefficients in (6.44) is at most Q. Further the rank

of the matrix is still Q even if N is greater than Q. Thus for N greater

than Q, all the discretized continuity equations of (6.44) are not indepen-

dent.

Now consider the case where u,v and p are complete quadratics, i.e.

m=n=2 and Q=3, N=6.

are
o0

10

Go2

Clearly the rank of the

three of the constraints in

2039

2&20

Qo3

The resulting discretized incompressibility constraints

-1 r
ago @10 2091| [ap]

ajp 20 2011| |ay

O T i (6.45)

g2 @12 2093} |bg

matrix of coefficients in (6.45) is 3. Therefore

The corresponding

librium equations

aQ0
2&&0
G01
ago

a1o0

is

a19 4o1
2020 2071
11 CGp2
G190 Go1
G20 G5

2001 2011 2092

(6.45) are not independent.

contribution from fQ p(u,x+v,y)d9 to the equi-

G20 Q@11 Qo2 €1

2&30 2&21 2&12 Co
021 ©312 0p3 C3
= qac. (6.46)
G20 @11 Gp2| [C4

G3p0 G221 032 €5

|

2ap1 2073 2003} |ce
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where the matrix of coefficients is simply the transpose of the matrix in

(6.45). This is the equivalent of

1o

{p}

[ Ra}

part of the equilibrium equations in (6.36). 1In general, ac cannot be equal
to zero, i.e. pressure cannot be in equilibrium by itself. Therefore
ac = 0 (6.47)

should not have any non-zero solutions. This can be possible if the rank of
matrix a is the same as the degrees of freedom ci's, i.e. 6 in the example
considered. But the rank of o is obviously 3, thus leading to indeterminate
ci's which céuses a self-equilibrating pressure field and non-unique solutions.
However, this situation can be avoided if the rank of the matrix a is equal
to the number of constraints. This is possible if the pressure distribution
is taken as linear for quadratic distributions in u and v. The equations
(6.45) and (6.46) then reduce to

apo 2019 o1 ®go @10 2001] |az

ajg 20p9 31 @19 020 2011 |ay| =0, (6.48)

ogl 2031 apgp Gpy; @11 2002 |as

b
bs
bg
and
r.aOO @10 aqu €1
20019 2099 2a711| |ca2| = ac, (6.49)

Qo1 G11 ao2 €3
00 ¢10 Go1

G10 Q20 a11

12001 2011 2&0%
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respectively.

It can now be concluded that in general N should not be greater
than Q in equation (6.44) to avoid self-equilibrating systems in pressure and
is equivalent to saying that the degree of interpolating polynomial for
pressure should not be largér than (m-1) where m is the degree of complete
polynomials used for the velocity components u and v.

The pressure on the boundary is incorporated as a natural boundary
condition in the functional of (6.33). However, inspection of equations
(6.31) reveals that pressure needs to be fixed at some point in the domain £
as adatum. If the approximating polynomial in the finite element formula-
tion fails to comply with the requirement concluded above, then to aveoid
self-equilibrating systems, the pressure needs to be specified at more than
one point on the boundary depending on the number of self-equilibrating
modes present. At the same time the completeness requirement (i))for mean
convergence of the stresses to velocities should not be overlooked. Therefore
a consistent formulation of. the element matrix would have only three rigid
body modes, as in equations (6.34).

Various combinations of interpolations for the velocities, pressure
and stresses (u,v,p,TxX,Tyy and Txy) over a triangular and a rectangular
element (Figures 4 and 5, expéct for addition of pressure degree of freedom

at the nodes) are considered. The following eigenvalue problem is then solved:

o o 8] [s 1, o o] [s
« o of |pf -rfo oz o] [p] =0 (6.50)
B 0 b | [z 0o o ||z

(2mt+1+3n) x (2m+1+3n) (2mt+1+3n) x (2m+1+3n)
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T T T T T T T
where § = <u v>, 1 = <t T T .7
1x2m 1x3n XX Yy XY 1
d -d
a0b e 1 1— -
B = » & = and b =--5d 4 Of.
2mx3n |0 b a| 2mx1 |f 3nx3n P
- B o o0 d

The submatrices a,b,d,e,f, and the sub-column vectors are the same as in
the matrix equation (6.36) whose derivation is similar to that of plane stress
problem (Appendix A), where as I , U and I are the identity matrices.
omx2m 1%1  3n%3n
It was mentioned earlier in this section that if the rank of this matrix is
(2mt+1+3n), then it has 2m positive and (I+3n) negative eigenvalues. If there
are q rigid body modes and r mechanisms which correspond to zero eigenvalues,
and since these correspond to indeterminacies of the u and v degrees of free-
dom (2m), then only (2m-q-r) eigenvalues are positive. Similarly, if there
are p indeterminacies of pressure.degrees of freedom (1), then (I1+3n-p)
eigenvalues are negative.

The distribution of negative, zero and positive eigenvalues and the
composition of eigenvectors for different combinations of interpolations for
u,v,p and the stresses 1's are presented in Tables III and IV for a tri-
angular and a rectangular element, respectively. It can be observed that
the combinations of interpolations which do not comply with the requirements
oﬁ pressure and stresses resultéd in more than three eigenvalues requifed
for rigid body modes. The self-~equilibrating modes in pressure are ébtained
when the pressure interpolation polynomial is of the same degree as the

polynomials for u and v and with the exception of linear u,v,p,t nd

T a
xx’yy
Txy over a triangular element, have the same distribution as the interpolation
polynomial while u,v and the 1's are zero. The mechanisms are obtained when

u,v are quadratic and t's constant over a triangular element; u,v biqua-

dra;ic, T's bilinear over a rectangular element, as. in the plane stress
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problem of the previous section. In addition self-equilibrating

pressure modes result when the pressure is quadratic for the triangular
element. Again, when the rigid body modes are eliminated, the mechanisms
seem to possess the same distribution for u and v as the assumed interpola-
tions while pressure and the stresses are zero.

In recognizing the rigid body modes of equations (6.34), the
pressure was said to be arbitrary. However, the eigenvectors for zero eigen-
values associated with the rigid body modes and mechanisms displayed zero
pressure in the element. This can be explained by splitting the eigenvalue
problem of equation (6.50) in the following manner:

- AL.§ + ap+ Bt =0 (6.51a)

ols - M p = 0 (6.51b)

8% - b+ L]

S

0. _ (6.51c)

Now the rigid body modes consist of u=é—cy and v=b+cy, therefore it is

clear that QTQ and §T§ are zero since these involve derivatives U, > Y, and

(u,y+v,x). The stresses are zero from (6.34), hence from equation (6.51a)
ap = 0. (6.52)

If the rank of o is equal to the number of constrians, i.e. the degrees of‘

freedom in pressure, then the equation (%.52) is only true if p=0. There-

fore pressue is zero everywhere in the domain. Hence the equations (6.34)

for rigid body modes are modified here

(1) u = Constant, v = 0; p =T =T = T =0

xx yy Xy
(ii) u=20, v = constant; p = Ty = Tyy = Txy =0 (6.53),
(iii) u = cy, v = cX; p =T = T =T = 0.

XX vy Xy
Thus a consistent formulation should not have more then three zero eigen-

values for the rigid modes of equations (6.53). Finally static condensation
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of the matrix equation (6.36) by eliminating the stresses, for the cases
where n6 mechanisms are present, gives exactly the same matrix equation as
one would obtain from the functional of (6.38) using the same u,v and p
interpolation polynomials. 1In fact, the results of the eigenvalue analysis
for such cases are very similar to those presented by Olson and Tuann [25].

In concluding this chapter it should be pointed out that for certain
combiﬁations of approximate displacements and stresses (which indeed comply
with the completeness requirement (i) and exhibit proper eigenvalues and
eigenvectors over one element domain) the assembled element matrices
according to certain continuity requirements yield self-equilibrating modes
over the full domain. The typical example is that of plane linear elasticity
with quadratic displacements, linear stresses over a triangular element and
both continuous across the interelement boundaries. In this case, the
boundary integrals on the common boundaries amongst adjacent elements
cancel each other. Thus the element matrices for the elements, which do
not have edges coinciding with the boundary of the problem domain, can be
formulated without extracting the boundary integrals from the energy product.
Then the contribution to the energy product from the integrals like

e .,
f u,7,, .dR is zero for the degrees of freedom at the vertex nodes.
o 1 11,]
Thus zero rows and columns are obtained for displacement degrees of freedom
at all internal vertices of the triangular elements when the element matrices
are assembled. This then gives self-equilibrating modes over the full domain.
To check the existence of such modes, the element matrices for a certain for-
mulation can be assembled so that there is at least one internal vertex node

for the triangular elements and a corner node for the quadilateral elements,

and then an eigenvalue-eigenvector analysis performed on the fesulting matrix.
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CHAPTER 7

APPLICATIONS OF THE MIXED FINITE ELEMENT METHOD

The applications of the mixed finite element method to beam
bending, plane linear elasticity and the problems with stress concentrations
and singularities are presented in this chapter. The strain energy conver-
gence‘rates for various formulations are predicted and compared with the
numerical results obtained from the finite element analysis. The energy
convergence of the mixed finite element method for plane elasticity with
stress singularities, established in section 4.6, is also demonstrated with

a numerical example. Finally the stress intensity factor K_ for plates with

T
symmetric edge cracks and a central crack are calculated and compared with

the nearly exact values available.

7.1 Beam Problem

Using the nomenclature of Figure 7, the following four first order
field differential equations for simple beam theory result:

dv

- -q=0 ' (7.1)
- %%._ V=0 (7.2)
j—i—%= 0 (7.3)
X o_p=0 (7.4)

where (7.1) and (7.2) are the equilibrium equations (7.3) is the constitutive
relationship (E=Young's Modulus, I=moment of inertia) and (7.4) is the con-
straint equation arising from the assumption of plane sections remaining
plane after deformation. If equations (7.2) and (7.4) ére satisfied exactly,
V and 6 in equations (7.1) and (7.3) can be eliminated and two secondAorder

2quations are obtained
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d2M

»xZ-1 =0 ‘ (7.5)
d? M

E;% - 37 = 0. (7.6)

The mixed method is applied to both systems, namely the four
first order equations (7.1) to (7.4) and the two second order equations (7.5)

and (7.6).

7.1.A Two Second Order Equations

The equations (7.5) and (7.6) can be put into the matrix form as

0 D2 v q
= (7.7)
2 =1
D E1 M 0
or AL = £ (7.7a)
d
where D_dx'
Here the matrix operator A is symmetric, i.e. (éﬁ,é) = (Q,Aﬁ),
and the energy product is given by
M2
(Ah,A) = f 2 [M"vv'"M-T=] dx. (7.8)
Integration of the first and the second term by parts yields
= M'v|*2 v %2 _ (%2 TR
(AA,A) = M lel +v M[X1 fxl [2M'v + ]dx (7.9)
The mixed variational principle can now be expressed as
__,XZ 1, !
Iy [R2 [amM'y +EI 2qvidx. | (7.10)

It can be observed from (7.10) that the continuity requirement has been
reduced by one order compared to the Potential Energy approach with the

variational form as

= (%2 n2_
I fxl [EIv"2-2qv]dx. (7.11)
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This allows one to use lower order polynomials for approximating v and M.

For a stationary point, the first variation of IM in (7.10) is zero
ST = —[X2[2M" sy +2v" OM'+omeM-2q6v]dx = O.
IM . X - EI

Again integration of the first and the second term on the right hand side
yields

= [¥2 n_ X2 n M M X2 rveml¥X2 o
8L, jxl 2(M q)avdx+fxl 2(v _EI>6de M 6v|xl v sm]xl 0. (7.12)

This indicates that the forced boundary conditions are implied on the variables
v and M which are differeﬁt from v and v', one would find from the variational
principle in equation (7.11) (ordinary Potential Energy Theorem). The two
boundary terms in (7.9) could have also been obfained by twice integrating

by parts the first term in (7.8) giving a variational principle of the form

3y = j’if [2v'"'M - %i’ - 2qv]dx : (7.13)
which involves a second derivative v, thereby requiring the same continuity
requirement on v as the potential energy approach. It can be shown
that the forced boundary conditions for the mixed variational principle JM
in (7.13) are implied on v and v'. Thus the mixed method offers flexibility
not just in incorporating the boundary conditions as mentioned in Chapter 5,
but also in continuity requirements when deéling with higher order operators.,

fhe mixed variational principle in (7.10) should be distinguished
from the one in (7.13) in that the latter follows from the energy product in
symmetric form as defined in equation (3.73). As it is advantageous to have
reduced continuity requirements in finite element analysis for problems involving
higher order operators, e.g. (7.7), the boundary terms have to be extracted from
both the equilibrium (7.5) and the constitutive (7.6) equations. The effect

of such a formulation on the convergence is considered.

In the simple beam bending theory the stress, which is the bending
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moment M, is proportional to the curvature, the second derivative of displacement,
equation (7.6). 1In order to obtain improved convergence in the strain energy
the approximations for M and v have to comply with the requirement for mean
square convérgence of M to v'", so that the error in strain energy can be esti-
mated from equation (3.71). This can be rewritten as

[A-Dg,A=Rg] = (M-Mg,M-Mg) (7.14)
for two second order beam equations. Here My=EIV" is the exact bending moment
distribution, M, the finite element approximation, and vy, the exact solution

for the deflection v. Let the approximations for v and M be

_ M
v= I o,v,
i=1 * 7t
i N (7.15)
M= I YM,,
j=1
where @i and Wj € HZ=VXM, the cross product space (@i eV, Wj £ M).
The substitution of (7.15) into (3.68) gives
| g_ 2 = (o' oMY o “u M EL_EL_
o - 52 = v - 265D + Googp
and minimization with respect to Mj yields
N M
(Y, ¥ OM, = & (Y,,8")v,, i=1,2, . . ., N. (7.16)
PECTRE S M B e A
However, the mixed variational principle in (7.10) gives the following
equation at extremum instead of (7.16), i.e.
N N
L(Y,,Y.)M, = - T (Y',oY)v,., 4=1,2, . . ., N. (7.17)
j=1 1737 j=1 173773
The right sides of (7.16) and (7.17) imply that
(kyi’\_’") = - (‘Yi’\;')’ (7.178.)

which means that the derivative of v', which is v'", is taken as a generalized
derivative. This is because v' is only required to be piecewise continuous

and therefore would not possess an ordinary derivative everywhere.
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As was done in Chapter 6, inspection of the functional I, in (7.10),

M
for g=0, reveals that the element matrix should have the fbllowing rigid body mode
| v = constant, M = 0.
After trying out different polynomials for V‘and M, it'is found that the inter-
polations should be of the same degree in order to achieve the only rigid body
mode as mentioned above. Such>approximations also meet the reﬁuirement (i) of
completeness. If tﬁe bouﬁdary conditions are homogeneous equations (7.16) and
(7.17) are equivalent and the error in the energy product can be estimated from
(7.14). | |
A beém of uniform cross section with constant stiffness EI, length
1 is subjected to constant load per unit length q. The following four cases
of boundary cénditions‘afe considered, Figure 8:
(1) simply supported beam (5.S5); v(0)=M(0)=v(1)=M(1)=0.
(2) cantilever; v(0)=M(1)=0.
(3) both ends clamped (fi#ed—fixed); v(0)=v(1)=0.
(4) one end clémped and the other in a ﬁertical guide (fixed-guided);
v(0)=0. (Tangent to.the eléstic curve at vertical guide remains
horizontal).
Three different combinations for approximating v and M within the element
are chosen
(i) v-linear, M-linear;
(ii)A v-quadratic, M-quadratic;
(iii) v;cubic, M-cubic.
The nodes per element and the number of degrees of freedom per node for the
combinations (i), (ii) and (iii) are shown in Figure 9. The derivation of
the element matrices in all three cases is ana;ogoué to that of plane stress

problem presented in Appendix A. In each case the beam is divided into
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elements of equal length, le.

The following quantities, where necessary, are tabulated for
presentation purposes:

§ = deflection (v);

8 = rotation (v');

M = moment;

V = ghear (M');

U = strain energy.
The subscript M stands for middle, Q for quater point, E for end, RE for

right hand end, and LE for left hand end.

(i) v-linear, M-linear

The results are shown in Table V and the plots of quantities of
%nterest versus the number of elements to show convergence appear in Figures
iO. Linear approximations for v and M brovide the continuity of v énd M
égross the nodes and do not violate the completeness requirement (i). Since
‘ghé second derivative of linear approximation for v vanishes, equation (7.16)
is satisfied only in a generalized sense, i.e. equation (7.17). For linear
approximations within the element, the error in both v and M can be shown to
be 0(12) and 0(1:).in ”ﬁ”z, where 1e is the element length (le=§). From
Figure 10(a), the relative error in strain energy converges as N-2 for the
simply supported and cantilever configurations (cases 1 and 2, respectively),
from below in case 1 (Table V(a)) and from above in case 2 (Table V(b)); and
N~% from below for the fixed-fixed and fixed-guided ones (cases 3 and 4,
respectively) (Tables V(c) and V(d)). The expected rate of strain energy con-
vergence is obtained when the moments are not forced to be zero (not as the

forced homogeneous boundary condition on stress). Perhaps, for the cases

when the bending moment is forced to be zero on the boundary, some lower
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order error terms prevail. Figure 10(b) illustrates the moﬁotonic convergence
of mid-point deflection 6M for the simply supported beam from below and tip
deflection GE for the cantilever from above, whereas the relative error con-
verges as N~2, Figure 10(c). The bending moments at the nodes are exact for
both cases i and 2. However, the reverse is true for the other two cases,
as can be observed from Tables V(c) and V(d). The computed deflections

at the nodes are exact, whereas the relative error in the fixed moment con-
verges as N-2, as illustrated in Figure 10(d). The other quantities,
appearing in Tables V, seem to converge with increasing number of elements

N for all four cases.

(ii) v-quadratic, M—quadratic

With v and M both quadratic, the completeness requirements for the
energy convergence are satisfied since the variables v and M are continuous
across the nodes and have piecewise continuous first and second derivatives.
The errors in v and M can be shown to be O(lg) which leads to an error of
0(12) in "ﬁ“z. However, a quadratic approximation for M is capable of
representing the exact solution My for the constant load q along the beam
length. Therefore the strain energy from the finite element solution is
expected to.be exact. This is confirmed by the results in Tables VI for
all four cases. Also the moments and the derived shears obtained are exact.

It is interesting to note that the mid-deflections ¢ in all four cases,

M’
for an even number of elements obtained are exact and the relative error for
an odd number of elements along the beam length converges as NTH, Figure 11;
while the end computed deflection GRE for cases 2 and 4 are exact for odd
and even number of elements. When a faster convergence is observed for the

displacement, the relative error in the derived rotatiom, in all four cases

appears to converge as N~2, Figure 11. Tables VI also indicate convergence
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of other nodal variables.

(iii) wv-cubic, M-cubic

With cubic approximations, both M and v and their first deriQa—
tives are continuous. Here again, the completeness requirements are satis-
fied and like the previous approximations (ii) the strain energy is
expected to be exact as well as the moments and the shears. The numerical
results presented in Tables VII confirm this. The. end deflections in the
cases 2 and 4 are also exact. However, the relative error in the mid-
deflection GM converges as N-% and in rotations as N~3 for all four cases;

Figure 12.

7.1.B Four First Order Equations

The four first order beam equations (7.1) to (7.4) can be put
into the matrix form as

0 0 0 -D| |v e}

0 0 -D -1 6 0

1 = (7.18)

0 D “EL 0 M 0

D -1 o o] |v] |[o
or AL = £ (7.18a)
where the matrix operator A is symmetric, i.e. (AA,A)=(A,AN).
The energy product is given by

dv_ dM dg, M2 dv
= - - — _.—..}._ . .
W) = [} (-G go-aver o finax 7.19)

Integrating by parts the first and the fourth terms on the right hand side

gives

‘ 2
- X2 X2 g_ d_M _ _]_'\_,I_.
Vlel + eM|Xl + [, [2Vg 25 0-2ve-==]dx

I

(Ah, 1)

- -vVlif + eM|§§ + (8,01, (7.20)
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Here [Q,Q]A is the modified energy product of equation (3.73);
[A,0], = [, [2v -256-2ve-=]dx. (7.20a)

The equation (7.20a) then leads to the mixed variational principle for the
equations (7.18)

_ dv_,dM M2
Iy = fl [V Zax® Vo1~

2qv]dx (7.21)
with forced boundary conditions on v and M. The mixed Galerkin Method (by
adding boundary residuals to the residuals of equations (7.1) and (7.3),
section 5.4) and the mixed Vériational principle (7.21) would yield the
same element matrix since the problem is linear and self-adjoint. Appendix
C shows that the linear elasticity equation (5.9) yields the same energy
product (7.19) as equations (7.18) when the basic assumptions of the simple
beam bending theory are incorporated and the shear strain energy term,
involving V2, is neglected. Therefore the error in the energy product can
be predicted from equation (3.71) provided approximations for the displace-
ments (v,0) and stresses (M,V) are complete.

Linear approximations are chosen for v,8,M and V. The element
nodes and the nodal degrees of freedom are the same as illustrated in
Figure 9, combination (iii). Further, the approximations chosen are complete
and the error in the energy product is governed by the mean square error in
M, i.e. error in |M|2, which is 0(1:) for the linear M distribution. Again
four cases of boundary conditions (Figure 8) are considered. The results
obtained from the finite element analysis are tabulated in Table VIII and
convergence plots are shown in Figures 13. It is observed from Figure
13(a) that the relative error in strain energy converges as N-% for all

four cases. Moments and shears at the nodes in cases 1 and 2 for both even

and odd number of elements N are exact. However for cases 3 and 4, shears
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are exact for both even and odd N but only end moments are exact for N even
and they converge as N-% for N odd in case 3. From Figure 13(b), the rela-
tive error in rotation 6 converges as N=2 in all cases. Deflections GRE
at the free end for N even in case 2 and the guided end for N odd and even
in.case 4 are exact, converging as N~"for odd N in case 2; whereas the mid-
deflectioﬁs SM appear to converge to the exact value in an oscillatory
manner.

It has been méntioned in Chapters 3 and 5 and section 7.1l.A that
the mixed methods allowalexibility in incorporating the boundary conditions.

If the first and the second terms on the right hand side of equation (7.19)

are integrated by parts, the following mixed variational principle results:

_ dv,. de M2
I, = [, [2V +2M5--2vo-—-~2qv]dx (7.22)

with forced boundary conditions on v and 6, the same as for the Potential
Energy Theorem. Again linear v,6,M and V are used. Since the completeness
requirements are not altered by shifting the forced boundary condition from
M to 6, the convergence of strain energy is still expected to be N~"%. The
strain energy for cases 1, 2 and 3 is computed and tabulated in Table IX.
The relative error in strain energy versus N is then plotted in Figure 14
and in all cases the strain energy is found to converge as N—%,

Next the shear strain energy term V2 is also included and the
mixed variational principle of (7.22) now includes an additional term

(Appendix C)

_ _C_ly de M_2 (l+\)) 22 .
Lyo= [ 2V +2My - 2Ve- = - 5= h2V2-2qv]dx (7.23)

where v is poisson's ratio and h the height of the beam. Again the forced

boundary conditions are on the variables v and 8. Using the same linear



128

approximations for v,8,M and V within an element, which still complies with
the completeness requirements, cases 1, 2 and 3 are analysed and the results
appear in Tables X. 1In the analysis, v is taken as 0.25 and h as %u The
relative error in strain energy converges as N~% in all three cases as shown in
Figure 15(a). The shear V, in cases 1 and 3, is exact and converges as

N-2 for the cantilever, case 2; the relative errors in the mid-moment for
case 1, the fixed moment for case 2 and the end moments for case 3 converge
as N2; the mid-deflection dM for cases 1 and 3 converges as N~2 while the
free end deflection GRE of the cantilever converges as N~"% as shown in
Figures 15. However, the end rotation 6 for the cases 1 and 2 is exact for
N even (Tables X) and from Figure 15(b) it appears to converge as N~ for N
odd in case 2.

Despite the several different convergence rates observed for basic
variables v,6,M and V for the three different formulations considered above,
the relative error in the strain energy in -all cases converges as N,
Further, where the boundary integrals were taken out from the equilibrium
equations, i.e. forced boundary conditions on v and 6, the strain energy

converges from below. Alternately it is from above in the case where the

forced boundary conditions are on the displacement v and the moment M.

7.2 Plane Linear Elasticity

The stress and the displacement are chosen to be linear within a
three node triangular element with five degrees of freedom per node (Figure
4) and are forced to be continuous across the interelement boundaries by
equatingbthe nodal variables at common nodes. These approximations satisfy

the completeness requirements.
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The derivation of the element matrix and the consistent load
vector arising either from body forces or nonhomogeneous stress boundary
conditions are given in Appendix A. The finite element thus formulated

is then applied to solve the following problems.
{

7/.2.A Plane Stress: Square Plate with Parabolically Varying End Loads

A square plate with parabolically varying end loads is shown in
Figure 16. Since the problem is symmetric about the x and y axes, only a
quarter of the plate ABCD is considered in the finite element analysis with
the forced boundary conditions u=0 on AD and v=0 on AB.

Since the displacements u, v and the stresses Tox? Tyy and Txy
are assumed linear, the error in the stresses is 0(12), where le is the
largest diameter within the element. Further, since such approximations
satisfy the completnness requirements, and displacements and stresses are
continuous across the interelement boundaries, equation (3.71) holds and error
in the strain energy is expected to be the mean square error in the
stresses, i.e. O(l:), which is O(N~%) for a uniform grid, Figure 16.

The numerical results for some of the stresses and displacements
at points A,B,C, and D and the strain energy from the mixed finite element
analysis for various grids are presented in Table XI. Also presented in
Table XI are the results from the displacement element, obtained by Cowper,
Lindberg and Olson [5], (using full cubics for u and v displacements over a
triangular element with six degrees of freedom (u,uX,uy,v,vX,vy) at
vertices and two (u,v) at the centroid) for comparison. Since no attempt
is made to satisfy the stress boundary conditions, the correct values of
stresses on the boundary are obtained only in the limit of N,

The convergence plots for the mixed element are shown in Figures 17
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and those for the displacement element in Figure 18, [SJ. The energy con-
vergence rate for the former appears to be very close to N~* (Figure 17(a))
as predicted. Although the error iﬁ strain energy from the displacement
element is much smaller than from the mixed, owing to the fact that the
former is a much more refined element, the energy convergence rate is
slightly less than N“S, Figure 18, which is lower than the predicted assymp-
totic rate of N~®. The other interesting observation about the energy
convergence for the mixed finite element is the convergence from below when
the forced boundary conditions are on the displacement variables which has
also been observed in section 7.1.B.

The convergence rate for the stresses from the mixed element,
Figure 17(c), appears to be close to N"2 for N larger than 8. However,
peculiar kinks are observed and can be associated with the fact that certain
stresses were fortuitously close to their exact values for a certain grid;
e.g. NyyB for N=6, etc. Figure 17(b) shows the convergence of displacements
indicating faster convergence for u, and v, (close to N~%) than ug and p
(close to N'z). This is also obServed for the displacement element and N
greater than 6, Figure118. In the mixed element, the kinks are observed in
the convergence plots for the displacement u_ at N=6 and v at N=6 and N=10,

B

which can be associated with slightly larger errors for such grids.

7.2.B  Cantilever (Plane Stress)

The dimensions, loading and the material properties are detailed in
Figure 19(a). Two types of boundary conditions are considered at the fixed
end as indicated in Figures 19(b) and 19(c); B.C.1 aﬁd B.C.2. The latter is
used for comparison purposes since the solutions using various finite elements
for B.C.2 are available in the literature, while the former is considered

to investigate the energy convergence.
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(a) Cantilever with Boundary Conditions B.C.1

In an effort to investigate the energy convergence, the exact value
of strain energy is necessary. Besides such boundary conditions being easily
incorporated in' the finite element analysis, it is also possible to obtain
an elasticity plane stress solution under the assumption of bilinear normal
stress in the x~direction and the shear stress independent of x and quadra-
tic in y. The solutions for the displacements u and v along with the strain
energy for the boundary conditions B.C.1l are ﬁresented in Appendix D.

Since the part of the boundary between A and F, and E and F can
move in either direction and if the stresses on the left face were not in-
cluded in the finite element analysis through a consistent load vector, a
stress—free boundary will be simulated. This violates the assumptions of
the elasticity solution which shall put in doubt the wvalidity of the exact
strain energy to be used in the error analysis. Therefore the stresses on
the left end are included in the consistent load vector.

The typical mesh used in the analysis is shown in Figure 22 ané
the numerical results are presented in Table XII. The results indicate
that the stress T, at ¥=12 inches and y=-6 inches, and the tip deflection
are converging to the exacﬁ values in an oscillatory manner. However, the
strain energy is converging to the correct value from below. The convergence
plots are shown in Figures 20. In Figure 20(a), the plot of relative error
in strain energy versus N the number of elements in the beam depth, the
inclusion of N=6 leads to a kink in the plot. Note the grid for N=6 does
not contain the previous grids for N=2 and N=4, and excluding this the energy
appears to converge as N™" as predicted. The same behaviour is also observed
in Figure 20(c) for the relative error in the stress Txx versus N for N>4
(close to N2 without N=6). This is not surprising since the error in strain

energy is governed by the mean square error in the stresses. It is gratifying
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that the energy convergence rate is about double that for stress as predicted.
Figure 20(b) does not indicate any definite convergence rate for the tip
deflection § and perhaps, more data is required to establish any trend of

convergence.

(b) Cantilever with Boundary Conditions B.C.2

Unfortunately the exact solution for the boundary conditions B.C.2
is not available and hence the exact strain energy is not known. The
problem is solved to compare with the solutions obtained by using different
displacement finite elements for various grids. These are readily available
in literature, e.g. Gallagher [9]. Here the boundary AE (Figures 19) is pre-
vented from moving in either direction and leads to stress singularities at
corners A and E. Furthermore the shear stress and normal stress distributions
at the fixed boundary are not the same as assumed in the beam theory. How-
ever the results are compared with the beam theory [35] which provides an
upper bound for the tip deflection from the displacement finite element,

The numerical results from the mixed finite element analysis for
various grids (Figure 22) are tabulated in Table XIII. Again the stress
Toex at x=12 inches and y=-6 inches, and the tip deflection appear to converge
in an oscillatory manner; The strain energy for N=8 is slightly higher than
the strain energy 1/2P§ obtained from the beam theory whereas in the previous
examples, when the boundary integrals were extracted from the equilibrium
equations, the energy converged from below. Since the exact numerical value
is not known, the convergence of strain energy is rather difficult to establish.

Table XIV shows the comparison of numerical results from the mixed

finite element with those from the displacement models, e.g. constant stress

triangle (C.S.T.), linear stress triangle (L.S.T.) and quadratic stress
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triangle (Q.S.T.) elements, for the various grids.shown in Figures 21.

The mixed finite element used here appears to perform slightly poorer than
the L.S.T., which uses quadratic approximations for the displacements and
much better than the C.S.T., using linear displacements. The Figures 23(a)
and 23(c) also indicate fast convergence of the tip deflection with increas-
ing degrees of freedom and N, the number of elements in the beam depth,
respectively, relative to the other elements. The graph of strain energy
versus N shown in Figure 23(b) alsc shows rapid convergence. Finally the
relative error in tip deflection is plotted against N for the mixed finite
element and other displacement finite elements in Figure 24. It a?pears as
in case (a) that more data is required to establish the convergence rate.
However the plot .does exhibit fast convergence. It should be noted that the
tip deflection from beam theory is used as exact solution in plotting these

curves, and it is in error itself.

7.2.C Stress Concentration around a Circular Hole (Plane Strain)

A square plate (plane strain) with a circular hole in the middle
(Figures 25) loaded by a uniform uniaxial stress 1( is considered. The
diameter of the hole is one eighth of the plate width and the plate is of
unit thickness. The plane strain state is analysed for both isotropic and
orthotropic cases. It is demonstrated in Appendix A, how the element matrix
for a plane.stress isotropic case is modified for plane strain isotropic and
orthotropic cases. The procedure is much simpler than for a displacement
finite element. Because of symmetry only a quarter of the problem is con-
sidered. The grid and the boundary conditions used in the finite element
analysis are shown in Figure 26. This is essentially the same as used by

Zienkiewiz, Cheung and Stagg [42] for constant stress triangular elements.
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A comparison between the analytical solutions (for the isotfopic
case; Timoshenko ana Goodier [35], and the orthotropic case, Savin [31]) for
an infinite plate with a circular hole in the middle (TXX along edge BC and
Tyy along edge AE) and the solutions obtained from the mixed finite element
analysis is shown in Figure 27. A similar comparison with the solutions from
the constant stress triangles [42] are shown in Figure 28. The mixed finite
element solution shows excellent agreement with the analytical solution, and
further the stresses are obtained directly at the nodes. The constant streés
triangles also show good agreement with the exact solution, but the stresses
are computed by averaging at nodes from the neighbouring elements, assuming
the constant stress within the element to be the stress level at the node.

Further the concentrations occuring at the boundaries are obtained by extrapo-

lation.

7.3 Stress Singularities

The strain energy convergence for plane stress elasticity with
stress singularities, established in section 4.6.A, is demonstrated by a
numerical example. The stress intensity factor KI is then determined from

the method described in section 4.6.B for rectangular plates with symmetric

edge cracks and a central crack (mode type I, Figure 1).

7.3.A Strain Energy Convergence

The problem of a square plate with symmetric edge cracks (mode type
I) is considered. Figure 29(a) shows the problem description and Figure 29(b)
illustrates the finite element idealization of the quarter of the plate con-
sidered because of the éymmetry about the x and y axes. The problem is solved
using mixed finite elements for various grid sizes for two cases. The stress

Tyy is kept continuous across point D (the crack tip) in the first case and



135

in the second case, an extra node is introduced along the x-axis next to the
original one at D and only UV, T o and Txy degrees of freedom are equated at
the two nodes, thus allowing Tyy to be discontinuous across point D, the crack
tip. (See distributions in Figure 32).

The numerical results for both cases are presented in Tables XV.
The strain energy is converging from below in both cases, while the peak
stress Tny at the crgck tip is about 28 percent higher when the normal
stress is discontinuous across the point D, than for the case when it is
continuous. The plots of strain energy versus the mesh size appear in
Figures 30. The shape of the curves in both cases are very similar and they
exhibit faster convergence than just linear as might have been expected.
Figure 30(a) shows a comparison with the solutions obtained using various
other elements. The present mixed element definitely shows a faster strain
energy convergence than the constant stress triangles, the linear stress
triangles, and the hybrid stress rectangles with cubic stress distribution
within the element and quadratic displacements along the boundaries. The
convergence rate is indicated by the plot of the relative error in strain

1212

energy (exact U=3.228—%Ef, Tong and Pian [38]) versus N, the number of elements
along the edge OA, Figure 31. It can be observed that the convergence rate
approaches N™2 as N gets larger, for both cases. It is clearly faster than
N1 indicating the cancellation of the errors in the energy product of equation
(4.84) duée to stress singular terms. Further, a slightly larger
error is observed in the case of discontinuous normal stress at the crack tip.
Finally the normal stress Tyy.is p]ofted along the edge OA in Figures 32.
In both cases, a small zone of compression is observed on the stress free

edge of the crack with a peak value of about 1o (the applied stress on edge

BC) close to the crack tip.
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7.3.B Evaluation of the Stress Intensity Factor K

T

Two plane strain problems, rectangular plates one with symmetric
edge cracks and the other with a central crack are considered. The details
for these are shown in Figures 33 and the finite element idealization in
Figure 34. The layout of the mesh, used in both problems, is analogous to
the one used by Parks [27] with the exception that the present elements are
triangular. Also indicated in Figure 34 are the ratios of the radii YPO
to the crack length a (0, 0.1, 0.2 and 0.5). These are then used to calcu-
late the potential energy release rate for a crack extension of Aa in the
finite element analysis as described in section 4.6.B. Because of symmetry
about the x and y axes, only a quarter of the problem is considered in each
case and this is shown in Figures 33 as shaded areas along with the respective
boundary conditions.

Although, it is sufficient to solve each problem once for the
initial crack length a (section 4.6.B), at present the finite element analy-
sis is performed every time when the countour T'y is translated along with
the interior nodes by the amount Aa=5x10 ®a in the x-direction. The potential

energy release rate, in the discretized form can be expressed as

G, = -~ — (7.55)

and

where is the potential energy associated with the initial crack and =«

MO M):'I1
' 0
when the crack tip has been mo ved by the amount Aa. Then the crack
intensity factor is calculated by
K (7.56)
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The numerical results for the plate with symmetric edge cracks
are listed in Table XVI and those for the plate with a central crack in
Table VII. The crack intensity factor for the former is compared with the

nearly exact K_ obtained by Bowie [2] and for the latter, with KI by Bowie

I
and Neal [3]. 1In both cases the results obtained are in excellent agreement
with the references. It is seen that the least percentage error is obtained
for the contour I'p with radius YFO=O.la,and the worst for YF0=O’ i.e. only
the crack tip node is translated. The former is also associated with the
highest potential energy release rate which varies for different sets of
nodes defining Ij.

When the calculated value of GI or J-~integral is in fact indepen-
dent of the particular set of nodes defining Ty, the mesh may be called
optimal. Thus, it suffices, for optimal meshes, to move only the exterior
node defining the crack tip, thereby altering the boundary, regardless of
the particular set of interior nodes comprisng the contour Ty. Alternatively,
non-optimal meshes will exhibit some path dependence in the calculated values
of GI' In such cases, personal judgement and experience can help determine
the best value of GI'

In Table XVIII, a comparison with stress intensity factors obtained
from the energy release rate by other authors is presented. It can be seen
that excellent accuracy is obtained with much fewer mixed finite elements
and degrees of freedom than the corresponsing displacement models. Finally
the plots of normal stress on the cracked face OA (Figures 33) are shown in
Figures 35. Note that a higher peak stress is obtained at the crack tip

than the peak stress indicated in Figure 32(a), probably because of the

refined mesh near the crack tip.
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CHAPTER 8

CONCLUSIONS

A detailed investigation of the theoretical foundation and
practical aspects of applying mixed methods of approximate analysis for
continuum and finite element analysis has been presented.

Mixed methods always involve indefinite operators and consequently
a new energy product and its associated energy norm had to be introduced for
these special operators. The fields of definitioﬁ of such operators were
so restricted that when obeyed, thg energy product was found to be positive
definite and represented twice the strain energy.

These. new concepts then formed the bases for establishing the
energy convergence éf complete approximations for.displacements and stresses.
It was found that the energy convergence impliea the mean square convergence
of such approximations to the exact values.

The completeness requirements for continuum analysis were defined
in two steps: (i) the mean square convergence of the strains from the approxi-
mate stresses to the strains derived from the approximate displacements;
(ii) convergence of the energy nérm. The alternate form of the requirement
(1) is as follows: The strains from the stress approximations should possess
at least all the strain modes that are present in the strains derived from
the displacement approximations. It was also concluded that a violation of
this requirement leads to mechanisms and this was confirmed by the eigenvalue-
eigenvector analysis bf an element matrix. The presence of mechanisms also
indicates the breakdown of positive definiteness of the energy product, hence re-
quirement (i) is the prerequisite of (ii). The error in the energy product was
shown to be proportional to the mean square error in the stress approximation

when completeness is satisfied. This leads to much faster convergence in the
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strain energy calculated from the mixed method than obtainable from the
corresponding displacément method, i.e. the latter with identical displace-
ment approximations as used in the mixed method.

The foregoing concepts for the continuum were then extended to
the finite element method and the corresponding completeness criteria were
established. These were found to be as follows:

a) the displacement approximations should include all rigid body and con-
stant strain modes;

b) the stress approximations should include all constant stress modes;

c) the same as requirement (i) for the continuum, i.e. all the displacement
strain modes should be included in the stress (strain) approximations.

It was also concluded that for complete approximations the strain energy

convergence cannot be any faster than for that calculated from the corres-

ponding displacement model, unless the.stresses are made continuous across

the interelement boundaries.

In the example of béam bending with four first order equations
the use of linear interpolations for the four basic variables resulted in a
predicted mean square error in stresses of O(N™%). Therefore the predicted
error in strain energy was also of O(N™") and this was confirmed by the
numerical examples.

The plane stress triangular element using linear interpolations
for both displacements and stresses yielded a bredicted error in stresses
of 0(N"2), and a mean square error and strain energy error of O(N"%). 1In
the numerical applications of this element, the energy convergence rate was
indeed found to be O(N~*) for the plane stress square plate with parabolic
end loads and nearly the same for the plane stress cantilever. In comparison
the corresponding displacement element (C.S.T.) yields a convergence rate

of only O(N"2). A faster enérgy convergence rate (nearly O(N‘z)) was also
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observed for the plane stréss square plate with symmetric edge cracks for
which the strain energy converges only linearly with ﬁ, even with higher
order displacement or hybrid-type finite elements, Tong and Pian [38].

Excellent accuracy was also obtained for the stresses around a
circular hole in the middle of a square plate subjected to uniaxial com—
pression for plane strain isotropic and orthotropic cases. Finally the
crack intensity factors (KI) computed for plane strain rectangular plates,
one with symmetric edge cracks and the other with a central crack, yielded
errors of only 1.97% and 0.89%, respectively.

The matrix equations to be solved in the mixed finite element
analysis are al&ays iﬁdefinite and have zeroces on the diagonals for the
displacement degrees of freedom. The method of Gaussian elimination with
partial pivoting was successfully employed to solve such equations. Hence
it is concluded that the indefinite nature of the mixed method equations
presents no special difficulties.

In general, methods involving indefinite operators preclude
obtaining upper or lower bounds on energy. In the applications of the mixed
finité element method discussed herein, the energy was observed to converge
in some cases from above and in some from below. However, in the examples
where the variational principle was formed by extracting the boundary
integrals from the equilibrium equations, the strain energy always converged
from below.

In the examples sol&ed, far more accurate results were obtained by
using the mixed finite element method than the corresponding displacement
method with the same displacement approximations. However, the mixed method
required more degrees of freedom for the same number of elements. On the
other hand, the results for the stress concentration and stress singular

problems were generally more accurate even using fewer elements (and total
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-number of degrees of freedom) than for the displacement models. Hence it
seems falr to conclude that the mixed finite element method can produce
more efficient solutions for problems involving stress concentrations or

singularities.
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.Degrees of -{Sign of |No. of
Interpolation Freedom Eigen- [Eigen- Composition of Eigenvectors
u,v T's* |u,v|T's|Total|values |values :
(=) 3 t's constant; u,v linear.
Linear Constant | 6 3 9 0) 3t T's=u,x=v,y=u,y+v,x=0.+
) 3 T's constant; u,v linear.
(-) 9 T's,u,v linear.
Linear Linear 6 9 15 o) 3 T's=u,x=v,y=u,y+v,x=0.
+) 3 t's,u,v linear.
=) 3 J|t's constant; u,v quadratic.
Quadratic| Constant |12 | 3 | 15 0) Q#%* T's=0;{u,X=v,y=u,y+v,x=0;u,v quadratic}.
) 3 |t's constant; u,v quadratic.
) 9 1's linear; u,v quadratic
Quadratic| Linear 12 9 21 (0) 3 T's=u,x=v,y=u,y+v,x=0.
(+) 9 1's linear; u,v quadratic.
(=) 18 1's,u,v quadratic.
Quadratic|Quadratic {12 |18 | 30 (0) 3 T's=u,x=v,y=u,y+v,x=0.
+) 9 t's,u,v quadratic.
%1's: All stresses TXX,Tyy and Txy have the same type of interpolation.

**Extra zero eigenvalues are associated with mechanisms which have the same u,v

distributions as the approximating polynomials.

tRigid body modes (u’X=0;V’y=O;u’y+v’x=0)°

TABLE I:

elasticity plane stress.

Eigenvalues and eigenvectors of element matrix for triangular elements

using different combinations of interpolations for u,v and t's; linear

9T



Degrees of [Sign of |No. of _
" Interpolation Freedom Eigen- {Eigen- Composition of Eigenvectors
u,v T_ 3T T u,v|t's|Total jvalues |values
xx’ yy’ xy
-) 3 |t's constant; u,v bilinear.
Bilinear Constant 8 3 11 (0) S*% T's=0;{u,x=v,y=u,y+v,x=0;u,v bilinear.}
(+) 3 t's constant; u,v bilinear.
(=) 12 1's,u,v bilinear.
Bilinear | Bilinear 8 12 | 20 ) 3+ h's=u, =v, =u, +v, =0.t
x 'y T’y ’x
(+) 5 t's,u,v bilinear.
=) 12 lk's bilinear; u,v biquadratic,
%
Biquadratic{ Bilinear 16 {12 28 o 4x% T's=0;{u,x=v,y=u,y+v,x=0;u,v biquadraticl.
+) 12 It's bilinear; u,v biquadratic.
=) 24 I|t's,u,v biquadratic.
Biquadratic {Biquadratic|l6 |24 40 (0) 3 T's=u,x=v,y=u,y+v,x=0.
(+) 13 t's,u,v biquadratic.

*Full quadratic in x and y plus x2y and xy2.

**Extra zero eigenvalues are associated with mechanisms which have the same u,v distributions

as the approximating polynomials.

+Rigid body modes (u,x=0;v,y=0;u,y+v,x=0).

TABLE I1: Eigenvalues and eigenvectors of element matrix for rectangular elements using different

combinations of interpolations for u,v and t's; linear elasticity plane stress,

Lyt



Degrees of Sign of|No. of
Interpolations Freedom Eigen~ |Eigen-|Composition of Eigenvectors
u,v P T's u,v | p | 7's|Total} values |values
) 10 p const.;u,v,t's linear.
. T p linear;u=v=t's=0.
Linear Linear Linear 6 {31 9| 18 0) {2 +3+0{_ __, _ _n J
p=t's=u,_=v, =u, +v, =0,
x ’y T’y ’x
+) 3 p const.;u,v,T's linear.
(=) 12 p,T's linear;u,v quadratic.
Quadratic| Linear Linear 12 319 24 (0) 0+3*+0 p=T's=u,X=V,y=u,y+v,X=0.
+) 9 p>T's linear;u,v quadratic.
(-) 6 1's const.; p,u,v quadratic.
p quadratic;u=v=t1's=0.
Quadratic |Quadratic{Constant |12 {6 | 3 | 21 (0) 3+3+6# p=T's=u,x=v,y=u,y+v,x=é},
p=1's=0;u,v quadratic.
+) 3 T's const.;p,u,v quadratic.
) 21 |p linear; u,v,t's quadratic.
‘Quadratic| Linear {Quadraticjl12 |3 {18 | 33 (0) 3 p=T's=u,X=v,y=u,y+v,x=0.
(+) 9 p linear;u,v,t's quadratic.
(=) 21 p,T's,u,v quadratic.
p quadraticj;u=v=t's=0.
Quadratic [Quadratic |Quadratic}l12 {6 {18 | 36 (0) 3+3+0 {p=1's=u, —v, =u, +v, =O.}
. X y y X
+) 9 p,T's,u,v quadratic.

tSelf-equilibrating modes in pressure. *Rigid body modes (u,x=0;v,y=0;u,y+v,x=0). #Mechanisms.
Note: The number of zero eigenvalues appear in the order; self-equilibrating, rigid body and

mechanisms respectively. Proper rigid body modes also have p=1's=0.

TABLE III: Eigenvalues and eigenvectors of element matrix for triangular elements using different

combinations of interpolations for u,v,p and t's (1 ); two-dimensional,

2T 5T
XX° yy Xy
incompressible creeping flow (linear part of the Navier-Stokes equations).

8vT



Degrees of

Sign of

No. of

Interpolations Freedom Eigen- |Eigen- | Composition of Eigenvectors
u,v P '8 u,v | p |t 's|Total}values |values '
) 15 P>T's,u,v bilinear.
. p bilinear;t's=u=v=0.
Bilinear Bilinear Bilinear 8 | 4|12 | 24 (0) {1'+3+0 . }
p=T's=u,_=v, =u, +v, =0.
x ’y ’y ’x
+) 5 P,T's,u,v bilinear.
(=) 16 p,T's bilinear;u,v biquadratic.
p=T's=u,X=v, =u, +v, =0.
Biquadratic | Bilinear Bilinear 16 |4 |12 | 32 0) O+3+1# { . y vy x4
p=1's=0;u,v biquadratic.
+) 12 p,T's bilinear;u,v biquadratic.
(=) 28 p bilinear,t's,u,v biquadratic.
Biquadratict| Bilinear |Biquadratic|l6 4 |24 44 (0) 0+3*+0 p=T's=u,X=v,y=u,y+v,x=O.
+) 13 p bilinear;t's,u,v biquadratic.
(=) 26 p,T's,u,v biquadratic.
p biquadratic;t's=u=v=0.
Biquadratic |Biquadratic |Biquadratic |16 8 |24 | 48 (0) 2+340 p=1's=u, =v, =u, +v, =O.}
x ’y ’y ’x
+) 13 pP,T's,u,v biquadratic.

t+Self equilibrating modes in pressure. *Rigid body modes (u,x=v,y=u,y+v,x=0). fMechanisms.

Note:

mechanisms, respectively.

TABLE IV:

combinations of interpolations for u,v,p and T's (t

creeping flow (linear part of the Navier-Stokes

T

xx’ yy’
equations).

The number of zero eigenvalues appear in the order: self-equilibrating, rigid body and

Proper rigid body modes also have p=t's=0.

Eigenvalues and eigenvectors of element matrix for rectangular elements using different

T ); two-dimensional incompressible

67T



v-linear, M-linear.

from v and M, respectively.

zg. 1026 ET | 10%6.EI | 10V, 103vEIL
Elem. qlq q13 ql q215
2 1.041667 | 2.083333 | 2.500 | 2.604167
4 1.236979 | 3.515625 | 3.750 | 3.743489
6 1.273148 | 3.858025 | 4.167 | 3.975909
8 1.285807 | 3.987630 | 4.375 | 4.058838
10 1.291667 | 4.050000 | 4.500 | 4.097500
12 1.294850 | 4.084680 | 4.583 | 4.118575
14 1.296769 | 4.105928 | 4.643 | 4.131308
16 1.298014 | 4.119873 | 4.688 | 4.139582
18 1.298868 | 4.129515 | 4.722 | 4.145260
20 | 1.299479 | 4.136458 | 4.750 | 4.149333
EXACT | 1.302083 | 4.166667 | 5.000 | 4.166667
TABLE V(a): Simply supported beam; moments at the
nodes are exact.
gg.v.loZeLEEI 1026 E1 100,ET [ 106 ET| 106, EI| 10%UEI
Elem. ql3 ql1" ql13 ql* q13 q215
2 - 4.687500 - 1.35416711.770833]2.864583
4 15.33850 |4.492190 |1.601563(1.276042}1.705730]2.587891
6 |3.74228 |(4.456020 (1.554784{1.261574)1.685957{2.538795
8 12.88086 |4.443360]1.531576]1.256510{1.678060 2;521770
10 [2.34167 |4.437500 (1.517500(1.254167|1.674167 {2.513917
12 11.97242 }4.434320 |1.508005]1.252894({1.671971 |2.509659
14 11.70372 {4.432400 |1.501154(1.252126(1.670616 {2.507093
16  |1.49940 {4.431150 [1.4959721.251628 [1.669723 |2.505430
18 ]1.33887 4.430300 |1.491912(1.251286 [1.669095 {2.504290
20 11.20938 ]4.429690 [1.488646(1.251042(1.668646 |2.503474
EXACT |0.00000 |4.427083 [1.45833 |1.250000|1.666667 {2.500000
TABLE V(b): Cantilever; moments at the nodes are exact.
TABLES V: Numerical results for two second order beam equations;

Rotations and shears are derived
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v-linear, M-linear.

from v and M, respectively.

1§<f> 1036 EI | 1036 EI 10%M, | -102M, | 10“UEI
Elem. ql3 qlt ql2 ql2 qzl5
2 - 2.60417 | 6.25000 6.250 6.510417
4 5.859 2.60417 | 4.68750 7.813 | 6.917320
6 4,822 2.60417 | 4.39815 8.102 | 6.939086
8 3,988 2.60417 | 4.29688 8.203 | 6.942750
10 3.375 2.60417 | 4.25000 8.250 | 6.943750
12 2.918 2.60417 | 4.,22458 8.275 | 6.944111
14 2.566 2.60417 | 4.,20918 8.291 | 6.944264
16 2.289 2.60417 | 4.19922 8.301 | 6.944338
18 2.065 2.60417 | 4.19239 8.308 | 6.944380
20 1.880 2.60417 | 4.18750 8.313 | 6.944401
EXACT 0.000 2.60417 | 4.16667 8.333 | 6.944444
TABLE V(c): Beam with both ends fixed, deflections at the nodes
are exact.
§§ 1026, (EI[10%§ EI 1025, EI 1020, EI -10M o | 10Mp. | 102UEI
Elem. q13 qJ.L+ ql'+ ql3 q12 ql? q215
2 - 2.343751 4.16667 - 3.12500 |1.87500 {1.1067708
4 3.1901 {2.34375| 4.16667 2.0182 | 3.28125{1.71875 {1.1108398
6 2.3341 [2.34375| 4.16667| 1.3696 | 3.31019 {1.68982 |1.1110575
8 1.8305 (2.34375}) 4.16667{ 1.3467 {3.32031]1.67969 {1.1110942
10 1.5042 12.34375] 4.16667] 0.8292 | 3.325001.67500 |1.1111042
12 1.2756 [2.34375| 4.16667| 0.6920 | 3.32755}1.6724511.1111078
14 1.1070 |2.34375] 4.16667| 0.5937 |} 3.32909 |1.67092]1.1111093
16 0.9776 [2.34375] 4.16667| 0.5198 | 3.33008 [1.66992 |1.1111101
18 0.8752 {2.34375| 4.16667| 0.4623 | 3.33076{1.66924 [1.1111104
20 0.7922 [2.34375| 4.16667| 0.4162 | 3.33125/1.66875 |1.1111107
EXACT| 0.0000 |[2.34375] 4.16667] 0.0000 | 3.33333|1.66667 |1.1111111
TABLE V(d): Beam with one end fixed and the other guided; deflections
at the nodes are exact,
TABLES V: Numerical results for two second order beam equations;

Rotations and shears are derived
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gﬁ. 1026ME1 1029EEI 1036QEI 103UVEI
Elem. qlL+ ql3 ql“ q215
1 |1.250000 | 5.000000 - 4.16667
2 1.302083 | 4.791667 9.244792 | 4.16667
3 [1.301440 | 4.506173 - 4.16667
4 {1.302083 | 4.375000 9.277344 | 4.16667
5 [1.302000 | 4.306667 - 4.16667
6 |1.302083 | 4.266975 9.276942 | 4.16667
7 1.302062 | 4.241983 - 4.16667
8 1.302083 4.225260 9.277344 4.16667
15 {1.302082 | 4.184197 -- 4.16667
16  |1.302083 | 4.183129 9.277344 | 4.16667
EXACT {1.302083 | 4.166667 9.277344 | 4.16667
TABLE VI(a): Simply supported beam.
zg. 1029LEEI 1026MEI 'IOSMEI 108 oET [ 106,.ET | 10%UEI
Elem. ql3 ql” ql3 ql” ql13 q?1°
1 5.0000 4.375000 | 1.250000 | 1.25 2.000000 | 2.50
2 1.6667 4.427083 | 1.562500 | 1.25 1.708333 | 2.50
3 0.8025 4.426440 | 1.435185 | 1.25 1.679012 | 2.50
4 0.4688 4.427083 | 1.484375 | 1.25 1.671876 | 2.50
5 0.3067 4.427000 | 1.450000 | 1.25 1.669333 | 2.50
6 0.2161 4.427083 | 1.469907 | 1.25 1.668210 | 2.50
7 0.1604 4.427062 | 1.454082 | 1.25 1.667637 | 2.50
8 0.1237 4.427083 | 1.464844 | 1.25 1.667318 | 2.50
15 0.0360 4.427082 | 1.457407 | 1.25 1.666763 | 2.50
16 0.0317 4.427083 | 1.459961 | 1.25 1.666747 | 2.50
EXACT 0.0000 4.427083 | 1.458333 | 1.25 1.666667 | 2.50
TABLE VI(b): Cantilever

TABLES VI:

Numerical results for two second order beam equations; v-

quadratic, M-quadratic.

Rotations and shears are derived.

Moments and shears are exact in all cases.
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gg. 10%6 EI 1036QEI 1036QEI 1036, ET | 10%UEI
Elem. ql3 qlq ql3 ql” q215
1 8.333 -- - 2.083333 | 6.94444
2 6.250 1.432292 | 5.20833 | 2.604167 | 6.94444
3 3.395 - - 2.597737 6.94444
4 2.083 1.464844 | 9.11458 | 2.604167 6.94444
5 1.400 - - 2.603333 | 6.94444
6 1.003 1.464442 | 7.52315 | 2.604167 | 6.94444
7 0.753 - - 2,603950 | 6.94444
8 0.586 1.464844 | 8.13802 | 2.604167 | 6.94444
15 0.175 - - 2.604156 | 6.94444
16 0.155 1.464844 | 7.89388 | 2.604167 | 6.94444
EXACT 0.000 1.464844 | 7.81250 | 2.604167 | 6.94444
TABLE VI(c): Beam with both ends fixed.
gﬁ. 1026, ET | 1025, EI 1026 ET | 1026 EI 1030, EI |  102UEI
Elem. ql3 qlL+ ql3 ql” ql3 q215
1 5.0000 2.291670 | 4.16667 | 4.16667 33.3333 1.111111
2 1.6667 2.343750 7.29167 | 4.16667 04.1667 1.111111
3 0.8025 2.343107 6.01852 | 4.16667 01.2350 1.111111
4 0.4688 2.343750 | 6.51042 | 4.16667 00.5210 1.111111
5 0.3067 2.343667 | 6.16667 | 4.16667 00.2667 1.111111
6 0.2161 2.343750 | 6.36574 | 4.16667 00.1543 1,111111
7 0.1603 2.343728 | 6.20750 | 4.16667 00.0972 1.111111
8 0.1348 2.343750 | 6.27010 | 4.16667 00.0651 1.111111
15 0.0361 2.343749 6.24074 | 4.16667 00.0099 1.111111
16 0.0317 2.343750 | 6.26628 | 4.16667 00.0082 1.111111
EXACT 0.0000 2.343750 | 6.25000 | 4.16667 00.0000 1.111111
ABLE VI(d): Beam with one end fixed and the other guided.
\BLES VI: Numerical results for two second order beam equations; v-quadratic,

M-quadratic. Rotations and shears are derived. Moments and shears

are exact in all cases.



No. 1026_EI 1026 _EI 103VEI
of £ M
Elem. ql3 qll+ q215
1 5.000000 - 4.166667
2 4.305556 1.307870 | 4.166667
3 4.209877 - 4.166667
4 4.185049 1.302594 | 4.166667
5 4.176092 - 4,166667
6 4.172123 1.302189 | 4.166667
EXACT | 4.166667 1.302083 | 4.166667

TABLE VII(a):

Simply supported beam.
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Eg. 1039LEEI 1025ME1 106, E1 108, BT | 100, EI 102UET
Elem. q13 ql1* q13 q1* q13 q21°
1 8.3333 - —— 1.250 1.583333 2.50
2 1.3889 4.432870 | 1.458333 1.250 1.652778 2.50
3 0.4321 - - 1.250 1.662346 2.50
4 0.1838 4.427594 | 1.458333 1.250 1.664828 2.50
5 0.0943 - - 1.250 1.665724 2.50
6 0.0546 4.427189 | 1.458333 1.250 1.666121 2.50
EXACT 0.0000 4.427083 | 1.458333 1.250 1.666667 2.50
TABLE VII(b): Cantilever

TABLES VII: Numerical results for two second order beam equations,

v-cubic, M-cubic. Moments and shears are exact in all

cases.
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No. 1036_EI | 1038 FI 10%UEIL
of 2 M
Elem, ql3 qlt q215
1 8.3333 - 6.94444
2 1.3889 2.662037 | 6.94444
3 0.4321 - 6.94444
4 0.1838 2.609273 | 6.94444
5 0.0943 - 6.94444
6 0.0546 2.605228 | 6.94444
EXACT | 0.0000 2.604167 | 6.94444

TABLE VII(c): Beam with both ends fixed.

Z;. 1039LEEI 1025ME1 1029MEI 1026REE1 1036REEI 102UEI

Elem. ql3 ql* q13 ql" q13 q?1°
1 8.3333 -- - 4.166667 |-8.3333 1.111111
2 1.3889 2.349537 6.250 4.166667 |-1.3889 1.111111
3 0.4321 -- - 4.166667 |-0.4321 1.111111
4 0.1838 2.344261 6.250 4.166667 |-0.1838 1.111111
5 0.0943 - - 4.166667 {=-0.0943 1.111111
6 0.0546 2.343856 6.250 4.166667 |-0.0546 1.111111

EXACT 0.0000 2.343750 6.250 4.166667 0.0000 1.111111

TABLE VII(d): Beam with one end fixed and the other guided.

TABLES VII: Numerical results for two second order beam equations, v-cubic,

M—-cubic. Moments and shears are exact in all cases.



No. 1025 EI | 1026 _EI | 103UEI
of M E
Elem. ql“ ql3 qzl5
1 —_— —_ ——
2 1.852 5.5560 4.6300
3 - 4.5730 4,2337
4 1.360 4.5140 4,1956
5 - 4.3380 4.1766
6 1.338 4.3210 4.1723
EXACT 1.302 4.1667 4.1667

TABLE VIII(a):

Simply supported beam; nodal

moments and shears are exact.

gz. 100, EI 1026MEI 106 ET | 106  EI | 106, EI 102UEI

Elem. ql3 ql“ ql3 qll+ ql3 215
1 1.6667 - - 1.6667 1.6667 4.1667
2 0.5555 3.9350 1.2500 { 1.2500 1.9444 2.5463
3 0.2309 - - 1.2551 1.5387 2.5324
4 0.1389 4.4840 1.5625 | 1.2500 1.7361 2.5029
5 0.0844 - - 1.2507 1.6169 2.5043
6 0.0617 4.3470 1.4352 | 1.2500 1.6975 | 2.5006

EXACT | 0.0000 4.4271 1.4583 | 1.2500 1.6667 2.5000

TABLE VIII(b):

TABLES VIITI:

Cantilever; nodal moments and shears are exact.

Numerical results for four first order equations,

forced boundary conditions on.v and M; v,8,M and V

all linear..
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gg. 1026EEI 1036MEI 102MM 102ME 10%UEI

Elem. ql13 ql* q12 ql2 235
1 - [ — —— —_
2 1.3889 4.62960 | 8.3333 | -8.3333 | 1.1574
3 0.9150 - - -8.2305 | 8.4675
4 0.3472 3.18290 | 4.1667 | -8.3333 | 7.2338
5 0.3442 - - -8.3333 | 7.1547
6 0.1543 2.57210 | 4.6296 | -8.3333 | 7.0016

EXACT | 0.0000 2.60417 | 4.1667 | -8.3333 | 6.9444

TABLE VIII(c):

Beam with both ends fixed; shears are exact.

forced boundary conditions on v and M; v,8,M and V

all linear.

n2 2 2 2 _ 2
E;. 10 eLEEI 10 GMEI 10 GREEI 10 QREEI lOMLE 1OMRE -|10<UEI
Elem. »q13 ql“ ql“ ql3 q12 q12 q215
1 4,1666 - 4.16667 4.1667 [2.5000]2.50000(1.0466
2 5.5555 12.54629 |4.16667 2.7778 }3.3333[1.66667 |1.1574
3 1.3775 - 4.16667 0.4515 13.3230{1.67695(1.1263
4 1.3888 |2.4015814.16667 | 0.6944 [3.333311.66667{1.1141
5 0.5108 - 4.16667 0.1775 }3.33201.66800(1.1132
6 0.6172 |2.34050{4.16667 0.3086 |3.3333]1.66667(1.1117
EXACT | 0.0000 -] 2.3437514.16667 0.0000 |3.3333]1.66667|1.1111
TABLE VIII(d): Beam with one end fixed and the other guided;
shears are exact.
TABLES VIIL: Numerical results for four first order equations,
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No. (1) Simply Supp.| (2) Cantilever | (3) Fixed-fixed
of 103UEL 102UET 10“UEI
Elem. Tq%1° T¢I %15
1 — — —-—
2 3.472222 1.388884 -
3 4.034536 2.194787 -
4 4.123264 2.365451 6.510467
5 4.133495 2.440016 6.521569
6 4.158093 2.467577 6.858711
8 4.163954 2.488878 6.917318
10 4.165556 2.495289 6.933333
12 4.166131 2.497662 6.939086
16 4.166497 2.499243 6.942750
EXACT 4.166667 2.500000 6.944444

TABLE IX: Strain energy estimations for four first order beam
equations with forced boundary conditions on v and

6; M,V,8 and v all linear.

z;. 1026 ET | 1026,ET | 10M, My 103UET
Elem. qlL+ ql3 ql2 q12 q215
1 —— —_ — f—— —
2 2.43056 | 4.16667 10.83333 | 0.08333 | 6.076389
3 - 4.16816 | -- 0.00953 | 6.762226
4 2.17014 | 4.16667 |1.45833 | 0.02083 6.727431
5 - 4.16793 | —- 0.00397 | 6.769543
6 2.13049 | 4.16667 |1.20370 | 0.00926 | 6.762251
8 2.10504 | 4.16667 |1.30208 | 0.00521 | 6.768121
10 2.10056 | 4.16667 |1.23333 | 0.00333 | 6.769722
12 2.09298 | 4.16667 |1.27315 | 0.00231 | 6.770298
16 2.08876 | 4.16667 |1.26302 | 0.00130 | 6.770664
EXACT | 2.08333 | 4.16667 |1.25000 [ 0.00000 | 6.770833

TABLE X(a): Simply supported beam, shears are exact.
TABLES X: Numerical results for four first order beam equations;

forced boundary conditions on v and 6; shear strain energy

included; M,V,0,v all linear.



No.
of
Elem.

lOGREEI

lOGREEI

lOMLE

q1*

q13

ql

LE
ql

102UEI

q215

o o W

10
12
16

.84821
.43430
.54113
.55303
-55948
.56056
.56188
.56225
.56238
.56246

.07143
.66667
.63422
.66667
.66195
.66667
.66667
.66667
.66667
.66667

.07143
.39744
.33756
.56439
. 74883
.80288
. 88839
.92835
.95016
.97192

.35714
46154
.17524
.13636
.07071
.06272
.03571
.02299
.01601
.00904

. 794643
.151709
.487009
.513652
.533663
.535970
.539845
.540917
.541304
.541552

EXACT

Fle B R H B e e e 2O

.56250

el R e e T T T = T SRy S gy

.66667

Ll ~ ~ &~ 2 &~ B~ & W o

.00000

el B R = T T ¥ Gy S Sy S Ry

.00000

Wl W W W W W WwWw w w w

.541667

TABLE X(b):

Cantilever.

No.
of
Elem.

10

2
GMEI

1

02MM

q1"

2
10 ME

q12

q12

O o U W N

10
12
16

.04167

.12847

.05024
.06337
.04500
.05131
.04709

.00000

.25000

. 70370
.68750
.50000
.39815
.29688

.00000
.51466
.25000
.58171
.40741
.81250
.00000
.10185
. 20313

.604167
. 242249
.255208
.289003
.290038
.295898
.297500
.298075
.298442

EXACT

e e e

.04167

S~ &~ B2

.16667

OO0 W 0 N N NN O v O

.33333

Wl W W W W W w w8

.298611
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TABLE X(c): Beam with both ends fixed; shears are exact.

TABLES X: Numerical results for four first order beam equations;
forced boundary conditions on v and 8; shear strain energy

included; M,Vf,v all linear.



FINITE 10Etu, 10%Etu,, 10Etv, 10Etv, -10N__ .
ELEMENT | ~ (1-vO)NyL (A-vINgL (A-vD)NL a-vHr L _Np
GRID | N|Elem. A* |[Elem. Bt |Elem. A |Elem. B {Elem. A |Elem. B |Elem. A |Elem. B |Elem. A | Elem. B
1x1 | 211.054258|1.507941|-1.1435 | 2.1934 | 2.99336| 1.31824{4.332647(5.085466]0.00000 | 1.44190
2x2 | 411.4439901.519821-0.7670 | 1.8684 | 1.45335| 1.28574]4.849820(5.073595(2.01236 |1.40137
3x3 1 6]1.4638801.519773} 0.6555 | 1.8046 | 1.34960( 1.27936|4.974455]5.073633]1.41893 |1.40559
4x4 | 811.49817011.519862| 1.3373 | 1.7896 | 1.28864| 1.27787|5.016690|5.073544 |1.58424 |1.40789
5x5 |10 |1.508706 {1.519900| 1.5268 | 1.7852 | 1.28480| 1.27742 5.036405(5.073507 |1.28638 | 1.40880
6x6 112 11,512260 1.6488 1.27514 5.047228 1.49870
EXACT 11.519928(1.519928| 1.7837 | 1.7837 | 1.27727| 1.27727|5.073478|5.073478|1.40954 |1.40954
10N 10N o 10°N__ o 10N . 10E?U
N N Ng ~ Ng (1-vHLANZ
NiElem. A |Elem. B |[Elem. A |Elem. B [Elem. A |Elem. B | Elem. A |[Elem. B | Elem. & |Elem. B
2} 6.66667 | 8.55810'} 4.04167 | 4.70735] 6.2500 3.9928 0.0000 | 0.3181]2.553610{2.787981
41 9.16957 | 8.59863 | 3.54268 | 4.17500| 0.9848 | 0.4235| 0.7266 |-0.0005 | 2.746331{2.793366
6] 7.75831( 8.59441 | 4.31117 | 4.11902} 4.8662 | 0.0848 | -0.4544 [-0.0299 { 2.782543 {2.793540
81 8.92269 | 8.59211 | 4.02879{ 4.10971} 3.0654 | 0.0329 { -0.3742 |-0.0285 | 2.789962 {2.793562
10] 8.39253} 8.59120 | 4.05786 | 4.10767 | 1.9439 0.0166 | -0.2945 |-0.0233 | 2.792055 {2.793567
12} 8.74161 4.,13723 1.5472 -0.2530 2.792746
EXACT | 8.59046 | 8.59046 | 4.10670 | 4.10670| 0.0000 | 0.0000 { 0.0000 | 0.0000 | 2.793570 [2.793570
*Mixed Finite Element; displacements and stresses linear.
TDisplacement Finite Element; u and v full cubiecs [5].
TABLE XI: Numerical results for parabolically loaded plane stress problem.
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No. of Elem.|Total Degrees{Tip Deflec-~ Tox @ Longitudinal Strain
in Beam No. of of tion GC = x=12" ,y=—g"| Deflection @ Energy
Depth N Elem. |{Freedom|v(L,0).(in.) ksi B=UB. (in.) U(k-in.)

2 32 131 0.336062 53.084 0.059717 6.731654
4 128 421 0.355121 60.501 0.064024 7.136889
6 288 871 0.355093 59.612 0.063980 7.140213
8 512 1481 0.355459 60.148 0.064038 7.145934
EXACT (ELASTICITY) 0.355333 60.000 0.064000 7.146667

TABLE XI1: Numerical results for the cantilever (plane stress) with boundary
conditions B.C.1l (Figure 19). Mixed finite element; displacements

and stresses linear.

No. of Elem.|Total |Degrees|Tip Deflec~- T @ Longitudinal Strain
in Beam No. of of tiondC = x-12",y=-6"] Deflection @ | Energy
Depth N Elem. [Freedom|v(L,0). (in.) ksi B=UB. (in.) U(k-in.)

1 8 46 0.245120 39.107 0.042410 4.902405
2 32 129 0.3359427 52.694 0.059602 6.718577
4 128 415 0.355464 60.469 0.064064 7.109509
6 288 861 0.355698 59.734 0.064087 7.114006
8 512 1467 0.355952 60.125 0.064146 7.119015
EXACT (BEAM THEORY) [ 0.355833 60.000 7.116667

TABLE XTII: Numerical results for the cantilever (plame stress) with boundary
‘ conditions B.C.2 (Figure 19). Mixed finite element; displacements

and stresses linear.
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Number of Tip Txx~ Normal
Element| Mesh |N | Degrees of|{Deflection |Stress @ x=12"
Type Freedom 6=VC (in.) {y=-6". (ksi)
A-1 |2 48 0.19819 33.407
C.S.T | A-2 {4 160 0.30556 51.225
A-3 |8 576 0.34188 57.342
B-1 |1 48 0.34872
L.S.T B-2 2 160 0.35506 59.145
B-3 |4 576 0.35569 60.024
c-1 {1 68 0.35373=* 58.973%
Q.S.T | c-2 |2 214 0.35506 59.843
C-3 |4 268 0.35580 59.993
MIXED | M-1 1 46 0.24512% 39.108
DISPL. M-2 2 129 0.33594 52.694
AND M-4 |4 415 0.35547 60. 469
STRESSES | M-6 |6 861 0.35570 59.734
LINEAR | M-8 8 1467 0.35595 60.125
BEAM THEOQORY 0.35583 60.000

*Average of values at y=6" and y=-6".

TABLE XIV: Comparison amongst C.S.T., L.S.T., Q.S.T., and mixed finite
element. Cantilever with boundary conditions B.C.2

(Figure 19).



edge cracks, Figure 29.

*Exact value:

U =

L

3.228 ?zl]%? Tong and Pian [38].
0

. EuA EvA EvC EuD <xD Tny <A EU*
ToL ToL ToL ToL TQ To T0 Tngt
2 0.4633 1.4778 1.1222 0.2440 0.7052 1.3835 0.6897 2.738912
4 0.4571 1.7771 1.1737 0.4271 1.4203 2.3751 {-0.7849 3.122624
6 0.4507 1.7810 1.1771 0.4787 1.8202 3.0010 0.5045 3.166420
8 0.4739 1.8312 1.1849 0.5216 2.1230 3.4100 }-0.2607 3.196404
10 | '0.4510 1.8186 1.1856 0.5364 2.4049 3.8175 0.0071 3.203674
12 0.4610 1.8272 1.1869 0.5546 2.6225 4.1357 0.0469 3.212178
TABLE XV(a): vy continuous at the crack tip D.
. *
Nu EuA EVA EVC EuD TxxD Tny — EU
TOL TOL ToL ToL T0 To TQ TOL t
2 0.0544 2.9301 2.8883 [-0.7285 [-0.1440 2.2921 |-0.7936 1.704874
4 0.4568 1.7749 1.1719 0.4281 1.4257 3.0437 |-0.7605 3.113852
6 0.4461 1.7709 1.1762 0.4817 1.8396 3.8743 0.4800 3.159226
8 0.4732 1.8273 1.1837 0.5252 2.1493 4,3664 |-0.2376 3.191367
10 0.4996 1.8147 1.1848 0.5404 2.4361 4,8837 |-0.0143 3.199594
12 0.4600 1.8241 1.1862 0.5585 2.6562 5.2798 0.0688 3.208874
TABLE XV(b): vy discontinuous at the crack tip D.
TABLES XV:

Numerical results for the plane stress problem of square plate with symmetric

€91
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6
rI.0 EnM 10 EAnM ak AﬁM KI
—_— - - - |- Error 7
a 13hbt 1Zhbt t2hbt Aa 19/a
0.0 1.05942309 1.385584 | 0.274918 | 1.90402 10.98
0.1 1.05942339 1.680112 | 0.333358 |2.09664 1.97
0.2 1.05942331 | 1.607250 | 0.318898 }2.05067 4.12
0.5 1.05942333 | 1.626610 | 0.322740 2.06300 3.55
Initial |y 5942171 | EXACT K, ; ref. [2] |2.13884
Crack I
TABLE XVI: Stress intensity factors from the finite element analysis
of the rectangular plate with symmetric edge cracks,
Figure 33(a). (Mixed finite element; displacements and
stresses linear).
. :
rPo EWM 10 EAHM ak AﬂM KI
 — - - - Error 7
a t2hbt t3hbt T2hbt a To/a
0.0 1.04790510 ] 1.408614 { 0.279486 1.91978 8.98
0.1 1.04790543 1 1.730814 { 0.343416 2.12804 0.89
0.2 1.04790535 1.645374 | 0.326464 [2.07485 1.63
0.5 1.04790537 1.664358 | 0.330230 |2.08679 1.06
Initial | 4 44790370 | EXACT K.; ref. [3] |2.10922
Crack I

TABLE XVII:

Stress intensity factors from the finite element analysis

of the rectangular plate with a central crack, Figure 33(b).

(Mixed finite element; displacements and stresses linear).



Number Degrees Accuracy
Author (s) of of of KI Type of Element
Elements | Freedom |Error %
Watwood 470 956 2.00 Triangular and
[38] rectangular
Anderson 1470 3000 0.14 Quadrilateral
et al. [1]
Present 174 505 1.97 Mixed triangles.*
result Symm. edge cracks
Present 174 505 0.89 Mixed triangles.
result : Central crack

TABLE XVIII: Comparison of stress intensity factors obtained
from energy release rate using different elements

and procedures.

*Plane strain mixed finite element; displacements

and stresses linear.
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|

FIG.1: Mode I crack (opening mode).

I'(path of integration)

T(traction)

n{unit outward normal )

FIG.2: Typical contour for evaluation of J-integral.
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FIG.3: Accommodation of crack extension Aa by
advancing nodes on the path I .
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FI1G.6: Mechanism for the fourth zero eigenvalue.
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-~ FIG.7: Forces acting on an infinitesimal beam element.
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Case(2) Cantilever

vio)=0 vi£)=0
s 7,
 ——— /
é Sy———— %
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7
——
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Case(4) One end clamped and
the other in a vertical guide
(fixed - guided)

~——— Deflected elastic curve

F1G.8: Forced boundary conditions on v and M for the

beam problem.
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FIG.9: Degrees of freedom for the beom element - two

second order equations.
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FI1G.10(} Two second order beam equations ;
displacement linear and moment linear.
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FIG.10bk Two second order beam equations:
displacement linear and moment linear.



Relative error in deflection
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FI1G.10(c):Two second order beam equations;
displacement linear and moment linear.
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Relative error in fixed end moment
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F1G.10d¥Two second order beam equations;
displacemant linear and moment linear.
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FIG.I2= Two second order beam equations, displacement cubic
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FIG.16: Parabolically loaded plane stress problem (N=4).
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FIG.17(c): Stress convergence.

FIG.17 : Parabolically loaded plane stress problem using mixed
element; displacements and stresses linear.
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FIGS.23 : Plots for the cantilever with boundary conditions
B.C.2,using mixed finite element; stresses and
displacements all linear.
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FIGS.25: Model for infinite plate by a square piate with a
circular hole at centre, isotropic and orthotropic.
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properties as used in the mixed method; To=—l.O.
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APPENDIX A

CALCULATION OF THE FINITE ELEMENT MATRIX;
LINEAR DISPLACEMENTS AND STRESSES OVER A TRIANGULAR ELEMENT

The element matrix equation for plane stress linear elasticity
is derived here for linear displacements and linear stresses 'in a triangular
element using isotropic material. Also demonstrated are the modifications
necessary to alter the element matrix for plane strain isotropic and orthotropic
materiéls.

The element geometry is shbwn in Figure 4. Using area coordinates

P1sP2,>P3, [41]; the linear approximations for ui and Tij can be written as

Y
u = <p1 P p3> ujif s i=l,2. (A-l)

uiz2

1uis

<p1 Py p3> AR 1=9=1,2. (A.2)

T, 1!
ij ij
12,
ij
3
1

y

Note tensorial notation is implied. Comparing equations (A.1l) and (A.2)

with (4.1) gives

¢k = wk =0y k=1,2,3.

Consider the mixed variational principle for homogeneous boundary

conditions in equation (5.13)

F(O) = [A,4], - 2f; £lude = [ [20 Tu-c crlde - 2/ £ udo (A.3)

where T=<T__ T T S <ty T T12>T' (A.4)
- XX yy Xy ! 22 ’

u = <u V>T = <uy u2>T; . “(A.5)

f=<f £ >0 | . (A.6)

= x y
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F s -
ox 0
=0 & (A.7)
dy
9. 2
L 9y X |
"and \ 1 -v 0
C =-% -V 1 0 . (A.8)

0 0 2(1+v)

Substituion of (A.1) and (A.2) into (A.3) and integration over element domain

! yields a o0 c -vc 0
. T . T g
Fm =2t 0 b a-1 e ¢ o |r-] Tl @9
e
b a | 0 0 2@kt )
In (A.9) the submatrices E,E,g,g,g,j and U are given by
= ; i=j=3. | Al
24 fﬂ pipj’de, i=j=3 (A.10)
b,, = o, .dQ;  i=3=3. A.11
5 /q PPy .y j (A.11)
= -1 0.0.da; i=j=3. (A.12)
ij E/Q "i"3
d; = fQ £ 0, da; i=1,2,3. (A.13)
e, = jQ £ p ;493 i=1,2,3. (A.14)
F =<l 12 3 gl g2 43 .1 .2 .3 >T (A.15)
= XX XX XX Yy Yy VY Xy Xy Xy
. T
U= <uj uy ug vy vy v3> . : (A.16)
Now for stationarity
LACN (A.17)

L]
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3F (1)

ot

=0

which leads to the following matrix equation:

0 0
0 0
a 0
0 b
Kk a

or

208

(A.18)

(A.19)

a 0 b d
u

0 b’ a' e

¢ -ve 0

Ve < 0 T 0

0 : 0 2(l+v)?J

- -— pny i J L
EA = p.

(A.20)

It is only a simple matter to evaluate the submatrices [al, [b] and [c].

1f (xi,yi) are the coordinates of the ith node of a triangular elemen

t

(Figure 4), then the matrices a and b in terms of nodal coordinates are

[al
3x3

o]

[b]
3x3

and the symmetric matrix

1
6

c

modulus of elasticity E is

[Y2-v3 y3-y1 v1-¥3)]
Y2=¥3 ¥3=¥Y1 Y1-Y2

|¥2-Y3 ¥3=Y1 Y172

(X3—X2 X1—X3 Xz—Xf

X3—X2 Xl"X3 Xo—=X1

_X3—X2 Xl—X3 X2—X1

in terms of the area A of the triangle and

given by

(A.21)

(A.22)



2
A
[e] = - —=—1 1
3x3 12E
1
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1 1
2 1 (A.23)
1 2

Since [c] is symmetric, the matrix of coefficients E in equation (A.20) is

also symmetric as expected.

Next the degrees of freedom A are so arranged by interchanging the

corresponding rows and columns of E

such that
. 1.1 -1 2 2 2 3 .3 .3 .T
A= <u; vy Tex Tyy Txy up Vo TL Tyy Txy ug vy To Tyy Txy> (A.24)
and the matrix E becomes
(00 0 a;;0 b3 0 0 a;0 by 0 0 as; 0 bsq]
0 0 by; a;; 0 0 0 by ar; O 0 0 b3y as;
c11 £11 0 a32 0 cyp £12 0 aj3 0  cy3 f13 0
c11 0 0 by £12 ¢j2 0 0  by3 £33 c13 0
811 b12 a12 0 0 gyp byj3 a;j30 0 g3
E = v 0 0 l a22 0 b22 0 O a32 0 b32
15%15 (A.25)
0 0 b22 a22 0 ‘O 0 b32 a32
c22 £25 0 a3 0 cp3 £330
Symmetric c22 0 0 by3 fy3 c30
822 b2z a3 0 0 g3
0 0 a330 b33
0 0 b33 asz
c33 £33 0
C330
£33
where [f] = -v[c] and [g] = 2(1+v)[c]. The corresponding entries in the

load vector p are also interchanged

and the modified load vector becomes
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{P} = <d; e; 0 0.0 dy e, 00 0 dz e, 0 0 0>, (A.26)
1 1 2 3 €2

The equation (A.20) alters to

=
=
i
o |

(A.27)
The boundary conditions associated with the plane elasticity

problems considered in chapter 7 are of the type

u, =0 on S
i u
1,.n, =0 on S (A.28)
ij i T
T,.,n, = TQ on S
ij 3 i T

when the body forces fX and fy are zero. Here Su and ST are the portions
of the boundary S where the displacements and stresses are zero, respectively;
and ST the portion on which the tractions Ti are prescribed. The equations
(A.28) are similar to equatioﬁs (5.18) if ug=cg=a=0 and SM same as ST. Thus
equation (A.19) is similar to the equations (5.40) and (5.41) except that
the former is expressed in the matrix form. Therefore the sub-load vectors
d and e in the element matrix equation arise from the boundary integral
IST Tg¢§ds where the element boundary coincides with ST and at present ¢§=pk
since the same shape functions are used for u and v. Hence the derivation
of the load vector <§T gT> is identical to its generation in the displace-
ment method.

The procedure for deriving the element matrix E in (A.25), outlined
above, is quite general for plane elasticity. The only change that needs
to be introduced in switching from isotropic plane stress to isotropic or

orthotropic plane strain lies in the compliance matrix C of (A.8). TFor

isotropic plane strain, the compliance matrix C is given by

v

1 = Tov 0
1-v2 v
C=%" -1~ 1 0 (A.29)
0 0 2
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and for orthotropic plane strain

(l—nv%) ~vi(1+v,) 0 ]
N 1., 0
C = B vy (1+v,) " (1 vz) 0
1
0 0 -
G12

. E . .
where n=Ez; elastic constants Ej,v) and Gy, are associated with behaviour
1
normal to the plane of strata; and the elastic constants Ey,vp and Goy (Gog

is independent here) with the plane of strata, as shown in Figure 25(b).
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APPENDIX B

EIGENVALUE DISTRIBUTION FOR A REAL SYMMETRIC MATRIX

A quadratic form in n-variables, X15X2, o o Xn’ is an
expression of the type

n
I a..x.x, = §T§§ (B.1)
1j=1 4 *tJ

fo
I
s

i
where a is a symmetric matrix of constants. If the coefficients aij and
the variables x, are restricted to real values, then Q is real. Let v be
the rank of matrix a. Now there exists a nonsingular transformation

X = ty, (8.2)

Strang [32], such that the coefficients tij can be chosen so that Q

reduces to
= 2,2 2_42 _ —_v2
Q = yityst .o . +yI Yip1™ ¢ v - Vg (B.3)

Equation (B.3) is called the canonical form of the quadratic form Q. The
number of positive terms in (B.3), denoted by I, is called the index of
the quadratic form. It is determined uniquely.by the matrix a.

The types of a quadratic form are determined by the rank r and the
index I, as follows:
(a) Q is positive definite.if, and only if, I=n.
(b) Q is positive semidefinite if, and only if, I=r<n.
(c) Q is negative definite if, énd only if, I=0 and r=n.
(d) Q is negative semidefinite if, and only if, I=0 and r<n.
(e) Q is indefinite if, and only if, O<I<r.
These conditions are obvious from the canonical form in (B.3). Further the
types of the matrix a associated with the quadratic form Q in (B.1l) corres-

pond to the types of the quadratic form, i.e. the matrix a associated with

the positive definite quadratic form is also positive definite.
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Since the matrix of coefficients (4.19) of the matrix equation
(4.18) is symmetric indefinite, therefore attention shall be focussed on
the quadratic form of type (e) above. The quadratic form associated with

the matrix (4.19) is

1o
o)
e

Q = ZuTav - vav = <u” v > (B.4)
' a~ -b v

b ., . . - . a
where n;n is a symmetric positive definite matrix, and m;n is a real

rectangular matrix. Assuming that the rank r of the real symmetric métrix
{gT;E] is mtn, then how many positive and negative real eigenvalues does
this matrix possess? This necessitates determination of index I of the
quadratic form (B.4).

Consider the negative of the quadratic form in (B.4)

T
T T b -2
Ql = _Q = <¥ u > ' . . (B-S)

- —a 0

I<

e

The (mn)x(m+n) square matrix of equation (B.5) can be written as

by biz . . . by mayy -apy . . . -ap

b21 'b22 . e e bzn —d12 Taso2 . .« '-amz

bnl bn2 « e e bnn —~aip —azn . e . —amn . (B-6)
=411 ~a12 . . ."ajp

—a21 ~—az2 . . .—app 0

. . . . e MxN

—aml _am2 . . ,-amn

The principal minors for the matrix (B.6) can be written as



214

Mp = [bia]s My = |[b1r bipls Mg = |byy byp byg
by1 baa by1 bpy bps
b3y b3y bsg
etc. Since the submatrix b is positive definite, therefore all principal

minors up to Mn are positive, The Mn+l principal minor as determinant of

the matrix

b1 biz . . . b1y -ap
by b2z . . . bpy -ap
A D 6.7
SR
~811 -aj2 . . .majp 0|

which has a zero on the diagonal, cannot be positive. This holds because

B is not positive definite. Therefore Mn+ is either negative or zero.

~-n+1 1

The latter cannot be true since if m=1, i.e. only one degree of freedom in
u; then the quadratic form is positive semidefinite which is not true.
Hence M is negative. As for inci i to M the

1 gative s the principal minors Mn+2 oM se
can be either positive, zero or negative. However for rank r=mtn no two
consecutive M,'s can be zero; if and are zero then the rank of the

i z ; 1 Mk Mk+l z
matrix (B.6) is k or less. Further, any zero in an indicial sequence lies
between adjacent terms with opposite signs.
Therefore the indicial sequence can be arranged as (1,My,M,

RN

.>M ). The index I of the quadratic form equals the

M N
n’ n+l’ n+m

number of permanences of sign in any indicial sequence where any zero entry
is given an arbitrary sign. Therefore the index I for Q, in (B.5) is n
since the number of permanences in the indicial sequence above is nj; i.e.
the signs of principal minors M; to Mn are positive. Now the quadratic

form Q, in (B.5) through nonsingular transformation of the type (B.2) can
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be expressed in the form of (B.3) as
Q = -Q = Y2+ . . L+ ~62-85- . . . -u2; (B.8)
or Q = ud+ud+ . . . +u -3~ L L, ”‘7;21' (B.9)
Hence it can be deduced from (B.9) that the matrix (4.19) has m positive
and n negative real eigenvalues.
Next, consider the finite element matrix equation (6.36) for the

linear part of the Navier-Stokes equations. This is expressed in a

slightly different form as follows:

0 o B |u
T
o 0 0 |pf =20 (8.10)
BTQ-x z
where y is a symmetric, positive definite (nxn) matrix.
A rearrangement of (B.10) yields
0 B8 ¢ |u
T
si= ety of |z] =0 (3.11)
' 0 o] e
where A= <9T ET ET>; (B.12)
o B @
T
] =8 x 9 (8.13)
(ot 1) % (mbnt+1)
T o o

1Q

and ¢ and B are (mx1) and (mxn) rectangular matrices, respectively. Let
the rank r of the matrix S be (m+n+1). The matrix S is symmetric and
indefinite, therefore all its eigenvalues are real and it remains to be
determined as to how many of these are positive or negative.

The quadratic form of the mixed variational principle associated

with (B.1l1l) is
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Q= 2u'gr - Tyx + 2u"ap. (B.14)

The first two terms on the right hénd side are identical to the quadratic

form in (B.4). Further, it is possible to diagonalize the submatrix

, [gT-s} through a transformation of the type (B.2) as was done for (B.6).

Let such a nonmsingular transformation be given by

r - -

u Qi1 Qi2) |©
= . (B.15)
LI Q21 Qa2] |[f]
and E Q11 Q2 0] Ju
Il = |Q1 Q2 0 |% (B.16)
.l 10 0 IJ|p

to be complete, where I is an (Ix1) identity matrix. The substitution of
this transformation in the quadratic form Q in (B.14) (after some algebraic

manipulations) yields;

—
1R
ot

(B.17)

L
—
N

Q
| Eal]

T T
Q11 2 Q2 O ]

Mo

]

where &m and &n are (mxm) and (nxn) diagonal matrices with positive entries,
respectively. The functional form in (B.14) for transformed variables then

leads to the following matrix equation:

" 0 91?12 g

i n T o
§é = 9 —A Q12a I =0 (B.l8)

T T -

@ Qrp o Q12 O IRE:
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The . matrix S of the coefficients in (B.18) and S of the coefficients in
(B.11), both have the same number of positive and negative eigenvalues.
This is because of the congruence transformation and the Law of Inertia.

Therefore it is only required to find the positive and negative eigenvalues

for é.
T T A .
Let Q)ja=6 and Qijo=n, then the matrix S can be written as
Ato o ... ol [811812. - .+ 617]
I
Ao O . . 0 I |621522. . . (32_1
... ol 0 B
| (mxn)
N Lo
n |
A I Sm16m2 8
s = G S |m;__~_fi (B.19)
=270 0 . . . Olnyingp. . . niz
symmetric | A3 0 . . . 0 :nzlnzz. S P
n
-A3 . . 0.|. o e e
L . .
T
l n
'*n'[illl_”fi_..___’lr_u_
| 0
L 1 (-le) -

The principal minors for the matrix (B.19) can be written as

AT o ; M3=AT 0 0 etec.

il

M =|AT]; My

0 1y 0 A3 0

Since_k? and A? are all positive real numbers, hence all the principle

minors up to Mm'are positive. The (m+l)th principle minor is simply
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—lan. Therefore it is negative and the sign alternates thereafter up to
(m+n)th. Beyond (mtn), the principal minors can be either positive, zero,
or negative and for rank r=m+ntl, the zero entry would only appear between
a positive and a negative entry in the indicial sequence <1,M;,Mp, . . .,

M

M o+l

m’Mm+l’ .. "Mn+m’Mn+m+l’ e ey Clearly the index I is m and

hence only m eigenvalues of the matrix S are positive while (n+1) eigen-

values are negative, which also holds for matrix.S in (B.13).
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APPENDIX C

EQUIVALENCE OF ENERGY PRODUCTS FOR
FOUR FIRST ORDER BEAM EQUATIONS
AND PLANE LINEAR ELASTICITY EQUATIONS

The energy products for the four first order beam equations (7.18)
and the plane stress linear elasticity equations (5.19) after introducing
the simple beam theory assumptions are shown to Be the same when the shear
energy contribution is dropped.

The four first order beam equations

[0 0 0 -p] [v] rq1
0 0 -D -1| |8 0
1 = (C.1)
0 D BT 0] |M 0
> -1 o o [v] |o]
where D=§; lead to the following ehergy product;
_ dv_.dM dg M2 dv
(A10,0) = [, [-vg -6g--2VeMg - o vt dx (C.2)

From equation (5.11), the energy product for plane stress linear elasticity

(unit thickness) is

(Bph,1) = fo [u'Trr+r Tu-c Crldo (c.3)
for A=<l 1
and Q I*
é =
T ¢
where
20 X 1 -v 0
T 90X ay 1
I* = —'-]2 = ; 9 - _E_ -v l 0
0o - 0 0 2(1+v)



220

T T .
and u=<u Vv> ; T=<T T T_ > . When the basic assumptions of plane
- - XX yy xy

sections remain plane after bending and small deflections, following the

nomenclature of Figure 7, the following quantities are obtained:

T, =0 (C.4a)
R | (C. 4b)
Ty 12% —23 - y2) (C. 4c)
and u = -~y8, | (C.4d)

Here I is the moment of inertia about the z-axis; h, the height of the
beam, and M,V,06 and v are functions of x only. Since Tyy=0; the matrix

operators T* and T and the matrix C reduce to

RN

T X oy
2* = -T" = (C. 4e)

3
0 Tox
1 1 0
C = z (C.4%)
0 2(1+v)

Now the substitution of equations (C.4) into (C.B) yields fhe following.

The first term on the right hand side of (C.3) becomes

h
T 2 3 2 My
* = - - — - -
[ uT*tdo / {b_<y6 v o5t 51l o3 dydx
9 V_ h?
- —(— ~y2
ox| 21 %)

/ f L edM % ov-1 < ﬂ(1‘—-y2)}dydx.

h

Since for unit thickness, fﬁ y2dy=I; therefore integration on y yields;

2
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T dM
f u T*1dQ = fl (_GEE—

dv
vl eV_VEZ)dX' (C.5)

Now the second term on the right hand side of (C.3) takes the form

h
T - 2 My v h2 o (3 -
2
I
dy 09X v
b 2
_ 2 (y5,40 6V h% 50V h? 5. dv
=/ {g 1 Maxmar G YO Gy g dydx.
2
Again integration on y gives
T do dv
jQ T ZEQ = fl (M7, -0V ) dx. (C.6)
Finally
h
Toigq = 4f (2 My ¥ _h% My
2 0 2(1+) | ( V_h2_ 5y
2174
E 2 2
_ 1 2 y20.h? hZ 50,
' 2
This, after integration on y, yields
T _ M__Z (1+v), 5 2
[q 1 cCda =], (Gt spr h2v3)dx. . (€.

Adding the equations (C.5), (C.6) and (C.7) gives,

T T T dv _dM de M2 _dv, (1+v) 5.9
% - = - - = Y= C.8
fo Lo T*rbr Tu-t7Calde = [, {-vy -8 -2ve+ o5 VT gy heV2ldx (C.8)
Q+v), o0 . .
where fl _Eﬁf_h V4dx is the contribution to the energy product from the shear

stress due to flexure. This is only significant for short beams and when it

is dropped, the energy product in (C.3) becomes
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(A2h,0) = [, [-vE- eil—M—zve+Mg—e-E—I+v——]d ' (c.9)

This is exactly the same as in equation (C.2).
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APPENDIX D

ELASTICITY SOLUTIONS FOR A CANTILEVER

An elasticity solution for the cantilever with the boundary
tractions and the boundary conditions shown in Figure 36 is derived.
It is also shown that the strain energy computgd from the normal stress
Toex and the shear stress Txy distributions is actually equal to half the
total work done by the boundary tractions in moving through the displace-

ments obtained from the elasticity solution on the boundaries.

The stress distributions are taken as

- _ Pxy

Tox I (D.1la)
=0 D.1b

Tyy ( )
=___P_ 2_2

Txy 2I(c v<) (D.1c)

where P is the total load due to the shear stress at the ends. The

2
equations (D.1l) identically satisfy the equilibrium V%¢=0 for TXX=%;%3

2 2
=%;% and el -everywhere inside the cantilever, as well as yield

yy Txy . %3y

the same stresses on the boundary as applied tractions. The corresponding

strains, by applying Hooke's law, are

Ju Txx Pxy '
*xx ~3x E T EI . (D.2a)
-VT
_ ov _ XX _ VPxy
eyy = 3y = FI _ (D.2b)
Ju oV ng P
= —— _— = = m —— 2_ 2
Yoy Ty Tax T G 216 (e5v9) (D.2¢)

E . . . : .. : .
where.G=§?i;Cy The strains derived in (D.2) also satisfy identically the

\
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Bzexx 32¢ BZYXK
compatibility equation (fg}? + axg - 9Xdy ).

By integration of (D.2a) and (D.2b), u and v are obtained as

2 2
- _ Pxy . _ VPxy
u TN + £1(y); v 551 + £, (x) (D.3)

in which the functions f; and f, are as yet unknown functions of y and x

only, respectively. Substitution of u and v above into eduation (D.2c) yields

Px2  dfi(y) , VvPy? | dfo(x) _ P s
26T * dy T 2B T dx 716 (7Y (D.4)

In equation (D.4) some terms are functions of x only, some are functions of

y only, and one is independent of both x and y. These can be grouped as

_ Px? dfo(x)
FG) = - 57+ T4x
_ VWPy2  dfi(y) _ Py?
Gly) = 557 * dy 21G
Pc?
K - 16 (constant).
Thus (D.3) becomes
F(x) + G(y) = K. (D.5)

It can be concluded from (D.5) that F(x) and G(y) must be constants. Denoting

these by d and e, respectively, therefore

d+e =k
dfy(x) _ Px? Codfi(y) _ vaz PXZ‘
and dx  CaEr tY T T Tt e

Integrating these yields the functions f;(y) and f,(x);

3 3
- _ Vby®  Py°
£100) 6ET T eIc T Yt s
3
£,(x) = X 4 dx + h.

6EL
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Substitution in the expression for u and v in (D.3) gives

2 3 3
- _ Px%y vPy® | Py?
u 2EL C 6EI T elct ey ts (D.6)
v = vPxy? + Px3 + dx + h. (D.7)
2EI 6EL .

The four constants d,e,g and h can now be determined from the four boundary
conditions (Figure 36)
u(L,0) = v(L,0) = u(L,c) = u(L,-c) =0 (D.8)

and these are found to be

PL

d = - 7 [3 + (4+5v) —7]
_PL2 1 c?
e = BT [1 - 3(2+v) Ez]
g =0
_pLd 1 c?
and h = 361 [1 + 2(4+5v) Ey].

Finally the substitution for d,e,g and h in the equations (D.6) and (D.7)

and letting E=% and n=% gives

wte,m = S -52)-EY S 1-n2)) ®.9)

v(E,n) = [1-—£ €3+—'—1{3V6n2+(4+5v)(1 £)}1]. (D.10)

3EI

Therefore the tip deflection § at C (Figure 36) is given by

= v(0,0) = [1+ (4+5v)—2] (D.11)

3EI
while the longitudinal deflection u at B, where £=0 and n=-1, is obtained as

PcL?

15 (D.12)

up = u(0,-1) =

The strain energy in the cantilever can be computed by using the
assumed stresses in (D.1l) and the corresponding strains in (D.2) in the usual

manner.
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1 (L ¢c
== +
U 5 IO f—c [TXXSXX Tyyeyy Txy Xy] dydx

1

p2 L (c 2.2 1+v 2 .2 2C2
+ () (c2- .
517 fo [Zo EPy% (55 (e2-y2)2 f7ldydx
After integration, the strain energy in the cantilever is

p213

2
- o R, (0.13)

The work done on the boundary can be computed from the following line integral

W= IST (Tijnjui)ds (D.14)

where ST is the portion of the boundary where the stresses are prescribed

and nj, the unit outward normal. For the cantilever in Figure 36, this

integral takes the form

W= f;c Txy(O,y)V(O,y)dy + ffc Txy(L,y}v(L,y)dy + {fc T (Lsy)uL,y)dy

= wl + WZ + W3. (D.lS)
Heré T (O y) = — .P__ (C2_y2)
xy 21
v(0,y) = PL [l+ (4+5v)—71

3ET

Thus the first integral in the right hand side of (D.15) is given by

_ -C P2L3 2 2 1 C2
Wi = [0 - Sggr (e2-y®) [1H5(4+5v)T7)dy

and after integration

P2

'wl 35 [1+—(4+5v)—gﬂ (D.16)
Next, Txy(L,y) is the same as Txy(O,y) and v(L,y) is given by

v PL
v(L,y) = E-Ei'yz.

Then the second integral W, is
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c VP o, o, o,
Wy =[O, - 7 EgE vA(e2yDdy
and leads to
v P22y,
Wy = - 10 &1 (D.17)
Finally to obtain Wj
PL
Txx(L’y) R
_(2+v) Py , o o
and u(l,y) === g7 (5°-c9).
Therefore
_ e (2+v) PAL L o
Wy = [Z, - 557 v (y2-cD)dy
which gives
_ (2+v) P2c?L
Wy = 5 E (D.18)
Adding (D.16), (D.17) and (D.18) yields
W= Wy W, + W, = L [1+¥(1+v)°2] (D.19)
1 2 3 7 3EI 5 1z :
Comparison of (D.19) with (D.13) gives
W = 2U. (D.20)

Therefore the strain energy computed from the stress distributions in (D.1)
is exactly half the work done by the boundary tractions in going through
boundary displacements as obtained from the elasticity solutions (D.9) and

(D.10).



