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ABSTRACT 

This thesis consists of two parts. The f i r s t part 

describes the analysis and implementation of a f i n i t e 

element computer model for the general prediction of f a i l u r e 

of wood members in bending or in combined bending and a x i a l 

compression. Both i n s t a b i l i t y and material strength f a i l u r e s 

are included. The program i s v e r i f i e d using available 

a n a l y t i c a l and test r e s u l t s . A good agreement with the 

results predicted by th i s program i s observed. 

The second part describes a procedure for the structural 

r e l i a b i l i t y evaluation of a compression member assuming 

random loads and material variables. The program developed 

here for the r e l i a b i l i t y study l i n k s the f i n i t e element 

program and the Rackwitz-Fiessler algorithm for the 

ca l c u l a t i o n of the r e l i a b i l i t y index /3. The gradient of the 

f a i l u r e function, which i s a necessary input to the 

Rackwitz-Fiessler algorithm, i s computed numerically using 

the f i n i t e element routine. The results of the r e l i a b i l i t y 

study for a t y p i c a l column problem are compared against the 

available results obtained by following the code procedures 

[as outlined in CAN3-086.1-M84 (1984)] for di f f e r e n t 

slenderness r a t i o s . 

A performance factor <p = 0.75, for compression members 

of any length i s recommended in order to obtain a more 

accurate and consistent l e v e l of r e l i a b i l i t y in the design 

i i 



process. It i s estimated that i f t h i s factor <p^ = 0.75 

adopted in the current design practices, a l e v e l 

r e l i a b i l i t y index of the order of 4.0 can be achieved. 
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1. I N T R O D U C T I O N 

1.1. B A C K G R O U N D 

Wood compression members subjected to l a t e r a l loads 

occur very frequently, such as in building frames, bridge or 

roof trusses and other important engineering structures. 

They are usually proportioned to s a t i s f y some l i m i t i n g 

stress c r i t e r i o n set by design s p e c i f i c a t i o n s or codes. The 

stresses developed at any cross section in such members 

consist of: 

1. the a x i a l stress caused by the compressive forces , 

2 . the primary bending stress due to the l a t e r a l loads, and 

3. the secondary bending stress resulting from the 

amplification of the deflections produced by the 

compressive forces . 

The secondary bending stress becomes p a r t i c u l a r l y important 

for members with a high slenderness r a t i o and large 

compressive forces. The procedures for computing the 

secondary stresses in e l a s t i c columns are described in the 

l i t e r a t u r e on s t a b i l i t y theory [1] . 

Although e l a s t i c analysis i s used extensively in design 

computations, i t does not give an accurate indication of the 

true load-carrying capacity, p a r t i c u l a r l y for columns which 

are not very slender. L a t e r a l l y loaded columns generally 

f a i l by excessive bending after the stresses in some 

1 
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portions of the member exceed a maximum value. To determine 

the ultimate strength of such columns, i t i s necessary to 

perform a s t a b i l i t y analysis that considers the 

el a s t o - p l a s t i c behaviour of the material. Most available 

design codes and s p e c i f i c a t i o n s use the t r a d i t i o n a l 

approach, which consists of assuming a linear e l a s t i c 

material with a maximum normal stress f a i l u r e c r i t e r i o n . 

Previous a n a l y t i c a l and experimental studies on wood, as 

reported in the l i t e r a t u r e [5,6,7], have shown that : 

1. wood has a non-linear stress s t r a i n r e l a t i o n s h i p in 

compression, e.g.bilinear e l a s t o - p l a s t i c r e l a t i o n s h i p , 

and 

2. this material c h a r a c t e r i s t i c contributes s i g n i f i c a n t l y 

to the behaviour of the column, p a r t i c u l a r l y at small 

slenderness r a t i o s . 

Furthermore,there are s t i l l some problems which remain 

unsolved: 

1. The codes do not give guidance for c a l c u l a t i n g moments 

result i n g from beam-column deflections. 

2. An account for p o s s i b i l i t i e s of du c t i l e y i e l d i n g in the 

compression zone or tension f a i l u r e in the tension zone 

i s not given. 
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1.2. OBJECTIVES 

This study i s aimed at achieving three main objectives, 

namely : 

1 . To develop a f i n i t e element analysis for the general 

prediction of the f a i l u r e of a compression member under 

transverse loads. The analysis w i l l take into account 

the n o n - l i n e a r i t i e s due to slenderness e f f e c t s 

(geometric),a non-linear s t r e s s - s t r a i n r e l a t i o n s h i p for 

the material, and estimation of f a i l u r e load controlled 

by either tension or compression. 

2 . The analysis w i l l be implemented in a computer program. 

The computer program w i l l allow f l e x i b i l i t y in 

accomodating various support conditions and load 

conf igurations. 

3 . To evaluate the r e l i a b i l i t y of wood compression members 

assuming random loads and material variables. 

1.3. THESIS ORGANISATION 

Part 2 provides a summary of current design code 

recommendations and previous research on wood compression 

members. Part 3 describes a general formulation of the 

f i n i t e element analysis and the computer implementation. 

Part 4 provides a v e r i f i c a t i o n of the computer program 

developed in Part 3 , using experimental results as reported 

by previous researchers [ 6 , 7 ] , Part 5 presents the 
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application of the analysis to a l a t e r a l l y loaded 

compression member, where a x i a l load versus transverse load 

interaction diagrams are developed for d i f f e r e n t slenderness 

ratios using a 2x4-in SPF cross section. 

Part 6 discusses the concept of r e l i a b i l i t y evaluation. 

Here, a computer program for the evaluation of the 

r e l i a b i l i t y index 0 of a wood compression member i s 

constructed, using the program developed in Part 3 and the 

Rackwitz-Fiessler algorithm. A summary of the results 

obtained from th i s study for a s p e c i f i c problem i s given at 

the end of the chapter. And l a s t l y , Part 7 provides a 

general conclusion of the report and some recommendations 

for further research and study. 



2. CURRENT CODE REQUIREMENTS AND PREVIOUS RESEARCH WORK 

2.1. INTRODUCTION 

The f a i l u r e c h a r a c t e r i s t i c s of a compression member 

depend on i t s slenderness. The ultimate capacity of short 

compression members i s d i r e c t l y related to the strength of 

the material in compression. With an increase in the length 

of the member, a change to a buckling type of f a i l u r e i s 

observed. Thus, a l a t e r a l i n s t a b i l i t y f a i l u r e i s 

ch a r a c t e r i s t i c of slender compression members. For a member 

of intermediate length, there i s a t r a n s i t i o n between these 

two types of f a i l u r e regimes, in which case the load 

capacity depends on both the compression strength and the 

s t i f f n e s s of the material. 

2.2. CURRENT CODE REQUIREMENTS 

2.2.1. C o n c e n t r i c Compression 

Current design codes c l a s s i f y compression members into 

short, intermediate or slender members according to their 

slenderness r a t i o C c. For rectangular cross-sections, 
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where 

L = le n g t h of the member 

d = dimension of the c r o s s - s e c t i o n of the member 

i n the d i r e c t i o n of b u c k l i n g . 

Thus, Short members are c o n s i d e r e d to be those with 

slenderness r a t i o s of 10 or l e s s . They w i l l normally f a i l by 

c r u s h i n g p a r a l l e l to the g r a i n . T h e i r design a l l o w a b l e l o a d 

i s based on the s p e c i f i e d s t r e n g t h i n compression p a r a l l e l 

to g r a i n , F , t h e i r c r o s s s e c t i o n a l area A, and a 

performance f a c t o r <f> , 
Cr 

P 
— - F 0 (2) 
A c P 

Slender members g e n e r a l l y f o l l o w the E u l e r b u c k l i n g 

r e l a t i o n and have slenderness r a t i o s exceeding C^, a number 

dependent on the mean e l a s t i c modulus E Q and the s p e c i f i e d 

compression s t r e n g t h , F , of the column m a t e r i a l . The number 

C. i s given by : 

where E c i s c a l l e d the modulus of e l a s t i c i t y f o r compression 

members and i s equal to 0.74E Q. For lumber, can vary 

between 20 to 25, depending on the grade of the member under 



considerat ion. 

Intermediate members have slenderness rat i o s between 10 

and C^. They are designed using a modified compression 

strength which empirically interpolates between slenderness 

rati o s of 10 and C^. The above c l a s s i f i c a t i o n i s i l l u s t r a t e d 

- — Crushing 

Euler 

Figure 1. Axial load-slenderness re l a t i o n s h i p for concentric 

loading. 

2 . 2 . 2 . Combined bending and Compression 

A compression member i s often subjected to bending about 

either one or both axes, and the combined effect of the 

bending and a x i a l loading must be considered. For this type 

of loading, most current codes specify a simple f a i l u r e 

c r i t e r i o n based on a linear interaction between the a x i a l 



8 

load capacity of a concentrically loaded column and the 

moment capacity in bending alone. Therefore, t h i s approach 

may be applicable as long as the wood member remains in the 

linear e l a s t i c range. Very l i t t l e has been done so far to 

predict the behaviour beyond the linear range. This may be 

attributed, in part, to the u n c e r t a i n i t i e s about the precise 

form of the c u r v i l i n e a r s t r e s s - s t r a i n r e l a t i o n s h i p of wood 

in compression. 

2.3. PREVIOUS RESEARCH ON WOOD COMPRESSION MEMBERS 

Most previous studies on wood columns and beam-columns 

(Newlin and Trayer 1925; Wood 1950) have considered wood to 

be a linear e l a s t i c material which f a i l s when a l i m i t i n g 

compression stress i s reached. Thus, Larsen and Theilgaard 

(1979) tested wood members with combined a x i a l and 

transverse loads to v e r i f y their theory for beam-column 

behaviour. They used a second order l i n e a r d i f f e r e n t i a l 

equation to predict the deflections of e l a s t i c beams and 

beam-columns. 

Bleau (1983) and Buchanan (1984), conducted an extensive 

jo i n t experimental study on e c c e n t r i c a l l y loaded columns to 

ca l i b r a t e and v e r i f y their strength models. Their models are 

able to predict the strength of f u l l size lumber, using 

results of a x i a l tension and compression tests on similar 

members. Buchanan used a mean modulus of e l a s t i c i t y , E Q , 
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e q u a l t o 10000 Mpa t o c a l i b r a t e h i s model. Zann (1985), used 

B l e a u ' s d a t a (1983), w i t h E Q e q u a l t o 10400 Mpa t o c a l i b r a t e 

h i s s t r e n g t h model. Zann's model (1985), i s based on the NDS 

(1975) d e s i g n recommendations, and t a k e s account of b i a x i a l 

a c count of b i a x i a l b e n d i n g . A l t h o u g h i n both c a s e s good 

agreement w i t h the t e s t r e s u l t s i s r e p o r t e d , a q u e s t i o n 

which remains unanswered i s t h e f a c t t h a t i n each case a 

d i f f e r e n t i s used, and t h i s E„ i s not the one o ' o 
c o r r e s p o n d i n g t o the mean t e s t r e s u l t s . B l e a u (1983), 

r e p o r t s an E Q of 9660 Mpa f o r t h e p o p u l a t i o n t e s t e d . 

The model d e v e l o p e d i n t h i s r e p o r t i n c o r p o r a t e s some of 

the i d e a s d i s c u s s e d by the p r e v i o u s r e s e a r c h e r s , and 

p r o v i d e s a more g e n e r a l s o l u t i o n t o the beam-column problem. 

The method of f o r m u l a t i o n and t h e c o r r e s p o n d i n g computer 

i m p l e m e n t a t i o n w i l l be d i s c u s s e d i n P a r t 3 of t h i s r e p o r t . 



3. FINITE ELEMENT ANALYSIS 

3.1. INTRODUCTION 

This chapter describes the formulation of a f i n i t e 

element analysis for predicting the f a i l u r e of a wood member 

under d i r e c t a x i a l compression and l a t e r a l loads. The theory 

and assumptions in t h i s chapter w i l l be described along with 

the basis of a computer program developed to implement the 

model. 

3.2. ASSUMPTIONS 

The following assumptions are made: 

1. plane sections remain plane. 

2. the s t r e s s - s t r a i n law for the material i s known. 

3 . material properties are constant along the length of the 

member. 

4. bending in only one plane i s considered. 

5. no torsional or out of plane deformations are 

considered. 

6. duration of load effects are not considered. 

7. shear deformations are small, hence neglected. 

10 
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3.3. STRESS STRAIN RELATIONSHIP 

Various studies [4,5,8] have focussed on the 

st r e s s - s t r a i n behaviour of wood in compression p a r a l l e l to 

grain, with the aim of deriving a mathematical relationship 

to represent th i s behaviour. Recently, Malhotra and Mazur 

(1970), proposed a stress s t r a i n r e l a t i o n of the form : 

1 a 
e = — [ c a - ( l - c ) f l n d - — )] (4) E c f o c 

where: 

e = s t r a i n . 

a = stress 

f c = maximum compression stress 

E Q = mean modulus of e l a s t i c i t y 

c = shape parameter. 

For c = 0.99,. the curve described by Equation (4) i s shown 

as A in Figure 2. 

A mathematical equation for the stress s t r a i n curve for 

clear dry wood in compression at various grain angles was 

also developed by O 1Halloran(1973). The equation takes the 

following form 

a = E Qe - hen (5) 

Where a, e, and E are defined above and A,n are equation 



1 2 

constants determined by f i t t i n g the equation to a given set 

of experimental data. A plot of t h i s equation i s shown as 

curve B in Figure 2. This equation cannot be used beyond 

maximum s t r a i n because i t may take on negative values very 

rapidly. 

A comprehensive study on the s t r e s s - s t r a i n r e l a t i o n s h i p 

of timber with defects, in compression p a r a l l e l to grain, 

has been done by Glos (1978), as reported by Buchanan 

(1984). Based on experimental data, the curve shown as C in 

Figure 2 was proposed. This curve i s characterised by a 

number of material parameters that depend on measurable wood 

properties, namely density, moisture content, knot r a t i o and 

the percentage of compression wood. Using t h i s curve for 

modelling purposes necessarily involves the c a l i b r a t i o n of 

these parameters. 

A simple b i l i n e a r proposal by Bazan (1980), as discussed 

by Buchanan (1984), appears to be the most recent one. In 

th i s proposal, i t i s assumed that the slope of the f a l l i n g 

branch i s a variable which can be a r b i t r a r i l y taken as that 

value which produces maximum bending moment for any neutral 

axis depth. A plot of t h i s curve i s shown as D in Figure 2. 
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Figure 2. Stress str a i n assumptions for wood 

The analysis in t h i s study uses the simple b i l i n e a r 

curve D, with the exception that the slope of the f a l l i n g 

branch of the s t r e s s - s t r a i n r e l a t i o n i s considered to be a 

material property, in agreement with Buchanan (1984). 

The curves in Figure 2 are characterised by a li n e a r 

e l a s t i c and a non-linear part. Therefore the stresses can 

generally be expressed as 

a = E Qe + F(e) (6) 
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The s t r e s s - s t r a i n r e l a t i o n s h i p adopted in t h i s study 

i s as shown in Figure 3 and includes linear e l a s t i c 

behaviour in tension, with a b i l i n e a r r e l a t i o n s h i p in 

compression and a f a l l i n g branch after maximum stress. 

Figure 3. Bi l i n e a r stress s t r a i n relationship for wood 

Using the above s t r e s s - s t r a i n relationship, the resu l t i n g 

d i s t r i b u t i o n of stresses and strains in a rectangular beam 

i s as shown in Figure 4. 



T r 

section strains stresses 

Figure 4. Di s t r i b u t i o n of stresses and strains 

The curve in Figure 3 can be mathematically represented by 
the following expressions : 

For segment 1-2 ; 

o = ~\£c\ ~ |fc|m - mEce (7) 

For segment 2-3 ; 

° = V (v 

Or, in combination, 

a = E Qe - [E Qe + |fc|(1+m) + mE Qe](l - A(e + |e c|)) (9) 
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where A(e+|e j) i s the step function defined as follows : 

i f e > - |e c| ; A = 1 (10) 

i f e < - |e c| ; A = 0 

Hence, for the case of e l a s t o - p e r f e c t l y p l a s t i c behaviour, m 

= 0; and Equation (9) reduces to 

a = Ee - {Ee + |f |} (1-A(e + |e I)) (11) 

For the e l a s t i c case, m = -1, and we have Equation (9) both 

for tension and compression. This explanation i s further 

i l l u s t r a t e d in Figure 5 below. 

m < o 

m = - l 

Figure 5. Str e s s - s t r a i n r e l a t i o n s h i p for various m. 
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3.4. FINITE ELEMENT APPROXIMATION 

3.4.1. I n t r o d u c t i o n 

The f i n i t e element method i s a very powerful and 

v e r s a t i l e technique presently available for the numerical 

solution of problems of the type considered here. The 

advantages of the method have been recognised and i t s 

applications extensively demonstrated p a r t i c u l a r l y in steel 

and concrete structures, and for some wood structures such 

as wood f l o o r s , wood diaphragms and trusses. However, the 

application of the method to wood beam-column analysis has 

not been explored to an equivalent degree. 

3.4.2. K i n e m a t i c Assumptions 

As the displacements become large, a geometric 

non-linearity is introduced in the deformation of a 

beam-column. Consider a beam element undergoing large 

deformations but small st r a i n s . For the geometry shown in 

Figure 6, u and w are, respectively, a x i a l and l a t e r a l 

displacements of the centreline of the beam. A and 0 are two 

points on the same plane such that O i s on the beam 

centerline (axis) and A i s at a distance z from O (positive 

z ) . Line OA represents conditions before deformation, while 

l i n e O'A1 represents conditions after deformation. 

Assuming that plane sections remain plane, the rotation 
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dw 

of the cross-section i s 6 = — . Figure 7 shows two points, 
dx 

A and B, at the same distance z from the centreline. After 

deformation, these points are at A* and B'. 

^ beam 

Figure 6. Large deformation of a beam element 
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Figure 7. Large deformation of axis of beam element. 

From the geometry of Figure 7 i t follows that 

du. dw. 
ds 2 = dx 2 [(1 + — & ) 2 + ( — A ) 2 ] 

dx dx 

If the expression above i s expanded binomially, and i f the 

higher order terms are neglected, the following s i m p l i f i e d 

expression i s obtained. 

du, 1 dwx 

d s = d x d + — & + - ( — £ ) 2 + ) (13) 
dx 2 dx 

Therefore, the corresponding s t r a i n e. at a distance 2 is 
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du, 1 dw, 

A j . _ / A \ 2 A dx 2 dx 

dw 
But, from Figure 6, u. = u - z — (15) 

A dx 

thus, 

du, du d2w 
— A - - - - z — - (16) dx dx dx' 

Also, neglecting higher order terms, 

wA = w (17) 

Thus combining Equations (14),(16) and (17), we get the 

st r a i n at a height z as : 

du 1 dw d2w 
e= — + - ( — ) 2 - z (18) 

dx 2 dx dx 2 

3 . 4 . 3 . Problem formulation 

A beam element with two end nodes i s used in the 

formulation. Let us choose a l o c a l coordinate li (-1 < ^ < 1) 

in each element such as the one shown in Figure 8 below. 

Thus, along the x axis coordinate system each element has 

two end nodes, i and j separated by a length 2A. 
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x=o £ = - 1 £=0 

u 
du 
dx 
w 
dw 
dx 

u 
du. 
dx 
w 
dw 
dx 

Figure 8. i * " * 1 f i n i t e element in the x-coordinate system. 

Thus, the x-coordinate of any point within the element 

can be expressed as x = x c + A£. The elemental nodal degree 

of freedom vector is represented as in Equation (19). There 

are 4 degrees of freedom at each node, namely the two 

dispacements u and w and their respective f i r s t d e rivatives. 

{ 5 } = 

u i 
du 

( — - ) • 
dx 1 

dw 
( — )• 

dx 1 

U j 
du 

( — )• 
dx 3 

w . 
D 

dw 
( — )• 

dx ^ 

(19) 
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3.4.4. Interpolation Functions 

In t h i s study, complete cubic interpolations are used to 

approximate the displacements u and w within an element. It 

is important to note that in order to s a t i s f y compatibility 

conditions, the displacement u only requires a linear 

interpolation. However, a cubic interpolation was used to 

give an improved approximation of the a x i a l stress with 

fewer elements. 

A complete cubic interpolation requires 4 parameters to 

define the function. The displacements and the f i r s t 

derivatives at the two nodes provide s u f f i c i e n t parameters 

to f u l l y describe a cubic polynomial function. The 

displacements u and w are thus given as follows: 

du 
u( *> - ( ~ " - U 2 + - £ 3 ) u . + - ( 1 - * - £ 2 + S 3 ) ( _ ) 
U V < ' ~ O A A 1 8 1 dx (20) 

1 3 1 1 du 
+ ( - + - £ + - £ 3)u.+ - (-1-£+£ 2+£ 3) ( — )• 

2 4 4 ^ 8 dx ^ 

/ - \ 1 3 1 1 dw 
W U ) = ( _ - _ £+ _ £ 3 ) W . + - ( I " ? " £ 2 + £ 3 ) ( _ ) 

2 4 4 1 8 dx 
(21) 

1 3 1 1 dw 
+ ( _ + _ € + _ £ 3)w.+ _ (-1-$+£ 2+£ 3) ( ) 

2 4 4 J 8 dx J 



2x - 2x 
where £ = — 

2A 
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In vector matrix notation, we can write 

U = {N} T{5} ; — = { N , } T {5} (22) 
dx 

dw d2w 
w = {M}T{6} ; — = {M,} T {5} ; = = {M 2} T{6} 

dx dx 2 

where N , N , , M, M, and M 2, are vector functions of £ given 

by the following expressions: 

r 
1 3 1 
- - - £ + - £ 3 

2 4 4 
A 
- d - £ - £ 2 + £ 3 ) 
4 

0 . 0 

{N} = 
0 . 0 

1 3 1 

2 4 4 

- ( - 1 . 0 - £ + £ 2 + £ 3 ) 

(23) 

0 . 0 

0 . 0 
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{N,} = 

1 3 3 
_ (- _ + 
A 4 4 

- ( - 1 . 0 - 2 £ + 3 £ 2 ) 
4 

0 . 0 

0 . 0 

1 3 3 
- ( - - - £ 2 ) 
A 4 4 

1 
( - 1 . 0 + 2 £ + 3 $ 2 ) 

0 . 0 

0 . 0 

(24) 

0 . 0 

0 . 0 

{M} = 

1 3 1 
- - - £ + - £ 3 

2 4 4 
A 
- ( 1 . 0 - * - $ * + $ 3 ) 

(25) 

0 . 0 

0 . 0 

1 3 1 
- + - £- - £ 3 

2 4 4 

(-1 . 0 - £ + £ 2 + £ 3 ) 



0 . 0 
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0 . 0 

1 3 3 
- ( - - + - i ; 2 ) 
A 4 4 

- ( - 1 . 0 - 2 £ + 3 £ 2 ) 
4 

0 . 0 

0 . 0 

1 (!-!«•> 
A 4 4 

1 ( - 1 . 0 + 2 £ + 3 £ 2 ) 
4 

0 . 0 

0 . 0 

(26) 

1 3 
— ( - O 
A 2 2 

— (-2.0 + 6U 
4A 

0.0 

0 . 0 

1 3 
— ( - - £ ) 
A 2 2 
1 

— ( 2 . 0 + 6 £ ) 
4A 

(27) 
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3.4.5. Strain Displacement Relations 

For a l a t e r a l l y loaded column problem with large 

deformations, the w displacements w i l l be much larger than 

the a x i a l displacements u. Thus the s t r a i n displacement 

terms considered are similar to those derived in Equation 

(18) above, where: 

du d2w 1 dw 
e = — - z — + - ( — ) 2 (28) 

dx dx 2 2 dx 

Substituting the displacement functions into Equation (28), 

the results in symbolic form are 

e = [B+B(6)]6 (29) 

where B, represents the linear s t r a i n displacement terms, 

while B(6), which i s a function of the 8 parameters, 

includes the contribution of the non-linear s t r a i n 

displacement terms. Thus 

h 
B = N,1" - zM 2

T, where z = - T? (30) 
~ 2 

1 
B(5) = - {8} T M,^!T 
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3.4.6. V i r t u a l Work Equations 

The system of equations governing the problem is 

obtained v i a the p r i n c i p l e of v i r t u a l work. Defining # as a 

v i r t u a l dislacement of the nodal variables, the resulting 

v i r t u a l s t r a i n s , 7, are given by 

2 = [B + C(6)]S (31) 

3 
where C(5) = — {B(6)} i s a linear function of 8. Thus, i f 

95 -

we neglect i n e r t i a forces, the v i r t u a l work equation reduces 

to 

/ v£odv = (3 2) 

where P i s the consistent load vector, calculated using the 

shape functions as indicated in Equations (23), (24), (25), 

(26) and (27). V i s the volume of the member. Substitution 

of the res u l t i n g equation for 7_ into the Equation (32) leads 

to the system of governing equations for an element, that 

i s , 

J v t B + C(6)] Tadv = P (33) 

Assembling the element equations in the usual f i n i t e element 

manner leads to the global system of equations. In order to 
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f i n d the solution to the nonlinear system of Equations (33) , 

i t i s convenient to introduce the vector function of 8, 

$( 8), such that 

*(8) = J v[B + C ( 8 ) ] T adv - P (34) 

The solution 8 now has to s a t i s f y *(8) = 0. The zeros of 

$(8) may be found numerically via the Newton-Raphson 

procedure as outlined below. 

3.4 .7. Newton-Raphson Method 

This i s a commonly used technique to solve non-linear 

equations. The method uses a f i r s t order approximation 

technique to solve non-linear equations through i t e r a t i o n . 

Thus, at 8+A8, the f i r s t order approximation for the 

function $ w i l l be 

d$(8) 
$(8+AS) = $(5) + [ ]A8 (35) 

8{8} 

where $(8) i s a function of the displacement vector {8}. The 
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above equation can further be s i m p l i f i e d into 

(36) 

(37) 

where [K T] represents the tangent s t i f f n e s s matrix. 

D i f f e r e n t i a t i n g the right hand side of Equation (34) by 

parts, we obtain a s i m p l i f i e d expression for K T. Equation 

(36) permits an i t e r a t i v e procedure to determine the vector 

{8} s t a r t i n g from an i n i t i a l approximation {8^}. Thus, in 

general, 

A6 = - KT~1<I»(8) 

d{$(8)} . 
= [ ] 1 <HS) 

d{8} 

6 i + 1 " 5 i " [ K T
] * ( V (38) 

* ( 6 i ) = -MBo + B < 6 i > ] a i " p (39) 

where the matrix K T i s obtained as shown in Equation (40) , 

which follows. 
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+ EJ* vB TC ( 5)dV 

E / v C T ( 5 ) B d V 

E / V C T ( 6 ) C ( 5)dV 

E/ vB TBdV 

E o(l . 0 + m ) / v ( l . 0 

E0(1 . 0 - m ) / v ( l . 0 

E0(1 . 0 - m ) / v ( l .0 

E o ( 1 - 0 " m ) / v ( l .0 

/ VM,M,adV 

Me + | e c | ) ) B T BdV 
(40) 

A ( 6 + \ec\))BT C ( 5)dV 

+ I e c | ) ) C T ( 6 ) B d V 

Me + | e c | ) ) C T ( 5 ) C ( 5)dV 
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3.4.8. Computation procedure 

The Cholesky decomposition of the matrix K T i s u t i l i z e d 

to determine the vector {A8}from Equation (38). The boundary 

conditions are f i r s t applied to the s t i f f n e s s matrix K T and 

to the vector {$(6)}. The boundary condition codes for t h i s 

program are as follows 

1 = u 

du 
2 = — 

dx 

3 = w 

dw 
4 = — 

dx 

Thus, to enforce a boundary condition equal to zero, zeros 

are placed into the off diagonal locations for the row and 

column corresponding to the s p e c i f i e d degree of freedom in 

[ K T ] , while a zero i s placed for the same degree of freedom 

in the returned load vector {$(5)}. In addition to t h i s , a 

value 1 i s placed into the diagonal term of the sp e c i f i e d 

degree of freedom in the [K T] matrix. Then the matrix [K T] 

i s decomposed and f i n a l l y a solution {A5} i s obtained. 

Each element of the vector {AS} i s compared against an 

acceptable tolerance sp e c i f i e d by the user to determine 

whether a need to do more i t e r a t i o n s is necessary in order 



to refine the solution. A summary of the whole procedure 

given in the flow chart in Figure 9. 
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is 

GEOMETRY /LOADING AND MATERIAL 
PROPERTIES 

INITIALISE ARRAYS 
T 

INCREMENT P 

* COUNT ITERATIONS 

ESTABLISH GLOBAL VALUES 
{DELTA R), CK] 

V 

SOLVE SYSTEM OF EQUATIONS 
(KI{DELTA X} = {DELTA R} 

{X> = {Xo> + {DELTA X} 

i CONVERGENCE 
[ ACHIEVED 

± 

SOLUTION =» {X} 

Figure 9. Flow chart for obtaining the solution vector {X}. 
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3.4.9. Numerical Integration 

Since the volume integrals in the expression for K T are 

complicated, i t i s d i f f i c u l t to obtain closed form 

solutions. Hence numerical integration i s used. Gaussian 

quadrature scheme has been applied due to i t s s u i t a b i l i t y in 

the l o c a l coordinate system varying from -1 to +1. 

According to Zienkiewicz (1979), the maximum order of 

the polynomial appearing in the integral determines the 

number of Gaussian points necessary to accurately integrate 

the function. Thus, the term {B} in Equation (40) contains a 

fourth order polynomial in £ and at the same time {B} i s 

squared in the expression for [ K T ] . Therefore, the highest 

order polynomial term in the integrals i s of order 8. 

Knowing that a k point Gaussian scheme w i l l integrate 

exactly a (2k-l) order polynomial, i t follows that a 5-point 

Gaussian scheme i s needed in the numerical integration. 

Thus, the integrals over the volume V become 

2BHA r\ 2BHA N N 
lv = ~A— / d ^ d r i " = - 7 - £ £ K T { i ' 3 ) w i w - i ( 4 1 ) 

v 4 J_x J_l 4 I=I j=j J 

where N = 5 was chosen, and ŵ  and w_j are the corresponding 

Gaussian weights. 
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3.5. CONVERGENCE CRITERION FOR SOLUTION VECTOR 

The convergence of the solution vector at every load 

step is checked by the Euclidean norm c r i t e r i o n . If we l e t 

3 Q be the previous solution vector and 3 be the present 

solution, then, as shown below, 

le t Ax = |d - d Q| represent the difference between the 

lengths of d and d . We can then write 

l 3 o l 2 = X o ( i ) 

| 3 | 2 = X 2 ( i ) 

where X Q ( i ) and X(i) are the components of d Q and d, 

respect i v e l y . 
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Then, 

Ax = (x(i) - x o ( i ) ) 2 (42) 

The convergence c r i t e r i o n based on the Euclidean norm i s 

defined as 

3.6. OBTAINING THE ULTIMATE LOAD PMAX 

The f a i l u r e load Pmax i s obtained by an i t e r a t i v e 

procedure. For fast convergence to the solution Pmax, the 

following approach for estimating an i n i t i a l guess for the 

f a i l u r e load i s chosen. F i r s t of a l l , the crushing strength 

P c as well as the Euler buckling load Per of the member are 

computed. Regardless of the support conditions and member 

length, the ultimate load w i l l be less than the smallest 

value between P„ and Per and w i l l l i e within the shaded 
c 

region of Figure 10. 

Ax 
| 3 0 | 

< sp e c i f i e d tolerance (43) 
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Figure 10. Estimating the i n i t i a l f a i l u r e load P i . 

The minimum of P and Per i s then taken to be the 
c 

i n i t i a l f a i l u r e load P^. As a f i r s t step, we l e t the 

solution l i e between two load values, namely P1=0 and P2=P^. 

The average load P3=(P1+P2)/2 becomes the f i r s t t r i a l load. 

The f i n i t e element solution i s obtained for P=P3. If f a i l u r e 

occurs, i t means that the solution i s between the values 

P=P1 and P=P3. Therefore we set the minimum and the maximum 

loads for next i t e r a t i o n as P1=P1 and P2=P3. A new P3 

(P1+P2)/2 i s calculated and the f i n i t e element program 

re-run. If the member survives, i t means that the solution 
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is now between the values P=P3 and P=P2. Therefore, we set 

the minimum and the maximum loads for next i t e r a t i o n as 

P1=P3 and P2=P2. This process i s repeated several times 

u n t i l an acceptable tolerance i s reached between two 

successive estimates of Pmax. If t h i s tolerance i s defined 

as TOLP, the it e r a t i o n s are stopped when 

P2-P3 
TOP = < TOLP 

P3 

The process i s summarized in the flow chart of Figure 11, 

where TOLP i s the allowable tolerance normally set by the 

user. 
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Figure 11. Iteration process for obtaining Pmax. 
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3.7. FAILURE CRITERION AND SIZE EFFECTS 

Due to the b r i t t l e fracture phenomenon which i s commonly 

observed in wood members, i t may be important that the 

associated size effects be incorporated in the analysis. In 

a b r i t t l e material, a decrease in member strength i s 

normally observed as a result of a corresponding increase in 

member si z e . If no size e f f e c t s are considered, the f a i l u r e 

c r i t e r i o n i s 

"max " F t < 4 4 ) 

where c m a x i s the maximum te n s i l e stress in the member. This 

c r i t e r i o n , although simple, does not resu l t in di f f e r e n t 

strengths between pure tension and pure bending. Such 

differences are accountable through the incorporation of 

size e f f e c t s . 

Weibull's theory of b r i t t l e fracture w i l l be applied to 

incorporate the size effect phenomenon. Thus, for a member 

of volume V, f a i l u r e i s related to the int e g r a l 

I = J ok dv (45) 
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with a corresponding f a i l u r e c r i t e r i o n given by 

I = ( a * ) k (46) 

where 

a = stresses in the member, 
* 

a = strength of a unit volume under 

uniform stress, 

k = size e f f e c t factor, 

V = volume of the stresses domain. 

3 .7.1. Size e f f e c t in compression 

t 

The parameter |f | is the f a i l u r e stress in pure 

compression (buckling restrained). This may be considered 
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subject to size e f f e c t s , according to 

k ^ k 
f c

 CV = (F c ) C (47) 

* 
(48) 

where 
* 

F c = f a i l u r e stress in pure compression 

for a unit volume, 

k c = size effect parameter in compression, 

V = t o t a l volume of the domain under 

compression that i s , the entire member. 

3.7.2. Size e f f e c t in tension 

Let F,p be the strength in pure tension. Then, from 

Equations (44) and (45) we have at any p r o b a b i l i t y l e v e l : 

(49) 

where kfc i s the size effect factor in tension, V i s the 

t o t a l volume and V T i s the domain of the t e n s i l e stresses. 

In the context of the analysis presented here, consider a 

f i n i t e element i and the l o c a l ^-coordinate system, as shown 

in Figure 12. The stresses within the element are assumed to 

follow the stress s t r a i n relationship as indicated Figure 4. 



L e t us introduce a l o c a l coordinate 77 (0 ^ 77 ̂  Osuch that 

= rjh. The t e n s i l e stresses w i l l be linear in y, or a = r\a 

where a„ i s the maximum stress at the edge y = h. 

J 

H 

^ ' 5 < ) J 

H 

^ ' 

: i y 
l 2A 1 

Figure 12. Stress p r o f i l e across the section. 
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Equation (49) can then be expressed as 

2̂BHA / d£ / drj a u = F T
 UV (50) 

where N i s the number of elements. Since a = Oy(£)r), 

f'hU) k f ' k 1 A ( £ ) k 
/ a T

 t({) d£ / r? fcdTj = / a T
 t(£)d£ f j i ; 

• H H J0
 k t + 1 y _ i H 

then, Equation (50) becomes 

1 v^/hU) k r k r — ; r/ J * T U)d£ = Fm 2N(k.+l)4—'I H T T 

t i=l 

or, f i n a l l y , 

kfc (a Tmax) k t^U/h(£) a T<«) kfc  

T 2(k f c+l)N 4-̂ 1 H aTmax 
'-I 

The location of the neutral axis, h(£), where the stresses a 

change sign, can be obtained by interpolation of the stress 

f i e l d . 

The implementation of the procedure in the f i n i t e 

element computer program follows the equations as derived 

above. A summary of the steps follow below. 

1 . c T(£) is determined at a l l points £ and for a l l 

elements; 

2. obtain the largest of the 0 T ( £ ) , aTmax to normalize the 
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stresses. 

3. obtain h(£) for any cross section. A section f u l l y in 

compression w i l l result in h(£) = 0. 

4. Integrate over each element and add, according to 

Equation (52). 

5. Compare the aTmax with the maximum stress possible 

according to the f a i l u r e c r i t e r i o n of Equation (52). 

3.8. PROGRAM STRUCTURE 

The computer program consists of a number of subroutines 

which read the structure's geometry and load data, carry out 

numerical integration, decompose matrices, solves system of 

equations and checks the convergence of the solution vector. 

The program enables the user to analyize beams, columns or 

beam-columns of various configurations. A time subroutine 

has been provided to give the amount of computer time used 

to solve each s p e c i f i c problem. This time i s calculated in 

cpu seconds. A l i s t i n g of the program has been provided in 

Appendix A. 

3.9. DISCUSSION 

The analysis developed here o f f e r s numerous 

p o s s i b i l i t i e s . The material behaviour law can be modified to 

study d i f f e r e n t materials or the effect of several 

parameters in a single material. Also the dimensions of a 
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member cross-section, the e c c e n t r i c i t y of a x i a l load, 

l a t e r a l l y acting loads and support conditions can be varied. 

In the following chapter, the model w i l l be v e r i f i e d by 

considering some problems for which there are available 

experimental or theoreti c a l r e s u l t s . 

The computer program developed here does not take into 

account torsional or out of plane deformations. Also creep 

effects were not included in the analysis. It i s also 

anticipated that there could be a s i g n i f i c a n t variation of 

modulus of e l a s t i c i t y E Q along the length of the member. 

However, without loss of generality, and in the presence of 

r e l i a b l e experimental data, the program can be e a s i l y 

modified to accommodate such variations in E . The 
o 

approximation for the s t r e s s - s t r a i n relationship used i s 

suitable for small and intermediate levels of s t r a i n , but 

obviously can not be extrapolated to very large s t r a i n s . 



4. PROGRAM VERIFICATION 

4.1. INTRODUCTION 

In t h i s chapter, the f i n i t e element computer program 

developed in the previous chapter i s v e r i f i e d with reference 

to 

1. t h e o r e t i c a l results from the theory of e l a s t i c 

beam-columns, and 

2. the results of an extensive experimental program on a 

large number of timber members in s t r u c t u r a l sizes [as 

reported by Bleau (1983) and Buchanan (1984)]. 

The test material was SPF lumber, purchased in 16ft. (4.88m) 

lengths as 'Number 2 and Better' grade in Quebec, Canada. 

The program i s v e r i f i e d using the mean test r e s u l t s , namely 

modulus of e l a s t i c i t y E Q = 9660 Mpa, compressive strength f 

= 32.3 Mpa and t e n s i l e strength f f c = 30.35 Mpa. 

4.2. COMPARISON OF RESULTS 

The f i r s t comparison considers a n a l y t i c a l results [3] 

and the computer program's e l a s t i c predictions using m = -1, 

where m is the slope of the f a l l i n g branch of the 

s t r e s s - s t r a i n curve in compression. The second comparison 

presents plots and tables of a x i a l load versus slenderness 

r a t i o to compare the mean maximum load from tests with what 

the present analysis predicts for several end e c c e n t r i c i t i e s 

46 



e. No size effects are considered. The t h i r d comparison i s 

similar to the second one, except that in th i s case the size 

e f f e c t phenomenon is taken into consideration, and the 

effe c t of varying k for a chosen k. i s evaluated. 

4.2.1. P r e s e n t a t i o n of R e s u l t s 

Table 1 shows a comparison of linear and non-linear 

t h e o r e t i c a l results [3] and computer predictions for a 

uniformly loaded fixed ended beam. The data of Table 1 i s 

plotted in Figure 13. 

Qo Wraax [m] 
[kn/ml iTlmoshenko] [program] I l i n e a r ] 
00.000 
06.885 
13.771 
20.656 
27.541 
34.426 
41.312 
48.197 
55.082 

0.00000 
0.01291 
0.02447 
0.03516 
0.04406 
0.05162 
0.05874 
0.06497 
0.07076 

0.00000 
0.01266 
0.02437 
0.03469 
0.04371 
0.05159 
0.05859 
0.06485 
0.07053 

0.00000 
0.01285 
0.02570 
0.03855 
0.05140 
0.06426 
0.07711 
0.08996 
0.10281 

Table 1. Maximum deflections of a fixed ended uniformly 

loaded beam. (E = 10000 Mpa, 2x4-in section, L = 2m) 
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0.11 

L= 2m 
E Q= 10000 Mpa Q 

Q-kN/m 
o 

^ Linear, — Timoshenko , x program 
2x4-in SPF 

40 60 

Figure 13. Comparison of program (with m=-1) and a n a l y t i c a l 

results [3]. 

Table 2 shows a comparison of f a i l u r e loads as obtained by 

the computer program to test results for d i f f e r e n t 

e c c e n t r i c i t i e s e. A graphical plot of the data in th i s table 

i s shown in Figure 14, with no size effects considered. 

Similar results with size effects included are shown in 

Figures 15(a) and 15(b). 
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COMPUTER RESULTS TEST RESULTS 

e = 2mm e = 39mm e = 2mm e = 39mm 
c c Pmax [Kn] PmaxtKn] 

3.37 100.953 41.327 
5.10 100.111 40.066 104.35 48.21 
6.74 98.008 38.593 
8.99 95.064 36 . 490 

11.24 90.437 34.177 
14.61 80.131 30.601 69.02 32.68 
16.85 70.022 28.175 
19.10 60.125 25.676 
20.22 55.170 24.442 48.75 24.71 
21.35 50.897 23.376 
24.72 40.024 20.356 
25.80 36.934 19.410 34.98 — 

28.10 31.793 17.759 
32.60 24.220 14.829 
35.96 20.054 13.194 20.52 14 .11 
40.45 15.974 11.258 

e 
-it-

Table 2. Axial load-slenderness data for a pin-ended 2x4-in 
beam (size effect neglected). 

Data Input : 
2x4-in SPF section 
mean E Q , f c , f f c 



Figure 14. Axial load-Slenderness plots for the data of 

Table 2,(no size e f f e c t ) . 

110 

0 10 20 30 40 C c 
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110 

10 H 1 | | 1 1 ; | 1 1 
5 15 25 35 45 

Figure 15(a). Axial load-Slenderness curve with size effect 

taken into account, e = 2mm. 

Input Data: 

mean E^, f and f. 
o c t 

k = 20.0 and k. = 5.0 c t 



Figure 15(b). Axial load-slenderness curves with varyi ng 
for a constant kfc. 

Tests, l - k = 5 

2 - k c = 10, 3 - k c = 20 

4- k = 100, 5 - k = 150 
c c 
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4.3. DISCUSSION 

The r e s u l t s as presented i n t h i s c hapter, show that 

there i s a r e l a t i v e l y good agreement between the t e s t and 

the p r e d i c t i o n s by the computer program, the agreement being 

a very good one f o r members with a high s l e n d e r n e s s r a t i o . 

For compression members i n the intermediate range, the 

program p r e d i c t i o n s are s l i g h t l y higher than the t e s t 

r e s u l t s . For very short members the program p r e d i c t i o n s are 

s l i g h t l y below. S e v e r a l e x p l a n a t i o n s can be put forward to 

e x p l a i n these d i s c r e p a n c i e s . The most obvious one i s that 

the s t r e s s - s t r a i n curve used f o r t h i s study may not be a 

tr u e r e p r e s e n t a t i o n of the a c t u a l behaviour. N e v e r t h e l e s s , 

s i n c e t h i s f e a t u r e may be changed i n the a n a l y s i s , the 

f i n i t e element technique developed here remains a powerful 

and general t o o l to study the behaviour and design 

c o n s i d e r a t i o n s of timber columns and beam-columns. 

A p p l i c a t i o n of t h i s computer program to wood beam-columns 

w i l l be d i s c c u s s e d i n the f o l l o w i n g chapter. 

As shown in F i g u r e 15(a), when k = 20.0 and k. = 5.0 

are taken as input i n t o the program, the r e s u l t s are 

s l i g h t l y improved with r e s p e c t t o the ones where no s i z e 

e f f e c t was c o n s i d e r e d . A l s o , i t i s noted that s i z e e f f e c t s 

i n compression have l i t t l e s i g n i f i c a n c e f o r very slender 

members, while these s i z e e f f e c t s p lay a major r o l e i n very 

short and intermediate members. The reason f o r t h i s i s that 
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for short members, the volume subjected to tension i s small 

or non-existent. For slender members, the f a i l u r e i s 

controlled by the modulus of e l a s t i c i t y and member 

i n s t a b i l i t y . When k c i s very large, the results obtained are 

the same as the ones in Table 2, meaning that there i s no 

size effect for large k c« It appears from Figure 15(b) that 

k = 20.0 gives a best f i t to the test r e s u l t s . 



5. APPLICATIONS 

5.1. INTRODUCTION 

The application of the program to solve wood 

beam-columns w i l l be discussed in th i s chapter. This program 

can handle multiple spans with d i f f e r e n t load and support 

configurations. Among them are the ones shown in figure 16. 

Q 

p P 

Q 

J . 

(a) (b) 

Q o Q p 
P - U I I I I I I I I l i \ i i i i i r r 

(c) (d) 

Figure16. Some loading cases and support conditions. 

The members are assumed to be prismatic. The desired 

responses can usually be represented as load versus centre 

deflection curve or any other convenient way for a 

55 
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p a r t i c u l a r l a t e r a l load Qo. Once the complete curves are 

obtained, the maximum loads can be ea s i l y determined from 

the peak of the curves. The computer program developed in 

th i s study provides an easier approach to the above process 

in that one gets the maximum load d i r e c t l y by supplying the 

program with the appropriate information. In a l l cases of 

Figure 16, the l a t e r a l loads Q or Qo cause bending moments 

about the major axis of the cross-section. It i s further 

assumed that weak axis buckling and l a t e r a l - tor s i o n a l 

buckling are e f f e c t i v e l y prevented so that f a i l u r e i s always 

caused by excessive bending in the plane of the applied 

l a t e r a l load . In performing the numerical procedure, i t i s 

assumed that the l a t e r a l load Qo i s applied f i r s t and 

maintained at a constant value as the a x i a l compressive load 

P increases or decreases. 

5.2. NUMERICAL EXAMPLE 

As a numerical example, case (c) in Figure 16 has been 

considered in thi s study, using a 2x4-in SPF section and 

mean values for E Q , f and f f c . Also kfc = 5.0, m = 0.02 and 

k c = 10.0 has been used in obtaining the P versus Qo results 

as shown in Figures 17(a) and 17(b). 



Figure 17(a). Ultimate strength interaction curves for 

simply supported columns subjected to uniformly distributed 

load. 

Qo/Qou 0 0 2 0.4- 0 4 0.8 1 

Figure 17(b). Non-dimensionalized ultimate strength 

interaction curves of Figure 17(a). 
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5 . 3 . OBSERVATIONS 

From Figures 17(a) and 17(b), i t can be noticed that 

P-Qo relationships predicted by the computer model are not a 

linear one as i t i s normally assumed in the current design 

practice for d i f f e r e n t slenderness r a t i o s . Additional 

research i s needed here in order to come up with a 

si m p l i f i e d design procedure for wood beam-columns. 



6. RELIABILITY ANALYSIS 

6.1. INTRODUCTION 

This chapter describes the procedure for the str u c t u r a l 

r e l i a b i l i t y analysis of a wood compression member. The 

problem to be studied is as shown in Figure 18; where P 

represents the applied a x i a l compressive load (for only dead 

and l i v e loads). L represents the length of the member while 

H and B represents the height and breadth of the cross 

section. 

yfS~r I Q u ^ L , B , H 
S P F 

Figure 18. Typical problem for r e l i a b i l i t y evaluation. 

The r e l i a b i l i t y of a member simply means the prob a b i l i t y 

that i t w i l l perform as intended in a prescribed s i t u a t i o n . 

It i s influenced by the demands on the structure and the 

capacity of the structure to respond to those demands. In 

general, one can define a performance or f a i l u r e function G 

to characterize the state of the structure in rel a t i o n to 

some performance c r i t e r i o n . This function G can be expressed 
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as 

G = C - D 

where 

C = structural capacity 

D = demands on the structure. 

The function G as defined above is posi t i v e whenever the 

capacity exceeds the demand, therefore the structure meets 

the performance c r i t e r i o n . On the other hand, the function G 

w i l l be negative whenever the demands exceed the capacity, 

resulting in the structure not meeting the required 

performance. When the function G i s exactly equal to zero, 

the structure i s on the threshold between meeting and 

f a i l i n g to meet the performance c r i t e r i o n , and such a state 

i s defined as " l i m i t state". 
e 

The p r o b a b i l i t y of f a i l u r e p^ i s the compliment of the 

r e l i a b i l i t y . Thus 

Pj = 1.0 - r e l i a b i l i t y 

According to the d e f i n i t i o n of G above, the pr o b a b i l i t y of 

f a i l u r e i s then given as 
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p f = Probability ( G < 0) 

Each design problem w i l l contain a set of intervening 

variables, and depending on the nature of the problem, some 

of the variables may be random, obeying some d i s t r i b u t i o n 

function. Thus, i f some of the basic variables are random, 

i t i s obvious that G w i l l be i t s e l f a random variable. The 

pro b a b i l i t y d i s t r i b u t i o n for G could be derived from a 

knowledge of the ind i v i d u a l p r o b a b i l i t y d i s t r i b u t i o n s for 

the basic variables, and the result would be as shown in 

Figure 19. 

G = 0 G G 

Figure 19. Probability density function for the variable G . 

The p r o b a b i l i t y of f a i l u r e p^ w i l l be the area under the 

curve to the l e f t of the o r i g i n G = 0. If this p r o b a b i l i t y 
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of f a i l u r e exceeds some desired value, one or more of the 

design variables would be changed and p^ recalculated u n t i l 

i t meets the required target. The p r o b a b i l i t y d i s t r i b u t i o n 

for G could be obtained by a n a l y t i c a l means using multiple 

integrations and the joint p r o b a b i l i t y d i s t r i b u t i o n s between 

the basic variables. This i s a very tedious and d i f f i c u l t 

approach. 

MonteCarlo simulation can be used to obtain the 

pr o b a b i l i t y of f a i l u r e in an approximate manner. In t h i s 

approach the value of G i s computed for a large number of 

combinations of the basic variables and p^ i s estimated from 

the proportion of times the G was negative. The selection of 

values for the basic variables must obey their joint 

p r obability d i s t r i b u t i o n s , and when more than two variables 

are involved, the procedure becomes d i f f i c u l t , tedious and 

expensive. In the following section, an approximate and fast 

procedure for estimating p^ w i l l be discussed. 

6.2. THE 0 METHOD FOR RELIABILITY ANALYSIS 

In order to estimate the p r o b a b i l i t y of f a i l u r e p^ with 

s u f f i c i e n t accuracy but without resorting to complicated 

integrations or computer simulations, Hasofer and Lind 

[1974] introduced the concept of r e l i a b i l i t y index 0 using 

geometric approach. Thus, for a design problem containing N 

uncorrelated random variables X-, i = 1,..,N, with mean X. 
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and standard deviation a^, a set of "normalised " variables 

x^ is introduced. These variables have zero mean and 

standard deviation equal to 1 .0 , and are given as 

X . - X . 
x. = 3, ( 5 3) 

°i 

The f a i l u r e function can now be expressed in terms of the 

new, normalised variables x^ as shown schematicaly in the 

figure below, in which the horizontal plane represents the 

space of the variables x and the v e r t i c a l axis the function 

G. 
C(x) 

Figure 2 0 . D e f i n i t i o n of the r e l i a b i l i t y index j3. 

Hasofer and Lind showed that the r e l i a b i l i t y index 0 can 

be intepreted as the minimum distance between the o r i g i n 0 
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and the l i m i t state G Q. This i s a geometric problem which 

can be solved by successive i t e r a t i o n s using, for example, 

Hasofer and Lind's proposed algorithm. Knowing /3, the 

pr o b a b i l i t y of f a i l u r e i s obtained from 

p f = # ( - 0 ) (54) 

where $ i s the standardised normal p r o b a b i l i t y function. For 

p£ to be exact, we require that a l l the basic variables be 

normally d i s t r i b u t e d and G be linear in the basic variables. 

Figure 20 shows the case when the mean point belongs to the 

"safe domain" G > 0. The combinations of x^ which correspond 

to G = 0 (the l i m i t state) are represented by the curve G Q. 

6.2.1. Rackwitz-Fiessler Algorithm 

This i s in actual fact the modification of the Hasofer 

and Lind Algorithm in order to improve the estimation of the 

pro b a b i l i t y of f a i l u r e . The modification refers to the case 

when the basic variables are non-normal. Rackwitz and 

Fi e s s l e r [1978], suggested a transformation of the o r i g i n a l 

random variables X^ into a set of normalised uncorrelated 

standard variables z^ using the following transformation 

z. = #~ 1[F(X.)] (55) 
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where $ i s the standard normal p r o b a b i l i t y d i s t r i b u t i o n 

function and F(X^) i s the cumulative d i s t r i b u t i o n function 

for the variable X^. The standard algorithm from Hasofer and 

Lind i s then used for the new variable z^. This modification 

improves the prediction of p^ because i t meets one of the 

two conditions mentioned e a r l i e r namely, that a l l variables 

be normally d i s t r i b u t e d . This algorithm i s presently the 

accepted norm for the evaluation of the r e l i a b i l i t y index 0. 

6 . 3 . P R O B L E M F O R M U L A T I O N 

To i l l u s t r a t e the a p p l i c a b i l i t y of the theory discussed 

above to normal practice, l e t us consider the column problem 

of Figure 18. The cross sectional dimensions of the column 

are B for width and H for depth. The length of the column i s 

represented as L. It i s assumed simply supported under an 

a x i a l compressive load P (for both dead and l i v e loads). The 

demand on the structure i s the applied load P. Thus, 

D = P = P D + P L 

where 

D = demand 

P D = dead load 

P L = l i v e load 

If 



66 

where 

Then 

d = - ° - (56) P DN 

/ = (57) 
PLN 

PLN = n o m i n a l (design) l i v e load 
PDN = n o m i n a l (design) dead load 

D = P L N [ 7 i d + /] (58) 

where d and / are considered to be random variables. The 
P 

factor 7, i s a constant defined as 7, = -SH or the r a t i o of 
PLN 

nominal dead load to nominal l i v e load. The capacity C i s 

the maximum load, Pmax, the member can carry; thus 

C = Pmax = P{E 0,fc,ft,B,H,L,m] (59) 

and the f a i l u r e function can be expressed as 

G = C - D 

G = Pmax - P (60) 

where 

f = strength in compression 

f f c = strength in tension. 

m = slope of st r e s s - s t r a i n curve in compression. 

The problem can now be studied using the Rackwitz-Fiessler 

algorithm and the f i n i t e element computer program developed 
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in part 3 of t h i s thesis. However, i t i s convenient for the 

purpose of future code development to modify Equation (60) 

above to bring in the design equation format adopted for the 

code. 

6 . 3 . 1 . Code Design Equation 

For members subjected to pure a x i a l compression, the 

Canadian Code, CAN3-086.1-M84 (1984) sp e c i f i e s the following 

desing equation. 

A D P D N + A L P L N * *p A F c K C ( 6 1 ) 

where 

#p = performance factor in compression. 

A = cross sectional area of member. 

K = slenderness factor c 
F c = F i f t h percentile compression strength 

(a D,a L) = load factors (1.25 and 

1.5 respectively). 

6 . 4 . THE G FUNCTION FOR THE PROBLEM 

Considering the l i m i t i n g case of Equation (61), we 

obtain the following equation: 
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P L N [ a D ? i + a L ] = *p A F c K c ( 6 2 ) 

where 
<p AFcKc 

P L N = -B (63) 
L N V + a L 

Combining Equations (60), (62) and (63),we can express 

the f a i l u r e function as 

0 AFcKc 
G = Pmax - -E [ 7 , d + / ] 

a D7,+a L 

or 

0 A Fc Kc 
G = P{E ,f f ,B,H,L,m} - -E [ 7 l d + /] (64) a D7,+a L 

For the purpose of t h i s study, the following variables 

have been considered random 

modulus of e l a s t i c i t y E Q 

compressive strength f 

te n s i l e strength f f c 

dead load variable d 

l i v e load variable / 

and the following have been considered to be constants 

with mean average values 

height of cross section H 
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breadth of cross section B 

length of member L 

slope m. 

6.5. T H E R E A L I A B I L I T Y P R O G R A M 

The computer program which implements the derivation 

above i s attached in Appendix A. As part of the input, the 

program requests the number of random variables (in thi s 

case 5 ) , the type of their d i s t r i b u t i o n (according to a 

d i s t r i b u t i o n code), and the relevant parameter information 

to characterize the d i s t r i b u t i o n s . The program can accept 

the following d i s t r i b u t i o n s 

Code D i s t r i b u t i o n 

1 Normal 
2 Lognormal 
3 Weibull 
A Gumbel 

5 Ranked Data 

The fixed parameters 7 , , <j>^, a D and a L are provided by 

the user for each p a r t i c u l a r problem. The subroutine GXPR 

computes the function G and i t s gradient by c a l l i n g the 

f i n i t e element subprogram. The GXPR routine returns the 

value of G and the gradient vector DELTA. For the column 

problem discussed in thi s thesis the elements of the 

gradient vector corresponding to the f i r s t 3 random 
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variables were obtained numerically, while the remaining two 

were obtained by d i f f e r e n t i a t i n g the f a i l u r e function 

e x p l i c i t l y . Thus, the t o t a l elements of the gradient vector 

considering only f i v e random variables are obtained as 

G(E *) - G(E ") 
Delta(l) = 2 2 — 2AE^ o 

G(f +) - G(f ~) 
Delta(2) = S $ — 

2Af 
c 

G(f. +) - G ( f / ) 
DeltaO) = S £ — 

2Af t 

<t> AFcKc 
Delta ( 4 ) = — E 7 l 

a D 7 i + a L 

<(> AFcKc 
Delta (5) = -

a D 7 i + a L 

The fixed parameters are passed onto the routines GXPR and 

COLUMN through a COMMON block. 
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6.6. R E L I A B I L I T Y R E S U L T S 

Keeping the r a t i o 7 l = 1.0, m = 0.02 and using a 2x4-in 

SPF section, the factor <p^ was changed and the corresponding 

r e l i a b i l i t y index 0 was computed for columns of d i f f e r e n t 

slenderness r a t i o s . Figure 21 shows the results for the 

r e l i a b i l i t y index 0 as a function of the performance factor 

0p for the case of no size e f f e c t considered in the program. 

Figure 22 shows r e l i a b i l i t y results with size e f f e c t s 

included in the computer program. In obtaining the results 

for the two cases studied, the following information has 

been used for the random variables. 

(1) E Q : 3-parameter Weibull. 

Scale = 6738.0 Mpa 

Location = 3514.0 Mpa 

Shape = 3.97 

Mean = 9660.0 Mpa 

(2) f : 3-parameter Weibull 

Scale = 33.845 Mpa 

Location = 0.0 

Shape = 7.8559 Mpa 

F i f t h percentile = 15.87 Mpa 

(3) f. : 3-parameter Weibull 



Scale = 29.861 Mpa 

Location = 4.03 Mpa 

Shape = 2.911 Mpa 

(4) d = dead load variable : Normal 

Mean = 1.0 

Standard deviation = 0.15 

(5) / = l i v e load variable : normal 

Mean = 0.75 

Standard deviation = 0.15 





F i g u r e 22. R e l i a b i l i t y r e s u l t s wi th s i z e e f f e c t i n c l u d e d i n 

the r e l i a b i l i t y program. 
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6.6.1. Discussion of results 

From the results of Figure 21 i t is noted that for a 

performance factor = 0.75, a r e l i a b i l i t y index 0 of the 

order j3 = 4.0 i s achieved for a l l slenderness ra t i o s 

considered. Figure 22 shows a small increase of the 

r e l i a b i l i t y index for the same performance factor <p . 
cr 

Considering the two cases, a performance factor 0 = 0.75 
Cr 

can be taken as a reasonable value to be included in the 

current design practices for columns of any length. 

The procedure outlined in th i s chapter for the 

r e l i a b i l i t y analysis of columns does not take into account 

the duration of load e f f e c t over the length of the servive 

l i f e of the column. A r e l i a b i l i t y study for beams taking 

into account the duration of load effect i s currently been 

done in the Department of C i v i l Engineering of the 

University of B r i t i s h Columbia. It w i l l be of interest for 

further research, to integrate the model developed here to 

th i s study. 



7. CONCLUSIONS AND RECOMMENDATIONS 

7.1. CONCLUSIONS 

From the results of part one of t h i s study, i t i s seen 

that the f i n i t e element analysis, including large 

deformations and non-linear material properties, can model 

wood column behaviour s a t i s f a c t o r i l y . The model does require 

accurate and r e l i a b l e input information on modulus of 

e l a s t i c i t y , compressive and t e n s i l e strengths. The results 

including size e f f e c t s show that for the size e f f e c t 

parameters k c = 20.0 and kfc = 5.0, the computer predictions 

for the maximum load Pmax agree f a i r l y well with test 

r e s u l t s . However, k c does have significance influence for 

short and intermediate columns, and should be known with 

some accuracy. 

For the r e l i a b i l i t y r esults in part two of this study, 

i t i s observed that the current performance factors <l> , as 
hr 

given in CAN3-086.1-M84 (1984), are more conservative than 

what th i s model predicts. A value of 0p = 0.75 appears to be 

a reasonable one for a l l slenderness r a t i o s . It i s estimated 

that i f t h i s new value of <f>^ i s adopted in the current 

design practice, i t w i l l give r i s e to a r e l i a b i l i t y index /3 

of the order of 4.0. If a lower 0 i s required, a d i f f e r e n t 

#p should be introduced for short and intermediate columns. 

This points to a deficiency in the "column formula" giving 
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the slenderness adjustment factor K c. Idealy, t h i s factor 

should r e f l e c t the changes due to slenderness in such a way 

that the same <j>^ - 0 r e l a t i o n s h i p be obtained for a l l column 

lengths. 

7.2. RECOMMENDATIONS 

It i s recommended that a performance factor <f>^ = 0.75 be 

used in the current design practice for a l l slenderness 

r a t i o s . However, prior to adopting this recommendation, 

there i s need to do more research in thi s area. In 

p a r t i c u l a r , the research should cover duration of load 

e f f e c t s , and the case of correlated variables; neither of 

which has been included in the analysis. The application of 

the Rackwitz-Fiessler algorithm requires a l l the variables 

involved to be uncorrelated. However, in some p r a c t i c a l 

cases some or more of the intervening variables w i l l be 

correlated. For example, in the context of the problems 

discussed in thi s report, the strength of beams, columns or 

beam-columns under combined a x i a l and l a t e r a l loads w i l l 

depend on the modulus of e l a s t i c i t y E o, the compression 

strength f c and the te n s i l e strength f f c. For lumber, these 

variables are p a r t i a l l y correlated and thi s must be dealt 

with, using for example the procedures available in the 

l i t e r a t u r e [12], before using the Rackwitz-Fiesler 

algorithm. 
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There i s not enough data available at present on size 

e f fects in both tension and compression, hence further 

p r a c t i c a l as well as theoret i c a l study i s necessary in order 

to come up with a r e a l i s t i c design recommendation applicable 

to lumber of a l l grades and species. 
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COLUMN.FOR Ve r s i o n 2.0 
2 August, 1987 

A PROGRAM FOR THE CALCULATION OF THE ULTIMATE 
COLUMN (OR BEAM-COLUMN) 

LOAD ON A 

MATERIAL BEHAVIOUR IS ELASTIC IN TENSION WITH BRITTLE 
FRACTURE, AND ELASTIC IN COMPRESSION UP TO A LIMITING 
COMPRESSION STRESS, WITH A FALLING LINEAR BRANCH BEYOND 
THAT LIMIT. 1 SIZE EFFECTS ARE CONSIDERED BOTH IN TENSION 
AND COMPRESSION. 
END LOAD IS A COMPRESSION LOAD. 
END LOAD CAN BE APPLIED ECCENTRICALLY. LATERAL LOADS 
CAN BE DISTRIBUTED OR CONCENTRATED. 

THE PROGRAM FINDS THE ULTIMATE END LOAD CORRESPONDING 
TO A GIVEN END ECCENTRICITY AND GIVEN LATERAL LOADS. 

THE PROGRAM CAN ALSO FIND THE ULTIMATE LATERAL LOAD 
WHEN THE END LOAD IS SPECIFIED TO BE ZERO ( NP = 0 ). 

PROBLEM DATA IS READ FROM UNIT #1. 
OUTPUT IS STORED IN UNIT #2. 

PROGRAM WRITTEN BY E. KOKA AND R.O. FOSCHI, UBC. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
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************************************************************ 

IMPLICIT REAL*8(A-H,0-Y) 
CHARACTER*20 NAMED 1 ,NAMEA1 ,NANS 
DIMENSION IX(21,4),F(8),NBC(21),TKO(672),XE(8) 
1, R(84),XO(84),X(84),B(84),B1(8,8),B2(8,8),B3(8,8),B4(8,8) 
2, B5(8,8),B6(8,8),B7(8,8),B8(8,8),B9(8,8),Y(5),RE(8),XP(84) 
3, Q(20),IQ(20), ESTR(7), FI(7) 
COMMON/C1/GAP(5),GAW{5),EN 1(8,5),EM1(8,5),EM2(8,5), NGAUSS 
COMMON/C2/DIFP, NINT 
COMMON/C3/DEFL,PDEFL 

********************************************************** 
* DEFINE VARIABLES * ********************************************************** 
NELEM = NO OF ELEMENTS 
NJBC = NO OF JOINTS WITH B.C. 
NBC(I) = NO OF B.C. AT NODE I 
IX = B.C. CODE 

1 = U 
2 UX 
3 W 
4 WX 

EN 1 = INTERPOLATION FUNCTIONS FOR u 
EMI,EM2 = INTERPOLATION FUNCTIONS FOR w 
GAP = CORDINATE AT GAUSS POINT 
GAW = CORRESPONDING WEIGHT 
NGAUSS = NO OF GAUSS POINTS 
NITER = MAX. NO OF ITERATIONS 
TOP = TOLERANCE FOR LOAD STEP 
EPSLON = TOLERANCE FOR SOLUTION VECTOR 
FC = MATERIAL STRENGTH IN COMPRESSION 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
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c * FT MATERIAL STRENGTH IN TENSION * 
c * EO MOE OF THE MATRIAL (RANDOM) * 
c * EN = SLOPE OF THE STRESS-STRAIN CURVE IN COMPR. * 
c * SPAN = MEMBER LENGTH * 
c * W = WIDTH OF SECTION * 
c * H = DEPTH OF SECTION * 
c * E = ECCENTRICITY OF AXIAL LOAD * 
c * NEQ = NO OF EQUATIONS TO BE SOLVED * 
c * NJOINT = NO OF NODES * 
c * NDOF = NO OF VARIABLES PER NODE * 
c * NODEL = NO OF NODES PER ELEMENT * 
c * NDIMB = NO OF VARIABLES PER NODE * 
c * LBW,LHB = HALF BANDWIDTH INCLUD. THE DIAG. * 
c * NA = NO OF UNKNOWNS FOR TOTAL PROBLEM * 
c * RE = ELEMENTAL LOAD VECTOR * 
c * R = STRUCTURE LOAD VECTOR * 
c * B GLOBAL LOAD VECTOR RETURNED * 
c * TKO = GLOBAL TANGENT MATRIX * 
c * XE = ELEMENT DISPLACEMENT VECTOR * 
c * X = GLOBAL SOLUTION VECTOR * 
c * B1,..B9 = ARRAYS FOR TEMPORARY STORAGE * 
c ********************************************** ************ 

WRITE( * , 6 ) 
6 FORMAT(' ENTER DATA FILE NAME '/) 

READ(* ,8) NAMED1 
WRITE( *,7) 

7 FORMAT(' ENTER OUTPUT FILE NAME '/) 
READ(* ,8) NAMEA1 

8 FORMAT(A) 
OPEN (1, FILE = NAMED1,STATUS='OLD') 
OPEN (2,FILE = NAMEA1,STATUS='NEW) 

READ(1 ,*> NELEM, NGAUSS 
NDOF = 4 
NJOINT = NELEM+1 
NG1 = NGAUSS + 1 
NG2 = NGAUSS + 2 
READ (1,*) NP,NQ,Q0 
IF (NQ.EQ.O) GO TO 44 
DO 4 3 I = 1, NQ 

43 READ (1,*) I Q ( I ) , Q (l) 
44 E = 0.0D0 

IF (NP.NE.O) READ(1,*) E 
DO 65 I = 1, NJOINT 

65 NBC(I)=0 
READ ( 1,*) NJBC 
DO 75 I = 1, NJBC 
READ (1,*) N, NBC(N) 
READ (1,*) (IX'(N,J) , J=1 ,NBC(N) ) 

7 5 CONTINUE 
NEQ = NDOF*NJOINT 
NODEL = 2 

C 
C * READS MATERIAL STRENGTH IN COMPRESSION (FC) AND TENSION (FT), 
C BOTH CORRESPONDING TO THE SPECIFIED CROSS-SECTION AND THE 
C REFERENCE SPAN SREF. XKC AND XKT ARE THE WEIBULL SIZE EFFECT 
C SHAPE PARAMETERS IN COMPRESSION AND TENSION RESPECTIVELY. 
C 

READ(1,*) FC,FT,SREF,XKC, XKT 



NDIMB = NODEL*NDOF 
LBW = NDIMB 
LHB = LBW 
NA = LBW*NEQ 

C READ MOE AND SLOPE m OF CURVE 
READ(1,*) EO,EN 

C READ PROBLEM SIZE L, B, H 
READ(I,*) SPAN,W,H 
AR = W*H 
XI = W*H**3/12.D0 
DEL = SPAN/(2.D0*NELEM) 
SLAMDA = SPAN/H 

C * ADJUST STRENGTHS TO THE ACTUAL VOLUME 
FC = FC *(SREF/SPAN)**(1.0/XKC) 
FT = FT *(SREF/SPAN)**(1.0/XKT) 

C OBTAIN SHAPE FUNCTIONS AND DERIVATIVES : N1,M1,M2 
CALL SHAPE(DEL) 
WRITE(*,79) 

79 FORMAT(' TOLERANCE FOR PMAX ? '/) 
READ(*,*) TOP 
WRITE(*,790) 

790 FORMAT(' TOLERANCE FOR CONVERGENCE? '/) 
READ(*,*) EPSLON 
WRITE(*,791) 

791 FORMAT(' MAX. NUMBER OF ITERATIONS? '/) 
READ(*,*) NITER 
WRITE(*,799) 

799 FORMATC WANT TO SEE INTERMEDIATE RESULTS? (Y/N)'/) 
READ(*,8) NANS 
NINT = 0 
IF (NANS.EQ.'Y'.OR.NANS.EQ.'y') NINT = 1 
IF (NP.EQ.O) GO TO 761 
PC = AR*FC 
PCR = 3.14159D0**2*E0*XI/(SPAN**2) 
PI = PC 
IF(PCR .LE. PC) PI=PCR 
P2 = PI 
P1 = 0.0D0 

P3 = (P1 + P2)/2.0D0 
NFAIL = 0 
SMAX1 = 0.0 
GO TO 760 

761 FQ1 = 0.0D0 
FQ2 = 1.ODO 
FQ3 = FQ2 
NFLAG = 0 

760 DO 792 J = 1, NEQ 
792 XP(J) = 0.0D0 
C 
C START CALCULATIONS FOR TRIAL LOAD LEVELS 

CALL TIME(ZIM) ' 
ZIM0 = ZIM 

3773 CONTINUE 
P = 0.OD0 
FQ = 1.0D0 
IF (NP.NE.0) P = P3 
IF (NP.EQ.O) FQ = FQ3 
IF (NINT.EQ.1.AND.NP.NE.0) WRITE(*,4000) P 
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IF (NINT.EQ.1.AND.NP.EQ.O) WRITE(*,4001) FQ 

4000 FORMAT(//' SOLUTION FOR P =',E15.6,* :'/) 
4001 FORMAT(//' SOLUTION FOR LATERAL LOAD FACTOR=',E15.6,*:'/) 
C INITIALISE ARRAYS 

DO 80 J = 1, NEQ 
XO(J) = XP(J) 

80 R(J) = 0.DO 
C EXTERNAL LOAD VECTOR R 

IF (Q0.EQ.0.0D0) GO TO 87 
DO 81 J = 1 , 8 
RE(J)=0.D0 

81 CONTINUE 
RE(3) = FQ*Q0*DEL 
RE(4) = FQ*Q0*DEL**2/3.D0 
RE(7) = RE(3) 
RE(8) = -RE(4) 
DO 83 NE = 1, NELEM 
DO 82 J J = 1, 8 
K = (NE-1)*NDOF + J J 
R(K) = R(K) + RE(JJ) 

82 CONTINUE 
83 CONTINUE 
87 IF (NQ.EQ.0) GO TO 185 

DO 180 J = 1, NQ 
JS = (IQ(J)-I)*NDOF + 3 

180 R(JS) = R(JS) + Q(J)*FQ 
185 EM = P*E 

J J = (NJOINT-1)*NDOF + 1 
R(JJ) = R(JJ)-P 
R(1) = R(1) + P 
R(4)=R(4)-EM 
R(NEQ)=R(NEQ)+EM 
ITER=0 

C 
C BEGIN ITERATIONS AT THE TRIAL LOAD LEVEL 
777 CONTINUE 

DO 84 1 = 1 , NA 
84 TKO(I) = O.0D0 

DO 85 K = 1, NEQ 
85 B(K) = -R(K) 

DO 645 IE = 1, NELEM 
C INITIALIZE ARRAYS 

DO 88 I = 1 , 8 
F(I) = 0.0D0 
DO 86 J = 1 , I 
B1(I,J) = 0.0D0 
B2(I,J) = 0.0D0 
B3(I,J) = 0.0D0 
B4(I,J) = 0.0D0 
B5(I,J) = 0.0D0 
B6(I,J) = 0.0D0 
B7(I,J) = 0.0D0 
B8(I,J) = 0.ODO 
B9(I,J) = 0.ODO 

86 CONTINUE 
88 CONTINUE 
C PICK ELEMENT SOLUTION FROM GLOBAL VECTOR 

DO 90 J J = 1 , 8 



87 

K = (IE - 1)*NDOF + J J 
XE(JJ) = XO(K) 

.90 CONTINUE 
DO 101 K = 1, NGAUSS 
Y(K) = 0.D0 

DO 91 1=1, 8 
Y(K) = Y(K)+XE(I)*EM1(I,K) 

91 CONTINUE 
C OBTAINING COMPONENTS OF EKT 

DO 93 I = 1, 8 
DO 93 J = 1, I 
B1(I,J) = Bl(I,J)+E0*DEL*EN1(I,K)*Y(K)*AR* 

1 EM1(J,K)*GAW(K) 
B2(I,J) = B2(I,J)+E0*DEL*EM1(I,K)*Y(K)*AR* 

1 EN1(J,K)*GAW(K) 
B3(I,J) = B3(I ,J)+E0*DEL*EM1(I,K)*Y(K)*AR* 

1 Y(K)*EM1(J,K)*GAW(K) 
B4(I,J) = B4(I,J)+(E0*AR*DEL*EN1(I,K)*EN1(J,K)+ 

1 E0*XI*DEL*EM2(I,K)*EM2(J,K))*GAW(K) 
93 CONTINUE 

DO 100 L = 1, NGAUSS 
C STRESSES AND STRAINS AT GAUSS POINT 

STR = 0.5D0*Y(K)**2 
DO 96 MO = 1 , 8 

STR = STR+(EN1(MO,K)-GAP(L)*H*0.5D0*EM2(MO,K))*XE(MO) 
96 CONTINUE 

STRE = STR+FC/EO 
FAC = 1.0D0 
IF(STRE.GE.O.DO) FAC=0.0D0 
STRESS = E0*STR-((E0+EN*E0)*STR+FC*(1.DO+EN))*FAC 
DO 99 I = 1, 8 
DO 98 J = 1 , I 

B5(I,J) = B5(I,J)+DEL*0.5D0*AR*(EN1(I,K)-GAP(L) * 
1 H*0.5D0*EM2(I,K))*(E0+E0*EN)*FAC*(EN 1(J,K)-H*0.5D0* 
2 GAP(L)*EM2(J,K))*GAW(K)*GAW(L) 

B6(I,J) = B6(I,J)+DEL*0.5D0*AR*(EN 1(I,K)-GAP(L)* 
1 H*0.5D0*EM2(I,K))*(E0+EN*E0)*FAC*Y(K)*EM1(J,K)* 
2 GAW(K)*GAW(L) 

B7(I,J) = B7(I,J)+DEL*0.5D0*EM1(I,K)*Y(K)*AR* 
1 (E0+E0*EN)*FAC*(EN1(J,K)~H*0.5D0*GAP(L)*EM2(J,K))* 
2 GAW(K)*GAW(L) 

B8(I,J) = B8(I,J)+DEL*0.5D0*EM1(I,K)*Y(K)*AR* 
1 (E0+E0*EN)*FAC*Y(K)*EM1(J,K)*GAW(K)*GAW(L) 

B9(I,J) = B9(I,J)+AR*STRESS*EMI(I,K)*EM1(J,K)* 
1 GAW(K)*GAW(L)*DEL*0.5D0 

98 CONTINUE 
F(I) = F(I)+AR*DEL*0.5D0*STRESS*((EN1(I,K)-H*0.5D0* 

1 GAP(L)*EM2(I,K))+Y(K)*EM1(I,K))*GAW(K)*GAW(L) 
99 CONTINUE 
100 CONTINUE 
101 CONTINUE 
C OBTAIN ELEMENT TANGENT MATRIX 
C EKT IS THE (I,J) COMPONENT OF THE ELEMENT TANGENT MATRIX 

DO 105 I = 1, 8 
II = (IE-1)*NDOF + I 
B(II) = B(II) + F(I ) . 
DO 102 J = 1 , I 
J J = (IE-1)*NDOF + J 
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EKT = BI(I,J)+B2(I,J)+B3(l,J)+B4(I,J)~ 
1 B5(I,J)-B6(I,J)-B7(I,J)-B8(I,J)+B9(I,J) 

I J = (JJ-1)*(LBW-1) + I I 
TKO(IJ) = TK0(IJ)+EKT 

102 CONTINUE 
105 CONTINUE 
645 CONTINUE 
C INTRODUCE BOUNDARY CONDITIONS 

DO 1 1 1 UO = 1 , NJOINT 
IF (NBC(IJO).EQ.O) GO TO 111 
DO 110 J = 1, NBC(IJO) 
II = (UO -1)*ND0F + IX(IJO,J) 
LBW1 = LBW - 1 
DO 108 K = 1, LBW1 
J J = II - LBW + K 
IF (JJ.LE.O) GO TO 1080 
I J = (JJ-1)*(LBW-1) + II 

TKO(IJ) = 0.0D0 
1080 J J = II + K 

IF (JJ.GT.NEQ) GO TO 108 
I J = (II-1)*(LBW-1) + J J 

TKO(IJ) = 0.0D0 
108 CONTINUE 

I J = (II - 1)*(LBW-1) + II 
TKO(IJ) = 1.0D0 
B(II) = 0.0D0 

110 CONTINUE 
111 CONTINUE 
C 
C SOLUTION OF THE SYSTEM 
C 

CALL DECOMP(NEQ,LBW,TKO,IERROR) 
IF(IERROR .EQ. 1) GO TO 377 4 
CALL SOLVN(NEQ,LBW,TKO,B) 
DO 1121 = 1, NEQ 
X(I) = XO(I)-B(I) 

112 CONTINUE 
CALL CONVRG(XO,X(IER,NEQ,EPSLON,ITER) ITER = ITER + 1 
IF (ITER.EQ.NITER) GO TO 431 
IF (IER.EQ.2) GO TO 430 
IF(IER.EQ.0) GO TO 118; 
DO 115 I = 1, NE@ 

115 XO(I) = X ( I ) 
GO TO 777 

430 I ERROR = 1 
GO TO 3774 

431 WRITE(2,900) NITER, P 
900 FORMATC NO CONVERGENCE IN',13,'ITERATIONS AT P=',E13.6/) 

GO TO 901 
C 
C AFTER CONVERGENCE, OBTAIN STRESSES AND STRAINS AT 
C THE CURRENT LOAD LEVEL 
C 
118 CONTINUE 

EMAXP = O.0DO 
EMAXN = 0.0D0 
SUME = 0.0D0 
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DO 550 IE = 1, NELEM 
DO 500 J = 1, 8 
K = (IE-1)*NDOF +J 
XE(J) = X(K) 

500 CONTINUE 
DO 540 K = 1, NGAUSS 
FACTOR = 0.0 

DO 501 I = 1, 8 
501 FACTOR = FACTOR + XE(I)*EM1(I,K) 

EPLUS = 0.5D0 * FACTOR**2 
EMINUS = EPLUS 
DO 505 I = 1 , 8 
EPLUS = EPLUS + (EN 1(I,R)-H*0.5D0*EM2(I,K))*XE(I) 
EMINUS = EMINUS + (EN1(I,K)+H*0.5D0*EM2(I,K))*XE(I) 

505 CONTINUE 
IF(EPLUS.GT.0.0D0 .AND. EMINUS.GT.0.0) GO TO 506 
IF(EPLUS.GT.0.0D0 .AND. EMINUS.LE.0.0) GO TO 507 
IF(EPLUS.LE.0.0D0 .AND. EMINUS.LE.0.0) GO TO 508 
IF(EPLUS.LE.0.0D0 .AND. EMINUS.GT.0.0) GO TO 509 

506 EPOS = EPLUS 
IF(EMINUS.GT.EPOS) EPOS=EMINUS 
ENEG = 0.0D0 
GO TO 530 

507 EPOS = EPLUS 
ENEG = EMINUS 

GO TO 510 
508 EPOS = 0.0D0 

ENEG = EPLUS 
IF (DABS(EMINUS).GT.DABS(ENEG)) ENEG = EMINUS 
GO TO 530 

509 EPOS = EMINUS 
ENEG = EPLUS 

C 
C * FINDS THE POSITION OF THE NEUTRAL AXIS 
C 
510 ESTR(1) = EMINUS 

F l ( 1 ) = -1.0D0 
ESTR(NG2) = EPLUS 
Fl(NG2) = 1.0D0 
DO 512 L = 1, NGAUSS 
SUM = 0.5*FACTOR**2 
DO 511 I = 1,8 

511 SUM = SUM + (EN1(I,K) - GAP(L)*H/2.0*EM2(I,K))*XE(I) 
ESTR(L+1) = SUM 
Fl(L+1) = GAP(L) 

512 CONTINUE 
DO 515 I = 1, NG1 
PROD = ESTR(I)*ESTR(I+1) 
IF (PROD.LE.0.0D0) GO TO 516 

515 CONTINUE 
516 XN = F I ( I ) - ESTR(I)*(FI(I+1)-FI(I))/(ESTR(I+1)-ESTR(I)) 

IF (ESTR(I).EQ.O.0DO) GO TO 518 
IF (ESTR(I).LT.0.0D0) HN = (1.0D0 - XN)*H/2.0D0 
IF (ESTR(I).GT.0.0D0) HN = (1.0D0 + XN)*H/2.0D0 
GO TO 520 

518 IP (ESTR(I+1).LT.0.0D0) HN = (1.0D0 + XN)*H/2.0D0 
IF (ESTRd + 1 ) .GT.0.0D0) HN = ( 1 . 0D0 - XN)*H/2.0D0 

520 SUME = SUME + (HN/H)*(E0*EPOS)**XKT*GAW(K) 
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530 IF(EPOS.LT.EMAXP) GO TO 538 
EMAXP = EPOS 

538 IF(DABS(ENEG).LT.DABS(EMAXN)) GO TO 540 
EMAXN = ENEG 

540 CONTINUE 
550 CONTINUE 

SMAXP = E0*EMAXP 
SMAXN = E0*EMAXN 
IF (DABS(SMAXN).LE.FC) GO TO 560 
SMAXN = SMAXN -((E0 + EN*E0)*EMAXN + FC*(1.0 + EN)) 

560 IF (SUME.EQ.0.ODO.OR.SMAXP.EQ.0.ODO) GO TO 563 
SUME = SUME/(2.0*NELEM*(XKT+1.0)*SMAXP**XKT) 
FTT = FT * SUME**(-1.0D0/XKT) 
GO TO 564 

563 FTT = FT 
564 IF (SMAXP.GE.FTT) GO TO 3774 

DEFL = 0.0D0 
DO 565 IE = 1, NELEM 
J = (IE-1)*NDOF + 3 
IF (DABS(X(J)).GT.DABS(DEFL)) DEFL = X(J) 

565 CONTINUE 
J = NEQ - 1 
IF (DABS(X(J)).GT.DABS(DEFL)) DEFL = X(J) 
IF (NP.EQ.O) PDEFL = FQ3 
IF (NP.NE.0) PDEFL = P3 

377 4 CONTINUE 
IF (NINT.EQ.0) GO TO 8810 
IF (IERROR.EQ.1) WRITE(*,8888) 
IF (IERROR.EQ.0.AND.SMAXP.LT.FTT) WRITE(*,8889) SMAXP 
IF (IERROR.EQ.0.AND.SMAXP.GE.FTT) WRITE(*,8890) SMAXP 

8888 FORMAT(' IERROR=1,FAILS (DIVERGENCE OR SINGULAR MATRIX)'/) 
8889 FORMAT(' IERROR=0 SMAXP = ',E15.6,' SURVIVES'/) 
8890 FORMAT(' IERROR=0 SMAXP = ',E15.6,' FAILS'/) 
8810 CONTINUE 

IF (NP.EQ.O) GO TO 4500 
IF (IERROR.EQ.1) GO TO 7330 
IF (SMAXP.GT.FTT) GO TO 7331 
IF (SMAXP.EQ.FTT) GO TO 7337 
PI = P3 
IF (SUME.EQ.0.ODO.OR.SMAXP.EQ.0.ODO) GO TO 5650 
SMAX1 = SMAXP*SUME**(1.0D0/XKT) 
GO TO 5655 

5650 SMAX1 = SMAXP 
5655 DO 833 J = 1, NEQ 
833 XP(J) = X(J) 

GO TO 8334 
7330 P2 = P3 

GO TO 8334 
7331 P2 = P3 

NFAIL = 1 
SMAX2 = SMAXP*SUME**(1.0D0/XKT) 

8334 IF (P1.EQ.0.ODO) GO TO 8338 
TOLP = (P2-P1)/P1 
IF (TOLP.LE.TOP) GO TO 7338 
GO TO 8336 

8338 IF (P2.LE.0.1D0) GO TO 7338 
8336 IF (NFAIL.EQ.1) GO TO 8340 

P3 = (PI + P2)/2.0 
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GO TO 3773 
8340 P3 = PI + (P2-P1)*(FT-SMAX1)/(SMAX2-SMAX1) 

GO TO 3773 
7337 P = P3 

PP = P3 
PAV = P3 
GO TO 7339 

7338 IF (P1.EQ.0.ODO) P2 = 0.0D0 
P = P2 
PP = PI 
PAV = (P+PP)/2.0 

7339 CALL TIME(ZIM) 
ZIM = ZIM - ZIMO 

WRITE(2,570) PP,P,PAV,SMAXP,SMAXN,DEFL,PDEFL,SLAMDA 
570 FORMAT(2X,' FAILURE BETWEEN LOADS ',E15.6,2X,' AND', 

12X,E15.6/* AVERAGE=',E15.6/' EDGE STRESS (+) =',E15.6/ 
2' EDGE STRESS (-) =',E15.6/' MAX. DEFLECTION =',E15.6, 
3 ' AT LOAD =',E15.6/' SLENDERNESS = ',F6.2/) 

WRITE(*,683) ZIM 
683 FORMAT(' TIME =',F7.1,' SECS.'/) 

WRITE(*,570) PP,P,PAV,SMAXP,DEFL,PDEFL,SLAMDA 
GO TO 901 

4500 IF (IERROR.EQ.1) GO TO 4330 
IF (SMAXP.GT.FTT) GO TO 4330 
IF (SMAXP.EQ.FTT) GO TO 4337 
IF (NFLAG.EQ.1) GO TO 4331 
FQ1 = FQ2 
FQ2 = 2.0D0*FQ2 
GO TO 4580 

4331 FQ1 = FQ3 
4580 DO 4833 J = 1,NEQ 
4833 XP(J) = X(J) 

GO TO 4334 
4330 NFLAG = 1 

FQ2 = FQ3 
4334 IF (FQ1.EQ.0.ODO) GO TO 5338 

TOLP = (FQ2-FQ1)/FQ1 
IF (TOLP.LE.TOP) GO TO 4338 

5338 IF (NFLAG.EQ.0) FQ3 = FQ2 
IF (NFLAG.EQ.1) FQ3 = (FQ1+FQ2)/2.ODO 
GO TO 3773 

4337 P = FQ3 
PP = FQ3 
PAV = FQ3 
GO TO 4339 

4338 P = FQ2 
PP = FQ1 
PAV = (P+PP)/2.0 

4339 CALL TIME(ZIM) 
ZIM = ZIM-ZIM0 

WRI TE ( 2 , 67 0 ) PP , P , PAV, SMAXP, SMAXN ,'DEFL , PDEFL 
670 FORMAT(2X,' FAILURE BETWEEN LOAD FACTORS ',E15.6,2X,' AND', 

12X,E15.6/' AVERAGE =',E15.6/' EDGE STRESS (+) =',E15.6/ 
2' EDGE STRESS (-) =',E15.6/' MAX. DEFLECTION = *,E15.6, 
3' AT LOAD FACTOR =',E15.6/) 

WRITE(*,683) ZIM 
WRITE(*,6 7 0) PP,P,PAV,SMAXP,SMAXN,DEFL,PDEFL 

901 CONTINUE 
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C 
C 

c 

c* 

c 
4 

c 
5 

C 
10 

350 
150 

9 2 
CONTINUE 
CLOSE (1,STATUS='KEEP') 
CLOSE (2,STATUS='KEEP') 
STOP 
END 

END OF MAIN PROGRAM 

SUBROUTINE SHAPE(DEL) 
THIS SUBROUTINE CALCULATES DERIVATIVES OF SHAPE FUNCTIONS 
IMPLICIT REAL*8(A-H,0-Y) 
COMMON/C1/GAP(5),GAW(5),EN1(8,5),EM1(8,5),EM2(8,5),NGAUSS 
IF (NGAUSS.EQ.5) GO TO 5 
IF (NGAUSS.EQ.4) GO TO 4 
*** 3 POINT GAUSSIAN INTEGRATION 

-0.774596669241483D0 
0.0D0 
-GAP(1) 
0.555555555555556D0 
0.888888888888889D0 
GAW(1) 

GAP( 1 
GAP (2 
GAP (3 
GAW( 1 
GAW(2 
GAW(3 
GO TO 
*** 4 
GAP( 1 
GAP (2 
GAP (3 
GAP (4 
GAW( 1 
GAW(2 
GAW(3 
GAW(4 
GO TO 
*** 5 
GAP( 1 
GAP (2 
GAP (3 
GAP (4 
GAP (5 

GAW 
GAW 
GAW 
GAW 
GAW 

10 
POINT 
= -0 

GAUSSIAN INTEGRATION 
861136311594053DO 

-0.339981043584856DO 
-GAP(2) 
-GAP(1) 
0.347854845137454D0 
0.652145154862546D0 
GAW(2) 
GAW(1) 

10 
POINT 
= -0 

1 ) 
2) 
3) 
4) 
5) 

INITIALISES 

GAUSSIAN INTEGRATION 
906179845938664D0 

-0.538469310105683DO 
0.0D0 
-GAP(2) 
-GAP(1) 
= 0.236926885056189D0 
= 0.478628670499366D0 
= 0.568888888888889D0 
= GAW(2) 
= GAW(1) 

EN1,EM1,EM2 
DO 150 IL = 1 
DO 350 IK = 1 

EN 1 (IL , IK) •• 
EM1(IL,IK) •• 
EM2(IL,IK) : 

CONTINUE 
CONTINUE 
DO 250 I = 1 , 

EN 1(1 ,1 ) = 
EN 1(2 ,1 ) = 
EN 1(5 ,1 ) = 
EN 1(6 ,1 ) = 
EMI (3 ,1) = 
EMI (4 ,1) = 

8 . 
NGAUSS 
0.0D0 
0.0D0 
0.0D0 

NGAUSS 
(-0.75D0+0.75D0*GAP(I)**2)/DEL 
(-1.D0-2.D0*GAP(I)+3.D0*GAP(I)**2)*0.25D0 
(0.75D0-0.75D0*GAP(I)**2)/DEL 
(-1.D0+2.D0*GAP(I)+3.D0*GAP(l)**2)*0.2 5D0 
(-0.7 5DO+0.7 5DO*GAP(I)**2)/DEL 
(-1.D0-2.D0*GAP(I)+3.D0*GAP(l)**2)*0.25D0 
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EM1(7,1 
EM1(8,I 
EM2(3,1 
EM2(4,1 
EM2(7,1 
EM2(8,I 

250 CONTINUE 
RETURN 
END 

(0.75D0-0.75D0*GAP(I)**2)/DEL' 
(-1.D0+2.D0*GAP(I)+3.D0*GAP(I)**2)*0.25D0 
1.5D0*GAP(I)/(DEL**2) 
(-2.D0+6.D0*GAP(I))/(4.D0*DEL) 
-1.5D0*GAP(I)/(DEL**2) 
(2.D0+6.D0*GAP(I))/(4.D0*DEL)' 

SUBROUTINE DECOMP(NN,LHB,AA,IERROR) 
C * THIS SUBROUTINE DECOMPOSES A MATRIX USING CHOLESKY 
C METHOD FOR BANDED,SYMMETRIC,POS. DEFN. MATRICES 

IMPLICIT REAL*8(A-H,0-Y) 
DIMENSION AA(672) 

C TKO IS STORED COLUMNWISE. 
IERROR = 0 
KB = LHB-1 

C DECOMPOSITION 
IF(AA(1).LE.0.D0) IERROR=1 
IF(IERROR.EQ.1) RETURN 
AA(1) = DSQRT(AA(1)) 
IF(NN.EQ.I) RETURN 

DO 551 I =2, LHB 
551 AA(I) = AA(I)/AA(1) 

DO 590 J = 2, NN 
J1 = J-1 
IJD = LHB*J-KB 
SUM = AA(IJD) 
KO = 1 
IF(J.GT.LHB) KO=J-KB 

DO 555 K = KO, J l 
JK = KB*K+J-KB 

555 SUM = SUM-AA(JK)*AA(JK) 
IF(SUM.LE.O.DO) IERROR=1 
IF(I ERROR.EQ.1) RETURN 
AA(IJD) = DSQRT(SUM) 

DO 568 I = 1, KB 
II = J+I 
KO = 1 

IF (II.GT.LHB) KO=II-KB 
" SUM = AA(IJD+I) 

IF(I.EQ.KB) GO TO 565 
DO 540 K = KO, J1 
JK = KB*K+J-KB 
IK = KB*K+II-KB 

540 SUM = SUM-AA(IK)*AA(JK) 
565 AA(IJD+I) = SUM/AA(IJD) 
568 CONTINUE 
590 CONTINUE 

RETURN 
END 

C 
SUBROUTINE SOLVN(NN,LHB,AA,S) 

C* THIS SUBROUTINE SOLVES THE SYSTEM OF EQUATIONS USING 
C THE DECOMPOSED MATRIX FROM THE PREVIOUS SUBROUTINE 

IMPLICIT REAL*8(A-H,0-Y) 
DIMENSION AA(672),S(84) 
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C FORWARD SUBSTITUTION 
KB = LHB-1 
S(1 ) = S ( 1 )/AA( 1 ) 

IF(NN.EQ.1) GO TO 685 
DO 680 I = 2, NN 11 = 1-1 
KO = 1 

IF(I.GT.LHB) KO=I-KB 
SUM = S(I) 
II = LHB*I-KB 

DO 67 5 K = KO, 11 
IK = KB*K+I-KB 

675 SUM = SUM-AA(IK)*S(K) 
S(I) = SUM/AA(II) 

680 CONTINUE 
C BACKWARD SUBSTITUTION 
685 Nl = NN-1 

LB = LHB*NN-KB 
S(NN) = S(NN)/AA(LB) 

IF(NN.EQ.1) RETURN 
DO 699 I = 1, N1 
I 1 = NN-I + 1 
NI = NN-I 
KO = NN 

IF (I.GT.KB) KO=NI+KB 
SUM = S(NI) 

II = LHB*NI-KB 
DO 690 K = I 1, KO 
IK = KB*NI+K-KB 

690 SUM = SUM-AA(IK)*S(K) 
S(NI) = SUM/AA(II) 

699 CONTINUE 
RETURN 
END 

C 
SUBROUTINE CONVRG(XO,X,IER,NEQ,EPSLON,ITER) 

C* THIS SUBROUTINE CHECKS THE CONVERGENCE 
C OF SOLUTION VECTOR 

IMPLICIT REAL*8(A-H,0-Y) 
COMMON/C2/DIFP,NINT 
DIMENSION XO(84),X(84) 
IER = 0 
PARXO = O.0D0 
PARDIF = 0.0D0 
PARX = 0.0D0 

DO 602 1 = 1 , NEQ 
PARXO = PARXO + XO(I)**2 
PARX = PARX + X(I)**2 

602 PARDIF = PARDIF + (X(I)-XO(I))**2 
IF (NINT.EQ.1) WRITE(*,1002) PARXO, PARX, PARDIF 

1002 FORMATC NORMX0=',E13.6,'NORMX=',E13.6,'NORMDIF=',E13.6/) 
IF (ITER.EQ.0) GO TO 606 
IF (PARDIF.GE.DIFP) GO TO 605 

606 DIFP = PARDIF 
IF (PARXO.EQ.0.0DO) GO TO 603 
DIF = DSQRT(PARDIF/PARX0) 
IF (DIF.LE.EPSLON) GO TO 604 

603 IER = 1 
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RETURN 
604 RETURN 
605 IER = 2 

RETURN 
END 
SUBROUTINE TIME(TIM) 
CALL GETTIM(IH,IM,IS,IHS) 
TIM = IH*3600 + IM*60 + IS + IHS/100.0 
RETURN 
END 



SAMPLE INPUT/OUTPUT F I L E S . 



SAMPLE INPUT DATA FILE FOR AXIAL COMPRESSION 

10 5 1 10 
1 0 0.0 
-0.001 
2 
1 2 
1 3 
1 1 1 
3 
32300.0 30350.0 2.0 10.0 5.0 
9660000.0 -1.0 
3.2 0.038 0.089 

SAMPLE OUTPUT FILE 

FAILURE BETWEEN LOADS 0.l99730e+02 AND 0.201354e+02 
AVERAGE = 0.200542e+02 
EDGE STRESS (+) = 0.701410e+04 
EDGE STRESS (-) = -0.188233e+05 
MAX. DEFLECTION = 0.312672e-0l AT LOAD = 0.199730e+02 
SLENDERNESS = 3 5.96 
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SAMPLE INPUT DATA FILE FOR PURE BENDING 

8 5 10 1 
0 1 0.0 
5 1 .0 
2 
1 2 
1 3 
9 1 
3 
32300.0 30350.0 2.0 10.0 5.0 
9660000.0 -1.0 
3.2 0.038 0.089 

SAMPLE OUTPUT FILE 

FAILURE BETWEEN LOAD FACTORS 0.406250e+0l AND 0.409375e+01 
AVERAGE = 0.407813e+0l 
EDGE STRESS (+) = 0.646474e+05 
EDGE STRESS (-) = -0.643671e+05 
MAX. DEFLECTION = 0.128601e+00 AT LOAD FACTOR = 0.406250e+0l 



PROGRAM RBETA.FOR (SOURCE CODE) 



1 0 0 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

***************************************** 
* RBETA.FOR V e r s i o n 2.0 * 

(SHORTENED VERSION WITH SIZE EFFECTS CONSIDERED) * 
15 August, 1987 * 

A PROGRAM FOR THE EVALUATION OF THE REIABILITY INDEX * 
BETA OF A COLUMN (OR BEAM-COLUMN) * 

MATERIAL BEHAVIOUR IS ELASTIC IN TENSION WITH BRITTLE 
FRACTURE, AND ELASTIC IN COMPRESSION UP TO A LIMITING 
COMPRESSION STRESS, WITH A FALLING LINEAR BRANCH 
BEYOND THAT LIMIT. 

END LOAD IS APPLIED CENTRALLY. LATERAL LOADS 
CAN BE DISTRIBUTED ALONG THE LENGTH OF THE MEMBER 

THE PROGRAM FINDS THE RELIABILITY INDEX BETA FOR A * 
BEAM-COLUMN TAKING INTO ACCOUNT 5 RANDOM VARIABLES * 
WHICH CONSTITUTE THE LOAD AND MATERIAL RESISTANCES * 

PROBLEM DATA IS READ FROM UNIT #1 * 
OUTPUT IS STORED IN UNIT #2. * 

* * 
********************************************************* 

* MAXIMUM OF 10 VARIABLES * 
* MAXIMUM OF 20 ELEMENTS * 

IMPLICIT REAL*8(A-H,0-Z) 
REAL*8 INVNPR,NORMPR 
DIMENSION X(10),Y(10),U(10),DELTA(10),SIG(10) 
1 ,AVER(10),STD(10),F1X(10),F2X(10) 
2 ,SCALE(10),SHAPE(10),A(10),B(10),X0(10),XW(10) 
COMMON/CXI/GAP(5),GAW(5),EN1(8,5),EM1(8,5),EM2(8,5),NGAUSS 
COMMON/C2/F11,F21 
COMMON/C4/W,H,SPAN,PLN,GAMA1,SREF,XKC,XKT 
COMMON/CX4/NELEM,NBC(21),IX(21,4) 
REAL*8 LOC(10),MU(10),NN(10), NNN(10) 

INTEGER*2 ICODEOO) 
INTEGER*2 MXC(10), MEX(10) 

OPEN(1,FILE='DET',STATUS='OLD') 
OPEN(2,FILE='OT',STATUS='NEW') 
PI 2 = DSQRT(8.0*DATAN(1.0D0)) 
CONST=1.0D0/PI2 

C 
Q ********************************************************** 
C * DEFINE VARIABLES * 
Q ********************************************************** 

c * FCN COMPRESSIVE STRENGTH, FIFTH PERCENTILE * 
c * W WIDTH OF SECTION * 
c * H DEPTH OF SECTION * 
c * GAMA 1 RATIO OF NOMINAL DL TO LL * 
c * ALFD DEAD LOAD FACTOR * 
c * ALFL LIVE LOAD FACTOR * 
c * EMIN MODULUS OF ELASTICITY, MEAN VALUE * 
c * NELEM = NO OF ELEMENTS * 
c * NJBC NO OF JOINTS WITH B.C. * 
c * NGAUSS = NO OF INTEGRATION POINTS * 
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c * NBC(I) = NO OF B.C. AT NODE I * 
c * IX = B.C. CODE * 
c * 1 = U * 
c * 2 = UX * 
c * 3 = W * 
c * 4 = WX * 
c * N = NO OF RANDOM VARIABLES FOR TOTAL PROB. * 
c * EN1 ,EM1,EM2 = INTERPOLATION FUNCTIONS * 
c * GAP = CORDINATE AT GAUSS POINT * 
c * GAW = CORRESPONDING WEIGHT * 
c * NELEM = NO OF ELEMENTS * 
c * NGAUSS = NO OF GAUSS POINTS * 
c * NITER = MAX. NO OF ITERATIONS * 
c * TOP = TOLERANCE FOR LOAD • * 
c * EPSLON = TOLERANCE FOR SOLUTION VECTOR * 
c * FC = MATERIAL STRENGTH IN COMPRESSION * 
c * FT = MATERIAL STRENGTH IN TENSION * 
c * EO = MOE OF THE MATRIAL * 
c * EN = SLOPE OF THE STRESS-STRAIN CURVE * 
c * SPAN = MEMBER LENGTH * 
c * W = WIDTH OF SECTION * 
c * H = DEPTH OF SECTION * 
c * E = ECCENTRICITY OF AXIAL LOAD * 
c * NEQ = NO OF EQUATIONS TO BE SOLVED * 
c * NJOINT = NO OF NODES * 
c * NDOF = NO OF VARIABLES PER NODE * 
c * NODEL = NO OF NODES PER ELEMENT * 
c * SREF = REFERENCE SPAN * 
c * XKC = SIZE EFFECT SHAPE PARAMETER (COMP .) 
c * XKT = SIZE EFFECT SHAPE PARAMETER (TENS .) 
c * NDIMB = NO OF VARIABLES PER NODE * 
c * LBW,LHB = HALF BANDWIDTH INCLUD. THE DIAG. * 
c * NA = NO OF UNKNOWNS FOR TOTAL PROBLEM * 
Q ***************************** *•* *************************** 
C 

READ(1,*) FCN,W,H 
READ(1,*) GAMA1,ALFD,ALFL 
READ(1,*) EMIN,SREF,XKC,XKT 
READ(1,*) NELEM,NJBC,NGAUSS 

C 
C* READ BOUNDARY CONDITION CODES FOR THE PROBLEM 

DO 4455 1 = 1 , (NELEM+1) 
NBC(I) = 0 
DO 4433 J = 1 , 4 
IX(I,J) = 0 

443 3 CONTINUE 
4455 CONTINUE 

DO 9922 K = 1, NJBC 
READ(1,*) NJ,NBC(NJ) 
READ(1,*) (IX(NJ,JV),JV=1,NBC(NJ)) 

992 2 CONTINUE 
C 

READ(1,*) N, (ICODE(I), I = 1,N) 
READ(1,*) (MXC(I), I = 1,N) 
DO 7779 I = 1,N 
MEX(I) = 0 
IF (MXC(I).EQ.0) GO TO 7779 



GO TO 7780 
7779 CONTINUE 

GO TO 7782 
7780 WRITE(*,7784) 
7784 FORMAT(' ENTER EXPONENTS FOR DISTRIBUTION OF EXTREMES'/) 

READ(*,*) (MEX(I), 1=1,N) 
7782 CONTINUE 

READ(1,*) TOLB 
READ(1,*) NITER 

C 
C ENTER THE CODES FOR EACH VARIABLE AND THEIR PARAMETERS 
C 

DO 9 IC = 1,N 
ICD = ICODE(IC) 
GO TO(11,12,13,14),ICD 

C 
C NORMAL ( CODE=1) 
C 
11 READ(1,*) AVER(IC),STD(IC) 

GO TO 9 
C 
C LOGNORMAL (CODE=2) 
C 
12 READ(1,*) AVER(IC),STD(IC) 

GO TO 9 
C 
C WEIBULL ( CODE=3 ) 
C 
13 READ(1,*) LOC(IC),SCALE(IC),SHAPE(IC) 

GO TO 9 
C 
C GUMBEL EXTREME TYPE I ( CODE=4 ) 
C 
14 READ(1,*) B(IC),A(IC) 
C 
9 CONTINUE 
C 
C ENTER INITIAL VECTOR X AND CHECK FOR CONSISTENCY IN THE CASE 
C OF THE WEIBULL DISTRIBUTION 
C 

DO 805 I = 1, N 
1 51 READ(1,*) X(I) 

IF(ICODE(I).NE.3) GO TO 805 
IF (X(I ) .GT.LOCd ) ) GO TO 805 
WRITE(*,1270) 

1270 FORMAT (' CHANGE INITIAL VALUE TO EXCEED THE' 
1 ,/,' LOCATION PARAMETER FOR THE WEIBULL'/) 
GO TO 151 

805 CONTINUE 
C 

DO 702 I = 1 , N 
702 X0(I) = X(I) 
155 NCOUNT=0 

NBET = 0 
I ERR 1 = 0 
IERR = 0 
READ(1,*) SPAN,R 
DELT = SPAN/(2.0D0*NELEM) 
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C 
C CALC VECTORS EN1, EM1, EM2 

CALL SHAP(DELT) 
C 
C CORRECT FOR SLENDERNESS EFFECTS 

PC = W*H*FCN 
PCR = (3.14159D0**2)*EMIN*(W*H**3)/(12.D0*SPAN**2) 
CC = SPAN/H 
CA = DSQRT(0.9D0*0.74D0*EMIN/FCN) 

CK1 = 1.D0 - (1.D0/3.0D0)*((CC/CA)**4) 
CK2 = 3.14159D0**2*0.74D0*EMIN/(12.0*FCN*CC**2) 
IF (CC .GT. 10.0D0) GO TO 2080 
CK = 1.0D0 
GO TO 4080 

2080 IF (CC .GT. CA) GO TO 3080 
CK = CK1 
GO TO 4080 

3080 CK = CK2 
4080 CONTINUE 
C 
C OBTAIN NOMINAL DESIGN LOAD 

PLN = R*W*H*FCN*CK/(ALFD*GAMA1+ALFL) 
C 

WRITE(2,1080)(ICODE(I), 1=1,N) 
1080 FORMAT (' CODES : ',1015) 
C 
C START ITERATIONS: GIVEN THE VECTOR X ( l ) , COMPUTE 
C THE FAILURE FUNCTION GXP AND THE GRADIENT DELTA 
C USING THE SUBROUTINE GXPR, WHICH MUST BE PROVIDED 
C EXTERNALLY BY THE USER FOR EACH PARTICULAR CASE. 
C 
2 CONTINUE 

DO 7722 J = 1, N 
7722 XW(J) = X(J) 

CALL GXPR(XW,N,DELTA,GXP) 
C 
C CALC F1X(X), AND F2X(X) 
C 

CALL FFX(N,X,AVER,STD,F1X,F2X,ICODE,LOC,SCALE,SHAPE,A,B, 
1 IERR, MXC, MEX) 
IF(IERR.EQ.1) GO TO 65 

C 
C CALC Y-VALUES 
C 

DO 8 I = 1 , N 
Y(I) = INVNPR(F1X(I ) ) 

8 CONTINUE 
C 
C CALC SIGMA AND MU VECTORS 
C 

DO 10 I = 1 , N 
IF (F2X(I).LE.0.0D0) GO TO 68 
DSIG = DLOG(CONST) - Y(I)*Y(I)*0.5D0 - DLOG(F2X(I)) 
IF (DSIG.LT.-709.0D0) GO TO 865 

SIG(I) = DEXP(DSIG) 
GO TO 87 

865 SIG(I) = 0.0D0 
87 MU(I)=-SIG(l)*Y(I)+X(l) 



10 CONTINUE 
C 
C CALC NN 

SUM=0.0D0 
DO 55 1=1,N 

55 SUM = SUM + SIG(I)*SIG(I)*DELTA(I)*DELTA(I) 
SUM = DSQRT(SUM) 
DO 20 I = 1 ,N 
NN(I) = -SIG(I)*DELTA(I)/SUM 

20 NNN(I) = DABS(NN(I)) 
C 
C CALC BETA 

SDMU=0.0D0 
SDX = 0.0D0 
DO 25 1=1,N 
SDMU = SDMU + DELTA(I)*MU(I) 

25 SDX = SDX + DELTA(I)*X(I) 
BETA = (GXP + SDMU - SDX)/SUM 
DO 30 I = 1 ,N 

30 U(I) = BETA * NN(I) 
NCOUNT = NCOUNT+1 
IF (NCOUNT.GT.NITER) GO TO 66 
IF(NCOUNT.EQ.1) GO TO 32 
DIFFB = DABS(BETA - BETAP) 

BETAP = BETA 
NBET = 1 
DO 80 I = 1, N 
TX = SIG(I)*U(I) + MU(I) 

80 X(I) = TX 
CONFAC = (TOLB-DIFFB) 
IF (CONFAC.GT.0.0) GO TO 50 
GO TO 2 

32 BETAP = BETA 
DO 35 I = 1 ,N 

35 X(I) = SIG(I)*U(I) + MU(I) 
GO TO 2 

50 WRITE(2,51) BETA 
WRITE(2,710) NCOUNT 

710 FORMAT(5X,'ITERATIONS =*,I5) 
WRITE(2,703) TOLB 

703 FORMAT(5X,*TOLB =',F8.4) 
705 WRITE(2,1280)(X0(I) ,1=1,N) 
1280 FORMATC VECTOR XO ' , 1 0E1 3 . 5) 

WRITE(2,1300)(X(I) ,1=1,N) 
1300 FORMAT(' VECTOR X *,10E13.5) 

WRITE(2,1320)(NNN(I),1=1,N) 
1320 FORMAT(' SENSITIVITY COEFFS. ',10F8.4) 

WRITE(2,2088) SPAN,R 
2088 FORMAT(' L=',E13.6,' fp = ' , E l 3 . 6 / ) 
51 FORMAT(5X,'BETA = ',F10.3) 

GO TO 900 
65 IF (NBET.EQ.1) GO TO 880 

WRITE(2,1340) I ERR 
GO TO 900 

880 WRITE( 2,1340 ) I ERR 
GO TO 900 

68 IERR1 = 1 
IF (NBET.EQ.1) GO TO 882 



WRITE(2,1341) IERR1 
GO TO 900 

882 WRITE(2,1341 ) IERR 1 
WRITE(2,1342) BETA 
GO TO 900 

66 WRITE(2,1350)NITER 
1350 FORMAT (' NO CONVERGENCE IN *,15,' ITERATIONS') 
1340 FORMAT(' IERR =',12,' ERROR: NEGATIVE LOGNORMAL OR',/, 

1 ' WEIBULL VARIABLE LESS THAN ITS',/, 
2 ' LOCATION PARAMETER.',/, 
3 ' TRY NEW INITIAL POINT') 

1341 FORMAT(' I ERR 1 =',12,' NEGATIVE OR ZERO DENSITY F 2 X ( l ) ' , / , 
1 ' TRY NEW INITIAL POINT'/) 

1342 FORMAT(' LAST BETA WAS =', F10.3) 
900 CONTINUE 

CLOSE (UNIT=1,STATUS='KEEP') 
CLOSE (UNIT=2,STATUS=*KEEP') 
STOP 
END 

C 
SUBROUTINE FFX(N,X,AVER,STD,F1X,F2X,ICODE,LOC,SC,SK,A,B, 
1 IERR, MXC, MEX) 
IMPLICIT REAL*8(A-H,0-Z) 
REAL*8 NORMPR 
DIMENSION SC(N),SK(N),A(N),B(N),X(N),AVER(N) 
1, STD(N),F1(N),F2X(N) 
COMMON/C2/F11,F21 
INTEGER*2 ICODEOO) 

INTEGER*2 MXC(10), MEX(lO) 
REAL*8 LOC(N),MU 
PI2=(8.0*DATAN(1.0D0)) 
DO 20 I = 1 ,N 
IC = I CODEC I) 
GO TO(11,12,13,14) , IC 

C 
C NORMAL 
C 
11 RATIO = (X(I) - AVER (I) ) /STD(I) 

F1X(I) = NORMPR(RATIO) 
F2X(I)=DEXP(-0.5D0*RATIO*RATIO)/(STD(l)*DSQRT(PI 2)) 
IF (MXC(I).EQ.0) GO TO 20 
CALL EXTR (F 1X (I ) , F2X (I ) , MXC (I ) , MEX(D) 

GO TO 20 
C 
C LOGNORMAL 
C 
12 DLN = DLOGd.O + ( STD (I )/AVER (I ) ) ** 2 ) 

MU = DLOG(AVER(I)) - 0.5*DLN 
SDP = DSQRT(DLN) 
IF (X(I).LE.0.0) GO TO 99 
PARAM = (DLOG(X(I)) - MU)/SDP 
F1X(I) = NORMPR(PARAM) 
POW = DEXP(-0.5D0*PARAM*PARAM) 
F2X(I) = POW/(SDP*X(I)*DSQRT(PI2)) 

IF (MXC(I).EQ.O) GO TO 2 0 
CALL EXTR(FIXd)., F 2 X ( l ) , MXC (I ) , MEX(I)) 

GO TO 20 
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C WEIBULL 
C 
13 IF (X(I).LE•LOC(I)) GO TO 99 

POW = - ( ( X ( I ) - L O C ( l ) ) / S C ( I ) ) * * S K ( I ) 
POW = DEXP(POW) 
F1X(I) = 1.ODO - POW 
F2X(I) = ( S K ( I ) / S C ( I ) ) * ( ( X ( I ) - L O C ( l ) ) / S C ( l ) ) * * ( S K ( I ) 
1- 1.0)*POW 

GO TO 20 
. F2X(I) 

IF (MXC(I).EQ.0) 
CALL EXTR(F1X(I) 

GO TO 20 
C 
C GUMBEL EXTREME TYPE I 
C 
14 POW = - A ( I ) * ( X ( I ) -

POW = DEXP(POW) 
F1X(I) = DEXP(-POW) 
F2X(I) = A(I)*POW * 
IF (MXC(I).EQ.0) 
CALL EXTR(F1X(I) 

20 CONTINUE 
RETURN 

99 IERR=1 
RETURN 
END 

MXC(I), MEX(I)) 

B(I ) ) 

F1X(I) 
GO TO 20 
F2X(I), MXC(I), MEX(I)) 

10 

SUBROUTINE EXTR(F1,F2,NC,M) 
IMPLICIT REAL*8(A-H,0-Z) 
INTEGER*2 NC, M 
IF (NC.EQ.2) GO TO 10 
F2 = M*F2*F1**(M-1) 
F1 = F1**M 
RETURN 
F2 = M*F2*(1.0D0 - F1)**(M-1) 
F1 = 1.0D0 - (1.0D0 - F1)**M 
RETURN 
END 

E( 1 
E(2 
E(3 
E(4 
E(5 
E(6 
E(7 
E(8 
H(1 
H(2 
H(3 
H(4 
H(5 

FUNCTION NORMPR(X) 
* NORMAL PROBABILITY INTEGRAL 
IMPLICIT REAL*8(A-H,0-Z) 
REAL*8 NORMPR 
DIMENSION E(16),H(16) 
PI = 2.ODO * DSQRT(DATAN(1.0D0)) 
IF (DABS(X).GT.5.0D0) GO TO 20 

0.989400934991650EO 
0.944575023073233EO 
0.865631202387832E0 
0.755404408355003E0 
0.617876244402644E0 
0.458016777657227E0 
0.281603550779259E0 
0.095012509837637E0 
0.027152459411754E0 
0.062253523938648E0 
0.095158511682493E0 
0.124628971255534E0 
0. 1 49595988816577E0 
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H(6) = 0.169156519395003E0 
H(7) = 0.182603415044924E0 
H(8) = 0.189450610455068E0 
DO I I = 1,8 
E{ 1 7-1 ) = -E(I) 

1 H(17-I) = H(I) 
Y = X/DSQRT(2.0D0) 
S = 0.0 
DO 10 I = 1 , 16 
Z = Y * E(I) 
Z = DEXP(-Z*Z) 
S = S + Z*H(I) 

10 CONTINUE 
ERF = Y * S/PI 
NORMPR = (1.0D0 + ERF)/2.0D0 
RETURN 

20 IF (DABS(X).GT.37.5D0) GO TO 25 
S = 1.0D0 - 1.0D0/(X**2) + 3.0D0/(X**4) - 15.0D0/(X**6) 

1 + 105.0D0/(X**8) - 945.0D0/(X**10) + 10395.0D0/(X**12) 
S = S*DEXP(-X*X/2.0D0)/DABS(X) 
S = S*DSQRT(2.0D0)/PI 
IF (X.GT.0.0D0) NORMPR = 1.ODO - S/2.ODO 
IF (X.LT.0.0D0) NORMPR = S/2.ODO 
RETURN 

25 IF (X.GT.0.0D0) NORMPR = 1.ODO 
IF (X.LT.0.0D0) NORMPR = 0.ODO 
RETURN 
END 

C 
C 

FUNCTION INVNPR(Y) 
C * INVERSE NORMAL PROBABILITY * 
C 

IMPLICIT REAL*8(A-H,0-Z) 
REAL*8 INVNPR 
REAL*8 NORMPR 
PI = DSQRT(8.0D0*DATAN(1.ODO)) 
TOL = 1.OE-8 
IF (Y.EQ.0.50) GO TO 80 
XO = -PI*(0.50D0 - Y) 
X1 = XO 

5 S = NORMPR(X1) - Y 
S = S * DEXP(X1*X1/2.0D0) * PI 
X2 = X1 - S 
DIF = DABS(X2-X1) 
IF (DABS(DIF).LE.TOL) GO TO 20 
XI = X2 
GO TO 5 

80 INVNPR = 0.0 
RETURN 

20 INVNPR=X2 
RETURN 
END 

C 
SUBROUTINE COLUMN(XW,N,PAV) 
IMPLICIT REAL*8(A-H,0-Z) 
DIMENSION F(8),TK0(672),XE(8),XW(N) 
1,R(84),X0(84),X(84),B(84),B1(8,8),B2(8,8),B3(8,8),B4(8,8) 
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2, B5(8,8),B6(8,8),B7(8,8),B8(8,8),B9(8,8),Y(5),RE(8),XP(84) 
3, Q(20),IQ(20), ESTR(7), FI(7) 
C0MM0N/CX1/GAP(5),GAW(5),EN1(8,5),EM1(8,5),EM2(8,5),NGAUSS 
COMMON/CX2/DIFP,NINT 
COMMON/C3/DEFL,PDEFL 
COMMON/C 4/W,H,SPAN,PLN,GAMA1,SREF,XKC,XKT 
COMMON/CX4/NELEM,NBC(21),IX(21,4) 

c ********************************************** 
c * EN I,EM1 ,EM2 = INTERPOLATION FUNCTIONS * 
c * GAP = CORDINATE AT GAUSS POINT * 
c * GAW = CORRESPONDING WEIGHT * 
c * NELEM = NO OF ELEMENTS * 
c * NGAUSS = NO OF GAUSS POINTS * 
c * NITER = MAX. NO OF ITERATIONS * 
c * TOP = TOLERANCE FOR LOAD * 
c * EPSLON = TOLERANCE FOR SOLUTION VECTOR * 
c * FC = MATERIAL STRENGTH IN COMPRESSION * 
c * FT = MATERIAL STRENGTH IN TENSION * 
c * EO = MOE OF THE MATRIAL * 
c * EN = SLOPE OF THE STRESS-STRAIN CURVE * 
c * SPAN = MEMBER LENGTH * 
c * W = WIDTH OF SECTION * 
c * H = DEPTH OF SECTION * 
c * E = ECCENTRICITY OF AXIAL LOAD 
c * NEQ = NO OF EQUATIONS TO BE SOLVED * 
c * NJOINT = NO OF NODES * 
c * NDOF = NO OF VARIABLES PER NODE * 
c * NODEL = NO OF NODES PER ELEMENT * 
c * SREF = REFERENCE SPAN * 
c * XKC = SIZE EFFECT SHAPE PARAMETER (COMP. ) * 
c * XKT = SIZE EFFECT SHAPE PARAMETER (TENS. ) * 
c * NDIMB = NO OF VARIABLES PER NODE * 
c * LBW,LHB = HALF BANDWIDTH INCLUD. THE DIAG. * 
c * NA = NO OF UNKNOWNS FOR TOTAL PROBLEM * 
c ******************************************************** 

CONST = GAMA1 
EO = XW(1)*1000.DO 
FC = XW(2)*1000.DO 
FT = XW(3)*1000.DO 
TOP = 0.01 DO 
EPSLON = 0.001 DO 
NITER = 10 
EN = 0.02D0 
NDOF = 4 
NJOINT=NELEM+1 
NG1 = NGAUSS + 1 
NG2 = NGAUSS + 2 
NP = 1 
NQ = 0 
Q0 = 0.0D0 

IF (NQ.EQ.0) GO TO 44 
DO 43 I = 1, NQ 

43 READ(1,*) I Q ( I ) , Q (l) 
44 ECEN = -0.002D0 

IF (NP.NE.0) E=ECEN 
NEQ = NDOF*NJOINT 
NODEL = 2 
NDIMB = NODEL*NDOF 
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LBW = NDIMB 
LHB = LBW 
NA = LBW*NEQ 
AR = W*H 
XI = W*H**3/12.D0 
DEL == SPAN/(2.D0*NELEM) 

C 
C * ADJUST STRENGTHS TO THE ACTUAL VOLUME 

FC = FC *(SREF/SPAN)**(1.0/XKC) 
FT = FT *(SREF/SPAN)**(1.0/XKT) 

NINT = 0 
IF (NP.BQ.O) GO TO 761 
PC = AR*FC 
PCR = 3.14159D0**2*E0*XI/(SPAN**2) 
PI = PC 
IF(PCR .LE. PC) PI=PCR 
P2 = PI 
PI = 0.0D0 

P3 = (PI + P2)/2.0D0 
NFAIL = 0 
SMAX1 = 0.0 
GO TO 760 

761 FQ1 = 0.0D0 
FQ2 = 1.0D0 
FQ3 = FQ2 
NFLAG = 0 

760 DO 792 J = 1, NEQ 
792 XP(J) = O.ODO 
C 
C START CALCULATIONS FOR TRIAL LOAD LEVELS 
3773 CONTINUE 

P = O.ODO 
FQ = 1.0D0 
IF (NP.NE.O) P = P3 
IF (NP.EQ.O) FQ = FQ3 
IF (NINT.EQ.1.AND.NP.NE.O) WRITE(*,4000) P 
IF (NINT.EQ.1.AND.NP.EQ.O) WRITE(*,4001) FQ 

4000 FORMAT(//' SOLUTION FOR P =',E15.6,' :'/) 
4001 FORMAT(//* SOLUTION FOR LATERAL LOAD FACTOR= 1, E1 5. 6 , ':'/) 
C INITIALISE ARRAYS 

DO 80 J = 1, NEQ 
XO(J) = XP(J) 

80 R(J) = 0.D0 
C 
C EXTERNAL LOAD VECTOR R 
C RE = ELEMENT LOAD VECTOR 

IF (QO.EQ.O.ODO) GO TO 87 
DO 81 J = 1 , 8 
RE(J)=0.DO 

81 CONTINUE 
RE(3) = FQ*Q0*DEL 
RE(4) = FQ*Q0*DEL**2/3.D0 
RE(7) = RE(3) 
RE(8) = -RE(4) 

DO 83 NE=1, NELEM 
DO 82 J J = 1, 8 
K = (NE-1)*NDOF + JJ 
R(K) = R(K) + RE(JJ) 
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82 CONTINUE 
83 CONTINUE 
87 IF (NQ.EQ.O) GO TO 185 

DO 180 J = 1 , NQ 
JS = (IQ(J)-1)*NDOF + 3 

180 R(JS) = R(JS) + Q(J)*FQ 
185 EM = P*E ' 

J J = (NJOINT-1)*NDOF + 1 
R(JJ) = R(JJ)-P 
R(1) = R(1) + P 
R(4) = R(4)-EM 
R(NEQ) = R(NEQ)+EM 

ITER = 0 
C 
C BEGIN ITERATIONS AT THE TRIAL LOAD LEVEL 
777 CONTINUE 

DO 84 I = 1 , NA 
84 TKO(I) = O.ODO 

DO 85 K = 1, NEQ 
85 B(K) = -R(K) 

DO 645 IE = 1, NELEM 
C INITIALIZE ARRAYS 

DO 88 I = 1 , 8 
F(I) = O.ODO 

86 
88 

DO 86 J = 1 , I 
B l ( I , J ) = = 0 .0D0 
B2(I,J) = = 0 .0D0 
B3(I,J) = = 0 .0D0 
B4(I,J) = = 0 .0D0 
B5(I,J) = = 0 .0D0 
B6(I,J) = = 0 .0D0 
B7(I,J) = = 0 .0D0 
B8(I,J) = = 0 .0D0 
B9(I,J) = = 0 .0D0 

CONTINUE 
CONTINUE 

C PICK ELEMENT SOLUTION FROM GLOBAL VECTOR 
DO 90 J J = 1 , 8 
K = (IE - 1)*NDOF + J J 
XE(JJ) = XO(K) 

90 CONTINUE 
DO 101 K = 1, NGAUSS 
Y(K) = 0.D0 
DO 91 1=1 , 8 
Y(K) = Y(K) + XE(I)*EM1(I,K) 

91 CONTINUE 
C OBTAINING COMPONENTS OF EKT 

DO 93 I = 1 , 8 
DO 93 J = 1 , I 
B1(I,J) = B1(I,J)+E0*DEL*EN1(I,K)*Y(K)*AR* 

1 EM1(J,K)*GAW(K) 
B2(I,J) = B2(I,J)+E0*DEL*EM1(I,K)*Y(K)*AR* 

1 EN 1(J,K)*GAW(K) 
B3(I,J) = B3(I,J)+E0*DEL*EM1(I,K)*Y(K)*AR* 

1 Y(K)*EM1(J,K)*GAW(K) 
B4(I,J) = B4(I,J)+(E0*AR*DEL*EN1(I,K)*EN1(J , K ) + 

1 E0*XI*DEL*EM2(I,K)*EM2(J,K))*GAW(K) 
93 CONTINUE 
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DO 100 L = 1 , NGAUSS 
C STRESSES AND STRAINS AT GAUSS POINT 

STR = 0.5D0*Y(K)**2 
DO 96 MO = 1, 8 

STR = STR+(EN1(MO,K)-GAP(L)*H*0.5D0*EM2(MO,K))*XE(MO) 
96 CONTINUE 1 

STRE = STR+FC/EO 
FAC = 1.ODO 
IF(STRE.GE.O.DO) FAC=0.0D0 
STRESS = E0*STR-((E0+EN*E0)*STR+FC*(1.DO+EN))*FAC 
DO 99 I = 1, 8 
DO 98 J = 1 , I 

B5(I,J) = B5(I,J)+DEL*0.5D0*AR*(EN 1(I,K)-GAP(L)* 
1 H*0.5D0*EM2(I,K))*(E0+E0*EN)*FAC*(EN 1(J,K)-H*0.5D0* 
2 GAP(L)*EM2(J,K))*GAW(K)*GAW(L) 

B6(I,J) = B6(I,J)+DEL*0.5D0*AR*(EN 1(I,K)-GAP(L)* 
1 H*0.5D0*EM2(I,K))*(E0+EN*E0)*FAC*Y(K)*EM1(J,K)* 
2 GAW(K)*GAW(L) 

B7(I,J) = B7(I,J)+DEL*0.5DO*EM1(I,K)*Y(K)*AR* 
1 (E0+E0*EN)*FAC*(EN1(J,K)-H*0.5D0*GAP(L)*EM2(J,K))* 
2 GAW(K)*GAW(L) 

B8(I,J) = B8(I,J)+DEL*0.5D0*EM1(I,K)*Y(K)*AR* 
1 (E0+E0*EN)*FAC*Y(K)*EM1(J,K)*GAW(K)*GAW(L) 

B9(I,J) = B9(I,J)+AR*STRESS*EM1(I,K)*EM1(J,K)* 
1 GAW(K)*GAW(L)*DEL*0.5D0 

98 CONTINUE 
F( I ) = F(I)+AR*DEL*0.5D0*STRESS*((EN1(I,K)-H*0.5D0* 

1 GAP(L)*EM2(I,K))+Y(K)*EM1(I,K))*GAW(K)*GAW(L) 
99 CONTINUE 
100 CONTINUE 
101 CONTINUE 

C* OBTAIN ELEMENT TANGENT MATRIX 
C EKT IS THE (I,J) COMPONENT OF THE ELEMENT TANGENT MATRIX 

DO 105 I = 1, 8 
II = (IE-1)*NDOF + I 
B(II) = B(II) + F ( I ) 
DO 102 J = 1, I 
J J = (IE-1)*NDOF + J 
EKT = B1(I,J)+B2(I,J)+B3(I,J)+B4(I,J)-

1 B5(I,J)-B6(I,J)-B7(I,J)-B8(I,J)+B9(I,J) 
I J = (JJ-1)*(LBW-1) + II 
TKO(IJ) = TKO(IJ)+EKT 

102 CONTINUE 
105 CONTINUE 
645 CONTINUE 

C INTRODUCE BOUNDARY CONDITIONS 
DO 111 IJO = 1, NJOINT 
IF (NBC(IJO).EQ.0) GO TO 111 
DO 110 J = 1, NBC(IJO) 
II = ( U O -l)*NDOF + IX(UO,J) 
LBW1 = LBW - 1 
DO 108 K = 1, LBW1 
J J = II - LBW + K 
IF (JJ.LE.0) GO TO 1080 
I J = (JJ-1)*(LBW-1) + II 

TKO(IJ) = 0.0D0 
1080 J J = 11 + K 

IF (JJ.GT.NEQ) GO TO 108 



I J = {11- 1)*(LBW-1) + J J 
TKO(IJ) = O.ODO 

108 CONTINUE 
I J = (II - 1)*(LBW-1) + II 

TKO(IJ) = 1.0DO 
B(II) = O.ODO i 

110 CONTINUE 
111 CONTINUE 

C 
C SOLUTION OF THE SYSTEM 

CALL DECOMP(NEQ,LBW,TKO,IERROR) 
IF(IERROR .EQ. 1) GO TO 3774 
CALL SOLVN(NEQ,LBW,TKO,B) 
DO 112 I = 1, NEQ 
X(I) = XOU)-B(I) 

112 CONTINUE 
CALL CONVRG(XO,X,IER,NEQ,EPSLON,ITER) 
ITER = ITER + 1 
IF (ITER.EQ.NITER) GO TO 431 
IF (IER.EQ.2) GO TO 430 
IF(IER.EQ.O) GO TO 118 
DO 115 I = 1, NEQ 

115 XO(I) = X(I) 
GO TO 777 

430 IERROR = 1 
GO TO 3774 

431 WRITE(2,900) NITER, P 
900 FORMAT(' NO CONVERGENCE IN',13,' ITERATIONS AT P=',E13.6/) 

GO TO 901 
C* AFTER CONVERGENCE, OBTAIN STRESSES AND STRAINS 
C AT THE CURRENT LOAD LEVEL 
C 
118 CONTINUE 

EMAXP = O.ODO 
EMAXN = O.ODO 
SUME = O.ODO 
DO 550 IE = 1, NELEM 
DO 500 J = 1, 8 
K = (IE-1)*NDOF +J 
XE(J) = X(K) 

500 CONTINUE 
DO 540 K = 1, NGAUSS 
FACTOR = 0.0 
DO 501 I = 1, 8 

501 FACTOR = FACTOR + XE(I)*EM1(I,K) 
EPLUS = 0.5D0 * FACTOR**2 
EMINUS = EPLUS 
DO 505 I = 1, 8 
EPLUS = EPLUS + (EN 1 (I,K)-H*0.5D0*EM2(I,K))*XE(I) 
EMINUS = EMINUS + (EN 1(I,K)+H*0.5D0*EM2(I,K))*XE(I) 

505 CONTINUE 
IF(EPLUS.GT.O.ODO .AND. EMINUS.GT.0.0) GO TO 506 
IF(EPLUS.GT.O.ODO .AND. EMINUS.LE.0.0) GO TO 507 
IF(EPLUS.LE.0.0D0 .AND. EMINUS.LE.0.0) GO TO 508 
IF(EPLUS.LE.O.ODO .AND. EMINUS.GT.0.0) GO TO 509 

506 EPOS = EPLUS 
IF(EMINUS.GT.EPOS) EPOS=EMINUS 
ENEG = O.ODO 
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GO TO 530 
507 EPOS = EPLUS 

ENEG = EMINUS 
GO TO 510 

508 EPOS = O.ODO 
ENEG = EPLUS 
IF (DABS (EMINUS ) .GT.'DABS (ENEG) ) ENEG = EMINUS 
GO TO 530 

509 EPOS = EMINUS 
ENEG = EPLUS 

C 
C * FINDS THE POSITION OF THE NEUTRAL AXIS 
510 ESTR(1) = EMINUS 

F l ( 1 ) = -1.0D0 
ESTR(NG2) = EPLUS 
Fl(NG2) = 1.0D0 
DO 512 L = 1, NGAUSS 
SUM = 0.5*FACTOR**2 
DO 511 I = 1,8 

511 SUM = SUM + (EN1(I,K) - GAP(L)*H/2.0*EM2(I,K))*XE(I) 
ESTR(L+1) = SUM 
Fl(L+1) = GAP(L) 

512 CONTINUE 
DO 515 I = 1, NG1 
PROD = ESTR(I)*ESTR(I+1) 
IF (PROD.LE.O.ODO) GO TO 516 

515 CONTINUE 
516 XN = F I ( I ) - ESTR(I)*(FI(1+1)-FI(I))/(ESTR(I+1)-ESTR(l)) 

IF (ESTR(I).EQ.O.ODO) GO TO 518 
IF (ESTR(I).LT.O.ODO) HN = (1.0D0 - XN)*H/2.0D0 
IF (ESTR(I).GT.O.ODO) HN = (1.0D0 + XN)*H/2.0D0 
GO TO 520 

518 IF (ESTR(1+1).LT.O.ODO) HN = (1.0D0 + XN)*H/2.0D0 
IF (ESTR(I+1).GT.O.ODO) HN = (1.0D0 - XN)*H/2.0D0 

520 SUME = SUME + (HN/H)*(E0*EPOS)**XKT*GAW(K) 
530 IF(EPOS.LT.EMAXP) GO TO 538 

EMAXP = EPOS 
538 IF(DABS(ENEG).LT.DABS(EMAXN)) GO TO 540 

EMAXN = ENEG 
540 CONTINUE 
550 CONTINUE 

SMAXP = E0*EMAXP 
SMAXN = E0*EMAXN 
IF (DABS(SMAXN).LE.FC) GO TO 560 
SMAXN = SMAXN -((E0 + EN*E0)*EMAXN + FC*(1.0 + EN)) 

560 IF (SUME.EQ.O.ODO.OR.SMAXP.EQ.O.ODO) GO TO 563 
SUME = SUME/(2.0*NELEM*(XKT+1.0)*SMAXP**XKT) 
FTT = FT * SUME**(-1.0D0/XKT) 
GO TO 564 

563 FTT = FT 
564 IF (SMAXP.GE.FTT) GO TO 3774 

DEFL = O.ODO 
DO 565 IE = 1, NELEM 
J = (IE-1)*NDOF + 3 
IF (DABS(X(J)).GT.DABS(DEFL)) DEFL = X(J) 

565 CONTINUE 
J = NEQ - 1 
IF (DABS(X(J)).GT.DABS(DEFL)) DEFL = X(J) 
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IF (NP.EQ.O) PDEFL = FQ3 
IF (NP.NE.O) PDEFL = P3 

3774 CONTINUE 
IF (NINT.EQ.0) GO TO 8810 
IF (IERROR.EQ.1) WRITE(*,8888) 
IF (I ERROR. EQ.0.A.ND. SMAXP. LT. FTT) WRITE (*, 8889 ) SMAXP 
IF (IERROR.EQ.0.AND.SMAXP.GE.FTT) WRITE(*,8890) SMAXP 

8888 FORMAT(' IERROR = 1,FAILS (DIVERGENCE OR SINGULAR MATRIX)'/] 
8889 FORMAT(' IERROR = 0 SMAXP = *,E15.6,' SURVIVES'/) 
8890 FORMAT(' IERROR = 0 SMAXP = ',E15.6,' FAILS'/) 
8810 CONTINUE 

IF (NP.EQ.O) GO TO 4500 
IF (IERROR.EQ.1) GO TO 7330 
IF (SMAXP.GT.FTT) GO TO 7331 . 
IF (SMAXP.EQ.FTT) GO TO 7337 
PI = P3 
IF (SUME.EQ.0.ODO.OR.SMAXP.EQ.0.ODO) GO TO 5650 
SMAX1 = SMAXP*SUME**(1.0D0/XKT) 
GO TO 5655 

5650 SMAX1 = SMAXP 
5655 DO 833 J = 1, NEQ 
833 XP(J) = X(J) 

GO TO 8334 
7330 P2 = P3 

GO TO 8334 
7331 P2 = P3 

NFAIL = 1 
SMAX2 = SMAXP*SUME**(1.0D0/XKT) 

8334 IF (PI.EQ.0.ODO) GO TO 8338 
TOLP = (P2-P1)/P1 
IF (TOLP.LE.TOP) GO TO 7338 
GO TO 8336 

8338 IF (P2.LE.0.1D0) GO TO 7338 
8336 IF (NFAIL.EQ.1) GO TO 8340 

P3 = (PI + P2)/2.0 
GO TO 3773 

8340 P3 = P1 + (P2-P1)*(FT-SMAX1)/(SMAX2-SMAX1) 
GO TO 3773 

7337 P = P3 
PP = P3 
PAV = P3 
GO TO 7339 

7338 IF (PI.EQ.0.ODO) P2 = 0.ODO 
P = P2 
PP = PI 
PAV = (P+PP)/2.0 

7339 CONTINUE 
GO TO 901 

4500 IF (IERROR.EQ.1) GO TO 4330 
IF (SMAXP.GT.FTT) GO TO 4330 
IF (SMAXP.EQ.FTT) GO TO 4337 
IF (NFLAG.EQ.1) GO TO 4331 
FQ1 = FQ2 
FQ2 = 2.0D0*FQ2 
GO TO 4580 

4331 FQ1 = FQ3 
4580 DO 4833 J = 1,NEQ 
4833 XP(J) = X(J) 



GO TO 4334 
4330 NFLAG = 1 

FQ2 = FQ3 
4334 IF (FQ1.EQ.O.ODO) GO TO 5338 

TOLP = (FQ2-FQ1)/FQ1 
IF (TOLP.LE.TOP) GO TO 4338 

5338 IF (NFLAG.EQ.O) FQ3 = FQ2 
IF (NFLAG.EQ.1) FQ3 = (FQ1+FQ2)/2.0D0 
GO TO 3773 , 

4337 P = FQ3 
PP = FQ3 
PAV = FQ3 
GO TO 4339 

4338 P = FQ2 
PP = FQ1 
PAV = (P+PP)/2.0 

4339 CONTINUE 
901 RETURN 

END 
C 

SUBROUTINE SHAP(DELT) 
C* THIS SUBROUTINE CALCULATES DERIVATIVES OF SHAPE FUNCTIONS 

IMPLICIT REAL*8(A-H,0 -Z) 
C0MM0N/CX1/GAP(5),GAW(5),EN1(8,5),EM1(8,5),EM2(8,5),NGAUSS 
IF (NGAUSS.EQ.5) GO TO 5 
IF (NGAUSS.EQ.4) GO TO 4 

C *** 3 POINT GAUSSIAN INTEGRATION 
GAP(1) = -0.774596669241483D0 
GAP(2) = O.ODO 
GAP(3) = -GAP(1) 
GAW(1) = 0.555555555555556D0 
GAW(2) = 0.888888888888889D0 
GAW(3) = GAW(1) 
GO TO 10 

C *** 4 POINT GAUSSIAN INTEGRATION 
4 GAP(1) = -0.861136311594053D0 

GAP(2) = -0.339981043584856D0 
GAP(3) = -GAP(2) 
GAP(4) = -GAP(1) 
GAW(1) = 0.347854845137454D0 
GAW(2) = 0.652145154862546D0 
GAW(3) = GAW(2) 
GAW(4) = GAW(1) 
GO TO 10 

C *** 5 POINT GAUSSIAN INTEGRATION 
5 GAP(1) = -0.906179845938664DO 

GAP(2) = -0.538469310105683DO 
GAP(3) = O.ODO 
GAP(4) = -GAP(2) 
GAP(5) = -GAP(1) 
GAW(1) = 0.236926885056189D0 
GAW(2) = 0.478628670499366D0 
GAW(3) = 0.568888888888889D0* 
GAW(4) = GAW(2) 
GAW(5) = GAW(1) 

C INITIALISES EN 1 ,EM1 ,EM2 
10 DO 150 IL = 1, 8 

DO 350 IK = 1, NGAUSS 
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EN 1(IL,IK) = O.ODO 
EM1(IL,IK) = O.ODO 
EM2(IL,IK) = O.ODO 

350 CONTINUE 
150 CONTINUE 

DO 250 I = 1, NGAUSS 
ENI(1,I) = (-0.75DO+0.75DO*GAP(I)**2)/DELT 
EN1(2,I) = (-1.D0-2.D0*GAP(I)+3.D0*GAP(I)**2)*0.25D0 
EN1(5,I) = (0.75D0-0.75D0*GAP(I)**2)/DELT 
EN1(6,I) = (-1.D0+2.D0*GAP(I)+3.D0*GAP(I)**2)*0.25D0 
EMI(3,1) = (-0.75D0+0.75D0*GAP(I)**2)/DELT 
EM1(4,I) = (-1.D0-2.D0*GAP(I)+3.D0*GAP(l)**2)*0.25D0 
EM1(7,I) = (0.75D0-0.75D0*GAP(I)**2)/DELT 
EM1(8,I) = (-1.D0+2.D0*GAP(I)+3.D0*GAP(l)**2)*0.25D0 
EM2(3,I) = 1.5D0*GAP(I)/(DELT**2) 
EM2(4,I) = (~2.D0+6.D0*GAP(I))/(4.D0*DELT) 
EM2(7,I) = -1.5D0*GAP(I)/(DELT**2) 
EM2(8,I) = (2.D0+6.D0*GAP(I))/(4.D0*DELT) 

250 CONTINUE 
RETURN 
END 

C 
SUBROUTINE DECOMP(NN,LHB,AA,IERROR) 

C* THIS SUBROUTINE DECOMPOSES A MATRIX USING CHOLESKY 
C METHOD FOR BANDED,SYMMETRIC,POS. DEFN. MATRIX 

IMPLICIT REAL*8(A-H,0-Z) 
DIMENSION AA(672) 

C TKO IS STORED COLUMN - WISE. 
IERROR = 0 
KB = LHB-1 

C DECOMPOSITION 
IF(AA(1).LE.0.D0) IERROR=1 
IF(IERROR.EQ.1) RETURN 
AA(1) = DSQRT(AA(1)) 
IF(NN.EQ.I) RETURN 

DO 551 I = 2, LHB 
551 AA(I) = AA(I)/AA(1) 

DO 590 J = 2, NN 
J1 = J-1 
IJD = LHB*J-KB 
SUM = AA(IJD) 
KO = 1 
IF(J.GT.LHB) KO=J-KB 

DO 555 K = KO, J1 
JK = KB*K+J-KB 

555 SUM = SUM-AA(JK)*AA(JK) 
IF(SUM.LE.O.DO) IERROR=1 
IF(I ERROR.EQ.1) RETURN 
AA(IJD) = DSQRT(SUM) 

DO 568 I = 1, KB 
II = J + I 
KO = 1 

IF (II.GT.LHB) KO=II-KB 
SUM = AA(IJD+I) 
IF(I.EQ.KB) GO TO 565 

DO 540 K = KO, J1 
JK = KB*K+J-KB 
IK = KB*K+II-KB 



540 SUM = SUM-AA(IK)*AA(JK) 
565 AA(IJD+I) = SUM/AA(IJD) 
568 CONTINUE 
590 CONTINUE 

RETURN 
END 

C 
SUBROUTINE SOLVN(NN,LHB,AA,S) 

C* THIS SUROUTINE SOLVES CALLS A MATRIX SOLVER TO THE SYSTEM 
IMPLICIT REAL*8(A-H,0-Z) 
DIMENSION AA(672),S(84) 

C FORWARD SUBSTITUTION 
KB = LHB-1 
S(1) = S(1)/AA(1) 

IF(NN.EQ.1) GO TO 685 
DO 680 I = 2, NN 
11 = 1-1 
KO = 1 

IF(I.GT.LHB) KO=I-KB 
SUM = S(I) 
II = LHB*I-KB 

DO 675 K = KO, I 1 
IK = KB*K+I-KB 

675 SUM = SUM-AA(IK)*S(K) 
S(I) = SUM/AA(II) 

680 CONTINUE 
C BACKWARD SUBSTITUTION 
685 N1 = NN-1 

LB = LHB*NN-KB 
S(NN) = S(NN)/AA(LB) 

IF(NN.EQ.I) RETURN 
DO 699 I = 1, N1 
I 1 = NN-I + 1 
NI = NN-I 
KO = NN 

IF (I.GT.KB) KO=NI+KB 
SUM = S(NI) 

II = LHB*NI-KB 
DO 690 K = I 1, KO 
IK = KB*NI+K-KB 

690 SUM = SUM-AA(IK)*S(K) 
S(NI) = SUM/AA(II) 

699 CONTINUE 
RETURN 
END 

C 
SUBROUTINE CONVRG(XO,X,IER,NEQ,EPSLON,ITER) 

C* THIS SUBROUTINE CHECKS THE CONVERGENCE OF SOLUTION VECTOR 
IMPLICIT REAL*8(A-H,0-Z) 
COMMON/CX2/DIFP,NINT 
DIMENSION XO(84),X(84) 
IER = 0 
PARXO = O.ODO 
PARDIF = O.ODO 
PARX = O.ODO 

DO 602 I = 1, NEQ 
PARXO = PARXO + XO(I)**2 
PARX = PARX + X(I)**2 
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602 PARDIF = PARDIF + (X(I)-XO(I))**2 
IF (NINT.EQ.1) WRITE(*,1002) PARXO, PARX, PARDIF 

1002 FORMAT(' NORMX0=',E13.6,'NORMX=',E13.6,'NORMDIF=',E13.6/) 
IF (ITER.EQ.0) GO TO 606 
IF (PARDIF.GE.DIFP) GO TO 605 

606 DIFP = PARDIF 1 

IF (PARX0.EQ.0.ODO) GO TO 603 
DIF = DSQRT(PARDIF/PARX0) 
IF (DIF.LE.EPSLON) GO TO 604 

603 IER = 1 
RETURN 

604 RETURN 
605 IER = 2 

RETURN 
END 

C 
SUBROUTINE GXPR(XW,N,DELTA,GXP) 
IMPLICIT REAL*8(A-H,0-Z) 
DIMENSION XW(N),DELTA(N) 
COMMON/CX1/GAP(5),GAW(5),EN1(8,5),EM1(8,5),EM2(8,5),NGAUSS 
COMMON/C4/W,H,SPAN,PLN,GAMA1,SREF,XKC,XKT 
COMMON/CX4/NELEM,NBC(21),IX(21,4) 
CALL COLUMN(XW,N,PU) 

GXP = PU - PLN*(GAMA1*XW(N-1) + XW(N)) 
1 = 0 

6644 1 = 1 + 1 
XW(I) = XW(I)*1.01D0 
CALL COLUMN(XW,N,PU1) 
XW(I) = XW(I)*0.99D0/1.01D0 
CALL COLUMN(XW,N,PU2) 
XW(I) = XW(I)/0.99D0 
DELTA(I) = (PU1 - PU2)/(0.02D0*XW(I)) 
IF (l.GE.(N-2)) GO TO 1202 
GO TO 6644 

1202 DELTA(N-1) = -PLN*GAMA1 
DELTA(N) = -PLN 
RETURN 
END 



SAMPLE INPUT/OUTPUT FILE 
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SAMPLE INPUT DATA FILE FOR RELIABILITY ANALYSIS 

15870.0 0.038 0.089 
1.0 1 .25 U 5 
9660000.0 2.0 10.0 5.0 
4 2 3 
1 2 
1 3 
5 1 
3 
5 3 3 3 1 1 
0 0 0 0 0 
0.01 
10 
3514.0 6738.0 3.97 
0.0 33.845 7.8559 
4.03 29.861 2.9111 
1.0 0.15 
0.75 0.15 
4538.4 
7.036 
8.358 
1 .025 
0 .881 
3.2 0.6 

SAMPLE OUTPUT FILE 

CODES : 3 3 
BETA = 5.136 
ITERATIONS = 4 
TOLB = 0.0100 
VECTOR XO 
VECTOR X 
SENSITIVITY COEFFS. 
L = 3.2 </>p = 0. 6 

4693.6 7.053 8.538 1.025 0.881 
3878.8 32.302 30.358 1.3053 1.0553 
0.8282 0.0000 0.0000 0.3963 0.3963 

EXPLANATIONS 

Vector Xo : I n i t i a l ( t r i a l ) value f o r the v a r i a b l e s . 

V e ctor X : Coordinates of the most l i k e l y f a i l u r e 
point (design point) 

S e n s i t i v i t y c o e f f i c i e n t s S e n s i t i v i t y of (3 to each of 
the v a r i a b l e s . In t h i s case j3 
i s most s e n s i t i v e to X ( 1 ) , X(3, 
and X(5). I t i s not s e n s i t i v e 
to X(2) and X(3). 

S o l u t i o n corresponding to L = 3. 2m, 4>p = 0.6 


