LATERALLY LOADED WOOD COMPRESSION MEMBERS: FINITE ELEMENTAND RELIABILITY ANALYSIS byEXAUD NOE KOKA
B.Sc.Eng.(Hons).University Of DSM , TANZANIA, 1984
A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OFMASTER OF APPLIED SCIENCE
inTHE FACULTY OF GRADUATE STUDIESDepartment of Civil Engineering
We accept this thesis as conforming
to the required standard
THE UNIVERSITY OF BRITISH COLUMBIA
October 1987
© EXAUD NOE KOKA 1987

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at The University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Civil Engineering

[^0]Date: October 1987

ABSTRACT

This thesis consists of two parts. The first part describes the analysis and implementation of a finite element computer model for the general prediction of failure of wood members in bending or in combined bending and axial compression. Both instability and material strength failures are included. The program is verified using available analytical and test results. A good agreement with the results predicted by this program is observed.

The second part describes a procedure for the structural reliability evaluation of a compression member assuming random loads and material variables. The program developed here for the reliability study links the finite element program and the Rackwitz-Fiessler algorithm for the calculation of the reliability index β. The gradient of the failure function, which is a necessary input to the Rackwitz-Fiessler algorithm, is computed numerically using the finite element routine. The results of the reliability study for a typical column problem are compared against the available results obtained by following the code procedures [as outlined in CAN3-086.1-M84 (1984)] for different slenderness ratios.

A performance factor $\phi_{p}=0.75$, for compression members of any length is recommended in order to obtain a more accurate and consistent level of reliability in the design
process. It is estimated that if this factor $\phi_{\mathrm{p}}=0.75$ is adopted in the current design practices, a level of reliability index of the order of 4.0 can be achieved.

TABLE OF CONTENTS

ABSTRACT ii
LIST OF FIGURES $v i$
LIST OF TABLES viii
NOTATION ix
Acknowledgment $x i$

1. INTRODUCTION 1
1.1. Background 1
1.2. Objectives 3
1.3. Thesis Organisation 3
2. CURRENT CODE REQUIREMENTS AND PREVIOUS RESEARCH WORK 5
2.1. Introduction 5
2.2. Current Code Requirements 5
2.2.1. Concentric Compression 5
2.2.2. Combined bending and Compression 7
2.3. Previous Research on Wood compression members 8
3. FINITE ELEMENT ANALYSIS 10
3.1. Introduction 10
3.2. Assumptions 10
3.3. Stress strain relationship 11
3.4. Finite Element Approximation 17
3.4.1. Introduction 17
3.4.2. Kinematic Assumptions 17
3.4.3. Problem formulation 20
3.4.4. Interpolation Functions 22
3.4.5. Strain Displacement Relations 26
3.4.6. Virtual Work Equations 27
3.4.7. Newton-Raphson Method 28
3.4.8. Computation procedure 31
3.4.9. Numerical Integration 33
3.5. Convergence criterion for solution vector 34
3.6. Obtaining the ultimate load Pmax 35
3.7. Failure Criterion and Size effects 39
3.7.1. Size effect in compression 40
3.7.2. Size effect in tension 41
3.8. Program Structure 44
3.9. Discussion 44
4. PROGRAM VERIFICATION 46
4.1. Introduction 46
4.2. Comparison of results 46
4.2.1. Presentation of Results 47
4.3. Discussion 53
5. APPLICATIONS 55
5.1. Introduction 55
5.2. Numerical example 56
5.3. Observations 58
6. RELIABILITY ANALYSIS 59
6.1. Introduction 59
6.2. The β method for Reliability analysis 62
6.2.1. Rackwitz-Fiessler Algorithm 64
6.3. Problem Formulation 65
6.3.1. Code Design Equation 67
6.4. The G function for the problem 67
6.5. The realiability Program 69
6.6. Reliability Results 71
6.6.1. Discussion of results 75
7. Conclusions and Recommendations 76
7.1. Conclusions 76
7.2. Recommendations 77
REFERENCES 79
APPENDIX A 81

LIST OF FIGURES

1. Axial load-slenderness
relationship for concentric loading. 7
2. Stress strain assumptions for wood 13
3. Bilinear stress strain relationship for wood 14
4. Distribution of stresses and strains 15
5. Stress-strain relationship for various m. 17
6. Large deformation of a beam element 18
7. Large deformation of axis of beam element. 19
8. $i^{\text {th }}$ finite element in the x-coordinate system. 21
9. Flow chart for obtaining the solution vector $\{X\}$. 33
10. Estimating the initial failure load Pi. 36
11. Iteration process for obtaining Pmax. 38
12. Stress profile across the section. 42
13. Comparison of program (with $m=-1$) and analytical results [3]. 48
14. Axial load-Slenderness plots for the data of Table 2 , (no size effects included) 51
15(a). Axial load-Slenderness curve with size effect taken into account, $e=2 \mathrm{~mm}$. 51
15(b). Axial load-slenderness curves with varying k_{c} for a constant k_{t}. 52
15. Some loading cases and support conditions. 55
17(a). Ultimate strength interaction curves for simply supported columns subjected to uniformly distributed load. 57
17(b). Non-dimensionalized ultimate strength interaction curves of Figure $17(a)$. 58
16. Typical problem for reliability evaluation. 59
17. Probability density function
for the variable G 61
18. Definition of the reliability index β. 63
19. Reliability results as a function of ϕ_{p}; size effects not included. 74
20. Reliability results with size effect included in the reliability program. 75

LIST OF TABLES

1. Maximum deflections of a fixed ended uniformly loaded beam. ($E_{0}=10000 \mathrm{Mpa}$,
2x4-in section, $L=2 m$) 47
2. Axial load-slenderness data
for a pin-ended $2 x 4$-in beam (size effect neglected). 49

NOTATION

The following symbols are frequently used in this report

```
P = axial compressive load
NDS = National Design Specifications (USA).
\sigma = normal stress
A = cross sectional area
E
m = slope of the stress strain curve, falling branch
\epsilon = strain
u = axial deformation
w = transverse deformation
B = width of cross section
H = depth of cross section
L = Length of member
\xi, \eta = normalized coordinates
{\delta} = nodal displacement vector
M, M1, M = Shape functions for the w displacements
N, N}\mp@subsup{N}{1}{}=\mathrm{ Shape functions for the u displacements
K}\mp@subsup{T}{}{\prime}=\mathrm{ global tangent stiffness matrix
{\mp@subsup{\delta}{0}{}}=\mathrm{ Initial displacement vector}
{\Delta\delta} = incremental displacement vector
\DeltaP = load increment
{\mp@subsup{X}{0}{}}=initial solution vector
{X} = New solution vector
k
```

```
k
```

$G=$ failure function
$p_{f}=$ probability of failure
$\beta=$ reliability index
$P_{f}=$ factored compressive resistance parallel to grain
$\phi_{\mathrm{p}}=$ resistance factor in pure comression
$K_{C}=$ Slenderness factor
$d=$ dead load variable
$l=$ live load variable

Design Load Factors

$a_{D}=$ dead load factor
$a_{L}=$ live load factor
$\gamma_{1}=$ ratio of nominal dead load to nominal live load

Subscripts
$c=$ compression
$t=$ tension
$P_{D N}=$ nominal dead load
$P_{\text {LN }}=$ nominal live load
$\mathrm{f}=\mathrm{fail}$ ure

ACKNOWLEDGMENT

I wish to express my deepest gratitude to my supervisor, Professor R. O. Foschi for his invaluable advice and guidance throughout the research work and in the preparation of this thesis.

Thanks are also due to Professor B. Madsen for his advice and support. The financial support from the Commonwealth Scholarship and Fellowship Committee and some additional funding from the department of Civil Engineering of the University of British Columbia is gratefully acknowledged.

Lastly, thanks are due to those who have rendered help in this project, directly or indirectly.

1. INTRODUCTION

1.1. BACKGROUND

Wood compression members subjected to lateral loads occur very frequently, such as in building frames, bridge or roof trusses and other important engineering structures. They are usually proportioned to satisfy some limiting stress criterion set by design specifications or codes. The stresses developed at any cross section in such members consist of:

1. the axial stress caused by the compressive forces,
2. the primary bending stress due to the lateral loads, and 3. the secondary bending stress resulting from the amplification of the deflections produced by the compressive forces .

The secondary bending stress becomes particularly important for members with a high slenderness ratio and large compressive forces. The procedures for computing the secondary stresses in elastic columns are described in the literature on stability theory [1].

Although elastic analysis is used extensively in design computations, it does not give an accurate indication of the true load-carrying capacity, particularly for columns which are not very slender. Laterally loaded columns generally fail by excessive bending after the stresses in some
portions of the member exceed a maximum value. To determine the ultimate strength of such columns, it is necessary to perform a stability analysis that considers the elasto-plastic behaviour of the material. Most available design codes and specifications use the traditional approach, which consists of assuming a linear elastic material with a maximum normal stress failure criterion . Previous analytical and experimental studies on wood, as reported in the literature $[5,6,7]$, have shown that :

1. wood has a non-linear stress strain relationship in compression, e.g.bilinear elasto-plastic relationship, and
2. this material characteristic contributes significantly to the behaviour of the column, particularly at small slenderness ratios.

Furthermore,there are still some problems which remain unsolved:

1. The codes do not give guidance for calculating moments resulting from beam-column deflections.
2. An account for possibilities of ductile yielding in the compression zone or tension failure in the tension zone is not given.

1.2. OBJECTIVES

This study is aimed at achieving three main objectives, namely :

1. To develop a finite element analysis for the general prediction of the failure of a compression member under transverse loads. The analysis will take into account the non-linearities due to slenderness effects (geometric), a non-linear stress-strain relationship for the material, and estimation of failure load controlled by either tension or compression.
2. The analysis will be implemented in a computer program. The computer program will allow flexibility in accomodating various support conditions and load configurations.
3. To evaluate the reliability of wood compression members assuming random loads and material variables.

1.3. THESIS ORGANISATION

Part 2 provides a summary of current design code recommendations and previous research on wood compression members. Part 3 describes a general formulation of the finite element analysis and the computer implementation. Part 4 provides a verification of the computer program developed in Part 3, using experimental results as reported by previous researchers $[6,7]$. Part 5 presents the
application of the analysis to a laterally loaded compression member, where axial load versus transverse load interaction diagrams are developed for different slenderness ratios using a $2 x 4-i n$ SPF cross section.

Part 6 discusses the concept of reliability evaluation. Here, a computer program for the evaluation of the reliability index β of a wood compression member is constructed, using the program developed in Part 3 and the Rackwitz-Fiessler algorithm. A summary of the results obtained from this study for a specific problem is given at the end of the chapter. And lastly, Part 7 provides a general conclusion of the report and some recommendations for further research and study.

2. CURRENT CODE REQUIREMENTS AND PREVIOUS RESEARCH WORK

2.1. INTRODUCTION

The failure characteristics of a compression member depend on its slenderness. The ultimate capacity of short compression members is directly related to the strength of the material in compression. With an increase in the length of the member, a change to a buckling type of failure is observed. Thus, a lateral instability failure is characteristic of slender compression members. For a member of intermediate length, there is a transition between these two types of failure regimes, in which case the load capacity depends on both the compression strength and the stiffness of the material.

2.2. CURRENT CODE REQUIREMENTS

2.2.1. Concentric Compression

Current design codes classify compression members into short, intermediate or slender members according to their slenderness ratio C_{C}. For rectangular cross-sections,

$$
\begin{equation*}
c_{c}=\frac{L}{d} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{L}=\text { length of the member } \\
& \mathrm{d}=\text { dimension of the cross-section of the member } \\
& \text { in the direction of buckling. }
\end{aligned}
$$

Thus, Short members are considered to be those with slenderness ratios of 10 or less. They will normally fail by crushing parallel to the grain. Their design allowable load is based on the specified strength in compression parallel to grain, F_{C}, their cross sectional area A, and a performance factor ϕ_{p},

$$
\begin{equation*}
\frac{\mathrm{P}}{\mathrm{~A}} \leq \mathrm{F}_{\mathrm{C}} \phi_{\mathrm{p}} \tag{2}
\end{equation*}
$$

Slender members generally follow the Euler buckling relation and have slenderness ratios exceeding C_{k}, a number dependent on the mean elastic modulus E_{o} and the specified compression strength, F_{C}, of the column material. The number C_{k} is given by :

$$
\begin{equation*}
c_{k}=\sqrt{\frac{0.9 \mathrm{E}_{c}}{\mathrm{~F}_{\mathrm{c}}}} \tag{3}
\end{equation*}
$$

where E_{C} is called the modulus of elasticity for compression members and is equal to $0.74 \mathrm{E}_{\mathrm{o}}$. For lumber, C_{k} can vary between 20 to 25 , depending on the grade of the member under
consideration.
Intermediate members have slenderness ratios between 10 and C_{k}. They are designed using a modified compression strength which empirically interpolates between slenderness ratios of 10 and C_{k}. The above classification is illustrated in Figure 1.

Figure 1. Axial load-slenderness relationship for concentric loading.

2.2.2. Combined bending and Compression

A compression member is often subjected to bending about either one or both axes, and the combined effect of the bending and axial loading must be considered. For this type of loading, most current codes specify a simple failure criterion based on a linear interaction between the axial
load capacity of a concentrically loaded column and the moment capacity in bending alone. Therefore, this approach may be applicable as long as the wood member remains in the linear elastic range. Very little has been done so far to predict the behaviour beyond the linear range. This may be attributed, in part, to the uncertainities about the precise form of the curvilinear stress-strain relationship of wood in compression.

2.3. PREVIOUS RESEARCH ON WOOD COMPRESSION MEMBERS

Most previous studies on wood columns and beam-columns (Newlin and Trayer 1925; Wood 1950) have considered wood to be a linear elastic material which fails when a limiting compression stress is reached. Thus, Larsen and Theilgaard (1979) tested wood members with combined axial and transverse loads to verify their theory for beam-column behaviour. They used a second order linear differential equation to predict the deflections of elastic beams and beam-columns.

Bleau (1983) and Buchanan (1984), conducted an extensive joint experimental study on eccentrically loaded columns to calibrate and verify their strength models. Their models are able to predict the strength of full size lumber, using results of axial tension and compression tests on similar members. Buchanan used a mean modulus of elasticity, E_{o},
equal to 10000 Mpa to calibrate his model. Zann (1985), used Bleau's data (1983), with E_{o} equal to 10400 Mpa to calibrate his strength model. Zann's model (1985), is based on the NDS (1975) design recommendations, and takes account of biaxial account of biaxial bending. Although in both cases good agreement with the test results is reported, a question which remains unanswered is the fact that in each case a different E_{o} is used, and this E_{o} is not the one corresponding to the mean test results. Bleau (1983), reports an E_{o} of 9660 Mpa for the population tested.

The model developed in this report incorporates some of the ideas discussed by the previous researchers, and provides a more general solution to the beam-column problem. The method of formulation and the corresponding computer implementation will be discussed in Part 3 of this report.

3. FINITE ELEMENT ANALYSIS

3.1. INTRODUCTION

This chapter describes the formulation of a finite element analysis for predicting the failure of a wood member under direct axial compression and lateral loads. The theory and assumptions in this chapter will be described along with the basis of a computer program developed to implement the model.

3.2. ASSUMPTIONS

The following assumptions are made:

1. plane sections remain plane.
2. the stress-strain law for the material is known.
3. material properties are constant along the length of the member.
4. bending in only one plane is considered.
5. no torsional or out of plane deformations are considered.
6. duration of load effects are not considered.
7. Shear deformations are small, hence neglected.

3.3. STRESS STRAIN RELATIONSHIP

Various studies [4,5,8] have focussed on the stress-strain behaviour of wood in compression parallel to grain, with the aim of deriving a mathematical relationship to represent this behaviour. Recently, Malhotra and Mazur (1970), proposed a stress strain relation of the form :

$$
\begin{equation*}
\epsilon=\frac{1}{E_{o}}\left[c \sigma-(1-c) f_{c} \ln \left(1-\frac{\sigma}{E_{c}}\right)\right] \tag{4}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \epsilon=\text { strain. } \\
& \sigma=\text { stress } \\
& f_{C}=\text { maximum compression stress } \\
& E_{O}=\text { mean modulus of elasticity } \\
& C=\text { shape parameter. }
\end{aligned}
$$

For $c=0.99$, the curve described by Equation (4) is shown as A in Figure 2.

A mathematical equation for the stress strain curve for clear dry wood in compression at various grain angles was also developed by O'Halloran(1973). The equation takes the following form

$$
\begin{equation*}
\sigma=E_{0} \epsilon-A \epsilon^{n} \tag{5}
\end{equation*}
$$

Where σ, ϵ, and E_{0} are defined above and A, n are equation
constants determined by fitting the equation to a given set of experimental data. A plot of this equation is shown as curve B in Figure 2. This equation cannot be used beyond maximum strain because it may take on negative values very rapidly.

A comprehensive study on the stress-strain relationship of timber with defects, in compression parallel to grain, has been done by Glos (1978), as reported by Buchanan (1984). Based on experimental data, the curve shown as C in Figure 2 was proposed. This curve is characterised by a number of material parameters that depend on measurable wood properties, namely density, moisture content, knot ratio and the percentage of compression wood. Using this curve for modelling purposes necessarily involves the calibration of these parameters.

A simple bilinear proposal by Bazan (1980), as discussed by Buchanan (1984), appears to be the most recent one. In this proposal, it is assumed that the slope of the falling branch is a variable which can be arbitrarily taken as that value which produces maximum bending moment for any neutral axis depth. A plot of this curve is shown as D in Figure 2.

Figure 2. Stress strain assumptions for wood

The analysis in this study uses the simple bilinear curve D, with the exception that the slope of the falling branch of the stress-strain relation is considered to be a material property, in agreement with Buchanan (1984).

The curves in Figure 2 are characterised by a linear elastic and a non-linear part. Therefore the stresses can generally be expressed as

$$
\begin{equation*}
\sigma=E_{0} \epsilon+F(\epsilon) \tag{6}
\end{equation*}
$$

The stress-strain relationship adopted in this study is as shown in Figure 3 and includes linear elastic behaviour in tension, with a bilinear relationship in compression and a falling branch after maximum stress.

Figure 3. Bilinear stress strain relationship for wood

Using the above stress-strain relationship, the resulting distribution of stresses and strains in a rectangular beam is as shown in Figure 4.

Figure 4. Distribution of stresses and strains

The curve in Figure 3 can be mathematically represented by the following expressions :

For segment 1-2;

$$
\begin{equation*}
\sigma=-\left|\mathrm{f}_{\mathrm{c}}\right|-\left|\mathrm{f}_{\mathrm{c}}\right| \mathrm{m}-\mathrm{mE}_{o} \epsilon \tag{7}
\end{equation*}
$$

For segment 2-3 ;

$$
\begin{equation*}
\sigma=\mathrm{E}_{0} \epsilon \tag{8}
\end{equation*}
$$

Or, in combination,

$$
\begin{equation*}
\sigma=E_{0} \epsilon-\left[E_{0} \epsilon+\left|f_{c}\right|(1+m)+m E_{0} \epsilon\right]\left(1-\Delta\left(\epsilon+\left|\epsilon_{c}\right|\right)\right) \tag{9}
\end{equation*}
$$

where $\Delta\left(\epsilon+\left|\epsilon_{c}\right|\right)$ is the step function defined as follows :

$$
\begin{align*}
& \text { if } \epsilon \geq-\left|\epsilon_{c}\right| ; \Delta=1 \tag{10}\\
& \text { if } \epsilon \leq-\left|\epsilon_{c}\right| ; \Delta=0
\end{align*}
$$

Hence, for the case of elasto-perfectly plastic behaviour, m $=0$; and Equation (9) reduces to

$$
\begin{equation*}
\sigma=\mathrm{E}_{0} \epsilon-\left\{\mathrm{E}_{0} \epsilon+\left|\mathrm{f}_{\mathrm{C}}\right|\right\}\left(1-\Delta\left(\epsilon+\left|\epsilon_{\mathrm{C}}\right|\right)\right) \tag{11}
\end{equation*}
$$

For the elastic case, $m=-1$, and we have Equation (9) both for tension and compression. This explanation is further illustrated in Figure 5 below.

Figure 5. Stress-strain relationship for various m.

3.4. FINITE ELEMENT APPROXIMATION

3.4.1. Introduction

The finite element method is a very powerful and versatile technique presently available for the numerical solution of problems of the type considered here. The advantages of the method have been recognised and its applications extensively demonstrated particularly in steel and concrete structures, and for some wood structures such as wood floors, wood diaphragms and trusses. However, the application of the method to wood beam-column analysis has not been explored to an equivalent degree.

3.4.2. Kinematic Assumptions

As the displacements become large, a geometric non-linearity is introduced in the deformation of a beam-column. Consider a beam element undergoing large deformations but small strains. For the geometry shown in Figure 6, u and w are, respectively, axial and lateral displacements of the centreline of the beam. A and O are two points on the same plane such that O is on the beam centerline (axis) and A is at a distance z from O (positive z). Line $O A$ represents conditions before deformation, while line $O^{\prime} A^{\prime}$ represents conditions after deformation.

Assuming that plane sections remain plane, the rotation
of the cross-section is $\theta=\frac{d w}{d x}$. Figure 7 shows two points, A and B, at the same distance z from the centreline. After deformation, these points are at A^{\prime} and B^{\prime}.

Figure 6. Large deformation of a beam element

Figure 7. Large deformation of axis of beam element.

From the geometry of Figure 7 it follows that

$$
\begin{equation*}
d s^{2} \simeq d x^{2}\left[\left(1+\frac{d u_{A}}{d x}\right)^{2}+\left(\frac{d w_{A}}{d x}\right)^{2}\right] \tag{12}
\end{equation*}
$$

If the expression above is expanded binomially, and if the higher order terms are neglected, the following simplified expression is obtained.

$$
\begin{equation*}
d s=d x\left(1+\frac{d u_{A}}{d x}+\frac{1}{2}\left(\frac{d w_{A}}{d x}\right)^{2}+\ldots .\right) \tag{13}
\end{equation*}
$$

Therefore, the corresponding strain ϵ_{A} at a distance z is

$$
\begin{equation*}
\epsilon_{A}=\frac{d u_{A}}{d x}+\frac{1}{2}\left(\frac{d w_{A}}{d x}\right)^{2} \tag{14}
\end{equation*}
$$

But, from Figure 6, $u_{A}=u-z \frac{d w}{d x}$
thus,

$$
\begin{equation*}
\frac{d u_{A}}{d x}=\frac{d u}{d x}-z \frac{d^{2} w}{d x^{2}} \tag{16}
\end{equation*}
$$

Also, neglecting higher order terms,

$$
\begin{equation*}
w_{A}=w \tag{17}
\end{equation*}
$$

Thus combining Equations (14),(16) and (17), we get the strain at a height z as :

$$
\begin{equation*}
\epsilon=\frac{d u}{d x}+\frac{1}{2}\left(\frac{d w}{d x}\right)^{2}-z \frac{d^{2} w}{d x^{2}} \tag{18}
\end{equation*}
$$

3.4.3. Problem formulation

A beam element with two end nodes is used in the formulation. Let us choose a local coordinate $\xi(-1 \leq \xi \leq 1)$ in each element such as the one shown in Figure 8 below. Thus, along the x axis coordinate system each element has two end nodes, i and j separated by a length 2Δ.

Figure 8. $i^{\text {th }}$ finite element in the x-coordinate system.

Thus, the x-coordinate of any point within the element can be expressed as $x=x_{c}+\Delta \xi$. The elemental nodal degree of freedom vector is represented as in Equation (19). There are 4 degrees of freedom at each node, namely the two dispacements u and w and their respective first derivatives.

$$
\{\delta\}=\left\{\begin{array}{c}
u_{i} \tag{19}\\
\left(\frac{d u}{d x}\right)_{j} \\
w_{i} \\
\left(\frac{d w}{d x}\right)_{i} \\
\left(\frac{d u}{d x}\right)_{j} \\
\left(\frac{d w}{d x}\right)_{j}
\end{array}\right\}
$$

3.4.4. Interpolation Functions

In this study, complete cubic interpolations are used to approximate the displacements u and within an element. It is important to note that in order to satisfy compatibility conditions, the displacement u only requires a linear interpolation. However, a cubic interpolation was used to give an improved approximation of the axial stress with fewer elements.

A complete cubic interpolation requires 4 parameters to define the function. The displacements and the first derivatives at the two nodes provide sufficient parameters to fully describe a cubic polynomial function. The displacements u and w are thus given as follows:

$$
\begin{align*}
u(\xi)= & \left(\frac{1}{2}-\frac{3}{4}\left(\xi^{2}+\frac{1}{4} \xi^{3}\right) u_{i}+\frac{1}{8}\left(1-\xi-\xi^{2}+\xi^{3}\right)\left(\frac{d u}{d x}\right)_{i}\right. \tag{20}\\
& +\left(\frac{1}{2}+\frac{3}{4} \xi+\frac{1}{4} \xi^{3}\right) u_{j}+\frac{1}{8}\left(-1-\xi+\xi^{2}+\xi^{3}\right)\left(\frac{d u}{d x}\right)_{j}
\end{align*}
$$

$$
\begin{equation*}
w(\xi)=\left(\frac{1}{2}-\frac{3}{4} \xi+\frac{1}{4} \xi^{3}\right) w_{i}+\frac{1}{8}\left(1-\xi-\xi^{2}+\xi^{3}\right)\left(\frac{d w}{d x}\right)_{i} \tag{21}
\end{equation*}
$$

$$
+\left(\frac{1}{2}+\frac{3}{4} \xi+\frac{1}{4} \xi^{3}\right) w_{j}+\frac{1}{8}\left(-1-\xi+\xi^{2}+\xi^{3}\right)\left(\frac{d w}{d x}\right)_{j}
$$

where $\quad \xi=\frac{2 \mathrm{x}-2 \mathrm{x}_{\mathrm{C}}}{2 \Delta}$

In vector matrix notation, we can write

$$
\begin{gather*}
u=\{N\}^{\top}\{\delta\} ; \frac{d u}{d x}=\left\{N_{1}\right\}^{\top}\{\delta\} \tag{22}\\
w=\{M\}^{\top}\{\delta\} ; \frac{d w}{d x}=\left\{M_{1}\right\}^{\top}\{\delta\} ; \frac{d^{2} w}{d x^{2}}==\left\{M_{2}\right\}^{\top}\{\delta\}
\end{gather*}
$$

where N, N_{1}, M, M_{1} and M_{2}, are vector functions of ξ given by the following expressions:

$$
\{N\}=\left[\begin{array}{c}
\frac{1}{2}-\frac{3}{4} \xi+\frac{1}{4} \xi^{3} \tag{23}\\
\frac{\Delta}{4}\left(1-\xi-\xi^{2}+\xi^{3}\right) \\
0.0 \\
0.0 \\
\frac{\Delta}{\frac{1}{2}}+\frac{3}{4} \frac{\xi-\frac{1}{4} \xi^{3}}{\left(-1.0-\xi+\xi^{2}+\xi^{3}\right)} \\
0.0
\end{array}\right]
$$

$\left\{\mathbf{N}_{1}\right\}=$
$\left[\begin{array}{c}\frac{1}{\Delta}\left(-\frac{3}{4}+\frac{3}{4} \xi^{2}\right) \\ \frac{1}{4}\left(-1.0-2 \xi+3 \xi^{2}\right) \\ 0.0 \\ 0.0 \\ \frac{1}{\Delta}\left(\frac{3}{4}-\frac{3}{4} \xi^{2}\right) \\ \frac{1}{4}\left(-1.0+2 \xi+3 \xi^{2}\right) \\ 0.0\end{array}\right\}$
$\left\{M_{2}\right\}=$

3.4.5. Strain Displacement Relations

For a laterally loaded column problem with large deformations, the w displacements will be much larger than the axial displacements u. Thus the strain displacement terms considered are similar to those derived in Equation (18) above, where:

$$
\begin{equation*}
\epsilon=\frac{d u}{d x}-z \frac{d^{2} w}{d x^{2}}+\frac{1}{2}\left(\frac{d w}{d x}\right)^{2} \tag{28}
\end{equation*}
$$

Substituting the displacement functions into Equation (28), the results in symbolic form are

$$
\begin{equation*}
\underline{\epsilon}=[\underline{B}+\underline{B}(\delta)] \delta \tag{29}
\end{equation*}
$$

where B, represents the linear strain displacement terms, while $\underline{B}(\delta)$, which is a function of the δ parameters, includes the contribution of the non-linear strain displacement terms. Thus

$$
\begin{align*}
& \underline{B}=N_{1}{ }^{\top}-z M_{2}^{\top}, \text { where } z=\frac{h}{2} \eta \tag{30}\\
& \underline{B}(\delta)=\frac{1}{2}\{\delta\}^{\top} \underline{M}_{1} \underline{M}_{1}{ }^{\top}
\end{align*}
$$

3.4.6. Virtual Work Equations

The system of equations governing the problem is obtained via the principle of virtual work. Defining $\underline{\delta}$ as a virtual dislacement of the nodal variables, the resulting virtual strains, $\underset{\tilde{E}}{ }$, are given by

$$
\begin{equation*}
\underline{\tilde{\epsilon}}=[\underline{B}+\underline{C}(\delta)] \underline{\delta} \tag{31}
\end{equation*}
$$

where $\underline{C}(\delta)=\frac{\partial}{\partial \delta}\{\underline{B}(\delta)\}$ is a linear function of δ. Thus, if we neglect inertia forces, the virtual work equation reduces to

$$
\begin{equation*}
\int_{v} \tilde{\tilde{\epsilon}} \sigma d v=\tilde{\delta}^{\top} P \tag{32}
\end{equation*}
$$

where P is the consistent load vector, calculated using the shape functions as indicated in Equations (23), (24), (25), (26) and (27). V is the volume of the member. Substitution of the resulting equation for $\underset{\tilde{E}}{ }$ into the Equation (32) leads to the system of governing equations for an element, that is,

$$
\begin{equation*}
\int_{v}[\underline{B}+\underline{C}(\delta)]^{\top} \sigma d v=P \tag{33}
\end{equation*}
$$

Assembling the element equations in the usual finite element manner leads to the global system of equations. In order to
find the solution to the nonlinear system of Equations (33), it is convenient to introduce the vector function of δ, $\Phi(\delta)$, such that

$$
\begin{equation*}
\Phi(\delta)=\int_{v}[\underline{B}+\underline{C}(\delta)]^{\top} \sigma d v-\mathrm{P} \tag{34}
\end{equation*}
$$

The solution δ now has to satisfy $\Phi(\delta)=0$. The zeros of $\Phi(\delta)$ may be found numerically via the Newton-Raphson procedure as outlined below.

3.4.7. Newton-Raphson Method

This is a commonly used technique to solve non-linear equations. The method uses a first order approximation technique to solve non-linear equations through iteration. Thus, at $\delta+\Delta \delta$, the first order approximation for the function $\boldsymbol{\Phi}$ will be

$$
\begin{equation*}
\Phi(\delta+\Delta \delta)=\Phi(\delta)+\left[\frac{\mathrm{d} \Phi(\delta)}{\delta\{\delta\}}\right] \Delta \delta \tag{35}
\end{equation*}
$$

where $\Phi(\delta)$ is a function of the displacement vector $\{\delta\}$. The
above equation can further be simplified into

$$
\begin{align*}
\Delta \delta & =-K_{T}^{-1} \Phi(\delta) \tag{36}\\
& =\left[\frac{d\{\Phi(\delta)\}}{d\{\delta\}}\right]^{-1} \Phi(\delta) \tag{37}
\end{align*}
$$

where $\left[K_{T}\right]$ represents the tangent stiffness matrix. Differentiating the right hand side of Equation (34) by parts, we obtain a simplified expression for K_{T}. Equation (36) permits an iterative procedure to determine the vector $\{\delta\}$ starting from an initial approximation $\left\{\delta_{o}\right\}$. Thus, in general,

$$
\begin{align*}
& \delta_{i+1}=\delta_{i}-\left[K_{T}\right]^{-1} \Phi\left(\delta_{i}\right) \tag{38}\\
& \Phi\left(\delta_{i}\right)=\int_{v}\left[B_{0}+B\left(\delta_{i}\right)\right] \sigma_{i}-P \tag{39}
\end{align*}
$$

where the matrix K_{T} is obtained as shown in Equation (40), which follows.

$$
\begin{aligned}
{\left[K_{T}\right] } & =+E_{0} \int_{V} B^{T} C(\delta) d V \\
& +E_{0} \int_{V} C^{T}(\delta) B d V \\
& +E_{0} \int_{V} C^{T}(\delta) C(\delta) d V \\
& +E_{0} \int_{V} B^{T} B d V \\
& -E_{0}(1.0+m) \int_{V}\left(1.0-\Delta\left(\epsilon+\left|\epsilon_{c}\right|\right)\right) B^{T} B d V \\
& -E_{0}(1.0-m) \int_{V}\left(1.0-\Delta\left(\epsilon+\left|\epsilon_{C}\right|\right)\right) B^{T} C(\delta) d V \\
& -E_{0}(1.0-m) \int_{V}\left(1.0-\Delta\left(\epsilon+\left|\epsilon_{c}\right|\right)\right) C^{T}(\delta) B d V \\
& -E_{0}(1.0-m) \int_{V}\left(1.0-\Delta\left(\epsilon+\left|\epsilon_{C}\right|\right)\right) C^{T}(\delta) C(\delta) d V \\
& +\int_{V} M, M, \sigma d V
\end{aligned}
$$

3.4.8. Computation procedure

The Cholesky decomposition of the matrix K_{T} is utilized to determine the vector $\{\Delta \delta\}$ from Equation (38). The boundary conditions are first applied to the stiffness matrix K_{T} and to the vector $\{\Phi(\delta)\}$. The boundary condition codes for this program are as follows

$$
\begin{aligned}
& 1=u \\
& 2=\frac{d u}{d x} \\
& 3=w \\
& 4=\frac{d w}{d x}
\end{aligned}
$$

Thus, to enforce a boundary condition equal to zero, zeros are placed into the off diagonal locations for the row and column corresponding to the specified degree of freedom in [K_{T}], while a zero is placed for the same degree of freedom in the returned load vector $\{\Phi(\delta)\}$. In addition to this, a value 1 is placed into the diagonal term of the specified degree of freedom in the $\left[K_{T}\right]$ matrix. Then the matrix $\left[K_{T}\right]$ is decomposed and finally a solution $\{\Delta \delta\}$ is obtained.

Each element of the vector $\{\Delta \delta\}$ is compared against an acceptable tolerance specified by the user to determine whether a need to do more iterations is necessary in order
to refine the solution. A summary of the whole procedure is given in the flow chart in Figure 9.

Figure 9. Flow chart for obtaining the solution vector $\{X\}$.

3.4.9. Numerical Integration

Since the volume integrals in the expression for K_{T} are complicated, it is difficult to obtain closed form solutions. Hence numerical integration is used. Gaussian quadrature scheme has been applied due to its suitability in the local coordinate system varying from -1 to +1 .

According to Zienkiewicz (1979), the maximum order of the polynomial appearing in the integral determines the number of Gaussian points necessary to accurately integrate the function. Thus, the term \{B\} in Equation (40) contains a fourth order polynomial in ξ and at the same time $\{\underline{B}\}$ is squared in the expression for [K_{T}]. Therefore, the highest order polynomial term in the integrals is of order 8. Knowing that $a k$ point Gaussian scheme will integrate exactly a $(2 k-1)$ order polynomial, it follows that a 5 -point Gaussian scheme is needed in the numerical integration. Thus, the integrals over the volume V become

$$
\begin{equation*}
I_{V}=\frac{2 B H \Delta}{4} \int_{-1}^{1} d \xi \int_{-1}^{1} d \eta \ldots=\frac{2 B H \Delta}{4} \sum_{i=1}^{N} \sum_{j=1}^{N} K_{T}(i, j) w_{i} w_{j} \tag{41}
\end{equation*}
$$

where $N=5$ was chosen, and w_{i} and w_{j} are the corresponding Gaussian weights.

3.5. CONVERGENCE CRITERION FOR SOLUTION VECTOR

The convergence of the solution vector at every load step is checked by the Euclidean norm criterion. If we let d_{0} be the previous solution vector and \bar{d} be the present solution, then, as shown below,

let $\Delta x=\left|\bar{d}-\bar{d}_{o}\right|$ represent the difference between the lengths of d and d_{0}. We can then write

$$
\begin{aligned}
& \left|d_{0}\right|^{2}=x_{0}^{2}(i) \\
& |\bar{d}|^{2}=x^{2}(i)
\end{aligned}
$$

where $X_{o}(i)$ and $X(i)$ are the components of d_{0} and d, respectively.

Then,

$$
\begin{equation*}
\Delta x=\sqrt{\sum\left(x(i)-x_{0}(i)\right)^{2}} \tag{42}
\end{equation*}
$$

The convergence criterion based on the Euclidean norm is defined as

$$
\begin{equation*}
\frac{\Delta x}{\left|d_{0}\right|} \leq \text { specified tolerance } \tag{43}
\end{equation*}
$$

3.6. OBTAINING THE ULTIMATE LOAD PMAX

The failure load Pmax is obtained by an iterative procedure. For fast convergence to the solution Pmax, the following approach for estimating an initial guess for the failure load is chosen. First of all, the crushing strength P_{c} as well as the Euler buckling load Pcr of the member are computed. Regardless of the support conditions and member length, the ultimate load will be less than the smallest value between P_{c} and Pcr and will lie within the shaded region of Figure 10.

Figure 10. Estimating the initial failure load Pi.

The minimum of P_{c} and Pcr is then taken to be the initial failure load P_{i}. As a first step, we let the solution lie between two load values, namely $\mathrm{P} 1=0$ and $\mathrm{P} 2=\mathrm{P}_{\mathrm{i}}$. The average load $P 3=(P 1+P 2) / 2$ becomes the first trial load. The finite element solution is obtained for $P=P 3$. If failure occurs, it means that the solution is between the values $P=P 1$ and $P=P 3$. Therefore we set the minimum and the maximum loads for next iteration as $P 1=P 1$ and $P 2=P 3$. A new P3 $=$ $(P 1+P 2) / 2$ is calculated and the finite element program re-run. If the member survives, it means that the solution
is now between the values $P=P 3$ and $P=P 2$. Therefore, we set the minimum and the maximum loads for next iteration as $P 1=P 3$ and $P 2=P 2$. This process is repeated several times until an acceptable tolerance is reached between two successive estimates of Pmax. If this tolerance is defined as TOLP, the iterations are stopped when

$$
\mathrm{TOP}=\frac{\mathrm{P} 2-\mathrm{P} 3}{\mathrm{P} 3} \leq \mathrm{TOLP}
$$

The process is summarized in the flow chart of Figure 11, where TOLP is the allowable tolerance normally set by the user.

Figure 11. Iteration process for obtaining Pmax.

3.7. FAILURE CRITERION AND SIZE EFFECTS

Due to the brittle fracture phenomenon which is commonly observed in wood members, it may be important that the associated size effects be incorporated in the analysis. In a brittle material, a decrease in member strength is normally observed as a result of a corresponding increase in member size. If no size effects are considered, the failure criterion is

$$
\begin{equation*}
\sigma_{\max }=F_{t} \tag{44}
\end{equation*}
$$

where $\sigma_{\max }$ is the maximum tensile stress in the member. This criterion, although simple, does not result in different strengths between pure tension and pure bending. Such differences are accountable through the incorporation of size effects.

Weibull's theory of brittle fracture will be applied to incorporate the size effect phenomenon. Thus, for a member of volume V, failure is related to the integral

$$
\begin{equation*}
I=\int \sigma^{k} d v \tag{45}
\end{equation*}
$$

with a corresponding failure criterion given by

$$
\begin{equation*}
I=\left(\sigma^{*}\right)^{k} \tag{46}
\end{equation*}
$$

where

$$
\begin{aligned}
& \sigma=\text { stresses in the member, } \\
& \sigma^{*}=\text { strength of a unit volume under } \\
& \text { uniform stress, } \\
& k=\text { size effect factor, } \\
& V=\text { volume of the stresses domain. }
\end{aligned}
$$

3.7.1. Size effect in compression

The parameter $\left|f_{c}\right|$ is the failure stress in pure compression (buckling restrained). This may be considered
subject to size effects, according to

$$
\begin{align*}
& f_{c}^{k_{c}}{ }^{V}=\left(F_{c}^{*}\right)^{k} c_{c} \tag{47}\\
& f_{c}=\frac{F_{c}^{*}}{V^{1 / k_{c}}} \tag{48}
\end{align*}
$$

where

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{C}}{ }^{*}=\text { failure stress in pure compression } \\
& \text { for a unit volume, } \\
& \mathrm{k}_{\mathrm{C}}=\text { size effect parameter in compression, } \\
& \mathrm{V}=\text { total volume of the domain under } \\
& \text { compression that is, the entire member. }
\end{aligned}
$$

3.7.2. Size effect in tension

Let F_{T} be the strength in pure tension. Then, from Equations (44) and (45) we have at any probability level:

$$
\begin{equation*}
\int_{V_{T}}^{k^{t}} d v=F_{T}^{k_{T}}{ }^{\mathrm{t}_{\mathrm{V}}} \tag{49}
\end{equation*}
$$

where k_{t} is the size effect factor in tension, V is the total volume and V_{T} is the domain of the tensile stresses. In the context of the analysis presented here, consider a finite element i and the local ξ-coordinate system, as shown in Figure 12. The stresses within the element are assumed to follow the stress strain relationship as indicated Figure 4.

Let us introduce a local coordinate $\eta(0 \leq \eta \leq 1)$ such that y $=\eta h$. The tensile stresses will be linear in y, or $\sigma=\eta \sigma_{\mathrm{T}}$, where σ_{T} is the maximum stress at the edge $y=h$.

Figure 12. Stress profile across the section.

Equation (49) can then be expressed as

$$
\begin{equation*}
\sum_{i=1}^{N} B H \Delta \int_{-1}^{1} d \xi \int_{0}^{1} d \eta \sigma^{k} t \frac{h(\xi)}{H}=F_{T}^{k} t_{V} \tag{50}
\end{equation*}
$$

where N is the number of elements. Since $\sigma=\sigma_{T}(\xi) \eta$,

$$
\begin{equation*}
\int_{-1}^{1} \frac{h(\xi)}{H} \sigma_{T}^{k_{t}}(\xi) \quad d \xi \int_{0}^{1} \eta^{k_{t}} \mathrm{~d} \eta=\frac{1}{k_{t}+1} \int_{-1}^{\mathrm{l}} \frac{\mathrm{~h}(\xi)}{\mathrm{H}} \sigma_{\mathrm{T}}^{\mathrm{k}_{\mathrm{t}}}(\xi) \mathrm{d} \xi \tag{51}
\end{equation*}
$$

then, Equation (50) becomes

$$
\frac{1}{2 N\left(k_{t}+1\right)} \sum_{i=1}^{N} \int_{-1}^{1} \frac{h(\xi)}{H} \sigma_{T}^{k_{t}}(\xi) d \xi=F_{T}^{k_{t}}
$$

or, finally,

$$
\begin{equation*}
F_{T}^{k_{t}}=\frac{\left(\sigma_{T} \max \right)^{k} t}{2\left(k_{t}+1\right) N} \sum_{i=1}^{N} \int_{-1}^{\bar{l}} \frac{h(\xi)}{H}\left(\frac{\sigma_{T}(\xi)}{\sigma_{T} \max }\right)^{k_{t}} d \xi \tag{52}
\end{equation*}
$$

The location of the neutral axis, $h(\xi)$, where the stresses σ change sign, can be obtained by interpolation of the stress field.

The implementation of the procedure in the finite element computer program follows the equations as derived above. A summary of the steps follow below.

1. $\sigma_{\mathrm{T}}(\xi)$ is determined at all points ξ and for all elements;
2. obtain the largest of the $\sigma_{T}(\xi), \sigma_{T} \max$ to normalize the
stresses.
3. obtain $h(\xi)$ for any cross section. A section fully in compression will result in $h(\xi)=0$.
4. Integrate over each element and add, according to Equation (52).
5. Compare the $\sigma_{T} \max$ with the maximum stress possible according to the failure criterion of Equation (52).

3.8. PROGRAM STRUCTURE

The computer program consists of a number of subroutines which read the structure's geometry and load data, carry out numerical integration, decompose matrices, solves system of equations and checks the convergence of the solution vector. The program enables the user to analyize beams, columns or beam-columns of various configurations. A time subroutine has been provided to give the amount of computer time used to solve each specific problem. This time is calculated in cpu seconds. A listing of the program has been provided in Appendix A.

3.9. DISCUSSION

The analysis developed here offers numerous possibilities. The material behaviour law can be modified to study different materials or the effect of several parameters in a single material. Also the dimensions of a
member cross-section, the eccentricity of axial load, laterally acting loads and support conditions can be varied. In the following chapter, the model will be verified by considering some problems for which there are available experimental or theoretical results.

The computer program developed here does not take into account torsional or out of plane deformations. Also creep effects were not included in the analysis. It is also anticipated that there could be a significant variation of modulus of elasticity E_{o} along the length of the member. However, without loss of generality, and in the presence of reliable experimental data, the program can be easily modified to accommodate such variations in E_{0}. The approximation for the stress-strain relationship used is suitable for small and intermediate levels of strain, but obviously can not be extrapolated to very large strains.

4. PROGRAM VERIFICATION

4.1. INTRODUCTION

In this chapter, the finite element computer program developed in the previous chapter is verified with reference to

1. theoretical results from the theory of elastic beam-columns, and
2. the results of an extensive experimental program on a large number of timber members in structural sizes [as reported by Bleau (1983) and Buchanan (1984)].

The test material was SPF lumber, purchased in 16 ft . (4.88 m) lengths as 'Number 2 and Better' grade in Quebec, Canada. The program is verified using the mean test results, namely modulus of elasticity $\mathrm{E}_{\mathrm{o}}=9660 \mathrm{Mpa}$, compressive strength f_{c} $=32.3 \mathrm{Mpa}$ and tensile strength $\mathrm{f}_{\mathrm{t}}=30.35 \mathrm{Mpa}$.

4.2. COMPARISON OF RESULTS

The first comparison considers analytical results [3] and the computer program's elastic predictions using $m=-1$, where m is the slope of the falling branch of the stress-strain curve in compression. The second comparison presents plots and tables of axial load versus slenderness ratio to compare the mean maximum load from tests with what the present analysis predicts for several end eccentricities
e. No size effects are considered. The third comparison is similar to the second one, except that in this case the size effect phenomenon is taken into consideration, and the effect of varying k_{c} for a chosen k_{t} is evaluated.

4.2.1. Presentation of Results

Table 1 shows a comparison of linear and non-linear theoretical results [3] and computer predictions for a uniformly loaded fixed ended beam. The data of Table 1 is plotted in Figure 13.

Qo	Wmax [m]		
$[\mathrm{kn} / \mathrm{m}]$	[Timoshenko]	[program]	[linear]
00.000	0.00000	0.00000	0.00000
06.885	0.01291	0.01266	0.01285
13.771	0.02447	0.02437	0.02570
20.656	0.03516	0.03469	0.03855
27.541	0.04406	0.04371	0.05140
34.426	0.05162	0.05159	0.06426
41.312	0.05874	0.05859	0.07711
48.197	0.06497	0.06485	0.08996
55.082	0.07076	0.07053	0.10281

Table 1. Maximum deflections of a fixed ended uniformly loaded beam. ($E_{0}=10000 \mathrm{Mpa}, 2 \times 4-\mathrm{in}$ section, $L=2 \mathrm{~m}$)

Δ Linear, - Timoshenko, \times program

$$
2 \times 4-\text { in SPF }
$$

Figure 13. Comparison of program (with $m=-1$) and analytical results [3].

Table 2 shows a comparison of failure loads as obtained by the computer program to test results for different eccentricities e. A graphical plot of the data in this table is shown in Figure 14 , with no size effects considered. Similar results with size effects included are shown in Figures $15(\mathrm{a})$ and $15(\mathrm{~b})$.

	COMPUTER RESULTS		TEST	RESULTS
	$\mathrm{e}=2 \mathrm{~mm}$	$\mathrm{e}=39 \mathrm{~mm}$	$e=2 \mathrm{~mm}$	$\mathrm{e}=39 \mathrm{~mm}$
C_{C}	Pmax [Kn]		Pmax[Kn]	
3.37	100.953	41.327		
5.10	100.111	40.066	104.35	48.21
6.74	98.008	38.593		
8.99	95.064	36.490		
11.24	90.437	34.177		
14.61	80.131	30.601	69.02	32.68
16.85	70.022	28.175		
19.10	60.125	25.676		
20.22	55.170	24.442	48.75	24.71
21.35	50.897	23.376		
24.72	40.024	20.356		
25.80	36.934	19.410	34.98	--
28.10	31.793	17.759		
32.60	24.220	14.829		
35.96	20.054	13.194	20.52	14.11
40.45	15.974	11.258		

Table 2. Axial load-slenderness data for a pin-ended $2 x 4$-in beam (size effect neglected).

Data Input :
2×4-in SPF section
mean E_{o}, f_{c}, f_{t}

Figure 14. Axial load-Slenderness plots for the data of
Table 2,(no size effect).

Figure 15(a). Axial load-Slenderness curve with size effect taken into account, $e=2 \mathrm{~mm}$.

Input Data:

$$
\begin{aligned}
& \text { mean } E_{o}, f_{c} \text { and } f_{t} \\
& k_{c}=20.0 \text { and } k_{t}=5.0
\end{aligned}
$$

Figure 15(b). Axial load-slenderness curves with varying k_{c} for a constant k_{t}.

$$
\begin{aligned}
& 0-\text { Tests, } \quad 1-k_{c}=5 \\
& 2-k_{c}=10, \quad 3-k_{c}=20 \\
& 4-k_{c}=100, \quad 5-k_{c}=150
\end{aligned}
$$

4.3. DISCUSSION

The results as presented in this chapter, show that there is a relatively good agreement between the test and the predictions by the computer program, the agreement being a very good one for members with a high slenderness ratio. For compression members in the intermediate range, the program predictions are slightly higher than the test results. For very short members the program predictions are slightly below. Several explanations can be put forward to explain these discrepancies. The most obvious one is that the stress-strain curve used for this study may not be a true representation of the actual behaviour. Nevertheless, since this feature may be changed in the analysis, the finite element technique developed here remains a powerful and general tool to study the behaviour and design considerations of timber columns and beam-columns. Application of this computer program to wood beam-columns will be disccussed in the following chapter.

As shown in Figure $15(\mathrm{a})$, when $\mathrm{k}_{\mathrm{c}}=20.0$ and $\mathrm{k}_{\mathrm{t}}=5.0$ are taken as input into the program, the results are slightly improved with respect to the ones where no size effect was considered. Also, it is noted that size effects in compression have little significance for very slender members, while these size effects play a major role in very short and intermediate members. The reason for this is that
for short members, the volume subjected to tension is small or non-existent. For slender members, the failure is controlled by the modulus of elasticity and member instability. When k_{c} is very large, the results obtained are the same as the ones in Table 2, meaning that there is no size effect for large k_{c}. It appears from Figure $15(b)$ that $k_{c}=20.0$ gives a best fit to the test results.

5. APPLICATIONS

5.1. INTRODUCTION

The application of the program to solve wood beam-columns will be discussed in this chapter. This program can handle multiple spans with different load and support configurations. Among them are the ones shown in figure 16.

Figure16. Some loading cases and support conditions.

The members are assumed to be prismatic. The desired responses can usually be represented as load versus centre deflection curve or any other convenient way for a
particular lateral load Qo. Once the complete curves are obtained, the maximum loads can be easily determined from the peak of the curves. The computer program developed in this study provides an easier approach to the above process in that one gets the maximum load directly by supplying the program with the appropriate information. In all cases of Figure 16, the lateral loads Q or $Q 0$ cause bending moments about the major axis of the cross-section. It is further assumed that weak axis buckling and lateral - torsional buckling are effectively prevented so that failure is always caused by excessive bending in the plane of the applied lateral load. In performing the numerical procedure, it is assumed that the lateral load Qo is applied first and maintained at a constant value as the axial compressive load P increases or decreases.

5.2. NUMERICAL EXAMPLE

As a numerical example, case (c) in Figure 16 has been considered in this study, using a $2 \times 4-i n$ SPF section and mean values for E_{0}, f_{c} and f_{t}. Also $k_{t}=5.0, m=0.02$ and $k_{c}=10.0$ has been used in obtaining the P versus Qo results as shown in Figures $17(\mathrm{a})$ and $17(\mathrm{~b})$.
 Figure 17(a). Ultimate strength interaction curves for simply supported columns subjected to uniformly distributed load.

Figure $17(b)$ Non-dimensionalized ultimate strength interaction curves of Figure $17(\mathrm{a})$.

5.3. OBSERVATIONS

From Figures $17(\mathrm{a})$ and $17(\mathrm{~b})$, it can be noticed that P-Qo relationships predicted by the computer model are not a linear one as it is normally assumed in the current design practice for different slenderness ratios. Additional research is needed here in order to come up with a simplified design procedure for wood beam-columns.

6. RELIABILITY ANALYSIS

6.1. INTRODUCTION

This chapter describes the procedure for the structural reliability analysis of a wood compression member. The problem to be studied is as shown in Figure 18; where P represents the applied axial compressive load (for only dead and live loads). L represents the length of the member while H and B represents the height and breadth of the cross section.

Figure 18. Typical problem for reliability evaluation.

The reliability of a member simply means the probability that it will perform as intended in a prescribed situation. It is influenced by the demands on the structure and the capacity of the structure to respond to those demands. In general, one can define a performance or failure function G to characterize the state of the structure in relation to some performance criterion. This function G can be expressed
as

$$
G=C-D
$$

where

$$
\begin{aligned}
& C=\text { structural capacity } \\
& D=\text { demands on the structure }
\end{aligned}
$$

The function G as defined above is positive whenever the capacity exceeds the demand, therefore the structure meets the performance criterion. On the other hand, the function G will be negative whenever the demands exceed the capacity, resulting in the structure not meeting the required performance. When the function G is exactly equal to zero, the structure is on the threshold between meeting and failing to meet the performance criterion, and such a state is defined as "limit state".

The probability of failure p_{f} is the compliment of the reliability . Thus

$$
p_{f}=1.0-\text { reliability }
$$

According to the definition of G above, the probability of failure is then given as

$$
\mathrm{p}_{\mathrm{f}}=\text { Probability }(\mathrm{G}<0)
$$

Each design problem will contain a set of intervening variables, and depending on the nature of the problem, some of the variables may be random, obeying some distribution function. Thus, if some of the basic variables are random, it is obvious that G will be itself a random variable. The probability distribution for G could be derived from a knowledge of the individual probability distributions for the basic variables, and the result would be as shown in Figure 19.

Figure 19. Probability density function for the variable G.

The probability of failure p_{f} will be the area under the curve to the left of the origin $G=0$. If this probability
of failure p_{f} exceeds some desired value, one or more of the design variables would be changed and p_{f} recalculated until it meets the required target. The probability distribution for G could be obtained by analytical means using multiple integrations and the joint probability distributions between the basic variables. This is a very tedious and difficult approach.

MonteCarlo simulation can be used to obtain the probability of failure in an approximate manner. In this approach the value of G is computed for a large number of combinations of the basic variables and p_{f} is estimated from the proportion of times the G was negative. The selection of values for the basic variables must obey their joint probability distributions, and when more than two variables are involved, the procedure becomes difficult, tedious and expensive. In the following section, an approximate and fast procedure for estimating p_{f} will be discussed.

6.2. THE β METHOD FOR RELIABILITY ANALYSIS

In order to estimate the probability of failure p_{f} with sufficient accuracy but without resorting to complicated integrations or computer simulations, Hasofer and Lind [1974] introduced the concept of reliability index β using geometric approach. Thus, for a design problem containing N uncorrelated random variables $X_{i}, i=1, \ldots, N$, with mean \bar{X}_{i}
and standard deviation σ_{i}, a set of "normalised " variables x_{i} is introduced. These variables have zero mean and standard deviation equal to 1.0 , and are given as

$$
\begin{equation*}
x_{i}=\frac{x_{i}-\bar{x}_{i}}{\sigma_{i}} \tag{53}
\end{equation*}
$$

The failure function can now be expressed in terms of the new, normalised variables x_{i} as shown schematicaly in the figure below, in which the horizontal plane represents the space of the variables x and the vertical axis the function G.

Figure 20. Definition of the reliability index β.

Hasofer and Lind showed that the reliability index β can be intepreted as the minimum distance between the origin 0
and the limit state G_{0}. This is a geometric problem which can be solved by successive iterations using, for example, Hasofer and Lind's proposed algorithm. Knowing β, the probability of failure is obtained from

$$
\begin{equation*}
p_{f}=\Phi(-\beta) \tag{54}
\end{equation*}
$$

where Φ is the standardised normal probability function. For p_{f} to be exact, we require that all the basic variables be normally distributed and G be linear in the basic variables. Figure 20 shows the case when the mean point belongs to the "safe domain" $G>0$. The combinations of x_{i} which correspond to $G=0$ (the limit state) are represented by the curve G_{0}.

6.2.1. Rackwitz-Fiessler Algorithm

This is in actual fact the modification of the Hasofer and Lind Algorithm in order to improve the estimation of the probability of failure. The modification refers to the case when the basic variables are non-normal. Rackwitz and Fiessler [1978], suggested a transformation of the original random variables X_{i} into a set of normalised uncorrelated standard variables z_{i} using the following transformation

$$
\begin{equation*}
z_{i}=\Phi^{-1}\left[F\left(X_{i}\right)\right] \tag{55}
\end{equation*}
$$

where Φ is the standard normal probability distribution function and $F\left(X_{i}\right)$ is the cumulative distribution function for the variable X_{i}. The standard algorithm from Hasofer and Lind is then used for the new variable z_{i}. This modification improves the prediction of p_{f} because it meets one of the two conditions mentioned earlier namely, that all variables be normally distributed. This algorithm is presently the accepted norm for the evaluation of the reliability index β.

6.3. PROBLEM FORMULATION

To illustrate the applicability of the theory discussed above to normal practice, let us consider the column problem of Figure 18. The cross sectional dimensions of the column are B for width and H for depth. The length of the column is represented as L. It is assumed simply supported under an axial compressive load P (for both dead and live loads). The demand on the structure is the applied load P. Thus,

$$
D=P=P_{D}+P_{L}
$$

where

$$
\begin{aligned}
& D=\text { demand } \\
& P_{D}=\text { dead load } \\
& P_{I}=\text { live load }
\end{aligned}
$$

$$
\begin{equation*}
d=\frac{P_{D}}{P_{D N}} \tag{56}
\end{equation*}
$$

$$
\begin{equation*}
l=\frac{\mathrm{P}_{\mathrm{L}}}{\mathrm{P}_{\mathrm{LN}}} \tag{57}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{LN}}=\text { nominal (design) live load } \\
& \mathrm{P}_{\mathrm{DN}}=\text { nominal (design) dead load }
\end{aligned}
$$

Then

$$
\begin{equation*}
D=P_{L N}\left[\gamma_{1} d+l\right] \tag{58}
\end{equation*}
$$

where d and l are considered to be random variables. The factor γ_{1} is a constant defined as $\gamma_{1}=\frac{P_{D N}}{P_{L N}}$ or the ratio of nominal dead load to nominal live load. ${ }^{\text {LN }}$ The capacity C is the maximum load, Pmax, the member can carry; thus

$$
\begin{equation*}
C=P \max =P\left\{E_{0}, f c, f t, B, H, L, m\right\} \tag{59}
\end{equation*}
$$

and the failure function can be expressed as

$$
\begin{align*}
& G=C-D \\
& G=\text { Pmax }-P \tag{60}
\end{align*}
$$

where

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{c}}=\text { strength in compression } \\
& \mathrm{f}_{\mathrm{t}}=\text { strength in tension. } \\
& \mathrm{m}=\text { slope of stress-strain curve in compression. }
\end{aligned}
$$

The problem can now be studied using the Rackwitz-Fiessler algorithm and the finite element computer program developed
in part 3 of this thesis. However, it is convenient for the purpose of future code development to modify Equation above to bring in the design equation format adopted for the code.

6.3.1. Code Design Equation

For members subjected to pure axial compression, the Canadian Code, CAN3-086.1-M84 (1984) specifies the following desing equation.

$$
\begin{equation*}
a_{D} P_{D N}+a_{L} P_{L N} \leq \phi_{\mathrm{D}} A F_{C} K_{C} \tag{61}
\end{equation*}
$$

where
$\phi_{\mathrm{P}}=$ performance factor in compression.
$A=$ cross sectional area of member.
$K_{C}=$ slenderness factor
$F_{C}=$ Fifth percentile compression strength
$\left(a_{D}, a_{L}\right)=$ load factors $(1.25$ and
1.5 respectively).

6.4. THE G FUNCTION FOR THE PROBLEM

Considering the limiting case of Equation (61), we obtain the following equation:

$$
\begin{equation*}
\mathrm{P}_{\mathrm{LN}}\left[a_{\mathrm{D}} \gamma_{1}+a_{\mathrm{L}}\right]=\phi_{\mathrm{P}} A \mathrm{~F}_{\mathrm{C}} \mathrm{~K}_{\mathrm{C}} \tag{62}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{L N}=\frac{\phi_{\mathrm{D}} A F c K c}{a_{D} \gamma_{1}+a_{L}} \tag{63}
\end{equation*}
$$

Combining Equations (60), (62) and (63), we can express the failure function as

$$
\mathrm{G}=\operatorname{Pmax}-\frac{\phi_{\mathrm{D}} \mathrm{AFcKc}}{a_{\mathrm{D}} \gamma_{1}+a_{\mathrm{L}}}\left[\gamma_{1} \mathrm{~d}+l\right]
$$

or

$$
G=P\left\{E_{o}, f_{c}, E_{t}, B, H, L, m\right\}-\frac{\phi_{D} A F c K c}{a_{D} \gamma_{1}+a_{L}}\left[\gamma_{1} d+l\right] \text { (64) }
$$

For the purpose of this study, the following variables have been considered random

$$
\begin{aligned}
& \text { modulus of elasticity } E_{o} \\
& \text { compressive strength } f_{c} \\
& \text { tensile strength } f_{t} \\
& \text { dead load variable } d \\
& \text { live load variable } l
\end{aligned}
$$

and the following have been considered to be constants with mean average values
height of cross section H

```
breadth of cross section B
length of member L
slope m.
```


6.5. THE REALIABILITY PROGRAM

The computer program which implements the derivation above is attached in Appendix A. As part of the input, the program requests the number of random variables (in this case 5), the type of their distribution (according to a distribution code), and the relevant parameter information to characterize the distributions. The program can accept the following distributions

Code	Distribution
1	Normal
2	Lognormal
3	Weibull
4	Gumbel
5	Ranked Data

The fixed parameters $\gamma_{1}, \phi_{\mathrm{D}}, a_{\mathrm{D}}$ and a_{L} are provided by the user for each particular problem. The subroutine GXPR computes the function G and its gradient by calling the finite element subprogram. The GXPR routine returns the value of G and the gradient vector DELTA. For the column problem discussed in this thesis the elements of the gradient vector corresponding to the first 3 random
variables were obtained numerically, while the remaining two were obtained by differentiating the failure function explicitly. Thus, the total elements of the gradient vector considering only five random variables are obtained as

$$
\begin{aligned}
& \operatorname{Delta}(1)=\frac{G\left(E_{o}^{+}\right)-G\left(E_{o}^{-}\right)}{2 \Delta E_{o}} \\
& \operatorname{Delta}(2)=\frac{G\left(f_{c}^{+}\right)-G\left(f_{c}^{-}\right)}{2 \Delta f_{c}} \\
& \operatorname{Delta}(3)=\frac{G\left(f_{t}^{+}\right)-G\left(f_{t}^{-}\right)}{2 \Delta f_{t}} \\
& \operatorname{Delta}(4)=\frac{\phi_{\mathrm{D}} A F c K c}{a_{D} \gamma_{1}+a_{L} \gamma_{1}} \\
& \operatorname{Delta}(5)=-\frac{\phi_{\mathrm{D}} A F c K c}{a_{D} \gamma_{1}+a_{L}}
\end{aligned}
$$

The fixed parameters are passed onto the routines GXPR and COLUMN through a COMMON block.

6.6. RELIABILITY RESULTS

Keeping the ratio $\gamma_{1}=1.0, m=0.02$ and using a 2×4-in SPF section, the factor ϕ_{p} was changed and the corresponding reliability index β was computed for columns of different slenderness ratios. Figure 21 shows the results for the reliability index β as a function of the performance factor ϕ_{p} for the case of no size effect considered in the program. Figure 22 shows reliability results with size effects included in the computer program. In obtaining the results for the two cases studied, the following information has been used for the random variables.

$$
\begin{aligned}
& \text { (1) } E_{o}: 3 \text {-parameter Weibull. } \\
& \text { Scale }=6738.0 \mathrm{Mpa} \\
& \text { Location }=3514.0 \mathrm{Mpa} \\
& \text { Shape }=3.97 \\
& \text { Mean }=9660.0 \mathrm{Mpa} \\
& \text { (2) } f_{c}: 3 \text {-parameter Weibull } \\
& \text { Scale }=33.845 \mathrm{Mpa} \\
& \text { Location }=0.0 \\
& \text { Shape }=7.8559 \mathrm{Mpa} \\
& \text { Fifth percentile }=15.87 \mathrm{Mpa} \\
& \text { (3) } f_{t}: 3 \text {-parameter Weibull }
\end{aligned}
$$

Scale $=29.861 \mathrm{Mpa}$
Location $=4.03 \mathrm{Mpa}$
Shape $=2.911 \mathrm{Mpa}$
(4) $d=$ dead load variable : Normal

Mean $=1.0$
Standard deviation $=0.15$
(5) $l=$ live load variable $:$ normal

Mean $=0.75$
Standard deviation $=0.15$

Figure 21. Reliability results as a function of ϕ_{p}; no size effect.

■ $1=3.2 \mathrm{~m}$
$+\quad \mathrm{L}=1.8 \mathrm{~m}$
$L=.7 \mathrm{~m}$
Δ
$\stackrel{\rightharpoonup}{\omega}$

Figure 22. Reliability results with size effect included in

6.6.1. Discussion of results

From the results of Figure 21 it is noted that for a performance factor $\phi_{p}=0.75$, a reliability index β of the order $\beta=4.0$ is achieved for all slenderness ratios considered. Figure 22 shows a small increase of the reliability index for the same performance factor ϕ_{p}. Considering the two cases, a performance factor $\phi_{p}=0.75$ can be taken as a reasonable value to be included in the current design practices for columns of any length.

The procedure outlined in this chapter for the reliability analysis of columns does not take into account the duration of load effect over the length of the servive life of the column. A reliability study for beams taking into account the duration of load effect is currently been done in the Department of Civil Engineering of the University of British Columbia. It will be of interest for further research, to integrate the model developed here to this study.

7. CONCLUSIONS AND RECOMMENDATIONS

7.1. CONCLUSIONS

From the results of part one of this study, it is seen that the finite element analysis, including large deformations and non-linear material properties, can model wood column behaviour satisfactorily. The model does require accurate and reliable input information on modulus of elasticity, compressive and tensile strengths. The results including size effects show that for the size effect parameters $k_{c}=20.0$ and $k_{t}=5.0$, the computer predictions for the maximum load Pmax agree fairly well with test results. However, k_{c} does have significance influence for short and intermediate columns, and should be known with some accuracy.

For the reliability results in part two of this study, it is observed that the current performance factors ϕ_{p}, as given in CAN3-086.1-M84 (1984), are more conservative than what this model predicts. A value of $\phi_{p}=0.75$ appears to be a reasonable one for all slenderness ratios. It is estimated that if this new value of ϕ_{p} is adopted in the current design practice, it will give rise to a reliability index β of the order of 4.0. If a lower β is required, a different ϕ_{p} should be introduced for short and intermediate columns. This points to a deficiency in the "column formula" giving
the slenderness adjustment factor K_{c}. Idealy, this factor should reflect the changes due to slenderness in such a way that the same $\phi_{p}-\beta$ relationship be obtained for all column lengths.

7.2. RECOMMENDATIONS

It is recommended that a performance factor $\phi_{p}=0.75$ be used in the current design practice for all slenderness ratios. However, prior to adopting this recommendation, there is need to do more research in this area. In particular, the research should cover duration of load effects, and the case of correlated variables; neither of which has been included in the analysis. The application of the Rackwitz-Fiessler algorithm requires all the variables involved to be uncorrelated. However, in some practical cases some or more of the intervening variables will be correlated. For example, in the context of the problems discussed in this report, the strength of beams, columns or beam-columns under combined axial and lateral loads will depend on the modulus of elasticity E_{o}, the compression strength f_{c} and the tensile strength f_{t}. For lumber, these variables are partially correlated and this must be dealt with, using for example the procedures available in the literature [12], before using the Rackwitz-Fiesler algorithm.

There is not enough data available at present on size effects in both tension and compression, hence further practical as well as theoretical study is necessary in order to come up with a realistic design recommendation applicable to lumber of all grades and species.

REFERENCES

1. Chen,W.F., and Astuta,T., 1976, Theory of Beam Columns, Vol. II, Space Behaviour and Design, McGraw-Hill Book Company, New York, 732p.
2. Zienkiewicz,0., 1971, The Finite Element method in Engineering Science. McGraw-Hill Book Company, London, England.
3. Timoshenko S., and Woinowsky-Krieger S., 1959, Theory of plates and shells. McGraw-Hill Book Company, New York., pp. 396-428.
4. Malhotra, S.K., and Mazur, S.J., 1970, Buckling Strength of solid timber Columns, Engrg.J. 13(A-4), I-VII.
5. Larsen,H.J., and Thielgaard, E. (1979)., Laterally loaded timber columns, J. Struct. Div., ASCE, 105(7) 1347-1363.
6. Bleau, R., (1983). Etude de Resistance des Colonnes en bois de Qualite Commerciale, "Thesis presented to the University of Shebrooke at Quebec, in partial fulfilment of the requirements for the degree of Doctor of Philosophy".
7. Buchanan, A. H., Strength Model and design methods for
bending and axial load interaction in timber members., "Thesis presented to the University of British Columbia, at Vancouver, B.C., in partial fulfilment of the requirements for the degree of Doctor of Philosophy".
8. Zann, J.J., (1985)., Strength of lumber under combined bending and compression., "USDA Forest Service Research paper FPL 391., Washington, D.C".
9. Hasofer, A.M., and Lind, N.C., 1974., "Exact and Invariant Second Moment Coe Format", Journal of Engineering Mechanics Division, ASCE, Vol. 100, No. EM1, pp. 111-121.
10. Rackwitz, R., and Fiessler, B. 1978. "Structural Reliability Under Combined Load Sequences", Computers and Structures , Vol. 9, pp. 489-494.
11. Foschi, R.O., 1979., "A discussion on the application of the safety index concept to wood structures", Canadian Journal of Civil Engineering, Vol. 6, No. 1, pp. 51-58.
12. Der Kiureghian, A., 1986., "Structural Reliability Under Incomplete Probability Information", Journal of Engineering Mechanics, ASCE, Vol. 112, No. 1, pp. 85-104.
A P P E N D I X A
13. Program COLUMN.FOR (source code) 82
14. Sample Input/Output Files 96
15. Program RBETA.FOR (source code) 99
16. Sample Input/Output File 119
17. PROGRAM COLUMN.FOR
```
* COLUMN.FOR Version 2.0 *
    2 August, 1987
                                *
                                    *
    A PROGRAM FOR THE CALCULATION OF THE ULTIMATE LOAD ON A *
                        COLUMN (OR BEAM-COLUMN)
        MATERIAL BEHAVIOUR IS ELASTIC IN TENSION WITH BRITTLE
        FRACTURE, AND ELASTIC IN COMPRESSION UP TO A LIMITING
    COMPRESSION STRESS, WITH A FALLING LINEAR BRANCH BEYOND
    THAT LIMIT.: SIZE EFFECTS ARE CONSIDERED BOTH IN TENSION
    AND COMPRESSION.
    END LOAD IS A COMPRESSION LOAD.
    END LOAD CAN BE APPLIED ECCENTRICALLY. LATERAL LOADS *
    CAN BE DISTRIBUTED OR CONCENTRATED.
    THE PROGRAM FINDS THE ULTIMATE END LOAD CORRESPONDING *
    TO A GIVEN END ECCENTRICITY AND GIVEN LATERAL LOADS. *
    THE PROGRAM CAN ALSO FIND THE ULTIMATE LATERAL LOAD *
    WHEN THE END LOAD IS SPECIFIED TO BE ZERO (NP = 0). *
    PROBLEM DATA IS READ FROM UNIT #1. *
    OUTPUT IS STORED IN UNIT #2. *
    PROGRAM WRITTEN BY E. KOKA AND R.O. FOSCHI, UBC. *
*
*************************************************************
```

 IMPLICIT REAL*8(A-H, O-y)
 CHARACTER* 20 NAMED \(1, N A M E A 1, N A N S\)
 DIMENSION IX (21, 4), F (8), NBC (21), TKO (672), XE (8)
 \(1, R(84), \mathrm{XO}(84), \mathrm{X}(84), \mathrm{B}(84), \mathrm{B}(8,8), \mathrm{B} 2(8,8), \mathrm{B}(8,8), \mathrm{B}(8,8)\)
 \(2, \mathrm{B5}(8,8), \mathrm{B} 6(8,8), \mathrm{B} 7(8,8), \mathrm{B} 8(8,8), \mathrm{B}(8,8), \mathrm{Y}(5), \operatorname{RE}(8), \mathrm{XP}(84)\)
 3,Q(20),IQ(20), ESTR(7), FI(7)
 COMMON/C1/GAP(5),GAW(5),EN1(8,5),EM1(8,5),EM2(8,5), NGAUSS
 COMMON/C2/DIFP, NINT
 COMMON/C3/DEFL, PDEFL

* NELEM $=$ NO OF ELEMENTS *
* NJBC $=$ NO OF JOINTS WITH B.C.
NO OF B.C. AT NODE I
B.C. CODE
U
UX
* *
WX *
INTERPOLATION FUNCTIONS FOR u *
EM1,EM2 $=$ INTERPOLATION FUNCTIONS FOR w *
GAP $=$ CORDINATE AT GAUSS POINT
* GAW $=$ CORRESPONDING WEIGHT
*
* NGAUSS $=$ NO OF GAUSS POINTS *
* NITER = MAX. NO OF ITERATIONS *
* TOP $=$ TOLERANCE FOR LOAD STEP *
* EPSLON = TOLERANCE FOR SOLUTION VECTOR *
* FC = MATERIAL STRENGTH IN COMPRESSION *

```
C * FT = MATERIAL STRENGTH IN TENSION *
C * EO MOE OF THE MATRIAL (RANDOM) *
C * EN = SLOPE OF THE STRESS-STRAIN CURVE IN COMPR. *
C * SPAN = MEMBER LENGTH *
C * W WIDTH OF SECTION *
C * = DEPTH OF SECTION *
C * = ECCENTRICITY OF AXIAL LOAD *
C * NEQ = NO OF EQUATIONS TO BE SOLVED *
C * NJOINT = NO OF NODES *
C * NDOF = NO OF VARIABLES PER NODE *
C * NODEL = NO OF NODES PER ELEMENT *
C * NDIMB = NO OF VARIABLES PER NODE *
C * LBW,LHB = HALF BANDWIDTH INCLUD. THE DIAG. *
C * NA = NO OF UNKNOWNS FOR TOTAL PROBLEM *
C = ELEMENTAL LOAD VECTOR *
C * R = STRUCTURE LOAD VECTOR *
C * B GLOBAL LOAD VECTOR RETURNED *
C * TKO = GLOBAL TANGENT MATRIX *
C * XE ELEMENT DISPLACEMENT VECTOR *
C * X GLOBAL SOLUTION VECTOR *
C * B1,..B9 = ARRAYS FOR TEMPORARY STORAGE *
C ***********************************************************
    6 FORMAT ,6)
    FORMAT(' ENTER DATA FILE NAME '/)
    READ(*,8) NAMED1
    WRITE(* , 7)
    FORMAT(' ENTER OUTPUT FILE NAME '/)
    READ(*,8) NAMEA1
    FORMAT(A)
        OPEN (1,FILE = NAMED1,STATUS='OLD')
        OPEN (2,FILE = NAMEA1,STATUS='NEW')
        READ(1,*) NELEM, NGAUSS
        NDOF = 4
        NJOINT = NELEM+1
        NG1 = NGAUSS + 1
        NG2 = NGAUSS + 2
        READ (1,*) NP,NQ,QO
        IF (NQ.EQ.O) GO TO 44
    DO 43I = 1,NQ
    READ (1,*) IQ(I), Q(I)
        E = 0.0D0
        IF (NP.NE.0) READ(1,*) E
        DO.65 I = 1, NJOINT
        NBC(I)=0
    READ (1,*) NJBC
    DO 75 I = 1, NJBC
        READ (1,*) N, NBC(N)
        READ (1,*) (IX(N,J),J=1,NBC(N))
        CONTINUE
        NEQ = NDOF*NJOINT
        NODEL = 2
    C
C * READS MATERIAL STRENGTH IN COMPRESSION (FC) AND TENSION (FT),
        BOTH CORRESPONDING TO THE SPECIFIED CROSS-SECTION AND THE
        REFERENCE SPAN SREF. XKC AND XKT ARE THE WEIBULL SIZE EFFECT
        SHAPE PARAMETERS IN COMPRESSION AND TENSION RESPECTIVELY.
    READ(1,*) FC,FT,SREF,XKC, XKT
```

```
    NDIMB = NODEL*NDOF
        LBW = NDIMB
        LHB = LBW
        NA = LBW*NEQ
C READ MOE AND SLOPE m OF CURVE
        READ(1,*) E0,EN
C READ PROBLEM SIZE L, B, H
    READ(1,*) SPAN,W,H
        AR = W*H
        XI = W*H**3/12.D0
        DEL = SPAN/(2.DO*NELEM)
        SLAMDA = SPAN/H
        * ADJUST STRENGTHS TO THE ACTUAL VOLUME
        FC = FC *(SREF/SPAN )**(1.0/XKC)
        FT = FT *(SREF/SPAN)**(1.0/XKT)
C OBTAIN SHAPE FUNCTIONS AND DERIVATIVES : N1,M1,M2
        Call Shape(DEL)
        WRITE(*,79)
        FORMAT(' TOLERANCE FOR PMAX ? '/)
        READ(*,*) TOP
        WRITE(*,790)
        FORMAT(' TOLERANCE FOR CONVERGENCE? '/)
        READ(*,*) EPSLON
        WRITE(*,791)
791 FORMAT(' MAX. NUMBER OF ITERATIONS? '/)
        READ(*,*) NITER
        WRITE(*,799)
799 FORMAT(' WANT TO SEE INTERMEDIATE RESULTS? (Y/N)'/)
        READ(*,8) NANS
        NINT = 0
        IF (NANS.EQ.'Y'.OR.NANS.EQ.'Y') NINT = 1
        IF (NP.EQ.0) GO TO }76
        PC = AR*FC
        PCR = 3.14159D0**2*EO*XI/(SPAN**2)
        PI = PC
        IF(PCR .LE. PC) PI=PCR
        P2 = PI
        P1 = 0.0D0
        P3 = (P1 + P2)/2.0D0
        NFAIL = 0
        SMAX1 = 0.0
        GO TO 760
        FQ1 = 0.0D0
        FQ2 = 1.0D0
        FQ3 = FQ2
        NFLAG = 0
760 DO 792 J = 1, NEQ
792 XP(J) = 0.0D0
C START CALCULATIONS FOR TRIAL LOAD LEVELS
    CALL TIME(ZIM)
    2IM0 = 2IM
3773 CONTINUE
        P}=0.0\textrm{DO
        FQ = 1.0DO
        IF (NP.NE.0) P = P3
        IF (NP.EQ.0) FQ = FQ3
        IF (NINT.EQ.1.AND.NP.NE.0) WRITE(*,4000) P
```

 \(\mathrm{JS}=(\mathrm{IQ}(\mathrm{J})-1) *\) NDOF +3
 \(R(J S)=R(J S)+Q(J) * F Q\)
 \(\mathrm{EM}=\mathrm{P} * \mathrm{E}\)
 \(J J=(\) NJOINT-1)*NDOF +1
 \(R(J J)=R(J J)-P\)
 \(R(1)=R(1)+P\)
 \(R(4)=R(4)-E M\)
 \(R(N E Q)=R(N E Q)+E M\)
 \(1 T E R=0\)
 c
C BEGIN ITERATIONS AT THE TRIAL LOAD LEVEL
777 CONTINUE
DO $84 \mathrm{I}=1$, NA
84 TKO(I) $=0.0 \mathrm{DO}$
DO $85 \mathrm{~K}=1$, NEQ
$B(K)=-R(K)$
DO $645 \mathrm{IE}=1$, NELEM
C INITIALIZE ARRAYS
DO 88 I $=1$, 8
$F(I)=0.0 D 0$
DO $86 \mathrm{~J}=1$, I
$\mathrm{B} 1(\mathrm{I}, \mathrm{J})=0.0 \mathrm{DO}$
$\mathrm{B} 2(\mathrm{I}, \mathrm{J})=0.0 \mathrm{DO}$
B3(I,J) $=0.0 \mathrm{DO}$
$\mathrm{B4}(\mathrm{I}, \mathrm{J})=0.0 \mathrm{DO}$
$\mathrm{B5}(\mathrm{I}, \mathrm{J})=0.0 \mathrm{DO}$
$\mathrm{B6}(\mathrm{I}, \mathrm{J})=0.0 \mathrm{D} 0$
B7(I, J) $=0.0 \mathrm{DO}$
$\mathrm{B8}(\mathrm{I}, \mathrm{J})=0.000$
B9(I,J) $=0.0 \mathrm{DO}$
86
CONTINUE
88 CONTINUE
C PICK ELEMENT SOLUTION FROM GLOBAL VECTOR
DO $90 \mathrm{JJ}=1,8$
$K=(I E-1) *$ NDOF $+J J$
$\mathrm{XE}(\mathrm{JJ})=\mathrm{XO}(\mathrm{K})$
CONTINUE
DO $101 \mathrm{~K}=1$, NGAUSS
$Y(K)=0 . D 0$
DO $91 I=1,8$
$Y(K)=Y(K)+X E(I) * E M I(I, K)$
CONTINUE
OBTAINING COMPONENTS OF EKT
DO 93 I = 1, 8
DO $93 \mathrm{~J}=1$, I
B1 $(I, J)=B 1(I, J)+E 0 * D E L * E N 1(I, K) * Y(K) * A R *$
1 EM1 (J, K)*GAW(K)
$B 2(I, J)=B 2(I, J)+E 0 * D E L * E M 1(I, K) * Y(K) * A R *$
1 EN1 (J,K)*GAW(K)
B3(I,J) = B3(I, J) +E0*DEL*EM1 (I,K)*Y(K)*AR*
$1 \quad ¥(K) * E M 1(J, K) * G A W(K)$
$B 4(I, J)=B 4(I, J)+(E 0 * A R * D E L * E N 1(I, K) * E N 1(J, K)+$
1 E0*XI*DEL*EM2(I,K)*EM2(J,K))*GAW(K)
CONTINUE
DO 100 L $=1$, NGAUSS
STRESSES AND STRAINS AT GAUSS POINT
STR $=0.500 * Y(K) * * 2$
DO 96 MO $=1$, 8
$\operatorname{STR}=\operatorname{STR}+\left(E N 1(\mathrm{MO}, \mathrm{K})-\operatorname{GAP}(\mathrm{L}) * \mathrm{H}^{2} 0.5 \mathrm{DO} \mathrm{EM}_{2}(\mathrm{MO}, \mathrm{K})\right) * \mathrm{XE}(\mathrm{MO})$
CONTINUE
STRE = STR+FC/EO
FAC $=1.0 \mathrm{DO}$
IF (STRE.GE.O.DO) FAC=0.ODO
STRESS $=E 0 * S T R-((E 0+E N * E 0) * S T R+F C *(1 . D 0+E N)) * F A C$
DO $99 \mathrm{I}=1$, 8
DO $98 \mathrm{~J}=1$, I
$B 5(I, J)=B 5(I, J)+D E L * 0.5 D 0 * A R *(E N 1(I, K)-G A P(L) *$
$1 \mathrm{H} * 0.5 \mathrm{DO} E \mathrm{EM} 2(\mathrm{I}, \mathrm{K})) *(E 0+E 0 * E N) * F A C *(E N 1(J, K)-H * 0.5 D 0 *$
$2 \operatorname{GAP}(\mathrm{~L}) * \operatorname{EM} 2(\mathrm{~J}, \mathrm{~K})) * \operatorname{GAW}(\mathrm{~K}) * \operatorname{GAW}(\mathrm{~L})$
$B 6(I, J)=B 6(I, J)+D E L * 0.5 D 0 * A R *(E N 1(I, K)-G A P(L) *$
1 H*0.5D0*EM2 (I, K)) * (E0+EN*EO)*FAC*Y(K)*EM1(J,K)*
$2 \operatorname{GAW}(\mathrm{~K}) * \mathrm{GAW}(\mathrm{L})$
$B 7(I, J)=B 7(I, J)+D E L * 0.5 D 0 * E M 1(I, K) * Y(K) * A R *$
1 (E0 +EO*EN)*FAC* (EN1 (J,K)-H*0.5D0*GAP(L)*EM2 (J, K))*
2 GAW (K)*GAW(L)
B8(I,J) $=B 8(I, J)+D E L * 0.5 D 0 * E M 1(I, K) * Y(K) * A R *$
1 (E0+EO*EN)*FAC*Y(K)*EM1 (J,K)*GAW(K)*GAW(L)
$B 9(I, J)=B 9(I, J)+A R * S T R E S S * E M 1(I, K) * E M 1(J, K) *$
$1 \operatorname{GAW}(K) * \operatorname{GAW}(L) * D E L * 0.5 D 0$
CONTINUE
$F(I)=F(I)+A R * D E L * 0.5 D 0 * S T R E S S *((E N 1(I, K)-H * 0.5 D 0 *$
$1 \operatorname{GAP}(\mathrm{~L}) * \operatorname{EM} 2(\mathrm{I}, \mathrm{K}))+\mathrm{Y}(\mathrm{K}) * \operatorname{EM} 1(\mathrm{I}, \mathrm{K})) * \operatorname{GAW}(\mathrm{~K}) * \operatorname{GAW}(\mathrm{~L})$
CONTINUE
continue
CONTINUE
OBTAIN ELEMENT TANGENT MATRIX
EKT IS THE (I, J) COMPONENT OF THE ELEMENT TANGENT MATRIX
DO $105 \mathrm{I}=1,8$
II $=(I E-1) * N D O F+I$
$B(I I)=B(I I)+F(I)$
DO $102 \mathrm{~J}=1, \mathrm{I}$
$J J=(I E-1) \star$ NDOF $+J$

```
    EKT= B1(I,J)+B2(I,J)+B3(I,J)+B4(I,J)-
    1 B5(I,J)-B6(I,J)-B7(I,J)-B8(I,J)+B9(I,J)
    IJ = (JJ-1)* (LBW-1) + II
    TKO(IJ) = TKO(IJ) +EKT
    CONTINUE
    CONTINUE
    CONTINUE
    INTRODUCE BOUNDARY CONDITIONS
    DO 111 IJO = 1, NJOINT
    IF (NBC(IJO).EQ.O) GO TO 111
    DO 110 J = 1, NBC(IJO)
    II = (IJO - 1)*NDOF + IX(IJO,J)
    LBW1 = LBW - 1
    DO 108 K = 1, LBW1
        JJ = II - LBW + K
        IF (JJ.LE.O) GO TO 1080
        IJ = (JJ-1)* (LBW-1) + II
    TKO(IJ) = 0.0DO
        JJ = II + K
        IF (JJ.GT.NEQ) GO TO 108
        IJ = (II-1)*(LBW-1) +JJ
        TKO(IJ) = 0.0DO
    CONTINUE
        IJ = (II - 1)* (LBW-1) + II
        TKO(IJ) = 1.0DO
        B(II) = 0.0DO
    CONTINUE
    CONTINUE
    SOLUTION OF THE SYSTEM
    CALL DECOMP(NEQ,LBW,TKO,IERROR)
    IF(IERROR .EQ. 1) GO TO 3774
    CALL SOLVN(NEQ,LBW,TKO,B)
    DO 112.I = 1, NEQ
    X(I) = XO(I)-B(I)
112 CONTINUE
    CALL CONVRG(XO,X,IER,NEQ,EPSLON,ITER)
    ITER = ITER + 1
    IF (ITER.EQ.NITER) GO TO 431
    IF (IER.EQ.2) GO TO 430
    IF(IER.EQ.O) GO TO 118:
    DO 115 I = 1, NEQ
    XO(I) = X(I)
    GO TO }77
    IERROR = 1
    GO TO 3774
431 WRITE(2,900) NITER, P
900 FORMAT(' NO CONVERGENCE IN',I 3,'ITERATIONS AT P=',E13.6/)
    GO TO 901
C
C AFTER CONVERGENCE, OBTAIN STRESSES AND STRAINS AT
C THE CURRENT LOAD LEVEL
118 CONTINUE
    EMAXP = 0.0DO
    EMAXN = O.ODO
    SUME = 0.0DO
```

```
        DO 550 IE = 1, NELEM
        DO 500 J = 1, 8
        K=(IE-1)*NDOF +J
        XE(J) = X(K)
        CONTINUE
        DO 540 K = 1, NGAUSS
        FACTOR = 0.0
        DO 501 I = 1, 8
        FACTOR = FACTOR + XE(I)*EMI(I,K)
        EPLUS = 0.5DO * FACTOR**2
        EMINUS = EPLUS
        DO 505 I = 1,8
    EPLUS = EPLUS + (EN1(I,K)-H*0.5DO*EM2(I,K))*XE(I)
    EMINUS = EMINUS + (EN1(I,K)+H*O.5DO*EM2(I,K))*XE (I)
    CONTINUE
    IF(EPLUS.GT.0.ODO .AND. EMINUS.GT.0.0) GO TO 506
    IE(EPLUS.GT.O.ODO .AND. EMINUS.LE.0.0) GO TO 507
    IF(EPLUS.LE.O.ODO .AND. EMINUS.LE.O.0) GO TO 508
    IE(EPLUS.LE.O.ODO .AND. EMINUS.GT.O.0) GO TO 509
    EPOS = EPLUS
    IF(EMINUS.GT.EPOS) EPOS=EMINUS
    ENEG = 0.0DO
    GO TO 530
    EPOS = EPLUS
    ENEG = EMINUS
    GO TO 510
    EPOS = 0.0DO
    ENEG = EPLUS
    IF (DABS(EMINUS).GT.DABS(ENEG)) ENEG = EMINUS
    GO TO 530
    EPOS = EMINUS
    ENEG = EPLUS
C
C * FINDS THE POSITION OF THE NEUTRAL AXIS
510
    ESTR(1) = EMINUS
    FI(1) = -1.0D0
    ESTR(NG2) = EPLUS
    FI(NG2) = 1.0DO
    DO 512 L = 1, NGAUSS
    SUM = 0.5*FACTOR**2
    DO 511 I = 1,8
    SUM = SUM + (EN1(I,K) - GAP(L)*H/2.0*EM2(I,K))*XE(I)
    ESTR(L+1) = SUM
    FI(L+1) = GAP(L)
512 CONTINUE
    DO 515 I = 1, NG1
    PROD = ESTR(I)*ESTR(I+1)
    IF (PROD.LE.O.ODO) GO TO 516
515 CONTINUE
516 XN = FI(I) - ESTR(I)*(FI(I+1)-FI(I))/(ESTR(I+1)-ESTR(I))
    IF (ESTR(I).EQ.O.ODO) GO TO 518
    IF (ESTR(I).LT.O.ODO) HN = (1.0DO - XN)*H/2.0DO
    IF (ESTR(I).GT.O.ODO) HN = (1.ODO + XN)*H/2.ODO
    GO TO 520
518 IF (ESTR(I+1).LT.O.ODO) HN = (1.0DO + XN)*H/2.ODO
    IF (ESTR(I+1).GT.0.0DO) HN = (1.0DO - XN)*H/2.0DO
520 SUME = SUME + (HN/H)*(EO*EPOS)**XKT*GAW(K)
```

 IF (EPOS.LT.EMAXP) GO TO 538
 EMAXP \(=\) EPOS
 IF (DABS (ENEG).LT.DABS (EMAXN)) GO TO 540
 EMAXN = ENEG
 CONTINUE
 CONTINUE
 SMAXP \(=\) EO*EMAXP
 SMAXN = EO*EMAXN
 IF (DABS (SMAXN).LE.FC) GO TO 560
 SMAXN = SMAXN - (\((E 0+E N * E 0) * E M A X N+F C *(1.0+E N))\)
 IF (SUME.EQ.O.ODO.OR.SMAXP.EQ.O.ODO) GO TO 563
 SUME \(=\) SUME \(/(2.0 * N E L E M *(X K T+1.0) *\) SMAXP**XKT)
 FTT \(=\) FT \(*\) SUME** \((-1.0 D 0 / X K T)\)
 GO TO 564
 \(\mathrm{FTT}=\mathrm{FT}\)
 IF (SMAXP.GE.FTT) GO TO 3774
 DEFL \(=0.0 D 0\)
 DO 565 IE \(=1\), NELEM
 \(J=(I E-1) * N D O F+3\)
 \(I F(D A B S(X(J)) . G T . D A B S(D E F L)) D E F L=X(J)\)
 CONTINUE
 \(J=N E Q-1\)
 IF (DABS (X (J)).GT.DABS (DEFL)) DEFL \(=X(J)\)
 IF (NP.EQ.0) PDEFL = FQ3
 IF (NP.NE.O) PDEFL \(=\mathrm{P} 3\)
 CONTINUE
 IF (NINT.EQ.O) GO TO 8810
 IF (IERROR.EQ.1) WRITE (*, 8888)
 IF (IERROR.EQ.O.AND.SMAXP.LT.FTT) WRITE(*, 8889) SMAXP
 IF (IERROR.EQ.O.AND.SMAXP.GE.FTT) WRITE (*, 8890) SMAXP
 FORMAT(' IERROR=1,FAILS (DIVERGENCE OR SINGULAR MATRIX)'/)
 FORMAT (' IERROR=0 SMAXP \(=\) ',E15.6,' ----- SURVIVES'/)
 FORMAT(' IERROR=0 SMAXP = ',E15.6,' ———- FAILS'/)
 CONTINUE
 IF (NP.EQ.O) GO TO 4500
 IF (IERROR.EQ.1) GO TO 7330
 IF (SMAXP.GT.FTT) GO TO 7331
 IF (SMAXP.EQ.FTT) GO TO 7337
 \(P 1=P 3\)
 IF (SUME.EQ.0.ODO.OR.SMAXP.EQ.O.ODO) GO TO 5650
 SMAX1 = SMAXP*SUME** (\(1.0 \mathrm{DO} / \mathrm{XKT}\))
 GO TO 5655
 SMAX1 = SMAXP
 DO \(833 \mathrm{~J}=1\), NEQ
 \(X P(J)=X(J)\)
 GO TO 8334
 \(\mathrm{P} 2=\mathrm{P} 3\)
 GO TO 8334
 \(P 2=P 3\)
 NFAIL = 1
 SMAX2 \(=\) SMAXP*SUME** (\(1.000 / X K T)\)
 IF (P1.EQ.0.ODO) GO TO 8338
 TOLP \(=(P 2-P 1) / P 1\)
 IF (TOLP.LE.TOP) GO TO 7338
 GO TO 8336
 IF (P2.LE.O.1DO) GO TO 7338
 IF (NFAIL.EQ.1) GO TO 8340
 \(P 3=(P 1+P 2) / 2.0\)
 4580 DO $4833 \mathrm{~J}=1$, NEQ
$4833 \quad X P(J)=X(J)$
GO TO 4334
$4330 \quad$ NFLAG $=1$
$F Q 2=F Q 3$
4334 IF (FQ1.EQ.0.0DO) GO TO 5338
$T O L P=(F Q 2-F Q 1) / F Q 1$
IF (TOLP.LE.TOP) GO TO 4338
$I F(N F L A G . E Q .0) E Q 3=F Q 2$
IF (NELAG.EQ.1) FQ3 = (FQ1+FQ2) $/ 2.0 D 0$
GO TO 3773
$P=F Q 3$
$P P=F Q 3$
$P A V=F Q 3$
GO TO 4339
$P=F Q 2$
$P P=F Q 1$
$P A V=(P+P P) / 2.0$
4339 CALL TIME (ZIM)
ZIM $=$ ZIM-ZIMO
WRITE (2,670) PP, P, PAV, SMAXP, SMAXN, DEFL, PDEFL
FORMAT (2X,' FAILURE BETWEEN LOAD FACTORS ',E15.6,2X,' AND',
12X,E15.6/' AVERAGE $=^{\prime}$, E15.6/' EDGE STRESS $(+)=\prime, E 15.6 /$
$2^{\prime} \operatorname{EDGE} \operatorname{STRESS}(-)=\prime, E 15.6 /$ MAX. DEFLECTION $=$ ', E15.6,
3^{\prime} AT LOAD FACTOR $=$ ', E15.6/)
WRITE (*, 683) 2IM
WRITE (*, 670) PP, P, PAV, SMAXP, SMAXN, DEFL, PDEFL
901
CONTINUE

CONTINUE
CLOSE (1, STATUS='KEEP')
CLOSE (2,STATUS='KEEP')
STOP
END
C

END OF MAIN PROGRAM

SUBROUTINE SHAPE(DEL)
C* THIS SUBROUTINE CALCULATES DERIVATIVES OF SHAPE FUNCTIONS IMPLICIT REAL*8(A-H,O-Y)
COMMON/C1/GAP(5), $\operatorname{GAW}(5), \operatorname{EN} 1(8,5), \operatorname{EM} 1(8,5), \operatorname{EM} 2(8,5), \operatorname{NGAUSS}$ IF (NGAUSS.EQ.5) GO TO 5
IF (NGAUSS.EQ.4) GO TO 4
*** 3 POINT GAUSSIAN INTEGRATION
$\operatorname{GAP}(1)=-0.774596669241483 \mathrm{DO}$
$\operatorname{GAP}(2)=0.0 \mathrm{DO}$
$\operatorname{GAP}(3)=-\operatorname{GAP}(1)$
GAW (1) $=0.555555555555556 \mathrm{DO}$
GAW(2) $=0.888888888888889$ D0
$\operatorname{GAW}(3)=\operatorname{GAW}(1)$
GO TO 10
*** 4 POINT GAUSSIAN INTEGRATION
$4 \quad \operatorname{GAP}(1)=-0.861136311594053 D 0$
$\operatorname{GAP}(2)=-0.339981043584856 \mathrm{D} 0$
$\operatorname{GAP}(3)=-\operatorname{GAP}(2)$
$\operatorname{GAP}(4)=-\operatorname{GAP}(1)$
$\operatorname{GAW}(1)=0.347854845137454 D 0$
$\operatorname{GAW}(2)=0.652145154862546 \mathrm{DO}$
$\operatorname{GAW}(3)=\operatorname{GAW}(2)$
GAW(4) $=\operatorname{GAW}(1)$
GO TO 10
C *** 5 POINT GAUSSIAN INTEGRATION
5
$\operatorname{GAP}(1)=-0.906179845938664 \mathrm{DO}$
$\operatorname{GAP}(2)=-0.538469310105683 \mathrm{D} 0$
$\operatorname{GAP}(3)=0.0 \mathrm{DO}$
$\operatorname{GAP}(4)=-\operatorname{GAP}(2)$
$\operatorname{GAP}(5)=-\operatorname{GAP}(1)$
GAW(1) $=0.236926885056189 D 0$
$\operatorname{GAW}(2)=0.478628670499366 \mathrm{DO}$
$\operatorname{GAW}(3)=0.568888888888889 \mathrm{DO}$
$\operatorname{GAW}(4)=\operatorname{GAW}(2)$
$\operatorname{GAW}(5)=\operatorname{GAW}(1)$
INITIALISES EN1,EM1,EM2
C $10 \quad$ DO $150 \mathrm{IL}=1,8$
DO 350 IK $=1$, NGAUSS
EN1(IL,IK) $=0.0 \mathrm{DO}$
EM1 (IL,IK) $=0.0 \mathrm{DO}$
EM2(IL,IK) $=0.0 \mathrm{DO}$
CONTINUE
150 CONTINUE
DO 250 I $=1$, NGAUSS
$\operatorname{EN} 1(1, \mathrm{I})=(-0.75 \mathrm{D} 0+0.75 \mathrm{DO} \mathrm{GAP}(\mathrm{I}) * * 2) / \mathrm{DEL}$
$\operatorname{EN} 1(2, \mathrm{I})=(-1 \cdot \mathrm{DO}-2 \cdot \mathrm{D} 0 * \mathrm{GAP}(\mathrm{I})+3 \cdot \mathrm{D} 0 * \mathrm{GAP}(\mathrm{I}) * * 2) * 0.25 \mathrm{D} 0$
$\operatorname{EN} 1(5, I)=(0.75 D 0-0.75 D 0 * G A P(I) * * 2) / D E L$
$\operatorname{EN} 1(6, I)=(-1 \cdot D 0+2 \cdot D 0 * G A P(I)+3 \cdot D 0 * G A P(I) * * 2) * 0.25 D 0$ $\operatorname{EM1}(3, I)=(-0.75 D 0+0.75 D 0 * G A P(I) * * 2) / D E L$ $\operatorname{EM1}(4, I)=(-1 \cdot D 0-2 \cdot D 0 * G A P(I)+3 . D 0 * G A P(I) * * 2) * 0.25 D 0$

```
    EM1(7,I) = (0.75D0-0.75D0*GAP(I)**2)/DEL
    EM1 (8,I) = (-1.DO+2.DO*GAP(I) + 3.DO*GAP(I)**2)*0.25D0
    EM2(3,I) = 1.5D0*GAP(I)/(DEL**2)
    EM2(4,I) = (-2.D0+6.DO*GAP(I))/(4.DO*DEL)
    EM2(7,I) = - 1.5D0*GAP(I)/(DEL**2)
    EM2(8,I) = (2.DO+6.DO*GAP(I))/(4.DO*DEL)
    CONTINUE
        RETURN
        END
C
        SUBROUTINE DECOMP(NN,LHB,AA, IERROR)
C * THIS SUBROUTINE DECOMPOSES A MATRIX USING CHOLESKY
C METHOD FOR BANDED,SYMMETRIC,POS. DEFN. MATRICES
    IMPLICIT REAL*8(A-H,O-Y)
    DIMENSION AA(672)
C TKO IS STORED COLUMNWISE.
        IERROR = 0
        KB = LHB-1
C DECOMPOSITION
        IF(AA(1).LE.0.DO) IERROR=1
        IF(IERROR.EQ.1) RETURN
        AA(1) = DSQRT(AA(1))
        IF(NN.EQ.1) RETURN
    DO 551 I = 2, LHB
551 AA(I) = AA(I)/AA(1)
    DO 590 J = 2, NN
        J1 = J-1
        IJD = [HB*J - KB
        SUM = AA(IJD)
        KO = i
        IF(J.GT.LHB) KO=J-KB
            DO 555 K = KO, J1
        JK = KB*K+J-KB
555 SUM = SUM-AA(JK)*AA (JK)
        IF(SUM.LE.0.DO) IERROR=1
        IF(IERROR.EQ.1) RETURN
        AA(IJD) = DSQRT(SUM)
        DO 568 I = 1, KB
        II=J+I
        KO = 1
    IF (II.GT.LHB) KO=II-KB
    SUM = AA(IJD+I)
        IE(I.EQ.KB) GO TO 565
        DO 540 K = KO, J1
        JK = KB*K+J-KB
        IK = KB*K+II-KB
540 SUM = SUM-AA(IK)*AA(JK)
565 AA(IJD+I) = SUM/AA(IJD)
568 CONTINUE
590 CONTINUE
    RETURN
    END
C
    SUBROUTINE SOLVN(NN,LHB,AA,S)
C* THIS SUBROUTINE SOLVES THE SYSTEM OF EQUATIONS USING
C THE DECOMPOSED MATRIX FROM THE PREVIOUS SUBROUTINE
    IMPLICIT REAL*8(A-H,O-Y)
    DIMENSION AA(672),S(84)
```

C FORWARD SUBSTITUTION
$\mathrm{KB}=\mathrm{LHB}-1$
$S(1)=S(1) / A A(1)$
IF(NN.EQ.1) GO TO 685
DO $680 \mathrm{I}=2$, NN I1 $=I-1$ KO $=1$
IF(I.GT.LHB) $K O=I-K B$ SUM $=S(I)$
$I I=L H B * I-K B$
DO $675 \mathrm{~K}=\mathrm{KO}$, I 1 $I K=K B * K+I-K B$
675 SUM $=\operatorname{SUM}-A A(I K) * S(K)$ $S(I)=S U M / A A(I I)$
680 CONTINUE
C BACKWARD SUBSTITUTION
$685 \quad \mathrm{~N} 1=\mathrm{NN}-1$
$\mathrm{LB}=\mathrm{LHB} * \mathrm{NN}-\mathrm{KB}$ $\mathrm{S}(\mathrm{NN})=\mathrm{S}(\mathrm{NN}) / \mathrm{AA}(\mathrm{LB})$
IF (NN.EQ.1) RETURN
DO $699 \mathrm{I}=1$, N 1
$\mathrm{I} 1=\mathrm{NN}-\mathrm{I}+1$
$\mathrm{NI}=\mathrm{NN}-\mathrm{I}$
$\mathrm{KO}=\mathrm{NN}$
IF (I.GT.KB) $K O=N I+K B$
SUM $=S(N I)$
II = LHB*NI-KB
DO $690 \mathrm{~K}=\mathrm{I} 1$, KO
$I K=K B * N I+K-K B$
690 SUM $=$ SUM-AA(IK)*S(K)
S(NI) = SUM/AA(II)
699 CONTINUE
RETURN
END
c
SUBROUTINE CONVRG (XO,X,IER,NEQ,EPSLON,ITER)
C* this subroutine checks the convergence
C OF SOLUTION VECTOR
IMPLICIT REAL*8 (A-H, O-Y)
COMMON/C2/DIFP,NINT
DIMENSION XO(84),X(84)
IER = 0
PARXO $=0.0 \mathrm{DO}$
PARDIF $=0.000$
PARX $=0.0 \mathrm{DO}$
DO 602 I $=1$, NEQ
PARXO $=$ PARXO $+\mathrm{XO}(\mathrm{I}) * * 2$
PARX $=$ PARX $+X(I) * * 2$
PARDIF $=$ PARDIF $+(X(I)-X O(I)) * * 2$
IF (NINT.EQ.1) WRITE(*, 1002) PARX0, PARX, PARDIF
1002 FORMAT(' NORMXO $=$ ', E13.6,'NORMX=',E13.6,'NORMDIF =', E13.6/) IF (ITER.EQ.O) GO TO 606
IF (PARDIF.GE.DIFP) GO TO 605
606 DIFP $=$ PARDIF
IF (PARXO.EQ.O.ODO) GO TO 603
DIF $=$ DSQRT(PARDIF/PARXO)
IF (DIF.LE.EPSLON) GO TO 604
IER = 1

```
    RETURN
    RETURN
    IER = 2
    RETURN
    END
SUBROUTINE TIME(TIM)
CALL GETTIM(IH,IM,IS,IHS)
TIM = IH* 3600 + IM*60 + IS + IHS/100.0
RETURN
END
```

2. SAMPLE INPUT/OUTPUT FILES.

SAMPLE INPUT DATA FILE FOR AXIAL COMPRESSION

```
105110
100.0
-0.001
2
12
13
111
3
\(32300.030350 .0 \quad 2.0 \quad 10.0 \quad 5.0\)
9660000.0-1.0
3.20 .0380 .089
```


SAMPLE OUTPUT FILE

FAILURE BETWEEN LOADS $0.199730 \mathrm{e}+02$ AND $0.201354 \mathrm{e}+02$ AVERAGE $=0.200542 \mathrm{e}+02$
EDGE STRESS (+) = $0.701410 \mathrm{e}+04$
EDGE STRESS (-) $=-0.188233 e+05$
MAX. DEFLECTION $=0.312672 \mathrm{e}-01 \mathrm{AT}$ LOAD $=0.199730 \mathrm{e}+02$ SLENDERNESS = 35.96

```
SAMPLE INPUT DATA FILE FOR PURE BENDING
    8 5 10 1
    0 1 0.0
    5 1.0
    2
    1 2
    1 3
    9 1
    3
    32300.0 30350.0 2.0 10.0 5.0
    9660000.0 -1.0
    3.2 0.038 0.089
```


SAMPLE OUTPUT FILE

FAILURE BETWEEN LOAD FACTORS $0.406250 \mathrm{e}+01$ AND $0.409375 \mathrm{e}+01$ AVERAGE $=0.407813 \mathrm{e}+01$
EDGE STRESS $(+)=0.646474 \mathrm{e}+05$
EDGE STRESS (-) $=-0.643671 \mathrm{e}+05$
MAX. DEFLECTION $=0.128601 \mathrm{e}+00 \mathrm{AT}$ LOAD $F A C T O R=0.406250 \mathrm{e}+01$

```
            RBETA.FOR Version 2.0
            (SHORTENED VERSION WITH SIZE EFFECTS CONSIDERED) *
                    15 August, 1987
        A PROGRAM FOR THE EVALUATION OF THE REIABILITY INDEX
            BETA OF A COLUMN (OR BEAM-COLUMN)
MATERIAL BEHAVIOUR IS ELASTIC IN TENSION WITH BRITTLE *
FRACTURE, AND ELASTIC IN COMPRESSION UP TO A LIMITING *
COMPRESSION STRESS, WITH A FALLING LINEAR BRANCH *
BEYOND THAT LIMIT.
            END LOAD IS APPLIED CENTRALLY. LATERAL LOADS *
            CAN BE DISTRIBUTED ALONG THE LENGTH OF THE MEMBER *
            THE PROGRAM EINDS THE RELIABILITY INDEX BETA FOR A *
            BEAM-COLUMN TAKING INTO ACCOUNT 5 RANDOM VARIABLES *
            WHICH CONSTITUTE THE LOAD AND MATERIAL RESISTANCES *
        PROBLEM DATA IS READ FROM UNIT #1 *
        OUTPUT IS STORED IN UNIT #2. *
```

 * MAXIMUM OF 10 VARIABLES *
 * MAXIMUM OF 20 ELEMENTS *
 IMPLICIT REAL*8 (A-H, O-Z)
 REAL*8 INVNPR,NORMPR
 DIMENSION \(X(10), Y(10), U(10), \operatorname{DELTA}(10), S I G(10)\)
 1 , AVER (10), STD (10), F1X(10), F2X(10)
 \(2, \operatorname{SCALE}(10), \operatorname{SHAPE}(10), A(10), B(10), X 0(10), X W(10)\)
 COMMON/CX1/GAP(5), \(\operatorname{GAW}(5), \operatorname{EN} 1(8,5), \operatorname{EM} 1(8,5), \operatorname{EM} 2(8,5), \operatorname{NGAUS} \subseteq\)
 COMMON/C2/F11,F21
 COMMON/C4/W, H, SPAN , PLN , GAMA 1 , SREF , XKC , XKT
 COMMON/CX4/NELEM,NBC(21), IX(21,4)
 REAL* 8 LOC (10), MU (10), NN (10), NNN (10)
 INTEGER*2 ICODE (10)
 INTEGER*2 MXC(10), MEX(10)
 OPEN (1, FIEE='DET', STATUS = \({ }^{\circ}\) OLD')
 \(\operatorname{OPEN}(2, F I L E=' O T ', S T A T U S=' N E W ')\)
 PI \(2=\operatorname{DSQRT}(8.0 * \operatorname{DATAN}(1.0 \mathrm{DO}))\)
 CONST=1.ODO/PI 2

* DEFINE VARIABLES
* FCN = COMPRESSIVE STRENGTH, FIFTH PERCENTILE *
* W = WIDTH OF SECTION *
* H = DEPTH OF SECTION *
* GAMA1 = RATIO OF NOMINAL DL TO LL *
* ALFD = DEAD LOAD FACTOR *
* ALFL = LIVE LOAD FACTOR *
* EMIN = MODULUS OF ELASTICITY, MEAN VALUE *
* NELEM $=$ NO OF ELEMENTS *

* NJBC $=$ NO OF JOINTS WITH B.C. *
* NGAUSS = NO OF INTEGRATION POINTS *

$=B \cdot C \cdot C O D E$ *
$\begin{array}{lll}1 & =U & * \\ 2 & =U X & *\end{array}$
$\begin{array}{ll}1 & =U \\ 2 & =U X\end{array}$
$=\mathrm{W}$
$=W X$
$=$ NO OF RANDOM VARIABLES FOR TOTAL PROB.
EN1,EM1,EM2 = INTERPOLATION FUNCTIONS
GAP $=$ CORDINATE AT GAUSS POINT
= CORRESPONDING WEIGHT
NELEM $=$ NO OF ELEMENTS
NGAUSS $=$ NO OF GAUSS POINTS
= MAX. NO OF ITERATIONS
$\begin{array}{ll}\text { NITER } & =\text { MAX. NO OF ITERATIO } \\ \text { TOP } & =\text { TOLERANCE FOR LOAD }\end{array}$
EPSLON = TOLERANCE FOR SOLUTION VECTOR
FC $=$ MATERIAL STRENGTH IN COMPRESSION *
FT $=$ MATERIAL STRENGTH IN TENSION *
$\begin{array}{ll}\text { FT } & =\text { MATERIAL STRENGTH } \\ \text { EO } & =\text { MOE OF THE MATRIAL }\end{array}$
$=$ MOE OF THE MATRIAL *
= MEMBER LENGTH *
= WIDTH OF SECTION
= DEPTH OF SECTION
= ECCENTRICITY OF AXIAL LOAD
NEQ $\quad=\mathrm{NO}$ OF EQUATIONS TO BE SOLVED
*
= NO OF NODES
= NO OF VARIABLES PER NODE
$=$ NO OF NODES PER ELEMENT
= REFERENCE SPAN
= SIZE EFFECT SHAPE PARAMETER (COMP.)
= SIZE EFFECT SHAPE PARAMETER (TENS.)
NDIMB $=$ NO OF VARIABLES PER NODE
LBW, LHB $=$ HALF BANDWIDTH INCLUD. THE DIAG.
NA $\quad=$ NO OF UNKNOWNS FOR TOTAL PROBLEM
*
-
*
HT
NT
*

```
        GO TO 7780
7779 CONTINUE
        GO TO 7782
7780 WRITE(*,7784)
774 FORMAT(' ENTER EXPONENTS FOR DISTRIBUTION OF EXTREMES'/)
    READ(*,*) (MEX(I), I=1,N)
7782 CONTINUE
    READ(1,*) TOLB
    READ(1,*) NITER
    C
    C ENTER THE CODES FOR EACH VARIABLE AND THEIR PARAMETERS
    C
        DO 9 IC = 1,N
        ICD = ICODE (IC)
        GO TO(11,12,13,14),ICD
    C
    C NORMAL ( CODE=1)
    C
    11 READ(1,*) AVER(IC),STD(IC)
        GO TO 9
    C
    C LOGNORMAL (CODE=2)
    C
    12 READ(1,*) AVER(IC),STD(IC)
    GO TO 9
C
C WEIBULL ( CODE=3)
C
13 READ(1,*) LOC(IC),SCALE(IC),SHAPE(IC)
    GO TO 9
C
C GUMBEL EXTREME TYPE I ( CODE=4 )
C 14 READ(1,*) B(IC),A(IC)
C
    CONTINUE
    C ENTER INITIAL VECTOR X AND CHECK FOR CONSISTENCY IN THE CASE
    C OF THE WEIBULL DISTRIBUTION
    C
    151 READ(1,*) X(I)
        IF(ICODE(I).NE.3) GO TO }80
        IF (X(I).GT.LOC(I)) GO TO 805
        WRITE(*, 1270)
1270 FORMAT (' CHANGE INITIAL VALUE TO EXCEED THE'
    1 ,/,' LOCATION PARAMETER FOR THE WEIBULL'/)
        GO TO 151
805 CONTINUE
C
    DO 702 I = 1, N
    702 X0(I) = X(I)
155 NCOUNT=0
        NBET = 0
        IERR1 = 0
        IERR = 0
        READ(1,*) SPAN,R
        DELT = SPAN/(2.ODO*NELEM)
```

```
C
C CALC VECTORS EN1, EM1, EM2
    CALL SHAP(DELT)
c
C CORRECT FOR SLENDERNESS EFFECTS
        PC = W*H*FCN
        PCR = (3.14159DO**2)*EMIN*(W*H**3)/(12.DO*SPAN**2)
        CC = SPAN/H
        CA = DSQRT(0.9DO*0.74DO*EMIN/FCN)
        CKI = 1.DO - (1.DO/3.0DO)*((CC/CA)**4)
        CK2 = 3.14159DO**2*0.74DO*EMIN/(12.0*FCN*CC**2)
        IF (CC .GT. 10.0DO) GO TO 2080
        CK = 1.0DO
        GO TO 4080
2080 IF (CC .GT. CA) GO TO 3080
        CK = CK1
        GO TO 4080
3080 CK = CK2
4080 CONTINUE
C
C OBTAIN NOMINAL DESIGN LOAD
    PLN = R*W*H*FCN*CK/(ALFD*GAMA 1+ALFL)
C
    WRITE(2,1080)(ICODE(I), I=1,N)
1080 FORMAT (' CODES : ',10I5)
C
C START ITERATIONS: GIVEN THE VECTOR X(I), COMPUTE
C THE FAILURE FUNCTION GXP AND THE GRADIENT DELTA
C USING THE SUBROUTINE GXPPR, WHICH MUST BE PROVIDED
C EXTERNALLY BY THE USER FOR EACH PARTICULAR CASE.
C
2 CONTINUE
    DO 7722 J = 1,N
7722 XW(J) = X(J)
    CALL GXPR(XW,N,DELTA,GXP)
C
C CALC F1X(X), AND F2X(X)
    CALL FFX(N,X,AVER,STD,F1X,F2X,ICODE, LOC, SCALE, SHAPE, A,B,
    1 IERR, MXC, MEX)
    IF(IERR.EQ.1) GO TO 65
C
C CALC Y-VALUES
C
        DO 8 I = 1, N
        Y(I) = INVNPR(FIX(I))
8 CONTINUE
C CALC SIGMA AND MU VECTORS
C
    DO 10 I = 1,N
        IF (F2X(I).LE.O.ODO) GO TO 68
        DSIG = DLOG(CONST) - Y(I)*Y(I)*0.5DO - DLOG(F2X(I))
        IF (DSIG.LT.-709.ODO) GO TO }86
        SIG(I) = DEXP(DSIG)
        GO TO 87
865 SIG(I)=0.0D0
87
    MU(I)=-SIG(I)*Y(I)+X(I)
```

```
10 CONTINUE
C
    SUM=0.0DO
    DO 55 I=1,N
    55 SUM = SUM + SIG(I)*SIG(I)*DELTA(I)*DELTA(I)
    SUM = DSQRT(SUM)
    DO 20 I = 1,N
    NN(I) = -SIG(I)*DELTA(I)/SUM
    20 NNN(I) = DABS(NN(I))
    C
    C CALC BETA
    SDMU=0.0D0
    SDX = 0.0D0
    DO 25 I=1,N
    SDMU = SDMU + DELTA(I)*MU(I)
25 SDX = SDX + DELTA(I)*X(I)
    BETA = (GXP + SDMU - SDX)/SUM
    DO 30 I = 1,N
    U(I) = BETA * NN(I)
    NCOUNT = NCOUNT+1
    IF (NCOUNT.GT.NITER) GO TO 66
    IF(NCOUNT.EQ.1) GO TO }3
        DIFFB = DABS(BETA - BETAP)
    BETAP = BETA
    NBET = 1
    DO 80 I = 1,N
    TX = SIG(I)*U(I) + MU(I)
    X(I) = TX
    CONFAC = (TOLB-DIFFB)
    IF. (CONFAC.GT.O.0) GO TO 50
    GO TO 2
    BETAP = BETA
    DO 35 I = 1,N
    X(I) = SIG(I)*U(I) + MU(I)
    GO TO 2
    50 WRITE (2,51) BETA
    WRITE(2,710) NCOUNT
    710 FORMAT(5X,'ITERATIONS =',I5)
    WRITE (2,703) TOLB
    703 FORMAT(5X,'TOLB =',F8.4)
    705 WRITE(2,1280)(XO(I),I=1,N)
    1280 FORMAT(' VECTOR XO ',10E13.5)
    WRITE (2,1300)(X(I),I=1,N)
    1300 FORMAT(' VECTOR X ',10E13.5)
    WRITE(2,1320)(NNN(I),I=1,N)
    1320 FORMAT(' SENSITIVITY COEFFS. ',10F8.4)
    WRITE(2,2088) SPAN,R
    2088 FORMAT(' L =',E\3.6,' fp =',E13.6/)
    51 FORMAT(5X,'BETA = ',F10.3)
    GO TO 900
    65 IF (NBET.EQ.1) GO TO 880
    WRITE(2,1340) IERR
    GO TO }90
    880 WRITE(2,1340) IERR
    GO TO 900
    68 IERR1 = 1
    IF (NBET.EQ.1) GO TO }88
```

```
    WRITE(2,1341) IERR1
    GO TO 900
882 WRITE(2,1341) IERRI
    WRITE(2,1342) BETA
    GO TO }90
66 WRITE (2,1350)NITER
1350 FORMAT (' NO CONVERGENCE IN ',I5,' ITERATIONS')
1340 FORMAT(' IERR =',I2,' ERROR: NEGATIVE LOGNORMAL OR',/,
    1 ' WEIBULL VARIABLE LESS THAN ITS',/
    2 ', LOCATION PARAMETER.',/,
    3 TRY NEW INITIAL POINT')
1341 FORMAT(' IERR1 =',I2,' NEGATIVE OR ZERO DENSITY F2X(I)',/,
    1 ' TRY NEW INITIAL POINT'/)
1342 FORMAT(' LAST BETA WAS =', F10.3)
900 CONTINUE
    CLOSE (UNIT=1,STATUS='KEEP')
    CLOSE (UNIT=2,STATUS='KEEP')
    STOP
    END
C
    SUBROUTINE FFX(N,X,AVER,STD,F1X,F2X,ICODE,LOC,SC,SK,A,B,
        1 IERR, MXC, MEX)
            IMPLICIT REAL*8(A-H,O-2)
            REAL*8 NORMPR
            DIMENSION SC(N),SK(N),A(N),B(N),X(N),AVER(N)
            1, STD(N),F1(N),F2X(N)
            COMMON/C2/F11,F21
                INTEGER*2 ICODE(10)
            INTEGER*2 MXC(10), MEX(10)
            REAL*8 LOC(N),MU
            PI 2=(8.0*DATAN (1.0D0))
            DO 20 I = 1,N
            IC = ICODE(I)
            GO TO(11, 12,13,14),IC
C
C NORMAL
C
11 RATIO = (X(I) - AVER(I))/STD(I)
        F1X(I) = NORMPR(RATIO)
        F2X(I)=DEXP(-0.5DO*RATIO*RATIO)/(STD(I)*DSQRT(PI2))
            IF (MXC(I).EQ.0) GO TO 20
            CALL EXTR(F1X(I),F2X(I),MXC(I), MEX(I))
            GO TO 20
C
C LOGNORMAL
C
12 DLN = DLOG(1.0 + (STD(I)/AVER(I))**2)
    MU = DLOG(AVER(I)) - 0.5*DLN
    SDP = DSQRT(DLN)
    IF (X(I).LE.O.0) GO TO 99
    PARAM = (DLOG(X(I)) - MU)/SDP
    F1X(I) = NORMPR(PARAM)
    POW = DEXP(-0.5DO*PARAM*PARAM)
    F2X(I) = POW/(SDP*X(I)*DSQRT(PI2))
        IF (MXC(I).EQ.O) GO TO 20
        CALL EXTR(F1X(I), F2X(I), MXC(I), MEX(I))
        GO TO 20
C
```

C WEIBULL
C
13 IF (X(I).LE.LOC(I)) GO TO 99
POW $=-((X(I)-L O C(I)) / S C(I)) * * S K(I)$
POW $=\operatorname{DEXP}($ POW $)$
F1X(I) $=1.000-$ POW
F2X(I) $=(S K(I) / S C(I)) *((X(I)-L O C(I)) / S C(I)) * *(S K(I)$
1-1.0)*POW
IF (MXC(I).EQ.0) GO TO 20
CALL $\operatorname{EXTR}(F 1 X(I), \operatorname{F2X}(I), \operatorname{MXC}(I), \operatorname{MEX}(I))$
GO TO 20
C
C GUMBEL EXTREME TYPE I
C
14 POW $=-\mathrm{A}(\mathrm{I}) *(\mathrm{X}(\mathrm{I})-\mathrm{B}(\mathrm{I}))$ POW $=\operatorname{DEXP}(\mathrm{POW})$
F1X(I) $=\operatorname{DEXP}(-$ POW $)$
F2X(I) $=A(I) * P O W * F 1 X(I)$
IF (MXC(I).EQ.0) GO TO 20
CALL EXTR(F1X(I), F2X(I), MXC(I), MEX(I))
20 CONTINUE

RETURN

99 IERR=1
RETURN
END
C
SUBROUTINE EXTR (F1,F2,NC,M)
IMPLICIT REAL*8(A-H,O-Z)
INTEGER*2 NC, M
IF (NC.EQ.2) GO TO 10
$\mathrm{F} 2=\mathrm{M}^{*} \mathrm{~F} 2 \star \mathrm{~F} 1 * *(\mathrm{M}-1)$
$\mathrm{F}_{1}=\mathrm{F}_{1 * *}{ }^{*}$
RETURN
$10 \quad F 2=M * F 2 *(1.0 D 0-F 1) * *(M-1)$
$F 1=1.0 D 0-(1.0 D 0-F 1) * * M$
RETURN
END
C
C

$$
\begin{aligned}
& \text { FUNCTION NORMPR(X) } \\
& \text { * NORMAL PROBABILITY INTEGRAL (X)* } \\
& \text { IMPLICIT REAL*8(A-H,O-Z) } \\
& \text { REAL*8 NORMPR } \\
& \text { DIMENSION E(16), H(16) } \\
& \mathrm{PI}=2.0 \mathrm{DO} \text { * DSQRT(DATAN(1.0D0)) } \\
& \text { IF (DABS (X).GT.5.ODO) GO TO } 20 \\
& E(1)=0.989400934991650 \mathrm{E} 0 \\
& E(2)=0.944575023073233 \mathrm{E} 0 \\
& E(3)=0.865631202387832 E 0 \\
& \mathrm{E}(4)=0.755404408355003 \mathrm{E} 0 \\
& E(5)=0.617876244402644 \mathrm{EO} \\
& E(6)=0.458016777657227 \mathrm{E} 0 \\
& E(7)=0.281603550779259 \mathrm{E} 0 \\
& E(8)=0.095012509837637 \mathrm{E} 0 \\
& \mathrm{H}(1)=0.027152459411754 \mathrm{E} 0 \\
& H(2)=0.062253523938648 \mathrm{E} 0 \\
& H(3)=0.095158511682493 \mathrm{E} 0 \\
& \mathrm{H}(4)=0.124628971255534 \mathrm{EO} \\
& H(5)=0.149595988816577 \mathrm{EO}
\end{aligned}
$$

C
$H(6)=0.169156519395003 \mathrm{E} 0$
$H(7)=0.182603415044924 E 0$
$H(8)=0.189450610455068 \mathrm{E} 0$
DO 1 I = 1,8
$E(17-I)=-E(I)$
$H(17-I)=H(I)$
$\Psi=X / D S Q R T(2.0 D 0)$
$\mathrm{S}=0.0$
DO $10 I=1,16$
$Z=Y * E(I)$
$\mathrm{Z}=\mathrm{DEXP}(-\mathrm{Z} * \mathrm{Z})$
$\mathrm{S}=\mathrm{S}+\mathrm{Z} * \mathrm{H}(\mathrm{I})$
CONTINUE
ERF $=\mathrm{Y} * \mathrm{~S} / \mathrm{PI}$
NORMPR $=(1.0 D 0+E R F) / 2.0 D 0$
RETURN
IF (DABS (X).GT.37.5DO) GO TO 25
$S=1.0 \mathrm{DO}-1.0 \mathrm{DO} 0 /(\mathrm{X} * * 2)+3.0 \mathrm{D} 0 /(\mathrm{X} * * 4)-15.0 \mathrm{DO} /(\mathrm{X} * * 6)$
$1+105.0 \mathrm{DO} /(\mathrm{X} * * 8)-945.0 \mathrm{DO} /\left(\mathrm{X} * \mathrm{*}_{10}\right)+10395.0 \mathrm{DO} /\left(\mathrm{X} * \mathrm{~K}_{12}\right)$
$S=S * \operatorname{DEXP}(-x * X / 2.0 D 0) / \operatorname{DABS}(x)$
S = S*DSQRT(2.0D0)/PI
IF (X.GT.0.ODO) NORMPR $=1.0 \mathrm{DO}-\mathrm{S} / 2.0 \mathrm{DO}$
IF (X.LT.0.ODO) NORMPR $=S / 2.0 D 0$
RETURN
IF (X.GT.O.ODO) NORMPR $=1.0 \mathrm{DO}$
IF (X.LT.O.ODO) NORMPR $=0.0 \mathrm{DO}$
RETURN
END
FUNCTION INVNPR(Y)
IMPLICIT REAL*8 (A-H, O-Z)
REAL*8 INVNPR
REAL*8 NORMPR
PI = DSQRT(8.0D0*DATAN(1.0DO))
TOL $=1.0 \mathrm{E}-8$
IF (Y.EQ.0.50) GO TO 80
$\mathrm{XO}=-\mathrm{PI} *(0.50 \mathrm{D} 0-\mathrm{Y})$
$X_{1}=X_{0}$
$\mathrm{S}=\mathrm{NORMPR}(\mathrm{X} 1)-\mathrm{Y}$
$\mathrm{S}=\mathrm{S} * \operatorname{DEXP}(\mathrm{X} 1 * \mathrm{X} 1 / 2.0 \mathrm{DO}) * \mathrm{PI}$
$\mathrm{X} 2=\mathrm{X} 1-\mathrm{S}$
DIF $=\operatorname{DABS}(X 2-X 1)$
IF (DABS (DIF).LE.TOL) GO TO 20
$\mathrm{X} 1=\mathrm{X} 2$
GO TO 5
INVNPR $=0.0$
RETURN
I NVNPR $=\mathrm{X} 2$
RETURN
END
SUBROUTINE COLUMN (XW,N, PAV)
IMPLICIT REAL*8 (A-H, O-Z)
DIMENSION $F(8)$, TKO (672), XE (8) $\mathrm{XW}(\mathrm{N})$
$1, \mathrm{R}(84), \mathrm{XO}(84), \mathrm{X}(84), \mathrm{B}(84), \mathrm{B} 1(8,8), \mathrm{B} 2(8,8), \mathrm{B} 3(8,8), \mathrm{B} 4(8,8)$
$2, \mathrm{B5}(8,8), \mathrm{B} 6(8,8), \mathrm{B7}(8,8), \mathrm{B} 8(8,8), \mathrm{B9}(8,8), \mathrm{Y}(5), \operatorname{RE}(8), \mathrm{XP}(84)$
3, Q(20),1Q(20), ESTR(7), FI(7)
COMMON/CX1/GAP (5) , GAW (5) , EN $1(8,5)$, EM1 $(8,5), \operatorname{EM} 2(8,5)$, NGAUSS
COMMON/CX2/DIFP,NINT
COMMON/C3/DEFL, PDEFL
COMMON/C4/W, H, SPAN, PLN , GAMA 1 , SREF , XKC , XKT
COMMON/CX4/NELEM,NBC (21), IX $(21,4)$

C	*	EN1, EM1, EM2	$=$ INTERPOLATION FUNCTIONS	*
C	*	GAP	= CORDINATE AT GAUSS POINT	*
C	*	GAW	= CORRESPONDING WEIGHT	*
C	*	NELEM	= NO OF ELEMENTS	*
C	*	NGAUSS	= NO OF GAUSS POINTS	*
C	*	NITER	= MAX. NO OF ITERATIONS	*
C	*	TOP	= TOLERANCE FOR LOAD	*
C	*	EPSLON	= TOLERANCE FOR SOLUTION VECTOR	*
C	*	FC	= MATERIAL STRENGTH IN COMPRESSION	*
C	*	FT	= MATERIAL STRENGTH IN TENSION	*
C	*	E0	= MOE OF THE MATRIAL	*
C	*	EN	= SLOPE OF THE STRESS-STRAIN CURVE	*
C	*	SPAN	= MEMBER LENGTH	*
C	*	W	= WIDTH OF SECTION	*
C	*	H	= DEPTH OF SECTION	*
C	*	E	= ECCENTRICITY OF AXIAL LOAD	*
C	*	NEQ	$=$ NO OF EQUATIONS TO BE SOLVED	*
C	*	NJOINT	$=$ NO OF NODES	*
C	*	NDOF	= NO OF VARIABLES PER NODE	*
C	*	NODEL	= NO OF NODES PER ELEMENT	*
C	*	SREF	= REFERENCE SPAN	*
C	*	XKC	= SIZE EFFECT SHAPE PARAMETER (COMP.)	*
C	*	XKT	= SIZE EFFECT SHAPE PARAMETER (TENS.)	*
C	*	NDIMB	= NO OF VARIABLES PER NODE	*
C	*	LBW, LHB	$=$ HALF BANDWIDTH INCLUD. THE DIAG.	*
C	*	NA	$=$ NO OF UNKNOWNS FOR TOTAL PROBLEM	*
C		********	*************************************	

CONST = GAMA 1
$\mathrm{EO}=\mathrm{XW}(1) * 1000 . \mathrm{DO}$
$F C=X W(2) * 1000 . D 0$
$F T=X W(3) * 1000 . D 0$
$T O P=0.01 \mathrm{DO}$
EPSLON $=0.001 \mathrm{DO}$
NITER $=10$
$\mathrm{EN}=0.02 \mathrm{D} 0$
$\mathrm{NDOF}=4$
NJOINT=NELEM+1
NG1 $=$ NGAUSS +1
NG2 $=$ NGAUSS +2
$\mathrm{NP}=1$
$N Q=0$
$Q 0=0.0 \mathrm{DO}$
IF (NQ.EQ.O) GO TO 44
DO $43 \mathrm{I}=1, \mathrm{NQ}$
$\operatorname{READ}(1, *) I Q(I), Q(I)$
ECEN $=-0.002 \mathrm{DO}$
IF (NP.NE.0) E=ECEN
NEQ $=$ NDOF*NJOINT
NODEL $=2$
NDIMB $=$ NODEL*NDOF

```
    LBW = NDIMB
    LHB = LBW
    NA = LBW*NEQ
    AR = W*H
    XI = W*H**3/12.DO
    DEL = SPAN/(2.DO*NELEM)
C
7 6 1
7 6 0
792 XP(J) = 0.0DO
    * ADJUST STRENGTHS TO THE ACTUAL VOLUME
    FC = FC *(SREF/SPAN)** (1.0/XKC)
    FT = FT * (SREF/SPAN )** (1.0/XKT)
NINT = 0
IF (NP.EQ.O) GO TO 761
PC = AR*FC
PCR = 3.14159DO**2*EO*XI/(SPAN**2)
PI = PC
IF(PCR .IE. PC) PI=PCR
    P2 = PI
    P1}=0.0D
P3 = (P1 + P2)/2.0D0
NFAIL = 0
SMAX1 = 0.0
GO TO }76
FQ1 = 0.0DO
    FQ2 = 1.0D0
    FQ3 = FQ2
    NFLAG = 0
    DO 792 J = 1, NEQ
C
C START CALCULATIONS FOR TRIAL LOAD LEVELS
3773 CONTINUE
    p = 0.0DO
    FQ = 1.0DO
    IF (NP.NE.0) P = P3
    IF (NP.EQ.0) FQ = FQ3
    IF (NINT.EQ.1.AND.NP.NE.0) WRITE(*,4000) P
    IF (NINT.EQ.1.AND.NP.EQ.0) WRITE(*,4001) FQ
4000 FORMAT(//' SOLUTION FOR P =',E15.6,' :'/)
4001 FORMAT(//' SOLUTION FOR LATERAL LOAD FACTOR=',E15.6,':'/)
C INITIALISE ARRAYS
    DO 80 J = 1, NEQ
        XO(J) = XP(J)
    80 R(J) = 0.DO
C
C EXTERNAL LOAD VECTOR R
C RE = ELEMENT LOAD VECTOR
        IF (QO.EQ.O.ODO) GO TO 87
        DO 81 J = 1, 8
        RE(J)=0.DO
    81
    CONTINUE
        RE(3) = FQ*QO*DEL
        RE(4) = FQ*QO*DEL**2/3.DO
        RE(7) = RE(3)
        RE(8) = -RE(4)
    DO }83\textrm{NE}=1\mathrm{ , NELEM
    DO 82 JJ = 1, 8
        K=(NE-1)*NDOF + JJ
        R(K) = R(K) + RE(JJ)
```

```
    82 CONTINUE
    83 CONTINUE
    87 IF (NQ.EQ.O) GO TO 185
        DO 180 J = 1,NQ
        JS = (IQ(J)-1)*NDOF + 3
        R(JS) = R(JS) +Q(J)*EQ
180
185 EM = P*E
        JJ = (NJOINT-1)*NDOF + 1
        R(JJ)=R(JJ)-P
        R(1) = R(1) + P
        R(4) = R(4)-EM
        R(NEQ) = R(NEQ)+EM
    ITER = 0
C
    777 CONTINUE
        DO 84 I = 1,NA
    84 TKO(I) = 0.0DO
        DO 85 K = 1, NEQ
        B(K)=-R(K)
        DO 645 IE = 1, NELEM
C INITIALIZE ARRAYS
        DO 88 I = 1, 8
        F(I)=0.0D0
        DO 86 J = 1, I
            B1(I,J)=0.0DO
            B2(I,J) = 0.0D0
            B3(I,J) = 0.0D0
            B4(I,J)=0.0D0
            B5(I,J) = 0.0D0
            B6(I,J) = 0.0D0
            B7(I,J) = 0.0D0
            B8(I,J) = 0.0D0
            B9(I,J) = 0.0D0
    86 CONTINUE
    88 CONTINUE
C PICK ELEMENT SOLUTION FROM GLOBAL VECTOR
    DO 90 JJ = 1, 8
            K = (IE - 1)*NDOF + JJ
            XE(JJ) = XO(K)
    90 CONTINUE
        DO 101 K = 1, NGAUSS
            Y(K) = 0.DO
        DO 91 I= 1, 8
        Y(K)=Y(K) + XE(I)*EMI(I,K)
    91 CONTINUE
C OBTAINING COMPONENTS OF EKT
        DO 93 I = 1, 8
        DO 93 J = 1, I
            B1(I,J)= B1(I,J)+EO*DEL*EN I (I,K)*Y(K)*AR*
        1 EM1(J,K)*GAW(K)
        B2(I,J) = B2(I,J) +EO*DEL*EM1 (I,K)*Y(K)*AR*
        1 EN1(J,K)*GAW(K)
            B3(I,J) = B3(I,J)+E0*DEL*EMT (I,K)*Y(K)*AR*
        1 Y(K)*EM1(J,K)*GAW(K)
            B4(I,J) = B4(I,J)+(EO*AR*DEL*EN1(I,K)*ENI (J,K)+
        1 EO*XI*DEL*EM2(I,K)*EM2(J,K))*GAW(K)
        CONTINUE
```

```
    DO 100 L = 1, NGAUSS
C STRESSES AND STRAINS AT GAUSS POINT
    STR = 0.5DO*Y(K)**2
        DO 96 MO = 1, 8
        STR = STR+(EN1(MO,K)-GAP(L)*H*O.5DO*EM2(MO,K))*XE(MO)
        CONTINUE
        STRE = STR+EC/EO
        FAC = 1.0D0
        IF(STRE.GE.O.DO) FAC=0.ODO
        STRESS = EO*STR-((EO+EN*EO)*STR+FC*(1.DO+EN))*FAC
        DO 99 I = 1, 8
        DO 98 J = 1, I
        B5(I,J) = B5(I,J)+DEL*0.5D0*AR*(EN1(I,K)-GAP(L)*
        H*0.5D0*EM2(I,K))*(EO+E0*EN)*FAC*(EN1(J,K)-H*0.5DO*
        2 GAP(L)*EM2(J,K))*GAW(K)*GAW(L)
        B6(I,J) = B6(I,J) +DEL*0.5DO*AR* (EN1 (I,K)-GAP(L)*
        H*0.5DO*EM2(I,K))*(EO+EN*EO)*FAC*Y(K)*EM1 (J,K)*
        2 GAW(K)*GAW(L)
        B7(I,J) = B7(I,J)+DEL*0.5D0*EM1(I,K)*Y(K)*AR*
        1 (EO+EO*EN)*FAC*(EN1(J,K)-H*O.5DO*GAP(L)*EM2(J,K))*
        2 GAW(K)*GAW(L)
        B8(I,J) = B8(I,J) +DE[*0.5D0*EM1(I,K)*Y(K)*AR*
        1 (EO+EO*EN)*FAC*Y(K)*EMI(J,K)*GAW(K)*GAW(L)
    B9(I,J) = B9(I,J)+AR*STRESS*EM1(I,K)*EM1(J,K)*
    1 GAW(K)*GAW(L)*DEL*0.5D0
    CONTINUE
    F(I) = F(I)+AR*DEL*0.5DO*STRESS*((EN1(I,K)-H*0.5DO*
    1 GAP(L)*EM2(I,K))+Y(K)*EM1(I,K))*GAW(K)*GAW(L)
    99
    CONTINUE
    100 CONTINUE
    101 CONTINUE
C* OBTAIN ELEMENT TANGENT MATRIX
C EKT IS THE (I,J) COMPONENT OF THE ELEMENT TANGENT MATRIX
    DO 105 I = 1, 8
    II = (IE-1)*NDOF + I
    B(II) = B(II) + F(I)
    DO 102 J = 1, I
    JJ = (IE-1)*NDOF + J
    EKT = B1 (I,J) +B2(I,J) +B3(I,J) +B4(I,J)-
    1 B5(I,J)-B6(I,J)-B7(I,J)-B8(I,J)+B9(I,J)
    IJ = (JJ-I)*(LBW-1) + II
    TKO(IJ) = TKO(IJ) +EKT
    102
    CONTINUE
    CONTINUE
    CONTINUE
C INTRODUCE BOUNDARY CONDITIONS
    DO 111 IJO = 1, NJOINT
    IF (NBC(IJO).EQ.O) GO TO 111
    DO 110 J = 1, NBC(IJO)
    II=(IJO - 1)*NDOF + IX(IJO,J)
    LBW1 = LBW - 1
    DO 108 K = 1. LBW1
        JJ = II - LBW + K
        IF (JJ.LE.0) GO TO 1080
        IJ = (JJ-1)* (LBW-1) + II
    TKO(IJ) = 0.0DO
1 0 8 0
        JJ = II + K
        IF (JJ.GT.NEQ) GO TO 108
```

```
            IJ=(II-1)*(LBW-1) +JJ
        TKO(IJ) = 0.0DO
    108 CONTINUE
        IJ = (II - 1)* (LBW-1) + II
        TKO(IJ) = 1.0DO
            B(II) = 0.0DO
    110
C
C SOLUTION OF THE SYSTEM
        CALL DECOMP(NEQ,LBW,TKO,IERROR)
        IF(IERROR .EQ, 1) GO TO 3774
        CALL SOLVN(NEQ,LBW,TKO,B)
        DO 112 I = 1, NEQ
        X(I) = XO(I)-B(I)
    112 CONTINUE
        CALL CONVRG(XO,X,IER,NEQ,EPSLON,ITER)
        ITER = ITER + 1
        IF (ITER.EQ.NITER) GO TO 431
        IF (IER.EQ.2) GO TO 430
        IF(IER.EQ.0) GO TO 118
        DO 115 I = 1, NEQ
    115 XO(I) = X(I)
        GO TO }77
430 IERROR = 1
    GO TO 3774
431 WRITE(2,900) NITER, P
900 FORMAT(' NO CONVERGENCE IN',I3,' ITERATIONS AT P=',E13.6/)
    GO TO 901
C* AFTER CONVERGENCE, OBTAIN STRESSES AND STRAINS
C AT THE CURRENT LOAD LEVEL
C
    118 CONTINUE
        EMAXP = 0.ODO
        EMAXN = 0.ODO
        SUME = 0.0DO
        DO 550 IE = 1, NELEM
        DO 500 J = 1, 8
        K=(IE-1)*NDOF +J
        XE(J) = X(K)
        CONTINUE
        DO 540 K = 1, NGAUSS
        FACTOR = 0.0
        DO 501 I = 1, 8
    FACTOR = FACTOR + XE(I)*EM1 (I,K)
    EPLUS = 0.5DO * FACTOR**2
    EMINUS = EPLUS
    DO 505 I = 1, 8
        EPLUS = EPLUS + (EN1(I,K)-H*0.5D0*EM2(I,K))*XE(I)
        EMINUS = EMINUS + (EN1(I,K) +H*0.5D0*EM2(I,K))*XE(I)
505 CONTINUE
        IF(EPLUS.GT.O.ODO .AND. EMINUS.GT.0.0) GO TO 506
        IF(EPLUS.GT.O.0DO .AND. EMINUS.LE.0.0) GO TO 507
        IF(EPLUS.LE.O.ODO .AND. EMINUS.LE.0.0) GO TO 508
        IF(EPLUS.LE.O.ODO .AND. EMINUS.GT.0.0) GO TO 509
506 EPOS = EPLUS
    IF(EMINUS.GT.EPOS) EPOS=EMINUS
    ENEG = 0.0D0
```

GO TO 530
EPOS = EPLUS
ENEG = EMINUS
GO TO 510
EPOS $=0.000$
ENEG = EPLUS
IF (DABS(EMINUS).GT.DABS(ENEG)) ENEG = EMINUS
GO TO 530
EPOS = EMINUS
ENEG = EPLUS

* FINDS THE POSITION OF THE NEUTRAL AXIS
$\operatorname{ESTR}(1)=\operatorname{EMINUS}$
$F I(1)=-1.0 D 0$
$\operatorname{ESTR}(\mathrm{NG} 2)=$ EPLUS
FI(NG2) $=1.0 \mathrm{DO}$
DO $512 \mathrm{~L}=1$, NGAUSS
SUM $=0.5 *$ FACTOR**2
DO 511 I $=1,8$
$\operatorname{SUM}=\operatorname{SUM}+(\operatorname{EN} 1(I, K)-\operatorname{GAP}(L) * H / 2.0 * E M 2(I, K)) * X E(I)$
$\operatorname{ESTR}(L+1)=\operatorname{SUM}$
$\operatorname{FI}(L+1)=\operatorname{GAP}(L)$
CONTINUE
DO $515 \mathrm{I}=1$, NG1
$\operatorname{PROD}=\operatorname{ESTR}(\mathrm{I}) * \operatorname{ESTR}(\mathrm{I}+1)$
IF (PROD.LE.O.ODO) GO TO 516
CONTINUE
$\mathrm{XN}=\mathrm{FI}(\mathrm{I})-\operatorname{ESTR}(\mathrm{I}) *(F I(\mathrm{I}+1)-\mathrm{FI}(\mathrm{I})) /(\operatorname{ESTR}(\mathrm{I}+1)-\operatorname{ESTR}(\mathrm{I}))$
IF (ESTR(I).EQ.O.ODO) GO TO 518
IF (ESTR(I).LT.O.ODO) $\mathrm{HN}=(1.0 \mathrm{DO}-\mathrm{XN}) * \mathrm{H} / 2.0 \mathrm{DO}$
$\operatorname{IF}(\operatorname{ESTR}(I) . G T \cdot 0.0 D 0) \mathrm{HN}=(1.0 \mathrm{DO}+\mathrm{XN}) * \mathrm{H} / 2.0 \mathrm{DO}$
GO TO 520
$\operatorname{IF}(\operatorname{ESTR}(I+1) . L T \cdot 0.0 D 0) H N=(1.0 D 0+X N) * H / 2.0 D 0$
$\operatorname{IF}(\operatorname{ESTR}(I+1) . G T \cdot 0.0 D 0) \mathrm{HN}=(1.0 \mathrm{DO}-\mathrm{XN}) * \mathrm{H} / 2.0 \mathrm{DO}$
SUME $=$ SUME $+(\mathrm{HN} / \mathrm{H}) *($ EO*EPOS $) * * X K T * G A W(K)$
IF (EPOS.LT.EMAXP) GO TO 538
EMAXP = EPOS
IF (DABS (ENEG).LT.DABS (EMAXN)) GO TO 540
EMAXN = ENEG
CONTINUE
CONTINUE
SMAXP = EO*EMAXP
SMAXN $=$ EO*EMAXN
IF (DABS (SMAXN). LE.FC) GO TO 560
SMAXN $=$ SMAXN $-((E 0+E N * E 0) * E M A X N+F C *(1.0+E N))$
IF (SUME.EQ.O.ODO.OR. SMAXP.EQ.O.ODO) GO TO 563
SUME $=$ SUME $/(2.0 *$ NELEM* (XKT +1.0$) *$ SMAXP**XKT $)$
FTT = FT * SUME**(-1.0D0/XKT)
GO TO 564
$F T T=F T$
IF (SMAXP.GE.FTT) GO TO 3774
DEFL $=0.0 D 0$
DO 565 IE $=1$, NELEM
$\mathrm{J}=(\mathrm{IE}-1) * \mathrm{NDOF}+3$
IF (DABS (X(J)).GT.DABS(DEFL)) DEFL $=X(J)$
CONTINUE
$J=N E Q-1$
IF (DABS(X(J)).GT.DABS(DEFL)) DEFL = X(J)

```
    IF (NP.EQ.0) PDEFL = FQ3
    IF (NP.NE.0) PDEFL = P3
    CONTINUE
    IF (NP.EQ.O) GO TO 4500
    IF (IERROR.EQ.1) GO TO 7330
    IF (SMAXP.GT.FTT) GO TO 7331
    IF (SMAXP.EQ.FTT) GO TO 7337
    \(\mathrm{P}_{1}=\mathrm{P} 3\)
    IF (SUME.EQ.O.ODO.OR.SMAXP.EQ.O.ODO) GO TO 5650
    SMAX1 = SMAXP*SUME**(1.ODO/XKT)
    GO TO 5655
    SMAX1 = SMAXP
    DO \(833 \mathrm{~J}=1\), NEQ
    \(X P(J)=X(J)\)
    GO TO 8334
    P2 \(=\) P3
    GO TO 8334
\(7331 \quad \mathrm{P} 2=\mathrm{P} 3\)
    NFAIL \(=1\)
    SMAX2 \(=\) SMAXP*SUME**( \(1.0 D 0 / \mathrm{XKT}\) )
8334 IF (P1.EQ.O.ODO) GO TO 8338
    TOLP \(=\left(P 2-P_{1}\right) / \mathrm{P} 1\)
    IF (TOLP.LE.TOP) GO TO 7338
    GO TO 8336
8338 IF (P2.LE.0.1DO) GO TO 7338
8336 IF (NFAIL.EQ.1) GO TO 8340
    \(P 3=(P 1+P 2) / 2.0\)
    GO TO 3773
\(8340 \mathrm{P} 3=\mathrm{P} 1+(\mathrm{P} 2-\mathrm{P} 1) *(\mathrm{FT}-\mathrm{SMAX} 1) /(\mathrm{SMAX} 2-\mathrm{SMAX} 1)\)
    GO TO 3773
\(7337 \mathrm{P}=\mathrm{P} 3\)
    \(P P=P 3\)
    \(P A V=P 3\)
    GO TO 7339
    \(I F(P 1 . E Q .0 .0 D 0) P 2=0.0 D 0\)
    \(\mathrm{P}=\mathrm{P} 2\)
    \(\mathrm{PP}=\mathrm{P} 1\)
    \(P A V=(P+P P) / 2.0\)
4500 IF (IERROR.EQ.1) GO TO 4330
        IF (SMAXP.GT.FTT) GO TO 4330
        IF (SMAXP.EQ.FTT) GO TO 4337
        IF (NFLAG.EQ.1) GO TO 4331
        \(F Q 1=F Q 2\)
        \(F Q 2=2.0 D 0 * F Q 2\)
        GO TO 4580
\(4331 \quad F Q 1=F Q 3\)
4580 DO \(4833 \mathrm{~J}=1\),NEQ
\(4833 \mathrm{XP}(\mathrm{J})=\mathrm{X}(\mathrm{J})\)
```

```
    GO TO 4334
\(4330 \quad\) NFLAG \(=1\)
    \(F Q 2=F Q 3\)
4334 IF (FQ1.EQ.O.0DO) GO TO 5338
    \(T O L P=(F Q 2-F Q 1) / F Q 1\)
    IF (TOLP.LE.TOP) GO TO 4338
    IF (NFLAG.EQ.0) \(\mathrm{FQ} 3=\mathrm{FQ} 2\)
    IF (NFLAG.EQ.1) \(F Q 3=(F Q 1+F Q 2) / 2.0 D 0\)
    GO TO 3773
    \(\mathrm{P}=\mathrm{FQ} 3\)
    \(P P=F Q 3\)
    \(P A V=F Q 3\)
    GO TO 4339
    \(\mathrm{P}=\mathrm{FQ} 2\)
    \(P P=F Q 1\)
    \(P A V=(P+P P) / 2.0\)
4339 CONTINUE
901 RETURN
    END
C
    SUBROUTINE SHAP (DELT)
C* THIS SUBROUTINE CALCULATES DERIVATIVES OF SHAPE FUNCTIONS
        IMPLICIT REAL*8 (A-H,O-Z)
        COMMON/CX1/GAP (5), \(\operatorname{GAW}(5), \operatorname{EN} 1(8,5), \operatorname{EM} 1(8,5), \operatorname{EM} 2(8,5), N G A U S S\)
    IF (NGAUSS.EQ.5) GO TO 5
    IF (NGAUSS.EQ.4) GO TO 4
C *** 3 POINT GAUSSIAN INTEGRATION
        \(\operatorname{GAP}(1)=-0.774596669241483 D 0\)
        \(\operatorname{GAP}(2)=0.0 \mathrm{DO}\)
        \(\operatorname{GAP}(3)=-\operatorname{GAP}(1)\)
        GAW (1) \(=0.555555555555556 \mathrm{D} 0\)
        GAW (2) \(=0.888888888888889\) D0
        GAW(3) \(=\operatorname{GAW}(1)\)
        GO TO 10
    C \(\quad * * * 4\) POINT GAUSSIAN INTEGRATION
    \(4 \quad \operatorname{GAP}(1)=-0.861136311594053 \mathrm{DO}\)
        \(\operatorname{GAP}(2)=-0.339981043584856 \mathrm{D} 0\)
        \(\operatorname{GAP}(3)=-G A P(2)\)
        \(\operatorname{GAP}(4)=-\operatorname{GAP}(1)\)
        GAW(1) \(=0.347854845137454 \mathrm{DO}\)
        GAW (2) \(=0.652145154862546 \mathrm{DO}\)
        GAW (3) \(=\) GAW (2)
        \(\operatorname{GAW}(4)=\operatorname{GAW}(1)\)
        GO TO 10
C *** 5 POINT GAUSSIAN INTEGRATION
\(5 \operatorname{GAP}(1)=-0.906179845938664 \mathrm{DO}\)
    \(\operatorname{GAP}(2)=-0.538469310105683 D 0\)
    GAP (3) \(=0.0 \mathrm{DO}\)
    \(\operatorname{GAP}(4)=-\operatorname{GAP}(2)\)
    \(\operatorname{GAP}(5)=-\operatorname{GAP}(1)\)
        GAW (1) \(=0.236926885056189 \mathrm{D} 0\)
        GAW (2) \(=0.478628670499366 \mathrm{DO}\)
        GAW (3) \(=0.568888888888889 \mathrm{DO}\) 。
        GAW (4) \(=\) GAW (2)
        GAW (5) \(=\operatorname{GAW}(1)\)
C INITIALISES EN1,EM1,EM2
10 DO 150 IL \(=1,8\)
    DO 350 IK \(=1\), NGAUSS
```

```
            ENT(IL,IK)=0.ODO
            EM1(IL,IK) = 0.0DO
            EM2(IL,IK) = 0.ODO
        CONTINUE
        CONTINUE
        DO 250 I = 1, NGAUSS
            EN:(1,I)=(-0.75D0+0.75D0*GAP(I)**2)/DELT
            EN1(2,I) = (-1.D0-2.DO*GAP(I) +3.DO*GAP(I)**2)*0.25D0
            EN1(5,I) = (0.75D0-0.75D0*GAP(I)**2)/DELT
            EN1(6,I)=(-1.D0+2.D0*GAP(I)+3.DO*GAP(I)**2)*0.25D0
                EM1(3,I)=(-0.75D0+0.75DO*GAP(I)**2)/DELT
                EM1(4,I) = (-1.DO-2.D0*GAP(I)+3.DO*GAP(I)**2)*0.25D0
                EM1(7,I) = (0.75D0-0.75D0*GAP(I)**2)/DELT
                EM1 (8,I) = (-1.DO+2.D0*GAP(I) +3.DO*GAP(I)**2)*0.25D0
                EM2(3,I) = 1.5D0*GAP(I)/(DELT**2)
                EM2(4,I) = (-2.DO+6.D0*GAP(I))/(4.DO*DELT)
                EM2(7,I) = -1.5DO*GAP(I)/(DELT**2)
                        EM2(8,I) = (2.D0+6.D0*GAP(I))/(4.DO*DELT)
                        CONTINUE
        RETURN
        END
C
    SUBROUTINE DECOMP(NN,LHB,AA,IERROR)
C* THIS SUBROUTINE DECOMPOSES A MATRIX USING CHOLESKY
C METHOD FOR BANDED,SYMMETRIC,POS. DEFN. MATRIX
    IMPLICIT REAL*8(A-H,O-Z)
        DIMENSION AA(672)
    TKO IS STORED COLUMN - WISE.
        IERROR = 0
        KB = LHB-1
    DECOMPOSITION
        IF(AA(1).LE.0.DO) IERROR=1
        IF(IERROR.EQ.1) RETURN
        AA(1) = DSQRT(AA(1))
        IF(NN.EQ.1) RETURN
        DO 551 I = 2, LHB
            AA(I) = AA(I)/AA(1)
        DO 590 J = 2, NN
            J1 = J-1
            IJD = LHB*J-KB
            SUM = AA(IJD)
            KO = 1
            IF(J.GT.LHB) KO=J-KB
        DO 555 K = KO, J1
            JK = KB*K+J-KB
            SUM = SUM-AA(JK)*AA(JK)
            IF(SUM.LE.O.DO) IERROR=1
            IF(IERROR.EQ.1) RETURN
            AA(IJD) = DSQRT(SUM)
        DO 568 I = 1,KB
            II=J +I
            KO=1
        IF (II.GT.LHB) KO=II-KB
        SUM = AA (IJD+I)
        IF(I.EQ.KB) GO TO }56
        DO 540 K=KO, J1
        JK = KB*K+J-KB
        IK = KB*K+II-KB
```

```
    540 SUM = SUM-AA(IK)*AA(JK)
    565 AA(IJD+I) = SUM/AA(IJD)
    568 CONTINUE
    590 CONTINUE
        RETURN
        END
C
        SUBROUTINE SOLVN(NN,LHB,AA,S)
C* THIS SUROUTINE SOLVES CALLS A MATRIX SOLVER TO THE SYSTEM
    IMPLICIT REAL*8(A-H,O-Z)
    DIMENSION AA(672),S(84)
C FORWARD SUBSTITUTION
            KB = LHB-1
            S(1) = S(1)/AA(1)
            IF(NN.EQ.1) GO TO 685
            DO 680 I = 2, NN
                I1 = I-1
                KO = 1
            IF(I.GT.LHB) KO=I-KB
                SUM = S(I)
            II = LHB*I-KB
            DO 675 K = KO, I 1
                IK = KB*K+I-KB
    675 SUM = SUM-AA(IK)*S(K)
            S(I) = SUM/AA(II)
    680 CONTINUE
C BACKWARD SUBSTITUTION
    685 N1 = NN-1
            LB = LHB*NN-KB
            S(NN)=S(NN)/AA(LB)
            IF(NN.EQ.1) RETURN
            DO 699 I = 1, N1
            II=NN-I+1
            NI=NN-I
            KO = NN
            IF (I.GT.KB) KO=NI +KB
            SUM = S(NI)
            II = LHB*NI-KB
            DO 690 K = II, KO
            IK = KB*NI+K-KB
    690 SUM = SUM-AA(IK)*S(K)
            S(NI) = SUM/AA(II)
    6 9 9 ~ C O N T I N U E ~
            RETURN
            END
C
    SUBROUTINE CONVRG(XO,X,IER,NEQ,EPSLON,ITER)
C* THIS SUBROUTINE CHECKS THE CONVERGENCE OF SOLUTION VECTOR
            IMPLICIT REAL*8(A-H,O-Z)
            COMMON/CX2/DIFP,NINT
            DIMENSION XO(84),X(84)
            IER = 0
            PARX0 = 0.0DO
            PARDIF = 0.0D0
            PARX = 0.0DO
            DO 602 I = 1, NEQ
            PARXO = PARXO + XO(I)**2
            PARX = PARX + X(I)**2
```

```
6 0 2
1002
6 0 6
6 0 3
```



```
605 IER = 2
    RETURN
    END
C
    SUBROUTINE GXPR(XW,N,DELTA,GXP)
    IMPLICIT REAL*B(A-H,O-Z)
    DIMENSION XW(N),DELTA(N)
    COMMON/CX1/GAP(5),GAW(5),EN1(8,5),EM1 (8,5),EM2 (8,5),NGAUSS
    COMMON/C4/W,H,SPAN,PLN,GAMA 1,SREF,XKC, XKT
    COMMON/CX4/NELEM,NBC(21),IX(21,4)
        CALL COLUMN(XW,N,PU)
    GXP = PU - PLN*(GAMA1*XW(N-1) + XW(N))
    I = 0
6644 I = I + 1
    XW(I) = XW(I)*1.01D0
    CALL COLUMN(XW,N,PU1)
    XW(I) = XW(I)*0.9900/1.01D0
    CALL COLUMN(XW,N,PU2)
    XW(I) = XW(I)/0.99D0
    DELTA(I) = (PU1 - PU2)/(0.02D0*XW(I))
    IF (I.GE.(N-2)) GO TO }120
    GO TO 6644
1202 DELTA (N-1) = -PLN*GAMA1
    DELTA(N) = -PLN
    RETURN
    END
```


4. SAMPLE INPUT/OUTPUT FILE

SAMPLE INPUT DATA FILE FOR RELIABILITY ANALYSIS

```
15870.0 0.038 0.089
1.0 1.25 1.5
9660000.0 2.0 10.0 5.0
4 23
12
1 3
5 1
3
5 3 3 3 1 1
0 0 0 0
0.01
10
3514.0 6738.0 3.97
0.0 33.845 7.8559
4.03 29.861 2.9111
1.0 0.15
0.75 0.15
4538.4
7.036
8.358
1.025
0.881
3.20.6
```


SAMPLE OUTPUT FILE

```
CODES : 3 3 3 3 1 1
BETA = 5.136
ITERATIONS = 4
TOLB = 0.0100
\begin{tabular}{lllrrll} 
VECTOR XO & \(: 4693.6\) & 7.053 & 8.538 & 1.025 & 0.881 \\
VECTOR X X & \(: 3878.8\) & 32.302 & 30.358 & 1.3053 & 1.0553 \\
SENSITIVITY COEFFS. & \(:\) & 0.8282 & 0.0000 & 0.0000 & 0.3963 & 0.3963
\end{tabular}
L}=3.2 \mp@subsup{\phi}{\textrm{p}}{}=0.
```


EXPLANATIONS

Vector Xo : Initial (trial) value for the variables.
Vector X : Coordinates of the most likely failure point (design point)

Sensitivity coefficients : Sensitivity of β to each of the variables. In this case β is most sensitive to $\mathrm{X}(1), \mathrm{X}(3)$ and $x(5)$. It is not sensitive to $X(2)$ and $X(3)$.

Solution corresponding to $: L=3.2 \mathrm{~m}, \phi_{\mathrm{p}}=0.6$

[^0]: The University of British Columbia
 2075 Wesbrook Place
 Vancouver, Canada
 V6T 1 W5

