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A B S T R A C T 

An analytical procedure, which retains the influence of finite deflec

tions, is developed herein for the dynamic behaviour of rectangular shaped 

rigid-plastic beams. In the general formulation of the problem deformation 

is assumed to proceed under two distinct mechanisms depending on the 

extent to which the value of the peak pressure exceeds the static collapse 

pressure of the beam. These mechanisms are described by kinernatically 

admissible velocity fields that satisfy the appropriate continuity 

conditions. The governing equations of motion are derived from a varia

tional statement consisting of the principle of virtual work and D'Alembert's 

principle. The conventional parabolic yield surface (which describes the 

coupling action between axial forces and bending moments at yield) and its 

associated flow rule are adopted to describe the plastic behaviour of the 

beam material. The kinematic small but finite deflection analysis, in which 

the membrane forces and bending moments interact, generally leads to 

basic equations which are of nonlinear character. These resulting equa

tions are solved analytically and closed form expressions are developed for 

the prediction of maximum permanent deformation of the beam. A dynamic 

membrane analysis is carried out in those cases when the input energy is 

sufficiently high that the beam undergoes moderately large deformation 

(i.e. deflections of the order of beam thickness). Finally the dependence 

of the permanent deflection on the applied pressure and impulse is obtained 

for a family of rectangular pulses. This relationship is represented by an 

isoresponse curve in a form convenient for direct engineering use. 
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L I S T O F S Y M B O L S 

All symbols are specifically defined where they are first introduced in the 

text. The principal symbols are listed here for convenience. When more 

than one meaning has been assigned to a symbol, the correct use will be 

obvious from the context in which they are being used. 

A total cross-sectional area of the beam 

Ai, A 2 areas of f u l l y plastic compressive and tensile regions on either 

side of the zero-stress axis 

A are of the cross-section bounded by the zero stress axis and the e J 

equal area axis 

A , C coefficients of the n* nsine term i n the Fourier series given n n ° 
by Equations (3.66) and (3.74) 

B , D coefficients of the n t ncosine term i n the Fourier series given n n 0 

by the Equations (3.65) and (3.74) 

E modulus of elasticity 

F (1//2, <f>) incomplete elliptic integral of the first kind with modulus 1//2 

and amplitude <t>. 

I total impulse (area under the pressure-time curve) 

I ideal impulse corresponding to an initial condition on 

velocity 

I second moment of area of the beam cross-section s 
K complete elliptic integral of the first kind with modulus 1//2 

K.E. kinetic energy 

L half-beam length 

M critical bending moment 
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M(x) bending moment at any section distance x from the midspan 

M limit moment i n pure bending 

M bending moment at incipient yield 

N critical axial load 

N Q limit axial force i n pure tension 

P static load per unit length 

P * static load carrying capacity at finite deflections 

P(t) dynamic pressure-time loading function 

P dynamic load intensity m J J 

P Q static collapse pressure according to the linear 

bending-only-theory defined by Equation (2.15) 

P P ^ P ^ nondimensional pressure parameter 

P nondimensional pressure parameter corresponding to a step 

load which causes the same central deflection as the equivalent 

rectangular pressure pulse 

Q defined by Equation (4.8b) 

R ratio of the input kinetic energy to the maximum strain energy 

that can be absorbed by the beam 

S area swept by the deforming beam mechanism 

T time at which the travelling hinges arrive at the midspan 

T g fundamental period of elastic vibration of the beam 

V Q amplitude of the equivalent sinusoidal velocity profile at the 

initiation of string phase 

6W ^ external virtual work done by the loads ext 3 

6VnLn̂  internal virtual work dissipated i n plastic deformation 

Zp plastic section modulus 

a defined by Equation (3.45) 
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b beam width 

b i defined by Equation (4.14a) 

c constant defined i n Equation (3.59) 

Ci defined by Equation (4.14b) 

e distance between the zero stress axis and the equal area axis 

f yield function 

g(t) given by Equation (3.125b) 

h beam depth 

i number of statical redundancies of the beam 

k 1//2; modulus of the elliptic integrals 

m mass per unit length of beam 

m M/M : dimensionless moment o 
n N/N ; dimensionless membrane force o 

q defined by Equation (4.15b) 

r(t) distance between the plastic hinge and the support point at 

time t 

r p l e v e r arm of the pl a s t i c moment defined by Equation (2.4) 

s defined by Equation (4.15a) 

t time 

t^ time at which beam reaches i t s permanent position 

t the instant at which the s t r i n g phase i s i n i t i a t e d 

s 

t* * t - x 

u F (1//2, <f>); argument of the Jacobian elliptic functions 

w transverse deflection of the beam defined i n Figure 3.2 

w centrepoint deflection 
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x coordinate along beam axis (measured from beam centre) 

x coordinate along beam axis (measured from the left-hand o 

support) 

y, z orthogonal coordinate axes defined i n Figure 2.4 

y, y2 centroidal distances of the areas A ^and A ^on either side of 

the equal area axis (measured from the latter axis as shown i n 

Figure 2.4) 

a defined by Equation (3.42) 

g I 2/mhP Q; nondimensional impulse parameter 

g I 2 /mhP ; location of the v e r t i c a l asymptote i n the P - 3 o o o 3 F 

plane 

g the value of the impulse parameter beyond which the dynamic c 
pulse can be characterized by a step load 

g the value of g which marks the t r a n s i t i o n from Phase II (b) to m 

Phase I (b) i n the medium pressure range and i s given by 

Equation (3.84) 

Y defined by Equations (3.95) and (4.9a) 

5 f i r s t variation or v i r t u a l change of a quantity 

6̂  W q (t ̂  ; f i n a l p l a s t i c displacement of mid-point 

A increment of a quantity 

£ axial extension of the equal area axis 

C defined by Equation (3.86) 

n.n c defined by Equations (3.132) and (3.131c) 

0 beam rotation at the supports 

K curvature 

A defined by Equation (3.36) 
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A defined by Equation (3.102) 

u dimensionless time scale defined by Equation (3.75) and given 

in terms of P, 3 by Equation (3.81) 

u value of u when B is replaced by 3 i n Equation (3.81) c c 
v defined by Equation (3.38) 

£ dummy integration variable 

p(t) plastic hinge position (measured from the midspan) at time t 

P Q initial hinge location given by Equation (3.127) 

o stress 

O Q yield stress i n pure tension 

x pulse duration 

<f> cos^/tw^a); amplitude of the elliptic integral F 

<j>g value of <J> at initiation of string phase given by Equation 

(3.53b) 

$(x o) shape function at initiation of string phase 

X ax; defined by Equation (3.91) 

i|» rotation at the hinge section 

¥ (t*) n t htime-dependent coefficient i n the Fourier series 

representation of the string phase solution given by Equation 

(3.61) 

to dimensionless time scale defined by Equation (3.68) 
c 

Q strain energy 

difference between the values of the considered quantity on 

either side of a travelling hinge 
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( ) f final state of ( ) 

( ) approximate value of ( ) 
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CHAPTER I 

INTRODUCTION 

1. 

1.1 BACKGROUND STUDY 

The behaviour of structures under transient dynamic loads sufficiently 

strong to cause large permanent deformation is a subject of considerable 

interest, but is also one of great complexity from both a theoretical and 

experimental standpoint. Severe dynamic pressure pulses can arise in a 

wide variety of practical situations. Examples are in the slamming of a 

ship's hull in heavy seas, in buildings subjected to internal gaseous 

explosions, in containment pressure vessels for nuclear reactors, in water 

wave impact on a barrier or offshore platform, in various military 

applications where pulses of this type are generated by the detonation of 

high explosives, and in collisions of aircrafts, automobiles, trains and 

hydrovehicles involving hypervelocity impact. In many of these 

circumstances the intensity of the dynamic loads are so large as to cause 

significant plastic deformation of the structure. This behaviour cannot be 

described by the equations of the elastic domain (as may be found in 

standard texts on classical vibration theory of elastic structures), but 

must be interpreted by relations capable of including large "plastic 

strains" and permanent deformations encountered in these processes. It is 

of general engineering interest to have techniques at hand which enable 

reasonable predictions of these permanent structural damages and from 

viewpoint of engineering design to improve energy absorbing capabilities 

of structures to withstand the destructive action of high-intensity 

transient loads. Some of the most damaging effects are produced by 

explosive detonations in the close proximity of structures, usually the 



2. 
result of air-blast loading. Therefore, the general dyraamic "response" of 

structures to blast loading situations is an all inclusive example and sub

ject of current interest. A principal feature of the response to transient 

loading is the permanent deformation that occurs in structural elements, 

and it is clear that these deformations must not spread beyond tolerable 

limits. Situations often arise where limited deformations play an important 

role in serviceability of a structure undergoing a large deformation. 

Therefore, in situations where the severity of loading is such that perma

nent structural damage occurs, the design engineer is often concerned 

with the magnitude of the resulting deformations. The major part of this 

thesis is devoted to estimation of permanent displacements of structures 

subjected to violent dynamic overloads of transient nature. The discussion 

shall be restricted to large plastic deformations of basic structural 

elements with particular emphasis on beams and will not be concerned with 

complicated structures comprising many of the basic elements. It should 

be noted that we are not concerned with localized plastic flow which lead to 

failure of the structure by shearing or tearing caused by sufficiently high 

levels of dynamic load. However, failure from a structural standpoint such 

as tearing and shear failures in explosively loaded clamped beams were 

studied and discussed by Menkes and Opat (Reference 1). In what follows 

we shall assume that conditions of load intensity and distribution, geometry 

of the structure, and material behaviour are such that general structural 

deformation occurs, even though the latter might be a rather restricted 

aspect of structural behaviour. 

1.2 L ITERATURE REVIEW 

The general field of dynamic plastic analysis of structures is broad and 



3. 
the pertaining published literature is far too extensive to be adequately 

covered by this report. A number of survey articles on dynamic plastic 

structural analysis have appeared during the last few years (Reference 

2-5) including a recent compilation and analysis of published research 

results on air-blast response of beams and plates by Ari-Gur et al 

(Reference 6). Among the numerous articles in the field of dynamic 

plasticity only a few topics of interest will be discussed, with consideration 

largely given to the theoretical methods of analysis of beams. However, 

those wishing to know more of other aspects of this field are referred to 

the thorough review articles mentioned (Reference 2-6). In what appears 

to be one of the earliest works in this field, Lee and Symonds (Reference 

7) treated with a comparatively simple method of analysis the problem of a 

transverse impact force (assumed to be a symmetrical triangular pulse 

shape) applied at the midpoint of a uniform beam with free ends. The 

analysis was based on a rigid-plastic idealization of the beam material. 

This assumption led to the use of a localized plastic deformation called a 

"plastic hinge" as a means of describing the deflection process, the 

plastic hinge mechanism is not restricted to dynamic analyses and has 

widely been used in static problems. The concept has evolved from the 

most valuable early studies of plastic theory by Lord Baker (Reference 8) 

and others at the University of Cambridge. The rigid-plastic assumption 

has gained wide favour in dynamic plasticity in view of its relative 

mathematical simplicity. However, it is restricted to materials that exhibit 

a certain amount of ductility (e.g. mild steel). Non-ductile or brittle 

materials tend to act completely elastic and an analysis using rigid-plastic 

model is not applicable. The rigid-plastic analysis is in error for materials 

that exhibit appreciable strain-hardening. Lee and Symonds analysis 
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(Reference 7) had an additional limitation i n that the deformations were 

assumed to be sufficiently small for the usual small deflection beam theory 

to be applicable. They introduced the concept of "moving plastic hinge" i n 

order to satisfy certain kinematic requirements during the motion of the 

beam. 

Symonds (Reference 9) extended the analysis of (Reference 7) to 

include the response of the free-free beam to other types of pulse loads. 

In his treatment of a free-free rigid-plastic beam acted on by a concen

trated dynamic load he concluded that the final plastic deformation for any 

load shape was dependent primarily on the impulse of the load (namely the 

time integral of the applied pressure) and not on the precise details of its 

time history. However, his conclusions were based on loadings which were 

essentially "impulsive"t. Evidently the shape of the load was not import

ant for the range of maximum load levels that were considered. 

In a subsequent paper (Reference 10) Symonds obtained simple solu

tions for clamped and simply supported beams subjeted to uniformly 

distributed loading of time histories that satisfied the restricted definition 

of the so-called "blast type" loading (i.e. loads that instantaneously rise 

to a peak magnitude and then monotonically decrease in a short inte r v a l of 

time. Rectangular pulses are a special class of blast-type loads). 

Symonds and Mentel (Reference 11) studied the influence of axial 

t By impulsive loading it is implied that the load time history can be 
described by a Dirac delta function which instantaneously imparts some 
velocity profile to the structure. T h i s impulse that coresponds to an 
initial condition on velocity is termed "ideal impulse" or "pure impulse" 
and must be distinguished from the impulse which is defined as the area 
under the dynamic load-time curve. 
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restraints on the behaviour of rigid-plastic beams loaded with a transverse 

pressure impulse. In this study the beam was assumed to have a 

rectangular cross-section and the central portion of the beam was given an 

initial velocity which led to a greatly simplified analysis. The theoretical 

work of (Reference 11) predicted permanent deformations which were 

considerably smaller than those obtained from the corresponding simple 

first order bending-only-theory even when maximum deflections only of the 

order of the beam depth were permitted. Symonds and Mentel also 

described the gradual transition of clamped and simply supported beams 

from an initial behaviour, governed by the interaction between axial forces 

and bending moments, to a final stage where deformations were governed 

primarily by in-plane membrane (i.e. axial) forces. 

Humphreys (Reference 12) conducted a series of experimental tests on 

flat steel beams using sheet explosives to provide sufficiently high uniform 

impulsive loading in order to produce large plastic deformations. The 

resulting final deformations were compared with the rigid-plastic theory of 

Symonds and Mentel (Reference 11) and it was found that the theoretical 

predictions were generally higher by about 20-30 percent than the 

observed deformations. The experimental results also revealed that the 

superimposed elastic vibrations were small, amounting (in peak amplitude) 

to about 5 percent of the plastic motion. It was then concluded that for 

engineering purposes the rigid-plastic solution including axial constraints 

gave a fairly good approximation to the level of plastic damage encountered 

under impulsive loading. Dynamic analysis of rigid-plastic curved beams 

with axial constraints under impulsive loading has been presented by Chen 

et al (Reference 13). The results were compared with the rigid-plastic 

straight beams treated by Symonds and Mentel (Reference 11) and 
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favourable agreement was achieved. 

In his three part presentation, Nonaka (References 14 - 16) made a 

theoretical and experimental investigation into the response of clamped 

beams, with constraints against axial displacements at the ends. The beam 

carried a concentrated mass at its centre and was subjected to large 

transverse impact loading at the mass. In Part 1 (Reference 14) Nonaka 

aimed at solving the plastic interaction problem of bending, extension and 

shear based on a fixed yield surface (parabolic cylinder) and the assump

tion of a rigid, perfectly plastic beam subjected to impulsive-type loading. 

It was found that the shear effect played a dominant role in beams with 

noncompact cross-sections (i.e. I-sections) and also if the attached mass 

was small in comparison with the beam mass. It was also surmized that, 

for a large mass ratio the major portion of deformation occured during the 

last phase of motion in which the two halves of the beam rotated about the 

clamped ends (i.e. deformation occurred under a one-degree-of-freedom 

mode). In Part 2, the author attempted to make a more realistic calculation 

for the duration of load pulse, strain rates (in an approximate manner) and 

elastic effects. The analysis was based upon a simplified one degree of 

freedom mode assumption and shear deformations were neglected. From 

the results of the foregoing analysis it appeared that consideration of load 

duration improved the predictions of the simple rigid-plastic theory. It 

was also noted that the results of the assumption of impulsive loading (i.e. 

load with infinitely large magnitude applied for an infinitesimally short 

duration) became better when elastic effects were considered. Experi

mental results of Part 3 agreed quite well with the theoretical predictions 

of permanent deformations in Part 2 which incorporated the strain-rate and 

elastic effects. Agreement was more pronounced for aluminum specimens 
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tested. It seemed that the assumption of concentrated plastic regions or 

the one degree of freedom mode was less appropriate for mild-steel. 

Jones (Reference 15) suggested a simple method for estimating the 

combined influence of strain-hardening and strain-rate sensitivity on the 

permanent deformation of rigid-plastic beams loaded impulsively. The 

results of this work indicated that considering either strain-hardening or 

strain-rate sensitivity alone gave permanent deformations which were 

similar to those predicted by an analysis retaining both effects simultane

ously. Moreover, the results suggested that it was not necessary to 

include either of the forementioned effects for beams having large span-

depth ratios. It was proposed that the theoretical procedures could be 

simplified by using square yield surfaces which circumscribed or inscribed 

the exact parabolic yield surface. This simplification lent itself to simple 

bounds on permanent displacements which were quite accurate. The 

behaviour of rigid-plastic rectangular beams subjected to uniform 

"dynamic" step loads of finite durations were investigated by Jones 

(Reference 16) using an approximate theoretical procedure. The influence 

of finite deflections or geometry changes wre retained in the analysis but 

effects of strain-rate sensitivity and strain-hardening were disregarded. 

This theoretical procedure utilized time-independent deformation profiles 

which had a shape identical to the corresponding static collapse fields. 

However, past a certain range of magnitude of the pressure pulse, the 

deformed shapes of beams loaded dynamically are expected to be time-

dependent and consequently different from the associated static collapse 

mechanism. Further theorems which accounted for time-dependent 

response profiles had to be derived to examine the accuracy of the 

theoretical procedures of (Reference 16). 
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Krajcinovic (Reference 17) derived a closed-form solution for the 

dynamic infinitesimal response of a simply supported rigid-plastic beam 

subjected to a uniformly distributed dynamic load of arbitrary pressure-

time history. As opposed to the restrictions on the type of loading in the 

earlier literature, the method outlined in Reference 17 proved to be 

capable of dealing with cases in which the load had a finite rise time. 

Solutions for specific pulse shapes known from the previous literature 

could be obtained directly as special cases from the general formulas 

derived in Reference 17. In addition to the usual rigid-plastic restric

tions, it was asumed that the beam deformations were small and that the 

plastic interaction of bending moments with axial and shear forces were 

negligible. Major difficulties were encountered, steming from the non-

stationary nature of plastic hinges and the resulting time-dependent 

mechanisms of deformation. 

In all the preceding discussions, apart from the work by Nonaka 

(Reference 14, Part II), the theoretical analyses were based on the rigid-

plastic hypothesis and consequently elastic vibrations were ignored. 

However, the solutions so obtained are expected to be close to reality only 

if the external dynamic energy imparted to the beam exceeds the maximum 

amount of energy that could be stored in the beam in the form of elastic 

strain energy (Reference 7). The influence of material elasticity has to be 

retained in the theoretical analysis when the forementioned condition 

ceases to apply. In an excellent survey of beam studies carried out by 

Symonds (Reference 18), it was pointed out that material elasticity could 

have a significant effect on the beam response when external dynamic 

pressure pulses have durations which are comparable with the natural 

period of elastic vibrations of the beam. In an attempt to assess the range 
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of validity of rigid-plastic type of analysis Seiler, Cotter and Symonds 

(Reference 19) reconsidered the problem of simply supported beam 

subjected to impulsive loading, by treating the material of the beam as 

behaving in an approximate elastic-plastic manner. It was found that a 

complete solution of the beam problem in which both the elastic vibrations 

and plasticity condition were taken into account was extremely difficult to 

obtain. Witmer et al (Reference 20) formulated a general numerical method 

using finite-difference approach to predict large dynamic elastic and 

post-elastic responses of simple structures including beams. The proposed 

wholly numerical method took into account the effect of elastic-plastic 

behaviour, strain hardening, strain-rate and large deflections. The 

analysis, though simple and straight-forward, required considerable 

amount of computing time. 

A number of references on numerical dynamic analysis of elastoplastic 

structures can be cited in the review articles (References 2-6). These 

methods are of course required for full details of the structural response 

but remain expensive and rather time consuming. 

1.3 PURPOSE AND SCOPE OF T H E PRESENT WORK 

It is clear from a survey of the pertinent literature that there are very 

few "exact" rigid-plastic solutions which retain the influence of finite 

deflections and moreover account for the time distribution of the dynamic 

loading. Most attention has been directed towards the dynamic deformation 

of beams in which bending moments alone are believed to be preponderant 

and thereby membrane forces are disregarded in the analysis. Most 

authors also replace the external dynamic pressure by an impulse which 

imparts to the unloaded structure an initial velocity field. In practice, 
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however, the blast load which acts on a beam or structure often persists 

for a considerable period of time rather than behaving like a pure impulse 

as assumed in numerrous articles. It is the purpose of this thesis, there

fore, to study the behaviour of a r i g i d , perfectly plastic rectangular beam 

subjected to a rectangular pressure pulse of finite duration. We will 

determine the permanent deformation of a symmetrically supported beam 

whose ends are constrained against in-plane axial motions. The eventual 

goal is to construct isoresponse p l o t s ^ (or c r i t i c a l load curves) which are 

of particular interest to the designer or analyst i n interpreting the 

results. Attempt will be made to solve the problem analytically without 

recourse to extensive numerical methods or computer programmes. 

Chapter 2 is intended to familiarize the reader with the theoretical 

concepts involved i n the analytical treatment of the problem. The 

assumptions that impose important limitations on the validity of the theory 

are also introduced. 

Chapter 3 outlines an in-depth analysis of the problem, supplemented 

by a tabulated summary of the results. A discussion of the results is 

incorporated at the end of this Chapter. 

Chapter 4 describes the construction of isoresponse curves according 

to the complete theory of this thesis. 

Chapter 5 outlines the conclusions that can be drawn from the results 

of the present analysis. The applicability of the analytical treatment is 

discussed upon and also areas of future research are suggested. 

t These are curves that represent the combinations of scaled pressure and 
scaled impulse which cause the same scaled maximum displacement. For 
furthe r information see (Reference 21). 
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CHAPTER II 

THEORETICAL BACKGROUND 

2 .1 INTRODUCTION 

The object of the present chapter is to outline the underlying 

assumptions that are made in the mathematical formulation of the general 

problem and to familiarize the reader with the fundamentals of plasticity 

(both static and dynamic concepts) pertinent to the problem at hand. 

2 .2 ASSUMPTIONS 

In the present theoretical study of the dynamic behaviour of beams, 

the following assumptions have been made or implied. 

i) The material of the beam is assumed to be ductile obeying a rigid-

perfectly plastic type of stress-strain relation. This assumption is 

made because of interest that lies in moderately large plastic 

deformations and in order to simplify the mathematical analysis to a 

certain extent. Owing to its importance, a general discussion on 

the concepts of rigid-plastic idealizaion will be given in the next 

section. In structural dynamics, this assumption is known 

(Reference 18) to be appropriate if 

a) The kinetic energy associated with the external dynamic 

pressure pulse significantly exceeds the elastic strain energy 

that can be absorbed by the structure before yielding occurs. 

The ratio R of these two energies for beams must be at least 

greater than 3 so that it could be considered as adequately 

large for this purpose (Reference 22). 

and if 
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b) the load duration is short compared to the fundamental period 

of elastic vibrations of the beam. Under the rigid-plastic 

assumption the elastic deformations are ignored and the beam 

remains rigid until the first plastic hinge is generated. All the 

internal plastic deformations take place at the plastic hinge 

section only when the state of stress at that section lies on a 

fixed yield surface. These concepts are discussed in detail in 

Section 2.3. 

ii) The influence of strain rates and strain-hardening on the material 

properties are ignored. The effect of high rates of strain is to 

raise the yield stress of ductile materials and is of considerable 

importance in dynamic problems. Rate sensitivity can be accounted 

for with a simplified approach first developed by Perrone 

(Reference 23). With this approach the rate-sensitive structure is 

replaced by one which is rate-insensitive but with variable yield 

stress. This can be done by making use of the results of the 

rate-insensitive analysis to be presented herein. However, since 

the inclusion of rate sensitivity increases the complexity of the 

problem, it has been ignored in the following analysis, 

iii) The beam material is homogenous and isotropic. It therefore 

provides the same magnitude of yield moment for both positive and 

negative curvature changes. 

iv) We restrict ourselves to blast-type pulses shown in Figure 2.1 with 

each pulse consisting of an instantaneous rise to the peak pressure 

P (force per unit length of the beam) followed by a continuous 

monotonic decay to zero pressure. That is, we admit pulse shapes 

of the type 
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/ P m ( l - t / T ) 1 / N _ 1 for 0 < t < x 

P(t) =< 
( 0 for t > T 

with 

P(t) < 0 for t > 0 

The parameter n determines the rate of the pressure decay and is 

limited to take on values which satisfy the following inequality 

0 < n < 1 

The rectangular pulse (n = 1) is thus a limiting case in this family 

of pulse shapes. 

vii) The effects of the transverse shear deformations and rotary inertia 

are negligible. 

viii) Although finite deflections are considered their magnitude is 

assumed small compared to L (the half-span length of the beam). 

This requires the square of the slope of the deflection curve to be 

small compared with unity, 

ix) Stretching is assumed to result only from transverse displace

ments. Therefore horizontal displacement and accelerations are 

disregarded. The axial load can therefore be taken as constant 

over the length 

x) The yield condition and all the relations of static plasticity are 

assumed to remain valid, 

xi) The analysis to follow does not include the possibility of buckling 

but only the effect of in-plane axial forces on the stable behaviour 

of the beam. 
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xii) Longitudinal stress wave propagations through the beam are 

ignored. 

xiii) Conventional Bernoulli-Euler beam theory assumptions are made. 

These are: 

a) Originally plane cross-sections remain plane after deformation 

occurs. 

b) Stresses other than longitudinal stresses are negligible. 

c) Longitudinal yield stress is the same in flexure as in direct 

tension or compression. 

2 . 3 B A S I C C O N C E P T S O F S T A T I C P L A S T I C I T Y 

The main concepts of static plasticity used in this thesis along with 

theoretical preliminaries of the analysis are discussed in the following 

section. 

2 . 3 . 1 R I G I D - P L A S T I C I D E A L I Z A T I O N 

This material idealization results in a stress-strain relation of the type 

shown diagrammatically in Figure 2.2. According to this diagram a rigid-

plastic beam has an infinite rigidity until the induced longitudinal stress a 

in every fibre of the beam at a particular section reaches a constant value 

±a Q, the static yield stress. A t this point indefinite yielding can occur. 

If the influence of the shear and axial force is neglected, as is 

customary, the behaviour of a rigid-plastic beam can be described in terms 

of the bending moment M at any cross-section of the beam, and the 

corresponding angle of rotation The rigid-plastic mathematical model 

for the moment-curvature relationship is shown in Figure 2.3 and is the 

same for beams of all cross-sectional shapes. According to this model, no 



deformation occurs until the bending moment at a particular section 

reaches the limit moment M q in absolute value. Any attempt to increase 

this moment will cause unrestricted rotation of the beam in the 

corresponding sense and the beam acts as if hinged at the section with the 

only resistance being the moment M q. A "plastic hinge" i s said to occur 

at such a section where all the fibres on either side of the zero-stress 

axis are stressed to the yield stress OQ thus rendering the entire section 

"fully plastic". Figure 2.4 shows the fully plastic stress distribution on a 

typical section with one axis of symmetry. The section is being bent about 

an axis at right angles to the axis of symmetry. The portion of the 

cross-section of area Aj l y i n g above the zero stress axis is yielding i n 

compression while the plastic zone of area A2 below the zero stress axis is 

yielding in tension. In the absence of axial thrust, the resultant normal 

force on the cross-section must be zero. Therefore the longitudinal force 

equilibrium yields: 

0=o A o - o A i o z o 1 

or 

Aj = A 2 (2.1) 

where OQA1 - the total longitudinal compressive force on the fibres above 

the zero stress axis z-z, acting through the centroid of Ai 

i.e. point i n Figure 2.4. 

ando q A 2= the total longitudinal tensile force on the fibres below the 

zero stress axis z-z, acting through the centroid of A 2, i.e. 

point G> i n Figure 2.4. 

It follows from Equation (2.1) that under pure plastic bending the 

zero- stress axis divides the beam cross-section into two equal areas. The 

zero- stress axis is, in fact an "equal area" axis. In general this axis will 
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not pass through the centroid of the whole cross-section, as does the 

elastic neutral axis. However, for a doubly symmetrical section the equal 

area axis and the elastic neutral axis coincide. If the toal area of the 

cross-section is A, then 

A l = A 2 = \ A (2.2) 

Considering the moment equilibrium about the equal area axis, we have 

M = f A (yi + y 2) an (2.3) o I o 

i n which y i , y 2 are the distances of the centroids Cj, C 2 respectively, 

measured from the equal area axis. The limit moment M (also termed the 
o 

plastic moment) is the moment required to produce a plastic hinge in the 

section. Under pure plastic bending this is the greatest moment that the 

section can sustain at full plasticity. It will be shown in the next section 

that in the presence of axial force the moment producing the hinge is less 
than M . The moment M usually can be taken equal to a Z , where Z is o o 3 ^ o p p 
the plastic section modulus defined by the relation; 

M 
Z = — = ̂ Ar" (2.4) P % 2 p 

Hence, r ^ = yj + y 2 is the lever arm of the plastic moment (Figure 2.4), 
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2.3.2 PLASTIC INTERACTION OF BENDING MOMENT AND AXIAL L O A D : 

YIELD SURFACE 

The bending moment may act alone, as considered above, or in 

combination with direct axial load. In what follows the behaviour of beams 

subjected to bending moment combined with direct axial load will be 

described. We attempt to find a critical combination of axial force N and 

bending moment M that will cause a section to reach a fully plastic state of 

stress and thereby lead to the formation of a plastic hinge at that section 

of the beam. Consider the general case of cross-section having at least 

one axis of symmetry (Figure 2.5b), which coincides with the plane of 

bending. The normal axial load N acts through the weighted centre of 

area O (i.e. point where the axis of symmetry and equal area axis 

intersect) and is thought of as being tensile corresponding to positive 

state of stress. If a situation arises whereby the normal force N does not 

act at the equal area axis of the cross-section, account must be taken of 

any eccentricities of the applied load N relative to this axis, when 

calculating the bending moments. The effect of the tensile axial load N is 

to displace the zero stress axis from its original position (i.e. the equal 

area axis) by an amount e, so that an area A (shaded i n the cross-section 
6 

diagram) is transferred from compression to tension. 

From the stress distribution diagram of Figure (2.5c) the longitudinal 

force equilibrium equation can be written as: ' 

N = a A/2 + o A - a (A/2 - A ) o o e o e 
Thus 

N = 2a A (2.5) o e 
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The axial force may therefore be considered as being supported, at yield 

stress, by an inner area 2A of the section equally divided above and 

below the equal area axis. The remaining outer area of the section is 

available for bending moment. The axial force given by Equation (2.5) can 

also be thought of as the net resultant of a fictitious stress distribution of 

mangitude 2O q acting over the area A g of the cross-section. The fully 

plastic stress distribution (Figure 2.6a) can therefore be resolved into two 

parts; one part representing the original fully plastic distribution of 

stress in the absence of axial load (Figure 2.6b) and one part representing 

the fictitiously formed stress distribution carrying the axial loaa (Figure 

2.6c). Superimposing these stress distributions and considering the 

moment equilibrium about the equal area axis, yields, 

M = M - Ny (2.6) o J e 

i n which y denotes the distance of the centroid of the transferred area A 
}e e 

from the equal area axis and is given by; 

e 
n/t>(y) y dy 

e e/b(y) dy 
0 

where b(y) is the width of the section at a distance y from the equal area 

axis (Figure 2.7). Equation (2.6) can be recast into the following 

dimensionless form; 
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If = J f i T * e ( 2 ' 6 a ) 

o o o 

where N q denotes the limiting value of the axial force in simple tension 

without bending and is defined by, 

N =a A (2.8) o o 

It should be noted that the quantity y depends upon the geometry of the 

section and magnitude of the axial load, so that the right hand side of 

Equation (2.6a) is generally a non-linear function of N. It is convenient 

to define dimensionless stress variables by 

" = i ' ™ = M ( 2 , 9 ) 

o o 

by making use of Equations (2 .4) , (2.8) and (2.9) we can rewrite Equation 

(2.6a) as 

m = 1 - 2n 3 s (2.6b) 
r 
P 

The presence of axial load therefore reduces the moment carrying capacity 

of the section which would otherwise be MQ. Equation (2.6b) can be 

given a simple geometrical interpretation in a plane with rectangular 
N - M 

coordinates n = ^ and m = ^ . The resulting curve i s referred to as the 
o o 

interaction curve for combined bending and tension. Any combination of 
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axial force and bending moment that represents a point on the interaction 

curve corresponds to a fully plastic section of the beam. Points inside the 

curve represent stress distributions which are less than fully plastic and 

states of stress corresponding to points outside the curve are not 

admissible. Therefore the interaction curve may also be called the "yield 

curve" or "yield surface" of the beam cross-section. 

By considering bending to occur in the opposite sense and keeping the 

direction of the axial force unchanged, the yield curve can be completed to 

cover cases where hogging bending moment and tensile axial force are 

co-existent at a beam section. Figure 2.8 illustrates yield curves for some 

typical cross-sections, each bent about the equal area axis and acted on by 

a normal tensile force through the centre of area O. In all cases the yield 

surface is found to be convex and bounded by the rectangle with the 

vertices ( 0 , ± 1 ) , (+ 1, ± 1) in the n, m coordinate system. If the section 

is doubly symmetric, then the yield curve will also be symmetrical with 

respect to the n axis; i n the most general case, it need not be (Figure 

2.8iii, i v ) . It should be noted that for compact cross-sections (in which 

the shear area and the cross-sectional area can be assumed equal) the 

yield curve is dominated by Equation (2.6b), no matter where the zero 

stress axis may lie on the beam section. However, for non-compact 

cross-sections such as I-sections, the yield surface is based on two 

different relations between m, n depending on whether the zero stress 

axis lies on the web or on the flange. We shall hereafter restrict ourselves 

to compact cross-sections for which the plastic interaction of bending 

moment and axial load is controlled by a single equation. 



2.3.3 YIELD CONDITION AND T H E ASSOCIATED FLOW LAW 

There exists a function of the non-dimensional stress components 

(n, m), the so-called "yield function" given by; 

- - - - y e 

f (n, m) = m + 2 n - 1 (2.10) 
r 
P 

where the beam reaches its limit state of stress under a critical combination 

of axial load and bending moment when f = 0. The material cannot tolerate 

stress distributions for which f > 0. Therefore the yield condition is 

satisfied everywhere in the beam if f < 0 is maintained. 

In accordance with the rigid, perfectly plastic assumption no 

deformation occurs at a section when the state of stress at that section is 

such that f < 0. Plastic flow can only occur when the stress point (n, m) 

at a section lies on the yield surface, i.e. when f = 0. This corresponds 

to the formation of a plastic hinge at the section. The plastic deformation 

that takes place at the hinge section consists of both axial extension e and 

rotation ip as indicated by the strained geometry of the section in Figure 

(2.5d). 

The general solution is usually found using incremental theory thus we 

shall speak of increments of deformations or deformation rates 6e, 6\p 

rather than total deformation quantities, e,\J>. 

Because of the indefinite nature of perfectly-plastic flow the 

magnitudes of 6e, «5vp cannot be determined uniquely without consideration 

of other constraints. However, it is possible to obtain the ratio 6 e / f r o m 

the "flow rule" of plasticity theory. The flow rule establishes a 

relationship between the state of stress and plastic strain rate, and can be 



described in the same geometrical terms as the yield curve if associated 

plastic flow is assumed. 

Consider a set of plastic deformation axes N 6e, M 6\l» coincident with r o o 
the stress axes n, m respectively (Figure 2.9). The flow rule states that 

the plastic deformation vector with components (N Q 6e, M q 6 ^ ) is 

perpendicular to the yield curve at the corresponding stress point (n, m) 

causing these deformations (Figure 2.9). 

We may therefore express the plastic flow rule mathematically as 

follows: 

M 6* 
_° dm , f 2 i l l 
o dn 

Since the yield curve is a level curve of the yield function f (n, m ) on 

which f = 0, we can obtain an expression for its gradient dm/dn in terms 

of partial derivatives of f. We therefore have; 

0 = df = — dn+ — dm 
3 n" 3 in 

dn 3 n 3 m 

From Equations (2.11) and (2.12) it follows that 

_ o _ = i l / i l ( 2 . 1 3 ) 

MSI 3n 3 m o r 



2.3.4 COLLAPSE REQUIREMENTS 

A beam at collapse has to satisfy three conditions. First, equilibrium 

must be satisfied, that is, the internal stress variables (i.e. bending 

moments and axial loads) must be in equilibrium with the applied loads. 

Secondly, the beam at collapse must be capable of deforming as a 

mechanism, due to the formation of a sufficient number of plastic hinges. 

Each plastic hinge reduces the degree of indeterminancy of the beam by 

one. If the original number of statical redundancies of the beam is i , the 

formation of i plastic hinges will make the beam statically determinate. One 

further hinge will turn the statically determinate beam into a collapse 

mechanism. The beam with i redundancies will therefore require (i + 1) 

plastic hinges at collapse state. Thirdly, the distribution of bending 

moment and axial load must be such that the yield condition (f < 0) is not 

violated at any section of the beam. 

Therefore, the three essential conditions that have to be satisfied by a 

beam at collapse are those of; 

a) Mechanism 

b) Equilibrium (2.14) 

c) Yield (f < 0) 

If these three conditions are satisfied simultaneously, then the correct 

solution to the problem will be obtained and the corresponding applied load 

will be the exact collapse load (or limit load) of the beam. 

2.3.5 FUNDAMENTAL THEOREMS OF LIMIT ANALYSIS 

The general methods of limit analysis are based upon three 

fundamental theorems which are: 



i) The equilibrium or lower bound theorem 

ii) The kinematic or upper bound theorem 

iii) The uniqueness theorem 

The above fundamental theorems are concerned with the value of the load 

intensity at collapse of a structure. Formal proofs of these theorems will 

not be given here but instead they will be stated and described briefly. 

i) Equilibrium or Lower Bound Theorem 

According to this theorem, the applied loads cannot be critical if 

a system of stress resultants ( N , M) can be found that are in 

equilibrium with the external loads and that nowhere violate the 

yield condition (f < 0). 

Therefore any solution that satisfies the equilibrium condition 

and the yield condition of (2.14) simultaneously, gives rise to a 

lower bound estimation of the critical collapse load. The beam need 

not collapse under these circumstances since there may not be 

sufficient plastic hinges formed to produce a mechanism. Since the 

yield condition is not always reached at sufficient points to form a 

mechanism, this theorem is often referred to as the "safe 

theorem". 

ii) The Kinematic or Upper Bound Theorem 

This theorem states that, any solution derived from a kinemat

ically admissible deformation mechanism, and which satisfies the 

yield criteria at the hinge or slip lines, gives an upper bound to 

the collapse load or the correct collapse load, if the chosen 

mechanism happens to be the correct one. It may be shown that in 

deriving a solution from an assumed mechanism, the yield condition 



is not necessarily satisfied everywhere. Such a solution is an 

upper bound, i.e., collapse will occur at a lower value of the load, 

therefore the theorem is accordingly termed the "unsafe theorem". 

iii) The Uniqueness Theorem 

This theorem results from a combination of the static and 

kinematic theorems. According to this theorem, if a spatial stress 

distribution (consisting of both bending and axial stresses) is 

found which satisfies equilibrium and does not exceed the yield 

criterion at any point along the beam, and in which sufficient 

plastic hinges form to constitute a valid mechanism, then the upper 

and lower bounds coincide and this solution gives the correct 

collapse load. It can be proved that in this case the collapse 

mechanism and the bending moment distribution are unique. In 

general, an exact solution cannot be found for complicated 

structures and one has to resort to approximate solutions provided 

by the first two theorems in order to obtain close bounds for the 

critical collapse loads. 

It can be seen from the foregoing discussion that bounds on the 

collapse load can be determined by satisfying the three conditions 

of (2.14) in pairs as follows: 

r 
Mechanism Condition 

Upper bound (unsafe) 

Exact «Z Equilibrium Condition 

Yield Condition 

Lower bound (safe) 
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2.4 BASIC CONCEPTS OF DYNAMIC PLASTICITY 

In this section typical deformation profiles of symmetrically supported 

beams subjected to uniform blast-type pressure loadings are described and 

illustrated. The notion of travelling plastic hinges is discussed and 

relations between various kinematic quantities on either side of the moving 

plastic hinges are also given in this section. 

2.4.1 MECHANISMS OF DEFORMATION 

The dynamic behaviour of rigid-plastic beams under uniformly 

distributed pressure loading can be characterized by various mechanisms 

of deformation. It is found in the available literature on dynamic plasticity 

(Reference 17), that these deformation profiles are dependent on the 

intensity of the external pressure pulses. The following is intended as a 

review of the earlier theoretical procedures used to describe the dynamic 

response of symmetrically supported beams. For simplicity it is assumed 

that the end supports are free to move axially, so that the beam 

deformations are purely flexural. 

Let us consider a symmetrically supported rigid-plastic beam of 

constant mass per unit length m, constant plastic moment M q and length 

2L (Figure 2.10a,b). The beam is acted upon by a blast pulse P(t) (force 

per unit length) Figure 2.10c, uniformly distributed over the entire span. 

The load is applied instantaneously at time t = 0 and held on the beam for a 

time duration T. There are generally three distinct modes of deformation 

depending on the magnitude of the peak pressure P in relation to the 

static collapse pressure P Q. This latter quantity is easily determined 

from a static collapse analysis as outlined in the previous section. The 

results are given by: 
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!

2 M / L 2 for the simply supported beam 
0 (2.15) 

4M /L 2 for the fixed end beam 
o 

The above values are the exact static collapse pressures which satisfy all 

three requirements of collapse as given by Equation (2.14). 

If a simply supported beam (for which i = 0) is subjected to its static 

collapse pressure, a plastic hinge will form at the midspan and rotation 

then occurs at the plastic hinge of the midpoint and the natural hinges at 

the ends as shown in Figure (2.11a). For a beam fixed at both ends, (i.e. 

i = 2), plastic hinges form at the fixed ends as well as the midpoint giving 

rise to displacement configuration which is similar to that of the simply 

supported beam at the collapse state. 

It is therefore expected that for pressure intensities slightly beyond 

the static collapse pressure (i.e. P > P ) both beams deform in the same * r m o 
manner. Thus any deformation mechanism that is assumed for a simply 

supported beam stays valid for a built-in beam except that collapse in each 

case occurs under different pressures P q as given by Equation (2.15). 

Using the appropriate definitions of P q given by Equation (2.15), we 

can distinguish three different stages of deformation according to whether 

the load intensity i s "low" ( P < P ), "medium" ( P < P < 3 P ) or J • m o o m o 
"high" ( P > 3 P Q ) . Experimental studies of these specific phases of 

loading have indicated that the deformation process is as follows: 

i) Low pressure range: as long as P < P Q t h e bending moment 

throughout the beam is less than the fully plastic moment M q and no 

deformation occurs (Figure 2.12a) in the rigid-plastic sense. 
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ii) Medium pressure range: if the load intensity falls in the range, 

P < P < 3 P , the static collapse mechanism is assumed to hold, o m o * 
that is, deformation proceeds with a central plastic hinge and each 

half of the beam rotates as a rigid body. The beam continues to 

deform in the single hinge mode until the kinetic energy acquired 

under the action of pressure is wholly absorbed into plastic work at 

the central hinge section. Thus, plastic deformation continues until 

the transverse velocity of the beam is reduced to zero. At this 

instant the entire beam comes to rest. 

ii i ) High pressure range: if P m > 3 P Q t h e single hinge mode of 

deformation results in a moment distribution M(x) greater than the 

plastic moment M for some 0 < x < L, where x is measured from the ^ o 
midspan. Consequently to satisfy the yield condition two symmetrically 

located plastic hinges immediately form (with the onset of loading) at a 

distance/(3P /P )L from each end* (Figure 2.12c). As P increases o m ° m 
indefinitely the hinges move towards the supports. In the special 

case of impulsive loading when p
i a * a a ' t n e hinges are momentarily 

formed at the support points (Reference 11). Between the hinges a 

flat central plastic zone exists where the bending moment M (x) = M . 

This region of constant moment must have zero shear, and this would 

only be possible if the accelerations at all points in the region vanish. 

Unless the pressure is held constant on the beam (i.e. rectangular 

pulse), the hinge points on either side of the midspan start moving 

t For a proof of this see for example Krajcinovic (Reference 17) • 



toward the centre while the beam continues to deform in the transverse 

direction. As soon as the hinge has moved to its new position, the 

moment at the original section drops to a value below M q and no 

further rotation occurs there. This is equivalent to a reversal of 

bending moment as illustrated by the dashed line on the moment -

curvature diagram of Figure 2.3. According to this diagram unloading 

will occur r i g i d l y when the moment M q is removed. A permanent 

distortion will therefore occur at the section where the plastic hinge 

passes through. The segment of the beam along which the hinge has 

passed attains a permanent deformation that is curved in shape. The 

precise shape of the deflection curve is dependent on the pressure-

time history P(t). In fact the curvature generated is equal to the 

relative angular velocity divided by the velocity of motion of the hinge 

along the beam (see Section 2.4.2). The beam segments on either side 

of the travelling hinge rotate as rigid bodies. As the pressure 

decreases toward the end of the loading pulse, the hinges move closer 

to the centre and finally coalesce to form a central plastic hinge. 

Thereafter the beam deforms according to the single hinge mode until 

the motion ceases. It is worthy of note that in the special case of a 

rectangular pulse the two hinges remain stationary while the load is 

applied and then converge toward the midspan when unloading occurs 

(i.e. for t > T ) . (It is tacitly assumed that the pressure is of 

sufficient intensity so that the motion continues up to or beyond t = 

x). 

In Figure 2.13 the final deflection shape of the beam is depicted for 

some representative values of 3P /P when the loading is assumed to 
o m 

be a rectangular pulse. It can be seen from this figure that as 3P /P 



decreases (i.e. as the load becomes impulsive) the central curved 

part of the permanently distorted beam increases in size. 
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2.4.2. K I N E M A T I C C O N D I T I O N S A C R O S S T H E M O V I N G H I N G E 

The various quantities on either side of the travelling plastic hinge are 

required to obey certain kinematic restraints which are described in the 

following. We restrict the following discussion to the travelling hinge 

mechanism of Figure 2.12c. Owing to its symmetrical shape we refer to the 

left-hand half of this mechanism. 

Let p(t) denote the distance of the hinge point from the beam centre 

and w p(t) be the transverse displacement at the hinge, both quantities 

varying with time t. In order to satisfy the requirements of geometrical 

compatibility when shear deformations are ignored, the displacement wp 

and velocity wp must be continuous across the moving hinge section for 

all time t. Thus, 

[w J = w(x=p+,t) - w(x=p",t) = 0 
P 

(2.16) 

[w 1 = w(x=p+,t) - w(x=p",t) = 0 
P 

where [ ] denotes the discontinuity of the enclosed quantity across the 

hinge and p~, p + designate sections just to the right and just to the left, 

respectively, of the hinge section. 

Also we employ the following derivative notation: 
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Consider a particular instant of time t when the hinge is at a typical 

distance p(t) from the centre. In an infinitesimal increment of time At the 

hinge moves an incremental distance Ap towards the centre. During this 

interval of time the two segments of the beam separated by the plastic 

hinge rotate by an amount A6 with respect to each other (Figure 2.14). 

The permanent curvature acquired by the differential element of length Ap 

is 

_ A8 _ A9 . Ap 
K Ap At 1 At 

or in the limit as At + 0 

K = e / p (2.17) 

where p is the velocity of the moving hinge. Since 9 is the relative 

angular velocity of the two segments of the beam on either side of the 

hinge section, we can write 

6 = - [ w ' ] (2.18) 

where the minus sign arises from the sign conventions of the problem. 

Observing that the segment 0 < x < p(t) remains flat (corresponding 

to zero curvature) throughout the motion, we can interpret the quantity K 

as the difference in curvature across the hinge point. Thus, for small 

deflections (i.e. 62 <<1), we may write 

K = [ W " ] 
P J (2.19) 
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Using Equations (2.18) and (2.19) in Equation (2.17), yields the following 

jump condition: 

[ Wp] + p [ w"p] = 0 (2.20) 

Thus taking account of the discontinuity in curvature, the angular 

velocity 9 i s discontinuous across a non-stationary hinge point (for which 

p * 0). It can also be shown that 

[w p] + P [W p] = 0 (2.21) 

which implies that across a moving hinge (i.e p * 0), owing to the 

continuity of velocity (Equation (2.16)), the slope angle 9 must be 

continuous. From the differentiation of Equation (2.21) with respect to 

time t it follows that 

Now, since the slope is continuous across a travelling hinge, the last term 

on the left hand side vanishes and we have 

As an implication of the above jump condition, the transverse acceleration 

must be discontinuous across a moving hinge. 

The significance of the above kinematic relations become apparent when 

we consider time-dependent, kinernatically admissible displacement and 

velocity profiles. 

[ w p] + P [*wp] + p [ wp] = 0 (2.22) 

[ wp ] + P* [ wp ] = (2.23) 
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We are now in a position to formulate our mathematical model of the 

motion of an axially constrained rigid-plastic beam under uniformly 

distributed, time-dependent loading P(t). 
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CHAPTER III 

FORMULATION AND ANALYSIS OF T H E PROBLEM 

3.1 STATEMENT OF T H E PROBLEM 

This chapter presents a theoretical study of the behaviour of a 

rigid-perfectly plastic beam, symmetrically supported with constraints 

against in-plane displacements at the ends. The beam is subjected to a 

suddenly applied blast-type pressure pulse uniformly distributed over the 

width and the whole length of the beam. Although the governing 

equations are derived for a general section geometry and pressure-time 

relationship, they are solved only for the simplest case, that of a beam 

with rectangular section acted upon by a rectangular pulse such as the one 

shown in Figure 3.1. In formulating the problem the assumptions of 

Section 2.2 are employed. Both the fixed end beam, allowing no rotation 

except by plastic hinge, and the simply supported beam, allowing rotation 

by natural hinges will be discussed. An in-depth analysis that retains the 

influence of finite deflections or geometry changes is presented only for 

the case of a simply supported beam. It is believed that the treatment of a 

fixed-end beam closely resembles that of a simply supported beam when 

appropriate modifications are made in the final results of the latter 

analysis. It will be shown in Section 3.4 how the results for these two 

cases may be expressed in a common form. The theoretical analysis 

outlined herein is intended to cover all ranges of load intensities beyond 

the static collapse load. 

3.2 STATIC ANALYSIS 

In the following section the basic concepts of limit analysis are 
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extended to axially constrained simply supported beams loaded statically in 

which axial forces as well as bending moments must be taken into account. 

The role of the change of geometry on the load c a r r y i n g capacity of the 

beam will be investigated. In this study, the load c a r r y i n g capacity is 

estimated by assuming an approximate mechanism of deformation. Initially 

it is presumed that the zero-stress axis remains within the beam cross-

section so that membrane forces and bending moments are coexistent. A 

purely membrane analysis is also presented to account for the case when 

the zero stress axis falls outside the beam surface. 

It will be observed that when finite deflections or geometry changes 

are permitted, the beam can support external loads considerably greater 

than those predicted by the infinitesimal bending-only-theory. This 

increased load c a r r y i n g capacity is shown to be a result of the favourable 

influence of membrane forces that accompany finite transverse deflections. 

3.2.1 APPROXIMATE LOAD CARRYINC C A P A C I T Y OF A SIMPLY SUPPORTED 
BEAM A T FINITE DEFLECTIONS (BENDING AND MEMBRANE 
THEORY) 

Consider a rigid-plastic beam (Figure 3.2) of uniform rectangular 

cross-section width b and depth h, simply supported at the outer edges x 

= ± L and ca r r y i n g a uniformly distributed lateral load of intensity P (force 

per unit length). The edge restraints are such that the ends of the b e a m 

at the centroidal axis are prevented from in-plane movements along the 

x-axis. Tensile axial forces N are induced i n the beam due to the 

transverse deflection and increased length of the beam. 

At the limit load the beam will tend to deform plastically according to 

the single-hinge mechanism of Figure 3.3. This mechanism, however, is 

known to be correct only at zero deflection when no membrane forces are 



generated. Exact theoretical solutions when finite deflections are retained 

in the analysis are difficult to obtain, thus one has to resort to 

approximate solutions. 

In developing an approximate method, we start by considering the 

single-hinge configuration of Figure 3 .3 as a fi r s t approximation to the 

deformed shape of the beam during small but finite deflections. The 

membrane forces are no longer zero and must be considered i n formulating 

the problem. In the following we shall apply the principle of v i r t u a l work 

to the determination of the limit load. 

Consider the equilibrium configuration of the beam at the instant of 

plastic collapse (Figure 3.4). This mode of deformation has one degree of 

freedom defined by the rotation 0 of each half of the beam. The angular 

displacement 6 is thought of as an incremental displacement in the collapse 

state and i s therefore a "small" quantity. 

Let 0 receive a variation 60 in the neighbourhood of the given 

configuration, Figure 3.4. Then observing that the hinge rotation at the 

central section is the sum of the rotations of the two portions of the beam, 

we have 

6i|» = 260 (3.1) 

where 6IJJ is the increment of rotation at the hinge point as defined 

previously i n Section 2 . 3 . 3 . 

Due to the increment 60, the length of the beam will receive a virtu a l 

extension 6e given by 



6e = 6(2L sec 6) = 2L sec 6 tan 9 69 (3.2) 

For sufficiently small magnitudes of 8 so that 82<<1, Equation (3.2) can be 

rewritten in the following simplified form 

6e = 2L969 (3.3) 

These internal deformations 6ij>, 6e are concentrated at the central plastic 

hinge section and are developed under a critical combination of axial force 

N and bending moment M at the hinge section. 

The virtual work dissipated in the plastic hinge as a result of these 

deformations is 

6 W. = N6e + M5<i (3.4) int 

As the plastic hinges always absorb work, no question of sign arises and 

we shall only be concerned with the numerical values of N, M and the 

corresponding deformations 6e, 6\JJ. It should be remarked in passing that 

in the theory of limit analysis it is customary to speak of rate of dissipation 

of energy rather than the internal energy itself. Since we are only 

concerned with small deformations, it is immaterial whether we speak of 

increment of deformation or of deformation rates. Thus, writing the 

internal energy absorbed in a virtual displacement of the beam is exactly 

equivalent to writing the rate of dissipation of energy at the plastic 

hinge. 

In moving through the virtual displacement 69, the work done by the 
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applied uniform pressure P is 

L 
SW = 6{/ Pw(x) dx} = P6S (3.5) ext JL 

where w(x) denotes the spatial distribution of deflection resulting from the 

assumed collapse mechanism, and S is the area swept by the deforming 

beam, so that 

L 
S = / w(x) dx (3.6) 

-L 

and for the mechanism of Figure 3.3 

S = w L (3.7) o 

where w = w(x = 0) is the central deflection. Therefore <5S which o 
corresponds to the variation or virtual change in S can be written as: 

6S = L6 w - L 258 (3.8) o 

The theorem of virtual work thus furnishes the relation 

6W. = 6W . (3.9) in t ex t 

so that 

N5e + M6i|> = P* 6S (3.10) 



where P denotes the load carrying capacity of the beam at finite 

deflections. 

It can easily be shown that Equation (3.10) is equivalent to writing the 

equilibrium equation of the beam in its deformed configuraiton. 

Using the results of Equations (3.1), (3.3) and (3.8) in Equation 

(3.10) and observing that 66 is an arbitrary variation in the quantity 0, 

yields 

L z o o 

With reference to nomenclature used in Chapter 2 and Equations (2.4), 

(2.7) and (2.8), we have for a rectangular cross-section 

r = h/2 ; y = e/2 ; N = 2o b e (3.12a,b,c) 
P G O 

N =o b h ; M =c b h 2/4 (3.12d,e) o o o o 

Upon substitution of the above quantities into Equation (2.6a), the yield 

condition for a rectangular section turns out to be 

i=H|)2
 (3.13) 

o o 

or using the dimensionless quantities defined by Equation (2.9) 

m = 1 - ri2 (3.13a) 
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Equation (3.13) can be represented by a pair of parabolic yield curves in a 

system of cartesian coordinates with 7 7 — = m as abscissa and T T ~ = n as 
o o 

ordinate (Figure 3.5). 

The flow rule (Equation (2.13)) appropriate to the parabolic yield 

function f + n 2 - 1 requires that 

N X NT 

o r o 

provided that the zero stress axis lies within the beam cross-section. 

From Equation s(3.1) and (3.3), the ratio 5e/5ip is 

I 7 = L6 = ŵ  (3.15) 

Thus, the flow rule as expressed by Equation (3.14) becomes 

N w 2w 
N _ o o o ,„ 1 [ M W ~ W 2 ~ - ~ E " U * l b ) 

o o 

where the last step follows from Equations (3.12d,e). It is of passing 

interest to note that from the strained geometry of the hinge section 

(Figure 2.5d) 6e/6;p = e. This implies that for the collapse mechanism of 

Figure 3.3, the distance between the zero-stress axis and the central axis 

(which overlaps with the equal area axis for the symmetrical section 

considered) is also the vertical distance of the central axis from the 

original undeformed beam at the hinge point, (i.e. W q = e). 



Substitution of Equation s(3.16) and Equation (3.13) into (3.11) 

furnishes the relation 

4 1 . 

P * = P [1 + 4 (w /h) 2] (3.17) o o 

where P Q = 2 M Q / L 2 is the load carrying capacity of the undeformed simply 

supported beam (for which W Q = 0), a result already obtained by the 

bending only theory in which the influence of finite deflections is ignored. 

Equation (3.17) establishes the load carrying capacity of the beam at a 

specified central deflection W Q . A S the beam acquires a finite deforma

tion, the axial force N increases in direct proportion according to Equation 

(3.16). A point is reached where the critical combination of N and M 

occurs at sections other than the central. This leads to a vioolation of the 

plasticity condition given by Equation (3.13). Therefore, the mechanism 

of Figure 3.3 is in effect, only at the onset of collapse or early stages of 

deformation when bending action is predominant. With increased 

transverse displacement in-plane tensile forces come into play, thereby 

causing a reduction in bending moment at the centre where the deflection 

is greatest. At points symmetrically located on either side of the midspan, 

however, the combination of moments induced by the axial force and the 

uniform pressure reaches a value sufficient to cause full plasticity in those 

regions. Consequently the assumed single degree of freedom system does 

not represent the actual mode of collapse of the beam whose change in 

geometry is permitted, and the corresponding central plastic hinge is 

fictitious. Since an approximate location rather than the exact location of 
* 

the yield hinge has been used in the foregoing static analysis, P (as 

given by Equation (3.17)) must exceed the actual load carrying capacity of 
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the beam in accordance with the kinematic theorem of limit analysis, as 

defined in Section 2.3.5. 

Of the three master conditions (2.14), only those of equilibrium and 

mechanism have so far been satisfied. A deformation shape has been 

guessed, and the writing of the virtual work equation ensured that 

equilibrium has been satisfied. The values of M and N must be corrected 

in successive stages of deformation until the conditions of mechanism, 

equilibrium and yield are satisfied simultaneously leading to an exact 

solution (i.e. coincidence of upper and lower bounds). The analysis of the 

assumed approximate model is considerably simpler than the exact analysis 

outlined above. 

The preceding analysis is based on the assumption that the zero-stress 

axis remains within the beam cross-section (i.e. e < h/2) or what amounts 

to the same, the single hinge mechanism of Figure 3.3 is valid for maximum 

deflections not exceeding the half-depth of the beam (i.e. W q< h/2). As 

the deflection W q approaches h/2, the axial force N approaches its fully 

plastic limit NQ and the moment carrying capacity of all the sections along 

the beam reduces to zero. Thereafter the behaviour of the beam is 

governed by in-plane membrane forces N = N q and the associated 

deformation is essentially one of stretching. This corresponds to tensile 

yield stress across the whole cross-section of the beam, so that the 

distribution of normal stress is as shown in Figure 3.6a. No matter where 

the zero-stress axis may lie outside the beam surface, the fully plastic 

stress distribution consists of all fibres yielding in tension. Therefore, 

the state of stress is represented by the point (n, m) = (1,0) which we 

have already obtained as part of the interaction curve (Figure 3.5). 

Despite the fact that the moment is zero in this case, the section can still 
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rotate by an amount as shown by the strained geometry of the section 

(Figure 3.6b). Since e > h/2, it follows that the rotation 6ip can have any 

arbitrary magnitude satisfying the condition; 

6* < ̂  (3.18) 

Equation (3.18) can also be obtained by considering the conditions set by 

the flow law at the point (n, m) = (1,0) of the yield curve. A t such a 

corner point, the direction of the exterior normal to the curve cannot be 

uniquely defined and it may have any direction between the normals to the 

two portions of the parabola (lying above and below the n axis) at (n, m) 

= (1,0). Therefore, by geometry the slope of the deformation vector with 

components (N 6e, M 6il>) is restricted to lie between the values ±1/2. 0 0 

i.e. 

" I ^ - T ^ ( 3 ' 1 9 ) 

Recognizing thatM Q/N o = h/4 for a rectangular cross-section, Equation 

(3.19) can be rewritten as, 

The next subsection is devoted to a purely membrane type analysis for 

predicting the load carrying capacity of the beam at moderately large 

deflection (w > h/2). o 



3.2.2 T H E LOAD CARRYING CAPACITY OF BEAMS A T MODERATELY LARGE 
DEFLECTIONS (MEMBRANE ANALYSIS) . 

For the reasons outlined previously, we shall here consider the static 

response of a beam that carries the load substantially by the membrane 

force N q. Such a structure, because of its in i t i a l curvature, can 

maintain a continuous distributed loading in equilibrium even though it has 

no bending stiffness and therefore simply utilizes its membrane strength. 

The structural behaviour of the beam at moderately large deflections (for 

which w > h/2, (w 1) 2 << 1} is therefore similar to that of a uniformly o J 

loaded perfectly flexible cable (i.e. bending moment at any point on the 

cable is zero) as shown in Figure 3.7. The equilibrium equation of the 

beam in this case may be obtained from Equation (3.10) by setting M = 0 

and N = N , thus 

If the assumption of small deflection is retained (i.e. if the sag of the 

beam is small in proportion to its length) so that (w 1) 2 << 1, the virtual 

elongation of the beam irrespective of the shape of its deflected curve is 

o 

N 6e = P SS o ( 3 . 2 1 ) 

6e = 6 { / \ (w1 ) 2 dx} = / w* 6w" dx 
-L -L 

(3.22) 

Equation (3.22) when integrated by parts results in 

(3.23) 



The first term in the above expression may be deleted by virtue of the 

kinematic boundary conditions of the problem. Making use of Equations 

(3.6) and (3.23), we can rewrite the equilibrium Equation (3.21) as 

L * 
/ [P + N q w"(x)] 6w(x) dx = 0 (3.21a) 

Since 6w(x) is an arbitrarily imposed virtual displacement in the interval 

-L < x < L, we must have 

d 2w * 

The solution of which leads to 

W ( X ) = W - f r r x 2 (3.25) 
O 2W o 

Equation (3.25) defines the shape of the deflected membrane as being 

parabolic. At the edge supports, where x = ± L and w = 0 the foregoing 

equation reduces to 

W O = I N L 2 ~ ( 3 ' 2 6 ) 

o 

Specialyzing to the case of a beam with rectangular cross-section, we can 

write Equation (3.26) as 
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8M w o o 

P = JJ . j f (3.27) 

The load carrying capacity P of a simply supported beam at finite 

deflections is therefore given by 

w 
1 + 4 ( — ) 2 for wQ/h < 1/2, membrane and bending 

* l n 

P / P = < (3.28) 
w 

4(— ) for w /h > 1/2, membrane only 
h ° 

where P = 2M /L 2 

o o 

A load-deflection curve is shown in Figure 3.8 based on the 

theoretical results of Equation (3.28). It shows that when the ends are 

f u l l y constrained, the load rises rapidly above P q especially as W Q 

approaches h/2. The limit load, as ordinarily computed from undeflected 

configuration, is highly conservative under these circumstances. 

3.3 DYNAMIC ANALYSIS 

The purpose of the present study is to predict the permanent 

deformation of a rigid-plastic simply supported beam (whose properties are 

specified in the previous section) acted on by a uniformly distributed 

loading with a rectangular time variation (i.e. instantaneous loading and 

unloading as shown in Figure 3.1). For the validity of the following 

rigid-plastic dynamic analysis, the duration of loading T is restricted to 



take on values in the approximate range (see Appendix A). 
47. 

0.17 P / P < T/T < 1 
o m e 

where T is the fundamental period of elastic vibration of the simply 
6 

supported beam. 

Deflections are considered to be in the range where both bending 

moments and membrane forces are important. This effect may be accounted 

for by considering the equilibrium of the beam in its deflected position. 

The equation of dynamic equilibrium of the beam is readily obtained simply 

by introducing the contribution of inertia terms into the equilibrium 

equation developed in the foregoing static analysis, i.e. Equation (3.10). 

If the mass per unit length of the beam is denoted by m the inertia load at 

any position x along the beam equals - mw (x,t), by D* Alembert's 

principle, and the virtual work equation takes the form; 

L 
N6e + M5\|> = / [P(t) - mw(x.t)] 6w(x,t)dx (3.29) 

-L 

Equation (3.29) is independent of the mechanism of deformation and the 

cross-sectional shape of the beam. The discussion presented in the earlier 

sections reveals that dynamic plastic action will occur only if 

P > P = 2M /L 2 

m o o 

For P = P the beam yields indefinitely slowly and inertia forces do not m o J 
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arise, and so time is measured from the first instant the above inequality 

is satisfied. In the following theoretical analysis, the single hinge 

mechanism of Figure 3.3 is assumed to hold if the peak pressure P m falls 

in the medium range (P < P < 3P ). It is known from the arguments ° o m o ° 
given in the preceding section on static analysis that this mode of 

deformation violates the yield criterion (Equation (3.13)) when the 

influence of membrane forces is included in the analysis. Nevertheless, 

speaking from an engineering standpoint, the results can serve as good 

approximations to the real problem. 

For high intensity loading ( P m > 3P q ) the travelling plastic hinge 

mechanism of Figure 2.12c is assumed to be valid. A development and full, 

discussion of the governing equations of motion for both the travelling and 

static mechanism will be given in the following sections. In analogy to the 

static case in order to account for the influence of moderately large 

deflections (w Q/h> 1/2), a purely membrane analysis i s also presented for 

both medium and high intensity loadings. It is assumed that the beam is 

i n i t i a l l y unstrained (w(x,0) = 0) and at rest (w(x,0) = 0). 

3.3.1 MEDIUM LOAD (P < P < 3PJ 
o m o 

Two phases must be distinguished in which the motion of the beam is 

governed by different equations. 

Phase I (0<t<x) 

a) Small deflections 

If it is assumed that the shape of the displacement field in this case is 

the same as the deformation profile used for the corresponding static 

analysis, then 



w(x,t) = w (t) [ l — f o r -L<x<L 
O XJ 

(3.30) 

where w Q(t) = w(0,t) is the central deflection at any instant of time t. 

The prescribed boundary condition that w vanishes at x = ± L is satisfied 

by Equation (3.30) and the initial conditions will be satisfied if 

w (0) = wJO) = 0 (3.31) o o 

The substitution from Equation (3.30) into the dynamic equilibrium 

Equation (3.29), followed by an integration with respect to x from x = -L 

to x = L, results in 

N6e + M6<|> = [P(t) - - f m w (t)]L6w (t) (3.32) 
3 o o 

This relationship is considered to hold for any arbitrary virtual 

displacement 6 W q = L 66 imposed on the deflected configuration of the 

beam (Equation 3.30). On account of this and the geometrical relationships 

(3.1) and (3.3), Equation (3.32) becomes 

Nw (t) + M = ̂ 2 [ P ( t ) - \ mw (t)] (3.33) o l L 6 o J 

Now the quantities N, M appearing in this equation are the critical stress 

resultants at the central hinge station and are therefore related by the 

interaction relation of Equation (3.13). The equilibrium Equation (3.33) in 

conjunction with the plasticity condition (3.13) and the flow rule (3.16) 

yields 
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M 0 ( l + £ r w J ( t ) ) = ^ - [ P ( t ) - | mw (t)] o 1 (3.34) 

which upon rearrangement may be written 

w (t) + Aw2(t) = | - [P(t) - P J o o 2m L o J (3.35) 

where the parameter X is given by 

X = (3.36) 

Equation (3.35) is a nonlinear second order ordinary differential equation 

i n terms of the ti me-dependent variable w Q(t) which is yet to be 

determined. So far no restriction has been made upon the time history of 

the pressure P(t), thus implying that Equation (3.35) is applicable to a 

general load-time function satisfying the definition of blast-type loading 

(assumption i v ) . However, this equation can only be solved in analytic 

form if the load is a rectangular pulse. If we hereafter restrict ourselves 

to rectangular pulses only, our problem reduces to solving the 

differential equation 

w + Xw2 = v (3.37) o o 

where 
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3P 

v = — (P 2m i r m 0 < v < m (3.38) 

Equation (3.37) is satisfied during the pulse duration T with v = constant 

and is subject to initial conditions expressed by Equation (3.31). 

Multiplying both sides of Equation (3.37) by 2W q, we obtain 

dt o 3 dt o dt o 

which after integration with respect to t yields the result 

w2 +-r- w3 - 2v w = constant (3.39) o 3 o o 

In order to fulfill the initial conditions of the problem (Equation 3.31) the 

constant of integration must vanish and Equation (3.39) can be re-written 

in the form 

or 

dw 
ldt -°)

2 = 2vw - TP- W 
2X 
3 

dw 
T r r = /2v [w -4 -w 3] 3v 

,1/2 
(3.40) 

Separation of variables followed by an integration of Equation (3.40) leads 

to 
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dw 

1 w„ o 
t = ± — / 0 (3.41) 

I w (1- w /a'1) o o J 

where 
p 

a 2 = | h 2 ( p ^ ~ 1) ; 0<a</372 h (3.42) 
o 

Within the physical restrictions of the problem 0 < W q < -j , i.e. W q < a. 

Therefore, with the substitution W q = a cos 2 * into Equation (3.41) we 

obtain after some algebraic manipulation 

t=/(a/v) / (3.43) 
<t> / ( l - -| sin2<j>) 

where the lower limit of the integral is restricted to be in the range given 

by 

cos - 1 (1/6) 1"* < <|> < j (3.43a) 

The integral in Equation (3.43) can be evaluated explicitly, so that 

t=/(o/v) [K (1//2) - F (1//2, *)] (3.44) 

where 

ir/2 H r 

K (1//2) = K = / :p 
0 /(l - -|s in 25) 
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is the complete ellipic integral of the f i r s t kind with modulus 1//2, and 

(j) 
FC1//2.4 ) = / — s £ 0 A l ~ sin2£) 

i s the incomplete e l l i p t i c i n t e g r a l of the f i r s t k i n d with modulus 1//2, 

amplitude A comprehensive study of elliptic integrals and functions i s 

given by B y r d and Friedman (Reference 24). Equation (3.44) yields the 

time t r e q u i r e d to reach a s p e c i f i c deflection w Q ( t ) . Upon re g r o u p i n g the 

terms, Equation (3.44) becomes 

F (1//2, *) = K - at (3.44a) 

where 

• 3P P 1 / 2 

• ' ^ - - ^ ' r 1 - " '3.45, 
o 

Let u = F (1//2, <f>), then we can express the inverse function of u as <Ji = am 

u = amplitude of u. Considered as a function of u, 

cos <J> = cos(am u) = cn(u) 

sin <|> = sin(am u) = sn(u) 

/ ( l - 4 sin2<|>) = d<|>/du = d(amu)/du = dn(u) 

(3.46) 



where cn(u), sn(u) and dn(u) are Jacobian elliptic functions. These are 

of interest to us principally for the purpose of evaluating the elliptic 

integral F. Relevant information regarding the properties of these 

functions can be found in (Reference 24). Thus 

W q (t) = a cn 2(u) = a cn 2(K-at) (3.47) 

Differentiating Equation (3.47) with respect to time t gives 

dw 
w (t) = - a - r — ^ - = 2aa cn(u) . sn(u) . dn(u) (3.48) o du 

Equations (3.47) and (3.48) determine the displacement and velocity of the 

central point respectively as a function of time t. Since no energy is 

recoverable from a rigid-plastic beam, the motion continues until all the 

acquired kinetic energy is dissipated in plastic work. At this instant the 

entire beam comes to rest, i.e. w =0. 
o 

From the solution of Equation (3.48), it follows that the plastic 

deformation ceases at t = tj when 

u, = K - at r = 0 

where the subscript f designates the final state of the quantity to which it 

is attached. Hence, the instant at which the beam comes to rest is given 

by 
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t f = K/a = K/(mn/P Q) { 3 ( p * p _ ± ] }U>* (3.49) 
m o 

in which the numerical value of K = 1.854075 as obtained from the tables 

of elliptic integrals (Reference 24). The maximum deflection of the 

midpoint which is the final permanent deflection in a rigid-plastic theory is 

found by replacing t i n expression (3.47) by t^ as given by Equation 

(3.49). Thus 

w ( t J - 6 = a o f f 

or in non-dimensional form 

6 f /3 Pm 1 / 2 

l T = 2 ( P ^ ~ 1 3 ( 3 * 5 0 ) 

o 

It is seen that the final central deflection 6̂  of the beam in this phase of 

motion (i.e. 0 < t < T) is obtainable directly from the knowledge of the 

loading parameter p
m / p

0 « In deriving the expression (3.50) we have 

assumed that the deformation finishes before the load application is 

completed, that is t^ < T or K < ax. This situation arises due to the 

effect of axial constraints. When small lateral movements of the end 

supports are permitted as in the conventional first order bending analysis, 
P 

the beam reaches its final position at tj = p — x (References 10, 17). As a 
o 

result, the duration of the beam response t f is always greater than the 



duration of the pressure pulse T which implies that in this case the beam 

cannot cease moving so long as the applied load persists. 

Within the framework of small deflection theory, Equation (3.50) holds 

for 6, /h < 1/2 or 

(3.51) 
o 

If inequality ( 3 . 5 1 ) is not satisfied (i.e. if P /P > 4 / 3 ) , then the 
m o 

so-called "string stage" is reached whereby the behaviour of the beam is 

governed by in-plane membrane forces of constant magnitude N Q 

(Reference 1 1 ) . 

b ) M o d e r a t e l y l a r g e d e f l e c t i o n s ( w Q / h > 1/2) ( m e m b r a n e t h e o r y ) 

In view of the foregoing comments, the beam behaves as a perfectly 

flexible plastic membrane when the condition w /h > 1/2 is reached. For 
o 

the latter case, the equilibrium equation of the beam may be obtained from 

Equation (3.29) by setting M = 0 and N = N q, thus 

L 
N -fie = / [P(t) - mw(x,t)] 6w(x,t) dx 
° -L 

Utilizing the same expression for 6e as was used previously for the static 

analysis, i.e. Equation (3.23) and noting that 6w(x,t) is arbitrary in the 

interval -L< x < L , the above equation reduces to 

N O 8 ~ J ? = M TIT p(t) (3'52) 
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Equation (3.52) is the differential equation of motion of a simple membrane 

whose tensile resistance i s N q , and which is subjected to uniformly 

distributed transverse force P(t) per unit length. It is worth emphasizing 

that in deriving Equation (3.52) we have restricted our consideration to 

small (but finite) deflections in the sense that the relative change in arc 

length of the membrane at each point is small, that is, (w 1) 2 << 1. 

Equation (3.52) can also be interpreted as the differential equation 

governing the small vibrations of a "string" under the action of an applied 

force P(t) per unit length. Hence, this phase of motion is often referred 

to as the "plastic string" phase. Owing to its finite thickness, the beam 

does not strictly behave as a plastic string, so that although the moment 

carrying capacity of the beam is zero in this case, each cross-section 

undergoes an extension fie (at the central axis) as well as a rotation 6>, 

the ratio of which Sty/St is limited to lie in the range given by Equation 

(3.20). 

It follows from the results of the foregoing section, that if aT>K, and 

also P /P > 4/3, then the transition from beam to string behaviour m o 
occurs during the first phase of the beam motion when 0 <t <x. Denoting 

by t , the instant at which the string phase is initiated, we have s 

w (t ) = a cn 2(K - a t ) = a cos 2* = y (3.53a) 

where 

1 1 A 
* g = cos - 1 /(h/2a) = cos" 1 [ — ] (3.53b) 

3( p ^ -1) 
o 
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and from Equations (3 .44) and (3 .45) 

t = 7 [K - F (1//2, <> )] (3.53c) 

for 0 < t < t r ( = — ) < T 

s i a 

For convenience, we introduce the spatial coordinate transformation 

x = x - L (3.54) o 

where X q is measured from the left-hand support. Thus, X q = 0, 2L at 

the left and right-hand supports, respectively, and X q = L at the beam 

centre (Figure 3.9). 

If we take a new time origin corresponding to the instant t then the 
s 

initial central displacement and initial centre point velocity using Equations 

(3.53a) and (3.40), are 

w (t* = 0) = h/2 o 
(3.55) 

- , 1 / 2 

w (t* = 0) = [(3P - 4P ) h/2m for P /P >4/3 o L m o 1 m o 

where t* = t - t . 
s 

Thus we arrive at the initial-boundary value problem 
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P /m for 0<t*<T-t 
D.E. w(x , t*} = c2w"(x .t*) + / m s f I 0 for t-t <t* C3.5Ba.b) 

s 

w(0,t*) = 0 ; t* > 0 
w(2L,t*) = 0 ; t* > 0 l 3 , 5 7 J 

w(x , 0) =w (0) * (x ) ; 0 < x < 2L 
I.C. . ° .° ° ° (3.58) 

w(x , 0) = w (0) * (x ) ; 0 < x < 2L o o o o 

where 

c=/(N /m) (3.59) 

and 
( x / L for 0<x <L 

*(x ) = \, ° n , f T , ° O T (3.60) o (2-x /L) for L<x <2L » o o 

and W q ( 0 ) , W q ( 0 ) are given by the first and second parts of Equation 

(3.55), respectively. 

A formal solution of the problem satisfying the two boundary conditions 

of Equation (3.57) can be represented by an infinite series of the form 

ao 

2 v * 1 

nu x 
w(xQ,t*) = > ? n(t*) s in ( j i T 2 * < 3- 6 1) 

n -1 , 3 , 5 . . . 

where the even modes have been discarded owing to the symmetry of the 

problem. The coefficients ̂ J t * ) appearing in the above summation are 



unknown functions of time which must satisfy Equations (3.56) and 

(3.58). 

It is convenient to divide the analysis into two stages such that during 

the first stage the load is still applied, and then a second stage 

throughout which the load has been removed (see Figure 3.9). 

First Stafie t < t < x 

Substituting Equation (3.61) into Equation (3.56a) and recognizing 

that for a rectangular cross-section 4 M Q / N o = h, we arrive at the 

following expression f o r ^ t t * ) ; 

* ( t * ) = s i n t 2 ^ - ^ ) + IJ c o s t 2 ^ - ^ + (|-) 3 Ph (3.62) n n zL n lu mr 

where A , B are arbitrary constants and P~ is the non-dimensional 
n n 

loading parameter defined as 

P = P m/P 0 (3.63) 

Here P Q refers to the static collapse load for the simply supported beam 

as given by Equation (2.15). The initial conditions (Equation (3.58)), 

then lead to the requirements 



[ B n + (2/nw)3 Ph] sin t-^- 2) 
n ~ 1.3,5,.. . 

m 
rnrx 

w" (0) * (x J = > ( ^ f ) A „ s i n ( ^ r ^ ) (3.64) o o / , 2L. n 2L 
n - 1 , 3 , 5 . . . . 

These are two Fourier sine series for the determination of the arbitrary 

constants A , B . Substituting Equations (3.55) and (3.60) into the n n 
Equation (3.64) and making use of the orthogonality of the sine function, 

we find that for odd values of n 

B =h [± (2/mr) 2 - (2/rnr)3 P] (3.65) n L J 

A n = ±h (2/nir)V(3P-4) (3.66) 

where the + sign is to be used when n = 1,5,9,... and the - sign when n = 

3,7,11 Using these values of A n > B n i n Equation (3.62) yields the 

coefficients ¥ (t*) and hence the complete solution of the problem for 0 < n 
x Q < L , t g < t < T . (It may be shown that due to the symmetry of the 

problem about x Q = L only half the domain need to be considered). In 

particular the centrepoint deflection w (x Q=L,t*) = w Q(t*) i s given i n 
nondimensional form by 

W Q ( t * ) / h = >. \ (2/nir)V(3P-4) sin(na)) 2 ( 
n - 1.3,5,... 

00 
+ (2/nn) 2 cos(nu>)^+ (2/*) 3P ^ ( - l ) n + 1 [l-cos(2n-l)u] 

(3.67) 
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where 

oi = irct*/2L ; 0 < t* < T - t (3.68) 
s 

The plastic membrane acquires its maximum final deflection at t* = 

t*, when w(x , t%) = 0 or w [t%) = 0. Thus, setting the time derivative i o i o I 

of Equation (3.67) equal to zero leads to the following expression 

/(3P - 4) i f - cos(nuj f)-|- isin(nuj f) 
n - 1 . 3 . 5 . . . n - 1 . 3 , 5 . . . 2 sin(2n-l )a i 

(2n-l)* = ° ( 3 ' 6 9 ) 

n - l 

where 

u f = iTCt*/2L ; 0 < t* < T-t 

Each of the infinite series appearing in the above expression are 

uniformly convergent and can be summed directly for a certain range of 

values of . Fuller details as to the development of the closed form 

summation of a wide class of Fourier series will be found in the book by 

Bromwich (Reference 25). For the sake of easy reference, some useful 

formulas that are applicable to the present study are given in Appendix B. 

In the following, frequent references will be made to these formulae. 

From Equation (3.67) and the formulas (B.1), (B.2) and (B.3) it can 

be deduced that: 
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\ W ( 3 F - 4 ) for i < P < | 
L P-/(3P-4) J 6 

0 < M f < 7 

" f = 

f 2P-WOP-4) ^ i . p ^ . I . , < 7 r  

Z PW(3P-4) 15 Z 1 

(3.70) 

Equation (3.70) furnishes the time t* at which the deformation is 

completed. At this instant of time the membrane attains its maximum 

deflection. If Equation (3.70) is substituted into Equation (3.67) and use 

is made of the formulas (B.2), (B.4), (B.5) and (B.6), then we can obtain 

the maximum permanent deflection at the centre 

1 _ 1 [ l - / ( 3 P - 4 ) ] 2 for 4/3<P<5/3 
2 4 P-/(3P-4) 

1 ( 1_P) + I [2P-1 W(3P-4)] 2
 f o r 5 / 3 < p < 3  

1 4 P + /(3P-4) 

(3.71) 

Second Stage x < t 

Throughout this stage the membrane is unloaded and the motion is 

governed by the homogenous Equation (3.56b). It is convenient to define a 

new time origin corresponding to the instant t = T when the pulse has 

ceased to act. Let us define a new time parameter t** as 

^ = w (t*)/h = n o i 

t * * = t - T 

or 

t** = t* - (x-t ) 

(3.72) 



Then the general solution of Equation (3.56b) may be written in the 

following form 

w(x Q,t**) = C n s m ( - 7 L — > + D n c o s ( ^ L — 3 ) 
n-1.3,5,.. 

where C , D are arbitrary constants, n n J 

The deflection w and velocity w at the beginning of this stage when 

t** = 0 must match the values acquired by the membrane at the end of the 

first stage given by Equation (3.62) and its derivative at t* = T -t . 

Therefore 

C = A cos(nu) -B sin(nu) n n n 

D =A sin(np)+B cos(nu) + Ph (2/mr)3 (3.74) n n n 

where A , B are given by Equations (3.65) and (3.66), and n n 

u = irc(x-t )/2L (3.75) 

Using Equations (3.68), (3.72) and (3.75) we can write 

irct**/2L = OJ - u (3.76) 

We now combine the Equations (3.73) - (3.76) and obtain 



w(xQ,t**) = I A n sin(nw) + B n cos(nco) 
n-1 . 3 . 5 , . . . 

!

nux 
sin (-217) (3.77) 

Making use of Equations (3.65), (3.66) and (3.77), the deflection of 

the membrane at X q = L can be expressed i n the following dimensionless 

form: 

wQ/h = ^ [(2/mr)3/(3P-4) sin(nio) + (2/niO 2 cos(na)}] 
n= 1.3.5.... 

BO 

+ ^ ( - l ) n + 1 [2/(2n-l)ir] P [cos[(2n-l)(u>-u) ] 

n - l 

- [cos[(2n-l)u>]] (3.78) 

It will be convenient in later analyses to introduce a non-dimensional 

impulse parameter 

O 

where 

I = J T P(t) dt = P x (3.80) 
0 m 

is the total impulse (per unit length) applied to the beam. 



With the above definitions and Equation (3.53c) we are now able to 

write down an expression for u (Equation (3.75)) in terras of the basic 

non-dimensional parameters P, g, as 

(3.81) 

where <j> given by Equation (3.53b), is related to the parameter P by 

It is important to realize that one of the conditions which ensures the 

transition from beam to string behaviour during the first phase of the beam 

motion is t < T or at < ax. [The other condition to be satisfied is of s s 
course 4/3 < P < 3). If at g and ax are expresed in terms of P and g using 

Equations (3.53c) and (3.83), the latter requirement can be written as g > 

g where 

(3.82) 

We can also write 

ax =/g[3(P - D ] /P (3.83) 

m 

g m = P 2 [K - F (1//2, <|>s)]2 / /3(P - 1) (3.84) 

is the minimum value of the impulse parameter g beyond which the results 

of the preceding analyses is valid. It is evident that this value of g 



corresponds to the particular case when the initiation of the string phase 

coincides with the termination of the load i.e. u = 0 when 6* = 3 . 
m 

Following the procedures which were developed for the analysis of the 

f i r s t stage we seek the instant of time t * * = t£* = 2u)rL/Trc at which the 

motion of the plastic membrane terminates. T h i s is accomplished by 

f i n d i n g the smallest root ai* of the Equation W q = 0 = 3wo/8u>, where W q i s 

given by Equation (3.78). Finally, making use of the formulas (B.1) to 

(B.3) it is a simple matter to show that the smallest root of the equation 
3w /8to = 0 which is associated with the maximum value of w , i s o o 

j [l+(Pc-l)//(3P-4) ] for 0<o) f<Tr/2 

co f = j (3.85) 

\ [l+(P?-l)/[2P+/(3P-4)] ] for Tr/2<u)f<Ti 

where 

C = 2U / T I=/2 {—-{— ] 1 A [K-F(1//2,A ) ] 1 (3.8b) 
< P 3(P-1) ' 

Upon substitution of the above expression for into Equation (3.78) 

and use of the formulas (B.2), (B.4) and (B.5), the maximum value of the 

transv e r s e deflection 6^ = w Q (a ) r ) of the permanently deformed membrane 

can be obtained as 
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»f [/(3P-4) + 2P? - PC 2] + 

j ( F c " 1 ) 2 for 0<u) f<Tr/2 
W (3P-4) 1 

J ( F ^ ~ 1 ) 2 for TT/2<U) F<TT 

2P+/(3P-4) 
(3.87) 

where c is given by Equation (3.86) as a function of g , P. It can r e a d i l y 

be shown that for u = u(g, P) < u , where 
c 

_TT 2P-1 + /(3P-4) . P_=-o (3.88) 
c £ P + /(3P-4) 

the maximum response does not occur during the pulse application. 

T h i s concludes our analysis of Phase I. 

Phase II (t > T ) 

a ) S m a l l d e f l e c t i o n s ( w ^ h < 1/2) 

If ax < K, then the beam in its unloaded state will continue to move i n 

accordance with the single hinge mechanism of Figure 3.3, for t > x, until 

the kinetic energy generated during the load application is entirely 

absorbed i n plastic flow. Determination of the final central displacement i n 

this phase of motion is the p r i n c i p a l object of the following analysis. 

The governing differential equation of motion (3.35) after multiplying 

both sides by w Q(t) and i n t e g r a t i n g with respect to t, can be recast into 

the form 
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i(w' ) 2 + 3 + I r r P w = f - [ / P(t) w' d t 
2 o d o zm o o zm L ^ o 

t 
+ / P(t) w dt] ' o J 

T 

Since presently we have P(t) = 0 for t > x we may write the above as 

7 ( w ( t ) ) 2 +4 w o
3 ( t ) + | = - P w ( t ) =%=rV w r i t ) (3.89) z o o o zm o o zm m o 

where 

(x) = a c n 2 ( K - ax) 
o 

is the central displacement of the beam at the end of the firs t phase. 

The f i n a l centrepoint deflection defined p r e v i o u s l y as 6̂  = w
Q ( t f ) can 

r e a d i l y be obtained from Equation (3.89) by setting w (t^) = 0. Thus, 

making use of Equation (3.89), we have 

X 3 6 f + ^ P o 6 f = k P m a c n 2 ( K - a T ) 

which after multiplying both sides by 1/h and using Equations (3.36), 

(3.42) and (3.63) can be written i n the following non-dimensional form. 



7 ^ + 4 { - k =^r- P / ( P - 1 ) cn 2(K-ax) for a t <K (3.90) n 6 n i 

Letting 

X = ax =/g [ 3 ( P - D p V P (3.91) 

then it follows from the addition formulas of elliptic functions that 

cn (K-x) = k s n ( x ) d n ( x ) / [ l - k 2 s n 2 ( x ) j (3.92) 

where k = 1//2 is the modulus of the e l l i p t i c i n t e g r a l K. Usi n g the 

identities (3.46), we can rewrite Equation (3.92) as 

cn(K-x) = k s n ( x ) / d n ( x ) = s d ( x ) (3.93) 
• 2 

where sd(x) = sn(x)/dn(x) i s a Jacobian elliptic function. 

Introducing into Equation (3.90) the relations of Equations (3.91) and 

(3.93) we have, in terms of P and B 

j p + f - t j ^ ) = ^ P / ( P - 1). s d 2 j /g [ 3 ( P - D ] / P | (3.94) 

which is v a l i d so long as 6,/h < 1/2 and ax < K « 1.854 

Putting 
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Y 2 = 4 [ ^ + | ( ^ ] / [ P / 3 ( P - 1 ) ] (3.95) 

then Equation (3.94) can be inverted such that 

3 = F 2 [ S C T ^ I / ^ . Y ) ] 2 = [F(l//2 F<(»)] 2 (3.96) 
/3(P-1) /3(P-1 ) 

where 

<(> = sin" 1 /{y 2/(l+y 2/2)} (3.97) 

Within the physical restrictions of the sine function y 2 < 2. Equation 

(3.96) can be used to plot the nondimensional permanent deflection S^/h 

against the impulse parameter 3 for a specific value of P. Figure ( 3 . 1 0 ) 

shows a family of such curves for constant values of P lying between 1 

and 3. The figure also includes straight lines beyond the limiting curve 

at = K, which represent the final deformations based on the small 

deflection analysis of Phase I (a), as indicated by Equation ( 3 . 5 0 ) . 

It may be observed from Figure (3.10) that for large values of 3 (such 

that ax >K) the response can be characterized by a single parameter P 

and becomes independent of the applied impulse I, a fairly obvious result 

that was to be expected. 

It is interesting to note that in direct analogy with trigonometric 

circular functions, the elliptic functions s n ( x ) , dn (x) (appearing as a 

quotient in s d ( x ) ) can be represented by the following infinite polynomial 

series 



sn(x) 

dn( x) 

= X ~ 

= 1 -

(l+ k 2 ) x 3/3! + (l+14k 2 + kk)x5/5l 

k2y?/2\ + (4+k 2 ) k 2
x V 4 ! 

(3.98a) 

(3.99b) 

where k = 1//2 and x<K . 

Provided we are only interested in small values of x = at, it is possible 

to truncate the series of Equation (3.98) at some suitable term, say x 5 « 

By truncating the series in this way we incur errors which are of the 

order of magnitude of x 6 in comparison to the terms remaining in the 

series. Substituting the truncated series of Equation (3.98) into sd(x) = 

sn(x)/dn(x) and using the binomial theorem yields 

sd( x) - x (1 " foxN (3.99) 

For x = a x < 1. this can further be simplified to sd(x) B x a n d Equation 

(3.94) can approximately be written as 

6 f 4 6 f 3 3 
ii 3 ( i T ) rafs(l-l/P) (3.100) 

_2 _ 1/2 
i n which ar <1 imposes the condition B < P /[3(P-1)J 

Figure (3.10) indicates the boundary at = 1 below which the preceding 

approximation may be used with sufficient accuracy. The great 

simplification achieved in the form of the response equation is readily 

apparent. 



b ) M o d e r a t e l y l a r g e d e f l e c t i o n s ( w ^ h > 1/2); m e m b r a n e t h e o r y 

If at >at (i.e. B < B or u < 0) and w /h > 1/2, the string phase is s m o 
assumed to operate in which case the motion of the beam is governed by 

the differential Equation (3.56b). The analysis is along similar lines to 

that employed in Phase 1(b) with the only difference that in the present 

case the initial conditions at the midpoint are 

w (t* = 0) = h/2 
° (3.101) 

w Q(t* = 0) = /(2hPQ/m) A 

where the last expression follows from Equation (3.89) with A defined by 

A = [ - ^ - P / t P - D s d 2 ( a t ) - l ] 1 / 2 (3.102) 

and t* = 0, as before, denotes the instant of time t = t > T at which the 
s 

string phase initiates (Figure 3.11). 

It is an easy matter to show that in this case the formal solution for 

the central deflection w(x Q = L,t*) = w Q(t*), is 
CO • I w Q(t*)/h = > -(U/n 2* 2) cos(nu)) + (16/n 3n 3) A sin(no>) 

» - 1 . 3 . 5 . . . (3.1U3) 

where for notational consistency the nomenclature of Phase Kb) has been 

employed. 

Our interest now centres on determining the permanent deflection at 

the midpoint, and for this information we turn to the evaluation of the time 

tt when w = 0=3w/3u. With the aid of the formulas (B.1) and (B.2) it 



may be shown that the membrane reaches its final position when 

u>f = *ct*/2L=f (l-JL) 
(3.104) 

for 0 < < ir or A> 1/2. 

The requirement that A > 1/2 demands a severe limitation on the values 

of ax and hence on the values of the impulse parameter 3 for a fixed P 

lying in the range 4/3 < P~ < 3. It can be verified that those values of 3 

which cause the transition from beam to string behaviour, violate the 

inequality A > 1/2. From an analytical point of view, these values of g lead 

to an impulsive change i n the centrepoint velocity W q from a positive to a 

negative value at t* = 0. This abrupt change in velocity, which implies an 

instantaneous infinite acceleration at the midpoint, arises from the 

discontinuity of the slope of the initial deflected curve at X q = L. In 

reality the plastic hinge which was assumed to be concentrated at the 

midpoint, extends over a finite plastic zone and the above singularities are 

essentially nonexistent. It may be shown that, for the particular shape of 

the initial displacement and velocity profiles considered here, the 

centrepoint velocity instantaneously (at t* = 0) changes direction if 

w (t* = 0) < hc/2L. We deduce that i n this particular case the in i t i a l o 
central deflection w (t* = 0) = h/2 can be regarded as the maximum 

o 

permanent deflection. The latter result, although important, is only valid 

for a small range of 3 beyond the transition from beam to string behaviour. 

We are mostly concerned with magnitudes of 3 that exceed this range and 

thus satisfy the inequality 0 < wf < ir. In such cases we can uniquely 



determine the value of and hence t* from Equation (3.104). Upon 

substitution of Equation (3.104) into the Equation (3.103) and use of the 

formulas (B.2) and (B.4) we obtain the following expression for the final 

excursion of the midspan point in terms of the basic dimensionless para

meters P, 3: 

6 r 1 -r if A < 1/2 f _ ) 2 
A 
2 ' 8A 
. , (3.105) £ + sr if A > 1/2 

whereA = A (P, 3) when the relation of Equation (3.83) is introduced into 

the definition of A given by Equation (3.102). 

If ax is sufficiently small, the expression for A takes the simplified 

form 

r 9 1 -,1 / 2 

A - [f (1-- ) 3 - 1 (3.106) 
8 P 

The relationship between 6r/h and 3 for P = 2.0 and 3.0 is depicted in 

Figure (3.12). The plateau observed in the diagram at &^/h = 0.5 is a 

consequence of the sudden reversal in the direction of the initial centre-

point velocity, as explained before. The width of this flat region 

decreases with increasing pressure, as seen on the diagram. In what 

follows we shall develop an alternative "approximate" approach which is 

simple to use and leads to results that are sufficiently accurate for 

engineering purposes. 

Approximate Analysis of the String Phase 

Thus far the analysis of the plastic string behaviour in both Phases 

1(b) and 1Kb) has been strictly based on the knowledge of the so called 
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"exact" (within the framework of our assumptions) deflection shape of the 

beam at the instant when the behaviour as a plastic string commences. 

However, the foregoing treatment introduces a great deal of mathematical 

difficulties particularly when the initial deflected curve is complicated as 

will be seen in the next section on high loads. It is therefore instructive 

to devise a simpler technique which can be more easily interpreted and 

used. We close this section with a brief description of the proposed 

"approximate" method of analysis of the string behaviour and simply quote 

the formulas that are furnished by this analysis without going into the 

details of the mathematics involved. 

It has been suggested by Symonds and Jones (Reference 26) that the 

precise deflection curve at time t = t or t* = 0 (i.e. initial shape of the 

string) is not critical in as far as the subsequent motion of the string is 

concerned. For simplicity we assume the initial deflected shape to be 

sinusoidal with amplitude h/2, i.e. 

, i r x 

w (x , t* = 0) = £ sin ( ^ ) ; 0 < x < 2L (3.107) 
O Z ZIJ o 

where the tilda ~ indicates an approximate value. 

Unlike the initial displacement profile, the initial velocity profile of the 

string plays a significant role in its subsequent motion. Let us assume 

that the initial velocity profile is also sinusoidal such that 

~ i r x 

w (x , t* = 0) = V s i n ( ^ f ) (3.108) o o zL 

where V is the amplitude of the assumed initial velocity profile. 



77. 

In order to determine V q we impose the condition that the total kinetic 

energy acquired by the beam at the end of the beam phase (i.e. at t = t 
s 

or t* = 0) be equal to the kinetic energy represented by the approximate 

velocity field of Equation (3.108). This condition is satisfied if 

L L TTX 
/ w2 (x . 0) dxn = / V 2 s i n 2 ( ^ ) dxn 

JQ O O ^ O zL O 

Hence: 

? L 

V = w (0) [ f / $ 2 ( x ) d x J 1 / 2 (3.109) O O LL ^ o o J 

The motion beyond t* = 0 is taken as governed by the differential Equation 

(3.56) and the boundary conditions of Equation (3.57) (where w and its 

derivatives are replaced by their corresponding approximate functions). 

It can be shown, using the orthogonality property of the sine function that 

the solution to this modified initial-boundary value problem is 

TTX 
w (x . t*) =*! (t*) s i n ( ^ ) (3.110) O 1 zL 

The simple analytical approach outlined above will now be applied to 

Phases 1(b) and 11(b) (Figure 3.13) in order to predict the approximate 

final central deflection 6̂  during each of the aforementioned phases. 

Proceeding as before, we substitute Equation (3.110) into the appropriate 

Equation (3.56) and then use the initial conditions of Equations (3.107) 
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and (3.108) to completely determine the t i me-dependent f u n c t i o n ̂  . 

C a r r y i n g out the di f f e r e n t i a t i o n with respect to t* on"?! (t*) and equating 

to zero gives the response duration t | which renders the deflection a 

maximum i . e . 6^. The re s u l t s are gi v e n as follows: 

Phase Kb) 

i) F i r s t S t a g e : 0 < t * < x - t g 

The maximum permanent deflection i s 

6 f 2 2 2 o -
^ • = /(A 1 + B i ) + (^-)3 P (3.111) 

where 

Al = Or- V = i [ | - ( 3 P - 4)p'2 (3.111a) 
1 IT C h O IT o J 

B l = 2~ ( T7 ) 3 P (3.111b) 

The duration of response is given by 

t* = — [tan 1 ( A J V B J ) + TT] if P > ™ 1.94 f i c 1 16 

2L 

(3.111c) 

tan' 1 ( A J / B J ) i f P < 1.94 
IT C 



i i ) Second Stage: t* > T - t 

The maximum permanent deflection is 

^f_ = /(C 1
2+ D 2) (3.112) 

h 

where 

Cj = Ai cos u - Bj sin p (3.112a) 

Di = Al sin u + Bj cos u + (-) 3 P (3.112b) 

and p is defined by Equation (3.81). The critical value of p = p above 

which the maximum response does not occur during the pulse application 

can be shown to be 

p = tan - 1 ( A i / B i ) + TT if P > 1.94 c 1 

(3.112c) 

= tan" 1 (Aj/B j) if P < 1.94 

Thus, Equation (3.112) holds so long as p < p . When the latter 
c 

inequality is violated, Equation (3.111) gives a prediction of the maximum 

response. The duration of response is 

t** = - f ^ t a n 1 (Ci/Di) 
I TI C 

(3.112d) 
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Phase 1 K b ) 

The final central deflection in this phase is given by 

1/2 
(3.113) 

where A is defined by Equation (3.102) with ax given by Equation (3.91). 

The duration of the motion is found to be 

Figure (3.14) shows how the final deflections predicted by the above 

method vary with the non-dimensional impulse parameter 3 when the 

parameter P i s held constant. Also included are the deflections furnished 

by the small but finite deflection theory ( 5r/h < 1/2) in which the 

bending moments interact with the axial forces. A comparison of the 

results of the "approximate" string phase analysis (Figure 3.14) with the 

corresponding "exact" results (Figure 3.12) reveals that the improvements 

achieved do not justify the labour involved in performing an exact 

analysis. Hereafter, for simplicity, we adopt the foregoing approximate 

technique whenever appropriate. 

3.3.2 HIGH LOAD (P > 3P ) 
m o 

In this specific case of loading the motion of the beam consists of three 

phases. Because of the symmetry of the problem we refer only to the left 

half of the beam in what follows except for discussions on the pattern of 

motion. 

t* = — t a n 1 (-A/2/3) 
I I C TT 

t (3.113a) 
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Phase I (0 < t < x) 

a ) Small deflections (w /h < 1/2) 
o 

Instantaneously (at t = 0+) the beam assumes the shape of a trapezium 

(Figure 2.12c) which is comprised of a central flat portion momentarily 

confined by two plastic hinges at a distance [ l - /(3/P)]L from the centre 

(Reference 17). The axial forces come into play soon after the beam is set 

into motion thereby causing a violation of the plasticity condition in the 

neighbourhood of x = p. We must therefore expect that the plastic hinges 

travel along the beam during the loading interval 0 < t < T. It appears 

reasonable to assume that the hinges move in toward the centre during this 

phase of motion. The velocity field meeting the above description, satis

fying the boundary conditions and the appropriate kinematic requirement 

set forth by the second line of Equation (2.16) is 

for 0<x<p (t) 
(3.114) 

for p (t)<x<L 

where, as before, w (t) and w (t) are the transverse displacement and 
p P 

velocity at the hinge position, respectively, and are chosen so as to satisfy 

the initial conditions. 

w (0) = w (0) = 0 (3.115) 
p P 

Differentiating the above with respect to time t permits the acceleration 

field to be written as 

w(x,t) = 
w (t) 

p 

* r * i L-x 
w

P

( t ) L ^ u T 
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w(x,t) = 
w At) P for (Kx<p(t) 

L-x 
(3.116) 

[ w ^ D + p W p U V C L - p ) ] ^ ^ . 

for p(t) <x<L 

This implies that the acceleration is discontinuous at the moving hinge with 

the amount of jump being given by 

w (t) 
w(p+,t) - w(p"tt) = p Y~ L-p(t) 

or [ w 1 = p* w /(L-p) 
P P 

(3.117) 

It follows from Equation (3.117) that the abrupt change in acceleration 

across the moving hinge is equal to the product of the velocity of the hinge 

along the beam and the angular velocity of the outer segment p(t) <x<L. 

This product is always negative since by hypothesis the central plane 

region i s continually shrinking (i.e. p < 0). 

Having assumed the kinematically admissible acceleration field of 

Equation (3.116), we next write the dynamic equilibrium equations of the 

two segments to the right and left of the hinge. We adapt the same 

general approach used to derive the dynamic equilibrium equation of the 

single hinge mechanism (Section 3.3.1). Assuming that the central portion 

of the beam 0 <x< p(t) remains rigid and resists the loads N,M without 

deformation, the expression for the dynamic equilibrium of the segment to 

the right of the hinge is found to be 
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/ [P(t) - mw (t)] 6w (t) dx = 0 
P 

(3.118) 
0 

according to the principle of virtual displacements (Equation (3.29)). 

Since the integral in Equation (3.118) vanishes for an arbitrary 

virtual disturbance 6w and arbitrary x within the flat region 0 < x <p(t), 

the quantity inside the square brackets must be identically zero. Thus 

The latter equation also follows from the fact that since the moment is 

solely supported by the inertia forces. Specializing to the rectangular 

pulse of Figure 3.1 we have for 0<x<p(t) 

Since all the deformation consisting of both bending and stretching 

occurs in the outer segment of the beam p(t) <x<L, the dynamic 

equilibrium equation of this segment is similar to that of the single hinge 

mechanism of Figure (3.3) for the medium load range. Equation (3.34) can 

therefore be made to apply in this case by merely replacing L, w Q(t) and 

w (t) by L - p(t), w (t) and w (t) + p w (t)/(L -p(t)) respectively. As a o p p p 

result of such replacement, for the loading interval 0<t<t, the equilibrium 

mw (t) = P(t) (3.119) 
P 

maximum within the central region, the shear is zero and hence the load is 

(3.120) 
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equation of the segment just to the left of the hinge for the general case of 

blast loading can be written as 

NI (1 + 4w 2/h 2) = i (L-p) 2 [P(t) - | m(w + p'w /(L-p))] o p 2 L 3 p p / J 

or upon substitution of Equation (3.119) 

M (1+ 4w2 /h 2) = \ (L-p) 2 P(t) - \ mw p(L-p) (3.121) o p b o p 

for p(t) <x<L. 

From Equation (3.119) and the initial conditions (3.115) it follows by 

repeated integration that 

t 
mw (t) = / PU) dZ ; 0<t<T (3.122) 

p 0 

mw (t) = / (t-£) PU) dC ; 0<t<x (3.123) 
p 0 

where 5, as before, is a dummy integration variable. 

Introducing Equations (3.122) and (3.123) into the general equation of 

motion (3.121) yields a first order ordinary differential equation in terms 

of the time variable p(t). Specializing once again to a pulse of rectangular 

shape we have 

mw (t) = P t p m 
(3.124) 

mw (t) = P t 2/2 p m 



Using these results in Equation (3.121) and collecting terras, we obtain 

6M P 2 

p - M l + C^g) th] = (L-p) 2 - 2tp(L-p) 
ra 

which can also be written in the form 

t f ^ + r 2 ( t ) = g(t) (3.125) 

where 

r(t) = [L-p(t)] (3.125a) 

and 

g(t) = 6M [ l + (P /mh)zth]/P ° o L m J m (3.125b) 

Integration of Equation (3.125) gives 

r 2 ( t ) =j j g(K) dC 
1 0 

which finally leads to 

i 1/2 
r(t) = L-p(t) = L/(3/P) [1 + jl^fcW*] for 0<t<x 

(3.126) 
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Equation (3.126) gives the instantaneous location of the plastic hinge 

throughout the interval 0<t<T while the load remains constant at P . It 

can readily be seen from the above result that the distance of the hinge 

from the support increases with time t as hypothesized before. The initial 

position of the hinge at the onset of loading is determined by setting t = 0 

in Equation (3.126). Thus 

p(0) = p Q = L [ l - /(3/P)] (3.127) 

as before. 

It can be surmized from Equation (3.124) that the beam cannot cease 

moving in this phase of motion (i.e. for 0<t<x). However, the beam can 

start behaving as a plastic string if 

w (t)=w ( t ) = P t 2/2m> h/2 for 0< t<x o p m 

The latter case is treated separately in the following sub-section on 

moderately large deflection analysis. 

This concludes the small (but finite) deflection analysis of the first 

phase of motion. 

b) Moderately large deflections; membrane theory 

The plastic string stage is reached when 
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t = t = /(mh/P ) < T s m 

The subsequent motion for t > t takes place according to the string 

Equation (3.56a). The latter equation is to be satisfied subject to the 

following initial conditions at the centre (where x = 0 or x = L) 
o 

w (t* = 0) = h/2 o 
(3.128) 

w (t* = 0) = P t /m = /(P h/m) o m s m 

Owing to the complicated nature of the initial displacement shape, we 

resort to the approximate technique developed at the end of Section 3.3.1 

in order to study the behaviour of the beam in the string mode. According 

to our earlier assumption the velocity profile is linear (Equation (3.114)) 

and its spatial distribution at the onset of the string phase is given by: 

x /r(t ) for 0 < x < r(t ) o s o s 
(3.129) 

1 for r( t 1 < x q< L 

where r(t ) is obtained from Equation (3.126) after replacing t by t , s s 
i.e. 

r(t ) = L -p (t ) = /6?5 /(3/P) L s s 

Substituting from Equation (3.129) into Equation (3.109) and carrying out 

the integration yields: 

* ( x j = 



V = "w (0) [2 - 4/2 / /(5P)] o o L J 

1/2 

where W q(0) i s given by the second line of Equation (3.128) (Figure 

3.15). Proceeding in a manner similar to that described for the case of 

medium range load we divide the analysis up into two stages; load era 

(first stage) and free era (second stage). 

i ) F i r s t S t a g e : 0 < t * < x - t g 

It may be shown that the maximum transverse deflection of the 

permanently deformed membrane is in this case given by 

/ ( A i + B : ) + ( f ) P 
TT 

2 2 o 2 ^ 
(3.130) 

where 

- [P - 2 /(2P/5)] 
1/2 

(3.130a) 

(3.130b) 

The duration of response of the membrane is 

t* = — [tan 1 (A 1/B 1) + TT] 
I TT C 

(3.130c) 



89, 
S e c o n d S t a g e : t * > T - t 

During this stage the maximum permanent deflection is 

6 f 2 2 
j ^ = /(C! + DiJ (3.131) 

where 

Cx = Ai cos n - Bi sin n (3.131a) 

Bl = Ai sin n + Bi cos n + (-) 3 P (3.131b) 

and n which represents the same physical quantity as u in the medium 

pressure range is defined by 

n =JJ [/3/P " 1//P] (3.132) 

Equation (3.131) predicts the maximum response until n reaches its critical 

value TI. g iven by c 

n = tan" 1 ( A i / B i ) + IT ( 3 . 1 3 1 c ) 
c 1 1 

For those combinations of 3 , P which result in ri > n the final deflection 
c 

of the membrane is attained during the load application (i.e. first stage) 

and its magnitude is determined by Equation (3.130). The duration of 

motion measured from the instant the load ceases to act is 



2L t a n 1 (C1/D1.) (3.131d) 
IT C 

The analysis outlined above holds for t <x , where t is given by 
s s 

Equation (3.128). That is to say, the permanent centrepoint deflection 

<5j/h predicted by Equations (3.130) and (3.131) are valid so long as 

U S / T ) 2 = P/S < 1. 

P h a s e I I ( x < t < T ) 

a ) S m a l l d e f l e c t i o n s : c o m b i n e d b e n d i n g a n d m e m b r a n e t h e o r y 

During this phase of motion the width of the central flat region 

continues to decrease from p(x) to p(T) = 0. From this instant on (i.e. for 

t > T), the hinge remains at the midspan point and a new phase of motion, 

Phase III, ensues. The following analysis is concerned with the 

determination of T and the value of the central velocity and displacement 

at this instant of time. 

Throughout the second phase the beam is unloaded so that P(t) = 0 for 

0<x<L and x<t<T. This expresses the fact that in this interval of time the 

transverse acceleration of the central segment is given by 

The Equation of motion of the outer segment is again valid in this phase 

provided that we set P(t) = 0 in Equation (3.121). Thus, we may write 

w (t) = 0 for x<t<T (3.133) 
P 

M (1 + 4w 2/h 2) = - -5- mw p (L-p) o p o p (3.134) 



Since w(x,t), w(x,t) are piecewise continuous i n x,t, the deflection 

w p(t) and velocity wjt) must match the values acquired by the beam at 

the end of the first phase given by Equations (3.115) and (3.116) with 

t = T . Hence, with the aid of Equations (3.133) and (3.80), we have for 

the rectangular pulse 

w (t) = P x/m = I/m (3.135) 
p rn 

w (t) = I(t-x/2)/m ; t>x (3.136) 
p 

Substituting these expressions into Equation (3.134) we obtain 

6M y h 2 

~T̂ ~ [1+4fe)2(t_T/2)2] =dt [ L _ P ( t ) ] : t > T (3.137) 

The general solution of Equation (3.137) can be found by direct 

integration. Utilizing the value L-p(x) given by Equation (3.126) at the 

end of the first stage as the initial condition in this case, yields the 

following expression for the determination of the hinge position in the 

interval x<t<T 

2 6M / / I T I T \ 

Since p(T) = 0 by the definition of T, Equation (3.138) finally yields 
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T + 4 ( T - T / 2 ) 3 = 3 mn 3P 30 lmh J (3.139) 

The time T when the plastic hinge arrives at the beam centre is determined 

from the solution of the above cubic equation and in turn the centrepoint 

velocity and deflection at time T are given by 

w (T) P w (T) = I/m o (3.140) 

w (T) 
P 

w (T) = I(T-x/2)/m o (3.141) 

Since the transverse velocity at the hinge is constant (see Equation 

(3.135)) right up to the centre, the motion of the beam cannot stop in the 

interval x<t<T. However, a transition to string phase can occur if the 

deflection wp is of the order of the half-depth of the beam. The maximum 

permanent deflection when the beam behaves as a one-dimensional 

membrane, is given in the following. 

b ) M o d e r a t e l y l a r g e d e f l e c t i o n s ; m e m b r a n e t h e o r y 

At the initiation of the string stage 

w (t ) = - (t - T/2) = h/2 (3.142) o s m s 

which implies that 



t =-£ (mh/I + T ) where T < t < T s 2 s (3.143) 

The analysis in this case is essentially the same as in Phase 11(b) 

described earlier except that the initial condition on the velocity is now 

w ( x , t ) = — * ( x ) = — o s m o m 

x /r(t ) for 0 < x < r ( t ) 
O S O S 

for r(t ) < x <L s o 
(3.144) 

where r(t ) = L - p(t ) is given by Equation (3.138) with t replaced by t s s s 
(Figure 3.15). The result is 

r(t J = L - p ( t j = L [2/B + 3/(2P) + ^-(B 2/P 3)] 
1/2 

(3.145) 

It is then a simple matter to show that the maximum transverse deflection 

of the membrane is 

5 f 2 2 
f = / ( A x + B j ) (3.146) 

where 

A 2L 2 Jo r, 2 r ( t s V ' 2 
A i = r V = — /B 1 - -r : 1 1 irch O v 1 % f. J 3 L (3.146a) 

(3.146b) 



The duration of motion is 

t* = t a n - 1 (A J / B J ) (3.146c) 

The above analysis is appropriate only if t > x and r (t ) = L-p(t ) < L, 
s s s 

3 -
or what amounts to the same if the inequalities P > 3 and 2 + — (3/P) + 
• — ( 3 / P ) 3 < 3 are simultaneously satisfied. 

Phase III t > T 
a) Small deflections (w^h < 1/2) 

During this third phase of motion, the beam deforms in accordance 

with the single hinge mechanism. If we assume that the deflections are 

sufficiently small so that the permanent distortion in the two halves of the 

beam do not affect the formulation, then the motion of the beam beyond the 

time T is governed by the differential equation 

w (t) + Aw?, (t) +|-P = 0 (3.147) o o 2m o 

subject to the initial conditions of Equations (3.140), (3.141). Integrating 

Equation (3.147) after multiplying both sides by wQ(t) leads to 

\Vit) + ~ w3 (t) + |- P o w (t) = 2 o 3 o Zm o o 2 m 

+ T ( ^ 3 (T-x/2) 3 + |- P (£) (T-x/2) (3.148) 3 m 2m o m 



for t > T, where the right hand side (i.e. the constant of integration) has 

been determined from the initial conditions at t = T. The beam finally 

comes to rest at time t^ when wQ(t ̂) = 0. Using Equations (3.148) and 

(3.36), the final centrepoint deflection 6̂  can be expressed as 

6 6 

o 
(3.149) 

Now Equation (3.139) can be recast into the following form: 

( T - T/2) + |-(^-r-)2 (T - T/2) 3 = y " T T " "in ( t ) ^ 3 (3.139a) 3 mn dP 2, 30 mn o 

Combining Equations (3.139a) and (3.149) to eliminate T provides the 

following equation, which determines 6^/h once the pressure pulse and the 

beam properties are defined: 

h 3 l h J 3 mhP 2mh T 30 mh Id.lbUJ 

In terms of the dimensionless parameters of our problem 3, P defined by 

Equations (3.79) and (3.63), Equation (3.150) can be rewritten as 

^ + i ^ ) 3 s b - i ^ / f ) - h { ^ ) 3  C 3 - 1 5 1 )  

which is valid so long as 6 /h < 1/2. 



If interest lies in very small values of x = ax such that terms of the 

order of x** and higher can be neglected, we can write Equation (3.151) 

approximately as 

(3.152) 

It is noticeable that we have already implicitly neglected terms of similar 

order in the derivation of the approximate Equation (3.100), so that the 

truncation error committed is consistent. It is also evident that for small 

deflections, 6{/h < 1/2 Equations (3.100) and (3.152) yield the same 

response at P = 3 (i.e. at the transition from medium to high loading 

range). From these observations we conclude that for \* < < : 1-

provided that Sf/h < 1/2. 

It can be observed that if the non-linear term, (6 r/h) 3, i n Equation 

(3.153) is eliminated the linearized equation described by Symonds (see 

Equation (10) of (Reference 27) for beams with no axial constraints, will 

once more be obtained. 

Finally Equation (3.151) reduces to the impulsive loading case when 

we take the lim it P-»• ~, so that 

for 1 < P <• 3 

(3.153) 

f 6 (1 — ) for P > 3 
4P 



h 3 l h ' 3 p o (3.154) 

where 

I 2 

ft = - 2 — 
p o mhP 

o 

and I is the ideal impulse (corresponding to a D i r a c delta function) 

which causes the same central deflection 6 r/h as the equivalent 

rectangular pressure pulse. Equation (3.154) is identical to that obtained 

by Symonds and Mentel (see Equation (25) of Reference 11 or Equation (14) 

of Reference 27) to predict the central deflection of a simply supported 

axially constrained beam subjected to a uniformly distributed init i a l 

v e locity, I /m. o 

b) Moderately large deflections; membrane theory 
If during this t h i r d phase of motion the central deflection exceeds h/2, 

the beam starts behaving as a one-dimensional membrane before it comes to 

a stop. 

The in i t i a l condition on velocity is i n this case: 

x 
w(x ,t* = 0) = w (0) 7- 0- for 0 < x < L (3.155) O O l i o 

i n which w (0) i s g i v e n by the fo l l o w i n g expression 
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w Q (t* = 0) = w'o(0) = ̂  /(3/S) [| (0-1) 

- j(B/P) " lg" (3/P)3] (3.155a) 

In view of the difficulties involved in using the precise initial deflected 

shape, we employ the approximate technique (Figure 3.15) developed 

previously to obtain the final central deformation of the membrane as 

6f 2 2 
^- = SiA1 + Bi) (3.156) 

where 

A i
 =lfe-v. = irtrie-i) " f(e/p)" Irr (e /P) 3 ] 1 ' 2 o.isea) 
1 ircn o n o I 6u J 

Bx = -| (3.156b) 

The time to reach this maximum deflection is given by 

t* = tan" 1 (Ai/Bj) (3.156c) 

3 Clearly the above formulation is valid for P > B and 2 + 2~(B/P) 

+ | Q - ( B / P ) 3 > B. 

In Figure 3.16 are shown curves of the final deflection ratio 6^/h as 

function of the impulse parameter B for some typical values of the 



pressure parameter P i n the range P > 3. 

This concludes our finite deflection analysis of a simply supported beam 

subjected to a rectangular pressure pulse of arbitrary intensity and 

duration. 

3.4 SUMMARY OF RESULTS . INCLUDING T H E SOLUTION FOR BEAMS 
WITH CLAMPED ENDS 

In this section we outline the solution for the dynamic plastic 

deformation of an axially constrained fixed-ended beam (one whose edge 

constraints prevent axial in-plane displacements as well as transverse 

displacements and rotations) loaded by a uniformly distributed rectangular 

pulse. The results are then given in a tabular form against the 

corresponding predictions for the simply suported beam analysed in the 

previous sections. 

At collapse, the fixed-ended beam carries the load in the manner of a 

simply supported beam. The displacement configurations are therefore 

similar in each case, but resisting moments of critical magnitude M act at 

both ends of the former beam. This necessitates an increase in the total 

plastic work dissipation and the Equation (3.4) representing the internal 

virtual work now becomes: 

<5 VV. = N6 e + 2M 6<p (3.157) int 

since in this case both axial strain and curvature change take place at the 

fixed end as well as at the centre. Evidently, the results of a simply 

supported beam (given in detail in the preceding sections) can be made to 

apply to a beam with fixed ends by merely replacing the critical moment M 



by 2M whenever it occurs in each equation (this also includes the replace
ment of M ; the critical bending moment i n the absence of axial load; 

o 
by 2M ). 

J o 

In accordance with the above modification the flow rule (Equation 

(3.16)) takes the form 

N w w 

o o 

It can be seen that the beam solution is now valid for central deflections 

smaller than the full depth of the beam, as opposed to half-depth of the 

beam in the simply supported case. In view of this, it may be shown that 

the various results for the simply-supported beam given in the previous 

sections reduce to the corresponding results for clamped beams when the 

appropriate parameters are selected from Table 3.1 

The subsequent tables (Tables 3.2 and 3.3) serve to summarize the 

predictions of the permanent central deformation of simply supported 

and fully clamped beams according to the complete theory of this thesis. 

The comparison between predictions of final deflections of various 

theoretical models and the test results, in the limiting case of an impulsive 

load, are shown in Figure 3.17 for fully clamped axially restrained beams. 

3.5 DISCUSSION OF RESULTS 

From the results of the analysis presented in this chapter (Figures 

3.14 and 3.16) it can be seen in general that two basic parameters are 

needed to adequately represent the influence of the rectangular pressure 

pulse on the permanent deflections, namely the impulse parameter B and 

the pressure parameter P. Replacement of the pressure pulse by an ideal 
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impulse; which represents only a single parameter B, may therefore lead to 

unsatisfactory results. This is especially true for small values of P. As 

P increases the deflection-impulse (i.e., 6^/h vs. B) variations become 

progressively stronger in resemblance to that of an ideal impulse. One may 

observe from Figure 3.14 that for values of B and P to the right of the 

cross-hatched boundary the maximum deflections do not depend-on B. 

Consequently in this region the response can be characterized by the 

single parameter P. This is equivalent to replacement of the pressure 

pulse by a step load. 

It can be inferred from Figure 3.17 that the results of the present 

"approximate" plastic string analysis compare favourably with the experi

mental values observed on fully clamped beams subjected to impulsive loads. 

The linearized solution which neglects the effects of geometry changes, is 

of course too crude to give a true indication of the beam's behaviour, as 

can be observed from Figure 3.17 for the extreme case of an impulsive 

load. The same is also true for dynamic loads with finite durations. 

Owing to its unrealistic predictions, we shall not consider the results of 

the linear bending - only theory as means of comparison in our further 

discussions. 

The analysis presented in this chapter can be expected to give good 

results for impulse parameters in the approximate range given by the 

inequality (A.9) (see Appendix A). Nevertheless it is believed that the 

present solution represents the behaviour of beams with constrained ends 

closely enough for many practical situations (where the ratio L/h is not too 

small). 

In all the preceding analysis a plastic hinge was assumed to be 

concentrated at a point, however, in reality where the stresses become 



critical, a plastic zone of finite curvature extends out from either sides of 

the hinge point. This spreading out of the plastic deformation, which is 

not accounted for in the rigid-plastic analysis, plays a significant role in 

the reduction of deflections. The inclusion of strain hardening and 

strain-rate effects also tends to reduce the final deflections and must be 

taken into account for less conservative and more realistic results. 



Table 3.1 

Comparison of various parameters used In the analysis of simply supported 

and fully clamped beams 

Parameter Simply Supported Beam Clamped Beam 

P 

B 

aT 

m 

2M /L 2 

o 
P /P m o 
I2/mhP 

^[3(P-1) ] 1/2 mh 
r - - . I ' 4 -/B [3(P-1)J /P 

P 2[K-F(l//2, <f, )] 2/[3(P-L)] 1/2 

r ( t j [Phase 11(b)] L[2/B + 3/2P + —<B2/P3)] 
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4M /L 2 

o 
P /P m o 
I2/inhP 

o 
P 1 /2 

/(B/2) [3(P-l)j /P 
2 1/2 2P2[K-F(l//2,<{,s)] [3(P-1>] 

L[4/3 + 3/2P + i^<B 2/P 3)] 
1 /2 



Table 3.2 

Th e o r e t i c a l prediction of f i n a l c e n t r a l d e f l e c t i o n of simply supported and f u l l y clamped 
beams: Medium load 1 < P < 3 

Simply-supported Clamped Beam 
Beam 

Phase K a ) 
( 1 < P 4/3 

( at > K 

6 f _ 
h h 

_ r _ 1/2 
/3 [P-l] 

Phase K b ) 
( 4/3 < P < 3 

I P > e 

m 

i ) F i r s t stage 
6 f 
h /(A 2 + B 2)+(-) P 

1 1 11 

6 f . 
h 2/(A 2+B 2)+2(-) 3 P 

1 1 11 

i i ) Second stage 
6 f _ 
h / ( C 2 + D 2) 

1 1 
6 f _ 
h 2/(C 2 + D 2) 

1 1 

Phase H ( a ) 
< 1 < P < 4/3 

/ a T < K h 3 ( J L ) -|(A 2+1) h 

Phase 1Kb) 
( 4/3 < P < 3 

( B < B 
m 

6 f . 
h h 

A], B 1 are given by Equations (3.111a, b) 
Cj , Dj are given by Equations (3.112a, b) where i t i s understood that the appropriate 
parameters are selected from Table 3.1 



Table 3 . 3 

T h e o r e t i c a l prediction of f i n a l central d e f l e c t i o n of simply supported and f u l l y clamped beams; 
High load P > 3 

Simply-supported 
Beam 

Clamped Beam 

Phase 1(a) 
Phase I ( b ) t 

i ) F i r s t stage 

i i ) Second stage 

No permanent deformation 

SJ-- /(A 2+B 2)+(|) 2P 

J p - / ( C 2 + D 2 ) 

P<0 

No permanent deformation 

^ = 2/(A 2+B?)+2(|) 2 P 

2 / (C f + D 2) 
P<B/2 

Phase 11(a) No permanent deformation No permanent deformation 

Phase 11(b) 

Phase 111(a) 

3 L 

S f 4.
 4 Al' 2 A 

S" + 3 ( jp) - 3 8 

11 5 

1 /2 

P>B 

r ( t )<L 
s 

_ 3 
* f ( B / P ) " Jo ( p / p ) 

J L - [ 2 ( ^ ) B [ l 4 
2 r ( t s > , 

+1] 
1/2 

6 f 1 6 f 3 2 

_ 3 
- i - ( B / P ) " i f o < p / p ) 

P>B/2 

r(t 8)<L 

o 
tn 



Table 3.3 

Th e o r e t i c a l prediction of f i n a l central d e f l e c t i o n of simply supported and f u l l y clamped beams; 
High load P_> 3 (Continued) 

Simply-supported 
Beam 

Clamped Beam 

Phase 111(b) f 2 2 r2 

-j ( B / P ) 

1 - 3 ! 1 1 / 2 

" 3o ( B / P ) 1 + P 

P > B 

r ( t a » L 

£ 2 2 r2 

- ±- ( B / P ) 

1/2 

P > B / 2 

r ( t 8 » L 

It i s understood that the various parameters appearing i n the above are appropriately selected from 
Table 3.1 
t A i , Bi_, Cj and Dj are given by Equations (3.130a, b) and (3.131 a,b) 



1 0 7 . 

CHAPTER IV 

CONSTRUCTION OF ISODAMAGE CURVES 

4.1 INTRODUCTION 

A useful way of representing the response of a structure to a specific 

pulse shape is to establish the appropriate structural "isoresponse" curve. 

The latter are the locus of combinations of peak pressure and impulse that 

produce the same response, in this case the maximum displacement of the 

structure. For a plastic structure undergoing a given permanent 

deformation or damage, the corresponding curve is called an "isodamage" 

curve. The object of this chapter is to convert the complete solution 

obtained in the previous chapter into a form suitable for the generation of 

isodamage curves, the variables (or parameters) that control each damage 

mechanism will also be distinguished. Following a pattern somewhat similar 

to that established in the preceding sections, we shall consider here two 

distinct levels of damage typified by small damage (6 x/h < 0.5) and large 

dam ag e ( 6r/h > 0.5). 

4.2 SMALL DAMAGE (6 (h < 0 .5 ) 

We proceed to find a relationship between the dimensionless pressure 

parameter P and the dimensionless impulse parameter 6 by treating the 

level of damage 6x/h as a fixed quantity. The following equations for B 

result from Equations (3.94) and (3.151) when we keep the quantity 6f/h 

at a constant level. Thus 

p = ? 2 - [FM//2, $)f for 1 < P < 3 (4.1) 
/3(P-1) 
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where* = <{> ( P ; 6^/h) is given by the combination of Equations (3.95) and 

(3.97). Beyond the above pressure range (i.e. for P > 3) the impulse 

parameter 0 is given by the smallest positive real root of the polynomial 

equation. 

|o ( B / P ) 3 + ( s / P ) [7 - | P ] 

5 f 4 6 f 3 

Equations (4.1) and (4.2) give the P - 0 combinations that produce 

the same final deflection 5^/h. These combinations are plotted i n Figure 

4.1 for 6̂ /h = 0.25 and 0.5. A t the lower end (horizontal part) of the 

curves, the response can be characterized by a single parameter, namely 

the pressure parameter P given by 

V 1 + f (ir )2: i < p c < 4 / 3 ( 4 - 3 ) 

which follows from Equations (3.50). 

The value of the impulse parameter 0 beyond which the dynamic pulse 

can be characterized by a step load, is given by the root of Equation 

at = K, or 

_ 2 2 

C /3 ( P -1) 1 6 n n 

c 

The upper part of the isoresponse curves are asymptotic to an impulse 

parameter 0 O given by 
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3 r f 4 f 3 i 

In the intermediate dynamic loading realm (knee of the c u r v e ) , both 

parameters g and P influence the permanent deflections. Hence we must 

know the entire time history of the loading. Points on this part of the 

curve are described by Equations (4.1) and (4.2). 

4.3 S E V E R E DAMAGE (<5f/h > 0.5) 

Our discussion so far has been limited to small permanent deflections i n 

which effects of flexure and stretching are coexistent. However, as 

mentioned earlier, for moderately large deflections the beam offers no 

resistance to bending and behaves as a flexible one-dimensional membrane 

(so-called string behaviour). In what follows we shall be concerned with 

the determination of P - 6 curves that are governed by the latter pheno

menon. For simplicity we use the results of the approximate analysis 

(developed at the end of Section 3.3.1) based on the dissipation of the 

initial kinetic energy into the kinetic energy associated with an equivalent 

sine-shape velocity profile. 

It can be seen from the results of the previous chapter, Figure 3.14 

and Equation (3.111), that pressures in the medium range, 1 < P < 3, 

do not contribute to damage 6^/h greater than 6^/h » 1.42. For the sake 

of clarity we construct the pressure-impulse curves separately according 

to whether the damage quantity 6^/h is greater or less than 6 r/h * 1.42. 

i ) 0.5 < Sj/h < 1.42 

T h e value of the pressure parameter P is in this case given by 
c 

Equation (3.111) as 
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(V - I + 2 1 2 

P = - ^ 3 ( 7 r ) . , 4/3 < P < 3 (4.6) 
c l 2 2 2 3 2 3 f C 

7 (f) - (7) + 2(f) 7 ^ 

2 IT TT TT n 

The corresponding value of the impulse parameter 3 required to achieve 
c 

the same ce n t r a l deflection S^/h can be obtained from Equation (3.81) and 

(3.112c) as 

where 6 and y are defined by Equations (3.82) and (3.112c) with P 
s c 

replaced by P c « A s the pressure is increased from P c to P = 3 ( i . e . 

within the medium range of dynamic loading) the pressure-impulse r e l a 

tionship can be described by Equations (3.112) and (3.113) when they are 

converted into the form 3 = 3 (P; 6^/h) with 6^/h being a fixed parameter. 

Performing the above conversion leads to the following 3 - P r e l a t i o n 

ships: 

3 = P 2 i^-v + [ ~ [K-F (1//2. 4 )] \ (4.8) 
1 1 1 3(P - 1) S ' 

for P < P < 3 and 3 > 3 or u > 0, where c m 

u = s i n _ 1 j 9 f - s i r i " 1 ! } (4.ba) 
1 2 2 \ 2 2 
V ( A ! + Bj ) ' W[Al + Bj) 



-TT In the above the inverse sine is an angle between-^- and-j with Aj , 

given by Equations (3.111a) and (3.111b) respectively and Q defined as 

TT 3 r 6 f 2 2 2 2 6 - 2 n 
Q = " — [ ( i f ) ~ (A]_ + Bj_) - (—;) P ] (4.8b) 

16P 

If P is increased to a level that renders the quantity n negative (i.e. u 

0 or 3 < 3 ) then the results of Phase 11(b) prevails (i.e. Equation m 
3.113) and the 3 - P relationship becomes 

3 = P r — [ F U / / 2 , <t>)]2 for P < P < 3 and 3 < B (4.9) 
/3(P-1) C m 

where <j> is given by Equation (3.97) in which 

Y 2 = { T T 2 [ ( ^ ) 2 - |] + |} / [ P / 3 ( P - D ] (4.9a) 

To construct the remaining part of the P - 3 curve beyond P = 3 we 

proceed to rewrite the results of the high load membrane analysis in the 

form 3=3 (P; <Sr/h). In doing so we make use of Equations (3.131), 

(3.146) and (3.156). Elementary though somewhat lengthy analysis leads 

to the following expressions for the impulse parameter 3« 

3 = P 2 [ — n + (4.10) 
1 1 /P 

for P > 3 and 3 > P or n > 0, where 



the inverse sine being an angle between-^- and 7- with , Bj given by 

Equations (3.130a,b). The quantity Q is again defined by Equation 

(4.8b), however the A± appearing in that expression is now given by 

Equation (3.130a). 

If the quantity TI (Equation 4.10a) becomes negative as a consequence 

of increase in pressure, two different cases arise according to whether the 

plastic hinges are within the half-span (i.e. 0 < p < L) or at the midspan 

(i.e. p = 0) prior to the onset of string phase (Equations (3.146) and 

(3.156)). The value of 0 as a function of P and the fixed parameter 6^/h 

are in each of the above cases given by the roots of the following poly

nomial equations: 

45P3 

(4.11) 

for P > 3, P > 0 and 2 + j (0/P) + ^- (0/P) < 0 

30P3 

(4.12) 

for P > 3. P > 0 and 2 + | (0/P) + ^ j -
_ 3 

(0/P) > 0 



For a given 6^/h, as the pressure is increased indefinitely (i.e. P+ 

°°), the magnitude of 3 necessary to maintain the given deflection (or 

damage) 6f/h may be shown to be 

3IT2 r 6 f 2 1, 

provided 3 < 2 or r — < 0.72 and * o h 

3 Q = | [bi +/(bi - 4 C l ) ] (4.14) 

« f for 0.72 < r- < 1.42, where n 

c i = i r I (tr'2 - f l 2 ( 4- 1 4 b ) 

Equations (4.13) and (4.14) define the location of the vertical asymptotes 

i n the P - 3 space and represent the value of the ideal impulse which 

produces the same damage 6^/h as the rectangular pulses. Figure 4.2 

illustrates a complete picture of the relationship that must exist between 

the pressure and impulse (in nondimensional form) to provide a given 

central damage 0.5 < 6f/h < 1.42. 

i i ) 6f/h> 1.42 
4 

As mentioned before the medium range of pressure intensity ( i . e — < 
3 

< 3) makes no contribution to the damages 6̂ /h that exceed 1.42. Under 



these circumstances the isodamage curves emanate from a different starting 

pressure P given by 

P = £ + [ ( f l ) 2 _ I { A ) 2 - I } ] 
c s L s s n 4 J (4.15) 

where 

(4.15a) 

and 

(4.15b) 

The impulse parameter 3 , beyond which the response is insensitive to 
c 

impulse and depends primarily on the pressure magnitude, is given by 

Equation (4.10) with P replaced by P defined above. The points with 

coordinates (3, P) that describe the dynamic and impulsive parts of the 

isoresponse curve can once again be obtained from Equations (4.11) to 

(4.13). In Figure 4.3 are shown curves of the pressure as a function of 

impulse, for some typical values of the permanent deflection ratio 6r/h > 

1.42. 

4.4 DISCUSSION OF RESULTS 

The general shape of the isodamage curves, which is approximately 

hyperbolic, remains unaltered with increasing deflections. In the vicinity 

of the vertical asymptote, changes in load magnitude for a given impulse 
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cause relatively small deviations from the isodamage curve, but changes in 

impulse for a given load magnitude cause relatively large departures. The 

location of these critical load curves changes considerably with increasing 

deflection 6^/h. For a particular value of 6^/h the corresponding 

isodamage curves predicted by the linear bending theory always lie to the 

left of the present curves, the amount of shift being proportional to the 

square of the given deflection (6^/h) 2. These pure bending isodamage 

curves, which can be drawn for a specific value of 6r/h using the linear 

part of Equation (3.153), clearly lead to overconservative predictions of 

the beam response and have therefore been excluded from the present 

diagrams. 

The isodamage curves presented in this chapter are particularly useful 

for preliminary design where a gross picture of the structure response is 

desired prior to undergoing a costly program in terms of computer time to 

analyze the structure through numerical methods. The validity of the 

present results, however, must rely upon experimental results. 
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CHAPTER V 

CONCLUSIONS 

5.1 CONCLUDING REMARKS ON THE THEORY AND ITS APPLICABILITY 

An analytical procedure, which includes the effects of finite geometry 

changes, has been developed herein to predict permanent deformations of 

rigid-plastic symmetrically supported beams subjected to uniformly distri

buted blast-type loadings. In the general formulation of the problem 

distinct deflection modes have been assumed for various ranges of load 

intensity. A closed-form solution has been derived for the simplest case, 

that of a rectangular beam acted on by a rectangular pressure pulse of 

arbitrary magnitude and duration. The dependence of the permanent 

central deflection on peak pressure and impulse has been emphasized. 

However there were some experimental results available for the case of 

impulsive loading. This case has been obtained as a special case from the 

general formulas derived herein. It is encouraging to note that these 

results for the case of a fully clamped beam are in better agreement with 

the corresponding experimental values (Figure 3.17) than are the estimates 

obtained by Symonds and Mentel (Reference 11). The theoretical predic

tions cannot be compared with experimental results since (to the author's 

knowledge) no test data seem to have been reported for the response of 

beams to dynamic loads of finite durations. Moreover, due to the lack of 

relevant uniqueness or bounding theorems it is impossible to assess 

whether the present predictions are smaller or larger than the exact 

solution. An assessment of the validity of the various approximations made 

in the theory outlined herein must await information from experiments 
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and/or numerical elasto-plastic solutions.^ Nevertheless until such 

supporting confirmation of the theory are obtained the predictions 

suggested here are believed to be sufficiently accurate to enable designers 

to make preliminary design decisions. The final results presented as 

structural isodamage curves are particularly useful in predicting the 

characteristics of the rectangular pulse required to cause a specified 

permanent deformation of the beam. These isodamage plots provide a 

simple presentation of the theoretical results and are extremely important 

in planning experiments. 

It is thought that the method suggested herein could in principle be 

used to analyze beams having other cross-sectional geometries (restricted 

to sections with at least one axis of symmetry) by incorporating the 

appropriate yield condition of the cross-section and its associated flow 

rule. Such an extension of the theory is now under investigation at 

UBC. 

The mathematical model and its formulation presented here can be 

applied to any arbitrary pulse shape that satisfies the definition of blast-

type loading. In most cases, however, owing to their nonlinear character, 

the differential equations of motion have to be solved by a numerical 

technique. Only in the particular case of a rectangular pulse can the 

equations be integrated in analytic form. 

The intent of all the theoretical work presented in this thesis was to 

obtain the permanent deflection of the beam as a measure of the likelihood 

of failure. It is felt, however, that information from experiments 

t This is currently under study at UBC. 
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is needed to clarify this point since failure may occur due to rupture, 

fracture or breakage at some point in the material before the permanent 

deformation is reached. 

5.2 F U T U R E A R E A S O F R E S E A R C H 

The topic presents many interesting areas for further detailed 

investigations. The following is intended to briefly outline a few of these 

areas of research that are needed to improve or extend the existing 

theoretical procedure. 

The lack of experimental results in the dynamic realm (when the 

intensity and duration of the pressure pulse are finite) is readily apparent 

from a survey of the literature. These results are of prime importance in 

validating the analytically predicted behaviour of axially restrained beams. 

Experiments are needed for loads with time durations that are comparable 

to the natural period of the beam, since the present rigid-plastic solutions 

are only valid for durations of loading well removed from the natural 

period. For more realistic results, the elasto-plastic, strain hardening and 

strain rate effects on the transient dynamic response of beams should be 

studied. The complete solution in this case requires involved numerical 

computations. Further research is also required to investigate the effect 

of different load-time histories on final plastic deformation. Correlation 

parameters need to be established in order to eliminate the dependence of 

the response on the pulse shape. To provide a valid correlation over a 

wide range of load durations, particularly those near the natural period of 

the structure response these correlation parameters should be checked out 

on elastic-plastic models. Using these parameters, the isodamage curves 

obtained here for rectangular pulses can be made to apply to various other 
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forms of pulse shapes. 

Another useful contribution to the existing literature would be to 

study the influence of "partial" as opposed to "full" end restraints against 

in-plane movements. Prevention of axial motion at the ends is obviously 

critical; this is evident from the enormous difference in the deflection 

predicted by the bending-only theory and from those theories that also 

take account of axial forces arising from the in-plane end contraints. In 

practice, however, full end fixity cannot be provided and a small amount 

of slipping usually occurs at the edge supports. In view of this, it would 

be informative to have a knowledge of the final deflections acquired by the 

beam when the axial end restraints are relaxed slightly. 

In situations where the size of the beam is significant relative to the 

stand-off distance from the explosion, the distribution of pressure can no 

longer be taken as uniform. It would therefore be of value to have theo

retical techniques at hand which could account for pressures that are 

non-uniformly distributed over the beam length. 
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Ob 

Strain 
F i g . 2 . 2 I d e a l i z e d s t r e s s - s t r a i n d i a g r a m : 

R i g i d - p e r f e c t l y p l a s t i c 

r 
i 

Residua I 
curvature 

Curvature 

F i g . 2 . 3 I d e a l i z e d m o m e n t - c u r v a t u r e d i a g r a m : 
R i g i d - p e r f e c t l y p l a s t i c 



(a) (b) ( C) 

F i g . 2 . 4 P u r e b e n d i n g o f a beam o f a g e n e r a l c r o s s -
s e c t i o n h a v i n g one a x i s o f s y m m e t r y : F u l l y 
p l a s t i c s t a t e 

( a ) g e n e r a l c r o s s - s e c t i o n w i t h s i n g l e a x i s 
o f symmetry 

( b ) f u l l y p l a s t i c s t r e s s d i s t r i b u t i o n 
( c ) s t r a i n e d g e o m e t r y o f s e c t i o n 
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Equal area axis 

Zero slress 
ax i s 

(b) ( c ) (d) 

F i g . 2 . 5 Combined t e n s i o n and b e n d i n g o f a beam 
of a g e n e r a l c r o s s - s e c t i o n h a v i n g one 
a x i s o f s y m m e t r y : F u l l y p l a s t i c s t a t e 

(a) b e n d i n g moment and a x i a l l o a d as viewed 
on a beam element 

(b) c r o s s - s e c t i o n 
( c ) f u l l y p l a s t i c s t r e s s d i s t r i b u t i o n 
(d) s t r a i n e d geometry o f s e c t i o n 



(a) (b) (c) 

F i g . 2 . 6 R e s o l u t i o n o f t h e f u l l y p l a s t i c s t r e s s d i s t r i b u t i o n 
( a ) f u l l y p l a s t i c s t r e s s d i s t r i b u t i o n 
( b ) f u l l y p l a s t i c s t r e s s d i s t r i b u t i o n i n t h e a b s e n c e 

o f a x i a l l o a d 
( c ) f i c t i t i o u s s t r e s s d i s t r i b u t i o n 

L 0 
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F i g . 2 . 7 S c h e m a t i c o f t h e c r o s s - s e c t i o n 
s h o w i n g a t y p i c a l d i f f e r e n t i a l 
e l e m e n t 
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F i g . 2 . 8 Y i e l d c u r v e s f o r some t y p i c a l 
c r o s s - s e c t i o n g e o m e t r i e s 
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F i g . 2 . 9 Y i e l d c u r v e and t h e a s s o c i a t e d 
n o r m a l d e f o r m a t i o n v e c t o r 
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(O 

F i g . 2 . 1 0 S y m m e t r i c a l l y s u p p o r t e d beams s u b j e c t e d 
t o u n i f o r m l y d i s t r i b u t e d b l a s t - t y p e 
l o a d i n g 

( a ) s i m p l y s u p p o r t e d beam (no a x i a l c o n s t r a i n t s ) 
(b) c lamped beam (no a x i a l c o n s t r a i n t s ) 
( c ) g e n e r a l p r e s s u r e - t i n e h i s t o r y 

natural hinges 

p l a s t i c h i n g e 

( a ) 

-plastic hinges 

plastic hinge 

(b) 
F i g . 2 . 1 1 S t a t i c c o l l a p s e mechanisms 

( a ) s i m p l y s u p p o r t e d beam 
(b) c l a m p e d beam 
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Pit). 

(a) 
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t P < P 

(b) 

(c) 

Travelling plastic hinges 

P 0 <Pm * 3 P o 

> P m ^ P 0 

Final mode of deformation 

Fig.2.12 Process of deformation 
(a) low p r e s s u r e range '(b) medium pressure 

range (c) hig h p r e s s u r e range 



F i g . 2 . 1 3 V a r i a t i o n o f f i n a l d e f l e c t i o n p r o f i l e , e x p r e s s e d i n 
t e r m s o f c e n t r a l d e f l e c t i o n , w i t h p r e s s u r e i n t e n s i t y 
( L i n e a r b e n d i n g t h e o r y o f R e f e r e n c e 17) 



Pressure P(t) 

Time t 

130, 

Fig.3.1 Rectangular p r e s s u r e p u l s e 

P/unit length 

i 1 1 i 1 I J 

— 

w = - y Section A-A 

Fig.3.2 Simply supported a x i a l l y c o n s t r a i n e d beam 
c a r r y i n g a u n i f o r m l y d i s t r i b u t e d l o a d 

Collapse load 

o Natural hinges 

• Plastic hinges 

Fig.3.3 C o n f i g u r a t i o n of the simply supported 
beam a f t e r development of a c e n t r a l 
p l a s t i c hinge 



P/unit length 

F i g . 3 . 4 N o m e n c l a t u r e a nd f r e e b o d y d i a g r a m 
f o r a s t a t i c a n a l y s i s o f t h e s i m p l y 
s u p p o r t e d beam 

( a ) ( i ) D e f l e c t e d f o r m d u r i n g c o l l a p s e 
( i i ) V i r t u a l l y d i s t u r b e d c o n f i g u r a t i o n 

( b ) F r e e b o d y d i a g r a m 
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F i g . 3 . 5 P a r a b o l i c y i e l d s u r f a c e f o r a 
r e c t a n g u l a r c r o s s - s e c t i o n 



(a) lb) 

F i g . 3 . 6 S t r e s s and s t r a i n d i a g r a m s a f t e r t h e 
a x i a l l o a d r e a c h e s i t s f u l l y p l a s t i c 
l i m i t N 

o 
( a ) t e n s i l e y i e l d s t r e s s d i s t r i b u t i o n 

a c r o s s t h e w h o l e c r o s s - s e c t i o n 
( b ) s t r a i n e d g e o m e t r y o f t h e s e c t i o n 

w U ) 

F i g . 3 . 7 P e r f e c t l y f l e x i b l e c a b l e c a r r y i n g t h e 
l o a d b y t h e membrane f o r c e N 
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F i g . 3 . 8 V a r i a t i o n o f s t a t i c l o a d c a r r y i n g c a p a c i t y 
w i t h d e f l e c t i o n f o r a s i m p l y s u p p o r t e d 
beam w i t h a x i a l l y c o n s t r a i n e d ends 
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(C) (d) 

F i g . 3 . 9 I n i t i a l d i s p l a c e m e n t and v e l o c i t y p r o f i l e s 
f o r an " e x a c t " p l a s t i c membrane a n a l y s i s : 
Medium load;Phase 1(b) 

(a) . i n i t i a l d i s p l a c e m e n t p r o f i l e 
(b) i n i t i a l v e l o c i t y p r o f i l e 
( c ) f i r s t s t a g e ; l o a d i n g e r a 
(d) second s t a g e j f r e e e r a 
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Fig.3.10 V a r i a t i o n of 6 f/h v s . 3 p r e d i c t e d by t h e _ s m a l l d e f l e c t i o n t h e o r y 
(no s t r i n g phase) f o r v a r i o u s v a l u e s o f P i n the medium range o f 
l o a d i n g t o 



F i g . 3 . 1 1 I n i t i a l d i s p l a c e m e n t and v e l o c i t y p r o f i l e s f o r 
an " e x a c t " p l a s t i c membrane a n a l y s i s : Medium 
l o a d ; P h a s e 11(b) 

( a ) i n i t i a l d i s p l a c e m e n t p r o f i l e 
( b ) i n i t i a l v e l o c i t y p r o f i l e 
( c ) i n i t i a t i o n o f s t r i n g p h a s e r e f e r r e d t o l o a d -

t i m e d i s t r i b u t i o n £J 
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Fig.3.13 Assumed k i n e m a t i c a l l y a d m i s s i b l e i n i t i a l v e l o c i t y 
f i e l d f o r the approximate p l a s t i c membrane a n a l y s i s 
of Phases 1(b) and 11(b);Medium l o a d 

(a) o r i g i n a l i n i t i a l v e l o c i t y p r o f i l e 
(b) e q u i v a l e n t v e l o c i t y f i e l d r e p r e s e n t i n g 

the same K.E. as (a) 

co 
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Fig.3.14 V a r i a t i o n of 6 f/h vs. 3 p r e d i c t e d by the complete a n a l y s i s of 
the medium load case(approximate p l a s t i c s t r i n g s o l u t i o n ) 
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F i g . 3.15 Assumed k i n e m a t i c a l l y a d m i s s i b l e i n i t i a l v e l o c i t y 
f i e l d f o r t h e a p p r o x i m a t e p l a s t i c membrane a n a l y s i s 
o f P h a s e s 1 ( b ) and 1 1 ( b ) ; H i g h l o a d 

( a ) o r i g i n a l i n i t i a l v e l o c i t y p r o f i l e 
( b ) e q u i v a l e n t v e l o c i t y f i e l d r e p r e s e n t i n g 

t h e same K.E. as ( a ) 
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F i g . 3 . 1 6 V a r i a t i o n o f 6 f / h v s . 6 p r e d i c t e d by t h e c o m p l e t e a n a l y s i s 
o f t h e h i g h l o a d c a s e 
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A P P E N D I X A 

Validity of the Dynamic Rigid-Plastic Analysis: Bounds on the Pulse 

Duration 

It was stated in Section 2.2 that the rigid, ideal plastic theory can be 

expected to give satisfactory results if conditions are such that the input 

energy greatly exceeds the maximum amount of energy that could be stored 

in the beam in the form of elastic strain energy. As a general rule of 

thumb it appears that for simple beams a factor of at least 3 is desirable 

(Reference 22). If this energy ratio is denoted by R, the above criterion 

is 
_ Input k i n e t i c energy ( . 

S t r a i n energy at incipient yield 

For the simply supported beams of Figure 2.10a the bending moment 

distribution at incipient yield (i.e. when the outermost fibres of the beam 

at the midsection start yielding), is 

M(x) = M (1 - YT> (A.2) 
y l j 

I i where M = 7- a b h* is the bending moment at which the yield stress, 0 y 6 o b J o 

is first attained in the extreme fibres. 

If for simplicity we neglect the strain energy stored in the beam due to 

stretching we can write an expression for the maximum elastic strain 

energy (of the half-beam) as 

L (M 2(x)) M 2L 
in b e n d i n g ) m a x = / 2 E I ™ X dx = ± | ^ (A.3) 

0 s 
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where I = bh3/12 is the second moment of area of the beam cross-section s 
and E is the modulus of elasticity of the beam material. 

Also the input kinetic energy for half of the beam can be written as 

1 I 2 L 
K.E. = ̂  V 1 (A.4) 

2 m 

where I = P x is the applied impulse per unit length and m is the mass 

per unit length of the beam. The inequality of A.l can be expressed in 

non-dimensional form in terms of the fundamental period of elastic vibration 

of the simply supported beam, which is given by 

RT 2 T = ̂ -/(m/EI ) (A.5) e TT s 

Using Equations (A.3) to (A.5) in (A.l) and noting t h a t M y = 2Mq/3 = 

P L 2/3, yields o 

p 1 P 
, X j . TT O 1 O r A iM 

> o7T7j~ P~ " 6" P~ ( A - b ) 

e m m 

For a given beam and a given value of the maximum pressure, this sets a 

lower limit on the duration of the pulse for which the rigid-plastic analysis 

can be expected to be reasonably accurate. 

An additional limitation suggested by Symonds (Reference 20) is that 

the duration x of the dynamic pressure pulse must be small compared with 

the natural period of elastic vibration of the beam. This provides an 

upper bound on the pulse duration and consequently the admissible range 

of x is given by the following inequality 



, p 
I _9. <_L_ < 1 6 P T ra e 

(A.7) 
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Let us investigate the limitations imposed by the above inequality by 

way of an example. For this purpose we consider a simply supported steel 

beam of rectangular cross-sections. Thus 

o /E- 2xl0 - 3 (A.8) o 

The limits on the nondimensional impulse parameter 0 = I 2/mhP Q corres

ponding to the above limits on T will now be evaluated. Simple algebraic 

manipulation on the inequality (A.7) yields 

0.002 [h2 < 0 < 0.04 P 2 i h 2 (A.9) n n 

where P = P /P . 
m o 

For specific values of L/h (half-span to depth ratio), the above limits 

on 0 can be evaluated. It should be noted that, as rotary inertia and 

deformation due to shear have been neglected, the above criterion is 

applicable only to slender beams. This implies that the results are rea

sonably accurate, provided that L/h > 5. For L/h = 10, say, the criterion 

for the validity of the rigid-plastic assumption is approximately given by 

0.2 < 3 < 4P 2 (A.10) 

It is clear from Figures 4.1, 4.3 and 4.4 that this criterion is satisfied by 

the majority of the isodamage curves shown. 
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Closed Form Summation of Some Fourier Series 

s i n 6 + -| s i n 29 + j s i n 56 + = T ' ° < e < 7 T (B.1) 

cos 9 +-|2 cos 39 +-|2-cos 56 + =|-(y-e);0 < 6 < TT (B.2) 

1 1 it s i n 9 - ^ s i n 3 9 + s i n 56 - = ̂  9 ; - TT/2 < 6 < TT/2 

= j (ir " 9) ; TT/2 < 9 < 3TT/2 

(B.3) 

1 1 -n 
s i n 9 + -p- s i n 39 + -jry s i n 59 + = -g- 6 (TT-8) ; 0 < 9 < TT (B.4) 

cos 8 - p- cos 39 + cos 59 - = J- {j- - 92 ) ; 

TT/2 < 9 < TT/2 

= f [ ( » - e ) 2 - f 2 ] ; 

TT/2 < 9 < 3TT/2 (B.5) 

On writing 9 = 0 in (C.5) we find 

1 1 + 1 1 + 1 " 3 T + g T " 7T+ (B.6) 


