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- ABSTRACT

A method of analysis in two-dimensions to predict static and
dynamic response of soil structures, including soil-structure interaction
has been presented herein.

The static and dynamic analyses can be performed in either
effective or total stress mode or a combination of both modes. Non-linear
stress—strain behaviour of soil has been modelled by wusing an
incrementally elastic approach in which tangént shear modulus and tangent
bulk modulus were taken as the two "elastic" parameters. The material
response in shear was assumed to be hyperbolic coupled with Masing
behaviour during unloading and reloading. Responses to changes in mean
normal stress was assumed to be non-linear. elastic and stress dependent.
Slip or contact elements have been incorporated in the analysis to
represent the interface characteristics between so0il and structural
elements. The properties of the slip elements were assumed to be elastic,
perfectly plastic, with failure at the interface given by the Mohr-Coulomb
failure criterion.

In the static analysis proposed here, gravity may be switched omn at
once fbr the completed so0ll structure or the construction sequence can be
modelled by layer analysis. The stress—strain conditions determined by
the static analysis give the in-situ stress condition before the dynamic
analysis.

In the dynamic effective stress analysis, the residual porewater
pressures are calculated using a modification of the model proposed by
Martin, et al. (1975). The parameters, G and are

max max

modified for the effects of residual porewater pressure. The dynamic
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response study includes the prediction of post earthquake deformations.

The predictive capability of the new method of analysis has been
verified by comparing the recorded porewater pressure and accelerations of
two centrifuged models subjected to simulated earthquakes, to those
computed by the new method.

This method has also been used to compute response of an
offshore drilling island supporting a tanker mounted drilling rig..
Results suggest that the common practice of neglecting soil-structure
interaction may not be appropriate for islands which support heavy tanker
typé of structures. At present one-dimensional methods are used for
computing the response of these islands. Comparative sfudies are also

reported to asses the validity of this procedure.
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CHAPTER 1

INTRODUCTION

In engineering ppactice,,'it is generally agreed that the
performance of soil structures subjected to seismic loading should be
evaluated in terms of deformations rather than in terms of factors of
safety. The allowable displacements may vary from a few inches to many
feet depending on the functional aspects of the structufes considered.
Since the middle sixtles many analytical methods for assessing earthquake
induced deformations in soil structures have been proposed. These methods
may be classified into two broad categories: one-dimensional methods and
two-dimensional methods.

The one—-dimensional methods assume that deformations occur in
parallel planes and that the material properties are either constant or
vary normal to the planes only. The methods proposed by Newmark (1965)
and Goodman, et al. (1966), assume that failure develops along well-
defined failure planes and compute displacements of rigid blocks of soils.
More recently the method proposed by Iai and Finn (1982) for long slopes
accounts for the flexibility of the soil deposit.

Often soil deposits cannot be characterized adequately as
one—-dimensional deposits, and the variability of properties in two or even
three-dimensions must be considered. For examplg, in the response
analyses of zoned dams, two or three—-dimensional analyses are essential.
When the third dimension is very much larger than the other two-dimensions

and the properties do not vary significantly in this direction, a



two—dimensional response analysis is usually_adequate. The geometry of
the modes of deformations may also dictate two or three-~dimensional
analysis. For example in the analysis of embedded structures rocking may
be an important deformation mode in addition to translation and therefore,
at least é two—dimensional analysis is necessary.

There are a number of two-dimensional methods available to
compute seismic deformations. Some of these metﬁods are based on elastic-
plastic soil behaviour (Finn, et al. 1973; Mroz, et al.. 1979; Prevost,
1979). These methods are complicated to usé and have had véry limited
validation. The method proposed by Seed, et al. (1973), to compute
seismic deformations of earth dams has found wide application in practice.
This is a semi-analytical method in which the results éf stress analysis
and data from cyclic triaxial tests are used to estimate potential
displacements in dams. Non-linearity of the soil is taken into account
using an iterative elastic approach to achieve soil properties compatible
with the computed strains.

In recent years new types of structures have emerged, for which
it 1is important to determine deformations under earthquake 1loading.
’Examplés are the man-made sand islands which support drilling platforms
for gas and oil explorations in the Beaufort Sea. These islands carry
drilling equipment on either sand-filled caissons or tankers (Fig. 1l.l1l).
The deformations of these structures and islands during earthquakes are an
important design consideration. A pgeneral satisfactory method for
computing &eformations of these structures is not available at present.

Indeed the state-of-the-art for analysing deformations was

recently assessed in a report on earthquake engineering research by the
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National Research Council of the United States (USNRC, 1982; Finn, .1983)

in the following terms:

"Many problems in so0il mechanics, such as safety studies of
earth dams, require that the possible permanent deformations
that would be produced by earthquake shaking of prescribed
intensity and duration be evaluated. Where failure develops
along well - defined failure planes, relatively simple
elastoplastic models may suffice to calculate displacements.
However, 1if the permanent deformations are distributed
throughout the soil, the problem 1is much more complex, and
practical, reliable methods of analysis are not available.
Future progress will depend on development of suitable
plasticity models for soil undergoing repetitive loading. This
is currently an important area of research”.

For realistic predictions of stresses and displacements in soil
structures the stress—-strain behaviour of soils should be modelled as
closely as possible. This is of course a difficult task since the stress-
strain, behaviour of soils is extremely complex. Using simple stress-
strain relationships, a two-dimensional method for computing transient and

" permanent deformations in soil structures is presented in this thesis.

1.1 SCOPE OF THIS THESIS

Thié thesis presents a method for two-dimensional static and
seismic response analysis of soil structures.

The earthquake loading occurs after static equilibrium or steady
state conditions have been established. Soil properties such as strength
and stiffness which control the response to earthquake loading depend on
the effective stresses in the‘soil structure. Therefore, it is important
to evaluate in-situ static stresses. These stresses are determined by a

static analysis which takes into account non-linear stress-dependent



respoﬁse of soil to load. Beéause soil behaviour depends on the loading
path, the construction sequence of the soil structure is carefully
modelled. A number of satisfactory methods of static analyses are already
available (Kulhawy, et al. 1969; buncan, et al. 1978). Nevertheless an
independent method 1is presented here which uses a consistent set of
material parameters in both static and dynamic analyses. This results in
a much more efficient, cost effective solution to the problem of dynamic
response analysis.

The method for dynamic analysis takes into account the non-
linear hysteretic stress—strain behaviour of soils. The analysis may be
carried out in either an effective stress or total stress mode, using an
appropriate stress-strain relation. For effective stress response
analysis, residual porewater pressures must be known. Therefore, a
porewater pressure generation model has been developed for predicting
seismically induced porewater pressures. The porewater pressure model is
a generalization of the one~dimensional model of Martin, et al. (1975).

The predictive capability of the new method for dynamic analysis
has been verified by comparing the recorded porewater preSSures. and
accelerations of a centrifuged model subjected to simulated earthquakes to
those computed by the new method.

This method has also been used to compute response of an
offshore drilling island supporting a tanker-mounted drilling rig. ‘The
porewater pressures, stresses, accelerations and displacements in the
island have been determined. At present one-dimensional methods are used
for computing the response of these 1islands. Comparative studies were
conducted to assess the validity of this procedure.

Development of a non-linear method of analysis is very



difficult. A number of approximationé have to be made to achieve a
practical useful program. These approximations have been examined at

length in this thesis and suggestions have been made for future research.

1.2 ORGANIZATION OF THESIS

A critical review of the method proposed by Seed, et al. (1973)
for computing seismic deformations is presented in Chapter 2.

The formulations, basic assumptions and limitations of the model
developed for the analysis of static response are presented in Chapter 3.
The complete treatment of soll-structure interaction has also been
included.

The proposed two-dimensional dynamic response analysis is an
extension of the one-dimensional response analysis of Finn, et al. (1977).
Therefore, a detailed description  of their model, its application in
practice and in the laboratory is given in Chapter 4.

The proposed method for dynamic response analysis is presented
in Chapter 5. Details of the verification of the method is presented in
Chapter 6.

The method is used to compute response of a typical drilling
tanker island subjected to seismic loading. The results of the analysis
including implications for engineering design are discussed in Chapter 7.

A brief summary, suggestions for future work and conclusions are

given in Chapter 8.



 CHAPTER 2

CRITICAL REVIEW OF SEED, ET AL.

~METEOD FOR COMPUTING DYNAMIC

* DEFORMATIONS

The’ sta;equ:the>nartftfeport on analysis of permanent
deformations in earth structures (USNRC, 1982), suggests that the use of
simple elastoplastic models for computing deformations may be adequate if
deformations develop along well defined slip planes. When a well defined
slip surface does not occur and deformations are distributed through out
the soil structure, an analysis at least in two—dimensions is necessary.
The most widely used two—dimensional method is -the one that was p;oposed
by Seed, et al. (1973, 1979). Detailed description and limitations of

their method are presented below.

2.1 SEED, ET AL. METHOD (1973, 1979)

The basic steps in the Seed, et al. method can be summarized as follows:

a) Determine pre-earthquake or steady state condition that exists
in the soil structure before the earthquake.

b) Determine the design time history of base acceleration for the
site where the earth structure is situated.

c) Compute the time history of dynamic shear stresses throughout

the soil structure using a two-dimensional dynamic response



aﬁalysis. Appropriate dynéﬁic stress—strain relationship and
démping should be used.

d) Apply these stresses to undisturbed samples of soil consolidated
to the initial static stresses in the soil structure to
determine the strains and residual porewater pressures.

e) Based on the porewater pressure data, determine the minimum
factor of safety against total failure by limiting equilibrium
methods after reducing the strength of elements which have
developed significant seismic porewater pressures.

£) If the soil structure is found to be safe against total failure,
assess the overall deformation of the soil structure from the
strains induced by the combined effects of static and dynamic

loads as determined from the laboratory test data.

Seed, et al. (1973) proposed an equivalent linear elastic method
to model the dynamic non-linear, hysteretic behaviour of soils. The
fundamental assumption in this type of approach is that the dynamic
response of a non-linear hysteretic material may be approximated
satisfactorily by a damped, elastic model if the properties of that model
are chosen appropriately. The appropriate properties are obtained by an
iterative process.

In the dynamic finite element analysis, the stress-~strain
properties of the soil are defined in each finite element by the Poisson's
ratio, v, énd shear strain dependent shear moduli and equivalent viscous
damping ratios. An average or effective shear strain (usually assumed to
be 65% of the maximum shear strain) is computed in each finite element and

shear moduli and damping ratios are selected compatible with these average



strains and are used in the next 1tération. The procedure is repeated
until no significant changes in moduli or damping ratios are necessary.
The response determined during the last iteration is considered to be a
reasonable approximation of the non-linear response.

Since the final analysis with strain compatible soil properties
is elastic the permanent deformation in the soil structures cannot be
computed by this method. Deformations are estimated from the static and
dynamic stresses with aid of strain data from cyclic triaxial tests. It
is assumed that, when the static and dynamic stresses in a given finite
element are simulated as closely as possible on a sample in a cyclic
triaxial test, the resulting axial strain is the strain potential of the
finite element iﬁ the dam. In practice this strain is converted to a
shear strain potential by multiplying by a factor (l+v). The strain
potential is the strain that develops in an unconstrained soil element
under the specified loading. Since the fiﬁite elements in the soil
structure are interconnected, the strains obtained by the above procedure
are not the strains that will develop in the soil structure but are an
indication of 1its potential for straining under the given seismic
excitation. Serff, et al. (1976), have proposed a procedure for
converting the strain potentials to a set of compatible deformations. The
shear stress corresponding to the shear strain potential in a finite
element is determined from the stress—strain curve. (Fig. 2.la). The shear
stresses are converted to shear force and applied to the nodes of the
finite element (Fig. 2.l1b). The deformations under these nodal forces are
then determined by a static analysis and are assumed to be seismically

induced permanent deformations. This technique of computing compatible
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deformation ié sometimes referred to as a strain harmonizing technique.

One of the serious limitations of any iterative elastic method,
used to model non-linear behaviour, 1is that the solutions given by the
method may not be unique (Desai, et al. 1977). This is because the
solutions obtained in the last iteration may depend on the assumed soil
properties of the first iterationmn.

Equivalent linear method of analysis may overestimate -the
seismic response of non-linear hysteretic materials (Finn,.et al. 1978a).
The overestimation 1in 1linear methods occurs because of resonance.
Resonance occurs when the fundamental period of the' input motion
corresponds to the fundamental period of the deposit as defined by the
final set of compatible properties in the iterative equivalent 1linear
method of analysis. Since the analysis is carried out witb the final sét
of constant stiffnesses for the entire duration of the input motion? there
is time for resonant response to build up.- The stiffness properties in
non-linear materials change constantly for every time step. When resonant
response is a function primarily of the method of analysis, it is called
pseudb—resonance.

The Seed method is a total stress method and it does not take
into account the effects of increasing porewater pressure on soil
stiffness. Since response of soils is controlled by effective stresses,
the validity of a total stress response analysis 1s questionable. Finn,
et al. (1978) compared responses predicted by total stress and effective
stress methods. They used two one-dimensional computer programs, SHAKE

(Schnabel, et al. 1972) and DESRAl (Lee, et al. 1975) for this purpose.
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SHAKE is a total stress program which modéls soil as a damped equivalent
linear elastic material and DESRAl is an effective stress program which
models soil as a non-linear hysteretic material. Finn, et al, (1975)
concluded that the total stress analysis tends to overestimate the dynamic
response when porewater pressures exceeded about 30Z of the effective
overburden pressure.

The major difficulty in practice with the equivalent 1linear
method is that a direct computation of permanent deformations is not
possible. The concept of strain potentials has to be used to estimate
permanent deformations (Serff, et al. 1976). There are two inconsisten-
cies in this proéedure. First, the computed strains in the final
iteration obtained with strain compatible soil propertiés are ignored, as
not being correct, whereas the computed stresses are assumed tb be
representative stresses in the ground. Knowing that stresses and strains
have a one to one relationship for a given loading, the arbitrary
decision to ignore the computed strains is somewhat inconsistent. Second, -
the strains from the last iteration are ignored, whereas the strains
computed in intermediate iterations were used to obtain compatible moduli
and damping ratios. This type of inconsistent assumptions make the final
estimated deformations somewhat arbitrary.

When porewater pressures are allowed to dissipate in samples
subjected to cyclic undrained tests, deformations occur. This plastic
deformation is not accounted for in the approach proposed by Seed.

Noting the limitations with the Seed method, which has been in
use for about 10 years, the state-of-the-art report on analysis of
permanent deformations in earth structures recommends this topic should be

the subject of active research for the next ten years (USNRC, 1982). 1In
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this thesis, an attempt which will allow direct computation of transient
and permanent deformations of soil structures in a consistent manner, is
presented. Procedures have been developed to model non-linear hysteretic

behaviour of soil, taking into account the effect of porewater pressure

generation on soil properties.
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~ CHAPTER 3

'GENERAL GUIDELINES FOR DYNAMIC ANALYSES

_ The performance of anlegrth_q§muunder'éérﬁhquakeMindqcedwground
~motion is an important concern in seismically active areas. fhe ground
accelerations induced by the earthquake can cause large inertia forces
throughout the dam. These forces which reverse in direction many times
during an earthquake induce alternating stresses and strains in the dam.
If these strains and associated displacements are large enough, large
slumping and slope instability may result, leading to over topping and
eventual failure of the dam.

Newmark (1965), in his ploneering work on effects of earthquakes
on dams, recommended that the performance of a soil structure during
selsmic loading should be assessed in terms of displacement and not in
terms of the "factor of safety against failure” along an assumed failure
surface. The allowable or satisfactory displacements depend mainly on the
functional role of the soil deposit or the structure founded on the
.deposit. For example, for critical structures such as nuclear reactors
and gravity platforms, the allowable displacement may be only a few
inches; however for earth dams many feet may be acceptable.

The main object of this thesis is to present a two—dimensional
dynamic response analysis of s0il structures, taking into account all
important factors that influence the behaviour of soil deposits. The
analysis predicts displacements, stresses, strains and acceleration fields

etc, during and after the earthquake.
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The determination of stresses, strains and displacements induced
>in a dam by ;n earthquake is a complex analytical problem and a number of
simplifying assumptions must be made. Foremost is the assumption that the
performance of an earth dam which is essentially a three-~dimensional
structure, can be interpreted from the performance of transverse cross-
sections subjected to the same seismic 1loading. The plane strain
condition is assumed to prevail in the proposed two-~dimensional analysis.
The main reasons for this assumption are the high cost and high computer
storagé requirements needed for a three-dimensional analysis.

In the dynamic response analysis of continuous systems such as
earth dams, non—uniform mass and stiffness distributions are present. The
finite element approach, which can model the variation in stiffness and
mass with extreme ease, has been adopted.

In the dynamic response analysis of saturated soils, a decision
must be made initially as to whether the analysis shall be carried out in
terms of total stress or effective stress. Saturated loose cohesionless
soils subjected to repetitive loading generate residual porewater
pressures, and if sufficient drainage does not occur, reduction in
effective stresses will result. Since deformations are controlled by
effective stresses and soil properties such as moduli and strength are
functions of effective stresses, an effective stress response analysis is
always preferable for those type of soils. Effective stress response
analysis is more difficult to perform. It requires porewater pressure
generation and dissipation models and additional computations are
necessary to estimate current effective stresses. Studies by Finn, et al.
(1978a) on the response of level saturated sandy sites to seismic

excitation showed that effective stress analyses are mnot generally
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required unless the porewater preSSurés are likely to exceed 307 - 407 of
the effective overburden pressure.

In dynamic analyses, it is assumed that the loading imposed by
seismic excitation is superimposed on long term equilibrium conditions.
The dynamic soil properties, such as strength and stiffness, which control
the response of soil structures to seismic loading, depend on initial
insitu effective stress condition. Furthermore 1in effective stress
~ response analysis, the computation of current effective stresses as
porewater pressure develops 1s important. To do this, a static analysis,
which uses material parameters applicable for both static and subsequent
dynamic analysis has been developed.

Finn, Lee and Martin (1977), presented a one-dimensional dynamic
résponse analysis taking into account all important factors that affect
the soil behaviour. The two-dimensional response analysis proposed in
this thesis is an extension of their one-dimensional analysis. Therefore,
a review of their method of analysis, including specifically how the non-
linear, hysteretic soil behaviour has been modelled is presented below.
The predictive capability of their method has been verified in the
laboratory and in the field. Some details on these verification

procedures are also included.

3.1 ONE-DIMENSIONAL RESPONSE ANALYSIS BY FINN, ET AL. (1977)

In horizontally layered deposits the assumption-that the shear
waves propagate vertically leads to a shear beam type of deformation
pattern in the deposit. Then, only the stress—strain relationship in

shear is required in the analysis.
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The'important factors that must be considered when computing the

dynamic response of soils are;

a) The nonlinear stress dependent stress—strain behaviour.

b) The modelling of unloading-reloading.

c) Contemporaneous generation and dissipation of porewater
pressures.

d) Hysteretic and viscous damping.

e) Strain hardening.

All these factors have been taken into account in the stress-—

strain relations presented by Finn, et al. (1977).

3.1.1. Shear Stress—Strain Relationship

The seismic loading imposes irregular 1loading pulses which
consists of loading, unloading and reloading. The soils exhibit different
behaviour in each of the above phases.

The relationship between shear stress, t, and shear strain, vy,
for the initial loading phase under either drained or undrained loading

conditions is assumed to be hyperbolic and given by,

G
_ _ max vy
T ) @D

T
max
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in whiéh, Gpax = maximum shear modulus and Tmax shear
strength. This initial loading or skeleton curve is shown in Fig. 3.la.
The unloading - reloading has been modelled wusing Masing behaviour
(Masing, 1926). Thié implies that the equation for the unloading curve,

if unloading occurs from (t,.,y,.), is given by,

N (R

T_Tr= 2 ‘
2 1 G v ]y—yr| (3.2)
2 T
max
which is simply,
- 2l - )
- L (3.3)

2 2

The shape of the unloading - reloading curve is shown in Fig. 3.lb.

Lee (1975) proposed rules for extending the Masing concept to
irregular loading. He suggested that the unloading and reloading curves
should follow the skeleton loading curve if the magnitude of the previous
maximum shear strain is exceeded. In Fig. 3.2a, the unloading curve,
beyond B, becomes the extension of the initial loading in the negative
direction, i.e, BC. In the case of general loading history, further
assumptions have to be made. If the current loading curve intersects the
curve described by the previous loading curve, the stress strain curve
should follow the previous loading curve. The above rules should apply
also to unloading. Two typical examples are provided in Fig. 3.2bj;(a) if

loading along path BC is continued, the loading path is assumed to be
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BCAM, (b) if unloading along path CPB is continued, the unloading path
will be ABP'. Newmark and Rosenblueth (1971) have suggested a similar

procedure.

3.1.2 Porewater Pressure Model

Consider a sample of saturated sand under a vertical effective
stress, o;. During a drained cyclic simple shear test, a cycle of
shear strain, y,. causes an increment in volumetric compaction strain,
Asvd’ due to grain slip. During an undraiped shear test starting with
the same effective stress system, the cyclic shear strain, y, causes an
increase in porewater pressure, AU. It was shown by Martin, et al. (1975)
that for fully saturated sands and aséuming water to be incompressible,

AU = E,. Aeyy (3.4)

in which E} = one-dimensional rebound modulus of sand at an

effective stress c;.

Martin, et al. (1975), also showed that under simple shear
conditions the volumetric strain increment, Aevd, is a function of the
total accumulated volumetric strain, €yd? and the amplitude of the
shear strain cycle, y, and is given by,

2
Ae . =C (yC,e )+ __EQEXQ__ (3.5)

vd 1 2 vd vy + C4€vd
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in which Cis Cz, C3 and C, are volume change constants that depend on the
sand type and relative density. An analytical expression for the rebound

1
at any effective stress level o is given by

modulus E v

r’

Martin, et al. (1975), as,
- 1-m n-m
E_= = (a}) /{m K. (a}.) } (3.6)

in which, oy, 1is the initial value of the effective stress and
K., m and n are experimental constants for sand.
The increment in porewater pressure, AU, during a given loading

cycle with maximum shear strain, y, may now be computed using equations

(3.4), (3.5) and (3.6).

3.1.3 Modification of Properties for Residual Porewater Pressure

The 1residual porewater pressure, U reduces Gmax and

Thax® These values should be updated as residual porewater pressure
develops. Hardin, et al. (1972) assumed that Gpax is 1independent

of stress history and suggested,

* 1/2
= '
Gmax K (oﬁ) (3.7)
*
in which K 1is a constant, depends on soil type and relative density.
The initial and current effective stress conditions in a simple
shear apparatus with zero initial porewater pressure are shown in Fig.

3.3. Here it is assumed that the ratio between horizontal and vertical
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effective stresses 1is a constant Ky » where Ko is the coefficient of
lateral pressure at rest. For the initial effective stress condition,

(Gmax)o is given by,

1/2
1+2K
* o o' \1/2 (3.8)
(Cpax) =K (—37)  (Pvo)
For the current stress conditions,
1/2
* 142K '
o o! - U,1/2 (3.9)
(Gmax)n =% 3 ) (Pvo )

on dividing the equation (3.9) by (3.8) one obtains,

(Gmax) | U
n _ [ vo ]1/2
L
(Gmax) vo (3.10)
o
Therefore, knowing (Gmax)o’ G'vo and U, the maximum shear

modulus at the current effective stress condition can be calculated using
equation 3.10.

The shear strength for the initial effective

(Tmax) (o]

stress condition is given by (Finn, et al. 1977).

1+K 1 -K 1/2

(Tmax)o = {f—ji——g)z sin’ ¢' - C——E——g)z} 0oy = C* AN (3.11)
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*
in which @' is the angle of internal friction and C is a constant which

depends on soil properties. For the current stress condition,

%
max’ = C (d;o -0 (3.12)

Dividing equation (3.12) by (3.11) one obtains,

(Tmax)n G;o - U
("C ) = O" ° (3013)
max vo
)
L]
If (Tmax)o, oyo and U are known, the maximum shear

strength at current effective stress condition can be calculated from

equation (3.13).

3.1.4 1Influence of Strain Hardening

During seismic loading of dry sand or saturated sand under
drained conditions, the sand structure hardens due to grain slip. Finn,

et al. (1977), wused following equations to modify Gpax and

Tmax®
Evd
(Gmax) = (Gmax) {1 + H., + H,e } (3.14a)
nn n 1 2 vd
and
(v ) _(t__) _%va
max’ = “'max’ [ 1+ 5o ] (3.14b)
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in which, (G and are the modified

max)nn (Tmax)nn

maximum shear modulus and shear strength in the n th cycle and H,, H,, Hy
and H“ are hardening constants.

The stress—strain behaviour for one-dimensional analysis is now
completely defined by equations, 3.1, 3.2, 3.4, 3.5, 3.6, 3.10, 3.13 and
3.14.

In laboratory cyclic simple shear tests most of the volume
changes in dry sands and the increases in porewater pressure in undrained
saturated sands occur during the unloading portion of the load cycle.
Therefore, Finn, et al. (1977), used modifications to the stress-strain
curve to take account of strain hardening and porewater pressure only

during the unloading phases of the loading.

3.1.5 Dissipation of Porewater Pressure

If the saturated sand deposit can drain during shaking there
will be simultaneous generation and dissipation of porewater pressure.
The rate of increase of porewater pressure will be less than that in
completely undrained sand. The amount of drainage depends on the permea-
bility and compressibility of the sand, drainage path and duration of

shaking. The distribution of porewater pressure at time t is given by,

U _E & 22Uy E v (3.15)
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in which, kz is the permeability and Yu the unit weight of water.
The term containing €yq Tepresents the internal generation of
porewater pressure (Finn, et al. 1977).

The stress—strain relationship outlined above can be very easily
extended to non-uniform loading using an incrementally elastic analysis in
time domain. The dynamic response can be computed for each time step by
numerically solving equation (3.15) and the equation of motion, as

explained by Finn, et al. (1977).

3.2 LABORATORY VERIFICATION OF EFFECTIVE STRESS RESPONSE ANALYSIS

The basic assumptions made in the formulation of the stress-
strain relationship presented above can be broadly categorized into two
groups: Those made in the formulation of porewater pressure model and
those made in modelling loading, unloading and reloading.

The fundamental assumption that was made in the formulation of
the porewater pressure model, was that the porewater pressures in an un-
drained test can be obtained from volumetric strains measured in a drained
test on a similar sample with same history of shear strain loading. This
means that there should be a unique relationship between volumetric
strains in drained tests and porewater pressures in undrained tests for a
given sand ét corresponding strain.histories.

Finn (1981) reported results of an extensive laboratory program
to investigate this basic assumption. Volumetric strains were measured in
drained Ottawa sand samples at relative densities D, = 45% and 607 when
subjected to constant strain cycles in a simple shear apparatus.

Porewater pressures were also measured in undrained cyclic tests at the
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same relative densities and 1initial effective confining pressures.
Volumetric strains €yq are shown plotted against porewater pressure
ratios U/c",0 in Fig. 3.4 for D. = 45%. Each point on the curve
represents a set of values of €vd and U/o",o for a given number
of cycles with equal cyclic strain amplitudes. It can be noticed that
there is a slight difference in the appiied shear strain amplitudes. But
these small deviations are not important. The data indicate a unique
relationship between volumetric strain and porewater pressure ratios.

The slope of this curve normalized with respect to confining
preésure will give the rebéund modulus E;. Martin, et al. (1975)
suggested that E} can be evaluated from the unloading curve in an
oedometer, under static conditions. But Finn (1981) showed that the
rebound modulus measured in the oedometer is higher than the modulus
computed from the slope of the curve shown in Fig. 3.4. He used the
E; values computed from the slope of the curve shown in Fig. 3.4 to
verify the porewater pressure model.

Finn (1981) ﬁaintained that the the strain hardening effect
(equation. 3.14) should not be included in the stress-strain relationship
when predicting the behaviour of sands under undrained conditions. This
is because net volumetric strains do not occur during undrained
conditions. 1If drainage is allowed to occur, then the effects of strain
hardening should be included.

The porewater‘ pressure model coupled with the stress—strain
relationship can be employed to predict liquefaction strength curves. The
strength curve plots of the cyclic shear stress ratio 1/0;0 versus
the number of cycles to cause initial 1liquefaction, Np for normally

consolidated (OCR=1) and over consolidated sands, obtained analytically
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and.experimentally, are shown in Fig. 3.5. The experimgntal curve was
obtained from undrained constant volume cyclic simple shear tests.

The comparison between the computed and measured liquefaction
strength curves is very good. This means that the assumptions made in the
formulation of the non-linear hysteretic effective stress—-strain relation-
ship are valid. But, liquefaction resistance curve prediction is an
extreme case. Finn (1981) used this effective stress model to predict
porewater pressure development during undrained tests when subjected to
constant cyclic shear stress in a simple shear apparatus. This constant
cyclic shear stress loading results in an irregular straln history as the
porewater pressures develop. Further the model parameters Ci‘(i = 1,4)
used were obtained from constant cyclic shear strain tests. Typical
results obtained from two undrained tests are shown in Fig. 3.6. The
agreement between measured and computed porewater pressures is remarkably
good, indicating that all the assumptions made in the porewater pressure

model and stress—strain relationship are reasonable.

3.3 FIELD VERIFICATION OF EFFECTIVE STRESS RESPONSE ANALYSIS

A unique opportunity to investigate the capability of the one-
dimensfonal effective stress response analysis was provided recently when
data became available on the dynamic response of an artificial island in
Tokyo Bay to the Mid-Chiba earthquake of 1980. Owi Island No.l is an
artificial island 1located on the west side of Tokyo Bay. It was
constructed with materials dredged from the nearby sea.

A test site at the south end of the island is instrumented to

record porewater pressures and ground accelerations during earthquakes.
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Porewater pressures are recorded by piezometers installed at depths of 6m
and l4m.

The Mid-Chiba earthquake, with magnitude M

6.1, shook the
Tokyo Bay area on September 25, 1980. Finn, et al. (1982) computed the
response of Owi Island No.l to the Mid-Chiba earthquake using a one-
dimensional effective stress response analysis. The first 10 secs. of
the recorded ground accelerations are shown in Fig. 3.7(a). During the
first 4 secs. very low accelerations occurred. Significant accelerations
developed betﬁeen 4 and 6 secs., and thereafter only low level excitation
was recorded. The ground accelerations computed by Finn, et al. (1982)
are shown in Fig. 3.7(b). Except for some minor differences between 8 -
10 secs. range the computed recording was very similar to the recorded
motions.

The porewater pressures recorded at the 6m depth on Owi Island
No. 1 are shown in Fig. 3.8(a). The recorded porewater pressure has two
components: transient and residual. The transient porewater pressures are
instantaneous response of porewater to changes in total applied stresses
and residual porewater pressures occur due to plastic volume changes. The
one-dimensional response analysis used by Finn, et al. (1982) computes the
residual porewater pressure component and 1is shown in Fig. 3.8(b).
Comparison between recorded and computed porewater pressures 1is very

good.

3.4, POREWATER PRESSURE MODEL IN PRACTICE

To apply the porewater pressure model in dynamic effective

analyses, 7 constants must be known; four Cy (1 = 1,4) constants to
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compute incremental volumetric strain and 3 constants K., m and n to
represent rebound characteristics. Cyclic simple shear apparatus has to
be used to obtain these constants. A number of laboratories still do not
have simple shear apparatus to do these tests.

Over the years a procedure has evolved from a number of
practical experiences by which the direct measurement of these constants
can be avoided (Finn, et al. 1982). This is done by modifying the model
parameters such that it will match with the experimental 1liquefaction
strength curve and give the right rate of porewater pressure generation.
The 1liquefaction strength curve and the rate of porewater pressure
development can be experimentally obtained by doing c&clic triaxial tests
or cyclic simple shear tests on field samples.

A study of a number of trial analyses to predict the undrained

behaviour of samples in simple shear has revealed the following:

a) The shape of the liquefaction resistance curve is sensitive to
the constants Ci’ especially Cl'
b) The variation of K. shifts the liquefaction potential up or

down without changing the shape appreciably.

In reality the shape of the liquefaction resistance curve for a
number of sands is similar and the vaiues of C; given in the literature
give the shape of typical liquefaction potential curves. In practice a
trial and error procedure is adopted to get values for the model

constants. The procedure is outlined below:
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1) Performing a number of analyses by varying K,.» and select the
value for K. such that the computed liquefaction resistance
curve matches the experimental liquefaction resistance curve.

2) For this selected K, value, calculate the development of
porewater pressure with number of cycles and compare with the
laboratory porewater pressure curve.

3) If these porewater pressure curves are not similar, alter Ci
and repeat the analysis. It should be noted that C; is the
only parameter that is used in the calculation of incremental
volumetric strain in the first cycle. Therefore, estimates of
Cl’ can be interpreted from the residual porewater pressure

recorded in the first cycle.

This type of trial and error procedure can be employed to obtain
relevant model constants such that the corresponding porewater pressure
development and liquefaction resistance curves are sufficiently close to

the ones observed in the laboratory.
3.5 DISCUSSION

In the response analysis of horizontally 1layered deposits
subjected to horizontal accelerations, a shear beam type of deformation
pattern is assumed in the deposit. Therefore, only the stress—strain
relationship in shear is required. The tangent shear modulus is used as
the elastic parameter in the incrementally elastic response analysis
proposed by Finn, et al. (1977). To extend their model to

two—-dimensions, two elastic parameters are required. A detailed
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description of the extension of the one-dimensional stress-strain
relationship to two-dimensions is discussed in Chapter 4.

It has been observed in the laboratory that the presence of
static shear stress affects the porewater pressure response of samples
subjected to cyclic loading (Finn,‘et al. 1978; Vaid, et al. 1979). The
porewater pressure model of Finn, et al. (1977) is strictly applicable to
one-dimensional deposits, where static shear stress is zero. Therefore,
in extending their model to two-dimensions, the influence of static shear

must be accounted for.



38

CHAPTER 4

TWO DIMENSIONAL STATIC ANALYSIS OF

SOIL STRUCTURES

A static résponse analysis.té compute in-situ effective stresses
is necessary because the dynamic soil properties, such as strength and
stiffness, depend on in-situ effective streses. A number of satisfactory
incremental elastic methods, which model the construction sequence of the
soll structures, are already available (Ozawa, et al, 1973; Duncan, et al,
1978, Byrne, et al, 1982). The static analysis presented in this theis is
based mainly on the methods proposed by these authors. The method
proposed in this thesis uses a consistent set of material parameters in
both the static and dynamic analyses; procedures also have been
incorporated to apply correction forces during the application of the load

increments.

4.1 STRESS-STRAIN RELATIONSHIP

A number of stress—strain relations have been proposed in the
computation of in-situ static stresses in soil deposits. They can be
divided broadly into linear, bilinear, elasto-plastic, visco-plastic and
non-linear models. Some of these models are very complex and even for
simple monotonic types of loading are expensive to use in computational

schemes.
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Two elastic constants are required for any two-dimensional
isotropic, elastic or incrementally elastic analysis. Tangent shear
modulus G, and tangent bulk modulus B, were selected as the elastic
constants. In selecting these elastic constants, considerations were also
given to the fact that the stress—-strain formulation proposed here has to
be extended to model dynamic loading conditions. It will be shown in
Chapter 5, that the selection of these parameters greatly reduces the
\?mount of computation time in the dynamic analysis.

The stress—strain model proposed here, like almost all other
static stress—strain models for soils, can model only saturated soils
under fully drained or wundrained conditions, and dry soils. The
parameters selected to model the stress—strain behaviour should be based
on test results which represent as closely as possible the 1loading
conditions that exist in the field. For example, in the analysis of long
term stability of earth dams, one should chose parameters from drained
test results. A description of the stress—strain model, and the selection
of relevant parameters for the model are discussed in detail, in this

chapter.

G B,

4.1.1 Reasons for Selecting t and

In general, strain in an isotropic, homogeneous, linear elastic
medium can be divided into two components: volumetric strain and
deviatoric strain. The volumetric strain is related to mean normal stress
through the bulk modulus. The deviatoric strain is related to deviatoric
stress through the shear modulus. These two independent material moduli

can be evaluated independently by applying wuniform changes in
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corresponding stresses. Therefore, by selecting tangent bulk modulus and
tangent shear modulus as two independent elastic constants, better

controls on stresses and strains can be imposed.

4.1.2 Hyperbolic Shear Stress-Strain Relationship

A number of researchers have used a hyperbolic stress—strain
relationship to predict the behaviour of a soil deposit (Konder, et al.

1963). The hyperbolic relationship between 7 and y is given in terms of

Cpax 304 Tpay as,
T = Gmax ¥
(1 + Smax 171 (4.1)
T
max
in which,
T,y = are the shear stress and shear strain
Gpax = tangent shear modulus as y+0
Tpax — ultimate shear strength

4.1.2.1 Estimation of Gmax

Experimental data have shown that for sands and silts under

drained conditions,

Gpax = f(oy, e, OCR) (4.2)

in which,
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6& = current effective mean normal stress
e = void ratio
OCR = over consolidation ratio

here OCR is defined as:

_ Maximum past major principal stress
Current major principal stress

OCR

The following non-dimensional equation 1is widely wused for

max?

6 .o = Kg By ("r'n/Pa)l/2 (4.3)
in which,

KG = a non—dimensional constant for a given soil.

P, = atmospheric preséure.

The wvalue of Kq depends mainly on void ratio or relative
density of the soil, grain contact characteristics such as angularity and
roughness of the soil particles etc., and also on previous loading
history. An equation similar to (4.3) has been proposed by Hardin, et al.
(1972) and Seed, et al. (1970) for the computation of Gpax for

sandy soils for dynamic analyses. The equation given by Hardin, et al,

(1972) includes the effect of previous stress history. They proposed,

_ a' 172 n
Grax = Kg B, (m/P) (OCR) (4.4)
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in which the exponent 7 depends on the plastic index of the soil (Hardin,

et al. 1972). Values of n are given in Table 4.1.

Table 4.1 Variation of Exponent, 1 with Plastic Index, PI

P1% n
0 0
20 0.18
40 0.30
60 0.41
80 0.48
>100 0.5

For normally consolidated non-plastic soils under
condition tyéical values for K, varies between ZOO and 800
1979).

For clayey soils wunder wundrained conditions, Gpax

related to the undrained strength 5, through an equation,

max = (4.5)

where K is a constant for a given clay.

drained

(Byrne,

can be
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4,1.2.2 Estimation of Tmax

For soils wunder drained conditions, is the maximum

Tmax?

1
shear stress that can be applied by keeping axial stresses oyx» and

]
Oy at their respective values, where the x—axis 1s taken horizontal

and the y-axis vertical for convenience. 1In principle, this is similar to
the estimation of maximum deviatoric: stress (oglpax in the

analysis presented by Kulhawy, et al. (1969). They estimate

t
(0g3)max @assuming that the minor principle stress 9y remains

constant.

Let us consider a case where the initial vertical, horizontal

x? respectively (Fig.

and <

A
and shear stresses are o (e}
y? Xy

4.1). Fig. 4.2, shows the corresponding Mohr circle diagram and the Mohr
envelope. The Mohr envelope is defined by ¢' and ¢'. The points L and M
represent the initial stress state. The application of shear stress will
increase the size of the Mohr circle and the largest Mohr circle is the

one that is tangent to the Mohr envelope.

OA = OP = radius of the 1largest circle keeping Oy and

t

x constant and it is given by,

o

] 1
*

oF = (e (% * "z)} sing’ (4.6)

tang' + 2

From triangle ABO,

AB = <1 = maximum shear stresses on the horizontal
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Fig. 4.1, Element Stresses.

Fig. 4.2. Mohr Circle Diagram.
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= /(0A2 - OB?2)

and so,

This equation reduces to the equation presented by Hardin and

Drnevich (1972) if oy and oy are replaced by Ko0yo
\]
and Oyo*
The estimation of Tnax for a s0il element under undrained

conditions can be made based on standard field tests, laboratory tests or

may be based on estimation of insitu effective stress conditionms.

4.1.2.3 1Influence of Over—-Consolidation

Compaction is generally used to obtain a certain density in dam
construction. So some parts of a dam are over consolidated due to the
compaction pressure. - The effect of over consolidation on Gpax 1is
already shown in the equation (4.4). Over consolidation has an influence
on the value of 1<, also. A typical Mohr envelope for plastic

soils would look like that in Fig. 4.3. Different c¢' and ¢' values

should be used depending on whether the soil is in NC state or OC state.

4,1.2.4 Effects of Unloading

In geotechnical problems which involve excavation or reduction
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in applied load, some so0il elements will experience unloading. The
modulus, Gy during unloading from a strain, y, as shown in Fig. 4.4, is
higher than the modulus, G,, corresponding to loading from the same strain
level if the mean normal stress remains a constant.

Unloading and reloading can be modelled using the procedures
presented in Chapter 3. However, if the strain ranges of interest are
small, the difference between G, and G; is not large. Under these

circumstances changes in modulus need not be modelled.

4.1.3 Tangent Bulk Modulus 35

It is assumed that the tangent bulk modulus (Bt) is elastic
for any soil under drained conditions and it is a function of the current

]
mean normal stress oy only. Duncan, et al. (1978), suggested that,

(4.8)

where, Ky Bulk Modulus constant

n* exponent

Typical values of bulk modulus constant Ky vary between 300-
1000 and the exponent varies between 0.3 and 0.6. Ky, depends mainly on
relative density of the soil, soil type and previous loading history.

In elastic (or incrementally elastic) analysis in isotropic
and homogeneous materials, a change in shear stress with constant mean

normal stress will not result in any volume change. But, soils wunder
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constant mean-normal stress exhibit volume change when subjected to
shearing stress. In the analysis presented herein, allowance has been
made to include the volumetric strains that occur due to shear stresses.
A detailed description of how this is done is given in Section 4.4.

It should be noted that the bulk modulus constant Kp defined
here includes only the effect of mean normal stress. Therefore, for the
estimation of Kb, isotropic consolidation tests performed in triaxial
test equipment must be used. Duncan, et al. (1978) described a procedure
for determining Ky from conventional triaxial test data in which the
mean—-normal stress is not held constant. Values of Ky determined in

this manner must be considered approximate.

4.2  PHYSICAL MODELLING

The domain of interest is assumed to be an assembly of a finite
number of elements, connected at the nodal points. The formulation of the
finite element equations including the effect of porewater pressure

(Christian, et al, 1970) is presented in Appendix I. The equations are,

{p} = [x.] {8} + [x*] (T} (4.9)

where,

(e}
[Kt] = global tangent stiffness matrix
{a}
[K*]

global column vector of incremental applied loads

global column vector of incremental displacements

global stiffness matrix defined in the Appendix I
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{U} = column vector of incremental porewater pressures in

the elements.

The tangent element stiffness matrix [kt] depends on two
factors; the tangent moduli and the shape functions adopted in the finite
element formulation. The shape functions give the variation of
displacements within an element in terms of the nodal displacements.

The simplest shape function, which assumes a linear variation of
displacements, gives constant strain within a triangular element. But
experience has shown that the results obtained from such elements do not
predict stresses and strains accurately. Therefore, quadrilateral
elements which have a linear strain variation within an element are used.
For soil structures such as dams, layered deposits etc., elements of
arbitrary quadrilateral shape are very appropriate because they are fairly
simple and can be used to model the geometry of these soil structures
quite accurately. The element stiffness matrix, [kt] for an

isoparametric quadrilateral element is given in Appendix I.

4.3. SIMULATION OF CONSTRUCTION SEQUENCE

Dams are constructed sequentially. Since the behaviour of dam
materials are non-linear and stress path dependent, a realistic
computation of stresses and strains requires that the construction
sequence be modelled. An analysis based on single stage comstruction or
gravity switch on, will give final stresses and strains different from

those calculated by following the construction sequence.
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4.3.1 Method of Analysis

Fig. 4.5 shows a schematic representation of the sequential
procedure involved in dam construction. There may be pre—existing
elements on which subsequent iayers will be placed. The construction
lifts are compacted until the required density is obtained. This type of
layer by layer comnstruction procedure is carried out until the required
dimensions of the dam are obtained.

In modelling the construction sequence, the incremental
stresses, strains and deformations are computed for every new layer
added. This is done by solving equation (4.9) for the incremental loads
caused by placing a fresh layer. The final stresses, strains and
displacements of the dam are simply the algebraic sum of all the

incremental values computed for all the layers.

4.3.2 Incremental Porewater Pressure

Static analysis can be carried out in a total or effective
stress mode or a combination of both. In the combination mode, some
elements may be in an effective stress mode and some may be in a total
stress mode. When the effective stress principle is used in the finite
element formulation, the porewater pressure term is introduced as shown in
the right hand side of the equation (4.9).

For the elements for which the total stress mode is assumed to
be applicable, the element stiffness matrix [kt] is based on a total

stress-strain relationship. Furthermore, the porewater pressure, u in

0’

these elements should be set to zero. However, if the effective stress
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mode 1is selected for some elements, the element stiffness for these
elements should be based on an effective stress—-strain relationship and a
value for u, is required.

It should be remembered that the reason for the static analysis
is to estimate the in-situ static condition which is a "long term"”
condition. In view of this, the global porewater pressure vector {ﬁ}
used in the equation (4.9) should correspond to the long term value.
Estimates of u, for the elements can be made using a number of methods
such as hydraulic model tests, electrical analogy etc. Measured porewater
pressures in the field also may be used. The matrix {ﬁ}, formulated

using element porewater pressures u_ can now be used in equation (4.9)

[0}

to compute stresses and displacements.

4.3.3 Computation of Incremental Stresses and Strains

Strains given by the finite element analysis are a measure of
changes in shape of the elements from some reference state. It is assumed
that the condition of newly placed elements after they have settled under
their own weight is the reference state (Ozawa, et al. 1973). The total
strains are obtained by adding incremental strains caused by the
construction layers about this reference state. —

An incremental elastic analysis can be carried out in a number
of ways (Desai and Abel, 1972). The approach adopted here is shown
schematically in Fig. 4.6. Estimates of the increments in stresses and
strains due to a load increment are determined using moduli values
corresponding to stress—-strain level before the 1load increment was

applied. New moduli corresponding to the averége of the strains before
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the load increment is applied and the strains computed after the increment
are used to compufe more cprrect incremental stresses and strains for the
same load increment. These incremental stresses and strains are added to
initial stresses and strains to obtain the initial condition for the next
load increment.

Recall from section 4.1.2, that the relationship between shear
stress and shear strain is assumed to be hyperbolic. Therefore, the shear
stresses are computed using the shear strains at the end of the load
increment. In doing this, as pointed out by Desai and Abel (1972),
equilibrium is not necessarily satisfied. Under these circumstances
equilibrium correction forces may be applied to satisfy equilibrium
condition. 1In the method adopted here, correction forces that correspond
to the changes in the shear stresses computed using the procedure outlined
in Appendix I, are applied to the next load increment.

Before placing a fresh layer the stress condition in previously
placed elements (pre-existing) are known. Therefore, in the initial
analysis for the load increment, moduli for the pre-existing elements are
known. However, for the freshly placed elements, moduli must be based on
estimated stresses in these elements. Ozawa, et al. (1973) suggested that

the stresses can be estimated using the equatioms,

= ygd, o% = Koc§

and = 0.5 ygd sin « (4.10)

Txy
in which d is the depth of center of gravity of the element from the top

surface, =, 1s the slope of the top surface and Yg 1s the unit weight
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of soil. For totally submerged elements yé should be replaced by the

submerged unit weight y'.

4.4, SHEAR-VOLUME COUPLING

The tangent bulk modulus B defined in section 4.1.3, relates

an increment in volumetric strain, Ae to an increment in effective

vm?
mean normal stress, Ao;. But in soils volumetric strains occur also
due to changes in shear stresses. This additional volumetric strain must
be accounted for in any realistic modelling of soil behaviour.

The charactgristic drained behaviour of initially loose and
dense sand samples in a simple shear apparatus 1is shown in Fig. 4.7.
Initially for small shear strains y, both the loose and the dense samples
undergo volume reduction. But 1a;er, over a considerable range of strain,
they exhibit volume expansion (dilation). For both samples in the

dilation range, the variation of volumetric strain g, vs y 1is linear

v

initially and then ¢, approach fixed values at very high strain levels.

The region of interest in the €, vs ¥y plot in typical geotechnical

v
problems would be the initial compaction region and the linear dilation
region.

The rate of volume change in the linear dilation region, is

larger for the dense sand than for the loose sand. Hansen, (1958)

suggested using dilation angle Vo, to characterize the dilation rate. He

defined Vo as,

sinvO =" — = tanf (4.11)
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where Bo 1is the slope angle. The negative sign 1is introduced since
compressive volumetric strain is considered to be positive.

For a given type of sand the angle v, was found to be a
function of the relative density and confining pressure. The dilation

angle v_ 1ncreases with the relative density of the soil. This was

o
clearly shown by Vaid, et al. (198l). They performed drained simple shear
tests with constant vertical stress o;o = 200 kPa, (Fig. 4.8) on
Ottawa sand, (C-109), at various relative densities. The dilation angle,
which is the slope of the linear dilation portion of the plot g, and y
is found to increase with the relative density of the soil.

The dilation is also a function of the mean normal stress level.
This was shown by Lee (1965) whoAperformed drained triaxial tests on dense
Sacramento River sand samples of constant D, = 100%. Fig. 4.9 shows a
series of tests with consolidation pressures varying from 0.1 MPa to 13.7
MPa. Several important features of the test data can be noted in
Fig. 4.9. Firstly, dense samples at high consolidation pressures behave
like loose samples; secondly, failure in terms of maximum principal stress
ratio occurs at increasing strain levels as the consolidation pressure
increases; and thirdly, the dilation angle decreases and becomes negative
(compaction) with increasing consolidation pressure.

Fig. 4.10 shows the variation of the dilation angle vo.with
mean normal stress for a number of sands which were at an initial relative
density of 80 percent. It is interesting to observe that the variation of

v, lies within a narrow band (Robertson, 1982) and also the variation is

o
linear with logarithm of mean normal stress.

Based on the experimental data presented above, the following

approximation for analytical purposes can be made for medium dense and
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dense sands: the volumetric strain due to shear stresses (53) is
negligibly small (Varadarajan, et al. 1980, Byrne, et al. 1982) at low
shear strain levels and above this level it varies linearly with y. This

w

d ys y can be idealised as in Fig. 4.11,

means that the plot of ¢
where y, is the shear strain above which the volumetric strain due to
shear stress is important. It should be noted that the value of v,

should be modified for the changes in mean normal stress according to some

variation such as shown in Fig. 4.10.

4.4.1 Analytical Formulation

There are a number of ways of modelling shear-volume coupling. .
One is to modify the elasticity matrix D (Appendix I) such that Aey, and
Aey depend also on shear stress increment (Verruijt, 1977). But this
type of approach will give rise to an unsymmetrical stiffness matrix,
which unduly complicates the computations.

A simpler way is to keep the D matrix as it is and to
incorporate the volume change the same way as the temperature variations

are analysed in structural mechanics (Zienkiewicz, et al. 1967; Byrne,

1979, Byrne, et al, 1982). This is accomplished in the following manner.

a) The incremental shear strains in all elements are computed for
the increment in load, neglecting shear-volume coupling.

b) v, can be estimated for the new mean normal stress, using Fig.

o
4.10, and then Aeg is computed using equation 4.11.

d

x and

c) The volumetric strain Aes then 1is split into Ae

A§. Here it is assumed that,
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d . d = d .
Aey = Agy 0.5 Aey- Let us define a strain
vector AET such that 1its components are the estimated
=0 |
dilational strains. Then AE? is given by; {Aei,
0
Aeg, }-

d) The nodal forces corresponding to this strain vector AEo can be

computed as,

f‘{f BD A g, dv (4.12)

(see Appendix I)

Now these forces can be added to the applied incremental load in
a) and new strains and stresses can be computed. For computing

incremental stresses, the following equation should be used,

Ac = D(Ae - AEO) (4.13)
where, Ae = strain vector computed for the modified applied
load.

e) Now steps b) + d) can be carried out until convergence occurs in
stress and strain increments under the applied incremental

load.

4.5 INTERFACE REPRESENTATION

It may be necessary to allow relative displacement to occur at

the interface between two finite elements to model slip surfaces in the
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field. Slip elements, which are sometimes referred to as elements of zero
thickness, can be used to model this relative displacement. Slip elements
can be assumed to be placed along the boundaries between the two-
dimensional elements representing soil and structural elements or wherever
it is anticipated that relative movements or separation between elements
may occur. The slip is assumed to occur only along this direction and
this occurs when the shearing forces in the slip element exceeds the shear
strength at the interface.

Goodman, et al. (1968) have developed a two—dimensional slip
element with eight degrees of freedom to represent joint and fault
behaviour in rock mechanics problems. Fig. 4.12 shows a slip element with
nodes I1,J,K and L, in global and element axes. The forces at any point in
a slip element are the shear force fS and the normal force £
expressed per unit area of the element. The force-displacement

relationship is assumed to be:

fs Ks 0 Vs
et=lgx 1l ] (4.14)
n n n
where Ky, K, = joint stiffness per unit length in shear and normal
directions respectively.
Wg, W, = Shear and normal displacement at the point of

interest.

The definition of wunit joint stiffness needs clarification.
Imagine a direct shear test being performed along an interface element of

unit thickness. At first, when a normal force is applied, the element
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shortens as the asperities in the joint deform. A typical plot of normal
deformation at the joint and the force applied per unit length is shown in
Fig. 4.13. For analytical purposes the relationship can be approximated .
to a straight line and the slope is given by K, Similar tests can be
performed in the tangential direction and a plot between fS and Wg can
be obtained. The slope of this curve will give Kge

Using the equation 4.14 and also assuming a linear variation of
displacement within the joint element, a stiffness matrix Kgyp can be
obtained in local or element co-ordinates. This stiffness matrix relates

the nodal forces and the nodal displacements.

The displacement vector here is simply,

ul = {ups v» g, vy, ugs v, up, v

It has been shown in Appendix II that Kgn 1s given by,

n

2k, 0 Kg 0 Kg 0 =2k, O
2K, 0 K, O K, 0 =-2K,
2k, 0 -2k, O K, 0
2K 0 -2k, 0 K,
Koy = (L/6) 2K 0 Kg 0
sym 2K, 0 K,
2K, O
2K

(4.15)
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where, L is the length of the element.
To get the stiffness matrix in global co—-ordinates a simple

transformation is used,

= 7l
Exy =T K, T (4.16a)
where TI= transformation matrix containing direction cosines and is
given by;
%
L9
= go (4.16b)
L
in which,
cos« sine«
Eo = [ o o] (4.16¢c)
-sin« cos«
o o
and « = angle of inclination of the slip element with the

horizontal.

Even though this type of formulation does not include rotation
of the element directly, this is taken into account since all 8 d.o.f.
have been considered. The displacement field variation assumed within the
slip element is consistent with the displacement field in an isoparametric
quadrilateral finite element. Furthermore, both elements have the same
degrees of freedom. Thus establishing a global stiffness matrix can be

evaluated simply treating the slip element like any other element.
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4.5.1 Method of Analysis of Slip Elements

It was assumed that the tangential stress—displacement
relationship (fS Vs ws) in the slip element is elastic-perfectly
plastic and the plastic region where slip occurs is defined by a simple
Mohr-Coulomb type of yield criterion. For incrementally elastic
analysis, the values of Kg and K, should be kept constant until yield
occurs. After the yield, Kg is set to a very small value. This small
value can be viewed as the residual shear stiffness. The value of K,
is kept at its original value. But, if the normal force on the element
is negative, meaning that the separation of the joint occurs, then the
values K, and K, should be set to a small value.

To investigate whether yielding is possible or not, the shear
and normal stress in the slip element should be determined. Since a
linear variation of displacement is assumed within an element, the shear
and normal stresses vary from point to point within the element. The

average incremental values of shear stress Afs and normal stress

Afﬁ for a load increment can be estimated from equation (4.14) as,

>
Hh
|

= K, (4Awg)

>
Fh
i

and

n = K, (Aw) (4.17)

where Awg and Aw, are incremental average shear and normal

displacement in the element respectively.

Now expressions for Awg and Aw, are,
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Aw = (Autop)ave - (Aubottom)ave
= (AugtAu;)/2 = (Aupthug)/2 (4.18)
and AG& = (Avtop)ave - (Avbottom)ave

= (AvgHav)/2 = (Avp+Avy)/2 (4.19)

From equations 4.17 to 4.19, Afs and Afn can now be written

as,

>
Hh
[

Ky [(Augtaup)/2 = (Auptau;)/2]

and Af = Ky [(Avg+Avy)/2 = (Avy+avy)/2] (4.20)

Total shear and normal stresses fS and fn can be obtained by adding up
the incremental stresses for all the load steps.

Mohr-Coulomb failure criterion gives the shear strength
£ in the element at any time as,

max

1)
frax = S + £, tan¢S (4.21)

where cs_and ¢s are the cohesion and friction angle required to define

the failure criterion. If f,,x 1s greater than the absolute value

of f, then the slip element nodes could separate and this is modelled as

mentioned above, by reducing the Ky to a small residual wvalue. The
separation of a slip element is indicated by negative

It should be noted that all calculations for the computation of
fS and fn are performed in the local axes. Since the displacements

from finite element analysis are given with respect to global axes, they
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must be transformed to get displacements 1in the local axes by using the

inverse of the transformation matrix T.

4.5.2 Factors that Influence Joint Parameters

In the analytical wmodel presented above, three distinct joint

parameters were introduced. (1) Ky, the unit stiffness along the
element. (2) K,» the unit stiffness across the element. (3) shear
strength, f . defined by c¢g and ¢s‘ These parameters model the

behaviour of slip elements adequately.

The values of Kg» Kn and fmax will depend on (1) the
surface roughness of the adjacent elements (2) shape and characteristics
of the asperities, and (3) contact area ratio between the joint walls.

Details on how these parameters can be obtained in the laboratory are

given by Goodman, et al. (1968).

4.6 SELECTION OF SOIL PARAMETERS

The process of obtaining representative values for soil
properties 1is probably one of the difficult tasks in stress analysis.
It should be emphasized that individual estimation of soil properties is
not important. But the stress—-strain variation given by the selected soil
parameters should give the best fit to the observed laboratory behaviour

of soil samples in the stress (or strain) range of interest.
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4.6.1 Obtaining Shear Stress — Strain Parameters

After deciding what drainage condition is likely to occur in the
field, a 1laboratory test can be performed simulating the drainage
conditions. For example to obtain parameters for an effective stress-
strain relationship, a series of drained simple shear tests can be
performed to obtain plots 1 vs y for various constant mean normal stress
levels. Simple shear tests are ideal since the mean normal stress during
the test remains reasonably constant. A simple, trial and error method
can be employed to obtain values for Gpax @and Tmax that fit
these curves in the stress or strain ranges of interest. Then knowing the
stress levels corresponding to a test, the best estimates for the

parameters Kg;, c'

and @' can be obtained easily.
The effective stresses in simple shear at the beginning of the

drained loading conditions <can be assumed to be o and K,

.
vo
o;o. Then the mean normal stress c; is given by (1+2K,)
0;0/3 and this 1is in general assumed to remain constant during the
test. But if conventional triaxial tests are performed on the samples,
then c& varies as the axial load varies, and therefore, it is not easy
to obtain these parameters. If triaxial test data only are available then
again the above procedure can be carried out by considering the shear

]
stress and the shear strain on the failure plane. However, since o

increases during shearing the shear stress—strain curve obtained by this
1
procedure may be interpreted for a constant average Op* The average

1 1
o, can be assumed to be the mean of o, , corresponding to the

beginning and the end of the test.
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4.6.2 Obtaining Bulk Modulus Parameters

The tangent bulk modulus B, was assumed to be (equation

4.8) given by,
— o _m
B = =k, P, (3) (4.22)

Integrating this equation one gets,

c'\l-n
) N (4.23)

1-n vm b Pa

taking logarithms both sides,

(1-n)log(o'y) = log {KyPL ™(1-n)} + log (e p) (4.24)
i.e.,

log(eyy) = (I-n)log(c') - log {Kngl_nzl-n)}

The slope of the plot log (e ;) vs log (o) obtained
from drained isotropic triaxial test results will give (l1-n), and from
this n can be determined. Using the value of n, and the intercept on log
(evm) axis, Ky can be calculated. Now knowing the bulk modulus
parameters, Ky and n, the tangent bulk modulus can be computed at any

given mean normal stress.
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CHAPTER 5

TWO—-DIMENSIONAL DYNAMIC ANALYSIS

5.1 FORMULATION OF THE PROBLEM

The general dynamic equilibrium equations for a linear system at

any time are given by (Clough and Penzien; 1975),

[M] {x} + [c] (&} + [x] {x} = {e} (5.1)

in which

{i}, {X}, {X} = column vectors whose components

ki’ R and Xy give the relative acceleration, velocity and

i’

displacement with respect to the base motion respectively of a node,

[M] = mass matrix

]
c]

] damping matrix
]
{r}

where, {I} is a vector with all components unity and ib is the base

—

stiffness matrix

[nmn]

= inertia force vector, which is defined as, —[M]{I}&b

acceleration.

In two-dimensional problems the base acceleration may have two
components: horizontal and vertical. If the 1ifh equation 1n (5.1) is
written for the horizontal direction then ib is the base

acceleration in the horizontal direction, and if the equation is for the
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vertical direction then ib is the base acceleration in the vertical

direction.

5.1.1 Incremental Equilibrium Equations for Non-Linear Systems

In the analysis of non-linear systems, the material properties
change with time. An incrementally elastic approach has been adopted to
model the non-linear material behaviour. Incremental dynamic equilibrium
equations for any time interval, At, can be obtained by replacing the

variables in equation (5.1) by incremental values. This leads to,
[M] {ax} + [C] {a%} + [K] {ax} = {ap} (5.2)

in which, [ﬁ], [E] and [E] are the mass, damping and stiffness
matrices relevant to the time interval for which the above equations are
written.

It is always assumed that the mass matrix is constant. The mass
matrix can be obtained by two ways: lumped méss method and consistent mass
method. In the lumped mass method, the mass matrix is obtained by lumping
the mass of a finite element equally at its nodes. The consistent mass
matrix, is obtained using the same interpolation functions used in the
finite element formulation. The lumped mass matrix is very simple to
compute and it has only diagonal terms, whereas the consistent mass matrix
is somewhat harder to compute and has off-diagonal terms. Even though the
consistent mass method is more accurate, the presence of off-diagonal

terms greatly increases the computation time required to solve the dynamic
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equilibrium equations.  For the accuracy 1level required in typical
geotechnical problems, the lumped mass method is considered appropriate.

In general, the damping matrix [EJ and the stiffness matrix
[EJ which are introduced in the incremental equilibrium equation (5.2)
depend on the distribution of velocity and displacement in the structure.
Appropriate_values for the time interval between any time t and t+At can
be determined only by an iteration procedure, because the velocity and
displacement at the end of a time increment depend on the initial
stiffness and damping values. This type of iterative solution scheme for
every time step is very expensive. Therefore, in practice tangent damping
and tangent stiffness matrices which correspond to time t are used with
appropriate corrections to the results. It will be explained later how
correction forces can be introduced into the solution scheme.

The stress—strain law used to determine the tangent stiffness
matrix at time t, [Kt]t is described in Section 5.2. The [E]
matrix will be assumed to be a constant throughout the dynamic analysis

and the procedure to.evaluate this is presented in Section 5.3. With,

[K]

[Kele (5.3)

and

[c] = [c] (5.4)

the dynamic incremental equilibrium equations can be re-written as,
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M] {2k} + [c] {a%} + [k ] {aX} = {aP} (5.5)

When computing response for a random loading history, equations
(5.5) have to be solved fbr every time step. During the procedure
[Kt]t and {AP} are updated. The step by step integration procedure
proposed by Newmark (1959) or Wilson's O-method (Wilson, et al. 1973) have
been adopted to integrate the equations. These procedures are described

in Appendix III.

5.1.2. Correction Forces

The numerical integration procedure 1is based on three
significant assumptions: (1) the variation of acceleration within a time
step is assumed to vary in some known fashion e.g. linear or constant (2)
the damping and stiffness properties remain constant during a time step
and (3) the response at time t + At can be evaluated from the known
response at time t. In general neither of these assumptions is entirely
correct, even though the errors may be small when the time step is short.
If errors accumulate from step to step gross errors and even solution
instabilities may occur. These problems can be avoided by imposing the
condition of global equilibrium at each step of the analysis.

The global equilibrium equations at time t in terms of ail force

components are,



{f1}e + {fp}e + {fs}e = {P}¢ (5.6)

in which {fI}t, {fD}t, and {fs}t are the column vectors
representing inertia, damping, and spring forces acting on the discrete
mass system at any time t and {P}t is the inertia force vector at time
t.

Since the mass matrix and the damping matrix were assumed to be
constant during dynamic analysis, {fl}t and {fD}t are simply given

by,
{£1}e = [M] {x}, | (5.7)

and

{tp}e = [c] {&}, (5.8)

The spring forces {fs}t, can be computed by expressing
element stresses in terms of nodal forces, applied at the nodes of the
elements. The nodal forces that correspond to the dynamic stresses %4

in an element {fs}elem’ from Appendix 1 are,

5.9
(f5}eren = []J20y o 2

in which B is the matrix that relates strain to nodal displacements. In

this manner nodal forces for all the finite elements can be computed and
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the vector sum of all these nodal forces will give the global vector
{fs}¢-

If the solutions obtained at time t are accurate then the right
and left hand sides of the equation (5.6) will be identical. But, in
general it will not be so. The correction force vector {Pcorr}

is given by,

{Pcorr} = {P}t - {fI}t - {fD}t - {fS}t (5.10)

From equations (5.6) to (5.9), equation (5.10) can be re-written as,

(Pope) = B}, - M) (X}, - [c] (&}, - ] [ff B o, av

all elements (5.11)

To impose equilibrium, the correction force vector {Pcorr} can be
added to the incremental equilibrium equations formulated at time t. This
is accomplished by adding {Pcorr} to the right hand side of the

equation (5.5).

5.2 DYNAMIC STRESS—STRAIN RELATIONSHIP

In the proposed incrementally elastic analysis in the time
domain, the tangent shear modulus G, and tangent bulk modulus B, were
selected as the two "elastic parameters”. Some reasons for selecting G,
and B, for static analysis were presented in Chapter 4. There is a

further very important reason for adopting these parameters in the dynamic
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analysis. In dynamié analysis, the moduli have to be changed for every
time step.
This means that the element stiffness matrix has to be re-formulated each
time. This time consuming procedure can be simplified somewhat if Gy
and B, are used as the "elastic” constants.

The elasticity matrix D (Appendix 1I) wunder plane strain

conditions, is given by,

4 2
B,+3CG, B -3GO0
- A 4
D=|B -%G B +3G 0 (5.12)
0 0 G
4 -2 O
1 1 0 x 2
] 2 4 0 C(5.13)
By t6 | 3 3
o 0 o o0 1
=B Yt 69 (5.14)

where Q1 and Q2 are two constant matrices.
From the formulation of stiffness matrix presented in Appendix

I, the element stiffness matrix is,

= [[{B"DBav (5.15)

Now substituting for D from (5.14) the equation (5.15) can be rewritten

as,
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£t=Btf‘{fﬁtﬂlndv+ctf‘f,f§tgzhdv (5.16)
i.e.
k =B R +G R (5.17)
where
&= ! B'Q B dv (5.18)
t

dv (5.19)

s
-
°
o

The constant matricies R; and R, have to be computed only once.
The current Et matrix may now be obtained by multiplying the constant

matrices R, and R, by the current values of B, and G;.

5.2.1 Volume Change Behaviour

With regards to volume change behaviour ddring dynamic loading,
the soil deposits can be divided into two basic groups. The first group
includes soils which can undergo volume changes under the load increments
induced by the base excitation and the second group includes soils which
cannot.

Saturated gravels and dry deposits belong to the first group of

soils. Recall equation (4.8) which relates B, to oy,
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%nyn”
B, = K P_ (;;) (5.20)

This equation may be used to compute Bt' This means that By has
to be modified for every time step. However, it is known that the changes
in mean normal stresses in the so0il elements, due to seismic excitation is
small and furthermore the volume change behaviour does not influence the
response of soil structures significantly. Therefore, for simplicity,

B, may be kept constant throughout the dynamic analysis. An average

t
B, for elements can be evaluated based on in-situ mean normal stresses
using equation (5.20). This is because the load pulses during seismic
loading induce stresses such that their mean values are initial in-situ
stresses. It should be noted here that even if the changes in c;
are considered, for typical values of n* the changes in B, will be
small.

Laboratory results have revealed that, as plastic volume changes
occur during cyclic loading, the soil samples harden leading to higher
bulk modulus. This dincrease in bulk modulus due to strain hardening
effect can be modelled the same way as the. increase in maximum shear
modulus was modelled by Finn, et al. (1977). This was accomplished by
iﬁtroducing hardening constants (equation 3.14).

Loose saturated, sandy soils and saturated clays belong to the
second group of soils. 1In saturated soils volume change can occur only by
porewater drainage. Within the short duration of typical seismié
excitation, the occurrence of appreciable amount of drainage is

questionable in soils of low permeability. In view of this, the dynamic

analysis proposed here assumes that no drainage occurs during the dynamic
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loading. In saturated gravels appreciable residual porewater pressure
does not develop because of its high permeability.

For the second type of soils, to simulate the condition of no
volume change, the bulk modulus is set to a very high value during dynamic

loading conditions.

5.2.2 Dynamic Shear Stress-Strain Behaviour

In the formulation of a complete dynamic effective stress-strain
relationship the following basic aspects should be considered;
1) soil behaviour under initial loading, unloading and reloading
phases.

2) residual porewater pressure generation and its effects.

5.2.2.1 Skeleton Curve for Dynmamic Loading

Under dynamic loading conditions the relationship between

dynamic (or cyclic) shear stress, < and dynamic shear strain, y., is

c?

assumed to be hyperbolic. The hyperbolic relationship (equation 4.1) is

defined by G ., and <, .

ax

Seed et. al, (1970) proposed that maximum shear modulus,

Gpnax for sandy soils is a function of effective mean normal stress

only, and given by,

Gmax = f (c&) = 1000 (K2)max (c&)l/Z (5.21)
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in which, (K is a constant which depends on the relative

2)max

density for a given soil. Seed et. al, suggested that for sands

(K2)max varies between 20 and 100.
Hardin et. al, (1972) suggested that the ultimate shear strength

Tpax ©an be calculated wusing insitu effective stresses and static

shear strength parameters such as ¢' and @' (equation 4.7). They pointed
out that for the 1level of dynamic strain (yc<l%) induced by seismic

loading, the hyperbolic curve in terms of static Tmax 18

satisfactory for dynamic loading.
Unlike dynamic analyses in one-dimension, an initial static

shear stress, = is present in the analyses in two-dimensions. The

s,

presence of <t  causes the available shear strength to be different,

depending on the direction of shearing. A typical relationship between

T, and Yy, is shown in Fig. 5.1. The available shear strength in the
direction of initial static shear stress is (Tmax - TS) and in the
opposite direction it is (tmax + Ts)'

In dynamic analysis, the current practice is to neglect the
influence of <t  on available shear strength and to assume that the Te

Vs Y. relationship is symmetrical about both T, and Y. axes.

5.2.2.2. Unloading and Reloading

All the basic assumptions used to model unloading and reloading
phases in Chapter 3 are also adopted for dynamic analyses. However, the
equations have been modified to reflect the effect of static shear on
available shear strength. For example the equation for the unloading

curve KL from K in Fig. 5.2 is given by,
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Fig. 5.2. Dynamic Shear Stress-Strain Relationship:

Unloading and Reloading.
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Gmax (v - YK)
) = —
K° T 1+6, . =Yg 1/ s (5.22a)

2

(t-=

where =< T + T

maxl = max g» and Ty and yg are the dynamic

shear stress and strain corresponding to reversal point K.

The equation for the reloading curve 1M, is given by,

) Gmax (v - YL)

(t-1) = ~

L 1+6 |y -y l/e
2

» (5.22b)
max2

where Tmax . Tg?

Tnax? and Tys YL are the dynamic

shear stress and strain corresponding to reversal point L.

5.2.3. Modelling the Effects of Residual Porewater Pressure

One of the important factors in seismic response studies of soil
deposits comprised of saturated cohesionless materials is the influence of
residual porewater pressure generation. The presence of residual
porewater pressure reduces the resistance to deformation.

The presence of initial static shear stress, ¢ affects the

.
generation of residual porewater pressure 1in loose saturated sands
significantly (Finn, et al. 1978b, Vaid, et al. 1979). The porewater
pressure model developed by Martin, et al. (1975), does not account for
Tge The porewater pressure model adopted here is an extension of the

model of Martin, et al. (1975) to account for the effects of Tge



86

5.2.3.1 The Behaviour of Samples with 's

The original procedure that accounts for the presence of Tg

was presented by Seed and Lee (1969). They hypothesized that the
behaviour of an element in the field with an initial static stress ratio,
/g’ = «. and subjected to a shear stress history on its failure plane
is identical to the behaviour of a representative laboratory sample
consolidated such that it has the same initial stress ratio «_ on its
failure plane and is subjected to the same shear stress history. In the

field, for typical soil structures, the failure plane for earthquake

excitation can be assumed to be the horizontal plane (Seed, et al. 1973).

Then the field stress ratio is simply «,. = Ts/6§o” in which
°§o is the initial vertical effective stress. If simple shear
equipment is used to test representative samples then the dinitial

vertical and shear load can be applied such that the proper ratio ® . =
TS/G§O is present on the horizontal plane. However 1if triaxial
abparatus is wused, the axial o¢{, and radial pressures g3,
should be such that the initial effective stress ratio on a plane
(45+9'/2) to the horizontal (failure plane) has the same ratio « ..
It can be deduced from the above hypothesis of Seed and Lee
(1969), that the behaviour of horizontally layered deposits can be
interpreted from isotropically consolidated triaxial (ICT) tests.
Anisotropically consolidated triaxial (ACT) tests have to be wused if
Tg * 0.
Comprehensive laboratory results are available on the behaviour of

cyclic triaxial samples under various consolidation conditions. On the

contrary, only very limited simple shear test data are available. This is
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especially true when tg # 0. Therefore, in this section only triaxial
test data are used to explain the difference in behaviour of samples, with
and without tg on the failure plane.

A number of researchers have studied the behaviour of soil
samples subjected to ICT tests and ACT tests (Seed, et al, 1969; Finn, et
al. 1978b; and Selig, et al. 1981). There are a number of basic
differences between the behaviour of samples subjected to ICT tests and
ACT tests.

In typical cyclic triaxial tests on saturated cohesionless soils
the porewater pressure and axial strains develop with increasing number of
deviatoric load cycles. The porewater pressure (Ut) recorded at any
t;me is the sum of residual porewater (or permanent) pressure (U) and the
cyclic (or transient) porewater pressure (U.). The cyclic porewater
pressure 1is an instantaneous increment of porewater pressure which is a
function of current changes in the mean normal and shear stresses and the
residual value is the porewater pressure due to plastic deformation. The
residual porewater pressure may be recorded when the applied cyclic load

is zero. The total porewater pressure is then given by (Fig. 5.3),

Ut =0 + UC (50233)

Similarly, the total axial strain at any time also can be separated into

elastic and residual or plastic components,
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(5.23b)

Results of an ICT test and an ACT test are presented in
Fig. 5.4 to illustrate the differences in behaviour between these two
tests (Selig, et al. 1981). Two samples of Ossterschelde sand with
initial porosity of about 41.5% were comnsolidated isotropically (sample a)
and anisotropically (sample b). The cyclic deviatoric stress for sample
(a) was 0.3 kg/cm? and for sample (b) was 0.45 kg/cm2. The axial strain
and poréwater pressure response of these two tests are shown over 200
cycles of stress.

The axial strain record shown in Fig.5.4 for the ICT test is
almost symmetrical about the X axis and the average value of €y 2@ small
value. The peak values of axial strain occurs when the applied deviatoric
load is maximum. This means that the peak values are the cyclic
components of the axial strain. The residual or permanent component of
the axial strain is small. The cyclic component remained relatively small
until the residual porewater pressure developed to about 60% of the
consolidation pressure and thereafter increased rapidly. At the end of
the test, when the applied load was zero, the axial strain was found to be
small. However, in the ACT test, the mean axial strain increased with
number of cycles of loading and at the end of the test the axial strain
was quite large. The residual or permanent strain in this test increased
with number of cycles while the cyclic strain remained relatively small.

In the ICT test, the porewater pressure increased more rapidly
than for the ACT test (Fig. 5.4b). After about 150 cycles of loading, the
porewater pressure ratio (U/céc) for the ICT test rapidly approached

100%, while the ratio for ACT test approached a limiting value.
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The cyclic porewater pressures vary depending on the magnitude
of deviatoric stress. The deviatoric load plays two roles. Firstly, the
increase in deviatoric load results in an increase in porewater pressure.
Secondly the deviatoric load causes shear stress on the failure plane,
which may cause dilation of the sample. This will lead to a drop in
porewater pressure. Therefore, the sum of these two effects will give the
net cyclic component of the pressure. It is accepted that the behaviour
of saturated sands are not significangly affected by the cyclic porewater
pressure, U,. Only residual porewater pressure affects the behaviour of
saturated sands significantly.

It is easy to understand the difference in behaviour between ICT
tests and ACT tests with regards to the limit of porewater pressure
generation if both are compared in effective stress space, such as a q, p'
plot, where q is the principle stress difference given by (c1 - 63) and p'
is given by (oi + dé)/Z. Points L and M in Fig. 5.5 represent the
initial stress state in the (q,p') plot for the ICT and ACT tests. As the
residual porewater pressure increases, the effective stress state at any
time, when no deviatoric load is present in the triaxial sample, is given

by,

ci =0{., - U (5.24a)
o§ = céc - U (5.24b)
then the corresponding p' and q are given by,
0" + U' o.l O"
pt = L+ —3 . de3dc_ (5.25a)
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and

q = cic - 03¢ (5.25b)

This means that if the effective stress paths are plotted for
both tests when the applied deviatoric load is zero they will be parallel
to the p' axis and will move towards the failure line. 1If a number of
load cycles of sufficiently high cyclic stress ratio are applied, the
effective stress path may move very close to the failure envelope. If
further load increments are applied, the sample will behave such that
stress states above OA and below OB cannot occur. This means that maximum
residual porewater pressure values recorded will be such that the
effective stress path will be on the failure line. Therefore, the maximum
residual porewater pressure for any ACT test is b2 and for any ICT test it
is a, (Fig. 5.5). Using simple geometric principles it can be shown that
(Chern, 1981; Chang, 1982),

9e

U _ _=b, = {1 +K, - (K, - 1)/sing'}

max 2 2 (5.26)

where Kc is the anisotropic consolidation ratio defined as K =

6'1c/05¢- When K = 1 (i.e. ICT test) U

c is simply

max
given by of.-

It should be noted that the ACT test reported here does not
experience reversal of shear stresses at any time. If the total stress

path is below the positive q axis then reversal in shear stress occurs.

It is easy to show that reversal will occur if,
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Ody > 03, (K. - 1) (5.27)

Finn and Byrne (1976) have shown that stress reversal is required if a
condition of initial liquefaction is to be achieved in anisotropic tests.
However, whether there is reversal or not, the anisotropically
consolidated samples strain progressively during cyclic loading in
contrast to isotropically consolidated samples.

The rate of porewater pressure development in a given sample
subjected to cyclic loading in a triaxial apparatus is mainly governed by
relative density, consolidation pressures, and applied cyclic stress
ratio, ddy/2°'3c' To compare the porewater pressure development
characteristics of an ACT test and an ICT test, the tests have to be
performed under similar conditions. Finn, et al, (1978b) presented a plot
of the porewater pressure ratio Um/céc vs N/Ngg (Fig.5.6) in
which Uy is the maximum porewater pressure recorded at any time during a
cycle, N is the number load cycles and Ngj, is the number of cycles to
cause the porewater pressure ratio of 50%. The figure clearly shows that
the rate of porewater pressure development is different in ACT and ICT
tests. The interpretation of these test results should be done with care,
since Ng, is also a function of K.-

In presenting laboratory results on dynamic properties of
saturated cohesionless so0il samples it 1is customary to provide
liquefaction potential curves. These curves are a plot of cyclic stress
ratio cdy/26'3c versus number of cycles to liquefaction, N . As

explained above, in some ACT tests it 1is mnot possible to reach

liquefaction defined as U/oj, = 1. Therefore, the definition of
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Ny, has to be changed to cycles to cause U = U, . or cycles to
cause some specified strain (Seed, et al. 1969). Often in practice double
amplitude axial strain (peak to peak) of 5% is used. It can be seen from
Fig. 5.4 that for the ICT test, a single amplitude strain of 2 1/22 is
equivalent to 5% double amplitude. This is because the axial strain
record is fairly symmetrical about the X axis. However, this is not true
in ACT tests. Therefore, in presenting liquefaction potential curves for
ACT tests it may be necessary to define N; as number of cycles for some
maximum single amplitude strain or double amplitude or the condition where
U = U . Typical plots of liquefaction potential curves for two
dense samples with and without Ty are given in Fig. 5.7 (Rahman, et al.
-1977). Two observations can be made from these figures. Firstly, the
liquefaction potential curves are very similar in shape. Secondly, the
curves fér ACT tests are above the curves for ICT test indicating higher
resistance when v, is present. However, the second conclusion may not
be true for loose samples (Vaid, et al. 1979).

In presenting the differences between samples with and without

T only triaxial results were used. Vaid, et al. (1979) carried out a

S’
number of simple shear tests with and without Tg+ The conclusions drawn
by their investigation and results reported by Seed, (Seed, 1983) are also

very similar to those presented above.

5.2.3.2 Residual Porewater Pressure Generation Model

The porewater pressure model proposed by Martin, et al. (1975) was

modified to include the effects of 7 . With regards to generation of
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porewater pressure, it has been documented in the preceeding section that

the presence of = has three basic effects. They are: the position of

s
the liquefaction potential curve is altered, there is a 1limit to the
amount of residual porewater pressure, and its rate of generation is
different when g * 0. The attempts made to account for these effects
in the porewater pressure generation model are presented in this section.

Recall the equation (3.5) which relates the incremental volumetric

strain to cyclic shear strain amplitude,

Asvd = C1 (y - C2 evd) + (5.28)

In one—-dimensional response analysis only shear strain
components are present. But in an analysis in two-dimensions, vertical
and horizontal strains also occur. However, if it is assumed that only
the c¢yclic component of shear strain Yxy contributes to Aegy, then
the equation (5.28) can still be used. This assumption is quite
reasonable since the major strain that occurs during seismic excitation in
typical soil structures which have adequate static factor of safety is
‘shear strain (Serff, et al. 1976), and furthermore, only cyclic components
of shear stfain are responsible for grain slip.

Based on a number of shaking table tests, Pyke, et al. (1975),
showed that all three components of acceleration contribute to volumetric
strain. Analytical studies by Seed, et al. (1975) have also revealed that
under multi-directional shaking porewater pressures build up faster than
under unidirectional stress conditions, and that the shear stress ratio

Td/déo to cause liquefaction wunder multi-directional shaking
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conditions is abouf .IOZ less than that required under unidirectional
shaking conditions. They suggested reducing the stress ratio
Td/ceo obtained from simple shear test results by about 10%Z to
account for this effect.

A two-dimensional dynamic analysis can account only for the
horizontal and the vertical components of acceleration which act om the
plane of the soil structure. The effects of the third acceleration
component can be accounted for by modifying either the incremental
volumetric strain Ae,q or the dynamic shear stress ratio
T4/ Yo"

The porewater pressure model of Martin, et al. (1975) was modified
such that the liquefaction resistance curve and the generation rate of the
porewater pressure matches the behaviour observed in the laboratory sample
with a given Ts/°§o° Here the 1liquefaction resistance curve is
obtained by defining N, as number of cycles required to reach the

.condition of residual porewater pressure U = U where Uma

max? X

is given by equation 5.26.

Recall the equation for E,

L A (5.29)

The term K, in equation (5.29) and constants C; through C, may be
adjusted to model the laboratory behaviour. A proposed trial and error
procedure to accomplish this has been outlined in Chapter 3. It is
worthwhile noting that the liquefaction potential curves generated for

various K, values are also very similar in shape to the curves obtained



98

for wvarious Ts/déo ratios 1in the 1laboratory. This indicates that

a reasonable matching of these curves 1s possible.

In the computation of E_. using equation (5.29), 9yo
and c§ are substituted for o;, and G; respectively. Here
and ¢! are initial vertical effective stress and current

1
Syo y

vertical effective stress respectively. is known from the

)
Syo
static analysis performed before the dynamic analysis. o§ is obtained
by computing current effective stresses.

Recall equation (4.9),

{p} = [x.] {a} + [x'] {v} (5.30)

This equation can be used to obtain the response of the deposit to
increases in residual porewater pressures by setting {P} = {O}. The
porewater pressure matrix {U} is formed from tﬁe residual porewater
pressures in the elements, as in the case of static analysis. The
incremental displacements, stresses and strains given by adopting this
procedure is the response of the deposit to softening of the elements.
Furthermore, these incremental strains can also be viewed as permanent
components of the strains. The current effective stress system can now be

used to modify G ., and =< values, and the dynamic analysis

max
can be continued with a hyperbolic stress-strain relationship compatible
with the current effective stress system.

There is a limit to the amount of residual porewater pressure

that can be achieved in a triaxial apparatus. This is easy to estimate,

because the wultimate stress state of a sample has to be on the Mohr
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envelope and in a triaxial apparatus the effective stress path followed by
the sample 1is predictable. However, in two-dimensional analysis the
effective stress path followed by an element cannot be predicted before
hand, and therefore the maximum residual porewater pressure that can be
developed cannot be known before the dynamic loading. The procedure used
to calculate effective stresses can be used to impose limits on the amount
of residual porewater pressure. This can be accomplished by allowing
porewater pressure generation to occur during dynamic loading only until
the Mohr circle drawn for the current effective stress system touches the

Mohr envelope.

5.3 DAMPING MATRIX [cC]

Two fundamentally different damping phenomena are associated
with soils, namely material damping and radiation damping. The material
damping can be viewed as a measure of energy dissipation when waves travel
through soils. The loss of energy due to waves travelling away from the
region of interest is known as radiation damping.

The material &amping can be divided broadly into two groups:
viscous and hysteretic damping. The energy dissipation in viscous damping
depends on the velocity of motion or strain rate and it is frequency
dependent. Whereas hysteretic damping involves frictional loss of energy
that is largely independent of frequency but depends on the magnitude of
displacement or strain. Laboratory tésts on soil samples have shown that
most>of the energy dissipation in soils occurs through internal\ffiction
which is hysteretic. When modelling the non-linear behaviour of soil by

an incrementally elastic approach, the effect of hysteretic damping has
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been included already in the analysis. Viscous damping is still needed to
take into account the effect of flow of water inside the soil structure.
Furthermore, a small amount of viscous damping is necessary to control
pseudo high frequency response introduced by the numerical integration
procedure.

The damping due to viscous effects can be accounted for through the
use of Rayleigh damping. The damping matrix [C] is given by a linear

combination of [M] and [K] giving,
[c] = a [M]+ Db [K] (5.31)

in which a and b are constants.

The stiffness matrix [K] varies with time during the dynamic
analysis and therefore [C] would have to be computed for every time step.
But knowing that the amount of viscous damping is very small compared to
hysteretic damping, the time consuming procedure of computing [C] at all
time steps may be unnecessary. Therefore, [C] is assumed to be a comnstant
and can be evaluated using the tangent stiffness matrix [Kt] at time

t=0. Then,

[c] =a [M] + b [K ] (5.32)

= 4 =2 (5.33)
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where the w, is the nth mode frequency. Equation (5.33) shows that the
mass—proportional component of the damping is inversely proportional to
the frequency while the stiffness proportional component is directly
proportional to the frequency.

Lee (1975) proposed that only stiffness—proportional damping

should be used and suggested using,

a=0and b = 0.005 (5.34)

In substituting these values for a and b in (5.33) one gets,

Ay = 0.0025w, (5.35)

It should be remembered that in typical soil structures only
lower modes of vibration govern the response, and therefore, it is
unnecessary to include higher mode components. The equation (5.35)
implies that the damping ratio increases linearly with the frequency.
Therefore, the response due to high frequency components of the input
motion will be damped out significantly. This is one of the advantages of
using stiffness proportional damping ratios for soils. From the equation

(5.35) the damping ratio at the fundamental frequency is given by,

Ay = 0.0025u (5.36)

Typical periods of vibration of soil structures may vary between 0.5 to
1.5 sec. This means that the typical damping ratio for the fundamental

mode at the start of the dynamic loading varies between 1% - 3%.
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The average stiffness of a soil structure during dynamic loading is
less than the stiffness at the start of the dynamic loading. Theréfore,
when wusing the damping matrix [C] computed wusing [K]t=o’ the

effective damping ratio may be higher than the range shown above.

5.4 BOUNDARY CONDITIONS

Appropriate boundary conditions in terms of forces or
displacements have to be specified at all boundaries.
In the dynamic analyses involving earthquake excitation, two

types of bottom boundary conditions are often used:

1. A fixed bottom boundary located at the top of a rigid layer. 1In
general, base rock or a stiff soil layer can be assumed to be
rigid.

2. A bottom boundary located at the top of a soil layer or soft
rock with constant elastic properties. This type of boundary is

generally known as transmitting boundary.

For both the above boundary conditions the earthquake motion is
specified at the bottom boundary. If the second type of bottom boundary
conditions is used, the domain of interest need not be extended down to a
rigid 1layer. This procedure reduces the number of degrees of freedom
leading to a reduction in computational costs. In the method of analysis
presented here only the first type of boundary condition is considered.

Three types of lateral boundary conditions are commonly used in

two-dimensional dynamic problems, involving finite element procedures:
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1) ©boundaries are located sufficiently far away from a structure so
that wave reflection does not occur during analysis or is
minimized. On these boundaries, forces, displacements or a
combination of forces and displacements can be specified.

2) viscous boundaries are wused which attempt to absorb the
radiating waves by a series of dashpots and springs with
constant or variable properties (Lysmer and Kuhlemeyer; 1969)

3) consistent boundaries can be provided close to the foundation of
structures. These boundaries attempt to reproduce the far field
response in a way consistent with the finite element formulation
used to model the dynémic problem. This 1is accomplished by
formulating a frequency dependent boundary stiffness matrix'
which can be obtained by solving the glastic wave propagation

problem in a layered half-space (Lysmer and Wass; 1972).

Of the three types of lateral boundaries, the analysis with the
consistent boundaries is by far superior to the others with respect to
accuracy. In the analysis with consistent boundaries, only a small region
needs to be considered, thus reducing the number of degrees of freedom.
But unfortunately, the formulation is strictly applicable only to linear
(or iterative linear) problems and for solutions in the frequency domain
only.

The lateral boundaries in an incrementally elastic approach in
the time domain therefore should be located as far away from a structure
as practicable. The usual way to model the lateral boundaries is to allow

the nodes on these boundaries to move only in the horizontal direction.
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5.5 ANALYSIS OF SOIL - STRUCTURE SYSTEMS

The response of a structure founded on a soil deposit is affected by
the local soil conditions. The peak acceleration, frequency content and
the spatial distribution of the response characteristics may all be
affected. By including the structure in the finite element domain for the
response analysis, the coupled seismic response of the soil and structure
may be determined.

The presence of the structure has two major effects on the soil
deposit. It 1increases the effective stresses and it also provides
additional inertia forces. Therefore, for soils which exhibit non-linear
stress dependent behaviour, an wuncoupled analysis in which soil and
structural systems are uncoupled may not be applicable. Uncoupled
analysis cannot predict the response of buried structures where strong

soil-structure interaction occur.

5.5.1 8lip Elements in Dynamic Analysis

Relative displacement which may occur between soil and structure
during strong shaking can be modelled using slip elements. However, the
slip element model described in Chapter 4 has to be modified for use under
dynamic loading conditions. Ideally, once the slippage stops in a slip
element, the top and bottom nodes of the element should have the same
acceleration and velocities (Nadim and Whitman; 1982). Howeve;, when
computing accelerations and velocities by numerically integrating the
equation (5.5), different values will be unavoidable for the top and

bottom nodes. In order to overcome this difficulty, when no slippage
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occurs in a slip element, the velocities and accelerations of the bottom

nodes were made equal to those of the top nodes.

5.6 SOLUTION SCHEME

A step by step solution scheme is carried out to obtain the

dynamic response in the time domain. A brief outline of the procedure is

given below:

L)

2)

3)

4)

5)

based on the current values of G T and Ye

max’ max

at time t the tangent shear modulus Gt is calculated for all
the elements using the current stress—strain curve, for either
initial 1loading, wunloading or reloading whichever is
appropriate.

the global stiffness matrix [K is determined.

t]t
knowing the base acceleration value at (t+At), new values for
{i}, {X}, {X} at time (t + At) and increments, Ay and
{Ac} are computed by employing any of the direct integration
methods to solve the equations (5.5) as detailed in Appendix

II1

if stress or strain reversal occurs in any element during this

time interval, At, the dynamic analysis 1is repeated for a

shorter time interval.
using the shear strain increment, increments in volumetric
strain and then porewater pressure are computed using equation

(5.28) and (5.29).
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6) wusing increments in residual porewater pressure U, as virtual
loads static analysis 1is petformed to determine current
effective stresses. These effective stresses are then used to

update Gpax and Thax values.

A combuter program TARA-2 has been developed incorporating all

these basic steps.

5.7 COMPUTATION OF POST EARTHQUAKE DEFORMATION

It is often required to predict the displacements at various
points on the soil structure at the end of an earthquake. This is
referred to as dynamic residual displacements. To compute these, an
earthquake record with enough tailing zeros should be used so that the
free damped vibration response can be ihéluded in the analysis.

The cyclic and permanent components of displacement response for
saturated sands and silts, are assumed to occur under undrained
conditions. There will be additional deformations in these soils when the
residual porewater pressure dissipates.

In undrained simple shear cyclic tests on saturated sands and
silts the potential volumetric strain €yd? which occurs due to grain
slip, 1is reflected as residual porewater pressure. When the residual
porewater pressure dissipates, volumetric strain, Eyq Occur in the
sample resulting in settlement. The prediction of deformations due to the
dissipation of residual porewatér éressure can be accomplished‘ as

follows.
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One method is to treat this problem as a two-dimensional
consolidation problem with known initial porewater pressures, and to solve
for the deformation at discrete time intervals as the drainage occurs;
A second method is to compute deformations using the volumetric strain
accumulated at the end of the dynamic 1loading, sz' This can be
accomplished by treating this volumetric strain the same way the
volumetric strain 53 in shear-volume coupling was modelled in
Chapter 4. In the program TARA-2 the second method is used.

The final or post earthquake deformation after the residual
porewater pressure has dissipated is the sum of the deformation calculated

from the modified e:d and the residual dynamic deformation

predicted at the end of the dynamic analysis.
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CHAPTER 6

VERIFICATION OF THE METHOD OF ANALYSIS

‘The validation of computational techﬁiques requires good
prototype data for comparison. The common shaking table test cannot
represent the range of in-situ pressures experienced by the soil elements
in the field. TFor application to full scale design problems we require
data from centrifugal models where similarity can be achieved with the
self-weight of the prototype. Here in-situ stresses are directly scaled
to those of the full scale event and therefore, the stress dependent
stress—strain properties of the soil (especially cohesionless soils) can
be matched in model and prototype. Centrifuge modelling laws are used to
deduce prototype response from model response. The principles of

centrifugal modelling have been discussed in detail by Schofield (1981).

6.1 CAMBRIDGE CENTRIFUGE TESTS

A number of centrifuge tests on submerged islands were conducted
by Lee (1983) using the Cambridge University Centrifuge. Full details of
Cambridge centrifuge equipment and test procedures have been given by
Schofield (1981). Fig. 6.1 shows the model island used in the tests.
The island was a 90mm high with side slopes at 3:1 and a crest width of
200mm. The centrifuge acceleration used in the tests was 40g. This means
that the corresponding prototype island is of height 3.6m, with side

slopes 3:1 and has a crest width of 8m. The structural loading on the
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island was simulated by using mild steel plates of various thicknesses.
The island rests on a concrete base which in turn is bolted to the
centrifuge container. The base shaking was generated when the rotary arm
on wheels follows a track mounted on the wall of the centrifuge chamber.

The island was instrumented by 6 DJB A23 piezoelectric
accelerometers, 6 Druck PDCK81 pore pressure transducers and 2 LVDTs. The
location of these instruments are also shown in Fig. 6.1.

The test soll was fine Leighton-Buzzard sand, mostly of size
passing between B.S. sieve size No. 120 and No. 200. The relative density
was 60 - 70%, with €nax = 1.03 and ey, = 0.63 (Lee, 1983).

In centrifugal modelling, if the model pore fluid is the same as
the prototype pore fluid, excess pore pressures would be able to dissipate
N2 times faster in the model than in the prototype, whilst the earthquake
would only occur N times faster. Here N is the scale factor of the
centrifugal acceleration given as a ratio of gravity. Therefore, to model
the prototype porewater drainage condition, it is necessary to use a pore
fluid of viscosity N times that of water in the model test. A special
silicone o0il was used as the model pore fluid in Lee's tests.

In the tests carried out on the island, thé theoretical input
wave—form was intended to be 12 sinusoidal pulses with a constant period
of O.5secs. However, the actual input motion to the island was more
complicated due to resonances and mechanical 1linkage clearances
interfering with the input motion, especially during the initiation of the
base motion.

The results of two centrifuge tests were made available to the
writer. The average contact pfototype pressure on the islands for these

two tests were 15kPa (Test 1) and 31kPa (Test 2) respectively. The input
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accelerations measufed by the accelerometer mounted on top of the concrete
base for Test 1 and Test 2 are shown in Fig. 6.2(a), and (b). The
recorded maximum base accelerations in Test 1 and Test 2 were O.llg and
0.17g respectively. The island responded very differently in these two
tests. The comparative study carried out to predict performance of both

the tests are reported in this chapter.

6.2 COMPARATIVE STUDY

The sand used in the model test was at an average relative

density D, = 65%. Typical properties which are consistent for medium
dense sand of D, = 65% for static and dynamic analysis are given in
Table 6.1.

The liquefaction resistance curve for the sand obtained by using
UBC simple shear apparatus without any static bias (Ts=0) is shown in
Fig. 6.3. This 1liquefaction resistance curve matches the predicted
liquefaction resistance curve when porewater pressure model constant, K,
= 0.012. As explained in Chapter 5, the porewater pressure model
constants can be selected appropriately to account for the behaviour of
samples with initial static stress, Tge Since test data on samples with

T are not available, it was decided to ignore the changes in the pore-

s?

water pressure generation rates, and to account only for the changes in

liquefaction resistance. The liquefaction curves which correspond to non

zero 18/0;0 were obtained by scaling the laboratory liquefaction
curve. The scaling was done by using available laboratory data on medium

dense Ottawa sand (Vaid, et al. 1979). The changes in the liquefaction

resistance curve can be specified by associating the appropriate K,
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Table 6.1 Soil Properties

Properties Static Dynamic

Total unit weight kN/m3 18.1 18.1

Bulk modulus constant Ky 800 high

Bulk modulus exponent constant n* 0.4 -

Shear modulus parameter (KZ)max 19.3 55.0

Angle of internal friction 38.0 38.0

Effective cohesion 0.0 0.0
Coefficient K 0.45 -

a, b values used to compute [C] — 0.0,0.005
C,»C, Constants —_— 0.75,0.79,0.459,0.73

Rebound modulus constants m,n —— 0.43,0.62
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value with each static shear stress ratio, tslcgo. Linear
interpolation may be used to get the Ki value corresponding to an’'
1 t
intermediate Ty /o -

For each model test two analyses were performed. One with
no slip elements between soil and structure and the other with slip

elements. The following slip element properties were used,

6.3 x 10° kN/m2/m

~
[

= 6.3 x 10° kN/m?/m, Ky

C. = 0.0 1) 35°

]

6.2.1 Results of Test 1

The recorded acceleration time histories of the model island
have very high frequency components which contain negligible energy. This
type of high frequency electrical noise 1s wunavoidable in centrifuge
testing as it may originate due to ambient sources such as the electric
motor driving the centrifuge, and also due to centrifuge vibrations. Dean
(1983), suggested it 1s necessary to filtef out very high frequency
components from output quantities. The computed and recorded acceleration
time histories shown here have been smoothed once using a three point
average scheme, suggested by Dean (1983). In using this scheme, the
current value at any point in time is computed as the sum of 1/4 of the
value the previous point, 1/2 the value of the current point and 1/4 of
the value of the next point.

Fig. 6.4 to Fig. 6.6 show the smoothed recorded and computed
acceleration time histories of accelerometers Al244, Al225 and A734.

During the first 1.5 seconds of shaking low accelerations with very high
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frequency were recorded in all accelerometers. After that the amplitude
of acceleration steadily increased as in the case of input motion, upto
5.5 seconds and then subsided.

The acceleration time histories computed by TARA-2 with and
without slip elements are very similar and therefore, only one of them is
shown in Fié. 6.4.(b), through Fig. 6.6(5). The frequency and magnitude
of the computed acceleration response are very similar to corresponding
recorded response values. Table 6.2 shows the computed and recorded

maximum acceleration of all three accelerometers.

Table 6.2 Recorded and Computed Maximum Accelerations

Maximum Acceleration, % g
Instrument Computed by TARA-2
Location
Recorded Without Slip With Slip
Elements Elements
Al244 13.3 11.6 11.6
Al225 15.9 12.5 12.5
A734 13.9 12.7 12.7

The comparison between recorded and computed maximum
acceleration values are very good.

Four porewater préssure development plots obtained
experimentally and computed by TARA-2 are presented in Figures 6.7 (a),
(b), (¢) and (d). In this test very low porewater pressures were

developed. During the low level shaking of the first second, the response
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of the island is essentially elastic and porewater pressures recorded are
the instantaneous response to changes in total stress. Such porewater
pressures develop from the elastic cbupling of soil and water. Later
during the period of more severe shaking, plastic volumetric strains occur
resulting in the development of residual porewater pressures which are
independent of the instantaneous states of stress. The recorded porewater
pressures during this time have both residual and instantaneous
components. After 6 seconds of shaking the input motion subsides over the
next two seconds to zero. During this time the magnitude of the
instantaneous component of porewater pressure is small.

Drainage may occur during the excitation depending on the
drainage characteristics of the sand. Since generation of porewater
pressure after 6 seconds of excitation is very small, changes in porewater
pressure can be caused only by drainage during this time. A close
examination of recorded porewater pressures after 6 seconds of excitation
reveals that the porewater pressures in all four locations except at the
transducer P2342, which is located at the middle of the island are more or
less a constant. At this location porewater pressure increases slightly
indicating movement of water towards the center of the island.. However,
since these changes are small it is reasonable to assume that drainage in
the island is negligible during the base excitation.

TARA-2 computes only residual porewater pressures, so there are
no fluctuations due to changes in instantaneous stress levels in the
computed curves. Furthermore, since no drainage was assumed during the
excitation the computed residual porewater pressures 1increase

consistently. However, the rate of increase in porewater pressures during
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low level excitation which occur before 1.5 seconds and after 6 seconds is
relatively small.

When rigid joint connection is assumed between a heavy, stiff
structural element and an adjacent soil element in an analysis, the
dynamic strains developed in the adjacent soil element are very small due
to compatibility requirements in displacements. However, by introducing
slip elements between the structure and soil, the relative movement which
may occur between soil and structure during strong base excitation can be
accounted for. The results from TARA-2 analyses, with and without slip
elements, indicate that computed porewater pressures are different only in
the transducers located just below the structures. The predicted
porewater pressures just below the structure in the analysis which
incorporates slip elements, are slightly higher than the analysis that
assumes rigid connection between s0il and structure. The comparison
between recorded and computed porewater pressures is good.

Only four porewater pressure time histories from the model tests
are available. However, maximum residual porewater pressures, which can
be interpreted as the mean recorded values after the excitation has
subsided, are availlable for all six transducers. Table 6.3 shows the
computed and recorded maximum residual porewater pressures at all the

transducer locations.

6.2.2 Results of Test 2

The smoothed recorded and computed acceleration time histories
of accelerometers Al244, Al225 and A734 are shown in Figs. 6.8 through

6'10.



Table 6.3 Recorded and Computed Maximum Residual Porewater Pressures

Residual Porewater Pressure, kPa
Transducer Computed by TARA-2
Location '
Recorded Without Slip With Slip
Elements Elements
P2330 0.4 0.4 0.4
P2331 0.4 0.3 0.4
P2332 4.0 2.9 3.7
P68 3.0 1.5 4.4
P2338 2.4 0.6 1.8
P2342 4.0 4,2 4.2
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The base excitation for Test 2, shown in Fig. 6.2(b), has the
following characteristics. Low level excitation occurs in the first
second and then the amplitude of acceleration increases steadily to a
constant maximum value in the next two seconds. This maximum amplitude is
maintained for 2 seconds and then it subsides over the next 3 seconds.
The acceleration records, except the record obtained in accelerometer A734
which 1is located on top of the structure, show the variation of
acceleration amplitude being similar to that of the.input motion. The
acceleration histories recorded on the top of the structure dropped to
very low values after 4 seconds of excitation.

Unlike Test 1, the response computed with slip elements were
found to be different from those computed without slip elements. The
response analysis also showed that when slip elements are used significant
amount of slip occurs between soil and structure. The computed
accelerations without slip elements are lower than the values computed
when slip elements are used in the analysis. In the computed acceleration
histories shown in Figs. 6.8 to Fig. 6.10, only accelerations computed
using slip elements are presented. Lines of constant accelerations have
been drawn in Figs. 6.8 to 6.10 to aid the interpretation of results.

' The variation of computed acceleration histories are very
similar to that of the input motion. The maximum recorded accelerations
which were observed to be associated with high frequencies (indicated by
sharp spikes) and maximum computed accelerations for all three
accelerometers in the island are shown in Table 6.4. The comparison
between recorded and computed accelerations are not good. However, a
closer look at the other peak values of corresponding recorded and

computed acceleration histories suggests satisfactory comparison.
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The recor&ed acceleration at any time has two components: the
acceleration component transmitted through the soil from the base and the
acceleration component transmitted to soil through side walls and top of
the centrifuge container due to the container itself vibrating. The
computed acceleration history'acc0unts only for the acceleration component
transmitted through the soil. The accelerations transmitted through the
container have high frequency components. The presence of these high
frequency components may be responsible for the discrepancies between the

recorded and computed acceleration histories.

Table 6.4 Recorded and Computed Maximum Accelerations

Maximum Accleration, 7 g
Accelerometer Computed by TARA-2
e Recorded Without Slip With Slip
Elements Elements
Al244 24.0 15.1 18.2
Al1225 42.5 15.5 23.1
A734 23.9 15.8 18.2

Four recorded and computed porewater pressure development plots
are presented in Figs. 6.11 (a), (b), (c¢) and (d). 1In this test unlike
Test 1, very high porewater pressures were developed. During the low
level of excitation of the first second very low porewater pressures were

recorded. With the onset of more severe shaking, very high porewater
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pressures were developed in all transducers except in the transducer
P2330. A close examination of the recorded porewater pressure plots after
6 seconds of excitation reveals that, except for the porewater pressure
transducer P2342, which is located at the middle of the island,
significant dissipation of porewater pressure occurred. This is because
in this test very high porewater pressures were developed leading to high
pressure gradients. The tranducer P2342 behaved differently because it is
too far from the free draining boundaries and at this location inward flow
of water occurs.

The comparison between computed and recorded porewater pressures
are very good for the two transducers (P2330, P2342) which are located
well inside the island. At these transducer locations the analysis with
and without slip elements éave very similar results. The porewater
pressures predicted under the structure by the analysis without slip
elements are very low. But, when slip elements were provided the
comparison between predicted and computed porewater pressures improved.
When slip elements were used in the response analysis high shear strains
developed in the elements below the structure resulting in higher
porewater pressures in those elements. Table 6.5 shows the computed and
recorded maximum residual porewater pressures at all the transducer

locations.

6.3  APPLICABILITY OF THE METHOD OF ANALYSIS

The recorded residual porewater pressures are interpreted as the
steady increase in porewater pressures. Therefore, any high frequency

noise from ambient sources on recorded values do not affect the comparison



Table 6.5 Recorded and Computed Maximum

Residual Porewater Pressures

F‘ Maximum Residual Porewater Pressure, kPa
Transducer Computed by TARA-2

e Recorded Without Slip With Slip

Elements Elements
P2330 1.0 1.5 1.5
P2331 0.9 1.1 1.1
P2332 10.5 12.0 12.1
P68 38.0 6.4 38.1
P2338 18.0 2.2, 18.9
P2342 22.0 19.8 21.3
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between recorded and computed porewater pressures. However, since the
comparison in acceleration response 1is made point by point, any high
frequency noise affects the comparison. Therefore, caution should be
exercised when comparing maximum accelerations.

When a sand sample is subjected to undrained loading, an abrupt
change 1in the direction of stress path occurs, as the stress path
approaches the failure line (Ishihara, et al. 1975). The points at which
various stress paths change direction abruptly are assumed to lie on a
straight line, called the phase transformation line. The slope of the
phase transformation 1line is a few degrees less than the failure line.
Any cyclic (or monotonic) 1oading beyond the phase transformation line may
result in very low effective stresses in very loose sands and increased
effective stresses due to dilation in medium dense or dense sands. The
hyperbolic stress—strain rélationship assumed in this thesis is strictly
applicable only for the region of stress space below the phase
transformation line.

Figs. 6.12 (a) and (b) show the stress paths in a q, p' plot
that were followed by four elements which correspond to the locations for
which porewater pressure time histories are available. The stress paths
reported here are for the analysis in which slip elements were included.
The stress paths followed by the elements in Test 1 are well below the
failure line, where as in Test 2, two elements are on the failure line for
sometime during the dynamic 1loading. Under these circumstances the
validity of response computed in Test 2 after elements have reached

the failure line is questionable.
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CHAPTER 7

APPLICATION OF THE METHOD OF ANALYSIS: TANKER ISLAND RESPONSE

7.1 INTRODUCTION

Man made 1islands of cohesionless soils have been used
extensively as drilling platforms for oil and gas exploration in the
Beaufort Sea. Recently, as exploration has moved to deep waters, more
complex forms of island construction procedures have been introduced. The
caisson-retained island (De Jong, et al. (1978), and steel tanker island
are two typical examples. These newer type of construction procedures
greatly reduce the amount of fill material required and also reduce some
of the hazards of wavé loading on exposed island beaches. The maximum set
down water depth for the caisson-retained island and the tanker islands
depth is fixed, generally around 6 to 9 metres. Therefore, in the case of
deep water a underwater sand 5erm is constructed up to the set down water
depth. Most of the éand berms are constructed by dumping sand excavated
by suction dredges from an offshore and/or onshore borrow pit and pumped
as a slurry throﬁgh a pipeline directly onto the location of the island.
Once the sand berm is ready, a series of caissons or tanker is brought to
the location and ballasted onto the berm, and backfilled with sand, gravel
or water. The drilling is then carried out from the upper structure.

Because of the nature of the island construction, the dumped

sand is often loose and therefore the deformation, stability and
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liquefaction potential of the island berm during earthquakes are of major

concerne.

7.2 ANALYSIS OF A TYPICAL TANKER ISLAND

Fig. 7.1, shows, schematically a tanker island. This island is
provided with a cover of about 2m of rock fill.
Typical properties of rock f£ill and sand for static analyéis are

given in Table 7.1.

TABLE 7.l. Static Soil Properties

Properties Rock Fill Sand
Total unit weight kN/m3 18.7 18.1
Bulk modulus constant Ky 1000 800
Bulk modulus expoment constant n* 0.40 0.40
Shear modulus parameter (K2)max 24.0 16.0
Angle of internal friction 38.0 32.0
Effective cohesion ’ 0.0 0.0
Coefficient K, 0.45 0.45

The tanker is assumed to weigh 200,000 metric tons when fully
ballasted with plan dimensions 170m and x 60m and 21lm high.
In the case presented here, it is assumed that the hyperbolic

dynamic stress-strain relationship has equal shear strength in both
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directions of shearing. Typical properties used for the dynamic analysis

are give in Table 7.2

TABLE 7.2. Dynamic Soil Properties

Properties Rock Fill Sand
Bulk modulus constant Ky 1300 V. High
Bulk modulus parameter n* 0.4 —_—
Shear modulus parameter (Kz)max 70 45
C; » C, Constants -_—— 0.8, 0.79, 0.459
and 0.730
Rebound modulus Constants m,n - ‘ 0.43, 0.62

During shaking the rock fill is assﬁmed to be free draining and
no drainage is assumed in dumped sand. A very high value was assigned to
B, to simulate very low compressibility imparted to the saturated sand
by the water in the pores which is not allowed to drain.

Liquefaction resistance curves are required for different static
stress ratios in the island. These are specified by associating the
appropriate K value with each static shear stress ratio ts/ogo.

r

The values used in the example are presented in Table 7.3.
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TABLE 7.3. Ts/U\'Io and Xr values

1]

TS/O'VO Kr
0.0 | 0.004
0.10 | 0.015
0.20 | 0.05

The static shear stress ratios for the example problem
considered here vary between 0.0 to 0.13 and therefore, the values of K,
corresponding to ratios TS/G;O, above 0.15 are not necessary.

The input motion used for the analyses is the SO0E acceleration
component of the Imperial Valley Earthquake of May 18, 1940 scaled to
0.lg. The input motion was applied at the bottom boundary of the island.
Three dynamic analyses were performed:‘ island alone, island plus
structure with and without slip elements. The properties of slip elements
were selected so that some slip could occur between the structure and the

island. The slip element properties were assumed to be,

~
1l

6.3 x 10° kN/m2/m, Ky = 6.3 x 105, kN/m?/m

(@]
[l

0 and f, = 30°

A complete response study of the tanker island could be carried
out by discretizing the entire domain into finite elements. However,
since the stiffness of tanker wall is very much higher than soil, the

tanker and its contents would respond like a rigid box. In view of
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this, the tanker and its contents were modelled as a uniform rigid box.
The stiffness of structural elements were selected as 103 of the rock fill

elements.

7.2.1. Results for Tanker Island Problem.

One of the factors which influence the development of residual
porewater pressure 1s cyclic shear stress (or cyclic strain). Since the
generation of residual porewater pressure is possible only in the sand,
the maximum dynamic shear stresses induced in the dumped sand along
section T-T which runs through the centre of the island, are shown in Fig.
7.2 for all three cases. This figure indicates that higher dynamic shear
stresses are developed when the tanker is in place due to the inertia
forces on the tanker. The induced shear stresses in the dumped sand when
slip is allowed to occur between structure and adjacent soil are slightly
higher than when no slip elements were provided. When slip occurs, the
magnitudes of shear stress that can be transmitted to the structure is
limited, dictated by the shear strength of the slip elements. Therefore,
island responses with and without slip occurring between the structure and
the island may be expected to differ.

Despite very high cyclic shear stresses generated in the sand when
tanker is in place, the greatest porewater pressure ratios are developed
in the unloaded island (Fig. 7.4). This 1s because the vertical
over—-burden pressures are very much greater when the tanker is present, so
that, the cyclic shear stress ratios, Tcy/°§o’ which is the most
important parameter controlling the development of porewatér pressure in a

given sand, are actually smaller (Fig. 7.3). It can be readily seen that
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the distribution of maximum cyclic shear stress ratios are proportional to
the distribution of residual porewater pressure ratios.

Fig. 7.4, shows the residual porewater ratio U/U§o
distribution for all three analyses. The residual porewater pressure
ratios obtained for the unloaded island are higher than for the loaded
island. The results obtained in the analysis without the tanker can be
viewed as the solutions at a section where the influence of the structure
is negligible. Therefore, the distribution of residual porewater pressure
ratios when the structure is in place will vary from lower values at the
middle to higher values as one moves away from the structure. Same
conclusions were drawn by Yoshimi and Tokimatsu (1977) who studied the
response of a rigid structure subjected to base excitation on a shaking
table. The residual porewater pressure distribution given in the analysis
with slip elements is consistently higher than the analysis without slip
elements. This is because lower shear stresses are induced in the latter
case.

The distribution of maximum dynamic shear strains for section
1-1 is shown in Fig. 7.5. Even though the shear stresses induced in the
unloaded island are smaller than the loaded island, higher shear strains
have developed in the unloaded island. This is because of two factors.
Firstly, the in-situ overburden stresses in the unloaded island are very
much smaller and therefore the stress—strain curve for a given element is
softer. Secondly, when an effective stress—-strain relationship is used,
any increase in residual porewater pressure will soften the stress-strain
curve. The generation of higher residual porewater pressures and low over
burden pressures have contributed to high shear strains in the unloaded

island.
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The maximum horizontal displacements which occur during the
earthquake for the section 1-1 are shown in Fig. 7.6. Much smaller
dynamic displacements are computed when the tanker is in place. When slip
elements were provided, slip occurred between the soil and structure and
the displacements are about twice the results obtained without slip
elements. Fig. 7.7 a and b show the post earthquake deformations in the X
and Y directions. The post earthquake displacement is the sum of the
dynamic residual displacement and the displacement due to volumetric
strain component E:d' Two observations can be made from the
results presented in this figure. Firstly, the amount of the post
earthquake deformations in the X-direction are proportional to the maximum
dynamic deformations. Secondly, the X-component of the displacement is of
the same order of magnitude as of the Y-component of the displacement
(settlement). The main contribution to the ZX~-component of the
displacement comes from the dynamic residual displacement and for the

settlement the main contribution is from the volumetric strain component

*
Evd-

In the dynamic response of structures the maximum induced
acceleration in the structure is one of the main design concerns. The
maximum induced accelerations given by TARA-2 in the structure with and
without slip elements are 0.15g and 0.17g. This means that, if slip is
prevented, the acceleration induced may be higher by as much as 15% of the

acceleration when slip is allowed. The maximum acceleration computed on

top of the unloaded island is 0.15g.



Depth Below Berm Surface, (m)

20

aof

60

8-0

Maximum Dynamic Horizontal Disp., (cm).

20 4.0
T T

b

(No Slip)

(Slip)

1 1

Island + Structure

Island + Structure

6-0
T

i1sland Alone

L

80
’

|

Fig. 7.6. Distribution of Maximum Dynamic

Displacement.

Lytr



Post Earthquake X Disp., (cm).

20

Depth Below Berm Surface, (m)

80

10
T

—

20 30
T T

Island + Structure
(Slip)

v

I~

Island + Structure
(No Slip)

Island Alone

4.0
1

Depth Below Berm Surface, (m)

Post Earthquake Y Disp., (cm)

1.0 15 20
T

o 05
T
(No Slip)
201
40
6-0}
sol
]

Island + Structyre

L 3

—

I1sland Alone

>

island + Structure
(Slip)

(b)

Fig. 7.7. Post Earthquake X and Y Displacements.

8%l



149

One of the ways of presenting dynamic response is to present it
in terms of response spectra. Response spectra for displacement, velocity
and acceleration are often presented for the motions at the base of the
structure. These results are then used by the engineers to predict the
behaviour of structures and also to compute design forces, such as base
shear. Fig. 7.8 shows the response spectrum for acceleration of the
motion at the berm surface for all three cases considered. The damping
ratio used in the computation was 3%Z. Inspection of this figure suggests
that for the example problem considered here, the acceleration response
predicted using the response spectrum of the unloaded island will be
higher for structures with a very low period. However, for the structures
with a period greater than 0.5 sec., the response predictions will be
similar.

The predominant motion of a tanker during excitation are sliding
and rocking. The relative importance of these two modes can be studied by
comparing results obtained by a two-dimensional and one—~dimensional
response analysis. Fig. 7.9, shows the computed distribution of residual
porewater pressure ratio U/o}o from three two-dimensional analyses
which were reported earlier and also the distribution from a one-
dimensional response analysis. The one-dimensional case considered was
the island with tanker, without any slip elements. The results clearly
show that the maximum U/c)',o of some elements may be predicted as low
as 30%Z of those predicted by a two-dimensional response analysis. This
means a response analysis which neglects the rocking mode of vibration is
non—conservative. However, it should be mentioned that the tanker
considered in this example is very tall (2lm) and, rigid, and therefore

the rocking mode of vibration may have been more important than usual.
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7.3 SOME PRACTICAL CONCLUSIONS

In practice a number of simplifying assumptions are made when
computing the response of structures founded on soil deposits. The
procedure outlined by the National Building Code of Canada has two basic
steps. The first step is to compute the response of the soil deposit
alone for the given excitation. The second step is to compute the
response of the structure, to the base accelerations obtained in step one.
In predicting the performance of the structure, the results such as
porewater pressure, induced strain level etc., which are obtained from
step one are also considered. This means that the code in essence
suggests the soil~ structure systems be uncoupled and analysed
independently.

Figures 7.2 to 7.8 clearly show that the response of structures
computed using the procedures outlined in the National Building Code of
Canada may be in error. The presence of the structure has two basic
influences on the so0il deposit. It 1increases the effective stresses and
it also provides additional inertia forces. Therefore, for soils which
exhibit non-linear stress dependent behaviour, the uncoupled analysis
proposed by the code may not be applicable.

From this typical example, three basic conclusions can be drawn.
First of all it raises questions about the merit of any response analysis
based on wuncoupled soil-structure systems. Secondly, one-dimensional
representation of the domain which neglects the rocking degrees of freedom
may not be applicable to tall, heavy and rigid structures. Thirdly it
demonstrates the importance of incorporating slip elements in the

analysis. Because of the great weight of the caissons or tankers, and
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their large lateral dimensions, soil-structure interaction effects will
always be important. 1In these type of problems a coupled analysis of the

island and structure is required.
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CHAPTER 8

SUMMARY AND CONCLUSIONS
8.1  SUMMARY

The main purpose of this research was to develop a two-
dimensional static and seismic response analysis of soil deposits
including soil-structure interaction.

The new method for static and dynamic analyses can be performed
in either effective or total stress modes or a combination of both. Non-
linear stress—strain behaviour of soil was modelled by wusing an
incrementally elastic approach in which tangent shear modulus and tangent
bulk modulus were taken as the two "elastic" parameters. The material
response in shear was assumed to be hyperbolic with Masing behaviour
during unloading and reloading. Response to changes in mean normal stress
was assumed to be non-linear, elastic and stress dependent.

When a static analysis is performed in the total stress mode,
G

the shear strength, =< and tangent bulk modulus,

max’? max?

B of an element are kept constant throughout the analysis. The

t’

tangent shear modulus, G., is modified for corresponding shear strains
developed during the analysis. When effective stress mode is used, the

parameters, < G and Bt are computed from the effective

max? max

stresses. The effect of dilation during shear on volume change is taken
into account.

In the static analysis proposed here, gravity may be switched on



154

at once for the completed soil structure or the construction sequence can
be modelled by layer amalysis. The stress—-strain conditions determined by
the static analysis give the in-situ stress conditions before the dynamic
analysis.

Slip or contact elements have been incorporated in the analysis
to represent the interface characteristics between soil and structural
elements. The properties of the slip element were assumed to be elastic
perfectly plastic, with failure at the interface given by the Mohr Coulomb
failure criterion.

In the dynamic effective stress response analysis, residual
porewater pressures are calculated using a modification of the model

proposed by Martin et.al, (1975). The parameters, G and

max?

T are modified for the effects of residual porewater pressure.

max?
The dynamic response study includes the prediction of post earthquake
deformations.

An extensive study carried out to verify the proposed method of
analysis using centrifuge test data suggests that the proposed method can
be successfully used to predict seismic response of structures.

Seismic response of a typical tanker island computed by this

method is presented.

8.2 CONCLUSIONS

The work that has been presented in this thesis leads to the

following conclusiomns.

l. A consistent and reliable method for computing transient and
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permanent deformations in two-dimensional so0il structures is
needed.

A two—dimensional dynamic response analysis which takes into
account the non-linear hysteretic stress—dependent properties of
soils, has been developed in terms of both total and effective
stresses.

The method has been verified by comparing data from centrifuged
models with predictions of the method. Compafison between
predicted and measured response parameters 1s generally very
good.

Allowing for slip to occur between soil and structural elements
is very important. Analyses which allow for slip have
consistently lead to higher displacements in the structure and
higher porewater pressures in the soii deposit.

The method has been applied to compute seismic response of a
typical tanker island. The results of this study suggests that
it is important that the response of structures founded on soil
deposits be analysed as a coupled soll-structure systems.

The validity of a one-dimensional response analysis instead of a
two—dimensional analysis for tanker type of structures is
questionable. The porewater pressures predicted by using a one-
dimensional response analysis model may be as low as 30%Z of

those predicted by a two—dimensional response analysis.
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SUGGESTIONS FOR FURTHER STUDY

1.

Additional comparative studies should be carried out so that
greater confidence could be placed on the wvalidity of this
method. Comparative studies may be performed with data from
centrifuge tests or field studies.

Sandy materials exhibit partial stabilization at low confining
pressures due to dilation. Therefore, in the response
evaluation near liquefaction, it is important that the method of
analysis include the dilatant behaviour of sands.

In the response evaluation of more permeable soils, drainage
during the seismic loading may be significant and procedures

should be developed to take this into account.
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APPENDIX 1

FINITE ELEMENT FORMULATION
In the finite element analysis'the entire domain of interest is

divided into a finite number of elements. The variation of displacement

within a finite element is assumed to be given by,
{U} = [N] {6} where (Al.1)

{U} = displacement vector, giving x andd y displacements at any point

within an element, here EF = {u,v}

——
(o]
——
il

displacement vector, giving x and y displacements of the nodes, and

—
2
[
il

interpolation function.

The type of element used in the analysis is a 4 nede
isoparametric element. The term isoparametric iﬁplies common (iso—)
parametric description of the unknown displacements and the geometry of
the element. The same interpolation fﬁnctions N; are used to express
both the displacement and the geometry of the element. Isoparametric
element formulation has a number of advantages; it offers efficient
integrations, and differentiations and it can handle curved and arbitrary
geometrical shapes.

The interpolation function [N] can be selected such that it can
be expressed in natural coordinates (s,t) which 1is a system of co-

ordinates intrinsic to an element (Fig. Al.l).



Y,V

X,U

Fig. Al.1. Iso-parametric Element.

-1

- £91
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In the isoparametric concept, the coordinates of a point in the

element is given by,

{x} = [v] {x4} (AL.2)

If we consider a four-node quadrilateral isoparametric element, the matrix

[N] is compésed of,

N, = (1-s(1-t) N = 1+s)(1-t
1 4 2 4
_ (I+s)(1+t _(1-8) (1+t
Ny = 4 N, = 4

=z o
Ow
=l ]
oF
z o

4 ujy (Al.3)

and,

] M) (Al.4)
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It can be seen that the transformation shown in (Al.4), maps the
quadrilateral element into a square as shown in Fig. Al.l.

If plane strain conditions are assumed the strain vector g is

t
simply given by g = {ex, Eys ny} where €, and ey are

normal strains and Yxy is the shear strain. These strains are given
in terms of displacements as,
ou _ v u , dv

€. = ey = By ny = 5; + g; (Al.5)

The strain matrix ¢ from Al.3 and Al.S5,

Ex dx dx dx dx Xl
~ - ON, . 3N, . ON, . N, Vg L
£7 % oy dy oy dy uy  (81-6)
6N1 le 6N2 6N2 6N3 6N3 6N4 ONH Vs
Yxy dy dx dy dx dy dx dy Ox tu
y
i.e.,
{e} = [B] {8} (A1.7)
But N; = f(s,t) and also x,y are functions of s,t. So any derivative

should be computed using the following relationship,

N; dx BN, dy

bNi
ds  dx Os + 0y O0s (AL-8)

In matrix form, the global and local derivatives can be written as,



ON

ds
ON

ot

where,

[J] = Jacobian matrix

ON

ox
ON
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(Al.9)

The derivatives of N; with respect to x, y can now be obtained

from Al.9, as,

ON

dx
ON

oy

where,

Inverse of

-1

|91

ay

ot

—8x

ot

Jacobian matrix J, which is simply,

-2y
ds
dx
ds

Now from Al.4, the Jacobian matrix can be written as,

Ll e ¥ = =

I ool o
Hg»ml
k] L

(o4

=4
e

ct

ON,

dt i

(Al.10)

(Al.11)

(Al.12)
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The components of matrix [J] can be evaluated since bNi/as,
aNi/at and (xi, yi) are known. So, knowing the matrix J, [J]’l also

can be computed. Say,

[3]7) = [[11 qi2] (A1.13)

It should be noted that these Iij are f(s,t). Therefore, substituting

this in equation (Al.10), yields,

3N BN,

ox  _rin I12] 0s (A.14)
aN, I, I, ON

oy ot

The matrix [B] (equation Al.6) which relates the strain vector to
nodal displacements, has derivatives of interpolation function with
respect to x and y. Now knowing these derivatives from equation (Al.4),

[B] can be rewritten as,

N, dN 0 | oN, dN

p |

T2 *hi2zae | | Tnas * Ni2ac |
[ ] | le oN,
B| = 0 I, —+1,, 7 — 0
21 22
3x8 0s ot
BNl le aNl 6N2 6N2 6N2

Tor s T l2ge | Tings Y lizge | o + o laa g
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0 | oN,4 ONg | 0 |
°3,, =3
| M1es Tz | |
aN, oN, BN, oN;,
To13s 122 5t 0 To1 s * T2z 3¢
oN, oN,, oN, oN, oN, oN,
Innge T lhiage | Torgs Tl | Tings +h25c |
. oN,, . oN, | 0 |
1135 T 1123 | |
oN,, oN,,
0 | I,, —+1,, 0/ (Al.15)
21 3s 22 pt *
aN,, . N, | BN, BN,
igs *lage | Tngs + iz |

The stresses and strains are connected through elasticity matrix

given by,
{o'} = [p] {e} | (AL.16)

where,
[c'] = effective stress vector. For 2D plane strain

conditions, it is given by,

('} = {ofr o ]

[D] = elasticity matrix for 2D plane strain condition,
B+%e B-%¢c o
[p] = (AL.17)
4 0
. B + 3 G
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Using the virtual work principle, the internal work (WIN) done by

applying infinitesimal virtual nodal displacement {3} is,

=
|

IN féf (1" {o} av (Al1.18)

2
[(]
&)
(1]
——
™
——
]

virtual strains due to virtual displacement {3}

o)
B
[« 9
———
Q
——
]

total stress vector (A1.19)

The total stress vector can be split into effective stress and

porepressure vectors.

i.e.: {c} = {c'} + {uo}
Effective stress Porepressure (Al.19)
Vector Vector
Here  {o'}% = {of of )

and {uo}t = {uo, Uy o}

in which u, is the porewater pressure.

Now, substituting {c} from equations (Al.19) and (Al.18), omne

' gets,

WIn T féf 1 [{o'} + {u }] av (A1.20)

Substituting for {o'} from Al.16 this reduces to,

Wi = j‘j’j {£}° (o] {e} + {u } av (Al.21)
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Wy = JS1 {8} [8]° [p] [B] {8} + f{,f (81" [8]° {u,} av car.21)

\'

But, external work done by the load vector {p} riding through the virtual

displacement {8}, is simply,

Noting that,

dv = dxdydz
and also = |J| dsdtdz
where dz = thickness of the element.

(A1.22)

(A1.23)

After substituting this in (Al.23), and dividing both sides by

{B}* one gets,
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{p} = [k]{8} + [&"] {u,} (A1.24)

where,
[k] = element stiffness matrix
11 t .
=[[ [ [B] [D][B] |J]| dsdt] (A1.25)
Eégéuming unit thickness)
and,

*
[k ] = porewater pressure matrix

11 t
= [[ [ [B] |J] dsdt] (A1.26)
-1-1

The intégrations shown above have to be evaluated numerically.
The Gauss integration technique has been employed and the number of points
used are 2 x 2. The formulatién presented here is for any linear elastic
material. For incrementally elastic analysis, the displacements, stresses
and moduli values should be simply feplaced by incremental displacements,
incremental stresses and tangent moduli.

After evaluating the incremental load vector p, element tangent
stiffness matrix [kt], porewater pressure matrix [k*], and also

estimating the incremental porewater pressure u

0? for all the elements

the global incremental load-displacement relationship can be formed. This

will lead to,

{p} = [k ]{a} + [K"}{T) | (AL.27)
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in which {P}, [Kt], {a}, [K*] and {U} are relevant variables in
global axes. By solving this equation the displacement field {A} can be
obtained, and it can be used to calculate element strains and stresses
using equations (Al.6.) and (Al.16) respectively. Since the shape
function gives linear strain variation within an element, the strains and
therefore, stresses vary within an element. For convenience, average
stress and strain of an element are computed at the centre of gravity of
the element.

In Chapter 4, and Chapter 5, it is required to express strains
and stresses in terms of nodal forces. Recall from equation (Al.24) the

nodal forces are given by,

(e} = fJ1 [8]° [p] [B] av {8} . (AL.28)

But, strains are connected to the matrix [§J in equation (Al.7),

{e} = [B] {6} ‘ (A1.29)

Therefore, from (Al1.28) and (Al.29), the nodal forces can be written

in terms of strains as,

{p} = f‘{f [8]° [p] {e} av (A1.30)
Now, from equation (Al.16),

{a'} = [D] {e} (Al.31)
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and from equations, (Al1.30), and (Al.31) the nodal forces can be written

in terms of stresses as,

e} = 1fJ [8]° {o'} av (A1.32)

The equation (Al.30) and (Al.32) can now be used to express strains and

stresses in terms of element nodal forces.
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APPENDIX II

STIFFNESS MATRIX FORMULATION FOR THE SLIP ELEMENT

As outlined 1in Chapter 4, that the force-displacement

relationship at any point within a slip element has been assumed to be

given by,
fS Ks 0 LA
et=10 1] (A2.1)
n n n
i.e., f=k, w
where,
fS and f, = shear and normal stresses
Kgs K, = joint stiffness in shear and normal directions
Wgs Wy = shear and normal displacements

The elastic stored energy, ¢E in a slip element due (Fig.

(A2.1) to applied forces can be obtained by,

w f df (A2.2)

in which L is the total length of the slip element. A factor half is
included because the relationship between f and w is assumed to be
linear.

From (A2.1), ¢E now can be written as,
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Fig. A2.1. Slip Element.

8 = tangential direction

uy = tangential displacement of node i

n = normal direction

Vi = normal displacement of node i
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=
rt

_ 1
¢E =3 fo'z Eb z-dl (A2.3)

Since the variation of displacements (u, v) within an element is linear
the displacement at any point which is at a distance, %, from node I on

the bottom edge IJ of the element is,

u (L) = f w4 (1 - %) uy (A2.4)
bottom

In a similar manner the following equations can be written for,

u (2), v (2) and v (1),

top bottom top
i.e.
- X _ &
u (L =1 Y% + (1 L) w (A2.5)
top
v(R) =ty +ra+h v (A2.6)
bottom
and
-4 _ AL
v (x) =1 Yk + (1 L) v (A2.7)
top

where, uy, vy refer to displacement in tangential and normal direction

of the nodes I, J, K and L.

Shear and normal displacements at any point are,

w,=u () - u (L (A2.8)
top bottom

and,
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W=V (L -v (L (A2.9)
top bottom

Now substituting for Utop: Ubottom:?

Vbottom from equations (A2.4) to (A2.7), in equations (A2.8)-

and (A2.9),

u
I
o fo(1 & 42 2 _ 4 u
v =[-1-D T 1 QO-DI] “i (A.2.10)
UL
and,
V1
o _ & -2 2 _ X v
w=[-a-D 1 1T a-DI] "i (A2.11)
YL
From equation (A2.1), w is,
Y1
V1
Y5
ws -A 0 -B 0O B 0 A O vJ
w = [w ] = ul (A2.12)
n 0 -A 0 -B O B 0 A Vg
o
L

in which,

A 1 L and B

E po

In matrix form the equation (A2.12) is,


http://A2.ll
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w = C o)
2x1 2x8 8xl (AZ.13)
where, Eo = the interpolation matrix
and & = nodal displacement matrix
Substitution of'(A2.13) in (A2.3) gives,
1 L T T
¢E =3 jo E. Ep Ep _pa dg (A2.14)
Performing the matrix multiplication,
-A O
0 -A
-B 0
Tkoc o o=|. b [Ks 0 ] [A0 B OB O A
— = = o B o K_ 0 -A 0 -B O B 0 A
A 0
0 A
K A2 0 ABK 0 -ABK 0 -A%K 0
S S S S
0 AZK 0 ABK 0 ~ABK 0 -A2K
n n n n
ABK 0 B2K 0 -B2K 0 . =-ABK 0
] S S s
= 0 ABK 0 B2K 0 -B2K 0 ~ABK  (A2.15)
n n n n
~ABK 0 -B2K 0 B2K 0 ABK 0
S s S S
0 -ABK 0 -B2K 0 B2K 0 ABK
n n n n
-A2K 0 ~ABK 0 ABK 0 AZK 0
S s S S
0 ~A2K 0 —-ABK 0 ABK 0 A2K
S S S S

To perform the integration shown in equation A2.14, one should know

integrations of,
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L L L
[, A% da, [ BZdiand [’ ABdR

These are simply,

L2 - (L - &2 - L
[o 4%2d2 = [; 1 -D2ar = 3
L 2 _ L L .- _ L
[ B2ar = [/ (]2 s = 3 (A2.16)
L L
and, o aar = ffa-dHf 4 - L
Now. the equation (A2.14) can be written as,
_ 1T
bp =2 & K 8 (A2.17)
where,
2K 0 K 0 -K 0 -2K 0
s s s s
2K 0 K 0 X 0 -2K
n n n n
2K -2K 0 -K 0
] s s
L 2K 0 -2K 0 K
KSn =% n n
Sym 2K 0 K 0
] s
2K 0
n n
2K 0
s
2K
n

Recall that elastic stored energy ai in the formulation of a linear

elastic finite element is,

¢ =§ 5 K & (A2.18)
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Where K is the stiffness matrix of the finite element. Now, comparing

(A2.17) and (A2.18), the stiffness matrix for slip element can be deduced

as Esn'
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APPENDIX IIX

STEP BY STEP INTEGRATION

For the proposed incrementally elastic dynamic analysis in the
time domain the "elastic" properties have to be modified for every time
step. The elastic parameters depend on the level of strain in the
deposit. Therefore, the displacement field in the deposit should be
evaluated at every time step. This requires that the incremental dynamic
equilibrium equations (equation 5.5) have to be solved numerically for
every time step.

Newmark's method (1959) of step by step integration is very
popular and extensively used in dynamic analyses. This method basically
provides numerical solution in time domain, where the solution is advanced
by one discrete step at a time. In this method, two parameters o« and 8
are used so that the velocity and displacement at time t+At can be
expressed in terms of acceleration, velocity and displacement at time t,
and of the known acceleration at time t+At. For convenience let us define
that,

T = t+At

Then the relationship in terms of « and B are,

{X}; = {X}, + @ - =) at {x}, + «at {x} (A3.1)

T

and,



186

(x}. = {x}. +at (X} + & - p) )2 (¥
T t t 2 . t (A3.2)
+ B at? {x}

T

Newmark (1959) proposed that « = 1/2 and B = 1/4 be used for an
unconditionally stable integration procedure, which incidentally
corresponds to a constant average acceleration method of integration. If
« = 1/2 and B = 1/6 are used then this method gives a linear variation of
acceleration within the time step.

Re-writing the incremental equilibrium equations from Chapter 5,
[M] {ax} + [c] {ax} + [k.], {ax} = {ap} (43.3)

Now substituting for,

——
>
>

——
1]

ey
> e

]

I
la]

[ad

——

(A3.4)

and, {ax} = {x; - x.}

in equation (A3.3), one gets,

4] fp - K b+ (0] {%p = X} + [, (% - %} = fap} (a3.5)

From equations (A3.l1) and (A3.2), {X}T and {X}T can be

expressed in terms of other variables as follows,



and,

+ B—Z—t- [{ax} - At{;(}t - (‘% - B) At? {X}t]

Substituting for {i}T and {X}T in equation (A3.5),

faze [10x) = aex) - G- > ae? (i), - poe? {5},]

+ [c] [(1-=) at {x}, +EZ—t

- G- B a2 (X)) [k, {ax)

Collecting terms, and defining following simplifying symbols,

(B}, = 5or (K} + 3 (),

and,

{r}, = § {x}, + (;_5 - 1) at {x},

the equation (A3.8) can be reduced to,

o

(B, + (0] 55 + [x,],] {ax)

= {s#} + [u] {8} _+ [c] {r},

187

(A3.6)

(A3.7)

(A3.8)

(A3.9)

(A3.10)

(A3.11)
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Recall from Chapter 5, Sectiom 5.1.2, correction forces should
be applied to restore total equilibrium at time T. The {Pcorr}

evaluated using equation (5.11) can be added to right hand side of the

equation (A3.11). Then the equation (A3.1ll1l) is,

il b fe] 25+ [x,],] {ax}

BAt ZUR (43.12)
= {ar} + [m] {E}_ + [c] {F},
where,
(e} = (s} + {p ..} (A3.13)

The only unknown in the above equation is {AX} and therefore,

{AX} can be obtained as,

{ax} = [p]7" [{&} + [u] {&}, + [c] {F},] (A3.14)
in which,
[0] = [gaba] + [e] gag + [x.],] (43.15)

Now knowing {AX}, the wunknowns {i}T and {X}T and {X}T can be

evaluated. {X}T is simply,

{x}y = {ax} + {x}, | (A3.16)
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From equation (A3.2), an expression for {i}T is,

ez [{ax} - ae (%}, - G - 8) ae? {3},] (43.17)

{k}T = BAt2

Substituting for {E}t from (A3.9), the equation (A3.17) can be

simplified as,

(X}, = Eigz (sx} - {E}, + (X}, (A3.18)

From equations (A3.1) and (A3.2) an expression for {X}T after

rearranging terms is,

X}y = (X}, + Q-=) 8t X}, + «st (X}, . (43.19)

Knowing {AX} by solving equation (A3.14), the response at time T can be
computed using equations, (A3.18) and (A3.19).

In the numerical step by step integration, the following
sequence of calculations have to be performed for every time step.

1. Initial velocity {&}, and displacements {X}t are known
either from values at the end of the péeceding increment or as
initial conditions of the problem. Based on these values,
{E}t’ {F}t’ and {Pcorr}’ are evaluated  using
equations (A3.9), (A3.10) and (5.11).

2. With these values and the known non—-linear properties of the

soil deposit, the damping matrix [C] and [Kt]t are evaluated

according to appropriate equations in Chapter 5.
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3. The matrix [D] is then calculated using equation (A3.15).

4. Using the increment in base acceleration value at time t, it is
possible to evaluate the right hand side of the equation (A3.
12).

5. The equation (A3.12) can now be solved for {AX} and then
displacement, acceleration and velocity vectors can be evaluated
from equations (A3.16), (A3.18) and (A3.19) respectively.

When step 5 has been completed, the analysis for this time
increment is finished and the entire process may be repeated for the next
time step. Obviously this process can be carried out consecutively for
any desired number of time increments; thus the complete response history
can be computed.

Two important aspects have to be considered in any numerical
integration procedure. They are the accuracy and stability of the
procedures. Accuracy refers to how well the numerical solution matches
the exact continuous solution. Stability refers to whether extraneous
solutions are introduced in such a way that they increase rather than
decay, and thus come to dominate the results. Usually there is an upper
limit to At that is necessary to guarantee stability, and the value of
that 1limit depends on the type of element stiffness and mass matrix as
well as on « and f.

With a linear acceleration assumption (< = 1/2, B = 1/6) the
analysis will give good accuracy if the shortest period of the deposit is
5 to 10 times greater than At (Clough and Penzien 1975). The linear
acceleration method is only conditionally stable, and it will blow up if
it is applied to soil structures with the shortest period less than about

1.8 times the integration interval. Thus the time increments must be made
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short relative to the least period of vibration contained in the system
regardless of whether the higher modes contribute significantly or not.
In the analysis using finite element procedures the shortest periods of
vibration in general may be several orders of magnitude less than the
periods associated with the significant response. In these cases, the
linear acceleration method cannot be used because of the very short time
step required to avoid instability; instead, an unconditionally stable
method is required which will not blow up regardless of the time step.

Sevéral unconditionally stable methods are available. The
constant average acceleration method (« = 1/2 , 8 = 1/4) is one of the
simplest of these methods. But this assumption has been reported not to
give good results than the methods with linear acceleration assumption.
The Wilson 6O-method (Wilson, et al. 1973), is also an unconditionally
stable method. This method is a modification of linear acceleration
method and is reported to be the best of all unconditionally stable
methods (Clough, et al. 1975).

The Wilson O-method is based on the assumption that the
acceleration varies linearly over an extended computation interval, t,

such that,
T = 0 At where 0 > 1.37 (A3.20)

When 6 = 1, this method reverts to the standard linear acceleration
method. The analysis procedure 1is exactly the same as the procedure
presented above except that in the equations the time step At has to be
replaced by <+t and also the equationmns to evaluate {i}T’ {X}T

and {X}T have to be modified.
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Since this is essentially a linear acceleration method, here « = 1/2

and B = 1/6. By inspection, the required equations can be rewritten as
follows.

The equation (A3.12) can be rewritten as,

el + el + K dey faxy - (Be} + M) (m), [C) (B}, (a3.20)

in which,
() =% (x]. +3 (¥) . (A3.22)
t = t t )
and,
{F}, =3 {x}, + 73 {x}, (A3.23)

After evaluating {AX}, which is over an extended time increment
the displacement, velocity and acceleration values should be computed at

time t = T. The acceleration at t = T can be evaluated using,
2 {ax} + {6}, ] o+ {x}, (A3.24)
{X}T, from equation (A3.19) with « = 1/2 and B = 1/6 is,

{x}y = {i}t + 2 xR}, + K]y (A3.25)
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and also the displacement {X}T from (A3.2) is,

(x}, = (&}, + 8¢ {x}, + A5 [(R), + 2 (%),] (A3.26)

It ;ust be remembered that stability in numerical integration
does not guarantee accuracy or vice versa. The Wilson 6-method imposes
artificial damping in higher modes. But knowing ﬁhat the response due to
higher modes of vibration contributes very little to the true response of
structures, this method in a way filters out the high frequency response.
Therefore, this method has been found to yield realistic results in a

number of dynamic analyses.



