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ABSTRACT 

A method of analysis i n two-dimensions to predict s t a t i c and 

dynamic response of s o i l structures, including s o i l - s t r u c t u r e i n t e r a c t i o n 

has been presented herein. 

The s t a t i c and dynamic analyses can be performed i n e i t h e r 

e f f e c t i v e or t o t a l stress mode or a combination of both modes. Non-linear 

s t r e s s - s t r a i n behaviour of s o i l has been modelled by u s i n g an 

incrementally e l a s t i c approach i n which tangent shear modulus and tangent 

bulk modulus were taken as the two " e l a s t i c " parameters. The material 

response i n shear was assumed to be hyperbolic coupled with Masing 

behaviour during unloading and reloading. Responses to changes i n mean 

normal stress was assumed to be non-linear, e l a s t i c and stress dependent. 

S l i p or contact elements have been incorporated i n the analysis to 

represent the i n t e r f a c e c h a r a c t e r i s t i c s between s o i l and s t r u c t u r a l 

elements. The properties of the s l i p elements were assumed to be e l a s t i c , 

p e r f e c t l y p l a s t i c , with f a i l u r e at the Interface given by the Mohr-Coulomb 

f a i l u r e c r i t e r i o n . 

In the s t a t i c analysis proposed here, gravity may be switched on at 

once for the completed s o i l structure or the construction sequence can be 

modelled by layer a n a l y s i s . The s t r e s s - s t r a i n conditions determined by 

the s t a t i c analysis give the i n - s i t u stress condition before the dynamic 

an a l y s i s . 

In the dynamic e f f e c t i v e stress a n a l y s i s , the r e s i d u a l porewater 

pressures are c a l c u l a t e d using a modification of the model proposed by 

M a r t i n , et a l . (1975). The parameters, G m a x and _ a x are 

modified for the e f f e c t s of r e s i d u a l porewater pressure. The dynamic 
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response study includes the p r e d i c t i o n of post earthquake deformations. 

The p r e d i c t i v e c a p a b i l i t y of the new method of analysis has been 

v e r i f i e d by comparing the recorded porewater pressure and accelerations of 

two centrifuged models subjected to simulated earthquakes, to those 

computed by the new method. 

This method has also been used to compute response of an 

offshore d r i l l i n g i s l a n d supporting a tanker mounted d r i l l i n g r i g . 

Results suggest that the common pract i c e of neglecting s o i l - s t r u c t u r e 

i n t e r a c t i o n may not be appropriate for islands which support heavy tanker 

type of structures. At present one-dimensional methods are used for 

computing the response of these i s l a n d s . Comparative studies are also 

reported to asses the v a l i d i t y of t h i s procedure. 
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CHAPTER 1  

INTRODUCTION 

In engineering p r a c t i c e , i t i s generally agreed that the 

performance of s o i l structures subjected to seismic loading should be 

evaluated i n terms of deformations rather than i n terms of factors of 

safety. The allowable displacements may vary from a few inches to many 

feet depending on the functional aspects of the structures considered. 

Since the middle s i x t i e s many a n a l y t i c a l methods for assessing earthquake 

induced deformations i n s o i l structures have been proposed. These methods 

may be c l a s s i f i e d into two broad categories: one-dimensional methods and 

two-dimensional methods. 

The one-dimensional methods assume that deformations occur i n 

p a r a l l e l planes and that the material properties are either constant or 

vary normal to the planes only. The methods proposed by Newmark (1965) 

and Goodman, et a l . (1966), assume that f a i l u r e develops along w e l l -

defined f a i l u r e planes and compute displacements of r i g i d blocks of s o i l s . 

More recently the method proposed by I a i and Finn (1982) for long slopes 

accounts for the f l e x i b i l i t y of the s o i l deposit. 

Often s o i l deposits cannot be characterized adequately as 

one-dimensional deposits, and the v a r i a b i l i t y of properties i n two or even 

three-dimensions must be considered. For example, i n the response 

analyses of zoned dams, two or three-dimensional analyses are e s s e n t i a l . 

When the th i r d dimension i s very much larger than the other two-dimensions 

and the properties do not vary s i g n i f i c a n t l y i n t h i s d i r e c t i o n , a 
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two-dimensional response analysis i s usually adequate. The geometry of 

the modes of deformations may also d i c t a t e two or three-dimensional 

a n a l y s i s . For example i n the analysis of embedded structures rocking may 

be an important deformation mode i n addition to t r a n s l a t i o n and therefore, 

at least a two-dimensional analysis i s necessary. 

There are a number of two-dimensional methods a v a i l a b l e to 

compute seismic deformations. Some of these methods are based on e l a s t i c -

p l a s t i c s o i l behaviour (Finn, et a l . 1973; Mroz, et a l . 1979; Prevost, 

1979). These methods are complicated to use and have had very l i m i t e d 

v a l i d a t i o n . The method proposed by Seed, et a l . (1973), to compute 

seismic deformations of earth dams has found wide a p p l i c a t i o n i n p r a c t i c e . 

This i s a semi-analytical method i n which the r e s u l t s of stress analysis 

and data from c y c l i c t r i a x i a l tests are used to estimate p o t e n t i a l 

displacements i n dams. Non-linearity of the s o i l i s taken into account 

using an i t e r a t i v e e l a s t i c approach to achieve s o i l properties compatible 

with the computed s t r a i n s . 

In recent years new types of structures have emerged, for which 

i t i s important to determine deformations under earthquake loading. 

Examples are the man-made sand islands which support d r i l l i n g platforms 

for gas and o i l explorations i n the Beaufort Sea. These islands carry 

d r i l l i n g equipment on ei t h e r s a n d - f i l l e d caissons or tankers ( F i g . 1.1). 

The deformations of these structures and islands during earthquakes are an 

important design consideration. A general s a t i s f a c t o r y method for 

computing deformations of these structures i s not a v a i l a b l e at present. 

Indeed the state-of-the-art for analysing deformations was 

recently assessed i n a report on earthquake engineering research by the 



F i g . 1.1. Ca i s son-Reta ined I s land (De J o n g and Bruce, 1978). 
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National Research Council of the United States (USNRC, 1982; Finn, 1983) 

i n the following terms: 

"Many problems i n s o i l mechanics, such as safety studies of 
earth dams, require that the possible permanent deformations 
that would be produced by earthquake shaking of prescribed 
i n t e n s i t y and duration be evaluated. Where f a i l u r e develops 
along w e l l - d e f i n e d f a i l u r e p l a nes, r e l a t i v e l y simple 
e l a s t o p l a s t i c models may s u f f i c e to c a l c u l a t e displacements. 
However, i f the permanent deformations are d i s t r i b u t e d 
throughout the s o i l , the problem i s much more complex, and 
p r a c t i c a l , r e l i a b l e methods of analysis are not a v a i l a b l e . 
F uture progress w i l l depend on development of s u i t a b l e 
p l a s t i c i t y models for s o i l undergoing r e p e t i t i v e loading. This 
i s c urrently an important area of research". 

For r e a l i s t i c predictions of stresses and displacements i n s o i l 

structures the s t r e s s - s t r a i n behaviour of s o i l s should be modelled as 

c l o s e l y as p o s s i b l e . This i s of course a d i f f i c u l t task since the s t r e s s -

s t r a i n behaviour of s o i l s i s extremely complex. Using simple stressv 

s t r a i n r e l a t i o n s h i p s , a two-dimensional method for computing transient and 

permanent deformations i n s o i l structures i s presented i n t h i s t h e s i s . 

1.1 SCOPE OF THIS THESIS 

This thesis presents a method for two-dimensional s t a t i c and 

seismic response analysis of s o i l structures. 

The earthquake loading occurs a f t e r s t a t i c equilibrium or steady 

state conditions have been established. S o i l properties such as strength 

and s t i f f n e s s which control the response to earthquake loading depend on 

the e f f e c t i v e stresses i n the s o i l s t r u c t u r e . Therefore, i t i s important 

to evaluate i n - s i t u s t a t i c stresses. These stresses are determined by a 

s t a t i c analysis which takes into account non-linear stress-dependent 
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response of s o i l to load. Because s o i l behaviour depends on the loading 

path, the construction sequence of the s o i l structure i s c a r e f u l l y 

modelled. A number of s a t i s f a c t o r y methods of s t a t i c analyses are already 

a v a i l a b l e (Kulhawy, et a l . 1969; Duncan, et a l . 1978). Nevertheless an 

independent method i s presented here which uses a consistent set of 

material parameters i n both s t a t i c and dynamic analyses. This r e s u l t s In 

a much more e f f i c i e n t , cost e f f e c t i v e s o l u t i o n to the problem of dynamic 

response a n a l y s i s . 

The method for dynamic analysis takes into account the non­

l i n e a r h y s t e r e t i c s t r e s s - s t r a i n behaviour of s o i l s . The analysis may be 

c a r r i e d out i n either an e f f e c t i v e stress or t o t a l stress mode, using an 

appropriate s t r e s s - s t r a i n r e l a t i o n . For e f f e c t i v e stress response 

a n a l y s i s , r e s i d u a l porewater pressures must be known. Therefore, a 

porewater pressure generation model has been developed for pre d i c t i n g 

s e i s m i c a l l y induced porewater pressures. The porewater pressure model i s 

a generalization of the one-dimensional model of Martin, et a l . (1975). 

The p r e d i c t i v e c a p a b i l i t y of the new method for dynamic analysis 

has been v e r i f i e d by comparing the recorded porewater pressures and 

accelerations of a centrifuged model subjected to simulated earthquakes to 

those computed by the new method. 

This method has also been used to compute response of an 

offshore d r i l l i n g i s l a n d supporting a tanker-mounted d r i l l i n g r i g . The 

porewater pressures, stresses, accelerations and displacements i n the 

i s l a n d have been determined. At present one-dimensional methods are used 

for computing the response of these i s l a n d s . Comparative studies were 

conducted to assess the v a l i d i t y of t h i s procedure. 

Development of a non-linear method of analysis i s very 
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d i f f i c u l t . A number of approximations have to be made to achieve a 

p r a c t i c a l useful program. These approximations have been examined at 

length i n this thesis and suggestions have been made for future research. 

1.2 ORGANIZATION OF THESIS 

A c r i t i c a l review of the method proposed by Seed, et a l . (1973) 

for computing seismic deformations i s presented i n Chapter 2. 

The formulations, basic assumptions and l i m i t a t i o n s of the model 

developed for the analysis of s t a t i c response are presented i n Chapter 3. 

The complete treatment of s o i l - s t r u c t u r e i n t e r a c t i o n has also been 

included. 

The proposed two-dimensional dynamic response analysis i s an 

extension of the one-dimensional response analysis of Finn, et a l . (1977). 

Therefore, a d e t a i l e d d e s c r i p t i o n of t h e i r model, i t s a p p l i c a t i o n i n 

p r a c t i c e and i n the laboratory i s given i n Chapter 4. 

The proposed method for dynamic response analysis i s presented 

i n Chapter 5. D e t a i l s of the v e r i f i c a t i o n of the method i s presented i n 

Chapter 6. 

The method i s used to compute response of a t y p i c a l d r i l l i n g 

tanker i s l a n d subjected to seismic loading. The r e s u l t s of the analysis 

including implications for engineering design are discussed i n Chapter 7. 

A b r i e f summary, suggestions for future work and conclusions are 

given i n Chapter 8. 
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CHAPTER 2 

CRITICAL REVIEW OF SEED, ET AL. 

METHOD FOR COMPUTING DYNAMIC  

DEFORMATIONS 

The s t a t e - o f - t h e a r t r e p o r t on a n a l y s i s of permanent 

deformations i n earth structures (USNRC, 1982), suggests that the use of 

simple e l a s t o p l a s t i c models for computing deformations may be adequate i f 

deformations develop along well defined s l i p planes. When a well defined 

s l i p surface does not occur and deformations are d i s t r i b u t e d through out 

the s o i l structure, an analysis at least i n two-dimensions i s necessary. 

The most widely used two-dimensional method i s the one that was proposed 

by Seed, et a l . (1973, 1979). Detailed d e s c r i p t i o n and l i m i t a t i o n s of 

t h e i r method are presented below. 

2.1 SEED, ET AL. METHOD (1973, 1979) 

The basic steps i n the Seed, et a l . method can be summarized as follows: 

a) Determine pre-earthquake or steady state condition that exists 

i n the s o i l structure before the earthquake. 

b) Determine the design time h i s t o r y of base a c c e l e r a t i o n for the 

s i t e where the earth structure i s sit u a t e d . 

c) Compute the time h i s t o r y of dynamic shear stresses throughout 

the s o i l structure using a two-dimensional dynamic response 
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a n a l y s i s . Appropriate dynamic s t r e s s - s t r a i n r e l a t i o n s h i p and 

damping should be used. 

d) Apply these stresses to undisturbed samples of s o i l consolidated 

to the i n i t i a l s t a t i c stresses i n the s o i l structure to 

determine the s t r a i n s and re s i d u a l porewater pressures. 

e) Based on the porewater pressure data, determine the minimum 

factor of safety against t o t a l f a i l u r e by l i m i t i n g equilibrium 

methods a f t e r reducing the strength of elements which have 

developed s i g n i f i c a n t seismic porewater pressures. 

f) If the s o i l structure i s found to be safe against t o t a l f a i l u r e , 

assess the o v e r a l l deformation of the s o i l structure from the 

st r a i n s induced by the combined e f f e c t s of s t a t i c and dynamic 

loads as determined from the laboratory test data. 

Seed, et a l . (1973) proposed an equivalent l i n e a r e l a s t i c method 

to model the dynamic non-linear, h y s t e r e t i c behaviour of s o i l s . The 

fundamental assumption i n t h i s type of approach i s that the dynamic 

response of a non-linear h y s t e r e t i c material may be approximated 

s a t i s f a c t o r i l y by a damped, e l a s t i c model i f the properties of that model 

are chosen appropriately. The appropriate properties are obtained by an 

i t e r a t i v e process. 

In the dynamic f i n i t e element an a l y s i s , the s t r e s s - s t r a i n 

properties of the s o i l are defined i n each f i n i t e element by the Poisson's 

r a t i o , v, and shear s t r a i n dependent shear moduli and equivalent viscous 

damping r a t i o s . An average or e f f e c t i v e shear s t r a i n (usually assumed to 

be 65% of the maximum shear s t r a i n ) i s computed i n each f i n i t e element and 

shear moduli and damping r a t i o s are selected compatible with these average 
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s t r a i n s and are used i n the next i t e r a t i o n . The procedure i s repeated 

u n t i l no s i g n i f i c a n t changes i n moduli or damping r a t i o s are necessary. 

The response determined during the l a s t i t e r a t i o n i s considered to be a 

reasonable approximation of the non-linear response. 

Since the f i n a l analysis with s t r a i n compatible s o i l properties 

i s e l a s t i c the permanent deformation i n the s o i l structures cannot be 

computed by t h i s method. Deformations are estimated from the s t a t i c and 

dynamic stresses with aid of s t r a i n data from c y c l i c t r i a x i a l t e s t s . I t 

i s assumed that, when the s t a t i c and dynamic stresses i n a given f i n i t e 

element are simulated as c l o s e l y as possible on a sample i n a c y c l i c 

t r i a x i a l t e s t , the r e s u l t i n g a x i a l s t r a i n i s the s t r a i n p o t e n t i a l of the 

f i n i t e element i n the dam. In practice this s t r a i n i s converted to a 

shear s t r a i n p o t e n t i a l by multiplying by a factor (1+v). The s t r a i n 

p o t e n t i a l i s the s t r a i n that develops i n an unconstrained s o i l element 

under the s p e c i f i e d loading. Since the f i n i t e elements i n the s o i l 

structure are interconnected, the s t r a i n s obtained by the above procedure 

are not the s t r a i n s that w i l l develop i n the s o i l structure but are an 

i n d i c a t i o n of i t s p o t e n t i a l for s t r a i n i n g under the given seismic 

e x c i t a t i o n . S e r f f , et a l . (1976), have proposed a procedure f o r 

converting the s t r a i n potentials to a set of compatible deformations. The 

shear stress corresponding to the shear s t r a i n p o t e n t i a l i n a f i n i t e 

element i s determined from the s t r e s s - s t r a i n curve ( F i g . 2.1a). The shear 

stresses are converted to shear force and applied to the nodes of the 

f i n i t e element ( F i g . 2.1b). The deformations under these nodal forces are 

then determined by a s t a t i c analysis and are assumed to be s e i s m i c a l l y 

induced permanent deformations. This technique of computing compatible 



Fig. 2.1. Conversion of Shear Strain Potential to Equivalent 

Shear Forces. 
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deformation i s sometimes referred to as a s t r a i n harmonizing technique. 

One of the serious l i m i t a t i o n s of any i t e r a t i v e e l a s t i c method, 

used to model non-linear behaviour, i s that the solutions given by the 

method may not be unique (Desai, et a l . 1977). This i s because the 

solutions obtained i n the l a s t i t e r a t i o n may depend on the assumed s o i l 

properties of the f i r s t i t e r a t i o n . 

Equivalent l i n e a r method of analysis may overestimate the 

seismic response of non-linear h y s t e r e t i c materials (Finn, et a l . 1978a). 

The overestimation i n l i n e a r methods occurs because of resonance. 

Resonance occurs when the fundamental period of the input motion 

corresponds to the fundamental period of the deposit as defined by the 

f i n a l set of compatible properties i n the i t e r a t i v e equivalent l i n e a r 

method of a n a l y s i s . Since the analysis i s ca r r i e d out with the f i n a l set 

of constant s t i f f n e s s e s for the ent i r e duration of the input motion, there 

i s time for resonant response to bu i l d up. The s t i f f n e s s properties i n 

non-linear materials change constantly for every time step. When resonant 

response i s a function p r i m a r i l y of the method of a n a l y s i s , i t i s c a l l e d 

pseudo-resonance. 

The Seed method i s a t o t a l stress method and i t does not take 

into account the e f f e c t s of increasing porewater pressure on s o i l 

s t i f f n e s s . Since response of s o i l s i s con t r o l l e d by e f f e c t i v e stresses, 

the v a l i d i t y of a t o t a l stress response analysis i s questionable. Finn, 

et a l . (1978) compared responses predicted by t o t a l stress and e f f e c t i v e 

stress methods. They used two one-dimensional computer programs, SHAKE 

(Schnabel, et a l . 1972) and DESRA1 (Lee, et a l . 1975) for th i s purpose. 
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SHAKE i s a t o t a l stress program which models s o i l as a damped equivalent 

l i n e a r e l a s t i c material and DESRA1 i s an e f f e c t i v e stress program which 

models s o i l as a non-linear h y s t e r e t i c material. Finn, et a l , (1978) 

concluded that the t o t a l stress analysis tends to overestimate the dynamic 

response when porewater pressures exceeded about 30% of the e f f e c t i v e 

overburden pressure. 

The major d i f f i c u l t y i n p r a c t i c e with the equivalent l i n e a r 

method i s that a d i r e c t computation of permanent deformations i s not 

p o s s i b l e . The concept of s t r a i n potentials has to be used to estimate 

permanent deformations ( S e r f f , et a l . 1976). There are two i n c o n s i s t e n ­

cies i n t h i s procedure. F i r s t , the computed s t r a i n s i n the f i n a l 

i t e r a t i o n obtained with s t r a i n compatible s o i l properties are ignored, as 

not being correct, whereas the computed stresses are assumed to be 

representative stresses i n the ground. Knowing that stresses and s t r a i n s 

have a one to one r e l a t i o n s h i p for a given loading, the a r b i t r a r y 

decision to ignore the computed s t r a i n s i s somewhat in c o n s i s t e n t . Second, 

the s t r a i n s from the l a s t i t e r a t i o n are ignored, whereas the s t r a i n s 

computed i n intermediate i t e r a t i o n s were used to obtain compatible moduli 

and damping r a t i o s . This type of inconsistent assumptions make the f i n a l 

estimated deformations somewhat a r b i t r a r y . 

When porewater pressures are allowed to d i s s i p a t e i n samples 

subjected to c y c l i c undrained t e s t s , deformations occur. This p l a s t i c 

deformation i s not accounted for i n the approach proposed by Seed. 

Noting the l i m i t a t i o n s with the Seed method, which has been i n 

use for about 10 years, the state-of-the-art report on analysis of 

permanent deformations i n earth structures recommends t h i s topic should be 

the subject of active research for the next ten years (USNRC, 1982). In 
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t h i s t h e s i s , an attempt which w i l l allow d i r e c t computation of transient 

and permanent deformations of s o i l structures i n a consistent manner, i s 

presented. Procedures have been developed to model non-linear h y s t e r e t i c 

behaviour of s o i l , taking into account the e f f e c t of porewater pressure 

generation on s o i l p roperties. 
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CHAPTER 3 

GENERAL GUIDELINES FOR DYNAMIC ANALYSES 

The performance of an earth dam under earthquake induced ground 

motion Is an important concern i n s e i s m i c a l l y active areas. The ground 

accelerations induced by the earthquake can cause large i n e r t i a forces 

throughout the dam. These forces which reverse i n d i r e c t i o n many times 

during an earthquake induce a l t e r n a t i n g stresses and s t r a i n s i n the dam. 

If these s t r a i n s and associated displacements are large enough, large 

slumping and slope i n s t a b i l i t y may r e s u l t , leading to over topping and 

eventual f a i l u r e of the dam. 

Newmark (1965), i n his pioneering work on e f f e c t s of earthquakes 

on dams, recommended that the performance of a s o i l structure during 

seismic loading should be assessed i n terms of displacement and not i n 

terms of the "factor of safety against f a i l u r e " along an assumed f a i l u r e 

surface. The allowable or s a t i s f a c t o r y displacements depend mainly on the 

fun c t i o n a l r o l e of the s o i l deposit or the structure founded on the 

deposit. For example, for c r i t i c a l structures such as nuclear reactors 

and gravity platforms, the allowable displacement may be only a few 

inches; however for earth dams many feet may be acceptable. 

The main object of th i s thesis i s to present a two-dimensional 

dynamic response analysis of s o i l structures, taking into account a l l 

important factors that influence the behaviour of s o i l deposits. The 

analysis predicts displacements, stresses, s t r a i n s and ac c e l e r a t i o n f i e l d s 

etc, during and a f t e r the earthquake. 
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The determination of stresses, s t r a i n s and displacements induced 

i n a dam by an earthquake i s a complex a n a l y t i c a l problem and a number of 

s i m p l i f y i n g assumptions must be made. Foremost i s the assumption that the 

performance of an earth dam which i s e s s e n t i a l l y a three-dimensional 

structure, can be interpreted from the performance of transverse cross-

sections subjected to the same seismic loading. The plane s t r a i n 

condition i s assumed to p r e v a i l i n the proposed two-dimensional a n a l y s i s . 

The main reasons for t h i s assumption are the high cost and high computer 

storage requirements needed for a three-dimensional a n a l y s i s . 

In the dynamic response analysis of continuous systems such as 

earth dams, non-uniform mass and s t i f f n e s s d i s t r i b u t i o n s are present. The 

f i n i t e element approach, which can model the v a r i a t i o n i n s t i f f n e s s and 

mass with extreme ease, has been adopted. 

In the dynamic response analysis of saturated s o i l s , a decision 

must be made i n i t i a l l y as to whether the analysis s h a l l be c a r r i e d out i n 

terms of t o t a l stress or e f f e c t i v e s t r e s s . Saturated loose cohesionless 

s o i l s subjected to r e p e t i t i v e loading generate r e s i d u a l porewater 

pressures, and i f s u f f i c i e n t drainage does not occur, reduction i n 

e f f e c t i v e stresses w i l l r e s u l t . Since deformations are c o n t r o l l e d by 

e f f e c t i v e stresses and s o i l properties such as moduli and strength are 

functions of e f f e c t i v e stresses, an e f f e c t i v e stress response analysis i s 

always preferable for those type of s o i l s . E f f e c t i v e stress response 

analysis i s more d i f f i c u l t to perform. It requires porewater pressure 

generation and d i s s i p a t i o n models and a d d i t i o n a l computations are 

necessary to estimate current e f f e c t i v e stresses. Studies by Finn, et a l . 

(1978a) on the response of l e v e l saturated sandy s i t e s to seismic 

e x c i t a t i o n showed that e f f e c t i v e stress analyses are not generally 
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required unless the porewater pressures are l i k e l y to exceed 30% - 40% of 

the e f f e c t i v e overburden pressure. 

In dynamic analyses , i t i s assumed that the loading imposed by 

seismic e x c i t a t i o n i s superimposed on long term equ i l ib r ium c o n d i t i o n s . 

The dynamic s o i l p r o p e r t i e s , such as strength and s t i f f n e s s , which c o n t r o l 

the response of s o i l s t ructures to seismic load ing , depend on i n i t i a l 

i n s i t u e f f e c t i v e s tress c o n d i t i o n . Furthermore i n e f f e c t i v e s tress 

response a n a l y s i s , the computation of current e f f e c t i v e s tresses as 

porewater pressure develops i s important. To do t h i s , a s t a t i c a n a l y s i s , 

which uses mater i a l parameters app l i cab le for both s t a t i c and subsequent 

dynamic ana lys i s has been developed. 

F i n n , Lee and Mart in (1977), presented a one-dimensional dynamic 

response ana lys i s taking in to account a l l important factors that a f fect 

the s o i l behaviour. The two-dimensional response ana lys i s proposed i n 

t h i s thes i s i s an extension of t h e i r one-dimensional a n a l y s i s . Therefore , 

a review of t h e i r method of a n a l y s i s , i n c l u d i n g s p e c i f i c a l l y how the non­

l i n e a r , h y s t e r e t i c s o i l behaviour has been modelled i s presented below. 

The p r e d i c t i v e c a p a b i l i t y of t h e i r method has been v e r i f i e d i n the 

laboratory and i n the f i e l d . Some d e t a i l s on these v e r i f i c a t i o n 

procedures are a lso i n c l u d e d . 

3.1 ONE-DIMENSIONAL RESPONSE ANALYSIS BY FINN, ET A L . (1977) 

In h o r i z o n t a l l y layered deposits the assumption that the shear 

waves propagate v e r t i c a l l y leads to a shear beam type of deformation 

pattern i n the depos i t . Then, only the s t r e s s - s t r a i n r e l a t i o n s h i p i n 

shear i s required i n the a n a l y s i s . 
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The important factors that must be considered when computing the 

dynamic response of s o i l s are; 

a) The nonlinear stress dependent s t r e s s - s t r a i n behaviour. 

b) The modelling of unloading-reloading. 

c) Contemporaneous generation and d i s s i p a t i o n of porewater 

pressures. 

d) Hysteretic and viscous damping. 

e) S t r a i n hardening. 

A l l these factors have been taken into account i n the s t r e s s -

The seismic loading imposes i r r e g u l a r loading pulses which 

consists of loading, unloading and reloading. The s o i l s exhibit d i f f e r e n t 

behaviour i n each of the above phases. 

The r e l a t i o n s h i p between shear s t r e s s , x, and shear s t r a i n , y, 

f o r the i n i t i a l loading phase under ei t h e r drained or undrained loading 

conditions i s assumed to be hyperbolic and given by, 

s t r a i n r e l a t i o n s presented by Finn, et a l . (1977). 

3.1.1. Shear S t r e s s - S t r a i n Relationship 

G 
x = f(y) = max y (3.1) f l + G max I Y I ) 

T max 
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i n w h i c h , G = maximum s h e a r m o d u l u s and = s h e a r max max 

s t reng th . This i n i t i a l loading or skeleton curve i s shown i n F i g . 3 .1a. 

The unloading - re load ing has been modelled using Masing behaviour 

(Masing, 1926). This impl ies that the equation for the unloading curve, 

i f unloading occurs from ( x r , Y r ) , i s given by, 

Gmax " Vr) 

1 + G v-Y (3-2) 
max I' ' rI 

2 T 

max 

which i s s imply, 

T - T r f ( y - Y r ) 
(3.3) 

The shape of the unloading - re loading curve i s shown i n F i g . 3 .1b. 

Lee (1975) proposed rules for extending the Masing concept to 

i r r e g u l a r l oad ing . He suggested that the unloading and re load ing curves 

should fo l low the skeleton loading curve i f the magnitude of the previous 

maximum shear s t r a i n i s exceeded. In F i g . 3.2a, the unloading curve, 

beyond B, becomes the extension of the i n i t i a l loading i n the negative 

d i r e c t i o n , i . e , BC. In the case of general loading h i s t o r y , fur ther 

assumptions have to be made. I f the current loading curve i n t e r s e c t s the 

curve described by the previous loading curve, the s tress s t r a i n curve 

should fo l low the previous loading curve . The above rules should apply 

a l so to unloading . Two t y p i c a l examples are provided i n F i g . 3 .2b;(a) i f 

loading along path BC i s cont inued, the loading path i s assumed to be 



3.1(a). Initial Loading Curve. p i g . 3 . 1 ( b ) . Masing Stress Strain C u r v e s for Unloading 

and Reloading. 



I " 
(a) first unloading (b) general reloading 

F i g . 3.2. Hysteretic Characteristics. 
O 
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BCAM, (b) i f unloading along path CPB i s continued, the unloading path 

w i l l be ABP' . Newmark and Rosenblueth (1971) have suggested a s i m i l a r 

procedure. 

3.1.2 Porewater Pressure Model 

Consider a sample of saturated sand under a v e r t i c a l e f f e c t i v e 
i 

s t r e s s , o y. During a drained c y c l i c simple shear t e s t , a cycle of 

shear s t r a i n , y» causes an increment i n volumetric compaction s t r a i n , 

A e y < j , due to grain s l i p . During an undrained shear test s t a r t i n g with 

the same e f f e c t i v e stress system, the c y c l i c shear s t r a i n , y, causes an 

increase i n porewater pressure, A U . It was shown by Martin, et a l . (1975) 

that for f u l l y saturated sands and assuming water to be incompressible, 

AU - E r A e v d (3.4) 

i n which E „ = one-dimensional rebound modulus of sand at an 
t 

e f f e c t i v e stress a v« 

Martin, et a l . (1975), also showed that under simple shear 

conditions the volumetric s t r a i n increment, A e V ( j , i s a function of the 

t o t a l accumulated volumetric s t r a i n , £ v c p a n c * t n e amplitude of the 

shear s t r a i n cycle, y, and i s given by, 

C 3 e v d Ae = CAy -C e ) + — — (3.5) vd 1 2 vd Y + C, e , 
' 4 vd 
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i n which , C 2 , Cg and are volume change constants that depend on the 

sand type and r e l a t i v e dens i ty . An a n a l y t i c a l expression for the rebound 

i 
m o d u l u s E r , a t any e f f e c t i v e s t r e s s l e v e l a v i s g i v e n by 

M a r t i n , et a l . (1975), as, 

- do' . 
E = ~ — = (a*) /{m K (a ) } (3.6) r de v ' 1 r v vo ' ' v ' vr 

i 

i n which, a V Q i s the i n i t i a l value of the e f f e c t i v e s t res s and 

K r , m and n are experimental constants for sand. 

The increment i n porewater pressure, AU, during a given loading 

cyc le with maximum shear s t r a i n , y, may now be computed using equations 

(3 .4 ) , (3.5) and ( 3 . 6 ) . 

3 .1 .3 M o d i f i c a t i o n of Proper t ie s for Res idual Porewater Pressure 

The r e s i d u a l porewater p r e s s u r e , TJ reduces G „ „ „ and r r > max 

Tmax* These values should be updated as r e s i d u a l porewater pressure 

develops. Hard in , et a l . (1972) assumed that G m a x i s independent 

of s tress h i s t o r y and suggested, 

* 1/2 
G = K (a ' ) ' (3.7) max m 

i n which K i s a constant , depends on s o i l type and r e l a t i v e d e n s i t y . 

The i n i t i a l and current e f f ec t ive stress condi t ions i n a simple 

shear apparatus with zero i n i t i a l porewater pressure are shown i n F i g . 

3 .3 . Here i t i s assumed that the r a t i o between h o r i z o n t a l and v e r t i c a l 



F i g . 3.3(a). Initial Effective Stress Condition 

in a Simple Shear Apparatus. 

m i«2K»«r- -u) 
3 

F i g . 3.3(b). Intermediate Effective Stress Condition 

i n a Simple Shear Apparatus. 

Co 
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e f f e c t i v e stresses i s a constant K Q, where K Q i s the c o e f f i c i e n t of 

l a t e r a l pressure at r e s t . For the i n i t i a l e f f e c t i v e stress condition, 

^ max^ l s 8 i v e n b v> 

1/2 
1 +9 V ' 

(G ) = K* f V > l (Ko) 1 / 2  

max 3 v ; 

o 

For the current stress conditions, 

1/2 
* 1+2K (G ) = K (if*) r;D- u) i / 2 <3-9> 

max v 3 ; ; 

n 

on d i v i d i n g the equation (3.9) by (3.8) one obtains, 

( Gmax ) - U . n _ r vo i l / 2 
.) L a' J (G ) o-' J (3.10) max vo o 

T h e r e f o r e , knowing ( ^ m a x ^ o ' a ' v o a n c * ^> t n e maximum s h e a r 

modulus at the current e f f e c t i v e stress condition can be calculated using 

equation 3.10. 

The shear s t r e n g t h ( T
m a x ^ o ^ o r t n e I n i t i a l e f f e c t i v e 

stress condition i s given by (Finn, et a l . 1977). 

f ^ 1 + K 9 o i 1 - K 1/2 
( W = {(— - —°) s i n 2 0 - ( ^ - ^ ) 2 } 0' = C a' (3.11) 

o  1 K 2 J K 2 ' ' vo vo 
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* 
i n which 0' i s the angle of i n t e r n a l f r i c t i o n and C i s a constant which 

depends on s o i l properties. For the current stress condition, 
( W ) = C*(o-' - U) (3.12) n vo 

Dividing equation (3.12) by (3.11) one obtains, 

( t ) 
max 

* ^ • (3.13) ( T ) a* 
max vo o 

^ T m a x ^ o ' "vo and U a r e known, t h e maximum s h e a r 

strength at current e f f e c t i v e stress condition can be calculated from 

equation (3.13). 

3.1.4 Influence of S t r a i n Hardening 

During seismic loading of dry sand or saturated sand under 

drained conditions, the sand structure hardens due to grain s l i p . Finn, 

et a l . (1977), used f o l l o w i n g equations to modify G
m a x and 

T • 
max 

e v d (G ) = (G ) {1 + — ~ ~ } (3.14a) max max 1 H, + H„E ,J 

nn n 1 2 vd 

and 

(3.14b) 
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i n w h i c h , ( G m a x ) n n a n d ( T _ a x ) n n a r e t h e m o d i f i e d 

maximum shear modulus and shear strength i n the n th cyc le and , » H3 

and are hardening constants . 

The s t r e s s - s t r a i n behaviour for one-dimensional a n a l y s i s i s now 

completely defined by equations, 3 .1 , 3.2, 3.4, 3 .5, 3 .6, 3.10, 3.13 and 

3.14. 

In laboratory c y c l i c simple shear tests most of the volume 

changes i n dry sands and the increases i n porewater pressure i n undrained 

saturated sands occur during the unloading por t ion of the load c y c l e . 

Therefore , F i n n , et a l . (1977), used modi f icat ions to the s t r e s s - s t r a i n 

curve to take account of s t r a i n hardening and porewater pressure only 

during the unloading phases of the l o a d i n g . 

3.1.5 D i s s i p a t i o n of Porewater Pressure 

I f the saturated sand deposit can dra in during shaking there 

w i l l be simultaneous generation and d i s s i p a t i o n of porewater pressure . 

The rate of increase of porewater pressure w i l l be le s s than that i n 

completely undrained sand. The amount of drainage depends on the permea­

b i l i t y and c o m p r e s s i b i l i t y of the sand, drainage path and durat ion of 

shaking. The d i s t r i b u t i o n of porewater pressure at time t i s given by, 

_ . _ E j _ <_z_ _J-\ E 8 £ v d 
ot 5z W 5 z J ot 

'w 
(3.15) 
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i n which, k z i s the permeabi l i ty and y w
 t n e un i t weight of water. 

The term c o n t a i n i n g e y ( j r e p r e s e n t s the i n t e r n a l g e n e r a t i o n of 

porewater pressure ( F i n n , et a l . 1977). 

The s t r e s s - s t r a i n r e l a t i o n s h i p out l ined above can be very e a s i l y 

extended to non-uniform loading using an incremental ly e l a s t i c ana lys i s i n 

time domain. The dynamic response can be computed for each time step by 

numer ica l ly so lv ing equation (3.15) and the equation of motion, as 

explained by F i n n , et a l . (1977). 

3.2 LABORATORY VERIFICATION OF EFFECTIVE STRESS RESPONSE ANALYSIS 

The bas ic assumptions made i n the formulat ion of the s t re s s -

s t r a i n r e l a t i o n s h i p presented above can be broadly categorized in to two 

groups: Those made i n the formulat ion of porewater pressure model and 

those made i n model l ing load ing , unloading and re load ing . 

The fundamental assumption that was made i n the formulat ion of 

the porewater pressure model, was that the porewater pressures i n an un-

drained test can be obtained from volumetr ic s t ra ins measured i n a drained 

tes t on a s i m i l a r sample with same h i s t o r y of shear s t r a i n l o a d i n g . This 

means that there should be a unique r e l a t i o n s h i p between volumetr ic 

s t r a i n s i n drained tests and porewater pressures i n undrained tests for a 

given sand at corresponding s t r a i n h i s t o r i e s . 

F inn (1981) reported re su l t s of an extensive laboratory program 

to inves t iga te th i s bas ic assumption. Volumetric s t r a in s were measured i n 

drained Ottawa sand samples at r e l a t i v e dens i t i e s D r = 45% and 60% when 

subjected to constant s t r a i n cycles i n a simple shear apparatus. 

Porewater pressures were a lso measured i n undrained c y c l i c tes t s at the 
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same r e l a t i v e d e n s i t i e s and i n i t i a l e f f e c t i v e confining pressures. 

Volumetric s t r a i n s E V ( J are shown plotted against porewater pressure 

r a t i o s U/o^. i n F i g . 3.4 for D„ = 45%. Each point on the curve 

represents a set of values of e y (j and U/a v o f o r a given number 

of cycles with equal c y c l i c s t r a i n amplitudes. I t can be noticed that 

there i s a s l i g h t difference i n the applied shear s t r a i n amplitudes. But 

these small deviations are not important. The data i n d i c a t e a unique 

r e l a t i o n s h i p between volumetric s t r a i n and porewater pressure r a t i o s . 

The slope of t h i s curve normalized with respect to confining 

pressure w i l l give the rebound modulus E_. Martin, et a l . (1975) 

suggested that E_ can be evaluated from the unloading curve i n an 

oedometer, under s t a t i c conditions. But Finn (1981) showed that the 

rebound modulus measured i n the oedometer i s higher than the modulus 

computed from the slope of the curve shown i n F i g . 3.4. He used the 

E„ values computed from the slope of the curve shown i n F i g . 3.4 to 

v e r i f y the porewater pressure model. 

Finn (1981) maintained that the the s t r a i n hardening e f f e c t 

(equation. 3.14) should not be included i n the s t r e s s - s t r a i n r e l a t i o n s h i p 

when pred i c t i n g the behaviour of sands under undrained conditions. This 

i s because net volumetric s t r a i n s do not occur during undrained 

conditions. If drainage i s allowed to occur, then the e f f e c t s of s t r a i n 

hardening should be included. 

The porewater pressure model coupled with the s t r e s s - s t r a i n 

r e l a t i o n s h i p can be employed to predict l i q u e f a c t i o n strength curves. The 

strength curve plots of the c y c l i c shear stress r a t i o t / o v o versus 

the number of cycles to cause i n i t i a l l i q u e f a c t i o n , for normally 

consolidated (0CR=1) and over consolidated sands, obtained a n a l y t i c a l l y 
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and exper imenta l ly , are shown i n F i g . 3 .5 . The experimental curve was 

obtained from undrained constant volume c y c l i c simple shear t e s t s . 

The comparison between the computed and measured l i q u e f a c t i o n 

s trength curves i s very good. This means that the assumptions made i n the 

formulat ion of the non- l inear h y s t e r e t i c e f f ec t ive s t r e s s - s t r a i n r e l a t i o n ­

ship are v a l i d . But, l i q u e f a c t i o n res i s tance curve p r e d i c t i o n i s an 

extreme case. F inn (1981) used th i s e f f e c t i v e s tress model to pred ic t 

porewater pressure development during undrained tests when subjected to 

constant c y c l i c shear s tress i n a simple shear apparatus. This constant 

c y c l i c shear s tress loading re su l t s i n an i r r e g u l a r s t r a i n h i s t o r y as the 

porewater pressures develop. Further the model parameters ( i = 1,4) 

used were obtained from constant c y c l i c shear s t r a i n t e s t s . T y p i c a l 

r e s u l t s obtained from two undrained tests are shown i n F i g . 3 .6 . The 

agreement between measured and computed porewater pressures i s remarkably 

good, i n d i c a t i n g that a l l the assumptions made i n the porewater pressure 

model and s t r e s s - s t r a i n r e l a t i o n s h i p are reasonable. 

3.3 FIELD VERIFICATION OF EFFECTIVE STRESS RESPONSE ANALYSIS 

A unique opportunity to inves t iga te the c a p a b i l i t y of the one-

dimensional e f f e c t i v e s tress response ana lys i s was provided r e c e n t l y when 

data became a v a i l a b l e on the dynamic response of an a r t i f i c i a l i s l a n d i n 

Tokyo Bay to the Mid-Chiba earthquake of 1980. Owi Is land No.1 i s an 

a r t i f i c i a l i s l a n d located on the west s ide of Tokyo Bay. It was 

constructed with mater ia l s dredged from the nearby sea. 

A tes t s i t e at the south end of the i s l a n d i s instrumented to 

record porewater pressures and ground acce lera t ions during earthquakes. 
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Porewater pressures are recorded by piezometers i n s t a l l e d at depths of 6m 

and 14m. 

The Mid-Chiba earthquake, with magnitude M = 6 . 1 , shook the 

Tokyo Bay area on September 25, 1980. F i n n , et a l . (1982) computed the 

response of Owi Is land No.1 to the Mid-Chiba earthquake using a one-

dimensional e f f e c t i v e s tress response a n a l y s i s . The f i r s t 10 sees. of 

the recorded ground acce lera t ions are shown i n F i g . 3 .7 ( a ) . During the 

f i r s t 4 sees, very low acce lera t ions occurred . S i g n i f i c a n t acce le ra t ions 

developed between 4 and 6 sees . , and thereaf ter only low l e v e l e x c i t a t i o n 

was recorded. The ground acce lera t ions computed by F i n n , et a l . (1982) 

are shown i n F i g . 3 .7 (b ) . Except for some minor d i f ferences between 8 -

10 sees, range the computed recording was very s i m i l a r to the recorded 

motions. 

The porewater pressures recorded at the 6m depth on Owi Is land 

No. 1 are shown i n F i g . 3 .8 (a ) . The recorded porewater pressure has two 

components: t rans ient and r e s i d u a l . The t rans ient porewater pressures are 

instantaneous response of porewater to changes i n t o t a l app l ied stresses 

and r e s i d u a l porewater pressures occur due to p l a s t i c volume changes. The 

one-dimensional response ana lys i s used by F i n n , et a l . (1982) computes the 

r e s i d u a l porewater pressure component and i s shown i n F i g . 3 . 8 (b ) . 

Comparison between recorded and computed porewater pressures i s very 

good. 

3.4. POREWATER PRESSURE MODEL IN PRACTICE 

To apply the porewater pressure model i n dynamic e f f e c t i v e 

analyses , 7 constants must be known; four C. ( i = 1,4) constants to 



CJ 

a.: 
s 

(a) 

o.o i.o 
i i — 

4.0 1.0 
TIME 0.0 10.0 

(b) 

i i — 
4.0 (.0 

TIME 
0.0 —I 

10.0 

Fig. 3.7. Measured (a) and Computed (b) Ground Accelerations (Acc. in ft/sec2. Time in Sees). 

8-

;HWv(M*w r-
TIME ' • • o.o 10.0 

Fig. 3.8. Measured (a) and Computed (b) Porewater Pressure at a Depth of 6m. (Porewater 

Pressures in lb/ft2, Time in Sees). 

LO 



35 

compute incremental volumetric s t r a i n and 3 constants K r, m and n to 

represent rebound c h a r a c t e r i s t i c s . C y c l i c simple shear apparatus has to 

be used to obtain these constants. A number of laboratories s t i l l do not 

have simple shear apparatus to do these t e s t s . 

Over the years a procedure has evolved from a number of 

p r a c t i c a l experiences by which the d i r e c t measurement of these constants 

can be avoided (Finn, et a l . 1982). This i s done by modifying the model 

parameters such that i t w i l l match with the experimental l i q u e f a c t i o n 

strength curve and give the r i g h t rate of porewater pressure generation. 

The l i q u e f a c t i o n strength curve and the rate of porewater pressure 

development can be experimentally obtained by doing c y c l i c t r i a x i a l tests 

or c y c l i c simple shear tests on f i e l d samples. 

A study of a number of t r i a l analyses to predict the undrained 

behaviour of samples i n simple shear has revealed the following: 

a) The shape of the l i q u e f a c t i o n resistance curve i s s e n s i t i v e to 

the constants C^, e s p e c i a l l y C^. 

b) The v a r i a t i o n of K r s h i f t s the l i q u e f a c t i o n p o t e n t i a l up or 

down without changing the shape appreciably. 

In r e a l i t y the shape of the l i q u e f a c t i o n resistance curve for a 

number of sands i s s i m i l a r and the values of C^ given i n the l i t e r a t u r e 

give the shape of t y p i c a l l i q u e f a c t i o n p o t e n t i a l curves. In pr a c t i c e a 

t r i a l and error procedure i s adopted to get values for the model 

constants. The procedure i s outlined below: 
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1) Performing a number of analyses by varying K„, and select the 

value for K_ such that the computed l i q u e f a c t i o n resistance 

curve matches the experimental l i q u e f a c t i o n resistance curve. 

2) For t h i s selected K_ value, c a l c u l a t e the development of 

porewater pressure with number of cycles and compare with the 

laboratory porewater pressure curve. 

3) If these porewater pressure curves are not s i m i l a r , a l t e r 

and repeat the a n a l y s i s . It should be noted that i s the 

only parameter that i s used i n the c a l c u l a t i o n of incremental 

volumetric s t r a i n i n the f i r s t c y c l e . Therefore, estimates of 

C^, can be interpreted from the r e s i d u a l porewater pressure 

recorded i n the f i r s t c y c l e . 

This type of t r i a l and error procedure can be employed to obtain 

relevant model constants such that the corresponding porewater pressure 

development and l i q u e f a c t i o n resistance curves are s u f f i c i e n t l y close to 

the ones observed i n the laboratory. 

3.5 DISCUSSION 

In the response analysis of h o r i z o n t a l l y layered deposits 

subjected to h o r i z o n t a l accelerations, a shear beam type of deformation 

pattern i s assumed i n the deposit. Therefore, only the s t r e s s - s t r a i n 

r e l a t i o n s h i p i n shear i s required. The tangent shear modulus i s used as 

the e l a s t i c parameter i n the incrementally e l a s t i c response analysis 

proposed by F i n n , et a l . (1977). To extend t h e i r model to 

two-dimensions, two e l a s t i c parameters are required. A d e t a i l e d 
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d e s c r i p t i o n of the extension of the one-dimensional s t r e s s - s t r a i n 

r e l a t i o n s h i p to two-dimensions i s discussed i n Chapter 4. 

It has been observed i n the laboratory that the presence of 

s t a t i c shear s tress a f fects the porewater pressure response of samples 

subjected to c y c l i c loading ( F i n n , et a l . 1978; V a i d , et a l . 1979). The 

porewater pressure model of F i n n , et a l . (1977) i s s t r i c t l y app l i cab le to 

one-dimensional depos i t s , where s t a t i c shear s tress i s ze ro . Therefore , 

i n extending t h e i r model to two-dimensions, the inf luence of s t a t i c shear 

must be accounted f o r . 
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CHAPTER 4 

TWO DIMENSIONAL STATIC ANALYSIS OF  

SOIL STRUCTURES 

A s t a t i c response analysis to compute i n - s i t u e f f e c t i v e stresses 

i s necessary because the dynamic s o i l properties, such as strength and 

s t i f f n e s s , depend on i n - s i t u e f f e c t i v e streses. A number of s a t i s f a c t o r y 

incremental e l a s t i c methods, which model the construction sequence of the 

s o i l structures, are already a v a i l a b l e (Ozawa, et a l , 1973; Duncan, et a l , 

1978, Byrne, et a l , 1982). The s t a t i c analysis presented i n t h i s theis i s 

based mainly on the methods proposed by these authors. The method 

proposed i n t h i s thesis uses a consistent set of material parameters i n 

both the s t a t i c and dynamic analyses; procedures also have been 

incorporated to apply c o r r e c t i o n forces during the a p p l i c a t i o n of the load 

increments. 

4.1 STRESS-STRAIN RELATIONSHIP 

A number of s t r e s s - s t r a i n r e l a t i o n s have been proposed i n the 

computation of i n - s i t u s t a t i c stresses i n s o i l deposits. They can be 

divided broadly into l i n e a r , b i l i n e a r , e l a s t o - p l a s t i c , v i s c o - p l a s t i c and 

non-linear models. Some of these models are very complex and even for 

simple monotonic types of loading are expensive to use i n computational 

schemes. 
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Two e l a s t i c constants are required for any two-dimensional 

i s o t r o p i c , e l a s t i c or incrementally e l a s t i c a n a l y s i s . Tangent shear 

modulus G t and tangent bulk modulus B t were selected as the e l a s t i c 

constants. In s e l e c t i n g these e l a s t i c constants, considerations were also 

given to the f a c t that the s t r e s s - s t r a i n formulation proposed here has to 

be extended to model dynamic loading conditions. It w i l l be shown i n 

Chapter 5, that the s e l e c t i o n of these parameters g r e a t l y reduces the 

amount of computation time i n the dynamic a n a l y s i s . 

The s t r e s s - s t r a i n model proposed here, l i k e almost a l l other 

s t a t i c s t r e s s - s t r a i n models for s o i l s , can model only saturated s o i l s 

under f u l l y drained or undrained conditions, and dry s o i l s . The 

parameters selected to model the s t r e s s - s t r a i n behaviour should be based 

on test r e s u l t s which represent as c l o s e l y as possible the loading 

conditions that e x i s t i n the f i e l d . For example, i n the analysis of long 

term s t a b i l i t y of earth dams, one should chose parameters from drained 

test r e s u l t s . A d e s c r i p t i o n of the s t r e s s - s t r a i n model, and the s e l e c t i o n 

of relevant parameters for the model are discussed i n d e t a i l , i n t h i s 

chapter. 

4.1.1 Reasons for Selecting G t and B_t 

In general, s t r a i n i n an i s o t r o p i c , homogeneous, l i n e a r e l a s t i c 

medium can be divided into two components: volumetric s t r a i n and 

d e v i a t o r i c s t r a i n . The volumetric s t r a i n i s related to mean normal stress 

through the bulk modulus. The d e v i a t o r i c s t r a i n i s related to d e v i a t o r i c 

stress through the shear modulus. These two independent material moduli 

can be e v a l u a t e d i n d e p e n d e n t l y by a p p l y i n g u n i f o r m changes i n 
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corresponding stresses. Therefore, by sel e c t i n g tangent bulk modulus and 

tangent shear modulus as two independent e l a s t i c constants, better 

controls on stresses and stra i n s can be imposed. 

4.1.2 Hyperbolic Shear S t r e s s - S t r a i n Relationship 

A number of researchers have used a hyperbolic s t r e s s - s t r a i n 

r e l a t i o n s h i p to predict the behaviour of a s o i l deposit (Konder, et a l . 

1963). The hyperbolic r e l a t i o n s h i p between i and y i s given i n terms of 

Gmax a n d xmax a s> 

G y max ' 
T = 

Gmax M l 

max 

( l + W m ) 

i n which, 

T,y = are the shear stress and shear s t r a i n 

G_ a x = tangent shear modulus as y+0 

Tmax = u l t l m a t e shear strength 

4.1.2.1 Estimation of Gmax 

Experimental data have shown that f o r sands and s i l t s under 

drained conditions, 

Gmax " f K » e» 0CR) <4-2) 

i n which, 
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o"m = current e f f e c t i v e mean normal stress 

e = void r a t i o 

OCR = over consolidation r a t i o 

here OCR i s defined as: 

_ Maximum past ma.jor p r i n c i p a l stress 
Current major p r i n c i p a l stress 

The following non-dimensional equation i s widely used f o r 

Gmax' 

Gmax * K G P a t ^ j " 2 (4-3) 

i n which, 

K Q = a non-dimensional constant for a given s o i l . 

Pfl = atmospheric pressure. 

The value of K Q depends mainly on void r a t i o or r e l a t i v e 

density of the s o i l , grain contact c h a r a c t e r i s t i c s such as angularity and 

roughness of the s o i l p a r t i c l e s etc., and also on previous loading 

h i s t o r y . An equation s i m i l a r to (4.3) has been proposed by Hardin, et a l . 

(1972) and Seed, et a l . (1970) for the computation of G M O „ for 

sandy s o i l s for dynamic analyses. The equation given by Hardin, et a l , 

(1972) includes the e f f e c t of previous stress h i s t o r y . They proposed, 

G = K _ P fm/P ) (OCR) (4.4) max G a ^ a ; v ' 
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i n which the exponent n depends on the p l a s t i c index of the s o i l (Hardin, 

et a l . 1 9 7 2 ) . Values of n are given i n Table 4 . 1 . 

Table 4 . 1 V a r i a t i o n of Exponent, r\ with P l a s t i c Index, PI 

PI% 

0 0 

20 0 . 1 8 

40 0 . 3 0 

60 0 . 4 1 

80 0 . 4 8 

>100 0 . 5 

For normally consolidated non-plastic s o i l s under drained 

condition t y p i c a l values for KQ varies between 200 and 8 0 0 (Byrne, 

1 9 7 9 ) . 

For clayey s o i l s under undrained conditions, G M A X can be 

related to the undrained strength S U through an equation, 

G M A X = K S U ( 4 . 5 ) 

where K i s a constant for a given c l a y . 
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4.1.2.2 Estimation of Tmax 

For s o i l s under drained conditions, t m a x > i s the maximum 
i 

shear stress that can be applied by keeping a x i a l stresses o x, and 
i 

a v at the i r respective values, where the x-axis i s taken h o r i z o n t a l 

and the y-axis v e r t i c a l for convenience. In p r i n c i p l e , this i s s i m i l a r to 

the e s t i m a t i o n of maximum d e v i a t o r i c s t r e s s ( o " j ) m Q v i n the 

a n a l y s i s presented by Kulhawy, et a l . (1969). They e s t i m a t e 

( a ( j ) m a x assuming tha t the minor p r i n c i p l e s t r e s s remains 

constant. 

Let us consider a case where the i n i t i a l v e r t i c a l , h o r i z o n t a l 
i i 

and s h e a r s t r e s s e s a r e av, av, and -r r e s p e c t i v e l y ( F i g . 
y x xy 

4.1). F i g . 4.2, shows the corresponding Mohr c i r c l e diagram and the Mohr 

envelope. The Mohr envelope i s defined by c' and 0 ' . The points L and M 

represent the i n i t i a l stress state. The a p p l i c a t i o n of shear stress w i l l 

increase the size of the Mohr c i r c l e and the largest Mohr c i r c l e i s the 

one that i s tangent to the Mohr envelope. 
i 

OA = OP radius of the largest c i r c l e keeping a y and 
i 

a x constant and i t i s given by, 
i i 

OP = r c f g x + q y ) i s i n 0 ' (4.6) 
"•tan0' 2 ' 

From t r i a n g l e ABO, 

A B - S a x 

plane 

= maximum shear s t r e s s e s on the h o r i z o n t a l 



F i g . 4.2. M o h r C i r c l e Diagram . 
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= /(OA 2 - OB 2) 

and so, 

f - * } 2 s i n 2 0 ' - H^} 2 ] 
1/2 (4.7) 

x + max 

This equation reduces to the equation presented by Hardin and 

D r n e v i c h ( 1 9 7 2 ) i f a v and a a r e r e p l a c e d by K Q a o u vo 

and a, vo* 

The estimation of T max for a s o i l element under undrained 

conditions can be made based on standard f i e l d t e s t s , laboratory tests or 

may be based on estimation of i n s i t u e f f e c t i v e stress conditions. 

4.1.2.3 Influence of Over-Consolidation 

Compaction i s generally used to obtain a c e r t a i n density i n dam 

construction. So some parts of a dam are over consolidated due to the 

compaction pressure. The e f f e c t of over consolidation on G__„ i s 
Illcl A. 

already shown i n the equation (4.4). Over consolidation has an influence 

on the value of x m a x a l s o . A t y p i c a l Mohr envelope for p l a s t i c 

s o i l s would look l i k e that i n F i g . 4.3. Dif f e r e n t c 1 and 0' values 

should be used depending on whether the s o i l i s i n NC state or OC state. 

4.1.2.4 E f f e c t s of Unloading 

In geotechnical problems which involve excavation or reduction 
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i n applied load, some s o i l elements w i l l experience unloading. The 

modulus, G^, during unloading from a s t r a i n , y> a s shown i n F i g . 4.4, i s 

higher than the modulus, G 2 , corresponding to loading from the same s t r a i n 

l e v e l i f the mean normal stress remains a constant. 

Unloading and reloading can be modelled using the procedures 

presented i n Chapter 3. However, i f the s t r a i n ranges of i n t e r e s t are 

small, the differ e n c e between G 2 and i s not large. Under these 

circumstances changes i n modulus need not be modelled. 

4.1.3 Tangent Bulk Modulus B t 

It i s assumed that the tangent bulk modulus (B t) i s e l a s t i c 

for any s o i l under drained conditions and i t i s a function of the current 
t 

mean normal stress a m only. Duncan, et a l . (1978), suggested that, 

B = K, P A}n (4*8) 
t b a LP ' 

where, = Bulk Modulus constant 

n* = exponent 

Typical values of bulk modulus constant vary between 300-

1000 and the exponent varies between 0.3 and 0.6. depends mainly on 

r e l a t i v e density of the s o i l , s o i l type and previous loading h i s t o r y . 

In e l a s t i c (or incrementally e l a s t i c ) analysis i n i s o t r o p i c 

and homogeneous materials, a change i n shear stress with constant mean 

normal stress w i l l not r e s u l t i n any volume change. But, s o i l s under 
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constant mean-normal stress exhibit volume change when subjected to 

shearing s t r e s s . In the analysis presented herein, allowance has been 

made to include the volumetric s t r a i n s that occur due to shear stresses. 

A d e t a i l e d d e s c r i p t i o n of how th i s i s done i s given i n Section 4.4. 

It should be noted that the bulk modulus constant defined 

here includes only the e f f e c t of mean normal st r e s s . Therefore, for the 

estimation of K^, i s o t r o p i c consolidation tests performed i n t r i a x i a l 

t est equipment must be used. Duncan, et a l . (1978) described a procedure 

for determining from conventional t r i a x i a l test data i n which the 

mean-normal stress i s not held constant. Values of determined i n 

thi s manner must be considered approximate. 

4.2 PHYSICAL MODELLING 

The domain of i n t e r e s t i s assumed to be an assembly of a f i n i t e 

number of elements, connected at the nodal points. The formulation of the 

f i n i t e element equations including the e f f e c t of porewater pressure 

( C h r i s t i a n , et a l , 1970) i s presented i n Appendix I. The equations are, 

{P} = [ K T ] {A} + [K*] {U} (4.9) 

where, 

{p} = global column vector of incremental applied loads 

[ K F C ] = global tangent s t i f f n e s s matrix 

{A} = global column vector of incremental displacements 

[ K * ] = global s t i f f n e s s matrix defined i n the Appendix I 
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{u} = column vector of incremental porewater pressures i n 

the elements. 

The tangent element s t i f f n e s s matrix [ k t ] depends on two 

fac t o r s ; the tangent moduli and the shape functions adopted i n the f i n i t e 

element formulation. The shape functions give the v a r i a t i o n of 

displacements within an element i n terms of the nodal displacements. 

The simplest shape function, which assumes a l i n e a r v a r i a t i o n of 

displacements, gives constant s t r a i n within a tria n g u l a r element. But 

experience has shown that the r e s u l t s obtained from such elements do not 

predict stresses and s t r a i n s accurately. Therefore, q u a d r i l a t e r a l 

elements which have a l i n e a r s t r a i n v a r i a t i o n within an element are used. 

For s o i l structures such as dams, layered deposits etc., elements of 

a r b i t r a r y q u a d r i l a t e r a l shape are very appropriate because they are f a i r l y 

simple and can be used to model the geometry of these s o i l structures 

q u i t e a c c u r a t e l y . The element s t i f f n e s s m a t r i x , [ k t ] f o r an 

isoparametric q u a d r i l a t e r a l element i s given i n Appendix 1. 

4 . 3 . SIMULATION OF CONSTRUCTION SEQUENCE 

Dams are constructed sequentially. Since the behaviour of dam 

m a t e r i a l s are n o n - l i n e a r and s t r e s s path dependent, a r e a l i s t i c 

computation of stresses and s t r a i n s requires that the construction 

sequence be modelled. An analysis based on single stage construction or 

gravity switch on, w i l l give f i n a l stresses and st r a i n s d i f f e r e n t from 

those calculated by following the construction sequence. 
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4.3.1 Method of Ana ly s i s 

F i g . 4.5 shows a schematic representat ion of the sequent ia l 

procedure involved i n dam c o n s t r u c t i o n . There may be p r e - e x i s t i n g 

elements on which subsequent layers w i l l be p laced . The cons t ruc t ion 

l i f t s are compacted u n t i l the required density i s obta ined . Thi s type of 

l ayer by layer cons t ruc t ion procedure i s c a r r i e d out u n t i l the required 

dimensions of the dam are obta ined. 

In m o d e l l i n g the c o n s t r u c t i o n sequence , the i n c r e m e n t a l 

s t re s se s , s t r a i n s and deformations are computed for every new layer 

added. This i s done by so lv ing equation (4.9) for the incremental loads 

caused by p lac ing a f resh l a y e r . The f i n a l s t res ses , s t r a i n s and 

displacements of the dam are simply the a lgebra ic sum of a l l the 

incremental values computed for a l l the l a y e r s . 

4 .3.2 Incremental Porewater Pressure 

S t a t i c ana lys i s can be c a r r i e d out i n a t o t a l or e f f e c t i v e 

s tress mode or a combination of both . In the combination mode, some 

elements may be i n an e f f e c t i v e s tress mode and some may be i n a t o t a l 

s t ress mode. When the e f f e c t i v e s tress p r i n c i p l e i s used i n the f i n i t e 

element formula t ion , the porewater pressure term i s introduced as shown i n 

the r i g h t hand s ide of the equation (4 .9 ) . 

For the elements for which the t o t a l s tress mode i s assumed to 

be a p p l i c a b l e , the element s t i f fne s s matrix [ k t ] i s based on a t o t a l 

s t r e s s - s t r a i n r e l a t i o n s h i p . Furthermore, the porewater pressure , u Q , i n 

these elements should be set to zero . However, i f the e f f e c t i v e s tress 
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mode i s s e l e c t e d f o r some e l e m e n t s , t h e element s t i f f n e s s f o r t h e s e 

e l e m e n t s s h o u l d be based on an e f f e c t i v e s t r e s s - s t r a i n r e l a t i o n s h i p and a 

v a l u e f o r u Q i s r e q u i r e d . 

I t s h o u l d be remembered t h a t the r e a s o n f o r t h e s t a t i c a n a l y s i s 

i s t o e s t i m a t e the i n - s i t u s t a t i c c o n d i t i o n w h i c h i s a " l o n g t e r m " 

c o n d i t i o n . I n v i e w of t h i s , the g l o b a l p o r e w a t e r p r e s s u r e v e c t o r {Ti ] 

used i n the e q u a t i o n (4.9) s h o u l d c o r r e s p o n d t o t h e l o n g term v a l u e . 

E s t i m a t e s of u Q f o r t h e e lements can be made u s i n g a number of methods 

s u c h as h y d r a u l i c model t e s t s , e l e c t r i c a l a n a l o g y e t c . Measured p o r e w a t e r 

p r e s s u r e s i n t h e f i e l d a l s o may be u s e d . The m a t r i x {IT} , f o r m u l a t e d 

u s i n g element p o r e w a t e r p r e s s u r e s u Q can now be used i n e q u a t i o n (4.9) 

t o compute s t r e s s e s and d i s p l a c e m e n t s . 

4.3.3 C o m p u t a t i o n o f I n c r e m e n t a l S t r e s s e s and S t r a i n s 

S t r a i n s g i v e n by the f i n i t e element a n a l y s i s a r e a measure o f 

changes i n shape of the e l e m e n t s from some r e f e r e n c e s t a t e . I t i s assumed 

t h a t the c o n d i t i o n of newly p l a c e d e lements a f t e r t h e y have s e t t l e d under 

t h e i r own w e i g h t i s the r e f e r e n c e s t a t e (Ozawa, et a l . 1 9 7 3 ) . The t o t a l 

s t r a i n s a r e o b t a i n e d by a d d i n g i n c r e m e n t a l s t r a i n s c aused by t h e 

c o n s t r u c t i o n l a y e r s about t h i s r e f e r e n c e s t a t e . 

An i n c r e m e n t a l e l a s t i c a n a l y s i s can be c a r r i e d out i n a number 

o f ways ( D e s a i and A b e l , 1 9 7 2 ) . The a p p r o a c h a d o p t e d h e r e i s shown 

s c h e m a t i c a l l y i n F i g . 4.6. E s t i m a t e s of the i n c r e m e n t s i n s t r e s s e s and 

s t r a i n s due t o a l o a d i n c r e m e n t a r e d e t e r m i n e d u s i n g m o d u l i v a l u e s 

c o r r e s p o n d i n g t o s t r e s s - s t r a i n l e v e l b e f o r e t h e l o a d i n c r e m e n t was 

a p p l i e d . New m o d u l i c o r r e s p o n d i n g t o the average of t h e s t r a i n s b e f o r e 



I n i t i a l Estimates 

or Computed Values 

ô 
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the load increment i s applied and the s t r a i n s computed a f t e r the increment 

are used to compute more correct incremental stresses and s t r a i n s for the 

same load increment. These incremental stresses and s t r a i n s are added to 

i n i t i a l stresses and s t r a i n s to obtain the i n i t i a l condition for the next 

load increment. 

Re c a l l from section 4.1.2, that the r e l a t i o n s h i p between shear 

stress and shear s t r a i n i s assumed to be hyperbolic. Therefore, the shear 

stresses are computed using the shear s t r a i n s at the end of the load 

increment. In doing t h i s , as pointed out by Desai and Abel (1972), 

equilibrium i s not n e c e s s a r i l y s a t i s f i e d . Under these circumstances 

equilibrium c o r r e c t i o n forces may be applied to s a t i s f y equilibrium 

condition. In the method adopted here, correction forces that correspond 

to the changes i n the shear stresses computed using the procedure outlined 

i n Appendix I, are applied to the next load increment. 

Before placing a fresh layer the stress condition i n previously 

placed elements (pre-existing) are known. Therefore, i n the i n i t i a l 

a nalysis for the load increment, moduli for the pre-existing elements are 

known. However, for the f r e s h l y placed elements, moduli must be based on 

estimated stresses i n these elements. Ozawa, et a l . (1973) suggested that 

the stresses can be estimated using the equations, 

and 
y ' s 

T = 0.5 v d s i n <* lxy is o (4.10) 

i n which d i s the depth of center of gravity of the element from the top 

surface, <=0 i s the slope of the top surface and y s i s the unit weight 



55 

of s o i l . For t o t a l l y submerged elements Ys should be replaced by the 

submerged unit weight y'« 

4.4. SHEAR-VOLUME COUPLING 

The tangent bulk modulus Bfc defined i n section 4.1.3, re l a t e s 

an increment i n volumetric s t r a i n , A e ^ , to an increment i n e f f e c t i v e 
i 

mean normal s t r e s s , Aa m« But i n s o i l s volumetric s t r a i n s occur also 

due to changes i n shear stresses. This a d d i t i o n a l volumetric s t r a i n must 

be accounted for i n any r e a l i s t i c modelling of s o i l behaviour. 

The c h a r a c t e r i s t i c drained behaviour of i n i t i a l l y loose and 

dense sand samples i n a simple shear apparatus i s shown i n F i g . 4.7. 

I n i t i a l l y for small shear st r a i n s y, both the loose and the dense samples 

undergo volume reduction. But l a t e r , over a considerable range of s t r a i n , 

they e xhibit volume expansion ( d i l a t i o n ) . For both samples i n the 

d i l a t i o n range, the v a r i a t i o n of volumetric s t r a i n e v vs Y ^ s l i n e a r 

i n i t i a l l y and then e v approach fixed values at very high s t r a i n l e v e l s . 

The region of i n t e r e s t i n the e y vs Y p l o t i n t y p i c a l geotechnical 

problems would be the i n i t i a l compaction region and the l i n e a r d i l a t i o n 

region. 

The rate of volume change i n the l i n e a r d i l a t i o n region, i s 

larger for the dense sand than for the loose sand. Hansen, (1958) 

suggested using d i l a t i o n angle v Q to characterize the d i l a t i o n r a t e . He 

defined v as, 

sinv = o dy~ = t a n P o (4.11) 
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F i g . 4.7. (b). Typ ica l Plots for £ Vs T for Dense and 
Loose Sands . 
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where 8 Q i s the slope angle. The negative sign i s introduced since 

compressive volumetric s t r a i n i s considered to be p o s i t i v e . 

For a given type of sand the angle v Q was found to be a 

function of the r e l a t i v e density and confining pressure. The d i l a t i o n 

angle v Q increases with the r e l a t i v e density of the s o i l . This was 

c l e a r l y shown by Vaid, et a l . (1981). They performed drained simple shear 

tests with constant v e r t i c a l stress a y 0 = 200 kPa, ( F i g . 4.8) on 

Ottawa sand, (C-109), at various r e l a t i v e d e n s i t i e s . The d i l a t i o n angle, 

which i s the slope of the l i n e a r d i l a t i o n portion of the plo t e v and y 

i s found to increase with the r e l a t i v e density of the s o i l . 

The d i l a t i o n i s also a function of the mean normal stress l e v e l . 

This was shown by Lee (1965) who performed drained t r i a x i a l tests on dense 

Sacramento River sand samples of constant D r = 100%. F i g . 4.9 shows a 

series of tests with consolidation pressures varying from 0.1 MPa to 13.7 

MPa. Several important features of the test data can be noted i n 

F i g . 4.9. F i r s t l y , dense samples at high consolidation pressures behave 

l i k e loose samples; secondly, f a i l u r e i n terms of maximum p r i n c i p a l stress 

r a t i o occurs at increasing s t r a i n l e v e l s as the consolidation pressure 

increases; and t h i r d l y , the d i l a t i o n angle decreases and becomes negative 

(compaction) with increasing consolidation pressure. 

F i g . 4.10 shows the v a r i a t i o n of the d i l a t i o n angle v Q with 

mean normal stress for a number of sands which were at an i n i t i a l r e l a t i v e 

density of 80 percent. It i s i n t e r e s t i n g to observe that the v a r i a t i o n of 

v Q l i e s within a narrow band (Robertson, 1982) and also the v a r i a t i o n i s 

li n e a r with logarithm of mean normal s t r e s s . 

Based on the experimental data presented above, the following 

approximation for a n a l y t i c a l purposes can be made for medium dense and 



58 

Fig. 4 . 8 . Stress-Strain Behaviour of Ottawa Sand in Drained 
Simple Shear. (After Vaid et. al., 1981) 



F i g . 4 .9 T y p i c a l Drained T r i a x i a l T e s t Results on 
Dense Sacramento Ri v e r Sand. 
(a) Pr i n c i p a l Stress Ratio V s A x i a l Strain 
(b) Volumetric Strain Vs A x i a l Strain 

( A f t e r Lee, 1965) 
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dense sands: the volumetric s t r a i n due to shear stresses ( e v ) i s 

n e g l i g i b l y small (Varadarajan, et a l . 1980, Byrne, et a l . 1982) at low 

shear s t r a i n l e v e l s and above t h i s l e v e l i t varies l i n e a r l y with y. This 

means that the p l o t of e y vs y can be i d e a l i s e d as i n F i g . 4.11, 

where yQ i s the shear s t r a i n above which the volumetric s t r a i n due to 

shear stress i s important. It should be noted that the value of v Q 

should be modified for the changes i n mean normal stress according to some 

v a r i a t i o n such as shown i n F i g . 4.10. 

4.4.1 A n a l y t i c a l Formulation 

There are a number of ways of modelling shear-volume coupling. 

One i s to modify the e l a s t i c i t y matrix I) (Appendix I) such that A e x and 

Ae y depend also on shear stress increment ( V e r r u i j t , 1977). But t h i s 

type of approach w i l l give r i s e to an unsymmetrical s t i f f n e s s matrix, 

which unduly complicates the computations. 

A simpler way i s to keep the I) matrix as i t i s and to 

incorporate the volume change the same way as the temperature v a r i a t i o n s 

are analysed i n s t r u c t u r a l mechanics (Zienkiewicz, et a l . 1967; Byrne, 

1979, Byrne, et a l , 1982). This i s accomplished i n the following manner. 

a) The incremental shear st r a i n s i n a l l elements are computed for 

the increment i n load, neglecting shear-volume coupling. 

b) v Q can be estimated for the new mean normal s t r e s s , using F i g . 

4.10, and then Ae y i s computed using equation 4.11. 

c) The v o l u m e t r i c s t r a i n A e v then i s s p l i t i n t o A e x and 

^ f t . Here i t i s assumed that, 
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A e d = Aev = 0*5 Aev* L e t u s d e f i n e a s t r a i n x y v 
T 

v e c t o r Ae such that i t s components are the estimated "0 
d i l a t i o n a l s t r a i n s . Then A e T i s g i v e n by; JAe^, 

~ 0 

Ae y, 0}. 

d) The nodal forces corresponding to this s t r a i n vector Ae^ can be 

computed as, 

/ / / I*?. A lo d v (4.12) 
V 
(see Appendix I) 

Now these forces can be added to the applied incremental load i n 

a) and new s t r a i n s and stresses can be computed. For computing 

incremental stresses, the following equation should be used, 

Aa = D_(Ae - A_eQ) (4.13) 

where, A£ = s t r a i n vector computed for the modified applied 

load. 

e) Now steps b) ->• d) can be ca r r i e d out u n t i l convergence occurs i n 

stress and s t r a i n increments under the applied incremental 

load. 

4.5 INTERFACE REPRESENTATION 

I t may be necessary to allow r e l a t i v e displacement to occur at 

the interface between two f i n i t e elements to model s l i p surfaces i n the 
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f i e l d . S l i p elements, which are sometimes referred to as elements of zero 

thickness, can be used to model t h i s r e l a t i v e displacement. S l i p elements 

can be assumed to be placed along the boundaries between the two-

dimensional elements representing s o i l and s t r u c t u r a l elements or wherever 

i t i s anticipated that r e l a t i v e movements or separation between elements 

may occur. The s l i p i s assumed to occur only along t h i s d i r e c t i o n and 

thi s occurs when the shearing forces i n the s l i p element exceeds the shear 

strength at the i n t e r f a c e . 

Goodman, et a l . (1968) have developed a two-dimensional s l i p 

element with eight degrees of freedom to represent j o i n t and f a u l t 

behaviour i n rock mechanics problems. F i g . 4.12 shows a s l i p element with 

nodes I,J,K and L, i n global and element axes. The forces at any point i n 

a s l i p element are the shear force f„ and the normal force f„ 

expressed per unit area of the element. The force-displacement 

r e l a t i o n s h i p i s assumed to be: 

(4.14) 
n n n 

where K g, K n = j o i n t s t i f f n e s s per unit length i n shear and normal 

d i r e c t i o n s r e s p e c t i v e l y . 

wg, wn = Shear and normal displacement at the point of 

i n t e r e s t . 

The d e f i n i t i o n of unit j o i n t s t i f f n e s s needs c l a r i f i c a t i o n . 

Imagine a d i r e c t shear test being performed along an i n t e r f a c e element of 

unit thickness. At f i r s t , when a normal force i s applied, the element 
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X 

Shear/Normal Displacementa v̂ ,*̂  

Fig. 4.13. Plot of Typical Shear/Normal Stress vs 

Shear/Normal Displacement. 
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shortens as the a s p e r i t i e s i n the j o i n t deform. A t y p i c a l plot of normal 

deformation at the j o i n t and the force applied per unit length i s shown i n 

F i g . 4.13. For a n a l y t i c a l purposes the r e l a t i o n s h i p can be approximated 

to a s t r a i g h t l i n e and the slope i s given by 1^. Similar tests can be 

performed i n the tangential d i r e c t i o n and a plot between f„ and w„ can 

be obtained. The slope of th i s curve w i l l give K„. 

Using the equation 4.14 and also assuming a l i n e a r v a r i a t i o n of 

displacement within the j o i n t element, a s t i f f n e s s matrix K _ can be 
— - o i l 

obtained i n l o c a l or element co-ordinates. This s t i f f n e s s matrix r e l a t e s 

the nodal forces and the nodal displacements. 

The displacement vector here i s simply, 

u T = {u I f V-p U j , v j , u K , v K , u L , v L} 

It has been shown i n Appendix II that K s n i s given by, 

0 K s 0 ~ K s 0 -2KS 0 

2K n 0 0 " K n 0 -2K, 

2 K s 0 " 2 K s 0 " K s 0 

2 K n 0 - 2 * n 0 ~ K n 

2 K s 0 K s 0 

sym 2 K n 0 

2 K s 

Kn 

0 

2 K n 

n 

(4.15) 
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where, L i s the length of the element. 

To get the s t i f f n e s s matrix i n global co-ordinates a simple 

transformation i s used, 

where T= transformation matrix containing d i r e c t i o n cosines and i s 

given by; 

(4.16b) 

i n which, 

cosec sin<* ., . r N PQ = r o o-i (4.16c) 
'--sinoc cos« J o o 

and a = angle of i n c l i n a t i o n of the s l i p element with the 
h o r i z o n t a l . 

Even though t h i s type of formulation does not include r o t a t i o n 

of the element d i r e c t l y , this i s taken into account since a l l 8 d.o.f. 

have been considered. The displacement f i e l d v a r i a t i o n assumed within the 

s l i p element i s consistent with the displacement f i e l d i n an isoparametric 

q u a d r i l a t e r a l f i n i t e element. Furthermore, both elements have the same 

degrees of freedom. Thus e s t a b l i s h i n g a global s t i f f n e s s matrix can be 

evaluated simply t r e a t i n g the s l i p element l i k e any other element. 
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4.5.1 Method of Analysis of S l i p Elements 

I t was assumed tha t the t a n g e n t i a l s t r e s s - d i s p l a c e m e n t 

r e l a t i o n s h i p ( f g vs w g) i n the s l i p element i s e l a s t i c - p e r f e c t l y 

p l a s t i c and the p l a s t i c region where s l i p occurs i s defined by a simple 

Mohr-Coulomb type of y i e l d c r i t e r i o n . For incrementally e l a s t i c 

a n a l y s i s , the values of K„ and K_ should be kept constant u n t i l y i e l d 

occurs. A f t e r the y i e l d , K„ i s set to a very small value. This small 

value can be viewed as the r e s i d u a l shear s t i f f n e s s . The value of K^ 

i s kept at i t s o r i g i n a l value. But, i f the normal force on the element 

i s negative, meaning that the separation of the j o i n t occurs, then the 

v a l u e s K g and IĈ  should be set to a small value. 

To investigate whether y i e l d i n g i s possible or not, the shear 

and normal stress i n the s l i p element should be determined. Since a 

l i n e a r v a r i a t i o n of displacement i s assumed within an element, the shear 

and normal stresses vary from point to point within the element. The 

average incremental values of shear stress A f g and normal stress 

A f n for a load increment can be estimated from equation (4.14) as, 

A f g = K s (Awg) 

and A f n = 1 ^ (Awn) (4.17) 

where Aw. and Aw are i n c r e m e n t a l average shear and normal 
5 XI 

displacement i n the element r e s p e c t i v e l y . 

Now expressions for Aw and Awn are, 
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A w s = < A u t o p > a v e " ( A u b o t t o m > a v e 

= (Au K+Au L)/2 - (Au I+Au J)/2 (4.18) 

and Awn = ( A v t Q p ) a v e - ( A v b o t t o m ) a v e 

= (Av K+Av L)/2 - (A V l+Avj)/2 (4.19) 

From equations 4.17 to 4.19, Af„ and Af_ can now be w r i t t e n 

as, 

A f s = K s [(Au K+Au L)/2 - (Au I+Au J)/2] 

and Af~n = 1^ [(Av K+Av L)/2 - (Av I+Av J)/2] (4.20) 

Tot a l shear and normal stresses f g and f can be obtained by adding up 

the incremental stresses for a l l the load steps. 

Mohr-Coulomb f a i l u r e c r i t e r i o n g i v e s the shear s t r e n g t h 

f m a x i n the element at any time as, 

fmax = c s + f n t a n < (4.21) 

where c and 0 are the cohesion and f r i c t i o n angle required to define s s 

the f a i l u r e c r i t e r i o n . If f m a x i s greater than the absolute value 

of fg then the s l i p element nodes could separate and t h i s i s modelled as 

mentioned above, by reducing the K g to a small r e s i d u a l value. The 

separation of a s l i p element i s indicated by negative f n . 

I t should be noted that a l l c a l c u l a t i o n s for the computation of 

f g and f are performed i n the l o c a l axes. Since the displacements 

from f i n i t e element analysis are given with respect to global axes, they 
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must be transformed to get displacements i n the l o c a l axes by using the 

inverse of the transformation matrix T. 

4.5.2 Factors that Influence J o i n t Parameters 

In the a n a l y t i c a l model presented above, three d i s t i n c t j o i n t 

parameters were introduced. (1) K„, the unit s t i f f n e s s along the 

element. (2) K R, the unit s t i f f n e s s across the element. (3) shear 

strength, f m a x defined by c g and 0 g. These parameters model the 

behaviour of s l i p elements adequately. 

The v a l u e s of K„, K_ and fmav w i l l depend on (1) the 
S I I 111 cL 2v 

surface roughness of the adjacent elements (2) shape and c h a r a c t e r i s t i c s 

of the a s p e r i t i e s , and (3) contact area r a t i o between the j o i n t w a l l s . 

D e t a i l s on how these parameters can be obtained i n the laboratory are 

given by Goodman, et a l . (1968). 

4.6 SELECTION OF SOIL PARAMETERS 

The process of obtaining representative values for s o i l 

properties i s probably one of the d i f f i c u l t tasks i n stress a n a l y s i s . 

It should be emphasized that i n d i v i d u a l estimation of s o i l properties i s 

not important. But the s t r e s s - s t r a i n v a r i a t i o n given by the selected s o i l 

parameters should give the best f i t to the observed laboratory behaviour 

of s o i l samples i n the stress (or st r a i n ) range of i n t e r e s t . 
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4.6.1 Obtaining Shear Stress - S t r a i n Parameters 

Aft e r deciding what drainage condition i s l i k e l y to occur i n the 

f i e l d , a laboratory test can be performed simulating the drainage 

conditions. For example to obtain parameters for an e f f e c t i v e s t r e s s -

s t r a i n r e l a t i o n s h i p , a serie s of drained simple shear tests can be 

performed to obtain plots % vs y for various constant mean normal stress 

l e v e l s . Simple shear tests are i d e a l since the mean normal stress during 

the test remains reasonably constant. A simple, t r i a l and error method 

can be employed to o b t a i n v a l u e s f o r G m o v and that f i t 

these curves i n the stress or s t r a i n ranges of i n t e r e s t . Then knowing the 

stress l e v e l s corresponding to a te s t , the best estimates f o r the 

parameters K Q , C' and 0 ' can be obtained e a s i l y . 

The e f f e c t i v e stresses i n simple shear at the beginning of the 

dr a i n e d l o a d i n g c o n d i t i o n s can be assumed to be o" v o and K Q 

t t 

o " v o . Then the mean n o r m a l s t r e s s a m i s g i v e n by (1+2K D) 

a V Q/3 and t h i s i s i n general assumed to remain constant during the 

t e s t . But i f conventional t r i a x i a l tests are performed on the samples, 

then Ojjj varies as the a x i a l load v a r i e s , and therefore, i t i s not easy 

to obtain these parameters. If t r i a x i a l test data only are a v a i l a b l e then 

again the above procedure can be c a r r i e d out by considering the shear 
i 

stress and the shear s t r a i n on the f a i l u r e plane. However, since o"m 

increases during shearing the shear s t r e s s - s t r a i n curve obtained by th i s 
i 

procedure may be interpreted for a constant average am- The average 
i i 

o"m can be assumed to be the mean of o m , c o r r e s p o n d i n g to the 
beginning and the end of the t e s t . 
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4.6.2 Obtaining Bulk Modulus Parameters 

The tangent bulk modulus B t was assumed to be (equation 

4.8) given by, 

da' a' n 
B^ " ~A = K, P {—) (4.22) t de b a  KV '  v ' vm a 

Integrating t h i s equation one gets, 

f K p (4.23) 
1-n vm b a ' 

taking logarithms both sides, 

(l-n)log(o-' m) = log {K bP^ _ n(l-n)} + log (e f f l) (4.24) 

i . e . , 

l o g ( e v m ) = ( l - n ) l o g ( a ' m ) - log {K bp( 1 _ nh-n)} 

The slope of the p l o t l o g ( e v m ) vs l o g ( a m ) o b t a i n e d 

from drained i s o t r o p i c t r i a x i a l test r e s u l t s w i l l give (1-n), and from 

t h i s n can be determined. Using the value of n, and the inter c e p t on log 

(e.yjjj) axis, can be c a l c u l a t e d . Now knowing the bulk modulus 

parameters, and n, the tangent bulk modulus can be computed at any 

given mean normal s t r e s s . 
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CHAPTER 5 

TWO-DIMENSIONAL DYNAMIC ANALYSIS 

5.1 FORMULATION OF THE PROBLEM 

The general dynamic equilibrium equations for a l i n e a r system at 

any time are given by (Clough and Penzien; 1975), 

[M] {X} + [C] {X} + [K] {X} = {P} (5.1) 

i n which 

{x}, {£}> { x} = column v e c t o r s whose components 

X^, X^, and X^ g i v e the r e l a t i v e a c c e l e r a t i o n , v e l o c i t y and 

displacement with respect to the base motion re s p e c t i v e l y of a node, 

[M] = mass matrix 

[c] = damping matrix 

[K] = s t i f f n e s s matrix 

{p} = i n e r t i a force vector, which i s defined as, -[MJ{l}x b 

where, {i} i s a vector with a l l components unity and X^ i s the base 

a c c e l e r a t i o n . 

In two-dimensional problems the base a c c e l e r a t i o n may have two 

components: h o r i z o n t a l and v e r t i c a l . If the i t ' 1 equation i n (5.1) i s 

w r i t t e n f o r the h o r i z o n t a l d i r e c t i o n t h e n X^ i s the base 

acceleration i n the ho r i z o n t a l d i r e c t i o n , and i f the equation i s for the 
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v e r t i c a l d i r e c t i o n then X^ i s the base ac c e l e r a t i o n i n the v e r t i c a l 

d i r e c t i o n . 

5.1.1 Incremental Eq u i l i b r i u m Equations f o r Non-Linear Systems 

In the analysis of non-linear systems, the material properties 

change with time. An incrementally e l a s t i c approach has been adopted to 

model the non-linear material behaviour. Incremental dynamic equilibrium 

equations for any time i n t e r v a l , At, can be obtained by replacing the 

variables i n equation (5.1) by incremental values. This leads to, 

[M] {AX} + [C] {AX} + [K] {AX} = {AP} (5.2) 

i n which, [M], [C] and [K] are the mass, damping and s t i f f n e s s 

matrices relevant to the time i n t e r v a l f o r which the above equations are 

written. 

It i s always assumed that the mass matrix i s constant. The mass 

matrix can be obtained by two ways: lumped mass method and consistent mass 

method. In the lumped mass method, the mass matrix i s obtained by lumping 

the mass of a f i n i t e element equally at i t s nodes. The consistent mass 

matrix, i s obtained using the same i n t e r p o l a t i o n functions used i n the 

f i n i t e element formulation. The lumped mass matrix i s very simple to 

compute and i t has only diagonal terms, whereas the consistent mass matrix 

i s somewhat harder to compute and has off-diagonal terms. Even though the 

consistent mass method i s more accurate, the presence of off-diagonal 

terms greatly increases the computation time required to solve the dynamic 
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equilibrium equations. For the accuracy l e v e l required i n t y p i c a l 

geotechnical problems, the lumped mass method i s considered appropriate. 

In general, the damping matrix [ c ] and the s t i f f n e s s matrix 

[K] which are introduced i n the incremental equilibrium equation (5.2) 

depend on the d i s t r i b u t i o n of v e l o c i t y and displacement i n the structure. 

Appropriate values for the time i n t e r v a l between any time t and t+At can 

be determined only by an i t e r a t i o n procedure, because the v e l o c i t y and 

displacement at the end of a time increment depend on the i n i t i a l 

s t i f f n e s s and damping values. This type of i t e r a t i v e s o l u t i o n scheme for 

every time step i s very expensive. Therefore, i n practice tangent damping 

and tangent s t i f f n e s s matrices which correspond to time t are used with 

appropriate corrections to the r e s u l t s . It w i l l be explained l a t e r how 

correction forces can be introduced into the so l u t i o n scheme. 

The s t r e s s - s t r a i n law used to determine the tangent s t i f f n e s s 

matrix at time t, [K F C] i s described i n Section 5.2. The [ c ] 

matrix w i l l be assumed to be a constant throughout the dynamic analysis 

and the procedure to evaluate t h i s i s presented i n Section 5.3. With, 

[K] = [ K t ] t 

and 

(5.3) 

[C] = [C] (5.4) 

the dynamic incremental equilibrium equations can be re-written as, 
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[M] {AX} + [C] {AX} + [ K t ] t {AX} = {AP} (5.5) 

When computing response for a random loading h i s t o r y , equations 

(5.5) have to be solved for every time step. During the procedure 

[ K t ] t and {AP} are updated. The step by step i n t e g r a t i o n procedure 

proposed by Newmark (1959) or Wilson's 0-method (Wilson, et a l . 1973) have 

been adopted to integrate the equations. These procedures are described 

i n Appendix I I I . 

5.1.2. Correction Forces 

The n u m e r i c a l i n t e g r a t i o n procedure i s based on three 

s i g n i f i c a n t assumptions: (1) the v a r i a t i o n of acc e l e r a t i o n within a time 

step i s assumed to vary i n some known fashion e.g. l i n e a r or constant (2) 

the damping and s t i f f n e s s properties remain constant during a time step 

and (3) the response at time t + At can be evaluated from the known 

response at time t. In general neither of these assumptions i s e n t i r e l y 

c o r r e c t , even though the errors may be small when the time step i s short. 

If errors accumulate from step to step gross errors and even s o l u t i o n 

i n s t a b i l i t i e s may occur. These problems can be avoided by imposing the 

condition of global equilibrium at each step of the a n a l y s i s . 

The global equilibrium equations at time t i n terms of a l l force 

components are, 



{ f l i t + { f D l t + { fslt = { P l t 
( 5 . 6 ) 

i n w h i c h {^i}t» I^D^t' a n d 

representing i n e r t i a , damping, and 

mass system at any time t and {p}t 

t . 

Since the mass matrix and 

constant during dynamic a n a l y s i s , 

by, 

{ f g } t a r e the column v e c t o r s 

spring forces acting on the d i s c r e t e 

i s the i n e r t i a force vector at time 

the damping matrix were assumed to be 

{ f j } t and {felt a r e simply given 

{ f l i t = [M] ( X } t 

and 

( 5 . 7 ) 

{ f D } t = [C] {X} t ( 5 . 8 ) 

The spring forces {^slt» c a n ^ e computed by expressing 

element stresses i n terms of nodal forces, applied at the nodes of the 

elements. The nodal forces that correspond to the dynamic stresses 

i n an element {f^elem* ^ r o m Appendix I are, 

i n which _B i s the matrix that r e l a t e s s t r a i n to nodal displacements. In 

t h i s manner nodal forces for a l l the f i n i t e elements can be computed and 
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the vector sum of a l l these nodal forces w i l l give the global vector 

{ f S } f 

If the solutions obtained at time t are accurate then the ri g h t 

and l e f t hand sides of the equation (5.6) w i l l be i d e n t i c a l . But, i n 

general i t w i l l not be so. The corr e c t i o n force vector { p
c o r r} 

i s given by, 

( Pcorr} = l p } t " { f l l t " { f
D } t " { f s k <5-10) 

From equations (5.6) to (5.9), equation (5.10) can be re-written as, 

{ Pcorr> - ^ t " M W t - [C] {*} - J /// B C O j dv 
a l l elements (5.11) 

To impose equilibrium, the corr e c t i o n force vector { P C O r r ^ c a n ^ e 

added to the incremental equilibrium equations formulated at time t . This 

i s accomplished by adding { p
c o r r} to the rig h t hand side of the 

equation (5.5). 

5.2 DYNAMIC STRESS-STRAIN RELATIONSHIP 

In the proposed incrementally e l a s t i c analysis i n the time 

domain, the tangent shear modulus G t and tangent bulk modulus B t were 

selected as the two " e l a s t i c parameters". Some reasons for s e l e c t i n g G t 

and B t for s t a t i c analysis were presented i n Chapter 4 . There i s a 

further very important reason for adopting these parameters i n the dynamic 
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a n a l y s i s . In dynamic an a l y s i s , the moduli have to be changed for every 

time step. 

This means that the element s t i f f n e s s matrix has to be re-formulated each 

time. This time consuming procedure can be s i m p l i f i e d somewhat i f G t 

and B t are used as the " e l a s t i c " constants. 

The e l a s t i c i t y matrix D_ (Appendix I) under plane s t r a i n 

conditions, i s given by, 

D = 

B t + 3 G t 

B t " 3 G t 
0 

= B. 1 
0 

1 
0 

B t - 3 G t 

B t + 3 G t 

0 
0 

+ G. 

0 
G 

4. 
3 

-2 
3 
0 

-2 
3 
4. 
3 
0 

(5.12) 

(5.13) 

B t % + Gt*2 (5.14) 

where and Q 2 are two constant matrices. 

From the formulation of s t i f f n e s s matrix presented i n Appendix 

I, the element s t i f f n e s s matrix i s , 

k = J / / B D B dv 
V 

(5.15) 

Now s u b s t i t u t i n g for D from (5.14) the equation (5.15) can be rewritten 

as, 
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k. = B J / J ̂  £ B_ dv + G /// B 1 L B dv (5.16) 
V V 

i . e . 

kfc - B t Rx + G t R2 ( 5 > 1 7 ) 

where 

R != / / / I * £L B dv 
V x 

(5.18) 

(5.19) 

The constant matricies R̂  and R^ have to be computed only once. 

The current l c t matrix may now be obtained by multi p l y i n g the constant 

matrices R, and R 9 by the current values of B t and G t. 

5.2.1 Volume Change Behaviour 

With regards to volume change behaviour during dynamic loading, 

the s o i l deposits can be divided into two basic groups. The f i r s t group 

includes s o i l s which can undergo volume changes under the load increments 

induced by the base e x c i t a t i o n and the second group includes s o i l s which 

cannot. 

Saturated gravels and dry deposits belong to the f i r s t group of 

s o i l s . R e c a l l equation (4.8) which re l a t e s B,. to a', 
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nun 
3 J 

(5.20) 

This equation may be used to compute B t. This means that B t has 

to be modified for every time step. However, i t i s known that the changes 

i n mean normal stresses i n the s o i l elements, due to seismic e x c i t a t i o n i s 

small and furthermore the volume change behaviour does not influence the 

response of s o i l structures s i g n i f i c a n t l y . Therefore, f o r s i m p l i c i t y , 

B t may be kept constant throughout the dynamic a n a l y s i s . An average 

B t for elements can be evaluated based on i n - s i t u mean normal stresses 

using equation (5.20). This i s because the load pulses during seismic 

loading induce stresses such that t h e i r mean values are i n i t i a l i n - s i t u 
i 

stresses. It should be noted here that even i f the changes i n a m 

are considered, f o r t y p i c a l values of n the changes i n B t w i l l be 

small. 

Laboratory r e s u l t s have revealed that, as p l a s t i c volume changes 

occur during c y c l i c loading, the s o i l samples harden leading to higher 

bulk modulus. This increase i n bulk modulus due to s t r a i n hardening 

e f f e c t can be modelled the same way as the increase i n maximum shear 

modulus was modelled by Finn, et a l . (1977). This was accomplished by 

introducing hardening constants (equation 3.14). 

Loose saturated, sandy s o i l s and saturated clays belong to the 

second group of s o i l s . In saturated s o i l s volume change can occur only by 

porewater drainage. Within the short duration of t y p i c a l seismic 

e x c i t a t i o n , the occurrence of a p p r e c i a b l e amount of drainage i s 

questionable i n s o i l s of low permeability. In view of t h i s , the dynamic 

analysis proposed here assumes that no drainage occurs during the dynamic 
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loading. In saturated gravels appreciable r e s i d u a l porewater pressure 

does not develop because of i t s high permeability. 

For the second type of s o i l s , to simulate the condition of no 

volume change, the bulk modulus i s set to a very high value during dynamic 

loading conditions. 

5.2.2 Dynamic Shear S t r e s s - S t r a i n Behaviour 

In the formulation of a complete dynamic e f f e c t i v e s t r e s s - s t r a i n 

r e l a t i o n s h i p the following basic aspects should be considered; 

1) s o i l behaviour under i n i t i a l loading, unloading and reloading 

phases. 

2) r e s i d u a l porewater pressure generation and i t s e f f e c t s . 

5.2.2.1 Skeleton Curve f o r Dynamic Loading 

Under dynamic loading conditions the r e l a t i o n s h i p between 

dynamic (or c y c l i c ) shear stress, % c > and dynamic shear s t r a i n , y c» I s 

assumed to be hyperbolic. The hyperbolic r e l a t i o n s h i p (equation 4.1) i s 

defined by G m a x and - c m a x . 

Seed et. a l , (1970) proposed that maximum shear modulus, 

^max ^ o r s a n d y s o i l s i s a function of e f f e c t i v e mean normal stress 

only, and given by, 

(5.21) 
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i n which, ( K 2 ) m a x i s a constant which depends on the r e l a t i v e 

density for a given s o i l . Seed et. a l , suggested that for sands 

( K 2 ) m a x varies between 20 and 100. 

Hardin et. a l , (1972) suggested that the ultimate shear strength 

Tmax c a n ^ e calculated using i n s i t u e f f e c t i v e stresses and s t a t i c 

shear strength parameters such as c' and 0' (equation 4.7). They pointed 

out that for the l e v e l of dynamic s t r a i n (y c<l%) induced by seismic 

l o a d i n g , the h y p e r b o l i c c u r v e i n terms of s t a t i c T M O V i s 
in ci x 

s a t i s f a c t o r y for dynamic loading. 

Unlike dynamic analyses i n one-dimension, an i n i t i a l s t a t i c 

shear stress, T G , i s present i n the analyses i n two-dimensions. The 

presence of i s causes the a v a i l a b l e shear strength to be d i f f e r e n t , 
depending on the d i r e c t i o n of shearing. A t y p i c a l r e l a t i o n s h i p between 

% c and Y c I s shown i n F i g . 5.1. The a v a i l a b l e shear strength i n the 

d i r e c t i o n of i n i t i a l s t a t i c shear stress i s ( T . „ - T„) and i n the 
mcix s 

opposite d i r e c t i o n i t i s ( x m a x + x g ) • 

In dynamic an a l y s i s , the current practice i s to neglect the 

influence of x g on a v a i l a b l e shear strength and to assume that the % c 

vs y c r e l a t i o n s h i p i s symmetrical about both xQ and Y C axes. 

5.2.2.2. Unloading and Reloading 

A l l the basic assumptions used to model unloading and reloading 

phases i n Chapter 3 are also adopted for dynamic analyses. However, the 

equations have been modified to r e f l e c t the e f f e c t of s t a t i c shear on 

a v a i l a b l e shear strength. For example the equation for the unloading 

curve KL from K i n F i g . 5.2 i s given by, 
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Fig. 5.1. Dynamic Shear Stress-Strain Relationship: 

Skeleton Curve. 

Fig. 5.2. Dynamic Shear Stress-Strain Relationship: 

Unloading and Reloading. 
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u t K ; i + G 
max Y-Y K|/ maxl (5.22a) 

where t m a x i = T
m a x + T s » a n d '''K a n d ^YL a r e t n e dynamic 

shear stress and s t r a i n corresponding to reversal point K. 

The equation for the reloading curve LM, i s given by, 

( T " T L } = 1 + G 
Gmax (? - V 

max IY 
(5.22b) 

max2 

where T M A X 2 = T M A X - -c s , and T l , y L
 a r e t h e d y n a m i c 

shear stress and s t r a i n corresponding to rever s a l point L. 

5.2.3. Modelling the E f f e c t s of Residual Porewater Pressure 

One of the important factors i n seismic response studies of s o i l 

deposits comprised of saturated cohesionless materials i s the influence of 

re s i d u a l porewater pressure generation. The presence of r e s i d u a l 

porewater pressure reduces the resistance to deformation. 

The presence of i n i t i a l s t a t i c shear s t r e s s , T , a f f e c t s the 
s 

generation of r e s i d u a l porewater pressure i n loose saturated sands 

s i g n i f i c a n t l y (Finn, et a l . 1978b, Vaid, et a l . 1979). The porewater 

pressure model developed by Martin, et a l . (1975), does not account f o r 

x g. The porewater pressure model adopted here i s an extension of the 

model of Martin, et a l . (1975) to account for the e f f e c t s of x g . 
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5.2.3.1 The Behaviour of Samples with Ts_ 

The o r i g i n a l procedure that accounts for the presence of x 
s 

was presented by Seed and Lee (1969). They hypothesized that the 

behaviour of an element i n the f i e l d with an i n i t i a l s t a t i c stress r a t i o , 

x/a' = oc r and subjected to a shear stress h i s t o r y on i t s f a i l u r e plane 

i s i d e n t i c a l to the behaviour of a representative laboratory sample 

consolidated such that i t has the same i n i t i a l stress r a t i o <*r on i t s 

f a i l u r e plane and i s subjected to the same shear stress h i s t o r y . In the 

f i e l d , for t y p i c a l s o i l structures, the f a i l u r e plane f o r earthquake 

e x c i t a t i o n can be assumed to be the hori z o n t a l plane (Seed, et a l . 1973). 

Then the f i e l d s t r e s s r a t i o i s simply « r = T s / o * y 0 , i n which 

O y 0 i s the i n i t i a l v e r t i c a l e f f e c t i v e s t r e s s . I f simple shear 
equipment i s used to test representative samples then the i n i t i a l 

v e r t i c a l and shear load can be applied such that the proper r a t i o « r = 

t /o' i s present on the ho r i z o n t a l plane. However i f t r i a x i a l s y *J 

a p p a r a t u s i s u s e d , t h e a x i a l a[c and r a d i a l p r e s s u r e s 0*3 

should be such that the i n i t i a l e f f e c t i v e stress r a t i o on a plane 

(45+0'/2) to the h o r i z o n t a l ( f a i l u r e plane) has the same r a t i o < r r . 

It can be deduced from the above hypothesis of Seed and Lee 

(1969), that the behaviour of h o r i z o n t a l l y layered deposits can be 

interpreted from i s o t r o p i c a l l y consolidated t r i a x i a l (ICT) t e s t s . 

A n i s o t r o p i c a l l y consolidated t r i a x i a l (ACT) tests have to be used i f 

Comprehensive laboratory r e s u l t s are ava i l a b l e on the behaviour of 

c y c l i c t r i a x i a l samples under various consolidation conditions. On the 

contrary, only very l i m i t e d simple shear test data are a v a i l a b l e . This i s 
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e s p e c i a l l y true when x g * 0. Therefore, i n this section only t r i a x i a l 

test data are used to explain the diff e r e n c e i n behaviour of samples, with 

and without T g on the f a i l u r e plane. 

A number of researchers have studied the behaviour of s o i l 

samples subjected to ICT tests and ACT tests (Seed, et a l , 1969; Finn, et 

a l . 1978b; and S e l i g , et a l . 1981). There are a number of basic 

differences between the behaviour of samples subjected to ICT tests and 

ACT t e s t s . 

In t y p i c a l c y c l i c t r i a x i a l tests on saturated cohesionless s o i l s 

the porewater pressure and a x i a l s t r a i n s develop with increasing number of 

d e v i a t o r i c load c y c l e s . The porewater pressure (U t) recorded at any 

time i s the sum of r e s i d u a l porewater (or permanent) pressure (U) and the 

c y c l i c (or transient) porewater pressure (U c) • The c y c l i c porewater 

pressure i s an instantaneous increment of porewater pressure which i s a 

function of current changes i n the mean normal and shear stresses and the 

r e s i d u a l value i s the porewater pressure due to p l a s t i c deformation. The 

r e s i d u a l porewater pressure may be recorded when the applied c y c l i c load 

i s zero. The t o t a l porewater pressure i s then given by ( F i g . 5.3), 

U t = U + U c (5.23a) 

S i m i l a r l y , the t o t a l a x i a l s t r a i n at any time also can be separated into 

e l a s t i c and r e s i d u a l or p l a s t i c components, 
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Fig. 5.3. Permanent and Cyclic Strains or Permanent 

and Cyclic Pore Pressure. 
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Fig. 5.4. Cyclic and Residual Behaviour of Pore Pressure 

and Axial Strain for ICT and ACT Tests (after 

Selig, et. al, 1981). 
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e t = e p
+ e c (5.23b) 

Results of an ICT test and an ACT test are presented i n 

F i g . 5.4 to i l l u s t r a t e the differences i n behaviour between these two 

tests ( S e l i g , et a l . 1981). Two samples of Ossterschelde sand with 

i n i t i a l porosity of about 41.5% were consolidated i s o t r o p i c a l l y (sample a) 

and a n i s o t r o p i c a l l y (sample b). The c y c l i c d e v i a t o r i c stress for sample 

(a) was 0.3 kg/cm2 and for sample (b) was 0.45 kg/cm 2. The a x i a l s t r a i n 

and porewater pressure response of these two tests are shown over 200 

cycles of s t r e s s . 

The a x i a l s t r a i n record shown i n Fig.5.4 for the ICT test i s 

almost symmetrical about the X axis and the average value of e t a small 

value. The peak values of a x i a l s t r a i n occurs when the applied d e v i a t o r i c 

load i s maximum. This means that the peak values are the c y c l i c 

components of the a x i a l s t r a i n . The residual or permanent component of 

the a x i a l s t r a i n i s small. The c y c l i c component remained r e l a t i v e l y small 

u n t i l the r e s i d u a l porewater pressure developed to about 60% of the 

c onsolidation pressure and thereafter increased r a p i d l y . At the end of 

the test, when the applied load was zero, the a x i a l s t r a i n was found to be 

small. However, i n the ACT t e s t , the mean a x i a l s t r a i n increased with 

number of cycles of loading and at the end of the test the a x i a l s t r a i n 

was quite large. The r e s i d u a l or permanent s t r a i n i n t h i s test increased 

with number of cycles while the c y c l i c s t r a i n remained r e l a t i v e l y small. 

In the ICT t e s t , the porewater pressure increased more r a p i d l y 

than for the ACT test ( F i g . 5.4b). Aft e r about 150 cycles of loading, the 

porewater pressure r a t i o (U/a^) for the ICT test r a p i d l y approached 

100%, while the r a t i o for ACT test approached a l i m i t i n g value. 
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The c y c l i c porewater pressures vary depending on the magnitude 

of d e v i a t o r i c s t r e s s . The d e v i a t o r i c load plays two r o l e s . F i r s t l y , the 

increase i n d e v i a t o r i c load r e s u l t s i n an increase i n porewater pressure. 

Secondly the d e v i a t o r i c load causes shear stress on the f a i l u r e plane, 

which may cause d i l a t i o n of the sample. This w i l l lead to a drop i n 

porewater pressure. Therefore, the sum of these two e f f e c t s w i l l give the 

net c y c l i c component of the pressure. I t i s accepted that the behaviour 

of saturated sands are not s i g n i f i c a n t l y affected by the c y c l i c porewater 

pressure, U c. Only r e s i d u a l porewater pressure a f f e c t s the behaviour of 

saturated sands s i g n i f i c a n t l y . 

It i s easy to understand the difference i n behaviour between ICT 

tests and ACT tests with regards to the l i m i t of porewater pressure 

generation i f both are compared i n e f f e c t i v e stress space, such as a q, p' 

pl o t , where q i s the p r i n c i p l e stress difference given by (o^ - o"3) and p' 

i s given by ( a | + a-j)/2. Points L and M i n F i g . 5.5 represent the 

i n i t i a l stress state i n the (q,p*) plot for the ICT and ACT t e s t s . As the 

r e s i d u a l porewater pressure increases, the e f f e c t i v e stress state at any 

time, when no d e v i a t o r i c load i s present i n the t r i a x i a l sample, i s given 

by, 

o{ = a f c - U (5.24a) 

0-3 = a 3 c - U (5.24b) 

then the corresponding p' and q are given by, 

a! + ol al + al , 1 3 l c 3c 
P 2 2 " (5.25a) 



F i g . 5.5. q vs p Plot for ICT and A C T Tests . 
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and 

q = a{c - o$c (5.25b) 

This means that i f the e f f e c t i v e s tress paths are p l o t t e d for 

both tests when the appl ied d e v i a t o r i c load i s zero they w i l l be p a r a l l e l 

to the p' axis and w i l l move towards the f a i l u r e l i n e . If a number of 

load cycles of s u f f i c i e n t l y high c y c l i c s tress r a t i o are a p p l i e d , the 

e f f ec t ive s tress path may move very c lose to the f a i l u r e envelope. I f 

further load increments are a p p l i e d , the sample w i l l behave such that 

s tress states above OA and below OB cannot occur . This means that maximum 

r e s i d u a l porewater pressure values recorded w i l l be such that the 

e f f e c t i v e s tress path w i l l be on the f a i l u r e l i n e . Therefore , the maximum 

r e s i d u a l porewater pressure for any ACT test i s b 2 and for any ICT test i t 

i s &2 ( F i g . 5 .5 ) . Using simple geometric p r i n c i p l e s i t can be shown that 

(Chern, 1981; Chang, 1982), 

al 
U = b = " J 2 " {l + K - (K - l ) / s in0 * } , . max 2 2 1 c c ' (5.26) 

where K c i s the a n i s o t r o p i c conso l ida t ion r a t i o defined as K c = 

a ' l c / 0 3 c * When K c = 1 ( i . e . ICT t e s t ) U m a x i s s i m p l y 

g iven by c r ^ . 

It should be noted that the ACT test reported here does not 

experience r e v e r s a l of shear stresses at any time. I f the t o t a l s tress 

path i s below the p o s i t i v e q axis then rever sa l i n shear s t ress occurs . 

It i s easy to show that r ever sa l w i l l occur i f , 
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°-dy > °3c <Kc ~ 1) (5.27) 

Finn and Byrne (1976) have shown that stress r e v e r s a l i s required i f a 

condition of i n i t i a l l i q u e f a c t i o n i s to be achieved i n anisotropic t e s t s . 

However, whether there i s r e v e r s a l or not, the a n i s o t r o p i c a l l y 

consolidated samples s t r a i n progressively during c y c l i c loading i n 

contrast to i s o t r o p i c a l l y consolidated samples. 

The rate of porewater pressure development i n a given sample 

subjected to c y c l i c loading i n a t r i a x i a l apparatus i s mainly governed by 

r e l a t i v e density, consolidation pressures, and applied c y c l i c stress 

r a t i o , °'dy/'2a,3c* compare the porewater pressure development 

c h a r a c t e r i s t i c s of an ACT test and an ICT t e s t , the tests have to be 

performed under s i m i l a r conditions. Finn, et a l , (1978b) presented a plot 

of the porewater pre s s u r e r a t i o U m/cr3 c vs N /N 5 0 ( F i g . 5 . 6 ) i n 

which U m i s the maximum porewater pressure recorded at any time during a 

cycle, N i s the number load cycles and N^Q i s the number of cycles to 

cause the porewater pressure r a t i o of 50%. The figure c l e a r l y shows that 

the rate of porewater pressure development i s d i f f e r e n t i n ACT and ICT 

t e s t s . The i n t e r p r e t a t i o n of these test r e s u l t s should be done with care, 

since N^Q i s also a function of K C . 

In presenting laboratory r e s u l t s on dynamic properties of 

s a t u r a t e d c o h e s i o n l e s s s o i l samples i t i s customary to p r o v i d e 

l i q u e f a c t i o n p o t e n t i a l curves. These curves are a plot of c y c l i c stress 

r a t i o °'dy/2o'l3c versus number of cycles to l i q u e f a c t i o n , N^. As 

explained above, i n some ACT tests i t i s not possible to reach 

l i q u e f a c t i o n defined as U/o^ c = i . Therefore, the d e f i n i t i o n of 
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Fig. 5.7. Strength Curves for (a) Ekofisk Sand with 

Dr = 85%; (b) Sand with Dr = 77% (after 

Rahman et. al, 1977). 
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has to be changed to cycles to cause U = U m a x
 o r cycles to 

cause some s p e c i f i e d s t r a i n (Seed, et a l . 1969). Often i n p r a c t i c e double 

amplitude a x i a l s t r a i n (peak to peak) of 5% i s used. I t can be seen from 

F i g . 5.4 that for the ICT t e s t , a single amplitude s t r a i n of 2 1 / 2 % i s 

equivalent to 5% double amplitude. This i s because the a x i a l s t r a i n 

record i s f a i r l y symmetrical about the X a x i s . However, th i s i s not true 

i n ACT t e s t s . Therefore, i n presenting l i q u e f a c t i o n p o t e n t i a l curves for 

ACT tests i t may be necessary to define as number of cycles for some 

maximum single amplitude s t r a i n or double amplitude or the condition where 

U = U m a x « T y p i c a l plots of l i q u e f a c t i o n p o t e n t i a l curves for two 

dense samples with and without x g are given i n F i g . 5.7 (Rahman, et a l . 

1977). Two observations can be made from these f i g u r e s . F i r s t l y , the 

l i q u e f a c t i o n p o t e n t i a l curves are very s i m i l a r i n shape. Secondly, the 

curves for ACT tests are above the curves for ICT test i n d i c a t i n g higher 

resistance when t g i s present. However, the second conclusion may not 

be true for loose samples (Vaid, et a l . 1979). 

In presenting the differences between samples with and without 

T„, only t r i a x i a l r e s u l t s were used. Vaid, et a l . (1979) c a r r i e d out a s 

number of simple shear tests with and without % . The conclusions drawn 

by th e i r i n v e s t i g a t i o n and r e s u l t s reported by Seed, (Seed, 1983) are also 

very s i m i l a r to those presented above. 

5.2.3.2 Residual Porewater Pressure Generation Model 

The porewater pressure model proposed by Martin, et a l . (1975) was 

modified to include the e f f e c t s of t g . With regards to generation of 
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porewater pressure, i t has been documented i n the preceeding section that 

the presence of T g , has three basic e f f e c t s . They are: the p o s i t i o n of 

the l i q u e f a c t i o n p o t e n t i a l curve i s a l t e r e d , there i s a l i m i t to the 

amount of r e s i d u a l porewater pressure, and i t s rate of generation i s 

d i f f e r e n t when x * 0. The attempts made to account for these e f f e c t s s 

i n the porewater pressure generation model are presented i n t h i s s e c t i o n . 

Recall the equation (3.5) which relates the incremental volumetric 

s t r a i n to c y c l i c shear s t r a i n amplitude, 

Ae , = C. ( y - C 0 e .) + . r — (5.28) vd 1 ' 2 vd Y + C / £ J 

' 4 vd 

In one-dimensional response a n a l y s i s only shear s t r a i n 

components are present. But i n an analysis i n two-dimensions, v e r t i c a l 

and horizontal s t r a i n s also occur. However, i f i t i s assumed that only 

the c y c l i c component of shear s t r a i n y X y contributes to A e v d , then 

the equation (5.28) can s t i l l be used. This assumption i s quite 

reasonable since the major s t r a i n that occurs during seismic e x c i t a t i o n i n 

t y p i c a l s o i l structures which have adequate s t a t i c f actor of safety i s 

shear s t r a i n ( S e r f f , et a l . 1976), and furthermore, only c y c l i c components 

of shear s t r a i n are responsible for grain s l i p . 

Based on a number of shaking table t e s t s , Pyke, et a l . (1975), 

showed that a l l three components of acceleration contribute to volumetric 

s t r a i n . A n a l y t i c a l studies by Seed, et a l . (1975) have also revealed that 

under m u l t i - d i r e c t i o n a l shaking porewater pressures b u i l d up f a s t e r than 

under u n i d i r e c t i o n a l stress conditions, and that the shear stress r a t i o 

T d ^ a v o t o cause l i q u e f a c t i o n under m u l t i - d i r e c t i o n a l shaking 
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conditions i s about 10% le s s than that required under u n i d i r e c t i o n a l 

shaking c o n d i t i o n s . They suggested r e d u c i n g the s t r e s s r a t i o 

Td/'o"vo obtained from simple shear test r e s u l t s by about 10% to 

account for this e f f e c t . 

A two-dimensional dynamic analysis can account only for the 

hor i z o n t a l and the v e r t i c a l components of a c c e l e r a t i o n which act on the 

plane of the s o i l s tructure. The e f f e c t s of the t h i r d a c c e l e r a t i o n 

component can be accounted for by modifying either the incremental 

v o l u m e t r i c s t r a i n A e V £ j or the dynamic s h e a r s t r e s s r a t i o 

V 0 v o -

The porewater pressure model of Martin, et a l . (1975) was modified 

such that the l i q u e f a c t i o n resistance curve and the generation rate of the 

porewater pressure matches the behaviour observed i n the laboratory sample 

with a given x
s / a y 0 ' Here the l i q u e f a c t i o n resistance curve i s 

obtained by de f i n i n g as number of cycles required to reach the 

c o n d i t i o n of r e s i d u a l porewater pr e s s u r e U = U ^, where TJ „ 
r r max' max 

i s given by equation 5.26. 

R e c a l l the equation for E , 

(1-m) 
E = , , rn-m r mK (a ) r vo 

(5.29) 

The term K r i n equation (5.29) and constants C± through may be 

adjusted to model the laboratory behaviour. A proposed t r i a l and error 

procedure to accomplish t h i s has been outlined i n Chapter 3. It i s 

worthwhile noting that the l i q u e f a c t i o n p o t e n t i a l curves generated for 

various K r values are also very s i m i l a r i n shape to the curves obtained 



98 

for various T /tr^ r a t i o s i n the laboratory. This indicates that 

a reasonable matching of these curves i s possible. 

In the computation of E"r u s i n g e q u a t i o n (5.29), a y Q 

and 0 ^ are s u b s t i t u t e d f o r a y o and r e s p e c t i v e l y . Here 

O y 0 and Oy are i n i t i a l v e r t i c a l e f f e c t i v e s t r e s s and c u r r e n t 

v e r t i c a l e f f e c t i v e s t r e s s r e s p e c t i v e l y . o"yD i s known from the 

s t a t i c analysis performed before the dynamic a n a l y s i s . o"y i s obtained 

by computing current e f f e c t i v e stresses. 

R e c a l l equation (4.9), 

{P} = [ K j {A} + [K*] {U} (5.30) 

This equation can be used to obtain the response of the deposit to 

increases i n r e s i d u a l porewater pressures by s e t t i n g {p} = {o}. The 

porewater pressure matrix {u} i s formed from the r e s i d u a l porewater 

pressures i n the elements, as i n the case of s t a t i c a n a l y s i s . The 

incremental displacements, stresses and s t r a i n s given by adopting t h i s 

procedure i s the response of the deposit to softening .of the elements. 

Furthermore, these incremental st r a i n s can also be viewed as permanent 

components of the s t r a i n s . The current e f f e c t i v e stress system can now be 

used to modify G m a x and x m a x v a l u e s , and the dynamic a n a l y s i s 

can be continued with a hyperbolic s t r e s s - s t r a i n r e l a t i o n s h i p compatible 

with the current e f f e c t i v e stress system. 

There i s a l i m i t to the amount of r e s i d u a l porewater pressure 

that can be achieved i n a t r i a x i a l apparatus. This i s easy to estimate, 

because the ultimate stress state of a sample has to be on the Mohr 
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envelope and i n a t r i a x i a l apparatus the e f f e c t i v e stress path followed by 

the sample i s pr e d i c t a b l e . However, i n two-dimensional analysis the 

e f f e c t i v e stress path followed by an element cannot be predicted before 

hand, and therefore the maximum res i d u a l porewater pressure that can be 

developed cannot be known before the dynamic loading. The procedure used 

to calculate e f f e c t i v e stresses can be used to impose l i m i t s on the amount 

of r e s i d u a l porewater pressure. This can be accomplished by allowing 

porewater pressure generation to occur during dynamic loading only u n t i l 

the Mohr c i r c l e drawn for the current e f f e c t i v e stress system touches the 

Mohr envelope. 

5.3 DAMPING MATRIX [ c ] 

Two fundamentally d i f f e r e n t damping phenomena are associated 

with s o i l s , namely material damping and r a d i a t i o n damping. The material 

damping can be viewed as a measure of energy d i s s i p a t i o n when waves t r a v e l 

through s o i l s . The loss of energy due to waves t r a v e l l i n g away from the 

region of i n t e r e s t i s known as r a d i a t i o n damping. 

The material damping can be divided broadly into two groups: 

viscous and h y s t e r e t i c damping. The energy d i s s i p a t i o n i n viscous damping 

depends on the v e l o c i t y of motion or s t r a i n rate and i t i s frequency 

dependent. Whereas h y s t e r e t i c damping involves f r i c t i o n a l loss of energy 

that i s l a r g e l y independent of frequency but depends on the magnitude of 

displacement or s t r a i n . Laboratory tests on s o i l samples have shown that 

most of the energy d i s s i p a t i o n i n s o i l s occurs through i n t e r n a l f r i c t i o n 

which i s h y s t e r e t i c . When modelling the non-linear behaviour of s o i l by 

an incrementally e l a s t i c approach, the e f f e c t of h y s t e r e t i c damping has 
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been included already i n the a n a l y s i s . Viscous damping i s s t i l l needed to 

take into account the e f f e c t of flow of water ins i d e the s o i l s t r u c t u r e . 

Furthermore, a small amount of viscous damping i s necessary to co n t r o l 

pseudo high frequency response introduced by the numerical i n t e g r a t i o n 

procedure. 

The damping due to viscous e f f e c t s can be accounted f o r through the 

use of Rayleigh damping. The damping matrix [c] i s given by a l i n e a r 

combination of [M] and [K] g i v i n g , 

[C] = a [M] + b [ K ] (5.31) 

i n which a and b are constants. 

The s t i f f n e s s matrix [K] varies with time during the dynamic 

analysis and therefore [c] would have to be computed for every time step. 

But knowing that the amount of viscous damping i s very small compared to 

hysteretic damping, the time consuming procedure of computing [c] at a l l 

time steps may be unnecessary. Therefore, [c] i s assumed to be a constant 

and can be evaluated using the tangent s t i f f n e s s matrix [K T] at time 

t=0. Then, 

[C] = a [ M ] + b [ K T ] T = 0 (5.32) 

This w i l l give a damping r a t i o X for the nth mode as, 

bo) 

n 2(JO 2 n 
(5.33) 
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where the i s the nth mode frequency. Equation ( 5 .33 ) shows that the 

mass-proportional component of the damping i s inversely proportional to 

the frequency while the s t i f f n e s s proportional component i s d i r e c t l y 

proportional to the frequency. 

Lee (1975) proposed that only s t i f f n e s s - p r o p o r t i o n a l damping 

should be used and suggested using, 

a = 0 and b = 0.005 (5 .34 ) 

In s u b s t i t u t i n g these values f o r a and b i n ( 5 .33 ) one gets, 

X n = 0.0025u> n ( 5 . 3 5 ) 

I t should be remembered that i n t y p i c a l s o i l structures only 

lower modes of v i b r a t i o n govern the response, and therefore, i t i s 

unnecessary to include higher mode components. The equation ( 5 . 35 ) 

implies that the damping r a t i o increases l i n e a r l y with the frequency. 

Therefore, the response due to high frequency components of the input 

motion w i l l be damped out s i g n i f i c a n t l y . This i s one of the advantages of 

using s t i f f n e s s proportional damping r a t i o s for s o i l s . From the equation 

(5 .35 ) the damping r a t i o at the fundamental frequency i s given by, 

\ L = 0 . 0 0 2 5 W l ( 5 . 36 ) 

Typical periods of v i b r a t i o n of s o i l structures may vary between 0 .5 to 

1.5 sec. This means that the t y p i c a l damping r a t i o for the fundamental 

mode at the s t a r t of the dynamic loading varies between 1% - 3%. 
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The average s t i f f n e s s of a s o i l structure during dynamic loading i s 

less than the s t i f f n e s s at the s t a r t of the dynamic loading. Therefore, 

when u s i n g the damping m a t r i x [c] computed u s i n g [ K ] t = 0 , the 

e f f e c t i v e damping r a t i o may be higher than the range shown above. 

5 . 4 BOUNDARY CONDITIONS 

A p p r o p r i a t e boundary c o n d i t i o n s i n terms of f o r c e s or 

displacements have to be s p e c i f i e d at a l l boundaries. 

In the dynamic analyses involving earthquake e x c i t a t i o n , two 

types of bottom boundary conditions are often used: 

1. A f i x e d bottom boundary located at the top of a r i g i d l a y e r . In 

general, base rock or a s t i f f s o i l layer can be assumed to be 

r i g i d . 

2. A bottom boundary located at the top of a s o i l layer or soft 

rock with constant e l a s t i c properties. This type of boundary i s 

generally known as transmitting boundary. 

For both the above boundary conditions the earthquake motion i s 

s p e c i f i e d at the bottom boundary. If the second type of bottom boundary 

conditions i s used, the domain of i n t e r e s t need not be extended down to a 

r i g i d l a y e r . This procedure reduces the number of degrees of freedom 

leading to a reduction i n computational costs. In the method of analysis 

presented here only the f i r s t type of boundary condition i s considered. 

Three types of l a t e r a l boundary conditions are commonly used i n 

two-dimensional dynamic problems, involving f i n i t e element procedures: 
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1) boundaries are located s u f f i c i e n t l y far away from a structure so 

that wave r e f l e c t i o n does not occur during analysis or i s 

minimized. On these boundaries, forces, displacements or a 

combination of forces and displacements can be s p e c i f i e d . 

2) viscous boundaries are used which attempt to absorb the 

ra d i a t i n g waves by a series of dashpots and springs with 

constant or va r i a b l e properties (Lysmer and Kuhlemeyer; 1969) 

3) consistent boundaries can be provided close to the foundation of 

structures. These boundaries attempt to reproduce the far f i e l d 

response i n a way consistent with the f i n i t e element formulation 

used to model the dynamic problem. This i s accomplished by 

formulating a frequency dependent boundary s t i f f n e s s matrix 

which can be obtained by solving the e l a s t i c wave propagation 

problem i n a layered half-space (Lysmer and Wass; 1972). 

Of the three types of l a t e r a l boundaries, the analysis with the 

consistent boundaries i s by far superior to the others with respect to 

accuracy. In the analysis with consistent boundaries, only a small region 

needs to be considered, thus reducing the number of degrees of freedom. 

But unfortunately, the formulation i s s t r i c t l y applicable only to l i n e a r 

(or i t e r a t i v e l i n e a r ) problems and for solutions i n the frequency domain 

only. 

The l a t e r a l boundaries i n an incrementally e l a s t i c approach i n 

the time domain therefore should be located as far away from a structure 

as p r a c t i c a b l e . The usual way to model the l a t e r a l boundaries i s to allow 

the nodes on these boundaries to move only i n the h o r i z o n t a l d i r e c t i o n . 
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5.5 ANALYSIS OF SOIL - STRUCTURE SYSTEMS 

The response of a structure founded on a s o i l deposit i s a f f e c t e d by 

the l o c a l s o i l conditions. The peak ac c e l e r a t i o n , frequency content and 

the s p a t i a l d i s t r i b u t i o n of the response c h a r a c t e r i s t i c s may a l l be 

a f f e c t e d . By including the structure i n the f i n i t e element domain for the 

response an a l y s i s , the coupled seismic response of the s o i l and structure 

may be determined. 

The presence of the structure has two major e f f e c t s on the s o i l 

deposit. I t increases the e f f e c t i v e stresses and i t also provides 

a d d i t i o n a l i n e r t i a forces. Therefore, for s o i l s which exhibit non-linear 

stress dependent behaviour, an uncoupled analysis i n which s o i l and 

s t r u c t u r a l systems are uncoupled may not be a p p l i c a b l e . Uncoupled 

analysis cannot predict the response of buried structures where strong 

s o i l - s t r u c t u r e i n t e r a c t i o n occur. 

5.5.1 S l i p Elements i n Dynamic Analysis 

Relative displacement which may occur between s o i l and structure 

during strong shaking can be modelled using s l i p elements. However, the 

s l i p element model described i n Chapter 4 has to be modified for use under 

dynamic loading conditions. Ideally, once the slippage stops i n a s l i p 

element, the top and bottom nodes of the element should have the same 

acce l e r a t i o n and v e l o c i t i e s (Nadim and Whitman; 1982). However, when 

computing accelerations and v e l o c i t i e s by numerically i n t e g r a t i n g the 

equation (5.5), d i f f e r e n t values w i l l be unavoidable for the top and 

bottom nodes. In order to overcome t h i s d i f f i c u l t y , when no slippage 
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occurs In a s l i p element, the v e l o c i t i e s and accelerations of the bottom 

nodes were made equal to those of the top nodes. 

5.6 SOLUTION SCHEME 

A step by step s o l u t i o n scheme i s ca r r i e d out to obtain the 

dynamic response i n the time domain. A b r i e f outline of the procedure i s 

given below: 

1) based on the c u r r e n t v a l u e s of G , T and v. 
max' max ' t 

at time t the tangent shear modulus G t i s calculated for a l l 

the elements using the current s t r e s s - s t r a i n curve, for eit h e r 

i n i t i a l l o a d i n g , u n l o a d i n g or r e l o a d i n g whichever i s 

appropriate. 

2) the global s t i f f n e s s matrix [ K t ] t i s determined. 

3) knowing the base a c c e l e r a t i o n value at (t+At), new values f o r 

{x}, {x}, {x} at time ( t + At) and increments, Ay and 

{ACT} are computed by employing any of the d i r e c t i n t e g r a t i o n 

methods to solve the equations (5.5) as de t a i l e d i n Appendix 

III 

4) i f stress or s t r a i n r e v e r s a l occurs i n any element during this 

time i n t e r v a l , At, the dynamic analysis i s repeated f o r a 

shorter time i n t e r v a l . 

5) using the shear s t r a i n increment, increments i n volumetric 

s t r a i n and then porewater pressure are computed using equation 

(5.28) and (5.29). 
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6) using increments i n residual porewater pressure U, as v i r t u a l 

loads s t a t i c analysis i s performed to determine current 

e f f e c t i v e stresses. These e f f e c t i v e stresses are then used to 

update and X ] n a x values. 

A computer program TARA-2 has been developed incorporating a l l 

these basic steps. 

5.7 COMPUTATION OF POST EARTHQUAKE DEFORMATION 

I t i s often required to predict the displacements at various 

points on the s o i l structure at the end of an earthquake. This i s 

referred to as dynamic r e s i d u a l displacements. To compute these, an 

earthquake record with enough t a i l i n g zeros should be used so that the 

free damped v i b r a t i o n response can be included i n the a n a l y s i s . 

The c y c l i c and permanent components of displacement response for 

saturated sands and s i l t s , are assumed to occur under undrained 

conditions. There w i l l be a d d i t i o n a l deformations i n these s o i l s when the 

resi d u a l porewater pressure d i s s i p a t e s . 

In undrained simple shear c y c l i c tests on saturated sands and 

s i l t s the p o t e n t i a l volumetric s t r a i n e y < j , which occurs due to grain 

s l i p , i s r e f l e c t e d as r e s i d u a l porewater pressure. When the re s i d u a l 

porewater pressure d i s s i p a t e s , volumetric s t r a i n , e V (j occur i n the 

sample r e s u l t i n g i n settlement. The pr e d i c t i o n of deformations due to the 

d i s s i p a t i o n of r e s i d u a l porewater pressure can be accomplished as 

follows. 
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One method i s to treat t h i s problem as a two-dimensional 

consolidation problem with known i n i t i a l porewater pressures, and to solve 

for the deformation at di s c r e t e time i n t e r v a l s as the drainage occurs. 

A second method i s to compute deformations using the volumetric s t r a i n 
is 

accumulated at the end of the dynamic loading, eV(j» This can be 

accomplished by tr e a t i n g t h i s volumetric s t r a i n the same way the 

v o l u m e t r i c s t r a i n e y i n shear-volume c o u p l i n g was modelled i n 

Chapter 4. In the program TARA-2 the second method i s used. 

The f i n a l or post earthquake deformation a f t e r the r e s i d u a l 

porewater pressure has dissipated i s the sum of the deformation calculated 
ic 

from the m o d i f i e d e y ( j and the r e s i d u a l dynamic deformation 

predicted at the end of the dynamic a n a l y s i s . 
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CHAPTER 6 

VERIFICATION OF THE METHOD OF ANALYSIS 

The v a l i d a t i o n of computational techniques requires good 

prototype data for comparison. The common shaking table test cannot 

represent the range of i n - s i t u pressures experienced by the s o i l elements 

i n the f i e l d . For a p p l i c a t i o n to f u l l scale design problems we require 

data from c e n t r i f u g a l models where s i m i l a r i t y can be achieved with the 

self-weight of the prototype. Here i n - s i t u stresses are d i r e c t l y scaled 

to those of the f u l l scale event and therefore, the stress dependent 

s t r e s s - s t r a i n properties of the s o i l ( e s p e c i a l l y cohesionless s o i l s ) can 

be matched i n model and prototype. Centrifuge modelling laws are used to 

deduce prototype response from model response. The p r i n c i p l e s of 

c e n t r i f u g a l modelling have been discussed i n d e t a i l by Schofield (1981). 

6.1 CAMBRIDGE CENTRIFUGE TESTS 

A number of centrifuge tests on submerged islands were conducted 

by Lee (1983) using the Cambridge University Centrifuge. F u l l d e t a i l s of 

Cambridge centrifuge equipment and test procedures have been given by 

Schofield (1981). F i g . 6.1 shows the model i s l a n d used i n the t e s t s . 

The i s l a n d was a 90mm high with side slopes at 3:1 and a crest width of 

200mm. The centrifuge a c c e l e r a t i o n used i n the tests was 40g. This means 

that the corresponding prototype i s l a n d i s of height 3.6m, with side 

slopes 3:1 and has a crest width of 8m. The s t r u c t u r a l loading on the 
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i s l a n d was simulated by using mild s t e e l plates of various thicknesses. 

The i s l a n d rests on a concrete base which i n turn i s bolted to the 

centrifuge container. The base shaking was generated when the rotary arm 

on wheels follows a track mounted on the wall of the centrifuge chamber. 

The i s l a n d was instrumented by 6 DJB A23 p i e z o e l e c t r i c 

accelerometers, 6 Druck PDCK81 pore pressure transducers and 2 LVDTs. The 

l o c a t i o n of these instruments are also shown i n F i g . 6.1. 

The test s o i l was f i n e Leighton-Buzzard sand, mostly of s i z e 

passing between B.S. sieve si z e No. 120 and No. 200. The r e l a t i v e density 

was 60 - 70%, with e m a x = 1.03 and e m i n = 0.63 (Lee, 1983). 

In c e n t r i f u g a l modelling, i f the model pore f l u i d i s the same as 

the prototype pore f l u i d , excess pore pressures would be able to d i s s i p a t e 

N 2 times faster i n the model than i n the prototype, whilst the earthquake 

would only occur N times f a s t e r . Here N i s the scale factor of the 

c e n t r i f u g a l a c c e l e r a t i o n given as a r a t i o of g r a v i t y . Therefore, to model 

the prototype porewater drainage condition, i t i s necessary to use a pore 

f l u i d of v i s c o s i t y N times that of water i n the model t e s t . A s p e c i a l 

s i l i c o n e o i l was used as the model pore f l u i d i n Lee's t e s t s . 

In the tests c a r r i e d out on the i s l a n d , the t h e o r e t i c a l input 

wave-form was intended to be 12 sinusoidal pulses with a constant period 

of 0.5secs. However, the actual input motion to the i s l a n d was more 

com p l i c a t e d due to resonances and mechanical l i n k a g e c l e a r a n c e s 

i n t e r f e r i n g with the input motion, e s p e c i a l l y during the i n i t i a t i o n of the 

base motion. 

The r e s u l t s of two centrifuge tests were made a v a i l a b l e to the 

w r i t e r . The average contact prototype pressure on the islands f or these 

two tests were 15kPa (Test 1) and 31kPa (Test 2) r e s p e c t i v e l y . The input 
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accelerations measured by the accelerometer mounted on top of the concrete 

base for Test 1 and Test 2 are shown i n F i g . 6.2(a), and ( b ) . The 

recorded maximum base accelerations i n Test 1 and Test 2 were O . l l g and 

0.17g r e s p e c t i v e l y . The i s l a n d responded very d i f f e r e n t l y i n these two 

t e s t s . The comparative study c a r r i e d out to predict performance of both 

the tests are reported i n t h i s chapter. 

6.2 COMPARATIVE STUDY 

The sand used i n the model test was at an average r e l a t i v e 

density D r = 65%. T y p i c a l properties which are consistent for medium 

dense sand of D r = 65% for s t a t i c and dynamic analysis are given i n 

Table 6.1. 

The l i q u e f a c t i o n resistance curve for the sand obtained by using 

UBC simple shear apparatus without any s t a t i c bias (t g=0) i s shown i n 

F i g . 6.3. This l i q u e f a c t i o n resistance curve matches the predicted 

l i q u e f a c t i o n resistance curve when porewater pressure model constant, K r 

= 0.012. As explained i n Chapter 5, the porewater pressure model 

constants can be selected appropriately to account for the behaviour of 

samples with i n i t i a l s t a t i c s t r e s s , T G . Since test data on samples with 

T G, are not a v a i l a b l e , i t was decided to ignore the changes i n the pore­

water pressure generation rates, and to account only for the changes i n 

l i q u e f a c t i o n r e s i s t a n c e . The l i q u e f a c t i o n curves which correspond to non 

zero t s/°" v 0 were obtained by s c a l i n g the laboratory l i q u e f a c t i o n 

curve. The s c a l i n g was done by using a v a i l a b l e laboratory data on medium 

dense Ottawa sand (Vaid, et a l . 1979). The changes i n the l i q u e f a c t i o n 

resistance curve can be s p e c i f i e d by associating the appropriate K r 
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Table 6.1 S o i l Properties 

Properties 

Total unit weight kN/m3 

Bulk modulus constant 

Bulk modulus exponent constant n 

Shear modulus parameter ( K 2 ) m a x 

Angle of i n t e r n a l f r i c t i o n 

E f f e c t i v e cohesion 

C o e f f i c i e n t K Q 

a, b values used to compute [C] 

C^-K^ Constants 

Rebound modulus constants m,n 

S t a t i c Dynamic 

18.1 

800 

0.4 

19.3 

38.0 

0.0 

0.45 

18.1 

high 

55.0 

38.0 

0.0 

0.0,0.005 

0.75,0.79,0.459,0.73 

0.43,0.62 
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Number of Cycles to Initial Liquefaction, 

Fig. 6 . 3 . Liquefaction Resistance Curve of Medium Dense 

Leighton-Buzzard Sand. 
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v a l u e w i t h each s t a t i c shear s t r e s s r a t i o , "^/^vo* L i n e a r 

i n t e r p o l a t i o n may be used to get the K r value corresponding to an" 

intermediate -u s/a v o. 

For each model test two analyses were performed. One with 

no s l i p elements between s o i l and structure and the other with s l i p 

elements. The following s l i p element properties were used, 

K g = 6.3 x 10 5 kN/m2/m, % » 6.3 x 10 5 kN/m2/m 

C g = 0.0 0 g = 35° 

6.2.1 Results of Test 1 

The recorded a c c e l e r a t i o n time h i s t o r i e s of the model i s l a n d 

have very high frequency components which contain n e g l i g i b l e energy. This 

type of high frequency e l e c t r i c a l noise i s unavoidable i n centrifuge 

te s t i n g as i t may orig i n a t e due to ambient sources such as the e l e c t r i c 

motor d r i v i n g the centrifuge, and also due to centrifuge v i b r a t i o n s . Dean 

(1983), suggested i t i s necessary to f i l t e r out very high frequency 

components from output q u a n t i t i e s . The computed and recorded a c c e l e r a t i o n 

time h i s t o r i e s shown here have been smoothed once using a three point 

average scheme, suggested by Dean (1983). In using t h i s scheme, the 

current value at any point i n time i s computed as the sum of 1/4 of the 

value the previous point, 1/2 the value of the current point and 1/4 of 

the value of the next point. 

F i g . 6.4 to F i g . 6.6 show the smoothed recorded and computed 

acceleration time h i s t o r i e s of accelerometers A1244, A1225 and A734. 

During the f i r s t 1.5 seconds of shaking low accelerations with very high 
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~i 1 1 1 r 

aO 1.0 2.0 3.0 4.0 5.0 

Tine in Sees 
6.0 

r 
"5.0 8.0 

Fig. 6.4(a). Recorded Acceleration of ACC1244 in Test 1. 

-i 1 r 
Q.D 1.0 2-0 3.0 4.0 5.0 

Time I n Sees 

r T 
"7.0 e.c 

Fig. 6.4(b). Computed Acceleration of ACC1244 in Test 1. 

(with and without Slip Elements). 
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!" c Tine in Sees 

6.0 
-r r — T \ 

7.0 8.0 

Fig. 6.5(a). Recorded 
Acceleration of ACC1225 in Test 1. 

Acceleration of ACC1225 * Teat 1. 
Fig. 6.5(b). Computed 

(with and without SUp Elements). 



Fig. 6.6(a). Recorded Acceleration of ACC734 in Test 1. 

Pig. 6.6(b). Computed Acceleration of ACC734 in Test 1. 

(with and without Slip Elements). 
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frequency were recorded i n a l l accelerometers. A f t e r that the amplitude 

of a c c e l e r a t i o n s t e a d i l y increased as i n the case of input motion, upto 

5.5 seconds and then subsided. 

The a c c e l e r a t i o n time h i s t o r i e s computed by TARA-2 with and 

without s l i p elements are very s i m i l a r and therefore, only one of them i s 

shown i n F i g . 6.4.(b), through F i g . 6.6(b). The frequency and magnitude 

of the computed ac c e l e r a t i o n response are very s i m i l a r to corresponding 

recorded response values. Table 6.2 shows the computed and recorded 

maximum acc e l e r a t i o n of a l l three accelerometers. 

Table 6.2 Recorded and Computed Maximum Accelerations 

Maximum Acceleration % 8 

Instrument 
Location 

Computed by TARA-2 Instrument 
Location 

Recorded Without S l i p 
Elements 

With S l i p 
Elements 

A1244 13.3 11.6 11.6 

A1225 15.9 12.5 12.5 

A734 13.9 12.7 12.7 

The comparison between recorded and computed maximum 

acceleration values are very good. 

F o u r p o r e w a t e r p r e s s u r e d e v e l o p m e n t p l o t s o b t a i n e d 

experimentally and computed by TARA-2 are presented i n Figures 6.7 (a), 

(b), (c) and (d) . In t h i s test very low porewater pressures were 

developed. During the low l e v e l shaking of the f i r s t second, the response 
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Recorded 
Computed With 
and Without 
S l i p Elements 

I I 1 1 1 1 1 1 1 1 1 
4.0 5.0 -6.0 "7.0 6.0 at 

Tine In Sees 

Fig. 6.7(a). Recorded and Computed Porewater Pressure 

of PPT2330 in Test 1. 

x x x— 

Recorded 
Computed Without 
S l i p Elements 
Computed With 
S l i p Elements 

i 1 r 
i.O 5.0 

Time In Seas 

Fig. 6.7(b). Recorded and Computed Porewater Pressure 

of PPT68 in Test 1. 
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Fig. 6.7(c). Recorded and Computed Porewater Pressure 

of PPT2338 in Teat 1. 

Recorded 
Computed With 
and Without 
S l i p Elements 

i 

e.c 
Fig. 6.7(d). Recorded and Computed Porewater Pressure 

of PPT2342 in Test 1. 
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of the i s l a n d i s e s s e n t i a l l y e l a s t i c and porewater pressures recorded are 

the instantaneous response to changes i n t o t a l s t r e s s . Such porewater 

pressures develop from the e l a s t i c coupling of s o i l and water. Later 

during the period of more severe shaking, p l a s t i c volumetric s t r a i n s occur 

r e s u l t i n g i n the development of r e s i d u a l porewater pressures which are 

independent of the instantaneous states of s t r e s s . The recorded porewater 

p r e s s u r e s d u r i n g t h i s time have both r e s i d u a l and i n s t a n t a n e o u s 

components. A f t e r 6 seconds of shaking the input motion subsides over the 

next two seconds to zero. During t h i s time the magnitude of the 

instantaneous component of porewater pressure i s small. 

Drainage may occur during the e x c i t a t i o n depending on the 

drainage c h a r a c t e r i s t i c s of the sand. Since generation of porewater 

pressure a f t e r 6 seconds of e x c i t a t i o n i s very small, changes i n porewater 

pressure can be caused only by drainage during t h i s time. A close 

examination of recorded porewater pressures a f t e r 6 seconds of e x c i t a t i o n 

reveals that the porewater pressures i n a l l four locations except at the 

transducer P2342, which i s located at the middle of the i s l a n d are more or 

les s a constant. At t h i s l o c a t i o n porewater pressure increases s l i g h t l y 

i n d i c a t i n g movement of water towards the center of the i s l a n d . However, 

since these changes are small i t i s reasonable to assume that drainage i n 

the i s l a n d i s n e g l i g i b l e during the base e x c i t a t i o n . 

TARA-2 computes only r e s i d u a l porewater pressures, so there are 

no f l u c t u a t i o n s due to changes i n instantaneous stress l e v e l s i n the 

computed curves. Furthermore, since no drainage was assumed during the 

e x c i t a t i o n the computed r e s i d u a l porewater p r e s s u r e s i n c r e a s e 

co n s i s t e n t l y . However, the rate of increase i n porewater pressures during 
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low l e v e l e x c i t a t i o n which occur before 1.5 seconds and a f t e r 6 seconds i s 

r e l a t i v e l y small. 

When r i g i d j o i n t connection i s assumed between a heavy, s t i f f 

s t r u c t u r a l element and an adjacent s o i l element i n an a n a l y s i s , the 

dynamic str a i n s developed i n the adjacent s o i l element are very small due 

to compatibility requirements i n displacements. However, by introducing 

s l i p elements between the structure and s o i l , the r e l a t i v e movement which 

may occur between s o i l and structure during strong base e x c i t a t i o n can be 

accounted f o r . The r e s u l t s from TARA-2 analyses, with and without s l i p 

elements, ind i c a t e that computed porewater pressures are d i f f e r e n t only i n 

the transducers located just below the structures. The predicted 

porewater pressures just below the structure i n the analysis which 

incorporates s l i p elements, are s l i g h t l y higher than the analysis that 

assumes r i g i d connection between s o i l and structure. The comparison 

between recorded and computed porewater pressures i s good. 

Only four porewater pressure time h i s t o r i e s from the model tests 

are a v a i l a b l e . However, maximum re s i d u a l porewater pressures, which can 

be interpreted as the mean recorded values a f t e r the e x c i t a t i o n has 

subsided, are a v a i l a b l e for a l l s i x transducers. Table 6.3 shows the 

computed and recorded maximum re s i d u a l porewater pressures at a l l the 

t r a n s d u c e r l o c a t i o n s . 

6.2.2 Results of Test 2 

The smoothed recorded and computed a c c e l e r a t i o n time h i s t o r i e s 

of accelerometers A1244, A1225 and A734 are shown i n F i g s . 6.8 through 

6.10. 



Table 6.3 Recorded and Computed Maximum Residual Porewater Pressures 

Residual Porewater Pressure, kPa 

Transducer 
Location 

Computed by TARA-2 Transducer 
Location 

Recorded Without S l i p 
Elements 

With S l i p 
Elements 

P2330 0.4 0.4 0.4 

P2331 0.4 0.3 0.4 

P2332 4.0 2.9 3.7 

P68 3.0 1.5 4.4 

P2338 2.4 0.6 1.8 

P2342 4.0 4.2 4.2 
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T I 

2.0 
T" 

3.D 4.0 5.0 

Time In Sees 

Fig. 6.8(a). Recorded Acceleration of ACC1244 in Test 2. 

Fig. 6.8(b). Computed Acceleration of ACC1244 in Test 2. 

(with Slip Elements). 



+ 25% 

1 1 1 1 1 1 1 1 1 1 1 1 I 1 I I 
13 LC 2.0 3.0 4.0 5.0 6.0 ">.0 8.0 

Time In Sees 

Fig. 6.9(a). Recorded Acceleration of ACC1225 in Test 2 . 

+ 2 6% 

"1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ' 
a0 1.0 2.0 3.0 4.0 5.0 6.C "7.0 8.TJ 

Time i n Sees 

Fig. 6.9(b). Computed Acceleration of ACC1225 in Test 2 . 

(with Slip Elements). 
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0.0 "i i 1 1 1 r 
2.0 3.0 4.0 5.0 

Time in Sees 

i 1 1 r 
6.0 "7.0 s.c 

Fig. 6.10(a). Recorded Acceleration of ACC734 in Test 2. 

Time in Sees 

Fig. 6.10(b). Computed Acceleration of ACC734 in Test 2 

(with Slip Elements). 
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The base e x c i t a t i o n for Test 2, shown i n F i g . 6.2(b), has the 

following c h a r a c t e r i s t i c s . Low l e v e l e x c i t a t i o n occurs i n the f i r s t 

second and then the amplitude of acceleration increases s t e a d i l y to a 

constant maximum value i n the next two seconds. This maximum amplitude i s 

maintained for 2 seconds and then i t subsides over the next 3 seconds. 

The acceleration records, except the record obtained i n accelerometer A734 

which i s located on top of the structure, show the v a r i a t i o n of 

acceleration amplitude being s i m i l a r to that of the input motion. The 

acce l e r a t i o n h i s t o r i e s recorded on the top of the structure dropped to 

very low values a f t e r 4 seconds of e x c i t a t i o n . 

Unlike Test 1, the response computed with s l i p elements were 

found to be d i f f e r e n t from those computed without s l i p elements. The 

response analysis also showed that when s l i p elements are used s i g n i f i c a n t 

amount of s l i p occurs between s o i l and st r u c t u r e . The computed 

accelerations without s l i p elements are lower than the values computed 

when s l i p elements are used i n the an a l y s i s . In the computed ac c e l e r a t i o n 

h i s t o r i e s shown i n F i g s . 6.8 to F i g . 6.10, only accelerations computed 

using s l i p elements are presented. Lines of constant accelerations have 

been drawn i n Fig s . 6.8 to 6.10 to aid the i n t e r p r e t a t i o n of r e s u l t s . 

The v a r i a t i o n of computed ac c e l e r a t i o n h i s t o r i e s are very 

s i m i l a r to that of the input motion. The maximum recorded accelerations 

which were observed to be associated with high frequencies (indicated by 

sharp s p i k e s ) and maximum computed a c c e l e r a t i o n s f o r a l l three 

accelerometers i n the i s l a n d are shown i n Table 6.4. The comparison 

between recorded and computed accelerations are not good. However, a 

closer look at the other peak values of corresponding recorded and 

computed ac c e l e r a t i o n h i s t o r i e s suggests s a t i s f a c t o r y comparison. 
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The recorded a c c e l e r a t i o n at any time has two components: the 

acc e l e r a t i o n component transmitted through the s o i l from the base and the 

acce l e r a t i o n component transmitted to s o i l through side walls and top of 

the centrifuge container due to the container i t s e l f v i b r a t i n g . The 

computed ac c e l e r a t i o n h i s t o r y accounts only for the a c c e l e r a t i o n component 

transmitted through the s o i l . The accelerations transmitted through the 

container have high frequency components. The presence of these high 

frequency components may be responsible for the discrepancies between the 

recorded and computed ac c e l e r a t i o n h i s t o r i e s . 

Table 6.4 Recorded and Computed Maximum Accelerations 

Maximum Ac c l e r a t i o n , % g 

Accelerometer 
No. 

Computed by TARA-2 Accelerometer 
No. 

Recorded Without S l i p 
Elements 

With S l i p 
Elements 

A1244 24.0 15.1 18.2 

A1225 42.5 15.5 23.1 

A734 23.9 15.8 18.2 

Four recorded and computed porewater pressure development plots 

are presented i n F i g s . 6.11 (a), (b), (c) and (d). In th i s test unlike 

Test 1, very high porewater pressures were developed. During the low 

l e v e l of e x c i t a t i o n of the f i r s t second very low porewater pressures were 

recorded. With the onset of more severe shaking, very high porewater 
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Fig. 6.11(a). Recorded and Computed Porewater Pressure 

of PPT2330 in Test 2. 

Fig. 6.11(b). Recorded and Computed Porewater Pressure 

of PPT68 in Test 2. 



Fig. 6.11(c). Recorded and Computed Porewater Pressure 

of PPT2338 in Test 2. 

Fig. 6.11(d). Recorded and Computed Porewater Pressure 

of PPT2342 in Test 2. 
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pressures were developed i n a l l transducers except i n the transducer 

P2330. A close examination of the recorded porewater pressure plots a f t e r 

6 seconds of e x c i t a t i o n reveals that, except for the porewater pressure 

transducer P2342, which i s located at the middle of the i s l a n d , 

s i g n i f i c a n t d i s s i p a t i o n of porewater pressure occurred. This i s because 

i n t h i s test very high porewater pressures were developed leading to high 

pressure gradients. The tranducer P2342 behaved d i f f e r e n t l y because i t i s 

too far from the free draining boundaries and at t h i s l o c a t i o n inward flow 

of water occurs. 

The comparison between computed and recorded porewater pressures 

are very good for the two transducers (P2330, P2342) which are located 

well inside the i s l a n d . At these transducer locations the analysis with 

and without s l i p elements gave very s i m i l a r r e s u l t s . The porewater 

pressures predicted under the structure by the analysis without s l i p 

elements are very low. But, when s l i p elements were provided the 

comparison between predicted and computed porewater pressures improved. 

When s l i p elements were used i n the response analysis high shear s t r a i n s 

developed i n the elements below the structure r e s u l t i n g i n higher 

porewater pressures i n those elements. Table 6.5 shows the computed and 

recorded maximum r e s i d u a l porewater pressures at a l l the transducer 

l o c a t i o n s . 

6.3 APPLICABILITY OF THE METHOD OF ANALYSIS 

The recorded r e s i d u a l porewater pressures are interpreted as the 

steady increase i n porewater pressures. Therefore, any high frequency 

noise from ambient sources on recorded values do not a f f e c t the comparison 



Table 6 .5 Recorded and Computed Maximum 

Residual Porewater Pressures 

Maximum Residual Porewater Pressure, kPa 

Transducer 
No. 

Computed by TARA-2 Transducer 
No. 

Recorded Without S l i p 
Elements 

With S l i p 
Elements 

P2330 1.0 1.5 1.5 

P2331 0.9 1.1 1.1 

P2332 10.5 12.0 12.1 

P68 38.0 6.4 38.1 

P2338 18.0 2.2 . 18.9 

P2342 22.0 19.8 21.3 
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between recorded and computed porewater pressures. However, since the 

comparison i n a c c e l e r a t i o n response i s made point by point, any high 

frequency noise a f f e c t s the comparison. Therefore, caution should be 

exercised when comparing maximum accelera t i o n s . 

When a sand sample i s subjected to undrained loading, an abrupt 

change i n the d i r e c t i o n of stress path occurs, as the stress path 

approaches the f a i l u r e l i n e (Ishihara, et a l . 1975). The points at which 

various stress paths change d i r e c t i o n abruptly are assumed to l i e on a 

s t r a i g h t l i n e , c a l l e d the phase transformation l i n e . The slope of the 

phase transformation l i n e i s a few degrees less than the f a i l u r e l i n e . 

Any c y c l i c (or monotonic) loading beyond the phase transformation l i n e may 

r e s u l t i n very low e f f e c t i v e stresses i n very loose sands and increased 

e f f e c t i v e stresses due to d i l a t i o n i n medium dense or dense sands. The 

hyperbolic s t r e s s - s t r a i n r e l a t i o n s h i p assumed i n t h i s thesis i s s t r i c t l y 

a pplicable only for the region of stress space below the phase 

transformation l i n e . 

F i g s . 6.12 (a) and (b) show the stress paths i n a q, p' plot 

that were followed by four elements which correspond to the locations for 

which porewater pressure time h i s t o r i e s are a v a i l a b l e . The stress paths 

reported here are for the analysis i n which s l i p elements were included. 

The stress paths followed by the elements i n Test 1 are well below the 

f a i l u r e l i n e , where as i n Test 2, two elements are on the f a i l u r e l i n e for 

sometime during the dynamic loading. Under these circumstances the 

v a l i d i t y of response computed i n Test 2 a f t e r elements have reached 

the f a i l u r e l i n e i s questionable. 



Fig. 6.12(a). Effective Stress Paths in Test 1 



Fig. 6.12(b). Effective Stress Paths in Test 2. 

O N 
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CHAPTER 7 

APPLICATION OF THE METHOD OF ANALYSIS: TANKER ISLAND RESPONSE 

7.1 INTRODUCTION 

Man made i s l a n d s of c o h e s i o n l e s s s o i l s have been used 

extensively as d r i l l i n g platforms for o i l and gas exploration i n the 

Beaufort Sea. Recently, as exploration has moved to deep waters, more 

complex forms of i s l a n d construction procedures have been introduced. The 

caisson-retained i s l a n d (De Jong, et a l . (1978), and s t e e l tanker i s l a n d 

are two t y p i c a l examples. These newer type of construction procedures 

greatly reduce the amount of f i l l material required and also reduce some 

of the hazards of wave loading on exposed i s l a n d beaches. The maximum set 

down water depth for the caisson-retained i s l a n d and the tanker islands 

depth i s f i x e d , generally around 6 to 9 metres. Therefore, i n the case of 

deep water a underwater sand berm i s constructed up to the set down water 

depth. Most of the sand berms are constructed by dumping sand excavated 

by suction dredges from an offshore and/or onshore borrow p i t and pumped 

as a s l u r r y through a p i p e l i n e d i r e c t l y onto the l o c a t i o n of the i s l a n d . 

Once the sand berm i s ready, a series of caissons or tanker i s brought to 

the l o c a t i o n and b a l l a s t e d onto the berm, and b a c k f i l l e d with sand, gravel 

or water. The d r i l l i n g i s then c a r r i e d out from the upper structure. 

Because of the nature of the i s l a n d construction, the dumped 

sand i s often loose and therefore the deformation, s t a b i l i t y and 
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l i q u e f a c t i o n p o t e n t i a l of the i s l a n d berm during earthquakes are of major 

concern. 

7.2 ANALYSIS OF A TYPICAL TANKER ISLAND 

F i g . 7.1, shows, schematically a tanker i s l a n d . This i s l a n d i s 

provided with a cover of about 2m of rock f i l l . 

T y p i c a l properties of rock f i l l and sand for s t a t i c analysis are 

given i n Table 7.1. 

TABLE 7.1. S t a t i c S o i l Properties 

Properties Rock F i l l Sand 

Total unit weight kN/m3 18.7 18.1 

Bulk modulus constant K^ 1000 800 

* 
Bulk modulus exponent constant n 

0.40 0.40 

Shear modulus parameter ( K 2 ) m a x 24.0 16.0 

Angle of i n t e r n a l f r i c t i o n 38.0 32.0 

E f f e c t i v e cohesion 0.0 0.0 

C o e f f i c i e n t K Q 0.45 0.45 

The tanker i s assumed to weigh 200,000 metric tons when f u l l y 

ballasted with plan dimensions 170m and x 60m and 21m high. 

In the case presented here, i t i s assumed that the hyperbolic 

dynamic s t r e s s - s t r a i n r e l a t i o n s h i p has equal shear strength i n both 



Fig. 7.1. Schematic of Tanker Island 
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d i r e c t i o n s of shearing. T y p i c a l properties used for the dynamic analysis 

are give i n Table 7.2 

TABLE 7.2. Dynamic S o i l Properties 

Properties Rock F i l l Sand 

1300 V. High 

0.4 

70 45 

0.8, 0.79, 0.459 

and 0.730 

Rebound modulus Constants m,n 0.43, 0.62 

During shaking the rock f i l l i s assumed to be free draining and 

no drainage i s assumed i n dumped sand. A very high value was assigned to 

B t to simulate very low compressibility imparted to the saturated sand 

by the water i n the pores which i s not allowed to drain. 

Liquefaction resistance curves are required for d i f f e r e n t s t a t i c 

stress r a t i o s i n the i s l a n d . These are s p e c i f i e d by associating the 

appropriate K r value with each s t a t i c shear stress r a t i o t s / o " v o . 

The values used i n the example are presented i n Table 7.3. 

Bulk modulus constant 
ft 

Bulk modulus parameter n 

Shear modulus parameter (K 2) 

C^ •* CK Constants 



TABLE 7.3. T s / a v o and K r values 

T /a* K 
s vo r 

0.0 0.004 

0.10 0.015 
0.20 0.05 

The s t a t i c shear stress r a t i o s for the example problem 

considered here vary between 0.0 to 0.13 and therefore, the values of K r 

corresponding to r a t i o s T g / o y o , above 0.15 are not necessary. 

The input motion used for the analyses i s the S00E a c c e l e r a t i o n 

component of the Imperial V a l l e y Earthquake of May 18, 1940 scaled to 

O.lg. The input motion was applied at the bottom boundary of the i s l a n d . 

Three dynamic analyses were performed: i s l a n d alone, i s l a n d plus 

structure with and without s l i p elements. The properties of s l i p elements 

were selected so that some s l i p could occur between the structure and the 

i s l a n d . The s l i p element properties were assumed to be, 

K s = 6.3 x 10 5 kN/m2/m, K N = 6.3 x 10 5, kN/m2/m 

C s = 0 and 0 g = 30° 

A complete response study of the tanker i s l a n d could be c a r r i e d 

out by d i s c r e t i z i n g the enti r e domain into f i n i t e elements. However, 

since the s t i f f n e s s of tanker wall i s very much higher than s o i l , the 

tanker and i t s contents would respond l i k e a r i g i d box. In view of 



142 

t h i s , the tanker and i t s contents were modelled as a uniform r i g i d box. 

The s t i f f n e s s of s t r u c t u r a l elements were selected as 10 3 of the rock f i l l 

elements. 

7.2.1. Results f o r Tanker Island Problem 

One of the factors which influence the development of r e s i d u a l 

porewater pressure i s c y c l i c shear stress (or c y c l i c s t r a i n ) . Since the 

generation of r e s i d u a l porewater pressure i s possible only i n the sand, 

the maximum dynamic shear stresses induced i n the dumped sand along 

section T-T which runs through the centre of the i s l a n d , are shown i n F i g . 

7.2 for a l l three cases. This fi g u r e indicates that higher dynamic shear 

stresses are developed when the tanker i s i n place due to the i n e r t i a 

forces on the tanker. The induced shear stresses i n the dumped sand when 

s l i p i s allowed to occur between structure and adjacent s o i l are s l i g h t l y 

higher than when no s l i p elements were provided. When s l i p occurs, the 

magnitudes of shear stress that can be transmitted to the structure i s 

l i m i t e d , dictated by the shear strength of the s l i p elements. Therefore, 

i s l a n d responses with and without s l i p occurring between the structure and 

the i s l a n d may be expected to d i f f e r . 

Despite very high c y c l i c shear stresses generated i n the sand when 

tanker i s i n place, the greatest porewater pressure r a t i o s are developed 

i n the unloaded i s l a n d ( F i g . 7.4). This i s because the v e r t i c a l 

over-burden pressures are very much greater when the tanker i s present, so 

that, the c y c l i c shear stress r a t i o s , T c v / O y 0 , which i s the most 

important parameter c o n t r o l l i n g the development of porewater pressure i n a 

given sand, are a c t u a l l y smaller ( F i g . 7.3). I t can be r e a d i l y seen that 
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Fig. 7.2. Distribution of Maximum Dynamic 

Shear Stress in Sand. 

Fig. 7.3. Distribution of Maximum Dynamic 

Shear Stress Ratio in Sand. 
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the d i s t r i b u t i o n of maximum c y c l i c shear stress r a t i o s are proportional to 

the d i s t r i b u t i o n of r e s i d u a l porewater pressure r a t i o s . 

F i g . 7.4, shows the r e s i d u a l p o r e w a t e r r a t i o H/aLQ 

d i s t r i b u t i o n for a l l three analyses. The r e s i d u a l porewater pressure 

r a t i o s obtained for the unloaded i s l a n d are higher than for the loaded 

i s l a n d . The r e s u l t s obtained i n the analysis without the tanker can be 

viewed as the solutions at a section where the influence of the structure 

i s n e g l i g i b l e . Therefore, the d i s t r i b u t i o n of r e s i d u a l porewater pressure 

r a t i o s when the structure i s i n place w i l l vary from lower values at the 

middle to higher values as one moves away from the s t r u c t u r e . Same 

conclusions were drawn by Yoshimi and Tokimatsu (1977) who studied the 

response of a r i g i d structure subjected to base e x c i t a t i o n on a shaking 

ta b l e . The r e s i d u a l porewater pressure d i s t r i b u t i o n given i n the analysis 

with s l i p elements i s co n s i s t e n t l y higher than the analysis without s l i p 

elements. This i s because lower shear stresses are induced i n the l a t t e r 

case. 

The d i s t r i b u t i o n of maximum dynamic shear s t r a i n s f or section 

1-1 i s shown i n F i g . 7.5. Even though the shear stresses induced i n the 

unloaded i s l a n d are smaller than the loaded i s l a n d , higher shear s t r a i n s 

have developed i n the unloaded i s l a n d . This i s because of two f a c t o r s . 

F i r s t l y , the i n - s i t u overburden stresses i n the unloaded i s l a n d are very 

much smaller and therefore the s t r e s s - s t r a i n curve for a given element i s 

s o f t e r . Secondly, when an e f f e c t i v e s t r e s s - s t r a i n r e l a t i o n s h i p i s used, 

any increase i n r e s i d u a l porewater pressure w i l l soften the s t r e s s - s t r a i n 

curve. The generation of higher r e s i d u a l porewater pressures and low over 

burden pressures have contributed to high shear s t r a i n s i n the unloaded 

i s l a n d . 



Fig. 7.4. Distribution of Residual Porewater 

Pressure Ratio in Sand. 

Fig. 7.5. Distribution of Maximum Dynamic 

Shear Strain in Sand. 
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The maximum hori z o n t a l displacements which occur during the 

earthquake for the section 1-1 are shown i n F i g . 7.6. Much smaller 

dynamic displacements are computed when the tanker i s i n place. When s l i p 

elements were provided, s l i p occurred between the s o i l and structure and 

the displacements are about twice the r e s u l t s obtained without s l i p 

elements. F i g . 7.7 a and b show the post earthquake deformations i n the X 

and Y d i r e c t i o n s . The post earthquake displacement i s the sum of the 

dynamic r e s i d u a l displacement and the displacement due to volumetric 

* 
s t r a i n component e y ^ • Two o b s e r v a t i o n s can be made from the 

r e s u l t s presented i n t h i s f i g u r e . F i r s t l y , the amount of the post 

earthquake deformations i n the X- d i r e c t i o n are proportional to the maximum 

dynamic deformations. Secondly, the X-component of the displacement i s of 

the same order of magnitude as of the Y-component of the displacement 

( s e t t l e m e n t ) . The main c o n t r i b u t i o n to the X-component of the 

displacement comes from the dynamic r e s i d u a l displacement and for the 
settlement the main contribution i s from the volumetric s t r a i n component 
ft 

evd* 

In the dynamic response of structures the maximum induced 

acceleration i n the structure i s one of the main design concerns. The 

maximum induced accelerations given by TARA-2 i n the structure with and 

without s l i p elements are 0.15g and 0.17g. This means that, i f s l i p i s 

prevented, the acc e l e r a t i o n induced may be higher by as much as 15% of the 

acceleration when s l i p i s allowed. The maximum ac c e l e r a t i o n computed on 

top of the unloaded i s l a n d i s 0.15g. 



Fig. 7.6. Distribution of Maximum Dynamic 

Displacement. 
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Fig. 7 . 7 . Post Earthquake X and Y Displacements. 
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One of the ways of presenting dynamic response i s to present i t 

i n terms of response spectra. Response spectra for displacement, v e l o c i t y 

and acceleration are often presented for the motions at the base of the 

stru c t u r e . These r e s u l t s are then used by the engineers to predict the 

behaviour of structures and also to compute design forces, such as base 

shear. F i g . 7.8 shows the response spectrum for a c c e l e r a t i o n of the 

motion at the berm surface for a l l three cases considered. The damping 

r a t i o used i n the computation was 3%. Inspection of t h i s f i g u r e suggests 

that for the example problem considered here, the a c c e l e r a t i o n response 

predicted using the response spectrum of the unloaded i s l a n d w i l l be 

higher for structures with a very low period. However, for the structures 

with a period greater than 0.5 s e c , the response predictions w i l l be 

s i m i l a r . 

The predominant motion of a tanker during e x c i t a t i o n are s l i d i n g 

and rocking. The r e l a t i v e importance of these two modes can be studied by 

comparing r e s u l t s obtained by a two-dimensional and one-dimensional 

response a n a l y s i s . F i g . 7.9, shows the computed d i s t r i b u t i o n of r e s i d u a l 

porewater pressure r a t i o u / o y o from three two-dimensional analyses 

which were reported e a r l i e r and also the d i s t r i b u t i o n from a one-

dimensional response a n a l y s i s . The one-dimensional case considered was 

the i s l a n d with tanker, without any s l i p elements. The r e s u l t s c l e a r l y 

show that the maximum U/Oy0 of some elements may be predicted as low 

as 30% of those predicted by a two-dimensional response a n a l y s i s . This 

means a response analysis which neglects the rocking mode of v i b r a t i o n i s 

non-conservative. However, i t should be mentioned that the tanker 

considered i n t h i s example i s very t a l l (21m) and, r i g i d , and therefore 

the rocking mode of v i b r a t i o n may have been more important than usual. 
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7.3 SOME PRACTICAL CONCLUSIONS 

In practice a number of s i m p l i f y i n g assumptions are made when 

computing the response of structures founded on s o i l deposits. The 

procedure outlined by the National Building Code of Canada has two basic 

steps. The f i r s t step i s to compute the response of the s o i l deposit 

alone for the given e x c i t a t i o n . The second step i s to compute the 

response of the structure, to the base accelerations obtained i n step one. 

In predicting the performance of the structure, the r e s u l t s such as 

porewater pressure, induced s t r a i n l e v e l etc., which are obtained from 

step one are also considered. This means that the code i n essence 

suggests the s o i l - structure systems be uncoupled and analysed 

independently. 

Figures 7.2 to 7.8 c l e a r l y show that the response of structures 

computed using the procedures outlined i n the National Building Code of 

Canada may be i n e r r o r . The presence of the structure has two basic 

influences on the s o i l deposit. It increases the e f f e c t i v e stresses and 

i t also provides a d d i t i o n a l i n e r t i a forces. Therefore, for s o i l s which 

exhibit non-linear stress dependent behaviour, the uncoupled analysis 

proposed by the code may not be a p p l i c a b l e . 

From t h i s t y p i c a l example, three basic conclusions can be drawn. 

F i r s t of a l l i t r a i s e s questions about the merit of any response analysis 

based on uncoupled s o i l - s t r u c t u r e systems. Secondly, one-dimensional 

representation of the domain which neglects the rocking degrees of freedom 

may not be applicable to t a l l , heavy and r i g i d s t r u ctures. T h i r d l y i t 

demonstrates the importance of incorporating s l i p elements i n the 

a n a l y s i s . Because of the great weight of the caissons or tankers, and 
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t h e i r large l a t e r a l dimensions, s o i l - s t r u c t u r e i n t e r a c t i o n e f f e c t s w i l l 

always be important. In these type of problems a coupled analysis of the 

i s l a n d and structure i s required. 
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CHAPTER 8  

SUMMARY AND CONCLUSIONS 

8.1 SUMMARY 

The main purpose o f t h i s r e s e a r c h was t o d e v e l o p a two-

d i m e n s i o n a l s t a t i c and s e i s m i c r e s p o n s e a n a l y s i s o f s o i l d e p o s i t s 

i n c l u d i n g s o i l - s t r u c t u r e i n t e r a c t i o n . 

The new method f o r s t a t i c and dynamic a n a l y s e s can be pe r f o r m e d 

i n e i t h e r e f f e c t i v e o r t o t a l s t r e s s modes or a c o m b i n a t i o n o f b o t h . Non­

l i n e a r s t r e s s - s t r a i n b e h a v i o u r of s o i l was m o d e l l e d by u s i n g an 

i n c r e m e n t a l l y e l a s t i c a p p r o a c h i n w h i c h t a n g e n t shear modulus and t a n g e n t 

b u l k modulus were t a k e n as the two " e l a s t i c " p a r a m e t e r s . The m a t e r i a l 

r e s p o n s e i n s h e a r was assumed t o be h y p e r b o l i c w i t h M a s i n g b e h a v i o u r 

d u r i n g u n l o a d i n g and r e l o a d i n g . Response t o changes i n mean normal s t r e s s 

was assumed t o be n o n - l i n e a r , e l a s t i c and s t r e s s dependent. 

When a s t a t i c a n a l y s i s i s per f o r m e d i n the t o t a l s t r e s s mode, 

t h e s h e a r s t r e n g t h , T „ , 0 „ , G m a v , a n d t a n g e n t b u l k m o d u l u s , 

B t , o f an element a r e k e p t c o n s t a n t t h r o u g h o u t t h e a n a l y s i s . The 

tan g e n t shear modulus, G t, i s m o d i f i e d f o r c o r r e s p o n d i n g s h e a r s t r a i n s 

d e v e l o p e d d u r i n g the a n a l y s i s . When e f f e c t i v e s t r e s s mode i s u s e d , the 

p a r a m e t e r s , t m a x > ^max a n c * B t a r e c o m p u t e d f r o m t h e e f f e c t i v e 

s t r e s s e s . The e f f e c t o f d i l a t i o n d u r i n g s h e a r on volume change i s t a k e n 

i n t o a c c o u n t . 

I n t he s t a t i c a n a l y s i s p r o p o s e d h e r e , g r a v i t y may be s w i t c h e d on 
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at once for the completed s o i l structure or the construction sequence can 

be modelled by layer a n a l y s i s . The s t r e s s - s t r a i n conditions determined by 

the s t a t i c analysis give the i n - s i t u stress conditions before the dynamic 

a n a l y s i s . 

S l i p or contact elements have been incorporated i n the analysis 

to represent the i n t e r f a c e c h a r a c t e r i s t i c s between s o i l and s t r u c t u r a l 

elements. The properties of the s l i p element were assumed to be e l a s t i c 

p e r f e c t l y p l a s t i c , with f a i l u r e at the interface given by the Mohr Coulomb 

f a i l u r e c r i t e r i o n . 

In the dynamic e f f e c t i v e stress response a n a l y s i s , r e s i d u a l 

porewater pressures are calculated using a modification of the model 

proposed by M a r t i n e t . a l , (1975). The parameters, G m a x> and 

Tmax» a r e m°dified for the e f f e c t s of r e s i d u a l porewater pressure. 

The dynamic response study includes the p r e d i c t i o n of post earthquake 

deformations. 

An extensive study c a r r i e d out to v e r i f y the proposed method of 

analysis using centrifuge test data suggests that the proposed method can 

be successfully used to predict seismic response of structures. 

Seismic response of a t y p i c a l tanker i s l a n d computed by t h i s 

method i s presented. 

8.2 CONCLUSIONS 

The work that has been presented i n t h i s thesis leads to the 

following conclusions. 

1. A consistent and r e l i a b l e method for computing transient and 
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permanent deformations i n two-dimensional s o i l structures i s 

needed. 

2. A two-dimensional dynamic response analysis which takes into 

account the non-linear h y s t e r e t i c stress-dependent properties of 

s o i l s , has been developed i n terms of both t o t a l and e f f e c t i v e 

stresses. 

3. The method has been v e r i f i e d by comparing data from centrifuged 

models with predictions of the method. Comparison between 

predicted and measured response parameters i s generally very 

good. 

4. Allowing for s l i p to occur between s o i l and s t r u c t u r a l elements 

i s very important. Analyses which allow for s l i p have 

c o n s i s t e n t l y lead to higher displacements i n the structure and 

higher porewater pressures i n the s o i l deposit. 

5. The method has been applied to compute seismic response of a 

t y p i c a l tanker i s l a n d . The re s u l t s of t h i s study suggests that 

i t i s important that the response of structures founded on s o i l 

deposits be analysed as a coupled s o i l - s t r u c t u r e systems. 

6. The v a l i d i t y of a one-dimensional response analysis instead of a 

two-dimensional analysis f or tanker type of structures i s 

questionable. The porewater pressures predicted by using a one-

dimensional response analysis model may be as low as 30% of 

those predicted by a two-dimensional response a n a l y s i s . 
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SUGGESTIONS FOR FURTHER STUDY 

1 . A d d i t i o n a l comparative studies should be c a r r i e d out so that 

greater confidence could be placed on the v a l i d i t y of th i s 

method. Comparative studies may be performed with data from 

centrifuge tests or f i e l d studies. 

2. Sandy materials exhibit p a r t i a l s t a b i l i z a t i o n at low confining 

pressures due to d i l a t i o n . Therefore, i n the response 

evaluation near l i q u e f a c t i o n , i t i s important that the method of 

analysis Include the d i l a t a n t behaviour of sands. 

3. In the response evaluation of more permeable s o i l s , drainage 

during the seismic loading may be s i g n i f i c a n t and procedures 

should be developed to take t h i s into account. 
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APPENDIX I 

FINITE ELEMENT FORMULATION 

In the f i n i t e element analysis the entire domain of i n t e r e s t i s 

divided into a f i n i t e number of elements. The v a r i a t i o n of displacement 

within a f i n i t e element i s assumed to be given by, 

{tf} = [N] {6} where ( A l . l ) 

{tf} = displacement vector, giving x and y displacements at any point 

within an element, here TJ*" = {u,v} 

{6} = displacement vector, giving x and y displacements of the nodes, and 

[N] = i n t e r p o l a t i o n function. 

The type of element used i n the a n a l y s i s i s a 4 node 

isoparametric element. The term isoparametric implies common (i s o - ) 

parametric d e s c r i p t i o n of the unknown displacements and the geometry of 

the element. The same i n t e r p o l a t i o n functions N^ are used to express 

both the displacement and the geometry of the element. Isoparametric 

element formulation has a number of advantages; i t o f f e r s e f f i c i e n t 

i n t e g r a t i o n s , and d i f f e r e n t i a t i o n s and i t can handle curved and a r b i t r a r y 

geometrical shapes. 

The i n t e r p o l a t i o n function [N] can be selected such that i t can 

be expressed i n natural coordinates (s,t) which i s a system of co­

ordinates i n t r i n s i c to an element ( F i g . A l . l ) . 
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In the isoparametric concept, the coordinates of a point i n the 

element i s given by, 

{X} = [ N ] {X±} (A1.2) 

If we consider a four-node q u a d r i l a t e r a l isoparametric element, the matrix 

[N] i s composed of, 

„ . d - s ( l - t ) _ ( l + s ) ( l - t ) 
1 4 W2 4 

N = (i+s)(i+t) _ q - s ^ (i+t) 
3 4 4 4 

Now equations ( A l . l ) and (A1.2) can be rewritten as, 

u l 
v l 
u 2 

j U , r N , 0 N 2 0 N 3 0 N^ 0 -I v 2 

M L 0 N x 0 N 2 0 N 3 0 N ^ u 3 (A1.3) 
v 3 
u 4 
v 4 

and, 

( x } = f N l 0 N 2 0 N 3 0 S l f 0 , y, 
V L 0 N x 0 N 2 0 N 3 0 N^-1 x 3 

X l 
y i x 2 

?3 
X 4 
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It can be seen that the transformation shown i n (A1.4), maps the 

q u a d r i l a t e r a l element into a square as shown i n F i g . A l . l . 

If plane s t r a i n conditions are assumed the s t r a i n vector e i s 

s i m p l y g i v e n by _et = { e x , e y , Y x y } where e x and e y a r e 

normal s t r a i n s and y x y
 1 S t n e shear s t r a i n . These s t r a i n s are given 

i n terms of displacements as, 

x .e. 

e 
X 

_ M 
ox e 

y 

av 
ay 

Y 
' xy 

8u 
ay ax 

s t r a i n matrix e from A1.3 and A1.5, 

e x ax 0 ax 0 ax 0 
wk 

ax 0 

= 
0 ay 

0 
a N 2 

ay 
0 

3N 3 

ay 
0 

ay 
aN 1 aN1 aN 2 8N 2 a \ at^ 

Y 
'xy ey ax ay ax ay ax ay ax 

> 

{e} = [B] {6} 

But = f ( s , t ) and also x,y are functions of s,t. 

should be computed using the following r e l a t i o n s h i p , 

u. 

u„ 

(A1.5) 

2 (A1.6) 

(A1.7) 

So any d e r i v a t i v e 

aN ± aN ± ax aN ± ay 

as ax as ay as (A1.8) 

In matrix form, the global and l o c a l d e r ivatives can be written as, 
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5N± ax ax aN ± 8N ± 

— — as as - — - — 
as ax r - i ax (AI.9) 
BN. 3x ay. 3N, L J J o N . l A i . y ; 

at a t 8 t ay ay 

where, 

[ j ] = Jacobian matrix 

The de r i v a t i v e s of with respect to x, y can now be obtained 

from A1.9, as, 

8N± aN± 

5± • [ J ] _ 1 3N, 
a y a t 

where, 

[ j ] - 1 = Inverse of Jacobian matrix J , which i s simply, 

a t a s 

Now from A1.4, the Jacobian matrix can be written as, 

ax By. 1 ^ 1 t^± 
R -I _ as as _ i as x i • i as y i ... 
L J J " . 8N u 8N (A1.12) 

a x a y . _ i fc f \ 

a t a t ^ 5 t
 x i A o t y± 



171 

The components of matrix [ j ] can be evaluated since oN^/os, 

oN^/Qt and (x^, y^) are known. So, knowing the matrix J , [ j ] - 1 also 

can be computed. Say, 

= [ h i Ti2) 

•21 
(A1.13) 

22 

It should be noted that these I ^ j are f ( s , t ) . Therefore, s u b s t i t u t i n g 

this i n equation ( A L I O ) , y i e l d s , 

oN ± 

oNjL 

By" 

t l 1 1 

L21 
22 

8N. 
as" 
aN. i 
at 

(A.14) 

The matrix [B] (equation A1.6) which relates the s t r a i n vector to 

nodal displacements, has derivatives of i n t e r p o l a t i o n function with 

respect to x and y. Now knowing these derivatives from equation (A1.4), 

[B] can be rewritten as, 

[ B ] = 
3x8 

aN, aN 

•11 0 S
 + X12 9 t | 

o 

i 

aN 
I 

aN 

2i a s
 + 122 at | A n bi 

I 

aN, aN, 
+ i . 

2i as 22 at 
aN. aN, 

+ i 

3N 2 3N 2 

X n + xi2 a~T 

aN. 9N„ 

12 at | x2i a£ 

+ i 
22 at | 
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0 3N 3 aN 3 0 

hi as + at 
aN 2 3N 3 3N 3 

as + I22 at 0 X 2 1 as + I22 a t 

a N 2 aN 3 m3 
aN 3 B N 3 

as + 112 at I21 as + I 2 2 at i n as + h2 a t 

aN^ a i ^ | 
[ n o s + T i 2 a t | 

aN„ aN, 
o A 2 i a s

 + x22 a t 

aN 4 mh  

x n a s - + x i 2 IT I 2 1 as~ + *22 IT | 

(A1.15) 

The s t r e s s e s and s t r a i n s a r e c o n n e c t e d t h r o u g h e l a s t i c i t y m a t r i x 

g i v e n by, 

{a'} = [ D ] {e} (A1.16) 

where, 

[ a ' ] = e f f e c t i v e s t r e s s v e c t o r . F o r 2D p l a n e s t r a i n 

c o n d i t i o n s , i t i s g i v e n by, 

i o ' } * - = { 0 X , O y , T x y } 

[ D ] = e l a s t i c i t y m a t r i x f o r 2D p l a n e s t r a i n c o n d i t i o n , 

[ D ] -

B + ^ G 

Sym 

B - f G 

4 
B + j G 

0 

0 (A1.17) 
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Using the v i r t u a l work p r i n c i p l e , the i n t e r n a l work (Wj^) done by 

a p p l y i n g i n f i n i t e s i m a l v i r t u a l nodal displacement {£} i s , 

WIN = /// M dv (A1.18) 

where {e} = v i r t u a l s t r a i n s due to v i r t u a l displacement {£} 

and {a} = t o t a l stress vector (A1.19) 

The t o t a l stress vector can be s p l i t into e f f e c t i v e stress and 

porepressure vectors. 

i . e . : {a} = {a'} + {uQ} 

E f f e c t i v e stress Porepressure (A1.19) 

Vector Vector 

Here {a'= {a x, a y , T x y } 

and {xxj*- = {u D, u D , o} 

i n which u Q i s the porewater pressure. 

Now, s u b s t i t u t i n g {a} from equations (Al.19) and (A1.18), one 

gets, 

WIN = /// {e}* [{o'} + {u }] dv (A1.20) 
V 

Substituting for {a'} from A1.16 th i s reduces to, 

WIN = /// M + K) D V (AI.21) 
v 
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using equation (A1.7), {e} can be replaced by [B] {£}, then, 

W I N - J / J [B]' [ D ] [B] {6} + J J J {6} f c [ B ] t { u J dv (A1.21) 
V V 

But, external work done by the load vector {p} r i d i n g through the v i r t u a l 

displacement {?>}, i s simply, 

WEX = t p J (A1.22) 

The v i r t u a l work p r i n c i p l e gives, 

W I N WEX 
i .e. 

{*}*{*} = {*}'/// [B] t[D][B] dv {6} 
v (A1.23) 

+ {«}'/// [ B ] ' {uQ} dv 
V 

Noting that, 

dv = dxdydz 

and also = | j | dsdtdz 

where dz = thickness of the element. 

Aft e r s u b s t i t u t i n g t h i s i n (A1.23), and d i v i d i n g both sides by 

{?} t one gets, 
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{P} = [k]{6} + [k*] {uD} (A1.24) 

where, 

[k] = element s t i f f n e s s matrix 

l i t 
= [ / J [ B] [D][B] l Jl d s d t ] (A1.25) 

(assuming unit thickness) 

and, 

[k ] = porewater pressure matrix 
1 1 t 

= [/ / [B] | j | dsdt] (A1.26) 
-1-1 

The integrations shown above have to be evaluated numerically. 

The Gauss inte g r a t i o n technique has been employed and the number of points 

used are 2 x 2 . The formulation presented here i s for any l i n e a r e l a s t i c 

m a t e r i a l . For incrementally e l a s t i c a n a l y s i s , the displacements, stresses 

and moduli values should be simply replaced by incremental displacements, 

incremental stresses and tangent moduli. 

Af t e r evaluating the incremental load vector j), element tangent 

s t i f f n e s s m a t r i x [ k t ] , porewater p r e s s u r e m a t r i x [ k * ] , and a l s o 

estimating the incremental porewater pressure u Q , for a l l the elements 

the global incremental load-displacement r e l a t i o n s h i p can be formed. This 

w i l l lead to, 

{P} = [K t]{A} + [K*]{U} (A1.27) 
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i n which {P}, [ K
T ] , {A}, [ K ] and {u} are relevant v a r i a b l e s i n 

glo b a l axes. By solving t h i s equation the displacement f i e l d {A} can be 

obtained, and i t can be used to c a l c u l a t e element s t r a i n s and stresses 

using equations (A1.6.) and (A1.16) r e s p e c t i v e l y . Since the shape 

function gives l i n e a r s t r a i n v a r i a t i o n within an element, the s t r a i n s and 

therefore, stresses vary within an element. For convenience, average 

stress and s t r a i n of an element are computed at the centre of gravity of 

the element. 

In Chapter 4, and Chapter 5, i t i s required to express s t r a i n s 

and stresses i n terms of nodal forces. R e c a l l from equation (A1.24) the 

nodal forces are given by, 

{P} = J / J !>]' [D] [B] dv {£} (A1.28) 
V 

But, str a i n s are connected to the matrix [B J i n equation (A1.7), 

{e} = [B] {6} (A1.29) 

Therefore, from (A1.28) and (A1.29), the nodal forces can be written 

i n terms of str a i n s as, 

{P} " J J J [ B ] 1 [D] {e} dv (A1.30) 
V 

Now, from equation (A1.16), 

k ' l = [D] { e } (A1.31) 
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and from equations, (A1.30), and (A1.31) the nodal forces can be written 

i n terms of stresses as, 

{P} = /// [ B f {a'} dv (A1.32) 
V 

The equation (A1.30) and (A1.32) can now be used to express s t r a i n s and 

stresses i n terms of element nodal forces. 
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APPENDIX I I 

STIFFNESS MATRIX FORMULATION FOR THE SLIP ELEMENT 

As o u t l i n e d i n Chapter 4, that the f o r c e - d i s p l a c e m e n t 

r e l a t i o n s h i p at any point within a s l i p element has been assumed to be 

given by, 

f K 0 w 
(fS} = U S K ] [ W

S ] (A2.1) 

i . e . , f_ = ICQ W 

where, 

f g and f n = shear and normal stresses 

Kg, ^ = j o i n t s t i f f n e s s i n shear and normal d i r e c t i o n s 

wg, wn = shear and normal displacements 

The e l a s t i c stored energy, 0 E i n a s l i p element due ( F i g , 

(A2.1) to applied forces can be obtained by, 

0 E = 2 t  f  d Z  ( A 2* 2 )  

i n which L i s the t o t a l length of the s l i p element. A factor half i s 

included because the r e l a t i o n s h i p between f_ and w i s assumed to be 

l i n e a r . 

From (A2.1), 0g now can be written as, 



Fig. A2.1. Slip Element. 

s = tangential direction 

U j = tangential displacement o f node i 

n = normal direction 

V j = normal displacement of node i 
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0 E = 2 /o W ' k o W d A ( A 2 * 3 ) 

Since the v a r i a t i o n of displacements (u, v) within an element i s l i n e a r 

the displacement at any point which i s at a distance, A, from node I on 

the bottom edge I J of the element i s , 

u U) = £ U j + (1 - L> U I ( A 2 - 4 > 
bottom 

In a s i m i l a r manner the following equations can be written f o r , 

u (A), v (1) and v U ) , 
top bottom top 

l .e. 

and 

u U) = L ° K + ( 1 ~ L ? " L (A2.5) 
top 

v(A) = L V J + ( 1 + L } V I (A2.6) 
bottom 

v (x) = L VK + ( 1 " L? V L ( A 2 ' 7 ) 

top 

where, u^, v^ r e f e r to displacement i n tangential and normal d i r e c t i o n 

of the nodes I, J , K and L . 

Shear and normal displacements at any point are, 

w = u (A) - u (A) (A2.8) 
top bottom 

and, 
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w n = v (A) - v U ) (A2.9) 
top bottom 

Now s u b s t i t u t i n g f o r u t o p > u b o t t o m , v t o p a n d 

v b o t t o m f r o m equations (A2.4) to (A2.7), i n equations (A2.8)-

and (A2.9), 

w = H 1 -i> ~i i u - ft] (A.2.10) 

and, 

w_ = [-(1 - f) f f (1 ( A 2 . l l ) 

From equation (A2.1), w i s , 

U l v, 

w = [ S ] = 
— L w J 

-A 0 -B 0 B 0 A 0 
[ ] 
0 -A 0 -B 0 B 0 A 

J 

\ 
V K 
\ 

(A2.12) 

i n which, 

A = 1 " L A N D B - L 

In matrix form the equation (A2.12) i s , 

http://A2.ll
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w = C 6 
2x1 2x§ 8X1 ( A 2 . 1 3 ) 

where, = the i n t e r p o l a t i o n matrix 

and 6̂  = nodal displacement matrix 

Substitution of ( A 2 . 1 3 ) i n ( A 2 . 3 ) gives, 

K = 9 t s T
 cl K CJ d* 

E 2 •'o o o o 
( A 2 . 1 4 ) 

Performing the matrix m u l t i p l i c a t i o n , 

T C k C o o o 

- A 0 

0 - A 

- B 0 

0 - B K 0 

B 0 [ 8 

0 B 0 K 

A 0 n 
0 A 

r - A 0 - B 0 B 0 A On 

- A 0 - B 0 B 0 A - l 

K A 2 0 A B K 0 - A B K 0 - A 2 K 0 
s s s s 
0 A 2 K 0 A B K 0 - A B K 0 - A 2 K n 

B 2 K 

n n i 
A B K 0 B 2 K 0 - B 2 K 0 - A B K 0 

s s s s 
0 A B K 0 B 2 K 0 - B 2 K 0 - A B K 

n n n 
- A B K 0 - B 2 K 0 B 2 K 0 A B K 0 

s s s 
B 2 K 

s 
0 - A B K 0 - B 2 K 0 B 2 K 0 A B K 

n n n n 
- A 2 K 0 - A B K 0 A B K 0 A 2 K 0 

s s s s 
0 - A 2 K 0 - A B K 0 A B K 0 A 2 K 

( A 2 . 1 5 ) 

To perform the in t e g r a t i o n shown i n equation A 2 . 1 4 , one should know 

integrations of, 



183 

/ L A 2 dA, f L B 2 dA and f L AB dA J o J o J o 

These are simply, 

J L J o A 2 dA = 3 o (1 - ft2 dA L 
3 

/ L 

J 0 

B 2 dA = = 
J o ( f ) 2 dA L 

3 (A2.16) 

and, Jo AB dA = • J L 

; o 
( 1 - f t f dA 6 

Now the equation (A2.14) can be written as, 

0 E " 2 ° T K s n 6 ( A 2' 1 7> 

where, 

sn 6 

2K 
s 

0 K 
s 

0 -K 
s 

0 -2K 
s 

0 
2K 

n 
0 K 

n 
0 -K 

n 
0 -2K 

n 2K 
s 

0 -2K 
s 

0 -K 
s 

0 
2K 

n 
0 -2K 

n 
0 -K 

n Sym 2K 
s 

0 
2K 

n 

K 
s 

0 
2K 

s 

0 
K 
n 

0 
2K 

R e c a l l that e l a s t i c stored energy 0g i n the formulation of a l i n e a r 

e l a s t i c f i n i t e element i s , 

0E = j 6 T K 6 (A2.18) 
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Where K i s the s t i f f n e s s matrix of the f i n i t e element. Now, comparing 

(A2.17) and (A2.18), the s t i f f n e s s matrix for s l i p element can be deduced 

as K„_. —sn 
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APPENDIX III 

STEP BY STEP INTEGRATION 

For the proposed incrementally e l a s t i c dynamic analysis i n the 

time domain the " e l a s t i c " properties have to be modified for every time 

step. The e l a s t i c parameters depend on the l e v e l of s t r a i n i n the 

deposit. Therefore, the displacement f i e l d i n the deposit should be 

evaluated at every time step. This requires that the incremental dynamic 

equilibrium equations (equation 5.5) have to be solved numerically for 

every time step. 

Newmark's method (1959) of step by step i n t e g r a t i o n i s very 

popular and extensively used i n dynamic analyses. This method b a s i c a l l y 

provides numerical s o l u t i o n i n time domain, where the s o l u t i o n i s advanced 

by one d i s c r e t e step at a time. In t h i s method, two parameters <* and p 

are used so that the v e l o c i t y and displacement at time t+At can be 

expressed i n terms of a c c e l e r a t i o n , v e l o c i t y and displacement at time t, 

and of the known acc e l e r a t i o n at time t+At. For convenience l e t us define 

that, 

T = t+At 

Then the r e l a t i o n s h i p i n terms of <* and 8 are, 

{X} T = {X}t + (1 - «) At {X} t + ocAt {X} T (A3.1) 

and, 
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{X} T = {X}t + At {X} t + (± - 6) ( A t ) 2 {X} t 

+ B A t 2 {X} T 

(A3.2) 

Newmark (1959) proposed that « = 1/2 and B = 1/4 be used for an 

u n c o n d i t i o n a l l y s t a b l e i n t e g r a t i o n procedure, which i n c i d e n t a l l y 

corresponds to a constant average acceleration method of i n t e g r a t i o n . I f 

= = 1/2 and 8 = 1/6 are used then t h i s method gives a l i n e a r v a r i a t i o n of 

acc e l e r a t i o n within the time step. 

Re-writing the incremental equilibrium equations from Chapter 5, 

[M] {AX} + [C] {AX} + [ K t ] t {AX} = {AP} (A3.3) 

Now su b s t i t u t i n g f o r , 

{AX} 

{AX} 

{AX} 

(A3.4) 

and, 

i n equation (A3.3), one gets, 

[M] {^ - X j + [C] {Xj, - X t} + [ K t ] t {^ - X t} = {AP} (A3.5) 

From e q u a t i o n s (A3.1) and ( A 3 . 2 ) , {x}^, and {^}^ can be 

expressed i n terms of other variables as follows, 
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[ | £ 2 + [ c ] p £ + [ * t ] t ] (AX} 

= {AP} + [M] {E} t + [C] {F} t 

W T
= m 2 [ { A X } " A t { x } t "  (i ~ P> A t 2 W J ( A 3 * 6 ) 

and, 

W T - (X} t + (!--) At {X} 
(A3.7) 

+ ^ [{AX} - At{x}t - B) At* {X}J 

Substituting for {x}-£ and {x},p i n equation (A3.5), 

W 2 [ {AX} - A t { X } t - (j - 6 ) At* {X} t - BAt 2 {x}J 

+ [C] [ ( 1 — ) At {X}fc + ̂  [{AX} - At {X} t (A3.8) 

- £ - B) At2 {X}J + [ K t ] t {AX} = {AP} 

Co l l e c t i n g terms, and defining following s i m p l i f y i n g symbols, 

and, . 

W t = f W t
 + ' ( 2 p " 1 } A t ^ t ( A 3 ' 1 0 ) 

the equation (A3.8) can be reduced to, 

(A3.11) 
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Recall from Chapter 5, Section 5.1.2, cor r e c t i o n forces should 

be applied to restore t o t a l equilibrium at time T. The { P c o r r } 

evaluated using equation (5.11) can be added to r i g h t hand side of the 

equation (A3.11). Then the equation (A3.11) i s , 

^ + [ c ] p t r + [ K T ] T ] w 
= {AP} + [M] {E} t + [C] {F} t 

(A3.12) 

where, 

{AP} = {AP} + { P c o r r } (A3.13) 

The only unknown i n the above equation i s {AX} and therefore, 

{AX} can be obtained as, 

{AX} = [D]" 1 [{AP} + [M] {E} t + [C] {F}t] (A3.14) 

in which, 

[»]-[{S.]*WJE+[" tU (A3-15> 
Now knowing {AX}, the unknowns {x}^ and {x}T and {x}T can be 

evaluated. {x}T i s simply, 

{X} T = {AX} + {X} t (A3.16) 
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From equation (A3.2), an expression for {x}T i s , 

W T • "p^2 [{AX} - At {X} t " (| - 8) A t 2 {X} t] (A3.17) 

S u b s t i t u t i n g f o r {E} t from (A3.9), the eq u a t i o n (A3.17) can be 

s i m p l i f i e d as, 

W T
 = "pit"2 {AX} - {E} t + {X} t (A3.18) 

From equations (A3.1) and (A3.2) an e x p r e s s i o n f o r {x}̂ , a f t e r 

rearranging terms i s , 

{X}T = {X}t + ( I - ) At {X} t + ccAt {X} T (A3.19) 

Knowing {AX} by solving equation (A3.14), the response at time T can be 

computed using equations, (A3.18) and (A3.19). 

In the numerical step by step i n t e g r a t i o n , the following 

sequence of c a l c u l a t i o n s have to be performed for every time step. 

1. I n i t i a l v e l o c i t y {x} t and displacements {x} t are known 

eith e r from values at the end of the preceding increment or as 

i n i t i a l conditions of the problem. Based on these values, 

{ E } t , { F } t , and { p
C O r r } » a r e e v a l u a t e d u s i n g 

equations (A3.9), (A3.10) and (5.11). 

2. With these values and the known non-linear properties of the 

s o i l deposit, the damping matrix [c] and [ K t ] t are evaluated 

according to appropriate equations i n Chapter 5. 
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3. The matrix [D] i s then calculated using equation (A3.15). 

4. Using the increment i n base acceleration value at time t, i t i s 

possible to evaluate the r i g h t hand side of the equation (A3. 

12). 

5. The equation (A3.12) can now be solved for {AX} and then 

displacement, a c c e l e r a t i o n and v e l o c i t y vectors can be evaluated 

from equations (A3.16), (A3.18) and (A3.19) r e s p e c t i v e l y . 

When step 5 has been completed, the analysis f or t h i s time 

increment i s f i n i s h e d and the entire process may be repeated for the next 

time step. Obviously t h i s process can be c a r r i e d out consecutively for 

any desired number of time increments; thus the complete response h i s t o r y 

can be computed. 

Two important aspects have to be considered i n any numerical 

i n t e g r a t i o n procedure. They are the accuracy and s t a b i l i t y of the 

procedures. Accuracy ref e r s to how well the numerical s o l u t i o n matches 

the exact continuous s o l u t i o n . S t a b i l i t y r e f e r s to whether extraneous 

solutions are introduced i n such a way that they increase rather than 

decay, and thus come to dominate the r e s u l t s . Usually there i s an upper 

l i m i t to At that i s necessary to guarantee s t a b i l i t y , and the value of 

that l i m i t depends on the type of element s t i f f n e s s and mass matrix as 

well as on « and 8. 

With a l i n e a r a c c e l e r a t i o n assumption (<= = 1/2, 6 = 1/6) the 

analysis w i l l give good accuracy i f the shortest period of the deposit i s 

5 to 10 times greater than At (Clough and Penzien 1975). The l i n e a r 

a c c e l e r a t i o n method i s only c o n d i t i o n a l l y stable, and i t w i l l blow up i f 

i t i s applied to s o i l structures with the shortest period le s s than about 

1.8 times the i n t e g r a t i o n i n t e r v a l . Thus the time increments must be made 
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short r e l a t i v e to the least period of v i b r a t i o n contained i n the system 

regardless of whether the higher modes contribute s i g n i f i c a n t l y or not. 

In the analysis using f i n i t e element procedures the shortest periods of 

v i b r a t i o n i n general may be several orders of magnitude less than the 

periods associated with the s i g n i f i c a n t response. In these cases, the 

l i n e a r a c c e l e r a t i o n method cannot be used because of the very short time 

step required to avoid i n s t a b i l i t y ; instead, an unconditionally stable 

method i s required which w i l l not blow up regardless of the time step. 

Several unconditionally stable methods are a v a i l a b l e . The 

constant average a c c e l e r a t i o n method (« = 1/2 , 8 = 1/4) i s one of the 

simplest of these methods. But t h i s assumption has been reported not to 

give good r e s u l t s than the methods with l i n e a r a c c e l e r a t i o n assumption. 

The Wilson 9-method (Wilson, et a l . 1973), i s also an unconditionally 

stable method. This method i s a modification of l i n e a r a c c e l e r a t i o n 

method and i s reported to be the best of a l l unconditionally stable 

methods (Clough, et a l . 1975). 

The Wilson 8-method i s based on the assumption that the 

acceleration varies l i n e a r l y over an extended computation i n t e r v a l , %, 

such that, 

x = 9 At where 0 > 1.37 (A3.20) 

When 0 = 1 , t h i s method reverts to the standard l i n e a r a c c e l e r a t i o n 

method. The analysis procedure i s exactly the same as the procedure 

presented above except that i n the equations the time step At has to be 

r e p l a c e d by T and a l s o the equations to e v a l u a t e {x}-j,, {&} ,̂ 

and { x } T have to be modified. 
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Since t h i s i s e s s e n t i a l l y a l i n e a r a c c e l e r a t i o n method, here = 1/2 

and 8 = 1 / 6 . By inspection, the required equations can be rewritten as 

follows. 

The equation (A3.12) can be rewritten as, 

f^M] + 1[C] + [ K f c ] t ] { A X } m { ~ p } + [ M ] [ c ] { p } t ( A 3 > 2 1 ) 

i n which, 

{ E*t = x ^ t  + 3 M t
 ( A 3 ' 2 2 ) 

and, 

{F} t = 3 {X} t + \ {X} t (A3.23) 

After evaluating {AX}, which i s over an extended time increment 

the displacement, v e l o c i t y and a c c e l e r a t i o n values should be computed at 

time t = T. The a c c e l e r a t i o n at t = T can be evaluated using, 

W T = [*2 {AX} + { E } J {X} t (A3.24) 

{x},p, from equation (A3.19) with « = 1/2 and 8 = 1/6 i s , 

{X} T = W t + f [ W t + {X} T] (A3.25) 
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and also the displacement {x}^, from (A3.2) i s , 

{X} T = ( X } t + At ( X } t + *f - [ {x } T + 2 { X } J (A3.26) 

f 

I t must be remembered that s t a b i l i t y i n numerical i n t e g r a t i o n 

does not guarantee accuracy or vice versa. The Wilson 0-method imposes 

a r t i f i c i a l damping i n higher modes. But knowing that the response due to 

higher modes of v i b r a t i o n contributes very l i t t l e to the true response of 

structures, this method i n a way f i l t e r s out the high frequency response. 

Therefore, t h i s method has been found to y i e l d r e a l i s t i c r e s u l t s i n a 

number of dynamic analyses. 


