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Abstract 

Cable stayed bridges are the state of the art in long span bridges. Developments in 

cable response analysis and computer hardware and software have allowed engineers to 

design and build many cable stayed bridges. Bridges of many different configurations 

with longer and longer spans are being built. With the long spans and high axial loads 

in the deck, the stability of cable stayed bridges becomes a growing concern. Current 

analysis procedures use a parabolic approximation to the true catenary response of 

cables, which is quite accurate for tight cables; however, for near instability conditions 

with the accompanying large deflections and consequently loose cables, a catenary 

model is called for. Herein, a study is conducted on the elastic stability of cable stayed 

bridges utilizing a true catenary model of cable response. A dimensional analysis of 

cable stayed bridge stability is undertaken as well as deck maximum deflection and 

moment under service load conditions. 

A computer program written by this author is the analysis tool used in this work. 

The program is given the acronym ULA which stands for Ultimate Load Analysis. ULA 

is a nonlinear plane frame program with catenary cable elements and an interactive 

graphics interface. The dimensional analysis is carried out by comparing the computer 

model of a cable stayed bridge to the theoretical model of a beam on an elastic founda

tion. Two preliminary simplified cable stayed bridge backspan models are studied first 

in order to develop the dimensionless ratios that are applicable to the bridge response 

and to gain an insight into the cable stayed bridge behaviour. The final model is that of 

an entire cable stayed bridge. Because of the multitude of parameters governing cable 

stayed bridge behaviour it is not possible to describe all cable stayed bridges. Instead, 

the dimensionless behaviour of a standard model is examined and the sensitivity of this 

standard to various parameter variations is given in the form of dimensionless charts. 
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Finally, a preliminary design and analysis aid is developed from the dimensionless 

charts and is then applied to two existing bridge designs. 
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Chapter 1 

Introduction 

1.1 Development of Cable Stayed Bridges 

The concept of supporting a beam with stays is not a new one. Egyptians used the 

idea for their sailing ships and in some tropical regions vines attached to trees were 

used to support walkways. Several cable stayed bridges were built in Europe from 

1784 to 1824 using timber, wire, chain and iron bar stays. However, the development 

of cable stayed bridges stopped there due to the collapse of several bridges. It was 

Navier who reported on these failures and made the comment that suspension bridges 

were preferable. This suggestion of Navier's was enough to cause bridge engineers to 

abandon the cable stayed bridge concept [1,2]. 

The use of stay cables was not entirely abandoned, as several suspension bridges 

had inclined ropes in addition to vertical hangers. However, the low strength of the 

stays precluded prestressing, so the stays were installed in a slack condition. These 

stays would simply elongate due to sag reduction when loaded, thus were ineffectual 

under service loads. It was not until 1938 that stay cables were again used in a bridge 

design as main load carrying members. Dischinger had the task of designing a railway 

bridge over the Elbe River and he found that the deflections of a suspension bridge 

could be significantly reduced if tight wires were used as supplemental stays. 

After World War II, the rebuilding of Germany's bridges brought the cable stayed 

bridge back into favour, largely due to the need for economy of steel. Earlier cable 

stayed bridges failed due to inferior materials and a misunderstanding of the structural 

behaviour of the cables. Now, with better materials and armed with Dischinger's 
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Chapter 1. Introduction 2 

findings, which were published in 1949 [3], cable stayed bridges were proposed for the 

reconstruction of bridges over the Rhine River. 

The first modern cable stayed bridges were essentially beam bridges with only 2 to 6 

stays in the main span as shown in Figure 1.1. The spans between cable supports were 

between 30 and 60 meters, with the cables acting as major supports, taking the place 

of piers. This reduced the bending stresses in the deck, allowing smaller cross sections; 

hence, a saving in steel. With the limited number of stays along the span, the cables had 

to carry major portions of the bridge dead load and live load, thus the cables were very 

large and the connections to the deck and anchor were quite complicated. To reduce 

tower moments, special roller and rocker bearings were built which allowed the cables 

to pass through the tower, as shown in Figure 1.2. Along with the heavy members and 

elaborate bearings, the construction of these bridges still required falsework. 

Several arrangements of cable layout and tower shape were used as can be seen in 

Figure 1.1. Radiating cable layouts with the cables converging to one area on the tower, 

and harp designs with the cables parallel to each other were used in conjunction with 

single plane cable, double plane cable and double inclined plane cable systems (A-frame 

towers). These configurations were used in single tower and multi-tower bridges. The 

deck was sometimes rigidly supported at the tower and in other designs the deck passed 

through the tower with only side bearings provided. Fixed-base and pinned-base towers 

were both used. 

As experience was gained in the design and construction of cable stayed bridges it 

was found that most difficulties disappeared if a larger number of stays was used such 

that the cable spacing at the deck was from 8 to 15 meters [4]. With this many cables, 

it was no longer possible to connect all the cables at one point for a radiating layout 

and complicated tower bearings for harp bridges had to be abandoned. 

Figure 1.3 shows a modern cable stayed bridge with a fan shape arrangement of 

cables. In this system, the deck behaves more like the bottom chord of a truss, rather 
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74 m 183 m 74 m 
Stromsund Bridge 

Stromsund, Sweden (1955) 

108 m 260 m 
North Bridge 

Diisseldorf, West Germany (1958) 

108 m 

301 m 151 m 
Severin Bridge 

Cologne, West Germany (1960) 

106 m 280 m 
Leverkusen Bridge 

Leverkusen, West Germany (1964) 

106 m 

Figure 1.1: First modern cable stayed bridges. 
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Rocker 

Figure 1.2: Cable bearings in towers. 

than a simply supported beam. Th i s analogy is outl ined in Figure 1.4. The basic 

element (a) is a p in connected truss made of four members, and the weight W is 

supported entirely by axial stress. The weight can be applied in different positions 

along the deck, and to accomodate this , extra members are bui l t into the truss (b). A 

complete bridge can be modelled as a p in connected truss (c) and al l loads on the deck 

panel points are supported by axial stress. W i t h the deck modelled as a continuous 

beam rather than p in connected beams, the structure s t i l l behaves as a truss wi th only 

secondary bending stresses in the deck. The final extension of the truss model is to 

distribute the cable connections along the towers (d). Th i s induces pr imary bending 

stress into the structure to produce a frame not a truss; however, the bridge can be 

made nearly moment free for dead load. 

The evolution toward modern cable stayed bridges was made possible by the de

velopment of orthotropic steel and concrete decks that could bear large axial forces, 

together w i t h the advent of the computer. W i t h the nonlinear cable behaviour mod

elled in a computer program and wi th the tremendous computing power available, the 

analysis of multi-cable stayed bridges became easy. 
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Alex Fraser Bridge 
Vancouver, British Columbia, Canada (1986) 

Figure 1.3: Modern cable stayed bridge. 
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1.2 Advantages of Multi-Cable Stayed Bridges 

There are many advantages of multi-cable stayed bridges over other types of bridges. 

The original necessity that brought about cable stayed bridge designs was to have long 

span bridges that used a minimum of steel. With the cables acting as supports from 

above the deck, the cost of constructing deep water falsework was eliminated and the 

passage for navigation was kept open during construction. 

Cable stayed bridges share the advantage with suspension and arch bridges that the 

dead load stresses can be controlled by the erection procedure. With some skill during 

construction, the dead load of the bridge can be carried moment free. In addition, cable 

stayed bridges can have smaller live load moments. For suspension and three-hinged 

arch bridges the maximum live load moment is approximately WL12

mI&Q, while for a 

cable stayed bridge it is about wLlM/440. Thus, the deck moments are greatly reduced 

and a smaller cross section is possible. This results in a lighter bridge that is easier to 

support and allows even longer spans. 

Both suspension and cable stayed bridges can have aerodynamically streamlined 

decks, but cable stayed bridges have inherent characteristics that make them superior 

to suspension bridges. In a cable stayed bridge, each of the cables—with the mass of 

the deck attached to it—has a different natural frequency, and if external forces try to 

set up resonant flexural oscillations of the deck, the vibrations are effectively dampened 

by the interference of cables with different frequencies. 

A more dramatic aerodynamic advantage is in the resistance to the antimetric tor

sional mode of oscillation—the mode which led to the collapse of the Tacoma-Narrows 

Bridge. In a suspension bridge the two cables can move against each other, one going 

up in half of the span and the other going down; thus, allowing torsional movement 

of the deck. In cable stayed bridges the cables themselves provide a large resistance 

against this torsional movement. The difference in deflection of the two cable planes is 

mainly due to the different deflection of the towers in each plane, and with the tower 
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tops being tied with stiff back stays, the tower movements are much smaller than sus

pension bridge towers. Further torsional resistance is possible by connecting the towers 

as shown in Figure 1.1 (top bridge) or by constructing an A-frame as shown by the 

third bridge of Figure 1.1. Thus, cable stayed bridge decks need not have as large a 

torsional stiffness as suspension bridge decks. 

Further economic advantages are acquired in the ease of erection of cable stayed 

bridges. The need for heavy suspension cable anchors is gone, and with fixed base 

towers the cantilever method of construction can be employed, which eliminates the 

need for falsework. As the number of cables in a span increases, the cables become 

lighter, the connections are simpler and the construction cantilever length decreases. 

The construction misalignment at the center of the main span is easily adjusted by 

slackening and tightening the appropriate cables. Finally, and perhaps paramount 

to the public who use bridges every day, cable stayed bridges are very aesthetically 

pleasing. 

1.3 Scope of Thesis 

The work presented herein was undertaken in order to compare existing cable stayed 

bridges and to allow preliminary design and analysis without the use of a computer. A 

large number of cable stayed bridges exist, all of different spans, tower sizes, cable con

figurations and deck cross sections. In order to compare the wide range of cable stayed 

bridges, dimensional analysis is used to study the stability, deflections and moments 

of a cable stayed bridge computer model. Once the behaviour of cable stayed bridges 

is presented in the form of dimensionless charts, a preliminary design and analysis aid 

which uses these charts, is developed. 

This thesis is applicable to multi-cable stayed bridges with a fan type of cable 

arrangement (Fig 1.3). Double-tower bridges with fixed bases are modelled with an 

elastic support—equivalent to one cable—for the deck at each tower. The cables are 
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attached to the towers rather than allowed to pass through. 

The response of the bridge computer model is presented as an analogy to a simple 

beam on an elastic foundation. Nonlinear elastic computer analysis is done for deck 

stability as well as for maximum deflection and moment. The response of the deck is 

determined for distributed live loads. A plane frame analysis is used, thus out of plane 

loads from wind or earthquake are not considered. Torsion is not considered and axial 

deformations of the deck and towers are neglected. 



C h a p t e r 2 

A n a l y s i s S y s t e m 

2.1 C u r r e n t A n a l y s i s P r o c e d u r e s 

Cable stayed bridges are complicated structures to analyze, just like any other bridge 

or structure. Analys is procedures for calculating the deflections, moments and buckling 

behaviour, must be derived based on a model of the actual structure and the materials 

it is made of. Some assumptions used in the model can be very true to the real 

s i tuat ion, such as Young's modulus being constant wi th increasing strain and plane 

sections remaining plane upon a change in curvature of a beam. B u t all models have 

their l imits of val idi ty such as Young's modulus changing when strains become plastic 

and plane sections not remaining plane for certain cross section shapes. 

Some of the modell ing assumptions in cable stayed bridges concern the deck stiffness, 

the axial load in the deck, the cable behaviour and the beam-column on an elastic 

foundation behaviour of the deck. The deck stiffness of cable stayed bridges can for the 

majority of the span be constant because of the nature of the moment distr ibution in the 

deck. However, because of the increasing axial load induced in the deck by the cables, 

the cross-sectional area of the deck near the towers might be increased, thus increasing 

the stiffness as a by-product. The cables are of varying cross-sectional area and tension 

and hang in the shape of a catenary which results in a varying nonlinear cable behaviour 

along the span. The combination of the deck stiffness and axial load variations and the 

cable variat ion w i t h the cable nonlinearity and deck beam-column nonlinear behaviour 

makes the beam-column on an elastic foundation model very complex. 

The following two sections are overviews of how some researchers have modelled the 

9 
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cable stayed bridge behaviour at buckling loads and at service loads. 

2.1.1 D e c k S t a b i l i t y 

The most commonly used check for deck buckling is Tang's approximate formula [5] : 

PT = 2yjEI0T 

where 

PT — Tang's cr i t ical axial load in the deck 

E = deck elastic modulus 

I = deck moment of inertia 

PT Tang's elastic foundation constant 

PT = EcAc/sS 

Ec = cable elastic modulus 

Ac = cable cross-sectional area 

S = cable chord length 

s length of deck interval between cables 

Th i s is derived from an analogy wi th a beam-column on an elastic foundation where 

the axial load is constant throughout the beam-column and the beam stiffness does 

not vary. Th i s formula is for buckling wi th no variat ion of cable stiffness along the 

beam and wi th the cables themselves modelled as linear springs. Tang has compared 

the results from this approximation wi th that obtained from a computer model based 

on an energy method that includes the tower interaction wi th the deck and cables 

(modelled as linear springs). The computer model accounted for the varying deck axial 

load and stiffness as well as the varying cable stiffnesses. It was found that the two 

models give almost identical results for the cri t ical axial load. 

Tang's approximation is good for short span bridges only. The deflections of short 

span bridges are s t i l l fairly small near instability, so good analytical results can be 
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obtained from the linear cable model. W i t h cable stayed bridges being designed wi th 

ever longer spans and increasingly slender decks, closer investigation which includes 

cable nonlinearity, is required. 

2.1.2 Bridge Response 

H a n d calculat ion procedures to determine several prel iminary cable stayed bridge pa

rameters are given in an excellent book by Gims ing [6]. Troi tsky [2] also gives approxi

mate hand calculat ion methods in a chapter of his book. However, because cable stayed 

bridges are highly statically indeterminate, computer solutions are needed to perform 

the final detailed analyses of these structures. 

Several authors have presented methods of cable stayed bridge analysis suitable 

for computer application. Smi th [7,8] developed a mixed force-displacement method 

for analysis of single and double plane cable stayed bridges. This was one of the first 

analyt ical tools developed for cable stayed bridges and the effects of cable sag and 

beam-column behaviour were not included. Troi tsky and Lazar [9] used a flexibility 

method to compare wi th their tests on a physical model . Thei r physical model included 

nonlinear effects but their analytical model was s t i l l linear. Lazar [10] also used the 

stiffness method and included nonlinear cables wi th movable tower-cable connections. 

Tang [11] employed the transfer mat r ix method and reproduced the nonlinear cable 

behaviour w i th fictitious loads. A three-dimensional linear finite element procedure was 

presented by K a j i t a and Cheung [12] for both static and dynamic analysis. Rajaraman, 

Loganathan and R a m a n [13] modified a plane frame stiffness program to include beam-

column and cable nonlinearity. Como, Gr ima ld i and Macer i [14] developed a continuous 

model of cable stayed bridges based on their truss-like behaviour and presented the 

results in nondimensional form. A n energy method of analysis was developed by Hegab 

[15] in which a smal l number of Fourier terms for the assumed deflected shape of the 

deck was sufficient to allow quick convergence. 



Chapter 2. Analysis System 12 

In all of the above references where cable nonlinearity was modelled, the Ernst [16] 

or Dischinger equivalent modulus of elasticity was used. For cable stayed bridges with 

small live to dead load ratios, as was the case for early bridges, the tangent modulus 

could be used: 
E c 

E t a n ~ + ^cLfAcEc 
123? 

where 

Eton — cable tangent modulus of elasticity 

Tt — service (dead plus live) load cable tension 

L = horizontal projected length of cable 

wc = weight per unit length of cable 

and the other symbols are as defined previously. 

For multi-cable stayed bridges the deck is slender, thus lighter than early bridges 

which results in a higher live to dead load ratio. The initial cable tautness is much less 

than was the case for early cable stayed bridges, thus the change in cable tension due 

to the application of live loads is more important and the secant modulus should be 

used: 

E~ = (wcL)2AcEc(T~+JVj {2-l) 

24T2T, 
where 

E t e c — cable secant modulus of elasticity 

T = dead load cable tension 

The derivation for these formulas assumed a parabolic rather than a true catenary 

cable shape and the force in the chord direction was taken as the cable tension. Ito 

and Maeda [17] presented a derivation based on a parabolic cable shape but used the 
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true cable tension. They noted however, that the difference between using the force in 

the chord direction and using the true cable tension or the force tangent to the cable 

was negligible. 

2.2 Proposed Analysis Procedure 

The model used in developing the analysis procedure used herein incorporates cate

naries as the cable shapes with the secant equivalent modulus, P—A effects for beam-

columns, and is limited to elastic behaviour. 

The analyses conducted for this thesis were done using a plane frame computer 

program written by this author. The program was designed for ultimate load analysis 

combining second order effects with plastic hinge formation and is given the acronym 

ULA. The nonlinear analysis is achieved by incorporating stability functions into mem

ber matrices to model the P-A behaviour and by using equivalent areas for cables based 

on the catenary shape to model the effect of cable sag. Further details of ULA con

cerning plastic hinge formation, moment axial interaction, strain hardening and the 

interactive graphics capabilities are given in a thesis by Mill [18]. Details of ULA that 

are important to this thesis are given in the following paragraphs. 

The stability functions used are standard and are presented by many authors in

cluding Weaver and Gere [19]. The stability functions depend on the axial forces, and 

the axial forces depend on the deflected shape. It is therefore necessary to use an iter

ative procedure to find the solution. This is handled by the interactive graphics format 

of ULA, where the user can decide upon convergence of the P—A effect by observing 

the changes in the determinant of the structure matrix. 

Most authors use an equivalent Young's modulus to model the stiffness of straight 

line cable members as actual sagging cables. Herein, an equivalent area is used instead. 

This choice is a matter of convenience only, in that it is the stiffness of the cable that 

changes with sag and not the area or elastic modulus. The data input requirements of 
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ULA are such that each cable can be assigned a unique area easier than an individual 

modulus. 

The equivalent cable area also depends on the axial forces and an iterative procedure 

is necessary just as for the stability functions. However, this does not mean that 

seperate iterations need to be done because the recalculations for cable sag can be 

performed during the same iterations that are required for P — A convergence. The 

convergence of cable area change is monitored by ULA in the same manner and at the 

same time as that for P— A . 

Most authors also use what they cite as a parabolic derivation of equivalent cable 

stiffness (Equation 2.1). The derivation is in fact a hybrid, in that a parabolic shape of 

the cable is assumed while the weight per unit cable length is used instead of the load 

per horizontal projection as for a true parabolic deflected shape. Authors were hesitant 

to use a full catenary derivation because of its complexity, but with series substitution 

it becomes manageable. The derivation by Hooley [20] is repeated in Appendix A. Note 

that the equivalent stiffness from this derivation is exactly the same as that from the 

hybrid derivation. This can be seen by manipulating Equation A . l appropriately until 

Equation 2.1 appears with A c in the place of EQ. 

As stated previously, the two derivations produce identical results because of the 

cable self weight manipulation. In a parabola, the self weight is a constant load per 

horizontal length; in a catenary, it is a constant load per cable length. The two self 

weights are related by cos 6 where 0 is the angle between the horizon and the tangent 

to the cable at any point along the cable. If the cable is tight, then 6 is approximately 

constant and the parabolic and catenary solutions are the same. For a slack cable, 6 is 

not constant and the parabolic solution will not be the same as the catenary. 

A comparison between the parabolic method and the catenary method has been 

made by this author and found that for tight cables ( / = 7) there is only a 0.1% to 

1% difference in deflections. For slack cables ( / = 2), the parabolic solution is 10% to 
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15% in error from the catenary solution. 

A graphical representaion of cable tautness / is given in Appendix B along with an 

explanation of the implementation of cables into ULA. 

2.3 Dimensional Analysis 

The response of a cable stayed bridge depends on a multitude of parameters. With 

the use of dimensional analysis, the parameters can be isolated and the behaviour of 

a structure can be studied in a more logical manner. The principles of dimensional 

analysis are well known, with a good explanation of the theory given by Goodier [21]. 

The procedure in dimensional analysis is to identify all the independent parameters 

affecting the structure and then construct independent dimensionless ratios using these 

parameters. A very useful feature of this technique is that the number of dimensionless 

ratios to be studied is two less than the number of parameters. 

Comparisons can be made between the complex structure at hand and a simpler 

similar structure. Thus, the complex structure can be thought of as the simple struc

ture with some adjustments. The use of a simple model is also an aid in choosing the 

parameters that would affect the real structure. The dimensionless ratios are indepen

dent, so one ratio can be altered and the response studied without affecting the other 

ratios. The results from dimensional analysis are applicable to all similar structures, 

for which the characteristic ratios are the same. 

2.4 Computer Models Analyzed 

In order to gain an understanding of cable stayed bridge behaviour, the analogy to a 

beam-column on an elastic foundation will be made. Three computer models of pro

gressive complexity are studied. An extremely simple model is studied first to facilitate 

the derivations of the dimensionless ratios used to describe the model. The first model 
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is also designed to display very similar behaviour to that of a beam-column on an elas

tic foundation. This model is shown in Figure 2.5 and represents the backspan of a 

cable stayed bridge with the use of uniform cables of constant length. The first model 

has a constant foundation modulus and is not a good representation of a cable stayed 

bridge backspan; therefore, the second model is designed to be a truer representation 

of a cable stayed bridge backspan without adding too many complexities. The second 

model—also shown in Figure 2.5—has varying cable areas and lengths and the cables 

are attached to an immovable tower. This model will display the effects of a varying 

foundation stiffness without the added complexity of a flexible tower. The third model 

is of an entire cable stayed bridge. The boundary conditions are drawn on Figure 2.5 

as well, with the deck vertical support at the tower being equivalent to one vertical 

cable stay. 

In all three models, dimensional analysis is applied to a standard bridge and then 

variations from the standard are studied. The standard bridge is defined by setting the 

dimensionless ratios that describe the bridge to representative values as determined 

from existing cable stayed bridge designs. With the understanding gained from the 

simple model and the intermediate model, the full bridge model behaviour can be 

explained, and the important parameters can be identified. Once the response of the 

full bridge model is understood, comparisons can be made with existing cable stayed 

bridges and an analysis procedure can be developed using beam-column on an elastic 

foundation theory and the results of the dimensional analysis. 
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Backspan Model (Chapter 4) 

Full Bridge Model (Chapter 5) 

Figure 2.5: Progressive computer models of cable stayed bridges. (Models drawn 
different scales.) 



Chapter 3 

Simplified Backspan Model 

3.1 The Model 

A study of a complete cable stayed bridge would be complex, because the relative 

influence of the towers, the deck—backspan and mainspan—and the cables would be 

difficult to separate. Therefore, simple models are studied first, and the knowledge 

gained from these analyses is applied to the more complex model. Simple models are 

also useful to start with because there are fewer variables to study than in the complete 

model. 

Two models of the backspan—isolated from the tower and mainspan—are chosen as 

the simple models to study before looking at the full bridge model. The first backspan 

model—called "simplified backspan model"—is designed to have a uniform elastic foun

dation; the second model, which is discussed in Chapter 4, has a nonuniform elastic 

foundation. A sketch of the simplified backspan model, with all the possible parameters 

defined, is shown in Figure 3.6. In this model all the cables have the same modulus of 

elasticity, dead weight, area, and length and are attached to the deck at the same angle 

at equal intervals. The leftmost cable is included to simulate the backstay. The deck is 

modelled as having constant stiffness EI and the live load is applied as a distrubuted 

load. 

The definition of all the parameters shown in Figure 3.6 is given in the following: 

Ac = cable cross sectional area 

E = deck elastic modulus 

Ec = cable elastic modulus 

18 
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F — maximum axial load in deck due to dead load 

h = cable height 

I = deck moment of inertia 

L = horizontal projected length of cable 

IB = backspan length 

N = number of deck intervals in the backspan 

S cable chord length 

s = length of deck interval between cables 

T = cable tension in the chord direction due to dead load 

wc = weight per unit length of cable 

WD uniformly distributed dead load 

UlJLc = critical uniformly distributed live load 

e cable chord angle of inclination to deck 

Initially the model is under dead load only and the cable tensions T are set up such 

that there are no moments or deflections in the deck under the dead load. All the cable 

tensions are the same, with the cable attached to the roller bearing given the same 

tension as well. 

The parameter F is the maximum axial load in the deck under dead load only. 

The axial load distribution induced into the deck by the cables is nonuniform and the 

maximum occurs at the rightmost end. 

The computer program ULA has the capability to have axial prestress input as 

part of a load case. This feature is used to model the dead load cable tensions and 

dead load deck axial load distribution. The structure dead load is in equilibrium with 

the prestress; thus, if the prestress is applied as part of a load case, the dead load is 

not. In other words, the cable tensions represent the dead load, and the distrubuted 
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Figure 3.6: Simplified backspan model. 

dead load is not actually applied as a part of any load case. This also means that the 

input geometry is the dead load geometry. It should be noted that the P—A effects 

are calculated from the stability functions using the the initial prestress plus the axial 

load from a specific load case. 

The following sections will deal with the buckling behaviour of the model and the 

deflections and moments of the deck under application of live load. 

3.2 Stability 

Modern cable stayed bridges are being built with increasingly slender decks. With the 

longer spans and smaller deck cross sections of these bridges, the factor of safety against 

buckling becomes an ever more important consideration. Tang's formula for buckling 

load is acceptable for short span cable stayed bridges; however, as Tang points out, more 

detailed analysis is required for long span structures. Herein, a closer investigation of 
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cable stayed bridge elastic stability is carried out. 

3.2.1 Stability Dimensionless Ratios 

Not all of the 16 parameters shown in Figure 3.6 can be used as variables in dimensional 

analysis because they are not all independent of each other. For example, 5 is a function 

of L and h, so only two of these three parameters can be used in defining the response 

of the model, thus reducing the number of parameters that need be considered. A 

further reduction in the number of parameters is accomplished by combining E and I 

to get the bending stiffness of the deck EI, and combining Ac and Ec to get the axial 

stiffness of the cables AcEc- The 16 parameters reduce to nine independent ones and 

are given in the following function: 

Even though the distributed dead load is not actually applied in the computer analyis, 

the parameter " I W D " is retained because it is more convenient to use than T and F. 

The five parameters not used in Equation3.2 are related to the nine parameters of 

Equation3.2 by: 

wLt = ?[EI, ACEC, lB, / i , 6, N, wc, wD] (3.2) 

L = 
h 

tan 6 

S = 
h 

sin0 

T = 
VJDlB 

Ns'm6 

and 
N 
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The next step in dimensional analysis is to construct independent dimensionless 

ratios from the independent parameters. Buckingham's II theorem states that the 

number of dimensionless ratios required is the number of parameters less the number 

of fundamental units needed to quantify all of the parameters. Since the two units of 

length and force describe all the variables, seven ratios need to be constructed out of 

the nine parameters in Equation 3.2. The seven ratios chosen to represent this model 

are: 

s'md 

A 
h 

U>LC 

wD 

WDlB 

2 tan 6 
N AcEpEI sin* 0 

lah 

IB 4 NACEC sin3 6 
lBhEI 

WDIB 

Ns\n$, . ACEC (wch\2 

\ 24 \txn0J 

All of these dimensionless ratio have a physical meaning—some more obvious than 

others—and the remainder of this section is devoted to deriving and explaining the 

significance of these dimensionless ratios. 

Since the stability behaviour of a cable stayed bridge is to be investigated, Hetenyi's 

[22] critical load for an infinitely long beam-column on an elastic foundation is used as 

part of one ratio. 

FH = 2VkEI (3.3) 

file:///txn0J
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where 

Fff = buckl ing load for a beam-column on an elastic foundation 

k = elastic foundation modulus 

Note that F R , k, and EI in Equat ion 3.3 are al l constant along the beam-column. 

For the derivation of k, a single cable is isolated along wi th the t r ibutary length of 

deck associated w i th i t , as shown in Figure 3.7. 

Figure 3.7: Derivat ion of elastic foundation modulus. 

F r o m geometry: 

A = SsinB 

where 

A = cable elongation in the chord direction 

6 = deck vertical deflection 

and from Hooke's law: 

T = A A C E C 
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For a unit of deck deflection 6 — 1 and span s the foundation modulus k is V/s, where 

V is the vertical cable force Tsintf. This results in 

k = A c E c s [ n 2 e ( 3 4 ) 

SO 

Further substitutions using N = I B / S and 5 = h/s'md yield 

IB", 

Equation 3.4 can be compared with Tang's 

H T sS 

Tang omits the sin2 6 term, but the cable properties near the tower—where the deck 

axial load is greatest—are used in his formula. As long as the cable inclination at the 

critical deck section is greater than 72° the error in using Tang's approximation is less 

than 10%. 

Substituting Equation 3.5 into Equation 3.3 results in 

NAc ECEI sins0 
F„ = 2̂  ' - - - - - - - - (3-6) 

To make a dimensionless ratio from this, the maximum axial load in the deck due to 

dead load alone F = WDIB / t&n 8 is used to compare with FH to give 

JL = (3 7) 

V 

There is no live load in the expression for F/FH', therefore, this represents the deck 

stability under dead load only. 

As stated previously, FH is the buckling load for an infinitely long bar. The true 

solution for the a finite length bar also involves the number of half-waves n in the 

buckled shape. Hetenyi gives the number of half-waves as 
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IB J k 
n = 7 f e 

which in terms of the independent parameters is 

IB J 
n = —» 

7T A 

NACEC sin* 0 
lBhEI 

Thus, two dimensionless ratios—F/FJJ and n—are defined as a measure of deck stabil

ity. 

In order to explore the effect of cable nonlinearity on the response, the nondimen-

sional cable tautness / as derived in Appendix A is used as one of the dimensionless 

ratios. 

where 
wDlB 

H = Tcosfl = 
7Y tan 6 

and 

P V 245s 

as is explained in Appendix A. The expression for / in terms of the independent 

parameters becomes 

/ . , . (3.9) 

Ns\n6< ACEC 
(wch\' 

\\ 24 \tan^y 

There is no live load in the expression for / ; therefore, this represents the cable tautness 

under dead load only. A physically intuitive description of / is that at high values of 

/ the cable is very taut and has nearly the same stiffness as a straight bar. In fact, 

at / = 2 the cable stiffness would still be 85% of the straight bar stiffness. The cable 

stiffness then decreases rapidly as / decreases to the limit of zero. 

The critical live load is an obviously important parameter and this will be repre

sented by the dimensionless ratio wie/u>D-
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TV, sin0 and h/lg, which describe the geometric characteristics of the model, are 

used as the last three ratios required. 

A complete set of dimensionless ratios has been found and can be proven to be 

independent of each other. The reader can convince himself of this by noting that all 

nine parameters are used in forming the seven ratios, and by going through a process 

of elimination to prove independence. The ratio / is obviously independent of the 

other ratios because it is the only one containing wp. Of the six remaining ratios, WLC 

appears only in U>LC/WD. With tvLe/wD eliminated, F/FJJ is the only ratio containing 

WD] therefore, is independent of the others. The three geometric ratios are obviously 

independent of each other, which leaves n as the only ratio left; thus, independent of 

all the others. 

The critical live load causing instability of the simple backspan model is described 

by the function: 
x r • A h r F 
N, sm6, —, /, n, — 

This function is based on beam-column on an elastic foundation stability theory with 

both the cable slackness and the P—A nonlinearities modelled. 

3.2.2 Parameters and Ratios from Existing Bridge Designs 

In order to construct the standard1 simple backspan model to reflect actual bridges as 

closely as possible, data was aquired from four steel deck and five concrete deck cable 

stayed bridges. Appendix C.l shows the numerical values for the parameters, and the 

resulting dimensionless ratios are given in Appendix C.2. Typical values for concrete 

and steel E are chosen and the value for cable E is that for modern parallel strand 

cables. The density of the cables 7<? is taken to be 77 kN/m3. The moment of inertia 

of a deck varies in a real bridge but in this study I is kept constant. / is calculated 

from a representative section of the backspan which is usually a long central section of 

1 Defined in the last paragraph of Chapter 2. 
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constant cross section. 

For this model, constant values of cable area, height and angle are needed. To 

obtain values for these parameters the "centroid cable" is defined as the cable nearest 

the centroid of the triangle formed by the backspan, tower and backstay cable. The 

area, height and angle of this centroid cable are used as the representative values for 

the bridge and as the constant values for the model. 

The uniformly distributed live load wi for the standard model is assumed to be the 

AASHTO HS20 lane load for highway bridges. For railway bridges, the actual design 

specifications for live load are used. The dead loads are estimated from both the cable 

prestresses and the deck cross sectional area. N is the number of cables in the backspan 

with all the backstay cables counted as one cable. F is calculated from WDIBI tan 

The dimensionless ratios could be calculated for every cable in each bridge to get 

the average values for each bridge; however, to reduce the need for tedious calculations 

on the part of future users of this thesis, the centroid cable values of the dimensionless 

ratios are taken as the average values. The dimensionless ratio values actually used 

for the standard simple backspan model are given in Appendix C.2. These values are 

averages of the 9 cable stayed bridge values, and are repeated here: 

N 20 

sin 6 0.70 

0.40 

/ 7 

n 3 

F/FH 0.10 

XVL/U>D 0.20 

where, for the purpose of calculating / : u>c •A-CccnlC-
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3.2.3 Results of Stability Analysis 

The standard simplified backspan model of Figure 3.6 is constructed using the preceding 

values for the dimensionless ratios. In order to find the buckling load for this standard 

model, the structure is analyzed with the computer program ULA. The live load starts 

out at 20% of the dead load {VJL/WD = 0.20) and is increased until the critical live load 

that causes elastic instability is reached. (Structure instability is recognized when the 

determinant of the stiffness matrix becomes zero.) The standard live load is increased 

by multiplying it by the factor A, called the "load level." With this nomenclature the 

critical load ratio becomes 
U>Lc _ Awx, 

wD wD 

The structure buckles under the combination of 50 original live loads (A = 50) and one 

dead load—which is to say WLC/WD — 10. In other words, the buckling load is 

wD + Atuj, 

where A is taken as the factor of safety against failure. Thus, the factor of safety on 

the live load against elastic buckling of the standard model is 50. This is a very high 

factor of safety and cannot be related to cable stayed bridges because the model is too 

simplistic. The simple model is necessary, however, to be able to verify the computer 

program results against the theoretical beam-column on an elastic foundation before 

analyzing more complex models. 

To this end, the deflected shape of the deck just before stability failure is shown in 

Figure 3.8 along with the axial load (dead load plus live load) and moment distributions. 

Note that the deflection and moment shapes exhibit half-waves close to /jg/n or, in this 

case IB/3. The nonlinear distribution of deck axial load occurs because of the large deck 

deflections which cause cable tensions to increase beyond the linear live load tensions. 

As an aside, the possibility of a more severe loading condition for instability can 

be seen in Figure 3.8. If an uplift pressure (from wind and/or inertia) is applied in 
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Figure 3.8: Stability failure of simplified backspan model. 
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the region of deck negative moment (the center section), a more severe deflected shape 

would result. This uplift pressure would also reduce the deck axial load which stabilizes 

the structure. To determine the overall effect of the uplift pressure, the factor of safety 

is calculated from computer analyses for a range of uplift pressure magnitudes over the 

region of negative moment. The result is shown in Figure 3.9 where the abscissa is the 

uplift pressure expressed as a percentage of the live load magnitude. It can be seen 

that for this backspan model the reduction in deck axial load overrides the more severe 

deflected shape and the factor of safety increases with increasing uplift pressure. 

150 

Uplift Pressure (% of Live Load) 

Figure 3.9: Stability factor of safety with uplift pressure. 

The backspan model buckled with F/FJJ = 0.10. However, the theoretical beam-

column on an elastic foundation will only buckle when the constant axial load in the 

beam-column is exactly as calculated by FH = 2\/kEI. For this reason it might be 

expected that F / F H should equal 1.0 in order for the model to buckle. This discrepancy 

of a factor of ten exists because 
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1. F does not include the live load, 

2. the actual axial load distribution is nonuniform and nonlinear, 

3. FH is for an infinitely long bar, not for the case at hand. 

Most of the discepancy is due to the live load not being in F. To analitically account 

for the live load, F is multiplied by (WD + XWL^/WD; which for this case (XWL/WD = 10) 

gives 
F wD + XwL _ i i Q 

FH wD 

instead of 0.10. Thus, the discrepancy is brought down from a factor of 10 to an error 

of 10%. It still remains to explain why there is still this 10% deviation. 

Since the axial load varies along the deck it is more reasonable to use an average 

axial load over a half-wave F a v i ^ as shown in Figure 3.8. An approximation to F a v g ^ 

is F ( l + \wL/wr))(2n — l)/(2n). This is approximate because it does not include the 

axial load induced by the backstay cable. For large values of N this approximation is 

fairly good. The exact formula is 

XU>L\ (2n — 1 1 \ 

Due to the P—A effect the real average is larger. Computer runs near critical show 

that the real average F*vg^ is l.lo6Favg~ for the particular case shown in Figure 3.8. 

The dimensionless ratio now becomes 

F H FH \ wD ) \ 2n 2N J 

A final refinement can be included by considering the boundary conditions of the 

model. Hetenyi's formula FH = 2\/k~EI is for an infinitely long bar, and needs to be 

changed to reflect the true case. The formula for the buckling load of a finite length 

pin-pin bar is given by Hetenyi as 

•*%EI l\k_ 
lB/ni + n2x2 
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where all the parameters are as defined previously. To make this applicable to the 

situation in Figure 3.8, /^/n is substituted by the measured effective length of the 

half-wave, 0.781B/n, to give 

Thus, the simplified backspan model is equivalent to a beam-column on an elastic 

foundation within 3%. In future stability plots the only adjustment made will be 

to multiply F/FH by (l + XWI/WD)- The deviation from Hetenyi's solution due to 

nonuniform axial load distribution and finite length will not be corrected, but will be 

left as a visual indication on the plots. 

The standard model is next varied by altering only F/FJJ and then determining the 

live load necessary to cause the deck to buckle. The result of this exercise is shown in 

Figure 3.10. 

The theoretical result for a beam-column on an elastic foundation is also plotted 

in Figure 3.10 and labelled as "Hetenyi." The discrepancy between the two results is 

due to the same three reasons as explained for the standard model. If the live load is 

included in F the resulting plot is shown in Figure 3.11. If the rest of the refinements are 

made, the ratio Flvg^jFJJ^ at the ordinate intercept, for example, is 1.05 as compared 

to F/FJJ = 1.32. Which differs from the the 0.97 obtained for wL/wD — 0.2 because of 

errors in measuring the half-wave effective lengths and obtaining F * V G ^ . 

The dimensionless ratio n is now varied to determine how n affects the model. The 

range of n in existing cable stayed bridge designs is from 2 to 4 and the stability curves 

for n — 2 and n = 4 are plotted in Figure 3.12 along with the curve for n = 3. 

There is a variation with n in that the three curves differ from each other. This 

variation is not expected with Hetenyi's theoretical result, and if all of the adjustments 

The ratio FH/FJJ^ is calculated to be 0.886 and the final ratio 

FH^ 
= 0.97 
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Figure 3 . 1 1 : Stability of simplified backspan model. 
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to F/FJJ are made to the curves as was done for the standard model, all three curves 

would plot as nearly the same. (They will not be exactly the same due to the errors 

mentioned previously.) The following table summarizes the result of these adjustments 

for the ordinate intercepts: 

F F" 
Iff 

FH FH~ 

4 1.25 1.06 

3 1.32 1.05 

2 1.48 1.03 

Thus, it can be seen that the stability of the simplified backspan model can be compared 

to a beam-column on an elastic foundation with reasonable accuracy. 

WD 

Figure 3.12: Stability of simplified backspan model—n varied. 

As mentioned previously, a nonlinear response is expected due to the changes in 

cable sag when the cables experience a load change. To investigate this, the standard 



Chapter 3. Simplified Backspan Model 35 

model is varied by altering the initial cable tautness / . In the normal range of 5 to 9, 

the cable tautness ratio does not affect the model behaviour. Only when the cables are 

slack (/ < 2) is an effect seen, and then only for low live loads because higher loads 

tighten the cables. The curves for / = 5 and / = 9 are precisely the same as the curve 

for / = 7. 

The remaining dimensionless ratios, which are all based on the model geometry, are 

not investigated for this model. 

3.3 Deflection and Moment 

It is important to check the deck for instability to assess the factor of safety against 

buckling failure, but this will usually not govern the design. In preliminary design 

analyses, the maximum deflection and maximum moment are the governing parameters 

for the deck. Herein, dimensional analysis is applied to the response of the deck and 

compared to the response of a simple beam on an elastic foundation. 

3.3.1 Deflection Dimensionless Ratios 

For the dimensional analysis of cable stayed bridge deflection only one extra parameter 

is needed and that is the maximum backspan deflection 6B- All the other parameters are 

exactly those used in the stability analysis with the exception of using VJL instead of WLC. 

The definition of the backspan model deflection in terms of independent parameters is 

6B = 7[EI, ACEC, IB, h, 6, N, wc, wD, wL) 

Buckingham's n theorem requires that one more dimensionless ratio be constructed. 

In order to compare the deflection of the backspan model to a simple beam-column on 

an elastic foundation, the dimensionless ratio 6B/6H is used. The symbol 6H refers to 

the maximum deflection of a simply supported beam on an elastic foundation under a 

uniformly distributed load, without an axial load. The deflection as a function of x is 
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given by Hetenyi as 

cosh 72 cos 7(/B — x) + cos 7Z cosh 7(/B — x) 
1 - cosh 7/5 + cos 7/^ 

(3.10) 

where 

1 =  V ^ 4 £ 7 

and is given by Eq. 3.5. The deflection for a beam on an elastic foundation rather than 

a beam-column on an elastic foundation is used so that the amplification of deflections 

due to the axial load will become apparent. Also, Hetenyi assumes a constant axial load 

in his derivation of beam-column on an elastic foundation deflections, while for cable 

stayed bridges the axial load varies along the deck. Complications due to the different 

axial distributions are thus avoided by comparing cable stayed bridge deflections to the 

beam on an elastic foundation deflections without axial load. 

In Eq. 3.10 the variable 7 is related to n, the number of half-waves in the buckled 

shape. For response analysis it is advantageous to change this equation to reflect the 

decay length of the beam rather than the buckled shape. The decay length /p is the 

length over which a local deflection or moment in a beam dies out. Two examples are 

shown in Figure 3.13. 

P 

Semi-infinite Beam Infinite Beam 

Figure 3.13: Examples of deflection decay in a beam on an elastic foundation. 

The equations for deflection are composed of two parts, an exponential decaying 

part and a sinusoidally varying part. For example, the deflection of the semi-infinite 
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beam on an elastic foundation in Figure 3.13 is 

6{x) = cos 71 

and for the infinite beam on an elastic foundation the deflection is 

^(z) = ~7Tre 1 1 (cos 7x-f sin 71) 

The decay length could be defined as the distance from the maximum deflection to the 

point at which the deflection first becomes zero. This is governed by the sinusoidal 

part, but the location of this point depends on the boundary conditions and whether 

it is deflection or moment that is of interest. Therefore, this method of defining decay 

length is not good. 

The best way to define decay length is to say it is the distance to the point where 

at least 95% of the maximum deflection or moment is dissipated. This occurs for all 

instances when c-""* < 0.05. For 7Z = 3, e~lx = .049, thus we get 7/75 = 3 or ID = 3/7. 

This definition of decay length is arbitrary and Hetenyi uses 7r instead of 3, which 

results in a longer decay length. For this historical reason and for convenience in 

relating ID to n, TT is used herein. 

The new dimensionless ratio to replace n will be ID/IB where 

A more meaningful expression for 6H[X) can now be derived using ID instead of 7. 

Specifically, using 

l_D _ 

IB l h 

Substituting for 7 and using Eq. 3.5 gives 

lD _ *y/2 J lBhEI (3.11) 
lB IB Sj NAcEcsm3e 

This equation can be simplified by use of Eq. 3.8 to give 

I D ^ V/2 
IB n 

7T 

ID 
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then 

X 7T JC 7T 
cosh7r— cos — (IB — x) + cos 7r— cosh — (IB — x) 

'£> <£> *r> <D  

COSh 7T (- COS 7T — 

In the dimensional analysis of the backspan model, the maximum deflection of 

Hetenyi's model is compared to the maximum deflection of the computer model. Hetenyi's 

maximum deflection SR occurs when the derivative of SH(X) is equal to zero. This 

derivative (the slope) is equal to zero when x = f/p and because of the symmetry of 

the simply supported beam on an elastic foundation, the maximum value of x is lB/2 

or 
IB 3, 
J = 4 D 

or 

IB 3 

Thus, when ID/IB < 2/3 , x = \ID should be used and when ID/IB > 2/3, x = lB/2 

should be used. This results in two equations for the maximum deflection 6H of a beam 

on an elastic foundation: 

OH 

k 

k 

1 -

. 3 / 3 . 3 i / T 3 . 
COSh -7TCOS(-— 7TJ + COS -7TC0Sh( -— 7r) 

4 ID/IB 4 4 ID/IB 4 
cosh 

2 cosh 
7T 

ID/IB 

7T 

+ COS 
IT 

ID/IB 

f ° r ^ 3 

(3.12) 
COS 

1 - Hp 11B 2lD/lB 

cosh + COS 
7T 

IB ~ 3 
ID/IB ' h/h 

For convenience and reference a dimensionless plot of Snk/wi versus ID/IB is given 

in Figure 3.14 as a graphical representation of Eq. 3.12. 

The dimensionless ratios used in describing the maximum deflection of the simple 

backspan model are listed by the function: 

AT . a h lD WL F 
N, sin0, —, / , —, — , — 

IB IB ™D FH 
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IB 

Figure 3.14: Dimensionless plot of Hetenyi's deflection. 

With Su defined by Eq. 3.12 this function will show the magnification of the maximum 

deck deflection due to the deck axial load. 

3.3.2 Results of Deflection Analysis 

The same standard simplified backspan model is used for maximum deflection analysis 

as that for the stability analysis {ID/IB = 0.47 for n = 3). The deflection of the 

standard model under a uniformly distributed live load (WL/WD = 0.20), is shown 

in Figure 3.15 along with the beam on an elastic foundation, deflection. This deflection 

is due to live load only, since the dead load deflection is zero. The live load deflection 

is magnified due to P—A effects from the combination of the dead and live load deck 

axial forces. The 6B/£>H ratio is equal to 1.024 which indicates that there is very little 

magnification due to the deck axial load in the standard model. The maximum live 

load deflection versus span ratio is 1/2000 (calculations are shown in Appendix D) 
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Model 6 

2000 

Figure 3.15: Deflection of standard simple backspan model. 

which is well within the recommendation of 1/500.2 

The standard model is now varied by altering the F / F R ratio while keeping all 

other ratios constant. The maximum deflection is then determined from a computer 

analysis and the 6B/Sff ratio is plotted against F/FR. The result is given as the solid 

curve in Figure 3.16 for a range of F/FH values. 

In the 6B/6ff ratio, the u6B

n is the magnified maximum deflection of the deck due 

to the presence of axial load in the deck. The a6#" is Hetenyi's maximum deflection of 

a beam on an elastic foundation without axial load. Thus, the SB/Sfj ratio is equal to 

1.0 for F/FB: equal to zero, and increases as F/Fjj increases, showing the magnification 

behaviour. 

A comparison can be made with Hetenyi's maximum deflection for a beam-column 

on an elastic foundation with constant axial load Sjjaxiai where: 

cosh fix cos cc{lB — x) + cos ax cosh 0(lB — x) 
°Haxial — k cosh piB + cos alB 

, 2 2^ sinh fix sin a(lB — x) + sin ax sinh - x) 
-(/?>-a2): 2a/?(cosh piB + cos adB) 

2Recommended by the Task Committee on Cable-Suspended Structures of the Committee on Special 
Structures of the Committee on Metals of the Structural Division. [23] 



Chapter 3. Simplified Backspan Model 41 

Figure 3.16: Magnification of maximum deflection. 

where 

ct = 4EI 4EI 

and 

U L + J L 
4EI 4EI 

F = 
wDlB 

tan 0 

is constant and equal to the maximum value in the deck. A new ratio SHaxiai/6H 

is formed and plotted as the dashed curve on Figure 3.16. It can be seen that the 

computer model behaves very similarly to the Hetenyi model, with the small difference 

being due to the different axial distributions in the beam. It is interesting to note that 

the triangular axial load distribution in the computer model produces a more severe 

magnification of the maximum deflection than the constant axial load of Hetenyi's 
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model. For interest sake, the standard amplification formula for a simply supported 

beam-column is applied to this model and is also plotted on Figure 3.16. It can be seen 

that the elastic foundation significantly suppresses the deflection of the beam-column. 

To assess the cable tautness effect on the maximum deflection, the / ratio is varied 

while all the other ratios are kept at their standard values and the maximum deflection 

is determined from the computer analysis. The result of this is shown in Figure 3.17. 

The cable tautness does not affect the deflection of the backspan for normal values 

of / (> 5). The importance of having tight cables is demonstrated however, by the 

magnification of the deflection for low values of / . 
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Standard Model 

~ N = 20 
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= 0.40 
n = 3 

F j FH = 0.10 
wL/wD = 0.20 

1^ 
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i 
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Figure 3.17: Dimensionless deflection versus dimensionless cable tautness. 

The deflection plot as a function of dimensionless decay length IDJIB is shown in 

Figure 3.18. 6B/6~H depends very little on ID/IB with there being only a slight increase 

in magnification due to the axial load as the decay length reaches the backspan length 

and beyond. As the decay length becomes very long, the effect of the initial axial load 
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diminishes and the SB/SH ratio reduces asymptotically to 1. A t the other end of the 

scale, the increase in SB/SJJ is not due to the short decay length per se; rather, due to 

a deviat ion of s tructural behaviour from a beam on an elastic foundation. To maintain 

accuracy in modell ing a beam wi th a continuous elastic foundation by a beam with 

discrete springs, there should be at least 4 or 5 springs over the decay length. In other 

words, ID/IB should be greater than 4/N. Thus , for the standard backspan of 7Y = 20 

and ID/IB less than 0.20, the response is no longer s imilar to a beam on an elastic 

foundation response. To demonstrate this graphically, the curve for 7Y = 80 is plotted 

as the dotted line. 

1.20 i 

1.15 

^ 1.10H 

1.05-

Standard Model 

I—N = 80 

N = 20 
sin 6 = 0.70 

h/lB 
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wL/wD = 0.20 
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Figure 3.18: Dimensionless deflection versus dimensionless decay length. 

Figure 3.19 shows the relationship between 6B/6H and the live load to dead load 

rat io WL/WD- It can be seen that the max imum deflection of the standard simple 

backspan model is closely represented by Hetenyi's equation (Eq. 3.12) for any value 

of live load. The small slope shown in Figure 3.19 is due to the nonlinear P— A effects 
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Figure 3.19: Dimensionless deflection versus dimensionless load, 

induced by the extra live load axial force in the deck. 

3.3.3 Moment Dimensionless Ratios 

The dimensional analysis of cable stayed bridge moment is carried out exactly the same 

as that for the deflection analysis, with the substitution of the maximum backspan 

moment MB for the maximum backspan deflection 6B. The definition of the backspan 

model moment in terms of independent parameters is 

MB = 7\EI, ACEC, lB, h, 6, N, wc, wD, wL) 

In order to compare the moment of the backspan model to a simple beam-column 

on an elastic foundation, the dimensionless ratio MB/Mn is used. The symbol MH 

refers to the maximum moment of a simply supported beam on an elastic foundation 

under a uniformly distributed load, without an axial load. The moment as a function 



Chapter 3. Simplified Backspan Model 45 

of x is given by Hetenyi as 

u>i sinh^isin^^B — x) + sin ^x sinh 7 (/B — x) 
MH(x) = 

2 72 cosh 7/fl + cos 7/13 

where 

7 = AEI 

and A; is given by Eq. 3.5. Using this formula, the amplification of moments due to the 

axial load will become apparent, just as in the deflection analysis. 

A more meaningful expression for MH(X) using ID instead of 7, is 

X . 7T ,. . . X . . 7T 

MH{x) = 
_ wLlD 

2?r2 

sinh7r— sin — (IB — x) + sin7r— sinh — (IB — x) 
lp lp lp lp  

1 IB . ^B COSh7Tt—h cos7r— 
lp lp 

The maximum moment M# occurs when the derivative of MH(X) is equal to zero. 

This derivative (the shear) is equal to zero when x = lD/4 and because of the symmetry 

of the simply supported beam on an elastic foundation, the maximum value of x is lB/2 

or 
IB 

2 
lp 
4 

or r = 2 

« B 

Thus, when ID/IB < 2 , x = ID/4 should be used and when ID/IB > 2, x — lB/2 should 

be used. This results in two equations for the maximum moment MR of a beam on an 

elastic foundation: 
7T 7! \ 1 

27T 2 UP 

sinh — sin(-—— 
4 Klp/lB 

7T . 7T . 
- - +sm-sinh-
4 4 /r>//B 

cosh 
IT 

} B . 

sinh 

cosh 

7T 

W ' B 

7T 

+ COS 

lp/h 

for
 lf < 2 

*B 

sin 
2/P//B 2lD/lB 

h/h 
+ COS 

ID/IB \ 

(3.13) 

for > 2 
' B 
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For convenience and reference a dimensionless plot of MH f[wilB) versus ID/IB *1S 

given in Figure 3 .20 as a graphical representation of Eq. 3 .13 . 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 

IB 

Figure 3 .20: Dimensionless plot of Hetenyi's moment. 

The dimensionless ratios used in describing the maximum moment of the simple 

backspan model are listed by the function: 

. . h lD wL F 
, sint/, — , / , — , — , — -

IB IB U>D FH . 

With M H denned by Eq. 3 .13 this function will show the magnification of the maximum 

deck moment due to the deck axial load. 

3 . 3 . 4 Results of Moment Analysis 

The same standard simplified backspan model is used for maximum moment analysis as 

that for the deflection analysis. The moment of the standard model with wL/wD = 0.20, 

is shown in Figure 3.21 along with the beam on an elastic foundation moment. The 
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MB/MH ratio is equal to 1.057 which indicates that there is very little magnification 

due to the deck axial load in the standard model. The maximum moment is wil\/262 

(calculations shown in Appendix D) which is a tremendous reduction from the simple 

span maximum moment of wLlB/S. 

lB 

Figure 3.21: Moment of standard simple backspan model. 

In Figure 3.21 it can be seen that local fixed ended moments of the deck between 

stays are superposed on the overall structure moment diagram. These local bending 

moments are caused by the application of the live load as a continuous distributed load. 

The effect of the local moments is to add small negative moments at the cable-deck 

connections and to produce a nonlinear moment distribution along the deck between 

any two connections. These effects are small—and decrease with increasing N—and 

will not be explicitly regarded in the analysis. The maximum backspan moment MB 

is taken as the maximum moment at a cable connection, with the nonlinear effect 

included. Note, however, that the dead load moments are not included in the model, 

which is to say the dead load is applied as point loads at the cable—deck connnections. 

This method of applying the dead load is used to achieve a moment and deflection free 

model as a starting point. 

The live load being uniformly distributed over the deck implies that the construction 

method of having floor beams attached directly to the main longitudinal girders is used 
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between cable-deck connections, as shown in Figure 3.22. However, the local dead load 

deflections and moments are not accounted for in this study but can be superimposed 

on the results of this study if required by the reader. The other construction method 

shown in Figure 3.22 makes use of stringers that span between floor beams placed at 

cable-deck connections. This layout transfers most of the live and dead load to the floor 

beams, thus the distributed loads act as concentrated loads on the main longitudinal 

girders at the cable-deck connections. Realizing that the dead loads are applied at the 

panel points and that the local effects of live load are relatively small, the results of 

this study can be applied to both types of deck construction. 

Figure 3.22: Bridge deck construction methods. 

The standard model is now varied by altering the F/FH ratio while keeping all 

other ratios in the function constant. The maximum moment is then determined from 

a computer analysis and the MB/MJJ ratio is plotted against F/FJJ. The result is given 

as the thick solid curve in Figure 3.23 for a range of F/Fn values. 
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F_ 

Figure 3.23: Magnification of maximum moment. 

In the MB/MH ratio, the "A/jg" is the magnified maximum moment of the deck due 

to the presence of axial load in the deck. The U M H " is Hetenyi's maximum moment of 

a beam on an elastic foundation without axial load. Thus, the MB/MH ratio should 

be equal to 1.0 for F/Fg equal to zero, and increase as F/Fg increases, showing the 

magnification behaviour. 

Note that the ordinate intercept is actually less than 1.0. This is due to the fact 

that the deck moments are dependent on the locations of the cable connections to the 

deck. If a different layout of cable spacing is used such that a connection occurs at the 

point on the deck corresponding to the maximum moment location for a continuous 

elastic foundation, then the deck would be subjected to the maximum possible moment. 

Thus, it can be seen that the curve obtained for N = 20 is really a happenchance result 

(within a narrow range) and for design purposes should be replaced with the curve 

that represents the maximum possible moment. The cable layout in the simplified 
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backspan model could be adjusted to achieve this, but a more convenient way to get 

the maximum possible moment is to increase the number of cables to 80. Increasing the 

number of cables also has the effect of reducing the local negative bending moments, 

which increases the maximum positive moment as well. The result for N = 80 is plotted 

on Figure 3.23 as the dotted curve. This curve behaves as expected and should now be 

the one to refer to in future discussions. 

A comparison can be made with Hetenyi's maximum moment for a beam-column 

on an elastic foundation with constant axial load M#oz,0j where: 

where a and 0 are the same as defined for deflections. The ratio M#-ai,0j/M# is formed 

and plotted as the dashed curve on Figure 3.23. The standard amplification formula 

for a simply supported beam-column is applied to this model and is also plotted on 

the figure. The model moment amplification is much higher than the deflection ampli

fication, which may be because the supressed deflection causes severe curvatures. It is 

again noted that the triangular axial load distribution in the computer model produces 

a more severe magnification of the maximum moment than the constant axial load of 

Hetenyi's model. 

Figures 3.24 to 3.26 show the model moment magnification for varying cable taut

ness, deck decay length and live load. Looking at the curves for N = 80 it can be 

seen that the moment magnification is slightly more severe than the deflection magni

fication, but the general behaviour with varying dimensionless ratios is similar to the 

deflection behaviour. 

MH axial = 
EIwL (/?2-fa2)2 

k 2a/3(cosh 01B + cos a/̂ ) 
[sinh 0xsin a(/s — x) + sin ax sinh 0(IB - i)] 
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Figure 3.24: Dimensionless moment versus dimensionless cable tautness. 
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Figure 3.25: Dimensionless moment versus dimensionless decay length. 
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Chapter 4 

Backspan Model 

4.1 The Model 

The second model is a more faithful representation of a cable stayed bridge backspan 

as shown in Figure 4.27. This model has varying cable lengths, inclinations and areas, 

and all the cables are attached to an imaginary immovable tower. It may seem that 

the model has changed drastically from the first model, but in fact the result of all the 

individual changes is only to produce a nonuniform elastic foundation and a slightly 

different distribution of deck axial load. The deck has a constant stiffness and the live 

load is applied as a distrubuted load, just as in the first model. 

All of the model properties shown in Figure 4.27 have been identified in Chapter 3 

except for s', which is the cable spacing at the tower. However, most of the properties 

now have a subscript. The general subscript is " i " where i = 1 signifies the cable or 

deck section closest to the tower and i = N is the backstay and corresponding deck 

section. The subscipts are necessary to describe the model, but in the dimensional 

analysis of this model, representative values will be used when referring to the backspan 

parameters and dimensionless ratios. This representative value shall be indicated by 

the subscript uN/2n where N/2 is as calculated for even values of N, and for odd values 

of T V , N/2 signifies the average value of two cables. For example, if N = 11 then AcN/2 

would be the average of Ac and Act • 

The major geometric change from the first model is the varying cable height / i , . 

The parameters (h^) and (hi) will define the top and bottom cable locations. The 

53 
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m n i u w i i i i i i i r n  
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Figure 4.27: Backspan model. 

remainder are at a constant spacing of s\ where 

, hN — hi 
8 =IT^T 

This nomenclature allows the entire range of cable layouts to be defined, from the 

radiating shape to the harp arrangement. The relationship of the first model cable 

height h to this model is h = hjt/i. 

Initially the model is under dead load only and the cable tensions Ti are set up such 

that there are no moments in the deck at input geometry. The cable tensions represent 

the dead load, and the distributed dead load is not actually applied, just as in the first 

model. A common desire in cable stayed bridge design is to have all the cable dead 

load stresses the same. Since the cable inclinations vary, it is also necessary to vary 

the cable areas in order to maintain constant cable stresses. The free-body diagram of 

a cable-deck connection in Figure 4.28 helps to explain this requirement. The symbol 

"<7c" represents the cable stress which is to be the same for all cables. By equilibrium 
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of forces: 

wDs = oCACI sin Oi 

or 
, U>DIB 

Noc sin 0, 

The constant o"c can be determined from the representative cable as 

VJDIB 

Oc — 
NACN/3 sin 0N/2 

so that 
A C N / 7 sin g^ /2 

•Ac.- = 
sin Bi 

which clearly shows that the cable areas vary. 

Ti = ocACi 

Figure 4.28: Free-body diagram of a cable-deck connection. 

The parameter F is the maximum axial load in the deck induced by the cables in 

the initial state, i.e., for dead load only. The Fi represent the axial load in the j'th 

deck section due to Tit i.e., F< = T{ cos 0t and F = Ff. 

4.2 Stability 

4.2.1 Stability Dimensionless Ratios 

The critical live load of the system is defined by the function 

wLc = J\EI, A C N / 3 E c , h, hlt hN, N, wCfi/3, wD) (4.14) 
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All nine of the parameters in Equation 4.14 are independent of each other. The 

parameters that do not appear in the equation are functions of the ones given in 

Equation 4.14, i.e., 

tan Otfji 2 

where 

and 

i>N/2 = 
hi 

sin eN/2 

IB 
S = N 

, hs — hi 
s = N - 1 

rr WDIB 
TNI* = TFZT. TV sin ON/2 

F = J2Ticos8i=X^f:™^ 
1=1 ^ «=i 

f cote - f i l ( N ~ * ) 

i a hi + hN{l - ^ 

hi+ hN(l - ~) 
hN/2 = 2 ~ 

N 

for both even and odd values of N. Note that because hx and hN are used as inde

pendent parameters, 0^/2 and h^/2—which were used in the previous model as 6 and 

h—cannot be used for this model. 
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Seven dimensionless ratios need to be constructed out of the nine parameters in 

Equation 4.14. The seven ratios chosen to represent this model are: 

N 

hi 

h]y 
IB 

WDIB A . a 

1=1 
NAcN/7ECEI sin3 6N/2 

ID 

IB 

7Ty/2 

N A C N / 3 E C sin3 BN/2 

f = 
wDlB 

N sin ON/2 \ 
AcN/3Ec ( wcN/7hx/2 

24 y tan ON/2 J 

The last three dimensionless ratios above are the same as the ones used for the first 

model, the only difference being in the use of the subscript "iV/2" and F = T^?=1Fi. 

The ratios N and VJLC/U>D are exactly the same as those used in Chapter 3. The only 

new ratios are the ones that define the cable layout, h i / l B and h^/lB-

In summary, the stability of the backspan model is described by the function: 

= J 
hi hN j lD F 

IB IB IB FH 

This function is based on beam-column on an elastic foundation stability theory with 

both the cable slackness and the P—A nonlinearites modelled. 
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4.2.2 Parameters and Ratios from Existing Bridge Designs 

The same nine cable stayed bridges that were used for the first model are used to acquire 

data for the construction of this model. However, the subsripting system introduced 

for this model suggests a choice of representative values for cable area, height and angle 

different from the "centroid cable" of Chapter 3. The new representative cable is the 

one (or average of two, as explained previously) corresponding to t = N/2. The area, 

height and angle of this cable are used as the representative values for the bridge and 

as the "t = N/2" values for the model. Appendix C.3 shows the numerical values 

obtained for this backspan model. 

All the other parameters are determined from the design drawings in exactly the 

same manner as described in Chapter 3, except for F. In the dimensional analysis 

of this model F is calculated as F = ^^f* 22£Li cot 0, but this is too unwieldly to use 

in acquiring data from design drawings. A simple method is to use F = NF^/2 or 

F = WQIB/tan0^/2- This is based on a linear distribution of F,; however, since the 

actual distribution for this model is concave in shape, Fs/2 is larger than that for a 

linear distribution and NF^/i is a conservative value for F. 

The representative dimensionless ratios for each of the nine bridges are calculated 

using the data in Appendix C.3. The averages of these nine ratios are used to construct 

the new standard backspan model. These values are given in Appendix C.4 and are 

repeated here: 

N 20 

hills 0.30 

hx/h 0.50 

/ 7 

ID/IB 0.50 

F/FH 0.10 
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wL/wD = 0.20 

where, for the purpose of calculating / : VJCn/2 — AcN/27c-

4.2.3 Results of Stability Analysis 

The standard backspan model of Figure 4.27 is constructed using the preceding values 

for the dimensionless ratios. Using the computer program ULA, the critical load ratio 

for this standard model is found to be WU/WD = XWL/WD = 18.2, which is to say, since 

WI/WD — 0.20, that the factor of safety on the live load against elastic buckling of the 

standard model is 91. Just as in Chapter 3, the factor of safety for this model does not 

apply to cable stayed bridges because only the backspan is modelled. However, the very 

much higher factor of safety over the 50 obtained for the simplified backspan model 

should be explained. The reason for the increase is the nonuniform elastic foundation. 

Due to the increasing cable angle, a much stiffer foundation exists at the high axial 

load area of the deck than in the previous model; which means that higher axial loads 

are needed to cause instability. 

The deflected shape of the deck just before stability failure is shown in Figure 4.29 

along with the axial load (dead load plus live load) and moment distributions. The 

nonlinear distribution of deck axial load is mostly due to the varying cable inclinations 

and to a smaller degree due to the deck deflections. 

The possibility of an uplift pressure causing a more critical loading condition is 

investigated for this model in the same manner as for the previous model. The resulting 

factor of safety plot is given is Figure 4.30. In this case, the forced deflected shape is 

more influential than the reduction in deck axial load and the factor of safety decreases 

with increasing uplift pressure. This decrease, however, is not severe—there is only 

a 8.2% drop in the factor of safety when the uplift pressure is 50% of the live load 

magnitude. There is a further drop of 20.1% for an uplift pressure of 100% of the live 

load magnitude. High uplift pressures are possible, [24] but the occurrence of a full live 



Figure 4.29: Stability failure of backspan model. 
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load at very high wind velocities is improbable, therefore, the high uplift pressure range 

of Figure 4.30 is not truly applicable. Wind and dynamic loads are beyond the scope 

of this thesis and the uplift pressure load case will not be used in further analyses for 

this model, but it should be kept in mind that a slightly more severe result is possible. 

150-1 . _ 

oS 100-

Uplift Pressure (% of Live Load) 

Figure 4.30: Stability factor of safety of backspan model. 

The fact that the backspan buckled at F/FH = 0.10 and not at F/FJJ = 1.0 

is accounted for by the same three reasons given for the simplified backspan model. 

However, the critical deck section is not as easy to determine as for the simplified 

backspan model. For the previous model it was obvious that the deck section with the 

highest axial load was critical because the elastic foundation was uniform. In this case, 

•with the varying foundation stiffness and the fairly uniform axial distribution over two 

half-waves, a closer investigation is needed to identify the critical section. 

A plot of F*VG^/'FH~ V S X/IB is shown in Figure 4.31 for the simplified backspan 

model of the previous chapter. The curve is calculated by taking the average of /.g/n 
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(in this case lB/n = 20/3) deck axial forces nearest a cable and dividing by FHr^ as 

given in Chapter 3. Figure 4.31 clearly shows that the critical deck section is defined 

by the half-wave nearest to the tower. 

1.1-r 

1-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
x 

TB 

Figure 4.31: Critical simplified backspan section. 

The corresponding plot for the current backspan model is shown in Figure 4.32. 

Three curves are plotted, each based on the assumption that only one of the three half-

waves is critical. The curves are calculated using average deck axial loads as was done 

for the simplified backspan, with the variation of foundation stiffness of this model 

averaged out in the same manner. From this figure it can be seen that the middle 

half-wave is the critical section. 

It is academically interesting to identify the critical deck section, but this knowledge 

is of little practical use. Therefore, for simplicity in future calculations and with only 

a small loss in accuracy, the deck section with the highest average axial load—whether 

it spans over one or more half-waves—shall be assumed to be the critical section. With 
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Figure 4.32: Critical backspan section. 

this in mind, the three adjustments to F/FR will be made for the standard backspan 

model. 

The first adjustment gives 

^ ^ + ^ = 0.1(18.2+ 1.0) = 1.92 
FH W D 

The second adjustment is to use the average axial load over the critical deck section. 

In this case, that will be over the two half-waves nearest to the tower. The uFavg^Jl 

nomenclature is retained to represent this, with the subscript symbolizing one or 

more half-waves. The linear formula for this average is 

A t " z A /2n - 2 1 \ 

Due to the nonlinear axial distribution this is not the real average. Computer runs near 

critical show that the real average F*VG^ is 1.006.Fau^ for the particular case shown in 

Figure 4.29. 
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F0' F / \wL\ (2n-2 1 \ 
- ^ p - = 1.006— 1 + — - ( — + — J = 1.336 

FH FH V WD j V 2n 2N 

The dimensionless ratio now becomes 

The final refinement is to replace FH with which reflects the boundary condi

tions and average foundation stiffness of the critical region. The effective length of the 

critical half-wave is 0.51/^/2 as is shown in Figure 4.29, and the properties of cable 5 

are used to calculate the average foundation stiffness, i.e., 

F - ( 2 V V*FT i fO-^B\2NACiEcsin3es  

F»~ ~ \*MTb) * E I + {—) *HBh5  

The ratio FH/FH<~. is calculated to be 0.680 and the final ratio is 

F* F* Fu 
= 1.336 x 0.680 = 0.91 

FH~ FH FH~ 

Thus, the backspan model stability mechanism can be understood in terms of a beam-

column on an elastic foundation if the effect of the nonuniform elastic foundation is 

taken into consideration. 

The standard model is next varied by altering only F j FH and then determining the 

live load necessary to cause the deck to buckle. The result of this exercise is shown in 

Figure 4.33, where the F/FH ratio is adjusted to include the live load. 

The theoretical result for a beam-column on an elastic foundation is also plotted in 

Figure 4.33 and labelled as "Hetenyi." The discrepancy between the two results can 

be eliminated if all the adjustments as explained for the standard model, are made. 

For example, if the calculation for the ordinate intercept were carried out, the ratio 

FLa~lFH~ would be 1.01 as compared to F/FH = 1.64. 

The dimensionless ratio ID/IB is now varied in the same manner that n was varied 

for the simplified backspan model. The range of lD/lB in existing cable stayed bridge 

designs is from 0.40 to 0.65 and the stability curves for ID/IB = 0.40 and ID/IB — 0-65 

are plotted in Figure 4.34 along with the curve for ID/IB = 0.50. 

There is a variation with ID/IB in that the three curves differ from each other. 

Just as in the simplified backspan model, this variation is not expected with Hetenyi's 
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Figure 4.33: Stabil i ty of backspan model . 
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Figure 4.34: Stabil i ty of backspan model—Ip/ls varied. 
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theoretical result, and if all of the adjustments to Fj'FJJ are made to the curves as 

was done for the standard model, all three curves would plot nearly the same. The 

following table summarizes the result of these adjustments for the ordinate intercepts: 

l_D F_ FgVg^ 

IB FH FH^. 

0.40 1.62 1.01 

0.50 1.64 1.04 

0.65 1.71 0.99 

Thus, it can be seen that the stability of the backspan model can be compared to a 

beam-column on an elastic foundation. 

Just as in the previous model, altering the initial cable tautness / in the normal 

range of 5 to 10, did not affect the model behaviour. Only when the cables are slack 

(/ < 2) is an effect seen, and then only for low live loads because higher loads tighten 

the cables. 

The remaining dimensionless ratios, which are all based on the model geometry, are 

not investigated for this model. 

4.3 Deflection and Moment 

The choice of deflection and moment functions to represent this backspan model is 

based on the same rationale presented in Chapter 3. 

The definition of the backspan model deflection in terms of independent parameters 

is 

6B = 7[EI, AcN/2Ec, lB, hu hN, N, wc„/7, W D , WL] 

and the maximum nondimensional deflection of the backspan model is described by the 

function: 
6B f = 7 
<>H 

N hy h N lp wL F 

'£ lB *B Wp f}i 



Chapter 4. Backspan Model 67 

With 8H defined by Eq. 3.12 and 

k = 
_ NAcN/2Ecsin36N/2 

this function will show the magnification of the maximum deck deflection due to the 

deck axial load. All other ratios in this function are the same as the ones defined for 

the stability analysis of this model. 

The definition of the backspan model moment in terms of independent parameters 

is 

MB = T[EJY A C N / 3 E C , IB, hu hN, N, u>cN/i, U>D, U>L] 

and the maximum nondimensional moment of the backspan model is described by the 

function: 
MB 
MR 

= J N ^1 hN lD wL F 

»B «B *B U>D * R 

With MR- defined by Eq. 3.13 this function will show the magnification of the maximum 

deck moment due to the deck axial load. 

4.3.1 Results of Deflection Analysis 

The same standard backspan model is used for maximum deflection analysis as that 

for the stability analysis. The deflection of the standard model under a uniformly 

distributed live load {WI/WD = 0.20), is shown in Figure 4.35 along with the beam 

on an elastic foundation deflection. The SB/SR ratio is equal to 1.420 which is a 

significant deviation from the Hetenyi deflection. This is mostly due to the fact that 

this backspan model has a varying foundation stiffness, which makes it a significantly 

different structure from the Hetenyi model and the backspan of Chapter 3. The effect 

of the varying foundation in this model is readily seen in that the right side or "stiff 

foundation" deck deflection is much less than the left side deck deflection. Also, the 

slight deflection magnification in the previous model was at the high axial load deck 

section, as expected; whereas, in this model the large deflection occurs in the low axial 
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load deck section, which indicates that the flexible foundation in this region is the cause 

of the large deflections. The maximum live load deflection versus span ratio is 1/1500 

which is well within the recommended value of 1/500. 

IB 

Figure 4.35: Deflection of standard backspan model. 

The standard model is now varied by altering the F/FJJ ratio while keeping all other 

ratios constant. The maximum deflection is then determined from a computer analysis 

and the 6B/&H ratio is plotted against F/FJJ. The result is given in Figure 4.36 for a 

range of F/Fg values. 

The deflection magnification is apparent in that the &BIO"H ratio increases from 1.4 

to 2.05 as F/Fg increases from 0.0 to 1.2. This is a less rapid rate of increase in 

6B/b~H than the simplified backspan model amplification (Figure 3.16) but the actual 

deviation from the Hetenyi model is greater in this model for F/Fg > 0.8. The high 

initial deflection is due to the low foundation stiffness at the left deck section and the 

low rate of magnification is due to 6B being at the low axial load deck section. 

The deflection plot as a function of dimensionless decay length ID/IB is shown i n 

Figure 4.37. It can be seen that 6B/6g is highly dependent on ID/IB hi the normal range 

[ID/^B from 0.40 to 0.65) for cable stayed bridges. This dependancy is not present i n 

the simplified backspan model, in fact at the standard value of ID/IB — 0.50, the 6B/6H 

ratio is almost 1.0 for the previous model. The varying foundation stiffness of the 
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Figure 4.36: Magnif icat ion of max imum deflection. 

current model produces a value of 1.42 for 6B/6B at lz>/lB — 0.50 (and F/Fg = 0.10) 

instead of 6B/6B « 1.0, and 6B/6H = 1.40 for F/FH = 0.0. If Figure 4.36 were to be 

used for design purposes i t would be necessary to plot a series of curves, each wi th a 

different value of ID/IB. F r o m Figure 4.37 it is apparent that the curves for ID/IB > 2.0 

would a l l be the same and 6b/SH would be equal to 1.0 for F/Fg = 0.0. Note, that for 

ID/^B > 2.0 the foundation stiffness would be essentially constant over the backspan 

length and the behaviour would closely follow that of the simplified backspan model. 

The cable tautness graph is shown in Figure 4.38. The cable tautness effect is the 

same as for the simplified model except for the asymptote being at 1.42 instead of 1.02. 

The importance of having tight cables is again demonstrated by the magnification of 

the deflection for low values of / . 

Figure 4.39 shows the relationship between 6B/SH and the live load to dead load 

rat io WL/WD- It can be seen that WL/WD has very litt le influence on SB/6n, even less 
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Figure 4.38: Dimensionless deflection versus dimensionless cable tautness. 
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than was exhibited for the simplified model. Again, this is because 6g is at the low 

axial load deck section where the nonlinear P— A effect is not as pronounced as at the 

high deck axial load section. 

N 20 
1.9- hi/la 0.30 
1.8- • Standard Model hN/lB 

0.50 

1.7- f = 7 
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Figure 4.39: Dimensionless deflection versus dimensionless load. 

4.3.2 Results of Moment Analysis 

The same standard backspan model is used for maximum moment analysis as that for 

the deflection analysis. The moment distribution of the standard model with WL/VJD = 

0.20, is shown in Figure 4.40 along with the beam on an elastic foundation moment. 

The MB/MJ} ratio is equal to 1.685. This large deviation from the Hetenyi moment 

is due to the relatively flexible foundation of the model in the leftmost region, which 

allows more severe curvatures than the Hetenyi and Chapter 3 models. The maximum 

moment is WLIB/140 which is an 85% increase over the simplified backspan model 

moment. 
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IB 

Figure 4.40: Moment of standard backspan model. 

The standard model is now varied by altering the F/FH ratio and the MB/MH 

ratio is plotted against F/FH in Figure 4.41. It can be seen that this plot is quite 

different from the corresponding plot (Figure 3.23) for the simplified backspan model. 

The moment magnification follows a different path, the ordinate intercept is not zero, 

and the curve for N — 80 is not as significant as it is for the previous model. 

The analysis for 7Y = 80 is done in order to increase the chance of having a cable 

connected to the deck at the theoretical maximum moment location. In this case, the 

flatter curve of the moment diagram (compare Figure 4.40 with Figure 3.21) improves 

the chances of the twenty cable layout to produce the maximum possible moment. 

In fact, the two curves of Figure 4.40 cross each other which indicates that the local 

bending moment influence is greater than the cable location dependency at high F/FH 

ratios. 

It is interesting to note that there is very little moment magnification due to F/FH 

until F/FH is greater than 0.7. The magnification increases when F/FH increases 

beyond 0.7, but this is well beyond the existing cable stayed bridge maximum F/FH 

ratio of 0.3. Thus, there is very little moment magnification of the standard model and 

the models within normal ranges, but there is a high initial deviation from the Hetenyi 

moment. This is due to the same reasons given for the deflection magnification plot, 

i.e., the low foundation stiffness at the left deck section and MB is at the low deck axial 
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Figure 4.41: Magnif icat ion of m a x i m u m moment. 

1.1 1.2 

load region. 

The moment plot as a function of dimensionless decay length ID/IB is shown in 

F igure 4.42. It can be seen that MB/MJJ is highly dependent on ID/IB in the normal 

range (ID/IB from 0.40 to 0.65) for cable stayed bridges. For ID/1B < 0.5 the model wi th 

twenty cables looses accuracy and the model w i t h iv" = 80 should be used for analysis 

purposes. Just as for deflection, if Figure 4.41 were to be used for design purposes it 

would be necessary to plot a series of curves, each wi th a different value of ID/IB, wi th 

the curves for ID/IB > 2.0 al l being the same and going through MB/MJJ = 1.0 at 

Figures 4.43 and 4.44 show the model moment deviation for varying cable tautness 

and live load, respectively. It can be seen that the moment deviation is more severe 

than the deflection deviation, but the general behaviour w i th varying dimensionless 

ratios is s imilar to the deflection behaviour. 

F/FH = 0.0. 
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Figure 4.42: Dimensionless moment versus dimensionless decay length. 
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Chapter 5 

Full Bridge M o d e l 

5.1 The M o d e l 

The final model is a representation of an entire cable stayed bridge, half of which is 

shown in Figure 5.45. The cables are attached to the back and main spans at constant 

spacing 5 and to the towers at constant spacing s'. The towers are fixed to the ground 

but not directly connected to the deck. A spring, equivalent to a single vertical cable, 

is connected to the deck at the deck-tower intersections to keep the deck spans between 

cable stays constant at the towers. The cables are arranged in a fan shape with the 

anchor stay cables attached to a single point on the deck. The mainspan stays are 

arranged such that a deck section of length s is at the center of the bridge. The deck 

stiffness is constant along the entire bridge and the live load is applied as a distributed 

load. 

The definition of all the parameters used in this model is given in the following: 

Ac, — t'th cable cross-sectional area 

total anchor cable cross-sectional area 

E — deck elastic modulus 

Ec = cable elastic modulus 

Ex = tower elastic modulus 

F = maximum axial load in deck due to dead load 

Fi t'th axial load in deck due to t'th cable 

K t'th cable height 

76 



Figure 5.-15: Bridge model (half shown—symmetric, except right hearing is a fixed pin). 
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hi tower height 

I = deck moment of inertia 

h = tower moment of inertia 

U horizontal projected length of t'th cable 

IB = backspan length 

IM mainspan length 

N number of deck intervals in the backspan 

NC = number of cables in the backspan or half the mainspan 

P maximum axial load in tower due to dead load 

Pi = t'th axial load in tower due to t'th pair of cables 

Si = t'th cable chord length 

s = length of deck interval between cables 

s' length of tower interval between cables 

Ti = t'th cable tension in the chord direction due to dead load 

= weight per unit length of t'th cable 

WD = uniformly distributed dead load 

critical uniformly distributed live load 

Oi t'th cable chord angle of inclination to deck 

There are four new parameters introduced in Figure 5.45: ETIT, hT, lM and ACa-

The tower stiffness EJIT is modelled as being constant along the entire length hT. 

(The tower height is measured from the tower foundation; whereas, the cable heights 

are measured from the deck.) The anchor cable in the previous models was a single 

cable that was modelled in the same manner as the rest of the backspan cables. That 

single cable is present in this model with the addition of several more cables acting as 

anchors. This group of cables is referred to as the anchor cable and the total area Aca 
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of this anchor cable is independent of the rest of the backspan cables. The number 

of cables that comprise the anchor cable is determined by the number of extra cables 

required to keep the cable spacing constant over the mainspan length IM. Thus, each 

tower has the same number of cables attached to the mainspan side as to the backspan 

side. 

In this model the maximum value of the subscript " t " is Nc where Nc is the 

number of cables attached on one side of a tower. This is different from the previous 

model which has a maximum value of N—the number of deck spaces in the backspan. 

The representative values for cable properties is still taken as the "TV/2" value. The 

maximum cable height, however, is now kNc with the bottom cable location at hi. The 

remainder are at a constant spacing of s', where 

, _ hNc - hi 
Nc-1 

This nomenclature allows the entire range of cable layouts to be defined, from the 

radiating shape to the harp arrangement. The relationship of the previous model cable 

height hN to this model is hN = h N c . 

Initially the the input geometry is the dead load geometry and the cable tensions 

Ti are calculated such that there are no moments or deflections in the deck or towers. 

This is shown in Figure 5.46 which is an exploded view of Figure 5.45. The horizontal 

and vertical components of the cable tensions are drawn at the cable ends and the 

reactions of these forces are drawn at the corresponding tower and deck locations. The 

dead loads are also shown, but they are not actually applied in the computer model. 

That is, the cable, tower and deck axial forces at input geometry are in equilibrium 

with the deck dead load. 

For a moment free tower at input geometry, the horizontal components of the anchor 

cable tensions and the corresponding mainspan cables must be equal. This means that 

the anchor cable vertical forces are not equal to the corresponding mainspan cable 

vertical forces, as is shown in Figure 5.46. The effect of this is a slight eccentricity of 
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Figure 5.46: Free body diagram of bridge model (half shown i—symmetric). oo o 
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the tower axial load if the cable to tower connections are not on the tower centerline. 

The effect of this horizontal eccentricity of the cable connections is neglected in this 

analysis. 

The parameter P is the maximum axial load in the tower induced by the cables 

under dead load only. The P,- represent the axial load in the t'th tower section due to 

the pair of cables attached above that section. For non-anchor cables, P,- = 2wps. For 

the anchor cables, P,- = Tisin0,- + wps where 71 and 0, are the anchor cable tensions 

and angles. The axial load in the tower at any location is the sum of the P, above that 

point, and P = £ ^ ^he prestress due to the tower self-weight is small compared 

to the cable induced prestress and is not considered in this model. 

The parameter F is the maximum axial load in the deck induced by the cables 

under dead load only. The F, represent the axial load in the t'th deck section due to 

Ti, i.e., Fi = Ti cos 0, and F = J^Ji for the mainspan. The backspan deck i only 

goes to TV, but the sum of the mainspan Fi and backspan F,- are equal which means 

that the backspan F^ is equal to the mainspan "E^Jtf Ft. 

To fulfill the desire to have all the cable dead load stresses the same, the stay cable 

areas are again determined by 

A C N / , sin 6N/2 

Ad = T~2 

sin 0, 

The anchor cable area Aca is independent of the stay cable areas, but the proportion

ing of the individual anchor cables is determined by the constraints of constant dead 

load cable stress and the sum of the individual anchor cable areas being equal to the 

aggregate anchor cable area. This involves solving a system of linear equations; i.e., 

the requirement of constant cable stress 

AcN _ ACfl+l _ A c N c 

produces Nc — N equations while there are Nc — N + 1 unknowns (the individual cable 

areas of the anchor cable, i.e., Ac{,i = N,NC—the cable tensions are known). The 
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final equation comes from the anchor cable area relationship: 

No 

where Aca is acquired from existing cable stayed bridge designs. 

An approximate analytical method of determining the anchor cable area is derived 

from the assumption of dead load stress in the anchor cable being equal to the other 

cables. That is, 
(hi. _ u\ ,„„ ... ^ (If - lB) wD _ _ WDi 

= oc = ACa sin 6Nc NAcN/i sin 0N/2 

Rearranging terms and using IB/IM = 0.4 (from the standard model) gives 

_ NAcN/a sineN/2 

Aca — " : 2— 4 sin 6Nc 

where for the standard model again, 

sin 6Na 

which results in 
N A C N / I 

This formula could be used in preliminary design values for the anchor cables, but in 

this study the actual bridge anchor cable areas are used. 

5.2 Stability 

5.2.1 Stability Dimensionless Ratios 

The critical live load of the system is defined by the function 

wLc — T[EI, ETIT, A C N / 2 E C , A C A , IB, IM, hi, h N c , hT, N, VJCN/3, VJD] (5.15) 

All thirteen of the parameters in Equation 5 .15 are independent of each other. 

The parameters that do not appear in the equation are functions of the ones used in 

Equation 5 .15 , i.e., 
hN/2 IB 
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^N/2 = 
sin 6 N/2 

IB 
S = N 

, _ h N c - hi 

Nc-1 

rp WDIB 
•1 N/2 = N sin 

P « WDlM 

Nc .„ i Nc 

F = £ r , c o s * , = ^ V > t 0 , 

where t is the counter along the mainspan from the tower to midspan and 

h c o  1 hNMN-i)+hN{i-i)\ 

h! + hN{l^jj) 
N/2 = 1 £ tan 6 

hNli = : s — 

and 

l^/2 = 7y—r 
Z N 

hN = h N c - (Nc —n)s' 
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for both even and odd values of N. 

Eleven dimensionless ratios need to be constructed out of the thirteen parameters 

in Equation 5.15. The eleven ratios chosen to represent this model are: 

N 

h 
IB 

IB 

hx 

EX IT 

EI 

U>Lc 

F_ 

FH 

N i-l 

N ACN/2ECEI sin3 6N/2 

hhN/2 

IJD *V2 

IB 

iBhN/jEI 

IB \ NAcN/3Ecsm36N/2 

y 
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, _ w D / B  

The dimensionless ratios N, hi/lg, WLC/WD, ID/IB, and / are the exactly the same 

as the ones used for the previous model. The ratios hxc/lB and F/FH are respectively 

equivalent to hs/lB and F/FH of the previous model. That is to say F is the same 

in both models but the individual Fi are different in the two models, and as stated 

previously, hftc is the same as of the backspan model. 

The new ratios are the ones that define the tower, mainspan and anchor cable 

properties. The ratios HT/IB, IB/IM and ETIT/EI have obvious physical meanings 

and AcJ 1 2 Ac is simply the ratio of anchor cable area to backspan cable area. 

In summary, the stability of the full bridge model is described by the function: 

U>D 

hi hNc hr IB EJIT ACa , _F_ 

' / a ' IB ' / « ' / M ' EI ' £ A c ' U lB' FH 

This function is based on beam-column on an elastic foundation stability theory with 

both the cable slackness and the P— A nonlinearites modelled. 

5.2.2 Parameters and Ratios from Existing Bridge Designs 

The same nine cable stayed bridges that were used for the first two models are used to 

acquire data for the construction of the full bridge model. The representative cable is 

the one corresponding to i = N/2 as explained previously. The other parameters that 

are applicable to both the backspan model and the full bridge model are determined 

from the design drawings in exactly the same manner as described in Chapter 4. Indeed, 

the parameters and dimensionless ratios given in Appendices C.3 and C.4 are used for 

the full bridge model. 

The fact that F/FH is made the same as the previous model is of no consequence in 

the dimensional analysis, but it does require some explanation in regards to the actual 
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values for the existing designs. The full bridge model F is the sum of Nc deck forces, 

whereas the previous model F is the sum of N deck forces. In the cases where Nc 

is greater than N, F is obviously greater for the full bridge model than the backspan 

model, which is also true for F/FH—FH being the same for both models. The new 

values for F and F / F H along with Nc are given in Appendices C.5 and C.6 along 

with all the other paramaters and ratios. F is calculated using the approximation of 

F = N C F N C / 2 , or 

p = W d 1 m 

2 tan 9Nc/2 

which is—as explained in Chapter 4—a conservative calculation of F. The average 

value of FI FH for the full bridge model is now greater than 0.1, but 0.1 is chosen as 

the representative value for the sake of continuity with the previous models. 

The additional parameters necessary to model the towers, mainspan and anchor 

cables are acquired from the bridge designs and listed in Appendix C.5. (Unfortunately, 

the tower and anchor cable information was not available to this author for three of 

the nine bridges.) As stated previously, the tower height hx is measured from the 

tower foundation and the anchor cable area Aca is the sum of the cross sectional areas 

of the cables acting as anchors. The tower moment of inertia J is modelled as being 

constant throughout its length. In the real cable stayed bridge designs this is rarely 

the case, and for the varying J towers a substitute tower with a constant / is used. 

The substitute tower / is calculated to make the free standing tower deflections of both 

the real and substitute towers the same for a unit lateral point load at the top. The 

tower moment of inertia for the Alex Fraser concrete design is so much larger than the 

other bridges—most probably because of architectural considerations—that it is not 

included in finding the representative ratios. 

The representative dimensionless ratios of the standard full bridge model are 

N = 20 

hjla = 0.30 
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0.50 

hT/lB 0.80 

0.40 

Ex IT I EI 50 

0.50 

7 

ID/IB 0.50 

F/F„ 0.10 

wL/wD 0.20 

where, for the purpose of calculating / : wcN/3 = AcN/7ic-

5.2.3 Results of Stability Analysis 

The standard bridge model of Figure 5.45 is constructed using the preceeding values 

for the dimensionless ratios. In order to find the minimum live load at which the model 

buckles, the most severe load distribution must be determined. To this end, influence 

lines for maximum axial load in the deck are calculated using the computer program 

ULA. Four load cases, which result from the influence lines for maximum axial load at 

the towers and at the backspan anchor connections, are indicated from this study as 

shown in Figure 5.47. The load cases are numbered one to four, indicating maximum 

deck axial load from left to right. 

The bridge deflected shape, deck axial load (dead load plus live load) and deck 

moment just before stability failure are shown in Figures 5.48 and 5.49 for all four load 

cases on the standard model. The four axial distributions are drawn to the same scale 

and the four moment diagrams are drawn to the same scale as well, but different from 

the axial scale. 

Using the computer program ULA, the critical load ratio for the standard model 
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Load Case 1 

I J M M M M M 

A = 1 

Load Case 3 

A = 1 

Load Case 4 

u J J w H t < H I 1 

Figure 5.47: Axial influence lines and load cases for instability. 
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Figure 5.48: Stability failure of standard bridge model l—load cases 1 and 2. 
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Figure 5.49: Stability failure of standard bridge model—load cases 3 and 
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under each load case is found, and the factor of safety against elastic stability failure is 

calculated. For example, the critical load ratio for load case 4 is found to be VJLC/VJD = 

\WL/U>D = 2.37, which is to say, since WL/WD = 0.2, that the factor of safety on the 

live load against elastic buckling of the standard model is 11.9. This is far less than the 

factor of 91 obtained for the backspan model. This is mostly due to the extra backspan 

cable tensions from the live load in the mainspan and—as will be explained shortly— 

due to a less stiff deck section causing instability. The critical load ratios for the four 

load cases and the corresponding factors of safety against elastic stability failure are: 

Load Case 

1 

2 

3 

4 

The influence of an uplift pressure on the factor of safety is investigated by placing 

uplift pressures on the deck regions that are not loaded (as indicated by the axial 

influence lines). The resulting factor of safety plot for a range of uplift pressures on 

all four load cases is given is Figure 5.50. The uplift pressure has a pronounced effect 

on the factor of safety, with a near linear decline of 37% to 30% uplift pressure. The 

rate of decline decreases for higher uplift pressure with a further drop of 52% for uplift 

pressures of 100% of the live load. Wind and dynamic loads, and the probabilities of 

load combinations are beyond the scope of this thesis and the uplift pressure load case 

will not be used in further analyses, but it should be kept in mind that a more severe 

result is possible. 

The previous discussions were concerned about the effect of various loading patterns 

on the elastic stability of the standard model with F/FJJ = 0.10. The fact that the 

bridge buckled at all (one might expect that instability would occur only if F/Fg = 1.0) 

— - Factor of Safety 

2.63 13.2 

2.50 12.5 

5.24 26.2 

2.37 11.9 
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Figure 5.50: Stability factor of safety of bridge model. 

is accounted for by the same three reasons given for the previous models; that is, 

the live load axial force must be accounted for, along with the nonuniformity of the 

axial distribution, and Fu must be calculated for the critical deck section. Analytical 

adjustments cannot be made for the axial load in this model as was done for the previous 

two models. Instead, numerical values of average deck axial loads over a half-wave are 

taken as the values for F*VI^. 

The corresponding values of Fg~. also cannot be calculated in the same manner 

as previously because the critical deck section is not a pin-pin beam-column on an 

elastic foundation. The deflected shapes and moment diagrams in Figures 5.48 and 5.49 
suggest that semi-infinite boundary conditions are appropriate. The deck section in the 

mainspan near the right tower—for load cases 1, 2 and 4—with the near zero moment 

and smooth deflection, behaves like the end of a semi-infinite beam-column on an elastic 

foundation. In load case 3, the deck section just to the left of the left tower can be 
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thought of as the end of a semi-infinite beam-column on an elastic foundation. Hetenyi 

gives the critical axial load for a semi-infinite beam-column on an elastic foundation 

as yfkEI and F#_s is calulated as the average value of this formula over a half-wave. 

That is, 
_ /AcEcEI sin3 B 

F h ~ = \ 7h 

where Ac is the final cable area after the changes are made for the catenary calculations. 

Plots of F*vg^/Fjj^ along the deck for each of the four load cases are given in Fig

ure 5.51. It can be seen that the rightmost deck section is critical {F*vg^/FH^ = 1) ex

cept for load case 3 where the critical deck section is between the center of the mainspan 

and the left tower. However, load case 3 does not govern in stability considerations 

and in general the worst case bridge stability failure is caused by the combination of 

low cable stiffness near the end of the bridge and the high deck axial loads induced 

by the backspan cables which are acting as tiebacks for the mainspan cables which in 

turn, support the mainspan loads. Thus, the full bridge model stability mechanism can 

be understood in terms of a beam-column on an elastic foundation if the effects of the 

nonuniform elastic foundation, varying axial loads, and applicable boundary conditions 

are taken into consideration. 

The standard model is next varied by altering only F / F H and then determining the 

live load necessary to cause the deck to buckle. The results of this exercise for each load 

case are shown in Figure 5.52. The F / F H ratio is not adjusted to include the live load 

as was done in the previous chapters because of the noncontinuous load distributions 

of the four load cases. 

The standard model is represented by the solid square in Figure 5.52 and load case 

4 produces the lowest factor of safety for this model. Load case 4 is also the governing 

load case for all values of F / F H , and this load case will be used for the rest of the 

stability analyses. It is interesting to note that load cases 1, 2 and 4 exhibit nearly 

identical behaviour in Figure 5.52 yet load case 3 is unique. This is because load case 
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Figure 5.51: Critical deck section for each load case. 
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Figure 5.52: Stability of full bridge model. 

3 causes the bridge instability to occur at a different deck section, as demonstrated 

in Figure 5.51. The nine existing bridge designs from Appendix C are plotted on 

Figure 5.52 as the numerals 1 to 9. The scatter of the numerals qualitatively shows 

how the existing bridge designs compare with each other. 

The theoretical result for a beam-column on an elastic foundation would plot on 

Figure 5.52 as a horizontal line at F/Fg = 1.0. This apparent discrepancy between the 

Hetenyi and computer results can be eliminated if F*vg^/Fg^ is used instead of F/Fg. 

This is illustrated by Figure 5.53 where plots of F*vg^/Fjj^ along the deck for load 

case 4 are shown for different values of F/Fg. It can be seen that as F/Fg increases, 

the boundary conditions of the critical deck section change from a semi-infinite to a 

pin-pin beam-column on an elastic foundation. In order to get the expected Hetenyi 

result the apparent boundary conditions must be used to calculate Fg^ along with the 

appropriate deck section F* . 
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Load Case 4 \ i i 

Figure 5.53: Critical deck section for varying F / F H . 

Looking again at Figure 5.52 it can be seen that the factor of safety against buckling 

decreases with increasing F/FJJ. The rate of this decrease is shown in Figure 5.54 for 

the standard model with wi/wp = 0.20 and load case 4. The possibility of F jFjj being 

0.20 for a bridge with WL/WD = 0.20 is quite likely—as indicated by the distribution 

of actual bridges on Figure 5.52—and the factor of safety for this bridge is 6.5, which 

is a drop of 45% from the standard model factor of safety of 11.9. This is comparable 

to a 40% uplift pressure on the standard model. 

Figure 5.54 can be used to determine the factor of safety on the live load if a 

load factor is applied to the dead load. This is calculated by using the fact that F 

is directly proportional to wp. Thus, if tup is multiplied by 1.5, for example, then 

F/FH is multiplied by 1.5 and the corresponding factor of safety for the new F/FH 

ratio is read off of Figure 5.54. This procedure yields 8.7 as the factor of safety against 

elastic stability failure. In other words, instead of wp + 11.9u>£ causing instability, 
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Figure 5.54: Factor of safety vs F/Fg. 

1.5WD + 8.7WL causes instability. As another example, the factor of safety on the live 

load is 6.7 when the dead load factor is 2; i.e., 2.0ttf£> + 6.7u>£ also causes instability. 

The decay length to backspan length dimensionless ratio ID/IB is now varied in the 

same manner that ID/IB was varied for the backspan model. The range of ID/IB in 

existing cable stayed bridge designs is from 0.40 to 0.65 and the stability curves for 

ID/^B = 0.40 and ID/IB — 0.65 are plotted in Figure 5.55. There is only a very small 

variation with ID/IB, a nd the stability factor of safety for the standard model varies 

from 11.2 to 12.4 which is ± 5 % from the standard value of 11.9. 

Just as in the previous model, altering the initial cable tautness / in the normal 

range of 5 to 10, does not affect the model behaviour. The two new ratios of Aca/Y. Ac 

and ETIT/EI are also varied in the same manner as ID/IB- The normal ranges of 

AcjUAc and ETIT/EI are 0.4 to 0.6 and 25 to 100 respectively, and the model be

haviour is only slightly affected within these ranges, as shown in Figures 5.56 and 5.57. 
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1.5 

Figure 5 .55 : Stability of full bridge model—ID/IB varied. 

The stability factor of safety varies from 11.2 to 12.4 for the variation of Aca/HAc 

which is ± 5 % from the standard value of 11.9. For the variation of ETIT/EI the fac

tor of safety ranges from 11.2 to 12.4 as well, and is again a ± 5 % variation from the 

standard. 

The remaining dimensionless ratios, which are all based on the model geometry, are 

not investigated. 

5.3 Deflection and Moment 

The choice of deflection and moment functions to represent the full bridge model is 

based on the same rationale used in Chapters 3 and 4. The mainspan deflection and 

moment is investigated as well as the backspan deflection and moment. This is nec

essary because the maximum deflection will be in the mainspan and the maximum 
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Figure 5.56: Stability of full bridge model—Ac./23 Ac varied. 
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moment will be in the backspan. For the sake of continuity and consistency the deflec

tions and moments for both the backspan and mainspan will be compared to that of a 

simply supported beam on an elastic foundation without axial load. 

The definition of the full bridge model backspan deflection in terms of independent 

parameters is 

8B = JB[EI, E T I T , A C N / 2 E C , A C A , IB, IM, h u h N c , h T , N, W C N / 2 , W D , VJL] 

and the maximum nondimensional backspan deflection of the bridge model is described 

by the function: 

S * - T 
hi h N c h T lB E T h ACA , h F 

• * > ! > ! > i > , > o r I r-v i I / l i ! ' r - t 
IB* IB ' IB* IM* EI ' £ A c ' ' ' B ' W C ' Fg 

The maximum nondimensional mainspan deflection of the model is described by a 

function that uses exactly the same ratios as the backspan function, but the functions 

themselves will be different. The mainspan deflection function is 

Sg 

hi hsc h T IB ETIT AC, lp wL F 

IB' h ' * B ' / M ' E I ' £ Ac' h ' wD' Fg 

With Sg defined by Eq. 3.12 and 

k = 
N A C N / 2 E C sin3 0N/2 

these functions will show the magnification of the maximum deck deflection due to the 

deck axial load. All other ratios in these functions are the same as the ones defined for 

the stability analysis of this model. 

The definition of the bridge model backspan moment in terms of independent pa

rameters is 

M B = ?B[EI, E T I T , A C N / 2 E C , A C A , IB, IM, h u h N c , h T , N, wCfl/2, wD, wL\ 

and the maximum nondimensional backspan moment of the bridge model is described 

by the function: 

M B 

Mg 
N, 

hi h^n h T lB ETIT A C a , h wL F 
, J, 

IB' h ' h ' V EI ' £ A C ' " lB' ™D Fg 
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Just as for deflection, the maximum nondimensional mainspan moment is described by 

the same ratios but a different function. The mainspan moment function is 

N hi hNc hT /JB ETIT ACA lD wL F 

M„ 

With MJI defined by Eq. 3.13 these functions will show the magnification of the 

maximum deck moment due to the deck axial load. 

5.3.1 Results of Deflection Analysis 

The same standard full bridge model is used for maximum deflection analysis as that 

for the stability analysis. However, different load cases are necessary in order to get 

the maximum deflection in the backspan and mainspan. The envelope of maximum 

deflection influence lines is determined using ULA, and the maximum backspan and 

mainspan deflection influence lines are shown in Figure 5.58 along with the resulting 

live load distributions and the locations of the maximum deflections. 

It should be noted that influence lines are only valid for linear structures. The cable 

stayed bridge being studied herein is nonlinear in that P—A effects and catenary cables 

are included in the analysis; therefore, the influence line analysis is only approximate. 

It turns out, however, that the deflection influence lines work very well for this structure 

because the load patterns for maximum deflection cover long sections of the deck and 

would not change, no matter how nonlinear the cable stayed bridge is. 

The deflection of the standard model (magnified 200 times) under the maximum 

backspan deflection load case with WL/WD = 0.20, is shown in Figure 5.59 with the 

Hetenyi deflection superposed on the left backspan. The 6B/£>H ratio is equal to 3.155 

which is a significant deviation from the Hetenyi deflection and cannot be entirely 

attributed to magnification due to the deck axial load. In fact the majority of the 

backspan deflection is due to the mainspan deck flexibility which allows the tower to 

move; thus, allowing greater backspan deflections than in the previous models. 

The model deflected shape under the maximum mainspan.deflection load case is 
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Figure 5.59: Maximum backspan deflection (magnified 200 times) of standard full 
bridge model. 
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shown in Figure 5.60. The Hetenyi deflection is again superposed on the left backspan 

and the deflections are magnified 200 times. The 6M/6n ratio is equal to 7.177. This 

is more than twice the value for 6B/6JJ which is mostly attributable to the mainspan 

being 2.5 times as long as the backspan. The bridge deflection does not resemble a 

beam on an elastic foundation deflection because of the tower movements which are 

made possible by the flexible backspans. 

Figure 5.60: Maximum mainspan deflection (magnified 200 times) of standard full 
bridge model. 

The maximum live load deflection versus span ratios, 6B/IB and 6M/IM are 1/1000 

and 1/1100 respectively, which are well within the recommended value of 1/500. 

The standard model is now varied by altering the F/Fg ratio while keeping all 

other ratios constant. The maximum deflection is then determined from a computer 

analysis of the maximum backspan deflection load case and the maximum mainspan 

deflection load case. The 6g /6g and 6M/6B ratios from their respective load cases are 

plotted against F / F H in Figure 5.61 for a range of F/FH values. The mainspan curve 

governs and the backspan curve is shown for interest sake. 

In the 6M/6H ratio, the u6M" is the magnified maximum deflection of the deck due 

to the presence of axial load in the deck. The u6jjn is Hetenyi's maximum deflection of a 

beam on an elastic foundation without axial load. Thus, the 6M/6H ratio is expected to 
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Figure 5.61: Magnification of maximum deflection. 

be equal to 1.0 for F/FH equal to zero, and as F/FH increases the &M/6H ratio should 

deviate from 1.0, showing the magnification behaviour. The ordinate intercept is 7.1, 

not 1.0. This high initial deflection can be attributed to the relatively soft foundation 

at the mainspan midpoint and the flexible towers. It must also be noted that the model 

mainspan deflection is still being compared to a Hetenyi beam of span IB not IM- The 

deflection magnification with increasing F / F H is visible in Figure 5.61 but the increase 

is not very rapid because of the low deck axial load at the midspan. The deflection 

increases rapidly after F / F H reaches 0.75 due to the large deflections of the backspan 

at this point which allows the mainspan to sag. As expected from Figure 5.52, the 

bridge becomes unstable at F / F H = 0.87. 

The deflection plot as a function of dimensionless decay length ID/IB is shown in 

Figure 5.62. It can be seen that 6M/6H is highly dependent on ID/IB and this is 

especially true in the normal range of Ip/ls from 0.40 to 0.65 for cable stayed bridges. 
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If Figure 5.61 were to be used for design purposes it would be necessary to plot a series 

of mainspan deflection curves, each w i th a different value of Ip/ls-

15 

Figure 5.62: Dimensionless deflection versus dimensionless decay length. 

The cable tautness graph is shown in Figure 5.63. The cable tautness has very litt le 

effect on the mainspan deflection in the normal range of / . However, the importance 

of having tight cables is demonstrated by the rapid increase of the deflection for low 

values of / . 

Figure 5.64 shows the influence of the live load to dead load ratio wifwp. It can 

be seen that the m a x i m u m deflection of the standard full bridge model is not affected 

by this ratio. 

The deflection plot as a function of the ratio of anchor cable area to backspan 

cable area Ac,/T,Ac is shown in Figure 5.65. It can be seen that 6MI&H is also 

quite dependent on ACtf H Ac in the normal range of ACo/T, Ac from 0.40 to 0.60. If 

Figure 5.61 were to be used for design purposes it would be necessary to have a series of 
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Figure 5.63: Dimensionless deflection versus dimensionless cable tautness. 
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Figure 5.64: Dimensionless deflection versus dimensionless load. 
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Figure 5.65: Dimensionless deflection versus dimensionless cable area. 
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Figure 5.66: Dimensionless deflection versus dimensionless tower stiffness. 
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figures. Each figure would be valid for a specific value of Ac./"52 Ac and on the figure 

would be a series of mainspan deflection curves, each with a different value of ID/IB-

The final graph of the tower stiffness effect is shown in Figure 5.66. The tower 

stiffness has very little effect on the mainspan deflection, which means that the cable 

stayed bridge stiffness is dependent on the anchor cables and hot the towers. 

5.3.2 Results of Moment Analysis 

The same standard full bridge model is used for maximum moment analysis as that for 

the deflection analysis. However, different load cases are again necessary in order to 

get the maximum moment in the backspan and mainspan. The envelope of maximum 

moment influence lines is determined using ULA, and the maximum backspan and 

mainspan moment influence lines are shown in Figure 5.67 along with the resulting live 

load distributions and locations of the maximum moments. 

Backspan Moment Load Case 

Mainspan Moment Load Case 

^— MM 1 

Figure 5.67: Load cases for maximum backspan and mainspan moment. 
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The fact that the influence line analysis is only approximate for this structure is 

more of a concern here than for deflections. This is particularly true for the maximum 

mainspan moment load case. The length of the short segments of loaded deck in the 

mainspan are not expected to remain constant to produce the maximum moment as 

the nonlinear analysis of the bridge model progresses. As the standard model is altered 

by varying the dimensionless ratios, large nonlinearities are expected and unusual phe

nomenon may appear in the mainspan moment plots. However, the mainspan moment 

does not govern, and the structure is not too nonlinear at service load levels, so the 

influence lines are still applicable for the standard model. 

The moment of the standard model under the maximum backspan moment load 

case with WL/WD = 0.20, is shown in Figure 5.68 with the Hetenyi moment superposed 

on the left backspan. The MB/MJJ ratio is equal to 3.513. The reason for this large 

deviation from the Hetenyi moment is twofold: 1) the mainspan deck flexibility allows 

the towers to move which allows large backspan deflections and 2) the large backspan 

deflections occur in a relatively soft foundation region which allows a more severe 

curvature than the Hetenyi model. 

Figure 5.68: Maximum backspan moment of standard full bridge model. 

The model moment diagram under the maximum mainspan moment load case is 

shown in Figure 5.69. The Hetenyi moment is again superposed on the left backspan. 
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The Sm/6JJ ratio is equal to 2.718. This is less than the value for MB/MJJ which is 

perhaps attributable to the anchor cable pulling back on the left tower which limits 

the curvature of the deck. That is, the backspan curvature is limited by the mainspan 

cables pulling on the towers but the mainspan curvature is restrained by the anchor 

cables which is a much stiffer system. 

Figure 5.69: Maximum mainspan moment of standard full bridge model. 

The maximum backspan live load moment is wilB/70 and the maximum mainspan 

live load moment is tuilB/90. These results can be compared to the moment of 

WLIB/140 obtained for the backspan model. It is more common, however, to express 

the maximum live load moment in terms of the bridge mainspan length. For suspension 

and three-hinged arch bridges the linear live load moment is approximately WLIM/60. 

The maximum nonlinear cable stayed bridge backspan and mainspan moments for the 

ratio of IB/IM = 0.4 are WLIM/440 and u>£,/j^/560, respectively. This is a sevenfold 

reduction in live load moment from other long span bridges and is a major testament 

to the economy of cable stayed bridges. 

The standard model is now varied by altering the F/Fg ratio while keeping all other 

ratios constant. The maximum moment is then determined from a computer analysis 

of the maximum backspan moment load case and the maximum mainspan moment 

load case. The MB/MH and 6M/6JJ ratios from their respective load cases are plotted 
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against F / F H in Figure 5.70 for a range of F / F H values. The backspan curve governs 

and the mainspan curve is shown for reference. 
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Figure 5.70: Magnification of maximum moment. 

1.1 1.2 

The moment magnification is evident in that the Ma /MR ratio increases with in

creasing F / F H . The mainspan moment behaves similarly to the backspan moment 

except that the load pattern used for the mainspan moment causes instability at a 

lower F / F H ratio than for the backspan moment load case. Even though the mainspan 

moment increases rapidly just before buckling, it never exceeds the backspan moment. 

The slightly different behaviour of the mainspan moment curve from the backspan 

curve suggests that the load case used to produce the maximum mainspan moment 

should be altered as F / F H varies. 

The moment plot as a function of dimensionless decay length ID/IB is shown in 

Figure 5.71. It can be seen that MB/MH is highly dependent on ID/IB\ however, in 

the normal range of ID/IB from 0.40 to 0.65 the curve is much less steep than for 
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Figure 5.71: Dimensionless moment versus dimensionless decay length. 

surrounding values of ID/IB- The curve for mainspan moment also exhibits a plateau 

for the normal range of ID/IB with steep sections on either side of this section, but it 

does not mimic the backspan curve as is the case for all other plots. This suggests that 

the load pattern must change for changing ID/IB in order to truly obtain the maximum 

moment. To this end, influence lines are obtained for various values of ID/IB and the 

appropriate load patterns are applied to get new MM/MR ratios. The corrected curve 

is plotted in Figure 5.71 as the dotted line. The corresponding curve for the maximum 

backspan moment is exactly that already plotted because the load pattern does not 

change with ID/IB in this case. 

The fact that the new curve is different from the original MM/MU curve shows that 

using the load pattern obtained for one ID/IB ratio is not the load pattern that will 

produce the maximum mainspan moment for other values of ID/IB- The new curve 

actually governs for ID/IB greater than 1.2. A last point that should be brought up 
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is that for low values of Ip/la the moment distribution follows a jagged path rather 

than a smooth one as in Figure 5.69, and the cable layout used in this model may not 

produce the maximum moment possible. To get the maximum moment, more cables 

could be used in the model or the existing cables could be attached to different points 

on the deck. In any case, the discussion on M ^ / M H VS ID/IB is academic because the 

backspan moment governs for all practical cases. 

The cable tautness graph is shown in Figure 5.72. The cable tautness has very little 

effect on the mainspan moment in the normal range of / . However, the importance of 

having tight cables is again demonstrated by the rapid increase of the moment for low 

values of / . 
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6- ETIT/EI = 50 

1-

Figure 5.73 shows the influence of the live load to dead load ratio WL/VJD- The 

influence of wi/wp on the maximum backspan moment is negligible in the normal 

range of w^/wp. There is a marked increase in MB/Mm however, for wi/wp greater 
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than 0.8. 

The moment plot as a function of the ratio of anchor cable area to backspan cable 

area Ac./ £ Ac is shown in Figure 5.73. It can be seen that dependence of MB /M# to 

Ac.IX) A c is not as great as for deflection . However, the importance of heavy anchors 

is demonstrated by the large increase in backspan moment for Ac./^2 Ac values less 

than 0.3. 

The effect of varying the tower stiffness is shown in Figure 5.75. The tower stiffness 

has very little effect on the maximum backspan moment, which means that the towers 

act in their most efficient capacity; i.e., as axial members vertically supporting the 

cables, not as bending members tying the cables back. 
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Figure 5.73: Dimensionless moment versus dimensionless load. 
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Figure 5.75: Dimensionless moment versus dimensionless tower stiffness. 



Chapter 6 

Application 

The dimensionless stability, moment and deflection plots of Chapter 5 can be used for 

a preliminary design and analysis aid of cable stayed bridges. A procedure for finding 

the factor of safety against elastic stability failure and maximum service deck deflection 

and moment is outlined in this chapter. 

A conceptual design could determine the materials to use, the tower and deck sizes, 

and the number and sizes of cables. However, the mainspan length and the live load 

are usually determined before the bridge design proceeds (bridges are designed to carry 

specified loads over fixed spans), so a suggested starting point for the conceptual design 

is to use MB = WLIM/440 and 6M = /M/500 to obtain preliminary values for the deck 

E and 7. 

Once the bridge design is more detailed and ready for computer analysis, a great 

saving of effort can be made by utilizing the results of this thesis to analyze and rean

alyze progressive bridge designs, instead of modelling and analyzing several different 

designs by computer. When the analysis of the bridge designs utilizing the dimen

sionless ratio models has served its usefulness, a more detailed analysis could then be 

performed by computer. 

6.1 The Model 

The dimensional analysis model has constant deck and tower stiffnesses and a uniform 

distribution of cable areas such that each cable has the same dead load stress. The 

cables are at a constant spacing along the deck and tower. A representative geometric 

model is used and it is assumed that the model behaviour is independent of the number 
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of cables as long as at least four or five are within the decay length of the model deck. 

The model representative cable is taken as the one (or average of two) attached to 

the center deck section of the bridge backspan. The area, height and angle of this cable 

are used in the model as the representative values for the bridge. The deck moment of 

inertia of the bridge backspan center section is taken as the constant moment of inertia 

of the model deck, and the model dead load is determined from the bridge deck cross 

section at this point. The tower moment of inertia of the model is an equivalent one, 

such that the free standing tower deflections of the bridge and model are the same for 

a unit lateral load at the top. 

Once the representative parameters are determined, the dimensionless ratios are 

calculated as given in Chapter 5, Section 5.2.1. Note that the cable area ratio is not 

calculated using the representative cable area; rather, the actual bridge anchor and 

backspan cable areas are used. Also, the maximum dead load axial force F in the 

model deck is calculated using representative values, i.e., 

6.2 Procedure 

Once the eleven ratios have been given a preliminary estimate, it is necessary to de

termine if the parameters of the bridge to be analyzed falls into the domain of the 

procedure described in the next sections. That is, the geometric dimensionless ratios 

hi/lB, hNa/lB, hxllB and IB/IM should be reasonably close to the values of 0.30, 0.50, 

0.80 and 0.40, respectively. The number of cables over the decay length must also be 

greater than four. In other words, ID/IB should be greater than 4/N. The decay length 

F = WDIM 

2 tan 6Ng/2 

is given by 

where 

k = 
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6.2.1 Stability 

The stability factor of safety is found by first determining the critical live load to dead 

load ratio \ W L / V J D from Figure 5.52 for the value of F/FH calculated for the bridge to 

be analyzed. The factor of safety on the live load is calculated as the ratio of the final 

and original live to dead load ratios, i.e., 

M 
( - ) 

6.2.2 Deflection and Moment 

The procedure for determining the maximum backspan and mainspan deflection is 

slightly more complicated than that for stability because of the influence of ID/IB, 

Ac* / YlAc and to a lesser degree F / F H . 

The first step is to obtain the S/6H ratio from Figure 5.62 corresponding to the 

bridge ID/IB ratio. This 6/6H ratio is valid if F/FH = 0.10 and ACa/T.Ac = 0.50. 
To adjust 6/6H for a different value of ACa/^2Ac, for example, simply multiply by 

the 6/6H ratio from Figure 5.65 corresponding to the bridge value of AcjYLAc, then 

divide by the B/6H value for the standard model. This assumes a linear relationship, 

and in symbolic form is 

This adjustment is repeated in a similiar manner for nonstandard values of F / F H , 

ETIJ/EI, f and WL/WD although they may not be necessary because they are of 

relatively smaller influence. 

Once the bridge 6/6H ratio is determined, the maximum deflection can be calculated 

by multiplying the ratio by SH as given by Equation 3.12 or Figure 3.14. 
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The procedure for determining the maximum backspan and mainspan moment is 

exactly the same as that for deflection, using the appropriate corresponding moment 

graphs. The beam on an elastic foundation moment is given by Equation 3.13 or 

Figure 3.20. 

6.3 Examples 

Two cable stayed bridge designs are taken as examples of the analysis procedure and 

then compared to computer runs of the actual bridge models. The A L R T steel and 

concrete designs are used for this purpose. 

The representative parameters and ratios are given for these two bridges in Ap

pendices C.5 and C.6. Before proceeding with the analysis, the geometric ratios are 

checked to see if they are close to the standard model ratios. Table 6.1 shows the per

cent deviations of the two designs from the standard model values, along with the check 

on the number of cables within the decay length. There is a sufficient number of cables 

for both bridges and the geometric ratio deviations are small except for the ratio that 

defines the shape of the cable layout, hi/la- The A L R T steel design is close to being 

a radiating shape and the A L R T concrete design is more of a fan shape. The effects 

of the two different cable layouts is assumed to be small, and the analysis procedure is 

deemed to be applicable to the two bridge designs. 

hT/lB IB/IM hlh > 4/iV 
Standard Model .3 .5 .8 A 
A L R T Steel .478 59% .548 10% .841 5% .419 5% .418 > .364 
A L R T Concrete .234 22% .516 3% .819 2% .406 2% .423 > .333 

Table 6.1: Check on applicability. 

6.3.1 Stability 

The stability analysis using the suggested procedure and the computer analysis of the 

actual bridges are summarized in Table 6.2. The simple analysis gives conservative 
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factors of safety. The live load factors are 16% and 38% lower than the computer 

analysis for the concrete and steel bridges, respectively. The radiating cable layout 

of the steel bridge may be the reason the simple analysis is further away from the 

computer analysis than the concrete bridge. 

Sim] pie Analysis Computer Analysis 
wL/wD F/FH \wL/wD Factor of Safety Factor of Safety 

Standard Model .20 .10 2.4 11.9 11.9 
ALRT Steel .36 .12 2.1 5.83 9.33 
ALRT Concrete .17 .24 1.1 6.47 7.69 

Table 6.2: Summary of stability analysis. 

An attempt to improve the correlation between the simple analysis and the com

puter analysis can be made by adjusting the simple analysis factors according to the 

actual values of ID/IB, Aca/^2Ac and ETIT I EI. However, for these two bridges the 

adjustments counter one another and the net effect would be minimal. 

6.3.2 Deflection and Moment 

The deflection analysis using the simple procedure and the computer analysis of the 

actual bridges is summarized in Table 6.3. The 6/SH ratios are calculated for the steel 

bridge as 

6B 

SH 

I'M 

(3.8)^ .418 (3.0) <Zfl__ .595 

(3.155)D 

(6.7) -

(7.177)c 

3.61 

7.28 

and for the concrete bridge as 
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Simple Analysis Computer Analysis 
Standard ALRT ALRT ALRT ALRT 

Model Steel Concrete Steel Concrete 
IB — 138 138 138 138 
IM — 329 340 329 340 
F/FH .1 .12 .24 .12 .24 
Ac/E Ac .5 .595 .502 .595 .502 
ID/IB .5 .418 .423 .418 .423 

— 16 16 16 16 
k — 211.5 279.3 — — 

6k/wL — 1.07 1.07 — — 

SH 
— .0809 .0613 — — 

6B/6H 3.155 3.61 4.10 — — 

6M/ 6H 7.177 7.28 7.93 — — 

6B — .292 .251 .254 .261 
6M — .589 .486 .661 .603 
6BHB 1/1000 1/473 1/550 1/544 1/530 
6M I^M 1/1100 1/559 1/700 1/498 1/564 

Table 6.3: Summary of deflection analysis. 

The simple analysis gives unconservative maximum mainspan deflections. The 

mainspan deflection ratios are 11% and 19% lower than the computer analysis for 

the steel and concrete bridges, respectively. The corresponding backspan ratios are 

15% higher and 4% lower, which indicates that the simple analysis gives conservative 

results for the maximum backspan deflections. 

The moment analysis using the simple procedure and the computer analysis of the 

actual bridges is summarized in Table 6.4. The M/MH ratios are calculated for the 

steel bridge as 

M B 

(2-7)Jft= 418 (2-6) x 0 . _ 
= .595 

MI 

M 

M 

(3.6) P = .418 •fl 

(2.718)D 

(3.3) 

= 2.58 

c„ _ .595 

H (3.513): = 3.38 
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and for the concrete bridge as 

M, B 
(2.7K = =.423 

(2.8) 
.24 

Mi H (2.718): 
= 2.78 

Mi 
Mi 

M 

H 

( 3- 6)^=.42sJ [ ( 3 - 7 ) ^ = - 2 4 

(3.513)D 
= 3.79 

Simple Analysis Computer Analysis 
Standard ALRT ALRT ALRT ALRT 

Model Steel Concrete Steel Concrete 
IB — 138 138 138 138 
IM — 329 340 329 340 
F/FH .1 .12 .24 .12 .24 
Ac .IT. Ac .5 .595 .502 .595 .502 
ID/IB .5 .418 .423 .418 .423 

— 16 16 16 16 
MH/wLl'B — .0035 .0035 — — 

M„ — 1066 1066 — — 

MMjMH 2.718 2.58 2.78 — — 

MB/MH 3.513 3.38 3.79 — — 

MM — 2750 2963 2807.8 2751.1 
MB — 3603 4040 3731.0 3480.1 
MM/wLl2

M 1/560 1/630 1/624 1/617 1/672 
MB/wLlM 1/440 1/481 1/458 1/464 1/531 

Table 6.4: Summary of moment analysis. 

There is fairly close agreement between the simple analysis moments and the com

puter analysis maximum moments, and any significant deviations are on the conserva

tive side. The backspan moment ratios are 4% lower and 16% higher than the computer 

analysis for the steel and concrete bridges, respectively. The corresponding mainspan 

ratios are 2% lower and 8% higher than the computer analysis. 

The power in the simple procedure is in being able to change the design and get the 

effect of the change without computer analysis. Thus, many concepts and alterations 

can be tested quickly and cheaply. Once the cable stayed bridge design has been sized 
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via the iterative use of the simple procedure, the bridge can then be modelled for 

computer analysis. At this stage in the design process, the designer would also have 

a good understanding of the bridge behaviour and be better prepared to interpret the 

computer analysis results. 



Chapter 7 

Conclusion 

The elastic stability of cable stayed bridge decks, as well as the deflection and moment 

of the deck are successfully modelled and analyzed using the computer program ULA 

(Ultimate Load Analysis). The computer analysis includes P— A effects and true cate

nary cables. The dimensional analysis used to study the the general behaviour of cable 

stayed bridges shows that the comparison to a beam on an elastic foundation is a valid 

one to make. Eleven dimensionless ratios are used to describe the model. Five are 

geometric ratios and are set to representative values and kept constant for this study. 

The remaining six ratios describe the material properties, structural elements and the 

loading of the model. These six ratios are varied from the standard and the effect on 

the cable stayed bridge model is observed. 

The elastic stability of cable stayed bridges is governed by the laws that govern a 

beam-column on an elastic foundation. The direct correlation is seen when the critical 

section of deck is isolated and examined. The critical load case for stability is identified 

and the factor of safety on the live load against elastic failure for the standard model 

is 11.9. This factor of safety is dependent on the maximum axial load in the deck 

under dead load only (F/Fu) and the magnitude of the servive live load (VJL/WD)- The 

remaining ratios have little (±5%) or no effect over the normal range of values. 

Deck stability could be the governing criterion if load factors are applied to the 

dead load, for example, 2.0IVD + 6.7U;L is a load case more severe than the standard 

WD + 11.9tU£,. Thus, the elastic stability of a cable stayed bridge could sometimes be 

the limiting design criterion. 

The maximum deflection and moment of the cable stayed bridge model is compared 
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to that of a beam on an elastic foundation. The maximum live load deflection versus 

span ratios, 6B/IB and 6M/IM are 1/1000 and 1/1100 respectively, which are well within 

the recommended value of 1/500. The maximum nonlinear cable stayed bridge model 

backspan and mainspan moments are WL12

m/440 and wLlM/560, respectively. This is a 

sevenfold reduction in live load moment from other long span bridges and is a major 

testament to the economy of cable stayed bridges. Both the deflection and moment are 

dependent on the decay length of the deck and on the anchor cable size. Magnification 

of deflection and moment is observed for increasing deck dead load axial force. It is also 

important to note that the cable tautness has no effect on the model response as long 

as the cables do remain tight. The cable stayed bridge response is also independent of 

the tower stiffness which is also a cost saving feature because the towers do not have to 

be designed for heavy bending and the tower foundations do not have to transfer large 

moments, except perhaps during erection. 

A simple analysis procedure is developed based on using the charts in this study. 

Two example analyses are carried out and compared to actual computer runs. For 

the two examples, the simple procedure is up to 40% conservative compared to the 

computer runs for elastic stability. The maximum mainspan deflection is up to 20% 

unconservative and the maximum backspan moment is up to 20% conservative for 

the two examples used. The large deviations of the simple analysis results from the 

computer results indicate that caution must be used in interpreting the simple analysis 

results, especially when the cable layout differs significantly from the standard model 

layout. However, the simple procedure can still be used to compare geometrically 

similar cable stayed bridge designs. 

7.1 Further Research 

Research on the effect of the geometric dimensionless ratios, in particular the ratio that 

defines the cable layout (hi/Is) would complement this study. Research on single tower 
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cable stayed bridges would be interesting as would a space frame analysis on bridges 

with A-frame towers. 

Further research on the elastic stability of cable stayed bridges is still called for, 

however, the real mechanism of cable stayed bridge collapse would involve the formation 

of plastic hinges in the deck. Therefore, plastic analysis of cable stayed bridges would 

be a more urgent topic of research. This involves the addition of two more parame

ters, namely the plastic moment capacity Mp of the deck and—for the moment-axial 

interaction—the deck cross sectional area A. This then requires two more dimensionless 

ratios say, 
MplM 

EI 

and 
A 

EAC 

It turns out that Mpl\f/EI is approximately equal to 0.6 and A/J^Ac is approxi

mately equal to 10 for steel deck bridges. Using these values of MplM/EI and A/ Y,Ac 

and the model values of IM, EI and YJ Ac values for Mp and A are input into ULA. The 

plastic stability analysis under load case 4 is carried out and a plastic hinge forms at 

6.76wL/xvD which causes the bridge to become unstable. The factor of safety on the live 

load for this case is 6.76 which is a 43% drop from the elastic stability factor of safety. 

The deflected shape of the failed bridge is shown in Figure 7.76. This is a catastrophic 

mode of failure because the bridge collapses as soon as one hinge forms—there is no 

warning of imminent failure. 

The single hinge mode of failure occurs because the axial load in the deck is high 

enough to cause a P—A stability failure of the bridge with a hinge in it. A more likely 

mode of failure is plastic hinge formation with the post hinge structure remaining 

stable. Additional loading would then cause more hinges to form until enough hinges 

are in the structure to form a mechanism. This occurs for the maximum backspan 

moment load case, for example. Hinges form at both ends of the bridge at 5.76wL/wp 



Chapter 7. Conclusion 127 

and the bridge is still able to carry even heavier loads until at 9.25wL/wD another 

hinge forms at the center of the mainspan. The bridge is still stable at this point but 

cannot carry heavier loads. The deflected shape of the deck with three plastic hinges is 

shown in Figure 7.77. If the formation of the first hinge is defined as failure, the factor 

of safety against failure is 5.76, which is lower for this mode than the plastic stability 

mode. However, this mode of failure may be preferred because there is a warning of 

collapse. 

Figure 7.76: Plastic stability failure of bridge model. 

H \ L >, 
• Hinge locations 

Figure 7.77: Plastic hinge failure of bridge model. 
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A p p e n d i x A 

Catenary Cable 

For the free-body diagram of Figure A.78 which is an element from the catenary cable 

shown in Figure A.79, the sum of the forces in the vertical direction produces the 

governing differential equation. 

Hy' + u>dc = H{y' + dy') 

where w is the load per unit of cable length. 

H dx -4 

Figure A.78: Catenary cable element. 

Simplifying and using dc = y/dx2 + dy2 yields 

Integration yields 

y' = sinh + A 

131 
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Figure A.79: Catenary cable. 
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and integrating again yields 

H , {wx \ 
y = — cosh — + A + B 

w \ H / 

where A and B are constants of integration. 

With the boundary conditions at x = 0 ; y = 0 and at z = L ; y = h the constants 

of integration are evaluated as 

wh \ wL 

and 

H ^ A 

B = cosh A 
w 

The cable arc length c is obtained by integrating the elemental cable length through 

the length of the cable. 

c = f dc= fL ^-dx= fL Jl + y'2 dx 
Jo Jo dx Jo v 

Appropriate substitutions and simplifications yield 

c = \lh2 + -wTsmh — 

Using the fact that tan 6 — y' the vertical components of cable tension v0 and vx 

can be determined and from equilibrium of moments, the point of application ah of 

the total cable weight wc can be evaluated. The results are shown on Figure A.79. 

The elastic elongation A e of the cable is 

T . fL H sec 6 fe T , H secfl 
/ —— dc = —— sec 6 dx 
Jo AE Jo AE 

which reduces to 

HL (wh2

 y wL 1 H , wL\ 
*' = AE\2HL C ° t h 2~H + 2 + 2 ^ 1 8 m h If) 

The above expressions are exact but inconvenient to work with. For tight cables, 

where r = wL/2H < 1/2 it is convenient to expand the hyperbolic functions as power 
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series. The series below are used and terms up to and including r4 are retained. 

r 3 r5 

sinh r = r + 1 + 1- . . . r + 
~6 

+ 
120 

cosh r = 
r2 r4 r6 

cosh r = 1 + + — + =— 1 + 
2 

+ 
24 720 

coth r = 
1 r r3 2r5 

coth r = - + — — + 7T-
r 3 45 945 

From these expressions and using y/l + r = l + r/2 + r2/8 + -- - the final results are 

c = 5 

and 
r ! / L ' \ r<l 

In most computer structural analysis the catenary cable is modelled with a straight 

line member that lies along the chord of the cable and is pin-connected at both ends. 

The cable behaviour is then duplicated by making use of the equations for c and A e . 

Free body diagrams that show how the catenary cable and the bar are made equiv

alent are given in Figure A.80. In the cable, the tensions T0 and Ti include the force 

necessary to support the cable self-weight; consequently, the cable tension is not con

stant along the cable. The cable tension force is, of course, in-line with the catenary 

shape of the cable. For the bar, the self-weight is made the same as that for the cable, 

but the application of this weight is at the center of the bar, and the support for this 

weight is provided by equal external reactions at the member ends. Thus, if the weight 

of the cable is applied at the two member ends as a dead load force equal to tuc/2, the 

cable tension becomes constant and acts in-line with the chord. The only approxima

tion made is in placing half the dead load of the cable at each end instead of in true 

proportion according to a, where for tight cables, a = .5 -f hr/6S. It only remains to 

duplicate relative motion of B with respect to A in both the cable and the bar. 

The relative motion of B with respect to A is split into the motions parallel and 

perpendicular to the chord line. The parallel motion is shown in Figure A.81. When the 

, cos20 , 
1 + — 2 

cos20 cos4 6 
45 72 

HL sec2 6 
A< = —AE— 
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wc 

Catenary Cable Pin Ended Member 

Figure A.80: Pin ended member equivalent to catenary cable. 

Figure A.81: Elongation of catenary cable. 
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horizontal end thrust changes from H0 to H, point B moves to B' for an elongation A. 

This chord line elongation is accounted for by assigning an equivalent area to the bar, 

so that the calculation for the elastic elongation of the bar gives the actual elongation 

of the cable due to a change in sag as well as the elastic elongation of the cable. 

In order to calculate A , the unstressed length of a cable USL is introduced. The 

USL is the length of an unloaded cable layed horizontally and straight on a uniform 

continuous surface. 

USL = c- A e 

rat = s ( i + £ « ' » ) - f § ~ ' j ( i - t . £ ) 

_T_, _ H L * -r S r2 «— HLT2 « — 
USL = S - —— sec2 0 + cos2 0 — sec2 0 

AE 6 ZAE 

Neglecting the HLr2 sec2 0/3AE term because it is second order compared to the 

Sr2 cos2 0/6 term, and substituting for r and the trigonometric terms results in 

U S L = S + ^ - ^ 
24SH2 AEL 

Ignoring the elastic elongation of the cable between B and B' the elongation of the 

cable is given as the relative displacement of points A and B in direction S, as shown 

in Figure A.81. 

A = USLo-USL 
w2L* HS2 

A = S + 
tv'L4 H0S2 

24SHI AEL 
S + 

24SH2 AEL 
S 2 / w2LlAE\ S2 f w2LsAE' 

[ 24S*H2 ) AEL [ 0 24S3tf2

 t AEL 

If two new parameters are introduced 

o i w2L5AE 

0 = r— 
H 24S3 

and 
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the elongation is expressed as 

Gathering all the known initial condition terms along with a known cable elongation 

and equating them to the unknown final horizontal thrust terms gives 

A /?3 fi 3  

^  +  H o~m = H~H~i 

To express this in dimensionless terms let H = //? where / is a dimensionless 

variable which is a measure of the cable tautness. After simplification this yields 

A_ 1 _ 1 

Let G equal the left hand side and the final result is 

Thus, given G, the parameter / can be found and then the final horizontal thrust H 

of an elongated catenary cable can be calculated. 

The reduced area A of a pin ended member to give the same elongation A with this 

final thrust H is now derived. Figure A.82 shows the bar extension with a change in 

tension. The elastic elongation is 

A ^ ( r - r 0 ) g 
AE 

or 
(H -Hg)S* 

LAE 

which gives 

LEA v 1 

This equivalent area is used as the bar area in the next cycle of calculations to produce 

the elongation of the cable. 
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Figure A.83: Relative motion perpendicular to cable chord. 
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The relative motion perpendicular to the cable chord is shown in Figure A.83. The 

effect of the lateral motion 6 is handled by augmenting the member stiffness matrix 

with the stability functions for a pin ended member. The 6 by 6 member matrix is 

augmented by the following matrix: 

0 0 0 0 0 0 

0 T/S 0 0 -T/S 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 -T/S 0 0 T/S 0 

0 0 0 0 0 0 

The implementation of catenary cables in the computer program ULA is described 

in Appendix B. 
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Appendix B 

U L A Implementation of Catenary Cable 

The equation relating cable deflection to cable thrust using dimensionless parameters 

as derived in Appendix A is 

A graphical representation of this equation is given in Figure B.84. 

(B.17) 

Figure B.84: Behaviour of catenary cable under load changes. 

It can be seen that for large values of / the curve is linear with G ta f and for small 

values of / the curve equation essentially becomes G = — l / / 2 . These observations are 

important because it will be necessary to calculate / from a known value of G. Note: 

140 
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as point B goes to B' in Figure A.81, the cable action goes from B to B' on the graph 

of Figure B.84 to show how the cable tautness changes with the cable elongation. 

A table look up procedure is necessary due to the nature of the equation being 

solved. The table should extend from G = —oo to + 0 0 , however, the previous obser

vations suggest that the table can be cut off. The cut off points used are G = — 4 

and 3 which limit the error in calculating / from the approximate equations (after four 

iterations) to 0.0001%. The values used in the table look up procedure are calculated 

from Equation B.17 and are as follows: 

G / Error 

-4 .473 .035% 

-3 .532 .017% 

-2 .618 .005% 

-1 .755 .016% 

0 1.000 0% 

1 1.466 .029% 

2 2.206 .019% 

3 3.104 .006% 

The calculation of / is carried out as follows: 

• If G < -4 then / = If-^G then iterate on / = l/y/-G + f four times. 

• If — 4 < G < 3 then use the table look up and interpolation procedure. 

• If G > 3 then f = G then iterate on / = G + l / / 2 four times. 

The implementation of catenary cables in ULA is necessarily an iterative one. The 

first iteration calculates forces and displacements for all members based on their original 

member stiffness matrices. If P—A effects are neglected, this single iteration would 

produce good results for most members. For a cable however, the highly nonlinear 

effect of the change in sag must be accounted for, and this is done by substituting 
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an effective stiffness into the cable stiffness matrix. Either E or A can be altered to 

produce an effective stiffness EA. A will be used as a matter of convenience only, due 

to the data requirements of ULA. 

The procedure for catenary cable calculations in ULA is as follows: 

1. Cable constants 0 and 7 are calculated. (u> is calculated using the input cable 

area and density. Absolute values of distances are used.) 

2. Set A = A. 

3. Build the stiffness matrix using A. 

4. Solve the system of equations. 

5. Calculate A = TS/AE where T is the change in cable tension. 

6. Calculate G where 

G = A , 

PQ = input cable prestress load (+ tension). 

7. Calculate / . 

8. Calculate reduced area AA to look after the loss of stiffness due to sag. 

. AA = (4lfP ~ Po^ S 

^L\ J EA 

For a very small change in cable tension this equation becomes indeterminant in 

the form 0/0. To avoid this, a test is made such that 

S 
L,FP-Po if 

where A is the original input area. 

< .03P0 then AA = A 
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9. Set A = AA. 

10. Calculate the error (AA — A)/A and print it on the terminal screen. 

11. If the error is too large, continue the calculations at step 3. 



A p p e n d i x C 

D a t a F r o m E x i s t i n g C a b l e S t a y e d B r i d g e D e s i g n s 

This appendix contains the data acquired from four steel deck and five concrete deck 

cable stayed bridges. The data was obtained from design blueprints kindly provided 

by Bush, Bohlman and Partners. 

The bridges and the design dates are as follows: 

• Steel Deck Bridges 

— ALRT - Advanced Light Rail Transit Bridge; Vancouver, British Columbia; 

February 1986. 

— AF - Alex Fraser Bridge; Vancouver, British Columbia; September 1983. 

— Q - Quincy Bridge; Quincy, Illinois; May 1983. 

— S - Sunshine Skyway Bridge; Tampa Bay, Florida; May 1982. 

144 
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• Concrete Deck Bridges 

— ALRT - Advanced Light Rail Transit Bridge; Vancouver, British Columbia; 

January 1986. 

— AF - Alex Fraser Bridge; Vancouver, British Columbia; September 1983. 

— Q - Quincy Bridge; Quincy, Illinois; May 1983. 

— WS - Weirton-Steubenville Bridge; Weirton, West Virginia - Steubenville, 

Ohio; February 1983. 

— EH - East Huntington Bridge; East Huntington, West Virginia; October 

1980. 
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C . l Backspan Data from Bridge Designs for Simplified Backspan Model 

Steel Deck 

1,000,000 
1,000,000 
kN/m3 

m 
m 
m 
m 
kN/m 
kN/m 
kN 
deg 

ALRT AF Q S 
1,000,000 
1,000,000 
kN/m3 

m 
m 
m 
m 
kN/m 
kN/m 
kN 
deg 

E 200. 200. 200. 200. 1,000,000 
1,000,000 
kN/m3 

m 
m 
m 
m 
kN/m 
kN/m 
kN 
deg 

Ec 195. 195. 195. 195. 
1,000,000 
1,000,000 
kN/m3 

m 
m 
m 
m 
kN/m 
kN/m 
kN 
deg 

7c 77. 77. 77. 77. 

1,000,000 
1,000,000 
kN/m3 

m 
m 
m 
m 
kN/m 
kN/m 
kN 
deg 

I .030 .281 .171 .180 

1,000,000 
1,000,000 
kN/m3 

m 
m 
m 
m 
kN/m 
kN/m 
kN 
deg 

Acccnt .00235 .00466 .00656 .00478 

1,000,000 
1,000,000 
kN/m3 

m 
m 
m 
m 
kN/m 
kN/m 
kN 
deg 

IB 138.00 182.75 134.00 146.80 

1,000,000 
1,000,000 
kN/m3 

m 
m 
m 
m 
kN/m 
kN/m 
kN 
deg 

70.6 68.7 44.7 75.5 

1,000,000 
1,000,000 
kN/m3 

m 
m 
m 
m 
kN/m 
kN/m 
kN 
deg 

WD 44. 135. 76. 127. 

1,000,000 
1,000,000 
kN/m3 

m 
m 
m 
m 
kN/m 
kN/m 
kN 
deg 

wL 16. 28. 9.33 18.66 

1,000,000 
1,000,000 
kN/m3 

m 
m 
m 
m 
kN/m 
kN/m 
kN 
deg 

F 4847. 29929. 14069. 16494. 

1,000,000 
1,000,000 
kN/m3 

m 
m 
m 
m 
kN/m 
kN/m 
kN 
deg Occnt 51.4 39.5 35.9 48.5 

1,000,000 
1,000,000 
kN/m3 

m 
m 
m 
m 
kN/m 
kN/m 
kN 
deg 

N 11 20 7 10 

1,000,000 
1,000,000 
kN/m3 

m 
m 
m 
m 
kN/m 
kN/m 
kN 
deg 

Concrete Deck 

1,000,000 
1,000,000 
kN/m3 

m 
m 
m 
m 
kN/m 
kN/m 
kN 
deg 

ALRT AF Q WS EH 
1,000,000 
1,000,000 
kN/m3 

m 
m 
m 
m 
kN/m 
kN/m 
kN 
deg 

E 28. 28. 28. 28. 28. 1,000,000 
1,000,000 
kN/m3 

m 
m 
m 
m 
kN/m 
kN/m 
kN 
deg 

Ec 195. 195. 195. 195. 195. 
1,000,000 
1,000,000 
kN/m3 

m 
m 
m 
m 
kN/m 
kN/m 
kN 
deg 

1c 77. 77. 77. 77. 77. 

1,000,000 
1,000,000 
kN/m3 

m 
m 
m 
m 
kN/m 
kN/m 
kN 
deg 

I .297 1.470 1.730 5.866 .636 

1,000,000 
1,000,000 
kN/m3 

m 
m 
m 
m 
kN/m 
kN/m 
kN 
deg 

.00350 .00420 .00656 .00668 .00355 

1,000,000 
1,000,000 
kN/m3 

m 
m 
m 
m 
kN/m 
kN/m 
kN 
deg 

IB 138.00 195.25 134.00 209.70 185.3 

1,000,000 
1,000,000 
kN/m3 

m 
m 
m 
m 
kN/m 
kN/m 
kN 
deg 

hccnt 58.3 62.4 44.0 83.8 72.1 

1,000,000 
1,000,000 
kN/m3 

m 
m 
m 
m 
kN/m 
kN/m 
kN 
deg 

U)D 96. 196. 112. 270. 87. 

1,000,000 
1,000,000 
kN/m3 

m 
m 
m 
m 
kN/m 
kN/m 
kN 
deg 

16. 28. 9.33 18.66 9.33 

1,000,000 
1,000,000 
kN/m3 

m 
m 
m 
m 
kN/m 
kN/m 
kN 
deg 

F 14009. 52097. 19916. 59873. 16988. 

1,000,000 
1,000,000 
kN/m3 

m 
m 
m 
m 
kN/m 
kN/m 
kN 
deg Bccnt 43.4 36.3 37.0 43.4 43.5 

1,000,000 
1,000,000 
kN/m3 

m 
m 
m 
m 
kN/m 
kN/m 
kN 
deg 

N 12 30 12 21 14 

1,000,000 
1,000,000 
kN/m3 

m 
m 
m 
m 
kN/m 
kN/m 
kN 
deg 

kN/m2 

kN/m2 

kN/m2 

kN/m2 
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C.2 Backspan Ratios from Bridge Designs for Simplified Backspan Model 

Steel Deck Concrete Deck Value 
used 
20 
.7 
.4 
3 
7 
.1 
.2 

ALRT AF Q S ALRT AF Q ws EH 
Value 
used 
20 
.7 
.4 
3 
7 
.1 
.2 

TV- 11 20 7 10 12 30 12 21 14 

Value 
used 
20 
.7 
.4 
3 
7 
.1 
.2 

sin ectnt .782 .636 .586 .749 .687 .592 .602 .687 .688 

Value 
used 
20 
.7 
.4 
3 
7 
.1 
.2 

hcent/lB .512 .376 .334 .514 .422 .320 .328 .400 .389 

Value 
used 
20 
.7 
.4 
3 
7 
.1 
.2 

n 3.52 2.95 2.32 2.62 3.49 3.51 2.50 2.79 3.56 

Value 
used 
20 
.7 
.4 
3 
7 
.1 
.2 

f 5.62 5.99 6.65 8.69 8.08 7.31 5.78 8.12 7.22 

Value 
used 
20 
.7 
.4 
3 
7 
.1 
.2 

F/FJJ .063 .103 .069 .073 .134 .199 .060 .104 .131 

Value 
used 
20 
.7 
.4 
3 
7 
.1 
.2 wL/wD .36 .21 .12 .15 .17 .14 .083 .069 .11 

Value 
used 
20 
.7 
.4 
3 
7 
.1 
.2 

(.47) ID/IB .402 .480 .610 .540 .405 .403 .566 .507 .397 (.47) 



Appendix C. Data. From Existing Cable Stayed Bridge Designs 148 

C.3 Backspan Data from Bridge Designs for Backspan Model 

Steel Deck 
ALRT AF Q S 

E 200. 200. 200. 200. 1,000,000 
I .030 .281 .171 .180 m 

.00235 .00466 .00546 .00478 „ 2 
m 

IB 138.00 182.75 134.00 146.80 m 
hx 65.9 44.5 35.7 64.1 m 
hN 75.6 95.0 53.6 81.6 m 
h-N/2 70.0 66.7 43.2 75.5 m 
u>r> 44. 135. 76. 127. kN/m 
wL 16. 28. 9.33 18.66 kN/m 
F 5520. 33800. 14760. 18100. kN 
sin 0N/2 .74 .59 .57 .72 
N 11 20 7 10 

kN/m2 

Concrete Deck 
ALRT AF Q WS EH 

E 28. 28. 28. 28. 28. 1,000,000 kN/m2 

I .297 1.470 1.730 5.866 .636 m4 

A-CN/2 .00350 .00350 .00546 .00627 .00365 m2 

IB 138.00 195.25 134.00 209.70 185.3 m 
32.3 28.5 35.0 45.7 58.0 m 

hN 71.25 89.9 53.0 103.6 83.9 m 
h~N/2 55.7 56.0 43.0 83.1 71.4 m 
WD 96. 196. 112. 270. 87. kN/m 
WL 16. 28. 9.33 18.66 9.33 kN/m 
F 15960. 59800. 23450. 71670. 20400. kN 
sin 0N/2 .64 .54 .54 .62 .62 
N 12 30 12 21 14 

Ec = 

1c = 

195,000,000fcJV/m2 

llkN/mz 
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C.4 Backspan Ratios from Bridge Designs for Backspan Model 

149 

Steel Deck Concrete Deck Value 
ALRT AF Q S ALRT AF Q WS EH used 

N 11 20 7 10 12 30 12 21 14 20 
M B .478 .244 .266 .437 .234 .146 .261 .218 .313 .3 
hN/lB .548 .520 .400 .556 .516 .460 .396 .494 .453 .5 
f 5.47 6.08 8.15 8.50 8.20 9.41 7.05 8.55 6.94 7 
F/FH .077 .13 .082 .085 .17 .27 .09 .15 .18 .1 
WL/WD .36 .21 .12 .15 .17 .14 .083 .069 .11 .2 

.418 .503 .645 .557 .423 .440 .640 .554 .426 .5 
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C.5 B r i d g e D a t a f r o m B r i d g e D e s i g n s fo r F u l l B r i d g e M o d e l 

Steel Deck 
ALRT AF Q S 

E 200. 200. 200. 200. 1,000,000 
Ex 28. 28. 28. 28. 1,000,000 
I .030 .281 .171 .180 m 4 

IT 9.25 49.3 14.0 58.5 m 4 

A c N / , .00235 .00466 .00546 .00478 m 
AcN 

.01466 .04153 .00896 .02652 m 
T.AC .02463 .08292 .03392 .04534 m 
IB 138.00 182.75 134.00 146.80 m 
IM 329. 462. 274. 366. m 
hi 65.9 44.5 35.7 64.1 m 
hN 75.6 95.0 53.6 81.6 m 
hi 116.0 143.5 69.5 135.0 m 
hn/2 70.0 66.7 43.2 75.5 m 
Wp 44. 135. 76. 127. kN/m 
WL 16. 28. 9.33 18.66 kN/m 
F 8630. 46780. 15000. 29050. kN 
sin 0N/2 .74 .59 .57 .72 
tan 0Nc/2 .838 .667 .694 .800 
N 11 20 7 10 
Nc 13 24 7 12 

kN/m2 

kN/m2 
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Concrete Deck 
A L R T A F Q WS E H 

E 28. 28. 28. 28. 28. 1,000,000 kN/m2 

ET 28. 28. — — — 1,000,000 kN/m2 

I .297 1.470 1.730 5.866 .636 m 4 

IT 28.7 202.4 — — — m 4 

A-CH/7 .00350 .00350 .00546 .00627 .00365 m 
Aca .01863 .04456 — — — m 
£ A C .03714 .10572 — — — m 
IB 138.00 195.25 134.00 209.70 185.3 m 
IM 340. 463. — — — m 
fci 32.3 28.5 35.0 45.7 58.0 m 
hx 71.25 89.9 53.0 103.6 83.9 m 
hT 113.0 150.0 — — — m 

55.7 56.0 43.0 83.1 71.4 m 
WD 96. 196. 112. 270. 87. kN/m 

16. 28. 9.33 18.66 9.33 kN/m 
F 22720. 74360. 23900. 87160. 38800. kN 
sin eN/2 .64 .54 .54 .62 .62 
tan BNc/2 .718 .610 .642 .694 .706 
N 12 30 12 21 14 
Nc 

15 35 12 24 16 
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C . 6 B r i d g e R a t i o s f r o m B r i d g e D e s i g n s f o r F u l l B r i d g e M o d e l 

Steel Deck Concrete Deck Value 
ALRT AF Q S ALRT AF Q WS EH used 

N 11 20 7 10 12 30 12 21 14 20 
KllB .478 .244 .266 .437 .234 .146 .261 .218 .313 .3 

.548 .520 .400 .556 .516 .460 .396 .494 .453 .5 

.841 .785 .519 .920 .819 .768 — — — .8 
f 5.47 6.08 8.15 8.50 8.20 9.41 7.05 8.55 6.94 7 
F/FH .12 .18 .083 .136 .24 .34 .09 .18 .34 .1 
wL/wD .36 .21 .12 .15 .17 .14 .083 .069 .11 .2 
ID/IB .418 .503 .645 .557 .423 .440 .640 .554 .426 .5 
IB/IM .419 .396 .489 .401 .406 .400 — — — .4 

Ex IT 1FI 
43.2 24.6 11.5 45.5 96.6 137.7 — — — 50 

Aca/T,AC .595 .501 .264 .585 .502 .422 — — — .5 

Ac. 

AcJEAc 

NC 

i=N 
N-l 
EM 
1=1 

EJIAT Ac{ 

E & 1 ACi 



A p p e n d i x D 

M a x i m u m D e f l e c t i o n a n d M o m e n t 

The maximum deflection and moment is expressed in terms of the span length for 

deflection and wjj} for moment. The actual data from the computer analyses are used. 

(The actual values are not chosen to reflect real bridges—they are dictated by the 

dimensionless ratios.) The following table lays out the data and calculations for the 

maximum deflection and moment for the standard models: 

Simplified 
Backspan Backspan 

Full Bridge Simplified 
Backspan Backspan Backspan Mainspan 

/ 180. 180. 180. 441. 
VJL 32.7 27.2 19.0 19.0 
6* 0.0873 0.114 0.177 0.403 
M* 4039. 6000. 8734. 6759. 
6'/l 1/2062 1/1579 1/1017 1/1094 
M'/WLI2 1/262 1/147 1/70 1/547 
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