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ABSTRACT

The advent of Limit States Design has created the necessity for a
better understanding of how structures behave when loaded beyond first
local yielding and up to collapse. Because the problem of determining
the ultimate load capacity of structures is complicated by geometric and
material mnon-linearity, a closed form solution for anything but the
simplest of structure is not practical. With this as motivation, the
ultimate capacity of fixed arches is examined in this thesis. The
results are presented in the form of dimensionless collapse curves. The
form of these curves is analogous to column capacity curves in that an
ultimate load parameter will be plotted as a function of slenderness.

The ultimate capacity of a structure is often determined by Plastic
Collapse analysis or Elastic Buckling. Plastic Collapse is attained when
sufficient plastic hinges form in a structure to create a mechanism.
This analysis has been proven valid for moment resisting frames subjected
to large amounts of bending and whose second order effects are minimal.
Elastic buckling is defined when a second order structure stiffness
matrix becomes singular or negative definite. Pure elastic buckling
correctly predicts the ultimate load if all components of the structure
remain elastic. This may occur in slender structures loaded to produce
large axial forces and small amounts of bending. Because arches are
subject to a considerable amount of both axial and bending, it is clear
that a reasonable ultimate load analysis must include both plastic hinge
formation and second order effects in order to evaluate all ranges of

arch slenderness.
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A computer program available at the University of British Columbia
accomplishes the task of combining second order analysis with plastic
hinge formation. This ultimate load anéysis program, called "ULA", is
interactive, allowing the user to monitor the behaviour of the structure
as the load level is increased to ultimate. A second order analysis is
continually performed on the structure. Whenever the load level is
sufficient to cause the formation of a plastic hinge, the stiffness
matrix and ioad vector are altered to reflect this hinge formation, and a
new structure is created. Instability occurs when a sufficient loss of
spiffness brought on by the formation of hinges causes the determinant of
the stiffness matrix to become zero or negative.

Two different load cases were considered in this work. These are a
point load and a uniformly distributed load. Both load cases included a
dead load distributed over the entire span of the arch. The load, either
point load or uniform load, at which collapse occurs is a function of
several independent parameters. It is convenient to use the Buckingham =
Theorem to reduce the number of parameters which govern the behaviour of
the system. For both load cases, it was necessary to numerically vary
the location or pattern of the loading to produce a minimum dimensionless
load. Because of the multitude of parameters governing arch action it
was not possible to describe all arches. Instead, the dimensionless
behaviour of a standard arch was examined and the-sensitivity of this
standard to various parameter variations was given.

Being three times redundant, a fixed arch plastic collapse mechanism
requires four hinges. This indeed was the case at low L/r. However, at

intermediate and high values of slenderness, the loss of stiffness due to
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the formation of fewer hinges than required for a plastic mehanism was
sufficient to cause instability. As well, it was determined that pure
elastic buckling rarely, if ever, govetﬁs the design of fixed arches.
Finally, the collapse curves were.applied to three existing arch
bridges; one aluminum arch, one concrete arch, and one steel arch. The

ultimate capacity tended to be between three and five times the service

level live loads.
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CHAPTER 1

INTRODUCTION

1.1 Basic Design Philosophies

The basic philosophy of structural design has seen many changes.
Allowvable stress design has been very common and is still used today in
many applications. 1In allowable stress design, dead and live loads are
applied to a structure such that nowhere in the structure.does any stress
exceed allowable. The allowable stress is normally the yield stress

divided by some factor of safety, i.e.;

STRESSES DUE TO D.L. + L.L. < Oy/N (1.1)

where D.L. = dead load,

L.L. = live load,
oy = yield stress,
N = factor of safety.

Eq. (1.1) implies that both the dead load and live load are subject to
the same factor of safety.

Statistical studies of loads and materials have been used to develop
a contemporary design philosophy. The object of this new design method,
called Limit States Design, is to ensure that the probability of reaching
a given limit state, such as collapse or unserviceability is below an
acceptable value. To accomplish this, the dead and live loads must each
have their own factors of safety, N, and N, simply because the dead load
is better defined than the live load. The basic Limit State Design

philosophy can now be summarized as follows:



2.
N, D.L. + N, L.L. < ¢ R - (1.2)

where N; D.L. + N, L.L. = Effect of applied loads
R = the resistance of a member, connection or structure, and
¢ = the capacity reduction factor accounting for material

variation.

A slight change iIn nomenclature accompanies the new design method such

that N1 and N2 are now referred to as load factors.

1.2 Reserve Capacity

It is common today to use elastic analysis to find the response of
the structure to the factored loads. If R is taken as first yield, there
exists additional capacity beyond that load level. This will be referred
to as reserve capacity.

Unless a structure is exceedingly slender and fails due to elastic
buckling prior to reaching first yield, the reserve capacity is at least
the increase in load required to form the first plastic hinge, and at
most, the increase in load required to obtain a plastic collapse
mechanism. A determinate structure fails after the formation of one
plastic hinge, therefore a more redundant structure would generally

possess a higher reserve capacity.

1.3 Application to Arches

With the preceeding discussion of Limit States Design and reserve
capacity'as motivation, this thesis will examine the ultimate load, or

collapse limit state of fixed arched ribs. This will ultimately lead to



3.
a better understanding of the reserve capacity of fixed arches as well as

the factors on which it depends.

The key to the success of this work is a reliable analysis technique
which must include all prevalent types of behaviour. Conventionally,
plastic analysis is used in determining collapse loads for moment resist-
ing frames and continuous beams. Elastic buckling is used in the evalua-
tion of the ultimate capacity of slender columns. Consldering that an
arch is basically a compression member subject to bending by unsymmet-
rical live loads, the ultimate strength may be governed by plastic
collapse, elastic buckling, or by some iantermediate form of instability
with less plastic hinges than required for a collapse mechanism. The
reserve capacity of an arch is therefore governed by non-linear
behaviour. This non-linearity arises from plastic hinging and P-A second
order effects. A computer analysis combining both these factors is
outlined in Section 1l.2.

In an age of increasing accessibility to computer hardware and
software, a difficult question faces the researcher. 1Is it a
researcher's responsibility to present his results in the form of design
or analytical equations based on curve fitting or similar conventional
techniques? Or, is it the researcher's responsibility to present the
result of hours of computer analysis so as to inform and enlighten the
reader and to give the reader conceptual ideas and guiaelines, assuming
that the reader has the computer facilities to duplicate some part of the
researcher's work and to use the results for his or her own particular

and specialized purpose? The latter approach has been chosen here.
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l.4 Computer Program Theory and Underlying Assumptions

The computer program used in this work is "ULA" (Ultiwmate Load
Analysis)l. It is a plane frame stiffness program which combines second
order analysis with plastic hinge formation. ULA is an interactive
program which allows the user to monitor the structure and to place
plastic hinges when necessary as the load is increased to ultimate.

One of the requirements of limit states design is that the structure

not fail when subjected to each of a number of load vector F0 where

Eo alF1 + a2F2 + a3F3 S

FD +F , (1.3)
Fy is then a linear combination of load cases F; augmented by the
appropriate load factor aj. In analyzing for ultimate load, the
response of the structure at any load level A to the force vector F

must be determined where

F = F_+AF (1.4)

The original load vector Fy is the sum of vectors FD and F. In
performing the analysis to determine ultimate load, only F is augmented
by load vector A. This makes it possible to maintain a constant dead

load factor, for example, and increase only the live load until

collapse.

1.4.1 Elasto-Plastic Analysis

There are two basic methods of elasto-plastic anmalysis. The first
is an energy method whereby the. external energy created by the loading is

equated to the internal energy for different mechanisms and mechanism



combinations. The second method is by load increments whereby the
structure is analyzed as linear elastic until a mémber moment reaches the
plastic moment Mp at which point it remains at Mp with free relative
rotation of adjacent members. The load level is then increased and the
structure is analyzed linearly until another hinge is to form.' This
continues until a collapse mechanism is obtained. The second method is
preferred because it lends itself to computer simulation and it makes the
inclusion of second order effects practical.

Fig. 1 shows a typicai hinge formation sequence with increasing A
for a single bay frame. It is important to note that each of the
structures No. 0 through 4 are different and each is valid only for a
specific range of A. Each structure has a different stiffness matrix K
and each will be analyzed under the loads shown.

To actually place a hinge in the structure at the appropriate load
level, an additional slave joint is created at the hinge location which
has the same translation as the master joint, but different rotation.

The load vector F 1is then augmented by tMp between each master and slave

pair, so the new load vector is now F = F

+ XE + F_, where F_ contains
D P p

only iMp. This hinge placement is depicted in Fig. 2. Full details are
given in reference 1.

The linear elasto-plastic response of the single bay frame of Fig. 1
forms the polygonal shape in Fig. 3 indicating the loss of stiffness in
the structure as each hinge forms. In the method described above for
hinge placement, a hinge can be placed at any load level. Because each
of the structures of Fig. 1 is unique, the response at 1oad level AB’ for
example, can be obtained by a first order analysis of structure #2 from
zero load level to AB along a secant OB, and not along the facets of the

polygon.
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1.4.2 Second Order Analysis

Second order analysis requires the structure to be elastic and to be
in equilibrium in the deformed shape. The latter is achieved by using
stability fun;tions in the membervmatrix. Details of these stability
functions will not be discussed here as they are standard and presented
by many other authors including Gere and Weaver?. The stability func-

tions depend on the axial forces, and the axial forces depend on the
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deflected shape. It is therefore necessary to iterate towards a solution
several times at each load level. This is nicely handled by the inter-
active format of the program because the analyst_can view the determinant
of the structure stiffness matrix and use that as a criteria for converg-
- ence.

Normally, only a small number of cycles, perhaps two, is required
for convergence as the axial force changes only slightly with the inclu-
sion of the second order effects. Of course a few more cycles are
required when more hinges are placed due to the increased flexibility and
load level.

The two previously mentioned ultimate load theories, plastic
collapse and elastic instability, would each give a collapse load.
However, unless a particular structure is either espetially stubby to
collapse plastically, or slender to buckle elastically, then the actual
ultimate load behaviour is somewhere between these two extremes, and the
value of the ultimate load is lower than that obtained by plastic or
second order analysis. It is apparent that in order to establish the
maximum load capacity, and hence an idea of the probability of reaching
the ultimate limit state, & combination of the two theories is needed for

many practical structures.

1.4.3 Second Order Elasto-Plastic Analysis

An incremental approach is a common method for combining second
order and elasto-plastic analysis. The incremental forces and deflec-
tions due to a small increment, dA, in load level, A, are obtained using
a tangent stiffness matrix. At each load level, the ratio of moment to

plastic moment, M/Mp, is checked to determine the necessity of placing a
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plastic hinge. The total response is then the sum of all the incremental
responses. However, errors arise because the tangent stiffness matrix is
approximate, hinges may not be placed #t M/Mp = 1, and round off occurs
due to a multitude of steps. These cumulative errors can be minimized by
using a small dA. This, however, becomes more expensive and does not
assure convergence. This incremental approach is not adopted for this
work. A simpler ultimate load analysis system is used which should
require less computing time and certainly avoids any cumulative errors.

The system adopted is a simple combination of second order analysis,
and hinge placement. A second order elasto-plastic response curve shown
in Fig. 4 is similar to the first order elasto—plastic response curve

shown in Fig. 3; the difference being the presence of arc segments

Linear onalysis

m

Structure O .
= F= )\F LMECh(JnlS
x|'“°‘-.__x4-m- ° - the -
A3’ T%hinge hinge
w
‘n
>
o
o o
St .
ha © /
Sk \7/
oo
crtu
Swn
ey
w 7/

N

>

S\s

) -1 \§

0

Structure No. | O | | | 2 !‘—3—4 4

Fig. 4. Second Order Elasto-Plastic Response.
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between hinge formations instead of linear facets. To determine the
response at a certain load level, first order (linear) analysis is simply
replaced by second order analysis, for each of the four structures.

To determine the response of the structure at load level Ag, for
example, it is not necesasry to methodically increment the load level and
follow the arced segments from O to B. As long as the location of the
hinge is known, in this case at the base of the frame, then all that is
required is a second order analysis with the structure #2 loaded with
ABFO and the plastic moments shown. The total response from zero load
level to Ag is along secant OB. Unlike the incremental approach, any
errors due to placing a hinge when M/Mp # 1 is a local error and not
cumulative, so that the response at higher load levels will not be

affected.

l.4.4 Moment Axial Interaction

Consideration must now be given to the reduction of the plastic
moment due to the presence of an axial load P in the member. To do this,
the analyst must first decide on an appropriate yield surface for the
cross—section being analyzed. The yield surface can be defined by a
series of straight lines, and is described to the program by the inter-
sections of the facets. By including only symmetrical sections, and
hence the absolute value of the bending moment, only the top half of a
yield surface need be considered.

The yield surface used throughout this work is shown in Fig. 5. It
is a slight variation on CAN3-S16.1-M84. A plaséic hinge forms when
moménts and axials becomes large enough to reach the yield surface. A
parameter ¢i is defined for each facet i such that when the maximum ¢i =
1, the yield surface has been reached and a hinge should be placed. The

quantity ¢; is defined as follows:

¢; = m/by + p/ay
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Fig. 5. Yield Surface

where m = |M|/Mp, p = P/Pp = P/Aoy, and a, and bi are the intercepts of

i
each facet with the p and m axis respectively.

Now the convenience of an interactive format becomes apparent. At
each load level, once the second order convergence is obtained, a plot of
the structure appears on the screen with a‘lisc of the five maximum $5
values, where ¢j is the maximum of all ¢; for member end j. At a
glance, the analyst can tell how close the structure is to forming a
plastic hinge, and where this hinge will form. To facilitate the
analyst's cho}ce of load level, the program estimates the load level at
which the next hinge should form. This is accomplished by extrapolating
linearly from two known points inside the yield surface to the yield

surface itself. The basic assumptions here are that line 1-2-H in Fig. 5

is straight and that p is linear with A.
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1.4.5 Moment Curvature

A perfect elasto-plas;ic behaviour is assumed for the analysis of
fixed arches. Fig. 6 shows an 1dealizéa moment curvature relationship.
A loss of bending stiffness in any section occurs from the first yield
moment, My, to the plastic moment, Mp, as the cross—-section becomes fully
plastic. This, as well as the effect of residual stresses are neglected

in this work. Chapter 2 will examine the consequences of these

assumptions.
MOMENT
Assumed Elosto- Plastic behaviour, Curve A
MP B -

My /2 ‘ﬁ\\\
’ Mom .- Curv. including
stiffness loss and residual stresses,Curve B

Mom. - Curv. neglecting residual stresses

—
CURVATURE

Fig. 6. 1Idealized Elasto-Plastic Behaviour.

The effect of neglecting stiffness loss and residual stresses is examined

in Chapter 2.

1.4.6 Criteria for Reaching Ultimate Load

Ultimate load is defined here as the load level at which the second
order elasto-plastic stiffness matrix K assembled in the ULA program
becomes singular. This is accomplished by monitoring the determinant of
K. A zero determinate implies a singular and unsolvable matrix. A nega-

tive definite stiffness matrix occurs when the determinant is negative,
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and although an equilibrium solution is then possible, it corresponds to
unstable equilibrium and will not be permitted.

Fig. 7 shows a beam;column bent iﬁ double curvature due to equal and
opposite end eccentricities. The load-deflection curve shows diagram-
matically the collapse criteria discussed above. The Choleski method
used for the solution of the stiffness equations is only coded for real
numbers. Because of this, the routine stops when IKI = 0 and signals an

unstable structure.

P -
PA pND MODE
) LO'
N "
e
\ 5 <
J IST MODE
/
/
y o
/
! @ BIFURCATION,
[ ” -DET[K]=0
\ éy [ ]
\J >
¢ | S

P

Fig. 7. Failure Criteria Applied to a Beam-Column in Double Curvature.

1.4.7 1Interactive Graphic Display

Interactive graphic display helpé the user in making necessary
decisions such as the number of P-delta convergence cycles, hinge place-
ment, and selection of the next load level. O0f course, the standard
displays such as member bending moments, axials, sﬂears, and deflected
shape7are available on command at any given load level. Other displays
are aQailable which give the analyst enlightened appreciation of how the

structure is behaving. The first of these is a display of the yield
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surface, as shown in Fig. 5. Superimposed on the yield surface is a
trace of the m and p coordinates for each member end from load level to
load level. This gives the analyst a qﬁick and easy way of determining
whether groups of members are behaving as bending members, compression or
tension members, or some combination. The final feature 1s a display of
the reserve capacity of each member. A self-explanatory example of this

display is shown in Fig. 8.

Reserve
Capacity

-
'
/"

A =0.80 1.O

Fig. 8. Member Reserve Capacity.

The analyst can now determine at a glance how much of each cross-section
is being used up by axial forces, or bending moments. It is also
‘apparent where the next hinges should form, as the reserve capacities of
the locations are approaching zero. Other features such as strain
hardening and hinge closure are also available. The program ULA, with
its interactive graphic format, gives the énalyst a complete and quickly

understood appreciation of how a particular structure is behaving with



15.

increasing load level, and where it may need redesign or where material
is not being used efficiently. It is this program that will be used to

investigate the non-linear and ultimate behaviour of fixed arches.
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CHAPTER 2

AN ECCENTRICALLY LOADED COLUMN

2.1 Governing Parameters

An arch and a column posess many similarities. They are both
compression members subject to bending. A column bends when loaded
eccentrically, and an arch bends when loaded unsymmetrically. Rather
than start with the discussion of arches, the similar, more faﬁiliar, and
simpler problem of eccentrically loaded columns will be considered. It
is the intention of this chapter to develop an analytical solution for an
eccentrically loaded column based on the same assumptions to be used for
the ultimate load of arches as outlined in Section 1l.4. This analytical
solution will then be compared to an existing more exact solution and
experimental results. An indication of error due to the original
agsumptions will be shown. Fig. 9 shows the eccentrically loaded column

chosen for comparison.

Fig. 9. An Eccentrically Loaded Column.
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As outlined in Chapter 1, elasto—plastic material behaviour will be

assumed neglecting strain hardening and residual stresses. The elasto-
plastic assumption essentiaily means that moment curvature remain linear
up to Mp. Neglecting the loss of stiffness between My and Mp produces a
stiffer structure and a non-conservative result.

" The ultimate column capacity Pu is a function of the following six

parameters;

P = f {e, L, EI, AE, Pos Mp} (2.1)

where EI linear elastic bending stiffness
. AE = linear elastic axial stiffness
P = Ao
y
= maximum possible axial load with no moment present
and

M =20
y

= maximum possible bending moment with no axial present.

With several independent parameters, it is convenient to use the
Buckingham II Theorem to reduce the number of parameters which govern the
behaviour of the system. With seven parameters in Eq. (2.1) dependent on
the two dimensions of force and length, only five dimensionless ratios

are needed to describe the system as follows:

M
5 , —L—} (2.2)
p’*p VEI/AE p va’EI7AE

(14
=
"Ulg
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The awkward parameters of Eq. (2.2) are chosen because they simplify into

the more familiar ratios shown below;

Pu/Pp = f{ely, L/, E/Oy, y/r} (2.3)

where  E = Young's modulus,
A = cross-section (area)
I = moment of inertia
"r = YI/A = YEI/AE = radius of gyration,
'y = the distance from the centre of gravity of the symmetrical
section to the centre of gravity of either the upper or
lower half,

and oy = yield stress,
so that

AE/P_ = AE/Ac_ = E/oc_,

y y
L _L
’
YEI/aE *
e
i = ely
P
and
M
—P - y/r
P YEI/AE
P

The maximum moment of the eccentrically loaded column of Fig. 9

occurs at the midspan. According to Timoshenko3,
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Mmax = P(e + A) = Pe sec(kL/2) (2.4)

where

k2 = P/EI

The column is determinate and will therefore fail once the hinge forms at
the midspan. The plastic moment must be reduced in the presence of an
axial load according to the yield surface of Fig. 5. To develop an
analytical solution for the column capacity, we need an interaction
equation. Facet 1 of Fig. 5 will be used as it is valid for ‘M/Mp] <

0.95. Egq. (2.5) describes this interaction;
0.85 M/M + P/P =1 (2.5)
)% P
her M =0 Ay =P
where D y y py

and P =0A

P y
Therefore:
M = Pe sec Kl _ 1.18 M (1 - P/P)
max 2 P P
or
k&
1 - P/Pp) = 0.85 (P/Pp) (e/y) sec 7 (2.6)
ke T L /P Ty &
where 7" jEI 2 = JAE 13 P E It

Eq. (2.6) becomes
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P /P = 2.7
u/ P - ( )
JE Y &
1+ 0.85 e/x sec( Pp T

Eq. (2.7) is an analytical expression for column capacity under eccentric
loading based on the same assumptions that will be used to analyse the

ultimate capacity of arches.

2.2 Comparison of Analytical Equation with Correct Analysis and
Experimental Results for a Particular Cross~Section

Galambos and Ketter" present dimensionless curves for the ultimate
strength of a typical I-beam under axial load with equal end
eccentricities causing bending in the strong direction. The fundamental
difference between the derivation of Eq. 2.7 and the Galambos and Ketter
approach is the assumed moment versus curvature relation. Galambos and
Ketter use a correct relation like curve B of Fig. 6. 1In this thesis,
the moment curvature relation is simplified by idealizing elasto-plastic
behaviour, similar to curve A of Fig. 6.

The method used by Galambos and Keffer is based on numerically
integrating values on a specific M-¢ curve and iterating towards a
correct deflected shape. 1Instability arises when the iterations do not
converge. Because this method relies on a known moment-axial-curvature
relation, which is unique for every different cross~section, a closed
form solution is not available.

It is now possible to compare the results of Eq. 2.7 with Galambos
and Ketter for a specific I-beam, namely a 315.7. The required
moment—axial-curvature relation for this beam is shown in Fig. 10, based

on an assumed residual stress pattern shown in Fig. 11. Of course, the
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reduction of Mp due to the presence of axial in the derivation of Eq. 2.7
is handled by incorporating the yield surface of Fig. 5.

Fig. 12 is a dimensionless plot of an ultimate load parameter Po/Py
versus slenderness L/r against an eccentricity parameter ec/r2. The
quantity c is measured from Fhe centroid of the symmetric cross section
to the outer fibre. The results according to the assumptions of this
thesis, labelled "ULA" are clearly non-conservative compared to the more
analytically correct results of Galambos and Ketter. The discrepancy is
indicated by a shaded region and is as much as ten percent. Experimental
results have also been included in the plot of Fig. 12 and appear to be
bounded by the two analytical solutious.

It was necessary to make a slight modification to Eq. 2.7 in order
to plot the ULA curve. The dimensionless parameter chosen by Galambos
and Ketter to reflect eccentricity was ec/r2. This differs from the
ratio e/y used in Eq. 2.7 and it is a simple matter of arithmetic to
transform from one to thé other once the cross—section properties are
known. In this case, ec/r? = cy/r? (e/y) = 0.85 e/y. Also, Efoy =

30,000/33 = 909. Therefore, Eq. 2.7 becomes:

o 4 1 (2.8)

P y 1+ 0.73 ec/r? sec (¢P7Pp L/60.3)

It is Eq. 2.8 that is actually plotted on Fig. 12 and labelled "ULA".
An eccentrically loaded column 1s a determinate structure which

fails after the formation of one plastic hinge. The purpose of the

comparison presented in Fig. 12 was to extrapolate the results and make

some judgement on the effect of idealizing behaviour as elasto-plastic on
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Fig. 10. Moment-Axial-Curvature Relation.

Fig. 11. Cooling Residual Stress Pattern Assumed by Galambos & Ketter.
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Fig. 12. Effect of Elasto-Plastic Assumption on Column Capacity.

the ultimate strength of fixed arches. A fixed arch is three times
redundant. Most plastic hinges formed prior to collapse would already be
in the plastic region where the moment-curvature behaviour (Fig. 10)
levels out to:constant Mp reduced only by the presence of axial forces.
Any errors during the formation of plastic hinges prior to the last hinge
are local errors, not cumulative, and do not effect the final result.
Any non-conservatism should only occur in the last hinge formed. This 1is

demonstrated qualitatively in Fig. 14. It is therefore proposed that the
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Fig. 14. Effect of Elasto-Plastic Assumption on a Typical
Load-Response Curve.

effect of idealizing behaviour as elastic-plastic is not as significant
in the case of fixed arched ribs as it is in the case of a beam~column
and would therefore be appreciably less than ten percent. It is worth
pointing out at this time that the beneficial effect of strain hardening
is not considered here, and might serve to further eliminate any small
non-conservatism.

The basic case of an eccentrically loaded column will now be

expanded to the study of the ultimate strength of fixed arches.
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CHAPTER 3

PRESENTATION AND DISCUSSION OF STANDARD ARCH BEHAVIOUR CURVES

3.1 Nonlinear Arch Behaviour

It is the object of this chapter to present the nonlinear behaviour
of fixed arches. Because of the multitude of parameters governing arch
action 1t will not be poésible to describe all arches. 1Instead, the
dimensionless behaviour of a standard arch will be given. 1In Chapter 5
the sensitivity of this standard to various parameter variations will be

investigated.

3.1.1 Computer Model

Since ULA considers only straight members between nodes, the rib
will be a polygon. This polygon was chosen to be twenty segments
connecting twenty-one nodes because experience has shown that the
difference between this and a continuous curve would be less than 1%. If
the real arch really has twenty straight segments then of course the
error in this model is zero. 1If, on the other hand, the real arch has
say, four segments, then the error may be too large for practical
applications.

Most arches are designed so that the dead load produces no moment
except, perhaps, from rib shortening. The shape is then the moment
diagram for dead load; a shape somewhere between a parabola and a
catinary. The 21 nodes were placed on a parabola for this study
together with 19 equal point loads so as to produce no moment under dead
load except for rib shortening. Rib shortening is automatically included

in a stiffness analysis and no attempt was made to factor it out. Arches
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constructed so that dead load moment due to ribd shortening is minimized
will then have smaller moments than calculated with this model. In
summary then, the model consisted of a twenty sided polygon with the

nodes lying on a parabola.

R
x >
| 3 LOAD |
} v L l l wd
x -
] I 1w LOAD 2
4 ! Jl 1 J 1 ) 1 <L 1 wd
A
f
.
JOINT | JOlINT 21
L 1

Fig. 16. Arch Loading.

Two load cases were considered to act on the model as shown in Fig.

a point load Pi located x

plus a live w, on

16. Load one consists of the dead load plus LA

from the left end. Load two consists of a dead load wd

a loaded length of x-x,. The distributed loads vy and w4 were modelled

as point loads at the polygon nodes in order to eliminate local bending
on the straight segments.
The live load w, or P1 was gradually increased in ULA with vy held

constant. The subscript i is used to denote the load at which specific

events occured as follows:
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w or P Load at which yield stress first occurred at some point on the
rid

w; or Py Load at which first hinge formed

w, or P, Load ;t which second hinge formed

wy or Py Load at which third hinge formed

w, or P, Load at which fourth hinge formed

w or P is the ultimate load which may be any of the above loads as

will be explained later.

Since the arch is three times redundant, up to four hinge will form
before failure occurs. For very slender arches, the system may buckle as
soon as the first hinge forms so ﬁhat w, or P, is the ultimate load. For
stocky arches, all four hinges will form before failure occurs as a
mechanism so that w, and P, is the ultimate.

Each of w, and P, was minimized by varying x (and xi). In general

i i

it was found that X; was zero and x for minimum load varied with i.

3.1.2 Governing Parameters

The load v, or Pi is a function of nine parameters as follows:

v, (or Pi) = f[L, £, x, LT EI, AE, Pp, Mp’ My]

where L = span
f = rise
wd = dead load

EI = bending stiffness

AE = axial stiffness
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P = Aoy = plastic axial load with no moment action

P
Mp = Ayoy = zoy = plastic moment with no axial load action
My = Soy = moment at which yield occurs with no axial

Since these ten parameters link only the two dimensions of force and
length, the Buckingham II theorem shows that only eight dimensionless
parameters govern the system. The following eight are chosen for

convenience:

z E d
> o ] (3.1)

The parameter Z/S will only effect the first yield condition and not

hinge formation. The parameter w

dL2/8prvis chosen to represent,

approximately, the fraction of axial capacity Pp used up by dead load

thrust.

3.1.3 The Standard Arch

It is clearly impractical to evaluate numerically the dimensionless
load of Eq. (3.1) as a function of seven independent parameters. It is
practical though to define a standard, or average, or practical arch by
assigning specific values to these seven parameters and then to run a
sensitivity analysis to show their relative importance. Such a system
will give the specific behaviour in a practical region and an indication
of what might happen some distance from that region. 1In general though
it will be necessary to run a full analysis for cases remote from this

standard arch.
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With the above in mind, four parameters were given specific values

to define the standard arch as follows:

E/Oy = 30,000 ksi / 40 ksi = 210,000 MPa / 280 MPa = 750
£f/L = 0.15
y/r = 0.95
zZ/s = 1.15

An E/oy of 750 ie definitely applicable to steel and close to concrete.
Behaviour of other materials will come from the sensitivity analysis. An
f/L of 0.15 has been used for many bridges but higher structures will be
covered in the sensitivity analysis. A solid rectangular section has y/r
= 0.866 while two flanges with no web has y/r = 1.00. The chosen y/r =
0.95 is then a reasonable value. The shape factor Z/S varies from 1.5
for a solid rectangle to 1.00 for two flanges with no web. The chosen
value of 1.15 is then closer to a steel box or wide flange.

With x/L chosen so as to minimize the dimensionless load this

leaves
2 2
wiL Cor PiL) ) f[E. de ]
M M r’> 8fP
P P

for the standard arch. A study of existing arches shows that
a = wLZ2/8fP
d P

ranges from near zero to approximately 0.2. It was decided to produce

curves of

2
wiL PiL ~ L - o o 0.2
M (or n ) = fC;) for a , 0.1, O.

P
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to give the behaviour of the standard arch.

Numerous runs on the Amdahl V8 of the UBC computing centre then
definéd the functions of Eq. (3.1) which are shown plotted in Figs. 17
through 24.

It should be noted that the parameter L/r involves the span length
and not the classic "effective” length kL. For a fixed arch, the

effective slenderness is given by kL/r = 0.37 L/r.

3.1.4 Loading for Minimum Strength

Influence lines have been invaluable in the linear analysis of
arches to determine the loading for maximum moment, thrust, stress, etc.
They are of little use though with honlinear behaviour because
superposition is not applicable. For the case at hand it is necessary to
numerically vary x1/L and x/L to produce a minimum dimensionless load.

This method was necessary for all w, and Pi since x/L and xI/L depend

i

upon i.

3.1.5 Point Loading for Minimum Strength

To minimize PiL/Mp it is only necessary to vary the one parameter
x/L. Fig. 25 shows a typical variation of PiL/Mpas a function of x/L for
the standard arch with a given value of L/r. It is apparent from this
behaviour that a single minimum exists for the ultimate load and all
hinges formed after the first hinge. However, two local minima exist for
the first yield and first hinge Curves; These two minima arise because

the first hinge may form at two different locations on the arch, each

location corresponding to a different value of x/L. However, once the
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first hinge forms, there exists only one possible remaining location for
each of the subsequent hinges, therefore, their behaviour yields a single
minimum.

The first hinge forms either at the left haunch or at the location
of the point load. 1If the first hinge forms at the left haunch, then the
second hinge will always form at the location of the point load. If the
first hinge forms at the location of the point load, then the second
hinge will form at the left haunch. The third hinge forms at the right

haunch and the fourth hinge forws at, or near the right quarter point.
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This assumes of course that stability permits the formation of all the
hinges. It was necessary to examine both local minima on the first yield
and first hinge curves because either one may govern depending on the

slenderness.

3.1.6 Unbalanced Uniform Loading for Minimum Strength

Two dimensionless parameters, x1/L and x/L, are required to describe
the location of the unbalanced uniform load. During preliminary
analysis, it quickly became evident that the value of xllL required to
load for minimum strength was zero. This means that a uniformly
distributed load starting at the left haunch and extending part way along
the span will minimize wiLZ/Mp. This loading was used for all w, 8o that
only x/L needed variation to produce a minimum.

The behaviour of the load parameter wiLz/Mp as a function of x/L is
similar to that of the point load of Fig. 25. Two local minima exist for
the first yield and firsﬁ hinge conditions, and one unique minimum exists
for each of the subsequent hinges. As before, once the first hinge
forms, the location of each of the subsequent hinges is uniquely
defined.

The first hinge forms at one of the haunches, depending on L/r. The
second hinge will then always form at the opposite haunch. The third
hinge forms near the right quarter point, and the fourth hinge forms near
the left quarter point, assuming instability has not already occurred
prior to the formation of any of these hinges.

As previously mentioned, the arch was discretized into twenty

members. This means that the values of x/L for minimum strength for

either the point loaded arch, or the uniformly loaded arch, could be
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incorrect by as much as *2 1/2%. This would result in only negligible

errors in the wminimum load parameters.

3.2 Discussion of Hinge Formation Curves and Collabse Envelopes

The standard arch behaviour curves of Figs. 17 to 24 are the funda-
mental results of this thesis. The curves are bounded by analytical
solutions which will be derived in Chapter 4. 1t is the purpose of this
segment of the work to discuss the collapse envelopes and the hinge
formation curves themselves. The discussion will include a summary of

arch behaviour by regions on the plots.

3.2.1 Collapse Envelopes

The curve which defines the ultimate load as a function of L/r is
actually an envelopé of the hinge formation curves, Figs. 17 to 23.

Once the hinge formation curves are plotted, and the collapse enve-
lope generated, the results can be summarized on a separate graph showing
the collapse envelopes only. Two such plots are required; one for the
point loaded arch, Fig. 23, and one for the uniformly loaded arch, Fig.
24. These graphs of PuL/Mp or wuLZ/Mp versus L/r each show three
collapse envelopes corresponding to a = 0.0, 0.10, and 0.20.

As expected, there are five different types of collapse; elastic
buckling, and one, two, three, or four hinge collapse. The governing
collapse mechanism for the standard arches examined is dependent on the
slenderness L/r, and the dead load ratio a. This gives rise to regions
on the arch collapse curves of Figs. 23 and 24 corresponding to the

different mechanisms of collapse.



42,
3.2.2 Effect of L/r on Type of Collapse

It 18 of no surprise by now that }ess hinges are required for
collapse with increasing slenderness. On any given collapse envelope,
the value of L/r which marks the transition from one type of failure to
another is clearly visible by a cusp in the curve. The cusp is actually
the end of a hinge formation curve. For example, the transition between
three hinge failure and two hinge failure i1s the end of the third hinge
formation curve. For any value of slenderness beyond this point, the
formation of a third hinge is not possible because loss of stiffness
causes instability to occur before the third hinge has a chance to form.

The effect of L/r can be summarized by contrasting the failure modes
at low L/r and high L/r. A four hinge plastic collapse mechanism as
dictated by c}assical plastic theory occurs only at low L/r where second
order effects are minimial. The opposite occurs at high L/r where second
order effects are prevalent and failure is instigated by the loss of
stiffness due to the formation of the first hinge or complete elastic

buckling.

3.2.3 Effect of Dead Load on Type of Collapse

Having discussed the effect of slenderness on the type of collapse,
it remains to discuss how and why the dead load ratio a influences the
mode of collapse. The values of slenderness marking the transition
between two different collapse mechanisms will be termed (L/r)trans'
The ratio a is the only parameter which contains the dead load Wy
Any increase in dead load would incre;se the dead load thrust and hence

increase any second order effects. It is therefore correct to conclude

that the collapse curves corresponding to higher values of a are
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influenced more by second order effect. Therefore, it is not surprising

that Pi and v,

The dead load also effects the value of (L/r)trans marking the loca-

decrease with increasing a.

tion of a cusp. There must exist some values of L/r for which a lower
value of a would permit an additional hinge to form due to a lessening of
the second order effect. A typical segment of two superimposed collapse
envelopes is shown in Fig. 29 to show qualitatively the range of L/r for
which two different types of collapse are prevalent. Because the range
of L/r described by Fig. 29 must exist, (L/r)trans must be lower for

higher values of a.

R,L/M,
or. 3y THIRD HINGE
wy2/M, &y ) FORMS IF @ <0.20
3 Hj G
£
&

- . f -
Fig. 29. Variation o (L/r)trans
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3.2.4 Elastic Buckling and the Limiting Slenderness Ratio

Examining Figs. 23 and 24, it is apparent that the collapse
envelopes cross the horizontal axis whefe the live load is zero. At this
point, the dead load alone is sufficient to cause elastic buckling.
Theoretically, this 1s the maximum possible slenderness for a given dead
load ratio a, and is referred to as the slenderness limit. Figs. 23 and
24 also show that the behaviour of arches just prior to reaching this
slenderness limit 1s different for the point loaded arch than for the
uniformly loaded arch and so each will be discussed separately.

Nowhere on the point load collapse curve, Fig. 23, does elastic
buckling govern the ultimate load except in the limit as P approaches
zero where the dead load alone causes elastic buckling. Under uniform
loading, the region of elastic buckling is very small. In this region
x/L = 1.0, which means the live load was applied over the entire span of
the standard arch. The uniform load w required to cause elastic buckling
was smaller than the half span load required to form the first hinge.
This elastic buckling region is so close to the theoretical slenderness
limit, where the live load to dead load ratio becomes zero that it is
impractical and likely impossible to attain.

In summary, in—-plane elastic buckling of a fixed arch will rarely,

if ever, govern design.

3.2.5 Critical Loading Pattern, x/L Results

Indicated on all the hinge formation curves is the value of x/L
which minimized the dimensionless load. These are shown by the use of
symbols plotted slightly above the actual data points for clarity. The

results for the ultimate load for each loading condition are reasonably
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consistent. 1In general, the non-linear behaviour dictates that loading
55 to 60 percent of the span governs for the ultimate capacity of a
uniformly loaded arch, and placing thevpoint load at x/L = 0.25 or 0.30
governs for a point loaded arch.

There are two distinct values of x/L governing first yield and the
formation of the first hinge. This was expected because, as previously
explained, when either load parameter is plotted as a function of x/L
only, two local minima arise, each corresponding to different first hinge
locations. However, it remains to explain why one local minima governs
for low L/r, and the other for higher L/r.

Under uniform loading, the first hinge (and first yield) curves show
a definite transition from x/L = 0.4, corresponding to a hinge forming at
the left haunch, to x/L = 0.6, corresponding to a hinge forming at the
right haunch. To explain this phenomena, it is necessary to define a
moment due to rib shortening, Mrs’ and a second order amplification
factor ¢. Two separate cases will be examined, a stubby arch with L/r
approaching zero and a very slender arch with high L/r. Fig. 27 shows
the approximate haunch moments in a stubby arch loaded with 40% and then
60%Z of full live load. The maximum haunch moment caused by the
unbalanced uniform live load w alone is given the symbol Mw. The oppo-
site haunch moment is less than Mw and is arbitrarily taken as 0.75 Mw to
emphasize the difference. Simple superposition says that the left haunch
moment with Xx/L = 0.4 and the right haunch moment with x/L = 0.6 are
equal, however this excludes the effect of rib shortening. It is
important to note that Mrs acts to increase the left haunch moment, but
decrease the right haunch moment. This explains why the total moment at

joint 1 with x/L = 0.4 is the largest, thus allowing the first hinge to
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Fig. 27. Stubby Arches, No Second Order Amplification, ¢ = 1.0.

form there at low L/r.

Fig. 28 shows the haunch moments of two slender arches loaded by 40%
and 60% of fu}l live load respectively. The moment due to rib shortening
becomes insignificant at large L/r because the ratio Mrs/Mw varies
inversely with L/r. For large L/r, the second order effect now over-
shadows any effect of rib shortening. The maximum joint 1 moment is ¢,

Mw' The maximum joint 21 moment is ¢2Mw. The second order magnification
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Fig. 28. Haunch Moments in Slender Arches.

60% loaded than for a load over only 40% of the span. Therefore, ¢, is
greater than ¢, and the moment at joint 21 with x/L = 0.6 is the largest.
For slender arches, the first hinge will form at the right haunch, joint
21, with the span 60% loaded.

A similar phenomenon arises when an arch is loaded by a point load.
Lower L/r implies that x/L = 0.15 and the first hinge forms at the left
haunch. At higher L/r, the first hingé forms with x/L = 0.30 at the
location of the point load. Thus, the reason for this is similar to the

explanation given for a uniform loading and will not be repeated.
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In this chapter, the main results of this thesis wére presented in
the form of hinge formation curves and collapse envelopes, Figs. 17
through 22. Conventional analytical solutions for ultimate load are
plotted on these figures as analytical bounds to the results generated.
It remains to derive these bounds and to discuss any discrepancies
between the collapse curves and the analytical solutions. The following

chapter will accomplish this.
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CHAPTER 4

ANALYTICAL BOUNDS

The fixed arch collapse curves were presented and discussed in
Chapter 3. Analytical bounds were also plotted to served as reference.
It is the aim of this chapter to derive these analytical solutions based
on traditional analysis and to compare these to the collapse envelopes.

The analytical solutions serve as bounds at low L/r and high L/r.

At low L/r, the ultimate load approaches that for a four hinge plastic
collapse mechanism. The analytical solution is therefore based on
conventional plastic analysis with no second order effects. At high L/r,
the point loaded arch is bounded by one hinge collapse, and the uniformly

loaded arch by elastic buckling.

4.1 Analytical Bounds for Low L/r

Two solutions will be derived for each of the two loading cases.
The first solution will neglect the effect of any reduction of Mp due to
the presence of axial force, and the second solution will include this
axlial reduction of Mp. In both cases, no second order magnification is

considered.

4,1.1 Low L/r; Neglecting Axial Reduction of Mp

The point loaded arch will be examined first. The point load is
placed at the left quarter point. This is a reasonable assumption and is
confirmed by the results of Chapter 3 which indicated that x/L = 0.25 at
low L/r. Fig. 30 shows three free body diagrams. One diagram of a para-

bolic arch under dead load and a point live load, the second of the left
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Fig. 30. Free Body Diagrams of Point Loaded Arch.
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quarter of the arch, and the third of the right. The locations A, B and

D of three of the four hinges are knowp to be at the haunches and at the
point load. However, the location C of the fourth hinge must be estab-
lished and 1s represented by the unknown variable xc.

The following equilibrium equations apply to the three free body

diagrams of Fig. 30:

F.B.D. #1, IV = 0 gives

VL + VR = Pu + de, (4.1)

F.B.D. #1, ZMA = 0 gives
ZMP + VRF - PuL/4 - (de)(L/Z) = 0, (4.2)

F.B.D. #2, ZMB = 0 gives

3
H(ZE) + ZMP + w (L/4)(L/B) =V, (L/4) (4.3)
and F.B.D. #3, ZMC = 0 gives
¥

ZMP + Vex = Hh + w, 5 (4.4)

A fifth equation can be obtained from the geometry of the parabolic arch

h *e 2 xc
‘f— = -4(1‘—) + 4(‘1‘—) (4'5)
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s P

The solution to this problem involves the six unknowns, H, V_, VR’ X, a

and h and only five equations. The five equations 4.1 to 4.5 relate the

six unknowns. Elimination of H, V_, V# and h gives

P L

u —
T = 8(1 +
P

1
3G Dy ¥ 4(xc/L)‘)

(4.6)

It is important to note that the dead load has no effect on the result
for four hinge plastic collapse 1f axial reduction of Mp and second order
effects of neglected. This arises because in the analytical solution the
dead load only causes axial forces and no bending, and axial forces
contribute only to second order effects and reduction of Mp.

It remains to determine the location of the fourth hinge by minimiz-
ing PuL/Mp in Eq. (4.6) with respect to xc/L. This can be accomplished
by maximizing D where D = 3(xc/L) - Q(XC/L)Z. Differentiating and
setting dD/dx equal to zero gives xc/L = .318 for minimum collapse load.

This minimum collapse load is then

c"d
o

= 22

ol

22.22 (4.7)

L

This means that the ultimate point load parameter is constant if
axial reduction of Mp and second order effects are neglected. Eq. (4.7)
is plotted on Figs. 17, 18 and 19 as a straight line labelled, "Plastic,
No Interaction”. This result is grossly non-conservative because axial
interaction to reduce Mp is prevalent at low L/r, and second order
effects are not negligible, especially at intermediate and high L/r.

A similar analytical solution for low L/r and neglecting reduced

plastic moment must now be derived for the uniformly loaded arch. This
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loading'case is slightly more complicated because only two of the four
hinge locations are known. Fig. 33 is a free body diagram of a parabolic
arch loaded by an unbalanced uniform léad. For the purposes of this
analysis, the dead load is not considered because, as we have just seen,
it is of no consequence 1f axial interaction and second order effects are
neglected.

The method of solution is exactly analogous to the point load case.
Moment and force equilibrium arch yields expressions for VR and VL. As
well, moment equilibrium of a free body diagram from A to B will result

in an expression for horizontal thrust H, just as for the point load

case. These three reactions are as follows:

M
2
v = zx_ﬂ_z_fn

R L
x 2M
VL = wx(l - ir) + —BL

and

(4.8)

I
o
.’
| L I

| i 1

Fig. 33. Four Hinge Plastic Collapse Under Unbalanced U.D.L. Loading.
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Now, moment equilbrium about C of the free body from C to D in Fig.
34 will yield the final equation as ZMp + VRc = H(hc). Substituting for

the known reactions H and VR gives the following:

wx? 2M2 b, x wh? b :
2Mp+ -ZT-— L)cgh_b{“b(l-z—l:)-T+2Mpf-2Mp} (4.9)

in order to simplify, let

L2 £ c_ (&2
hc 4 izc + 4 ic T (L)

TR

T £ b b
-hpbd? +4md (D - (PP

Eq. 4.9 now is a function of the hinge locations b/L and c¢/L as shown

below.

w L2
§ i(C/L + yb/L-y-1) - (4.10)
p a’c_ . ab .y _3,, Yb
213 L2 2L 212
r. -
%
LCC
h Mp
c

n\)&’_"‘
f

e

Fig. 34. F.B.D. of Right Side.
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It now remains to minimize the ultimate load parameter with respect
to hinge locations and loaded length. To accomplish this, a simple
computer program was written which evaiuted wuLZ/Mp for various
combinations of b/L, ¢/L and x/L, to determine the minimum. The results

were as follows;

b/L = 0.30, ¢/L = 0.30, x/L = 0.50

and
w L2
u

M
p

= 93.33 : (4.11)

Eq. 4.9 is the result of a four hinge plastic collapse analysis
neglecting axial interaction and second order effects. It is plotted as
a horizontal line in Figs. 20, 21 and 22 and is evidently grossly
non—-conservative.

It is worth noting that for both loading cases, the ultimate load

ratios are independent of £f/L, E/oy and y/r and a.

4,1.2 Low L/r, Including Axial Interaction

Neglecting axial reduction of MP at low L/r is a serious omission.
This will now be included in the analytical solution to obtain a more
reasonable bound at low L/r.

To make the arch behaviour amendable to a closed form solution, two
assumptions are now made. First, the distribution of axial force over
the entire span of the arch is assumed constant and equal to the thrust
H. This is a fair assumption for arches whose rise to span ratio, f/L,
is not abnormally high. Second, the interaction between axial and

bending is assumed bilinear as shown by the yield surface of Fig. 3.
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This is the same yield surface used for the non-linear analysis in ULA so

the comparisons should be valid.

4.1.2.1 Plastic Collapse, Low L/r, Including Axial Interaction,
in Point Load Case

Now, for the point load case, Eq. (4.7) must be rewritten as
P L/M = 22.22 (4.12)

where M is the reduced plastic moment due to axial P. For the same

reason, Eq. 4.3 is simplified and rewritten as

2
A
if T Bf f

a-1}
in
]

i

PL =
_ u _ 2M
= I7 + a Pp r (4.13)

The yield surface is represented by the following two equations:

E/pp + 0.85 i'a/Mp = 1.0 for ﬁ/Mp < 0.95 (4.14)
and

0.26 E/pp + ﬁ/np = 1.0 for ﬁ/Mp > 0.95 (4.15)

Combining Eqs. 4.12 and 4.13 with 4.14 and then 4.15 gives

PL

u’ (L/r)(1.0-a) for ﬁ/Mp > 0.95 (4.16)
My 0016 W) 4 0385 L/r

(£/L)
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and

Pl (L/1)(1.0-a)

for ﬁ/mp < 0.95 (4.17)

M (y/r) -
P 0.0416 T%757'+ .045(L/r)

Substituting the standard arch values of y/r = 0.95 and £/L = 0.15 into

the above equations gives:

u_oo_ (L/r)(1.0-a) -
Mp 1.013 + .0383 (L/r) for M/Mp < 0.95 (4.18)
and
PL
u_ (L/r)(1.0-a) -
Mp 0.263 + 0.045 (L/r) for M/Mp > 0.95 (4.19)

By equating Eqs. 4.18 and 4.19 it is easily shbwn that Eq. 4.18 governs
for L/r € 111 and Eq. 4.19 governs for L/r > 111. These two equations
are plotted on Figs. 17, 18 and 19 and labelled as "Plastic, Bilinear
Interaction”. As expected this curve is vastly different from the
"Plastic, No Interaction” curve for low L/r. This is because the hinges
do not form at a moment MP, they form at ﬁ, and M << Mp as L/r approaches
zero. The limit of PuL/Mp as L/r approaches zero is zero, however the

limit of PuL/ﬁ as L/r approaches zero is 22.22.

4.,1.2.2 Plastic Collapse, Low L/r, Including Axial Interaction, U.D.L.
' Case

Having derived expressions for four hinge plastic collapse including
axial interaction for a point loaded arch, it remains to repeat this
derivation for an arch loaded by unbalanced U.D.L.

Eq. 4.11 must be rewritten as follows:
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muLz/ﬁ = 93.33 (4.20)

‘Substituting x/L = 0.5, b/L = 0.3, ¢/L = 0.3 into Eq. (4.8) and adding
the dead load thrust, the expression for axial force in the arch

becomes:

8.036x1072 w L M
U _2_ P 44
f/L 3 L(£f/1)

-1
m

o]
[

P, (4.21)

Combining Egs. (4.20) and (4.21) with each of the interaction Egs. (4.14)

and (4.15) gives

w L2 (L/r)(1.0-a) -
- - for /M < 0.95 (4.22)
P (y/1) -3
0.0625 {713 + 9.1071x1073 (L/1)
and
w L2 .
v - (L/r)(1.0-a) for M7MP > 0.95 (4.23)
P 0.01625 $/I) 4 1.0714x1072(L /1)

(f/L)

Substituting the standard values of f/L = 0.15 and y/r = 0.15 results in

the following two equations:

Ol (L/r)(1.0-0) _
— = PR for M/M_ < 0.95 (4.24)
P 0.396 + 9.11x1073(L/r) P
and
w L2 _ _
— = (L/x)(1.0-a) for M/M_ > 0.95 (4.25)
P 0.103 + 1.071x10"2(L/r) P

Equating (4.24) and (4.25) indicates that for L/r < 182 Eq. (4.24) will

govern, and for L/r > 182 Eq. (4.25) will govern. This result is plotted
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on Figs. 20, 21 and 22 and labelled, "Plastic, Bilinear Interaction”.

Unlike the point load case, the arch behéviout at low L/r under
U.D.L. is not entirely governed by fouf hinge collapse. At very low L/r,
the governing failure mechanism could be full cross—section axial yield-
ing under full span live load (x/L = 1.0). An analytical solution for
this behaviour is obtained simply by equating the thrust caused by full

dead and live laod to full axial yield Pp = Aoy as follows:

w L2 w,L2
u

= e L d
P:H-8f+8f

wuL2 ‘
-—Bf—+(!Pp = PP

Substituting Mp/Ppr = 0.95 yields:

w L2
8—¥ﬁ—(.95r) = 1.0 -a
P

Simplifying and substituting f/L = 0.15 results in the following:

w L2

= 1.263(1.0-a)(L/x) (4.26)
P

Eq. (4.26) describes the ultimate full span uniform live load required to
cause axial yielding of a standard arch. Equating Eq. (4.26) with four
hinge plastic collapse Eq. (4.24) shows that full live load axial
yielding only governs for L/r < 43. Eq. (4.26) is plotted on Figs. 20,

21 and 22 and labelled "Axial Yield".
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4.2 Analytical Bounds for High L/r

As the slenderness, L/r, approaches the theoretical slenderness
limit, the arch under unbalanced U.D.L. collapses by elastic buckling,
whereas the point loaded arch buckles after the formation of the first
hinge. Analytical solutions wil now be derived for each of the slender
collapses mentioned. Axial reduction of Mp is not significant at high

L/r and is therefore not included in this analytical derivation.

4.2.1 High L/r, Full Uniform Live Load Elastic Buckling

An expression for the elastic buckling load parameter as a function
of L/r can be derived by equating full live load and dead load thrust to
the Euler buckling load. Again, it is assumed that the axial force in

the arch is constant and equal to the horizontal thrust so that

2 2
et YW r2mI
8f 8f (KL)?2
or
2
a P + wuL - n2EAT?
P 8f (kL)2

where kL 1s the effective length of a fixed arch. Including the identity

y/r = Mp/Ppr and simplifying gives

w L2
u 8f/L (12 E 1

= s - 4.27
Mp y/r (KZ oy L/r  ° L/r) (4.27)

The analytical solution requires a value of the effective length factor
k. This was obtained by examining the result of a standard arch ULA
analysis at L/r = 700 for a = 0.10 where the governing ultimate load
behaviour was elastic buckling under full live load. A value of k =
0.377 was chosen such that Eq. 4.27 would agree with the ULA result.

Substituting standard arch values of f£/L = 0.15, E/oy = 750 and y/r =
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0.95 as well as k = 0.377 gives a final result:

w 1.2 :
5
.%__ = f(’_L;_‘;_()’Q.- 1.26 a (L/r) (4.28)
P

Eq. (4.28) describes the uniform ultimate load parameter for elastic
buckling as a function of the dead load ratio a and slenderness L/r.

This is plotted on Figs. 20, 21 and 22 under the label "Elastic Buckling,
k = 0.377".

4.2.,2 High L/r, Point Load, One Hinge Buckling

An expression for one hinge instability is derived by equating the
plastic moment Mp to the approximate linear first order moment PL/17 with

second order magnification.

PL 1
17 (ﬁ——l " Hcr) Mp ‘ (4.29)

PL/17 was determined by evaluating the maximum moment from linear first

order stiffness analysis.

For large L/r, virtually all the thrust comes from the dead load.

w L2
Therefore, it is assumed that H = gf = a Pp. Now, Eq. (4.29) becomes:
PL 1
Mp 17 ( aP )
l-—L(kL)Z
n2EI
Setting P = Pu and rearranging:
P L o
LS. - e Y Ko
m 17(1 ~F (%)
P T

Substituting k = 0.37 and E/oy = 750 yields the final result:
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PL
7= 17(1 - 1.920x1075 a(L/r)2) (4.30)

P

Eq. (4.30) is an analytical solution for the point load ratio required
for one hinge instability as a function of the dead load ratio a and the
slenderness L/r. It is plotted as "One Hinge Analytical, k = 0.377" on

Figs. 17, 18 and 19.

4.2.3 Analytical Solution for the Theoretical Slenderness Limit

An expression for the theoretical slenderness limit can be obtained

by solving either Eq. (4.27) or Eq. (4.29) for L/r when wuLZ/Mp or PuL/Mp

o
- - o ¥ K2y
are zero. If PuL/Mp 170 - 2 5 () J=0

2
then (L/x)g = ‘I% —:T %—- (4.31)
y

where (L/r)0 is the slenderness limit. Substituting K = 0.377, E/oy =

750 and o = 0.1 then 0.2 indicates that

(L/r)0 720 for a= 0.1

and

510 for a=0.2

]

(L/r)y

4.3 Comparison of Analytical Bounds With Collapse Envelopes

There exists a discrepancy between the analytical bounds derived in
this chapter and the collapse curves generated by non-linear ultimate
load analysis. These arise due to the inadequacies of the conventional

analytical solutions. The graphical explanations for the discrepancies
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are presented by slenderness regions in Figs. 35 and 36. The plots of «
= 0.1 were arbitrarily chosen here, however the explanation holds for all

three dead load ratios examined.
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CHAPTER 5

VARIATION OF STANDARD PARAMETERS

The non—-linear behaviour of standard fixed arches are summarized by
hinge formation curves and collapse envelopes in Chapter 3. To make this
examination of arch behaviour possible it was necessary to define a
standard arch by assuming that E/oy = 750, £f/L = 0.15, Z/s = 1.15 and y/r
= 0.95. These standard values are indicative of a typical steel box
‘girder or wide flange arch. It is the purpose of this chapter to vary
these four standard parameters and examine the effect on the non-linear
performance of fixed arches. This should facilitate the extrapolation of
the results of this thesis to include actual arches whose parémeters will
certainly deviate from the standard values. In the following sections
only one parameter at a time is altered; all others are kept at the

standard value.

5.1 Variation of E/oy

The dimensionless parameter E/oy is a material property and not a
function of arch' geometry or cross-section. It ranges typically from
approximately 375 or 400 for aluminum to about 900 for reinforced
concrete.

Eqs. 4.26 and 4.29 serve as analytical bounds for behaviour at long
L/r for uniform loading and point loading respectively. The second order
reduction terms are [1 - (a/vz)(oy/E(kL/r)] for point loading and

2
[1; %_'f%? - aL/r] for uniform loading. It is apparent from these terms
ke Ty

that second order effects are proportional to E/oy. Thus, a reduction of
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E/oy from the standard value of 750 will increase any second order
effects and therefore decrease the capacity of the arch. This has been
confirmed by computer analysis and is fresented in Fig. 37 through 40 for
E/o_ = 375.
y

Upon examination of these variation of parameter curves for E/oy, it
is obvious that the effect of reducing E/oy becomes less pronounced with
decreasing L/r. This is because any second order effects are propor-
tional to (L/r)2 and therefore die out at low L/r. .Extending this
argument to the limiting case as L/r approaches zero, it is evident that’
E/oy has no effect on the ultimate load parameter. This limiting case is
governed by a four hinge plastic collapse mechanism according to Egs.
4,16 and 4.17 which do not contain the parameter E/oy.

The limiting slenderness limit defined by Eq. 4.37 is proportional
to the square root of E/oy. This supports the reduction of the slender-

ness limit due to the halving of E/cy indicated by Figs. 37 through 40.

5.2 Variation of f/L

The rise to span ratio, f/L, is commonly in the range of 0.10 to
0.30 for bridge arch ribs in steel, concrete or aluminum. The standard
arch has an assumed value of 0.15.

At low L/r, four hinge plastic collapse is described by Eqs. 4.16
and 4.17 for point loading and Eqs. 4.22 and 4.23 for unbalanced uniform
loading. The quantity f/L appears in both these analytical solutions.

It is evident from these equations that increasing only f/L results in an
increase in the ultimate load ratios PuL/Mp or wuLz/Mp. Also, the effect
of varying f/L diminishes with increasing L/r and is almost non-existant

in the intermediate range of L/r. For example, at a relatively low value
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of L/r of 100, the increase in PuL/Mp due to a change in f/L from 0.15 to

0.25 is only 9%. This behaviour is confirmed by ULA computer analysis
for point loading and uniform loading with an £/L value of 0.25. The
results are superimposed on standard arcﬁ behaviour curves in Figs. 41
through 44.

It is interesting to note that at high L/r, an increase in f/L
actually causes a small decrease in the ultimate load parameters. At
first, this may appear as an anomaly when compared with Eq. 4.27
describing the analytical bounds for uniform loading at high L/r because
wuLZ/Mp appears to be lipearly proportional to f/L. However, the value
of K is assumed in the derivation of Eq. 4.27 as a fraction of the span
length L when in fact it 1s more correctly interpreted as a fraction of
the arc length 1. Eq. 4.27 can be rewritten in the form of Eq. 5.1 using

kL as the effective length

w L2 2
; - 8¢E/LH@/r) _m 1:;__ a) (5.1)
p (y/r) (kL/r)2 %y

Realizing that an increase in f/L causes the effective length kL to
increase due to a larger arc length it is evident that increasing f/L at
large slenderness can act to reduce the ultimate load parameter. A
similar argument holds true for the point loading case.

As a final comment before leaving the discussion of variation of
f/L, a practical note is now made. The ratio f/L was changed from 0.15
to 0.25 in the computer analysis by increasing the rise f by that ratio
5/3. For a valid comparison, all other dimensionless ratios must be

d

dead load LA has to be increased by 5/3 to maintain a = 0.1 or 0.2. This

unchanged. This meant that for the dead load ratio a = w L2/8pr, the
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should be in mind when examining the small effect of varying f/L in Figs.

41 to 44.

5.3 Variation of y/r

The ratio y/r is a cross section property ranging from 0.866 for a
s0lid rectangular section to 1.0 for an idealized section with all of its
material concentrated at two flanges.

Again, in Eqs. 4.16 and 4.17 for point loaded plastic collapse and
Eqs. 4.22 and 4.23 for U.D.L. plastic collapse the quantity y/r is
apparent. An increase in y/r will cause a decrease in the ultimate load
-parameters. The sensitivity of the load ratios to any change in y/r is
the same as for f/L, however, the range of y/r is very limited whereas
f/L may vary considerably. As an example, the analytical bound equations
at a value of L/r of 100, varying y/r through its entire feasible range
from 0.866 to 1.0 only changes wuLz/Mp by 4.1 percent, and PuL/Mp by 0.8
percent. ULA computer analysis confirms the insignificance of the
variation of the quantity y/r. It is therefore reasonable to conclude
that the standard arch non-linear behaviour curves are practical for all

values of y/r. No additional plots are needed.

5.4 Variation of Z/S

The ratio of the plastic section modulus to the elastic section
modulus, Z/S is also a ratio of the plastic moment of a cross—-section to
'1ts yleld moment, Mp/My and is often referred to as a shape factor. It
is a cross-sectional property and varies from 1.0 for an idealized
section with all its material at two flanges to 1.50 for a solid

rectangular section. The value assumed for the standard arch is 1.15
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corresponding to the approximate shape factor for box and wide flange
section.

As pointed out in Chapter 3, the shape factor effects only ﬁhe first
yield condition and not hinge formation or ultimate load. In the limit-
ing case of Z/S = 1.0, the first yield and first hinge curves would
coincide. For any other values of the shape factor, the first yield
curve must lie below the first hinge curve. It is therefore simplé to
conclude that increasing Z/S would decrease PeL/Mp or weLZ/MP. This is
easily confirmed by second orde§ elastic computer analysis, the results
of which are superimposed on standard curves for a = 0.10 in Figs. 45 and
46, The shift in the first yield curve in the low and intermediate
ranges are very nearly the ratio of the change in Z/S.

By varying the four standard ratios E/oy, f/L, 2/S and y/r, an
indication of the sensitivity of the load parameters to these ratios was
obtained. It is concluded that the standard arch hinge formation curves
and collapse envelopes are reasonable for any values of y/r and Z/S and
for values of £/L in the range_from 0.10 to 0.30. However, as shown
clearly in Figs. 37 through 40, the standard arch curves are signifi-
cantly sensitive to variation in the material parameter E/oy. This

cannot be overlooked when applying the arch behaviour curves.
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CHAPTER 6

CONCLUSION

6.1 Hinge Locations and Formation Sequence

By considering both second order effects and member plasticity the
behaviour of standard fixed arches loaded to ultimate has been summarized
using hinge formation curves and collapse envelopes. A variation of
parameters which defined the standard arch was carried out to examine the
sensitivity of the response to these parameters.

Throughout this work, it became clear that the collapse mechanism
depends on slenderness and ranges from one hinge instability at high L/r
to a four hinge plastic collapse mechanism at low L/r, with a few
extremely slender uniformly loaded arches buckling elastically. The
location of the plastic hinges and the sequence of formation have yet to
be discussed completely. These results are summarized for the different
collapse mechanisms in Tables 1 and 2 for point loading and uniform load-
ing respectively. Each row in the tables describes a different collapse
mechanism.

The numbers in the body of the table indicate which hinge, if any,
formed at a éertain location on the arch. For example, three hinge
instability under uniform loading occurs with the first hinge forming at
the right haunch, the second hinge forming at the left haunch, and the
third and final hinge forming near the right quarter point. The loading,
defined by x/L is for minimum ultimate strength and is indicated in the

collapse envelopes of Figs. 17 to 22.
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Point Left Near Left Near Right Right
Load Haunch 1/4 Point 1/4 Point Haunch
4 Hinge 2 1 4 3
Collapse

3 Hinge 2 1 3
Collapse
2 Hinge (2)* 1 (2)*
Collapse
1 Hinge 1
Collapse

*Second hinge may form at either haunch, depending on L/r and a.

TABLE II. Hinge Formation Sequence, UDL Loading
UDL Left Near Left Near Right Right
Load Haunch 1/4 Point 1/4 Point Haunch
4 Hinge 1 4 3 2
Collapse
3 Hinge 2 3 1
Collapse
-2 Hinge 2 1
Collapse
1 Hinge 1
Collapse

6.2 Typical Load Deflection Behaviour

It is common to monitor the behaviour or response of a structure due
to increasing load level to compare experimental results with analytical

work. Unfortunately, no experimental results are available, therefore
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different common analytical techniques will be compared on a load-
response basis, in the belief that the second order elasto-plastic
analysié used in this work closely modéls actual behaviour.

Figs. 3 and 4 of Chapter 1 contrast first and second order elasto-
plastic response of a hypothetical single bay frame. Such a comparison
will now be applied to a typical fixed arch. The live load applied is
uniformly distributed over six—~tenths of the span and the dead load is of
course applied to the entire span. The response is the maximum arch
deflection. The arch chosen to evaluate load-deflection is a standard
arch as previously defined with slenderness L/r = 222 and dead load ratio
a = 0.10. These parameters were chosen as they are indicative of slender
arched ribs of highway bridges.

Several load deflection curves are plotted on Fig. 47 for the above
mentioned arch. These generated curves contrast the second order elasto-
plastic "ULA" response with first order elasto plastic behaviour, with
and without moment axial interaction. Because an assumed dead load was
included in the analysis, the load deflection curves do not start at the
origin. The deflection corresponding to wLZ/Mp = 0.0 is the dead load
deflection.

Several observations can be made from these load-response plots, the
most obvious being the significant non—conservatism arising from neglect-
ing second order effects in determining a collapse mechanism. This is
best summarized by noticing that at the load level when the first hinge
would form according to a first order analysis, the arch has actually
either formed, or is very near, a three hinge collapse mechanism.

Any discrepancies between the different load deflection curves woﬁld

be even more pronounced if the dead load parameter a were greater than
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0.10 because that would increase any second order effects. This is

indeed the case for many long span arches with a between 0.10 and 0.20.

6.3 Application of Load and Performance Factors

There has been little discussion thus far on the application of load
factors and performance factors as dictated by Limit States Design. The
collapse curves and hinge formation curves have all been based on a
computer analysis. It must be assumed that all the parameters relating
to the curves, be they loads or material properties, are appropriately
factored. Thus, before entering the curves, all factors must first be
applied when calculating the required dimensionless parameters, then the
live load Pi and vy obtained from the curves are factored loads. This

ensures complete flexibility because any factors may be used. For

where a_ 1is the

example the dead load w ¥DS D

D must be interpreted as a

dead load factor and VoS is the specified load. Similarly, the plastic
moment Mp indicated as part of several dimensionless ratios must actually
be calculated as ¢ch. of courée, it will almost certainly be necessary
to interpolafe between curves with different a ratios to obtain
meaningful values of P1 and wi.

The following section will deal with application of the dimensional

analysis to existing arches where load and performance factors must be

applied.

6.4 Application to Existing Arches

A very common use of the arch as a structural form is for highway
bridge ribs. A span which is too long for a truss, and yet not long

enough to warrant a suspension or cable stayed structure, is commonly
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bridged by two or more arch ribs. If the foundation conditions are

stable enough, a fixed arch can be constructed. Throughout the life of a
bridge, it will likely be required to §upport live loads greater than the
original design loads. Most existing arched bridges were designed
elastically, and likely by means of an allowable stress approach. Thus
properly evaluating an existing bridge, as well as designing a new bridge
by Limit States Design both require a knowledge of behaviour beyond the
criterion of first yield. If a structure has significant reserve capa-
éity beyond first yield and factored loads cause a response in this
region, then the structure may be deemed safe from a strength point of
view.

The typical hinge formation curves and collapse envelopes of Figs.
21 to 27 will now be applied to the fixed arches of three existing
bridges. These bridges are the La Conner Highway Bridge in Washington
State, the Capilano Canyon Highway Bridge in Vancouver, British Columbia,
and the Arvida Bridge in Arvida, Quebec. The arched ribs of these
bridges are made of structural steel, reinforced concrete and aluminum
respectively.

As a reéult of all three arches having long spans, the designs were
governed by lane loading as opposed to truck loading. The arch collapse
curves for unbalanced uniform loading will be used. A point load was
required in addition to the uniform lane loading for the La Conner and
Capilano bridges. The analysis in this work did not include this
additional point load, however both loaded lengths are quite long and any
error due to the omission of the point load should not be serious.

The original design loads are used along with a L;mit States Design

dead load factor of 1.3 and performance factor of ¢ = 0.90 applied to
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reduce Pp and Mp. For each bridge rib the value of wLZ/Mp is plotted on
the appropriate collapse curves. The yalue of w is the unfactored
uniform design load per rib. This includes an impact factor and sidewalk
pedestrian loading. A reduction in gross area due to any rivet or bolt
holes was considered in calculating Mp. When calculating r, full cross-
sectional area was used. The load case examined here does not include
such things as temperature, wind or earthquake and is therefore by no
means a complete analysis, however a very good conceptual idea of the
load factor required to cause first yield and the load factor required to
cause collapse is indicated. 1In the analysis used for this work, a
constant cross-section was assumed. The reality, however, is that a
small variation in cross—-section is commonly used to increase the moment
resistance at the haunch where first yield normally occurs. This results
in a variation in Mp and r. Thus, the key dimensionless ratios wLZ/Mp
and L/r will not have one single value each, but a range of values. The
resulting plots on Figs. 48 and 49 will therefore consist of a service

load level region as opposed to a single point for each bridge examined.

6.4.1 The La Conner Bridge

The La Conner Bridge, also known as the Swinomish Chanel Bridge, is
located at La Conner, Washington. This fixed steel box arch spans 167.6
metres (550 feet). It was designed by H.R. Powell and Associates of

Seattle, Washington in 1955. Data from the design drawings give:

f/L = 0.167

E/o = 600
y

z/s = 1.18

y/r = 0.95
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a = 0.16
wLZ/Mp = 7.37 to 8.89

and

L/r 185 to 191.

The corresponding service load level region is plotted as a square
on Fig. 48. The first yield and collapse curves for both a = 0.10 and
a = 0.20 are shown on Fig. 48 so that an interpolation between the two
curves can be made by the reader. The actual cruves for the La Conner
Arch would plot slightly below the standard arch curves due to the dis-
crepancy between the standard value of E/oy = 750 and the La Conner value

of 600.

6.4.2 The Capilano Canyon Bridge

The Capilano Canyon Bridge is part of the Trans-Canada Highway. It
includes two‘reinforced concrete arch ribs which span 103.4 m (339.4 ft.)
across the Capilano Canyon supporting a four lane concrete deck. The
bridge was designed by Choukalos Woodburn Hooley and McKenzie Ltd. for
the B.C. Department of Highways in 1956. Although this research was
originally geared towards metal arches, reasonable estimates can be made
of the important parmeters describing the arch such as slenderness and a
plastic moment. As 1s common to all concrete arches, the Capilano arch
is symmetrically reinforced resulting in as much compression steel as
tension steel for bending. This implies significant ductility and
capability of hinge formation. A much more noticeable variation in
cross~-section is apparent in a reinforced concrete arch than a metal

arch, thus the service load region plots larger.
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Data from the design drawings give:

f/L = 0.168

E/o = 900
/ y

a = 0,14

L/t = 115 to 181
and wLZ/Mp = 14.6 to 20.2 .

The design load region for the Capilano Canyon bridge 1s plotted on Fig.
48, The curves shown in Fig. 48 are conservative when applied to the
concrete Capilano arch because they correspond to E/oy = 750, when in

fact E/oy = 900 for concrete.

6.4.3 The Arvida Bridge

The first aluminum highway bridge on the American continent was
built in Arvida, Quebec, in 1950. This, the Arvida Bridge, has a main
span which is a fixed arch 88.4 meter (290 ft.) center to center of
skewbacks, spanning the Saguenay River. The following dimensionless
parameters were calculated from information in an article by C.J.
Pimenoff:®

f/L = 0.16
z/s = 1.12

E/o = 210
y

L/r = 151 to 156
a = 0.11
y/r = 0.93

and sz/Mp 8.40 to 9.84 .
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The available hinge formation curves for E/o& = 375 and 0.10 are applied
to the Arvida arches in Fig. 49. Again, the value of E/cy is incorrect,
however the resulting noﬁ-conservatism.is not serious at the low L/r

corresponding to the Arvida arch.

6.4.4 Further Research

It would be interesting to compare the theoretical solutions
presented herein with aniexpetimental study on model arches.

As well, the results herein are centered around a moment axial
interaction curve for a material such as steel. Some investigation
should be made using the somewhat unique interaction curve for reinforced
concrete.

Finally, the current results could possibly be simplified into a

design system more realistic than that used today.
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