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ABSTRACT 

The Kalman F i l t e r has been applied to many f i e l d s of 

hydrology, p a r t i c u l a r l y in the area of flood forecasting. 

This recursive estimation technique i s based on a 

state-space approach which combines model description of a 

process with data information, and accounts for 

uncertainties in a hydrologic system. This thesis deals with 

applications of the Kalman F i l t e r to ARMAX models in the 

context of streamflow prediction. Implementation of the 

Kalman F i l t e r requires s p e c i f i c a t i o n of the noise 

covariances (Q, R) and i n i t i a l conditions of the state 

vector (x 0, P 0 ) . D i f f i c u l t i e s arise in streamflow 

applications because these quantities are often not known. 

Forecasting performance of the Kalman F i l t e r i s 

examined using synthetic flow data, generated with chosen 

values for the i n i t i a l state vector and the noise 

covariances. An ARMAX model is cast into state-space form 

with the c o e f f i c i e n t s as the state vector. S e n s i t i v i t y of 

the flow forecasts to s p e c i f i c a t i o n of x 0, P 0, Q, R, (which 

may be d i f f e r e n t from the generation values) i s examined. 

The f i l t e r ' s forecasting performance i s mainly affected by 

the combined s p e c i f i c a t i o n of Q and R. When both noise 

covariances are unknown, they should be s p e c i f i e d r e l a t i v e l y 

large in order to achieve a reasonable forecasting 

performance. S p e c i f i f y i n g Q too small and R too large should 

be avoided as i t results in poor flow forecasts. 

i i 



The f i l t e r ' s performance i s also examined using actual 

flow data from a large r i v e r , whose behavior changes slowly 

with time. Three simple ARMAX models are used for t h i s 

investigation. Although there are di f f e r e n t ways of writing 

the ARMAX model in state-space form, i t is found that the 

best forecasting scheme i s to model the ARMAX c o e f f i c i e n t s 

as the state vector. Under t h i s formulation, the Kalman 

F i l t e r i s used to give recursive estimates of the 

c o e f f i c i e n t s . Hence flow predictions can be revised at each 

time step with the la t e s t state estimate. This formulation 

also has the feature that i n i t i a l values of the ARMAX 

co e f f i c i e n t s need not be known accurately. 

The noise variances of each of the three models are 

estimated by the method of maximum l i k e l i h o o d , whereby the 

li k e l i h o o d function i s evaluated in terms of the 

innovations. Analyses of flow data for the stations 

considered in this thesis, indicate that the variance of the 

measurement error i s proportional to the square of the flow. 

In practice, flow predictions several time steps in 

advance are often required. For autoregressive processes, 

t h i s involves unknown elements in the system matrix H of the 

Kalman model. The Kalman algorithm underestimates the 

variance of the forecast error i f H and x are both unknown. 

For the AR(1) model, a general expression for the mean 

square error of the forecast i s developed. It i s shown that 

the formula reduces to the Kalman equation for the case 

where the system matrix i s known. The importance of t h i s 



formula i s realized in forecasting situations where 

management decisions depend on the r e l i a b i l i t y of flow 

predict i o n s , reflected by their mean square errors. 
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1. INTRODUCTION 

Flow forecasting is an important aspect in the operation and 

control of water resource systems. S t a t i s t i c a l models are 

used extensively in the stochastic modelling of riverflows. 

Adaptive forecasting occurs when predictions can be updated 

at each time step in response to incoming observations. The 

Kalman F i l t e r i s an example of an adaptive forecasting 

scheme. This estimation method i s based on a linear 

state-space model. Because time series or regression models 

are amenable to state-space formulation, they are preferred 

over conceptual models such as SWMM, HEC I, and HEC II in 

adaptive hydrologic forecasting. Applications of the Kalman 

F i l t e r have been very successful in communications and 

aerospace engineering, f i e l d s in which the system dynamics 

and the governing physical equations are well known. 

However, such is not the case in streamflow applications. 

The performance of the Kalman F i l t e r may be greatly affected 

when these equations and dynamics are unknown. 

1.1 Problem d e f i n i t i o n 

Although the Kalman F i l t e r i s explained in Chapter 2, 

i t i s b r i e f l y defined here in order to state the general 

problem addressed in t h i s thesis. The linear state-space 

model, sometimes known as the Gauss-Markov model consists of 

two equations: 

State eqn: xfc = • * t 21 -̂1 + - t wfc^(0,Q) 1.1 

1 
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Observation egn: y_t = Hfc x_t + Y_t v / n/(0,R) 1.2 

The objective i s to recursively estimate the state vector, 

xfc, based on the current observations, y_t. The Kalman 

algorithm provides a method whereby state estimates are 

continually updated as new observations are received at each 

time step. The state vector i s corrupted by white noise, 

w.tA>(0,Q) with covariance matrix Q. Simil a r l y , the vector of 

observations i s corrupted by white noise v^/(0,R) with 

covariance matrix R. The algorithm assumes that H, Q, and 

R are known at time t. A f i l t e r e d estimate x i s given by 

the Kalman F i l t e r at every time step. In addition, the mean 

square error for the state estimate is given. A problem 

which often arises in practice i s that of unknown dynamics; 

either system matrices H or noise covariances Q , R. As 

O'Connell and Clarke (1981) point out, this d i f f i c u l t y i s 

often overlooked in applications even though the state 

estimation procedure depends c r i t i c a l l y on the proper 

s p e c i f i c a t i o n of dynamics. 

1.2 G e n e r a l O b j e c t i v e s 

This research work deals with the problem of unknown 

dynamics. ARMAX models for describing streamflow phenomenon 

are considered in t h i s thesis. These are time series models 

with exogeneous inputs. 
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The p r a c t i c a l application used in t h i s thesis i s 

motivated by flood forecasting in B.C. The chosen problem i s 

streamflow prediction for the Fraser River at Hope. This 

station i s located near the downstream portion of the Fraser 

River, (see F i g . 1.1) As a r e s u l t of the large drainage area 

(217,000 km2), flow magnitudes are in the order of thousands 

m3/s. Peak flow usually occurs in June, with a t y p i c a l value 

of 5000 m3/s. F i g . 1.2 gives an outflow hydrograph for 1983. 



S t a t i o n n e a r 
Spences B r i d g e 

S t a t i o n at 
Texas Creek /Thompson \ 

\ R i v e r / 

W. Vancouver' 
.TOLL 

CAMtOlA ISIA*0' "A* 

""VANCOUVER 
^ O Richmond n 

VAIOU 'O 

1 i n = 4 5 km = 28 mi 

F i g . 1.1 G e o g r a p h i c l o c a t i o n o f the s t u d y a r e a . 



OUTFLOW HYDROGRAPH 

8000 I 

Time 

F i g . 1. 2 O u t f l o w h y d r o g r a p h a t Hope, B. 



6 

In t h i s t h e s is, ARMAX models are cast into the state-space 

format with the c o e f f i c i e n t s as the state vector. In 

hydrologic applications, future flow i s the quantity of 

interest. Forecasting performance of the f i l t e r i s measured 

in terms of the observation forecast error (y-y). 

The general objectives of the thesis are: 

1. to examine the s e n s i t i v i t y of the Kalman F i l t e r with 

respect to mis-specifications of noise covariances and 

i n i t i a l conditions of the state vector. These inputs are 

required by the Kalman algorithm, but are often unknown 

in p r a c t i c e . 

2 . to investigate the maximum l i k e l i h o o d method for 

estimating the noise covariances in hydrologic models of 

p r a c t i c a l interest. 

3. to compare the forecasting performance of ARMAX models 

depending on whether the Kalman F i l t e r i s used or not. 

1.3 General Thesis Outline 

The next chapter reviews the l i t e r a t u r e on the Kalman 

F i l t e r . Included in this review are applications and the 

problems which arise in practice. Chapter 3 investigates the 

s e n s i t i v i t y of the f i l t e r with respect to input quantities, 

which are assumed known by the algorithm. Chapter 4 

considers three special cases of the ARMAX models which are 

most often used in streamflow predictions. In subsequent 

chapters, the research deals with these three models. 

Chapter 5 describes the maximum l i k e l i h o o d method for 
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estimating the noise variance. Chapters 6, 7, and 8 examine 

the forecasting performance of the three models, depending 

on whether or not the Kalman F i l t e r i s used. Often in 

forecasting, the standard deviation of the prediction i s 

required; but there are many cases where the expression for 

the variance given by the Kalman F i l t e r i s not applicable. 

Chapter 9 discusses t h i s in d e t a i l and a t h e o r e t i c a l 

expression i s presented for the variance of the forecast 

error. The importance of t h i s i s i l l u s t r a t e d in an example. 

F i n a l l y , chapter 10 summarizes the results of t h i s thesis 

and gives recommendations for future research. 



2. LITERATURE REVIEW 

There are fiv e sections to t h i s chapter. F i r s t , the Kalman 

F i l t e r i s described in d e t a i l . General applications are 

given in section 2 and hydrologic examples in section 3. 

P r a c t i c a l problems in the implementation of the f i l t e r are 

discussed in section 4. F i n a l l y , section 5 outlines in 

d e t a i l the s p e c i f i c topics addressed in subsequent chapters. 

2.1 Explanation of the Kalman F i l t e r 

The following notation i s used in t h i s t h e s i s . Vectors 

are denoted by underlined, small l e t t e r s ; and matrices are 

denoted by c a p i t a l l e t t e r s . 

The linear state-space model, sometimes known as the 

Gauss-Markov model consists of two equations: 

State eqn: xfc = $ X f i + w w /vR(0,Q) 2.1 

The elements of xfc are the state variables to be estimated, 

but they need not be physically measurable. These states are 

modelled as a Markov process. The manner in which they 

evolve through time i s given by 3>, the state t r a n s i t i o n 

matrix. The states are corrupted by white noise, w 

d i s t r i b u t e d with mean 0 and covariance matrix Q. $ and Q can 

be time-varying, but are assumed known at a l l times. 

Observation eqn: Y_fc = H xfc + y_t v^H{0 ,R) 2.2 

8 
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Measurements taken at time t are related to the states of 

the system through H. They are also corrupted by white 

noise, y_t d i s t r i b u t e d with mean 0 and covariance matrix R. 

Sim i l a r l y , H and R may be time-varying, but are assumed 

known at a l l times. Moreover, wfc and v f c are assumed to be 

s e r i a l l y and mutually uncorrelated. 

For the Kalman model consisting of eqn. 2.1 and 2.2, 

the objective i s to estimate the state vector at current 

time, xfc given a l l past measurements. Obtaining an estimate 

for the state at the current time, i s known as f i l t e r i n g . In 

pa r t i c u l a r , i f a l l past information can be summarized in a 

prior estimate for the state vector, t h i s type of estimation 

i s known as recursive f i l t e r i n g . The Kalman F i l t e r i s a 

recursive procedure which yiel d s estimates for xfc at every 

time step. This f i l t e r i n g technique can be given a Bayesian 

interpretation. Posterior estimates of the state variables 

are obtained by updating their prior estimates through the 

measurements received at time t. However, i t i s not a 

Bayesian technique per se, as often quoted in the 

l i t e r a t u r e , despite t h i s decision theoretic approach. In 

fact, x t (the 'posterior' or updated estimate) i s derived 

from a least squares c r i t e r i o n by minimizing the residual of 

the state estimation vector. The Kalman F i l t e r i s a solution 

which yie l d s a l i n e a r , minimum variance estimator for the 

state vector at every time step. In addition, the error 

covariance matrix P , associated with x., i s given. 
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The Kalman F i l t e r algorithm can be divided into two 

pa r t s: 

1 . Prior to observing y_ 

-t/t-1 = *t-1 -t-1 2 , 3 

P t / t - 1 = *t-1 Pt-1 *'t-1 + Q t 2 ' 4 

2. After observing y_t, 

i t = h/t-i + K t [ * t - £ t
 ] 2 - 5 

P t = [I - Kfc H t] 2.6 

where Kfc = P ^ ^ H't i ^ t / t ^ » \ + * t ]' 1 2.7 

The 1-step forecast for the observation i s : 

£t+1 = H A + l / t 2 ' 8 

The Kalman F i l t e r accounts for uncertainties by 

providing an algorithm which sequentially combines model 

(state equation) and data (measurement equation) information 

to y i e l d updated estimates of the state vector. These 

estimates can be projected forward to obtain future 

predictions of the observations. It i s computationally 

appealing due to i t s recursive nature, i . e . a l l previous 

information i s contained in the prior estimate of the state. 

A schematic representation of th i s procedure i s shown 

in F i g . 2.1. 
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S t a t e e q u a t i o n 
at time t-1 

1 

~ Q 

O b s e r v a t i o n s 
J • at time t R 

i 

F i g . 2.1 A Schematic r e p r e s e n t a t i o n of the 
Kalman F i l t e r procedure at each time s t e p . 
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2.2 General Applications 

Application of the Kalman F i l t e r i s widespread, and the 

l i t e r a t u r e spans over many d i s c i p l i n e s . It i s used 

p a r t i c u l a r l y in forecasting situations. The c l a s s i c example 

i s from aerospace engineering. The problem i s to continually 

estimate the position, v e l o c i t y and acceleration of a target 

in Cartesian co-ordinates, upon receiving noise corrupted 

measurements from a radar in polar co-ordinates. In finance, 

Kalman F i l t e r i n g has been applied to estimate the regression 

c o e f f i c i e n t s in a model for stock earnings per share (Mehra, 

1979). This technique has also been applied in water quality 

physical models involving BOD-DO equations. Examples of t h i s 

are found in the work by Young and Whitehead (1977), 

Constable and McBean (1979). However, no n - l i n e a r i t i e s in 

these formulations lead to the use of the extended Kalman 

F i l t e r which i s not the subject of the thesis. 

The Kalman F i l t e r has also been i l l u s t r a t e d in many 

aspects of the hydrologic process. Bras (1978) has 

successfully applied this technique to sampling network 

design. An example of estimating groundwater basin 

c h a r a c t e r i s t i c s i s given by McLaughlin (1978). However, the 

dimensionality of groundwater models i s large, as many 

parameters need to be estimated. Computational e f f i c i e n c y 

and the problem of joint state and parameter estimation are 

two major d i f f i c u l t i e s (Wilson et a l . , 1978). 

This f i l t e r i n g technique has also been used in the 

operation of water resource systems. An example i s the 
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maintaining of water l e v e l s for navigation purposes. Duong 

et al.(l978) applied the Kalman F i l t e r to obtain real time 

estimates of system parameters required for c o n t r o l l i n g a 

lock and dam gate. 

2.3 Hydrologic Applications 

The most abundant applications of thi s estimation 

technique are in streamflow forecasting. In many situations, 

the underlying process can be described by a s t a t i s t i c a l 

model such as a regression or time series model. In these 

cases, the Kalman F i l t e r i s a useful supplement to 

hydrologic forecasting. 

The r a i n f a l l - r u n o f f process i s often modelled by an 

autoregressive scheme plus some input information. There are 

two ways of formulating t h i s type of hydrologic model into 

the state-space notation. Rodriguez-Iturbe (1978) has 

formulated the problem with the c o e f f i c i e n t s of an ARMA 

model as the variables of interest. This i s also shown in an 

example by Wood et a l . , (1978). The instantaneous unit 

hydrograph, IUH represented by a convolution i n t e g r a l , i s a 

c l a s s i c example of such a forecasting scheme. For examples, 

see Rodriguez-Iturbe (1978), Szollosi-Nagy (1976). 

A l t e r n a t i v e l y , the discharges can be taken as the states, 

but the unknown ARMAX parameters then need to be estimated a 

p r i o r i . An example of t h i s i s given in Szollosi-Nagy et 

al. , ( l 9 7 7 ) . Conceptual response models involving the 

continuity and storage discharge equations have also been 
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used with the Kalman F i l t e r . However, these models lead to 

non-linear estimation. Wood (1978) investigated flood 

routing models via the Kalman F i l t e r for forecasting water 

l e v e l s . 

2 .4 Problems i n h y d r o l o g i c a p p l i c a t i o n s 

2 .4.1 Unknown dynamics 

The problem of unknown noise covariances i s often 

encountered in hydrologic modelling as a result of the 

complexity of the runoff process. Mehra (1979) pointed out 

the extreme s e n s i t i v i t y of the Kalman F i l t e r to 

underspecification of R, or the misspecification of Q. 

100. 

in = 
2 I 
oc . 
— E 

Ui IU 

0.1 

Forward 

.Smoothing 

I 
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Effect of errors i n 
measurement noise 
variance on steady-state 
RMS error i n state e s t i 
mation. or-= measurement 
noise standard deviation, 
(from Mehra 1968). 

J _ attumad/O. actuat q q 

Effect of errors i n process 
noise variance on steady-
state RMS error in state 
estimation. o°n = process 
noise standard deviation, 
(from Mehra 1968). 

F i g . 2.2 S e n s i t i v i t y of the state estimates to 
mis - spec i f i ca t ions of noise standard dev iat ions . 
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This was shown in q u a l i t a t i v e terms and the idea conforms 

with one's i n t u i t i o n . However, the f i l t e r ' s performance 

under simultaneous misspecification of Q and R needs to be 

examined. In practice, these noise covariances are spec i f i e d 

too small or too large with respect to their true values. 

The manner in which these s p e c i f i c a t i o n s a f f e c t the f i l t e r ' s 

performance i s important knowledge for the forecaster. 

Moreover, the i n i t i a l conditions of the state are often 

unknown. These questions are addressed in the next chapter. 

Because flow i s the variable of interest, the f i l t e r ' s 

performance indicators are based on the observation forecast 

error. 

2 . 4 . 2 Estimation of State system matrix 

Various methods have been proposed in the past for 

estimating these unknown matrices, H, Q, and R. $ i s the 

state system matrix. When elements of # are unknown, thi s 

leads to non-linear f i l t e r i n g . One way of resolving t h i s i s 

to l i n e a r i z e the problem with respect to the lat e s t state 

estimate by the Extended Kalman F i l t e r . However, Mehra has 

indicated that the estimates thus obtained are sensitive to 

i n i t i a l conditions. Moreover, the EKF has not been proven to 

y i e l d consistent estimates (Young, 1977). In an example on 

the Ombrone Basin in Italy, Szollosi-Nagy (1977) used the 

instrumental variable (IV) approach by Young (1977) to 

resolve the no n - l i n e a r i t i e s of the ARMA c o e f f i c i e n t s in 

An extension to t h i s approach, developed by Todini et 
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al.,(l978) known as MISP technique was also applied to the 

Ombrone Basin. This made use of two Kalman F i l t e r s : one 

which y i e l d s the state estimates (given the parameter 

values) and the other which yie l d s parameter estimates 

(given the state values). A constrained linear estimator 

proposed by Natale and Todini (1976) was i l l u s t r a t e d in an 

application by Wood (1978). 

2.4.3 Unknown Observation system matrix 

H is the system matrix in the observation equation of 

the Kalman model. When elements of H are unknown, thi s 

necessarily leads to a di f f e r e n t expression for the variance 

of the forecast error. Authors have overlooked t h i s 

(Harrison & Stevens, 1976) when they suggested using the 

same Kalman F i l t e r formula to obtain the variance. Whether 

or not thi s i s a serious error in practice depends on the 

applicati o n . Feldstein (1971) has studied t h i s problem in 

the context of econometrics. However, because one of his 

assumptions i s often not s a t i s f i e d in hydrologic 

applications, this problem needs further investigation. 

2.4.4 Estimation of the noise covariances 

Implementation of the Kalman F i l t e r allows the 

forecaster to exercise his judgement regarding the accuracy 

of the underlying model vs. that of the observations. This 

i s achieved by specifying the noise covariances, Q and R at 

each time step. The Kalman gain matrix K, in e f f e c t , 
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controls how the state estimates are updated. Hence the 

performance of the f i l t e r depends c r i t i c a l l y on these 

values. These are often unknown in water resource 

applications, and many authors have addressed t h i s problem. 

In real-time applications where h i s t o r i c a l data are 

scarce, adaptive algorithms are often used (Mehra 1973, 

IEEE). Jazwinski & B a i l i e (1969), Sage & Husa (1969) propose 

covariance matching techniques, where the t h e o r e t i c a l 

covariance of the innovations and the sample covariance are 

matched by adjusting Q and R appropriately. This h e u r i s t i c 

approach i s computationally a t t r a c t i v e though i t i s not 

guaranteed to converge. The special case of known Q but 

unknown R i s reported to have been handled more successfully 

(Mehra, 1972). 

Correlation methods only apply to time-invariant 

systems under stationary conditions which impose a 

l i m i t a t i o n for some water resource systems. 

The Bayesian method i s used to compute the posterior 

p r o b a b i l i t y of the 6 = {Q, R} given the observed data, i . e . 

p(0|y f c). Calculation of t h i s requires the l i k e l i h o o d of 6, 

£(fl|yt) = p(y t| y t_.j r . . .0). If there are p elements in 6,and 

each has N choices, then there are N*3 possible combinations 

of the set 6 corresponding to Kalman F i l t e r s . Posterior 

p r o b a b i l i t y i s calculated for each one of these Kalman 

F i l t e r s . As i t can be readily seen, th i s i s not a t t r a c t i v e 

computationally unless N and p are both small. This 

procedure discriminates the best model out of a given group 
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of models. However, i f the o r i g i n a l set of 0's do not 

encompass the true value, then the "best model" i s s t i l l not 

optimal in the sense that there i s s t i l l a better 6 that 

could be used. This method was used by Moore & Jones (1978), 

and Valdes et a l . , (1978). The tremendous complexity of the 

system renders i t computationally unattractive and 

cumbersome. 

The previously described methods are somewhat ad hoc in 

the i r applications. The Maximum l i k e l i h o o d method for 

estimating Q and R i s based on a mathematical p r i n c i p l e and 

can be universally applied. The main advantage of th i s 

method i s that i t i s asymptotically unbiased, consistent and 

e f f i c i e n t . The idea i s to maximize the l i k e l i h o o d of 

observing a p a r t i c u l a r combination of Q and R given the 

observation y over a range of values for the noise 

covariances. The major drawback i s that the l i k e l i h o o d 

expression involves computation with a non-diagonal matrix. 

Because the previously described methods are not guaranteed 

to work, t h i s method i s investigated in chapter 5. 

It should be noted that although the problem of 

estimating noise variances has been addressed t h e o r e t i c a l l y 

in the l i t e r a t u r e , the results have had li m i t e d use in 

pr a c t i c e . The main reasons are: 

1. Many of the proposed solutions were developed for some 

par t i c u l a r application. Hence they tend to be 

application dependent. 

2. The methods which are e a s i l y implemented computationally 
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are usually h e u r i s t i c in nature. They have not been 

proven to give r e l i a b l e estimates. Moreover, d i f f e r e n t 

authors, who have used them, reported contradictory 

results (Mehra, 1972; O'Connell & Clarke, 1981; Sage & 

Husa, 1969; Wood et^ a l . , 1978). 

3. The more complex methods are not e a s i l y implemented, 

though in general, they y i e l d more consistent estimates 

(Mehra, 1972,1980). in addition, the complex mathematics 

required do not lend themselves to p r a c t i c a l 

implementations. In fact, they act more l i k e a black-box 

to the forecaster. 

There i s a d e f i n i t e need to bridge the gap between the 

theoretical research and the implementation f e a s i b i l i t y 

required in practice. 

2 .5 Detailed thesis objectives and outline 

As discussed in section 2.4, the noise covariances and 

the i n i t i a l s p e c i f i c a t i o n s for the state vector are often 

unknown. These correspond to Q, R, x 0, Po of the Kalman 

state-space model. Two questions are addressed in chapter 3. 

1. Which of the above quantities (Q, R, x 0, P 0) i f 

misspecified, have a p r a c t i c a l e f f e c t on the f i l t e r ' s 

performance. 

2. How do these quantities a f f e c t the forecasting 

performance. 

The second half of the thesis i s based on ARMAX models. 

S t a t i s t i c a l models are chosen for the applications because 
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they are amenable to state-space formulation of the Kalman 

F i l t e r . Conceptual models such as SWMM and HEC I are not 

considered in this thesis. These are physically based models 

and are more d i f f i c u l t to implement. These are more 

worthwhile to consider for long-term forecasting for a river 

basin. On the other hand, ARMAX models require r e l a t i v e l y 

less data. This thesis i s focused on the Kalman F i l t e r 

rather than model i d e n t i f i c a t i o n of hydrologic processes. 

Thus, s t a t i s t i c a l models are used. Moreover, the simpler 

representation of streamflow phenomenon allows a more direc t 

investigation of the p r a c t i c a l problems associated with the 

Kalman F i l t e r . 

Chapter 4 describes three ARMAX models to be used for 

the remainder of the thesis. The method of maximum 

li k e l i h o o d i s used to estimate the noise variance for these 

models in chapter 5. In p a r t i c u l a r , a s i m p l i f i e d approach to 

evaluating the log- l i k e l i h o o d expression i s examined. This 

has been proposed by Schweppe and i l l u s t r a t e d by Ledolter 

ett a l . (1983). The next three chapters investigate the 

forecasting performance of the three models depending on 

whether or not the Kalman F i l t e r i s used. Chapter 6 

considers an AR(1) model for predicting flows 1 day ahead at 

Hope. Chapter 7 examines a transfer function model for 

predicting the 2-day advance flow. Chapter 8 studies a 

combined model which gives 1 and 2 day forecasts. The 1 and 

2 step forecasts are compared to those obtained from the 

models of chapters 6 and 7 respectively. F i n a l l y , a general 
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expression for the mean square error of the forecast when H 

is unknown, i s developed in Chapter 9. This s i t u a t i o n 

occurs, for example, when the AR(1) model i s used to predict 

the flow than more two time steps ahead. In t h i s case, the 

variance of the forecast error i s not given by the Kalman 

equation, HPH' + R. 



3. SENSITIVITY ANALYSIS 

The Kalman F i l t e r has been used in many hydrologic 

applications. It i s a popular estimation technique due to 

i t s recursive nature and i t s a b i l i t y to handle 

uncertainties. However, i t s applications have not always 

been successful. This i s often because the assumption of 

known input quantities, i s not s a t i s f i e d . These quantities 

are the i n i t i a l conditions of the state vector x 0 , P 0, and 

the noise covariance matrices Q, R. The Kalman algorithm 

assumes that x 0t P o i Q» R are c o r r e c t l y s p e c i f i e d . But when 

they are unknown in practice, their mis-specification may 

result in unreliable estimates. 

The objective of t h i s study i s to examine the 

s e n s i t i v i t y of the f i l t e r to mis-specification of the 

quantities x 0, P 0, Q, R. The s e n s i t i v i t y study i s analyzed 

as a s t a t i s t i c a l f a c t o r i a l experiment. Each of the input 

quantities {x 0, P 0, Q, R} i s treated as a factor. The 

forecasting performance of the f i l t e r i s measured by an 

indicator based on the observation forecast error. This 

indicator i s the response variable in the f a c t o r i a l 

exper iment. 

A scalar ARMAX model i s used for streamflow modelling 

in t h i s study. In t h i s application, an autoregressive model 

of order 1, with temperature as an exogeneous variable i s 

chosen. The model i s cast into state-space format with the 

model c o e f f i c i e n t s as the state vector. Hence Q represents 

the noise covariance matrix for the c o e f f i c i e n t s , and R i s 

22 
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the variance of the measurement error. 

Results of t h i s s e n s i t i v i t y study show that i n i t i a l 

s p e c i f i c a t i o n s of the ARMAX c o e f f i c i e n t s , x 0 and P 0, do not 

aff e c t the forecasting performance of the f i l t e r to any 

degree of p r a c t i c a l concern. The performance i s materially 

affected by the combined s p e c i f i c a t i o n of the noise 

covariances, Q and R. In addition, conclusions are made as 

to how the unknown noise covariances should be specified in 

order to achieve good forecasting performance. Specifying 

both Q and R r e l a t i v e l y large results in a f i l t e r 

performance comparable to the case of known Q and R. 

Specifying Q small and R large y i e l d s the worst forecasting 

performance. If the measurement noise variance i s known, 

then the forecasting performance i s in d i f f e r e n t to under or 

over-specification of Q. However, i f Q is known, i t i s found 

that better f i l t e r performance i s obtained i f the 

measurement noise variance i s sp e c i f i e d r e l a t i v e l y large. 

3.1 Experimental Plan 

The approach to t h i s investigation i s divided into four 

parts. 

1. Flow generation 

Flow sequences are generated by a chosen ARMAX model 

with known input quantities: x 0*, Q*, R*. 

2. Kalman F i l t e r S p e c i f i c a t i o n 

The flow sequences are treated as observations and a 

Kalman F i l t e r i s applied to each flow sequence. The 
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state-space format used corresponds to allowing the 

ARMAX c o e f f i c i e n t s be the state vector in the Kalman 

model. Hence, estimates of the c o e f f i c i e n t s are given at 

each time step and flow forecasts are made with the 

latest estimate given by the f i l t e r . The noise 

covariance matrices used in the generation of streamflow 

data are Q* and R*. The Kalman algorithm uses x 0, P 0, Q, 

and R where these may be d i f f e r e n t from the generation 

values. Q and R can be s p e c i f i e d to be less than, equal 

to, or greater than their true values, Q* and R*. Hence, 

the s e n s i t i v i t y of the f i l t e r ' s performance to these 

spe c i f i c a t i o n s i s examined. The performance of the 

f i l t e r i s measured by an indicator based on the 

observation forecast error. 

A Kalman F i l t e r i s applied to each combination of 

the input quantities. One of these f i l t e r s contain the 

correct s p e c i f i c a t i o n s of the inputs. 

F a c t o r i a l Experiment 

The investigation i s studied as a s t a t i s t i c a l f a c t o r i a l 

experiment with four factors; namely {x 0, P 0, Q, R}. The 

levels of these factors correspond to the d i f f e r e n t 

s p e c i f i c a t i o n s . 

Analysis of Variance 

S e n s i t i v i t y of the f i l t e r ' s performance i s investigated 

through analysis of variance (ANOVA) on the performance 

indicators. The analyses indicate which factors or 

combinations thereof, have a s i g n i f i c a n t effect on the 
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performance indicator. 

3.2 Experimental Procedure 

3.2.1 Generation of Flow Data 

Application of the Kalman F i l t e r in t h i s thesis is 

motivated by real-time flow forecasting of the Fraser River. 

A stochastic model for describing the streamflow phenomenon 

is chosen: 

q t = a t *t-1 + b t T e m p t + v t 3.1 

The autoregressive term i s c h a r a c t e r i s t i c of stations with 

large drainage areas, as the flow i s dependent on upstream 

storage e f f e c t s . The temperature term represents the 

snowmelt influence on the runoff. The c o e f f i c i e n t s of the 

model, a f c and b f c, are chosen to follow a random walk. The 

ARMAX model of eqn. 3.1 i s recast into state-space framework 

as follows: 

State eqn: V " a t - r + 
"w, t" 

b t _ bt-1_ _ w 2 t . 

3.2 

Obs. eqn: [ q t _ 1 Tempt] 3.3 

The noise terms are chosen with the following properties: 
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1• wfc ~ (0,Q*) 

The covariance matrix for the c o e f f i c i e n t s (states) is 

constant with respect to time. It is also a diagonal 

matrix. Thus, independent errors for the model 

c o e f f i c i e n t s are assumed. 

2. v t<v (0,R*) 

S i m i l a r l y , a constant variance for the observation error 

is used. 

Batches of flow sequences are generated for each testing 

condition denoted as "CODE". Each sequence has T=100 time 

steps. Each CODE corresponds to a pa r t i c u l a r combination of 

x_o*, Q* i R* • The following table gives the values used in 

the flow generation. 

Table 3.1 Values of x 0*, Q*, R* used in flow generation 

x 0 
* = .85 

7.00 

Arbitrary s t a r t i n g values are used as t h i s 

does not affe c t the streamflow generation. 

Q i * = 000036 0 

0 .0016 

0 * = y I I .0001 0 

0 .01 

0 * = 
y I I I 

.0004 0 

0 .0225 

R:* = 100 R n * = 400 = 625 R I V* = 900 

The chosen values of Q* are representative of p r a c t i c a l 

s i t u a t i o n s ; a standard deviation of .5% and 2% from one time 
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step to the next. S i m i l a r l y , the range of R* r e f l e c t s a 

measurement error with a standard deviation from 3% to 12% 

of the flow. In practice, the standard deviation of the 

measurement error i s not more than 10% of the flow. 

The number of combinations of the above input 

quantities i s twelve. Hence, the number of CODES i s also 

twelve. Table 3.2 gives a schematic layout of the coding 

scheme. 

Table 3.2 Schematic coding scheme 

V 
R * II 

R * III 

R * IV 

CODE 1 

CODE 2 

CODE 3 

CODE 4 

0 * y I I 

CODE 5 

CODE 6 

CODE 7 

CODE 8 

0 * U I I I 

CODE 9 

CODE 10 

CODE 11 

CODE 12 

3.2.2 Kalman F i l t e r Specifications 

Values of the quantities used in data generation are 

denoted with a '*'; otherwise the l e t t e r s represent 

specifications of these quantities for the Kalman algorithm. 

Therefore, Q* i s used in generation; while Q i s a 

sp e c i f i c a t i o n value. Different s p e c i f i c a t i o n s for 

{x 0i Por Qf R l result in d i f f e r e n t Kalman F i l t e r s . For each 
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code, 36 Kalman F i l t e r s are evaluated, each with a sample 

size of 5 streamflow sequences. The number of streamflow 

sequences required under each CODE is 180. For each of the 

180 series, the performance of the Kalman F i l t e r i s measured 

in terms of the flow forecast error. The indicator i s 

rel a t i v e root mean square (RRMS) error defined as: 

This i s preferred over the common RMS error as RRMS does not 

depend on the units of measurement. 

3.2.3 F a c t o r i a l Experiment 

The investigation i s set up as a f a c t o r i a l experiment 

with a completely randomized design. It is a fully-crossed 

four factor experiment. The factors are the spe c i f i c a t i o n s 

of the input quantities: {x0r po> Q> R) • The number of 

levels for each factor i s given below: 

Table 3.3 Number of Levels for the Factors 

RRMS 3.4 

Q R 

2 2 3 3 l 
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The l e v e l s correspond to d i f f e r e n t s p e c i f i c a t i o n s of the 

input quantities. The number of ways of combining these 

levels i s : k = II / . = 36. Hence, 36 d i f f e r e n t Kalman 
i 

F i l t e r s are used under each CODE. The levels of these 

factors are described below. 

Table 3.4 Levels of the Noise Covariances 

le v e l x 0 P 0 Q, R 
1 g< ?od es 

~o. 9 r 

_6.50_ 

>timate conf idei 

guess 

".001 0" 

_0 . 065_ 

it too small 

.25Q*, .25R* 

2 b< ad esti 

"0.425-

1 0.50 

.mate non-con 

guess 

\75 0~ 

Eident correct 

spec i f icat ion 

Q*, R* 

3 too large 

4Q*, 4R* 

The good estimate of x 0 corresponds to an i n i t i a l 

s p e c i f i c a t i o n error of 7%, while the bad estimate 

corresponds to 50%. These l i m i t s are representative of the 

range of accuracies for estimates of x 0 in practi c e . Level 1 

of the noise s p e c i f i c a t i o n corresponds to under-estimating 

the standard deviation by a factor of 2. Si m i l a r l y , l e v e l 3 
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corresponds to over-estimating by a factor of 2. Level 2 

represents a s p e c i f i c a t i o n which i s equal to the true 

covariance matrix. In practice, i t i s expected that 

estimates of Q and R, are within the bounds provided by 

lev e l s 1 and 3. 

The response variable of the f a c t o r i a l experiment i s 

the performance indicator, RRMS. Its values are analyzed by 

ANOVA to order to determine which of the four factors or 

combinations thereof, have an important e f f e c t on the 

performance of the Kalman F i l t e r . 

Each of the 36 Kalman F i l t e r s i s subjected to n=5 

series of observations, the 5 series being d i f f e r e n t in each 

case. This conforms to a completely randomized (CR) design. 

For t h i s non-repeated measures design, the measurement 

errors are uncorrelated. Thus, an unrepresentative series 

does not re p l i c a t e i t s c h a r a c t e r i s t i c from one Kalman F i l t e r 

to another. A l t e r n a t i v e l y , the same 5 series of observations 

could be used for each Kalman F i l t e r in order to minimize 

the v a r i a t i o n between groups. This repeated measures design 

results in correlated measurement errors among the various 

Kalman F i l t e r s . Hence, a CR design i s chosen. 

The s t a t i s t i c a l model for a f a c t o r i a l experiment with 4 

factors i s : 

Y. i j klm = M + A. + B.+C, + D 
i l k 

+ 2-way interactions .. 

+ 3-way interactions ... 

+ 4-way interaction + e m 3.5 
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For t h i s s e n s i t i v i t y study, the following variable 

substitution i s made: 

RRMS = M + X 0 + P 0
+ Q + R 

x_oPo + • • • 

+ x 0P 0Q + ... 

+ x 0P 0QR + e 

The notation i s described as follows: 

1. RRMS i s the response variable of the experiment. 

2. ju i s the o v e r a l l mean of the performance indicator, 

RRMS. 

3. x 0, P 0, Q, R are the factors and they are c a l l e d the 

main effects in eqn. 3.6 

4. The 2-way interactions include a l l possible combinations 

of the factors in groups of two. These are x 0P 0, x 0Q, 

x 0R, P0Q, P0R, QR. 

5. S i m i l a r l y , the 3-way interactions are a l l combinations 

of the factors in groups of three. These are x 0P 0Q, 

x 0P 0R, P 0QR, x 0QR. 

6. F i n a l l y , there i s the 4-way interaction and the error, 

3.6 
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3.2.4 Analysis of Variance 

The experiment is analyzed by ANOVA with a l l terms 

(except M) on the right hand side of eqn. 3.6 as the 

'sources' in the ANOVA table. One analysis i s done for each 

CODE; hence, twelve ANOVA's are made in t o t a l . The computer 

package 'ANOVAR' i s used and a sample output of the ANOVA 

table i s given in the Results (Section 3.3.1). The output 

gives the p-value for each source under 'F PROB'. These 

ANOVA results are used as a q u a l i t a t i v e guide for pointing 

out those sources which are important in p r a c t i c a l 

situations. The p-values are compared among the sources in 

order to indicate those which have a s i g n i f i c a n t effect on 

the response, RRMS. The smaller the p-value, the more l i k e l y 

i t i s that the corresponding source has a s i g n i f i c a n t effect 

on the f i l t e r ' s performance. 

A flow chart of the procedure i s given in F i g . 3.1. 
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G e n e r a t e f l o w s choose x R'" 
o 

g e n e r a t e N=kn=180 
f l o w s e q u e n c e s o f 
100 time s t e p s l o n g 

i 
Kalman F i l t e r . K F 1 , 1 K F 1 , 2 •• • K F 1 , 5 
S p e c i f i c a t i o n s 

K F 3 6 , 1 K F 3 6 , 2 " • K F 3 6 , 5 

F a c t o r i a l E x p e r i m e n t measure the p e r f o r m a n c e 
of the Kalman F i l t e r , 
RRMS 

ANOVA d e t e r m i n e s i g n i f i c a n t 
s o u r c e s f o r RRMS. 

Repeat f o r each CODE 

F i g . 3 . 1 S c h e m a t i c d i a g r a m o f E x p e r i m e n t a l P r o c e d u r e . 
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3.3 Results 

3 . 3 . 1 ANOVA Results 

The ANOVA results indicate that under a l l CODES, the 

si g n i f i c a n t sources are the s p e c i f i c a t i o n of the main effect 

Q, and the interaction QR. The significance of QR means that 

i t i s the combined s p e c i f i c a t i o n of the noise covariances 

which a f f e c t s the f i l t e r ' s performance. 

A sample output of the ANOVA table for CODE 7 i s shown 

on the following page. The p-values (represented by F PROB 

in the table) are compared. Those corresponding to the 

sources Q and QR are an order of magnitude lower than the 

rest. This phenomenon is noted under a l l CODES. 

The manner in which the QR interaction a f f e c t s RRMS i s 

obtained from the following two and three-dimensional 

graphs. The mean RRMS values are plotted with respect to the 

leve l s of the source, QR. 
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T a b l e 3.5 Computer O u t p u t 
ANOVA R e s u l t s f o r CODE 7 

F a c t o r s : A = * 0 

B = P 0 C = Q D = R 

p - v a l u e s ; g i v e n by F PROB 

ANALYSIS OP VARIANCE/COVARIANCE FOR VARIABLE RRMS 

SOURCE 
A 
B 
AB 
C 

AC 
BC 

ABC 
D 
AD 
BO 
ABD 
CD 
ACD 
BCD 
ABCD 
ERROR 

TOTAL 

SUM OF 
D.F. SOUARES 

1 1.439339E-05 
1 3.582272E-05 
1 2.683472E-05 
2 3.062712E-03 
2 5.325221E-04 
2 \ 1.691381E-04 
2 8.595134E-04 
2 9.816524E-04 
2 8.214938E-04 
2 5.839004E-04 
2 5.987364E-04 
4 4.261532E-03 
4 2.407318E-03 
4 1.477050E-03 
4 1.577517E-03 

144 4.805392E-02 
179 6.54S426E-02 

MEAN 
SOUARE 

1.439339E-05 
3.582271E-05 
2.683472E-05 
1.531356E-03 
2.662609E-04 
S'.456905E-05 
4.2975S7E-04 
4.9092G2E-04 
4.1074S8E-04 
2.919501E-04 
2.993S81E-04 
1.O65383E-03 
6.018295E-04 
3.692624E-04 
3.943790E-04 
3.337075E-O4 

F VALUE F PROB 
0. 0431 0. 8177 
0. 1073 0. 7398 
0. 0804 0. 7689 
4 . 5689 0. 01 17 
0. 7979 0. 4559 
0. 2534 0. 7791 
1 . 2878 0. 2785 
1 . 471 1 0. 2316 
1 . 2309 0. 2949 
0. 8749 0. 4219 
0. 8971 0. 4126 
3. 1926 0. 0151 
1 . 8035 0. 1300 
1 . 10S5 0. 3560 
1 . 1818 0. 3211 

Note t h a t t h e p - v a l u e s f o r s o u r c e s C=Q and CD=QR a r e 
.0117 and .0151 r e s p e c t i v e l y . 
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3.3.2 Two-dimensional Graphs 

The ordinate in the following graphs i s the performance 

indicator, RRMS. This indicator i s such that the smaller the 

value, the better i s the performance. The abscissa denotes 

the three levels of s p e c i f i c a t i o n for the noise covariance. 

For instance, Q(1) corresponds to specifying Q too small. 

Graphs in series (a) are plotted with respect to Q for each 

l e v e l of R ( i . e . holding R constant). Those in series (b) 

are with respect to R for each l e v e l of Q. The features 

displayed by the graphs are summarized below: 

1. From series (b) of Figs. 3.2-3.4, i t can be seen that 

the smallest RRMS value occurs at Q(2)R(2). This 

represents correct s p e c i f i c a t i o n s of the noise 

covariances. 

2. The graphs in series (a) show that i f R i s given 

c o r r e c t l y , then specifying Q too small Q(1), or too 

large Q(3), results in almost i d e n t i c a l RRMS values. In 

other words, the f i l t e r ' s performance i s ind i f f e r e n t to 

mis-specification of Q i f R i s known. 

3. A d i f f e r e n t behavior i s observed by examining the graphs 

in series (b) of Figs. 3.2-3.4 for le v e l Q(2). It i s 

noted that i f Q i s given c o r r e c t l y , then 

under-specification of R results in a larger RRMS than 

over-specification. This phenomenon i s p a r t i c u l a r l y 

noticeable under Q* I I I shown in F i g . 3.4, for systems 

with large disturbances in the states. 

4. For each CODE, nine RRMS values are plotted. In each 
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case, two of these values are r e l a t i v e l y close to the 

minimum RRMS. These values correspond to the 

sp e c i f i c a t i o n s , Q(2)R(3) and Q(3)R(3). It i s noted that 

both these s p e c i f i c a t i o n s involve R(3). This feature i s 

more pronounced as Q* and R* increase. 

In general, specifying R too small should be avoided. 

High values of the performance indicator for a l l 

s p e c i f i c a t i o n s of Q under l e v e l R(1) are obtained. 

A large increase in the RRMS value is noted for 

Q(1)R(3). For example, see F i g . 3.3 (b). 
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F i g . 3.2 ( a ) 

RRMS w i t h r e s p e c t t o Q 
F i g . 3.2 (b) 

RRMS w i t h r e s p e c t - t o R 
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CODE 5 CODE 5 

0.03*. 0.03-t 

Legend 

0.08 

CODE 8 

Legend 
o ot 

» Q2_ 
& 03 

F i g . 3.3 ( a ) 

RRMS w i t h r e s p e c t to Q 

F i g . 3.3 (b) 

RRMS w i t h r e s p e c t t o R 
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F i g . 3.4 ( a ) 

RRMS w i t h r e s p e c t t o Q 

F i g . 3.4 (b) 

RRMS w i t h r e s p e c t t o R 



F i g . 3.4 ( a ) c o n t ' d 

RRMS w i t h r e s p e c t t o Q 

F i g . 3.4 (b) c o n t ' d 

RRMS w i t h r e s p e c t t o R 



42 

3.3.3 Three-dimensional plot 

A three-dimensional plot of the interpolated response 

surface for the RRMS i s given. This i s plotted with respect 

to the nine s p e c i f i c a t i o n levels of both Q and R. Because 

the behavior of the f i l t e r to QR interaction i s the same, 

only one response surface i s drawn. This i s a q u a l i t a t i v e 

plot as the axes are scaled appropriately to give a 

reasonable image. 

The surface minimum occurs in the region corresponding 

to Q(2)R(2). The response surface r i s e s in a l l directions 

away from the minimum. It i s noted that the topography i s 

not too d i f f e r e n t from the minimum, in a zone defined by 

Q(2)R(3), and Q(3)R(3). The surface also shows a sharp 

increase in RRMS for the s p e c i f i c a t i o n , Q(1)R(3). 



Q l e v e l s 

RRMS 

R l e v e l s 

A3 

Q ( 1 ) R ( 3 ) 

F i g . 3.5 Response S u r f a c e 
RRMS w i t h r e s p e c t t o 

QR s p e c i f i c a t i o n s 



44 

3.4 Discussion of Results 

3.4.1 ANOVA Results 

The f a c t o r i a l experiment considers four factors: x 0, 

P 0, Q, R. It i s found that: 

1. I n i t i a l s p e c i f i c a t i o n s of the ARMAX c o e f f i c i e n t s x 0, P 0 

do not have a s i g n i f i c a n t effect on the f i l t e r ' s 

forecasting performance. In practice, these c o e f f i c i e n t s 

are often unknown and t r a d i t i o n a l l y , much work has gone 

into their estimation p r i o r to forecasting. This study 

shows that even an error of 50% in t h e i r i n i t i a l 

s p e c i f i c a t i o n , does not s i g n i f i c a n t l y degrade the 

performance. 

2. With the c o e f f i c i e n t s as the state variables in the 

Kalman model, i t i s found that the f i l t e r i s sensitive 

to the combined s p e c i f i c a t i o n of the noise covariances, 

Q and R. 

The 1-step flow forecast i s based on the l a t e s t estimate 

of the state vector, which is" updated by using the 

Kalman gain matrix, Kfc. Gelb (1979) shows that the 

Kalman gain can be interpreted as a r a t i o of the 

uncertainties in the state estimate to the measurement 

noise. Because the uncertainty in the state estimate i s 

affected by the noise covariance Q, Kfc can be considered 

as a r a t i o of Q to R. Hence, i t i s the combined 

s p e c i f i c a t i o n of the noise covariances which affects the 

f i l t e r ' s performance. 
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3.4.2 Interpretat ion of Graphs 

Because of the interaction between Q and R, i t i s not 

s u f f i c i e n t to examine the f i l t e r ' s s e n s i t i v i t y to either Q 

or R i n d i v i d u a l l y . It should be examined with respect to 

both qua n t i t i e s . 

1. The optimum le v e l of performance (represented by the 

minimum RRMS value) i s obtained when Q and R are 

spe c i f i e d c o r r e c t l y . This is true under a l l testing 

conditions. 

2. If the variance of the measurement error R i s known, 

then the f i l t e r ' s performance i s i n d i f f e r e n t to under or 

overspecification of Q. Its performance level can only 

be improved i f Q i s sp e c i f i e d c o r r e c t l y . 

3. If Q i s known to begin with, then specifying R too small 

should be avoided. 

4. For systems with large disturbances in the ARMAX 

c o e f f i c i e n t s , under-specification of Q should be 

avoided. This i s p a r t i c u l a r l y true when R i s sp e c i f i e d 

large. The worst performance occurs for Q(1)R(3). 

5. A general guideline i s to specify both covariance 

matrices large because r e l a t i v e l y good forecasting 

performance can be obtained under Q(3)R(3). 

3.5 Summary 

The Kalman F i l t e r i s applied to an ARMAX model for 

streamflow forecasting. A common problem i s that i n i t i a l 

conditions of the model c o e f f i c i e n t s and the noise 
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c o v a r i a n c e s are unknown. The s e n s i t i v i t y of the f i l t e r ' s 

f o r e c a s t i n g performance to the s p e c i f i c a t i o n of x 0 , P 0 , Q, R 

i s examined. 

The ARMAX model i s r e c a s t i n t o s t a t e - s p a c e format wi th 

the c o e f f i c i e n t s as the s t a t e s i n the Kalman model . For t h i s 

s e n s i t i v i t y s t u d y , the system m a t r i c e s $ and H of the Kalman 

F i l t e r are known. The f i l t e r ' s performance i s measured in 

terms of the o b s e r v a t i o n f o r e c a s t e r r o r , d e f i n e d by RRMS. 

The - c o n d i t i o n s t e s t e d c o r r e s p o n d to a s t a n d a r d 

d e v i a t i o n of .5 to 2% change i n the model c o e f f i c i e n t s , and 

a s t a n d a r d d e v i a t i o n of 3 to 12% i n the measurement n o i s e . 

I t i s found tha t i n i t i a l s p e c i f i c a t i o n s of the ARMAX 

c o e f f i c i e n t s do not a f f e c t the f i l t e r ' s per formance . T h i s 

f e a t u r e i s u s e f u l f or the p r a c t i c i n g e n g i n e e r ; e s p e c i a l l y 

when t h e r e i s i n s u f f i c i e n t data f o r o b t a i n i n g r e l i a b l e 

e s t i m a t e s of the c o e f f i c i e n t s p r i o r to f o r e c a s t i n g . 

The s tudy a l s o shows that the f i l t e r ' s performance i s 

s e n s i t i v e to the combined s p e c i f i c a t i o n of the n o i s e 

c o v a r i a n c e s . I f Q and R are unknown, i t i s best to s p e c i f y 

both c o v a r i a n c e s l a r g e r than t h e i r expected v a l u e s . T h i s 

s p e c i f i c a t i o n r e s u l t s i n a f o r e c a s t i n g performance 

comparable to the case of known Q and R. I f o n l y one of the 

n o i s e c o v a r i a n c e s can be e s t i m a t e d , i t i s b e t t e r to e s t imate 

R a c c u r a t e l y . T h i s i s due to the f i l t e r ' s i n s e n s i t i v i t y to 

under or over s p e c i f i c a t i o n of Q, i f R i s g i v e n c o r r e c t l y . 

However, i f Q i s g i v e n c o r r e c t l y , the f i l t e r performs worse 

i f R i s s p e c i f i e d too s m a l l . 
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In general, i t i s best to specify a large variance for 

the measurement error. This results in good forecasting 

performance as long as Q i s not specified much smaller than 

i t s true value. 



4. HYDROLOGIC SYSTEMS 

The Kalman F i l t e r has been applied in the previous 

s e n s i t i v i t y study to a general ARMAX model, used to generate 

synthetic streamflow data. The state-space formulation 

corresponds to l e t t i n g the ARMAX c o e f f i c i e n t s be the state 

variables in the Kalman model. The study shows how the 

forecasting performance of the f i l t e r i s affected by the 

combined noise covariance s p e c i f i c a t i o n . It also indicates 

that i n i t i a l s p e c i f i c a t i o n of the ARMAX c o e f f i c i e n t s do not 

af f e c t the flow forecasting performance. 

This chapter describes three p a r t i c u l a r ARMAX models, 

chosen for Kalman F i l t e r applications in Chapters 6 to 8. 

Actual d a i l y flow data i s used in these studies for 

forecasting flows 1 and 2 days in advance. These models 

represent hydrologic systems with certain basin 

c h a r a c t e r i s t i c s , described in thi s chapter. The p r a c t i c a l i t y 

of the Kalman F i l t e r cannot be explored for a l l types of 

hydrologic systems represented by the general ARMAX model, 

as i t i s data dependent to some extent. Hence, 

s p e c i a l i z a t i o n to certain types of systems i s necessary. The 

p r a c t i c a l i t y of the Kalman F i l t e r and i t s performance under 

d i f f e r e n t state-space formulations of a hydrologic model are 

investigated using real data. 

Studies in Chapters 6 to 8 use d a i l y flow data from the 

Fraser River at Hope in B.C. The Fraser River at Hope i s one 

of the largest rivers in Canada and the flow changes 

r e l a t i v e l y slowly through time. As discussed in section 4.1, 

48 
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th i s allows the assumption of time-invariant systems. 

Therefore, ARMAX models with constant c o e f f i c i e n t s w i l l be 

considered for these studies. In practice then, only the 

noise variance associated with the measurement equation in 

the Kalman model need to be estimated prior to forecasting. 

This subject is addressed in Chapter 5. 

The three ARMAX models chosen are r e l a t i v e l y simple 

from a hydrologic point of view because they do not involve 

complicated physical equations. Physically based models have 

been used for some types of r i v e r basins (e.g. Quick and 

Pipes, 1976). These are usually deterministic models 

requiring extensive data inputs. In addition, the system of 

equations do not readily lend themselves to state-space 

formulation. Because the focus of subsequent studies i s on 

the Kalman F i l t e r and i t s potential in flow forecasting 

rather than on developing the best forecasting procedure, 

time-invariant ARMAX models are selected. These represent 

the simplest types of hydrologic systems which are of 

p r a c t i c a l interest in water resource management. 

4.1 Time-invariant Systems 

Flow forecasting using ARMAX models with time-invariant 

c o e f f i c i e n t s are considered. Constant c o e f f i c i e n t models are 

appropriate for hydrologic systems whose behavior remains 

constant with time. These types of systems are usually 

characterized by large drainage areas, where the flows are 

influenced by storage e f f e c t s . For these systems, r a i n f a l l 



inputs have l i t t l e influence on the outflow. 

Rodriguez-Iturbe (1978) and Szollosi-Nagy (1976) concluded 

that the assumption of time-invariant c o e f f i c i e n t s can be 

extended to systems whose response c h a r a c t e r i s t i c s change 

slowly over time. A "window" type of approach i s suggested 

for handling the time varying nature, as shown in the 

diagram. 

TIME 

( f r o m S z o l l o s i - N a g y , 1976) 
z ( t ) i s the o b s e r v a t i o n at time t . 

F i g . 4'. 1 A 'd a t a window' a p p r o a c h t o s l i g h t l y 
t i m e - v a r i a n t h y d r o l o g i c s y s t e m s . 
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Application of the Kalman F i l t e r in this thesis i s motivated 

by the following problem. Streamflow predictions for the 

Fraser River at Hope are required in the control of thi s 

water resource system. The maximum dail y flow of the year 

(peak runoff) which occurs in June, i s mainly due to 

snowmelt. Therefore, a reasonable forecasting horizon i s 

A p r i l 1 to September 30. Within t h i s time frame, i t i s 

expected that the basin c h a r a c t e r i s t i c s do not change 

abruptly. The station at Hope i s located near the downstream 

end of the Fraser River. This means that i t has a large 

drainage area and thus a slow basin response. Hence, 

time-invariant ARMAX models are appropriate for the 

investigations in thi s thesis. As a result, only one noise 

variance i s to be estimated, and thi s i s addressed in 

Chapter 5. 

4.2 Three ARMAX Models 

Three stochastic models commonly used in streamflow 

modelling are considered. 

1. AR(1) 

q t = aq t_ 1 + v f c 

2. TRANSFER FUNCTION 

q t = b i q * t - 2
 + b2<3**t-2 + V t 

3. Combined, ARMAX 

q t = c 1 q t _ 1 + c 2 q * t _ 2 + c 3q** t_2 + v f c 

where q, q*, q** denote streamflows at three d i f f e r e n t 
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stations. 

These are special cases of the general ARMAX model. They can 

be thought of as a (p,q) ARMA model with (r) exogeneous 

inputs. General j u s t i f i c a t i o n s for using these types of 

models have been given in the previous section. Particular 

reasons for using each of these models are discussed below. 

1. The autoregressive model of order 1 has been widely used 

in streamflow modelling. Quimpo (1973) has shown that 

storage e f f e c t s can be represented by autoregressive 

terms. Predictions beyond t h i s can be made i f the 

unknown flows at lag one are replaced by their estimate. 

However, th i s necessarily results in a larger variance 

for the flow forecast error. This topic is addressed in 

Chapter 9. Application of the Kalman F i l t e r to this 

model i s investigated in Chapter 6. 

2. Upstream inputs can contribute to the r i s i n g portion of 

an outflow hydrograph as pointed out by Wood (1978). A 

transfer function model can be used where the 

co e f f i c i e n t s b, and b 2 represent flow contributions from 

upstream stations. The 2-day lag in the flows allow the 

prediction of the 2-day forecast with a l l the exogeneous 

variables known at time t. The application of the Kalman 

F i l t e r to thi s model i s examined in Chapter 7. 

In fact, flood routing procedures described by the 

convolution integral are often l i n e a r i z e d . The discrete 

time representation of the int e g r a l can be considered as 

a transfer function model. An example of th i s 
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formulation can be found in Wood(l978). 

3. The t h i r d model combines the autoregressive process with 

upstream inputs. The Kalman F i l t e r i s applied to this 

model in Chapter 8. 

4.3 Scope of A p p l i c a t i o n s 
The state-space formulation whereby the ARMAX 

c o e f f i c i e n t s form the elements of the state vector i s 

considered. This format i s used throughout the remaining 

chapters, except where otherwise noted. The problems 

associated with the s p e c i f i c a t i o n of the inputs 

{x 0, P 0, Q, R} have been reduced to the problem of 

estimating R only because: 

1. Q=0 as time-invariant c o e f f i c i e n t s are considered. 

2. I n i t i a l s p e c i f i c a t i o n of the ARMAX c o e f f i c i e n t s , x 0, P 0 

do not affe c t the f i l t e r ' s forecasting performance. 



5. ESTIMATION OF MEASUREMENT NOISE VARIANCE 
Results of Chapter 3 show that the f i l t e r ' s forecasting 

performance i s affected by the s p e c i f i c a t i o n of the noise 

covariance matrices. In fact, variance estimation in 

state-space models i s a subject of much current i n t e r e s t . A 

review of t h i s was given in Chapter 2, section 2.4.4. In 

this chapter, a method for estimating the noise variance i s 

investigated. The three models discussed in Chapter 4 are 

considered. 

It i s found that the variance of the measurement error 

cannot be assumed to be constant with time. Analysis 

indicates that i t varies in proportion to the square of the 

flow. Therefore, a Box-Cox transform is used for s t a b i l i z i n g 

the variance. The appropriate transformation i s to take 

logarithms of the o r i g i n a l measurements. The new series has 

a noise variance which is approximately constant. The method 

of maximum l i k e l i h o o d i s then used to estimate the noise 

variance for each model. An equivalent l o g - l i k l i h o o d 

function for the flow i s written in terms of the observation 

forecast error; and i s evaluated through the use of the 

Kalman F i l t e r . 

5.1 The Estimation Method 
Because an accurate and r e l i a b l e estimate of the noise 

variance i s desired, h e u r i s t i c methods discussed in Chapter 

2 are not considered. More sophisticated methods e x i s t , but 

are t r a d i t i o n a l l y avoided due to extensive computational 

54 
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requirements. However, the a v a i l a b i l i t y of computer 

software, has made these methods more a t t r a c t i v e . An example 

is the Bayesian method of estimation. This w i l l not be used 

in t h i s thesis but i s discussed b r i e f l y as i t has attracted 

some attention in the recent l i t e r a t u r e . This method does 

not estimate the noise variance per se. Actually, i t i s a 

discrimination technique. Numerous Kalman models are 

considered at the s t a r t ; each one containing a possible 

value of the noise variance, a2^. It i s assumed that one of 

these Kalman F i l t e r s contains the correct noise variance 

a*2. Posterior p r o b a b i l i t y of a2 ^ being o*2 given the 

observations, i s calculated for each model. After s u f f i c i e n t 

number of observations, the model with a2- closest to a*2 

' 1 
w i l l be assigned the highest posterior p r o b a b i l i t y . Although 

i n i t i a l applications by Valdes et a l . , (1978) show that this 

method does select the model with a2 ^ closest to the true 

variance, i t is not considered here for the following 

reasons: 

1. Applications of th i s technique i s only in i t s i n i t i a l 

stage, hence i t s properties s t i l l need to be examined. 

2. In a study by the previous authors, i t was found that 

300 time steps are required before the best model can be 

distinguished. Since we are only interested in 

forecasting for part of the year, there is not enough 

data for the discrimination procedure. 

3. The o r i g i n a l set of models i s assumed to encompass the 

true value of R. 
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This l a s t point presents a l i m i t a t i o n in practi c e . Often, 

the engineer is not s u f f i c i e n t l y familiar with the physical 

c h a r a c t e r i s t i c s of a basin to provide the bound values. 

Hence, the set of a 2^'s chosen may not include the true 

value. Instead, the method of maximum l i k e l i h o o d i s used in 

th i s chapter to estimate the noise variance. 

The maximum l i k e l i h o o d method gives estimates which are 

known to be consistent and asymptotically e f f i c i e n t . No 

prior knowledge of the system parameters are required here. 

The d i f f i c u l t y with t h i s method i s the evaluation of the 

li k e l i h o o d function. In time series applications, errors in 

successive streamflow measurements are l i k e l y to be 

correlated. Harvey (1981) outlines in his text, how the 

evaluation of the log l i k e l i h o o d function can be si m p l i f i e d 

through the use of the Kalman F i l t e r . An example of thi s 

estimation procedure i s i l l u s t r a t e d by Ledolter (1983) in a 

Management Science context. 

5.2 Estimation Procedure 

An engineer often has to make decisions for a water 

resource system in real time. It i s desirable that the 

variance of the measurements errors be considered constant 

with respect to time. This can be approximately achieved by 

transforming the raw measurements. For each of the models 

which w i l l be used in subsequent studies, the noise variance 

i s estimated by the following procedure. 

1. Determine the appropriate Box-Cox transformation for the 
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o r i g i n a l flow data such that the noise variance of the 

new series i s approximately constant. 

2. For the transformed data, obtain the maximum l i k e l i h o o d 

estimate of the noise variance by using the Kalman 

F i l t e r . 

5.3 Transformation of flow data to achieve Uniform Variance 

Simple applications of stochastic flow models assume 

that the measurement errors are constant for the raw flow 

data. For an example, see Wood (1978). However, a more 

r e a l i s t i c assumption i s that the variance of the flow 

observation error be a function of the flow i t s e l f . Patry 

and Marino (1983) examined various noise assumptions 

commonly used in hydrologic models. In an application by 

Natale & Todini (1976), a linear dependence of the noise 

term's standard deviation on the flow i s assumed. In a 

real-time forecasting s i t u a t i o n , flow prediction i s made 

simpler i f the measurement errors are time-invariant. 

Transforms for s t a b i l i z i n g the variance are avai l a b l e . A 

Box-Cox transform is used in thi s application. In general, 

th i s class of transforms i s appropriate when the variance of 

the observations can be expressed as a function of i t s mean. 

Before the appropriate Box-Cox transformation can be 

determined, the r e l a t i o n between the variance of the 

observations and i t s mean i s investigated. 
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5.3.1 Relation between the Noise Variance and the Flow 

The three ARMAX models of Chapter 4 are used in 

subsequent chapters for the application of the Kalman 

F i l t e r . The state-space formulation where the ARMAX 

co e f f i c i e n t s are the state variables are considered. 

The conditional variance of the flow, given the model 

c o e f f i c i e n t s , i s equal to the variance of the measurement 

error. This i s expressed as the following, where z 

represents the o r i g i n a l flow data measured in m3/s. 

z f c = H x t 5.1 

Var (z, x t) = Var(v ) 5.2 

The time subscript i s now dropped for notational 

convenience. It is postulated that the variance of the 

observation i s a function of the mean: 

Var(z) = a (Mean(z)) k 5.3 

or log [Var(z)] = log[a] + k log [Mean(z)] 5.4 

Equation 5.4 i s a linear equation with k representing the 

slope. It can be determined by regressing log[Var(z)] on 

log[Mean(z)]. Hence, the dependence of Var(z) on Mean(z) can 

be found. The variance and mean of the flow in eqn. 5.4 are 

replaced by l o c a l estimates. These estimates are moving 
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averages of order "s" centered about the current time of 

interest. Flow observations are made from t=1 to T. 

Estimates for the mean and the variance of the flow at time 

t are given by: 

s 
. Z z t + i 

Mean(z) = 1 s = z f c 5.5 
2s+1 

Var(z) = i=-
s 
Z (z t + i - V* 

2s 
1 
2s 

s 
L 3 

i = -s 't + i - z 2.(2s+1) 5.6 

For s=2, the averaging i s with respect to 5 data points; 

hence this i s termed a 5-pt. average. The smaller "s" i s , 

the more l o c a l the estimates are. 

5.3.2 Results 

In a preliminary analysis, estimates are calculated 

with 3, 5, and 7-pt. averages. Results of the regressions 

show l i t t l e differences in the values obtained for k. It i s 

decided that a 5-pt. average w i l l be used to obtain l o c a l 

estimates of the mean and variance of the flow. The time 

period i s from A p r i l 1 to September 30. Ten years of data, 

1970 to 1979 are used to determine the slope k, of eqn. 5.4. 

Results of the regressions are tabulated below: 
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Table 5.1 Values of the slope 

for years 1970-1979 

year k year k 

1970 2.54 1975 2.06 

1971 1 .48 1976 1 .63 

1972 1 .92 1977 1 .70 

1 973 2.00 1 978 2.10 

1974 1 .58 1979 2.64 

The average of the ten k values i s 1.96. 

5 .3 .3 Conclusions 

The averaged k value of 1.96 indicates that the 

variance of the measurement error i s approximately 

proportional to the square of the flow (eqn. 5.3). In other 

words, the standard deviation of the noise term i s d i r e c t l y 

proportional to the flow. A constant variance for the 

measurement error would result in k being close to zero. 

5.3.4 B o x - C o x Transforms 

A class of transforms used for s t a b i l i z i n g the variance 

is known as the Box-Cox transforms. An appropriate 

transformation of the raw flow data can be made. The 

resulting series w i l l have an error term whose variance i s 

approximately constant with time. These tranforms are used 
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in situations where the variance can be expressed as a 

function of the mean M; Var(z) = 0(M) where <t> is the 

functional dependence. 

The f i r s t order Taylor Series expansion of the 

transformed data i s : 

It i s desired that Var (g(z)) be approximately constant. 

The functional dependence </>, determined in section 

5.3.3, i s z 2 . Evaluation of eqn. 5.8 gives the appropriate 
transformat ion: 

g(z) = g(M) + g'(M)(z-M) 5.7 

Var (g(z)) « g'(z) 2 0(M) 5.8 

y = g(z) = ln(z) 5.9 

Eqn. 5.9 indicates that the incoming flow data should be 

tranformed by taking the natural logarithms. The new series 

formed by the y's, has approximately uniform variance. 
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5.4 Maximum Likelihood Estimation of the Noise Variance 

5.4.1 Theory 

Consider a set of T dependent observations drawn from a 

multivariate normal, y_ MVN(jz,a2V). The l o g - l i k e l i h o o d 

function, log £(y 1 r y 2 f « « . y T) = log £(y_) i s : 

-| log 2n - |log a2 - \ log | V | - (y_-M)'V"1 (y_-u_) 5.10 

D i f f e r e n t i a t i n g the above expression with respect to a 2 and 

equating i t to 0 yields the maximum l i k e l i h o o d estimate of 

a 2. However, the evaluation of the above expression is time 

consuming due to | v j ; and V" 1. This is because V i s a 

non-diagonal matrix as the individual errors are s e r i a l l y 

correlated. 

Schweppe (1965) showed that an equivalent expression 

for log £(y_) can be written in terms of the innovations, v^. 

It i s defined as the observation forecast error, y t-y f c. 

These innovations are independently normally d i s t r i b u t e d 

with mean 0, and variance a2t^, where f f c i s calculated by 

the Kalman algorithm. Hence, £ i s a set of independent 

errors drawn from a multivariate normal, MVN(0, a 2D). D i s a 

diagonal matrix defined as: 
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f 

D = 

The equivalent l o g - l i k e l i h o o d expression, log £(y_) i s : 

Because i s a linear transformation of ŷ . which i s 

normally d i s t r i b u t e d , equations 5.10 and 5.11 are 

equivalent. 

The forecast error , and i t s variance f̂ . are 

quantities which can be computed by the Kalman F i l t e r at 

each time step, as part of the Kalman algorithm. This i s 

achieved by recasting the time series model into the 

state-space framework. Hence, the Kalman F i l t e r i s used as a 

tool for evaluating the l i k e l i h o o d of T dependent 

observations from a multivariate normal. 

Differen t i n g the above expression with respect to a2 

y i e l d s the formula for a2. 

-|log 211 - | logo-2 - ^ 2 log f -
t=1 

T 

t=1 f 5.11 

5.12 

The quantities, and f f c are given by the Kalman F i l t e r ; 

where f f c = 1 + HPH'. 
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5.4.2 Results 

The three ARMAX models given in Chapter 4 w i l l be used 

for flow forecasting in Chapters 6, 7, and 8 respectively. 

For each model, an estimate of the noise variance based on 

the transformed flow data i s required. Five estimates are 

obtained for each model. Flow records from 1976-1980 are 

used, with the observations taken from A p r i l 1 to 

September 30. Results are given below. 

Table 5.2 Maximum Likelihood Estimates 

of the Noise Variance 

year Model 1 Model 2 Model 

AR(1)* TRANSFER ARMAX 

FUNCTION 

1 976 .00201 .01237 .00209 
1977 .00264 .01578 .00276 

1 978 .00122 .01081 .00175 

1979 . .00233 .01085 .00259 

1980 .00287 .01888 .00303 

R 
av 

.0022 .01 37 .0024 

* Descriptions of these models are given in Chapter 4, 

section 4.2. 

Spe c i f i c a t i o n of the noise variance for the Kalman algorithm 

i s based on R_„, in subsequent chapters 6 to 8. 
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5.5 Summary 

The t h r e e ARMAX models d e s c r i b e d i n Chapter 4 w i l l be 

used f o r f l o w f o r e c a s t i n g i n C h a p t e r s 6, 7, 8 r e s p e c t i v e l y . 

For each model, the v a r i a n c e of the measurement e r r o r a t 

each time s t e p i s unknown. T h i s c h a p t e r i s concerned w i t h 

the e s t i m a t i o n of n o i s e v a r i a n c e . 

In r e a l - t i m e f o r e c a s t i n g , i t i s d e s i r e d t h a t the 

v a r i a n c e of the e r r o r term be t i m e - i n v a r i a n t ; a l t h o u g h i n 

p r a c t i c e , t h i s i s r a r e l y t r u e . 

E s t i m a t i o n of the n o i s e v a r i a n c e f o r each model i s 

d i v i d e d i n t o two p a r t s and the c o n c l u s i o n s a r e : 

1. R e g r e s s i o n s of l o g [ V a r ( f l o w ) ] on l o g [ M e a n ( f l o w ) ] 

i n d i c a t e t h a t the v a r i a n c e i s p r o p o r t i o n a l t o the square 

of the f l o w . By u s i n g the Box-Cox t r a n s f o r m , i t i s 

det e r m i n e d t h a t the raw f l o w d a t a s h o u l d be t r a n s f o r m e d 

by l n ( f l o w ) . The n o i s e v a r i a n c e of the new s e r i e s i s 

a p p r o x i m a t e l y u n i f o r m . 

2. The method of maximum l i k e l i h o o d i s used t o e s t i m a t e t h e 

n o i s e v a r i a n c e s of the t r a n s f o r m e d d a t a f o r each model. 

The l o g - l i k e l i h o o d e x p r e s s i o n i s w r i t t e n i n terms of t h e 

i n n o v a t i o n s and e v a l u a t e d by u s i n g the Kalman F i l t e r . 

Average of the maximum l i k e l i h o o d e s t i m a t e s f o r each 

model i s g i v e n . 
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Table 5.3 Averaged Maximum Likelihood Estimate 

of the Noise Variance 

Model 1 

.0022 

Model 2 

.0137 

Model 3 

.0024 



6 . A P P L I C A T I O N : A R ( 1 ) 

An autoregressive model of order 1, AR(1) i s considered in 

this chapter. It is used to predict flows at Hope one day in 

advance. Three ways of formulating the AR(1) model into 

Kalman state-space format are investigated. Hence, three 

schemes are used to forecast the flow at Hope. The objective 

of t h i s study i s to compare forecasting performances of the 

three state-space formulations, based on the following three 

c r i t e r i a : 

1. RMS error of the flow forecast, 

2. maximum r e l a t i v e forecast error, and 

3. number of times the forecast error i s greater than 25% 

of the true flow. 

From the study, the following conclusions are drawn. 

The best forecasting performance i s obtained for the scheme 

which uses the Kalman F i l t e r to estimate the AR c o e f f i c i e n t , 

a. As the estimate i s given resursively, flow prediction i s 

made at each time step with the most recent estimate of a. 

On the other hand, the Kalman F i l t e r can be used to 

estimate the flow d i r e c t l y . The formulation which models the 

flow as the state, and the error term as the observation 

noise r e s u l t s in the worst forecasting performance. 

Correction to the flow estimates are not adequate as the 

Kalman gain matrix i s too small. 

Formulating the AR process as the state equation i s 

equivalent to not using the Kalman F i l t e r at a l l . The 

forecasting performance can be improved by casting the model 

67 
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in state-space form and applying the f i l t e r to estimate the 

AR c o e f f i c i e n t recursively. 

The model used to describe the streamflow phenomenon at 

Hope i s: 

q t = a q t - 1 + e t 6 ' 1 

where q = ln(flow) at Hope 

a = autoregressive c o e f f i c i e n t 

efc = white noise ~ N(0,a 2) 

6.1 Description of the Forecasting schemes 

Three schemes are used to forecast flows at Hope and 

are described below. The streamflow phenomenon i s 

represented by the AR(1) model of eqn. 6.1. 

6.1.1 Properties of Scheme 1 

The AR(1) model i s recast into state-space framework as 

follows: 

State eqn: afc = a t _ 6.2 

Obs. eqn: qfc = q 4._ 1a t + 6.3 

The AR(1) process is written as the observation equation, 

with a i s the state variable. Hence, the Kalman F i l t e r i s 

used to give recursive estimates of the AR c o e f f i c i e n t . 
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Because time-invariant states are considered, there is no 

noise term associated with a, and thus Q = 0. The 1-step 

flow prediction i s given by §t+1 = ^t^t+1/t ' "here 

<*t+l/t ^ s based on the l a t e s t state estimate given by the 

f i l t e r . Under th i s scheme, the noise variance i s required as 

input to the Kalman algorithm. 

6.1.2 Properties of Scheme 2 

The state-space representation of the AR(1) model i s : 

State eqn. q f c = a q t - 1 + efc 6.4 

Obs. eqn. q f c = q f c 6.5 

In contrast to the previous scheme, the AR(1) process is 

written as the state equation, with qfc as the state 

variable. Under th i s formulation, an estimate of a is 

required prior to forecasting as i t is assumed known by the 

Kalman algorithm. An approximate least squares estimate, a L g 

i s used. This estimate of a i s held fixed throughout the 

forecasting period. Forecasts are given by the prior 

estimate of the state vector, Q t + 1/ t
 = a L S ^ t ' 

6.1.3 Properties of Scheme 3 

This f i n a l scheme also uses the Kalman F i l t e r to give 

estimates of the flow d i r e c t l y . However, the AR(1) model is 

" s p l i t up" in the state-space formulation: 
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State eqn: q f c = a q t - 1 6.6 

Obs. eqn: qmt q f c + efc 6.7 

qmt represents the measured flow. Although q f c i s the state 

variable, the noise term i s modelled as the measurement 

noise. Again, an estimate of a is required for the algorithm 

and a Lg i s used. Forecasts are given by the f i l t e r as Q^+1/t 

= aLgQ t« This d i f f e r s from Scheme 2 in the expression for 

q t , as w i l l be shown in section 6.5.4. An estimate for the 

noise variance i s also required. 

Table 6.1 summarizes the properties of the three schemes. 
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Table 6.1 Properties of the forecasting schemes 

Scheme 1 Scheme 2 Scheme 3 

AR(1) = obs. eqn. AR(1) = state eqn. AR(1) " s p l i t up" 

estimates of a are 

given recursively 

by the Kalman 

F i l t e r 

estimate of a2 

required 

estimate of a 

required prior to 

forecasting 

equivalent to no 

Kalman F i l t e r i n g 

estimate of a 

required prior to 

forecast ing 

estimate of o2 

required 
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6.2 General Discussion 

For Scheme 1, the estimate of a can be updated at each 

time step through the use of the Kalman F i l t e r . The 

forecasting performance can be affected by the input 

s p e c i f i c a t i o n of the Kalman algorithm. For thi s formulation, 

these inputs are the i n i t i a l s p e c i f i c a t i o n s for the AR 

c o e f f i c i e n t and the noise variance; i . e . a0, P 0» R. 

Schemes 2 and 3 use the Kalman F i l t e r to give estimates 

of the flow d i r e c t l y , as q f c i s the state variable. An 

estimate of a i s required prior to forecasting as i t i s 

assumed known by the Kalman algorithm. The main disadvantage 

of these schemes is that a i s held fixed during the 

forecasting period. Hence, the performance of schemes 2 and 

3 are not expected to be better than that of Scheme 1. 

Under Scheme 2, the 1-step flow prediction i s given by 

the prior estimate of the state q t + 1 y t = a L Sq f c. The lat e s t 

estimate of the flow i s : 

q t = $ t / t_. + K t[q t-q t] 6.8 
The expression for the Kalman gain i s : 

K t = P t / t - 1 H ' t H P H ' + R l " 1 6.9 
where P T / T _ 1 = a ^ P ^ + Q 6.10 

Spe c i f i c a t i o n of Q aff e c t s Kfc, and thus q t . In thi s 

a p plication, H=1 and R=0 leads to a constant gain matrix, 

Kt=1. Therefore, regardless of the value for Q, Kfc i s the 

same even though p
t / t _ i changes. Because K=1, equation 6.8 

i s equivalent to: 
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6.11 

Hence the 1-step forecast i s : 

^t+1/t = aLS q t 6.12 

This expression for the 1-step forecast could be obtained 

before the AR(1) model was cast into state-space form. 

Hence, for th i s situation (K f c=l), Scheme 2 i s equivalent to 

not using the Kalman F i l t e r . The s e n s i t i v i t y of t h i s 

scheme's performance is studied with respect to 

sp e c i f i c a t i o n of a. 

Under Scheme 3, the Kalman gain i s not equal to 1. In 

this case, the performance of the f i l t e r i s expected to 

depend on the sp e c i f i c a t i o n of q 0 , P 0, R and a. 

6 . 3 Experimental Procedure 

The forecasting performance of each scheme i s 

investigated. The data used are streamflow measurements at 

Hope, from A p r i l 1 to September 30, for the years 1981 1982 

1983. Their performance is measured by three indicators 

(PI): 

1 . 

PI 
2 
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This r e l a t i v e root mean square error (RRMS) expresses the 

average magnitude of the forecast error as a f r a c t i o n . It i s 

measured in terms of the actual units; i . e . y i s in m3/s. 

2. PI 2 = maximum of the absolute r e l a t i v e error, 

3. P I 3 = number of times the absolute flow forecast error 

error > 25% of the actual flow. 

A l l three indicators are such that the smaller their values, 

the better the performance. To summarize, PI, represents the 

average error, PI 2 denotes the maximum error, and PI 3 

indicates the frequency of poor forecasts. 

Schemes 2 and 3 require estimates for the AR 

c o e f f i c i e n t prior to forecasting. The method of least 

squares i s used to obtain , by treating the time series 

model as a regression model. An approximate least squares 

estimate (LSE) for a is the sample c o r r e l a t i o n c o e f f i c i e n t 

between q t and Q t_i« Taking the dependent variable as q f c, 

and the independent variable as Q t _ i r five regressions are 

done and the sample co r r e l a t i o n c o e f f i c i e n t i s obtained in 

each case. Data used are streamflow records at Hope from 

A p r i l 1 to September 30 for the years 1976-1980. The average 

of the f i v e estimates i s used as a for forecasting. 
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Schemes 1 and 3 require the noise variance to be known. 

Si m i l a r l y , this has to be estimated prior to forecasting and 

the method of maximum l i k e l i h o o d i s used in thi s case. The 

same flow records as above are used. Assuming normality for 

the observations, the approximate maximum l i k e l i h o o d 

estimates (MLE) of a2 were obtained in Chapter 5. Again, the 

average of the five estimates is used as R. 

6.4 Results 

6.4.1 Estimate of AR c o e f f i c i e n t 

The LSE of a obtained for the years 1976-1980, i s 

presented below. 

Table 6.2 Least Squares Estimates of the 
autoreqressive c o e f f i c i e n t 

year 

1976 

1 977 

1 978 

1 979 

1 980 

average 

It i s noted that the estimates of a are close to 1. 

aLS 

.9963 

.9928 

.9959 

.9969 

.9945 

.995 



76 

6.4.2 Estimate of the noise variance 

The MLE of a2 obtained in Chapter 5 for the years 

1976-1980 are given. 

Table 6.3 Maximum Likelihood Estimates 
of the noise variance 

year MLE(a2) 

1976 .00201 

1977 .00264 

1978 .00122 

1979 .00233 

1980 .00287 

average .0022 

The average value i s rounded to .002 for use in the Kalman 

algorithm. 

6.4.3 Performance Indicators for Scheme 1 

The f i l t e r ' s performance i s tested with respect to a0, 

P 0, and R. The range of parameter values used are given 

below, followed by the r e s u l t s . 
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Table 6.4 Range of values for input parameters 

Parameter lower l i m i t upper l i m i t 

a 0 .1 2 

P 0 .1 10 

R 2X10- 6 2 

Table 6.5a Values of PI, for Scheme 1 

ao=1.0 Po=3.0 R=.002 unless otherwise stated 

Parameter value 1981 1982 1983 

a l l conditions 4% 5% 4% 

R=2X10"6 4% 5% 5% 

Table 6.5b Values of PI 2 for Scheme 1 

Parameter value 1981 1982 1983 

a l l conditions 17% 20% 14% 

R=2X10-6 18% 20% 12% 
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Table 6.5c Values of PI 3 for Scheme 1 

Parameter value 1981 1982 1983 

a l l conditions 0 0 0 

R=2X10" 6 0 0 0 

Results show that the f i l t e r i s very robust to 

sp e c i f i c a t i o n s of a 0 and P 0 for a l l three performance 

indica t o r s . It is noted that in this a pplication, the f i l t e r 

i s also insensitive to the s p e c i f i c a t i o n of R. 

6.4.4 Performance Indicators for Scheme 2 

This scheme is equivalent to forecasting without the 

Kalman F i l t e r . It was shown in section 6.2 that forecasts do 

not depend on the value of the noise variance in this 

a p p l i c a t i o n . The forecasting performance i s examined with 

respect to s p e c i f i c a t i o n of a. The range of values used are: 

Table 6.6 Range of values for a 

Parameter 

a 

lower l i m i t 

.95 

upper l i m i t 

1 .05 



79 

Table 6.7a Values of PI, for Scheme 2 

Parameter value 1981 1982 1983 

a=.95 34% 35% 34% 

a=.99 9% 10% 9% 

a=1.0 4% 5% 4% 

a=1.0l 10% 10% 10% 

a=1.05 51% 52% 51% 

Table 6.7b Values of PI 2 for Scheme 2 

Parameter value 1981 1982 1983 

a=.95 44% 48% 40% 

a=.99 24% 28% 20% 

o=1.0 18% 21% 13% 

O=1.01 16% 23% 18% 

o=1.05 66% 74% 64% 
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Table 6.7c Values of PI 3 for Scheme 2 

Parameter value 1981 1982 1983 

a=.95 182 179 182 

a=.99 0 1 0 

a=1.0 0 0 0 

o=1.01 0 0 0 

a=1.05 179 180 182 

A l l three performance indicators show that the 

forecasting performance is sensitive to s p e c i f i c a t i o n of a. 

The best performance shows an average RRMS error (PI,) of 

5%, while the worst performance (for a=1.05) results in 50%. 

The forecasting period spans over 183 days, from A p r i l 1 to 

September 30 of each year. Table 6.7c shows that for a=.95 

or 1.05, the forecast error i s greater that 25% of the 

actual flow at almost every time step. 

6 . 4 . 5 Performance Indicators for Scheme 3 

The forecasting performance i s tested with respect to 

o-r Qo f po r and R. The range of values for the parameters 

are: 
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Table 6.8 Range of values for input parameters 

Parameter lower l i m i t upper l i m i t 

a .99 1.01 

q 0 1 15 

P 0 .3 30 

R 2X10" 6 20 

Results are presented below. 

a=1.0 qo= 7 Po = 3 R=.002 unless otherwise stated. 

Table 6.9a Values of PI, for Scheme 3 

Parameter value 1981 1982 1 983 

a=.99 91% 92% 92% 

a=1 .0 46% 48% 44% 

a=1.01 24030% 23605% 23234% 

R=20 46% 49% 45% 

R=2 46% 48% 44% 

R=2x10"6 46% 48% 44% 

a l l values of q 0 and P 0 46% 48% 44% 
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Table 6.9b Values of PI 2 for Scheme 3 

Parameter value 1981 1982 1983 

a=.99 1 00% 100% 1 00% 

a=1.0 1 30% 77% 109% 

a=1.01 80625% 80848% 72877% 

R=20 121% 78% 101% 

R=2 1 29% 77% 108% 

R=2x10"6 131% 77% 1 10% 

a l l values of q 0 and P 0 1 30% 77% 1 09% 

Table 6.9c Values of PI 3 for Scheme 3 

Parameter value 1 981 1982 1983 

a=.99 174 1 75 1 77 

a=1 .0 1 16 1 30 1 33 

a=1.01 1 78 174 1 72 

R=20 1 22 1 25 1 40 

R=2 1 1 5 129 1 32 

R=2X10 - 6 1 16 130 1 32 

a l l values of q 0 and P 0 116 130 133 

A l l three Performance Indicators show that t h i s i s the 

worst forecasting scheme as even the smallest value for PI, 

is approximately 50%. Although the performance i s robust to 
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s p e c i f i c a t i o n of q 0 , P 0, and R; i t is very sensitive to the 

s p e c i f i c a t i o n of a. From Table 6.9a, a=1.0 results in the 

smallest PI,. However, using a=.99 doubles the average RMS 

error. Moreover, using a=1.0l leads to f i l t e r divergence. 

6.5 Discussion of Results 

6.5.1 Forecasting Performance of Scheme 1 

For Scheme 1, the f i l t e r ' s robustness to the AR 

c o e f f i c i e n t , a i s not surprising. It was found in Chapter 3 

that s p e c i f i c a t i o n of x 0 and P 0 has l i t t l e e f fect on the 

forecasting performance. It is also noted that for t h i s 

application, the f i l t e r i s also robust to s p e c i f i c a t i o n of 

the noise variance. 

Hence, this formulation of the Kalman F i l t e r i s most 

at t r a c t i v e in real-time forecasting, because a) the 

forecasting performance i s good; and b) the f i l t e r i s robust 

to i n i t i a l s p e c i f i c a t i o n of model c o e f f i c i e n t s . Indeed, the 

main advantage of t h i s formulation is that a can be 

continually adjusted by using the incoming flow data. 

Table 6.2 shows that the least squares estimates of a 

are close to 1. In fact, they are constrained to be less 

than 1 as they are the sample co r r e l a t i o n c o e f f i c i e n t s . 

However, the Kalman F i l t e r does not have th i s l i m i t a t i o n . 

Consequently, the Kalman F i l t e r can be used to estimate the 

AR c o e f f i c i e n t for non-stationary systems where a i s greater 

than 1. For t h i s application, the estimates of a given by 
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the Kalman F i l t e r are also close to 1. Hence, they support 

the regression estimates. 

6.5.2 Forecasting Performance of Scheme 2 

The AR(1) model i s written as the state equation of the 

Kalman model. For K=1, t h i s i s equivalent to forecasting 

without the Kalman F i l t e r . An estimate of a i s required 

prior to forecasting. Results show the f i l t e r ' s s e n s i t i v i t y 

to s p e c i f i c a t i o n of the AR c o e f f i c i e n t . Values of a outside 

a 5% range with respect to a L g results in larger PI values. 

In practice, a cannot be estimated with an accuracy of a few 

percent. Even s l i g h t seasonal v a r i a t i o n can cause the true 

value of a to wander by t h i s amount. 

6.5.3 Forecasting Performance of Scheme 3 

Forecasting under Scheme 3 r e s u l t s in the worst 

performance. Large increases in a l l Performance Indicators 

are noted when s p e c i f i c a t i o n of a i s changed by as l i t t l e as 

1% from a L g . Therefore, t h i s i s not a p r a c t i c a l forecasting 

procedure, as a cannot be estimated with t h i s degree of 

accuracy. Poor estimates of a once chosen cannot be 

corrected as i t i s held fixed during the forecasting period. 

Flow predictions are given by: 

$t+l/t = aLS $t 6 * 1 3 

q. i s the Kalman estimate of the state vector for time t: 

$t = V t - 1 + K
t

[ ( 3 m t " q i \ ] 6.14 



85 

or $t = q t / t - i ^ - V + K t q m t 6 - 1 5 

There are two l i m i t i n g cases of in t e r e s t : 

1. K
t

= 1 results in flow forecasts given by q t + 1 y t = a L Sqm t. 

This i s equivalent to not using the Kalman F i l t e r 

(Scheme 2). 

2. Kfc=0 results in flow forecasts given by Q t + i / t

 = a

L s 

q t / t - 1 * T n i s corresponds to not using the measurement 

information at time t. This scheme leads to propagation 

of errors as t increases. 

In fact, t h i s i s the reason why t h i s forecasting scheme 

yield s such poor re s u l t s . Successive flow predictions are 

based on the previous prediction without consideration of 

the measurements. This then explains why a=1.0l results in 

much larger Performance Indicators than a=.99. Flow 

forecasts in this situation is approximated by q 0 raised to 

an exponent a f c, where q 0 can be taken to be the i n i t i a l 

flow. For large t, 1.01*" r e s u l t s in forecasts, which deviate 

from the actual flow by a greater amount than .99*". It i s 
shown below that for t h i s a p p l i c a t i o n , Kfc i s approximately 

0. 

For H=1, the expression for the Kalman gain reduces to: 

K t " P t / t - 1 / [ P t / t - 1 + R ] 6 ' 1 6 

K t i s small i f p
t / t _ i i s much less than R. 

Starting with P 0, Pyo = a 2

L s P ° + °- ~ p ° • 
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Hence, K, ~ p 0/[ p 0+R], which gives P, ^ ( I - K ^ P Q . 

1. If a large P 0 i s spe c i f i e d , then K,~1 which results in 

P^O. Subsequent P F C w i l l a l l be close to 0. 

2. If P 0 i s small compared to R, then K^O. However, P,~P 0 

which i s s t i l l small. Hence after a couple of time 

steps, p
t / / t _ i approaches 0 regardless of P 0 . 

This situation should be distinguished from Scheme 1 where 

the AR process is written as the observation equation. In 

that case, a2 = R also. The state variable however, i s the 

AR c o e f f i c i e n t . Hence the Kalman gain i s applied to a. Since 

small adjustments to a are adequate for improving the 

observation forecast, only a small Kalman gain i s necessary. 

If the state variable i s the flow (as in Scheme 3) then 

small Kfc values are not s u f f i c i e n t to correct the flow 

estimates. 

Therefore, this forecasting scheme i s the worst one 

considered in t h i s chapter because: 

1. No adjustment can be made to a. 

2. Flow prediction at each time step i s not corrected 

adequately as K i s too small. 
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6 . 6 Summary 

The AR(1) model is used to describe streamflow 

phenomenon at Hope. Results for the performance of the 

forecasting schemes are given below. 

Scheme 1 i s the best forecasting procedure. This 

corresponds to formulating the AR(1) model in the 

observation equation with a as the state v a r i a b l e . Hence, 

thi s allows continual updating of the AR c o e f f i c i e n t . The 

scheme i s best both in terms of flow forecasts obtained, and 

robustness to i n i t i a l s p e c i f i c a t i o n of a. 

Scheme 2 formulates the AR(1) process as the state 

equation in the Kalman model. This is equivalent to not 

using the f i l t e r at a l l . Although the performance can be as 

good as Scheme 2, forecasts are sensitive to the 

s p e c i f i c a t i o n of the AR c o e f f i c i e n t . 

Scheme 3 i s the worst forecasting procedure. Not only 

are the flow predictions sensitive to a, the performance i s 

always poor. Under th i s scheme, a small Kalman gain leads to 

i n s u f f i c i e n t correction to qJ. + 1/4.. 



7. APPLICATION: TRANSFER FUNCTION MODEL 

The AR(1) model in chapter 6 gives the 1-step ahead forecast 

for the flow at Hope. Application of the Kalman F i l t e r does 

not necessarily y i e l d improved flow predictions. The best 

forecasting scheme i s to use the Kalman F i l t e r to estimate 

the AR c o e f f i c i e n t recursively. This allows flow predictions 

to be made with the la t e s t estimate, a f c. The formulation 

corresponds to writing the AR(1) model in the observation 

equation. 

Often in flood management however, forecasts are 

required for several days in advance. There i s a problem 

with using the AR(1) model in a Kalman F i l t e r framework to 

predict observations more than 1 step ahead. In the Kalman 

model, Hfc which relates the observation to the state, i s 

considered known at time t. For the 1-step forecast, 
H

t + 1 = Q t« But for the 2-step forecast, H f c + 2 = q t + 1 « The 

problem is that tomorrow's flow is unknown. In practice, the 

1-step forecast i s used as an estimate. However, the 

variance of this forecast error (<3t + 2 ~ Q t + 2^' should not be 

calculated using the Kalman algorithm. One alternative i s to 

use a di f f e r e n t s t a t i s t i c a l model, which avoids t h i s 

problem, to predict the flows 2 days in advance. 

A transfer function model i s used to relate flows from 

upstream stations to the flow at Hope. This contrasts with 

the time series model of Chapter 6. In this case, the 

independent variables do not involve past values of the flow 

at Hope, the dependent vari a b l e . This input-output model 
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gives the 2-day ahead forecast at d a i l y i n t e r v a l s , as 

measurements are received everyday. The model used to 

describe the flow at Hope i s a transfer function model with 

constant c o e f f i c i e n t s : 

q H
t = [ q T

t _ 2 q N
t _ 2 ] I + e

t 7. 

where q = ln(flow) 

§_ = vector of c o e f f i c i e n t s 

e = white noise~N(0,a 2=R) 

station superscripts: 

H = Hope 

T = Texas Creek 

N = Near Spences Bridge 

Stations T and N are located upstream of Hope. Their 

geographic locations are shown in Chapter 1 , F i g . 1 . 1 . 

The objective i s to determine whether flow forecasts 

given by th i s model can be improved by using the Kalman 

F i l t e r to estimate §_ in real-time. Performance of the 

forecasting schemes are based on the same indicators used 

for the A R ( 1 ) study. 

The following conclusions are drawn: 

1. Flow forecasts are not improved s i g n i f i c a n t l y by the 

Kalman F i l t e r to be of p r a c t i c a l i n t e r e s t . 
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2. However, under the Kalman F i l t e r scheme, forecasting 

performance i s robust to s p e c i f i c a t i o n of £. 

7.1 Description of Forecasting Schemes 

Only two forecasting schemes are considered in this 

study. In Chapter 6, three state-space formulations of the 

AR model were considered. It was found that the formulation 

which models the AR c o e f f i c i e n t as the state y i e l d s improved 

forecasts. Hence, this i s the only state-space formulation 

considered in th i s study. 

7.1.1 Properties of Scheme 1 

No Kalman f i l t e r i n g i s employed in the f i r s t scheme. 

The transfer function model assumes that the c o e f f i c i e n t s 

are time-invariant. Flow 2 days in advance i s given by the 

1-step forecast: 

q H

t + 2 - [ Q T

t q N

t l I L S 7.2 

where j 3 L S i s the least squares estimate obtained prior to 

forecasting. 

7.1.2 Properties of Scheme 2 

Kalman F i l t e r i n g i s used and the transfer function 

model i s cast into state-space format as follows: 
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= "»'t-r 
= _»'t-i. 

7.3 

q H
t = [ Q T

t _ 2 q N
t _ 2 ] lt + e f c 7.4 

The c o e f f i c i e n t s j31, |32, are modelled as time-invariant 

states. Therefore, the Kalman F i l t e r i s used to give 

estimates of £ f c recursively at each time step. The flow 2 

days in advance i s : 

q " t + 2 - [ q T
t q N

t ] lt 7.5 

where |?t i s based on the l a t e s t estimate given by the Kalman 

F i l t e r . In order to apply the Kalman algorithm, an estimate 

of the noise variance is required. 

7.2 General Discussion 

Results of the previous study imply that the scheme 

which does use the Kalman F i l t e r would y i e l d better flow 

forecasts. This i s because £ i s estimated recursively in 

real-time. Consequently, flow predictions are made at each 

time step with the latest estimate of the c o e f f i c i e n t s . In 

addition, i t i s expected that under Scheme 2, the 

forecasting performance would be robust to the i n i t i a l 

s p e c i f i c a t i o n , j 3 0 . This i s not l i k e l y to be true for Scheme 

1. Thus, performance of Scheme 1 i s examined with respect to 

d i f f e r e n t values of j 3 r c : « Scheme 2 i s examined with respect 
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to input s p e c i f i c a t i o n of J30 and R. 

It i s not known how the forecasting performance of t h i s 

proposed model compares with that of the autoregressive 

model. This i s a question of model i d e n t i f i c a t i o n and i s not 

the main objective of t h i s study or thesis. However, the 

following reasoning can be given. Stations with large 

drainage areas such as Hope, have r e l a t i v e l y slow system 

response. This is due to the storage c h a r a c t e r i s t i c s of 

large basins. Quimpo (1973) showed that t h i s phenomenon can 

be represented by an autoregressive process. With t h i s 

consideration, i t would not be surprising to find that the 

forecasting performance of the AR(1) model i s better than 

that of the transfer function model. 

7.3 Experimental Procedure 

The forecasting performance of each scheme is 

investigated using streamflow measurements from three 

stations: Hope, Texas Creek, and Near Spences Bridge. The 

forecasting period i s from A p r i l 1 to September 30 for 1981 

1982 and 1983. The performance of each scheme i s measured by 

the three indicators as defined in Chapter 6. These are: 

1. PI, which represents the average error 

2. PI 2 which denotes the maximum error 

3. PI 3 which indicates the frequency of poor forecasts 

Small PI values are i n d i c a t i v e of good forecasting 

performance. 
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Flow p r e d i c t i o n under Scheme 1 r e q u i r e s an e s t i m a t e f o r 

J3 p r i o r t o f o r e c a s t i n g . The method of l e a s t squares i s used 

t o o b t a i n £ Lg. Flow r e c o r d s used f o r t h i s e s t i m a t i o n a r e 

based on f i v e y e a r s of d a t a , 1976-1980. The same time p e r i o d 

of the year i s used; A p r i l 1 t o September 30. An average of 

the f i v e l e a s t squares e s t i m a t e s (LSE) i s used as J3 f o r 

f o r e c a s t i n g . 

R e a l - t i m e f o r e c a s t i n g w i t h the Kalman F i l t e r r e q u i r e s 

an e s t i m a t e f o r the n o i s e v a r i a n c e , R. Approximate maximum 

l i k e l i h o o d e s t i m a t e s (MLE) were o b t a i n e d i n Chapter 5 f o r 

the y e a r s 1976-1980. A g a i n , the average of the s e f i v e 

e s t i m a t e s i s used as s p e c i f i c a t i o n f o r R. 

7.4 R e s u l t s 

7.4.1 E s t i m a t e of the model c o e f f i c i e n t s 

R e g r e s s i o n a n a l y s i s g i v e s v a l u e s of p 2 c l o s e t o 0 f o r 

a l l y e a r s , 1976-1980. Hence o n l y the l e a s t s q uares e s t i m a t e s 

f o r |3, a r e g i v e n below. 
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Table 7.1 Least Squares Estimates of 
the model c o e f f i c i e n t 

year ^LS 

1976 (1 .0572) 

1977 (1.0514) 

1978 (1.0745) 

1 979 (1.0556) 

1980 (1.0675) 

average (1.0613) 

The regression results indicate that flows from station N do 

not have a s i g n i f i c a n t contribution in predicting the 2-day 

advance flow at Hope. Because j32 = 0, only the station at 

Texas Creek is used as the upstream input in thi s 

input-output model. Thus, p ° A V = 1.0613. 

7 . 4.2 Estimate o f the noise variance 

The f i v e MLE of a2 from Chapter 5 are given below. 
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Table 7.2 Maximum Likelihood Estimates 
of the noise variance 

year R 

1976 .01237 

1977 .01578 

1978 .01081 

1979 .01085 

1980 .01888 

average .0137 

R i s rounded off to .015 for the Kalman algorithm input 

7.4.3 Performance Indicators for Scheme 1 

Results of the performance measures using j3 A V are given 

below. 

Table 7.3 Performance Indicators for Scheme 1 

PI i 

PI 2 
PI 3 

1981 

10% 

31% 

3 

1982 

1 7% 

48% 

24 

1 983 

18% 

41% 

35 

The analagous scheme of the AR(1) model i s compared. 
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This corresponds to flow prediction using a L g without the 

Kalman F i l t e r . 

Table 7.4 Performance Indicators for the AR(1) model 

1981 1982 1983 

PI , 5% 7% 6% 

PI 2 21% 24% 16% 

PI 3 0 0 0 

Values of the PI for the transfer function model (Table 7.3) 

are higher than those of the AR(1) model (Table 7.4). This 

indicates a l e v e l a performance which is not as good as that 

obtained with the autoregressive model. 

The s e n s i t i v i t y of Scheme 1 with respect to input 

s p e c i f i c a t i o n i s examined. Streamflow data from 1982 are 

used as t h i s resulted in the worst performance. 

Table 7.5 S e n s i t i v i t y of the Performance Indicators 
to the model c o e f f i c i e n t 

0=1.0613 0=1.04 

PI, 17% 20% 

PI 2 48% 46% 

PI 3 24 37 
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The f i r s t value of 0 i s 0 Ay. The second value of 0 i s an 

ar b r i t r a r y choice which represents a 2% change from the 

averaged f3A V» There i s an increase in PI, (average error) 

and PI 3 (frequency of poor forecasts) for 0=1.04. 

7 . 4 . 4 Performance Indicators for Scheme 2 
» 

Values of the performance indicators for Scheme 2 are 

presented: 

Table 7.6 Performance Indicators for Scheme 2 

P I 1 

P I 2 

P I , 

1981 

9% 

40% 

3 

1 982 

1 9% 

54% 

32 

1983 

1 3% 

33% 

12 

Tables 7.3 and 7.6 are compared. For the 1981 data, 

comparable forecasting performance i s obtained for the two 

schemes. In both cases, the number of times the forecast 

error i s in excess of 25% of the actual flow, (PI 3) i s 

minimal. 

The 1982 data reveal a s l i g h t l y larger difference in 

the performance indicators between the two schemes. A l l 

three performance indicators are larger for Scheme 2 which 

uses the Kalman F i l t e r . This implies that better flow 

forecasts can be obtained without continual updating of £. 
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However, performance indicators for the 1983 data 

indicate that better forecasts are obtained i f the Kalman 

F i l t e r i s used. 

For t h i s scheme, the s e n s i t i v i t y of i t s performance 

with respect to the i n i t i a l s p e c i f i c a t i o n of j3, and R i s 

examined using the 1982 data. The range of values used for 

these parameters are: 

Table 7.7 Range of Values for input parameters 

Parameter value lower l i m i t upper l i m i t 

i n i t i a l £ (-.1.9) (1.1) 

R .0015 15 

Under a l l input s p e c i f i c a t i o n s , the PI values are the same. 

Table 7.8 Performance Indicators for Scheme 2 

PI 1 

PI 2 

PI 3 

1 9% 

54% 

32 

This contrasts from Table 7.5 where the PI values under 

Scheme 1 are sensitive to the s p e c i f i c a t i o n of j3. 
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7.5 Discussion of Results 

Performance Indicators for the two schemes do not 

c l e a r l y indicate which scheme gives better forecasts. 

However, results of the s e n s i t i v i t y analyses favor the 

scheme which uses the Kalman F i l t e r . This i s because the 

forecasting performance under Scheme 2 i s robust to i n i t i a l 

s p e c i f i c a t i o n of the model c o e f f i c e n t s . It i s found that 

without the Kalman F i l t e r , a marked decrease in performance 

can occur. This was i l l u s t r a t e d with a 2% change in the 

s p e c i f i c a t i o n of 0 for the 1982 dataset. A regression 

performed on the 1982 data found that | 3 L S = 1 .062. This i s 

very close to 0 A V of 1.0623. Hence, results in Table 7.3 

represent the best performance possible for the 1982 data 

under Scheme 1. 
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7 . 6 Summary 
A time-invariant transfer function model i s used to 

describe the streamflow phenomenon at Hope. The independent 

variables are flows from two upstream stations lagged 2 days 

behind that of Hope. It was found that: 

1. The forecasting performance of t h i s model i s not 

s i g n i f i c a n t l y improved or degraded by applying the 

Kalman F i l t e r to recursively estimate J3. 

2. However, i t i s recommended that the Kalman F i l t e r be 

used because the forecasting performance i s robust to 

sp e c i f i c a t i o n of This i s important in situations 

where the model c o e f f i c i e n t s cannot be estimated 

accurately or i f they change slowly through time. 



8. APPLICATION: ARMAX MODEL 

The Kalman F i l t e r has been applied to autoregressive and 

transfer function models to y i e l d estimates of the model 

c o e f f i c i e n t s recursively. These models are used for 

predicting flows at Hope 1 and 2 days in advance 

respectively. The advantage of using the Kalman F i l t e r i s 

that the forecasting performance i s robust to i n i t i a l 

s p e c i f i c a t i o n of the model c o e f f i c i e n t s . As these are 

usually unknown in hydrologic applications, t h i s feature i s 

appreciated by practicing engineers. In addition, use of the 

Kalman F i l t e r gives improved flow forecasts for the AR ( 1 ) 

model. 

An ARMAX model for describing the flow at Hope is 

considered in this chapter: 

q H
t - c i q H

t _ l + C z q T t - 2 + c 3 S N

T - 2 + e t 8 ' 1 

This i s an AR ( 1 ) with upstream inputs. The autoregressive 

part of t h i s model represents storage c h a r a c t e r i s t i c s of the 

river basin, while the exogeneous inputs represent 

contributions from upstream stations. In this study the 

Kalman F i l t e r i s applied to the ARMAX model to give 

estimates of the ARMAX c o e f f i c i e n t s resursively. Flow 

predictions 1 and 2 days in advance are made. The 

performance i s therefore, measured for both the 1-step and 

2-step flow forecasts. The objective i s to compare the 

1-step forecasting performance of the ARMAX model to that of 

1 0 1 
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the AR ( 1 ) model and the 2-step performance to that of the 

regression model. 

Results of the study indicate that the 1-step 

forecasting performance of the ARMAX model i s comparable to 

that of the AR ( 1 ) model. In addition, the 2-step performance 

is better than that of the transfer-function model. 

8.1 Properties of the Forecasting Scheme 

The state-space formulation of the ARMAX model i s : 

C i = "c r 
c 2 

= c 2 

c 3 
= c 3 

H r H T N -. , 
q t - [q t_! q t _ 2 q t - 2

] £ t
 + e t 

The Kalman F i l t e r i s used to give estimates of the model 

c o e f f i c i e n t s c,, c 2 , and c 3 at each time step. Performance 

is measured for both the 1-step and 2-step flow forecasts. 

The 1-step forecast is given by: 

q H
t + 1 = [ q H

t q T
t _ ! q N

t _ i ] £ t+l/t 8 

The 2-step forecast is given by: 

q t + 2 = fq t + 1 q t q t J S.t+2/t 8'5 

where £ t + 1 y t and £ t + 2 / t a r e ^ a s e < ^ o n t n e l a t e s t state 
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estimate given by the f i l t e r . As q i s unknown, i t i s 

replaced by the 1-step forecast, q t + 1 • 

The autoregressive nature of this model can result in 

the problem of unknown system matrix, H. This occurs when 

predicting flows more than one time step ahead. 

8.2 General Discussion 

It i s desired in practice that the 1 and 2-step 

performance of the ARMAX model be better than or equal to 

that of the AR(1) and transfer function models respectively. 

F i r s t of a l l , only one model needs to be used. Secondly, 

there i s only one noise variance to estimate. 

The station at Hope i s characterized by a large 

drainage area. Thus, i t i s expected that the autoregressive 

part of the combined model w i l l dominate. This means that 

estimates of c, w i l l be r e l a t i v e l y larger than those of c 2 

and c 3 . With this reasoning, the 1-step forecasting 

performance should be similar to that of the AR(1) model. 

The Kalman algorithm requires s p e c i f i c a t i o n of c 0 , P 0, 

and R. From the studies of Chapters 6 and 7, i t has been 

concluded that forecasting performance i s robust to i n i t i a l 

s p e c i f i c a t i o n of the model c o e f f i c i e n t s . Therefore, the 

s e n s i t i v i t y of the f i l t e r ' s performance i s examined with 

respect to the s p e c i f i c a t i o n of the noise variance only. 

One issue of concern here i s that the 2-step prediction 

involves unknown elements in the t r a n s i t i o n matrix, Hfc+2 of 

the Kalman model. For the ARMAX model, Hfc+2 = 
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H T N 
fQ t + 1 Q t Q tl« T n e Kalman algorithm assumes that t h i s i s 

known. As tomorrow's flow at Hope is unknown at time t, i t s 

1-step forecast i s used as an estimate. V i o l a t i n g t h i s 

assumption results in an increase in the variance of the 

forecast error. Therefore, the 2-step forecasting 

performance of the f i l t e r gives an indication of the 

robustness of the f i l t e r to the problem of unknown H in a 

pr a c t i c a l s i t u a t i o n . 

8 . 3 Experimental Procedure 

The forecasting performance i s measured by the three 

indicators described in Chapter 6. For thi s ARMAX model, the 

performance i s measured with respect to both the 1-step and 

2-step forecast errors: 

1. 1-step forecast error: Q t + 1/ t
 _ P^+i 

2. 2-step forecast error: ^t+2/t ~ qt+2 

The indicators are based on these forecast errors measured 

in actual units of m3/s. These are: 

1. PI, which represents the average error 

2. PI 2 which denotes the maximum error 

3. PI 3 which indicates the frequency of poor forecast. 

The nature of these indicators i s such that the smaller the 

values, the better the performance. The forecasting period 

is from A p r i l 1 to September 30 for 1981 1982 1983. 
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For the Kalman algorithm input, an estimate of the 

noise variance i s required, and the approximate maximum 

li k e l i h o o d estimates obtained in Chapter 5 are used. 

8.4 Results 

8.4.1 Estimate of the noise variance 

Approximate maximum li k e l i h o o d estimates (MLE) of a2 

were obtained in Chapter 5 for the years 1976-1980. The 

average of these i s used as the s p e c i f i c a t i o n for R in the 

Kalman algorithm. 

Table 8.1 Maximum Likelihood Estimates 
of the noise variance 

year R 

1976 .00209 

1977 .00276 

1978 .00175 

1979 .00259 

1980 .00303 

average .0024 

R i s rounded to .0025 for the Kalman s p e c i f i c a t i o n . 
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8.4.2 Performance indicators for the ARMAX model 

Two sets of performance indicators (PI) are given. The 

f i r s t set refers to the 1-step performance of the Kalman 

F i l t e r . The second set refers to the 2-step performance. 

1-step Performance Indicators 

Table 8.2a Variation of PI, to noise s p e c i f i c a t i o n 

Value of R 1981 1982 1983 

.025 4% 4.5% 3.5% 

.0025 4% 4.5% 3.5% 

.00025 4% 4.5% 4.0% 

Table 8.2b Vari a t i o n of PI 2 to noise s p e c i f i c a t i o n 

Value of R 1981 1982 1983 

.025 26% 17% 21% 

.0025 34% 17% 24% 

.00025 35% 17% 24% 
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Table 8.2c Variation of PI 3 to noise s p e c i f i c a t i o n 

Value of R 1981 1982 1983 

.025 1 0 0 

.0025 1 0 0 

.00025 1 0 0 

2-step Performance Indicators 

Table 8.3a Variation of PI, to noise s p e c i f i c a t i o n 

Value of R 1981 

.025 9% 

.0025 11% 

.00025 11% 

1 982 

8.5% 

8.5% 

8.5% 

1 983 

7% 

7% 

7.5% 

Table 8.3b Variation of PI 2 to noise s p e c i f i c a t i o n 

Value of R 1981 

.025 62% 

.0025 104% 

.00025 108% 

1 982 

32% 

32% 

32% 

1 983 

33% 

34% 

44% 
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Table 8.3c Variation of P I 3 to noise s p e c i f i c a t i o n 

Value of R 1981 1982 1983 

.025 2 2 

.0025 2 2 

.00025 3 2 

Tables 8.2a and 8.3a show that values of PI, are less than 

12% for both the 1 and 2-step performance. They also 

indicate that the r e l a t i v e RMS error for the 2-step 

forecasts i s twice that of the 1-step forecasts. Tables 

8.2(a,b,c) show the r e l a t i v e i n s e n s i t i v i t y of the 1-step PI 

to s p e c i f i c a t i o n of R. Table 8.3b indicates a larger 

decrease in P I 2 for the 2-step forecasts when R i s specified 

larger. 

8.4.3 Comparison of 1-step Performance Indicators 

The 1-step forecasting performance of the ARMAX model 

is compared to that of the AR(1) model. In both cases, the 

Kalman F i l t e r i s used for updating the model c o e f f i c i e n t s . 
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Table 8.4 Values of PI for ARMAX and AR(1) models 

PI:ARMAX 1981 1982 1983 

:AR(1) 

PI , 4% 5% 4% 

4% 5% 4% 

PI 2 34% 17% 24% 

17% 20% 14% 

PI 3 1 0 0 

0 0 0 

Values of PI, and PI 3 are approximately the same under 

both models. However, the ARMAX model yiel d s larger values 

for PI2# i . e . larger maximum errors are obtained. 

8.4.4 Comparison of 2-step Performance Indicators 

The 2-step forecasting performance i s compared to that 

of the transfer function model. The formulation used 

corresponds to l e t t i n g the model c o e f f i c i e n t s be the state 

vector in the Kalman model. 
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Table 8.5 Values of PI for ARMAX and 
Transfer Function models 

PI:ARMAX 1981 1982 1983 

:TRANSFER FUNCTION 

PI, 11% 8.5% 7% 

9% 19% 13% 

PI 2 104% 32% 34% 

40% 54% 33% 

PI 3 2 1 2 

3 32 12 

Values of PI, for the ARMAX model are comparable or 

less than those for the input-output model. Results for PI 2 

are more varied. Forecasting under the ARMAX model yiel d s a 

higher P I 2 value for the 1981 data; while a lower PI 2 value 

i s obtained for 1982 data. The 1983 data results in almost 

the same P I 2 values for both models. For P I 3 , the ARMAX 

model y i e l d s lower values in a l l three cases. In fact, the 

number of times the 2-step forecast error i s greater than 

25% of the actual flow i s at most 2. This compares with 32 

for the transfer function model. Hence, the ARMAX model 

seldom gives poor forecasts. 
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8.5 D i s c u s s i o n of R e s u l t s 

8.5.1 Performance of the ARMAX model 

Tables 8.2c and 8.3c indicate that t h i s model gives 

r e l a t i v e l y few forecasts which result in forecast error 

greater than 25% of the actual flow. This i s true for both 

the 1-step and 2-step flow predictions. The 1-step 

forecasting performance i s r e l a t i v e l y i n s e n s i t i v e to 

sp e c i f i c a t i o n of the noise variance. However, s p e c i f i f y i n g R 

larger results in better 2-step performance indicators. This 

i s not surprising as the true noise variance for the 2-step 

forecast i s expected to be larger. 

8.5.2 Comparison of 1-step performance 

The 1-step forecasts of the ARMAX model are compared 

with those of the AR(1) model. Results do not give a strong 

indication as to which model is better, as comparable values 

for a l l three PI are obtained. If one i s only interested in 

predicting the flow one day in advance, then the AR(1) model 

i s adequate. In fact, i t i s preferred over the ARMAX model 

because i t gives a parsimonious representation. 

8.5.3 Comparison of 2-step performance 

As noted in section 8.4.4, the frequency of poor 

forecasts (PI 3) i s less for the ARMAX model than the 

transfer function model. PI 3 i s an important indicator i f 

ove r a l l consistency and r e l i a b i l i t y of the forecasts are 
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c r i t e r i a in practice. In addition, the average forecast 

error, represented by PI,, for the ARMAX model i s less than 

or equal to that of the input-output model. Hence, in terms 

of model i d e n t i f i c a t i o n , there i s a sl i g h t preference for 

the ARMAX model for predicting streamflow 2 days in advance. 

The fact that reasonable performance i s obtained for 

the 2-step forecasts with the ARMAX model leads to the 

following conclusion. For the Kalman model, ca l c u l a t i o n of 

the 2-step forecast requires that q i s known. As th i s i s 

unknown in practice, i t s estimate given by the Kalman F i l t e r 

as the 1-step forecast i s used. Although t h i s v i o l a t e s the 

assumption of the Kalman model, i t i s found in t h i s 

application that the 2-step forecasting performance of the 

Kalman F i l t e r is acceptable for engineering purposes. In 

fact, the performance i s better than that of the transfer 

function model. 

For the hydrologist, i t i s important that the flow 

predictions are given with their associated standard error. 

In the case of the 1-step forecast, t h i s variance i s given 

by the Kalman F i l t e r as HPH' + R. This assumes that H i s a 

deterministic known quantity. When elements of the 

tr a n s i t i o n matrix H are unknown, an estimate i s used; as 

i l l u s t r a t e d in the 2-step forecast above. Results of the 

2-step PI in this study show that reasonable forecasting 

performance can s t i l l be obtained. However, there s t i l l 

remains the problem of what expression i s to be used for the 

variance of the 2-step forecast error. This i s addressed in 
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the next c h a p t e r . 

8.6 Summary 

I f f low p r e d i c t i o n s more than 1-day i n advance are 

r e q u i r e d , the ARMAX can be used . T h i s i s because i t has a 

comparable performance as the AR(1) model . In a d d i t i o n , the 

2 - s t ep f o r e c a s t i n g performance i s b e t t e r than t h a t of the 

i n p u t - o u t p u t model . 

In h y d r o l o g i c a p p l i c a t i o n s , the assumpt ion of known 

system m a t r i x , H i s o f t e n not s a t i s f i e d when p r e d i c t i n g 

f u t u r e o b s e r v a t i o n s more than one time s t e p ahead . T h i s 

s tudy i n d i c a t e s that u s i n g an e s t i m a t e , H s t i l l r e s u l t s in a 

reasonab le f o r e c a s t i n g per formance . M o r e o v e r , i t i s found 

tha t in t h i s p a r t i c u l a r example, the 1 and 2 - s t e p f o r e c a s t s 

are q u i t e i n s e n s i t i v e to the s p e c i f i c a t i o n of R. 



9. VARIANCE OF THE FORECAST ERROR 

In flood management, the engineer i s often required to 

predict streamflows several days ahead. The r e l i a b i l i t y of 

these predictions is r e f l e c t e d by t h e i r associated standard 

errors. For the Kalman F i l t e r state-space model, 

* t
 = * * t - l + * t 9 * 1 

Y_t = H tx t + v t 9.2 

the 1-step forecast error for y_ , known as the innovation, 

is given. Its variance, calculated by the Kalman algorithm 

assumes that the system matrix H, i s known. In t h i s chapter, 

a general expression for the variance of the observation 

forecast error when both H and x are unknown, i s developed. 

ARMAX models have been used for streamflow modelling in 

th i s thesis. The state-space formulation considered here i s 

where the ARMAX c o e f f i c i e n t s are the state variables. The 

system matrix, H contains past streamflows. The k-step flow 

forecast, £ t + k i s given by Ht+k-t+k" F o r t h e A R ( 1 ) model, 

flow predictions more than 1 time step ahead requires 

knowledge of future flows, hence H t +^ i s unknown. For 

instance, 

^ t + 2 = fit + 2x-t + 2 = ^-t+]-t + 2 9 , 3 

In practice, the 1-step prediction i s used as an estimate 

for Y_t+1 . Because £ t + 1 and x.t + 2 are both based on past 

values of they are not necessarily independent. The 

objective of t h i s study i s to develop a general expression 

for the variance of the forecast error when both H and x are 

unknown, and their estimates are correlated with each other. 

1 14 
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From here on, the time s u b s c r i p t s a r e dropped f o r n o t a t i o n a l 

c o n v e n i e n c e . 

9.1 Background 

H a r r i s o n & Stevens (1976) s u g g e s t e d t h a t the mean 

square e r r o r (MSE) of the k-s t e p f o r e c a s t can be o b t a i n e d 

from the Kalman F i l t e r . For k=1, the f i l t e r g i v e s 

Cov (y_-£) = HPH' + R 9.4 

where R and P a r e c o v a r i a n c e m a t r i c e s f o r the o b s e r v a t i o n 

n o i s e , and s t a t e e s t i m a t e s r e s p e c t i v e l y . As p o i n t e d out by 

P r i e s t l e y i n the d i s c u s s i o n of the above paper (1976), t h i s 

i s not a p p r o p r i a t e i f H i s unknown. 

F e l d s t e i n (1971) d e v e l o p e d a fo r m u l a f o r Cov (y-y) when 

bot h H and x a r e unknown. R e g r e s s i o n models a re c o n s i d e r e d 

i n t h a t c o n t e x t . H c o r r e s p o n d s t o a d e s i g n m a t r i x which 

c o n t a i n s independent v a r i a b l e s , and x i s a v e c t o r of 

r e g r e s s i o n c o e f f i c i e n t s . The fo r m u l a g i v e n by F e l d s t e i n 

assumes t h a t H and x a r e independent. T h i s assumption 

p r e s e n t s some l i m i t a t i o n i n h y d r o l o g i c a p p l i c a t i o n s . As 

not e d f o r the AR(1) example, H and x a r e l i k e l y t o be 

c o r r e l a t e d as they a r e both based on pas t v a l u e s of y. 

9.2 Problem d e f i n i t i o n 

The s t a t i s t i c a l model c o n s i d e r e d i s : 

y_ = H x + £ 9.5 
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where 1 vector of observations 

x vector of unknown parameters 

H system matrix 

e noise term 

The objective is to fi n d Cov (y_-£) when H and x are both 

unknown. Assumptions are: 

1. H, x are unbiased estimators for H and x respectively. 

2. The following covariance submatrices are assumed known. 

Z,!= E (fi-h)(fi-h)' 

E,2= E (fi-h)(x-x)' 

L22= E (x-x)(x-x)' 

where fi = vec H, h = vec H. 

The operator "vec" on matrix H stacks i t s columns one 

under the other, resulting in a column vector, h. 

The forecast £ is given by Hx. No assumption i s made on the 
re l a t i o n between H and x. 

The covariance matrix for the forecast error i s : 

Evaluation of Cov (Hx) involves c a l c u l a t i n g the expected 

value of squared quantities of H and x. This requires the 

fourth moment of their joint d i s t r i b u t i o n . Expression for 

the fourth moment can be obtained in terms of lower order 

moments, i f H and x are assumed to be j o i n t l y d i s t r i b u t e d as 

Cov (y_-£) = Cov (Hx) + Cov U) 9.6 
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a multivariate normal. A convenient way of writing products 

of the elements of H and x i s through the use of the 

Kronecker product. A preliminary result i s given in the next 

section before the derivation of the general formula. The 

resu l t contains the expressions for the covariances of 

products of normal random variables. It i s written in terms 

of the Kronecker product. 

9.3 Covariances of Products of normal random variables 

The Kronecker product i s defined as follows: 

Given 2 matrices A , B ., then A ® B i s a (ms,nt) matrix 
mxn sxt 

with submatrices consisting of a^jB. Therefore, the 

Kronecker product of a n-dimensional vector, i s a super long 

vector of length n 2. From Magnus and Neudecker (1979), the 

following result is used: 

If a i s distributed as N n(y, V) where "n" i s the length of 

a, then Cov (a ® a) i s given by 

(I + K n) (V ® V + V ® MM' + MM' ® V) 9.7 

K i s a n 2 by n 2 matrix defined such that K vec(A) = n J 

vec(A'). 

For the purpose of the thesis, the following derivation 

i s r e s t r i c t e d to a scalar model for y f c. The AR(1) model i s 

considered where y f c = Y t_ 1 + ê .. Y^-i a n o - a t c o r r e s P o n c l 

to Hfc and xfc respectively. Hence, both H and x are scalars. 

Flow forecasts greater than 2 steps ahead, require estimates 
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for H. The expression for the variance of the forecast error 

i s developed in the next section. 

9.4 Variance of the forecast error for the scalar case 

Identifying the vector a from section 9.3 as 

the Kronecker product, a ® a = 
fl ft 
H x 
x fi 
X X 

9.9 

The scalar quantity Var (fix) i s given by the 2nd (or 3rd) 

element of the above vector product. It i s assumed that 

fi 
N , 

Z , , L , 2 

Z 1 2 2-2 2 

where Z^j have been defined in section 9.2. In this 

development, they are scalar quantities. 

Result 9.7 from section 9.3 i s evaluated below, 

K , = 

H "2, 1 Z ! 2 
i d e n t i f i e d as 

X 2 Z 2 2 

1 0 0 0 2 0 0 0 
0 0 1 0 (I + K 2) = 0 1 1 0 
0 1 0 0 0 1 1 0 
0 0 0 1 0 0 0 2 
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The following three matrices are symmetric 

r 2 

^ 1 i 

Also V ® V = 

1^12 1^12 Z 1 2 

1^22 z 2 
1 2 

Z ! 2 Z 

1 Z 2 2 Z ! 2 Z 

Z 2 2 

2 2 

2 2 
2 

V ® M M ' = 

H ^ 1 1 HxZ, 1 H 2Z 1 2 HxZ j 2 

x 2Z, 1 HxZ 1 2 X 2Z ! 2 

H 2Z 2 2 HxZ 2 2 

X 2 Z 2 2 

H L 1 1 H2Z, 2 HxZ 1 1 HxZ ! 2 

H 2Z 2 2 HxZ 1 2 HxZ 2 2 
M M ' ft V = 

x 2 Z 1 i x 2 Z 1 2 

X 2 Z 2 2 

Addition of these 3 terms and premultiplying by (I + K 2) 

gives the expression for Var(Hx): 

H 2Z 2 2 + Z „ (x 2 + Z 2 2) + £ 1 2 < 2 H x + ^ 2 ) 9.9 

Since, Var (y-y) = Var e + Var (Hx) the variance of the 

forecast error i s : 

(R + H 2Z 2 2) + Z V 1 (x 2 + Z 2 2 ) + Z 1 2 (2Hx + Z 1 2 ) 9.10 
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Eqn. 9.10 gives the general formula for the variance of the 

forecast error when both H and x are unknown scalar 

quantities. Special cases can be obtained and are discussed 

below. 

1. If H i s unknown, but i t s estimate H is uncorrelated with 

x, then Z 1 2 = 0. This assumption is v a l i d for regression 

models where the variable H i s tr u l y exogeneous. Hence, 

Var (y-y) = (R + H 2Z 2 2) + Z ^ U 2 + Z 2 2) 9.11 

This i s the same expression as that given by Feldstein's 

formula for a scalar regression model. 

2. If H i s known, then Z 1 2 = Z,, = 0. This assumption i s 

used in the Kalman model for calcul a t i n g the variance of 

the 1-step innovation. Equation 9.10 then reduces to 

Var (y-y) = R + H 2Z 2 2 9. 1 2 

Z 2 2 i s the mean square error for the state variable x. 

It is synonymus with "P" in the Kalman F i l t e r notation. 

9.5 I l l u s t r a t i o n of the variance formula for the AR(1) 

The AR(1) model i s used to i l l u s t r a t e the use of the 

general formula (eqn. 9.10) for the variance of the forecast 

error. Application of the Kalman F i l t e r to t h i s model was 

studied in Chapter 6. The state-space formulation considered 

here corresponds to l e t t i n g the AR c o e f f i c i e n t be the state 

variable. In practice, flow predictions several time steps 

ahead are often desired. Because H and x are both unknown 

and their estimates cannot be assumed to be independent, 
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eqn. 9.10 should be used. 

The flow at Hope t y p i c a l l y ranges from 1000 m3/s to 

7000 m3/s throughout the year. In practice, the AR 

c o e f f i c i e n t i s of the order of 1.0. Characteristic values 

for each term of eqn. 9.10 i s examined below: 

1 . R 

Studies from Chapter 5 indicate that the standard 

deviation of the measurement error is proportional to 

the flow i t s e l f . In practice, these errors are usually 

less than 10% (Water Survey of Canada, personal 

communication). Hence, R i s taken to be .Oly 2. 

2 • 2 2 2 

This i s given by the Kalman F i l t e r as the MSE of the AR 

c o e f f i c i e n t , a. As noted e a r l i e r , a i s approximately 1. 

Estimates of a are obtained at each time step from the 

Kalman F i l t e r . A conservative estimate of i t s MSE as a 

percentage of the true value i s about 10%. This results 

in L22 = .01. 

3 . 2 , , 

This i s the MSE for H. For time t+2, t h i s corresponds to 

y t + 1 . The MSE(y t + 1) i s given by the Kalman F i l t e r as 

HPH' + R. Using the above values for P and R, 2,, = 

.02y 2. 

4. 2 1 2 

Since fl and x are p o s i t i v e l y correlated, an estimate for 

Z 1 2 can be obtained by considering the c o r r e l a t i o n 

between fl and x. The c o r r e l a t i o n i s of the order of .1 
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to 1, hence I 1 2 i s approximately .OOly to . O l y . 

Each term of eqn. 9.10 i s expressed in terms of the flow 

magnitude: 

( . O l y 2 + . O l y 2 ) + .02y2(1+.01) + .01y (2y + . O l y ) 9.13 

Disregarding terms with lower orders of magnitude yie l d s 

( . O l y 2 +.0ly 2) + .02y2 + .02y2 9.14 

Expression 9.14 indicates that in practice, a l l terms in the 

general expression are of the same order of magnitude. 

Therefore, i t i s not j u s t i f i e d to neglect any part of the 

general formula of eqn. 9.10. Use of the Kalman algorithm to 

calculate Var (y-y) i s equivalent to using the terms in the 

f i r s t bracket only of eqn. 9.14. Thus, the actual variance 

is s i g n i f i c a n t l y larger i f the correct expression is used. 

9.6 Conclusions 

A scalar observation model i s considered in t h i s 

chapter, y = Hx + e. A general formula for the variance 

of the forecast error i s developed when H and x are both 

unknown and t h e i r estimates are correlated with each other. 

The formula obtained i s : 

(R + H 2Z 2 2) + I n (x 2 + 2 2 2 ) + Z12 <2Hx + I 1 2 ) 
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The expression consists of three parts: The f i r s t , accounts 

for the measurement and state estimation errors (R + £ 2 2 ) * 

The second part r e f l e c t s the uncertainty in the estimate, fl 

( I , , ) ; and the f i n a l part accounts for the c o r r e l a t i o n 

between fl and x ( £ 1 2 ) . 

Two special cases of the general formula are: 

1. F e l d s t e i n 1 s formula 

(R + Z 2 2H 2) + I,! (x 2 + Z 2 2) 

This i s used i f fl and x are uncorrelated which i s 

appropriate i f H i s t r u l y an exogeneous vari a b l e . 

2. Kalman F i l t e r formula 

(R + Z 2 2 H 2 ) 

This i s appropriate for the 1-step forecast because H i s 

a known quantity. 

The importance of t h i s formula i s i l l u s t r a t e d with an 

application of the AR(1) model to streamflow prediction at 

Hope. The variance equation given by the Kalman F i l t e r is 

inappropriate in t h i s case for two reasons: 

1. Flow predictions 2-steps ahead or more require knowledge 

of future flows (unknown H). 

2. The estimates fl and x are correlated with each other, as 

they are both based on past values of y. 

The p r a c t i c a l i l l u s t r a t i o n indicates that a l l three parts of 

the general variance expression are of the same order of 

magnitude, and hence cannot be neglected. In any forecasting 

s i t u a t i o n , decisions are often made based on the r e l i a b i l i t y 
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of the future predictions. As the r e l i a b i l i t y i s r e f l e c t e d 

in the standard error of forecast, the correct expression 

developed in t h i s chapter should be used. 



10. SUMMARY AND CONCLUSIONS 

ARMAX models are often used to describe stochastic processes 

such as streamflow phenomena in hydrology. These are time 

series models with exogeneous inputs. Application of the 

Kalman F i l t e r to these types of models for flood forecasting 

i s considered in th i s t h e s i s . 

The Kalman F i l t e r i s a recursive estimation procedure 

which gives a li n e a r , minimum variance estimator for the 

state vector at time t. The estimate i s updated at each time 

step by making use of incoming noise-corrupted observations. 

The Kalman algorithm, based on a state-space model, accounts 

for uncertainties both in the states and in the 

measurements. 

The performance of thi s estimation technique depends on 

sa t i s f y i n g the assumptions of the Kalman state-space model. 

Use of the Kalman F i l t e r in aerospace applications i s very 

successful because the physical equations and system 

dynamics are well known. However, such is not the case in 

streamflow applications as there are many uncertainties 

associated with th i s stochastic phenomenon. Choice of the 

"best" ARMAX model with the "proper" noise s t a t i s t i c s i s 

often an impossible goal to achieve in engineering practice. 

Nevertheless, the Kalman F i l t e r i s used even when the 

assumptions of the Kalman model are not completely 

s a t i s f i e d . 

The following section summarizes the main contributions 

of the thesis to the f i e l d of Kalman F i l t e r i n g in streamflow 
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forecasting. Subsequent sections give the conclusions for 

each study. The aim of thi s thesis i s to further the 

understanding of the Kalman F i l t e r as applied to hydrologic 

systems. The p r a c t i c a l i t y and the performance of thi s 

estimation technique i s examined in the context of ARMAX 

flow models. It should be pointed out that the objective i s 

not to ide n t i f y the best hydrologic model for a particular 

phenomenon. No doubt, more physically based models have been 

proposed and used with much success, for basins with 

extensive data base necessary as inputs. Recognition of 

stochastic elements in hydrologic processes has led to the 

use of ARMAX models in streamflow modelling. It i s for these 

situations that the application of the Kalman F i l t e r i s 

considered. In thi s thesis, i t i s assumed that whichever 

ARMAX model i s chosen, i t i s an adequate description of the 

underlying process. 

10.1 Summary of Thesis Contributions 

General p r a c t i c a l problems which aris e in the 

application of the Kalman F i l t e r are described in the 

l i t e r a t u r e review of Chapter 2. Several problems which 

frequently occur in hydrologic applications are investigated 

in t h i s thesis. There are three main contributions of this 

research, each summarized in the following paragraphs. 

Advances in the understanding of the Kalman F i l t e r i s made 

in terms of: 

1. f i l t e r ' s s e n s i t i v i t y to input s p e c i f i c a t i o n , and 
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2. p r a c t i c a l i t y of the f i l t e r for d i f f e r e n t state-space 

formulations of ARMAX models. 

Correct expression for the mean square error (MSE) of 

forecast i s derived for the AR(1) model. It i s shown that 

under appropriate assumptions, the expression reduces to the 

Kalman equation for the variance of the innovations. This 

t h i r d contribution is important when autoregressive models 

are used to forecast flows several time steps ahead. Under 

the Kalman model, th i s process v i o l a t e s the assumption of 

known system matrix H, and use of the Kalman equation 

underestimates the variance of the forecast errors. 

The problem of input s p e c i f i c a t i o n , for quantities 

often unknown in practice i s f i r s t investigated. Results 

indicate that of the four quantities (x 0, P 0, Q, R), only 

the combined s p e c i f i c a t i o n QR has p r a c t i c a l e f f ects on the 

observation forecasts. The s e n s i t i v i t y study gives an 

insight as to how the noise covariances can be spec i f i e d in 

order to achieve reasonable forecasting performances for the 

f i l t e r . In addition, the worst s p e c i f i c a t i o n combination i s 

also noted. 

The p r a c t i c a l i t y of the Kalman F i l t e r i s i l l u s t r a t e d 

through three special cases of the ARMAX model. The three 

models are used to describe flow phenomenon of the Fraser 

River at Hope; t y p i c a l of basins whose response 

c h a r a c t e r i s t i c s are constant, or change slowly through time. 

The generality of the state-space approach allows 

f l e x i b i l i t y in model formulation. For forecasting purposes, 
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the studies indicate that the most useful formulation i s to 

write the ARMAX model as the measurement equation with the 

ARMAX c o e f f i c i e n t s as the state variables. Hence, the Kalman 

F i l t e r i s used to give recursive estimates of the 

co e f f i c i e n t s such that flow forecasts are always made with 

the latest state estimates. Two main advantages of thi s 

formulation over other possible ones are less data 

requirements, and robustness of flow forecasts to poor 

i n i t i a l knowledge of ARMAX c o e f f i c i e n t s . 

The Kalman F i l t e r i s a 1-step p r e d i c t o r - f i l t e r 

estimation technique. However, forecasts for several 

time-steps ahead are required in practice and the f i l t e r i s 

often used for making these k-step forecasts. In situations 

where the system matrix H i s unknown, the variance of the 

forecast error should not be calculated from the Kalman 

algorithm. A correct expression for this variance i s 

developed for the univariate AR(1) model. This expression 

has important consequences in practice because management 

decisions are often based on the r e l i a b i l i t y of flow 

predictions which i s indicated by their mean square errors. 

It i s also shown that in hydrologic applications, a l l terms 

in the derived expression are of comparable magnitudes. 

Conclusions of each investigation are given in the 

following sections. 
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10.2 S e n s i t i v i t y Analysis 

The Kalman algorithm requires input s p e c i f i c a t i o n for 

the noise covariances and i n i t i a l conditions of the state 

vector. As these are usually unknown to the hydrologist, the 

performance of the f i l t e r with respect to misspecification 

of these inputs (Q, R, x 0, P 0) i s examined. This problem i s 

studied by formulating an ARMAX model in state-space 

notation with the model c o e f f i c i e n t s as the state vector. 

Streamflow data are generated with chosen noise covariances, 

Q* and R*. Performance of the f i l t e r , based on the 

observation forecast error, i s examined with respect to 

input s p e c i f i c a t i o n s . 

It is found that: 

1. For the state-space formulation used, i n i t i a l 

s p e c i f i c a t i o n of the model c o e f f i c i e n t s are not 

important. Poor choices of x 0 and P 0 have l i t t l e 

influence on the flow predictions. 

2. Of the four input factors (Q, R, x 0, P 0 ) ; only the 

combined s p e c i f i c a t i o n of the noise covariances have an 

important effect on the flow forecasts. 

3. If Q and R are unknown, i t i s best to specify them both 

larger than their expected values. Forecasts obtained 

are comparable to those for the optimal case of known Q 

and R. Other combinations of specifying Q and R result 

in worse forecasting performance than the above. 

4. For t h i s state-space formulation, i t i s important to 

estimate R c o r r e c t l y . The f i l t e r i s i n d i f f e r e n t to 
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misspecification of Q i f R i s given c o r r e c t l y . 

5. However, the reverse i s not true. Even i f the true Q i s 

given, the f i l t e r performs worse i f R i s specified too 

small. Thus, R needs to be estimated also. 

10.3 Maximum Likelihood Estimation of the noise variance 

For each of the three models considered, the method of 

maximum l i k e l i h o o d i s used to estimate the noise variance. 

This method i s chosen because i t gives consistent and 

asymptotic e f f i c i e n t estimates. Evaluation of the log 

lik e l i h o o d function i s f a c i l i t a t e d by using the Kalman 

F i l t e r . This i s another application of the Kalman F i l t e r , 

other than that of forecasting. 

10.4 The Autoregressive Model 

The 1-day ahead forecast for the AR(1) model i s 

examined. Three schemes are used to forecast the flow at 

Hope, each corresponding to a possible formulation of the 

AR(1) model into state-space format. 

Results indicate that: 

1. The best forecasting scheme i s to use the Kalman F i l t e r 

to obtain updated estimates of the AR c o e f f i c i e n t . Thus, 

a is the state variable in the state-space framework. 

Flow predictions at each time step are made with the 

late s t state estimate. This formulation results in the 

best forecasting performance. In addition, the flow 

forecasts are insensitive to i n i t i a l s p e c i f i c a t i o n of a. 
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2. Formulating the AR process as the state equation of the 

state-space model i s equivalent to not using the Kalman 

F i l t e r at a l l . An estimate of the AR c o e f f i c i e n t i s 

required prior to forecasting. Comparable forecasting 

performance to the best scheme can be obtained for a 

p a r t i c u l a r value of a. However, the forecasting 

performance i s sensitive to the s p e c i f i c a t i o n of the AR 

coef f i c i e n t . 

3. The worst performance i s obtained for the scheme which 

" s p l i t s up" the AR(1) process in the state-space 

formulation. Flow i s modelled as the state variable 

while the error term i s modelled as the observation 

noise. Not only i s the forecasting performance the 

worst, i t is p a r t i c u l a r l y sensitive to the choice of a 

determined prior to forecasting. 

As part of the Kalman F i l t e r algorithm, the 1-step 

forecast for the observation, and i t s mean square error 

(MSE) are given. The expressions are y=Hx, and HPH' + R 

respectively. However, in daily water management, a longer 

forecasting horizon is usually required. Flow prediction 

more than 1 day in advance introduces the problem of unknown 

future flows for autoregressive models. For instance, the 

2-step forecast requires knowledge of the flow 1-day ahead. 

The Kalman algorithm assumes that tomorrow's flow i s known. 

In practice, a prediction can s t i l l be obtained using the 
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1-step f o r e c a s t from the Kalman F i l t e r as an e s t i m a t e . The 

MSE f o r the 2-step f o r e c a s t however, cannot be c a l c u l a t e d 

v i a t h e Kalman a l g o r i t h m . The MSE i s i m p o r t a n t as i t 

r e f l e c t s t h e h y d r o l o g i s t ' s c o n f i d e n c e i n h i s f o r e c a s t s . 

Because c o s t l y d e c i s i o n s may depend on the r e l i a b i l i t y of 

the f l o w p r e d i c t i o n s , the p r o p e r e x p r e s s i o n f o r the v a r i a n c e 

of t h e f o r e c a s t e r r o r s h o u l d be used. 

The f i r s t approach t o t h i s problem i s t o c o n s i d e r a 

d i f f e r e n t ARMAX model which does not r e q u i r e f u t u r e f l o w s i n 

o r d e r t o p r e d i c t the f l o w 2-days i n advance. T h i s i s 

d i s c u s s e d i n the next s e c t i o n . 

The second approach i s t o d e r i v e the c o r r e c t e x p r e s s i o n 

f o r the mean square e r r o r of f o r e c a s t . T h i s i s summarized i n 

s e c t i o n 10.7. 

10.5 T r a n s f e r F u n c t i o n Model 

A t r a n s f e r f u n c t i o n model u s i n g upstream f l o w i n p u t s 

l a g g e d 2 days behind t h a t of Hope i s used. Two f o r e c a s t i n g 

schemes a r e compared, one w i t h o u t and one w i t h the Kalman 

F i l t e r . The l a t t e r scheme f o r m u l a t e s the i n p u t - o u t p u t model 

w i t h t h e c o e f f i c i e n t s as the s t a t e v a r i a b l e s . C o n c l u s i o n s 

a r e : 

1. F o r c o n s t a n t c o e f f i c i e n t s , use of the Kalman F i l t e r does 

not improve the f l o w f o r e c a s t s . 

2. However, f o r e c a s t s o b t a i n e d w i t h o u t the f i l t e r a r e 

s e n s i t i v e t o the i n i t i a l s p e c i f i c a t i o n of t h e s e 

c o e f f i c i e n t s . W i t h o u t the f i l t e r , t h e s e have t o be 
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estimated from past data, thus making the choice of 

dataset important. 

3. Although the f i l t e r does not improve the forecasting 

performance of thi s model, flow predictions are robust 

to poor s p e c i f i c a t i o n s of the model c o e f f i c i e n t s . Large 

amounts of data are not necessary for estimating these 

c o e f f i c i e n t s prior to forecasting. 

10.6 Combined ARMAX Model 

Using a d i f f e r e n t model to forecast k steps ahead for 

various k's involves too many models as k gets large. 

Therefore a combined model i s considered in order to achieve 

a parsimonious representation of the process. This combined 

ARMAX model i s a combination of the AR(1) and regression 

models above. The Kalman F i l t e r i s applied to thi s model to 

give estimates of the ARMAX c o e f f i c i e n t s recursively. Both 1 

and 2-step forecasts are obtained and are compared to those 

of the AR(1) and the transfer function models respectively. 

Calculation of the 2-step forecast presents the same problem 

as the AR(1) model, in that tomorrow's flow.is unknown. 

Nevertheless, the 1-step forecast given by the Kalman F i l t e r 

i s used as an estimate. The study shows that: 

1. The 1-step forecasting performance i s comparable to that 

of the AR(1) model. 

2. The 2-step forecasting performance i s better than that 

of the transfer function model. 

Thus, in terms of indentifying the s t a t i s t i c a l model for 
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p r e d i c t i n g s t r e a m f l o w s up t o 2 days i n advance, t h i s 

combined ARMAX model i s adequate. The i m p o r t a n t r e s u l t of 

t h i s study i s t h a t r e a s o n a b l e f o r e c a s t i n g performance i s 

o b t a i n e d f o r the 2-step f l o w p r e d i c t i o n s ; even though an 

e s t i m a t e i s used f o r tomorrow's f l o w i n the system m a t r i x H. 

V i o l a t i o n of the assumption of known H s t i l l r e s u l t s i n 

r e a s o n a b l e f l o w p r e d i c t i o n s . 

10.7 V a r i a n c e of the f o r e c a s t e r r o r 

A f o r m u l a f o r the v a r i a n c e of the f o r e c a s t e r r o r when 

b o t h H and x a r e unknown, i s de v e l o p e d f o r the AR(1) model. 

I t i s shown t h a t the new e x p r e s s i o n c a l c u l a t e s a v a r i a n c e 

s i g n i f i c a n t l y l a r g e r than t h a t g i v e n by the Kalman F i l t e r . 

T h i s e x p r e s s i o n f o r the AR(1) model i s : 

(R + H 2 Z 2 2 ) + Z,, ( x 2 + Z 2 2 ) + I 1 2 (2Hx + Z, 2) 

A l l terms i n t h i s e q u a t i o n a re of the same magnitude i n 

p r a c t i c e . The f i r s t p a r t of t h i s e x p r e s s i o n c o r r e s p o n d s t o 

the case of known H, and i s e q u i v a l e n t t o the Kalman 

e q u a t i o n f o r the v a r i a n c e of the i n n o v a t i o n s . Z 2 2 i s the 

s t a t e e r r o r c o v a r i a n c e m a t r i x . The second p a r t , a c c o u n t s f o r 

the f a c t t h a t H i s unknown but i t s e s t i m a t e H i s independent 

of x. Z,, c o n t a i n s the v a r i a n c e s and c o v a r i a n c e s of the 

elements i n H. The f i n a l term acknowledges p o s s i b l e 

c o r r e l a t i o n between H and x, as r e f l e c t e d i n Z 1 2 . 
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10.8 State-space Formulation 

Results of the thesis indicate that application of the 

Kalman F i l t e r to ARMAX models can give better forecasts when 

the model c o e f f i c i e n t s are formulated as the state 

variables. This i s because the f i l t e r updates these 

c o e f f i c i e n t s recursively in the l i g h t of the observation 

forecast errors. Although i t presents some conceptual 

d i f f i c u l t i e s , i t i s necessary to choose between a problem 

which can be handled in practice and one which i s hard to 

control . The alternate formulation of allowing the flow 

variable to be the state, requires estimation of the ARMAX 

c o e f f i c i e n t s prior to forecasting. This emphasizes the 

necessity for abundant and good quality data, as forecasting 

performance i s sensitive to the s p e c i f i c a t i o n of the state 

t r a n s i t i o n matrix, 

10.9 Future Directions 

In t h i s thesis, hydrologic systems which can be 

described by constant c o e f f i c i e n t ARMAX models are 

considered. These are appriopriate when modelling streamflow 

phenomenon for basins with large drainage areas. Kalman 

F i l t e r i n g i s applied to these models and the resulting flow 

predictions are better than or equal to those obtained 

without the Kalman updating of the model c o e f f i c i e n t s . A 

useful extension to t h i s would be to investigate the 

forecasting performance of the f i l t e r for more complex 

systems whose c h a r a c t e r i s t i c s change s i g n i f i c a n t l y over 
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