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ABSTRACT

The Kalman Filter has been applied to many fields of
hydrology, particularly in the area of flood forecasting.
This recursive estimation technique is based on a
state-space approach which combines model description of a
process with data information, and accounts for
uncertainties in a hydrologic system. This thesis deals with
applications of the Kalman Filter to ARMAX models in the
context of streamflow prediction. Implementation of the
Kalman Filter requires specification of the noise
covariances (Q, R) and initial conditions of the state
vector (x,, Po). Difficulties arise in streamflow
applications because these quantities are often not known.

Forecasting performance of the Kalman Filter is
examined using synthetic flow data, generated with chosen
values for the initial state vector and the noise
covariances. An ARMAX model is cast into state-space form
with the coefficients as the state vector. Sensitivity of
the flow forecasts to specification of x,, Po, Q, R, (which
may be different from the generation values) is examined.
The filter's forecasting performance is mainly affected by
the combined specification of Q and R. When both noise
covariances are unknown, they should be specified relatively
large in order to achieve a reasonable forecasting
performance. Specififying Q too small and R too large should

be avoided as it results in poor flow forecasts.
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The filter's performance is also examined using actual
flow data from a large river, whose behavior changes slowly
with time. Three simple ARMAX models are used for this
investigation. Although there are different ways of writing
the ARMAX model in state-space form, it is found that the
best forecasting scheme is to model the ARMAX coefficients
as the state vector. Under this formulation, the Kalman
Filter is used to give recursive estimates of the
coefficients. Hence flow predictions can be revised at each
time step with the latest state estimate. This formulation
also has the feature that initial values of the ARMAX
coefficients need not be known accdrately.

The noise variances of each of the three models are
estimated by the method of maximum likelihood, whereby the
likelihood function is evaluated in terms of the
innovations. Analyses of flow data for the stations
considered in this thesis, indicate that the variance of the
measurement error is proportional to the square of the flow.

In practice, flow predictions several time steps in
advance are often required. For autoregressive processes,
this involves unknown elements in the system matrix H of the
Kalman model. The Kalman algorithm underestimates the
variance of the forecast error if H and x are both unknown.
For the AR(1) model, a general expression for the mean
square error of the forecast is developed. It is shown that
the formula reduces to the Kalman equation for the cése

where the system matrix is known. The importance of ‘this
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formula is realized in forecasting situations where
management decisions depend on the reliability of flow

predictions, reflected by their mean Square errors.
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1. INTRODUCTION
Flow forecasting is an important aspect in the operation and
control of watef resource systems. Statistical models are
used extensively in the stochastic modelling of riverflows.
Adaptive forecasting occurs when predictions can be updated
at each time step in response to incoming observations. The
Kalman Filter is an example of an adaptive forecasting
scheme. This estimation method is based on a linear
state-space model. Because time series or regression models
are amenable to stafe—space formulation, they are preferred
over conceptual models such as SWMM, HEC I, and HEC II in
adaptive hydrologic forecasting. Applications of the Kalman
Filter have been very successful in communications and
aerospace engineering, fields in which the system dynamics
and the governing physical equations are well known.,
However, such is not the case in streamflow applications.
The performance of the Kalman Filter may be greatly affected

when these equations and dynamics are unknown.

1.1 Problem definition

Although the Kalman Filter is explained in Chapter 2,
it is briefly defined here in order to state the general
problem addressed in this thesis. The linear state-space
model, sometimes known as the Gauss—Markov model consists of
two equations:

State egn: X =% x v, w~(0,0) 1.1



Observation egn: y, = H_ x + Vv v,~(0,R) 1.2
The objective is to recursively estimate the state vector,
X,, based on the current observations, Y, - The Kalman
algorithm provides a method whereby state estimates are
continually updated as new observations are received at each
time step. The state vector is corrﬁpted by white noise,
gt~(0,Q) with covariance matrix Q. Similarly, the vector of
observations is corrupted by white noise zﬁv(O,R) with
covariance matrix R. The algorithm assumes that &, H, Q, and
R are known at time t. A filtered estimate %, is given by
the Kalman Filter at every time step. In addition, the mean
square error for the state estimate is given. A problem
which often arises in practice is that of unknown dynamics;
either system matrices ®, H or noise covariances Q ,.R. As
O'Connell and Clarke (1981) point out, this difficulty is
often overlooked in applications even though the state
estimation procedure depends critically on the proper

specification of dynamics.

1.2 General Objectives

This research work deals with the problem of’unknown
dynamics. ARMAX models for describing streamflow phenomenon
are considered in this thesis. These are time series models

with exogeneous inputs.



The practical application used in this thesis is
motivated by flood.forecasting in B.C. The chosen problem is
streamflow prediction for the Fraser River at Hope. This
station is located near the downstream portion of the Fraser
River. (see Fig. 1.1) As a result of the large drainage area
(217,000 km?), flow magnitudes are in the order of thousands
m3/s. Peak flow usually occurs in June, with a typical value

~of 5000 m®/s. Fig. 1.2 gives an outflow hydrograph for 1983.
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In this thesis, ARMAX models are cast into the state-space
f;}mat with the coefficients as the state vector. In
hydrologic applications, future flow is the quantity of
interest. Forecasting performance of the filter is measured
in terms of the observation forecast error (y-y).

The general objectives of the thesis are:

1. to examine the sensitivity of the Kalman Filter with
respect to mis-specifications of noise covariances and
initial conditions of the state vector. These inputs are
required by the Kalman algorithm, but are often unknown
in practice.

2. to investigate the maximum likelihood method for
estimating the noise covariances in hydrologic models of
practical interest.

3. to compare the forecasting performance of ARMAX models

depending on whether the Kalman Filter is used or not.

1.3 General Thesis Outline

The next chapter reviews the literature on the Kalman
Filter. Included in this review are applications and the
problems which arise in practice. Chapter 3 investigates the
sensitivity of the filter with respect to input qQuantities,
which are assumed known by the algorithm. Chapter 4
considers three special cases of the ARMAX models which are
most often used in streamflow predictioﬁs. In subsequent
chapters, the research deals with these three models.

Chapter 5 describes the maximum likelihood method for



estimating the noise variance. Chapters 6, 7, and 8 examine
the forecasting performance of the three models, depending
on whether or not the Kalman Filter is used. Often in
forecasting, the standard deviation of the prediction is
required; but there are many cases where the expression for
the variance given by the Kalman Filter is not applicable.
Chapter 9 discusses this in detail and a theoretical
expression is presented for the variance of the forecast
error. The importance of this is illustrated in an example.
Finally, chapter 10 summarizes the results of this thesis

and gives recommendations for future research.



2. LITERATURE REVIEW
There are five sections to this chapter. First, the Kalman
Filter is described in detail. General applications are
given in section 2 and hydrologic examples in section 3.
Practical problems in the implementation of the filter are
discussed in section 4. Finally, section 5 outlines in

detail the specific topics addressed in subsequent chapters.

2.1 Explanation of the Kalman Filter

The following notation is used in this thesis. Vectors
are denoted by underlined, small letters; and matrices are
denoted by capital letters.
The linear state-space model, sometimes known as the

Gauss~Markov model consists of two equations:

State egn: Xo0= @ x ot W w,~N(0,Q) 2.1
The elements of x, are the state variables to be estimated,
but they need not be physically measurable. These states are
modelled as a Markov process. The manner in which they
evolve through time is given by &, the state transition
‘matrix. The states are corrupted by white noise, W

distributed with mean 0 and covariance matrix Q. ® and Q can

be time-varying; but are assumed known at all times.

Observation eqn: y, = H %+ v v

t



Measurements taken at time t are related to the states of
the system through H. They are also corrupted by white

noise, v, distributed with mean 0 and covariance matrix R.

Similarly, H and R may be time-varying, but are assumed

known at all times. Moreover, w_ and v_ are assumed to be

t
serially and mutually uncorrelated.

t

For the Kalman model consisting of eqn; 2.1 and 2.2,
the objective is to estimate the state vector at current
time; X, given all past measurements. Obtaining an estimate
for the state at the current time, is known as filtering. In
particular, if all past information can be summarized in a
prior estimate for the state vector, this type of estimation
is known as recursive filtering. The Kalman Filter is a

recursive procedure which yields estimates for x, at every

t
time step. This filtering technique can be given a Bayesian
interpretation. Posterior estimates of the state variables
are obtained by updating their prior estimates through the
measurements received at time t. However, it is not a
Bayesian technique per se, as often guoted in the
literature, despite this decision theoretic approach. In
fact, gt (the 'posterior' or updated estimate) is derived
ffom a least squares criterion by minimizing the residual of
the state estimation vector. The Kalman Filter is a solution
which yields a linear, minimum variance estimator for the
staté vector at every time step. In addition, the error .
associated with %

covariance matrix P is given.

t’ t’
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The Kalman Filter algorithm can be divided into two

parts:

1. Prior to observing y,

Rese-1 T Pe-q Xpog 2.3
Pre-1 = Pt Peoy Pleoy v Q4 2.4
2. After observing Yy
Re = Bijemy ¢ Kelye - %) 2.5
P, = [1 - Ky Ht] Pt/t_1 2.6
— ' ' -1
where K = Pep—q H'y [HtPt/t_IH et Rt] 2.7
The 1-step forecast for the observation is:
Yevy = Hekesy py 2.8

The Kalman Filter accounts for uncertainties by
providing an algorithm which sequentially combines model
(stéte equation) and data (measurement equation) information
to yield updated estimates of the state vector. These
estimates can be projected forward to obtain future |
predictions of the observations. It is computationally
appealing due to its recursive nature, i.e. all previous
information is contained in the prior estimate of the state.

A schematic representation of this procedure is shown

in Fig. 2.1.
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State equation

at time t-1

Observations

1at time t

"Fig. 2.1 A Schematic representation of the
Kalman Filter procedure at each time step.
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2.2 General Applications

—

Application of the Kalman Filter is widespread, and the
literature spans over many disciplines. It is used
particularly in forecasting situations. The classic example
is from aerospace engineering. The problem is to continually
estimate the position, velocity and acceleration of a target
in Cartesian co-ordinates, upon receiving noise corrupted
measurements from a radar in polar co-ordinates. In finance,
Kalman Filtering has been applied £o estimate the regression
coefficients in a model for stock earnings per share (Mehra,
1979). This technique has also been applied in water quality
physical models involving BOD-DO equations. Examples of this
are found in the work by Young and Whitehead (1977),
Constable and McBean (1979). However, non-linearities in
these formulations lead to the use of the extended Kalman
Filter which is not the subject of the thesis.

The Kalman Filter has also been illustrated in many
aspects of the hydrologic process. Bras (1978) has
successfully applied this technique to sampling network
design. An example of estimating groundwater basin
characteristics is given by McLaughlin (1978). However, the
dimensionality of groundwater models is large, as many
parameters need to be estimated. Computational efficiency
and the problem of joint state and parameter estimation are
two major difficulties (Wilson et al., 1978).

This filtering technique has also been used in the

operation of water resource systems. An example is the
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maintaining of water levels for navigation purposes. Duong
et al.(1978) applied the Kalman Filter to obtain real time
estimates of system parameters required for controlling a

lock and dam gate.

2.3 Hydrologic Applications

The most abundant applications of this estimation
technique are in streamflow forecasting. In many situations,
the underlying process can be described by a statistical
model such as a regression or time series model. In these
cases, the Kalman Filter is a useful supplement to
hydrologic forecasting.

The rainfall-runoff process is often modelled by an

autoregressive scheme plus some input information. There are

- two ways of formulating this type of hydrologic model into

the state-space notation. Rodriguez-Iturbe (1978) has
formulated the problem with the coefficients of an ARMA
model as the variables of interest. This is also shown in an
example by Wood et al., (1978). The instantaneous unit
hydrograph, IUH represented by a convolution integral, is a
classic example of such a forecasting scheme. For examples,
see Rodriguez-Iturbe (1978), Szollosi-Nagy (1976).v
‘Alternatively, the discharges can be taken as the states,
but the unknown ARMAX parameters then need to be estimated a
priori. An example of this is given in Szollosi-Nagy et
al.,(1977). Conéeptual response models involving the

continuity and storage discharge equations have also been
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used with the Kalman Filter. However, these models lead to
non-linear estimation. Wood (1978) investigated flood
routing models via the Kalman Filter for forecasting water

levels.

2.4 Problems in hydrologic applications

2.4.1 Unknown dynamics

The problem of unknown noise covariances is often
encountered in hydrologic modelling as a result of the
complexity of the runoff process. Mehra (1979) pointed out
the extreme sensitivity of the Kalman Filter to

underspecification of R, or the misspecification of Q.

1
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mis-specifications of noise standard deviations.
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This was shown in qualitative terms and the idea conforms
with one's intuition. However, the filter's performance
under simultaneous misspecification of Q@ and R needs to be
examined. In practice, these noise covariances are specified
too small or too large with respect to their true values.
The manner in which these specifications affect the filter's
performance is important knowledge for the forecaster.
Moreover, the initial conditions of the state are often
unknown. These questions are addressed in the next chapter.
Because flow is the variable of interest, the filter's
performance indicators are based on the observation forecast

error,

2.4.2 Estimation of State system matrix

Various methods have been proposed in the past for
estimating these unknown matrices, &, H, Q, and R. & is the
state system matrix. When elements of ® are unknown, this
leads to non-linear filtering. One way of resolving this is
to linearize the problem with respect to the latest state
estimate by the Extended Kalman Filter. However; Mehra has -
indicated that the estimates thus obtained are sensitive to
initial conditions. Moreover, the EKF has not been proven to
yield consistent estimates (Young, 1977). In an example on.
the Ombrone Basin in Italy, Szollosi¥Nagy (1977) used the
instrumental variable (IV) approach by Young (1977) to
resolve the non-linearities of the ARMA coefficients in .

An extension to?this approach, developed by Todini et
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al.,(1978) known as MISP technique was also applied to the
Ombrone Basin. This made ﬁse of two Kalman Filters: one
which yields the state estimates (given the parameter
values) and the other which yields parameter estimates
(given the state values). A constrained linear estimator
proposed by Natale and Todini (1976) was illustrated in an

application by Wood (1978).

2.4.3 Unknown Observation system matrix

H is the system matrix in the observation equation of
the Kalman model. When elements of H are unknown, this
necessarily leads to a different expression for the variance
of the forecast error. Authors have overlooked this
(Harrison & Stevens, 1976) when they suggested using the
same Kalman Filter formula to obtain the variance. Whether
or not this is a serious error in practice depends on the
application. Feldstein (13871) has studied this problem in
the context of econometrics. However, because one of his
assumptions is often not satisfied in hydrologic

applications, this problem needs further investigation.

2.4.4 Estimation of the noise covariances

Implementation of the Kalman Filter allows the
forecaster to exercise his judgement regarding the accuracy
of the underlying model vs. that of the observations. This
is achieved by specifying the noise covariances, Q and R at

"each time step. The Kalman gain matrix K, in effect,
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controls how the state estimates are updated. Hence the
performance. of the filter depehds critically on these
values. These are often unknown in wafer resource
applications, and many authors have addressed this problem.

In real-time applications where historical data are
scarce, adaptive algorithms are often used (Mehra 1973,
IEEE). Jazwinski & Bailie (1969), Sage & Husa (1969) propose
covariance matching techniques, where the theoretical
covariance of the innovations and the sample covariance are
matched by adjusting Q and R appropriately. This heuristic
approach is computationally attractive though it is not
guaranteed to converge. The special case of known Q but
unknown R is reported to have been handled more successfully
(Mehra, 1972).

Correlation methods only apply to time-invariant
systems under stationary conditions which impose a
limitation for some water resource systems.

The Bayesian method is used to compute the posterior
probability of the 6 = {Q, R} given the observed data, i.e.
p(Glyt). Calculation of this requires the likelihood of 6,
£(6|yt) = p(yt yt_1,...6). If there are p elements in #,and
each has N choices, then there are NP possible combinations
of the set 6 corresponding to NP Kalman Filters. Posterior
probability is calculated for each one of these Kalman
Filters. As it can be readily seen, this is not attractive
computationally unless N and p are both small. This

procedure discriminates the best model out of a given group
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of models. However, if the original se£ of 6's do not
encompass the true value, then the "best model” is still not
optimal in the sense fhat there is still a better # that
could be used. This method was used by Moore & Jones (1978),
and Valdes et al., (1978). The tremendous complexity of the
system renders it computationally unattractive and
cumbersome.

The previously described methods are somewhat ad hoc in
their applications. The Maximum likelihood method for
estimating Q and R is based on a mathematical principle and
can be universally applied. The main advantage of this
method is that it is asymptotically unbiased, consistent and
efficient. The idea is to maximize the likelihood of
observing a particular combination of Q and R given the
observation y, over a range of values for the noise
covariances. The major drawback is that the likelihood
expression involves computation with a non-diagonal matrix.
Because the previously described methods are not guaranteed
to work, this method is investigated in chapter 5.

It should be noted that although the problem of
estimating noise variances_has been addressed theoretically
in the literature, thevresﬁlts have had limited use in
practice. The main reasons are:

1. Many of the proposed solutions were developed for some
particular application. Hence they tend to be
application dependent.

2. The methods which are easily implemented computationally
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are usuq}ly heuristic in nature. They have not been
proveﬁ;to give reliable estimates. Moreover, different
authors, who have used them, reported contradictory
results (Mehra, 1972; O'Connell & Clarke, 1981; Sage &
Husa, 1969; Wood ets al., 1978).

3. The more complex methods are not easily implemented,
though in general, they yield more consistent estimates
(Méhra, 1972,1980). In addition, the complex mathematics
required do not lend themselves to practical
implementations. In fact, they act more like a black-box
to the forecaster.

There is a definite need to bridge the gap between the

theoretical research and the implementation feasibility

required in practice.

2.5 Detailed thesis objectives and outline
As discussed in section 2.4, the noise covariances and
the initial specifications for the state vector are often
unknown., These correspond to Q, R, X4, Po 0f the Kalman
state-space model. Two questions are addressed in chapter 3.
1. Which of the above quantities (Q, R, Xo,, Po) if
misspecified, have a practical effect on the filter's
performance.
2. How do these quantities affect the forecasting
performance.
The second half of the thesis is based on ARMAX models.

Statistical models are chosen for the applications because
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they are amenable to state-space formulation of the Kalman
Filter. Conceptual models such as SWMM and HEC I are not
considered in this thesis. These are physically based models
and are more difficult to implement. These are more
worthwhile to consider for long-term forecasting for a river
basin. On the other hand, ARMAX models require relatively
less data. This thesis is focused on the Kalman Filter
rather than model idenfification of hydrologic processes.
Thus, statistical models are used. Moreover, the simpler
representation of streamflow phenomenon allows a more direct
investigation of the practical problems associated with the
Kalman Filter.

Chapter 4 describes three ARMAX models to be used for
the reméindef of the thesis. The method of maximum
likelihood is used to estimate the noise variance for these
models in chapter 5. In particular, a simplified approach to
evaluating the log-likelihood expression is examined. This
has been proposed by Schweppe and illustrated by Ledolter
ety al. (1983). The next three chapters investigate the
forecasting performance of the three models depending on
whether or not the Kalman Filter is used. Chapter 6
considers an AR(1) model for predicting flows 1 day ahead at
Hope. Chapter 7 examines a transfer function model for
predicting the 2-day advance flow. Chapter 8 studies a
combined model which gives 1 and 2 day forecasts. The 1 and
2 step forecasts are compared to those obtained from the

models of chapters 6 and 7 respectively. Finally, a general
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expression for the mean square error of the forecast when H .
is unknown, is developed in Chapter 9. This situation
occurs, for example, when the AR(1) model is used to predict
the flow than more two time steps ahead. In this case, the
varianée of the forecast error is not given by the Kalman

equation, HPH' + R.



3. SENSITIVITY ANALYSIS
The Kalman Filter has been used in many hydrologic
applications. It is a popular estimation technique due to
its recursive nature and its ability to handle
uncertainties. However, its applications have not always
- been successful. This is often because the assumption of
known input quantities, is not satisfied. These quantities
are the initial conditions of the state vector x,, Po, and
the noise covariance matrices Q, R. The Kalman algorithm
assumes that x,, Po, Q, R are correctly specified. But when
they are unknown in practice, their mis-specification may
result in unreliable estimates.

The objective of this study is to examine the
sensitivity of the filter to mis-specification of the
quantities x4, Po, Q, R. The senéitivity study is analyzed
as a statistical factorial experiment. Each of the input
quantities {x,, Po, Q, R} 1is treated as a factor. The
forecasting performance of the filter is measured by an
indicator based on the observation forecast error. This
indicator is the response variabie in the factorial
experiment.

A scalar ARMAX model is used for streamflow modelling
in this study. In this application, an autoregressive model
6f order 1, with temperature as an exogeneous variable is
chosen. The model is cast into state—space‘format with the
model coefficients as the state véctor. Hence Q represents

the noise covariance matrix for the coefficients, and R is

22
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the variance of the measurement error.

Results of this sensitivity study show that initial
specifications of the ARMAX coefficients, x, and Py, do not
affect the forecasting performance of the filter to any
degree of practical concern. The performance is materially
affected by the combined specification of the noise
covariances, Q and R. In addition, conclusions are made as
to how the unknown noise covariances should be specified in
order to achieve good forecasting performance. Specifying
both Q and R relatively large results in a filter
performance comparable to the case of known Q and R.
Specifying Q small and R large yields the worst forecasting
performance. If the measurement noise variance is known,
then the forecasting performance is indifferent to under or
over-specification of Q. However, if Q is known, it is found
that better filter performanceiis obtained if the

measurement noise variance 1is specified relatively large.

3.1 Experimental Plan
The approach to this investigation is divided into four
parts.

1. Flow generation

Flow sequences are generated by a chosen ARMAX model
with known input quantities: X,*, Q*, R¥*,

2. Kalman Filter Specification

The flow sequences are treated as observations and a

Kalman Filter is applied to each flow sequence. The
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state-space format used corresponds to allowing the
ARMAX coefficients be the state vector in the Kalman
model. Hence, estimates of the coefficients are given at
each time step and flow forecasts are made with the
latest estimate given by the filter. The noise
covariance matrices used in the generation of streamflow
data are Q* and R*. The Kalman algorithm uses x,, Po, Q,
and R where these may be different from the generation
values. Q and R can be specified to be less than, equal
to, or greater than their true values, Q* and R*. Hence,
the sensitivity of the filter's performance to these
specifications is examined. The performance of the
filter is measured by an indicator based on the
observation forecast error.

A Kalman Filter is applied to each combination of
the input quantities. One of these filters contain the
correct specifications of the inputs.

Factorial Experiment

The investigation is studied as a statistical factorial

_experiment with four factors; namely {x,, Po, Q, R}. The

levels of these factors correspond to the different
specifications.

Analysis of Variance

Sensitivity of the filter's performance is investigated
through analysis of variance (ANOVA) on the performance
indicators. The analyses indicate which factors or

combinations thereof, have a significant effect on the
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performance indicator.
3.2 Experimental Procedure

3.2.1 Generation of Flow Data

Appiication of the Kalman Filter in this thesis is
motivated by real-time flow forecasting of the Fraser River.
A stochastic model for describing the streamflow phenomenon

is chosen:
Qy = 8, G, * bt Tempt vy 3.1

The autoregressive term is characteristic of stations with
large drainage areas, as the flow is dependent on upstream
storage effects. The temperature term represents the
snowmelt influence on the runoff. The coefficients of the

model, a, and bt’ are chosen to follow a random walk. The

t
ARMAX model of egn. 3.1 is recast into state-space framework

as follows:

State egn: a a, _ W 3.2
e _ [ %1, [Tt
by Pyy Y2y
Obs. egn: q, = [qt_1 Tempt] a | + v, 3.3
b

t

The noise terms are chosen with the following properties:
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1. w,~(0,0%)
The covariance matrix for the coefficients (states) is
constant with respect to time. It is also a diagonal
matrix. Thus, independent errors for the model
coefficients are assumed.

2. Vt~(0,R*)

Similarly, a constant variance for the observation error

is used.

Batches of flow sequences are generated for each testing
condition denoted as "CODE". Each sequence has T=100 time
steps. Each CODE corresponds to a particular combination of
Xo¥, Q*, R*, The following table gives the valugs used in

the flow generation.

Table 3.1 Values of x,*, O*, R* used in flow generation

.85 Arbitrary starting values are used as this

7.00 does not affect the streamflow generation.

|

[«]

%
’ ]
.

QI* =1.000036 QII* =1.0001 O QIII* =1.0004 O
.0016 0 .01 0 .0225
R.* = 100 R..* = 400 R * = 625 R.,* = 900

I IT- III Iv

The chosen values of Q* are representative of practical

situations; a standard deviation of .5% and 2% from one time
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step to the next. Similarly, the range of R* reflects a
measurement error with a standard deviation from 3% to 12%
of the flow. In.practice, the standard deviation of the
measurement error is not more than 10% of the flow.

The number of combinations of the above input
guantities is twelve. Hence, the number of CODES is also
twelve. Table 3.2 gives a schematic layout of the coding

scheme.

Table 3.2 Schematic coding scheme

Q¥ Q1" Oyr”
R, * CODE 1 CODE 5 CODE 9
R, * CODE 2 CODE 6 CODE 10
Ry * CODE 3 CODE 7 CODE 11
Ry * CODE 4 CODE 8 CODE 12

3.2.2 Kalman Filter Specifications

Values of the quantities used in data generation are
denoted with a '*'; otherwise the letters represent
specifications of these quantities for the Kalman algorithm.
Therefore, Q* is used in generation; while Q is a
- specification value. Different specifications for

{X0, Py, Q, R} result in different Kalman Filters. For each
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code, 36 Kalman Filters are evaluated, each with a sample
size of 5 étreamflow sequences. The number of streamflow
sequences required under each CODE is 180. For each of the
180 series, the performance of the Kalman Filter is measured
in terms of the flow forecast error. The indicator is

relative root mean sguare (RRMS) error defined as:

]

T A
- 1 ¥, - ¥ 2 3.4
RRMvS = T Z [ t t:l

t=1 ¥y

This is preferred over the common RMS error as RRMS does not

depend on the units of measurement.

3.2.3 Factorial Experiment

The investigation is set up as a factorial experiment
with a completely randomized design. It is a fully-crossed
four factor experiment. The factors are the specifications
of the input quantities: {x,, Po, Q, R}. The number of

levels for each factor is given below:

vTable 3.3 Number of Levels for the Factors




The levels correspond to different specifiéations of the
input quantities. The number of ways of combining these
levels is: k = U Zi = 36. Hence, 36 different Kalman
Filters are usedlunder each CODE. The levels of these
factors are described below. |

v

Table 3.4 Levels of the Noise Covariances

29

level Xo Po ‘ Q, R
1 o good estimate confident too small
guess
0.91 .001 O .25Q%, ,[25R*
6.50 [0 .065}
2 bad estimate non-confident correct
guess specification
0.425 .75 0 Q*, R¥*
10.50 {O 50 }
3 too large
4Q%*, 4R*

The good estimate of X, corresponds to an initial

specification error of 7%, while the bad estimate

corresponds to 50%. These limits are representative of the

range of accuracies for estimates of X, in practice. Level 1

of the noise specification corresponds to under-estimating

~ the standard deviation by a factor of 2. Similarly, level 3
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corresponds to over-estimating by a factor of 2. Level 2
represents a specification which ié equal to the true
covariance matrix. In practice, it is expected that
estimates of Q and R, are within the bounds provided by
levels 1 and 3. |

The response variable of the factorial experiment is
the performance indicator, RRMS. Its valﬁes are analyzed by
ANOVA to order to determine which of the four factors or
combinations thereof, have an important effect on the
performance of the Kalman Filter. |

Each of the 36 Kalman Filters is subjected to n=5
series of observations, the 5 series being different in each
case. This conforms to a completely randomized (CR) design.
For this non-repeated measures design, the measurement
errors are uncorrelated. Thus, an unrepresentative series
does not replicate its characteristic from one Kalman Filter
to another. Alternatively, the same 5 series of observations
could be used for each Kalman Filter in order to minimize
the variation beﬁween groups. This repeated measures design
results in correlated measurement errors among the various
Kalman Filters. Hence, a CR design is chosen.

The statistical model for a factorial experiment with 4
factors is:

Yijkim = # ¥ By T By TG+ Dy

+ 2-way interactions ...
+ 3-way interactions ‘e

+ 4-way interaction + €mn 3.5
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For this sensitivity study, the following variable

substitution is made:

RRMS = u + 50 + Po + Q + R
+ XoPo * ...
+ XoPoQ + ...

+ ﬁoPoQR + € 3.6

The nétation is described as follows:

RRMS is the response variable of the experiment.

4 is the overall mean of the performance indicator,
RRMS.

X0, Po, Q, R are the factors and they are called the
main effects in egn. 3.6

The 2-way interactions include all possible combinations
of the factors in groups of two. These are x,P,, Xx,0,
XoR, PoQ, PoR, QR.

Similarly, the 3-way interactions are all combinations
of the factors in groups of three. These are x,P,Q,
XoPoR, PoOR, XoQR.

Finally, there is the 4-way interaction and the error,

-3
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3.2.4 Analysis of Variance

The experiment.is analyzea by ANOVA with all terms
(except u) on the right hand side of egn. 3.6 as the
'sources' in the ANOVA table. One analysis is done for each
CODE; hence, twelve ANOVA's are made in total. The computer
package 'ANOVAR' is used.and a sample output of the ANOVA
table is given in the Results (Section 3.3.1). The output
gives the p-value for each source under 'F PROB'. These
ANOVA results are used as a qualitative guide for pointing
out those sources which are important in practical
situations. The p-values are compared among the sources in
order to indicate those which have a significant effect on
the response, RRMS. The smaller the p-value, the more likely
it is that the corresponding source has a significant effect

on the filter's performance.

A flow chart of the procedure is given in Fig. 3.1.
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Generate flows

Kalman Filter

Specifications

Factorial Experiment
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of the Kalman Filter,
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1

determine significant

sources for RRMS.

Repeat for each CODE

Fig. 3.1 Schematic diagram of Experimental Procedure.
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3.3 Results

.3.3.1 ANOVA Results

The ANOVA results indicate that under all CODES, the
significant sources are the specification of the main effect
Q, and the interaction QR. The significance of QR means that
it is the combined specification of the noise covariances
which affects the filter's performance.

A sample output of the ANOVA table for CODE 7 is shown
on the following page. The p-values (represented by F PROB
in the table) are compared. Those corresponding to the
sources Q and QR are an order of magnitude lower than the
rest. This phenomenon is noted under all CODES.

THe manner in which the QR interaction affects RRMS is
"obtained from the following two and three-dimensional
graphs. The mean RRMS values are plotted with respect to the

levels of the source, QR.
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Table 3.5 Computer Output

ANOVA Results for CODE 7

Factors:

p-values: given by F PROD

ANALYS1S OF VARIANCE/COVARIANCE FOR VARIABLE RRMS

SUM OF MEAN

SOURCE D.F. . SQUARES SQUARE F VALUE F PROB
A 1 1.439338E-05 1.439332E-05 0.0431 0.8177
8 1 3.582272E-05 3.582271E~-05 0.1073 0.7398
AB 1 2.683472E-05 2.683472E-05 0.0804 0.7689
c 2  2.062712E-03 1.531356E-03 4.5888 0.0117
AC 2 5.325221E-04 2.662608E-04 C.7879 ©.4559
B8C 2 ., 1.691381E-04  §.456905E-05 0.2534 0.7791
ABC 2 8.595134E-04 4.2297567E-04 1.2878 0.2785
o] 2 S.818524E-04 4 .908262E-04 1.4711 0.2316
AD 2 8.214938E-04 4.107468E-04 1.2309 0.2849
8D 2 5.839004E-04 2.919501E-04 0.8749 0.4219
ABD 2 5.987364E-04 2.993681E-04 0.8971 0.4126
cb 4 . 4.261532E-03 1.065383E-03 3.1926 0.0151
ACD 4 2.407318E-03 6.018285€-04 1.8035 0.1300
BCD 4 1.477050E-03 3.692624E-04 1.1065 0.3560
ABCD 4 1.577517€E-03 3.943790E-04 1.1818 0.3211

ERROR 144 4.8053892E-02 3.337075E-04

© TOTAL 179 546426E-02

Note that the p-values for sources C=Q and CD=QR are

.0117 and

.0151 respectively.
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3.3.2 Two-dimensional Graphs

The ordinate in the following graphs is the performance
ihdicator, RRMS. This indicator is such that the smaller the
value, the better is the performance. The abscissa denotes
the three levels of specification for the noise covariance.

For instance, Q(1) corresponds to specifying Q too small.

Graphs in series (a) are plotted with respect to Q for each

level of R (i.e. holding R constant). Those in series (b)

are with respect to R for each level of Q. The features

displayed by the graphs are summarized below:

1. From series (b) of Figs. 3.2-3.4, it can be seen that
the smallest RRMS value occurs at Q(2)R(2). This
represents correct specifications of the noise
covariances.

2. The graphs in series (a) show that if R is given
correctly, then specifying Q too small Q(1), or too
large Q(3), results in almost identical RRMS values. In
other words, the filter's performance is indifferent to
mis-specification of Q if R is known.

3. A different behavior is observed by examining the graphs
in series (b) of Figs. 3.2-3.4 for level 0(2). It is
noted that if Q is given correctly, then
under-specification of R results in a larger RRMS than
over-specification. This phenomenon is particularly
noticeable under Q*III shown in Fig. 3.4, for systems
with large disturbances in the states.

4, For each CODE, nine RRMS values are plotted. In each
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case, two of these values are relatively close to the
minimum RRMS. These values correspond to the
specifications, Q(2)R(3) and Q(3)R(3). It is noted that
both these specifications involve R(3). This feature is
more pronounced as Q* and R* increase. |

In general, specifying R too small should be avoided.
High values of the performance indicator for all
specifications of Q under level R(1) are obtained.

A large increase in the RRMS value is noted for

Q(1)R(3). For example, see Fig. 3.3 (b).
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RRMS with respect to R
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3.3.3 Three-dimensional plot

A three-dimensional plot of the interpolated response
surface for the RRMS is given. This is plotted with respect
~to the nine specification levels of both Q and‘R. Becausé
the behavior of the filter to QR interaction is the same,
only one response surface is drawn. This is a qualitative
plot as the axes are scaled appropriately to give a
reasonable image.

The surface minimum occurs in the region corresponding
to Q(2)R(2). The response surface rises in all directions
away from the minimum. It is noted that the topography is
not too different from the minimum, in a zone defined by
Q(2)R(3), and Q(3)R(3). The surface also shows a sharp

increase in RRMS for the specification, Q(1)R(3).
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3.4 Discussion of Results

3.4.1 ANOVA Results

The factorial experiment considers four factors: X,,

Po, Q, R. It is found that:

1.

Initial specifications of the ARMAX coefficients x,, Po
do not have a significant effect on the filter's
forecasting performance. In practice, these coefficients
are often unknown and traditionally, much work has gone
into their estimation prior to forecasting. This study
shows that even an error of 50% in their initial
specification, does not significantly degrade the
performance.

With the coefficients as the state variables in the
Kalman model, it is found that the filter is sensitive
to the combined specification of the noise covariances,
Q and R.

The 1-step flow forecast is based on the latest estimate
of the state vector, which is updated by usihg the

Kalman gain matrix, K_. Gelb (1979) shows that the

t
Kalman gain can be interpreted as a ratio of the
uncertainties in the state estimate to the measurement
noise. Because the uncertainty in the state estimate 1is

affected by the noise covariance Q, K_ can be considered

t
as a ratio of Q to R. Hence, it is the combined
specification of the noise covariances which affects the

filter'slperformance.
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3.4.2 Interpretation of Graphs
Because of the interaction between Q and R, it is not

sufficient to examine the filter's sensitivity to either Q

or R individually. It should be examined with respect to

both quantities.

1. The optimum level of performance (represented by the
minimum RRMS value) is obtained when Q and R are
specified correctly. This is true under all testing
conditions.

2. I1f the variance of the measurement error R is known,
then the filter's performance is indifferent to under or
overspecification of Q. Its performance level can only
be improved if Q is specified correctly.

3. If Q is known to begin with, then specifying R too small
should be avoided.

4, For systems with large disturbances in the ARMAX
coefficients, under-specification of Q should be
avoided. This is particularly true when R is specified
large. The worst performance occurs for Q(1)R(3).

5. A general guideline is to specify both covariance
matrices large because relatively good forecasting

performance can be obtained under Q(3)R(3).

3.5 Summary
| The Kalman Filter is applied to an ARMAX model for
streamflow forecasting. A common problem is that initial

conditions of the model coefficients and the noise
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covariances are unknown. The sensitivity of the filter's
forecasting performance to the specification of X,, Py, Q, R
is examined.

The ARMAX model is recast into state-space format with
the coefficients as the states in the Kalman model. For this
sensitivity study, the system matrices & and H of the Kalman
Filter are known. The filter's performance is measured in
terms of the observation fdrecast error, defined by RRMS.

The-conditions tested correspond to a standard
deviation of .5 to 2% change in the model coefficients, and
a standard deviation of 3 to 12% in the measurement noise.
It is found that initial specifications of the ARMAX
coefficients do not affect the filter's performance. This
feature is useful for the practicing engineer; especially
when there is insufficient data for obtaining reliable
estimates of the coefficients prior to forecasting.

The study also shows that the filter's performance is
sensitive to the combined specification of the noise
covariances. If Q and R are unknown, it is best to specify
both covariances larger than their expected values. This
specification results in a forecasting performance
comparable to the case of known Q and R. If only one of the
noise covariances can be estimated, it is better to estimate
R accurately. This is due to the filter's insensitivity to
under or over specification of Q, if R is given correctly.
However, if Q is given correctly, the filter performs worse

if R is specified too small.:
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In general, it is best to specify a large variance for
the measurement error. This results in good forecasting
performance as long as Q is not specified much smaller than

its true value.



4. HYDROLOGIC SYSTEMS
The Kalman Filter has been applied in the previous
sensitivity study to a general ARMAX model, used to generate
synthetic streamflow data. The state-space formulation
corresponds to letting the ARMAX coefficients be the state
variables in the Kalman model. The study shows how thé
forecasting performance of the filter is affected by the
combined noise covariance specification. It also indicates
that initial specification of.the ARMAX coefficients do not
affeét the flow forecasting performance.

This chapter describes three particular ARMAX models,
chosen for Kalman Filter applications in Chapters 6 to 8.
Actual daily flow data is used in these studies for
forecasting flows 1 and 2 days in advance. These models
represent hydrologic systems with certain basin

characteristics, described in this chapter. The practicality

of the Kalman Filter cannot be explored for all types of

hydrologic systems represented by the general ARMAX model,
as it is data dependent to some extent. Hence,
specialization to certain types‘of.systems is necessary. The
practicality of the Kalman Filter and its performance under
different state-space formulations of a hydrologic model are
investigated using real data.

Studies in Chapters 6 to 8 use daily flow data from the
Fraser River at Hope in B.C. The Fraser River at Hope is one
of the largest rivers in Canada and the flow changes

relatively slowly through time. As discussed in section 4.1,
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this allows the assumption of time—invariént systems.
Therefore, ARMAX models with constant coefficients will be
considered for these studies. In practice then, only the
noise variance associated with the measurement equation in
the Kalman model need to be estimated prior to forecasting.
This subject is addressed in.Chapter 5.

The three ARMAX models chosen are relatively simple
from a hydrologic point of view because they do not involve
complicated physical equations. Physically based models have
been used for some types of river basins (e.g. Quick and
Pipes, 1976). These are usually deterministic models
requiring extensive data inputs. In addition, the system of
equations do not readily lend themselves to state-space
formulation. Because the focus of subsequent studies is on
the Kalman Filter and its potential in flow forecasting
rather than on developing the best forecasting procedure,
time-invariant ARMAX models are selected. These represent
the simplest types of hydrologic systems which are of

practical interest in water resource management.

4.1 Time-invariant Systems

Flow forecasting using ARMAX models with time-invariant
coefficients are considered. Constant coefficient models are
appropriate for hydrologic systems whose behavior remains
constant with time. These types of systems are usually
characterized by large drainage areas, where the flows are

influenced by storage effects. For these systems, rainfall



inputs have little influence on the outflow.
Rodriquez-Iturbe (1978) and Szollosi-Nagy (1976) concluded
that the assumption of time-invariant coefficients can be
extended to systems whose response characteristics change
slowly over time. A "window" type of approach is suggested
for handling the time varying nature, as shown in the

diagram.

z(1) "/\

(from Szollosi-Nagy, 1976)
z(t) is the observation at time t.

Fig. 471 A 'data window' approach to slightly
time-variant hydrologic systems.

50



51

Application of the Kalman Filter in this thesis is motivated
by the following problem. Streamflow predictions for the
Fraser River at Hope are required in the control of this
water resource system. The maximum daily flow of the year
(peak runoff) which occurs in June, is mainly due to
snowmelt. Therefore, a reasonable forecasting horizon is
April 1 to September 30. Within this time frame, it is
expected that the basin characteristics do not change
abruptly. The station at Hope is located near the downstream
end of the Fraser River. This means that it has a large
drainage area and thus é slow basin response. Hence,
time-invariant ARMAX models are appropriate for the
investigations in this thesis. As a result, only one noise
variance is to be estimated, and this is addressed in

Chapter 5.

4.2 Three ARMAX Models
Three stochastic models commonly used in streamflow

modelling are considered.

1. AR(1)
g = aQp_y * Vi
2. TRANSFER FUNCTION
= * * % ;
G = bi@fpp * o beg_, t vy
3. Combined, ARMAX
Qp = C1Qp-q * C2@%_p * Ca@Mpp * Yy

where q, g*, g** denote streamflows at three different
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stations.

These are special cases of the general ARMAX model. They can

be thought of as a (p,g) ARMA model with (r) exogeneous

inputs. General justifications for using these types of

models have been given in the previous section. Particular

reasons for using each of these models are discussed below.

1.

The autoregressive model of order 1 has been widely used
in streamflow modelling. Quimpo (1973) has shown that
storage effects can be represented by autoregressive
terms. Predictions beyond this can be made if the
unknown flows at lag one are replaced by their estimate.
However, this necessarily results in a larger variance
for the flow forecast error. This topic is addressed in
Chapter 9. Application of the Kalman Filter to this
model is investigated in Chapter 6.
Upstream.inputs can contribute to the rising portion of
an outflow hydrograph as pointed out by Wood (1978). &
transfer function model can be used where the
coefficients b, and b, represent flow coﬁtributions from
upstream stations. The 2-day lag in the flows allow the
prediction of the 2-day forecast with all the exogeneous
variables known at time t. The application of the Kalman
Filter to this model is examined in Chapter 7.

In fact, flood routing procedures described by the

convolution integral are often linearized. The discrete

time representation of the integral can be considered as

a transfer function model. An example of this
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formulation can be found in Wood(1978).
- 3. The third model combines the autoregressive process with
upstream inputs. The Kalman Filter is applied to this

\

model in Chapter 8.

4.3 Scope of Applications

The state-space formulation whereby the ARMAX
coefficients form the elements of the state vector is
considered. This format is used throughout the remaining
chapters, except where otherwise noted. The problems
associated with the specification of the inputs
{X0, Po, Q, R} have been reduced to the problem of
estimating R only because:
1. Q=0 as time-invariant coefficients are considered.
2. Initial specification of the ARMAX coefficients, xo,, Py

do not affect the filter's forecasting performance.



5. ESTIMATION OF MEASUREMENT NOISE VARI{NCE

Results of Chapter 3 show that the filter's fo;;casting
performance is affected by the specification of the noise
covariance matrices. In fact, variance estimation in
~state-space models is a subject of much current interest. A
review of this was given in Chapter 2, section 2.4.4. In
this chapter, a method for estimating the noise variance is
investigated. The three models discussed in Chapter 4 are
considered. |

It is found that the variance of the measurement error
cannot be assumed to be constant with time. Analysis
indicates that it varies in proportion to the square of the
flow. Therefore, a Box-Cox transform is used for stabilizing
the variance. The appropriate transformation is to take
logarithms of the original measurements. The new series has
- a noise variance which is approximately constant. The method
of maximum likelihood is then used to estimate the noise
variance for each model. An equivalent log-liklihood
function for the flow is written in terms of the observation
forecast error; and is evaluated through the use of the

Kalman Filter.

5.1 The Estimation Method

Because an accurate and reliable estimate of the noise
variance is desired, heuristic methods discussed in Chapter
2 are not considered. More sophisticated methods exist, but

are traditionally avoided due to extensive computational

54
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requirements. However, the availability of computer
software, has made these methods more attractive. An'example
is the Bayesian method of estimation. This will not be used
in this thesis buf is discussed briefly as it has attracted
some attention in the recent literature. This method does
not estimate the noise variance per se. Actually, it is a
discrimination technique. Numerous Kalman models are
considered at the start; each one containing a possible
value of the noise variance, azi. It is assumed that one of
these Kalman Filters contains the correct noise variance
o*%, Posterior probability of ozi being ¢*? given the
observations; is calculated for each model. Afﬁer sufficient
number of observations, the model with 02i closest'to o*?
will be assigned the highest posterior probability. Although
initial applications by Valdes et al., (1978) show that this
method does select the model with azi closest to the true
variance, it is not considered here for the following
reasons:
1. Applications of this technique is only in its initial
stage, hence its properties still need to be examined.
2. In a study by the previous authors, it was found that
300 time steps are required before the best model can be
distinguished. Since we are only interested in
forecasting for part of the year, there is not enough
data for the discrimination procedure.
3. The original set of models is assumed to encompass the

true value of R.
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This last point presents é limitation in practice. Often,
the engineer is not sufficiently familiar with the physical
characteristics of a basin to provide the bound values.
Hence, the set of ozi's chosen may not include the true
value. Instead, the method of maximum likelihood is used in
this chapter to estimate the noise variance.

The maximum likelihood method gives estimates which are
known to be consistent and asymptotically efficient. No
prior knowledge of the system parameters are required here.
The difficulty with this method is the evaluation of the
likelihood function. In time series applications, errors in
successive streamflow measurements are likely to be
cdrrelated. Harvey (1981) outlines in his text, how the
evaluation of the log likelihood function can be simplified
through the use of the Kalman Filter. An example of this
estimation procedure is illustrated by Ledolter (1983) in a

Management Science context.

5.2 Estimation Procedure

An engineer often has to make decisions for a water
resource system in real time. It is desirable that the
variance of the measurements errors be considered cohstant
with respect to time. This can be approximately achieved by
transforming the raw measurements. For each of the models
which will be used in subsequent studies, the noise variance
is estimated by the following procedure.

1. Determine the appropriate Box-Cox transformation for the
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original flow data such that the noise variance of the
new series is approximately constant.

2, For the transformed data, obtain the maximum likelihood
estimate of the noise variance by using the Kalman

Filter.

5.3 Transformation of flow data to achieve Uniform Variance
Simple applications of stochastic flow models assume
that the measurement errors are constant for the raw flow
data. For an example, see Wood (1978). However, a more
realistic assumption is that the variance of the flow
observation error be a function of the flow itself. Patry
and Marino (1983) examined various noise assumptions
commonly used in hydrologic models. In an application by
Natale & Todini (1976), a linear dependence of the noise
term's standard deviation on the flow is assumed. In a
real-time forecasting situation, flow prediction is made
simpler if the measurement errors are time-invariant.
Transforms for stabilizing the variance are available. A
Box~Cox transform is used in this application. In general,
this class of transforms is appropriate when the variance of
the observations can be expressed as a fgnction of its mean.
Before the appropriate Box-Cox transformation can be
determined, the relation between the variance of the

observations and its mean is investigated.
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5.3.1 Relation between the Noise Variance and the Flow

The three ARMAX models of Chapter 4 are used in
subsequent chapters for the application of the Kalman
Filter. The state-space formulation where the ARMAX
coefficients are the state variables are considered.

The conditional variance of the flow, given the model
coefficients, is equal to the variance of the measurement
error. This is expressed as the following, where 2

represents the original flow data measured in m3?/s.

Var(z |x,) = Var(v,) 5.2

The time subscript is now dropped for notational
convenience. It is postulated that the variance of the

observation 1s a function of the mean:
Var(z) = a (Mean(z))k 5.3
or log [Var(z)] = loglal + k log [Mean(z)] 5.4

Equation 5.4 is a linear equation with k representing the
slope. It can be determined by regressing log[var(z)] on
log[Mean(z)]. Hence, the dependence of Var(z) on Mean(z) can
be found. The variance and mean of the flow in eqn. 5.4 are

replaced by local estimates. These estimates are moving
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~averages of order "s" centered about the current time of
interest. Flow observations are made from t=1 to T.
Estimates for the mean and the variance of the flow at time

t are given by: .

s

i—és i -

Mean(z) = - =z, 5.5
2s+1

s

Z(z, .. -2,)2 s
Var(z) = i=-s t+1 t = %— z zz+. - z2 _(2s+1) 5.6

55 Slia- t+1 t

For s=2, the averaging is with respect to 5 data points;
hence this is termed a 5-pt. average. The smaller "s" is,

the more local the estimates are.

~5.3.2 Results

In a preliminary analysis, estimates are calculated
with 3, 5, and 7-pt. averages. Results of the regressions
show little differences in the values obtained for k. It is
decided that a 5-pt. average will be used to obtain local
estimates of the mean and variance of the flow. The time
period is from April 1 to Septembér 30. Ten years of data,
.1970 to 1979 are used to determine the slope k, of egn. 5.4.

Results of the regressions are tabulated below:
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Table 5.1 Values of the slope

for years 1970—1979

year ok year k

1970 2.54 1975' . 2,06
1971 1.48 1976 1.63
1972 1.92 1977 | 1.70
1973 2.00 1878 2.10
1974 1.58 1979 2.64

The average of the ten k values is 1.96.

5.3.3 Conclusions

'The averaged k value of 1.96 indicates that the
variance of the measurement error is approximately
proportional to the square of the flow (egn. 5.3). In other
words, the standard deviation of the noise term is directly
proportional to the flow. A constant variance for the

measurement error would result in k being close to zero.

5.3.4 Box-Cox Transforms

A class of transforms used for stabilizing thé variance
is known as the Box-Cox transforms. An appropriate
transformation of the raw flow data can be made. The
resulting series will have an error term whose variance is

approximately constant with time. These tranforms are used
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in situations where the variance can be expressed as a

function of the mean M; Var(z) = ¢(M) where ¢ is the
functional dependence.
The first order Taylor Series expansion of the

transformed data is:

g(z) = g(M) + g'(M)(z-M) 5.7
It is desired that Var (g(z)) be approximately constant.

Var (g(z)) = g'(z) 2 ¢(M) 5.8

The functional dependence ¢, determined in section

5.3.3, is z?, Evaluation of eqgn. 5.8 gives the appropriate
transformation:

y = g(z) = 1n(z) | 5.9
Egn. 5.9 indicates that the incoming flow data should be

tranformed by taking the natural logarithms. The new series

formed by the y's, has approximately uniform variance.
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5.4 Maximum Likelihood Estimation of the Noise Variance

5.4.1 Theory
Consider a set of T dependent observations drawn from a
multivariate normal, y MVN(u,02V). The log-likelihood

function, log £(y,, ¥2,... YY) = log £(y) is:

T Y
T T 1 1 Vero |
5 log 201 - 5109 0% - 5 log IVI T 557 (y-u)'Vv ' (y-u) 5.10

Differentiating the above expression with respect to 0% and
equating it to 0 yields the maximum likelihood estimate of
o0%?. However, the evaluation of the above expression is time
consuminghdue to |V|; and V-'. This is because V is a
 non—diagonal matrix as the individual errors are serially
correlated.

Schweppe (1965) showed that an equivalent expression
for log £(y) can be written in terms of the innovations, » .
It is defined as the observation forecast error, yt-ﬁt.
These innovations are independently normally distributed

with mean 0, and variance o%f where ft is calculated by

t!
the Kalman algorithm. Hence, » is a set of independent
errors drawn from a multivariate normal, MVN(0Q, o¢2D). D is a

diagonal matrix defined as:
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M3

I - I 2 - 1
2log 211 > logo >

T
log £, - =—= Z
£=1 E 205

Because », is a linear transformation of Y which is
normally distributed, equations 5.10 and 5.11 are
equivalent.

The forecast error » and its variance ft are

ny
qguantities which can be computed by the Kalman Filter at
each time step, as part of the Kalman algorithm. This is
achieved by recasting the time series model into the
state-space framework. Hence, the Kalman Filter is used as a
tool for evaluating the likelihood of T dépendent
observations from a multivariate normal.

Differenting the above expression with respect to o¢°?

yields the formula for 62.

QP
1
(i N

-
"M

I 5.12

o+

The quantities, ét and ft are given by the Kalman Filter;

where ft =1 + HPH',
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5.4.2 Results

The three ARMAX models given in Chapter 4 will be used
for flow forecasting in Chapters 6, 7, and 8 respectively.
For each model, an estimate of the noise variance based on
the transformed flow data is required. Five estimates are
obtained for each model. Flow records from 1976-1980 are
used, with the observations taken from April 1 to

September 30. Results are given below.

Table 5.2 Maximum Likelihood Estimates

of the Noise Variance

year Model 1 Model 2 Model 3
AR(1)* ~ TRANSFER ARMAX
FUNCTION
1976 | .00201 01237 .00209
1977 .00264 .01578 .00276
1978 .00122 .01081 .00175
1979 | .00233 .01085 .00259
1980 .00287 .01888 .00303
R, | .0022 L0137 .0024

* Descriptions of these models are given in Chapter 4,
section 4.2,
Specification of the noise variance for the Kalman algorithm

is based on Rav' in subsequent chapters 6 to 8.
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5.5 Summary
The three ARMAX models described in Chapter 4‘will be

used for flow forecasting in Chapters 6, 7, 8 respectively.

For each model, the variance of the measurement error at

each time step is unknown. This chapter is concerned with

the estimation of noise variance.

In real-time forecasting, it is desired that the
variance of the error term be time-invariant; although in
Apractice, this is rarely true.

Estimation of the noise variance for each model is
divided into two parts and the conclusions are:

1. Regressions of log[Var(flow)] on log[Mean(flow)]
indicate that the variance is proportional to the square
of the flow. By using the Box-Cox transform, it is
determined that the raw flow data should be transformed
by 1n(flow). The ﬁoise variance of the new series is
approximately uniform.

2. The method of maximum likelihood is used to estimate the
noise variances of the transformed data for each ﬁodel.
The log-likelihood expression is written in terms of‘the
innovations and evaluated by using the Kalman Filter.
Average of the maximum likelihood estimates for each

model is given.
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Table 5.3 Averaged Maximum Likelihood Estimate

of the Noise Variance

Model 1 Model 2 Model 3

Rav .0022 .0137 | .0024



6. APPLICATION: AR(1)

—

An autoregressive model of order 1, AR(1) is considered in
this chapter. It is used to predict flows at Hope éne day in
advance. Three ways of formulating the AR(1) model into
Kalman state-space format are investigated. Hence, three
schemes are used to forecast the flow at Hope. The objective
of this study is to compare forecasting performances of the
three state-space formulations, based on the following three
criteria:
1. RMS error of the flow forecast,
2, maximum relative forecast error, and
3. number of times the forecast error is greater than 25%

of the true flow.

From the study, the following conclusions are drawn.
The best forecasting performance is obtained for the scheme
which uses the Kalman Filter to estimate the AR coefficient,
a. As the estimate is given resursively, flow prediction is
made at each time step with the most recent estimate of a.

On the other hand, the Kalman Filter can be used to
estimate the flow directly. The formulation which models the
flow as the state, and the error term as the observation
noise results in the worst forecasting performance.
Correction to the flow estimates are not adequate as the
Kalman gain matrix is too small.

Formulating the AR process as the state equation is
equivalent to not using the Kalman Filter at all. The

forecasting performance can be improved by casting the model

67
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in state-space form and applying the filter to estimate the
AR coefficient recursively.

The model used to describe the streamflow phenomenon at

Hope is:

qp = aqy_; * e 6.1
where g = 1ln(flow) at Hope

a = autoregressive coefficient

€ = white noise ~ N(0,0?)

6.1 Description of the Forecasting schemes
Three schemes are used to forecast flows at Hope and
are described below. The streamflow phenomenon is

represented by the AR(1) model of egn. 6.1.

6.1.1 Properties of Scheme 1

The AR(1) model is recast into state-space framework as

follows:
State eqgn: a, = a,_, 6.2
Obs. eqgn: dp = Qp_q9 + € 6.3

The AR(1) process is written as the observation equation,
with a is the state variable. Hence, the Kalman Filter is

used to give recursive estimates of the AR coefficient.
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Because time-invariant states are considered, there is no
noise term associated with a, and thus Q = 0. The i-step

flow prediction is given by where

Geer 7 Fler/e
at+1/t is based on the latest state estimate given by the
filter. Under this scheme, the noise variance is required as

input to the Kalman algorithm.

6.1.2 Properties of Scheme 2

The state-space representation of the AR(1) model is:
State eqn. q; = aq,_, + € 6.4
Obs. eqgn. dy = q; 6.5

In contrast to the previous scheme, the AR(1) process is
written as the state equation, with q, as the state
variable. Under this formulation, an estimate of a is
required prior to forecasting as it is assumed known by the
Kalman algorithm. An approximate least squares estimate, ar g

is used. This estimate of a is held fixed throughout the

forecasting period. Forecasts are given by the prior

~

estimate of the state vector, Qt+1/t = a4, .

6.1.3'Properties of Scheme 3
‘This final scheme also uses the Kalman Filter to give
estimates of the flow directly. However, the AR(1) model is

‘"split up" in the state-space formulation:
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State egn: - q, = aq,_, 6.6
Obs. egn: am, = Qqy + €y ’ 6.7

gm, represents the measured flow. Although q, is the state
variable, the noise term is modelled as the measurement
noise. Again, an estimate of a is required for the algorithm
and arg is used. Forecasts are given by the filter as qt+1/t
= aLSqt' This differs from Scheme 2 in the expression for

ﬁt, as will be shown in section 6.5.4. An estimate for the

noise variance is also required.

Table 6.1 summarizes the properties of the three schemes.
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Table 6.1 Properties of the forecasting schemes
Scheme 1 Scheme 2 Scheme 3.
AR(1) = obs. eqn. AR(1) = state egn. AR(1) "split up"

estimates of a are
given recursively
by the Kalman

-Filter

estimate of ¢?

required

estimate of a
required prior to

forecasting

equivalent to no

Kalman Filtering

estimate of a
required prior to

forecasting

estimate of o2

required
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6.2 General Discussion

For Scheme 1, the estimate of a can be updated at each
time step through the use of the Kalman Filter. The
forecasting performance can be affected by the input
specification of the Kalman algorithm. For this formulation,
these inputs are the initial specifications for the AR
coefficient and the noise variance; i.e. ao, Py, R.

Schemes 2 and 3 use the Kalman Filter to give estimates
of the flow directly, as qy is the state variable. An
estimate of a is required prior to forecasting as it is
assumed known by the Kalman algorithm. The main disadvantage
of these schemes is that a is held fixed during the
forecasting period. Hence, the performance of schemes 2 and
3 are not expected to be better than that of Scheme 1.

Under Scheme 2, the 1-step flow prediction is given by

the prior estimate of the state qt+1/t = aqut. The latest
estimate of the flow is:

Ay = Gy /gy * Kelag-q,d 6.8
The expréssion for the Kalman gain is:

Ky = Pt/t_1H' [HPH'+R] ! 6.9
where Pt/t-1 = azLSPt_1 + Q 6.10

Specification of Q affects K_, and thus qt. In this

tl
application, H=1 and R=0 leads to a constant gain matrix,

K,=1. Therefore, regardless of the value for Q, K, is the

t
same even though P

t

£/t-1 changes. Because K=1, equation 6.8

is equivalent to:
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Ay = Gy g ¥ [qt-ﬁt] | 6.11

Hence the 1-step forecast is:

Qer1/t T %s 9t 6.12

This expression for the 1-step forecast could be obtained
before the AR(1) model was cast into state-space form.
Hence, for this situation (K =1), Scheme 2 is equivalent to
not using the Kalman Filter. The sensitivity of this
scheme's performance is studied with respect to
specification of a.

Under Scheme 3, the Kalman gainvis not equal to 1. In

this case, the performance of the filter is expected to

depend on the specification of go, Py, R and a.

6.3 Experimental Procedure

The forecasting performance of each scheme is
investigated. The data used are streamflow measurements at
Hope, from April 1 to September 30, for the years 1981 1982
1983. Their performance is measured by three indicators

(P1):
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—

This relative root mean square error (RRMS) expresses the
average magnitude of the forecast error as a fraction. It is
measured in terms of the actual units; i.e. y is in m3/s.

2. PI, = maximum of the absolute relative error,

Ye 7 Yy
Y

= number of times the absolute flow forecast error

w
.

4"

—
w
I

error > 25% of the actual flow.

All three indicators are such that the smaller their values,
the better the performance. To summarize, PI,; represents the
average error, PI, denotes the maximum error, and PI,
indicates the frequency of poor forecasts.

Schemes 2 and 3 require estimates for the AR
coefficient prior to forecasting. The method of least
sqguares is used to obtain argr by treating the time series
model as a regression model. An approximate least squares
estimate (LSE) for a is the sample correlation coefficient
between d; and Qe Taking the dependent variable as Qy

and the independent variable as di - five regressions are

‘I 14
done and the sample correlation coefficient is obtained in
each case. Data used are streamflow records at Hope from
April 1 to September 30 for the years 1976-1980. The average

of the five estimates is used as a for forecasting.
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Schemes 1 and 3 require the noisé variance to be known.
Similarly, this has to be estimated prior to forecasting and
the method of maximum likelihood is used in this case. The
same flow records as above are used. Assuming normality for
the observations, the approximate maximum likelihood
estimates (MLE) of 02 were obtained in Chapter 5. Again, the

average of the five estimates is used as R.
6.4 Results

6.4.1 Estimate of AR coefficient

The LSE of a obtained for the years 1976-1980, is

presented below.

Table 6.2 Least Squares Estimates of the
autoregressive coefficient

year arg
1976 .9963
1977 .9928
1978 .9959
1979 . 9969
1980 .9945
average ',995

It is noted that the estimates of a are close to 1.



6.4.2 Estimate of the noise variance

The MLE of ¢? obtained in Chapter 5 for the years
1976-1980 are given.

Table 6.3 Maximum Likelihood Estimates
of the noise variance

year MLE(0?)
1976 | .00201

1977 ' .00264
1978 .00122
1979 .00233
1980 .00287
average .0022

The average value is rounded to .002 for use in the Kalman

algorithm,

6.4.3 Performance Indicators for Scheme 1
The filter's performance is tested with respect to ao,

Po,, and R. The range of parameter values used are given

below, followed by the results.



Table 6.4 Range of values for input parameters

Parameter lower limit upper limit

ao .1 2

P, 1 10

R 2x10- 8 2 i
Table 6.5a Values of PI; for Scheme 1

ap=1.0 Py=3.0 R=.002 unless otherwise stated

Parameter value 1981 1982 1983

all conditions

=
oe
(6]
o
>
oo

R=2x10"°8

o
oe
(8]
[
(03]
oo

Table 6.5b Values of PI, for Scheme 1

Parameter value : 1981 1982 1983
all conditions ‘ 17% 20% 14%

R=2x10" 18% 20% 12%



78

Table 6.5c Values of PI, for Scheme 1

Parameter value 1981 1982 1983
all conditions 0 0 0
R=2x10"§ 0 0 0

Results show that the filter is very robust to
specifications of a, and P, for all three performance
indicators. It is noted that in this application, the filter

is also insensitive to the specification of R.

6.4.4 Performance Indicators for Scheme 2

This scheme is equivalent to forecasting without the
Kalman Filter. It was shown in section 6.2 that forecasts do
not depend on the value of the noise variance in this
application. The forecasting performance is examined with

respect to specification of a. The range of values used are:

Table 6.6 Range of values for a

Parameter lower limit upper limit

a .95 1.05



Table 6.7a

Values of PI,

for Scheme 2°

Parameter value 1981 1982
a=.95 34% 35%
a=.99 9% 10%
a=1.0 4% 5%
a=1.01 10% 10%
a=1.05 51% 52%
Table 6.7b Values of PI, for Scheme 2
Parameter value 1981 1982
a=.95 44% 48%
a=.99 24% 28%
a=1.0 18% 21%
a=1.01 16% 23%
a=1.05 66% 74%

79

1983

1983

40%
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Table 6.7c Values of PI, for Scheme 2
Parameter value 1981 1982 1983
a=.95 ’ 182 179 182
a=,99 _ 0 1 0

- a=1.0 0 0 0
a=1.01 0 0 0

a=1.05 : 179 180 182

All three performance indicators show that the
forecasting performance is sensitive to specification of a.
The best performance shows an average RRMS error (PI,) of
5%, while the worst performance (for a=1.05) results in 50%.
The forecasting period spans over 183 days, from April 1 to
September 30 of each year. Table 6.7c shows that for a=.95
or 1.05, the forecast error is greater that 25% of the

actual flow at almost every time step.

6.4.5 Performance Indicators for Scheme 3
The forecasting performance is tested with respect to
a, Jo, Po, and R. The range of values for the parameters

are;
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Table 6.8 Range of values for input parameters
Parameter lower limit upper limit
a .99 1.01
Qo 1 15
Po .3 30
R 2x10°° 20

Results are presented below.

a=1.0 q°=7 po=3

Table 6.9a

Values of PI,

for Scheme 3

Parameter value

R=2

R=2x10"-6

all values of g, and P,

1981
91%
46%
24030%
46%
46%
46%

46%

1982

23605%
49%
48%

48%

R=.002 unless otherwise stated.

1983
92%
44%
23234%

45%



Table 6.9b Values of PI., for Scheme 3

Parameter value 1981 1982
a=.99 100% 100%
a=1.0 130% 77%
a=1.01 80625% 80848%
R=20 121% 78%
R=2 129%. 77%
R=2x10"¢ 131% 77%
all values of go and P, 130% 77%
Table 6.9c Values of PI, for Scheme 3
Parameter value 1981 1982
a=.99 174 175
a=1.0 116 130
a=1,01 178 174
R=20 122 125
R=2 115 129
R=2x10"° 116 130
all values of gy and P, 116 130
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1983
100%
109%
72877%
101%
108%
110%

109%

1983
177
133
172
140
132
132

133

All three Pérformance Indicators show that this is the

-worst forecasting scheme as even the smallest value for PI,

is approximately 50%. Although the performance is robust to
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specification of gqo, Po, and R; it is very sensitive to the
specification of a. From Table 6.9a, a=1.0 results in the
smallest PI,. However, using a=.99 doubles the average RMS

error. Moreover, using a=1.01 leads to filter divergence.
6.5 Discussion of Results

6.5.1 Forecasting Performance of Scheme 1

For Scheme 1, the filter's robustness to the AR
coefficient, a is not surprising. It was found in Chapter 3
that specification of x, and P, has little effect on the
forecasting performance. It is also noted that for this
application, the filter is also robust to specification of
the noise variance.

Hence, this formulation of the Kalman Filter»is most
attractive in real-time forecasting, because a) the
forecasting performance is good; and b) the filter is robust
to initial specification of model coefficients. Indeed, the
main advantage of this formulation is that a can be
continually adjusted by using the incoming flow data.

Table 6.2 shows that the least squares estimates of a
are close to 1. In fact, they are constrained to be less
than 1 as they are the sample correlation coefficients.
However, the Kalman Filter doesvnot have this limitation.
Consequently, the Kalman Eilter can be used to estimate the
AR coefficient for non—stétionary systéms Qhere a is greater

than 1. For this application, the estimates of a given by
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the Kalman Filter are also close to 1. Hence, they support

the regression estimates.

6.5.2 Forecasting Performance of Scheme 2

The AR(1) model is written as the state equation of the
Kalman model. For K=1, this is equivalent to forecasting
without the Kalman Filter. An estimate of a is required
prior to forecasting. Results show the filter's sensitivity
to specification of the AR coefficient. Values of a outside

a 5% range with respect to a results in larger PI values.

LS
In practice, a cannot be estimated with an accuracy of a few
percent., Even slight seasonal variation can cause the true

value of a to wander by this amount.

6.5.3 Forecasting Performance of Scheme 3

Forecasting under Scheme 3 results in the worst
performance. Large increases in all Performance Indicators
are noted when specification of a is changed by as little as
1% from arg- Therefore, this is not a practical forecasting
procedure, as a cannot be estimated with this degree of
accuracy. Poor estimates of a once chosen cannot be
corrected as it is held fixed during the forecasting period.

Flow predictions are given by:

Ar1/e = s e 6.13

@t is the Kalman estimate of the state vector for time t:

Ay = G jp-q * Kt[qmt—qmt] 6.14
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A

or G = G /oy (1—Kt) *+ K. gm, 6.15

There are two limiting cases of interest:_

1. K =1 results in flow forecasts given by qt+1/t = a;cam, .
This is equivalent to not using the Kalman Filter
(Scheme 2). |

2. Kt=0 results in flow forecasts given by §t+1/t = ar ¢
qt/t;1' This corresponds to not using the measurement
information at time t. This scheme leads to propagation
of errors as t increases.

In fact, this is the reason why this forecasting scheme

yields such poor results. Successive flow predictions are

based on the previous prediction without consideration of

the measurements. This then explains why a=1.01 results in

much larger Performance Indicators than a=.99. Flow

forecasts in this situation is approximated by g, raised to

an exponent a,, where g, can be taken to be the initial

flow. For large t; 1.01t results in forecasts, which deviate
t

from the actual flow by a greater amount than .99 . It is

shown below that for this application, K_ is approximately

t
0.

For H=1, the expression for the Kalman gain reduces to:
.Kt = Pt/t¥1 / [Pt/t_1 + R] 6.16

Kt is small if Pt/t—1

Starting with Py, P,/o = a

is much less than R.

2LSPO + Q < PO'
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Hence, K;~Py/[Py+R], which gives P, ~ (1-K,;)P,.
1. If a large P, is specified, then K;~1 which results in

P,~0. Subsequent P_ will all be close to 0.

t
2. If P, is small compared to R, then K~0. However, P,~P,
which is still small. Hence after a couple of time

steps, Pt/t—1 approaches 0 regardless of Py.

This situation should be distinguished from Scheme 1 where
the AR process is written as the observation equation. In
that case, 02 = R also. The state variable however, is the
AR coefficient. Hence the Kalman gain is applied to a. Since
small adjustments to a are adeguate for improving the
observation forecast, only a small Kalman gain is necessary.
1f the state variable is the flow (as in Scheme 3) then
small Ky values are not sufficient to correct the flow
estimates.

Theréfore, this forecasting scheme is the worst one
considered in this chapter because:
1. No adjustment can be made to a.
2. Flow prediction at each time step is not corrected

adequately as K, is too small.

t
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6.6 Summary

—

The AR(1) model is used to describe streamfldw
phenomenon at Hope. Results for the performance of the
forecasting schemes are given below.

Scheme 1 is the best forecasting procedure. This
correéponds to formulating fhe AR(1) model in the
observation equation with a as the state variable. Hence,
this allows continual updating of the AR coefficient. The
.scheme is best both in terms of flow forecasts obtained, and
robustness to initial specification of a.

Scheme 2 formulates the AR(1) process as the state
equatién in the Kalman model. This is equivalent to not
using the filter at all. Although the performance can be as
good as Scheme 2, forecasts are sensitive to the
specification of the AR coefficient.

Scheme 3 is the worst forecasting procedure. Not only
are the flow predictions sensitive to a, the performance is
always poor. Under this scheme, a small Kalman gain leads to

insufficient correction to Qt+1/t'



7. APPLICATION: TRANSFER FUNCTION MODEL
The AR(1) model in chapter 6 gives the 1-step ahead forecast
for the flow at Hope. Application of the Kalman Filter does
not necessarily yield improved flow predictions. The best
forecasting scheme is to use the Kalman Filter to estimate
the AR coefficient recursively. This allows flow predictions

to be made with the latest estimate, a The formulation

p
corresponds to writing the AR(1) model in the observation
equation.

Often in flood management however, forecasts are
required for several days in advance. There is a problem
with using the AR(1) model in a Kalman Filter framework to
predict observations more than 1 step ahead. In the Kalman
model, H, which relates the observation to the state, is

considered known at time t. For the 1-step forecast,

H But for the 2-step forecast, H The

g1 = G t+2 - G+
problem is that tomorrow's flow is unknown. In practice, the
1-step forecast is used as an estimate. However, the
variance of this forecast error (§t+2 - qt+2), should not be
calculated using the Kalman algorithm. One alternative is to
use a different statistical model, which avoids this
problem, to predict the flows 2 days in advance.

A transfer function model is used to relate flows from
upstream stations to the flow at Hope. This contrasts with
the time series model of Chapter 6. In this case, the

independent variables do not involve past values of the flow

at Hope, the dependent variable. This input-output model

88
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gives the 2-day ahead forecast at daily intervals, as
measurements are received everyday. The model used to
describe the flow at Hope is a transfer function model with

constant coefficients:

H _ T N

Ty = layy Tl Bt e 7.
where = In(flow)

B = vector of coefficients

white noise~N(0,02%=R)

m
1}

station superscripts:

H = Hope
T = Texas Creek
N = Near Spences Bridge

Stations T and N are located upstream of Hope. Their
geographic locations are shown in Chapter 1, Fig. 1.1.
The objective is to determine whether flow forecasts
given by this model can be improved by using the Kalman
Filter to estimate § in real-time. Performance of the
forecasting schemes are based on the same indicators used

for the AR(1) study.

The following conclusions are drawn:
1. Flow forecasts are not improved significantly by the

Kalman Filter to be of practical interest.
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2. However, under the Kalman Filter scheme, forecasting

performance is robust to specification of .

7.1 Description of Forecasting Schemes

Only two forecasting schemes are considered in this
study. In Chapter 6, three state-space formulations of the
AR model were considered. It was found that the formulation
.which models the AR coefficient as the state yields improved
forecasts. Hence, this is the only state-space formulation

considered in this study.

7.1.1 Properties of Scheme 1

No Kalman filtering is employed in the first scheme.
The transfer function model assumes that the coefficients
are time-invariant. Flow 2 days in advance is given by the
1-step forecast:

~H T N
Qpep = a7y @] Brg 7.2

where ELS is the least sguares estimate obtained prior to

forecasting.

7.1.2 Properties of Scheme 2
Kalman Filtering is used and the transfer function

model is cast into state-space format as follows:
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1 | =1n1

Ble| =18 -1 - 7.3
2 | =|lRp2

B¢ = 1P -1

H _ T N

Ty =l Tpp] B * ey 7.4

The coefficients f', B2, are modelled as time-invariant
states. Therefore, the Kalman Filter is used to give
estimates of Et recursively at each time step. The flow 2

days in advance is:

~H T N

where gt is based on the latest estimate given by the Kalman

Filter. In order to apply the Kalman algorithm, an estimate

of the noise variance is required.

7.2 General Discussion

Results of the previous study imply that the scheme
which does use the Kalman Filter would yield better flow
forecasts. This is because f is estimated recursively in
real-time. Consequently, flow predictions are made at each
time step with the latest estimate of the coefficients. In
addition, it is expgﬁted that under Scheme 2, the
forecasting performance would be robust to the initial
specifjcationi’ﬁo. This is not likely to be true for Scheme
1. Thus, performance of Scheme 1 is examined with respect to

different values of Brg- Scheme 2 is examined with respect
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to input specification of B, and R.

It is not known how the forecasting performance of this
proposed model compares with that of the autoregressive
model. This is a question of model identification and is not
the main objective of this study or thesis. However, the
following reasoning can be given. Stations with'large
drainage areas such as Hope, have relatively slow system
resbonse. This is due to the storage characteristics of
lafge basins. Quimpo (1973) showed that this phenomenon can
be represented by an autoregressive process. With this
consideration, it would not be surprising to find that the
forecasting performance of the AR(1) model is better than

that of the transfer function model.

7.3 Experimental Procedure

The forecasting performance of each scheme is
investigated using streamflow measurements from three
stations: Hope, Texas Creek, and Near Spences Bridge. The
forecasting period is from April 1 to September 30 for 1981
1882 and 1983. The performance of each scheme is measured by
the three indicators as defined in Chapter 6. These are:
1. PI, which represents the average error
2. PI, which denotes the maximum error
3. PI,; which indicates the frequency of poor forecasts
Small PI values are indicative of good forecasting

performance.



93

Flow prediction under Scheme 1 requires an estimate for
B pridr to forecasting. The method of least squares is used
to obtain Brg- Flow records used for this estimation are
based on five years of data, 1976-1980. The same time period
of the year is used; April 1 to September 30. An average of
the five least squares estimates (LSE) is used as § for
forecasting.

Real-time forecasting with the Kalman Filter requires
an estimate for the noise variance, R. Approximate makimum
likelihood estimates (MLE) Qere obtained in Chapter 5 for
the years 1976-1980. Again, the average of these five

estimates is used as specification for R,
7.4 Results

7.4.1 Estimate of the model coefficients
Regression analysis gives values of f, close to 0 for
all years, 1976-1980. Hence only the least squares estimates

for B8, are given below.
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Table 7.1 Least Squares Estimates of
the model coefficient

year ﬂLS

1976 (1.0572)
1977 (1.0514)
1978 (1.0745)
1979 (1.0556)
1980 (1.0675)
average (1.0613)

The regression results indicate that flows from station N do
not have a significant contribution in predicfing the 2-day
advance flow at Hope. Because B,=0, only the station at
Texas Creek is used as the upstream input in this

input-output model. Thus, = 1.0613.

6AV

7.4.2 Estimate of the noise variance

The five MLE of 02 from Chapter 5 are given below.



Table 7.2 Maximum Likelihood Estimates
of the noise variance

year R

1976 .01237

1977 .01578

1978 .01081

1979 .01085

1980 .01888
average .0137
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R is rounded off to .015 for the Kalman algorithm input.

7.4.3 Performance Indicators for Scheme 1

Results of the performance measures using BAV are given

below.

Table 7.3 Performance Indicators for Scheme 1
1981 1982 1983

PI, 10% 17% 18%

PI, 31% 48% 41%

PI, 3 . 24 35

The analagous scheme of the AR(1) model is compared.
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This corresponds to flow prediction using a without the

LS
Kalman Filter.

Table 7.4 Performance Indicators for the AR(1) model
1981 1982 1983

PI, 5% 7% 6%

PI, 21% 24% 16%

PI, 0 0 0

Values of the PI for the transfer function model (Table 7.3)
are higher than those of the AR(1) model (Table 7.4). This
indicates a level a performance which is not as good as that
obtained with the autoregressive model.

The sensitivity of Scheme 1 with respect to input
specification is examined. Streamflow data from 1982 are

used as this resulted in the worst performance.

Table 7.5 Sensitivity of the Performance Indicators
to the model coefficient

g=1.0613 g=1.04
PI, 175 20%
PI, 483 46%

PI, - 24 : 37
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The first value of B8 is 5AV' The second value of B8 is an
arbritrary choice which represents a 2% change from the
averaged Bave There is an increase in PI, (average error)

and PI; (frequency of poor forecasts) for f=1.04.
7.4.4 Performance Indicators for Scheme 2
Values of the performance indicators for Scheme 2 are

presented:

Table 7.6 Performance Indicators for Scheme 2

1981 1982 1983
PI, 9% 19% 13%
PI, 40% 54% 33%
PI, 3 32 12

Tables 7.3 and 7.6 are compared. For the 1981 data,
comparable forecasting performance is obtained for the two
schemes. In both cases, the number of times the forecast
error is in excess of 25% of the actual flow, (PI;) is
minimal.

The 1982 data reveal a slightly larger difference in
the performance indicators between the two schemes. All
three performance indicators are larger for Scheme 2 which
uses the Kalman Filter. This ihplies that better flow

forecasts can be obtained without continual updating of g.
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However, performance indicators for the 1983 data
indicate that better forecasts are obtained if the Kalman
Filter is used.

For this scheme, the sensitivity of its performance
with respect to the initial specification of 8, and R is
examined using the 1982 data. The range of values used for

these parameters are:

Table 7.7 Range of Values for input parameters

Parameter value lower limit upper limit
initial 8 (-.1 .9) (1 .1)
R .0015 15

Under all input specifications, the PI values are the same.

Table 7.8 Performance Indicators for Scheme 2
PI, 19%
PI, 54%
PI, 32

This contrasts from Table 7.5‘where the PI values under

Scheme 1 are sensitive to the specification of g.
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7.5 Discussion of Results

_Perfdrmance Indicators for the two schemes do not
clearly indicate which scheme gives bettér forecasts.
However, fesults‘of the senéitivity analyses favor the
scheme which uses the Kalman Filter. This is because the
forecasting performance under Scheme 2 is robust to initial
specification of the model coefficents. It is found that
without the Kalman Filter, a marked decrease in performance
can occur. This was illustrated with a 2% change in the
specification of B for the 1982 dataset. A regression
performed on the 1982 data found that.ﬁLS = 1.062. This is
very close to ﬁAV of 1.0623. Hence, results in Table 7.3
represent the best performance possible for the 1982 data

under Scheme 1.
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7.6 Summary

—

A time-invariant transfef function model is used to
describe the streamfldw phenomenon at Hope. The independent
variables are flows from two upstream stations lagged 2 days
behind that of Hope. It was found that:

1. The forecasting performance of this model is not
significantly improved 6r degraded by applying the
Kalman Filter to recursively estimate §.

2. Howe&er, it is recommended that the Kalman Filter be
used because the forecasting performance is robust to
specification of f. This is important in situations
where the model coefficients cannot be estimated

accurately or if they change slowly through time.



8. APPLICATION: ARMAX MODEL

The Kalman Filter has been applied to autoregressive and
transfer function models to yield estimates of the model
coefficients recursively. These models are used for
predicting flows at Hope 1 and 2 days in advance
respectively. The advantage of using the Kalman Filter is
that the forecasting performance is robust to initial
specification of the model coefficients. As these are
usually unknown in hydrologic applications, this feature is
appreciated by practicing engineers. In addition, use of the
Kalman Filter gives improved flow forecasts for the AR(1)
model.

An ARMAX model for describing the flow at Hope is

considered in this chapter:
H _ . H T N
Tg = Cr1d g T CaT oy T CaTp t &y 8.1

This is an AR(1) with upstream inputs. The autoregressive
part of this model represents storage characteristics of the
river basin, while the exogeneous inputs represent
contributions from upstream stations. In this $tudy the
Kalman Filter is applied to the ARMAX model to give
estimates of the ARMAX coefficients resursively. Flow
predictions 1 and 2 days in advance are made. The
performance is therefore, measured for both the 1-step and
2-step flow forecasté. The objective ié to compare the

i-step forecasting performance of the ARMAX model to that of

101
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the AR(1) model and the 2-step performance to that of the
regression model.

Results of the study indicate that the 1-step
forecasting performance of the ARMAX model is comparable to
that of the AR(1) model. In addition, the 2-step performance

is better than that of the transfer-function model.

8.1 Properties of the Forecasting Scheme

The state-space formulation of the ARMAX model is:

C1 = C1 ’ 8.2
Cal = C2

Ci| = Cs

H _ . H T N

Oy = lay g Gy Tl g e 8.3

The Kalman Filter is used to give estimates of the model
coefficients c¢,;, c,, and c; at each time step. Performance
is measured for both the 1-step and 2-step flow forecasts.

The 1-step forecast is given by:

.H . H T N .
Qe = lay oy ) Eeiq e 8.4

The 2-step forecast is given by:

~H _ (AH T N, .
Qpap = (@704 @y T ¢ Epuppe 8.5

where & and &

St+1/t Cr+2/¢ 3T based on the latest state
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estimate given by the filter. As th+1 is unknown, it is
replaced by the 1-step forecast, ﬁHt+1.

The autoregressive nature of this model can result in
the problem of unknown system matrix, H. This occurs when

predicting flows more than one time step ahead.

8.2 General Discussion

It is desired in practice that the 1 and 2-step
performance of the ARMAX model be better than or equal to
that of the AR(1) and transfer function models respectively.
First of all, only one model needs to be used. Secondly,
there is only one noise variance to estimate.

The station at Hope is characterized by a large
drainage area. Thus, it is expected that the autoregressive
part of the combined model will dominate. This means that
estimates of c, will be relatively larger than those of c,
and c;. With this reasoning, the 1-step forecasting
performance should be similar to that of the AR(1) model.

The Kalman algorithm requires‘specification of co, Po,
and R. From the studies of Chapters 6 and 7, it has been
concluded that forecasting performancé is robust to initial
specification of the model coefficiénts. Therefore, the
sensitivity of the filter's performance is examined with
respect to the specification of the noise vafiance only.

One iésue of concern here is that the 2-step prediction

involves unknown elements in the transition matrix, H of

t+2
* the Kalman model. For the ARMAX model, H ., =
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[th+1 th th]. The Kalman algorithm assumes that this is
known. As tomorrow's flow at Hope is unknown at time t, its
i-step forecast is used as an estimate. Violating this
‘assumption results in an increase in.the variance of the
forecast error. Therefore, the 2-step forecasting
performance of the filter gives an indication of the
robustness of the filter to the problem of unknown H in a

practical situation.

8.3 Experimental Procedure

The forecasting performance is measured by the three
indicators described in Chapter 6. For this ARMAX model, the
performance is measured with respect to both the 1-step and
2-step forecast errors:
1. 1-step forecast error: qt+1/t i

2, 2-step forecast error: qt+2/t T Qpyp

The indicators are based on these forecast errors measured
in actual units of m3/s. These are:

1. PI, which represents the average error

2. PI, which denotes the maximum error

3. PI, which indicates the frequency of poor forecast.

The nature of these indicators is such that the smaller the
values, the better the performance. The forecasting period

is from April 1 to September 30 for 1981 1982 1983.
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For the Kalman algorithm input, an estimate of the
noise variance is required, and the -approximate maximum

likelihood estimates obtained in Chapter 5 are used.

8.4 Results

8.4.1 Estimate of the noise variance

Approximate maximum likelihood estimates (MLE) of o¢?2
were obtained in Chapter 5 for the years 1976-1980. The
average of these is used as the specification for R in the

Kalman algorithm,

Table 8.1 Maximum Likelihood Estimates
of the nolise variance

year R

1976 .00209

1977 .00276

1978 .00175

1979 .00259

1980 .00303 N
average .0024

R is rounded to .0025 for the Kalman specification.
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B.4,2 Performance indicators for the ARMAX model

Two sets of performance indicators (PI) are given. The

first set refers to the 1-step performance of the Kalman

Filter. The second set refers to the 2-step performance.

1-step Performance Indicators

Table 8.2a Variation of PI; to noise specification
Value of R 1981 1882 1983
.025 4% 4,5% 3.5%
.0025 4% 4.5% 3.5%
.00025 4% 4,5% 4,0%
Table 8.2b Variation of PI, to noise specification
Value of R 1981 1982 1983
.025 26% 17% 21%
.0025 34% 17% 24%
.00025 35% 17% 24%



Table 8.2c Variation of PI, to noise specification

Value of R 1981 1982 ' 1983

.025 1 0 0

.0025 1 0 0

.00025 1 0 0
2-step Performance Indicators

Table 8.3a Variation of PI, to noise specification

Value of R 1981 1982 1983
.025 9% 8.5% 7%
.0025 1% B.5% 7%
.00025 1% 8.5% 7.5%
Table 8.3b Variation of PI, to noise specification

Value of R
.025

.0025
.00025

1981 1982 1983
62% 32% 33%
104% 32% 34%

108% . 32% ' 44%

107
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Table 8.3c Variation of PI, to noise specification
Value of R 1981 v 1982 1983
.025 2 ’ 1 2

.0025 2 1 2

.00025 3 1 2

Tables 8.2a and 8.3a show that values of PI, are less than
12% for both the 1 and 2-step performance. They also
indicate that the relative RMS error for the 2-step
forecasts is twice that of the 1-step forecasts. Tables
8.2(a,b,c) show the relative insensitivity of the 1-step PI
to specification of R. Table 8.3b indicates a larger
decrease in PI, for the 2-step forecasts when R is specified

larger.

8.4.3 Comparison of 1l-step Performance Indicators
The 1-step forecasting performance of the ARMAX model
is compared to that of the AR(1) model. In both cases, the

Kalman Filter is used for updating the model coefficients.
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Table 8.4 Values of PI for ARMAX and AR(1) models

PI :ARMAX 1981 1982 1983
:AR(1) |
PI, 4% 5% 4%
4% 5% 4%
PI, 34% 17% 24%
17% 20% 14%
PI, 1 ' 0 0
0 0 0

Values of PI; and PI, are approximately the same under
both models. However, the ARMAX model yields larger values

for PI,, i.e. larger maximum errors are obtained.

8.4.4 Comparison of 2-step Performance Indicators

The 2-step forecasting performance is compared to that
of the transfer function model. The formulation used
corresponds to letting the model coefficients be the state

vector in the Kalman model.
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Table 8.5 - Values of PI for ARMAX and
Transfer Function models

PI :ARMAX 1981 1982 1983

¢TRANSFER FUNCTION

PI, 1% 8.5% 7%
! 9% 19% 13%
PI, 104% 32% 34%
40% 54% 33%

PI, 2 1 2

3 32 12

Values of PI, for the ARMAX model are comparable or
less than those for the input-output model. Results for PI,
are more varied. Forecasting under the ARMAX model yields a
higher PI, value for the 1981 data; while a lower PI, value
is obtained for 1982 data. The 1983 data results in almost
the same PI, values for both models. For PI,, the ARMAX
model yields lower values in all three cases. In fact, the
number of times the 2-step forecast error is greater than
25% of the actual flow is at most 2. This compares with 32
for the transfer function model. Hence, the ARMAX model

seldom gives poor forecasts.



8.5 Discussion of Results

8.5.1 Performance of the ARMAX model

Tables 8.2c and 8.3c indicate that this model gives
relatively few forecasts which result in forecast error
greater than 25% of the actual flow. This is true for both
the 1-step and 2-step flow predictions. The 1-step
forecasting perform;nce is relatively insensitive to
specification of the noise variance. However, specififying R
larger results in better 2-step performance indicators. This
is not surprising as the true noise variance for the 2-step

forecast is expected to be larger.

8.5.2 Comparison of l-step performance

The 1-step forecasts of the ARMAX model are compared
with those of the AR(1) model. Results do not give a strong
indication as to which model is better, as compa;able values
for all three PI are obtained. If one is only interested in
predicting the flow one day in advaﬁce, then the AR(1) model
is adequate. In fact, it is preferred over the ARMAX model

because it gives a parsimonious representation,

8.5.3 Comparison of 2;step performance

As noted in section 8.4.4, the frequency of poor
forecasts (PI,) is less for the ARMAX model than the
transfer function model. PI; is an important indicator if

overall consistency and reliability of the forecasts are
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criteria in practice. In addition, the average forecast
error, represented by PI,, for the ARMAX model is less than
or equal to that of the input-output model. Hence; in terms
of model identification, there is a slight preference for
the ARMAX model for predicting sfreamflow 2 days in advance.

The fact that reasonable performance is obtained for
the 2-step forécasts with the ARMAX model leads to the
following conclusion. For the Kalman model, calculation of
the 2-step forecast requires that th+1 is known. As this is
unknown in practice, its estimate given by the Kalman Filter
as the 1-step forecast is used. Although this violates the
assumption of the Kalman model, it is found in this
application that the 2-step forecasting performance of the
Kalman Filter is acceptable for engineering purposes. In
fact, the performance is better than that of the transfer
function model.

For the hydrologist, it is important that the flow
predictions are given with their associated standard error.
In the case of the 1-step forecast, this variance is given
by the Kalman Filter as HPH' + R. This assumes that H is a
deterministic known quantity. When elements of the
transition matrix H are unknown, an estimate is used; as
illustrated in the 2-step forecast above. Results of the
2-step PI in this study shbw that reasonable forecasting
performance can still be obtained. However, there still
remains the problem of what expression is to be used for the

variance of the 2-step forecast error. This is addressed in
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the next chapter.

8.6 Summary

If flow predictions more than 1-day in advance are
required, the ARMAX can be used. This is because it has a
comparable performance as the AR(1) model. In addition, the
2-step forecasting performance is better than that of the
input-output model.

In hydrologié applications, the assumption of known
system matrix, H is often not satisfied when predicting
future observations more than one time step ahead. This
study indicates that using an estimate, H still results in a
reasonable forecasting performance. Moreover, it is found
that in this particular example, the 1 and 2-step forecasts

are gquite insensitive to the specification of R.



9. VARIANCE OF THE FORECAST ERROR
In flood management, the engineer is often required to
predict streamflows several days ahead. The reliability of
these predictions is reflected by their associated standard
errors. For the Kalman Filter state-space model,
Xp = Py * ¥y 9.1
Yy = HeXp * Yy 9.2
the 1-step forecast error for Yy known as the innovation,
is given. Its variance, calculated by the Kalman algorithm
assumes that the system matrix H, is known. In this chapter,
a general expression for the variance of the observation
forecast error when both H and x are unknown, is developed.
ARMAX models have been used for streamflow modelling in
this thesis. The state-space formulation considered here is
where the ARMAX coefficients are the state variables. The
system matrix, H contains past streamflows. The k-step flow

forecast, 2t+k is given by H For the AR(1) model,

t+kZt+k -
flow predictions more than 1 time step ahead requires

knowledge of future flows, hence H is unknown. For

t+k
instance,

= Biio¥iio = Tiidisn 9.3

Tt+2
In practice, the 1-step prediction is used as an estimate
for y,,,. Because Y49 and X, 4o are both based on past
values of y, they are not necessarily independent. The
objective of this study is to develop a general expression

for the variance of the forecast error when both H and X are

unknown, and their estimates are correlated with each other.
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From here on, the time subscripts are dropped for notational

convenience.

9.1 Background

Harrison & Stevens (1976) suggested that the mean
square error (MSE) of the k-step forecast can be obtained
from the Kalman Filter. For k=1, the filter gives

Cov (y-§) = HPH' + R 9.4
where R and P.are covariance matrices for the observation
noise, and state estimates respectively. As pointed out by
Priestley in the discussion of the above paper (1976), this
is not appropriate if H is unknown.

Feldstein (1971) developed a formula for Cov (y-§) when
both H and x are unknown. Regression models are considered
in that context. H corresponds to a design matrix which
contains independent variables, and x is a vector of
regression coefficients. The formula given by Feldstein
assumes that H and X are independent. This assumption
presents some limitation in hydrologic applications. As
noted for the AR(1) example, R and X are likely to be

correlated as they are both based on past values of y.

9.2 Problem definition

The statistical model considered is:

y=Hx+* ¢ 9.5
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where y = vector of observations

ES
[

vector of unknown parameters
H = system matrix

€ = noise term

The objective is to find Cov (y-§) when H and x are both

unknown. Assumptions are:

1.

2.

A, X are unbiased estimators for H and X respectively.
The following covariance submatrices are assumed known.
Z,,= E (h-h)(R-h)’

Zy2= E (B-h)(%-x)'

2= E (R-%) (£-%)"

where A = vec H, h = vec H.

The operator "vec" on matrix H stacks its columns one

under the other, resulting in a column vector, h.

The forecast § is given by HX. No assumption is made on the

relation between H and X.

The covariance matrix for the forecast error is:

Cov (y-§) = Cov (RR) + Cov (g) 9.6

Evaluation of Cov (HX) involves calculating the expected

value of squared quantities of A and X. This requires the

‘fourth moment of their joint distribution. Expression for

" the fourth moment can be obtained in terms Qf lower order

: moments, if A and X are assumed to be jointly distributed as
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a multivariate normal. A convenient way of writing products
of the elements of A and X is through the use of the
Kronecker product. A preliminary result is given in the next
section before the derivation of the general formula. The
,resuit contains the expressions for the covariances of
products of normal random variables. It is written in terms

of the Kronecker product.

9.3 Covariances of Products of normal random variables
The Kronecker product is defined as follows:
' Given 2 matrices A

B then A ® B is a (ms,nt) matrix

mxn'’ sxt’

with submatrices consisting of aijB' Therefore, the
Kronecker product of a n-dimensional vector, is a super long
~vector of length n?. From Magnus and Neudecker (1979), the
following result is used: ‘

If a is distributed as N_(u, V) where "n" is the length of

a, then Cov (a @ a) is given by

(1 + Kn) (VR V + Ve uu" + uu' @ V) 9.7

K, is a n? by n? matrix defined such that K vec(a) =
vec(A').

For the purpose of the thesis, the following derivation
is restricted to a scalar model for Yy The AR(1) model is
consldered where Ye = Yieoq G Fo€pe Vi and a, correspond

to Ht and X, respectively. Hence, both H and x are scalars.

Flow forecasts greater than 2 steps ahead, require estimates
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for H. The expression for the variance of the forecast error

is developed in the next section.

9.4 Variance of the forecast error for the scalar case

Identifying the vector a from section 9.3 as [2]

—

the Kronecker product, a ® a = 9.9

33 e n Je o
L1 o 3- e 5]

The scalar quantity Var (HX) is given by the 2nd (or 3rd)

element of the above vector product. It is assumed that

31 H Ziq g2

0
»

Z:12 Z22

where Zij have been defined in section 9.2. In this
development, they are scalar gquantities.

Result 9.7 from section 9.3 is evaluated below.

H Z11 Z:12

u and V are identified as
X Ziz2 Zz2
1000 ' ' 2000
K, = 0010 (I + K,) = 0110
0100 0110
0001 0002



The following three matrices are symmetric.

Z:‘112 z‘I1z12 z1‘|Z12

Z112:'22 2122

zI‘IZ:ZZ Z:122:22

Also V@V =
H2Z,, HxZI,, H?2Z,,
Xx%2Z,, HxI,,
V& uu' =
HZZ11 sz12 HXZ11
up' @ V =

x2Z,,

Addition of these 3 terms and premultiplying by (I + K;)

gives the expression for Var(AX):

H2Z,, + Z,, (x? + Z,,) + Z,, (2Hx + IL,;)

Since, Var (y-§) = Var € + Var (HX) the variance of the

forecast error is:

2
Z:12

z12222

2
Lz

HxZ, 2
X2Z,,
HXZ,,

X2%Z,,

HxZ,,
HxZ, ,
X2Z,,

X2%Z,,
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9.9

(R + H2Z,,) + Z,, (x2 + Z£,,) + Z,, (2Hx + Z,,) 9.10
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Egqn. 9.10 gives the general formula for the variance of the
forecast error when both H and x are unknown scalar
quantities. Special cases can be obtained and are discussed
below.

1. If H is unknown, but its estimate R is uncorrelated with
%, then Z,, = 0. This assumption is valid for regression
models where the variable H is trqu exogeneous. Hence,
Var (y-§) = (R + H2Z,,) + Z,,(x? + Z,,) 9.11
This is the same expression as that given by Feldstein's
formula for a scalar regression model.

2. If H is known, then Z,, = 211 = 0. This assumption is
used in the Kalman model for calculating the variance of
the 1-step innovation. Equation 9.10 then reduces to
Var (y-§) = R + H?Z,, 9.12
Z,, is the mean square error for the state variable x.

It is synonymus with "P" in the Kalman Filter notation.

9.5 Illustration of the variance formula for the AR(1)

The AR(1) model is used to illustrate the use of the
general formula (egn. 9.10) for the variance of the forecast
error. Application of the Kalman Filter to this model was
studied in Chapter 6. The state-space formulation considered
here corresponds to letting the AR coefficient be the state
variable. In practice, flow predictions several time steps
ahead are often desired. Because H and x are both unknown

and their estimates cannot be assumed to be independent,
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9.10 should be used.

The . flow at Hope typically ranges from 1000 m®/s to

7000 m3/s throughout the year. In practice, the AR

coefficient is of the order of 1.0. Characteristic values

for each term of egn. 9.10 is examined below:

1'

R

Studies from Chapter 5 indicate that the standard
deviation of the measurement error is proportional to
the flow itself. In practice, these errors are usually
less than 10% (Water Survey of Canada, personal
communication). Hence, R is taken to be .01y?2,

Zz2

This is given by the Kalman Filter as the MSE of the AR
coefficient, a. As noted earlier, a is approximately 1.
Estimates of a are obtained at each time step from the
Kalman Filter. A conservative estimate of its MSE as a
percentage of the true value is about 10%. This results
in Z,, = .01,

Ly,

This is the MSE for H. For time t+2, this corresponds to
?t+1' The MSE(§t+1) is given by the Kalman Filter as
HPH' + R. Using the above values for P and R, Z,;, =
.02y2,

z:12

Since A and X are positively correlated, an estimate for

Z,, can be obtained by considering the correlation

"between H and X. The correlation is of the order of .1
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to 1, hence Z,, is approximately .00ty to .01ty.

Each term of egn. 9.10 is expressed in terms of the flow

magnitude:

(.01y2 + ,01y2?) + .02y%2(1+.01) + .01y (2y + .01y) 9.13
Disregarding terms with lower orders.of magnitude yields
“(.01y2% +,01y%) + .02y% + ,02y? 9.14

Expression 9.14 indicates that in practice, all terms in the
general expression are of the same order of magnitude.
Therefore, it is not justified to neglect any part of the
general formula_of eqn. 9.10. Use of the Kalman algorithm to
calculate Var (y-9¥) is equivalent to using the terms in the
first bracket only of egn. 9.14. Thus, the actual variance

is significantly larger if the correct expression is used.

9.6 Conclusions

A scalar observation model is considered in this
chapter, ‘y = Hx + e. A general formula for the variance
of the forecast error is deveioped when H and x are both
unknown and their estimates are correlated with each other.
The formula obtaiﬁed is:

(R + H?Z,,) + Iy, (x% + Z,,) + Z,, (2Hx ; 2:12)



123

The expression consists of three parts: The first, accounts
for the measurement and state estimation errors (R + Z,2).
The second part reflects the uncertainty in the estimate, H
(Z,4); and the final part accounts for the correlation
between H and % (Z,,).

Two special cases of the general formula are:

1. Feldstein's formula

(R + Z2¥H2) + Iy (%32 + L,,)

This is used if H and X are uncorrelated which is
appfopriate if H is truly an exogeneous variable.
2. Kalman Filter formula

(R + Z,,H?)

This is appropriate for the 1-step forecast because H is
a known quantity.

The importance of this formula is illustrated with an
application of the AR(1) model to streamflow prediction at
Hope. The variance equation‘given by the Kalman Filter is
inappropriate in this case for two reasons:

1. Flovaredictions 2—stéps ahead or more require knowledge
of future flows (unknown H).
2. The estimates B and & are correlated with each other, as

they are both based on past values of y.

The practical illustration indicates that all three parts of
the general variance expression are of the same order of
magnitude, and hence cannot be neglected. In any forecasting

situation, decisions are often made based on the reliability
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of the future predictions. As the reliability is reflected
in the standard error of forecast, the correct expression

developed in this chapter should be used.



10. SUMMARY AND CONCLUSIONS
-ARMAX models are often used to describe stochastic processes
such as streamflow phenomena in hydrology. These are time |
series models with exogeneous inputs. Application of the
Kalman Filter to these types of models for flood forecasting
is considered in this thesis.

The Kalman Filter is a recursive estimation procedure
which gives a linear, minimum variance estimator for the
state vector at time t. The estimate is updated at each time
step by making use of incoming noise-corrupted observations.
The Kalman algorithm, based on a state-space model, accounts
for uncertainties both in the states and in the
measurements.

The performance of this estimation technique depends on
satisfying the assumptions of the Kalman state-space model.
Use of the Kalman Filter in aerospace applications is very
successful because the physical equations and system
dynamics are well known. However, such is not the case in
streamflow applications as there are many uncertainties
associated with this stochastic phenomenon. Choice of the
"best" ARMAX model with the "proper" noise statistics 1is
often an impossible goal to achieve in engineering practice.
Nevertheless, the Kalman Filter is used even when the
assumptions of the Kalman model are‘not completely
satisf{ed.

The following section summarizes the main contributions

of the thesis to the field of Kalman Filtering in streamflow

: : 125



126

forecasting. Subsequent sections give the conclug}dns for
each study. The aim of this thesis is to furthé? the
undefsténding of the Kalman Filter as applied to hydrologic
systems. The practicality and the performance of this
estimation technique is examined in the context of ARMAX
flow models. It should be pointed out that the objective 1is
not to identify the best hydrologic model for a particular
phenomenon. No doubt, more physically based models have been
proposed and used Qith much success, for basins with
extensive data base necessary as inputs. Recognition of
stochastic elements in hydrologic processes has led to the
use of ARMAX models in streamflow modelling. It is for these
situations that the application of the Kalman Filter is
considered. In this thesis, it is assumed that whichever
ARMAX model is chosen, it is an adequate description of the

underlying process.

10.1 Summary of Thesis Contributions

General practical problems which arise in the
application of the Kalman Filter are described in the
literéture review of Chapter 2. Several problems which
frequently occur in hydrologic applications are investigatéd
in this thesis. There are three main contributions of this
research, each summarized in the following parag;aphs.
Advances in the understanding of the Kalman Filter is made
in terms of: |

1., filter's sensitivity to input specification, and
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2. practicality of the filter for different state-space
formulations of ARMAX models.
Correct expression for the mean square error (MSE) of
forecast is derived for the AR(1) model. It is shown that
under appropriate assumptions, the expression reduces to the
Kalman equation for the variance of the innovations. This
third contribution is important when autoregressive models
are used to forecast flows several time steps ahead. Under
the Kalman model, this process violates the assumption of
known system matrix H, and use of the Kalman equation
underestimates the variance of the forecast errors.

The problem of input specification, for quantities
often unknown in practice is first investigated. Results
indicate that of the four quantities (x,, PO;VQ, R), only
the combined specification QR has practical effects on the
observation forecasts. The sensitivity study gives an
insight as to how the noise covariances can be specified in
order to achieve reasonable forecasting performances for the
filter. In addition, the worst specification combination is
also noted.

The practicality of the Kalman Filter is illustrated
‘through three special cases of the ARMAX model. The three
models are used to describe flow phenomenon of the Fraser
River at Hope; typical of basins whose response
characteristics are constant, or change slowly through time.
The generality of the state-space approach allows

flexibility in model formulation. For forecasting purposes,
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the studies indicate that the most useful formulation is to
write the ARMAX model as the measurement equation with the
ARMAX coefficients as the state variables. Hence, the Kalman
Filter is used to give recursive estimates of the
coefficients such that flow forecasts are always made with
the latest state estimates. Two main advantages of this
formulation over other possible ones are less data
requirements, and robustness of flow forecasts to poor
initial knowledge of ARMAX coefficients.

The Kalman Filter is a 1-step predictor-filter
estimation technique. However, forecasts for several
time-steps ahead are required in practice and the filter is
often used for making these k-step forecasts. In situations
where the system matrix H is unknown, the variance of the
forecast error should not be calculated from the Kalman
algorithm. A correct expression.for this variance is
developed for the univariate AR(1) model. This expression
has important consequences in practice because management
decisions are often based on the reliability of flow
predictions which is indicated by their mean square errors.
It is also shown that in hydrologic applications, all terms
in the derived expression are of cémparable magnitudes.

Conclusions of each investigation are given in the

following sections.
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10.2 Sensitivity Analysis

The Kalman algorithm requires input specification for
the noise covariances and initial conditions of the state
vector. As these are usually unknown to the hydrologist, the
performance of the filter with respect to misspecification
of these inputs (Q, R, x,, Po) is examined; This problem is
studied by formulating an ARMAX model in state-space
notation with the model coefficients as the state vector.

Streamflow data are generated with chosen noise covariances,

Q* and R*, Performance of the filter, based on the

observation forecast error, is examined with respect to

input specifications.

It is found that:

1. For the state-space formulation used, initial
specification of the model coefficients are not
important. Poor choices of x, and P, have little
influence on the flow predictions.

2. Of the four input factors (Q, R, Xo, Po), only the
combined specification of the noise covariances have an
important effect on the flow forecasts.

3. If Q and R are unknown, it is best to specify them both
larger than their expected values. Forecasts obtained
are comparable to those for the optimal case of known Q
and R. Other combinations of specifying Q and R result
in worse forecasting performance than the above.

4. Forfthis state—space‘fofmulation, it is important to

estimate R correctly. The filter is indifferent to
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misspecification of Q if R is given correctly.
5. However, the reverse is not true. Even if the true Q is
given, the filter performs worse if R is specified too

small. Thus, R needs to be estimated also.

10.3 Maximum Likelihood Estimation of the noise variance
For each of the three models considered, the method of
maximum likelihood is used to estimate the noise variance.
This method is chosen because itvgives consistent and
asymptotic efficient estimates. Evaluation of the log
likelihood function is facilitated by using the Kalman
Filter. This is another application of the Kalman Filter,

other than that of forecasting.

10.4 The Autoregressive Model
The 1-day ahead forecast for the AR(1) model is
examined. Three schemes are used to forecast the flow at
Hope, each corresponding to a possible formulation of the
AR(1) model into state-space format.
Results indicate that:
1. The best forecasting scheme is to use the Kalman Filter
to obtain updated estimates of the AR coefficient. Thus,
a is the state variable in the state-space framework.
Flow predictions at each time step are made with the
latest state estimate. This formulation results in the
bést forecasting performance. In addition, the flow

forecasts are insensitive to initial specification of a.
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Formulating the AR process as the state equation of the
state-space model is equivalent to not using the Kalman
Filter at all. An estimate of the AR coefficient is
required prior to forecasting. Comparable forecasting
performance to the best scheme can be obtained for a
particular value of a. However, the forecasting
performance is sensitive to the specification of the AR
coefficient.

The worst performance is obtained for the scheme which
"splits up" the AR(1) process in the state-space
formulation. Flow is modelled as the state variable
while the error term is modelled as the observation
noise. Not only is the forecasting performance the
worst, it is particularly sensitive to the choice of a

determined prior to forecasting.

As part of the Kalman Filter algorithm, the 1-step

forecast for the observation, and its mean sQuare error

(MSE) are given. The expressions are $=H%, and HPH' + R

respectively. However, in daily water management, a longer

forecasting horizon is usually required. Flow prediction

more than 1 day in advance introduces the problem of unknown

future flows for autoregressive models. For instance, the

2-step forecast requires knowledge of the flow 1-day ahead.

The Kalman algorithm assumes that tomorrow's flow is known.

In practice, a prediction can still be obtained using the
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1-step forecast from the Kalman Filter as an estimate. The
MSE for the 2-step forecast howevér, cannot be calcplated
via the Kalman algorithm. The MSE is important as it
reflects the hydrologist's confidence in his forecasts.
Because costly decisions may depend on the reliability of
the flow predictions, the proper expression fdr the variance
of the forecast error should be used.

The first approach to this problem is to consider a.
different ARMAX model which does not require future flows in
order to predict the flow 2-days in advance. This is
discussed in the next section.

The second approach is to derive the correct expression
for the mean square error of forecast. This is summarized in

section 10.7.

10.5 Transfer Function Model
A transfer function model using upstream flow inputs
lagged 2 days behind that of Hope is used. Two forecasting
schemes are compared, one without and one with the Kalman
Filter. The latter scheme formulates the input-output model
with the coefficients as the state variables. Conclusions
are: |
1. For constant coefficients, use of the Kalman Filter does
not improve the flow forecasts.
2. However, forécasts obtained without the filter are
sensitive to the initial specification of these

coefficients. Without the filter, these have to be
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/pstimated'from past data, thus making the choice of
dataset important.

3. Although the filter does not improve the forecasting
performance of this model, flow predictions are robust
to poor specifications of the model coefficients. Large

amounts of data are not necessary for estimating these

coefficients prior to forecasting.

10.6 Combined ARMAX Model
Using a different model to forécast k steps ahead for
various k's involves too many models as k gets large.
Therefore a combined model is considered in order to achieve
a parsimonious representation of the process. This combined
ARMAX model is a combination of the AR(1) and regression
models above. The Kalman Filter is applied to this model to
give estimates of the ARMAX coefficients recursively. Both 1
and 2-step forecasts are obtained and are compared to those
of the AR(1) and the transfer function models respectively.
Calculation of the 2-step forecast presents the same problem
as the AR(1) model, in that tomorrow's flow.is unknown.
Nevertheless, the 1-step forecast given by the Kalman Filter
is used as an estimate. The study shows that:
1. The 1-step forecasting performance is comparable to that
of the AR(1) model.
2. The 2-step forecasting performance is better than that
of the transfer function model.

Thus, in terms of indentifying the statistical model for
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predicting streamflows up to 2 days in advance, this
combined ARMAX model is adequate. The important result of
this study is that reasonable forecasting performance is
obtained for the 2-step flow predictions; even though an
estimate is used for tomorrow's flow in the system matrix H.
Violation of the assumption of known H still results in

reasonable flow predictions.

10.7 Variance of the forecast error

A formula for the variance of the forecast error when
both H and x are unknown, is developed for the AR(1) model.
It is shown that the new expression calculates a variance
significantly larger than that given by the Kalman Filter.

'This expression for the AR(1) model is:
(R + H2Z,,) + Z,, (x? + Z,,) + Z,, (2Hx + Z,,)

All terms in this equation are of the same magnitude in
practice. The first part of this expression corresponds to
the case of known H, and is equivalent to the Kalman
equation for the variance of the innovations. Z,, is the
state error covariance matrix. The second part, accounts for
the fact that H is unknown but its estimate H is independent
of X. Z,, contains the variances and covariances of the

elements in H. The final term acknowledges possible

correlation between H and X, as reflected in Z,,.
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10.8 State-space Formulation

Results of the thesis indicate that application of the
Kalman Filter to ARMAX models can give better forecasts when
the model coefficients are formulated as the state
variables. This is because the filter updates these
coefficients recursively in the light of the observation
forecast errors. Although it presents some conceptual
difficulties, it is necessary to choose between a problem
which can be handled in practice and one which is hard to
control. The alternate formulation of allowing the flow
variable to be the state, requires estimation of the ARMAX
coefficients prior to forecasting. This emphasizes the
necessity for abundant and good quality data, as forecasting

performance is sensitive to the specification of the state

transition matrix, &.

10.9 Future Directions

In this thesis, hydrologic systems which can be
described by constant coefficient ARMAX models are
considered. These are appriopriate when modelling streamflow
phenomenon for basins with large drainage areas. Kalman
Filtering is applied to these models and the resulting flow
predictions are better than or equal to those obtained
without the Kalman updating of the model coefficients. A
useful extension to this wouid be to investigate the
forecasting performance of the filter for more complex

systems whose characteristics change significantly over
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time.
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