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ABSTRACT

A relatively simple but comprehensive constitutive model is presented
herein for predicting the nonlinear behaviour of laminated composite
structures comprising layers of unidirectional and/or bidirectional (e.g.
woven) fibre-reinforced materials (FRMs). The FRM layer is treated as an
orthotropic but homogeneous continuum undergoing isothermal infinitesimal
deformation.

The proposed constitutivé model for single layers of FRM is built within
the framework of rate-independent theory of orthotropic elastoplasticity.
The constitutive equations so developed, are then superimposed using the
classical lamination theory, to arrive at the goVerning response relations
for multilayer laminates. The model invokes a 3-parameter quadratic yield
surface and the associated flow rule of plasticity. During plastic flow the
evolu?ion of the yield surface in tﬁe stress space is described by a non-
proportional change in the parameters of the initial yield function. A
3—paraﬁeter quadratic failure surface similar in form to that of the initial
yield surface is defined to mark the upper limit of plastic flow. Once
failure is reached, it is identified as fibre or matrix mode of failure
depending on the relative magnitude of various stress ratio terms appearing
in the failure criterion. 1In the post-failure modelling, both brittle and
ductile type of behaviour are considered in the direction of the offending
stress. Unidirectional and bidirectional FRM layers are treated within the
same general framework with the exception that yielding (and failure) in
these layers are assumed to be governed by different criteria, namely, Hill's

and Puppo-Evensen's yield (and failure) criteria, respectively.
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To completely quantify the proposed elastic-plastic-failure model three
pieces of experimental stress-strain curves are required, namely, the
uniaxial stress-strain curves along the two principal axes of orthotropy, and
the in-plane shear stress-strain curve. " Once established; these stress-
strain curves are represented by bilinear approximations thus clearly
defining the key parameters wunder the various loading programs. No
provisions are made for the difference between tensile and compressive
responses.

Based on the proposed model, constitutive equations are properly
formulated. A nonlinear finite element code is developed to incorporate the
derived constitutive equations. The program is based on the conventional
displaéement method finite element procedure using two dimensional 8-node
iéoparametric elements. The nonlinearities in the equilibrium equations are
handled by a mixed incremental and Newton-Raphson iterative -procedure.
Analysis restart and cyclic loading capabilities are also included to expand
the program's usefulness.

The performance of the program and the effectiveness of the model are
verifiedlfor a number of in-plane loading paths applied to a wide variety of
laminated FRMs with and without geometric aiscontinuities. The favourable .
comparisons of the model to experimental results available in the literature

support the validity of the model.
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A list of important symbols is compiled here.

LIST OF SYMBOLS

All symbols are defined

in the text when they first appear.

Aij;[A]

Ae

a
a;s {a}

[B]

anisotropic strength parameters written in tensorial notation
and matrix format, respectively

elemental area

inner radius of the isotropic thick-walled cylinder
plastic flow vector defined by Eq. (3.26)
strain-displacement matrix

outer radius of the isotropic thick-walled cylinder
defined by Eq. (B.12)

generalized elastic; plastic; and elasto-plastic material
stiffness tensor

defined by Eq. (B.12)

elastic, tangent and plastic moduli referring to a generic
0;-€; curve

strain tensor

external force vector

initial yield; subsequent yield; and failure function

elastic; tangent; and plastic moduli referring to an in-plane
shear stress-strain curve

plastic potential

matrix defined by Eq. (4.l4)

defined by Egs. (3.22) and (3.33)

Jacobian matrix

tangent stiffness matrix

effective initial yield; subsequent yield; and failure stress
half-length of a sheet with-a central hole -

tensor defined by Eq. (A.3)

total number of subincrements into which the strain increment
is divided

vector of in-plane stress resultants

total number of layers through the laminate thickness
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The possibility of manufacturing materials with desirable mechanical
properties by reinforcing a matrix material with strong fibres having high
elastic extensional modulus has recently received a great deal of attention,
both experimental and theoretical. Recent activity has largely been
stimulated by the development of new types of high strength fibres, but the
idea is a very old one. Artificial materials such as fibreglass and
reinforced concrete which are of this type have been available for some time,
and many natural materials, for example wood and bone, are essentially of
this character.

Composite materials involving fibre reinforcement are continuing to
replace t;aditional materials at a rapid rate. The driving force for this
replacement is due to their outstanding specific properties (i.e. high
strength and stiffness-to-weight ratios).. These superior properties of
composite materials over the monolithic metals makes these materials very
attractive for weight and stiffness sensitive structures. The applications"
range from sports equipment, automotive parts, aircraft and aerospace
structures to high performance military structures (e.g. ground, underwater
and space vehicles).

The rapid growth rate of this field entails a good understanding of the
mechanics of composites so that they may be efficiently wutilized in
engineering applications. With the present state of development of finite-
element computer programs, the problem of modelling the mechanical behaviour

of composites remains one of the most difficult challenges in the field of



composite structural engineering. Materials behaviour refers to multi-
dimensional stress—strainT relations which adequately describe the basic
characteristics of the material subjected to monotonic and cyclic loading.
The emphasis in this thesis is placed upon the constitutive modelling in
analytical and numerical analysis of composite structures. We shall be
concerned primarily with continuum theories and "macroscopic" models of
material behaviour. However, the properties of the composite materials we
consider derive ultimately from the properties and geometrical arrangements
of their constituents. Thus in formulatihg the macroscopic mechanical
properties of the composite it is impossible to disregard entirely the
properties of its constituents. Therefore for background and motivation we
begin in this introductory chapter with a brief discussion of some of the
properties of composite materials, and the way in which these depend on the
properties of their constituents. We do not, however, attempt to give in any
way a comprehensive account of the great volume of work which has been done
in studying the interactions between constituents of composites, or determin-
ing the properties of composites in terms of their constituents. Although

these problems are of great importance, they.are outside the scope of this

thesis.

1.2 Types of Composites and Basic Terminology
A composite material is defined to be any material consisting of two or
more distinct constituents (or phases). For the sake of convenience, one of

the phases will be referred to as the "matrix", while the others as the

TThe stress-strain relations are also referred to as constitutive relations
as they describe the mechanical constitution of the material.



"reinforcement”. Even though reinforcement implies strengthening of the
material, the term is used to denote any phase that is imbedded. in the
matrix. Thus cracks and voids are included within this term. The main types
of reinforcement are particles, chopped (or discontinuous), continuous fibres
and flakes. Although flakes and particles have become important constituents
in many composite systems, fibre reinforcement dominates the field and are by
far the most extensively analysed. For the remainder of this thesis,
emphasis will be placed on fibre-reinforced materials (FRM). It is useful at
this stage to examine the constituents of these materials.

Fibre-reinforced materials are usually divided into three broad groups
according to the matrix materials: plastic {(e.g. epoxies); metal (e.g.
aluminum and magnesium); and ceramic. The role of the matrix material is to
bind the reinforcing fibres together into a solid mass and therefore enable
the transfer of load to the fibres. The matrix also permits ease of
fabrication into a desired configuration. In many structural applications
the fibre properties are the most important and the matrix may be chosen
based on cost and minimum weight. There are, however, a significantvnumber
of applications in aircraft, spacecraft, etc. where the matrix must possess
particular properties. In these cases the material is subjected to high
temperatures, where plastic matrix composites are unusable, so that either
metal or in the case of extreme temperatures, ceramic matrix composites must
be considered. Commonly used fibres are glass, boron, kevlar, and carbon
(graphite). The fibres may be continuous, in ﬁhich case each fibre extends
through a body from one boundary to another, or discontinuous in the form of
chopped fibres. Continuous FRM can be made either by aligning all the fibres
in one direction (unidirectional), or weaving a cloth (bidirectional). The

chopped fibre composites are statistically isotropic and their analytical



treatment does not pose a great difficulty. With that in mind much of what
will be discussed in this thesis implies composites made from continuous
fibres.

Unidirectional FRMs have exceptional strength and stiffness properties
in the direction of fibres, howevef, their properties in any other direction
are rather poor. The overall properties are normally improved by laminating
single pliesT with different reinforcing directions. This leads to what is
called "laminated composites" or "laminates". The laminate is tailored to
just meet specific requirements. By appropriate consideration of the loads
and their directions, a laminate can be constructed of individual plies in
such a manner as to just resist those loads and no more. In this respect
isotropic materials are usually inefficient because excess strength and
stiffness is inevitably available in some direction.

Bidirectional woven fabrics have inferior mechanical properties (in the
fibre direction) to their unidirectional counterparts. This is due in part
to the weaving process which may cause fibre damage. Layers of woven fabric
are therefore often used as filler layers where strength and stiffness are
not critical. The main reasons for the use of these materials are ease of
handling (with consequent reduction in 1labour costs), and the ability of
fabric to conform to complex shapes. They are extensively used in boat
construction and ship superstructures. Woven‘composites are also known to
result in better containment of impact damage and improved residual proper-

ties after impact compared with nonwoven materials (Smith, C.S., 1986).

TSome authors use the term "lamina" to denote a single layer or ply.
However, this terminology is not used here, since it is easily confused with
the term "laminate", which means all of the layers bonded together.



1.3 General Remarks on the Mechanical Properties of Fibre Composites

understanding of the mechanical behaviour of composites.

The aim of this section is to convey in a qualitative manner a general

The behaviour of composite materials can be studied theoretically from

three levels of magnification. They are

i)

ii)

Micromechanics - which considers the problems of local interactions at
the interfaces between the fibre and the matrix phase. For the study of
interface problems attention is given to a single fibre and its
surrounding matrix material. For purposes of ahalysis the usual
procedure is to regard the composite as an assemblage of circular
cylindrical fibres surrounded by concentric hollow cylinders of matrix
material. Examples of the use of this approach can be found in the
survey articles by Hashin (1983), Francis and Bert (1975), and Chamis
and Sendeckyj (1968). Apart from using them for comparison purposes,
the micromechanical analyses will not be pursued in this thesis.

Minimechanics - which relates the properties of the composite to the
individual properties of the fibre and the matrix. A mathematical model
of a composite is constructed by applying any of the rheological proper-
ties (e.g. elastic, viscoelastic, plastic, etc.) to the fibre and any
one to the matrix. Geometry of the phases are not taken into account
here. In this approach the fibre and matrix are usually separated and

rearranged in series or in parallel as may be appropriate.

iii) Macromechanics - which describes the behaviour of the composite by

continuum models without direct reference to the properties of the
individual constituents. In other words the FRM is treated as a homo-
geneous anisotropic continuum with some average properties known from

experiments., Such an’ approach which is followed in this thesis is



appealing to the engineer or designer who requires reasonably simple
(yvet realistic) methods of stress and strain analysis of composite
materials. This appears to be at variance with the approach of the
metallurgist who wishes to give an accurate description of the

mechanisms which take place,

It can be seen that the macroscopic behaviour is . a consequence of the
behaviour on the miniscale. 1In turn the behaviour on the miniscale depends
upon the behaviour on the microscale and so on down (Drucker, 1975). Under
sufficiently simple conditibns, we can proceed with confidence one step up or
down in scale. Most often it is not possible to give more than a qualitative
prediction of the influence of 6ne level on the next. For example it is
likely to be difficult to predict quantitatively the mechanical properties of
HAJFRM in terms of the properties of the constituents. However, it is helpful
to have at least a qualitative appreciétion of material behaviour at the
micro and miniscales in order to formulaté the macroscopic theory which will
be de?eloped in later chapters. With this in mind we give a brief discussion
on the general properties of FRMs.

The introduction of a family of fibres in a definite orientation in the
matrix immediately introduces a preferred direction in the material. Thus
even if the constituents of a fibre reinforced composite are isotropic, the
composite itself will be macroscopically anisotropic. Indeed if there are
large differences between the mechanical properties of the fibre and matrix
then the properties along and perpendicular to fibre would be quite differ-

*
ent. This gives rise to a "strongly anisotropic" material (such as

*Fibre—reinforced composite layers, whether unidirectional or bidirectional,
are almost invariably orthotropic possessing three planes of material
symmetry. Moreover, since the fibres are generally at random locations the
unidirectional FRM is macroscopically transversely isotropic.



uni-directional composites). ‘By the same token a matrix reinforced by two
families of fibres (such as woven-cloth reinforcedvcomposites) are considered
as "weakly anisotropic" on the macroscopic level.

In a real composite, the matrix material has a low stiffness and
strength compared to the fibre. Fibres generally exhibit linear elastic
behaviour. Metal matrix materials exhibit elastic-plastic behaviour and
polymeric matrices usually are viscoelastic if not viscoplastic, Consider a
unidirectional FRNM. Along the fibre direction the properties of the
composite is predominantely that of the fibre resulting in fibre fracture (or
multiple matrix cracking if the ultimate strain of the matrix is lower than
that of the fibre). In the direction transverse* to the fibres, the inherent
mismatch of stiffnesses between fibre and the matrix results in the
development of 'high local strain concentrations in the matrix. To
accommodate these high local strains without inducing local failures, matrix
materials are normally selected which have high strains to failure. This
pe;mits local plastic flow to occur in regions of high strain concentration
causing a redistribution of stresses (stress relief). Thus, even if the
average applied transverse stress on the composite is relatively low, local
stresses and strains within the composite material may have exceeded the
elastic limit. At this point the matrix flows or fractures (according to the
degree of ductility of the matrix material), The strain to failure of the
composite in such cases is very small compared to that of the matrix.

Shear response in the material principal directions exhibits consider-

able nonlinearity indicating the dominance of the (soft) matrix material

*

Here the term "transverse" is reserved for the in-plane direction which is
perpendicular to the longitudinal direction. Out of plane direction will be
referred to as "thickness" (as opposed to transverse) direction,



under such loadings. It is readily apparent that these shear stress
components are present even when the composite layer is subjected to normal
stresses at an angle to the principal material axes. The nonlinear shear
response is therefore a major, perhaps the major, source of nonlinearities in
the response of composite laminates. Any analysis which hopes to provide
realistic assessments of the stresses and strains in various plies of the
laminated composites must account for the nonlinear shear response.

There are many ways in which a FRM layer may fail. These may be in the
form of matrix cracks, fibre fracture, interface separation (i.e. fibre pull
out) and local plastification in the matrix. Some of these failure
mechanisms resemble brittle fracture of the composite, with low energy
absorption, while others produce a ductile type of fracture with the
absorption of a large quantity of energy. Experimental evidence shows that
_for laminates consisting of polymeric matrix fibre composites, under static
or cyclic load, there are two major types of cracks: (a) intralaminar (or
intraply) cracks within certain plies;‘and (b) interlaminar (or interply)
cracks which develop on planes between plies. Metal matrix composites
~usually deform plastically and do not exhibit extensive matrix cracking under
monotonic loads, but are quite susceptible to matrix fatigue cracking when
subjected to cyclic loading (Dvorak and Johnson, 1980). Intralaminar cracks
are either short cracks (perpendicular to the fibres) that rupture the fibres
and debond fibre matrix interfaces, or, long cracks (parallel to the fibres)
that traverse from edge to edge and are essentially normal to the plane of
the ply.

Interlaminar cracks which debond the ply interfaces either originate at
laminate edges due to the preéence of high v;lues of interlaminar normal and
shear stress, or, at regions of high transverse shear in laminated plates

under bending.



From the above brief discussion it is clear that the consideration of
nonlinear behaviour is important even for composite materials subjected to
applied stresses which are intended to remain below the apparent elastic
limit of the composite. For laminated structures designed to an ultimate
strength criterion, the need for consideration of nonlinear behaviour, in

particular inelastic effects including failure, is even more apparent.

1.4 Purpose and Scope of the Present Study

The basic objective in this thesis is to develop a relatively compre-
hensive plasticity-based macroscopic constitutive model for the individual
layer of unidirectional and bidirectional FRMs. This model is to be used in
the nonlinear analysis of laminates having an arbitrary number of such layers
with various fibre orientations. Finite element analyses will be developed
for the case of symmetric laminates subjected to membrane loading. It will
be shown that plasticity theory, when not interpreted too narrowly, is a very
flexible model - one that can be used to describe a wide variety of behaviour
including cracking of polymeric composites.

Chapter 2 aims at reviewing some of the immense existing body of the
literature on constitutive modelling of fibre-reinforced composites.

Chapter 3 outlines the theoretical formulation of the proposed
constitutive model,

Chapter 4 describes the implementation of the constitutive model in a
two dimensional finite element program used to perform progressive failure
analysis of composite laminates. The numerical analysis developed is then
applied to a series of problems and the results are compared with a wide
range of experimental and other numerical results in Chapter45.

Chapter 6 outlines the conclusions that can be drawn from the results of
the proposed theory. The applicability of the constitutive model is

discussed and further areas of research are suggested.
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CHAPTER 2
REVIEW OF THE LITERATURE

2.1 Introduction

Although large-scale finite element software packages now have a wide
range of application in stress analysis of composites (Griffin, 1982), inade-
quate material models are often one of the major obstacles for a rigorous
analysis. Errors associated with material progerties are usually far greater
than errors inherent in the numerical methods of solving the field equations.
A large variety of models have been proposed to characterize the stress-
strain and failure behaviour of fibre reiﬁforced materials (FRMs) under
multidimensional stress states. All these models have certain inherent

advantages and disadvantages which depend to a large degree on their particu-

""“lar  application. The objective of this section is to present a summary of

various proposed material models of FRM énd to determine the range of their
applicability, relative merits and limitations. No survey or list of
references can even approach complete coverage of such a wide field and the
references cited here afford only a glimpse of the extensive literature

available and are by no means exhaustive.

2.2 Background

In constructing a constitutive model for laminated composites the under-
lying point of view is that the laminate response must be understood in terms
of the behaviour at the ply level. 1In other words the mechanical behaviour
of a single layer forms the basic building block in the analysis of laminated
structures (consisting of several individual layers). The gross behaviour of
perfectly elastic laminated plates under bending and stretchiﬁg deformations

can be exactly analyzed in terms of the ply properties and their stacking
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arrangement. These analyses are based on the classical lamination theory
(CLT) which is well known in the composites literature. The basic assumption
in CLT is that there is a perfect bonding at the ply interfaces and that each
ply, which is considered to be homogenecus and anisotropic, is under a state
of plane stress. Once the strain field.is prescribed (such as uniform strain
in case of membrane loading, and iinear distribution accordingb to the
Kirchhoff-Love hypothesis in the case of bending), the stress field is
directly determined by the stress-strain relations of each ply. However, in
inelastic laminates such a direct determination of the stress field from the
strain distribution is not possible due to the path dependent nature of the
stress-strain relations. This does not pose an insurmountable problem in
view of the power of modern numerical computation. The conclusion is that
analysis of "undamaged" laminates, even for rather complicated cases of
material behaviour (of individual plies) can be carried out. The problems
emerge when one considers 'damage'" and "failure". Composite laminates under
static or cyclic loading experiehce failure in one or more layers early
during the loading procéss, which in most cases does not lead to the failure
of the entire laminate. Such a failure implies damage in terms of crack
distribution within the failed ply (or plies). To determine subsequent
failures it is necessary to perform stress analysis of the "damaged"
laminate. Thus the laminate must be subjected to a progressive failure
analysis until its load carrying capacity is exhausted. Such analytical
determination of the failure loads of a laminate is a highly controversial
issue and remains one of the most challenging areas of current research.

It is apparent from the above discussion that the scope of research on
the constitutive behaviour of composite laminates may be divided into four

main sequential subjects:
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Behaviour of the undamaged laminate, i.e. pre-failure.

Onset of damage, i.e. first ply or initial failure.

Behaviour of the damaged laminate, i.e. post first ply failure.

Ultimate failure.
The remainder of this section gives a brief review of the available

literature on the analytical treatment of the topics itemized above.

2.3 Constitutive Modelling of Undamaged Composites

Analytical studies of the problem of mechanical behaviour of composite
materials have been approached from any one of three basic levels, namely,
the micromechanics 1level, the minimechanics level and the macromechanics
level. The linear-range properties of composites, approached from all three
levels, are quité well understood and well documented in all the standard
texts on mechanics of composites (see for exampie the survey article by
Hashin (1983)). On the other hand, the nonlinear behaviour of fibre compo-
sites is much more complicated and its rigorous treatment did not start until
the early 1970s. The complexity of nonlinear response exhibited by compo-
sites helps to explain the diversified methodologies employed by numerous
investigators in formulating constitutive theories for these materials,
Unless otherwise stated, the discussioﬁ in this section is concerned with the

behaviour of a single ply.

2,3,1 Micromechanics Approach

Rigorous micromechanical models based on the mathematical theory of
plasticity have appeared in the 1itefature. Notéble among these are the
finite element approachés of Adams (1970, 1974), Foye and Baker (1971), Foye

(1973), Lin et al. (1972) and Dvorak et al. (1973, 1974) to determine initial
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yield surfaces and subsequent stress-strain curves of unidirectionally-
reinforced composites. Aboudi (1984) considered a model of a square array of
fibres with square sections in terms of linear approximafing fields including
viscoplastic effects. In a recent paper Aboudi (1986) summarized his consti-
tutive theory and gave a list of references of previous works. All the above
papers take into account the complicated geometry of the composite on the
microscale. Although such detailed investigations are essential for an
understanding of the inelastic behaviour of FRMs they are unfortunately very
complicated and require a relatively large computer facility and significant
amounts of computer time. Thus, they can be prohibitively expensive to

utilize extensively in the stress analysis of large scale structures.

2.3.2 Minimechanics Approach
| Approaches in this category typically relate stresses to strains in
terms of .physical parameters such as the fibre volume content and the
material p;operties of the fibre and the matrix. These stresses and strains
are most often average (or composite) values over representative volume
elements which are large compared to typical phase region dimensions (e.g.
fibre diameters and spacings). Analyses based on this approach are therefore
not truly micromechanical, since they do not provide a description of the
local stress and strain gradients within the compoéite. Hence the term
minimechanics is used here to encompass all such approaches,
kThe general groundwork for determination of overall mechanical proper-
ties of FRMs from their constituents has been laid out by Hill (1964) for a

class of transversely isotropic materials with elastic fibres and elasto-
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plastic matrices. Using a self-consistent scheme (SCS)*, bounds were
obtained for the overall moduli and flow stress at any stage of deformation.
Based on the deformation theory of plasticity and SCS, Huang (1971) predicted
the overall transverse elastic-plastic uniaxial stress-strain curve for a
unidirectional FRM comprised of rigid fibres and an elastic-plastic matrix.
Dvorak and Bahei-el-din (1979) modified the SCS of Hill in calculating
internal stress fields, overall and 1local yield surfaces, instantaneous
moduli, thermal coefficients, plastic strains and thermal microstresses for
transversely isotropic materials. Dvorak and Bahei-el-din (1982) later used
a simple model to arrive at three dimensional constitutive relations for
elastic-plastic deformation of unidirectional fibrous composites. In their
approximate treatment, which simplifies the geometry of the microstructure,
each-of the fibres is assumed to be of very small diameter, so that although
the fibres occupy a finite volume fraction of the composite, they do not
interfere with matrix deformation in the transverse. and longitudinal
directions. The fibres were regérded as elastic embedded in an isotropic
elastoplastic matrix of Mises-type with kinematic hardening. As a result,
analytical expressions were obtained for the yield conditions, hardening
rules, and vflow rules for the composite aggregate in terms of local
properties and volume fractions of the phases. In a subsequent paper
Bahei-el-din and Dvorak (1982) used their model of elastic-plastic behaviour
of unidirectional FRM to derive constitutive equations of laminate plates
under in-plane mechanical loading. Analytical calculations based on their

model were compared with selected experimental results on Boron/Aluminum

*For a description of this scheme and further references see p. 59 of
Christensen (1979).
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(B/Al) laminates. Invorder to obtain good agreement they had to use plastic
properties of the matrix that departed sigﬁificantly from those of the true
unreinforced aluminum. The reasons for‘this discrepancy were attributed to
the inherent deficiencies in their material model.

Min (198l) used a similarly simﬁle model to .arrive at a plane stress
" description of the elastoplastic responsé of unidirectionally reinforced
metal matrix composites. In this study, based on Hoffman's model (1979), the
fibre was assumed to have stiffness only in the axial direction, whereas the
matrix was considered to be an elastic-perfectly plastic material obeying the
von Mises yield criterion and its associated flow rule. This led to a work-
hardening type response for the overall behaviour of the composite similar to
that reported by Bahei-el-din and Dvorak. A few numerical examples were
presented and shown to compare favourably with the results of experiments
performed on Graphite/Aluminum (Gr/Al) composites under simple in-plane

uniaxial and biaxial loading conditions.

2,3.3 Macromechanics Approach

In this section we shall be primarily concerned with "continuum"
theories which describe the behaviour of the FRM on the macroscopic scale.
The models to be discussed treat the composite as a material in its own
right, without direct reference to the properties of the individual consti-
tuents., In these models the FRM is regarded as an anisotropic continuum,
with appropriate overall (average) properties known from experiments or
micromechanical analyses. .

The several macroscopic approaches for defining the stress-strain
behaviour of FRMs under various stress states can be conveniently classified

as belonging to five main groups:



16

i) Linear Elasticity
ii) Nonlinear Elasticity
iii) Viscoelasticity
iv) Incremental Plasticity
v) Endochronic Plasticity.
The following outlines some of the existing constitutive models under the

above headings{

i) Linear Elasticity

In spite of its shortcomings, the linear elasticity theory is by far the
most commonly used material model for composites in the prefailure range.
The emphasis on linear elasticity reflects its usefulness and importance, not
only as a basic theory but also for providing the means to develop practical
design methods. The basic concept of linear elasticity as applied to FRMs is
well established (see for example Jones (1975)). The corresponding design
aspects are also well advanced. By no means, however, can all practical FRMs
be idealized as behaving according t§ linear elasticity theory. Many types
of composite materials involve constitutive behaviour that is distinctly
nonlinear (elastic or inelastic) in at least one of the principal material
directions. The following deals with theories that- cover such non-

linearities.

ii) Nonlinear Elasticity

Contemporary FRMs generally consist of ‘elastic brittle fibres such as
glass, boron or graphite in relatively soft matrix materials such as epoxy or
aluminum. For these matrix materials it is reasonable to anticipate that at

a certain loading state the matrix will begin to exhibit nonlinear effects,
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The degree of nonlinearity varies from composite to composite depending on
the type of matrix material. Polymer matrix composites reinforced by
unidirectional fibres usually exhibit an appreciable amount of nonlinearity
in shear and only a slight nonlinearity in tension transverse to the fibres.
On the other hand, metal matrix composites such as B/Al have strong trans-
verse and shear nonlinearities. The nonlinearities for all of these
materials are more pronounced with increasing temperature.

Various investigators have attempted to include mechanical property
nonlinearities in analysis of composite materials. Petit and Waddoups (1969)
devised an incremental method (using a piecewise linear approximation) for
nonlinear analysis of laminates. According to this method, an increment of
average laminate stress (or stresses) is placed on the laminate, and by using
the initial laminate compliance matrix, the first increment in the laminate
strains is calculated with the assumption that the laminate behaves linearly
over the applied stress increment. The increment in the laminate strains is
added to any previous strains to determine the current total laminate strain.
As the incremental loading proceeds, the individual ply strains are
monitored, and, by referring to the basic ply stress-strain curves, the
corresponding ply tangent moduli and stiffnesses for the strain levels
present are calculated. The Petit-Waddoups method requires far too many‘
input data and their incremental scheme is unduly complicated.

Starting with a complementary energy density function for a linear
elastic material, Hahn and Tsai (1973) added a fourth order term in shear to
model the nonlinear shear behaviour and regarded all other stress-strain
curves as linear. The method which was appliéable to unidirectional layers,

was subsequently extended to laminated composites by Hahn (1973). Hashin,
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Bagchi and Rosen (1974) proposed a deformation type theory* in conjunction
with the Ramberg-Osgood t1943) representation of stress-strain relations to
approximate the nonlinearities. In their analysis the strains in each ply
were split into elastic and inelastic components. Furthermore, the
transverse and shear stresses were allowed to interact in the inelastic range
while inelastic strains in the fibre direction were neglected. The deforma-
tion theory used in their analysis has the obvious deficiency of failing to
account for load-history effects and of possibly causing continuity and
uniqueness problems in the case of nonproportional loading (see for example
Kachanov, 1971, p. 54). Sandhu (1976) introduced an incremental method that
used piecewise cubic spline interpolation functions to represent the basic
nonlinear stress-strain data. Like the Petit and Waddoups' analysis,
Sandhﬁ's method required the complete ply tensile and compressive stress-
strain data under 1longitudinal, transverse and shear loading as input.
Sandhu's model attempted to compensate for the triaxial stress effect (which
was absent in Petit-Waddoups' model) by defining equivalent strains. A
slight inconvenience of the Sandhu's analysis is that it requires biaxial
loading to determine normal‘and transverse tangent moduli for plane stress
loading. The model also lacks provisions for stress interaction in shear.
Jones and Morgan (1977) developed a material model in which the nonlinear

mechanical properties were expressed as functions of the strain energy

*The deformation theory (also called J, deformation theory, octahedral shear
deformation, total theory) developed in 1924 by Hencky assumes that there is
a one-to-one correspondence between the stress and strain. It is known that
in the case of proportional loading, that is, all stresses at a point grow
simultaneously in a fixed ratio to one another, deformation theory is simply
an integration of the incremental plasticity theory. It has also been shown
by Kachanov (1971) that the governing equation of deformation theory corres-
ponds to a nonlinear elastic constitutive representation.
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density. They argued that under multia#ial loading the strain energy
capacity of the material can exceed the uniaxial strain energy capacities.
Using some ad-hoc modifications (to prevent the material from violating
thermodynamic constraints), they extrapolated the stress-strain and
mechanical property-strain energy curves in a rather complicated manner. The
complexity of this method did not prove to produce better results when
compared with the Hahn-Tsai method.

Nahas (1984) employed a technique similar to that of Sandhu in addition
to the secant modulus concept to predict the nonlinear behaviour of
laminates. Recently, Takahashi and Chou (1987) adopted the piecewise linear
approximation of Petit and Waddoups and used Fourier series expansion of the
experimental results to model the nonlinear shear stress-strain relations of

individual plies.

iii) Viscoelasticity

Composite materials which have one or more polymeric constituents (such
as resinous matrix materials) exhibit a considerable amount of time-dependent
mechanical behaviour. This behaviour, termed viscoelasticity, increases in
significance with elevated temperature. In the case of metallic matrix
materials, such as aluminum, time-dependent effects are generally negligible
unless elevated temperature or high strain rate conditions are considered.

A summary and review. of the literature on viscoelastic behaviour and
analysis of composites are given by Schapery (1974). More recent
developments in this field can be found in the survey article by Hashin

(1983).
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iv) Incremental Plasticity

All the macroscopic constitutive models mentioned so far suffer from
certain inherent limitations. In particular they cannot predict dissipative
(irreversible) effects characterized by permanent strain accumulation, a
shortcoming that becomes apparent when the material experiences unloading at
large stresses. The incremental theory of plasticity is a well developed
constitutive representation that accounts, in principle, for the stress
history dependent behaviour and residual strains due to unloading. A more
extensive discussion of the incremental theory of plasticity is given in
Chapter 3.

While considerable work apparently has been done in the area of
composite elasticity, the study of its elastoplastic behaviour is still very
limited. Studies of plastically anisotropic materials in the context of the
incremental theory of plasticity were begun by Hill (1950), who first
postulated the form of a yield condition based on the von-Mises criterion for
isotropic plastic materials., Hill's yield condition was devised to account
for the differences of yield stress in rolled steel sheet in the rolling and
transverse directions. In his formulation, Hill introduced six parameters to
account for orthotropic symmetry of the material. However, he considered
only isotropic hardening which results in a proportional change of the six
orthotropic parameters during hardening. Hu (1956) extended Hill's theory to
the analysié of plastic flow of anisotropic bodies with strain-hardening. In
this work the anisotropic parameters of the yield criterion were considered
‘as constant during plastic deformation. Hu (1958) generalized the Tresca
maximum shear stress criterion to study the plastic flow of anisotropic

bodies. Whang (1969) generalized Hill's criterion by suggesting a
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non-proportional rule for changing the anisotropic parameters during the
hardening process. This was based oﬁ the assumption that for equal amounts
of plastic work produced during stress-strain tests in each of the principal
directions, the effective stress level reached would be the same. Whang's
approach was used by Valliappan (1971) in the finite element solutions of
several anisotropic elasto-plastic structures.

Shih and Lee (1978) proposed an extension of Hill's formulation to
account for the distortion of the yield surface for differing strengths in
tension and compression and the effective size of the loading surface. The
anisotropic parameters of the yield function were determined fromlmonotonic
loading tests on Zircaloy materials. It was observed that these parameters,
which were responsible for the distortion of the yield surface, tended to
reach constant values with increasing plastic strain. Griffin, Kamat and
Herakovich (1981) employed Hill's criterion and its associated flow rule in a
three dimensional finite element program to analyze the inelastic tensile
response of unidirectional off-axis FRMs. The Ramberg-Osgood representation
was used to approximate the basic stress-strain relations. For the purpose
of computing the hardening modulus (i.e. the slope of the effective stress
vérsus effective plastic strain diagram) proportional loading was assumed.
Such assumptions lack physical arguments. The method suggested is rather
complicated and requires much experimental data for the evaluation of various
parameters. Kenaga, Doyle and Sun (1987) used a plane stress orthotropic
elastic-plastic formulation based on a four parameter quadratic yield
function to characterize the nonlinear behaviour éf unidirectional B/Al FRMs.
A number of off-axis tensile tests were performed and a trial and error
procedure was employed to determine the anisotropic parameters that best

fitted the data. Leewood, Doyle and Sun (1987) implemented the above
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formulation in a two-dimensional finite element program to analyze the
elastic-plastic behaviour of multilayer laminates.

Higher order (than quadratic) yield functions for anisotropic materials
have also been suggested by some authors (e.g. Dubey and Hillier (1972);
Gotoh (1977); and Rees (1984)).

The theories described above may be interpreted as generalizations of
plastic flow theories for isotropic materials, with enough arbitrary material
parameters built in to account for as many classes of material symmetry as
desired. These theories thus contain no elements which can account physic-
ally for the presence of fibres in a ductile matrix. A survey of the
literature, however, reveals that theoretical analyses have appeared which
recognize the presence of stiff fibres by constraining the deformation of an
essentially isotropic plastic material. In this manner the difficulties
associated with anisotropic plasticity are avoided. The basic idea of
representing a FRM by a continuum model of this nature originated with the
paper by Adkins and Rivlin (1955) who treated the problem of a rubber-like
incompressible material reinforced withvinextensible fibres, Mulhern, Rogers
and Spencer (1967) adopted a somewhat similar procedure as Adkins and Rivlin,
but applied it to plastic rather than elastic solids. They proposed a
continuum model for describiﬂg the mechanical behaviour of a rigid-plastic
material reinforced by a single family of inextensible fibres. Whereas
Mulhern et al. (1967) treated the composite as a transversely isotropic rigid
plastic solid, Prager (1969) viewed the composite as consisting of an
isotropic rigid-plastic.matrix constrained by inextensibie fibres. Mulhern,
Rogers and Spencer (1969) later relaxed the rigidity assumption and permitted
elastic composite strains in the fibre direction. While the aforementioned

papers are based on Mises isotropic yield condition or on its anisotropic
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modification by Hill (1950), Lance and Robinson (1971) developed a model of
an incompressible rigid-plastic material of the type assumed by Mulhern et
al., but obeying an anisotropic modification of Tresca's yield condition.
Dvorak and Rao (1976) proposed a continuum theory for axisymmétric plastic
deformation of wunidirectional fibrous composites, consisting of elastic
fibres and an elastic-perfectly plastic matrix. Their theory accounted for
both the plastic extensibility of the composite in the fibre direction, and
for the plastic dilatation (in the presence of elastic deformation of the
fibres). It should be emphasized that, in all the above papers, the fibres
are assumed to have a constraining effect on the yielding of the matrix.
Such details as fibre stresses (i.e. the part of the overall stress carried
by fibres themselves) have been ignored. The theories suggested are there-
fore continuum theories and must not be confused with the minimechanics

approaches outlined in section 2.3.2.

v) Endochronic Plasticity

In the preceding section, the classiéal incremental theory of plasticity
was used as the basis for developing constitutive models for FRMs. Funda-
mentally, the incremental theory assumes the existence of a yield criterion
coupled with a hardening rule to define the subsequent yield surfaces.
However, it is often difficult to determine the precise values of the yield
stresses and define appropriate hardening rules. A theory that does not
require the existence of a yield condition and is therefore free from harden-
ing rules, is the endochronic theory of plasticity developed originally by
Valanis (1971) for the description of mechanical behaviour of metals. Using
Valanis' concept, Pindera and Herakovich (1983) extended the theory to

transversely isotropic media in order to describe the response of graphite-
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polyimide off-axis tensile coupons under monotonic and cyclic loading. They
demonstrated the applicability of the endochronic theory by obtaining good
correlation with the observed experimental data. It should be noted,
however, that the endochronic theory is not without its limitations and some

serious criticisms of it has been raised by Rivlin (1981).

2.4 Initial Failure

Failure criteria for composite materials are more difficult to postulate
than for isotropic materials. The analytical determination of the strength
of composites on the basis of micromechaniéé methods‘is extremely complex,
perhaps to the point of being regarded as an intractable problem. On the
other hand, it is also impractical to rescolve the problem by experimgntation
alone since the nﬁmber of tests required to develop the full failure surface
would be extremely large. The remaining alternative is to construct
analytidal failure criteria in terms of macrovariables, such as average
stresses or strains.

Over the last twenty years, a significant number of failure criteria for
many anisotropic materials have been proposed. | Extensive surveys of the
criteria as applied to composite materials are presented by Tsai and Hahn
(1975), Wu (1974), Rowlands (1985), Nahas (1986), Craddock and Champagne
(1985), Fan (1987), and Labossiere and Neale (1987a). All the existing
failure criteria tend to be phenomenological and empirical in nature, not
mechanistic. The intended use of most of these criteria was mainly the
predictién of the strength in "single layers" of FRMs under complex loading
conditions. None of the available anisotropic strength criteria represents
observed results sufficiently accurately to be employed confidently by them-

selves in practice. Several of the theories suffer from the inconvenience of
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requiring biaxial information as basic input data. Some of the most popular
failure criteria will be discussed in the following.

The simplest failure criteria are the maximum stress and maximum strain
criteria. According to fhese theories failure of a layer occurs when any
single stress or strain component in the principal material axes directions
reaches its corresponding ultimate value regardless of the values of the
other components. The maximum stress (strain) criteria are not realistic
since they disregard the combined effects of stresses (strains) on failure,¥*
and therefore overestimate the strength of the material under combined stress
(strain). Both criteria, however, are simple to utilize in practice and are
capable of determining the mode of failure of the failed ply. The latter
facilitates the study of the behaviour of the laminate after the first ply
failure.

A convenient mathematical representation of failure criteria that
accounts for the interaction of stresses (or strains) is in terms of poly-
nomials in stress (or strains). It is then necessary to determine the
coefficients of the polynomial in terms of test results which can be
conveniently obtained in the laboratory, such as wuniaxial tension or
compression, pure shear, etc. In one of the first contributions to the
subject Tsai (1965) assumed that Hill's (1950) quadratic yield criterion for
orthotropic plastic materials could be used as a failure criterion. Hoffman
(1967) added linear terms to account for different tensile and compressive
ultimate stresses, The disadvantage of these criteria is that they are based

on the assumption that hydrostatic pressure has no effect on the failure.

*It should be noted that although the maximum strain criterion is an
independent mode criterion in strain space it accounts for the interaction
of stresses (due to the Poisson ratio effect) in stress space.
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While such an assumption may be a good approximation for initial yielding of
a metal, it is certainly not valid for FRMs. Realizing the shortcomings of
the preQious failure criteria Tsai and Wu (1971) proposed a general tensor
polynominal criterion in terms of stresses. In their notation failure of the

material will occur when the following condition is met,

Fio, + Fijoioj + Fijkoiojok +...=1 (i,j,k-= 1,2,---.6)A (2.1)

Here o, are the components of the stress tensor and the coefficients Fi’ F

ij’
Fijk' etc. are the componénts of the strength tensors, calculated from
experimental data. All components are referred to the material principal

axes and the following contracted tensor notation (in the sense of Green) is

used,

3 33
0, =0,; 3 O3 =0,, 3 Og =0, (2.2)

Thus Fi and o, are second order tensors.. Similarly, Fij is a fourth order
tensor with 21 independent components. All higher-order tensors appearing in
Eq. (2.1) follow the same general character. Tensorial criteria similar to
that of Tsai-Wu had been proposed earlier in the Russian literature (see for
example Rowlands (1985)). Although the polynomial (Z;i) can be expanded to
any degree, the number of strength parameters rises considerably for each
additional degree included. To reduce the number of experiments required to
obtain the strength parameters, usually only linear and quadratic terms are

retained.* In this case all of the coefficients in Eq. (2.1), except the

*Some authors have advocated the inclusion of higher order terms (see for
example Tennyson et al. (1978) and Ashkenazi (1965)), but the effort in
determining the corresponding strength parameters hardly justifies the gain
in accuracy.
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cross term coefficients, F,,, F,, and F,,, can be found from simple, single
stress component tests. Tsai and Wu propose to determine the cross term
coefficients by running biaxial failure tests. Unfortunately, such tests are
complicated and expensive., Indeed it should be expected that the interaction
parameters, will be dependent upon the signs of the stresses and thus will
not be unique (see the discussion of quadratic failure criteria by Wu
(1974)). Moreover, the allowable values of these parameters are limited by
bounding conditions to ensure that the failure envelope is closed (see
Section 3 for details). Recently, Labossiere and Neale (1987b) have proposed
alternative methods of calculating the strength parameters.

Reddy and Pandey (1987) have examined the accuracy of the various fail-
ure criteria discussed above in predicting the initial failure (or first ply
failure) of laminated composite plates under in-plane or bending loads. They
concluded that all these failure criteria were equivalent in their prediction
of failure when laminates were subjected to in-plane load. ' For laminates
subjected to bending, the maximum strain and Hill's criteria were found to
predict different failure location and failure loads to the other criteria.

The Tsai-Wu tensorial failure criterion has the advantage of being
invariant under coordinate transformation. Furthermore, Wu (1974) has shownlﬁ
that all other stress based failure theories (including the maximum stress
criterion) are the degenerate cases of the tensor polynomial criterion given
by Eq. (2.1). A major shortcoming. of these polynomial-based failure
criteria,.however, is that they primarily predict the onset, but not the
mode, of failure. In view of the diverse failure mechanisms that are opera-
tive in a composite material, this shortcoming is particularly severe.
Identification of the mode of damage is a required feature if.the failure

criterion is to be useful for progressive failure analysis of fibre composite
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laminates by computational procedures. Motivated by the foregoing need,
Hashin (1980) proposed separate quadratic failure criterion to distinguish
between the fibre dominated failure mode and the matrix dominated failure
mode in unidirectional FRMs. These criteria had different forms for tensile
and compressive stresses. One of the advantages of Hashin's approach was
that troublesome biaxial test data were not needed for the evaluation of
various strength parameters, It should élso be noted that Hashin's failure
criteria were intended to identify snly the failure modes within a single ply
(i.e. intralaminar modes of failure). Subsequently, Lee (1982) used a
similar criterion to distinguish delamination analytically from other modes.
Another way of differentiating between the modes of failure has been to
ascribe failure to either matrix or fibre depending on the relative magnitude

of the various terms appearing in Eq. (2.1) (see for example, Chiu (1969)).

2.5 Constitutive Modelling of Damaged Composites

The major damage which develops in laminates under static or cyclic
loading is in the form of interlaminar and intralaminar cracks. The former
develop gradually and slowly between the plies. The latter appear suddenly
and in large numbers in plies in which the stresses reach critical values
defined by the initial failure criteria. The main macroscopic effect of such
cracks on laminate properties is reduction of stiffness.

Many approaches have been used in the past to model the behaviour of
damaged (or cracked) laminates. Attention has mostly been directed towards
the effect of intralaminar cracks on the load carrying capacity of laminates
under in-plane loading conditions. Depending upon the mode of failure
predicted by the failure criteria, many authors have suggested a softening of

response in the direction in which the failure has occurred. Petit and
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Waddoups (1969) modelled the softening by giving the tangent moduli rela-
tively high negative values. Chiu (1969) considered instantaneous stress
relaxation in the failed layers. Such post-failure models have been used by
many authors (see for example.the'survey article by Nahas (1986)). Swanson
and Christoforou (1987) proposed an empirical expression, in terms of an
effective strain, for softening due to matrix cracking. Chang and Chang
(1987) assumed that upon matrix cracking in a unidirectional layer, only the
transverse modulus and the Poisson's ratio reduce to zero while the proper-
ties in the other directions remain unchanged. For fibre failure they
postulated that both the longitudinal and shear moduli reduce according to
the Weibull distribution, whereas the transverse modulus and Poisson's ratio
vanish.

Attention in-recent years has focused on the rigorous determination of
stiffness reduction, primarily for the case of transverse tension cracking in
the matrix. The analyées have been concerned mainly with cross-ply laminates
in which only the 90° plies are cracked. A precise estimate of the stiffness
reductions for laminates with general layups is presently not available.
Perhaps the simplest model is that of Highsmith and Reifsneider (1982) who
devised a simple shear lag method to evaluate stiffness reduction due to
cracks. Another method of analysis is due to Laws, Dvorak and Hejazi (1983)
who employed the self-consistent scheme for fhe prediction of the effective
stiffness of a cracked ply. This method is based on the solution of the
problem of a single crack embedded in an infinite medium. A different
approach which was proposed by Talreja (1985, 1986) is based on a continuum
damage theory in which the material is characterized by a set of vector
fields each representing a damage mode. The resulting constitutive equations

contain numerous parameters which must be determined experimentally. Hashin
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(1985,1986,1987) used the variational method on the basis of the principle of
minimum complementary energy for the analysis of cracked laminates.

The major shortcoming of these so-called rigorous models is that they
lack generality of the.loading and configuration, and their actual use is
often complicated by the requirement for numerous experimentally determined

quantities.

2.6 Ultimate Failure

The final point to be addressed is the ultimate failure of laminates.
The problem of ultimate failure in laminates can be approached by monitoring
the growth of damage zones until failure occurs either by excessive debonding
or fibre fracture of primary load-carrying plies.

A number of progressive failure analyses have been presented in the
literature. These require as input information the complete constitutive
properties of the individual plies, and. use the classical lamination theory
(CLT) to trace the overall load~displacement response up to the ultimate
state. Among the mosf recent study in this area are the papers by Lee
(1982), Sandhu et al. (1983), Swanson and Christoforou (1987), Ochoa and
Engblom (1987), Takahashi and Chou (1987), and Chang and Chang (1987).

One of the very few failure criteria which has successfully been applied
to the laminate as a '"whole" is the Puppo-Evenson (1972) quadratic failure
criterion. This theory is a direct laminate analysis which makes no consti-
tutive assumption and does not involve lamination theory. It has been shown
by Hiitter, Schelling and Krauss (1974) that for glass/epoxy laminates loaded
biaxially, the Puppo and Evensen analysis predicts the observed failure

results quite well,
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CHAPTER 3

THEORETICAL FOUNDATIONS OF THE PROPOSED CONSTITUTIVE MODEL

3.1 Introduction

The primary objective of the present chapter is to develop a relatively
comprehensive constitutive model for progressive failure analysis of
laminated composite structures comprising layers of unidirectional and/or
bidirectional (i.e. woven fabric) FRMs,.

The model, which attempts to cover the entire stress history, is essen-
tially representative of the mechanical behaviour of one layer. To this end,
the first part of this chapter is devoted to the derivation of the constitu-
tive equations for single layers of unidirectional and bidirectional FRM. 1In
the final part these eéuations are combined with classical lamination theory
to form the complete constitutive relations for multilayer laminates. For
conciseness and brevity, the formulations are expressed in tensorial
(indicial) ﬁotation, wherever possible, Matrix constitutive equations are
also presented for direct finite element implementation, details of which are

provided in Chapter 4.

3.2 Descriptive Outline of the Model

Physically, the nonlinear and/or irreversible deformation of FRMs can be
caused by inherent material nonlinearities of the individual constituents,
daﬁage accumulation due to fibre or matrix cracking, interfacial debonding,
or any combination of the above., These phenomena may be described macro-
scopically within the framework of plasticity theory, thus providing the

impetus for the elastic-plastic-failure model proposed here.
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It is instructive to present first a descriptive outline of the func-
tioning of the model before its analytical formulation. We attempt to
describe the behaviour of FRMs in terms of the "classical incremental theory
of plasticity". 1In order to do this, we ignore the detailed structure of the
material and assume that it is permissible to consider stress and strain as
averages taken throughout a representative volume which is itself taken to
correspond to a point in a continuum. We stay entirely within the most fami-
liar framework of incremental plasticity, with small displacements and no
viscosity, creep or thermoelasticity. Moreover, only the mechanical beha-
viour of the material under static or quasi-static loading will be considered
(i.e. strain rate effects on yielding are ignored). It will be assumed that
any degradation which occurs due to ply yielding or ply failure is restricted
to that ply and is not transmitted to adjacent plies. Also no attempt will
be made to model the interlaminar effects.

The model proposed in this study may best be divided into three regimes:
the elastic regime, the plastic regime and the post-failure regime. In this
model the linear elastic stress-strain relation is used first until the
combined state of stress reaches an initial yield surface which marks the
beginning of plastic flow. Further loading produces plastic response untill_
failure is reached. For simplicity the initial yield criterion and the fail-
ure criterion are assumed to have similar functional forms in stress space,
Between the initial yielding state and the failure state, the constitutive
relations are expressed in incremental form based on the associated flow rule
of plasticity theory. When failure is reached it is ascribed to either
matrix or fibre depending on the relative magnitude of the various stress
ratios appearing in the criterion. To simulate post-failure behaviour, two

types of failure modes are defined, namely, brittle and ductile. For the



33

brittle fracture mode, the layer is assumed to lose its entire rigidity and
strength in the dominant stress direction. For the ductile fracture mode,
the layer retains its strength but loses all of its stiffness in the failure
direction,

Different stages of the proposed elastic-plastic-fracture model
mentioned above can be illustrated schematically on an idealized uniaxial
stress-strain curve shown in Fig. 3.1.

In what follows a complete set of elastoplastic constitutive relations
will first be developed in a general form, appropriate for any orthotropic
material whose behaviour falls within the framework of time and temperature
independent incremental plasticity. These formulations will subsequently be
specialized to the single layers of unidirectional and bidirectional FRMs
under plane stress, since the latter is the condition that normally prevails

in plies of a laminate sufficiently distant from singularities.

3.3 General Formulation of the Single Layer Constitutive Equations’
3.3.1 Elastic Regime

In the initial loading state, the FRM layer is treated as a homogeneous
and orthotroipc linear elastic continuum. Let x,, X, and x, denote a local
orthogonal Cartesian axes, the axes of x, and x, being in the mid-plane of
the layer and x, in the thickness direction. These axes coincide with the
principal axes of orthotropy. All subsequent discussions and derivations
will be referred to this local coordinate system.

In the linear elastic range there is a one-to-one analytical relation
between the stress tensor oij and the strain tensor eij' This can be

expressed as (Sokolnikoff, 1956)
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o5 = Cijkn ey (i,j,k,2 = 1,2,3) (3.1)
where Cijki is a fourth order stiffness tensor whose components are the
elastié constants, or moduli of the material, and repeated indices imply
summation. Equation (3.1) is a natural generalization of Hooke's law, aﬁd it
is used in all developments of the linear theory of elasticity.

Inasmuch as the components oij and eij are symmetric, the tensor of

elastic constants Cijkﬁ is symmetric with respect to the first two and the

last two indices, i.e.

e e e e

Cijea = Cire T Cijax T Cjiax

(3.2)
Such symmetry considerations reduce the maximum number of independent elastic
constants from 81 to 36,

Green (1839) asserted that for an elastic body there exists a potential

function ¢ with the property

%55 = a<b/8eij (3.3)
For a linear elastic body, & coincides with the strain-energy density

function so that

d=1/2 CE. e.. e

ke %13 ®ke =1/2 O s e (3.4)

J 1]
vhere Eq. (3.1) is used in the last step.
It can be deduced from Egs. (3.3) and (3.4) that the order of the pairs

of subscripts ij and ki are interchangeable, so that
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e e

Cijk2 = Ckﬂij (3.5)

Thus, under the above restriction, the 36 independent elastic constants can
now be reduced to 21 such constants for the most general case of an aniso-
tropic elastic body. If there are elastic symmetries in certain directions
of the material, then the number of independent constants C?jk! in Eq. (3.1)
can be further reduced.

To avoid dealing with double sums, it is convenient to write Hooke's law

in contracted notation as

o, = C, .€,. (i,j =1,2,...,6) (3.6)

The relationships between the contracted and tensor notations are given in

Table 3.1 below.

Table 3.1 Comparison between tensor, engineering and contracted
notation for stresses and strains.

Stresses Strains
Tensor Contracted Tensor Engineering | Contracted
Iy4 9, €41 €11 €,
022 02 e22 €22 ez
O3, O, €33 €33 €,
Oa3 T T334 Cu 2e,, Tas €,
O37 T T3y Oy 2e,, T €g
G012 = Ty, Os 2e,, - T12 €6
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-If the material has two mutually perpendicular planes of elastic
symmetry, it 1s considered orthotropic. For such materials, there are only
nine independent elastic constants Cij’ and the stress-strain relation (Egqg.

3.6) in matrix form becomes

- ~ ~© e e o B
% Cipv G G, O 0 0 €1
e e
o, c,, ¢C;, O 0 0 €,
e
o, c,, O 0 0 €,
= . (3.7).
o, c,, O 0 €,
e
g, Cee O €
Los__ L Symmetric Cfp_ L €g _

Assuming that the material coefficients remain constant during the
deformation process, the incremental elastic constitutive relationship takes

the following form

doi = Cij dej (i,j = 1,2,...,6) (3.8)

where do:.L and dei are the stress- and strain-increment tensors.

3.3.2 Plastic Regime

A theory of plasticity is a procedure by which a set of constitutive
equations for multiaxial stress-states can be derived from uniaxial
stress—-strain test data,. Such a theory accounts, in principle, for the
stress history dependent behaviour. Dissipative response characterized by

permanent strain accumulation can be evaluated. The theory accounts for
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unloading and reloading, and for the interaction of stresses. Some

references on the subject of plasticity are the books by Hill (1950),

Kachanov (1971), Mendelson (1968), and the review articie by Naghdi (1960).
The following four basic ingredients of plasticity theory are proposed

for use with FRMs. In addition, item (v) is added to describe the onset of

failure:

i) An initial yield surface, bounding the part of the stress space within
which deformation is purely elastic.

ii) A hardening rule, specifying the modification of the yield surface in
the course of plastic deformation.

iii) A flow law, indicating the direction of the incremental plastic stra%n
vector.

iv) A plastic modulus or hardening modulus, i.e. the ratio betwéen
increments of "effective stress" and "effective plastic strain". This
ratio is assumed to be independent of loading direction.

v) A failure surface, defining an upper bound of the plastic regime in

stress space.

In what follows, the analytical formulation of the foregoing items will

be presented.

i) Initial yield

The simplest generalization of the yield condition for plastically
anisotropic materials is the general quadratic function given by (cf. Baltov

and Sawczuk, 1965; Shih and Lee, 1978)

f(o.

1j’aij’Aijk2’k) =0 (3.9a)
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where
f= Aijkﬂ (oij - aij)(ck2 - aki) - k2 (3.9b)
In Eq. (3.9b), Aijkn(i,j,k,l = 1,2,3) denotes the fourth order tensor of
anisotropic strength parameters which describes the shape of the yield
surface, and the tensor aij describes the origin of the yield surface. The
effective size of the yield surface is given by the scalar parameter k which
stands for a reference yield stress.

In contracted notation Eq. (3.9a,b) can be rewritten as

f(oi,ai,Aij,k) = Aij(oi—ai)(oj-aj) -k2=0 (i,j =1,2,...,6) (3.9¢)

Generally, yield stresses are different in tension and compressiﬁn. It
should be noted that aij in Eq. (3.9b) (or aj-in Eq. (3.9&)) accounts for the
strength differential between tensile and fcompressive yield stresses by
shifting the origin of the yield surface.

Since the material cannot distinguish between positive and negative
shear stresses (provided that the reference frame coincides with the
principal axes of orthotropy), all odd powers (one, in this case) of shear
stress terms in Eq. (3.9c¢) must vanish.

From the above arguments and symmetry considerations, one can write Ai'

and a; in the following matrix form

44

A, A, A, O 0 0 ]
A,, A, © 0 0
(A] = A,, 0 0 0 (3.10)
A 0 0
A 0
A

L Symmetric

66
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{a} = {a, @, @, 00 0}T

The function which expresses the initial yield conditions for an

orthotropic material can be defined as

f, (95, af, Af;, kg) = 0 (3.11)

where the suffix , denotes the initial value of the quantity to which it is
attached,
The parameters Agj, ag and k, must be obtained from experiments.

Appendix A provides the details of evaluating‘these parameters.

ii) SubsequentAyield and hardening rule

After initial yielding, it is necessary to define conditions for subse-
quent yielding of the material under changing load. Because stress states
outside the yield surface are not admissible, an increase in load must be
accounted for in one of two ways. In an ideal plastic material the point of
interest merely translates on the unchanged initial yield surface, while if
some form of hardening is allowed, the yield surface will change shape and/or
position in a manner dictated by the hardening rule and the stress point will
be somewhere on the subsequent yield surface.

The progressive deformation of the material is described in terms of

evolution of the family of yield (or loading) surfaces given by

f(oi,ai(K),Aij(K), k(k})) =0 | (3.12)
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where k termed the hardening parameter is a suitably defined plastic internal
variable which can be related to some measure of plastic deformation or
plastic work.

Relative to an arbitrary point in stress space, a state of "loading" is

specified by

f =0; de # 0 ; and (8f/aoi) doi >0

During "neutral loading”

f =0; de = 0; and (af/aoi) doi =0

Finally during "unloading" we have
f=0; de¢ = 0; and (af/aoi) dci <0

By allowing s, Aij and k in Eq. (3.12) to vary as some function of the hard-
ening parameter k various kinds of hardening models can be simulated.

The two principal models of strain hardening behaviour that have been
developed are the "kinematic" and "isotropic" hardening models, Isotropic
hardening occurs when the initial yield surface expands uniformly during
plastic flow. For kinematic hardening the yield surface does not change its
initial shape and orientation but translates in the stress space like a rigid
body. This concept was introduced by Prager (1955) and later modified by

Ziegler (1959). The kinematic hardening model accounts for the Bauschinger
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effect*, which is an experimentally observed phenomenon under cyclic loading
situations.

When k(k) = constant (i.e.,-ak/aK = 0)and Aij(K) = constant (i.e.,
aAij/aK = 0) in Eq. (3.12), we obtain the case of kinematic work-hardening.
If on the other hand aai/BK = 0; aAij/aK = 0 and k(k) is a monotonically
increasing function, isotropic workhardening occurs. The latter can
alternatively be attained'by allowing the Aij parameters to vary in a
proportioﬁal manner while aai/an = 0 and 3k/dx = 0.

More recently, attempts have been made at combining the two preceding
models in a mixed hardening formulation (Axelsson and Samuelsson, 1979), in
order to obtain a more realistic representation of elastoplastic behaviour.
In this case, the yield surface experiences translation and uniform expansion
in all directions, i.e. it retains its original shape.

General "anisotropic" hardening can be introduced by letting all the
parameters a, Aijand k vary with k. Such a theory accounts for changes in
the shape of the yield locus during plastic deformation, a feature that is
absent in the hardening models discussed so far. It should be noted that the
kinematic hardening model is a specilal case of anisotropic hardening whereby
the anisotropy is induced by Bauschinger effect,.

In the present study, special types of isotropic and anisotropic harden-
ing models are used. The latter allows for a nonproportional change of the
yield values and thus leads to a distorted shape of the yield surface (i.e.,
aAij/an # constant) while aai/ax = 0 and 3k/3k = constant. »The mathematical

details of these models are presented in Appendix B.

*The Bauschinger effect refers to a particular type of directional anisotropy
induced by plastic deformation, namely, thdt an initial plastic deformation
of one sign reduces the resistance of the material with respect to a
subsequent plastic deformation of the opposite sign.
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iii) Flow rule

After initial yielding the material behaviour will be partly elastic
(recoverable) and partly plastic (irrecoverable). It is a fundamental
assumption in the infinitesimal theory df plasticity that the increment of
the total strain tensor in the plastic range may be decomposed into elastic

and plastic components de° and de? by simple superposition, so that
P P i i

de, = del + deb (i=1,2,...,6) (3.13)
i i i
The elastic strain increment is related to the stress increment by the

generalized Hooke's law (Eq. (3.8)), i.e.

_ e .o
doi = Cij dej (i,3 1,2,...,6) (3.14)

In order to derive the relationship between the plastic strain increment
and the stress increment a further assumption about the material must: be
made. In particular it will be assumed that the plastic strain increment is
proportional to the stress gradient of a function, g, termed the plastic

potential*, so that

de? = an % (3.15)
i

*Plastic potential function is analogous to the potential function in ideal
fluid flow and the strain- or complementary-energy density function in
linear elasticity. A theoretical basis for its existence is developed by
Hill (1950).
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where dA is a positive scalar parameter which can vary throughout the
deformation process. Eq. (3.15) is termed the "floﬁ rule" since it governs
the plastic flow after yielding. The gradient of the potential surface
ag/aoi defines the direction of the plastic strain increment vector dez,
while the }ength is determined by dA. The flow rule is termed "associated"
if the plastic potential surface has the same shape as the current yield or
loading surface, i.e. f = g (cf. Bland, 1957). The latter has a special
significance in the mathematical theory of plasticity, since for thi§ case
certain variational principles and uniqueness theorems can be formulated.
Since there is very little experimental evidence on subsequent yield
surfaces, especially for FRMs, the associated flow rule will be applied in

the following work. In this case Eq. (3.15) becomes

deg = an & (3.16)

Eq. (3.16) is also termed the normality condition since af/aci is a vector
directed outward and normal to the yield surface at the stress point under

consideration.

iv) Effective stress and effective strain

For the work-hardening theory of plasticity to be of any practical use,
we must relate the hardening parameter k in the loading function (Eq. (3.12))
to experimental uniaxial stress-strain curves. To this end we are looking
for some stress variable, called "effective stress", which is a function of
the stresses, and some strain variable, called "éffective strain", which is a
function of the plastic strains, so that they can be used to correlate the

test results obtained by different loading programs.
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If from here on the strength differential in tension and compression is
ignored (i.e., a, = 0) partly for the sake of simplicity and also due to a
lack of adequate knowledge of the post-yield behaviour of FRMs, it is then

convenient to define the effective stress o as follows:

Aijoioj (i,j = 1,2,...,6) (3.17)

Therefore the loading function can be rewritten as

£(o;, Ag5(K), k(0) = a’<oi, Ay () - kK (k) = 0 (3.18)

The definition of effective plastic strain e® is not quite as simple. Two
methods are generally used. One defines the effective plastic strain

increment in terms of the specific plastic work increment, de, in the form

awP = o, deP (3.19)
1 1

k deP

The second method defines the effective plastic strain increment as a metric
in the space of plastic strains e?. In this case we can intuitively write an

expression for deP as

- 2
(deP)” = Ax, deb deb (3.20)
ij i 7]
where A;j is a matrix of coefficients. It is shown in Appendix C that Agj is
in fact the inverse of the matrix Aij provided lAijI # 0.

The hardening parameter k appearing in the ldading function (Eq. (3.12))

is commonly defined either as
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k = e = [deP (3.21a)

or

= WP = P
K =W foi de? (3.21b)

where the integrations are performed over appropriate strain paths. The
first definition complies with the strain hardening hypothesis while the
second is in accord with the work hardening hypothesis. 1In either case k is
a history dependent parameter, For algebraic convenience the strain-
hardening hypothesis is adopted in the present study. Accordingly, tﬂe

effective yield stress-effective plastic strain relation has the general form
k = H(eP) (3.22)

Then upon differentiation we obtain the slope

o= & (3.23)

o
evaluated at the current value of the effective yield stress k. The function
H, and its derivative H' (termed the plastic or hardening modulus associated
with the rate of expansion of the yield surface) are derivable from a gener-
alized effective stress-effective strain diagram which is usually identified
with one of the stress-strain curves along the principal material directioms.

For a bilinear stress-strain diagram adopted in this study, H' is a constant

and we have
k =k, + H'eP

With a view to determining dA, we use the flow rule (Eq. (3.16)) in Eq.

(3.20) to obtain
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Py? - 3 8f 3f
(der) A;j (dn) aci acj (3.24)

Now from Egs. (3.17) and (3.18) we have

Af  _

30, - 2k a; ‘ (3.25)

i

where

_d _1

a; = aoi X Aij oj (3.26) .

are the components of a plastic flow vector in the .stress space,
0,50,,044,04.

Introducing Egqs. (3.25) and (3.26) into Eq. (3.24) and noting that

t . .
* =
Aik Akj 6ij (see.Appendlx C), yields

d\ = o— (3.27)

With the aid of Egs. (3.25) and (3.27), the flow rule given by-Eq. (3.16) may

be re-expressed as

de? = acP a, (3.28)

We can now proceed with the derivation of the incremental elastoplastic

stress—-strain relationships,

' 0 for 1 # j
éij is the Kronnecker-delta defined as, bij =
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During plastic loading, both initial yield and subsequent stress states
must satisfy the yield condition, i.e. df = 0. Therefore, plastic flow is

governed by the following consistency condition*

df = 55; doi ye dAij * 3k dk =0 , (3.29)

It is interesting to note that in all the previous work on anisotropic
plasticity (e.g. Whang, 1969; Valliappan, 1971) the term af/aAij was not
included in the formulation even though the assumption of varying Aij's was
made. Consistent with the strain hardening hypothesis given by Eq. (3.2la),

.the parameters Aij and k can in general be functions only of the accumulated
p

effective plastic strain €®. Thus, we may write
dk = H' deP
(3.30)
3A, . 3A, . .
= = ]
dAij; = ek & ak o de

Also from Egs. (3.13) and (3.14) we can write the stress increment doi

as

= € - 4P
dci Cij (dej dej) (3.31)

Recalling the flow rule given by Eq. (3.28), the above equation can be recast

into the following form

*This is the term used by Prager (1949) which demands that loading from a
plastic state must lead to another plastic state.
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= c® Z P
doi Cij (dej aj de*) (3.32)

Substituting Egs. (5.30) and (3.32) into Eq. (3.29) and noting that

o
+h
'.‘
@
- e
[
..l
(&)
©
t+h

2k a

[+})
Q

.
Q
g

= 0.0, and /= = -2k (3.33)

one can rewrite the consistency condition (Eq. (3.29)) as

e
_ -aiCi.
deP = L de. (3.34)
pH' + a C a J
m mn n
where all the indices take on the values 1,2,...,6 and the parameter p is
given by
1 aAi.
po=1- o cioj .Eil (3.35)

Finally, substitution of Eq. (3.34) in Eq. (3.32) leads to the following

elastoplastic constitutive equations

do. = C5P e, = (c%, - cP.) de. (3.36)
i tij ] ij ij j

where Ci? is the elastoplastic material stiffness tensor and Cg. is the

plastic material stiffness tensor defined as

e : e
C., a, a, C_.
P -tk k 24 (3.37)

1 MH' + a C:n a
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The negative sign appearing in Eq. (3.36) clearly represents the degradation

of the material stiffness due to plastic flow.

V) Failure
A failure criterion defines the maximum strength of the FRM layef under
any possible combination of stresses. It is assumed that this criterion is
not influenced by the deformation history (i.e. it is path-independent) and
can be postulated a priori. Unless otherwise stated, in the present study
the failure surface is assumed to have a similar functional form to that of
the yield locus, i.e.
u

f (0., A,., k) = . 0.0,
u i’ Tij’ Tu ij "i7j

1
"
Q
Q
|
e
1]
o

(3.38)

where the suffix u stands for the ultimate values of the quantities to which
it is attached. The parameters A?j and ku are material constants which can
be related to the ultimate stresses obtained from the same basic tests used
to obtain the yield values.

Criteria of the type given above predict the onset of failure but
provide no information regarding the modes of failure. The latter are
important in studying the behaviour of the material beyond initial failure.
The failure mode -identification procedure used in the present study will be

fully discussed in section 3.4 for plane stress situations.

3,3.3 Post-Failure Regime

To complete the constitutive model, we also need to define the post-
failure behaviour for different failure modes. For FRMs, failure may take
one of two forms, namely, fibre fracture or matrix cracking. Several

approaches can be employed for crack modelling in the post-failure region.
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These may be classified as the smeared cracking model, and the discrete
cracking model. The particular choice of the model depends upon the purpose
of the analysis. In general, if overall load-deflection behaviour is
desired, without regard to completely realistic crack patterns and 1océl
stresses, the smeared-crack model is probably the best choice. If detailed
local behaviour is of interest the use of the discrete model may prove
rniecessary. However, for most structural engineering applications, the
smeared cracking model is generally adopted. Such representation, which is
favoured in the present work, assumes that the cracked composite remains a
continuum, i.e. the cracks are smeared out in a continuous fashion. The
effects of such cracks on the behaviour of the failed layer is the reduction
of stiffness and/or strength in certain directions.

The fibre fracture is assumed to cause a loss in load carrying capacity
(i.e. strength and stiffness) in the fibre direction. This corresponds with
the brittle fracture mode shown in Fig. 3.1;. Matrix cracking; on the other
hand, is assumed to be caused by shear and/or transverse tension. These
cracks are formed parallel to the fibre directions as shown schematicélly in
Fig. 3.2. When the cracked layer is within a multilayer laminate the crack
opening displacements will be constrained by the adjacent layers. This leads
to a gradual loss of load carrying capacity or softening of the failed layer
in the overall sense. The extent of softening, marked by the slope of the
descending part of the stress-strain curve, is generally dependent on the
orientation of the adjacent plies in a laminate, i.e., it 1is laminate-
dependent. This leads to considerable complications in the development of
continuum constitutive theories for FRM layers beyond initial failure. In

the present work the two extreme cases of brittle and ductile fracture models
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shown in Fig. 3.1 are considered sufficient to serve as bounds to the actual

behaviour after matrix cracking.

The details of the post-failure modelling under plane stress conditions

are outlined in Section 3.4 for unidirectional and bidirectional layers.

3.4 Plane Stress Formulation of the Single Layer Constitutive Equations

The plies of a laminate are generally under the state of plane stress at
sufficient distance from the free edges. Therefore the discussion in this
section will be devoted to specialization of the preceding constitutive equa-
tions to plane stress situations. Under such conditions, the through-

thickness stresses can be neglected (i.e., 0,=0,=0,=0).

3.4,1 Elastic Regime

The elastic constitutive relation given by Eq. (3.7) may now be written

as:

e e
Oy Q. Qy, 0 €y
ol =| & &, o € (3.39)
e
O 0 0 Qes €

where the components of the reduced elastic stiffness matrix Qi. can be

related to the Cij constants by using o, = 0 in Eq. (3.7).. Thus

e e e 2 e
Q;y =6Cy, - Cy, /Cy,

e e e e e ,.e
Q. =Q;y =Cy; - C,C;,/C,,
S (3.40)
e e e 2 e

Q. =0C;, = Cyy /Cy,

e e
Qes = C¢s



52

e . . . . .
The Qij coefficients can also be represented in the more common engineering

form as (see e.g. Jones, 1975)

Q?1 = E1/(1_“1z“2;)
e
Q;; = E;/(Q-v,,v;,)
(3.41)
e e )
Qiz = Qzq = V5, E/(1-vy;v,,)
Qe =6

where E, and E, are the elastic moduli in the x, and x, directions,
respectively; v,,,v,, are Poisson's ratios; and G is the in-plane shear
modulus. In the notation for Poisson's ratios the first index refers to the
direction of imposed strain and the second index refers to the response
direction. The Poisson's ratios v

.2 and v,, are related through the

reciprocal relationship

2 1B, (3.42)

leaving a.total of four independent elastic constants to describe the planar =~

orthotropy.

In symbolic matrix notation, the incremental elastic constitutive

relationship for the plane orthotropic case is

{do} = [Q%1 (de) (3.43)
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where

{01 02 OG}T

{o}

(3.44)
T

{e} = (e, €, €;}
are the stress and strain vectors and [Qe] is the 3 x 3 elastic material

stiffness matrix.

3.4,2 Plastic Regime
The yield criterion given by Eq. (3.18) can now be written in matrix

notation as

£({c),[Al,K) = & ((o},[A]) -k =0 (3.45)
where
5 ({0},[A]) = (o} [A] {o) (3.46)
and
A11 A12 0
(Al = | A, A,, O (3.47)
0 0 A,

Although any polynomial in the form of Eq. (3.45) represents a surface
in the stress space, not all the surfaces are admissible yield surfaceg. A
geometric interpretation is useful for examining the constraints on the form
of Eq. (3.45). Specifically, in the plane stress state, open-ended yield

surfaces are physically impossible since they imply infinite  strength for
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some state of stress.* To ensure the boundedness of the yield surface in the

0,,0,,0, stress space we must have

Aijoicj >0 (i, = 1,2,...,6) (3.48)
for an arbitrary stress tensor o . Mathematically, the inequality (3.48)
implies that the matrix of anisotropic‘strength parameters [A] has to be
positive definite. Since [A] is symmetric, the necessary and sufficient

conditions for it to be positive definite are that all its principal minors

be positive. Thus, the components of [A] must satisfy the following
inequalities:
2 .
A11A22 _A12 % 0
A A > 0 (3.49)
AAgg > 0

Geometrically, the positive definiteness of [A] ensures that the yield
surface is an ellipsoid. The interaction parameter A,, defines the angular
orientation of the ellipsoid (with respect to the o, and o, axes), and .
determines the lengths of its major and minor axes. The range of allowable
values for A,,, however, is limited by the bounding conditions (3.49) and

this in turn can often result in unsatisfactory yield (or failure) surfaces.

* In three-dimensional states of stress a loading state exists for which most
materials exhibit essentially infinite strength. In fact, any criterion
neglecting the effect of hydrostatic stress, such as the von Mises
criterion (cf. Mendelson, 1968), is such a case.
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The incremental elastoplastic constitutive relations given by Egs.

(3.36) and (3.37) can be expressed in matrix notation as:

{do} = [Q®P1(de} = (1Q%1 - [QP1) (de)}

e T . .e
Q1laifal Q1 , (4, (3.50)
rH' + {a} " [Q 1{a}

= (1Q%) -

where [Qp] and [er] are the plane stress plastic and elastoplastic material

stiffness matrices; and

{a} = 1/k [Al{o}
(3.51)

p=1-1/2k (0T [34/3K] (o)

The treatment of unidirectional (U/D) and bidirectional (B/D) layers
differs in the way their yield (and failure) surfaces are defined. Otherwise
the above formulations are common to both these cases. We shall now define

separate yield (and failure) functions for U/D and B/D layers.

(a) Bidirectional layers

Let us consider the plane stress form of Hill's yield criterion (1950)

which reads (see Appendix A):
2 2 1 1 6 2 '
&) + &G -Gty oo, t () =1 (3.52)

where X,Y,Z are the yield stresses under uniaxial loading along each of the

three principal axes of anisotropy (Fig. 3.3a); and S is the corresponding
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yield value of in-plane shear stress o,. In the absence of information about
Z, the yield stress U for uniaxial tension at 45° to the fibres can be used
to obtain an estimate for Z (see Appendix A). Under these circumstances,

comparing Egs. (3.45) and (3.52) for the four test conditions gives

k3 k3 k3
A, = X7 A,, = ¥7 A, = 57 and
(3.53)
41 .1 .1
An = [ﬁz-_ (ﬁ tea t '37)] k?

One of the disadvantages of this criterion is that it requires four
material constants to define the yield function, and quite often four
separate tests are not available. In addition for many materials it proved
difficult to satisfy Eq. (3.49) i.e. the boundedness criteria. This
motivated a search for a criterion that required fewer input data for its
evaluation and did not have as restrictive a condition as that given by Egqg.
(3.49).

The Puppo-Evensen criterion (1972) (which was originally suggested for
the prediction of failure in multilayer laminates) satisfies the above
requirements and also possesses features that are ideal for modelling a wide
range of bidirectional FRMs. This criterion, in the plane stress case, can

be written as:

<31 2 X 01 02 02 2 OG 2 _
(i_) - A(?) Ty A(;‘) + (§—) = (3.54a)
01 2 Y c]. 02 i 2 E 2 _ b
A(i_) - A(i) Ty (Y ) o+ (s ) =1 (3.54b)
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where

A = 352/XY (3.54¢)

Thus, in this case the matrix of anisotropic strength parameters takes one of
the following two forms depending on which one of the criteria (3.54a) or

(3.54b) is dominant (i.e. corresponds with the greater effective stress o):

[ 1 _ 382 o |
X3 2 XY3
3 S1 :
[A] = k 3 XY 0 (3.55a)
1
Symm. 53
S3 3 _s?
3%y T IXw 0
2 1
(A] = k 2 0 (3.55b)
1
Symm. 57

Figuratively, Egs. (3.54 a,b) describe a pair of ellipsoids in the three
dimensional stress space (o0,,0,,0,). The yield surface is taken to be the
inner surface resulting from the intersection of these ellipsoids. The para- -
meter A is.numerically equal to unity for an isotropic material obeying the
von Mises yield criterion (i.e. X=Y=V3 S) and tends to zero for the case of a
fabric-like material made up of strong fibres in the x, and x, directions but
with very weak matrix material, In the former case, the yield surface
reduces to the von Mises ellipse and in the latter it approaches the square
shape (i.e., non-interacting stresses) in the o, = 0 plane. A typical bi-
directionally-reinforced material falls somewhere in between these two

extreme cases, i.e. 0 < A < 1. Fig. 3.4 illustrates the progressive change
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of the yield surface in the o, = 0 plane, for some representative values of
the parameter A, The surfaces are plotted for the particular case of equal
strength fibres, i.e. X = Y,

The condition for the boundedness of the yield surface (Eq. (3.49)) now

becomes
4 X3
2 _— —
52 < 3y
and (3.56)
4 Y3
53 < 3 X

For strongly anisotropic materials (e.g. unidirectional composites in which
X >> Y) at least one of the inequalities in (3.56)'may be violated. This
makes the 3-parameter Puppo-Evensen's criterion unsuitable for prediction of
yielding in U/D materials. The following is devoted to treatment of such

materials.

b) Unidirectional layers

Here we propose the 3-parameter. Hill's criterion for transversely
isotropic medium. This extension of Hill's critefion, which was first
suggested by Azzi and Tsai (1965), is based on the concept that the
unidirectional fibres (aligned in the x, direction as shown in Fig. 3.3b) are
randomly distributed and hence the properties in the x, and x, directions are
the same. Thus Y = Z and the 4-parameter Hill's criterion given by Eq.

(3.52) reduces to

01 2 Oz 2
) + )

0102 06 2 _ 1 57
ot ) = (3.57)
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The matrix [A] now reads:

[l 11 ]
T 2 xn O
2 1
[A] = k & 0 (3.58)
1
| Symm. 52

It . can be shown that the surface represented by Eq. (3.57) satisfies the
closure conditions of Eq. (3.49), provided that Y < 2X. The latter condition
is readily met by the unidirectional FRMs for which X > Y.

It should be noted that when Egs. (3.54 a,b) and (3.57) are used as
initial yield criteria the quantities X,Y,S and k are replaced by their
S

initial values X,, Y and k,. During subsequent yielding, if the

0? [

evolution of the yield surface follows the anisotropic hardening model
described in Appendix B, then the individual yield values in terms of the

current effective yield stress k become

E
2 pl 2 3 3
X (k) =g (k -k;) +X,
(3.59)
E
2 p2 2 2 2
Y (k) =g— (k - kj) +Y,
G
2 2 2 2
5 (k) =gk (& - kg) + 5,
where Ep . Ep and Gp are the plastic moduli in the x,-direction,
1 3

x,-direction, and in-plane shear respectively. These moduli remain constant
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for the bilinear stress-strain curves considered here and can be expressed in

terms of the elastic and tangent moduli as (see Appendix B)

E,E
E = ~n
p, E, - ET1
EzET2
E = (3.60)
P, E; - ET2
¢ - G Gp
% TE-g

In order to use Egs. (3.54a,b) and (3.57) as failure criteria, X,Y,S and k
must be replaced by their ultimate values Xu,Yu,Su and ku. Failure is
ascirbed to either the matrix or fibre depending on the relative magnitude of
the various stress ratio terms appearing in the failure criterion, The

failure mode identification procedure is shown in Table 3.2, for both U/D and

B/D layers.
Table 3.2 Failure Identification Procedure
Layer Type .Condition Failure Mode
. . . 01 03 01 05 .
Unidirectional f—{ > ’——4 and }——I > %—{ fibre
X Yu X Su
. 02 06 o o
Otherwise > matrix (tensile)
Y S
u u
06 02 .
> matrix (shear)
u u
lo,/X,| 1is greatest fibre in x,
Bidirectional Ioz/Yul is greatest fibre in x,
Ios/SuI is greatest matrix
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3.4.3 Post-Failure Regime

After failure, new incremental constitutive relationships must be
derived. This is accomplished by modifying the elasticity matrix [Qe] such
that at the failure location the material cannot carry any additional tensile
stress normal to the crack plane or shear stress parallel to the crack plane.
Table 3.3 summarizes the form of the post-failure elasticity matrix (denoted

by [Qf]) for both U/D and B/D layers.

Table 3.3. Post-Failure Incremental Constitutive Matrix [Qf] for Both
Brittle and Ductile Failure Models

Layer Type Failure Mode [Qf]
Uni-directional Fibre (x,-direction) Qf, = E, ; all other Qij =0
. £ £
Matrix Q,; = E; ; all other Qij =0
Bi-directional Fibre (x,-direction) sz = E, ; all other ng =0
. . . £ £
Fibre (x,-direction) Q,, = E, ; all other Qij =0
. f
Matrix Q;, = E, £
and all other Q =0
f 13
Q22=E2

These matrices apply whether the failure process is assumed to be
brittle or ductile, However, in the former case the relevant stress
components on the cracked planes just before failure must be removed abruptiy
and redistributed to ;djacent uncracked material of the entire structure.

The vector of released stresses (denoted by {of}) is tabulated in Table 3.4
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for various cases. It should be noted that for the ductile mode of fracture

{of} vanishes.

Table 3.4 Released Stress Vector {of} During Brittle Type of Failure

Layer Type Failure Mode (of]
Uni-directional Fibre (x,-direction) {o0,, O, os}T
Matrix {0, o,, OS}T
Bi-directional Fibre (x,-direction) {o,, O, cs}T
Fibre (x,-direction) {0, o,, os}T
Matrix {0, 0, OS}T

3.5 Multilayer Laminates

The constitutive equations for single layers of FRM developed in the
previous sections are now applied to laminates comprising a number of layers
to determine laminate response. In the following a laminate subjected to a
general state of membrane stress will be treated. The equations which are
developed define the ove¥a11 response of a laminate under a given set of
membrane loads. Because of the potential for plastic flow in each layer the
governing equations are presented in‘differential form.

Let the laminate consist of homqgeneous orthotropic thin layefs, each
exhibiting plane stress behaviour. The inéremental elastic and elastoplastic
constitutive relations in principal material coordinates (i.e. x,,x,) for a
single layer are given by Egs. (3.43) aﬁd (3.50), respectively. In any other
coordinate system in the plane of the layer (say X,y in.Fig. 3.5), the

incremental stress-strain relations can be written as
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do de
X X
dcy = [Q'] dey (3.61)
dt dry
Xy Xy
where
do do,
x T
doy = [T] do,
dey do6
(3.62)
de de,
X T
dey = [T] de,
1 1
5 dey 5 de,
R _ T
Q'] = [T]" [Q]I[T]
and [T] is the transformation matrix given by
2 . 3 1 .
cos O sin © 5 sin20
. \ _
[T] = | sin'® cos 6 - % sin20 (3.63)

-sin26 sin26 cos28

with 6 being the angle "from" the x-axis "to" the x,-axis (see Fig. 3.5).

In Eq. (3.62) [Q] stands for elastic, elastoplastic and post-failure
constitutive matrices, whichever is appropriate.

The incremental stress-strain relations in arbitrary coordinates given
by Eq. (3.61), are useful in the definition of the laminate stiffnesses
because of the arbitrary orientation of the constituent layers. Eq. (3.61)

h

can be thought of as a set of constitutive relations for the kt layer of a

multilayered laminate, and thus can be written as
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{do'}k = [Q']k {d<-:'}k (3.64)
where
{0'} = {o, 0 = }T
(3.65)
(') = (e, e 1.7

The laminate is assumed to consist of perfectly bonded layers and the
displacements are continuous across the layer boundaries (interfaces) so that
no layer can slip relative to another. It is further assumed that the
stresses in any layer are constant, but different in the different layers.

These are the usual type of assumptions made in the classical lamination
theory (see e.g. Jones, 1975).

A typical 1laminate is pictured in Fig. 3.6 along with its deformed
shape. Let the laminate be referred to a fixed system of coordinates x, y
and z as shown in Fig. 3.6. This will henceforth be referred to as the
laminate or structural coordinate system. The incremental stress-strain

relations for each layer can be expressed as

{dc']k = [Q']k {de'°} (3.66)

where {de'°} is the laminate strain increment vector, which is the same for
each layer.

The resultant laminate forces per unit width are obtained by integrating
the stress components of each layer through the total thickness of the

laminate. In the incremental sense, they will take the following form:
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dN do

® t/2
dNy = j. doy dz (3.67)
dN ~t/2 dt

Xy

Since the stresses are constant through the thickness of each layer then this

becomes

dN do
X X
n .
dN = I do t (3.68)
y -1 y k
dN dt
xy Xy

where tk is the thickness of the kth_layer, and n is the total number of

layers. When the layer incremental stress-strain relations, Eq. (3.66), are

substituted in Eq. (3.68), the resulting incremental laminate force-strain

relations take the following form:

dN de”®
b4
n
dNy = E [Q']k te dey (3.69a)
k=1
dN dr®
Xy Xy
or
n ,
{dN} = % [Q']k tk {de'°} (3.69b)
k=1

The overall response of the laminate will be affected by each layer's

stiffness contribution [Q']k. During elastic deformation, [Q']k = [Q‘e]k,
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and during elastoplastic deformation [Q']k = [Q'ep]k.
It should be noted that the analysis given above is based on plane

stress conditions in individual layers. This is a valid assumption if:

a) The loads on the laminate are statically equivalent to in-plane forces
(membraﬁe forces) and produce neither bending nor twisting moments.

b) The laminate has a certain "stacking sequence" of layers which defines a
so-called symmetric laminate.

¢) The "free-edge effects" are negligible.

The "stacking sequence" referred to in (b) is an arrangeﬁent in which
the laminate has a middle plane of geometrical and material symmetry. The
layers are arranged in pairs with respect to the plane of symmetry. The
layers of such pair have edual thicknesses, same distances from middle plane,
and are of the same material with identical orientation of material axes, 8.
In a non-symmetric laminate application of membrane forces will in general
produce bending and twisting of the layers and thus a plane state of stress
will not be realized.

The "free edge effects" referred to in (c¢) are confined to a "boundary
layer" which extends inward from the free edge to a distance approximately
equal to the laminate thickness. Withinv this region, the interlaminar
stresses become pronounced and the laminate is in a three-dimensional state

of stress (cf. Pipes and Pagano, 1970).
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CHAPTER 4

FINITE ELEMENT FORMULATION

4,1 Introduction

In recent years, the finite element method has emerged as the most
powerful general method of structural analysis and has provided engineers
with a tool of very wide applicability. Indeed, without this computational
tool, it is very difficult and expensive to gain insiéht into the nonlinear
behaviour of materials in general and laminated FRMs in particular.

The following discussion is mainly concerned with the numerical imple-
mentation of the elastic-plastic-failure model (developed in the previous
chapter) into a displacement based finite element program COMPLY (COMposite
Plastic Yielding). The chapter is divided into three parts. The first part
briefly describes the basic steps of the finite element analysis. In the
second part the technique adopted for solution of nonlinear equilibrium equa-
tions is outlined. The third and final part presents the numerical technique
implemented to perform the required computations for the proposed

constitutive model.

4,2 Governing Equations of Finite Element Analysis

The principles of the finite element method are now well established
(Zienkiewicz, 1971) and will not be discussed here in great detail. In this
section we summarize briefly the general technique used in the finite element
method for solving problems with material nonlinearity. In deriving the
basic equations of the current finite element analysis a two dimensional

isoparametric formulation is used throughout,
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Relations describing the approximate equilibrium equations will be
presented here. The outline of the numerical scheme used to solve these

generally nonlinear equations will be deferred to Section 4.3.

4,2,1 Isoparametric element Representation

It is generally thought that the isoparametric numerically integrated
element is more efficient and accurate in elasto-plastic analysis than simple
low order elements (Nayak and Zienkiewicz, 1972; Nagtegaal et'al., 1974) .
For this reason, the conventional 8-node (quadratic) isoparametric element is
implemented in the finite element code COMPLY. Isoparametric elements are
those for which the functional representation of deformation is employed in
representation of the element geometry. A typical curved element with the
nodal points being numbered for the purposes of discussions is shown in Fig.
4,1. Also shown in the same figure is the parent element of square shape
with coordiates £, n, ranging from -1 to 1 on their boundaries. If u and v
denote the in-plane displacements in the x and y directions respectively,

then the variation of displacement within an element can be written as
8 8
u= I ¢.u, ; . v= 1 ¢,V., (4.1)

where u;, v, are the nodal displacement variables for the ith node, and ¢i

are the associated shape functions given by

¢ For corner nodes:

1

6, =7 (L+EED + nn,) (EE; + nn; = 1) (1=1,3,57
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* For midside nodes:

2
3 n3
;=3 (L+EEDWL -0 + 75 A +m)A - &) (E=2,46,8 (4.2

in which Ei’ n; are the nodal coordinates in the §-n plane.
By definition of isoparametric elements the above shape functions are

also used to map the element geometry in the x-y plane, i.e.

(4.3)

where X;, y; are the coordinates of the nodes in the x-y plane.

4,2.2 Element Stiffness Formulation

AThe basic step in any finite element analysis is the derivation of the
nodal force-displacement relationship. To derive this relation we must
satisfy three conditions no matter what type or shape of element is involved.
These are:

i) The compatibility condition (i.e. strain-displacement relations)

ii) The equilibrium condition

iii) The stress-—-strain relations

i) Strain-Displacement Relations

.
S

Let {éi}e = {ui, vi}T be the vector of nodal displacement variables for
the ith node of a typical element e in the finite element mesh. The in-plane
strain field within this element, {e'}e = {ex, €, Txy}T’ is then related to

y
the nodal point displacement vector as
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(e)® =

e _ e
; [Bi] {bi} = [B] {8} (4.4)

I M 0

1

where [Bi] is the strain-displacement matrix* for the ith node given by

a¢i/ax 0

(8,1 = 0 3¢, /3y (i=1,2,...,8) (4.5)

3¢, /3y 3¢, /3%

and

(B]

[(8,1,[B,],...,[B,]]

(0% = (u,, vy, Uy, .ie, V)

The Cartesian shape function derivatives used in Eq. (4.5) may be expressed

in terms of the §,n derivatives of ¢i by the transformation

3¢9, /dx -1 | 9¢,/8E
= [J] (4.6)
a¢i/ay a¢i/an

-1
where [J] is the inverse of the Jacobian matrix

8 a4, 8 8¢,
3x/3E  3y/af I X% I v,
i=1 %8 1 4 % T
Jl = - .
(1] 3ax/3an  3dy/an 8 a9, 8 39, (4.7)
1= oy
| i=1 o=l i

*Consideration here is limited to small deformation situations where the
strains can be assumed to be infinitesimal (i.e. Lagrangian and Eulerian
geometric descriptions coincide) and the strain-displacement matrix remains
constant during the deformation process.
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ii) Eguilibrium Condition

By applying the principle of virtual work or any other similar energy

principle, the equilibrium equation for a single element can be written as

T

[ (Bl (01} av = (F)€ ‘ (4.8)

Ve

where'(o'}e = {cx, g._, Txy}T is the elemental stress vector, {F}e is the

y
consistent (external) load vector and Vi is the elemental volume.

iii) Constitutive Relations

Before a solution can proceed further,k a constitutive relationship
between {0'}% of Eq. (4.8) and (€"1€ of Eq. (4.4) has to be established. For
the present plane stress analysis of laminated FRMs, the material
nonlinearity is incorporated into the stress-strain relation in the following

incremental form
' e = 11€ e _ 1€ ' e

where [Q']k is the constitutive matrix (for the current stress level)
associated with the kth layer of the laminate (see Eq. (3.66)). Substituting
Eq. (4.9) in the incremental form of Eq. (4.8) and using Eqs. (4.4) and

(3.69b) gives for each element

(@F}® = [ [B1T (aN}%dA = (K] (d8)° (4.10)
Ae
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where

T

= 1t J BT [Q') [B] dx dy (4.11)

is the element tangential stiffness matrix. 1In Eq. (4.11) A® denotes the
surface area of the element under consideration and the summation is taken
over the total number of layers, n, through the thickness. Due to the
nonlinear nature of the integrand in Eq. (4.11), the integration must be
carried out numerically. This will be attempted in the following.

Using the transformation relation
dxdy = det[J] d&dn (4.12)

where det([J] is the determinant of the Jacobian matrix [J], we can rewrite

Eq. (4.11) as

n
k€ =z t, [ [ (HIE dg&dn (4.13)
T k=1 © -1 - K
where [H]E is defined as
(M} = [H(E,m]S = [B]T [Q'1} [B] det [J] (4.14)

Now, using Gaussian quadrature with q x g sampling points the element tangent
stiffness matrix can be evaluated as

To33 [HGE .1 (4.15)
= I I I [H(E.,n. t, W. W. 4,

k=1 j=1 i=1  + 37k kL

]e

Ky
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where (Ei,ni) is a sampling position within the element and Wi,Wj are the
associated weighting factors.

With regard to one dimensional integrals, q Gauss evaluation points are
sufficient to integrate exactly a polynomial of degree (2gq-1). Table 4.1

offers a brief summary of some of the details of Gaussian quadrature.

Table 4.1 Sampling Coordinates and Weighting Factors for One-Dimensional
Gaussian Quadrature

+1 q
) H(E) dE = I W, H (E)
-1 i=1
1 (linear) 1 0 2
2 (cubic) 1 + 1/J§ 1
2 - 1/V3 1
3 (quintic) 1 0 8/9
2 + V375 5/9
3 - V375 5/9

4,2,3 Structural Stiffness Formulation

Once the element stiffness matrices [KT]e have been calculated in the
global (structural or laminate) coordinates, the structural tangent stiff-
ness matrix [KT], which‘relates the load increment {dF} to the nodal
displacement increment {d&} of the complete structure, can be formed by the

systematic addition of element stiffnesses. Thus

{dF} = [KT] {do} (4.16)
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4,3 Numerical Solution of Nonlinear Equilibrium Equations

A large number of numerical schemes have been proposed in the literature
for the integration of equations (4.16), all of ﬁhich are based on piecewise
linearization of the nonlinear equations over a finite number of steps. The
two main categories of methods are purely iterative or purely incremental.
In the incremental (step by step) method the structure is loaded in small
increments and for every step of loading a new structural stiffness matrix is
calculated from the updated material (constitutive) matrices. However, since
the flow theory of piasticity is based on "differential" steps and the load
must be added in "finite" steps, the stiffness of the structure is easily
overestimated and the equilibrium conditions are violated. 1In this case the
incremental procedure must be combined with a suitable iterative process in
order to satisfy equilibrium at each load step. During the general stage of
the incremental/iterative solution process, the equilibrium equations (4.16)
will not be exactly satisfied and a system of residual (unbalanced) forces

{y} will exist such that
W) = (F) - (@)}, (4.17)

in which the subscript r signifies the iteration cycle number within a
particular load increment and (P} = {P(8)} is the internal equivalent force
vector given by

(p} = [ [B]T {c'}dv = [ '[B]T{N}dA (4.18)
i A

vhere the integrations are carried out over the whole structure using the
usual element-by-element procedure and standard assembly rules. Note that in

Eqs. (4.17) and (4.18) the total (accumulated) level as opposed to
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incremental level of various force and stress quantities are considered.
Also due to the nonlineafity of the problem thé integrations in Eq. (4.18)
must be carried out numerically by the Gaussian quadrature scheme described
earlier, |

Let us now consider the Taylor series expansion of {w}r about {é}r_l

(i.e. the known solution from previous iteration) so that

- 3 {y} -
{‘P}r - {\p}r_l + 8{6} ({6}r {é}r-l) + oeeees (4.19)
{b}r—l
Putting
(48) = (83, - (8}, _; (4.20)

and then truncating the expansion to the linear term yields

W= ), - Ky (48) (4.21)
where
163} _ 3w |
[KT]r—l © 3{s8) (8) 3({8} (o) (4.22)
' : r-1 r-1

is the tangential stiffness matrix of the entire structure evaluated at the
beginning of the rth iteration. This is calculated using the element by
element assembly of stiffnesses given by Egs. (4.11) or (4.15).

It is desired that {w}r = 0, thus

(Kl oy (88} = (¥}, (4.23)
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This is the linear incremental equilibrium equation wherein the residuals {y}
can be visualized as corrective .nodal forces required to bring the assumed
displacement pattern into nodal equilibrium. The set of simultaneous

equations (4.23) can be solved* for (Ad} and the improved solution will be
{6}r = {é}r_l + (A8} (4.24)

The updated displacements {6}r are used to evaluate the current stresses {o}r
and hence the residual forces {w}r_from Egs. (4.17). The iteration process
is repeated until these residual forces practically vanish, or equivalently
that {é}r_l and {6]r are sufficiently close. For the purposes of this study

we will assume that the numerical process has converged if (Owen and Hinton,

1980)

hw I Wil )

= [
TE T~ @t 6

r 172
]

< TOLER (4.25)

where TOLER is a small preset tolerance limit. The criterion (4.25) states
that convergence occurs if the Euclidian norm of the residual forces becomes
less than TOLER times the norm of the total applied forces.

The above iterative procedure, often termed the Newton-Raphson method,
is illustrated schematically in Fig. 4.2 for a single variable situation. It
should be noted that in this scheme the tangent stiffness matrix [KT] is
updated and solution of the full equation system is obtained for each itera-
tion. A variant on the above algorithm is offered by the "initial stiffness"

scheme in which the original structural stiffness matrix is employed at each

*In the current computer code COMPLY the solution method is based on the
Gaussian elimination procedure.
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stage of the iteration process. This reduces the computational costs per
iteration but unfortunately also reduces the rate of convergence of the
process. In practice the optimum algorithm is generally provided by updating
the stiffnesses at selected iterative intervals only (Owen and Hinton, 1980).
In the present work the pure Newton-Raphson method is employed whereby the
tangent stiffness matrix is re-evaluated at each iteration of each 1load
increment.

The complete sequence of the iterative process described above is

summarized in Table 4.2.

Table 4.2 Sequence of the Iterative Solution Technique

1. Begin new load increments, {F} = {F} +‘{AF}. Set iteration
counter r = 1 and {y},._7 = (AF} + {¢}, where {y} is the
equilibrium correction from previous increment.

2. Evaluate the new tangential stiffness matrix [KT]r—l‘

3. Solve [Kypl,._; (A8} = {y},._; by Gauss elimination.

4. Set {8),. = {8} _; + (48).

5. For each Gauss point calculate the increment in strain
{Ae'} = [B]l{A8}.

6. Estimate the increments in stress at each Gauss point in each
layer {Ao'}k = [Q']k{Ae'°} and hence evaluate the total stress
value {o'}¥ = {c'}¥_1 + {Ao'}k. The stresses {c'}¥ must be
adjusted to account for any plastic behaviour or failure of the
layer (see Section 4.4).

n
7. Evaluate the stress resultants {N}r = kzl {o'}% t, at each Gauss

point.
8. Determine the residual force vector
W = (0 - [, (31700 .
9. If convergence is achieved according to criterion (4.25), set {y}

= {y} and go to step (1) to perform the next load increment.

Otherwise set r = r+l and go to step (2) to perform the next
iteration.
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4,4 Numerical Implementation of the Anisotropic Elastic-Plastic-Failure
Model

As was observed in the previous 'section, the finite element scheme
solves the displacement equations of equilibrium in an incremental fashion.
Hence, the constitutive laws presented earlier (Chapter 3) that dealt with
differential (infinitesimal) stress and strain quantities must now be used
approximately to relate small but finite increments in stresses and strainms.
A finite element model may consist of several sampling points (layers and
Gauss points) at which the plasticity computations are performed for every
load step and corrective iteration. Analyses of such models must permit
relatively large load steps to maintain efficiency of the solution. These
large increments place severe demands on the plasticity routines to maintain
accuracy, numerical stability and efficiency. The importance of the
precision with which constitutive elastoplastic relations are integrated has
motivated a numbeerf recent studies, e.g. (Krieg and Krieg, 1977; Schreyer
et al., 1979; Ortiz and Popov, 1985; Franchi and Genna, 1987; Dodds, 1987).
The generalized trapezoidal rule as described by Ortiz and Popov (1985)
encompasses the three most popular methods for integration of the elasto-
plastic constitutive equations. These methods are known as: (1) tangent
predictor-radial corrector; (2) mean normal or secant stiffﬁess; and (3)
elastic predictor-radial return. In the present work the first method is
employed to integrate the incremental stress-strain law. As shown by
Schreyer et al. (1979) this method, if used with subincrementation of the
strain increment vector (as in the present analysis), is very accurate for
plane stress conditions. It is the aim of this section to outline the stress

computation technique used in the current finite element program COMPLY. The
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numerical procedure describing the failure and post-failure stress analyses

will also be covered.

4,4,1 Elastic-Plastic Formulation

During each iteration of each load increment an element, or part of an
element, may yield. All stress and strain -quantities are monitored at each
Gaussian integration point in every layer of every element. Consequently an
element can behave elastically at some points and elastic-plastically at
others. For every iteration of a given load increment it is necessary to
adjust the stress and strain terms until the yield criterion and the
constitutive laws are satisfied. The procedure adopted is described below.

Consider the situation existing (at a point*) for the rth iteration of
any particular load increment. The stress components {o}r_1 and the para-
meters describing the yield surface are all known from the solution at the
end of the (r-l)th iteration. Also known é;e the components of the new
strain increments {Ae'®}. The latter, which is given in the overall
(laminate) coordinate system, must appropriately be transformed (using Egs.
(3.62) and (3.63)) to give the incremental strain components in the principal
material directions. Such transformation is essential since the yield and
failure criteria described earlier (Chapter 3) involve the stress and strain
components, which are referred to the material coordinates of a particular
layer. For the purposes of the following discussion we assume that all the

stress and strain quantities have already been transformed to the material

*It is understood that the stress computation is performed for every point
(i.e. for each Gauss station in every layer) involved in numerical integra-
tion over the volume. Thus suffixes e and k previously used to denote
generic elements and layers, respectively, will henceforth be suppressed for
clarity. ’
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coordinates of the point under consideration. Thus, in what follows,

(e} = (Ae,, Be,, Ae,}T T,

; {Ac} = {Ac,, Ao,, Ao}
In the first step of the numerical algorithm, an elastic estimate {Ac®)

for the stress increment is computed as
(Ac®} = [Q°]{Ae) (4.26)

A set of elastic trial stresses {oe}r is then calculated by accumulating the

total stress. The result is
e, _ e
o7}, = {o}r_1 + (Ao} (4.27)

These trial stresses are then tested with respect to the initial yield

surface
£,({c},[A%],k,) =5 ({o},[A%)) -k, = 0O (4.28)

where the matrix [A°] is given by Egs. (3.55a,b) or (3.58) (in which fhe
yield stresses, X,Y,S and k are replaced by their initial values X,,Y,,S, and
k,) depending on whether the layer is bidirectional or unidirectional,
respectively. |

If the trial stresses do not violate the yield criterion (4.28), i.e.
fo({oe}r, [A°], k,) < 0, then the elastic behaviour assumption holds and the
final stresses {o}r at the end of the rth iteration are indeed {oe}r. Other-
wise, the initial yield surface has been crossed during the trial stress

incrementation. This is shown schematically in Fig. 4.3, If {c%} denotes
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the stress state at the point where the assumed stress path comes .into

contact with the initial yield surface, then we can write
(6%} = (o} __; + B(Ac®) ; 0sp<l (4.29)

where B{Aoe} is the portion of the stress increment at which the plastic
behaviour is first encountered, i.e. f, ((oc},[A°],k°) = 0. This condition
leads to a quadratic equation for the determination of B. However, a simple

approximate value of B can be obtained by a linear interpolation in o (Owen

and Hinton, 1980), that is,

B = :%“‘:EZl (4.30)
o - 0O '
r r-1

where 5: = {celf [A°] {oe}r, and ar_l = {0}3_1[A°]{0}r_1. It shou}d be
observed that the path from {o}r_1 to (0%} constitutes fully elastic
response, The remaining portion of stress, (l-B){Aoe} results in a stress
state that lies outside the initial yield surface and consequently must be
adjusted by allowing plastic deformation to occur. Once B has been deter-

mined from Eq. (4.30), the plastic stress increment can be calculated as

{Ae) :
{acP} = | [1QP1 (de} (4.31)
B{Ae}

This plastic stress increment is required to restore the assumed elastic

stress increment
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e [Ae} e e
{Ac”} = fo [Q71{de} = [Q ]1{Ae} (4.32)

to the correct elastoplastic values as required by the constitutive equation
(3.50). Therefore, substituting incremental changes for infinitesimals in

Eq. (3.50), we have

e} Blae} (ae}
(Ao} = [ (1Q°1 - QP1)(de} = [ [Q®1tde} + [ - (IQ%1 - [QP1) (de)
0 0 B{Ae}
{Ae) {Ae} .
= (Q%1(de} - [ (QP1(de} = (AT} - (AP} (4.33)
0 : B{Ae)

The construction of the elastoplastic stress increment vector {Ac} is
illustrated schematically in Fig. 4.3. If {Aep} denotes the vector of
plastic strain increments, which is unknown at this stage, then in view of

the relation
{Ac) = [er({Ae] - (aePy) (4.34)
and Eq. (4.33), one can write
(AP} = [Qe]{AeP} (4.35)
Since the plastic material stiffness [QP] varies with the current state

of stress, the computation of the plastic stress increment given by Eq.

(4.31) requires a numerical integration. Various algorithms have been
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designed for this purpose. The simplest approximation of Eq. (4.31) is

obtained by using a one-step, forward Euler integration method:
(ac®} = (1-B) [QP] (Ae) (4.36)

The integration process used above is admissible if small load (and strain)
increments are applied. The fact that the direction of the plastic flow is
only correct in the beginning of the increment can lead to a significant
error in the final orientation of the stress vector in the stress space,
Therefore to allow(for relatively large load (and strain) increments a more
accurate integration procedure is desirable, This can be achieved by
dividing the elasto-plastic portion of the strain increment vector, (1-B){Ae}
into M equal sub-increments and reforming the plastic matrix [Qp] at the

beginning of each subincrement. Accordingly, for each subinterval we have

{Ae}m = {Ae}/M (4.37)

and

(A%} = (1-B) [Q%1(Ae} = (Ac®}/H

(4.38)

(ac®)y = (1-B) [QP1 (ae} = (AcPI/M

e ) th . . .
where (Ae]m, {Ao }m and {Acp}m are the m™ strain, elastic stress and plastic
stress subincrements, respectively. The input quantities used in the calcu-
lation of [Qp] (see Eg. 3.50) are the accumulated (total) stress components
{c}m_l, the effective yield stress km_l; the anisotropic parameters [A(k)]m_l
and [N all of which are evaluated at the end of the (m—l)th subincrement,
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It should be noted that for m = 1 (i.e. at the onset of workhardening), we

have
(0}, = (¢

[A(K)], = [A°] (4.39)

CL .1 eT oA
Mo = 1= g {07 [l |y (0

0

!

+

¢

The yield stress k is updated according to the amount of plastic work
produced during the mth subincrement. For the bilinear stress-strain

representation considered in this study one can write

- v AwP
k o=k | +H AF/k | (4.40)

where

AP = T p ,
AW {c]m_1 {Ae }m (4.41)
is the increment of plastic work done per unit volume. In Eq. (4.41) the

vector of plastic strain increments {Aep}m can be determined from Eq. (4.35)

as follows
(8P = 1Q%17 (8o (4.42)

In order to update the anisotropic parameters [A(k)] we adopt the

approach of Jensen et al. (1966) or Whang (1969), the details of which are
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outlined in Appendix B. According to this method the new levels of yield

stress X,Y and S reached during plastic flow are (see Eq. 3.59):

E
3 Pa LI
Xm__ g By~ kel T X
E
3—p3 kz 3 + 3 4.4
Y=o [k - k] + Y, (4.43)
G
3 2 2 2
= 2 -
Sn TR [km kol + 5,

It should be emphasized that any one of the stress-strain curves, o,-€

1 1!

0,-€, and o,-€¢, can be prescribed as the effective stress (o) - effective
strain (e) diagram, i.e. the analysis is independent of the choice made.

Having established the updated values of the yield stresses, the matrix
of anisotropic parameters [A]m at the end of the mth subincrement can be
found from Egs. (3.55a,b) or (3.58), as the case may be.* The updated yield
function now becomes

£,((0) L [A] Lk )

{o} [A]m {o}rn -k (4.44)

In general, the stress state {o}m will be outside the updated yield surface
and we expect fm # 0. This small departure from the yield surface will be
cumulative. To prevent artificial hardening, a correction must be made to

restore the stresses to the correct yield surface. Such a correction is

*The updated anisotropic parameters must always be tested with respect to the
inequalities (3.49) to check for the boundedness of the new yield surface.
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achieved by simply scaling the stresses {o}m to the yield surface. The

appropriate scaling factor is readily seen to be

_ T
s = km/l{o}m [A]m [o}m (4.45)
The above process is repeated for all subincrements leading to the

following expression for the stresses at the end of the rth iteration

M
(0, = (o) _; + B(Ac®) + I ((ac®) - (A0} (4.46)

where {Aoe}m, {Aop}m are given by Eq. (4.38) in terms of the known strain
increment vector {Ae}. Obviously the .greater the number of steps M into
which the plastic portion of strain increment (1-B){Ae} is divided, the
greater the accuracy. However, the expense of reforming [Qp] and updating
the stresses for many steps, may lead to excessive computation times.
Clearly a balance must be sought and to this end several criteria have been
proposed to select an optimum number of subincrements M. Schreyer et al.
(1979) select M by limiting the angular difference between a normal vector
{df/80}, at the current contact point {c} and a normal vector {8f/a3c}, at
the contact point computed with a single step (i.e., M=1l) estimate. This =~
angle which measures the change in plastic flow direction (due to curvature

of the yield surface) within an increment, is calculated as

AT of

- { (==}
w = cos ' 80°° 80 ! (4.47)

of of
EERITEN

where || indicates the magnitude of a vector.
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Schreyer et al. (1979) offered the following simple formula for the

number of subincrements:

M=1+ w4 (4.48)

where w is given in degrees and % is a postive number chosen on the basis of
numerical experience. Alternative criteria for determination of M are given
by Bushnell (1976), Nyssen (1981), and Owen and Hinton (1980). However, that
of Schreyer et al is preferred in the present study.

It should be remarked in passing that for integration points that have

already yielded in the previous iteration {o} = {oc}, i,e, B = 0 and the

r-1
stress computation procedure described above applies identically. Also
during the iterative process, if the effective stress at a Gauss point falls
below the yield value at the end of the previous load increment, that point
is assumed to be elastically unloading, i.e. (AcP} = 0.

This concludes the numerical implementation of the elastic-plastic

region of the constitutive model. The next subsection is devoted to the

numerical treatment of failure and post-failure behaviour.

4,4,2 Post-Failure Formulation
In each constant strain increment {Ae}, the updated state of stress {0}r
at an integration point of a finite element needs to be examined with respect

to the failure criterion

£, (0}, 1A%,k ) = (0T 1A% (0} -k = 0 (4.49)



88

where the matrix [A"Y] is given by Egs. (3.55a,b) and (3.58) for B/D and U/D

layers, respectively, with Xu, Yu’ S and ku replacing X,Y,S and k.

u

If the stress combination violates the failure criterion, then cracks
are defined in the regions of the integration point under consideration. To
account for the presence of cracks in succeeding iterations (or increments of
loading), the post-failure elasticity matrix [Qf] tabulated in Table 3.3 is
used so that at that integration point the element cannot carry any more
increments of stress in certain directions. This is a common feature for
both brittle and ductile fracture models as described in Chapter 3.

Therefore, once failure occurs, the subsequent incremental stress-strain

relationship can be written as

tha} = 1051 (ae) (4.50a)

if the behaviour is elastic, or

f T £
(a0} = (1Qfy - Q- Mallal [0 ], ¢\, (4.50b)
T w1 () |

if the behaviour is plastic.

If the failure is of brittle type, however, the appropriate stresses
(normal or parallel to the crack, as the case may be) at the integration
point just before failure are released completely* and thereafter the point

is assumed to lose its resistance against any further deformation in the

*In most situations where failure occurs in the primary load-carrying part of
the structure, the stresses must be released gradually to facilitate
convergence of the iterative process.
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failure direction. In this case, the nodal point released-force vector in

the structure (or laminate) coordinate system can be written as

(R} = [ [B]'Ii

v

m1T (of} av (4.51)

where the vector of released stresses (of} is tabulated in Table 3.4 for
various brittle modes of failure. The residual force vector {y} now ﬁakes on

the following form

{v} = (F} + (R} - {P} (4.52)

The released forces.[R} can therefore be interpreted as known nodal loads,
“which in addition to the actual external loads {F}, must be equilibriated by
the internal forces ({P}. This corresponds to the redistribution of the
released stresses from failed integration points to unfailed points of the
entire structure. During the process of stress redistribution, another point
may fail even though the applied load {F} remains constant. If the failure
spreads throughout the structure, a singular or negative structural stiffness
matrix may appear. Or, the Newton-Raphson iteration of unbalanced external
forces may become divergent and an equilibrium state cannot be reached. For
these cases, the structure 1is considered to have collapsed and the
computation is terminated.

To obtain the collapse load within narrow limits the size of load
increments must be refined when the structure is about to collapse. Use of
the restart facility included in the present code is particularly useful in

this respect.
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CHAPTER 5

NUMERICAL RESULTS AND DISCUSSIONS

5.1 Introduction

A general theory of the inelasticity of FRMs has been outlined in the
preceding chapters which would appear to exhibit considerable potential as a
basis for a systematic model of the observed material behaviour. To
completely fulfill the objectives of this thesis, it remains to check the
ability of the proposed theory to reproduce {(within the bounds of the
theoretical assumptions) the available data‘and the suitability of the model
for use in finite element computations. In this chapter, these issues are
addressed by comparing some tests of the model to experimental data and
various other numerical results.

There are three major portions of this chapter. 1In the first portion
the general performance and functioning of the finite element code COMPLY is
validated by conducting numerical analyses of a few well known example prob-
lems ‘involving isotropic materials. These problems merely serve to verify
the isotropic elastoplastic analysis capability of the COMPLY program before
it can be applied with confidence to problems involving anisotropic layered
media. The second portion of the chapter is concerned with the application
of the computer program to selected laminate coupon specimens subjected to
various loading conditions. The objective 6f.this numerical study is to
determine the adequacy of the proposed constitutive model in describing the
basic response characteristics of laminated FRMs. The third and final
portion of the chapter covers the finite element (in-plane) analyses of
laminated composite plates with -céntered circular hole. This geometry,

which provides non-uniform yielding as well as multi-axial stress states, is
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an ideal application for tracing the errall load-deflection response.in the
post-failure realm (i.e. beyond the failure of one element) and consequently
testing the capability of the COMPLY program in performing progressive
failure analysis of laminated structurés.

To facilitate comparison to experiment, theory and other numerical tech-
niques, a large number of problems have been chosen from works in the open
literature. Since these problems do not come from any single source they
have not been originally specified in one unified unit system. In order to
make an easy comparison with these results, the units as specified in the

original source have been adopted.

5.2 Verification of the Finite Element Program

In order to assess the accuracy of elastoplastic solutions obtained by
the finite element code COMPLY, it is necessary to consider problems that
have solutions of known validity. In this section we investigate three such
problems all of which involve isotropic materials obeying the von Mises'
yield criterion. The first example considers an infinitely long thick-walled
cylinder loaded by an internal pressure causing elasto-plastic deformations.
In the second example the capability of the program to handle more complex
(non-proportional) loading paths is tested by conducting the analysis of a
thin-walled tube subjected to combined torsion and tension. The last example
investigates the elasto-plastic behaviour of a thin sheet containing a
circular hole under remote uniform tension. The purpose of the problems
considered in this section is to examine the development of plastic deforma-

tion, thus no limit is specified for failure strains and stresses.
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5.2.1 Thick-Walled Isotropic Cylinder Under Internal Pressure

The cylinder is assumed to be infinitely long so that the condition of
plane strain prevaiis in the axial direction. The material is elastic-
perfectly plastic obeying the von Mises' yield criterion. Earlier solutions
to this problem has been obtained by Hodge and White (1950) using finite
differences, and by Hill (1950) who employed the Tresca yield criterion in
order  to simplify the solution of the governing equations. Graphical
representations of the solution have also been given by Prager and Hodge
(1951). 1In the following, these solutions, regafded as exact, form the basis
of comparison with the present numerical results.

Due to axial symmetry, only a quarter of the cylinder needs to be
considered. The cylinder shown in Fig. 5.1 was analyzed with the program
COMPLY using the same type of finite element (i.e., 8-noded isoparametric
element) and the same element subdivision as that of Owen and Hinton (1980).

The following numerical values were assigned to the geometric and material
parameters involved:

Inner radius, a = 100 mm

Outer radius, b = 200 mm

2.1 x 105 MPa

Elastic modulus, E
Poisson's ratio, v = 0.3

Uniaxial yield stress, o, = 240 MPa

0

Plastic modulus, H' = 0

The solution was obtained using a 2 X 2 Gauss integration rule. The internal
pressure, P, was gradually increased until the plastic collapse of the
cylinder was attained at P = 185 MPa. The latter is marked by the divergence

of the iterative process for an incremental load increase. Figure 5.2 shows
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that the calculated pressure-radial displacement curve falls slightly below
that obtained by Hodge and White (1950). For comparison, it is interesting
to note that the exact values of the initial and ultimate (collapse) pressure
levels are 104 and 192 MPa, respectively. The spreading of the plastic zone,
corresponding to selected load levels P = 80, 120, 140 and 180 MPa, is shown
in Fig. 5.3, where the yielded Gauss points are indicated by full squares.
Figure 5.4 depicts the circumferential (hoop) stress, Cq distribution for the
above specified pressures values. The peaks on the theoretical curves mark
the position of the elasto-plastic boundaries. A reasonably good agreement

between the numercial and exact solution is evident.

5.2.2 Combined Tension and Torsion of an Isotropic Thin-Walled Tube

The physical problem being solved is that of a thin-walled cylindrical
tube which is subjected to axial tension and torsion. We consider a tube
which is first stressed in tension from a stress free state to incipient
yield and is subsequently twisted under constant axial stress, At a given
value of the shear stress, T, the extensional strain € and the shear strain y

are given by the relationships

€ = Sﬂ— n [1 + éli] + Sﬁ (5.1)
2H' 0,2° E )
3 %o 3 :
v = §v [t - — tan"® (1/3/0)] + 3 (5.2)
V3

where G is the elastic shear modulus for v = 0.3, The above exact solution
for isotropic hardening materials has been derived by Hill (1950). We can
use it here to quantify our finite element solution errors. Since the stress

distribution in the tube, remote from the ends, is constant everywhere (i.e.
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no spatial variation), a single material point is sufficient to model the
problem, This can be accomplished by a single plane stress isoparametric
element. The numerical model together with the loading path is shown in Fig.

5.5 while the material constants are listed below:

E = 28300 ksi
ET = 280 ksi
v = 0.3

O, = 26.25 ksi

The coordinates of the points 0, A and B along the locad path are
tabulated in Table 5.1. All the data used in the present analysis is taken
from Dodds (1987) who adopted the elastic predictor-radial return algorithm

for the stress computations.

Table 5.1 Load Path Data for Tension-Torsion Test on an Isotropic Tube

Points in o] T
Fig. 5.5 (ksi) (ksi)
0 0 0
A 26.25 0
B 26.25 | 24

Since the elastoplastic nonlinearities are very severe in the case
considered, this problem can provide a benchmarking example for testing the
accuracy of our nonlinear finite element code.

To compute the solution, the axialzstfess was increased to o, in the
first load step. The shear stress was then increased to 24 ksi using a

constant size increment At. Two analyses were performed corresponding to
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At = 2 ksi and At = 4 ksi. Considering the nonlinearities involved, the
latter load increments are rather large ieading to a severe test of the
present numerical method. A tolerance of 0.01% was used to ensure the
convergence of the iterative solution at each load step. Table 5.2 compares
the computed and exact strains. A graphical representation of the exact

strain path along with the present results is also provided in Fig. 5.6.

Table 5.2 Exact and Computed Strains for Combined Tension
and Torsion of an Isotropic Tube

T Exact At = 2.0 ksi At = 4,0 ksi
(ksi)
€ x 102 Yy x 103 € x 103 Y x 103 e x 1072 Yy x 1032
0 0.093 0.000 0.093 0.000 0.093 0.000
4 0.405 0.131 0.408 0.126 0.404 0.179
8 1.234 0.752 1.251 0.684 1.250 0.712
12 2.352 2.073 2.400 1.926 2.420 1.891
16 3.568 4,057 3.654 3.838 3.707 3.737
20 4,773 6.572 4,897 6.296 4,987 6.139
24 5.917 9,482 6.076 9.164 6,200 8.964

5.2.3 Perforated Isotropic Sheet Subjected to Remote Uniform Tension

A thin perforated sheet with isotropic elastoplastic material properties
is modelled and analyzed numerically for the case of a uniformly distributed
load applied at the edges remote from the hole. This problem is of interest
for two important reasons. First, it is one of the few non-trivial problems
for which adequate theoretical and experimental solutions exist. Second, it
provides a benchmark from which orthotropic elastoplastic behaviour can be
gauged. The dimensions of the specimen, applied loads and the coordinate
axis employed are shown in Fig. 5.7. Because of the symmetry of loading and

geometry, a quarter of the plate (shaded region of Fig. 5.7) is modelled by‘
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finite e;ements. A typical finite element mesh used in the computations is
shown in Fig. 5.8. The mesh consists of 48 isoparametric elements with a
total of 177 nodes. The material used is an aluminum alloy 575 whose stress-
strain curve and its bilinear approximation are shown in Fig. 5.9. The

material constants are as follows:

7000 kg/mm? (9956 ksi)

E =
v = 0.3
H' = 225 kg/mm? (320 ksi)

Q
1}

o = 24.3 kg/mm? (34,5 ksi)

The above déta correspond to those used in the experimental work of Theocaris
and Marketos (1964). Utilizing birefringent coatings bonded on the surface of
the specimen together with the electrical analogy method and the plastic
incompressibility assumption, they determined the complete elastoplastic
response of the perforated gtrip. A body of literature containing finite
element solutions of the same problem are also available; notable among which
are the works of Marcal and King (1967) and Zienkiewicz, Valliappan and King
(1969). These earlier approaches employed the constant strain triangular
element to discretize the specimen and used the "tangent stiffness" and the
"initial strain/stress" schemes, respectively, in their finite element solu-
tion algorithms, In Fig. 5.10 the development of the maximum strain (at the
Gauss integration point closest to the hole and the x-axis) is compared with
the experimental results of Theocaris and Marketos (1964) and the above
referenced finite element solutions. In the figure S rean stands for the mean
applied stfess along the x-axis which, for the particular geometry

considered, takes the value 2 o_. The results were obtained using a 3 x 3
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Gauss integration rule. We observe that in general the numerical models
predict a curve somewhat lower (i.e.'more flexible) than the experimental
one. This is in 5pite of the fact that all the numerical models used a stiff
representation of the material law. Yield of the first Gauss point takes
place at a remote load of o_ = 0.23 o,. This is reasonable since for the
case where the ratio of the plate width to the diameter of the hole is equal
to 2 the elastic stress concentration factor is approximately 4.3 (see
Howland, 1930). The single step solution shown in Fig. 5.10 is evidence of
the fact that the results are insensitive to the magnitude of the load incre-
ment, thus supporting the findings of Zienkiewicz et al. (1969). The effect
of varying the number of Gauss points and refinement of the mesh were also
_investigated. Specifically, two analyses were performed, one employing a 2
pqint Gauss rule with the same mesh as in Fig. 5.8 and the other using a 2
point Gauss rule with a finer mesh consisting of 80 elements and 281 nodal
points. The differences in the results were so small as to be indiscernable
in Fig. 5.10 and have not been explicitly included in the figure for the sake
of clarity.

Figure 5.11 shows the development of the plastic zone around the hole,
as the applied remote load is increased. The calculations were made in five
load increments (in the plastic range) essentially coinciding with those of
Theocaris and Marketos (1964). The depiction of plastic zone growth is
accomplished by placing a full square at each of the yielded Gauss points.
The plastic zone boundaries which were found by Theocaris and Marketos (1964)
are also shown in Fig. 5.11 by solid curves. We note that the pattern of the
plastic zone and its evolution obtained in the present work are éimilar to

those reported earlier with the exception of the loading case o_ = 0.47 g,.
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However, a closer examination reveals that for a slightly higher value of the
load given by o_ = 0.49 o,, yielding initiates at the free edge (note that no
experimental results were available at this load level for direct comparison)
and progresses inward in much the same way as that observed by Theocaris and
Marketos (1964) for o_ = 0.47 o,.

Contours of effective stress are presented in Fig. 5.12, This figure
provides the location of initial yield and the direction of subsequent
plastic flow. It can be seen that the contours are consistent with the
plastic zone patterns shown in Fig., 5.11.

Finally in Fig. 5.13 we compare the strain (ey) and stress (oy) distri-
butions at the net section (i.e. along the x axis) with the experimental
values for the applied stress o = 0.47 o,. It can be seen that the trends
exhibited by the finite elemgnt result are consistent with the experiment.
The greatest deviation occur for the ey strain distribution near the hole
where the model overpredicts the experiment. However, this is consistent

with the previous numerical predictions.

5.2.4 Conclusions

The numerical examples investigated in this section provide sufficient
evidence of the accuracy of the present-finite element code COMPLY in analyz-
ing various problems with isotropic elastopiastic material properties. It is
now possible to apply the code with confidence to some anisotropic problems.

This task is undertaken in the remainder of this chapter.

5.3 Response Prediction of Laminated Composite Coupons
In this section the effectiveness of the proposed constitutive model is

verified for a number of loading paths imposed on different types of
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laminated FRM coupons. Througﬁout this section consideration is given to a
material point remote from the edges of the coupon specimen, so that the
stress distribution can be taken as constant everywhere. Accordingly a
single element representation is used in the following analyses. The
objective of this section is to examine the capability of the mgdel to
accurately reproduce a broad sample of experimental records, both uniaxial
and biaxial, with monotonic and cyclic loading, including proportional and

nonproportional stress paths.

5.3.1 Uniaxial Loading
As a first test of the proposed model, the program COMPLY is used to

predict the nonlinear response of tensile specimens. A series of laminates

...0f. Boron/Epoxy (B/Ep) U/D composites for which experimental data had been

obtained by Petit and Waddoups (1969) are examined numerically. Figures 5.14
to 5.16 show the three basic stress-strain curves (i.e. longitudinal tension,
transverse tension, and in-~plane shear) for a single layer of U/D B/Ep
composite under investigation., To properly identify the material parameters
required as input to the model, these basic stress-strain curves have.been
fitted with bilinear curves (shown by solid lines in Figs. 5.14 to 5.16). B
The crosses in these and subsequent curves indicate the stress and strain
level at which ultimate failure occurs. The resulting material constants
used as input to COMPLY are given in Table 5.3.

Figures 5.17 to 5.25 show predicted and experimental results of tensile
tests on a variety of B/Ep laminates. The results of analytical models due
to Hashin et al, (1974) and Petit and Waddoups (1969) are also added for
comparison. Hashin's model is based on the deformation theory of plasticity

while Petit's model is nonlinear elastic (see Section 2.3.3). In Fig. 5.17
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Table 5.3 Input Material Properties for a Single Layer of U/D B/Ep

Elastic (ksi) Plastic (ksi) Failure (ksi)

E, = 30000 E = 26100 X = 200

T, u
E, = 3080 ET = 2200 Yu = 12.5
v,, = 0.3 (unitless) G, = 180 5, = 18.6
G = 1000 X, = 132.5

Y, =9

s, =10

the experimental stress-strain curve for a_[O°/90°]s* cross-ply B/Ep laminate
is compared to the results of the present analysis. Though the analysis
requires only two distinct layers, at least four plies would be required for
;’ﬁsymmetric layup. Both brittle and ductile.modes of failure were investiga-
ted, It appears that these extreme types -of post-failure models have
provided a good bound to the actual behaviour after tensile matrix cracking
in the 90° ply. The ultimate failure is associated with fibre fracture in
the 0° ply.

The result for the case of a [t45°]s angle-ply laminate is shown in
Fig. 5.18. As is seen, the present model predicts very closely the ultimate
strength and general shape bf the experimental curve. The highly nonlinear
nature of the response in this case is caused by the presence of a consider-

able amount of shear strain in the plies of the laminate. It should be noted

*In the notation for laminate orientation used in this thesis the ply angles
are separated by a slash with the entire layup enclosed within square brack-
ets, The 0° ply has its fibres along the loading direction. Where there is
more than one ply at any given angle, the number of plies at that angle is
denoted by a numerical subscript within the brackets. Subscript s outside
the brackets means that the layup is symmetric about the mid-surface.
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that for this particular laminate and in géneral all angle-ply laminates of
the form [iels ultimate failure coincides with the failure of one layer.

Figure 5.19(a) presents the stress-strain curves for the [i30°]s
laminate. It can be seen that the Hill's failure criterion (Eq. (3.57))
underpredicts the ultimate strength of this laminate. However, by observing
the stress paths in one of the plies, say the 430° ply, (Fig. 5.19(b)) it can
be inferred that the ultimate failure of the [i-30°]s laminate is caused by
compression in the transverse direction before failure could occur in the
fibre direction. Since Hill's criterion does not account for the strength
differential between tension and compressibn, and that the transverse
compressive strength is in this case about three times higher than the
tensile strength, the use of the maximum stress failure criterion allows us
to trace the reéponse curve to the second cross indicated in Fig. 5.19(a).
The corresponding stress paths are shown in Fig. 5.19(c). It should be noted
that the Hill's criterion was still used as the yield criterion in the
analyses whether or not it was used to indicate failure.

The resultsvof the present computations for a [i60°]S laminate of B/Ep
are compared to prior analytical and experimental results in Fig. 5.20. The
shapes of the curves are in good agreement with the experimental curves
showing a more nonlinear behaviour than either of the analytical results.
The ultimate failure in this case occurred from tension in the transverse
direction,

Figure 5.21(a) displays the response results for a [t20°]s laminate of
B/Ep. It can be observed again that there is a relatively large difference
between the measured ultimate strength and the present predictions based on
Hill's failure criterion. As can be seen from the stress path diagram shown

in Fig. 5.21(b) the predicted mode of failure is that of compression in the
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transverse direction (i.e. compressive matrix failure). By adopting the
maximum stress failure criterion (which accounts for the actual compressive
strength) the predicted mode of failure shifts to that of fibre failure (Fig.
5.21(c)). This is in fact the type of failure exhibited by the test specimen
as reported in the paper by Petit and Waddoups (1969).

Figure 5.22 presents results for the case of a quasi-isotropic
[0°/i45°/90°]s* laminate of B/Ep. All the results, including the present
predictions, show a relatively insignificant amount of nonlinearity. At o, =
60 ksi the 90° layer fails in transverse tension. The +45° layers remain
intact until the 0° layer fails in the fibre mode thereby causing the
ultimate failure of the laminate. A very similar result is presented in Fig.
5.23 for the quasi-isotropic laminafe formed from the [0°/i60°]s layup. As
seen‘ in the figure, the experimental results and analytical predictions are
in  excellent agreement. According to the analytical results, ultimate
laminate failure was due to failure occurring almost simultaneously in the 0°
ply in the fibre directioﬁ and in the +60° plies in the transverse direction.
It is worth noting that for the two quasi-isotropic laminates discussed above
the results of the brittle post-failure model showed no perceptible
differénce when compared to the ductile model and heﬁce were omitted from the
figures,

Figures 5.24 and 5.25 display the stress-strain curves for a [0°3/i45°]s
(i.e. [0°/O°/O°/t45°]s) laminate tested at 0° and 65° to the 0° ply, respec-

tively. For the 0° test (Fig. 5.24) the numerical and experimental curves

*Since we are only concerned with in-plane loadings and also ignore the
effects of interlaminar stresses a change of ply stacking sequence is
assumed not to cause a change in the laminate response. This applies to all
the laminates considered here.
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i

are very close exhibiting good agreement. 1In thié case the laminate ultimate
failure Qas caused by fibre failure in the 0° plies while no failures
occurred in the #*45° plies. For the laminate tested at 65° (Fig. 5.25) the
present predictions agree reasonably well with the results of Hashin's
theory. However, the discrepancy between the observed and predicted failure
stress is quite substantial. The cause of this premature failure is not
known but may be attributed to interlaminar effects (which have not been
included in the present analysis). It should be pointed out that the results
shown are for the ductile post-failure model in which case the ultimate
failure (marked by fibre failure in the 20° ply) is preceded by tensile
matrix failures in the %65° and -70° plies. When the brittle post-failure
model was employed the failure occurred simultaneously in all plies causing
the collapse of the laminate at a load level of 30 ksi.

It is of interest to note that for laminates showing extreme nonlinear-
ity due to shear (such as [i45°]s and [i60°]s) the response curves are
sensitive to the choice of the bilinear fit used to approximate the shear
stress-strain curve., For the other laminate configurations, particularly the
ones having fibres in several directions (including the loading direction) no
significant change in results occurs when the bilinear shear stress-strain
curve is altered. Given the extent of experimental error and the relative
insensitivity of the results to the precise form of the basic stress-strain
curves of Ithe individual plies, insisting on precise curve fitting is
unwarranted. Instead, a good qualitative agreement with the data should be
sought as a means of testing the validity of the model. The results obtained
so far serve to indicate that the present model\captures the most important
trends of laminated FRM behaviour under monotonic tensile loading. It should

be remarked in passing that although the external loads in the above examples
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grow proportionally, this does not necessarily imply that the internal stress
components in a typical layer also grow proportionally (see Figs. 5.19(b,c)
and 5.21(b,c)). This raises doubts concerning the validity of the deforma-
tion theory offered by Hashin et al. (1974), which necessarily requires
proportionality of the stress path.

Figures 5.26 through 5.28 display the stress-strain curves for the case
of a polyester resin matrix reinforced by various bidirectional woven glass
fibres. The three basic experimental stress-strain curves (extracted from
MIL-HDBK-17 (1959)) and their bilinear representations are illustrated in
Figs. 5.26(a), 5.27(a) and 5.28(a). The resulting material constants used as

input data are tabulated in Table 5.4,

Table 5.4 Input Material Properties for a Single Layef of B/D Glass
Fabric/Polyester Resin

Parameter 181 Glass Fabric 162 Glass Fabric 143 Glass Fabric
(ksi) (ksi) (ksi)
Elastic
E, 2740 © 2820 5770
E, 2520 1740 1600
vy, 0 0 0
G 630 570 720
Plastic
ET 2100 600 5770
ET‘ 2000 730 430
GT’ 190 260 155
X, 34 32 90
Y, 25 24 32
S, 5 4 4.8
Failure
Xu 49.2 45 90
Yu 45.3 29.4 11
Su 13.4 11.6 12
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The ﬁniaxial tensile stress-strain responses at 45° to the fibres are
shown in Figs. 5.26(b), 5.27(b) and 5.28(b). These are the output of the
program COMPLY wherein the Puppo—Evenéen yield and failure criteria were
used. Since here we are dealing with a single layer of material the initial
and ultimate failure coincide. From the figures it can be observed that the
experimental curves fall below the predicted curveslwith the ultimate strain
levels reached being under-predicted. 1In spite of suéh discrepancies in the
results the predicted ultimate stress values are in reasonably good agreement
_with the experimental values. Notice that the experimental curve in Fig.
5.26(b) does not extend to the failure level and is terminated at strain
level of 2%. . It is regretable that experimental data for laminates consist-
ing of various oriented layers of B/D FRM are not available in the literature
for comparison. Thié is one area which could certainly benefit from further

experimental work.

5.3.2 Biaxial Loading

To further verify the'capability of the elastic-plastic-failure model, a
few test cases were investigaﬁed in which the external loadings were biaxial.
In particuiar we consider the effects of pure internal pressure, and combined
torsion/internal pressure loading on the response of [O°/i60°]s laminated
tube of U/D Graphite/Epoxy (Gr/Ep) material. The corresponding experimental
(and theoretical) work was carried out by Tennyson et al. (1980). As in the
preceding examples the three bagic stress—-strain curves were approximated by
bilinear fits resulting in the single ply properties listed in Table 5.5.
Note that the lorigitudinal and transverse stress-strain curves were taken to
be linearly elastic right up to failure. Also the nonlinear shear éffects

appear to be negligible for this material.
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Table 5.5 Input Material Properties for a Single Layer of U/D Gr/Ep

Elastic (ksi) Plastic (ksi) Failure (ksi)
E1 = 20500 ET = 20500 Xu = 185.6
1
E, = 1400 ET = 1400 Yu = 7.5
R 2
v,, = 0.26 (unitless) GT = 380 Su = 11.8
G = 600 X, = 185.6
Y, =7.5
s, =6.8

A graphical plot of the pressure-strain curve is shown in Fig. 5.29 for
the case of internal pressﬁre only. It is worth mentioning that the thick-
ness and the radius of the test tube were 1 in and 0.0343 in, respectively.
Both Hill's and maximum stress failure criterion were employed in the
analysis., According to the predicted results the initial failure occurred in
the +60° plies (from tension in the transverse direction) at pressure levels
of about 1.8 ksi and 1.9 ksi for Hill's and the ‘maximum stress criteria
respectively. It is apparent from Fig. 5.29 that Tennyson's cubic strength
criterion offers a better estimate of the ultimate stress value than either
of the two criteria used in the present analysis.t However, the shape of the
predicted response curve agrees more closely with the experimental data than
Tennyson's results. In view of»the presence of higher order terms (and hence
more basic strength data), it is not surprising that Tennyson's failure
criterion provides a more accurate estimate of the maximum load. The
question of whetﬂer or not the additional complexity (and cost) of evaluating
the extra strength parameters is warranted depends on the appliéation.

The effect of a constant pre-torque (19.8 ksi) and internal pressure

loading on the response is illustrated in Fig. 5.30, This provides a test
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case in which the external loading grows in a nonproportional manner. As can
be seen from Fig. 5.30 the results of the present analysis are in reasonable
agreement with the experimental data. Based on the present anélytical
predictions tensile matrix failure occurred first in the -60° ply at a
pressure level of 1.1 ksi, according to both the maximum stress and Hill's
failure criterion. Subsequent failure occurred in the +60° ply, at a
pressure level of 2.02 ksi if the Hill's failure criterion was used, and at
-2.6 ksi if the maximum stress criterion was used. The ultimate failure of
the laminate occurred shortly afterwards when the 0° ply failed in the fibre
direction. |

The second example of nonproportional load path is that in which a
constant internal pressure (1.1 ksi) was applied while the tube was torsion-
ally loaded to failure. The results are illustrated on a graph of applied
torque versus shear strain Txy in Fig. 5.31., It appears that all the numer-
ical models are overly stiff in comparison with the ekperimental results. It
can also be noted that the ultimate failure stress predicted by the Hill's
and the cubic criteria are fairly close and agree better with the experi-

mental data than the predictions of the maximum stress failure criterion.

5.3.3 Cyclic Loading

While the previous examples provide verification of the model -under
monotonic loading, they do not illustrate the effects of cyclic loading on
laminate behaviour. To demonstrate such effects we consider the uniaxial
cyclic response of some Boron/Aluminum (B/Al) laminates. The experimental
data for comparison with the present results have been extracted from the
report by Sova and Poe (1978). To evaluate the input material constants the

longitudinal and transverse tensile stress-strain responses of the unidirec-
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tional laminate [O°5]* were approximated by bilinear curves. Since no

experimental data were available for the shear response, the latter was
derived from the uniaxial tensile stress strain curve of [i45°]s laminate
This technique is in keeping with the procedure outlined by Rosen (1972) for
determination of shear modulus. Accordingly the shear stress and the shear

strain in the ply coordinates are given by

O¢ = ox/2

(5.3)

where oL is the tensile stress applied to the [t45°]s laminate in the x
direction (i.e. 0° direction), and ex,ey are the corresponding strain compon-
ents. By choosiﬁg a suitabie bilinear representation of the tensile stress-
strain curve for [i45°]s laminate one can determine from Eq. (5.3) the
necessary parameters of the shear .stress-strain curve for a single ply.
These are listed in Table 5.6 along with the parameters obtained from

~longitudinal and transverse stress-strain curves.

Table 5.6 Input Material Properties for a Single Layer of U/D B/Al

Elastic (GPa) Plastic (GPa) Failure (GPa)
E, = 209.7 E = 202.7 X =1.7
T1 u
E, =107 : ET = 24,3 Yu = 0.12
. 2
v,, = 0.2 (unitless) GT = 1.5 Su = 0,11
G = 32 X, =1.2
Y, = 0.09
S, = 0.045

*It is assumed that the stress-strain response of a single layer of the
unidirectional laminate is the same as the response of the total test
laminate.
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Figure 5.32 presents the uniaxial responsé prediction of a [0°/t45°]s
B/Al laminate subjected to three 1load cycles. As may be seen the model
captures the relevant features of the response associated with such cyclic
loading. Thus, for instance, the residual strains are correctly predicted
and the hysteresis loops predicted by the model closely follow the observed
pattern. The origin of the unloading hysteretic loops in Fig. 5.32 may be
traced back to the #45° plies which yield in compression upon unloading of
the laminate from higher strains. Calculations were also performed for a
pure monotonic loading case and essentially the same failure point (shown in
Fig. 5.32) was reached. This shows that the load cycles did not affect the
ultimate stress and strain level of the laminate, thus supporting the

experimental findings of Sova and Poe (1978).

5.3.4 Conclusions

The foregoing numerical simuiations of various coupon tests, each repre-
senting a typical state of stress, illustrate how the proposed model
adequately predicts the basic material response characteristics of laminated
FRMS wunder a variety of in-plane loading conditions. Some cases were
reported in which experimental results did not compare very well with the
present predictions. These experimental data are, however, quite limited and
may be insufficient for drawing conclusions in this regard. A very attrac—'
tive feature of the model is the fact that it can represent nonlinear
behaviour with only a few input material property values being required. For
complex loading situations such as nonproportional loading and especially
cyclic loadings the present incremental model is superior to the deformation

theory model of Hashin et al. (1974).
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5.4 Perforated Orthotropic Plates Subjected to Remote Uniform Tension

All the analyses presented in the previous section were applicable to
large sheets of laminate, containing no imperfections and thus provide veri-
fication of the model in simulating various unnotched coupon tests. To
further challenge the model the present section is devoted to the analysis of
laminates with a central hole under remote tensile loading. This example
exhibits many important effects not tested in the previous applications such
as multidimensional stress state, stress gradients and stress concentrations,

In the following section, analyses of various orthotropic sheets with a
circular hole are conducted for three distinct loading regimes. These appear
under the'subﬁeadings of elastic, elastic-plastic and elastic-plastic-failure

analyses.,

5.4,1 Elastic Analysis

An elastic analysis of the sheet with-a circular hole is conducted for
two orthotropic materials, namely U/D layers of B/Al and B/Ep FRMs. The
former demonstrates mild orthotropy (in the elastic range), while the latter
exhibits rather strong orthotropy. Two types of analyses are conducted for
each material, one with the fibre direction being oriented along the x-axis
(i.e. normal to the load direction), and the other with it along the y-axis
(i.e. parallel to the load direction). The theoretical solutions used here
for comparison are valid if the size of the opening is small in comparison to
the external dimensions (width and length) of the plate. The opening can be
considered small if the ratio of the plate width to the diameter of the hole
is equal to or greater than 4 (Greszczuk, 1972). To facilitate comparison
with theoretical solutions the latter ratio is selected for the plates

analyzed in this section.
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A quadrant of the plate is modelled by finite elements, as shown in Fig.

5.33, with 64 isoparametric elements and a total of 229 nodal points.

For

future reference, we designate the Gauss integration point closest to the

hole and the x-axis as point "A" and the point at the left corner of the

upper edge of the modelled region as point "B". Since linear elastic results

are of interest here, let the material constants be listed as follows:

B/Al B/Ep
E, 29.4 x 10" ksi | 30.0 x 10° ksi
E, 19.1 x 10° ksi | 3.0 x 10° ksi
v, 0.169 0.336
G 7.5 x 10° ksi 1.0 x 10" ksi

According to . the 1linear elastic theory

(Greszczuk, 1972)

the

circumferential stress, Og» at the edge of the hole is given by the following

expression

(1+Z)A+L,)Q +, +, + 2cos26)

o

8

o
-]

where

lpytpydtrr -1

C {pytpy it A

{p1_pz}1,2 -1

T (1 + L2 + 20,c0s28)(1 + L2 + 2[,cos26)

 lpympydrr

(5.4)

(5.5)
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where for the case in which the loading direction (y) coincides with the

fibre direction (x,)

|
<

12

P, -_ﬁ_
(5.6)

{ 2 Ez}llz
p1 E1

P

For the case of a plate. loaded transverse to the fibre direction the
subscripts 1 and 2 in Eq. (5.6) must be interchanged.

The present finite element solutions utilizing 2 x 2 and 3 x 3 Gauss
quadratures are compared with the above theoretical predictions in Figs., 5.34
and 5.35, where the circumferential stress distributions at Gauss points
close to the hole's edge, oe/om, are plotted against angular location 6. The
finite element results are in good agreement with the theory in most loca-
tions. ©Note that the stresses are calculated at the Gauss stations which do
not coincide with the hole boundary. It can be seen that the stress
concentration factor for B/Ai is similar to the isotropic materials (i.e. =
3) which is what one would expect since this material is only weakly ortho-
tropic. For the B/Ep material a significant stress ‘concentration in the
vicinity of the hole can be observedﬂ This is particularly pronounced when

the stiff fibres are oriented along the load direction.

5.4.2 Elastic-Plastic Analysis
(90°] Layer

An experimental study of the elastoplastic response of a U/D B/Al metal
matrix composite strip with a circular hole was conducted by Rizzi and

reported in the paper by Rizzi et al. (1987). This particular experiment
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involved loading a B/Al specimen as shown in Fig. 5.36 with the fibres
oriented at 90° to the load. Multiple strain guages were mounted on the
front and rear faces of the specimen.

The finite element mesh used to analyze the test specimen is the same as
that shown in Fig. 5.33 except that the dimensions were scaled to those of
Fig. 5.36. The elastic material properties used here are those determined by

Kenaga et al. (1987), as

E, =29.4x10 ksi (203 GPa)
E, =19.1x 10 ksi (132 GPa)
v,, = 0.169

G =7.49x10 ksi (52 GPa)

The material properties governing the plasticity of the specimen can be
obtained from best-fit bilinear representations of stress-strain curves. A
sensitivity analysis revealed that the key material constants affecting the
plastic flow characteristics were the yield stress and the tangent modulus
transverse'to the fibres (x, or y direction), i.e. Y, and ETZ. Furthermore
the shear properties and the properties in the fibre direction were found to
have very little influence on the elastic-plastic results. To this end since
the shear stress-strain curve for this material was not explicitly given in

the available literature, the values S, and GT were taken from Table 5.6,

i.e.,

wn
|

= 6.5 ksi (0.045 GPa)

Q
[

220 ksi (1.5 GPa)
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Along the fibre direction the material behaviour was taken to be purely

elastic up to failure (Kenaga et al., 1987). Accordingly,

ol
]

3
n

204 ksi (1.41 GPa)

3
. 29.4 x 10 ksi (203 GPa)

1
It
t1
It

Figure 5.37 shows the experimentally determined stress-strain curve
tfansverse to the fibres (Kenaga et al., 1987). Since this curve is highly
nonlinear and the parameter Y, and ETz necessary for modelling it can
directly affect the results one must first look at the strain range of
interest. By examining the experimental results of Rizzi et al. (1987) it
was observed that the highest strain (ey or €, measured at the gauge point
closest to the hole) level reached was of the order of 0.2%. Therefore in
order to simulate the same test results the bilinear representation shown in
Fig. 5.37 was selected for the relevant portion of the stress-strain curve.

This gave rise to the following values for Y, and E (which incidently are

T,

very similar to the corresponding values given in Table 5.6)

<
]

o 13.0 ksi (0.09 GPa)

4.0 x 10° ksi (27.6 GPa)

o]
H

With the material properties established above the problem was solved for the
same load levels reported in Rizzi et al.'s (1987) work using a 2x2 Gauss
integration procedure. The distributions of the ey strain components along
the x-axis of the specimen are shown in Fig. 5.38 for all the load steps
considered. Incipience of plastic deformation was found to occur at a remote

stress o of approximately 4 ksi. It can be seen that the test-theory
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agreement more than adequately confirms the predictive capability of the

COMPLY program for an orthotropic material.

The spreading of the plastic zones and contours of nondimensional effec-
tive stress S/ko are depicted in Figs. 5.39 and 5.40 for a representative
number of loads. The evolution of plasticity during the successive steps of
loading shows an initial spreading across the net section. At the maximum
remote stress og_ = 10.7 ksi, the plastic zone appears to have progressed
“almost completely across the specimen, forming a certain angle to the net
section (i.e. x-axis). The extent of the plastic front seems to be greater
away from the net section causing an elastic region to still remain close to
the straight boundary of the specimen. Therefore, it is reasonable to assume
that little or no permanent strain will be found at the outer strain gauge
locations. To substantiate such findings, a direct study of the plastic
strains are in order. This can be achieved by unloading* the specimen from
appropriate load levels. The longitudinal residual strain distributions
following unloading from three elastic-plastic remote stresses (o_ =6, 7.7
and 10.7 ksi) are plotted along with the experimental results in Fig. 5.4l.
The agreement between the present numerical solution (solid lines) and the
experimental results appears fair. The lack of any substantial residual
strains at tﬁe outer gauge locations is in keeping with the plastic =zone
visualization of Fig. 5.39. Overall,:the results are indicative of the fact
that the proposed material model does a good job of predicting the magnitude

and distribution of permanent deformation.

*Numerically, the unloading is performed by taking a small negative loading
step, which allows the elements to become elastic. The small unloading
increment also provides an opportunity for re-assembly of the stiffness
matrix. The remainder of the load is then removed in the next increment by
taking one large unloading step.
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For the sake of completeness the residual stress distributions along the
net section are illustrated in Fig. 5.42. It is clear from the results that
the longitudinal stress component, oy, demonstrates a significant compressive
(negative) residual value in the vicinity of the hole while the other
residual stresses (ox, Txy) are negligible. Such large compressive stresses
can be accounted for by noting that the material in the proximity of the net
section is permanently deformed, and upon load reversal the surrounding
elastic material tends to clamp it down and produce compressive stresses.
The curves of oy residual stress distribution show relative maxima that tend

to move away from the hole with the increase of prior loading.

[0°/90°]s Laminate

Tﬁe purpose of this study is to utilize the previously developed
computational tools for investigation of the elastic-plastic behaviour of a
[0°/90°]s layup of B/Al plate containing a circular hole. The single layer
material properties, geometry of the specimen and the finite element mesh are
taken to be the same as that of the preceding example. . The plate was
subjected to uniaxial in-plane tension. The development of plastic zones in
the individual layers are shown in Figs. 5.43 and 5.44 for the 90° and 0°
plies respectively. It can be observed that as the loading continues the
plastic zone in the 90° layer spreads rapidly across the specimen and almost
completely covers it at about 25 ksi., The characteristic shape and growth of
the plastic zones in the 0° layer (see Fig. 5.44) is somewhat different in
that it extends upward in the loading direction and remains constrained to
the immediate vicinity of the hole. This behaviour is understandable, since
the major stress component, oy, is parallel to the fibres and is not as

likely to cause yielding. It is found that at a stress level of 44 ksi the
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first failure of the fibres in the 0° layer (at Gauss point A in Fig. 5.33)
occurs, i.e. the fibres Attain their ultimate tensile strength of 204 ksi. .
Figures 5.45 and 5.46 present contours of the normalized effective stress,
a/ko, for the 90° and 0° plies at various load levels. These contours
provide the necessary quantitative information regarding the extent of yield-
ing in each layer. For example, contours of value_a/ko = 1 show the outline
of the elastic-plastic boundary and contours bearing values of S/ko > 1
represent the work-hardened regions.

Bahei-El1-Din and Dvorak (1980) have also analyzed a similar problem for
a FP/Al metal matrix composite. The development of plastic zones for this
analysis is illustrated in Fig. 5.47. Though a direct quantitative compari-
son cannot be offered due to the different material properties, geometry and
loading, the character of the results are the same. It is worth recalling
(cf. Chapter 2, Section 2.3.2) that Bahei-El-Din and Dvorak's (1980) material
model was based on mini-mechanical concepts as opposed to the simpler
macro-mechancial approach adopted in this study. The other macro- mechanical
analysis performed by Leewood (1985) (see also Leewood et al., 1987) utilizes
a material model developed by Kenaga et al. (1987) which was based on a trial
and error approach to determine the anisotropic parameters Ai., that best
fitted the data. The present material model, however, is free from such
empiricism and can be applied to a wide variety of materials provided the
three key stress-strain curves are available.

Figure 5.48 shows the oy stress distribution along the x-axis (or rather
at Gauss points closest to this axis) for different remote load levels. It
can be noted that the elastic analysis underestimates the stress concentra-
tion factor for the 0° layer, and overestimates it for the 90° layer. Figure

5.49 shows the longitudinal stress cy in the 0° layer at the Gauss point A
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(see Fig. 5.33) as a function of the applied load O, The influence of
plastic deformation on the stress concentration factor and the nonlinearity
of the curve due to plasticity are particularly obvious from the figure. It
can be inferred that plasticity in composite laminates cannot be expected to
reduce the level of stress concentration at the free edge. This finding may
contradict one's usual expectation of the reduction of stress concentration
due to localized yielding such as that prevalent in monolithic metals. The
foregoing results support the findings of Bahei-El-Din and Dvorak (1980).
Figure 5.50 shows the overall load (stress) versus deflection (VB)
curve, where vy refers to the deflection at point B (see Fig. 5.33) in the
direction of loading. Also shown in the figure is the residual displacement
obtained by unloading the laminate from a load level of 20 ksi. Unloading
initially occurred elastically, but before complete unloading to zero overall
tension the 90° layer reyielded (in compression) at the six Gauss points
closest to the hole perimeter. This accounts for the slight kink in the
unloading part of the response curve, a phenomenon which is commonly observed
in experiments on laminated metal;matrix composite plates. The residual o
stress distributions (along the x-axis) due to unloading from o_ = 20 ksi are
illustrated in Fig. 5.51. Nofice the significant compressive component of
the residual stress in the 90° layer. This behaviour is expected since the

90° layer experiences a substantial amount of permanent deformation.

5.4,3 Elastic-Plastic-Failure Analysis
While the previous section treated the elastoplastic behaviour of ortho-
tropic plates with a hole, the attention here is focussed on the extension of

the finite element analysis to include failure. Of principal concern in the
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following analyses is the prediction of the ultimate failure loads and the
progression of damage (i.e. fibre and matrix crackings) prior to the collapse
of the laminated structures. Here again the dimensions of the plate and its
finite element discretization are those of Fig. 5.33. Although numerical
attempts at progressive failure analyses of laminated plates with geometric
discontinuities have been made before (Chang and Chang, 1987; Sandhu et al.,
1983; Lee, 1982), no experimental verificatidns of damage patterns were
offered. Also, due to the different geometries and lack of sufficient
knowledge of material properties (in the full nonlinear range) a direct
comparison with these numerical results cannot be made. To this end, present
numerical predictions of the failure patterns and collapse loads are made
without the benefit of comparison with other sources. The analyses presented
here are meant to simulate load-controlled test situafions. In light of the
different material models for the posf%failure regime (brittle and ductile
behaviour) the present study is aimed at providing bounds to the actual
behaviour of test specimens.

The laminates considered in the following analyses are assumed to be
made up of U/D layers of B/Ep with the material properties listed in Table
5.3. The analyses are coﬁducted for [90°], [O0°], [O°/90°]s, {t45°]s and

[O°/i45°/90°]s layups.

[90°] Layer

As the first example, let us consider a single layer with the strong
direction perpendicular to the load. The predicted damage progression
process at the Gauss points is illustrated in Fig. 5.52 for the ductile

post-failure model. It is seen from the figure that matrix failure is
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confined to the areas near the stress concentrations. An attempt to increase
the applied stress beyond 7 ksi resulted in a singular structural stiffness
matrix. This indicates that the entire structure formed a collapse mechanism
at this load level. For the brittle failure model the finite elementvprogram
ﬁredicts that the specimen fails catastrophically at a load level of 6 ksi.‘

In other words the first Gauss points to fail precipitate final failure.

[0°] Layer

In this case, a single layer is considered in which the load is in the
fibre direction. The spreading of failure zones for the ductile model is
shown in Fig. 5.53 where it can be seen that the first appearance of fibre
failure happens at the rim of the hole and on the longitudinal axis of the
" specimen. Similar to the 90° layer no significant damage is predicted prior
to final failure at 70 ksi. Once again a brittle type of failure model leads

to a sudden collapse of the structure at incipience of failure.

[0°/90°]s Laminate

Various combinations of post-failure models were considered here for
fibre and matrix failure. For the case of brittle fibre failure the gradual,
as opposed to sudden, stress release scheme was adopted. Accordingly, the
fibre stresses were relaxed over a number of load increments., To facilitate
a convergent solution very small load steps had to be used after the first
occurrence of fibre failure. During each load step the failed fibre stresses
were arbitrarily reduced by 25%. Figure 5.54 shows the corresponding stress
path, yield surfaces and the failure surface in the o,/X; - o,/Y, plane at
Gauss point A (see Fig. 5.33) for the 0° layer. It is worth recording that

the numerical stability of brittle type failure solution processes is gener-
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ally poor since on initiation of failure part or all of the existing stresses

must be eliminated by redistribution.

The load-deflection curve evaluated at point B of the specimen (see Fig.
5.33) is shown in Fig, 5.55 for different material models in the post-failure
regime, The corresponding developments of damage zones in the individual
layers are depicted in Figs. 5.56 to 5.58, for representative load levels up
to the ultimate failure. As can be seeﬁ from Figs. 5.56 and 5.57 for the
ductile fibre failure models, matrix cracking in the 90° layer tends to pro-
pagate both towards the load and.across the specimen width. lFibre fracture
pattern, however, appears to be discontinuous in nature and remﬁins confined
to a narrow band near the hole. For the brittle fibre failure model the
damage pattern is markedly different as shown in Fig. 5.58. In this case,
damage propagates horizontally leading to the ultimate failure of the speci-
men by tearing across the net section, It is important to note that here the
elements near the first fracture location are further loaded due to stress
redistribution., In order to clarify the failure mechanism, the changes in
stress distribution for small variations of load level between the initial
and ultimate failure loads are shown in Fig. 5.59. Note that the peak stress

changes its location as the failure propagates.

[i45°]s Laminate

The finite elementvresults indicate that the predominant mode of failure
in this case is shearing of the matrix. The predicted load-deflection curve
is shown in Fig. 5.60 for both ductile and brittle matrix failure. It can be
seen that the response is extremely nonlinear owing to the nonlinear shear
stress-strain behaviour in each ply (see Fig. 5.16). 1Initial failure was

found to occur at 19.4 ksi. In the brittle failure case the shear stress was
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reduced by 50% at every load step following the first failure. A total of 14
load increments (each of magnitude 0.1 ksi) were applied between the initial
and final failure load. The predicted patterns of damage in each layer are
presented in Figs. 5.6l and 5.62 for ductile and brittle models, respec-
tively. It is clear from these figures that the fracture of the elements
starts from the hole and propagates diagonally across the specimen forming a
band at 45° to the x-axis., Ultimate failure is seen to be preceded by some

scattered fibre fracture in the layers.

[0°/i45°/90°]s Laminate

The predicted load-deflection curve for this case is shown in Fig. 5.63
for various combinations of brittle and ductile post-failure models assigned
to the fibre and matrix. When fibre failure is assumed to be ductile, the
ultimate stress level reached appears to be almost independent of the choice
of matrix post-failure model. However, when the brittle matrix model is
invoked (corresponding to a sudden release of transverse and shear stresses),
the specimen exhibits a more nonlinear response. Since the fibres in the 0°
layer carry the major portion of the load, a brittle type fibre failure leads
to progressive failure of the laminate soon after the first fibre failure
occurrs. As a result, the collapse of the laminate is attained without
noticeable increase in load-carrying capacity above that of the initial fibre
fracture load. This accounts for the plateau in the load-deflection curve
(Fig. 5.63) which can be traced using very small load steps until the
tangential stiffness matrix becomes singular.

The spread of damage zones in individual layers is illustrated in Figs.
5.64 to 5.66 for representative load levels., It is clear from these figures

that for the ductile fibre model the specimen fails gradually with consider-
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able damage occurring prior to ultimate failure. Damage in each layer is
seen to propagate across the specimen at a rapid rate (Figs. 5.64 and 5.65).
For the brittle fibre model the characteristic localized damage around the
hole appears to prevail. The brittle fibre-brittle matrix model exhibited a

catastrophic failure after initial matrix cracking in the 90° layer. This

corresponds to the lower bound on collapse load shown in Fig. 5.63.

5.4.4 Conclusions

The orthotropic elastic capability of the present code, COMPLY, demon-
strates good agreement with the theoretical solutions. Close agreements with
the experimental results of Rizzi et al. (1987) for a U/D B/Al composite
provide further evidence of the adequacy of the proposed orthotropic elastic-
plastic formulation and demonstrates the encouraging performance of the
present finite element program in this regard. The elastoplastic analyses
reveal the strong dependence of plastic flow on the orientation of the
principal axes of orthotropy. The present elastic-plastic-failure analyses
with various post-failure options should prove to be useful in providing
overall bounds on the response history of 1éminates. The finite element
analysis also forms a viable pfocedure for predicting the damage progression
prior to the ultimate failure of composite laminates with stress concentra-
tions, Such capabilities are particularly wuseful in parametric studies

leading to the design of laminates.,
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CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1 Summary

In almost all of the practical strength analyses of laminated composites
in the literature, the stresses used for failure criteria have been deter-
mined on the basis of elastic laminate analysis. Use of the elastic theory
would, in general, lead to overly stiff predictions, and may result in
conservative estimates of the failure loads., The heterogeneous nature of
- FRMs is such that a variety of possible damage modes exist. Thus, matrix
cracking or yielding, fibre fracture, debonding and other inelastic effects
can all occur in local regions at relatively low overall stress levels.
These nonlinear effects greatly complicate the problem of establishing
reliable analyses. In the present study, the problem of nonlinear material
behaviour of laminated FRMs was investigated. The primary objective was to
model the inelastic behaviour of such materials and to develop a computer
program which can be used as an engineering tool in the design and/or
analysis of fibre-reinforced composite structures.

In predicting the nonlinear stress-strain behaviour of FRMs, constitu-
tive equations are generally required to cover the entire stress history. To
this end, a continuum mechanics approach was utilized herein to develop a
relatively simple orthotropic elastic-plastic-failure constitutive model for
single layers of FRM undergoing isothermal infinitesimal deformation. The
constitutive equations so developed, were then combined using the classical
lamination theory, to arrive at the governing response relations for multi-
layer laminates., Unidirectional and bidirectional FRM layers were treated

within the same general framework with the exception that yielding (and
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failure) in these layers was assumed to be governed by different criteria,
namely, Hill's and Puppo-Evensen's yield (and failure) criteria, respec-—
tively. The proposed piasticity model adopted a 3-parameter quadratic yield
surface and the associated flow rule of the rate-independent theory of
plasticity. The subsequent loading surfaces were obtained by a non-uniform
expansion of the initial yield surface in the stress space,. This was
achieved by allowing the parameters identifying the initial yield function to
vary in a non- proportional manner during plastic flow. A 3-parameter
quadratic failﬁre surface similar in form to that of the initial yield
surface was defined to mark the upper limit of plastic flow. Once failure
was reached, it was identified as fibre or matrix mode of failure depending
on the relative magnitude of various stress ratio terms appearing in the
failure criterion. In the post-failure modelling, both brittle and ductile
type of behaviour were considered in the direction of the offending stress.
To completely quantify the proposed elastic-plastic-failure model three
pieces of experimental stress-strain curves were required, namely, the
uniaxial stress-strain curves along the two principal axes of orthotropy, and
the in-plane shear stress- strain curve. Once established, the stress-strain
curves were represented by bilinear approximations, thus clearly defining the
key parameters under the various loading programs. No provisions were made
for the difference between tensile and compressive responses.

Based on the proposed model, constitutive equations were properly
formulated. A nonlinear finite element code was subsequently developed to
incorporate the derived constitutive equations., The program named COMPLY,
was based on the conventional displacement method finite element procedure
using two dimensional 8-node isoparametric elements. The nonlinearities in

the equilibrium equations were handled by a mixed incremental and Newton-
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Raphson iterative procedure. Analysis restart and cyclic loading capabili-
ties were also included to expand the program's usefulness.

The performance of the program and the effectiveness of the model were
verified for a number of in-plane loading paths imposed on a wide variety of
laminated FRMs with and without geometric discontinuities. The results of
numerical simulations were compared with the experimental data available in

the literature.

6.2 Concluding Remarks

The favourable agreement between the present numerical predictions and
experimental results illustrate the accuracy and versatility of the proposed
elastic-plastic-failure model for laminated composites. The model is typical
of conventional continuum mechanics theories in that it captures the essence
of the material behaviour rather than its detail. In light of this, the
model must be applied carefully with the knowledge that the nonlinearities
may not actually be due to plastic yielding but to some combination of
plasticity, matrix or fibre cracking, fibre pull-out, etc. The relative ease
with which the proposed approach can handle nonlinear behaviour is a distinct
advantage over current analytical procedures. Indeed the method is suffici-
ently general that it may be applied to a variety of laminated structures
provided either analytical or experimental data are available to describe the
stress-strain curves for the constituent plies. As demonstrated in several
examples in this thesis, the present theory reasonably predicts the phenome-
nological behaviour of _composites under monotonic and cyclic loading,
including proportional and nonproportional stress. paths.

The studies conducted herein point.to the fact that the global laminate

response is a nonlinear superposition of individual layer material proper-



127

ties. This complex response provides justification for not analyzing the
laminate as a whole. In this regard, the present comprehensive constitutive
model applied to each layer of a laminate and the subsequent superposition of
layer responses via lamination theory appears to offer the most systematic
approach. Considering the fact that the'proposed material model lends itself
to a straightforward computational implementation it may be a viable option
for incorporation into general purpose finite element codes for studying the
detailed behaviour of anisotropic structures. In the meantime, the present
planar finite element program, COMPLY, can be a useful tool in parametric

studies of laminated FRMs as part of the design process.

6.3 Further Areas of Research

The topic presents many interesting areas for further detailed investi-
gations. The following briefly outlines a few of these areas of research
that are needed to improve or extend the existing theoretical procedure.

Let us observe that because of the simplicity in terms of the necessary
input information for implementation, it is possible that the model will not
satisfactorily describe in all details some complex loading history responses
which may be envisioned. For example, it is conceivable that in certain
cases a bilinear representation of the stress-strain curves will not be
sufficient to capture the nonlinearities involved. A greater flexiblity of
modelling can be achieved by extending the theory to incorporate multilinear
stress-strain curves. One basic feature lacking from the present formulation
is the description of strength and stiffness differential between tensile and
compressive responses. Such differences are of importance for certain types
of fibre composites, particularly the ones with carbon contents (e.g.

Graphite/Epoxies). An obvious extension of the model would be to include
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inaependent descriptions of tensile and comﬁressive behaviour both initially
and subsequently (i.e. Bauschinger effect). The next logical step is to
allow for the compressibility of the plastic flow, since plastic volume
changes can be important in some types of fibre-reinforced materials. Addi-
tional post-failure softening schemes and ply failure criteria should be
investigated. This should be combined with careful experimental observations
of the failure process.

One of the major causes of failure which is particularly operative in
notched laminates, is delamination. This type of failure is often precipita-
ted by high interlaminar stresses that exist within a boundary layer close to
the free edge region of the laminate (i.e. hole or notch boundary). These
stresses influence the stress concentration around the hole and may play an
important role in the yielding and/or failure of laminates. The present
finite element program should be extended to take delaminations into account.
This is wusually achieved by extending the program to three dimensions.
However, reliable three-dimensional failure theories are still required to
predict the onset and subsequent growth of delamination.

Another useful application of the model Qould be to study the nonlinear

behaviour of plates under bending.
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APPENDIX A

DETERMINATION OF THE ANISOTROPIC PARAMETERS OF THE YIELD FUNCTION

In order to define the complete yield surface of anisotropic materials,
it is required to know the parameters Aij’ a, and k that determine its shape,

origin and size, respectively. For the yield function
£ A K =0 - 1
= ij(oi ai)(oj aj) = (A.1)

a physical interpretation of the Aij’ a; and k may.be made in the following
manner.,

Let I',, T, and T, denote the tensile yield stresses in the principal
material directions x,, X,, and Xx,, respectively, Similarly, let the
absolute values of the compressive yield stresses along the same axes be
denoted by r;, T; and T;. Since a direqt evaluation of a, from uniaxial test

data is rather cumbersome, it is more convenient to express the yield

function as (cf. Shih and Lee, 1978)

f= Aij oioj - Lo, - x = 0 (A.2)

where by comparison with Eq. (A.1l), Li and y are

(A.3)

X = —-A, .a.a. + k2
ij7i73
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The experimental measurements can now be related to Aij and Ly through Eq.

(A.2), and a; determined from Eq. (A.3). For simple uniaxial tension (and

compression) tests in x, direction, say, we have o, = I', (and o, = —F;) so
that
' 2
AT, - LT, =x (tension)
(A.4)
' 2 [}
AT, + LT, =¥ (compression)

Solving the above equations simultaneously, we obtain

A = X
11 '
) rl rl
(A.5)
L, = x(lT - =)
rl rl

Similarly, through uniaxial tensile and compressive tests along the x, and x,

axes, we obtain

Ay, = __X_T H L, = X(lT - l_)
r, T, r, r,

(A.6)
A,, = __X_T ’ L, = X(lT - l—)
r, r, r, r,

By imposing pure shear in the 3 orthogonal planes, we can relate the Aij's to

the shear yield stresses, T I, and T as

4 5

,
r
.
o
.
o

(A.7)

66
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Note that by arbitrarily p;escribing one of the anisotropic parameters, the
remaining parameters can be scaled with respect to the prescribed value. If
for example A,, = 1 then it follows that x = FIF; and kz = Aijaiaj + X.

The remaining off-diagonal terms in the matrix [A] can be obtained from
any biaxial loading condition: tension-tension, compression-compression,

tension-compression., However, it is not evident that the values of A A

13° 23

and A,, determined by these different tests will be unique. One remedy to
these problems is to assume that the plastic volumetric strain is zero, i.e.
deg + deg + deg = 0. It is then possible to express the off-diagonal terms
of [A] (i.e. Aij for i # j) as functions of the leading diagonal terms, Aii’

in the following way

1
Ay, = - 2 (Aj, + Ay, — Ay5)
1
Ay =3 (A = Ay, + Ay,) (A.8a)
_ 1
Ay = - 2 (A + A, + Ayy)
Also,
L, +L, +L, =0 (A.8b)

As a consequence of Eq. (A.8a,b), the Aij and Li parameters ;re not all
independent and the knowledge of principal components Aii given by Egs. (A.5)
to (A.7) and any two of L,, L,, and L, is sufficient to completely describe
the state of plastic deformation. The assumptién of incompressibility of

‘plastic strains is implicit in Hill's (1950) formulation of anisotropic yield

criterion. It is interesting to note that the function f reduces to the von
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Mises yield criterion when the Aij and Li parameters assume the following

values

(A.9)

-
-
~

i
=g
-
w
]

w
»

w
1]
1

-

~

[\

In the absence of any constraints such as Eq. (A.8), one has to resort

A

13°

to biaxial tests in order to determine the interaction parameters A 23

and A,,. Many authors recommend the use of 45-degree off-axis specimen for

the determination of such parameters. This can be done by letting:
o, =0, =04 =U/2, o, =0, =0, =0 (A.10)

where U is the tensile strength of a 45-degree off-axis specimen. Note that
the combined stresses in Eq., (A.10) are applied to the symmetry axes of an
orthotropic material, This state of stress is equivalent to a uniaxial
tensile stress applied to a reference coordinate system rotated 45 degrees
from the material symmetry axes. By introducing Eq. (A.10) into Eq. (A.2),

we have

U3

4 + 2A

U
(Aj, + A 13 * Age) - 2 (Ly + L)) -x=0

212

so that A,, can be written in terms of the other known parameters as



142

+ A, + A,) (A.11)

>
]

SR
+

1
(L, + 1) - 2 (A, 22

(=] |3V

12

Similar tests can be performed in order to obtain A,, and A,,. In all these
cases, however, the conditions for closure of the yield surface (see Eq.
(3.49)) places a severe restriction on the allowable values of these so-
called interaction parameters. In view of these difficulties, Labossiere and

Neale (1987) offer alternative methods for determining the Aij parameters.
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APPENDIX B

VARIATION OF ANISOTROPIC PARAMETERS WITH STRAIN-HARDENING

It has been shown in Appendix A that thevanisotropic parameters of the
yield function can be determined from simple tests. However, for a complete
description of plastic flow behaviour of anisotropic materials, it is
necessary to know the variation of these parameters with plastic strain. To
be consistent with the discussion in Chapter 3 the parameter a, (which
accounts for both the initial strength differential and Bauschinger effect)
will henceforth be ignored and consideration will be given to the variations
of Aij and k only.

Hu (1956) assumed that the Aij parameters remained constant during
plastic deformatibn, while Jensen, Falby and Prince (1966) and later Whang
(1969) pointed out that for strain-hardening materials Aij should vary. ‘The
objective here is to determine the Aij parameters in such a way that all the
stress-strain diagrams in the principal material directions can be reproduced
correctly when mapped on to an arbitrary effective stress (o) - effective
plastic strain (e?) diagram. To accomplish this mapping we adopt the method
originally developed by Jensen et al (1966). The basic assumption underlying
the latter method is that for the same amount of plastic work (wP) produced
during plastic loading in any of the principal material directions the
effective yield stress (k) reached will be the same irrespective of the
direction of loading.

When the stress-strain diagrams can be represented in bilinear form as
shown in Fig. B.1l then the plastic work WP may‘be expressed in closed form as

(see Fig., B.2)
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W= fawP = L () - T,

ZEp ) 1 =1,2,...,6) (B.1)

03
i

where FOi and Fi are the initial and subsequent yield values and Epi is the
plastic modulus, all referred to the o€y stress-strain diagram. The
present formulation allows one of the o,-€; stress-strain diagrams to be
arbitrarily chosen as the effective stress-effective strain (o-€) diagram,
while the remaining stress-strain curves are then normalized with respect to
the prescribed curve.

Equating the plastic work given by Eq. (B.l) to the plastic work done by

the effective yield stress,

1 kz kz _ 1 3 2
o (k - k,) °E (1‘1 - rol)
Py
or
E
2 _ pi k2 k2 2 .
I, =i (k- k) + Tog (i =1,2,...,6) (B.2)

where H' is the hardening modulus defined by Eq. (3.23), and k, is the

initial effective yield stress, The plastic moduli E_ can be determined in
i

terms of the elastic and tangent moduli (Ei and ET , respectively) as

’ i

follows.

Accepting the basic assumption that
de, = de$ + deP (B.3)
i i i

then since for an increment of stress doi
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dol o doi D dci
dei = E;T 3 dei = E;_ H dei =5 (B.4)
i | P3
one obtains
1 1
Lo (B.5)
Py Ti i

' 2
Using Egs. (A.5) to (A.7) (noting that y = k and ri = ri) and (B.4),
the anisotropic parameters Aii’T at any state of plastic deformation

described by k, can be obtained as:

2
0 k,
A.. = — for 0 < k < k,
ii
°i
(B.6)
E
2
k.1 P; 2 2 2
Aii (k) = ;7 =k / i (k- k,) + r°i for k 2 k,
i

The variation of Aii with k is shown schematically in Fig. B.3. It is
noted that depending on the value of H' (i.e. depending on the choice of
normalizing direction) Aii may increase as k increases, and when k gets large
the Aii depend only on Epi and not r°i' Following the arguments that led to

the form of Eq. (A.ll), one can write

t Note that repeated indices do not imply summation here.
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k02 1 0 e
A“=2(E) -5 (L + A, ., Ag) for 0 < k < k,

(B.7)

Ay, 0 =2 -2 ea, WA, ®), forkzk,

in which

E
1 _ Pyse

2 2 2
T (k- ky) + T

Thus far the parameters Aij were allowed to vary with the amount of
strain-hardening, marked by the value of k. However, it is often convenient,
as well as computationally economical to keep these parameters constant at
their initial values, A;j' To facilitate the latter and yet satisfy the

requirement of equal plastic work given by Eq. (B.2) we must have

et
sk 0
or making use of Eq. (B.6)
B Ko ”
=— = () 1i=1, 2, ..., 6) (B.8)
E T,. |
p i

The above places constraints on the choice of bilinear fit used to
approximate the various o, Vs €, curves. Since Eq. (B.8) does not establish

unique values of the yield stresses r°i’ and plastic moduli Ep , We assume
i
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that one of the stress-strain curves is arbitrarily fitted with the best

bilinear representation. For the sake of argument let this be the Op VS €

curve, where k can take one of the values 1 to 6. Therefore, the quantities

Ek’ r°k and E are assumed to be known. To uniquely define the remaining
k

stress-strain curves it is only necessary to specify three pieces of
information for each curve. We have here assumed that all the elastic moduli

Ei(i =1, 2, ..., 6) and the location of the ultimate point (I‘u » €, } on the
i i

remaining individual O,Vs €, curves are defined. With the above information

we can establish the following expressions for the tangent moduli E

T.
i

E. = . (1 =1, 2, .., 6) (B.9)

Egs. (B.8) and (B.9) combined with (B.5) can be solved for the unknowns

I' . and E,, . The result is:
01 Ti

rol =1 rOk (i # k)
(B.10)
ET. - Si El
i
where
I S
r= o [-1 + V1 + 4 bi c.)
i
(B.11)
Ey
s, = 1/ TE + 1 (i # k)
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in which
Ep ru
. _k S | :
bl - T, €, B (i # k)
K i i
(B.12)
T
Uy .
c; = f:— (1 # k)
k

The constant Aij model described above has been applied to several laminated
FRM coupons and the results are documented in the internal report by Olson

and Anderson (1988). This model will not be pursued further in this thesis,
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APPENDIX C
DERIVATION OF THE EFFECTIVE PLASTIC STRAIN INCREMENT deP.

Here we drive an expression for the effective plastic strain increment
deP as a function of plastic strain increments deg.
For a body deforming plastically, the increment of plastic work per unit

volume is

awP = o, deg (1=1,2, ..., 6) (c.1)

Using the associated flow rule, Eq. (3.16), in conjunction with Egs. (3.17)

and (3.18) yields

de? = dn v 24,5 o, (c.2)

Substituting de? from Eq. (C.2) into Eq. (C.1)
p -2 2

dW® = 2dr o =2 dr k (C.3)

Pa

Defining the increment of effective plastic strain de® as

dwP = k qeP (C.4)
the quantity dx is found from Egs. (C.3) and (C.4) to be

_1gf
an = 5 &

No—

(C.5)
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Assuming that lAij' # 0, then the matrix of anisotropic parameters [A]

has an inverse [A*]; and Eq. (C.2) can be inverted to give

= A% P_l _ s Pk
cj Aij dei 2dn Aij dei - (C.6)

where the last step follows from Eq. (C.5).
Using the above stress-plastic strain increment relation we can rewrite

-2
o as

S = A, o0, 0, = (5" A, (A*. deP) (A%, deP) (c.7)
13 % % 7 o Aug Mg 9ad g 96 :

which after some tensor manipulation results in

(aeP) *= A%, deP deP (C.8)
15 %1 %5

In the plane stress case, the expression for»dEp can be written explicitly

as

1

(@eh)’ =
(A11A22-A1zz)

2 2
(A,, (deD)" + A, (deD)

(C.9)

1
A

66

-~ 24,, def aefy + (deb)

12
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It can be shown in the three dimensional case that the assumption of
zero plastic volumetric strain (i.e. deg + deg + deE = 0) implies a singular
[A] matrix (cf. Shih and Lee, 1978). Under these circumstances the above

procedure for obtaining deP fails, and resort must be made to a different

technique (cf. Hu, 1956).
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Fig. 3.1 — Idealized stress — strain curve showing different stages
of the proposed elastic—plastic—failure model
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Fig. 3.2 — Transverse matrix cracking in a single layer of U/D FRM
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Fig. 3.3 = Nomenclature for single layers of FRM :

a — Bidirectional
b -~ Unidirectional
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Fig 3.4 — Puppo — Evensen yield surfaces in the os = 0 plane for bi—directional
layers with X = Y and various values of the parameter A

AR
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+6

Fig. 3.5 — Orientation of layer coordinate axes with respect to laminate coordinates
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Fig. 4.1 — Quadratic isoparametric element
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Fig 4.3 — Incremental elastoplastic stress computation for an initially elastic point
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Fig. 5.1 — Finite element mesh for the analysis of an isotropic cylinder
under elastoplastic internal pressure

120.0 160.0 200.0

80.0

Applied pressure P — MPa

o Present analysis

.................................................................................................

40.0

0.0

0.0 0.1 0.2 0.3 0.4
Radial displacement — mm

Fig. 5.2 ~ Pressure P versus inner and outer wall displacements u, and u,
‘ for the problem of Fig. 5.1
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Fig. 5.3 — Progression of yielding for the problem of Fig. 5.1
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Fig. 5.5 — Numerical model and the stress path for the analysis of an isotropic
thin — walled tube subjected to combined tension and torsion
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Fig. 5.58 a — Predicted damage progression for the 90-deg layer of a [0/90]
B/Ep laminate — Brittle Fibre and Ductile Matrix
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Fig. 5.61 a — Predicted damage progression for the +45—deg layer of a [45/—45]
B/Ep lominate — Ductile Matrix
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Fig. 5.62 a — Predicted damage progression for the +45—deg layer of a [45/~45]
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Fig. 5.62 b ~ Predicted damage progression for the —45-deg layer of a [45/-45]
B/Ep laminate — Brittle Matrix
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Fig. 5.64 a — Predicted damage progression for the 90-deg layer of a [0/45/-45/90]
B/Ep laminate — Ductile Fibre Ductile Matrix
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Fig. 5.64 b — Predicted damage progression for the O—deg layer of a [0/45/-45/90]
B/Ep laminate — Ductile Fibre Ductile Matrix
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Fig. 5.64 ¢ — Predicted damage progression for the +45-deg layer of a [0/45/-45/90]

B/Ep laminate — Ductile Fibre Ductile Matrix
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Fig. 5.64 d - Predicted damage progression for the ~45-deg layer of a [0/45/-45/90)
B/Ep laminate — Ductile Fibre Ductile Motrix
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Fig. 5.65 a - Predicted damage progression for the 90-deg layer of a [0/45/-45/90]
B/Ep laminate — Ductile Fibre Brittle Matrix
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Fig. 5.65 b — Predicted damage progression for the O—deg layer of a [0/45/~45/90]
B/Ep laminate — Ductile Fibre Brittle Matrix
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Fig. 5.65 c — Predicted damage progression for the +45—deg layer of a [0/45/-45/90]
B/Ep laminate — Ductile Fibre Brittle Matrix
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Fig. 5.65 d — Predicted damage progression for the —45-deg layer of a [0/45/-45/90]
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Fig. 5.66 a — Predicted damage progression for the 90—deg layer .of a [0/45/~45/90)
B8/Ep laminate — Brittle Fibre Ductile Matrix
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Fig. 5.66 b — Predicted damage progression for the 0—deg layer of a [0/45/—45/90]
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Fig. 5.66 ¢ — Predicted damage progression for the +45—deg layer of a [0/45/-45/90]
B/Ep laminate — Brittle Fibre Ductile Matrix
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Fig. 5.66 d — Predicted damage progression for the —45-deg layer of @ [0/45/-45/90]
B/Ep laminate — Brittle Fibre Ductile Matrix
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Fig. B.1 — Actual stress — strain curve and its bilinear approximation

Y

Fig. B.2 — Bilinear stress — plastic strain curve
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Fig. B.3 — Variation of the principal anisotropic strength parameters
with the effective stress



