A CONTRIBUTION TO THE COMPUTER AIDED
DESIGN OF OPTIMIZED STRUCTURES
FOR THE STEEL INDUSTRY
BY
DAVID SIU-KAU LO

B.A.Sc., The University of British Columbia, 1986

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF APPLIED SCIENCE

in

THE . FACULTY OF GRADUATE STUDIES

Department of Civil Engineering

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
March 1988
(© David Siu-Kau Lo, 1988



In presenting - this thesis in partial fulfilment of the requirements for an advanced
degree .at the University of British Columbia, | agree that the Library shall make it
freely available for reference and study. | further agree that permission for extensive
copying of this thesis for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is understood that copying or
pdblication. of this thesis for financial gain shall not be allowed without my written

permission.

Department of _civil Engineering

The University of British Columbia
1956 Main Mall

Vancouver, Canada

V6T 1Y3

Date February 24, 1988

DE-6(3/81)



Abstract

A practical method of incorporating realistic flexible connections including
the effect of connection sizes and shear deflection in plane frame analysis is
presented. The general algorithm can be easily implemented in a standard
plane frame analysis program and once implemented it can be an ideal tool for
production work in the steel industry. In this approach connection
stiffness is programmed directly into the analysis by utilizing the connection
moment-rotation equations developed by Frye and Morris but it may also be
entered separately as data. Nonlinear connection analysis is carried out by
the procedure outlined by Frye and Morris. Practical application of this
method of analysis is demonstrated by modifying a standard plane frame
analysis program to include the effect of fléxible connections. The validity
of the modified program, CPlane, was verified against the findings of Moncarz

and Gerstle.

Using CPlane, a simple plane frame structure was analyzed under various
lateral load intensities for different connection assumptions. It was found
that the inclusion of connection behavior significantly altered the internal

force distribution and design of the structure.
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1 Introduction

In the conventional analysis éf framed steel structures, member end-
connections are 1idealized as finite points and are assumed to behave as
perfectly hinged or perfectly rigid (Figure 1). In general these idealiza-
tions are contrary to actual connection configuration and connection behaviour
but are adopted because of the simplicity in analysis and design. Typically
connections, are about five percent the length of a member and they all possess
certain amount of flexibility in rotation (Figure 2). Although connections
may appear to be small in size and contribute little to the overall weight of
a structure, their behaviour can significantly alter the internal force
distribution and hence affecting the overall design of a structure. The
common assumption of perfectly rigid conneccions neglecting connection
flexibility and connection sizes may lead to underestimation of the sway of
bare frames and overestimation of the forces at the connections resulting in
overly heavy columns and connections. Further, connections have a relatively
high labour content and they can represent a substantial portion of the

overall cost of a structure.

Idealized
Connection

Real -
Connection

Idealized
Connection

90 deg.

NN AN SN

Figure 1 An Idealized Structure
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///’Connecﬁon

¢ = slip Angle

an|

Figure 2 A Real Connection

The topic of connection behaviour has been researched as early as 1917 [1].
More recent research include studies performed by Douty in 1964 [2], Popov
and Pinkney in 1969 [3], Frye and Morris in 1975 [4], and Stelmack, Marley and
Gerstle in 1986 [5].. Test result [5] indicates that connection response is

nonlinear in hature, but can be approximated as linearly elastic within the

working range of the frames. Many analytical methods of modeling connections
have been proposed over the years. One commonly accepted method is the use
of -a member with rigid ends (Figure 3). This method correctly accounts for

connection sizes, but it neglects the rotational flexibility of connections.
Gere and Weaver [6], Morforton and Wu [7], and Livesley [8] have each
presented methods of modeling linear elastic connections. However their
methods all neglect the effect of connection sizes and shear deflection. More
elaborate methods of modeling mnonlinear connection response have been
presented by Romstad and Subramania [9], and Moncarz and Gerstle [10].
Unfortunately their methods also neglect the effect of connection sizes and
shear deflection. 1In .addition practical implementation of their methods
involve extensive and expensive programming work. A practical method of
incorporating connection behaviour in plane frame analysis for office use is

much in need.



Rigid E.IL A  Rigid
Ly [

‘2
L = (,1+L+(,2

Figure 3 A Member with Rigid Ends

The object of this work is twofold. The first is to present a practical
method of modifying an existing linear elastic pléne frame analysis program to
perform refined flexible frame analysis for office use. The second objective
is to demonstrate the usefulness of such a method of analysis by applying it
to a typical unbraced steel frame and comparing its response with the response
from commonly accepted methods of analysis. It is hoped that this will serve

to encourage the use of this type of analysis in practice in the future.



2 Refined Member-Connection Model

Conventional structural analysis assumes that connections have negligible
dimensions and behave as perfectly rigid or perfectly hinged. But real
connections have finite dimensions and possess some degree of flexibility
whether they are rigid or hinged, and their behaviour is rather complex. To
be perfectly precise one should really distinguish between joint flexibility
and connection flexibility. Joint flexibility refers to the ability of the
joint to deform in shear or in bending (Figure 4) while conmnection flexibility

refers to the slip in rotation between a joint and the member end (Figure 5).

\ \ SHEAR
\ l DEFORMATION

—

M
X BENDING
( > DEFORMATION

— My
>

b BENDING

DEFORMATION

Figure 4 Joint Flexibility

Flexible

/ Connection

'Sbj = Joint Rotation

¢ = Slip Angle

Figure 5 Connection Flexibility



A properly detailed joint should not undergo significant deformation in shear
or in bending; in practice joints which are weak in shear are strengthened
with the addition stiffeners (Figure 6). Therefore the effect of joint

flexibility is usually small and it will not be considered herein.

vy M
Stiffener KA
Vl . \i s Mr
R 1)
Ml Vr
L

Figure 6 Joint Stiffener

However, connections may possess significant flexibility in = .rotation
(1,2,3,4,5] and its effect should be considered. The degree of rotational
flexibility exhibited by a connection depends very much on the type of
connection in question; a bolted or lightly welded connection is likely to be
more flexible than a fully welded connection [4]. It is desirable to have a
computer model capable of accounting for the effect of connection sizes as

well as connection flexibility.

Many investigators [1,2,3,4,5] have studied the behaviour .of flexible
connections. The most comprehensive formulation of flexible connection
behaviour is perhaps the one presented by Frye and Morris [4]. They tested a
wide wvariety of connections under different monotonic loading conditions.
Their result indicates that the response of flexible connection is nonlinear

in nature. However, Moncarz and Gerstle [10] observed that flexible



connections may be satisfactorily modeled by assuming linear elastic

connection response. They compared analytically nonlinear connection

response with linear connection response (Figure 7) and their conclusion :

"The assumption of linear response of flexible connections seems
reasonable and appears to give a good prediction of the bare frame

response"” .1

They further remarked that the sequence of load application only played a

minor influence in the sways of the multistory frames which they investigated.

Wi @ﬂﬂ YYIYY 7@9

g - p 12'-0"
Wa @"V”””V@
12'-0
), vz
’ |
24'-0"

Column Desig"n Moment vs. Lateral Load

90
¢ Rigid Connections

80
- Nonlinear Connections

70 = Linear Elastic Connections

M (kip-ft)

20 T T — T T T T T
0 0.01 0.02 0.03 0.04

w (kip/ft*2)

Figure 7 Nonlinear versus Linear Connection Response

1 Moncarz, P.D. and Gerstle K.H., [Ref 10] p.1440.



The findings of Moncarz and Gerstle [10] are 1later confirmed by the
experimental result of Stelmack, Marley and Gerstle [5]. Stelmack, Marley
and Gerstle performed a total of 10 tests of 2 frame configurations (Figure 8)

and here are some of their observations

"1. The connection response remained essentially linear elastic within
the working range of the frames. Accordingly linear elastic frame
analysis is adequate for predicting frame response to service loads,

2. No evidence of incremental deflections or other instabilities was
observed under a significant number of cycles at high loads".?

In light of the analytical and experimental evidence presented, it appears
reasonable to assume linear elastic connection response for linear elastic

structural analysis.

Wi

v, ¥
vy

W

777

3'-0" 3'-0° 3'-0"
(a) One-Bay, Two-Story Frame

T +sz R —_I

3'-0" 3-0" 3-0° 3'-0" 3'-0" 3'-0"
(b) Two-Bay, Single-Story Frame

<l

Figure 8 Test Frames of Moncarz, Marley and Gerstle

Several different approaches may be adopted to model 1linear elastic
connections. The simplest and most obvious one is to treat each connection as
four elements joined together rigidly at one point like a cross (Figure 9).
Connection behaviour may be modeled by specifying appropriate value of length,

EL® and EA* for each element. This method can be applied to any standard

2 Stelmack, T.W., Marley, M.J., and Gerstle, K.H., [Ref.5] p.1586.
3 EI, represents the bending stiffness of the connection.
4 EA represents the axial stiffness of the connection.



structural analysis program. Unfortunately it also introduces 12 extra
degrees of freedom and 4 extra elements at each connection. This greatly
reduces the size of structure which can be analyzed on a computer and renders

it impractical.

4
(e
¥

Figure 9 A Four-Element Connection Model

An alternative approach is to introduce a special connection element [11l] at
each connection (Figure 10). Connection behaviour may be modeled by
assigning appropriate value of 1length, height and EI,> to each special
element. This method introduces only 1 extra degree of freedom and 1 extra
element at each connection, but it is still inconvenient for practical use
because one has to specify explicitly how the member elements are connected
with the connection elements. If one wishes to alter the structural

configuration the connection sequence would have to be specified again.

A
. / )
/ )
] \
y
A

~.
il

-
-

‘-
-,
..
-

Figure 10 A Special Connection Element Model

5 EI, represents the bending stiffness of the connection.



A better approach is to incorporate the connection elements directly into the
member element (Figure il). This can be achieved by combining two connection
elements together with a member element and then removing the six interior
degrees of freedom by means of static condensation. This method is fine
except for the fact that its implementation involves substantial modification
to a standard structural analysis program which can be both expensive and time

consuming.

AN S

/

Figure 11 A Member-Connection Model by Static Condensation

It seems best to take a direct approach in modeling connection response.
Figure 12 depicts the proposed refined member-connection model; it consists of
a member element and two rigid end pieces connected together by two rotational
springs. The rigid end pieces model the effect of connection.sizes and the
two rotational springs model the slip between the connections and the member
ends (Figure 6). This approach is deemed direct because each element of the
model represents a specific aspect of connection behaviour. There are
several advantages to this model. First of all it does not introduce any
additional degrees of freedom to the system. Secondly, connection elements
are directly incorporated into the member elements and the tedious task of
joining member elements to conmection elements is avoided. Lastly this model
can be easily implemented in a standard plane frame analysis program as will

be shown in later sections.

-

Figure 12 The Refined Member-Connection Model




3 General Procedure for Assembling Refined Member Stiffness Matrix

The first step is to derive a local member stiffness matrix, (k) which
includes the effect of connection flexibility and shear deflection. The
effect of connection sizes will be added on later. One should note that the
axial and bending component of a member stiffness matrix are uncoupled;and
they could be separated into a local axial stiffness matrix (k,} and a local

bending stiffness matrix (k).

(ky={k,)+{k,) | [3-1]

Connection flexibility and shear deflection only affect the local bending
stiffness matrix {ky}, thus only (ky} needs to be derived. The adopted sign
convention is illustrated in Figure 13; The d’s and f's denote the local

degrees of freedom and member end-forces associated with the member.

d2 d5

d g T ?; dy
dg dg
fo fg '

fi E T ?; fg
f3 f6

| \Y V M

S )
+’ve rotation +'ve V & M

Figure 13 The Adopted Sign Convention
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As explained earlier in Section 2 connection flexibility may be modeled.by
means of two rotational springs, one at each end of the member. Connection

behaviour is governed by the rotational stiffness of the springs, K; and K,

such that:
¢1=._£%. [3-2a]
fs ' [3-2b]
¢2=“;<—2
where
.0, = member-end rotations,
farfs = member-end forces,
K,,K, = spring stiffness constants.

If the connections are perfectly rigid (Figure 14a), the slope of member cross
section at either end of the member p.,. ¥., must equal to: the corresponding

joint rotation, v,,., v,,.

a
\\&\‘\\N“‘ 9(f \ =
0
a a=dygx
> X

Figure l4a The Relationship between Joint and Member End
Rotations for Rigid Connections

11



If the connections are flexible (Figure 14b) and the slip in rotation between
connections and member ends are denoted as ¢,. ¢,, the relationship between p,’'s

and p,'s now become:

Py =¥, * 0 [3-3a]

Vi, =¥ p* 82 | [3-3b]

i

x

a O =dy/gx

Figure 14b The Relationship between Joint and Member End
Rotations for Flexible Connections

The method of modeling shear deflection will now be explained. Consider a

beam (Figure 15a) with a series of lines a-a painted on its surface at right

angle to the neutral axis. These pained lines represent the cross sections
along the bean. The same beam is shown in its deformed position after a
ﬁniformly distributed 1load 1is applied to it (Figure 15b). Under the

engineering beam theory the lines a-a must remain at right angle to the
neutral axis such that their rotation denoted as o« is dy/dx, In other words,
the slope of member cross sections with respect to the vertical axis, p, must

equal to the slope of the neutral axis of the member, a.

12



)
h 20

- X

Figure 15a A Simply Supported Beam

Figure 15b A Simply Supported Beam under a Uniformly Distributed
< Load :

However shear stresses in the beam will cause the lines to rotate to the
dotted positions a’-a’ (Figure 16) and the cross sections will no longer be at
right angle to the neutral axis. The rotation of the cross sections from a-a

to a'-a’' is defined as the shear strain, v.

Vv
y=- [3-4]
(4. G)
where '
v = shear force at member cross section,
= shear area,
G = shear modulus.

13



n 7))
=Y+
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a'a
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5\\\?\
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E A =dy,qx
a a’
. .
X .

Figure 16 The Effect of Shear Strain on Beam Deflection

This would mean that:

Yp=a-y [(3-5]
where

Un = glope of member cross section,

a = rotation of neutral axis, dy/dx,

y = shear strain.
Combining the result of [3-3] and [3-5]:

a,=y; o, +vy, [3-6a]

[3-6b]

Ay, =P, +d,* 7Y,

The combined effect of connection flexibility and shear deflection will be
included in the derivation if the the boundary conditions as prescribed by

[3-6a,b] are enforced at both ends of the member.

14



Having derived (k,}, the next step is to introduce the rigid end pieces to
model connection sizes. This is done by means of transformation.
Figure 17a depicts a typical refined member in its deformed position. The
relationship between the displacements of the flexibly connected member
denoted as d’'s and that of the refined member denoted as D’'s is summarized in

the same figure.

dy =D dqg =Dy
dy=Da+Ds+(, d5 = Ds—De+(2
dz3=D3 dg = De

Figure 17a A Typical Refined Member in Its Deformed Position

Arranging these relationships in matrix notation:

{dy={T.}- (D} [3-7]

where
{d} = displacement vector of flexibly connected member
{T.) = displacement transformation matrix

{D} = displacement vector of refined flexibly connected member

15



The matrices of [3-7] are summarized in Figure 17b.

D, 1 0 0 O O 0 d,
D, o 1 ¢, 0 O 0 d,

D, 0 0 1 0 O 0 d
= T )= = 3
Oy={ p, Tl 60010 o {dr=1 4,
D O 0 0 0 1 -, de
D, O' 0O 0 0 O 1 d,

Figure 17b Coordinate Transformation
Similarly, Figure 18a depicts the relationships between the forces of the

flexibly connected member denoted as

denoted as F's.

f's and that of the refined

member

F5 F4
fs \%Fé
fs /(‘2
f4 4>(f4
fs
\
fs
fa
o
f1 )
y FQ\ }{f:‘)
Fa}(/(zl\ fa
F
X
Fl=1f, Fqg =14
Fp=1fy Fg =fg
F3="f3+fa:( Fo =fg— f5:ly

Figure 18a Transfer of Forces

16



Arranging these relationships in matrix notation:

(Fy=(T,} (/) [3-8]
where
{f} = force vector of flexibly connected member
{T,} = force transformation matrix
{F} = force vector of refined flexibly connected member

The matrices of [3-8] are summarized in Figure 18b.

F, 1 0 0 00 0 0 fi
F, 0O 1 O O 0 0 I
F, o ¢{(, 1 0 O 0 f
= T,)= - - 3
=1 F, Tl 60 01 o o] 9= f.
- 06000 4 1 A
Fg 2 fe
Figure 18b Transfer of Forces
Noting that:
AT
(Tb={T/)
one could define:
(Ty=(T.}={T,})" | -9
From theory of elasticity:
{fy=Ak} -{d} (3-10]
Substituting [3-6] and [3-8] into [3-9]:
(Fy={k}-{T} (D) [3-11a]

Pre-multiplying both sides of [3-1la] by (T}T and substituting [3-8]:

17



{FYy=AT) {k} {T) {D) | [3-11b)

Define:
(Ky=AT)" {k}-{(T) [3-12]
where
(K} = the refined stiffness matrix in local coordinates.

Finally, the refined stiffness matrix in global coordinates may be obtained by

applying the standard transformation procedure:

(Ky={T,}" (Ry(T,)

T : 3-
°F (T, ATY (kY AT {T,) [3-13]
where
c s O 0 0O O 1 0 0 O O 0
- -s c O 0 0 0 o1 I, 0 O 0
{T}=OOIOOO T_001oo.o
d O 0 0 ¢ s O {}_00010-0
6 0 0 =-s ¢ O 0O 0 0 0 1 -1
c 60 0 01 00 0 0 0 1
Note :
1,, 1, = length of connection (rigid end pieces),
1 = length of member,
L = total span = I, + 1 + 1,,
Ax = change in x form joint 1 to joint 2,
Ay = change in y from joint 1 to joint 2,
c = cos(dx/L),

s = sin(4y/L).

18



3.1 Assembling the Refined Fix-Fix Member Stiffness Matrix
3.1.1 The Local Bending Stiffness Matrix of Flexibly Connected Fix-Fix Members

The derivation of (k,,;} as outlined in Section 3 may be carried out by any
classical methods. The method of conjugate beam is used here out of personal
preference. The adopted sign convention is illustrated in Figure 19. The
relationship between the boundary conditions of a real beam and the
corresponding support conditions of the conjugate beam is summarized in Figure

20.

Moment Diagram of Real Beam
M,

7 /////

/////,,.

Conjugate Beam Loading

M
El

L

Figure 19 The Adopted Sign Convention of Conjugate Beam
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Real Beam Conjugate Beam

6, 6

Figure 20 Boundary Condition of Real Beam versus Support Condition
of Conjugate Beam

The first and fourth column of {ky;;) are =zero vectors because axial

displacements do not affect (k;}.

The second column of {(k;,;} is obtained by setting d, equal to 1 (Figure 21).
This is a 2° indeterminate system. If the two fixed-end moments, f; and £
are chosen to be the redundant, the conjugate beam will be loaded as shown in

Figure 22.

f,

B 1,
dy=1 H>f6

Figure 21 Deriving the Second GColumn of (k;;,)

20



El

Figure 22 Conjugate Beam Load : Fix-Fix Member, d,=1

Because the shears at the ends of the conjugate beam are equal to the net

angle changes at the ends of the actual beam, one could write from [3-6]: .
Ry=a,=9, +y,+¢, [3-14a]
Ry=0,=9,,*+Y,* ¢, | [3-14b]

Also, the moment m; of the conjugate beam equals to the deflection d, of the

real beam. Therefore,
m,=1 : [3-14c]

Substituting [3-2] and [3-4] into [3-14],

V
AU'G Kl
Note : The -'ve sign is due to the conjugate beam's definition of counter

clockwise rotation as positive rotation (See Figure 13).

|4 i
R. = o — 222 3-15b
2 ('/),2 AU"G K2 ) [ ]
But,
ds=v,;,=0,
de=9;,=0

21



Therefore [3-15] becomes,

R -—Y , Is [3-16a]
AD'G ,Kl
R,=-—Y __ 1e [3-16b]
Ay G K,
From equilibrium of conjugate beam:
-l -l
R,= - [ . [ . m, [3-17a]
3-E1 6-Fl l
el farl m,
R, = - - 3-17b
> 3-EI 6 Ef l [ ]
where
m,=1 from [3-1l4c]
Combining [3-16a] and [3-17a] and collecting terms,
! l ) ferl 4 1
farl o— + = - + -
K 3-FI 6-Fl A, G 1
Multiplying both sides by:
3 FEl
{
and defining dimensionless constants:
12+ E1
= [3-18]
I Ay G- 12
CE] -1
V1=(l+ 3_‘?_) {3-19]
Kl'l
Resulting in:
&=&_ V.-g-l . 3:-FE] [3-20]

v, 2 4 12
Similarly, combining [3-16b] and [3-17b] and collecting terms,

1 o fal 4 1
_f6. U = - + - —
‘ K, 3-E1 6-Ef A, G 1

22



Multiplying both sides by: .

3 El
l

and defining dimensionless constants:

12-E]
A, G- 1?

-1
(1_3_5_!_) : (3-21]

Kg'l
Resulting in:

fo_fs_V-g-l  3-EI

[3-22]
vy 2 4 12
From equilibrium of real beam:
V= fs';fé [3-23]

Substituting [3-23] into [3-20],[3-22] and collecting terms,

4'V| 3 E1 f5
= . —. - 3-24
(G (R en) o
4.v, 3-EI f[3
= . + 2, - 3-25
(G (FERe) o

Substituting [3-25] into [3-24],

f _ 4"1/1 ( 3'E] +
P\ 4+v,-g 12

4-v, 3-EI fs ., _ C(2-9)
[( 4+vyr g ) ( L2 a2 g)ﬂ 4

23



Collecting terms,

( (4+v, g)-(4+v, g)-v, v, (2-g)? )_
fa. =
4-v, - (4+v, g)

3-E] 4-(4+v,)+8-v,-4 v, g
12 ' 4-(4+v,-g)

or,

VitV vt v, )_ 6 El ( Vl-(2+v5) )

4-v, v, 12 4-v, v,

fs'(1'+9'

Defining dimensionless constants:

VI+V2+V1'V2

c, = [3-26]
4-V1'V2 .
2+v
Co=v, ———>2— [3-27]
4_V1'V2
Therefore,
6-EI 1
=—— | —— [3-28]
f3 l2 2 ( 1+g.cl )

Similarly, suBstituting [3-24] into [3-25] and collecting terms:

poof Eva ) (BEL
¢ 4+v,-g 12

4-v, (S8-El fs - (2-g9)
[( 4+v2-g)( RS g)ﬂ x )

or,

4_V['V2 4'_]/['1/2

V +V,+V, "V 6-FJ 2+v
f6~(1-+g' 1 2 1 2 )= ‘(VQ' ( l) )
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Defining dimensionless constants:

Cl=
4—V1'V2
) vy (2+v,) '  [3-29]
4
4‘_V1'V2
Therefore,
6-FlI 1 .
f6=~—2_»—-'c4’(_——)
l i+g-C, [3-30]
Substituting [3-28], [3-30] into [3-23}],
12-FE1
S R ——
13 l+g-C, [3-31]

Introducing another dimensionless constant to [3-28], [3-30] and [3-31],

1
(R S— [3-32]
l+g'C|

f;, fg and V now become:

6-FI

f3= IE "Cp 5y [3-33]
6-FE]

fo=—7—Ca S, [3-34]
12-F1

V=%——-C,-S, , [3-35]
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In summary the second column of {k,;} is:

=
{kbll}Q: l

where
V1+V2+V1'V2
C =
! 4_V1'V2
C,=
4'_V1'V2
V2-(2+v‘)
C4=
4_V1'V2
1
Sy
l+g'C1

The fifth column of (kq4)

is obtained by setting d5 equal to 1 (Figure 23),

and it can be derived in a similar fashion as before.

_fz --——////_.-—4@-f )¢

ds=1

Figure 23 Deriving the Fifth Column of (ky,;}
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But noting that Figure 23 is a mirror reflection of Figure 21, the column

vector can be written directly as:

—_
{kbll}i5= l 0

The third column of (k,,;} is obtained by setting d; equal tq 1 (Figure 24).
Once again this is a 2° indeterminate system. If the two fixed-end moments,
f; and f; are chosen to be the redundant, the conjugate beam will be loaded

as shown in Figure 25.

dy=1

§M1>“

f3 f2

Figure 24 Deriving the Third Column of (k;,,}

N—— I
| e,

f3

El

Figure 25 Conjugate Beam Load : Fix-Fix member, d,;=1
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Because the shears at the ends of the conjugate beam are equal to the net

angle changes at the ends of the actual beam, one could write:
Ri=a,=9; +y,+¢, [3-36a]

Ry=a,=9,,+y,+¢, [3-36b]

Substituting [3-2] and [3-4] into [3-36],

4 IE
Riy=={¥,, - - [3-37a]
AU'G Kl i
Note : The -’'ve sign is due to the conjugate. beam’'s definition of counter

clockwise rotation as positive rotation (See Figure 13).

|14 [s
R,=|lp, ——— =2 3-37b)
2 (’/’,2 A, G Kz) [
But,
d6=Wj2=O‘

Therefore [3-37] becomes,

V
R,=—1+———+f—3
A, G K, [3-38a]
" .
A, G Ko [3-38b]

From equilibrium of conjugate beam:

R. = fal fe!

= +
3-EI  6-EI [3-39a]
-l -l

- tol I

3-F] 6-FI [3-39b]

Combining [2-38a] and ['2-39a] and collecting terms,

1 { Je-l |4
fa'| —+ = = +1
X, 3 EI 6-E1 A, C
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Multiplying both sides by:

3-E/
l

and defining dimensionless constants as in [3-18], [3-19]:

12-E]
Ay G- 17

( 3-El )"
v, =| 1+ ———
K]'l

Resulting in:

‘g=

fa_ fe

V) 2

+ [3-40]

Veg-l 3-EI
4 !

Similarly, cémbining [3-38b] and [3-39b] and collecting terms,

1 l fa' L |4
_f6. _—— | = - +
K, 3-EI 6-EI A, G

Multiplying both sides by:

3 E]
{

and defining dimensionless constants as in {3-18], [3-21]:

12 E1
Ay G- 12

( 3-E] )"
vy=| 1+
K2'l

Resulting in:

[3-41]
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From equilibrium of real beam:

fa*fs [3-42]

V =-———7—

l

Substituting [2-42] into [2-40],[2-41] and collecting terms,

4-v, 3-FE] Fg
= . +— — 3-43
Is (4+v1~g)( IR g)) 13043
fom-—te s a-g) [3-44]
4*"2'9)

Substituting [3-44] into [3-43],

(4 v N (B-El . vafa o (2-9)
fa—( 4+v, g ) ( l 4+v, g (279 4 )

Collecting terms,

[y (4+V1'Q)'(4+V2'g)_"1'Vz'(2’g)2 _ 3 El
° 4-v,-(4+v, g) l

or,

)-(1+v2-g/4)

Vi *Va+tV v, Y\ 4 E] 3:v,
l 4‘_]/1'1/2

fa'(1+g‘

4_V1'V2

Defining dimensionless constants:

V TV +V |V,

C,= [3-45]
4‘_1/1 M V2
3-v
C3=———‘—— [3-46]
4‘_V1' V2
Therefore,

4. F] l+v.,rqg/4
f3=~—-cs-( 2 9 ) [3-47]
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Similarly, substituting [2-43] into [2-44] and collecting terms:

Vi+V,+Vv 'v, \ 3-FE] vV, vy 2:-(l-g/2)
4'_1/['1/2

fs'(l'+g'

l 4“']’['1’2

Defining dimensionless constants:

Vitvatv, v,

C, =
4‘_V1'V2
v,V
C5:=_____J___1_
4'—V1'V2 [3'&8]
Therefore,
2-F7 1-g/2
fe=———Cq- _—g_) [3-49]
l 1+g'C]

Substituting [2-28), [2-30] into [2-23],

6 El 1 :
V=————~-C2-(———— (3-50]
12 . 1+g-C,

Introducing dimensionless constants to [3-47], [3-49] and [3-50],

6. = l+v,-g/4 ,

? 1+g-C, [3-51]
Go= l1-g/2

 l+g-C, ' [3-52]

f;, f5; and V now become:

4-EI
f =_..—_.C .S
3 ! 3 2 | [3-53]
2-El
-2 = .csS
f6 l S 3 [3_54]
6-EI
Ve—="C, 5,
! [3-55]
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In summary the third column of {(k;,}

{kbll}i;;: l

where

V1+V2+V1'V2

4’_V1'V2

v‘-(2+-v2)

4-v, v,

3-v,

4_V1'V2

VQ'(2+Vl)

4-v, v,

3v, v,

4‘_V\'V2

is:
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The sixth column of (k);) is obtained by setting dg equal to 1 , and it can be

derived in a similar fashion as before. The result is shown below:

0
6-E/ '
12 Cur 5,
2 F1
I Cs- 53
{kbll}i6 O
6-E]
- g C4~\9,
4. E]
Where
Cl— 3'V2
6 4‘_V1'V2
s l+v,-g/4
4 l+g-C,
In summary:
0 0 0
12 E1 6 FI
0 3 C,'S, > C,'S,
{kb“}u_ L L
6 FE] 4-FJ
0 2 Cy 5 ] Cy;-5,
0 0 0
12-E1 6 L1
0 I — C,'S, — C,' S,
{k,,“}”== ! !
6-E1 2-E1
O - l2 'C4 Sl l CS 33

33



o —=“2~.¢,-s,
(kb ), = 1°
6-LE1
0 =3 Cy S,
where
C_V1+V2+V1'V2
! 4_V1'V2
C_V"(2+V2)
2 4_V1'V2
C 3'V1
3 4-v, v,
C_Vz'(2+vl)
C 3'V"V2
S 4‘_V1'V2
c 3:v,
6 4‘_V1 V2

- 12-FEI
A, G 1P
1
S, =
l+g'C]
l+v,-g/4
5, = 2° g
1+g'C1
1-g/72
S5y=—Y
1+g'Cl
l1+v, - g/4
S,= 1" g
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3.1.2 Introducing the Effect of Connection Sizes

The effect of connection sizes is introduced by means of transformation as

outlined in [3-12]:

{R11}={T}T'{kll}'{T}

Where -
{kqy} = the local member stiffness matrix including the effect of
: flexible connections and shear deflections,
(T} = the transformation matrix defined by [3-9],
{7{‘“} = the refined stiffness matrix in local coordinates.

The local member stiffness matrix (k,;} comprises of (k,} and (k).

the standard pin-pin member matrix and (k;;;) has just been presented in the

previous section. The full {k;,} matrix is shown in Figure 26.
AE
— 0 0]
l
12 E1 6-FEl
(ki) = 0 — €S, 7 C2 5,
6-EI 4-FE1
0 E Cyt 5 ; C;-5,
A
) 0 0
l
12-E1 6 EI
6-El 2- K7
0 - 2 C,t S, ; Cs' 5,
T
{kn},, {kll}ji
A
AE 0 0
L ,
12-F1I 6-E1
{kll}”_ 0 E 105 E Car 5y
6-Fl 4-FE1
0 - 2 cC4t S, ; Ce" S,

Figure 26 The {k;y} matrix
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The local refined member stiffness matrix {7“} is illustrated in Figure 27.

AE 0 0
l
12-FE1] 12-E1-1,
O l3 Cl'sl 13 1'31
6-E1
12 Cy 5
(Kui)y=
12-E1- 1, o 4-EI
0 I3 109 [ C3-5,
6 EI 12-FEI-1,
+ 7 C,' S, e N
12 FE1 9
E 1 C,- 5,
_AE 0 0
l
12-E1 ‘ 12-FEI-1,
0 - IE G5,y E Gy 5
6:E]
+ l2 .C4.Sl
AK L), =
i
12-F1-1 2-FI
Y - 3 ‘ L9 I Cs- 53
6 Fl 6-FEI-1,
- g C," 5, + 2 Cyu 5,
6-FEI-1, -
+ 2 “Cyt 5,
12'51'11 12
13 C)'Sl

{T(ll.>ij={?]l};‘

Figure 27 The Local Refined Member Stiffness Matrix of Fix-Fix Members
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AE 0
[4
12-FE1
JO_ B
o 12-F1I
0 - B
6-E1
Sy

Figure 27(cont'd) The Local

Members
where
VitV vy
c, = 1 , 2 | 2
. 4‘_y1"V2
. V“(2+V2)
C2=
4'_1/‘1"1/2' )
) 3;'V1
Ca_
4=V, v,
vy (2+v,)
Co= 2
4‘_V1'V2
v, v
Co= 1 2
4‘_V1 V2
3v
Cy= 2
: 4-v, v,
1,, 1, = length of connection
I = length of member
L = total Spaﬁ_= I, +1+1,

Refined Member Stiffness Matrix

37

.
12-E71- 1,

B IE 190
6-EI

- = C, S,

4-E]
z Ce* S,
12-EI-1, :

+ 12 4"9)
12 EI .

l2 Gy

( ' 3-51)“
yo= e 2]
' Kl"l )

. 3-E1 ™
2, N K2" l .

12-F1

A, G 12

1
1+,g'C1

1+v,-g/4
l+g'C|

1-g/2
1+g'C|‘

1+V1'g/4
].+g'C1 .

.32'
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3.1.3 Transforming to Glocal Coordinates

Finally, the global refined member stiffness matrix {K,;} is obtained by means

of rotational transformation as outlined by [3-13]:

AE . AE 12-E1+1
T.C | T.C.S Com= 5 1"‘C1'51'3
12-EI 12 El 6-EI
1‘3 C," S, s? B Cy*Sycrs - 2 C,'S,*s
AE AE 12-EI-1
7o T G €S e
{Kn}-;
S 12-EI 12-EI 6 EI
E C,*S;-c+s e C,"§,:c? B C,' S, ¢
12-El-1 12-FI-1 4-El
- 3 L.C,-S,-s = L.c,-$, ¢ ;. CarSe
6+EI 6-EI 12-FI-1,
ST C,"S,'s + 2 +C, 5, ¢ 2 C," S,
12-E1
3 l 2'C1 S

Figure 28 The (K,;) matrix
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{Kn}i,-={]<11}

Ji

%_Cz _AE _2-El1-4, e
l [3
12-E1 12 EI 6-EI
IE C,*S,s? € Cy*S;'c's = 7 CarSis
AE | _AE o 12-FI-1,
;e 1 ° E C,"$,-c
12-EI 12-E] 6 FEI
B C,"S,'¢c's B C,*S,-c? + 3 C, S,
12-EI-1 12-E1-1 2-El
I . C,+S,'s - 5 L.c,-S,-¢c ——Cs" 5y
6-EI 6-E1l 6-El1
2 (OPRIVIRE - 2 C,5,-¢ + 2 ! Cyt 5,
6-El-1
2 z Cy- 5,
12 E11,- 1
lal 2 ’Cl'sl

Figure 28(cont’d)
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where

Figure 28(cont’d)

V1+V2+VI'V2

4‘_V1'V2

v, (2+v,)

4_V1'V2

3-v,

4-v, v,

vy (2+v,)

4_V1'V2

3-v, Vv,

4‘_V1'V2

3:v,
4‘_V1'

40

AE 12-EI-1,
T C*'S ls l.sl S
12 El 6-El
e ﬂcl-sfc-§ 2 C,"S,'s
AE 12-E1-1 :
T~32 - i Z.C,:8,¢
12-EI 6-EI
B C,+ S, ¢ - B C,"S, ¢
12-E1+1 4-El
- e 2.¢,-$, ] Ce* Sy
6-EIl 12-E1- 1,
- I C,"S5,'¢ IE C, 5,
12-El L 2C, s,

The (K,;)} matrix

3-E1]
K]'l

(- 22)

3-FE1 )\
vo=| 1+
KQ'l
_ 12-E1
Ay G- 12
s 1
l+g'C1
l1+v,-g/4
S, = 2 g
1+g'C1
1-g/2
5= 17972
I+g'CI
l1+v,-g/4
S,= 1 g
l+g'Cl



file:///2-El

Note :

1,, 1, = length of connection (rigid end pieces),
1 = length.of member,

L = total span = I, + 1 + 1,,

Ax = change in x form joint 1 to joint 2,

Ay = change in y from joint i to joint 2,

c = cos(dx/L),

s = sin(dy/L).
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3.1.4 Verifying the Refined Fix-Fix Member Stiffness Matrix
3.1.4.1 Morforton and Wu’s Derivation

Morforton and Wu [7] also used the conjugate beam method to derive the ldcal
stiffness matrix for flexibly connected members but neglecting the effect of
connection sizes and shear deflection (Figure 29). The stiffness matrix
{K,;;} presented in the previous section should reduce to that of Morforton and
Wu if the effect of connection sizes and shear deflection are eliminated.

This is done by setting:

1,,1, = 0,

g=0.
and considering local coordinates:

c =1,

s =0.

The dimensionless constants now become:

VTVt v, vy 3-E1 )"
C,= v,=| 1+ ———
4‘_V|'V2 ! K]'l
vy (2+v 3-E1 )7
C,= (20 va) vo=| 1+ —"—
4—V1'V2 Kz'l
. 1
3w PSS B
4-v, v, 1+g-C,
_ var(2+v)) o o 1*vai(g/4)
C,= 2
4-V1'V2 l+g'C1
v, v . - 1=-g/2
C5='————J——“a* S3= g =1

4‘_V1'V2 ‘ ].+g'C1

42



3-v l+v, - /4
"Cy= 2 S,= 1 (g74) _
4'_V1'V2 l+g'Cl

1

One sees that the stiffness matrix presented in the previous section reduces

to that of Morforton and Wu.

AE
= 0 0
l
12-E1 6-E1
{k”}u— 0 13 1 12 'C2
6 FI 4-E]
0 B C, ; ‘Cy
AFE
- — 0 0
l
12 Ef 6-FE]
{k“>ij— O - 13 ) 1 12 C2
6-E] 2 FI
0 - B - C, ] Cs
T
{kll}i]’={ 11},,
AE
—_— 0 0
l
12-E] 6-FEI
{kn},,_ o I3 Gy - E C,
6 FEI 4. E1
0 - 2 - C, ) Cq

Figure 29 Morforton and Wu's (k,;} Matrix
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Where

Co= WVt Va+V "V, S 3-FI -
1 4-v, v, : K, 1l
C=vl-(2+v2) V=(1+3-51)"'
2 4—V1'V2 2 KQ'l
3:v,
Ca_
4'—V1'V2
v2-(2+v‘),
C,=
4—V1'V2
3v," Vv
Cs_____‘._2.__
4'_V1'V2
3-v
C6_ 2

4‘—Vl'V2
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3.1.4.2 The Stiffness Matrix of Members with Rigid Ends

Another wuseful verification of {Ki;} is to compare it with the stiffness

matrix of a member with rigid ends (Figure 30). This can be done simply by
setting:
3-E1 ™
v, ={ l+— =1
Kl'l
3-E1 \™'
V=l +— =1
KQ'I

‘The dimensionless constants now become:

Vi+tVa+V, v, 12 FI
Cl = =1 9= —————5
4‘_V1'V2 AU'G'l
v | 2+v . 1
Cp=— (2+v,) =1 $177
4‘—V1'V2 +g
. 3'v l1+g/4
C3=_____1___=1 - S2=__g___
4‘—V1'V2 1+g
Vol 2+ v 1-g/2
Co=—2 ( ) =1 Ss= 1,4
4-v, v, g
3rv,rvy, l1+g/4
Cs._____‘__2=l 5‘4=———g-——
4'—V1'V2 ].+g
3v
Co=——=1
T4Vt v,

‘One sees that {K,;} correctly reduces to the stiffness matrix of members with

rigid ends.
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{Kll}ii;

AE
e
12-F1I
- 5 *S,r¢c8
12-FI 2
e S, c
12-FI-1,
B e
6 F1
B -CycC
AE
T e
12-EI
I +S,'c's
12-El
—_ 13 l.C2
12-FI- 1,
- e - S,
6-El
- l2 'SI'C

12-EI-1,
° 1rS
6-Fl
BT *S,rs
12-E1-1,
3 - 5,-¢
6-FI
+ B S, c
4-EI
R
12- EI- 1,
12 "o
12-E1I 2
lg ll 'Sl
12-E1-1,
IE *S,'s
6-FI
T S8
12-FI-1,
B 1 e
6-E1I
B S, ¢C
2-FEI
;Y
6-FI-1,
—ZT___.SI
6-EIl-1,
+_—_l‘2—_'3l

JA2ELL L

K !

Figure 30 The (K,;) Matrix of Members with Rigid Ends
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AE o AE
l l
12-E1 12-El
5 S, s? - 3 *S,'cs
AE AE
(K}, = ! !
12-E1 12-EI
B S,'c's I -+ 8, c?
12'E1'lz 12'51'12
l3 1°8 - lG 1
6-FE] 6-FE/
+ 2 "Syvs - 12 1

where

_ 12-FE1
A, G- 12

Sy = 1.

. 1+g
_1+g/4
2 1+g
1-g/2

33"’ g
l1+g

1 /
§ -9/t
l+g
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3.1.4.3 The Conventional Fix-Fix Member Stiffness Matrix

One final check is to compare the derived (KX,;} with the conventional (K}

(Figure 31). This can be done simply by setting:

l,,1,=0,
3-E1 \"7!
vl=(l+—~———) =1
Kl'l
( 3-51)“
vy=| 1+ —"— =1
Kz’l

The dimensionless constants now become:

c o= Vi+tV,a+tVv, Y, - g-= 12 E1
: 4-v, v, A, G- 12
c. - vl-(2+v2) ) s, = 1
2 4-v, v, l+g
3-v ' 1+g/4
_Vl'V2 g
o o= vy (2+v)) ) 5, - 1-g/2
fo4-v, v, l+g
3v,'v l1+g/4
Cs=____‘_2_=1 5‘4=———+g—
3-v
Co=—2—=1
4‘_V1'V2

One sees that (K;;} correctly reduces to the conventional member stiffness

matrix.
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AE AE 6 Fl
7 e TS
12+ EI 12-FI
3 S, s? - IE "S,cs
AE :
K= 12 E1 12 E1 )
- 3 *$5,r¢crs 3 *S,'¢
6-FI 6 Fl 4 Fl
- 2 S,'s 2 S, ¢c ; S,
AE AE 6-E1]
- T S e TS
12-F1 12-FI
- B v s? 5 +§,rcs
AE AE 6-Fl
- crs ———1-32 B "S,vc
K = ,
K, 12-E1 12 ET )
+ IE +§,rc 8 - IE ]
6-Fl 6 FI 2-EI
2 S,'s B ‘S, ¢ ; Sy

Figure 31 The Conventional (K,,) Matrix
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file:///2-El

12+ E1 2
+ B 'S
AE

{Kll}jj_ l
12-E1
5 »S§,rcrs

6 EI

12 .Sl.s

Figure 31(cont’d)

where

1-g/2

1+g/4
l1+g

0
=
I

AE 6-L]
T c*S 12 '51 S
12-E1
213E +S,c8
AE 6-E1
T.S2 _ l2 'Sl c
12 EI
1° e
6 E1 4.-F]
- B *S5,rc ——l———'84

The Conventional {Ky;} Matrix
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3.2 Assembling the Refined Fix-Pin Member Stiffness Matrix
3.2.1 The Local Bending Stiffness Matrix of Flexibly Connected Fix-Pin Members

The derivation of (kbm} is carried out in the same manner as in the previous
sectiom. The first and fourth column of (k,;,} are zero vectors because

axial displacements do not affect (k,).

The second column of (k,,,} is obtained by setting d, equal to 1 (Figure 32a).
This is a 1° indeterminate system. If the fixed-end moment, f; is chosen to

be the redundant, the conjugate beam will be loaded as shown in Figure 32b.

Figure 32a Deriving the Second Column of {ky,4)

El

Figure 32b Conjugate Beam Load : Fix-Pin Member, d,=1

Because the shears at the ends of the conjugate beam are equal to the net

angle changes at the ends of the actual beam, one could write from [3-6]:

Rl=al=pj1+YI+¢l [3-56]
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Also, the moment m; of the conjugate beam equals to the deflection d, of the

real beam. Therefore,

m, =1 [3-57)

Substituting [3-2] and [3-4] into [3-56],

% fa |
R =- [ S 4
! (w“ A, G K, ) _ [3-58)

Note : The -'ve sign is due to the conjugate beam’s definition of counter

clockwise rotation as positive rotation (See Figure 13).
But,
ds=¥,;,=0,

Therefore [3-58] becomes,

|4 IE
+ —

R =—
A, G K, [3-59]

From equilibrium of conjugate beam:

fal . m,

R,= -
3-FE1 { [3-60]
where
m,=1 from [3-57]

Combining [3-59] and [3-60] and collecting terms,

1 l |4 1
fa' _ e ——— e

K, 3 FI A, G l
'Multiplyingbboth sides by:

3-FE1I
l
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and defining dimensionless constants:

__12-E1
Ay G- 12 [3-61]
3-EI -1 |
v o= 1+ ———
: ( K-l ) [3-62]

Resulting in:

? [3-63]

L [3-64]

Substituting [3-64] into [3-63] and collecting terms

3 F1 1
fom—F7Z— v
l ’ I+v, - g/4 [3-65]
Substituting [3-65] into [3-64],
3-FEI ~ 1
V=,
3 l+v,-g/4 | [3-66]

Introducing a dimensionless constant to [3-65] and [3-66],

Ss=

l+v, - g/4 ’ [3-67]

53



f;, and V now become:

f = : Y .S
3 12 1 S | [3-68]
3-EI
V=—3——' L& '35
l [3-69]

0
3 F]
l3 VI'SS
3 FI
_ "V, S5
{kblO}iz- 2
0
3-LE1
_ E v, S
0
where
.= 1
° Il+v,-g/74
( 3-FEl )“
v,=| 1+———
Kl'l
12-EJ
g=

Ay G- 12

The fifth column of (k,,,} is obtained by setting d, equal to 1 (Figure 33),

and it can be derived in a similar fashion as before.

"

Figure 33 Deriving the Fifth Column of (k,,}

54



But noting that Figure 33 is a mirror reflection of Figure 32, the column

vector can be written directly as:

3 E1 '
1 - 13 VI.SS
3-FI
_ - v,'Ss
{kblo}is_ 2
0
3-FE1
[E vV,'Ss
0

The third column of (Rbm} is obtained by setting d; equal to 1 (Figure 34a).
Once again this is a 1° indeterminate system. If the fixed-end moment, fe is

chosen to be the redundant, the conjugate beam will be loaded as shown in

Figure 34b.

g

El

Figure 34b Conjugate Beam Load : Fix-Pin Member, d,=1
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Because the shears at the ends of the conjugate beam are equal to the net

angle changes at the ends of the actual beam, one could write:

Ry=a,=9;, +y,+¢, [3-70]

Substituting [3-2] and [3-4] into [3-70],

|4 fe
R=-|lp, ~———-=2
' (w“ A, G Kl) [3-71]

Note : The -'ve sign 1is due to the conjugate beam’s definition of counter

clockwise rotation as positive rotation (See Figure 13).

But,
d3==wjl= 1,

Therefore {2-71] becomes,

4 /3
+ =

Ri=-1+—r
A, G Ky [3-72]

From equilibrium of conjugate beam:

fal

R,=- ,
3-EJ [3-73]

Combining [3-72] and [3-73] and collecting terms,

] l 14
. _— = - +1
Is (K, 3-51) A, G

Multiplying both sides by:
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and defining dimensionless constants as in [3-61], [3-62]:

12-E1
A,- G- 12

( 3-51')“
v =1+ =20
Kl'l

Resulting in:

fs_ V-.g-l 3-EI
4

+
v, l [3-74]

From equilibrium of real beam:

! | [3-75]

Substituting [3-75] into [3-74] and collecting ﬁerms,

Fo= 3 FI o 1
3 ! : l+v,-g/4 [3-76]
Substituting [3-74] into [3-75]},
3-E1 1
Ve—gF— "
l l+v,-g/4 [3-77]

Introducing a dimensionless constant as in [3-65] and [3-66],
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f;, and V now become:

fa= v, S
3 ] 1 5 (3-78]
3-EI |
Ve—pgF— v, Ss .
l [3-79]

In summary the third column of {kyig) is:

0
3-FEI
12 Vi*Ss
3 EI
L
510/ ;4
‘ | 0
3-E7
0
where
o= l
> l+v,-g/4
| 3-E1 )\
vy =
Kl'l
_12-E]
A, G- 12

The sixth column of (k,,,} is a zero vector because of the pin connection.
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In summary:

0
3-F1
0. 3 Vi
{kbm}u !
3 E17
0 12 "V
0 0
B 3 EI
{kblo},,== '113‘
' 3 FE]
0 —
12
T
{kbm}u=< bn}”
0 0
3-FE1
{kblo}JJ— INE
0 0
where
G = 1
5 l+v,-g/4
( 3-El )“
v,=|1
Kl'l
g-= 12 E1
A, G- 12
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3.2.2 Introducing the Effect of Connection Sizes

The effect of connection sizes is introduced by means of transformation as

outlined in [3-12]:

(R0} =AT)" (ko) {T>

Where
{kip) = the local member stiffness matrix including the effect of
flexible connections and shear deflections,
(T) = the transformation matrix defined by [3-9],
{7(—‘0} = the refined stiffness matrix in local coordinates.
The local member stiffness matrix (k,,,} comprises of (k,} and (k). {k,} is

the standard pin-pin member matrix and {k,,,} has just been presented in the

previous section. The full (k;,}) matrix is shown in Figure 35.
AE
T 0 0
. : 3-FE1I 3-E]
{klo},-iz Y IE RAREE B V,'Ss
3-FI 3 L1
0 5 vV, Ss v, S
l l
A
-7 0 0
3:-E1]
(k)= 0 " varSs 0
3-FE1
0 - 2 v,*Ss O
T
{kll},] {kll}ji
k = 3 E7
{ “>_u 0 SR v,:Ss O
0] 0 0

Figure 35 The (k;,} matrix
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The local refined member stiffness matrix {Rno} is illustrated in Figure 36.

{RHO}H=

ji

0
3-E]
/3 v,-Ss
3-EI-1,
13 Vl.SS
3-EI
12 vV, Ss
0]
3-E]
IE v,*Ss
3-EI-1,
IE "V 5
3-FE]
l2 Vl 35

0
3:-EI-1,
13 vy S
3-E1 .
2 "V, Ss
3-FEI
'Vl.‘S\S
l
6-EJ-1,
E v, Sy
3'E] 2
E L, V)
0
3-EI-1,
IE VS
3-El1,
E 195
3 El-1,-1,
13 e

Figure 36 The Local Refined Member Stiffness Matrix of Fix-Pin Members
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AE 0 0

{
K., .. = 3-F!l
{ 10}11 0 3 v, S5 3-El-1,

{ - 3 v, 5,
0 3-El-1,
- v,*S 3-F1
& e E I, 2 v, S

Figure 36(cont’'d) The Local Refined Member .Stiffness Matrix of Fix-Pin
Members

3-£7 )"
v, =|1+="—
Kl'l

_12-E]
g A, Gl
1
Sg=
1+v,-g/4

1,, 1, = length of connection
1 = 1engthi of member
L

= total span = 1, + 1 + I,
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3.2.3 Transforming to Global Coordinates

Finally; the refined member stiffness matrix {(K,;) in global coordinates is

obtained by means of rotational transformation as outlined by [3-13]:

{Km}':{rr}T'{Klo}'{Tr}

{K;o} is illustrated in Figure 37.

AE 4E 3-EI-1,
e Coe T e
3 EI 3-FI 3-FE1I
M E v,*Ss's® - e "Vt SsrCrs - 12 v,'Ss's
AE AL 3-EI-1
TC S 7'32 3 ! ‘v, SSC
(Ko} = 3 EI 3-EI o, 3-EI
T ‘v, S5:€Cc*s + 5 v,'S5¢C + 2 v, S5 ¢
3-FEI-1 3 FEI-1 3-EI
- e ! v, S5 s B l’Vl'Ss'Cv 7 v, Ss
3-EI 3-F1 6-FEI1
——7‘—“'1/]'35'8 +—‘12—-'V1'\95'C +_l2 ] 'V,'Ss
+ 3'15‘1 ol 2 v, Ss

Figure 37 The (K} Matrix
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_AE 3-EI 1,
cs ————73‘——‘V1‘55“3
3-EI '

v - Ssrs? 5 v, S5°Cc's
AE 3 El 1,

_T s 13 Vi SS'C

3-E]

vitSsrcrs TV Ss c¢?
3-EIl-1 3 EI-1

v, Sg's - B I'Vx'ss"c __7_2.1,1. s
3-F1 3-El-1; 1

v,"Sg's R ‘v, Sg' ¢ +—*——7;J—4L'V1'35

Figure 37(cont’'d)
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AE 2 AE o 3-EI 1,
l l 13
3-EI 3-EI
I v, Sg-s? s vV, Ssc*s
AE AE 3-EI1,
(Ko} = 7 e s -
10/ jj
3 FElI 3 EI
- IE "V, S5c's + e v, Sgc?
3'EI1, 3-EI-1, 3 EI
B vV,'Ss E v,"S5°¢ 3 L,
Figure 37(cont’'d) The (K,,} Matrix
where
3-E1 )
v, = 1+———
K]'l
__12-F1
A G- 12
1
Sg= -
1+v,-g/4
Note
1,, 1, = length of connection (rigid end pieces),
1 = length of member,
L = total span = 1, + 1 + 1,,
Ax = change in x form joint 1 to joint 2,
Ay = change in y from joint 1 to joint 2,
c = cos(dx/L),
s = sin(d4y/L).
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3.2.4 Verifying the Fix-Pin Member Stiffness Matrix

As a check of the above derivation it is useful to compare the derived (K,,)

with the conventional (K,,} (Figure 38). This can be done simply by setting:
{,,1,=0,
El o
v1=(l+ 3-——--1) =1.
K,

The dimensionless constants now become:

12 E1
A, G- 12

1
l+v,-g/4

55=

One sees that {K,o} correctly reduces to the conventional fix-pin member

stiffness matrix.

’__ N
AE AFE 3-E7
; c ; c-s 2 Ss*S
3-FE1 3 FE/7
+ 3 Sgr 52 - 3 Sgcs
Ko}, =
{ 10}“ A_b: c*S E_.Sz 3 E[ S
l ! B 57 ¢
3-E1 3-E1
- 13 Ss cC*S + 13 \5‘5 02
3-EI 3-FEI 3-E1
- l2 \95 S lz '35 C l SS

Figure 38 The Conventional (K,;) Matrix
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Figure 38(cont’d)

where
12 El
I Ay G- 12
1
S =
® 1+g/4

—_— — C-S
l

3-EI
+ B +S5c-s
_AE 0

l

3-EI
- B -8 c?

3-E1
— l2 SS.C O
AE 0
__-C-S

l

3 E1
— l3 'SS'C'S
AE 0

{

3-EI
+ I Sy c?

0 0]

The Conventional (K;,} Matrix
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Note

1,, 1, = length of connection (rigid end pieces),
1 = length of member,

L = total span = 1; + I + 1,,

dx = change in x form joint 1 to joint 2,

Ay = change in y from joint 1 to joint 2,

c = cos(dx/L),

s = sin(dy/L).
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3.3 Assembling the Refined Pin-Fix Member Stiffness Matrix

The {K,;} matrix 1is derived in the exact same manner as presented in the

previous section therefore only the result will be quoted below (Figure 39):

AE AE 3 EI1,
! { ¢rs - JE] "V, Set S
3-FEI 3 ETI
Y Se s’ B ‘v, S¢S
AE AE 3-El-1
—l' c's T‘S2 l3 ! ’VZ'SG‘C
= S'El .
{K_Ol}ii ——T-vz-sé-c-s +—§—lf—]-y2-36 c?
3-EI1 3-El-1 3-E1
- IE ! vV, S¢S B Vet S I L, 2 v, S
AE AE 3-EI N
- T c - —l—’C s - lz 'V2 ‘96 S
3-EI 3-F7 3-E[1
= v, Ser s’ B v, S¢rCrs T IE 2.y, St
AE AE 3:-FI
- T c*S - —l—'S2 12 'V2 Sé (o4
= 3 . 3-El-1
{KOI}” laEl v, SgrcCs - 31351 V2'36'02 + I 2y, Senc
: 3-El-1, 3-El-1, 5
3-El- 1, 5 - 5 vy Sec 2 Va'Js
-8
la 2 6
3-El-1, 1
13 2.36

Figure 39 The (K;;) Matrix
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AE AE 3-EI
- ¢ TS 7 YarSers
3-FE/ : 3-E]
+ [3 V2'86 32 - 13 V2.56 c*S S'E]‘lg
B 2 S¢S
AE AE 3-EI
< ¢S —7—'82 ST v, 5S¢ C
(Ko}, = - -
17 3-FEl 3-EI 2 3-EI-1,
R v,y S¢rCes + I V2-5‘6. c - B vV, Secc
3-E! 3 EI 3-FEI
B Vy'Sets - 2 vV, 5S¢ C ; "V, S
3-EI-1,
3-El1, - e vy SeC 6-EI-1,
IE V,t 856t s 2 Vv, S6° S
3-EI
3 P z vy S
Figure 39(cont’d) The (K,,) Matrix
where
3-E1 )
vo=| 1 +——m—
Kz’l
_ 12-EI
A, G- 1?
1
\96:
l+v,-g/4
Note
1,, 1, = length of connection (rigid end pieces),
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length of member,

total span = 1; + 1 + I,

change in x form joint 1 to joint 2,
change in y from joint 1 to joint 2,
cos(d4x/L),

sin(4y/L).
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3.4 Assembling the Refined Pin-Pin Member Stiffness Matrix

Since connection sizes and connection flexibility have no effect on the axial
forces of a member, (K,;)] matrix is the same as the conventional pin-pin

member stiffness matrix (Figure 40).

c: 0 ~-c'c -Cc*s 0
S 0 -C*s -s*S 0
AFE 0 0 0 0 0 0
{Koo}‘ - _
l -c'c c's O 0
-Cc*Ss -s:s O c*s 0
0 0 0 0 0 0
Figure 40 The (Ky) Matrix
Note
1 = length of member,
Ax = change in x form joint 1 to joint 2,
Ay = change in y from joint 1 to joint 2,
c = cos(dx/L),

s = sin(dy/L).
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4 Modified Fixed End Forces

Connection sizes and connection flexibility also affect the fixed end forces.
The method of modifying fixed end forces for various loading conditions are

presented in the following sections.

4.1 Uniformly Distrinuted Load on Flexibly Connected Fix-Fix Members

The first step is to derive the fixed end forces for a flexibly connected
fix-fix member under uniformly distributed load. The effect of connection

sizes can be introduced by means of transfer of forces at a later stage.

The fixed end forces of a flexibly connected fix-fix member is obtained by

combining the following three load cases (Figure 4la,b,c).

Casea + B, Caseb + p.Casec

°

Case a

Figure 4la A Simply Supported Beam under a Uniformly Distributed Load

fa=1fs=
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Case b

dy=1

?MW

f5 f,

Figure 41b A Fix-Fix Beam with d,=1

From the third column of {ky,,}: d;=1, see [3-53],[3-54], and [3-55]

;o 6 EI 1
N & *\1+g-C,
4-El 1+v,-g/4
fa= I Cs ( .l+2 )
g C,

6 FlI 1
______.C . _—
Is 12 ( 1+g-c,)

2-El 1-g/2
f6=~—'CS'(——)

l l+g-C,
where
V1+V2+V1'V2
C —_
: 4-v, v,
C,=
4‘_V1'V2
3'1’1
Cyg=—7"""""
4-v,' Vv,
v, v
Cs=.____l__2_

4-v, v,
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l+g:C,
Js==Fo 6151 Cf( 1+;-cl)
=B, 2151 C{( f:;ﬂi )
Case ¢

do=-1

i

Figure 4lc A Fix-Fix Beam with d6'=-1

From the sixth column of {k,;,}: dg=1
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where

C, =
4‘—V1'V2
v,_-(2+v‘)
C,=
4‘_V1'V2
3vy¥v
C5==—————L——£—
4-v, v,
3:v
Ce= 2
4-v, v,
for dg=-p_
6 FEI 1
= - ____..C . - -
Iz Be (? ! ( l+g-C, )
2-FEl l+v,-g/4
= — __._C .
f3 Bc l S ( 1+g'C1 )
6-E1 1
= .____.C . _
fS Bc l2 4(1+Q'Cl)
4-F1 1-g/2
= — _.____C . - v
fom P °(1+g~c,>
Therefore,
w

Figure 41d A Fix-Fix Beam under a Uniformly Distributed Load
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fa= 1 .'
4 2 4-v, v, l+g:C,

w-1>  3-v,(2-v,(1-9))
12 (4—v,-v2)-(l+g-C,)

w-l VoV, 1 )
fs= 1+ )
» 2 4‘_V1'V2 l""g'Cl

w12 . 3-v2-(2—vl'(1—g))
12 (4_VI'V2)'(1+Q’C1)

fs=

fe=

The effect of connection sizes is introduced by means of transfer of forces as

outlined in [3-8] (Figure 18b).

In summary,

F,- w-l N ViTV, 1
) 2 4‘_V1'V2 1+g'cl
w2 3-v,-(2-v, (1-g))

Fy= . F. ol
3 12 (4-v,-v,)-(1+g-C,) T h

Fo= w- L+ Vo— v, 1 -
5 2 4-v,'v, 1l+g-C,

.12 3- (2= (1 -
F,= w- il Va ( vy ( g)) CFgl,
12 (4-v,-v,) (1+g-C))

Where
3. FE] -1 1,, 1, = length of connection
Vl=(1+ K-l ) 1 = length of member
L = total span = 1, + 1 + 1,
( 3-51) ‘
v, 1+
Kg'l
12-EI
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4.2 Uniformly Distributed Load on Flexibly Connected Fin-Pin Members

The fixed end forces for a fix-pin member under uniformly distributed load is
derived by the method of superposition as presented in the previous section

(Figure 42).

Casea + pB,-Caseb

Case a

Figure 42a A Simply Supported Beam under a Uniformly Distributed Load

- 1
fa=Ffs= 2é2
- p = w 3
Y
Case b
d=
f3f2 ‘

Figure 42b A Fix-Pin Beam with d;=1
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From the third column of (ky,,}: ds=1, see [3-78] and [3-79]

;.- 3-EI 1
2 (2 ! 1+v,-g/4
;o= 3-EI 1
3 l ! 1+v,-g/4

foo 3-EI 1
° 12 : 1+v, -g/4

For ds=p,
F.=p 3-FE1 . 1
2ore 12 : l+v, g/4
Fi=p 3-E!1 1
= . -V
3 e l P\ 1+v,-g/4
foop SEL 1
°rh 12 : l1+v,-g/4
Therefore,
A%

Figure 42c¢ A Fix-Pin Beam under a Uniformly Distributed Load
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f B w- !l 4+V1'(1+g)
2 8 l+v,-g/4

f w- 1
=—————~—QV .
s 8 : 1+v,-g/4
w-l [ 4-v,-(l1-9g)

8 l+v,-g/4

The effect of connection sizes is introduced by means of transfer of forces as

fs

outlined in [3-8] (Figure 18b).

In summary,

F Cwel 4+v,-(1+g)
2 8 1+v,-g/4

: 1
=, +Fyel
8 ! ( l+v,-g/4> 20!

Fy- wél ( 4-v - (1-¢g) )

l1+v,-g/4
F6=_F5'12
Where
( 3 E1 )"
v, =| 1l +—m
Kl'l
_ 12-F1
A, G- 1?2

1,, I, = length of connection (rigid end pieces)

1

length of member

L

i

total span = 1; + 1 + I,
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4.3 Uniformly Distributed Load on Flexibly Connected Pin-Fix Members

The fixed end forces for a pin-fix member under uniformly distributed load are
analogous to that of a fix-pin member (Figure 43). Therefore only the result

will be quoted here.

B2, r/rrrrrrrrr\ fs

Figure 43a A Simply Supported Beam under a Uniformly Distributed Load

6=—1

| 3%/’_—\@’[5

~f, g
—le

Figure 43b A Pin-Fix Beam with dg=-1

Figure 43c A Pin-Fix Beam under a Uniformly Distributed Load
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w-i 4-v,-(l+g)
F2 = *
8 l+v,-g/74

'F _wel (4+vy(l-g)
° l+v,-g/4

1
v, - |- Fg- 1
8 2(1+v,-g./4) ° 2

Where

( 3.1\
v,=| 1+—"—
K’_)'l

12-EJ
A, G- 12

1,, I, = length of connection (rigid end pieces)
1 = length of member

L = total span =1, + 1 + 1,
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4.4 Point Load on Flexibly Connected Fix-Fix Members

Once again the fixed end forces for a flexibly connected fix-fix member under
a point 1load is derived first. The effect of connection sizes will be

introduced by means of transfer of forces at a later stage.

The fixed end- forces of a flexibly connected fix-fix member is obtained by

combining the following three load cases (Figure 44).

Casea + B, Caseb + p_ -Casec

Case a
6b
//
P
%( a ¢ b
Figure 44a A Simply Supported Beam under a Point Load
P-b
P-a
fa= {
P-a-b
= (b+1
B 6 El- 1 (b+1)
P-a-b
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Case b

dg=

?MW

f5 f,

Figure 44b A Fix-Fix Beam with d,=1
From the third column of (k;;}: ds=1, see [3-53],[3-54], and [3-55]

f__é-EI.C _ ]
2 12 2 1+g-C,

4-El 1+v,-g/4
f3=—"—‘C3‘
1+g'Cl

fomm 6-El . 1 )
o 12 >\ 1+g-C,

2-El 1-g/2
e BEL g (A2 )

l 1+g-C,
where
P 7 o P o TR 4
C, = 1 2 1 2
4‘_V1‘V2
vi-(2+v,)
C2._
4—V1'V2
3-v,’
Co=—— 1 —
4‘—V1'V2
3:v, Vv,

4‘—V1'V2
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4-Fl l+v,-g/4
= . C
6-FJ 1
[s=-B, 12 C2'( 1+g-C, )
2-F] 1-g/2
= C.-
Fe=PBys / 5 ( 1+g-C, )
Case ¢
QMWG
-t ' fs

Figure 44c A Fix-Fix Beam with dg=-1

From the sixth column of (kbll): dg=1

6-Fl 1
fam = Oy |
1+Q'C-l.

2-El l+v,-g/4
fa=———Cg- 2
l+g-C,

foo S EL . 1 )
° 1% "\ 1+g-C,

4-E] 1-g/2
fe=—7— Cor| T
1+g'C1
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where

C,=
4_V1'V2
Vo l2+v
o va(2ev)
4'_1/!'1/2
3V, V
Co=— 1" V2
4‘—V1'V2
3-v
Cs““—'—2—‘
4"‘V1'V2
For dg=—p
6-E/ 1
= - - C,-
fam B ( l+g-C, >
2-El V+v,-g/4
_ C .
f3 Bc l 5( 1+Q'C1 )
6-E1 1
fS_Bc 12 4(1+Q'C1)
_ 4-EJ 1-g/2
f6 Bc l 6 ( l+g'C1 )
Therefore,
P

Q
-
oy

Figure 44d A Fix-Fix Beam under a Point Load
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P-b' 1+ a 4'l(Vl—Vz)‘Vl’a'(2+V2)+V2'b~(2+vl)
"o (4-viv,)-(1+g-C)

3

b (4-v, v,) l+g-C,

P-a-bz_( Vyl(4+v2-UJ5-g—ln—vl-a%2+vzj).( 1 )

P a b 4 l(v,-v))+v,ca(2+v,)-v, b (2+v))
f5= ) 1+ 2 '
{ (4—vl-vz)-(l+g-C,)

12 a-(4-v, v,) l+g-C,

The effect of connection sizes is introduced by means of transfer of forces as

outlined in [3-8] (Figure 18b).

In summary,

Fo= Pb 1+ a 4'I(Vl_Vz)—Vl'a'(2+V2)+V2'b'(2+V1)
2 12 (4_V1'V2)'(l+g'Cl)

F.= P-a-b? . V]'l'(4+V2'(l-5'g_1))_Vl'a'(2+vz) ( ; )+F2'll
b-(4-v, v,) 1+g-C,

Fo= Pra 1+ b 4-l(vz—v,)+v1'a-(2+v2)—vz~b-(2+v1)
) 2 (4-vi-vy) (1+g-C))

Fo- P-az'b ) Vz'l'(4‘+V1'(1-5'g_1))—V2'b'(2+vl) ( 1 )—F -l
6 a‘(4_V1'V2) T

Where
3. F] -1 1,, 1, = length'of connection
= +—_
Vi (l K- ) 1l = length of member
L = total span = 1; + 1 + 1,
3-E1 )7
vo=| 1+
KQ'Z
12 E1
g=
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4.5 Point Load on Flexibly Connected Fix-Pin Members

The fixed end forces for a fix-pin member under a point load is derived by the

method of superposition as presented in the previous section (Figure 45).

Casea + pB,-Caseb

Case a

b c

I \\
T b

Figure 45a A Simply Supported Beam under a Point Load

For simply supported beams under point load

fo= P:b
2 l

P-a
f4_ [

P-a'b
=~ (b
Bb 6'E]'l ( +l)
Bc=_l::1;9_.(a+l)

6 EI-1
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Case b

dy=1

?W\Nﬁ

f3 f2

Figure 45b A Fix-Pin Beam with d,=1

From the third column of {k,,;4}: d;=1, see [3-78] and [3-79]

]
.fZ— iz ( 1+v,-g/4 )

1
= oem————— ‘V .
Js l ! ( l+v, g/4 )

For d3=p,

' ' 3-EI 1
—_ . — Y . -
f2 ﬁb 12 1 (1+Vlg/4>

foap SEL 1
3T l : 1+v,-g/4
3-EI 1

fs=By ——— vV
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Therefore,

;v

a@._a\_/)<E
Figure 45c¢ A Fix-Pin Beam under a Point Load

P-b P-a'b:(a+2-b) 1
f2= + 3 .Vl.
l 2-1 l+v,-g/4

P-a-b -(a+2-b) 1
f3= 5 .Vl.
2-1 l+v,-g/4

P-a P-a-b-(a+2-b) 1
fs= - 3 vV,
{ 241 \ 1+v,-g/4

The effect of connection sizes is introduced by means of transfer of forces as

outlined in [3-8] (Figure 18b).

In summary,

Fo= P-b . P-a-b-(a+2-b) ' 1
2 Vi l+v, - g/4

{ 203
P-a'b - (a+2'b 1
Fa= = (2 ) Vo +Ey L
21 l1+v,-g/4
P-a P-a-b-(a+2'b) [
FS_ —_ 3 .Vl.
{ 21 l+v,-g/4
Fé_’FS'H
Where

( 3-E] )“
v =1+ ="
Kl'l
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( 3-51)“

vy=| 1+ —"—
Kg'l
12-EI

A, G- 12

1l,, 1, = length of connection
1 = length of member

L = total span =1, + 1 + 1,
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4.6 Point Load on Flexibly Connected Pin-Fix Members

The fixed end forces for a pin-fix member under a point load are analogous to

that of a fix-pin member (Figure 46).

quoted here.

Therefore only the result will be

P

'

/
/
a

@/\

¥

Figure 46a A Simply Supported Beam under a Point Load

£\

_f2

Figure 46b A Pin-Fix Beam with dg=-1
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P

%( a ¢ b E

Figure 46c A Pin-Fix Beam under a Point Load

P-b Prab:-(b+2-a) 1
'F2= - 3 'V2'
_ L 21 l+v,-g/4
F3=F2'll
P P-a-b-(b+2- |
Fq- a . a (3 a) v,
{ 21 l+v,-g/4
P-a-b (b+2-a) 1
Fe= 2 Voo - Fsely
2.1 l+v,-g/4
Where
( 3-51)"
vo=| 1l +—
Kz'l
_12-E]
A, G- 1?

1,, 1, = length of connection (rigid end pieces)

1

i

length of member

L = total span = 1, + 1 + I,
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5 Member Forces Calculation

With the addition of connections at either end of a member, nodal
displacements now become the end displacements of the connections and not the
member itself. Therefore member forces must be calculated differently. By
adopting the sign convention illustrated in Figure 47 and recalling the member
forces relationships established in Section 3 (See Figure 18a), one can relate

forces at connection ends and member ends as follows:

BM2
> : ;%7»AMAL
BMls“i:%;,,——””””iig:gz
Axm‘l_i:k
bm?2
Waxial
brl?%z
axial : l
Figure 47 Member Forces Sign Convention
F,=—-AXIAL fi=—axial
F,= SHI1 fo= shearl
F,=-BM1 fa=-bml
F,= AXIAL fa= axial
F ==

o

BM?2 fe= bm2
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Recalling the transfer of forces relationships of [3-8] and reorganizing:

axial=AXIAL . L [5-1]
shearl=SH1 [5-2]
shear2=SH?2 [5-3]
bml=BM1+shearl-(, (5-4]
bm2=BM2-shear?2- 1, | [5-5]

Noting that connections are perfectly rigid, the axial force can be written

directly the same as before:

axial= 25 ((dy-d,)-c+(dg-d,) s)

where
1,, 1, = length of connection (rigid end pieces),
= length of member,
L = total span = 1, + I + 1,,
ax = change in x form joint 1 to joint 2,
4y = change in y from joint 1 to joint 2,
c = cos(4x/L), .

s = sin(d4y/L).
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Shears and moments at connection ends are obtained by reorganizing the six

deflections into the three cases shown below:

BM2
SHEAR] ¥j
el
-BM1
e
d;
case 1
BM?2
I Ly
<\ SHEAR?2
-BM1
SHEARI
.case 2
_d6
k) -BM2
x -SHEAR2
BM1 -SHEARI

case 3

Figure 48 Calculating Shears and Moments
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" The above three cases have already been solved for unit deflections in
Section 3. Therefore the shears and moments at connection ends can be

obtained simply by means of superposition:

d,-case a + djz-case b + dgsrcase c

P 12 W{%
W =

case a

case b

case C

Figure 49 Calculating Shears and Moments at Connection Ends by
Superposition

Once the forces at connection ends are calculated, the member forces can be

obtained by [5-1] to [5-5].
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5.1 Calculating Shears and Moments of Fix-Fix Members

The three cases used for calculating shears and moments of fix-fix members

have already been solved in Section 3.1 and are summarized below in Figure 50.

Fe
F F2 _“@’\3
d; =
case a
Fe

case b

_d6=1

3

%
X .

case ¢C

Figure 50 Shears and Moments of Fix-Fix Members by Superposition
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By superposition:

12E1
SH1=(—~———'CyS,)wL

l3
+(_é£¥—-62-31+—£%§1“11 Cy-5, | dg
+( 6ﬁ1 C,' S, 1?51 , C,+ S, | dg
[5-6]
and,
BA41=—( 6£1 C, S, 1251 l, Cl-Sn) d,
_( 451 c..s, 1357 LC, s, lifl e
—( zfvr'<:5‘33'F;§;;L"ll'C4'-91+'£%€£" l,-Cy S,
+u_£2fi£_. l,"1,°C,-5,) dg

12
rearranging and noting [5-6]
6F]
BA41=_(__FT—'C2'SI)'d7

4E1 6FE] :
—( I 'C3'52+’—___'ll'Cz'Sl)'da

12

2FI 6EI
S| Cs Sar =5 1€y 8y rdmSHL L

[(5-7]

99



Member force shearl is calculated from [5-2]:

12E1
shearl=(———la——-Cl'S,)-d7

6E/ 12F]
+( l2 'C2-31+——l3——'ll'cl'3,)'d3
6F] 12E7
+( 12 'C4'SI+T'12'CI'SI)'d6
[5-8]
From equilibrium,
shear2=shearl [5-9]
From [5-4] and noting that shearl=SHl1, bml reduces to:
6E1
bml=-(7——~C2-S,)-d7
4F] 6E]
- C30 5, 1,:C,5,|d,
l 12
2F]1 6FI
[5-10]

From equilibrium, -

bm2=bml+shearl-l, [5-11]
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5.2 Calculating Shears and Moments OF Fix-Pin Members

The three cases used for calculating shears and moments of fix-pin members

have already been solved in Section 3.2 and are summarized below in Figure 51.

Fe

V)

R

ds =1

case a

case b

V)
3 "

_F3

case C

Figure 51 Shears and Moments of Fix-Pin Members by Superposition
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By superposition:

and,

3E] 3E]
3F1I 6E]
- l 1 S 2 .ll
3E] 3E1
“( 12 lyyv,"Ss+ B
rearranging and noting [5-6]
3E]
BM1=- 2 v, S |- d,
3E1 3E]
(2L o, 28
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Member force shearl is calculated from [5-2]:

3E]
shearl=( 3 'VI'SS)'d-,

+( 3EI s 3E]

2 Vitos®t 3
l l

3EI
+( = -l2-vl-55)-d6

'll'V|’$5)'d3

[5-14]

From equilibrium,

shear2=shearl ’ - [5-15]

From [5-4] and noting that shear1=SH1l, bml reduces to:

12

3E1]
bml=—( -v,-SS)-d7

[5-16]

By definition,

bm2=0 ' [5-17]



5.3 Calculating Shears and Moments OF Pin-Fix Members

The three cases used for calculating shears and moments of pin-fix members

have already been solved in Section 3.3 and are summarized below in Figure 52.

d; =
)
F J’
3& b e 'Fs
case a
__FS
ds = Fe

case b

G- N
3 -Fp .

case C

'

Figure 52 Shears and Moments of'Pin-Fix Members by Superposition
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By superposition:

El
Sf{l=(3?;-v2-56)-d7

3E]

+( 3lb;l VSt 3;:;1 ~12~v2~56)~d6
[5-18]
and,
BM2=( 315;1 v, S 3l€[ v, 36>-d7
(3;:;[ L'V, S¢+ 3153[ lyc Ly v, 36)~d3
( S v St Ly vy St vz-sé) d,

rearranging and noting [5-6]

([ 3BEI
BM2=| v, 55| d;

( 3BEI
+( E -1,-v2-36)-d3

3E] 3E]
+ ; ' .V2.36+T

-12-v2-56)-d6+3}{2-12

[5-19]
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Member K force shearl is calculated from [5-2]:

3FEI
shearl =(T~-v2~36)-d7

3E7
+( 'll'Vz'Sﬁ)'da

l3

3E17 3E1
+(T.V2‘S6+T—'l2'v2.36).d6
[5-20]
From equilibrium,
shear?2=shearl [5-21]
From [5-5] and noting that shear2=SH2, bm2 reduces to:
3E1]
bm2-= 2 v, Selrdy
3E17
+( 2 ly'v, 56) dj
3EI 3E1
* I Varoet B lyvy 56 | ds
[5-22]

By definition,

bml=0 ‘ [5-23]
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6 Connection Stiffness '

While the derivation of the stiffness matrix, fixed end forces and member
forces is complete, there still remains the question of what stiffness values
to use for the various types of connections in analysis. In 1969 Somner[16]
devised a standardized procedure for expressing the moment-rotation
characteristics for all connections of a given type in a non-dimensional form.
A few years later, Frye and Morris{4] utilized the same procedure to develop a
set of dimensionless equations which express the moment-rotation relationsﬂips'
of the seven most commonly used connections (Figure 53, Table 1). The general

moment-rotation relationship is of the form:

p=c, (KM)+cy  (kM)°+cy- (kM)®
and,
b a
k=p35 P35 DPs Ps
where
¢y, €3, C3, Py, P2, P3 and p, are constants which depend on the connection

_type.

These moment-rotation relationships are wery compact and well suited for
programming. It will be shown in the next section how these relationships can

be incorporated into a plane frame analysis program.
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P,=

(a) SINGLE WEB ANGLE

>H< Py=t P=w Do F‘ (4 Py=t PS=1I<->
| Pa=f I
(fastener Ob
o — ey
Pp=d < Py=d <>
|= — == Y '
_a o - - >
P1= 1_1 P4= g P1= Ll
(¢c) HEADER PLATE (d) TOP & SEAT ANGLE
H" p4=f >H< P3=t P5=lf<'>
(only with - Py= f i
L column
stiffeners L—| (fastener Ob \*,O
-
Pp=d < Py=d <
B
\  column ~
B l/—' stiffener LI [ —
| F3= t
P1= Ll Pl= Ll
(e), (f) END PLATE (WITH & WITHOUT (g) T-STUB

-

g

-
P4= g

(b) DOUBLE WEB ANGLE

COLUMN STIFFENERS)

Figure 53 Common Types of Connections and Their Standardization
Parameters




Table 1 Standardized Connection Moment-Rotation Functions

Connection Type

Standardized Function, ¢

Standardization Constant,

C, C, Cj a

single web angle 4.28E-03 | 1.45E-09 |1.51E-16 |-2.40 |-1.81 |+0.15 | 0.00
double web angle 3.66E-04 | 1.15E-06 |4.57E-08 |-2.40 |-1.81 |+0.15 | 0.00
header plate 5.10E-05 | 6.20E-10 |2.40E-13 |-2.30 |-1.60 [+1.60 |+0.50
top & seat angle 8.46E-04 | 1.01E-04 |1.24E-08 |-1.50 |-0.50 |-1.10 [-0.70
end plate (without

column stiffener) |1.83E-03 |-1.04E-04 [6.38E-06 |-2.40 [-0.40 [+1.10 | 0.00
end plate (with

column stiffener) [1.79E-03 | 1.76E-04 |2.04E-04 |-2.40 |-0.60 [ 0.00 { 0.00
t-stub 2.10E-04 | 6.20E-06 |[7.60E-09 |-1.50 |-0.50 [-1.10 |-0.70
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7 Programming Details

This section discusses in details some practical aspects of implementing the

algorithm described above in an existing plane frame analysis program. The
general strategy is laid out in Figure 54, For linear connection behaviour
only four of the six sections of the program requires modifications. For

nonlinear connection behaviour, additional modification has to be made to the

output section.

Existing

Program Modifications

READ DATA

geometry . ADD —
material properties ® connection data
loads

3

ASSEMBLE (K}

® build local {k} MODIFY
add {k} directly into ® local {k}
global {K)}

Linear
Connection
MODIFY Behavior

d

BUILD LOAD
VECTOR

calculate fixed end

forces . - ® fixed end forces
add loads to vector

g

SOLVE FOR
DEFLECTIONS

CALCULATE
MEMBER FORCES

WRITE OUTPUT : :
deflections UPDATE B3 Nonllnear

member forces ® connection data .:; Connectlon
support reactions b .
Behavior

MODIFY

® member forces

Figure 54 Incorporating Flexible Connections in Plane Frame Analysis
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7.1 Modifying Input Format

The input section of the program needs be modified to accommodate the
additional connection data. Each connection is identified by the joint and
member which it is associated with and the connection type. A maximum of six
parameters should be allotted for describing a particular connection
(Figure 55) with parameter Mi representing the moment at the particular
connection, parameter pl describing the length of the connection and parameter
p2, p3, p4, and p5 containing detail information about the connection (Figure

53).

Connection Data

nnum mnum typ Mi pl p2 p3 P4 PS

Figure 55 Input Format for Connection Data

7.2 Modifying Stiffness Matrix

The global stiffness matrix is assembled directly from the local stiffness
matrices of individual members. However, before a local stiffness matrix can
be formulated, connection stiffness must first be obtained. This can be
accomplished simply by adding to the program a subroutine which reads in
connection properties directly as data or calculates connection stiffness
according to the connection parameters entered. A sample subroutine which
incorporates the equations as outlined by Frye and Morris [4] for calculating

connection stiffness is listed in Appendix A.
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Table 2 Common Connection Types

Type ' Description k value
1 perfectly hinged 0
2 single web angle calculated
3 double web angle calculated
4 header plate calculated
5 top & seat angle calculated
6 end plate
(without column stiffeners) calculated
7 end plate
(with column stiffeners) calculated
8 t-stub calculated
9 other " user specified
10 perfectly rigid -1E+038

Type 9 connection is to provide user with the option of using his own
stiffness values and also to accommodate connections which are not covered in
the list. The special value of -1E+38 is adopted to represent the stiffness

value of a rigid connection.

The local stiffness matrix can be modified as discussed in Section 3. Sample
listing of the modified local stiffness assembly routine can be found in
Appendix B. The only point to note is that when defining tﬁe dimensionless
constants v; and v,, one should Be careful to check for the value of k. If k
equals -1E+38 for a rigid connection, the program should automatically assign

the value of 1 to the corresponding v, and v,.
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7.3 Modifying Fixed End Forces

The fixed end forces can be modified as discussed in Section 4. Sample

listing of the modified fixed end forces can be found in Appendix C.

7.4 Calculating Member Forces

The member forces can be modified as discussed in Section 5. Sample listing

of the modified fixed end forces can be found in Appendix D.

7.5 Modeling Nonlinear Connection Response

The procedure outlined here is the same one presented by Frye and Morris [4]
and it is based on the premise that correct structural response and member
forces can be obtained from a single . linear analysis provided the correct
connection stiffneés are used. The procedure is therefore a simple iterative
process which guesses at the connection stiffness characteristics in a
structure at every cycle. When the connection stiffness characteristics
converge to sufficient accuracyvfhen these values are used to perform a linear
analysis to calculate the correct deflections and member forces for a

structure with nonlinear connections.

Figure 56 depicts the typical moment-rotation relationship of a mnonlinear

connection:

¢=rf(M)

where

f(M) is a nonlinear function of the moment acting on the connection.

113



Typical Moment—-Rotation Relationship
2500
2000 |-
=
E i
8.
g 1500 -
+ F
=
L
E 1000 |-
S
500 |-
0 L 1 s 1 L 1 .
0 0.005 0.01 0.015 0.02
Rotation (rads)

Figure 56 Typical Moment-Rotation Relationship of a Nonlinear
Connection

One begins the iterative procedure by assuming M=0, and perform a linear
analysis on the structure. This is equivalent to setting the stiffness of

the connection equal to the 1initial tangent of the moment-rotation

relationship.

ko—,—l_— | -
7 (M=0)

From the analysis one gets a new value of M:

M=M,



With this one can calculate:

¢1=-f(A4==A41)’
M,
k==t
¢,

If k, and k; are sufficiently close then the iterative procedure can be
terminated. Otherwise one can repeat the analysis using k, to obtain a new
value of k, and then compare the value of k; to k,. This process 1s repeated
until the stiffness value, k; at each connection stabilizes at a certain value

with sufficient accuracy. Figure 57 depicts the convergence of k for a

typical nonlinear connection.

[terative Procedure for Nonlinear Connections
2500
- 2000 - M
= >
3 i
a, Mg
5 1500
K
£ IOOO—M2
L=
=
500 +
0 L ! 1 1 . 1 \
[stard] © 0.005 0.01 0.015 0.02
Rotation (rads)

Figure 57 The Convergence of k for Nonlinear Connections

The algorithm for the iterative procedure described above is extremely easy to
implement. One needs only to update the connection stiffness of the
structure at the end of each cycle of analysis and to add a statement for

comparing the values of k.
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8 Analysis of a Simple Plane Frame Structure with Flexible Connections

Using the method outlined in previous sections, a standard plane frame
analyéis program was modified to include the effect of flexible connections.
As means of verifying the wvalidity of the resulting program, CPlane, the
simple plane frame structure (Figure 58a) previously investigated by Moncarz
and Gerstle [10] was analyzed for comparison purposes. The experimentally
determined moment-rotation curves for the upper and lower connections are
shown in Figure 58b along with the approximations used by Moncarz and Gerstle

and the ones used by CPlane. The service load conditions are as follow:

1.86 kips/ft or 0.155 kips/in,

(1) .Dead load, g

(2) Live load, 1 = 1.20 kips/ft or 0.100 kips/in,

(3) Lateral load intensity, w= 0.00, 0.01, 0.02, 0.03, 0.04 kips/sq ft
Resulting in: W, = 0.00, 2.88, 5.76, 8.46, 11.52 kips/sq ft

W, = 0.00, 1.44, 2.88, 4.32, '5.74 kips/sq ft

Details of the results are discussed in Section 8.1.

Leeward
/ Column
Upper =
Girder 12'-0"
Windward/ 12’-0"
Column

Figure 58a A Simple Plane Frame
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Moncarz & Gerstle

Moncarz & Gerstle
(linearized) \ /——— (linearized)

2500
’ CPlane

| Lower
Connections o =
7 Johnston & Hechtman
(from experiments)
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I
3\

2000

i CPlane
' Johnston & Hechtman
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\

1500

1000

Moment (kips-in)

Upper
Connections

\N".

J/
I
¢
)
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Figure 58b Connection Properties

In order to investigate the effect of flexible connections on internal force
the same frame as illustrated in Figure 58a was

distribution of a structure,

analyzed using various member-connection models with different assumptions on
connection behavior. ' Details of the study are discussed in Sections 8.2 to
The list of connection models and assumptions used in the study is

8.5.
summarized in Table 3.
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Table 3 List of Girder-Column Connection Design Assumptions

CONNECTION TYPE

Perfectly Pinned
(PIN)

Linear Flexible
Connection (LF)

Nonlinear Flexible
Connection (NLF)

Linear Refined
Connection (LR)

Nonlinear Refined
Connection (NLR)

Perfectly Rigid
(RIGID)

Rigid Ends
(RGEND)

CONNECTION CONNECTION

LENGTHS

N/A

N/A

N/A

BEHAVIOR

Pin

Linear Elastic

Nonlinear

Linear Elastic

Nonlinear

Rigid

Rigid
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8.1 Verfication of CPlane

Moncarz and Gerstle [10] investigated the effect of flexible connections on
structural response under the assumption of linear and nonlinear connection
behavior. However, their formulation neglects the effect of connection sizes
and treats .connections as péint connections. For verification purposes the
same set of connection assumptions was used by CPlane and the member forces

from the two studies are shown in Figure 59a and Figure 59b.

The column design moments from the two studies are almost identical. It is
of interest to note that the assumption of linear connection behavior produced

nearly the same result as nonlinear connection behavior.

The critical girder design moments from Moncarz and Gerstle and CPlane follow
the same pattern but the values from CPlane are consistently higher by about
5% (Figure 59b). What appears surprising is that the response for rigid
connections from the two studies also differ by about the same amount.
Surely if identical parameters were used, the rigid connection response from
both studies should be the same. Therefore by making the rigid connection
response the benchmark for comparison, the results from Moncarz and Gerstle
were normalized accordingly and Figure 60 shows the plot of normalized
critical girder moments against lateral load intensity. It is clear from the
plot that the results from the two studies are practically identical after
normalization. The apparent discrepancy probably stems from the fact that
the particular girder under investigation is not available from any Canadian
steel mills and the section properties selected are slightly different from
the ones used by Moncarz and Gerstle. As an independent check, the same
structure was analyzed under the assumption of rigid connections by another
structural analysis program, LPS, from the Institute fur Baustatik der
Universitdt Stuttgart, West Germany. The results from LPS for rigid

connections are in exact agreement with that of CPlane (Figure 59b).
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From the close agreement between the normalized moments of Moncarz and Gerstle
and that of CPlane and the excellent correlation between LPS and CPlane, it
appears reasonable to conclude that the method of incorporating connections in
plane frame analysis outlined in this paper 1is good and gives result

comparable to that of Moncarz and Gerstle.
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8.2 Girder and Connection Moments

The structure as illustrated in Figure 58a was analyzed again wusing the
various connection models and assumptions described in Table 3 to study the
effect of flexible connections on maximum critical girder moments and girder
end moments. Figure 61 and Figure 62 plot the critical girder moments and
girder end moments of the lower girder against lateral load intensity for the

various connection assumptions.

As expected, the critical girder moment varies nonlinearly with lateral load
intensity for all connection assumptions with the exception of pin
connections, The apparent nonlinearity of the critical girder moment is
caused by the variable location of the critical section for differenet lateral
load intensity. From Figure 61 it is evident that the common assumption of
pin and rigid connections leads to substantial overestimation and
underestimation of critical girder moments respectively. The assumption of
flexible connections neglecting the effect of connection sizes leads to
underestimation of girder stiffness resulting in somewhat lower critical
girder moments. Since critical girder moments govern the design of girders,
one expects the assumption of pin and rigid connections will 1lead to-
conservative and unconservative design of girders respectively and 'the
assumption of flexible connections neglecting connection sizes will result in
slightly unconservative design. By making the response from nonlinear
refined connections the basis for comparison, Figure 63 shows the difference
in girder design moments for the different connection assumptions with lateral

load intensity, w, equals 0.02 kips/sq ft.
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From Figure 62 it is clear that the assumption of rigid connections leads to
substantial overestimation of girder end moments while the assumption of
flexible connections neglecting connection sizes leads to slight overestima-
tion of girder end moments. Since girder end moments are used in the design
of connections, one expects the assumption of rigid connections will lead to
conservative design while the assumption of flexible connections neglecting
connection sizes will 1lead fo slightly conservative design. Once again by
making the response from nonlinear refined connections the basis for

comparison, Figure 64 shows the difference in connectionn design moments for

the different connection assumptions with lateral load intensity, w, equals
0.02 kips/sq ft.
Connection
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Difference from Nonlinear Refined
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Figure 64 Difference in Lower Connection Design Moments for
Various Connection Assumptions, w=0.02
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8.3 Column Moments

Figure 65 plots the moments of the leeward lower column top against lateral
load intensity. The results show that the assumption of rigid connections
leads to substantial overestimation of column moments. However, in practice
this is not as significant as it appears because columns are usually designed
according to the magnitude of axial forces and the magnitude of column end
moments are mnot quite as important. Nevertheless it is intergsting to

observe how the different connection assumptions affect these moments.
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Figure 65 Leeward Lower Column Top Moment versus Lateral Load
Intensity for Various Connection Assumptions
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8.4 Maximum Top Story Sway

The maximum top story sway varies linearly with lateral 1load intensity as
illustrated in Figure 66. As expected, the assumption of rigid connections
results in stiffer structures and leads to underestimation of bare frame sways
while the assumption of flexible connections neglecting connection sizes
results in more flexible structures and leads to overestimation of bare frame

sways.

By making the mnonlinear refined connections the basis for comparison,
Figure 67 shows the difference in maximum top story sway for the different
connection assumptions with the lateral 1load intensity, w, equals 0.04

kips/sq ft.
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1

8.5 Linear versus Nonlinear Connection Behavior

From Figure 63, Figure 64, Figure 65 and Figure 67,’ it appears that the
assumption of linear connection response  yields satisfactory result provided
the connection moment-rotation relationships are cdrrectly linearized.
However 1linearization of these moment-rotation relatioships is a subjective
process and good results depend on judgement and experience. Poor
linearization of these relétionships could only lead to incorrect structural

response and therefore caution should be exercised.
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9 Conclusion

A practical method of incorporating realistic flexible comnnections in plane
frame analysis has been presented. This method requires modification to the
‘input format, local stiffness matrix, fixed end forces and member forces of a
standard plane frame analysis program. Connection stiffness is programmed
directly into the analysis by wutilizing the connection moment-rotation
equations developed by Frye and Morris [4] but may also be entered as data
separately. The algorithm presented is very general and it can be used to

model linear as well as nonlinear connection response.

A standard plane frame analysis program was modified accordingly and the
resulting program, CPlane, was used to analyze the simple plane frame
structure previously investigated by Moncarz and Gerstle [10]. The results

from CPlane were found to be comparable to that of Moncarz and Gerstle.

The same structure was analyzed again using different connection models and
different assumptions on connection behavior for various lateral load
intensities. It was found that the inclusion of flexible connections in
analysis significantly alter the internal force distribution of a structure.
By making the response from nonlinear refined connections the basis for

comparison, here are the findings:

Girder Design
1. Pin connections lead to overdesign of girders.

2. Flexible connections neglecting connection sizes 1lead to slightly

unconservative design.

3. Rigid or Rigid-end connections lead to unconservative design of girders.
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Connection Design

Linear flexible connections neglecting connection sizes lead to slightly

conservative design.

Rigid or Rigid-end connections lead to conservative design of

connections.

Column Design

While the column design moments vary substantially for different
connection assumptions, this is not significant because in design it is
usually the magnitude of axial forces and not the magnitude of column end

moments which governs.

Maximum Top Story Sway

Flexible connections neglecting connection sizes lead to overestimation

of building sway.

Rigid or Rigid-end connections lead to underestimation of building sway.

Linear versus Nonlinear Connection Behavior

Proper linearization of connection moment-rotation relationships yields
satisfactory structural response. However the linearization process is
subjective and the quality of the result depends strongly on judgement

and experience.
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Appendix A: Listing of the donnection Stiffness Subroutine

#include <math.h>
double ConnectKi(typ,mi,p2,p3,p4,pS)
int typ;
float mi,p2,p3,p4,p5;
{
/* Local Variables */
float c4,c5,c6,y1, y2 y3,y4;
double k phl km1
k=ki=kmi=0.0;
mi=fabs(mi);
switch(typ)
{

case 1: /* perfectly hinged connection */
ki=0.0;
break;

‘case 2: /* single web connection %/
yl=-2.4;
y2=-1.81;
y3=0.15;
k—pOW(p2 yL)*pow(p3,y2)*pow(ps,y3);
cb4=4_.28e-3;
c5=1. 45e 9
c6=1.51e-16;
kmi=k*mi;
break;

case 3: /* double web connection %/
yl=-2.4;

—pow(p2 y1)*pow(p3,y2)*pow(p4,y3);
c4=3.66e-4;
c5=1. 15e 6;
c6=4.57e-8;
kmi=k*mi;
break;
case 4: /* header plate connection */
y1=-2.3;
y2=-1. 60
y3=1.6;
y4=0. 5
, =pow (p2 yl)*pow(p3 y2)*pow(ph,y3)*pow(p5,y4);
c4=5.10e
c5=6.20e- 10
c6=2.40e-13;
kmi=k*mi;
break;
case 5: /* top & seat angle connection ¥/
yl=-1.5;
y2=-0.5;
y3=-1.1;
y4=-0.7;
kZPgW(EZ ,YL1)*pow(p3,y2)*pow(p4,y3)*pow(p5,y4);
c ’
c5=1.0le-4;
c6=1.24e-8;
kmi=k*mi;
break;
case 6: /* end plate connectlon (without column stlffeners) */
1=-2.4;
;2—-0 &



3=1.1;
—POW(pZ yl)*pow(p3,y2)*pow(ps,y3);
c4=1.83e-3;
c5=-1, Ohe 4
c6 6.38e-6;
kmi=k*mi;
break;
case 7: é* end plate connectlon (with column stiffeners) */
yl=-2.4;
2=-0.6;
—pow(p2, yl)*pOW(p3 y2);
ch=1.7 9e-3
c5=1.76e-4;
06=2.04e-4;
kmi=k*mi ;
break;
case 8: /* t-stub connection */
yl=-1.5;
2=-0.5;
;3=-1.1;
y4=-0.7;
k;ng(pZAyl)*1>OW(p3 ,¥2)*pow (p4,y3)*pow(p5,y4);
ch=
c5=6.2e- 6,
c6=7.60e-9;
kmi=k#*mi ;
break;
case 9: /* other */
ki=p2;
break;
case 10: /* perfectly rigid */
' ki=-1.00e+38;
break;

)
if (typ>l && typ <9)
{

kmi=k*mi ;
phi=c4*kmi+c5*pow(kmi,3.)+c6*pow(kmi,5.);
if (phi<=1l.e-30)-:

ki=1./(k¥*c4);
else

ki=mi/phi;

return(ki) ;
}
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Appendix B: Listing of the Modified Local

Stiffness Matrix

#include <stdio.h>
#include <math.h>
#include "Globals.h"
#include "inout.h"
extern float E,G;

extern struct BEAMSTIFFNESS theStorage;
struct BEAMSTIFFNESS *BeamStiffnessFor (TPBeam)

struct BEAM *TPBeam;

{

/* Local Variables */

struct BEAMSTIFFNESS *Local = &theStorage;

int DOF[6],k12;

float 11,12;

double K[22];

double c¢,cc,s,ss,cs,xm,ym,1,dm,xm2

,ym2,dm2,g,nul,nu?;

double Cl c2 C3 04 CS 3 Sl §2,S3 84 5$5,86,f1,£2,£3, £4 ,k1,k2;

int i;

c=cc= 1.,

s=ss=cs=0.

DOF[0] = TPBeam >nodel->DOF[0];
DOF[1] = TPBeam->nodel->DOF[1];
DOF[2] = TPBeam->nodel->DOF[2];
DOF[3] = TPBeam->node2->DOF[0];
DOF[4] = TPBeam->node2->DOF[1];
DOF[5] = TPBeam->node2->DOF[2];

kl2 = TPBeam->kl2;

Xm =
ym = (TPBeam->node2->Y) - (TPBeam->nodel->Y);
Xm2 = xm¥xm;

ym2 = ym¥*ym; -

dm2 = xm2+ym2;

dm = sqrt(dm2);

c=xm/dm;

cc=c¥*c;

s=ym/dm;

ss=s%s;

/* Connection Sizes */
if (TPBeam->connectl==NULL)
11=0.;
else
11=(TPBeam->connectl->pl);
if (TPBeam->connect2==NULL)
12=0.;
else
12=(TPBeam->connect2->pl);
1=dm-11-12;
* Flexible Connection */
kl=k2=-1.00e+38;
if (TPBeam >connect1==NULL)
nul=1;
else

kl=(TPBeam->connectl->Ki);
if (k1>0. && kl<=1l.e-30)
nul=0, ;
else
if (k1==-l.00e+38)
nul=1.
else

(TPBeam->node2->X) - (TPBeam->nodel->X);

nul=1. /(1 +((3*E*(TPBeam->inertia))/(kl*1)));
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)

if (TPBeam->connect2==NULL)
nu2=1.; ‘

else

k2=(TPBeam->connect2->Ki);
if (k2>0. && k2<=1.e-30)
nu2=0. ;
else
if (k2==-1.00e+38)
nu2=1. ;
else
nu2=1./(1l.+((3*E*(TPBeam->inertia))/(k2*1)));

/* Shear Deflection */
g = 0.0;
if ((TPBeam->ashear) != 0.0 && G != 0.0)
g=12 . *E*(TPBeam->inertia)/((TPBeam->ashear)*G*1¥l);

*

Storage Allocation for K
1 2 3 4 5 6
7 8 91011
12 13 14 15
16 17 18
19 20
21
1 2 3 4 5 6

oS wN

Member Degrees of freedom DOF
1 4

0 ---> f=————==—=§ ---> 3
ve>2 1o>5

(+)ve: right, up, ccw
%/ .
/*** Defining constants for pin pin member %%/

fl=(TPBeam->area)*E/]; )
/* f£ill in pin pin section of member stiffness matrix */

K[(1l] = fl*cc;
K{2] = fl*cs;
K[3 = 0.0;
K[4 = -fl¥*cc;
K[> = -fl*cs;
K[6 = 0.0;
K[7 = fl%gs;
K[8 = 0.0;
K[9 = -fl*cs;:
K[10] = -fl*ss;
K[11l] = 0.0;
K[(12] = 0.0;
K[13] = 0.0;
K[14] = 0.0;
K[15] = 0.0;
K[(1l6] = fl*cc;
K[17] = fl*cs;
K[(18] = 0.0;
K[19] = fl%*ss;
K[20] = 0.0;
K[21] = 0.0;
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if (k12 !'= pin pin)

/*%* Defining constants for fix_fix member *¥%/
if (k12 == fix fix)

Cl = (nu1+nu2+nul*nu2)/(4-nu1*nu2);
C2 = nul*(2+nu2)/(4-nul*nu?);
C3 = 3*nul/(4-nul*nu?);
C4 = nu2*(2+nul)/(4-nul*nu?);
C5 = 3*nul*nu2/(4-nul*nu?);
C6 = 3*nu2/(4-nul*nu?);
S1 = 1/(1l+g*Cl);
S2 = (l+g*nu2/4)/(1+g*Cl);
S3 = (1-g/2)/(1+g*Cl);
S4 = (l+g*nul/4)/(1+g*Cl);
f1l = 12.*%E*(TPBeam->inertia)/(1*1*1)*C1*S1;
f2 = 12.*E*(TPBeam->inertia)/(1l*1)*C2#*S1;
f3 = 12.*E*(TPBeam->inertia)/(1%*1)*C4*S1,;
f4 = 4 . *%E*x(TPBeam->inertia)/l;
)
else
if (k12 == fix_pin)
{
$5 = 1/(1+g*nul/4);
f1 = 3.*%E%(TPBeam->inertia)/(1*1*1)*nul*S5;
f2 = 6*E*(TPBeam->inertia)/(1%1)*nul*S5;
f3 = 0;
f4 = 3*E*(TPBeam->inertia)/1;
)
else

if (k12 == pin_ fix)
( .

S6 = 1/(1+g*nu2/4);

fl = 3.%E*(TPBeam->inertia)/(l*1¥*1)*nu2*56;
f2 = 0;

£f3 = 6*%E*(TPBeam->inertia)/(1*1)*nu2*56;

f4 =

3%E*(TPBeam->inertid)/1;
} .

/% £ill in terms which are common to pin_fix, fix pin and fix fix members

*/

+

fl*ss;
fl*cs;
fl*ll*s;
fl*ss;
fl*cs;
fl*12%s;
fl*cc;
fi*ll*c;
fl*cs;
fl*cc;
fl*12%c;
£f1x11*11;
flxll*s;
fl*ll*c;
f1*11%12;
fl*ss;
fl*cs;
f1*12*s;
fl*cc;
£1*12%c;
21] += f1%*12%12;
/% £ill in remaining fix fix terms */
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if (k12 == fix fix)

3] -= 0.5%f2%g;

6] -= 0.5*%f3%g;

8] 4= 0.5%f2%c;

11] += 0.5%f3%c;

12] += £4*%C3*52 + f2%*11;
+= 0.5%f2%s;

14] -= 0.5%f2%c;

15] 4= 0.5%f4%C5*%S3 + 0.5%f3%11 + 0.5%f2%12;
18] += 0.5%f3%s; _
20] -= 0.5%f3%c;

21] += f£4%C6%S4 + f3%12;

T R R R R R R R R R R
'.—l
(%]

/* fill in remaining fix pin terms */
- else
if (k12 — fix pin)
{
K[{3] -= 0.5%f2%s;
K[8] 4= 0.5%f2%c;
K[12] += f4*nul*S5;
K[13] += 0.5%f2%sg;
K[14] -= 0.5%f2%c;
K[15] += 0.5%f2%12;

/* fill in remaining pin fix terms */
if (k12 == pin fix)
{
K(6] -= 0.5%f3%s;
] += 0.5%f3%c;
] += 0.5%f3*11;
] += 0.5%f3%*g;
] -= 0.5%f3%c;
] += f4*nu2*S6 + £3%12;
}
}
for (i=1; i<=21; ++i)
{
Local->K[i] = K[i];

for (i=0; i<=5; ++i) Local->DOF[i] = DOF[i];
return(Local) ;



Appendix C: Listing of the Modified Fixed End Forces

void PerpBeamlLoad (shearl, shear2, bml, bm2, dm, dm2, TPBLoad, TPBeam)
float *shearl;
float *shear?;
float *bml;
float *bm2;
float dm;
double dm2;
struct BLOAD *TPBLoad;
struct BEAM *TPBeam;
{
float w12, wl8, b, 11, 12, 1, k1, k2;
float w, P, a; '
- double nul, nu2, CO, Cl, g, S1, Al, A2, A3, A4, Rxl, Rx2, Ryl, Ry2;
/* Connection Sizes ¥/
=sqrt(dm2); ,
if (TPBeam->connectl==NULL)
11=0.;
else
11=(TPBeam->connectl->pl);
if (TPBeam->connect2==NULL)
12=0. ;
else
12=(TPBeam->connect2->pl);
1=dm-11-12;
/* Flexible Connection */
if (TPBeam->connectl==NULL)
nul=1. ;
else

k1=(TPBeam->connect1->Ki)j

if (k1==0.0)

nul=0.;
else

if (kl==-1.00e+38)
7 nul=l.;

else

nul=1/(1+((3*E*(TPBeam->inertia))/(kl*1l)));
}
if (TPBeam->connect2==NULL)
nu2=]. ;
else

k2=(TPBeam->connect2->Ki);

if (k2==0.0)
nu2=0. ;
else
if (k2==-1.00e+38)
nu2=1.;
else

nu2=1/(1+((3.*%E*(TPBeam->inertia))/(k2*1)));

/* Shear Deflection */
g=0.0;
if ((TPBeam->ashear) != 0.0 && G != 0.0)
g=12 . *E*(TPBeam->inertia)/((TPBeam->ashear)*G*1*1);



w=(TPBL
P=TPBLo
a=TPBLo

oad->w)*dm/1;
ad->P;
ad->a-11;

b =1-a;

switch

case fi
co
Ccl
S1

if (
{

1+a/(1*1)*(
1+b/(1*1)%*(

(TPBeam->k12)

x_fix:

= 1/(4-nul*nu?);
(nu1+nu2+nu1*nu2)/(4-nu1*nu2);
1/(1+g*Cl);
1=0

N
Wi

calculate the Beam Forces for final output */

Al =

4*1*(nu1 nu?) -nul*a*(2+nu?)+nu2*b* (2+nul) ) *CO*S1;
A2

4*1*(nu2 nul)+nul*a*(2+nu2) -nu2*b* (24nul) ) *CO*S1;
A3 (nul*1*(44nu2*(1.5%g-1)) - nul*a*(2+nu2))/b*CO*Sl;

A4 - (nu2*1%*(4+4nul* (1. S*g 1)) -nu2*b*(2+nul) ) /a*CO*S1;
Ryl = P*b/1%Al;
Ry2 = P*a/1*A2;

*shearl += Ryl;
*shear?2 -= Ry2;
*bml -= P*a¥*b*b/(1*¥1)*A3+Ryl*11;
*bm2 -= P*a‘a*b/(1*1)*A4+Ry2*12;

}
if (w 1= 0.0)

/* calculate the Beam Forces for final output */

wl2 = w¥1/2.0;

Cl = (nul+nu2+nul*nu2)/(4-nul*nu2);

Al = 1+(nul-nu2)/(4-nul*nu2)/(1+g*Cl);
A2 = 14+(nu2-nul)/(4-nul*nu?)/(1+g*Cl);
A3 = 3%nul*(2-nu2*(l-g))*CO*S1;

A4 = 3%nu2*(2-nul*(l-g))*CO*S1;

Ryl = wl2=*Al;

Ry2 = wl2*A2;

*shearl += Ryl;
*shear2 -= Ry2;

*bml -= wl2%1/6.0%A34+Ry1*11;
*bm2 -= wl2*1/6.0%A44Ry2*12;
)
break;

case pin_fix:
if (P != 0. 0)

{

/* calculate the Beam Forces for final output */

= nu2/(l+g*nu2/4) ;
A2 = a*b*(b+§ 0*a)/(2 0*1%1%*1);
Ryl = P*a/1 + P*A2%Al;
Ry2 = P*b/1 - P*A2*%Al;

*shearl += Ryl;
*shear?2 -= Ry2;

*bml -= Ryl*11;

*bm2 -= P*A2%]1+Ry2%12;
}
if (w 1= 0.0)
¢

/* calculate the Beam Forces for final output */

wl8 = w*x1/8.0;

Al = (4- nu2*(l-g))/(1+g*nu2/4);
A2 = (44nu2*(1+g))/(I+g*nu2/4);
A3 = nu2/(l+g*nu/4);
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Ryl = wl8%*Al;
Ry2 = wl8*A2;
*shearl += Ryl;
*shear?2 -= Ry2;

*bml -= Ryl%*11;

*bm?2 -= w18*1*A3+Ry2*12
}
break;

case fix_pin:
if (P !'=0.0)
{

/* calculate the Beam Forces for final output */

Al = nul/(l+g*nul/4);
A2 = a¥*b*(a+2.0%b)/(2.0%1*1*1);
Ryl = P*b/1 + P*A2%Al;
Ry2 = P*a/l - P*A2*Al;

*shearl += Ryl;

*shear?2 -= Ry2;

*bml -= P*A2*1+Ry1*11
*bm2 -= Ry2%*12;

)
if (w 1=0.0)
{

/* calculate the Beam Forces for final output */

wl8 = w¥1/8.0;

Al = (44nul*(1+g))/(l4+g*nul/4);
A2 = (4-nul*(1l-g))/(l+g*nul/4);
A3 = nul/(l+g*nul/4);

Ryl = wl8%Al,;

Ry2 = wl8*A2;

*shearl += Ryl;
*shear?2 -= Ry2;

*bml -= wl8*l*A3+Ry1*11
*bm?2 -= Ry2%12;

}

break;

case pin pin:
if (P != 0.0)
{

/* calculate the Beam Forces for final output */
*shearl = P*b/1;
*shear?2 =-P*a/l;

if (w = 0.0)

/* calculate the Beam Forces for final output */
wl2 = w*1/2.0;

*shearl += wl2;

*shear?2 -= wl2;

)

break;



void XYdirBeamlLoad (px1l, px2, pml, pm2, xym, dm2, TPBLoad, TPBeam)
float *pxl;
float *px2;
float *pml;
float *pm2;
double xym, dm2;
struct BLOAD *TPBLoad;
struct BEAM *TPBeam;
{
float wl2, wxy2, wl8, wxy8, b, 11, 12, 1, kl, k2;
float w, P, a;
double dm nul nu2, €O, Cl, g, S1, Al, A2, A3, A4, nyl Rxy2;
dm—sqrt(dm2),
/* Connection Sizes */
. if (TPBeam->connectl==NULL)
11=0.;
else
11=(TPBeam->connectl->pl)*xym/dm;
if (TPBeam->connect2==NULL)
12=0.;
else
12=(TPBeam- >connect2 ->pl)*xym/dm;
1=dm-11-12;
/* Flexible Connection */
if (TPBeam->connectl==NULL)
nul=1; .
else

k1l=(TPBeam->connectl->Ki);

if (k1==0.0)
nul=0,
else
if (k1==-1 00e+38)
nul=1.
else

nul=1/(1+((3*E*(TPBeam->inertia))/(kl*1l)));
)
if (TPBeam->connect2==NULL)
nu2=1.;
else

k2=(TPBeam->connect2->Ki);

if (k2==0.0)
nu2=0. ;
else
if (k2——-1.00e+38)
nu2=1.
else

nu2= 1/(1+((3*E*(TPBeam >inertia))/(k2¥*1)));

/* Shear Deflection */
g=0.0; ‘
if ((TPBeam->ashear) != 0.0 & G != 0.0)
g=12 . *E*(TPBeam->inertia)/((TPBeam->ashear)*G*1*1);

w=(TPBLoad->w)*dm/1;
P=TPBLoad->P;
a=TPBLoad->a-11;

= l-a;

switch (TPBeam->kl2)
{
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case fix fix:
C0 =1/(4-nul*nu?);
Cl = (nul+nu2+nul*nu2)/(4-nul*nu?);
S1 = 1/(1+g*Cl);
if (P !'= 0. g

/* calculate the structure applied loads */
if (1>0.0)
{

Al

1+a/(1*1)*(4*1*(nul-nu2)
-nul¥*a*(2+nu2)+nu2*b*(2+nul) )*CO*S1;
A2 = 14+b/(1*]1)*(4%1*(nu2-nul)
+nul*a*(2+nu2) -nu2¥*b* (2+nul) ) *CO*S1;
A3 = (nul*1*(4+nu2*(1l.5%g-1))-nul*a*(2+nu2))/b*CO*S1;

A4 (nu2*1*(4+nul*(1.5*%g-1)) -nu2*b* (2+nul) ) /a*CO*S1;
*pxl += P*b/1*Al,
*px2 += P¥*a/1*%A2;
Rxyl = %pxl;
Rxy2 = #*px2;
*pml -= sign(xym)*P*a*b*b/(1%1)*A34+Rxyl*1l;
*pm2 += sign(xym)*Prar*a*b/(1l*1)*A44+Rxy2+*12;
}
else

*pxl += P*b/1;
*px2 += P - (*pxl);
|

)
if (w!=0.0)
{
if (1>0.0)
{
/* calculate the structure applied loads ¥/

wl2 = w¥1/2.0}
wxy2 = w¥l/2. O*sign(xym)'

Cl = (nul4+nu2+nul*nu2)/(4-nul*nu?2);

Al = 1l+(nul-nu2)/(4-nul*nu2)/(l+g*Cl);
A2 = 1+(nu2-nul)/(4-nul*nu2)/(l+g*Cl) ;
A3 = 3%nul*(2-nu2*(l-g))*CO*S1,;

A4 = 3%nu2*(2-nul*(1l-g))*CO*S1,;

*pxl += wl2*Al;

*px2 4= wl2%A2;
Rxyl = %*pxl;
Rxy2 = *px2;
*pml -= wxy2*l/6 0*A3+Rxyl*11;
*pm2 += wxy2*¥1/6.0%A4+Rxy2%12;
}

else

{
*pxl += wtl/2.;
*px2 += *pxl;

)

}
break;

case pin_ fix:
if (P '= 0.0)
{

if (1>0.0)
{

/* calculate the structure applied loads */
Al = nu2/(l+§*nu2/4
A2 = a*b*(b+ O*a)/(2 0*1*1%1);
Rxyl = P*a/1 + P*A2%Al;
Rxy2 = P*¥b/1 - P*A2%Al;
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*pxl += Rxyl;

*px2 += Rxy2;

*pml -= Rxyl¥ll;

*pm2 += sign(xym)*P*A2*%14+Rxy2%12;
}
else

*pxl = P*b/1;

*px2 = P - (*pxl);

}
)
if (w 1= 0.0)
{
if (1>0.0)
{

/* calculate the structure applied loads */
wl8 = w*1/8.0;

wxy8 = w*l/8.0%sign(xym);

Al (4-nu2*(1l-g))/(l4g*nu2/4);
A2 (4+nu2*(1+g) ) /(1+g*nu2 /4) ;
A3 nu2/(l+g*nu2/4);

Rxyl = wl8*Al,;

Rxy2 = wl8%A2;

*pxl += Rxyl;

*px2 += Rxy2;

*pml -= Rxyl*ll;

*pm2 += wxy8%1*A34Rxy2%*12;

else

{
*pxl += w¥l/2.;
*px2 += *pxl;

)

}
break;

case fix _pin:
if (P = 0.0)

{
if (1>0.0)

/* calculate the structure applied loads */-
Al = nul/(l+g*nul/4);
A2 = a*b*(a+2 O*b)/(2 0*1*1*1)
Rxyl = P*b/1 + P*A2*Al;
Rxy2 = P*a/l1 - P*A2%Al;
*pxl += Rxyl;
*px2 += Rxy2;
*pml -= sign(xym)*P*A2%14+Rxyl*11;
*pm2 += Rxy2%12;
)

else
{
*pxl = P*b/1;
#px2 = P - (hpxl);

)
)
if (w 1= 0.0)

{
if (1>0.0)
{
/* calculate the structure applied loads */
wl8 = w*xl1/8.0;
wxy8 = w¥sign(xym)*1/8.0;
Al = (44nul*(1l+g))/(L+g*nul/4);



A2 (4-nul*(1l-g))/(l+g*nul/4);
A3 nul/(1l+g*nul/4);
Rxyl = wl8*Al;
Rxy2 = wlB8*%A2;
*pxl += Rxyl;
*px2 += Rxy2;
*pml -= wxy8*1*A3+Rxyl#*ll;
*pm2 += Rxy2#*12;
)
else

{

*pxl += w*l/2.;
*px2 += *pxl;
}
)
break;
case pin_pin:
if (P~ '— 0.0)

{
if (1>0.0)
{

/* calculate the structure applied loads */

*pxl = P*b/1;
*px2 = P*a/l;
)
else
{
*pxl = P*b/1;
*px2 = P - (*pxl);

)
)
if (w !'= 0.0)
{
if (1>0.0)
{

/* calculate the structure applied loads */
wl2 = w¥l1/2.0;
*pxl += wl2;
*px2 += wl2;
}
else
{ .
*pxl += w¥l/2.;
*px2 += *pxl;
-}
}
break;
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Appexdix D: Listing of the Modified Member Forces

o

void Write(NodeVec, MaxNodeNum, BeamVec, MaxBeamNum, MaxSpringNum)
struct NODE *NodeVec(]; ) :

struct BEAM *BeamVec|];

int MaxNodeNum, MaxBeamNum;

/* Local Variables #*/

int DOF1,DOF2,DOF3,bof,boflen,pcode,eof,eoflen,col,row,i,j;
int cnheader,kl2,fmt,colwl,colwlen,width,Typ;

double d1,d2,d3,d4,d5,d46,47,¢,s,C1,C2,€3,C4,C5,51,82,583,55,S6;
float kl1,k2,dfl,df2,df3,axiall,axial?2,shearl,shear2,bml,bm?2;
float area,ashear,inertia,axial,shear,bm,kc,p2,p3,p4,p5;
double nul,nu2,xm,ym,dm,xm2,ym2,dm2,1,11,12,g,ksl,ks2,ks3;
struct BEAM *TPBeam;

struct CONNECT *connectn;

struct forces *reactns, ¥*end rctns;

/* Functions used *
void flt rec(int, int, float, int, FILE %);
void header(int, int, char *, char *, char *, char *, char *, char *,
char *, FILE *);
void int rec(int, int, int, FILE ¥*);
void 1bl rec(int, int, char *, char, FILE %);
void wrtint(int, FILE ¥%);
double ConnectKi(int, float, float, float, float, float);
/* Defining constants */
row=col=0;

define column A & row 1 */

*

bof=0; * opcode for BOF marker */
boflen=2; * length of BOF marker =%/
pcode=1030; * product code *

colwl=8; © /% opcode for setting column width:%*/
colwlen=3; * length of column width record */
eof=1; * opcode for EOF marker */

eoflen=0; /* length of EOF marder */

/*

### Write output ###
*/
wrtint(bof, fptarget);
wrtint(boflen, fptarget);
wrtint(pcode, fptarget);
for (col=0; col<=6; col++)
{.
wrtint(colwl, fptarget);
wrtint(colwlen, fptarget);
wrtint(col, fptarget);
if (col<=0)
width=6;
else

{
if (col==3 || col==6)
width=13;
else
width=10;
)
fputc(width, fptarget);

)
col=0;

152



*/

/* ### Write TITLE H#H */
1bl _rec(col,row,ver,left, fptarget);

rowt+;

1bl rec(col,row,title,left, fptarget);

row+=2;

reactns = beg rctns; /* initialize linked list of support reactions

/%  ### Write NODE displacements ### */
1bl_rec(col,row,nodedisp,left,fptarget);

YOWwH+;
header(2,row, "node","x disp","y disp","rotation","blank",

"blank","blank", fptarget);

rowt+;

i=1;
while (i<=MaxNodeNum)

if (NodeVec[i] != NULL)
{

int rec(0,row,NodeVec[i]->num, fptarget);
fmt=0x92;

dl=NodeVec[i]->d[0];
d2=NodeVec[i]->d[1];
d3=NodeVec[i]->d[2];
dfl=(float)dl;

df2=(float)d?;

df3=(float)d3;
flt_rec(l,row,dfl,fmt,fptarget);
flt_rec(2,row,df2,fmt,fptarget);
flt_rec(3,row,df3, fmt, fptarget);
row++;

/* 1identify support nodes */

DOF1=NodeVec[i]->DOF[0];

DOF2=NodeVec[i]->DOF[1];

DOF3=NodeVec[i]->DOF[2];

if (DOF1 ==0 || DOF2 == O || DOF3 == 0)
{

reactns->num=NodeVec[i]->num;
reactns++;
)
3 : }
i++;
).
end_rctns=reactns;
reactns=beg_rctns;
row++;
/*  ### Write MEMBER forces ### ¥/
1bl_rec(col,row,beamforce,left, fptarget);
row++;
header (2, row, "member", "axiall"”, "shearl”,"bml","axial2",
"shear2","bm2", fptarget) ;
row++;
i=1;
while (i<=MaxBeamNum)

if (BeamVec[i] != NULL)
{

TPBeam = BeamVec[i];

dl = BeamVec{i]->nodel->d[0];
d2 = BeamVec[i]->nodel->d[1];
' d3 = BeamVec[i]->nodel->d[2];
d4 = BeamVec[i]->node2->d[0];
d5 = BeamVec[i]->node2->d[1];
d6 = BeamVec[i]->node2->d[2];



k12= BeamVec[i]->kl2;

area = BeamVec[i]->area;

ashear BeamVec[i]->ashear;

inertia = BeamVec[i]->inertia;

xm = (BeamVec[i]->node2->X) - (BeamVec[i]->nodel->X);
ym = (BeamVec[i]->node2->Y) - (BeamVec[i]->nodel->Y);

Xm2 = Xm¥*xm;

ym2 = ym*ym;

dm2 = xm2+ym2;
dm = sqrt(dm2);
c = xm/dm;

s = ym/dm;

* Connection Sizes */

if (TPBeam->connectl==NULL)
11=0. ;

else :

11=(TPBeam->connectl->pl);

if (TPBeam->connect2==NULL)
12=0. ;

else
12=(TPBeam->connect2->pl);

1l = dm-11-12;

/* Flexible Connection */

kl=k2=-1.,00e+38;

if (TPBeam->connectl==NULL)
nul=1;

else

kl=(TPBeam->connectl->Ki);
if (k1>0. && kl<=1l.e-30)
nul=0. ;
else
if (kl==-1.00e+38)
nul=1.;
else
nul=1./(1l.+((3*E*(TPBeam->inertia))/(kl¥*1)));

if (TPBeam->connect2==NULL)
nu2=1.;
else

k2=(TPBeam->connect2->Ki);
if (k2>0. && k2<=1.e-30)
nu2=0. ;
else
if (k2==-1.00e+38)
nu2=1.;
else :
nu2=1./(1l.4+((3*E*(TPBeam->inertia))/(k2%1)));
)
axiall=axial2 = ((d4-dl)*c+(d5-d2)*s)*area*E/1;
if (k12 == pin_pin) ‘
shearl = shear2 = bml = bm2 = 0.0;
else
{
d7 = (d2-d5)*c+(d4-dl)*s;
/* Shear Deflection */
if (6 =— 0.0 || ashear == 0.0)
g=0.0;
else
g=12 .%E¥*inertia/(ashear*Gx1*l);
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if (k12 ==

{
Ccl
Cc2
c3
C4
C5
S1
S2
S3
shear

shear

fix_ fix)

(nul+nu2+nul*nu?) /(4-nul*nu?);
nul*(2+nu2)/(4-nul*nu2);
3*nul/(4-nul*nu?);

nu2*(2+nul) /(4-nul*nu2);
3*nul*nu2/(4-nul*nu?);

1/(1+g*Cl);

(1+g*nu2/4)/(1+g*C1);

/2)/(1+g*Cl);

l —%(2 O*Cl/l)*d7+(C2+2*ll*Cl/1)*d3
+(C&+2*12*Cl/1)*d6)*6*E*1nert1a*51/(l*l),
2 = shearl;

bml = -((6. 0*C2*Sl/l)*d7+(4.0*C3*52+6.0*11*02*31/1)*d3

bm2
)
if (kL

shea
tia*nu2*S6/(1%1);
bml
shea
bm2

)
if (kl

+(2.0%C5%5346 . 0%12%C2%S1/1)*d6) *Exinertia/1;

= bml+shearl*l;

2 = pin_fix)

1/(1+g*nu2/4);
rl = (d7/1+11/1*d3+(1+12/1)*d6)*3*E*1ner—

0.0;
shearl;
(d7/1+411/1*%d3+ (1412 /1)*d6)*3*%E*xinertia*nu2*S6/1;

r2

iono

2 == fix_pin)

= 1/(l+g*nul/b);

shea
tla*nul*SS/(l*l),
v bml
shea
bm2
}

}
/* if the
atached t
structura
if (BeamV
{

axiall

axial?2
bml

bm2

shearl

shear?2
}
/* write
int_rec(O0,
fmt=0x81;
flt rec(l
flt

flc
flt

row++;

rec(2,
flt rec(3,
rec(4,
rec(5,
flt rec(6,

rl (d7/1+(1+11/1)*d3+12/1%d6)*3*E*iner-

-(d7/1+(1+11/1)*d3+12/1*d6)*3*E*1nert1a*nul*85/1
shearl;
0.0;

r2

|

re were loads on the beam the end forces will be
o the beam in the BFORCE structure. Add these to '
1 forces to get resultant */

ec[i]->bforce!=NULL)

+=BeamVec[i]->bforce->axiall;
+=BeamVec[i]->bforce->axial?2;
+=(BeamVec[i]->bforce->bml)

+((BeamVec[i]->bforce->shearl)*11l);
+=(BeamVec[i]->bforce->bm2)

- ((BeamVec[i]->bforce->shear2)*12);
+=BeamVec[i]->bforce->shearl;
+=BeamVec[i] ->bforce->shear?;

out resultant beam forces */
row,BeamVec{i] ->num, fptarget);

row,axiall, fmt, fptarget);
row,shearl, fmt, fptarget);
row,bml, fmt, fptarget);
row,axial?,fmt, fptarget);
row,shear2, fmt, fptarget);
row,bm2, fmt, fptarget);


http://stlG3.1T
http://sll.G3.irl

/* Assign appropriate forces to Connections */
if (TPBeam->connectl != NULL)
{

connectn = TPBeam->connectl;

connectn->V¢ = shearl;

connectn->Mc = bml;

Typ = connectn->Typ;

P2 = connectn->p2;

p3 = connectn->p3;

P4 = connectn->p4;

PS> = connectn->p5;

ke = (float) ConnectKi(Typ,bml,p2,p3,p4,p5);

connectn->Kc = kc;

)
if (TPBeam->connect2 != NULL)
{ -
connectn = TPBeam->connect?;
connectn->Vc = shear?2;
connectn->Mc = bm2;

Typ = connectn->Typ;
P2 = connectn->p2;
p3 = connectn->p3;
p4 = connectn->p4;
5 = connectn->p5;

= (float) ConnectKl(Typ bm2,p2,p3,p4,p5);
connectn >Ke = ke¢;

}
/* sum all beam forces at node supports */

reactns=beg_rctns;
while (reactns != end rctns)

if (BeamVec[i]->nodel->num==reactns->num)

axial=axiall*(-1.);
shear=shearl;
reactns->M+=bml*(-1.)+shear*ll;
reactns->Rx+=axial*c-shear¥*s;
reactns->Ry+=axial*s+shear*c;

if (BeamVec[i]->node2->num=—reactns->num)

axial=axial?2;

shear~shear2*( 1.);
reactns->M+=bm2 - shear*12
reactns->Rx+=axial*c- shear*s;
reactns->Ry+=axial*s+shear*c;

reactns++;

)
)
i++;
)
/%  ### Write CONNECTION forces ### %/
cnheader=0;
i=1;
while (i<=MaxNodeNum)
if (NodeVec[i] != NULL)
{

j=1;
while (j <= MaxBeamNum)

1f (BeamVec[j] != NULL)
{
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TPBeam = BeamVec[j];
if (TPBeam->connectl->Jn==NodeVec[i]->num ||
TPBeam->connect2->Jn==NodeVec[i]->num)
{
if (cnheader==0)
{
row++;
1bl_rec(col,row,connforce,left, fptarget);
row++;
header(Z row,"n_num","m_num","Vec", "bmc", "Kc",
"bml" et fptarget),
row+t;
cnheader=1;

)
if (TPBeam->connectl->Jn==NodeVec[i]->num)
connectn=TPBeam->connectl;
else
connectn=TPBeam->connect2;
int_rec(0,row,connectn->Jn, fptarget),
int_rec(l,row,connectn->Mn, fptarget);
fmt=0x81;
flt rec(2 row,connectn->Vec, fmt, fptarget);
flt_rec(3,row, connectn->Mc, fmt, fptarget) ;
fmt=0x92;
if ((connectn->Kc) < 0.)
1bl_rec(4,row,"rigid",centre, fptarget);
else
flt_rec(4,row,connectn->Kec, fmt, fptarget);
fmt=0%81;
fltc rec(5 row,connectn->Mi, fmt, fptarget);
fmt=0x92;
if ((connectn->Ki) < 0.)
1bl rec(6,row,"rigid",centre, fptarget);

else
flt rec(6,row,connectn->Ki, fmt, fptarget);
rowt+;
}
}
Jj+
)
)
i++;
y
row++;

/* ### VWrite Support Reactions ### */
1bl_rec(col,row,reactions,left,fptarget);

rowH+;
header(2,row, "node", "Rx","Ry","M", "blank","blank", "blank", fptarget);
row++;

reactns=beg rctns;

while (reactns != end_rctns)

int_rec(0,row,reactns->num, fptarget);
fmt=0x81;

flt rec(l row,reactns->Rx, fmt fptarget),
flt_rec(2,row,reactns- >Ry fmt, fptarget);
flt_rec(3,row,reactns->M,fmt,fptarget);
row++;

reactns++;

)

row++;
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/* ### Write Spring Forces ### */
if (MaxSpringNum>0)
{

1bl_rec(col,row,springforce,left, fptarget);
row++;

header (2, row, "node", "Rsx","Rsy", "Ms", "blank", "blank", "blank", fptarget);
row++;
i=1;
while (i<=MaxSpringNum)

if (NodeVec[i] != NULL)
if (NodeVec[i]->spring!=NULL)
{

ks2=NodeVec[i]->spring->Ks[1];
ks3=NodeVec[i]->spring->Ks[2];
axiall=(float) (ksl*NodeVec[i]->d[0]*(-1.0L
axial2=(float) (ks2*NodeVec[i]->d[1]*(-1.0L
bml=(float) (ks3*NodeVec[1i]->d[2]*(-1.0L));
int_rec(0,row,NodeVec[i]->num, fptarget);
'fmt=0x81;

flt rec(l,row,axiall, fmt, fptarget);
flt_rec(2,row,axial2, fmt,fptarget);

flt _rec(3,row,bml, fmt,fptarget);

row++;

)

ksl=NodeVec[i]->spring->Ks{0];

V)
)

}
i++;
) }
/* ### EOF marker ### %/
wrtint(eof,fptarget);

wrtint(eoflen, fptarget);
fclose(fptarget);
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Appéndix E: CPlane User Manual

CPlane

Highlight:
--- a structural analysis program as an add-on for spreadsheets
--- includes the effect of flexible connections

linear and nonlinear

--- simple geometry generation and post processing
with spreadsheets

--- ease of use

--- written in C

compatible with spreadsheets:

LOTUS 1-2-3 (IM), SYMPHONY (TM), QUATTRO (TM).
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Introduction

The elastic structural analysis program "CPlane" was developed with the
intention of devising a practical method of incorporating behavior of
flexible connections in analysis of steel structures. The program 1is
designed for use with personal computers equiped with a math coproccessor
and requires DOS or 0S/2 operating systems. Any personal computer capable
of running LOTUS 1-2-3 (TM) or SYMPHONY (TM) should have no problem in

running "CPlane".

"CPlane" works independently from Lotus 1-2-3, Release 2.0 and later.
However, it requires input (source) data and produces output (target) data
in LOTUS worksheet file format (files with extension ".WK1")., "CPlane"
operates with all IBM PC’s or compatibles and no specific requirements are
necessary. The problem solution module is centered around a unique
stiffness matrix program which is written in the C language. It interfaces
with the spreadsheet program directly without going through cumbersome data
file conversions. The spreadsheet allows for greatest simplicity' and
flexibility in creating input data and evaluating numerical results. A.set
of pre- and post-processor templates is provided to guide the user in the
use of "CPlane". User can easily implement this analysis module in his

custom designed spreadsheet templates as will be shown in an example later.

"CPlane" can solve static linear elastic structural systems with a
multitude of load types. The user should be familiar with basic engineering
and computer terminology to use this program most effectively. We suggest
that new users read parts of this manual to become familiar with "CPlane"'s

capabilities. In most cases, a thumbing through the manual is suffice.

"CPlane" accepts any consistent set of units. Geometry plots can be viewed
on the screen when the preset templates are used for creating the program
input. Hardcopy plots can be made wusing the spreadsheet routines

(PRINTGRAPH, etc.). Once the structure’s geometry is described, it is
g y
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advisable to perform a geometry check in order to help to locate any errors
that were made during the input process. Loads and springs can be specified
in various ways and they can be automatically generated, which is very

helpful for sloping distributed loads or elastic foundations.

The brief manual consists mainly‘of a basic introduction to the program.
The data input is unparalleled in terms of flexibility. This manual
assumes that you are a current 1-2-3 wuser, familiar with its basic
functions and operations. It also assumes that you ;re familiar with your

computer, its keyboard and operating system.
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Hard Disk Installation of CPLANE ACCESS SYSTEM

1. Place floppy disk "CPLANE" into drive A
and start the installation routine:

A:\>installh[enter]
2. Change the LOTUS 1-2-3 default directory to "C:\PLANE" and
update the directory.
(command sequence in LOTUS: "/wgddC:\PLANE[Enter]uq")
3. Include locations of the LOTUS system and "CPLANE"
in the path of your AUTOEXEC.BAT file. If you don't
have an AUTOEXEC.BAT, rename the one supplied:

C:\>ren planeaut.bat autoexec.bat[enter]

4. Reboot your system [Crtl]-[Alt]-[Del].

Start the "CPLANE ACCESS SYSTEM" from the root directory C:
C:\>caccess[enter]

From now on a menu system will guide you.
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file://C:/PLANE
file:///PLANE

Floppy Disk Installation of CPLANE ACCESS SYSTEM

1. Create your own "work disk". Place an empty floppy disk,
which has been previously formatted, into drive B and
the program disk "CPLANE" in drive A. Start the
installation routine:

A:\>installf[enter]

2. Replace the "CPLANE" disk by your Lotus program disk
in drive A, start 1-2-3, change the default directory
to "B:\", and update the directory.

(command sequence in LOTUS: "/wgddB:\[Enter]uq")

3. Quit LOTUS.

Start the "CPLANE ACCESS SYSTEM" from B:
B:\>caccess[enter]

From now on a menu system will guide you.
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Using "CPLANE"

There are two ways to conduct a structural analysis with "CPLANE" and
LOTUS 1-2-3 (TM):

A. CPLANE ACCESS SYSTEM: (installation required)

Menu driven pre- and postprocessor templates have been prepared and can
be used as is or easily customized.

(hard disk)
C:\>caccess[enter]
or (floppy disk)
B:\>caccess[enter]
From then on a menu system will guide you through all modules including

data generation, storing, plotting, viewing, printing, analyzing,
reducing, etc...

The more advanced user might want to develop his own pre- or
postprocessor or prefers to work without any menu system. Then the
following procedure is proposed:

B. GENERIC PROCEDURE: (no installation required, just copy CPLANE.EXE
to your work disk or directory)

1. Load LOTUS 1-2-3 and create your input values for the
structure and loads, safe the worksheet under a
descriptive name (i.e. FRAMEL .WK1l). Quit LOTUS.

2. Start "CPLANE" by
CPLANE[enter]

and respond to "CPLANE"'’s prompts
(it will ask you for the name of the source data file
and target data file (including file extensions))

or
CPLANE framel.wkl resultl.wkl[enter]

The latter procedure enables you either to create a
batch file containing several input and output files
or to use "CPLANE" as the analysis engine for your
custom pre- or postprocessors.

3. Load LOTUS 1-2-3 and retrieve the target file(s).
Now you can use the output data to plot, to print etc.
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Input File Structure for "Cplane":

CPlane
title

nodes
n_num ix iy

members
m_num fm jl

material

im

springs
s_num

nodal loads
1 num

member loads

i_num dir

connection data
n num m num typ

echo
iterate

endata

Mi

Xcoorxr

Area

Sx

Px

ycoor

Ashea

Sy

Py

p2

I

wt

Sm

Pm

p3

ngen

jstep

sgen

lgen

igen

P4

pS




List of Symbols:

CPlane
title (one line of text)
nodes
n_num, ix, iy, im, xcoor, ycoor, ngen (one row for each node)
n_num nodal number
ix freedom in x-direction
iy freedom in y-direction
im freedom to rotate
if = 0: fixed
if = 1: free
if = J: linked to same degree of freedom as node J
Xcoor nodal coordinate x
ycoor nodal coordinate y
ngen generation of n num in ngen-steps,

same degrees of freedom,
linear interpolation of geometry,
generation ends at node from next row

FROKOOO0

node: 1 1 1

node: O 1 1

node: 1 O 1

nede: 1 1 O

node: 0O O 1

node: O O O

X

Fig. 1: Nodes and Coding of Fixities
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members
m_num,fm,jl,j2,Area,Ashea,I,jstep (one row for each member)

m_num : member number

fm : end condition of member
if = p: member is pinned - pinned
if = fp: member is fixed - pinned
if = pf: member is pinned - fixed
if = f: member is fixed - fixed

jl : lesser nodal number

j2 : greater nodal number

Area : total cross sectional area

Ashea : cross sectional area to carry shear,

if this cell is empty or equal to zero

analysis is done without consideration of

shear deformation (simplified stiffness analysis)
I : moment of inertia .
jstep : generation of jl in jsteps,

keeps difference between jl and j2 constant,

linear interpolation of Area, Ashea and I,

ends at member form next row

Local +-direction is lower nodal to higher nodal number. +-member force
is tension, +-member bending exerts tension in upper fibres.

member: pf

O O
member: fp
O

member: f

yhorx

Fig. 2: Members and Coding of End Fixities




material

E,G,wt

E modulus of elasticity

G shear modulus, if this cell is empty or
equal to zero, shear deformation is not
considered

wt weight of material (note: weight is in the current
version of "plane2.0" not considered)

springs

s_num, Sx, Sy, Sm, sgen (one row for each spring)

S_num
Sx

Sy
Sm

sgen

node that spring is attached to

spring stiffness in x-direction, positive if
+x-displacement causes tensile (+) reaction in spring
spring stiffness in y-direction, positive if
+y-displacement causes tensile (+) reaction in spring
rotational stiffness, positive if counter-clockwise
rotation causes counter-clockwise moment in spring
generation of n num in sgen-steps, linear
interpolation of stiffness

WO spring in x-direction

spring in y~-direction

spring about z-axis

L.

Fig. 3: Elementary Springs,
Combination with each other and
with partially fixed nodes possible




nodal_loads
1 num, Px, Py, Pm, lgen (one row for each loaded node)

1 num : number of loaded node

Px : load in x-direction

Py : load in y-direction

Pm : moment about node

lgen : generation of n num in lgen-steps, linear interpol. of loads

member_loads
i num, dir, w, P, a, igen (one row for each loaded member)

i num : member number the load is applied to
dir : direction the load is applied to
if = x: in x-direction (positive)
if = y: in y-direction (positive)
if = p: perpendicular to member (positive when

clockwise about lower node)
W : uniformly distributed load
if direc = p: load = w

if direc = x: load = vertical projection of w
if direc = y: load = horizontal projection of w
P : concentrated load
if direc = p: load perpendicular
if direc = x: load in x-direction
if direc = y: load in y-direction
a : distance from lower node of member to location
: of conc. load
if direc = p: a = dist. along member from lower mnode
to concentrated load :
if direc = x: a = dist. along y-axis from lower node

to concentrated load

if direc = y: a = dist. along x-axis from lower node
to concentrated load

igen : generation of i num in igen-steps,

linear interpolation of loads and load locations,

the parameter direc of this line is used for

all generated nodes;

w, P, and a are incremented between the loads

given in this liné and the next line
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Yy vy

yhorx

Fig. 4: Uniformly Distributed Load Perpendicular to Member, direc=p

YR

node 2

Fig. 5: Concentrated Load Perpendicular to Member, direc=p

3

connections
n_num, m_num, typ, Mi, pl, p2, p3, p4, p5

n_num
m_num
| typ

entered

Mi

pl-p>

connection type ( 1.

ooV PWN

10.

: joint at which connection is located
: member which the connection is connected to

perfectly hinged,
single web angle,
double web angle,

. header plate,

top & seat angle,

end plate (without column stiffeners),
end plate (with column stiffeners),
t-stub,

other, (note: connection stiffness is

as parameter p2)
perfectly rigid.)

connection moment (optional)
default uses initial tangent stiffness value
connection parameters. Please refer to Figure 6 for details.
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>‘< Py~ t : >|<P3-t

- - |
P=1L Py,= g Pp=1, Pi=g
(a) SINGLE WEB ANGLE : (b) DOUBLE WEB ANGLE
P Ryt Ps= w Do el l/>H<P3-t Ps=1 j
. | Py= f B

vl
T T
1

== [ el [
=1 P,=g P=L
(c) HEADER PLATE (d) TOP & SEAT ANGLE
>||< P~ f »‘ '< Py= t Ps=1 ’<‘>
(only with - p4_ f B
| column (fastener Ob \#o
stiffeners) l
- b ;
Py=d e A Py=d e
\ —— column o
R — I/— stiffener N —
P3=t
Pl = Ll Pl = Ll
(e), (f) END PLATE (WITH & WITHOUT (g) T-STUB

COLUMN STIFFENERS)
Fig. 6: Connection Types and Their Standardization Parameters




echo

indicator for creation of echofile

if this keyword exists in the source file
then ECHO.WK1 file will be created

iterate

indicator for nonlinear connections

if this keyword exists program automatically
creates and updates the intermediate data file
ITERATE.WK1 for iteration purposes.

endata

indicator for end of data

if this keyword exists in the source file
then spreadsheet may contain other comments,
macros or data (for i.e. plotting)
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Example

Source File:

CPlane .
nlflex?2: steel frame investigated by Moncarz & Gerstle, w=0.02 kips/sq
ft.
nodes
1 0 0 0 0 0
2 1 1 1 0 144
3 1 1 1 0 288
4 1 1 1 288 288
5 1 1 1 288 144
6 0 0 0 288 0
members
1 f 1 2 9.71 0.00 170.00
2 f 5 6 9.71 0.00 170.00
3 f 2 5 13.00 0.00 843.00
4 f 2 3 9.71 0.00 170.00
5 f 4 5 9.71 0.00 170.00
6 f 3 4 9.12 0.00 375.00
material
30000
member loads
3 y -0.255
6 y -0.155
nodal loads '
2 5.76
3 2.88
connections
2 3 5 0 4,865 20.66 1.222 1.125 6.50
3 6 5 0 4,865 15.88 1.065 1.250 5.52
4 6 5 0 4,865 15.88 1.065 1.250 5.52
5 3 5 0 4.865 20.66 1.222 1.125 6.50
iterate

echo
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