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Abs t rac t 

Several statistical procedures that would enhance the site characterization capabilities 
of insitu test data with special emphasis on the cone penetrometer test have been 
proposed and presented. 

Two methods to identify different soil layers from a profile have been described. 
One of these procedures is based on the effects of the individual parameters, namely, 
cone bearing, sleeve friction and pore pressure, while the other method employs a 
multivariate scheme of analysis, which has the capability of handling all three or any 
two parameters, simultaneously. The advantages of these statistical methods over the 
conventional methods of soil layer identification, have also been highlighted. Critical 
levels of the values of the Intraclass Correlation coefficient and the D statistic have 
been proposed for the identification of layer boundaries as primary or secondary for 
both sand and clay type soils. 

Methods of trend analysis have been proposed while the complications arising 
from the presence of correlations have been discussed. The role played by methods 
of statistical filtering and smoothing, in the identification of trends, have also been 
illustrated. Statistical procedures have been proposed, for the purpose of verification 
of non-stationarity or stationarity, in the event it cannot be determined from a visual 
inspection. 

The need for the consideration of geotechnical data as random has been em­
phasized, together with applications of random field theory in the determination of 
exceedance probabilities. of given threshold values over spatial averages of a soil layer. 
A computationally more convenient method for the determination of the scale of 
fluctuation has been proposed while emphasizing its importance in several areas of 
applications, with respect to the cone penetration test. 

Time Series methods have been employed in order to model the stationary com­
ponent of soil profiles and also have been extended to obtain the measurement noise 
of different test methods. A comparison of the measurement noise of different insitu 
testing devices, obtained by the time series method has been compared to a proce­
dure based solely on the autocorrelation function of the data, resulting in a good 
agreement. The relatively low value of measurement noise obtained for the cone pen­
etration test confirms its superiority over other insitu testing methods like the field 
vane test which gave fairly high estimates of the measurement noise. 

A two dimensional interpolation procedure considering the correlation between 
data points has been recommended. This procedure which uses the autocorrelation 
function, has been applied to a set of cone penetrometer test data and the results of 
which have been compared with the actual profile at that location. The reasonable 
comparison of the predicted with the actual, clearly indicate the need for the consid­
eration of correlations if they do exist, in interpolating geotechnical data in two or 
three dimensions. 

IBM - PC compatible interactive micro computer programs have been developed 
in order to perform most of the techniques proposed in the thesis. These programs 
cater to any type of data format and have several inbuilt options available to the user. 
Detailed user manuals for these programs are also available. 
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Chapter 1 

I n t r o d u c t i o n 

1.1 The Need for a Statistical Approach 

Soil properties are highly variable and exhibit considerable variation from point to 

point. Most of these variations cannot be quantified and therefore, it becomes very 

important that the maximum amount of information is derived from an available set 

of data to reach conclusions. on the characteristics of a soil profile. In geotechnical 

engineering, it is common to assume that the risk of failure is a function of the factor 

of safety, but the fact that is often neglected is that the risk of failure also depends 

on the accuracy with which the factor of safety is determined. 

The variability or uncertainty in soil profile modeling has been explained by Van-

marke (1977) to comprise the following. The main source of variability is the natural 

inherent heterogeneity caused by the differences in particle size, mineral composition 

and stress history which are all mainly due to various geological influences. These 

also give rise to trends in both the horizontal and vertical directions, with the effect 

in the vertical dimension generally being more significant. Limited availability of 

data is the second source for the uncertainty since soil properties have to be deduced 

from field or laboratory tests on a limited number of samples. This problem can be 

averted or reduced by increased sampling, but since economics play a vital role this 

option is not always feasible except for major projects. Statistical and probabilistic 

approaches can maximize information that could be derived from a given set of data, 

and are therefore equivalent in some ways to performing more tests, if results are 

1 
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to be analyzed solely on a deterministic basis. Measurement errors caused by.man 

and machine are the third source of uncertainty in geotechnical test data. These are 

caused by factors such as sample disturbance, inaccuracies in testing procedures and 

human errors. All of the above uncertainties contribute to the belief that a stochastic 

approach employing statistical methods is the most efficient way of dealing with soil 

test data. There is nothing random if all the points in the ground could be tested 

accurately. However, this is not a feasible idea both practically and economically, 

giving rise to the need for the consideration of stochastic approaches in analyzing 

geotechnical test data. 

This thesis examines a series of statistical procedures that may be useful to en­

hance the identification of soil profiles and thereby increase the site characterization 

capabilities of the cone penetrometer test (CPT). The high repeatability of the CPT 

and its capability of sampling at close intervals have caused it to emerge as one of the 

most widely used in situ testing methods. The large data base that results from the 

CPT provides an ideal tool for statistical applications. Traditionally, geotechnical en­

gineers have been conservative, with most of the designs and analyses being based on 

fairly scanty data, acquired by methods about which much was not known in terms of 

theoretical basis. Over the years, more sophisticated testing methods both in the lab­

oratory and the field have evolved, and the increased knowledge of soil behavior has 

led to the development of more elaborate theories and models, capable of predicting 

stress - strain characteristics of soils more accurately. In spite of all these techno­

logical and intellectual advancements, the uncertainty and the highly variable nature 

of soil behavior are still present. The overall accuracy of design analyses have not 

improved significantly, caused largely by the reluctance of the geotechnical engineer 

to replace the traditional deterministic methods by probabilistic techniques. 

In the last decade, geotechnical engineers have been confronted by new challenges, 
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due to increased demands from field situations. Complicated high risk structures such 

as foundations for nuclear power plants and deep foundations for offshore oil platforms 

were required to be constructed. No more could a structure be built on the best site, 

but instead, the need of the day is more for the construction of the structure at 

the available site which may comprise a soil stratum with adverse conditions. These 

immense challenges have rendered the statistical and probabilistic approaches as ideal 

tools to supplement the traditional deterministic methods of analysis and design. 

Additional conservatism results in additional costs, and in very large projects as 

those mentioned earlier, this would be an unaffordable luxury in terms of economics. 

Thus the use of probabilistic methods which use statistical techniques to quantify 

uncertainties and risks is attractive. 

Statistics enable the acquisition of a better understanding of limited data, per­

mitting a better description of site characteristics, which in turn results in analysis 

and design requiring less conservatism. In the light of the above considerations the 

cone penetrometer test and statistical methods seem to be.ideal partners which would 

enable the enterprising geotechnical engineer to meet the present day challenges and 

achieve the goals of dynamic design incurring the least cost, and most importantly 

at a reduced risk of failure. 

1.2 Scope of the Thesis 

This thesis examines several techniques which may be used for the statistical charac­

terization of soil profiles with special emphasis on applications to data obtained from 

the CPT. These techniques are new to geotechnical engineering and would enhance 

the soil profile characterization capabilities of in situ testing methods. These tech­

niques can also be applied to data obtained from other devices such as geophysical 

logging equipment which samples at reasonably close intervals. 
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Most statistical methods depend on the stationarity of data and likewise the tech­

niques used in this thesis too will often refer to stationarity of profiles. In view of this 

frequent reference, it is appropriate to make a precise definition and a clear distinction 

between one dimensional and two dimensional stationarity, right at the outset. 

Most soil properties increase in value with depth giving rise to trends. The non-

stationary nature of soil property values are caused by these trends. Therefore, soil 

properties in the depth dimension can be expressed to comprise of two components 

as follows; 

SOIL DATA = TREND + RESIDUAL 

The resulting residual after trend removal fluctuates around the trend and is sta­

tionary. This explanation can also be extended to the horizontal dimension where 

applicable. 

The main emphasis in this dissertation is on the investigation of single profiles in 

the depth dimension where the concern of stationarity. will be in the depth dimension. 

In terms of first moments, stationarity implies a constant mean although in a wider 

sense, a stationary data set is defined as one which also has a constant variance 

and an autocorrelation function which is dependent only on the separation distance 

(lag distance) between data points. Two dimensional data analysis is performed 

in Chapter 6 where correlations in both the vertical and horizontal dimensions are 

determined. In such situations the stationarity of concern will be in the vertical and 

horizontal dimensions, although the basic definition remains the same. Figure 1.1 

illustrates these two types of stationarity more clearly. In the one dimensional (depth 

dimension, z direction in Fig. 1.1) situation, the stationarity of concern will be for 

individual profiles. For example, the stationarity of profile VI is independent of 

profile V2,' V3 and V4 which are handled individually in one dimensional analysis. 

In the two dimensional analysis, not only will the concern be on the stationarity in 
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the vertical dimension but also on the stationarity of the generated profiles HI , H2 

etc., at different depths Zi, z2 and so on, respectively. The idea of stationarity and 

methods of determination of stationarity for both cases discussed above will be dealt 

with more thoroughly in the relevant sections of the thesis. 

Soil profiles are highly heterogeneous and may consist of several substrata which 

exhibit different characteristics from layer to layer. It is of prime importance that 

each of these sublayers is identified prior to any design or analysis, since a mere visual 

inspection of the profile may not lead to the proper delineation of layers. 

The cone penetration test is an ideal tool for the purpose of discriminating be­

tween different layer types, due to its capability of sampling at close intervals and also 

because of its high repeatability. Prior to any statistical analysis, it is necessary to di­

vide the entire profile into statistically homogeneous sublayers, based on the mean, the 

variance and the trend. Well established empirical charts based on the friction ratio 

and the pore pressure ratio exist to classify different soil types present in a soil profile 

but at times, these methods are unable to determine layering accurately. The statisti­

cal methods to be described can be used to supplement the information obtained from 

the classical methods of layer identification. The three statistical techniques that will 

be tested for layer identification are the T Ratio, Intraclass Correlation Coefficient 

and the D2 statistic. 

The T Ratio or the Intraclass Correlation Coefficient can be used to investigate any 

one of the three main parameters obtained from the CPT, namely the cone tip bearing, 

sleeve friction and pore pressure, in determining the layer boundaries. A multivariate 

analysis which uses the D2 statistic will be employed to investigate the combined 

effects of bearing, friction and pore pressure, together or for any combination of two 

of the above parameters. This type of analysis which considers two parameters is 

in a way equivalent to the conventional friction ratio method, if the two variables 
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considered are cone bearing and friction. On the other hand, it is also equivalent. to 

the soil classification based on the pore pressure ratio, if the two variables considered 

are cone bearing and pore pressure. In all of the above three methods, namely, T 

Ratio, Intraclass Correlation Coefficient and the multivariate analysis using the D2 

statistic, a window of a pre-determined width will be passed along the data profile and 

the statistics on either side of the window center will be investigated. If the engineer 

requires a detailed analysis, which requires a more severe discrimination between layer 

types, a narrower window width can be chosen. All of the above three methods will 

be applied on three sets of CPT data, inan attempt to illustrate the advantages of 

the statistical methods over the conventional method, in identifying different layers 

in a soil stratum. 

Once the layers are identified, the different trends and other properties of these 

sublayers will have to be characterized. Soil properties are highly depth dependent 

and therefore, significant trends in the vertical dimension can be expected. Methods of 

trend analysis which essentially use regression techniques to describe different layers 

will be described. A measured soil property is made up of three parts: namely, 

the deterministic trend, the residual and the error term.. The trend obtained from 

a regression analysis will be accurate only if it has succeeded in absorbing all the 

correlations present and if it has not, the residuals will also have to be considered in 

obtaining accurate estimates. The difficulties arising when dealing with geotechnical 

test data will be looked into in detail and methods of overcoming these problems will 

be highlighted. If layering in soil profiles is correctly identified, it is reasonable to 

assume that trends in geotechnical data will be linear or curvilinear. The curvilinear 

trend could be fitted with a polynomial of the second degree while the linear trend 

can be modeled by a straight line. Two applications on real data illustrate how the 

best model could be chosen. In some instances, a mere visual inspection may not 
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reveal the presence of a trend in a soil layer. In such cases, it may be a good idea to 

perform the 'RUN' test to determine the stationarity of a soil layer. Two applications 

of the 'RUN' test are used to illustrate the use of this method. 

It is common that a CPT profile may consist of anomalies or extremities. In such 

cases, statistical filtering based either on the median or the mean can be employed 

in order to remove these anomalies. While the degree of filtering required is highly 

situation dependent, it has to be exercised with utmost caution, so that genuine 

data giving rise to actual thin layers are not removed. The main purpose of filtering 

should be to act as an aid in identifying trends! Methods of smoothing such as 

moving average smoothing and Fourier smoothing will be examined, together with 

applications, with a view to illustrate the effects of smoothing on the identification 

of trends. 

Natural heterogeneity of soils, limitation of data availability, soil disturbance dur­

ing testing, etc., all contribute to the uncertainty of soil data, which lead to the belief 

that the most appropriate method of analyzing soil data is by considering it as ran­

dom. Different applications of the theory of random fields to cone penetration test 

data will be investigated in order to obtain a better understanding of the soil profile 

characteristics. 

The scale of fluctuation is a parameter of great potential in the statistical charac­

terization of soil profiles. The concept of this parameter and its multiple applications 

to CPT data will be investigated in detail in this dissertation. The idea of the scale of 

fluctuation was introduced to geotechnical engineering by Vanmarke (1977), but since 

then, other researchers have not made use of it. The present work has recognized, its 

potential and will apply the concept to CPT data, from the point of soil variability 

and also as a tool to study the averaging effects of cone bearing, sleeve friction and 

pore pressure. The method of derivation used is a practical variant of the method 
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first used by Vanmarke (1977), and is very advantageous for computerization of this 

procedure. The advantages of the proposed method will be highlighted together with 

a comparison with the original method. The variance function from which the scale of 

fluctuation is derived and the scale of fluctuation itself are also used to investigate the 

correlation effects between spatial averages. For example, in the computation of foun­

dation settlements, the effect of the settlement of an adjacent footing is very rarely 

considered in classical foundation engineering. However, correlations do exist and 

have to be considered if accurate estimates are required. Exceedance probabilities of 

spatial averages over threshold values with respect to layer thickness, threshold value 

considered and variability of the soil layer will be described with applications on CPT 

profiles. The concept of exceedance probabilities are of great concern to geotechnical 

engineers who are concerned about the magnitudes of the disturbing force and the 

available soil strength, especially in slope stability analysis. 

The geotechnical engineer is very concerned that redundant data are not gath­

ered in any site investigation program. Too much data acquisition will result in over 

expenditure while the effects of lesser exploration and testing than required could 

be drastic and may even result .in catastrophic consequences. Therefore, it is very 

important to strike a balance between the two and with this aim, the optimum sam­

pling distance has been derived as a function of three main factors; soil variability, 

the desired accuracy of the estimate and the confidence based on the estimate. 

Time series methods will be used to demonstrate the beneficial use of autore-

gressive and moving average models to represent the stationary component of a soil 

profile after trend removal. Time series methods' have also been used to evaluate 

the measurement noise in order to draw conclusions on the efficiency of different test 

methods. These results have also been compared to a different technique recom­

mended by Baecher (1985). The other major component of errors in soils data is the 
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bias error which can only be determined with respect to a different test method and 

the evaluation of even an approximate estimate of the random error would be useful 

in determining the quality of a given set of data. 

Soil properties are highly correlated especially in the vertical dimension. Any 

interpolation method similar to regression will be accurate only in the absence of 

correlation. This is a very common assumption which is often violated in geotechnical 

engineering when estimating soil properties at untested locations. Therefore, any two-

dimensional interpolation procedure which has the depth dimension as one of its axes, 

will necessarily have to consider correlations, if accurate estimates are required. A 

new method of formulating the two dimensional autocorrelation functions applicable 

to geotechnical test data analysis will be proposed in order to perform interpolation 

considering the correlation between points. Different types of autocorrelation and 

semi-variogram functions which can be used to model soil property correlations in 

one, two or three dimensions will also be presented. Autocorrelation functions for 

a given set of two dimensional CPT data have been developed and interpolation 

performed. The results obtained will be compared with actual CPT data, in making 

evaluations of the recommended interpolation procedure. ~ 

1.3 Organization of the Thesis 

Chapter 2 of the thesis will present univariate and multivariate statistical methods 

which can be used for the identification of layering in a soil profile. These methods 

include the T Ratio, Intraclass Correlation Coefficient and the D2 statistic. 

Methods of Trend Analysis will be described in Chapter 3, with the objective of 

obtaining a better understanding of the characteristics of the soil profile. The effect 

of smoothing and filtering on trends and a method for determining the stationarity 

of a soil profile based on the 'RUN' test will also be explained in Chapter 3. 
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Several applications of random field theory on CPT data will be detailed in Chap­

ter 4. The concept of the scale of fluctuation in evaluating the variability of a soil 

profile, applications of exceedance probabilities and the effect of variability on the 

optimum sample spacing for a given layer will also be presented in Chapter 4. 

The role of time series methods in the interpolation of one dimensional geotech­

nical test data will be discussed in Chapter 5 together with approximate methods 

which can be used for the estimation of the random noise component of different in 

situ testing devices. 

Chapters 1 to 5 deal with data profiles in the depth dimension and therefore 

are all one dimensional types of analyses. 

Chapter 6 presents a procedure for the interpolation of soil property values in 

two dimensions with one of these dimensions being the depth. Correlation of soil 

property values between data points is considered in the analysis. 

Chapter 7 describes a simple case history involving soil densification where sta­

tistical methods such as layer identification, trend analysis and the concept of the 

scale of fluctation have been used to verify the effects of soil improvement. 

Chapter 8 presents the final conclusions of this dissertation. 

1.4 Interactive Micro Computer Programs 

Several interactive IBM - PC compatible micro computer programs have been de­

veloped to accommodate different data formats. These programs which have been 

written in Microsoft Fortran are very flexible with several options available to the 

user. 

The programs include procedures for layer identification, statistical filtering, smooth­

ing and trend analysis. The determination of the scale of fluctuation and the evalua­

tion of stationarity using the 'RUN' test to check for stationarity can also be performed 
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using these programs. 

The detailed manuals of these programs are available in the Department of Civil 

Engineering of the University of British Columbia. 

1.5 In Situ Testing Devices 

Traditionally, in situ testing methods have been used by geotechnical engineers to 

gain a better understanding of the qualitative characteristics of the subsoil. Mod­

ern techniques have resulted in improved methods of testing and sophisticated data 

acquisition systems which have stimulated rapid development in in situ testing meth­

ods over the years, especially so in the last decade. It is possible that in the not so 

distant future, in situ testing methods will play a more dominant role in geotechni­

cal engineering. Mitchell et al.(1978) have listed four main reasons, supporting this 

prediction. They are, 

(i) The ability to determine properties of soils, such as sands and offshore deposits, 

that cannot be sampled in the undisturbed state. 

(ii) The ability to test a larger volume of soil than can be conveniently tested in 

the laboratory. 

(iii) The ability to avoid some of the difficulties of laboratory testing, such as 

sample disturbance and the proper simulation of in situ stresses. 

(iv) The increased cost effectiveness of an exploration and testing program using 

in situ testing methods. 

Difficulties such as the inability to independently vary stress direction and stress 

paths, the unknown effects of principal stress rotation during testing, the inability 

to control drainage independently and the semi empirical nature of interpretation 

methods are some of the shortcomings of most in situ testing techniques. These 

shortcomings inhibit the development of a theoretical background which would be able 
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to explain fully the behavior of a soil element adjacent to an in situ testing device. If 

this adversity is overcome, it may be possible to replace all the empirical correlations 

available at present, with theoretical expressions having a sound fundamental basis. 

Most of the data to be dealt with in this thesis have been obtained from the 

cone penetrometer test. The CPT is becoming increasingly popular as an in situ 

test for site investigation and geotechnical design, because of its high repeatability 

and relatively low measurement noise (Wu, 1986). As a logging tool for geotechnical 

engineering purposes, it is efficient with respect to the delineation of stratigraphy 

and in its capability of performing simultaneous measurements of data on several 

channels. 

Results from the CPT have been used to develop empirical correlations with soil 

parameters such as friction angle, relative density and shear strength. The seismic 

cone which is an improvement of the basic CPT, measures the shear wave veloc-. 

ities from which the maximum shear moduli can be estimated. In recent times, 

researchers have developed more rational correlations between the standard penetra­

tion test (SPT) 'N ' value with the cone bearing obtained from the CPT. As a result 

of these correlations, Seed's original liquefaction curves based on the.SPT, have been 

extended for use with the CPT, enhancing its capabilities. In spite of all these ad­

vances, the CPT is primarily an efficient logging tool and interpretation charts have 

been developed to identify soil strata based on the friction ratio and cone bearing. 

Detailed descriptions of these procedures are available in Campanella et al. (1983, 

1988) and Robertson (1983). Descriptive accounts of the different types of equipment 

and testing procedures, and methods of data acquisition are available in Robertson 

and Campanella (1986). 

The cone used for this research at the University of British Columbia has a cone 

tip of 10 cm 2 base area with an apex angle of 60°. It is illustrated in Fig. 1.2. The 
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Figure 1.2: Cone Penetrometer used at UBC. 
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friction sleeve located immediately behind the cone tip has a standard area of 150 

cm2. The cone is made to penetrate at 2 cm/sec and has the facility to sample on 

six different channels at 2.5 cm intervals, measuring the cone bearing, sleeve friction, 

pore pressure at the tip and behind the sleeve, temperature and inclination. 

The most widely used in situ testing device in North America is the standard 

penetration test (SPT). Many soil properties have been correlated to the 'N' value 

obtained for the SPT. More details of the SPT are available in any text on foundation 

engineering. The flat plate dilatometer (DMT) is another test which is known for its 

repeatability. Like the CPT, several empirical correlations have also been established 

for the DMT. The most important parameters that could be derived from the DMT 

are the friction angle in sands, the lateral stress coefficient and the over consolidation 

ratio which are all dependent on three index parameters. These parameters are also 

used for soil classifications. More details of the DMT is available in Jamiolkowski et 

al.(1985). 

There are three types of pressuremeters being used in practice at present. They 

are the Menard pre-bored pressuremeter, the self-bored pressuremeter and the full-

displacement pressuremeter. The more important parameters which can be obtained 

from the pressuremeter are the shear modulus and the lift off pressure which could 

be related to the lateral stress in the ground. 

The field vane test is used to determine the undrained shear strength of cohesive 

soils in the field. This test measures the shear strength of soils, both in the undis­

turbed and remolded states, and hence could be used for determining the sensitivity 

of the soil. However, the performance of the vane test is questionable due to the high 

disturbance of the soil around the apparatus, and the ensuing measurement noise 

which is found to be very significant. 

The dynamic cone penetrometer (DCPT) is somewhat similar to the SPT since it 
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measures the number of blowcounts required for each foot of penetration. However, 

unlike the SPT, it uses a dynamic load to drive the rods, thus causing an enormous 

disturbance in the surrounding soil. Inconsistency and the very low repeatability of 

the DCPT are the causes for its limited usage in geotechnical site investigations. 

The screw plate test is a modified form of the plate load test with the ability of 

performing unloading and reloading cycles of load on the soil at depth. The load 

- settlement curve which is the main product from such a test, is used to obtain 

the vertical modulus of deformation of the soil, which in turn is used to determine 

settlement characteristics of soils under load. 

A fairly recent innovation in in situ testing devices, is the Iowa Stepped Blade 

(Handy et al., 1982) which is used to estimate the in situ horizontal stress. This 

instrument is made up of sections of varying blade thickness along its length and the 

horizontal stress of the soil can be measured at the center of each of these sections of 

different thicknesses. The resulting extrapolated value of stress at zero blade thickness 

gives a reasonable estimate of the in situ horizontal stress. 

More comprehensive details of all of the above in situ testing methods are found 

in Jamiolkowski et al. (1985). The insitu testing devices briefly described above are 

only those directly related to geotechnical investigations. The statistical methods 

presented in this thesis are also applicable to geophysical logging techniques such as 

gamma ray, sonic, nuclear and electrical logging etc.. A comprehensive description of 

most of the geophysical logging devices are given in Telford et al.(1976). 

1.6 General Geology and Site Descriptions 

The statistical techniques presented in this thesis will be applied to data obtained 

from several research sites in the lower mainland in British Columbia. They are, 

• McDonald Farm 
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• Haney Site 

• Tilbury Island 

• Langley (Upper 232nd) 

• Strong Pit 

• B. C. Hydro Railway Site 

• Annacis Island Site 

The general location of the above sites are shown in Fig. 1.3. 

1.6.1 McDonald Farm 

McDonald Farm is located at the northern edge of Sea Island in the municipality of 

Richmond. The island is one of several that make up the Fraser River delta. The 

general geology consists of deltaic distributory channel fill and overbank deposits 

which overlie post glacial estuarine and marine sediments (Armstrong, 1978). The 

general stratigraphy of the sites consists of a soft organic clay in the top 2 m underlain 

by loose to dense coarse sand upto about 15 m. The soft normally consolidated clayey 

silt which lies below this sand extends to a depth of 300 m (Greig, 1985). 

1.6.2 Haney Site 

The Haney site is" located in the Haney Slide site and is situated approximately 30 

km east of Vancouver almost directly below the town centre of Haney. The site is 

a remnant of the Haney slide of January, 1880. The general geology consists of in-

terbedded marine, glaciomarine and glacial sediments of the Fort Langley Formation. 

The soil profile consists of a fill in the top .2 m underlain by a meter of sand which 

overlies a sandy silt to silty clay extending to 30 m (Greig, 1985). 
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Figure 1.3: Location Map of Research Sites. 00 
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1.6.3 Tilbury Island 

The site from which the data was obtained is situated immediately adjacent to the 

B.C. Hydro LPG plant located towards the north-eastern side of Tilbury Island. It 

consists of overbank sandy silt to silty loam (about 2 m thick) overlying 15 m or more 

of deltaic and distributory channel fill including tidal flat deposits. These are mainly 

interbedded fine to medium sand with intrusions of slight silt lenses. 

1.6.4 Langley Site 

The site is located at the 232nd St. exit of the Trans Canada Highway in Langley. It 

is about 1 km east of the B. C. Hydro railway site. This site is on a compacted clay 

fill that forms the approach for the 232nd St. overpass and lies at the western extent 

of the Fort Langley Formation (Greig, 1985). This formation has recorded at least 

three advances and retreats of a valley glacier and comprises of interbedded marine, 

glaciomarine and glacial sediments (Armstrong, 1978). The stratigraphy consists of 

a 2.5m compacted organic clay fill followed by a overconsolidated silty clay beween 

approximately 2.5. and 7.5 m. This is underlain by a normally consolidated silty clay 

with occasional sand lenses, extending below 20 m. 

1.6.5 Strong Pit 

This site is located at the Strong Gravel Pit near Aldergrove (in British Columbia) 

which is in the central Fraser Valley in the Fort Langley glaciomarine deposits. The 

stratigraphy at Strong Pit consists of a outwash sandy gravel (Sumas Formation) in 

the top 1.5m. Below the sandy gravel is an overconsolidated clay extending past 10 

m with a thin layer of sand at about 9 m. 



Chapter 1. Introduction 20 

1.6.6 B. C . Hydro Railway Site 

This site is located at the base of a 5m cut adjacent to the Trans Canada Highway in 

Langley. It is situated approximately 100 m west of the B. C. Hydro railway overpass 

(Greig, 1985). The site is located at the eastern extent of the Capilano sediments 

which consist of raised deltas, intertidal and beach deposits and glaciomarine sedi­

ments (Armstrong, 1978). The top 2.5 m of this site consists of mixed gravel and 

sand fill underlain by a lightly overconsolidated silty clay with occasional silty sand 

layers between 2.5 and 10 m. The layer below this is a normally consolidated silty 

clay extending beyond 30m. 

1.6.7 Annacis Island Site 

The site in which the soil compaction was performed is situated at the north side 

of Annacis Island along the north channel crossing and immediately east of the 

Alex Fraser Highway (Gray Beverage canning plant site). It constitutes an artificial 

promonotory built by infilling with dredged sand behind a rockfill dike. Investigations 

indicated that the site was covered by a 1.8 to 2.4 m thick sand fill on top of a 2.4 to 

3.9 m thick clayey silt underlain by an alluvial sand extending below 10 m. 

1.7 Review of Literature on Statistical Methods 

The pioneering work of statistical applications to soil test data was performed by 

Lumb (1966) who investigated the variability of natural soils. Subsequent work by 

Lumb (1967,'70,'74,'75) all refer to basic statistical applications which covered topics 

such as the sampling patterns, identification of trends, distribution function of soil 

properties and the precision and accuracy of soil tests, etc.. 

Kay and Krizek (1971) considered the effects of correlations of estimates and 

also the coefficient of variation in deriving probability distributions of soil properties. 
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Holtz and Krizek (1971) made use of statistical parameters in large projects such 

as dam and bridge construction. Krizek's real contribution to the field of statistics 

and probability in geotechnical engineering is found in Alonso and Krizek (1975) who 

considered soil properties as random variables. The autocorrelation function was 

used to express soil property correlations while also introducing the spectral density 

function as an adequate descriptor of soil properties. Rizkallah et al.(1975) have 

made use of regression techniques in obtaining soil parameters, neglecting effects of 

correlations. Rizkallah et al.(1979) have also" used the concept of energy to perform 

comparisons between the static cone penetrometer and the dynamic cone penetration 

test, employing methods of multiple regression. 

The knowledge in the field of statistics in soil engineering has been enhanced 

significantly, by the contribution of Baecher (1982) who was especially interested in 

probabilistic site exploration problems, and emphasized the need for the identifica­

tion of statistically homogeneous layers prior to any analysis. Baecher and Ingra 

(1979) and Baecher (1981), considered the autocorrelation function in expressing soil 

property correlations. The sources of data scatter and the different types of errors 

encountered in geotechnical data have been described by Baecher (1984a, 1984b) who 

described a procedure by which the measurement noise of data could be determined. 

In addition to detailed descriptions of error analysis and uncertainty in geotechnical 

engineering, the importance of the autocorrelation function and the correlation coef­

ficient of soil property values in the determination of accurate estimates for problems 

of bearing capacity and settlement have been reiterated in Baecher (1985). 

Several applications of simple statistical procedures, similar to the evaluation of 

probability distribution functions, correlation of soil properties such as shear strength 

through methods of regression, etc., are found in Cheong at al.(1980), Haldar (1981), 
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Asaoka et al.(1982), Krahn et al.(1983) and Anderson et al.(1984) and Johannes-

son (1985). All of these publications, have concentrated on basic statistical aspects, 

disregarding the more sophisticated problems in the characterization of soil profiles. 

The first major attempt in introducing Bayesian concepts to geotechnical engi­

neering was made by Tang (1971). This is an excellent introduction to Bayesian 

evaluation and information for foundation engineering. Since then Bayesian methods 

in the estimation of soil properties have also been used by Veneziano et al.(1975), 

where modeling has been performed, accounting for soil property uncertainty, with 

the exponential function being used to represent soil property correlation. In more 

recent times Vita (1984a, 1984b) has used Bayesian methods, incorporating both the 

soil property variability and the uncertainty factor caused by the limitation of data 

availability. 

The real major contribution to the area of 'modern' statistical soil profile mod­

eling was made by Vanmarke (1977a) who used the theory of random fields, in the 

derivation of various parameters which definitely improved the knowledge in problems 

of site characterization. In addition to the introduction of the scale of fluctuation to 

geotechnical engineering, theories on the probabilities of exceedance and the correla­

tion of spatial averages (Vanmarke - 1978a, 1978b) have also been introduced. These 

concepts have been applied in the estimation of the reliability of earth slopes (Van­

marke - 1977b). The text Random Fields; Analysis and Synthesis (Vanmarke - 1983), 

is a significant contribution to the understanding and application of random field 

theory, which is relatively new in geotechnical engineering. 

Tang (1984a, 1984b, 1987) has also applied the theory of random fields to geotech­

nical test data. In addition, Tang (1979) has performed a probabilistic evaluation of 

penetration resistances, considering uncertainties of the inherent spatial variability of 

soil and location of sampling point on the determination of unbalanced moments on 
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gravity platforms. Tang et al.(1984) also give a conclusive description of a.procedure 

for the probabilistic evaluation of gravity platforms. 

Wu et al.(1985) used methods of Time Series Analysis on geotechnical data to 

represent soil property variation with autoregressive and moving average models. 

The importance of probabilistic and statistical approaches has been highlighted in 

Wu (1973) and also in the extensive, probabilistic site exploration studies (Wu - 1981), 

including methods suited for offshore conditions (Wu - 1986). 

In the area of two and three dimensional site characterization, the only recog­

nizable attempt since Baecher (1982) has been made by Tabba et al.(1981a, 1981b) 

who used polynomial equations to represent the autocorrelation functions. A similar 

approach has also been used by Kulatilake et al.(1987,'88). Prior to this work in the 

field of interpolation of soil test data, Tabba and Yong (1979) described a procedure, 

where the maximum likelihood function was used to estimate trend coefficients. Yong 

(1984) also analyzed the probabilistic nature of soil properties such as shear strength, 

consolidation characteristics, Atterberg limits and chemical composition, before con­

cluding most appropriately, that the degree to which samples are representative of 

the soil stratum under investigation is the most important factor that controls the 

determination of the real soil property. 

With the advent of geostatistics in the field of geology and mining (Agterberg, 

1970/74), geotechnical engineers too have begun in recent years, to appreciate its 

practical advantages (Soulie, 1984). In addition to the procedure to identify soil lay­

ers using the variogram, its versatility in the area of soil property interpolation, seems 

promising (Christakos, 1985,'87). Although variogram modelling and techniques of 

'Kriging' have not been used in geotechnical engineering they have found wide, appli­

cations in soil science (Webster, 1980,'85), mining and geology (Journel et al., 1978, 

Davis et a l , 1978, Delfiner, 1973,76). 



Chapter 2 

Ident i f icat ion of Soi l Layers 

2.1 Introduction 

2.1.1 General 

The proper identification of soil layers is important for design in order to obtain 

reasonable engineering parameters for the different layers. Accurate identification of 

sublayers is also important from a statistical view point, since all statistical analyses 

have to be performed on essentially statistically homogeneous layers. 

The cone penetration test (CPT) performs data logging at close intervals and 

does simultaneous measurements on several channels yielding, for example, values 

of cone bearing, sleeve friction and pore pressure. The electrical cone penetrometer 

is essentially a logging tool and proper methods of layer identification should be a 

high priority. At present, this important task is performed by visual inspection of 

the various soil parameter profiles and by studying the variation of either the friction 

ratio, Rf (the ratio between the sleeve friction and the cone bearing) or the pore 

pressure ratio, B q (the ratio between the excess pore pressure and corrected cone 

bearing) with the cone bearing. 

A low friction ratio with high bearing is evidence of soil which is predominantly 

granular and a high ratio with low bearing implies a soil which is mainly cohesive 

with composites and silty soils lying somewhere between. The ratios obtained are then 

used together with the cone bearing to predict the particular type of soil encountered, 

from well established soil classification charts such as the one shown in Fig. 2.1. 

24 
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F R I C T I O N R A T I O ( % ) , R F 

Zone 9c / N S o l i B e h a v i o u r Type 

J) 2 s e n s i t i v e f i n e g r a i n e d 
2) 1 o r g a n i c m a t e r i a ] 
3) 1 c 1 ay 
4) 1. 5 • l l t y c l a y t o c l a y 
5) 2 c l a y e y s i l t t o e l l t y c l a y 
6) 2. 5 s a n d y s i l t t o c l a y e y s i l t 
7) 3 e l l t y s a n d t o s a n d y s i l t 
8) A s a n d t o s l l t y s a n d 
9) 5 s a n d 

ID) 6 g r a v e l l y s a n d t o s a n d 
1 1> 1 v e r y s t i f f f i n e g r a i n e d (•) 
12) 2 • a n d t o c l a y e y s a n d (•) 

(*) o v e r c o n s o l 1 d a t e d o r c e m e n t e d 

Figure 2.1: Simplified Soil Classification Chart for the C P T (after Robertson and 
Campanella, 1986) 
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2.1.2 Soil Classification Chart for the C P T 

The classification chart given in Fig. 2.1 identifies soil types as indicated, but fails 

to identify soil sublayers which may be present in a layer of sand, silt or clay. Once 

the main soil types are determined, correlation graphs are used to obtain appropriate 

values of friction angle and relative density in conjunction with cone bearing. The 

resulting values of different friction angles and relative densities would give an in­

dication as to the different sublayers present in the stratum. The above procedure 

is subjective and could result in erroneous demarcation of sublayer boundaries and 

could be improved if a method can be deployed to identify different sublayers. Having 

a knowledge of the existing sublayers, the classification chart based on the friction 

ratio and the correlation graphs of relative densities and friction angles could then 

be used to determine the different parameters. The classification chart covers a wide 

range of values, especially in the case of sands. For example, a soil having a cone 

bearing value between 70 and 180 bar and a Rf value less than 1.4% is classified as 

sand while a soil which has a cone bearing value between 180 bar and 500 bar with 

a Rp value of less than 2.0% is classified as a gravelly sand. It is obvious that a soil 

encompassing such a wide range of bearing values will have several sublayers of dif­

ferent relative densities and friction angles which could be obtained from correlation 

graphs. As mentioned previously, this procedure would be simplified and made less 

ambiguous, if the sublayers could be accurately identified. 

The friction ratio is a function of the sleeve friction and cone bearing. The cone 

precedes the sleeve which is also much longer, resulting in the sleeve friction being 

indicative of an averaged value. This effect certainly imposes a mechanical limitation 

on discernible layer thickness. 

A survey involving fifteen people who have all had prior experience with the CPT 

chart, was conducted to ascertain the subjectivity involved in its use. The results 
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indicated a fair amount of discrepancies in the layers identified by the fifteen subjects. 

2.1.3 Improved Methods of Layer Identification 

With the intention of identifying layering more accurately, several statistical proce­

dures will be described and followed up with several applications to illustrate the 

advantages and superiority of such methods. 

The statistical methods proposed will also enable the engineer to decide on the 

different number of layers he could select, by inspecting the statistics of the sub-

regions within the main layer. If the design requires more detail and sophistication, a 

number of layers based on less critical hrnits can be chosen, while for a general design 

for a low risk structure, the layering can be based only on the more critical or the 

highest peaks of the statistic profile. Details of these procedures will be described 

later in the chapter. 

2.1.4 Characteristics of a C P T Profile 

The data from a typical CPT profile comprise of the following characteristics. 

(a) The data may have a lot of short range variations and a search for a longer 

pattern is difficult. Such variations are often erratic and may be regarded as noise. 

(b) The data are highly irregular and often consist of sharp changes. There is no 

way of representing these variations as functional forms between soil parameters and 

depth, unless different layers are clearly identified depending on the acceptance level 

of the engineer. 

(c) The data are multivariate, that is bearing, friction and pore pressure have an 

influence on the soil type encountered. It may be that the dependency on bearing is 
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much higher than the other parameters, but there is no a priori reason for accepting 

it. Furthermore, since the CPT gives all these data, it is always more meaningful to 

base predictions on the maximum amount of information that can be derived. 

From the above explanation, it is evident that a statistical method of identify­

ing different types of layers is justifiable. Most of the statistical and probabilistic 

methods rely on the homogeneity or stationarity criteria of soil properties within a 

sublayer and the proper identification of layers becomes vitally important. In ad­

dition to the univariate and multivariate statistical methods, a detailed procedure 

of nonlinear optimization techniques was also applied in an attempt to estimate soil 

layer boundaries, but this method was not successful as described below. 

2.2 Nonlinear Optimization Techniques 

Traditional trend analysis techniques use the concept of minimizing the squared dif­

ferences, which is known as least squares. This is also a process of linear optimization 

in the case of linear trend analysis since the layer start and end depths are known. 

The optimization equation or the equation to be minimized can be simply expressed 

for each layer which has been decided a priori. The details of these procedures are 

described in the chapter on Trend Analysis. As explained in that chapter, the squared 

differences are minimized with respect to the unknown regression coefficients. How­

ever, the simplicity of this procedure is lost, when the different layer depths are 

unknown and the layer depths, too, become variables, resulting in the linear prob­

lem being transformed into a more complicated nonlinear optimization problem. The 

nonlinear optimization function Fi can be expressed as, 

IN N 

(=1 i=l 
(2.1) 
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where, Q is the regressed estimate, 1^ is the number, of layers and N is the number of 

data in a particular layer. Three different types of trends were tried for the estimation 

ofQ; 

(a) Linear trend with continuity at the border (Fig. 2.2a). 

(b) Linear trend with discontinuity at the border (Fig. 2.2b). 

(c) Linear constant trend (Fig. 2.2c). 

If Z/v is the number of layers (starting and ending co-ordinates unknown) the 

number of unknowns (coefficients of the trend line) would be, 2/jy for case (a), 3/JV — 1 

for case (b) and 21^ — 1 for case (c). Due to the nature of the optimization equation 

above, it is impossible to determine the partial derivatives of FL with respect to the 

variables in closed form. Therefore, two nonlinear optimization routines available in 

the UBC MTS system were used. Out of these two, the routine NLPQO (Vaessen, 

1984) calculates the derivatives within it while the routine POWEL (Vaessen, 1984) 

does not require the partial derivatives of the optimization function. For the iterative 

procedures adopted in these routines to be efficient and yield satisfactory results, 

both*these programs need good starting points for the variables. Due to the irregular 

shape of the function FL, convexity is not assured, and invariably the local minimum 

is not the global minimum. The original intention was to perform the analysis for 

different layer numbers (/#) and to investigate the minimized value of the function 

FL{FL ) in order to select the layer number which results in the lowest FT, . . A 
^ \ •LJmtn / •/ J-'mtn 

detailed analysis was done for different types of profiles and in about ninety percent 

of the cases it was found that the optimum layer depths obtained for both NLPQO 

and POWEL were highly sensitive to the prescribed starting values. As a result of 

this adversity the idea of using nonlinear optimization techniques for estimating layer 

boundaries was abandoned in favor of the preferred simple statistical methods to be 



Chapter 2. Identification of Soil Layers 30 

(a) L a V e r 2 

(b) Layer 2 

Layer 1 Trend 

(c ) Layer 2 Z 
p ^ ~ « CPT Profile 

Layer 3 

Figure 2.2: Different Types of Trend Patterns Used for Non Linear Optimization: 
(a) Continuous Trend Lines with Non Constant Mean (b) Discontinuous Trend Lines 
with Non Constant Mean (c) Discontinuous Trend Lines with Constant Mean. 
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described in section 2.3. 

2.3 Layer Boundary Location Using Statistical Methods 

Consider a section of a transect along which a.property such as bearing has been 

recorded at a number of sampling points and within which the presence of a soil 

boundary can be expected. The effect of the boundary is to divide the sampling 

points into two groups which can be verified for distinctness. This effect of variability 

can be assessed by comparing the difference between the two classes. The larger the 

difference between the two classes and lesser the variation within them, the better is 

the classification. This effect can be measured using either the T Ratio or the Intr­

aclass Correlation Coefficient which will be explained in sections 2.3.2.1 and 2.3.2.2 

respectively. For multivariate records, the bearing, friction and pore pressure are used 

together to determine the D2 statistic (section 2.3.3.1) which is used to obtain op­

timal boundary demarcations. These methods have never been used in geotechnical 

engineering or in a wider sense in Civil Engineering where statistical methods have 

not made significant inroads. 

2.3.1 Moving Window 

In analyzing long profiles where the presence of several boundaries are suspected it 

is not practical to consider the entire profile to investigate for individual boundaries. 

Similarly, it is also not advisable to bracket segments of data arbitrarily (Webster, 

1973). In order to avoid the above impracticalities, a 'window' of fixed width (VFD) 

is made use of and the exposed portion of the data within the window is examined, 

with the center point of the window dot being a potential boundary. This 'window' 

is moved along the profile in steps equal to the sampling spacing and at each point 

d0 (the center of the window), the two sets of data one above and one below d0 



Chapter 2. Identification of Soil Layers 32 

are examined for distinctness, using, any one of the following statistics; the T Ratio 

or the Intraclass Correlation Coefficient for univariate data and the D2 statistic for 

multivariate data. The variations of the above statistics are plotted against dQ, with 

the maxima or peaks of these giving the optimal layer boundaries. If only the layers 

with highly dissimilar characteristics are required, only those d0 values which have 

the highest values of the statistic need be chosen. However, if a more elaborate layer 

identification is necessary, even dD values giving moderately high values should be 

selected. 

The width of the window is another matter of concern and it should ideally He 

between two limits. It should not be too wide, so that it includes more than one 

boundary and on the other hand, should not be too narrow because if it is so the 

values of the statistic will be strongly influenced by noise, rendering any interpre­

tations of the calculated statistic almost impossible. Soulie (1984) states that an 

approximate estimation of the average layer thicknesses of a stratum can be obtained 

from the autocorrelation function which is defined and described in section 4.3.4. A 

conservative value of about fifty percent of the above estimate is recommended for 

the window width in order to alleviate the possibility of missing layers. However, if 

the spacing between boundaries differs significantly, it is advisable to use a fairly low 

window width, to avoid missing any layer boundaries. If relatively sharp changes are 

present between soil types and the distance between layers do not change too much, 

the autocorrelation function will decrease steadily with increasing lag distance, from 

a maximum of unity to a minimum value and fluctuate around this minimum. In 

practice the autocorrelation function first decreases gradually, and then fluctuates 

around some minimum, giving several local maxima and minima. The distance at 

which the first minimum is reached can be taken as the expected average distance be­

tween layers. As mentioned previously, half of this distance is a safe estimate for the 
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window width. If the window widths are narrow, the number of data on either side of 

d0 will be also low, resulting in the additional restraint that the data be multivariate 

normal (Johnson and Wichern - 1982). For a one meter window width, each sample 

will have twenty data points (0.5 m divided by the 0.025 m CPT data interval) and 

for all practical purposes, could be assumed as normally distributed, without serious 

adverse consequences. As a result of this restriction, it is recommended that window 

widths of less than 1.0 m not be selected. In the event it is absolutely necessary to 

select narrow window widths, the data should be verified for normality. 

2.3.2 Univariate Records 

The two statistics used to identify soil layers from single records are; 

(a) T Ratio 

(b) Intraclass Correlation Coefficient pi 

2.3.2.1 T Ratio 

On either side of the window center d0, there will be two samples, Qi and Q2. Let Qi 

and Q2 be the means of the samples and o^2 and <r2

2 be the variances with n-i and n2 

the sample sizes; respectively; 

where, 

(2.2) 

(2.3) 
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For two samples with equal number of data points, n, on either side of the window 

center, doy a pooled combined variance, Tw

2, can be defined as, 

In the above equation a-!2 and <r2

2 can be expected to be reasonably homogeneous, if 

the window widths are not too wide. The T Ratio can now be defined as, 

T 

Equation 2.5 is a modified form of the one given by Webster(1968) which is a general 

expression for samples with unequal number of data. One requirement for the best 

possible differentiation of any two adjacent layers, is that the difference between the 

means (Qi — Q2) , be maximum. If the two samples Qi and fi2

 a r e clearly distinct, 

another requirement is that the individual variances of the two segments, < 7 i 2 and fj 2

2 , 

be relatively low, implying that the weighted pooled variance given by Eq. 2.4, also 

be appreciably low. Considering the aforementioned requirements, the T ratio given 

by Eq. 2.5 will necessarily have to peak at potential layer boundaries. The T ratio, 

thus obtained for different values of d0) gives an indication of the layer boundaries of 

the profile. 
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2.3.2.2 Intraclass Correlation Coefficient (pj) 

As for the previous case, let a\ and <J\ be the variances of samples Q,i and tt2 and 

the pooled combined variance Tw

2, given by Eq. 2.4. The between class variance Y&2 

is the variance of the combined sample given by, 

nx +n2 - 1 |Z} (2-6) 

where, <5 1 S the mean of all the data Qi with i = 1, 2 . . . (ni + 712). 

For equal number of data in each sample, 

1 2n 

ib

2 = -0—-Y,(Qi~Q) (2-7) 

The Intraclass Correlation Coefficient pi is defined by (Webster, 1968), 

Tf,2 

P* = T 2 1 r 2 ( 2- 8) 

It is evident that if each sample Q\ and Vl2 has minimum variability, a\2 and <J2

2 in 

Eq. 2.4 will both approach zero and so will Tu,2. In addition, if the difference between 

the samples is not significant, T&2 in Eq. 2.7 will also approach zero. Since T^ 2 and 

T;,2 are both positive quantities, Yj, 2 in Eq. 2.8 will approach zero faster than the 

quantity (Tf,2 + T„,2). Therefore, for two such samples, £l1 and 0 2

 o n either side of 

d0, Pi will approach zero. This is for the extreme case and in general, if the differences 

between the samples are not significant and they possess some variability, then T{,2 

and pi are not significantly greater than zero. The other scenario is when the two 



Chapter 2. Identification of Soil Layers 36 

samples and. Q2 have minimum variability but are significantly different in respect 

to their mean values. In this circumstance, Tw

2 will approach zero as before, while 

Tfc2 will have some value, resulting in pi being equal to unity, pi will therefore always 

He between these two hypothetical extremes of zero and unity. In reality, a relatively 

high value of pi at a particular depth d0 will indicate the presence of a layer boundary 

at that point. As with the T Ratio, the value of pi can be plotted against depth, in 

order to determine the best layer boundaries along the profile. 

Several applications of using both the T Ratio and the Intraclass Correlation 

Coefficient will be illustrated later. 

2.3.3 Multivariate Records 

The CPT performed at UBC performs data logging on several channels, the cone 

bearing, sleeve friction and the pore pressure being the most important of these from 

an engineering point of view. All these parameters exhibit a different kind of behavior 

in different types of soils, and therefore, any method which considers the combined 

effects of cone bearing, sleeve friction and pore pressure together in one analysis, will 

definitely be the more efficient and accurate method due to the additional information 

contained in such an analysis. While the T Ratio and the Intraclass Correlation 

Coefficient contain the variance (second moment) and the mean (first moment) of the 

data the D2 statistic also includes the covariances of the different variables in addition 

to the mean and the variance. In contrast to these statistical methods the conventional 

method of layer identification using the CPT chart entails only the mean values of 

the parameters. In this regard it is obvious that the statistical methods should be 

better with the D2 statistic being the most superior. 
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2.3.3.1 D 2 Statistic 

The D2 statistic gives most weight to those variates that discriminate best between 

segments. Problems arise if there are several variates, in comparison to the number 

of data (Rao - 1952). However, in the problems dealt with here, this is not of major 

concern even for the case of narrow window widths, since the number of variates do 

not exceed three. 

The use of the discriminant function may be considered in terms of a sample I V 

consisting of m variates, which form a cluster of points in m - dimensional space. 

Another sample fi2 may be described similarly by the same m variables in m - dimen­

sional space. The determination of a (m - 1) - dimensional plane that separates the 

two clusters of points is the discriminant function (Harbaugh and Merriam, 1968). 

The D2 is the distance between the multivariate means of the two dimensional sample 

spaces J7i and f}2, implying that greater the value of D2, the more distinct the two 

samples would be (Rao - 1965). This is illustrated in Fig. 2.3 for the case of two 

variables, cti and ct2 ( m = 2). 

The D2 statistic is given by, 

^ 2 - { Q i - Q 2 } T [ W ] - 1 { Q i - Q 2 } (2.9) 

where, {Qi — Q 2 } is the column matrix of the mean differences of the variates in the 

two samples. For the case with m variables, {Qi — Q 2 } is a m x 1 matrix. [W] is the 

pooled variance - covariance matrix of the samples fix and fi2. For layer identification 

purposes using the cone, the maximum number of variates (m) will be equal to three. 

Let the set of n\ data points from Cli and n 2 data points from £22 be described by the 

following variables; 



Figure 2.3: D2 Statistic for Two Samples J7i and fi2 with Two Variates aj and a 2 (after 
Harbaugh and Merriam, 1968). 
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QiyfitUi being the bearing, friction and pore pressure in. fix 

I2if2iu2 being the bearing, friction and pore pressure in fi2 

The means of the respective parameters in sample Q,i are given by, q~i, / i and Hi and 

for sample fi2, by q2) f2 and u 2 , and their variances by, o~qi

2, cr^2, <rui

2, <r92

2, o~f2 and 

trU2 . 

The mean differences of the variates of the two samples are given by, 

A<? = <zi - q2 A / = fx - f2 Au = ux - u2 (2.10). 

The covariances are given by, 

_ 2 l^i=lHliJli l~ii = l Hi Z ^ i = l J l i / n 1 1 \ 
° W l = " „ 2 I 2 " 1 1 ) 

rii n\ 
2 gii^ii 127=i gii S"=i M 1 0 ^ 

<TqxUl = —2 (2,. 12) 

<r/iui = : — — ——-2 (̂ -13) 

„ 2 

127=i qufii 127=1 <Zli 127=1 / l i 

^ 2 

127=i 9it«it S"=l 9 l i 127=1 UH 
Til2 

E?=i7ii«i* 127=1 fu 127=i uu 
n,2 

127=i q.2i 127=i $2i 
n2

2 

E"=l 9 2 i « 2 i 127=i q2il27=iu2i 

n2

2 

127=1 f2iu2i 127=1 f2i 127=1 U2i 
n2 n2

2 

(2.14) 

2 Z ^ i = i y 2 i " 2 i Z^i= l V2i Z ^ i = l "2i , „ K v 

o-92u2 = — j (2.15) 
= • 2 I2'1") 

The pooled weighted variances are given by, 

(2.17) 
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T , 2 
7li 

« 1 + Tl2 — 1 < ^ 2 + 
™2 

n x + n 2 - 1 °"/2 

n! + n 2 — 1 
<?"Ul + n 2 

-7^2 

(2.18) 

(2.19) 

Similarly, the pooled weighted covariances are given by, 

ni 

qu 

• / u 

ni -f n2 — 1 
2 _ n l 

ni + n 2 — 1 
2 =

 n i 

"2 

° q i u i + 

Til + 7 l 2 — 1 
2 , ^2 

-J- — < 
Tlx + n 2 — 1 

'92 "2 

° 7 l U ! + 
n 2 2 

°"/2"2 
n-i + TI2 — 1 

(2.20) 

(2.21) 

(2.22) 

If equal number of data points are considered in samples fix a n d fi2 (as usually the 

case is), TIX/(TIX +n2 — 1) and TI2/(TIX+TI2 — 1) in Eqs. 2.17 to 2.22 can be approximated 

by, 

T l i 715 

Tlx + 7 l 2 — 1 nl + n2 — 1 

0.5 (2.23) 

The variance covariance matrix [W] can be now formulated and is comprised of the 

elements derived above, 

r 2 p 2 r 2 

1 q L if qu 

r w i TI 2 p 2 p 2 
i q / 1/ 1/u 

P 2 r 2 r 2 

L J- qu J- / u -1- u 

(2.24) 

{Qi — Q 2 } m Eq. 2.9 is given by, 
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Aq ' 

{Qi - Q 2 } = < A / (2.25) 

. Au . 

In using the D2 statistic, to identify soil layer boundaries, the window is moved along 

the data profile, with d0 the mid-point of the window separating the two samples and 

for each dQ, the value of D2 is calculated and plotted against depth. The peaks of 

the ensuing plot would illustrate the best positions of the layer boundaries. If only a 

few boundaries are needed, the points at which the highest D2 values occur can be 

selected. If in the engineer's mind more layers are needed, the less critical TJ2 values 

too can be used in order to obtain more layer demarcations. 

2.4 Application to C P T Profiles 

The above concepts of statistically identifying layers have been applied to three sets 

of data in order to illustrate the advantages of the methods explained above. The 

locations from which the data have been obtained are given below and their geology 

and site descriptions are given in section 1.7. 

(a) McDonald Farm Site 

(b) Haney Site 

(c) Tilbury Island Site 

All the data have been obtained using a cone of sectional area 10cm2 with pen­

etration at 2 cm/sec and data logging being performed at 2.5 cm intervals. The 

McDonald Farm site is predominantly sand, the Haney site predominantly clay and 

the Tilbury Island site is mainly silt and sand. These particular sites were selected as 
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they cover a wide area of soil "types which could be encountered in a site investigation 

and in the event the statistical methods prove successful in all three sites, it becomes 

possible to infer that the proposed methods are applicable to any type of soil profile. 

2.4.1 McDonald Farm Site 

The McDonald Farm, typically consists of sand and sandy silts in the top 15 m with 

clayey soils extending below the sand. The cone bearing, sleeve friction, pore pressure 

and friction ratio profiles are illustrated in Fig. 2.4. 

At the outset, an autocorrelation analysis was performed for the three variables 

and the variation of the function with lag distance (separation distance between 

points) is illustrated in Fig. 2.5. The purpose of this was to determine an optimal 

window width, WD, which ideally should lie between two limits: not too wide, in 

order to avoid the possibility of missing thinner layers and not too narrow, in order 

to minimize noise in the calculated statistics. The plot of the autocorrelation function 

in Fig. 2.5 results in three different initial minimum points for the three variables, 

indicated by the arrows which read as 6.82 m for cone bearing, 2.74 m for friction 

and 5.22 for pore pressure. The multivariate analysis requires a single value for WD 

since all three variables are handled simultaneously, while for the univariate analysis, 

three different widths can be used for the three variables. However, it is suggested to 

decide on a single WD even for the univariate case to facilitate comparisons between 

variates. The more serious consequence of choosing an incorrect WD is that if it is 

too wide, potential layers will be missed. The consequence of missing layers is highly 

undesirable and has to be avoided. As explained earlier, the upper limit of the WD 

will have to be below the minimum value of 2.74 m, and preferably about half of 2.74 

in order to avoid any possibility of missing any dominant layers. 

An initial value of 0.5 m was selected for WD to illustrate the effects of noise, 
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Figure 2.4: Cone Bearing, Sleeve Friction, Pore Pressure and Friction Ratio Profiles 
at McDonald Farm. 
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Figure 2.5: Autocorrelation Functions of Cone Bearing, Sleeve Friction and Pore 
Pressure Profiles at McDonald Farm. 
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when the thickness is low. A WD of 3.0 m was also used: to illustrate the more, crucial 

effect of missing layers with wide window widths. These effects will be discussed later 

with the appropriate figures. As a consequence of further investigations, the most 

adequate WD was selected as 1.5 m and all the detailed analyses and comparisons to 

follow will deal with this window width. 

The variations of the Intraclass Correlation Coefficient (pi) with depth for bearing, 

friction and pore pressure are illustrated in Figs. 2.6, 2.7 and 2.8. The variation of 

the T ratio for the three properties are given in Figs. 2.9 to 2.11. The results for the 

case with WD of 3.0 m, for both T Ratio and pi are illustrated in Figs. 2.12 and 2.13 

respectively. By comparing Figs. 2.6 to 2.11 for WD = 1.5 m to the corresponding 

Figs. 2.12 and 2.13 for WD — 3.0 m, it is evident that a WD of 1.5 m is superior due 

to the apparent convenience in which layer boundaries can be picked up without the 

risk of missing out thinner layers. Figures 2.14 and 2.15 illustrate the variation of 

bearing, friction and pore pressure overlaid on one another for the T Ratio and pi 

respectively, for a WD of 1.5 m. 

The following depths have been obtained as the most critical layer depths, con­

sidering the T Ratio for cone bearing, sleeve friction and pore pressure in Fig. 2.14. 

Cone Bearing : 0.65, 0.93, [4.35], 6.60, [9.05], 10.03, 11.93, 12.80,. [14.50] m. 

Friction : 0.65. [4.33].'6.53.. 7.35. [9.05]. 9.90. [14.53], 17.7-0 m. 

Pore Pressure : 3.13, [4.30], 5.43, 6.48, 8.03, [9.10], 11.98, [14.78], 17.80 m. 

The bracketed values indicate the depths at which the statistic attains a high mag­

nitude for at least two variates. 

For the Intraclass Correlation Coefficient (Fig. 2.15), the results are as follows; 

Cone Bearing : 1.25, [4.35], 6.60, [9.05], 10.03, 11.98, 12.80, [14.50], 15.48 m. 
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Figure 2.6: Intraclass Correlation 
Coefficient for Cone Bearing at Mc­
Donald Farm for a Window Width 
of 1.5 meters. 

Figure 2.7: Intraclass Correlation 
Coefficient for Sleeve Friction at 
McDonald Farm for a Window 
Width of 1.5 meters. 

Figure 2.8: Intraclass Correlation 
Coefficient for Pore Pressure at Mc­
Donald Farm for a Window Width 
of 1.5 meters. 
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Figure 2.12: T Ratio for Cone 
Bearing, Friction and Pore Pressure 
at McDonald Farm for a Window 
Width of 3 meters. 
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Figure 2.13: Intraclass Correlation 
Coefficient for Cone Bearing, Fric­
tion and Pore Pressure at McDon­
ald Farm for a Wndow Width of 3 
meters. 
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Figure 2.14: T Ratio for Cone Bearing, Friction and Pore Pressure at McDonald Farm 
for a Window Width of 1.5 meters. 
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Figure 2.15: Intraclass Correlation Coefficient for Cone Bearing, Friction and Pore 
Pressure at McDonald Farm for a Window Width of 1.5 meters. 
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Friction : 0.63, [4.33], 6.50, 7.38, [8.98], 9.90, [14.53], 17.70 m. 

Pore Pressure: 0.63, [4.28], 5.43,6.48, [9.10], 11.98, [14.68], 16.03, 17.80 m. 

Here too, the bracketed values indicate the depths at which the highest values of 

pi occur for at least two variates. These results agree appreciably well with the depths 

obtained using the T Ratio. The layer boundaries that could be selected from the 

results of the Intraclass Correlation Coefficient are 4.30, 9.05 and 14.60 m and agree 

well with those obtained for the T ratio. In situations where the T Ratio and pi of the 

variables considered are not in total agreement, the decision of layer boundaries will 

have to be based on the results of the multivariate analysis. From the above results, 

it can be concluded that the two statistics, the Intraclass Correlation Coefficient and 

the T Ratio are appropriate statistics for discriminating between layers. 

A multivariate analysis was performed for the three variables and the D2 was 

calculated. The variation of D2 is illustrated in Fig. 2.16 and the most prominent 

peaks for layer differentiation was obtained as 4.30, ,9.10, 14.60 m. Another possible 

but less dominant layer boundary can be found at 10.0 m. These results agree with 

the ones obtained for the univariate analysis except for the 12.85 m depth where only 

the cone bearing suggested a layer boundary for the univariate analysis. The D2 

statistic for Wd value of 0.5, illustrated in Fig. 2.17, shows the effect of noise. 

It is widely accepted that the friction ratio in conjunction with the cone bearing, 

is a reliable method for identifying different layers in a soil stratum. If'the CPT 

classification chart was used for layer boundary location, the layer boundaries would 

have been identified at 1.0, 4.25, 13.0 and 14.75 m. Furthermore, these estimates of 

layering are based on a fair amount of judgement, leaving room for subjectivity and 

inconsistency. Table 2.1 gives a comparison of the layer boundaries identified by the 

statistical methods with that based on the CPT classification chart. The statistical 



Figure 2.16: D3 Statistic f r o m Multivariate Analysis at McDonald Farm for a Window 
Width of 1.5 meters. 
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Figure 2.17: D2 Statistic from Multivariate Analysis at McDonald Farm for a Window 
Width of 0.5 meters. 



Chapter 2. Identification of Soil Layers 54 

techniques proposed can be used to identify two types of layers as follows. The pri­

mary layer boundaries define depths with relatively large values of the T Ratio, pi 

and D2 while the secondary layer boundaries define depths which have lesser magni­

tudes of the above statistics. The significance of these magnitudes will be discussed 

in a subsequent section. As can be seen from Table 2.1, the conventional method 

has failed to detect the layer boundaries at 6.50, 9.05 and 17.80 m. In addition, the 

proposed statistical methods were also able to supplement information on layering 

by assigning exact depths which are generally estimated by eye if the method based 

on the CPT chart is used. The statistical methods of layering are based on some 

specific numerical values, alleviating the possibility of erroneous classification due to 

misjudgement. Once the pattern of detailed layering is recognized, correlation graphs 

can be used with less uncertainty to obtain values of friction angle, relative density, 

etc., for the different sublayers. The detailed layering pattern will also be useful for 

engineering design, since the engineer is informed of the different layers in existence, 

so that averaging of properties can be done for the statistically homogeneous layers 

determined from above. 

2 . 4 . 2 Haney Site 

The measured cone bearing, sleeve friction, pore pressure and friction ratio profiles of 

the Haney site are illustrated in Fig. 2.18- The soil conditions at Haney is predomi­

nantly clay alternating between clayey silt and silty clay. As for the previous example 

an autocorrelation analysis was performed on the three variables and the expected 

layer thicknesses were not similar. The lowest value was obtained for friction with a 

value of approximately 3.8 m. Therefore, a window width WD, of 2.0 m was selected 

to avoid the possibility of missing layer boundaries. 
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Figure 2.18: Cone Bearing, Sleeve Friction, Pore Pressure and Friction Ratio Profiles 
at Haney Site. 
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Figure 2.19: Intraclass Correla­
tion Coefficient for Cone Bearing at 
Haney Site for a Window Width of 
2.0 meters. 
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Figure 2.20: Intraclass Correlation 
Coefficient for Sleeve Friction at 
Haney Site for a Window Width of 
2.0 meters. 
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Figure 2.21: Intraclass Correla­
tion Coefficient for Pore Pressure at 
Haney Site for a Window Width of 
2.0 meters. 
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The Intraclass Correlation Coefficient, pi, was calculated and the best layer bound­

aries for the three variables (Figs. 2.19 to 2.21) were obtained as follows; 

Cone Bearing : 7.70, 9.30, 11.80, 15.95, 17.93 m. 

Friction •: 3.70, [6.70], 7,68, 9.28, 11.55, [12.65], 15.95, 17.83 m. 

Pore Pressure : [1.10], [6.73], 7.78, 9.30,11.88, [12.70], 15.88, 17.93 m. 

Table 2.2 includes the best layer selections from the three statistical methods as well 

from the classification chart, based on the above depths which have been obtained for 

individual parameters. The combined plot of pi for the three variables is illustrated 

in Fig. 2.22. 

The T Ratio profiles (Fig. 2.23) suggest similar layer boundaries as those obtained 

from the Intraclass Correlation Coefficient. 

The D 2 determination, considering all three variables, resulted in the following 

layer boundaries (Fig. 2.24); 

[1.25], [6.73], 7.78, [9.30], [12.68], 15.95 and 17.93 m. 

The bracketed values above indicate the depths where D 2 attained relatively high 

magnitudes. These depths are also categorized into two types of layering with the 

bracketed depths indicating the main layer boundaries and the other depths repre­

senting less prominent boundaries. 

Table 2.2 shows that the statistical methods are in agreement with the identifi­

cation of layer boundaries using the CPT chart on qualitative basis, although the 

less dominant boundaries at 9.30, 15.95 and 17.93 m are not picked up by the latter 

method. In contrast to the subjectivity of picking layer boundaries using the Rj pro­

file in conjunction with the bearing profile, the other statistical profiles, namely the 

Intraclass Correlation Coefficient, T ratio and especially the D 2 , recognize the layer 

boundaries distinctly and conveniently. 
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Figure 2.22: Intraclass Correlation Coefficient for Cone Bearing, Friction and Pore 
Pressure at Haney Site for a Window Width of 2.0 meters. 
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Figure 2.23: T Ratio for Cone Bearing, Friction and Pore Pressure at Haney Site for 
a Window Width of 2.0 meters. 



Figure 2.24: D7 Statistic from Multivariate Analysis at Haney Site for a Window 
Width of 2.0 meters. 
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2.4.3 Tilbury Island Site 

The Tilbury Island profile (Fig. 2.25) is predominantly sand with some surface silt. 

Pore pressure data were not available and only the cone bearing and friction will be 

considered. Based on an autocorrelation analysis of the variables concerned, a WD 

of 2.0 m was selected for the analysis. The variation of the Intraclass Correlation 

Coefficient (Fig. 2.26), picked the following boundaries for bearing and friction. 

Cone. Bearing : [1.26], [2.13], [7.58], 9.70, [11.70], 12.68, 17.18 m. . 

Friction : [1.23], [2.13], [7.55], [11.60], 12.67, 17.17 m. 

The D2 profile (Fig. 2.27), gave the following boundaries; 

[1.28], [2.18], [7.78], [11.75], 12.68 and 17.20 m. 

Table 2.3 shows the comparison of the two methods and the results are agreeable 

qualitatively although the statistical methods have the added advantage of recogniz­

ing additional sublayering. Even in. situations such as this, the advantages of the 

statistical methods are self explanatory from Table 2.3, with its ability of picking 

specific layers. It should be reiterated that although the traditional method picks the 

layer boundaries by judgement supported by the classification chart, the statistical 

methods of identification entail no errors caused by incorrect judgement. As in the 

previous examples, once the layer boundaries are specifically determined, the well 

established methods in in situ geotechnical engineering can be used to characterize 

these layers. 

2.4.4 Primary and Secondary Layer Boundaries 

The statistics already described will have varying magnitudes depending on the power 

of discrimination between layers. The higher the value of the statistic at peaks of the 

statistic profile, the greater is the chance for a layer, boundary to occur at that point. 
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Figure 2.25: Cone Bearing, Sleeve Friction and Friction Ratio Profiles at Tilbury 
Island. 
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Figure 2.26: Intraclass Correlation Coefficient for Cone Bearing and Friction at 
Tilbury Island for a Window Width of 2.0 meters. 
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Figure 2.27: D2 Statistic from Multivariate Analysis at Tilbury Island for a Window 
Width of 2.0 meters. 
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While there will be very high peaks of these statistics, it is also possible to have 

peaks possessing significantly lower magnitudes. Different ranges of these peaks may 

be established, with each range depicting sublayer, boundaries. However, the peaks 

of the profiles that are of concern in this study will be the group of the maximum 

peaks and the peaks that fall into a lower range of magnitudes of the statistics. On 

the above lines, two types of layering can be defined as follows;. 

(a) A primary layer boundary is found at a depth at which the statistic under 

consideration attains a very high value (points giving the highest peaks). 

(b) A secondary layer boundary is found at a depth at which the statistic attains 

a peak, but not to the extent as given by (a) above. These peaks will be in a range 

lower than, that of the maximum peaks. 

This concept of primary and secondary layer boundaries is analogous to the layering 

and sublayering in geotechnical engineering. In the overall sense, when the variation 

of both the univariate and multivariate statistics are considered in layer boundary 

identification, there are further requirements which have to be met in deciding which 

is a primary and which is a secondary layer boundary. However, the above definition 

would suffice at this stage and the detailed requirements as mentioned above will 

be described in a subsequent section. The values of the depths obtained from the 

CPT chart in Tables 2.1, 2.2 and 2.3 have been based on the results of the survey 

conducted to evaluate the subjectivity involved in the use of the chart. The values 

decided by the subjects in the survey consisted of a fair amount of dispersion and 

therefore the depths selected represent the approximate means of the different layer 

boundary depths obtained from the survey. 
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Table 2.1: Comparison of the Layer Boundaries Identified Using the CPT Chart with 
the Proposed Statistical Methods, for McDonald Farm Data. 

Depth 
( m ) 

Soil Characteristics Layering and 
Soil Type from 

CPT Chart 

Proposed Statistical Methods 

Depth 
( m ) 

Cone 
Bearing 
( bar ) 

Friction 
Ratio 

% 

Layering and 
Soil Type from 

CPT Chart 

Primary 
Layer Boundaries 

Secondary 
Layer Boundaries Depth 

( m ) 
Cone 

Bearing 
( bar ) 

Friction 
Ratio 

% 

Layering and 
Soil Type from 

CPT Chart T Pi D T Pi D 2 

5 

1 0 

< 30 4.0 
Organic 

Silty Clay 

5 

1 0 

< 30 4.0 
Organic 

Silty Clay 

5 

1 0 

30-40 0.75-2.0 
Silty Sand 

and 
Sandy Silt 

5 

1 0 

80-140 0.4 

Medium 
to 

Dense Sand 

5 

1 0 

80-140 0.4 

Medium 
to 

Dense Sand 

5 

1 0 

80-140 0.4 

Medium 
to 

Dense Sand 

1 5 

80-140 0.4 

Medium 
to 

Dense Sand 

1 5 

80 0.6-I.0 Silty Sand 

20 

10 0.8 
Silty 

Clay 

20 

10 0.8 
Silty 

Clay 
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Table 2.2: Comparison of the Layer Boundaries Identified Using the CPT Chart with 
the Proposed Statistical Methods, for the Haney Data. 

D e p t h 

( m ) 

S o i l C h a r a c t e r i s t i c s L a y e r i n g a n d 

Soil T y p e from 

CPT C h a r t 

P r o p o s e d S t a t i s t i c a l M e t h o d s 

D e p t h 

( m ) 
C o n e 

B e a r i n g 
( b a r ) 

F r i c t i o n 
R a t i o 

% 

L a y e r i n g a n d 

Soil T y p e from 

CPT C h a r t 

P r i m a r y 
L a y e r B o u n d a r i e s 

Secondary 
L a y e r Boundaries D e p t h 

( m ) 
C o n e 

B e a r i n g 
( b a r ) 

F r i c t i o n 
R a t i o 

% 

L a y e r i n g a n d 

Soil T y p e from 

CPT C h a r t T Px D T Pi D 2 

5 

1 0 

1 5 

20 

0 - 5 2 - 6 O r g a nic 
Silty C l a y 

5 

1 0 

1 5 

20 

2 0 - 5 0 2 - 6 Clayey Silt 
5 

1 0 

1 5 

20 

10 2.5-3.5 Silty Clay 

5 

1 0 

1 5 

20 

10 2.5-3.5 Silty Clay 

5 

1 0 

1 5 

20 

10 2.5-3.5 Silty Clay 

5 

1 0 

1 5 

20 

12-18 2 Sandy Silt 

5 

1 0 

1 5 

20 

12-18 2 Sandy Silt 

5 

1 0 

1 5 

20 

12-18 2 Sandy Silt 
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Table 2.3: Comparison of the Layer Boundaries Identified Using the CPT Chart with 
the Proposed Statistical Methods, for the Tilbury Island Data. 

Depth 
( m ) 

Soil Characteristics Layering and 
Soil Type from 

CPT Chart 

Proposed Statistical Methods 

Depth 
( m ) 

Cone 
Bearing 
( bar ) 

Friction 
Ratio 

% 

Layering and 
Soil Type from 

CPT Chart 

Primary 
Layer Boundaries 

Secondary 
Layer Boundaries Depth 

( m ) 
Cone 

Bearing 
( bar ) 

Friction 
Ratio 

% 

Layering and 
Soil Type from 

CPT Chart Pi D 2 Pi D2 

5 

1 0 

1 5 

20 

30 2 - 6 
Gravelly Sand 

to Sand 

5 

1 0 

1 5 

20 

30 2 - 6 
Gravelly Sand 

to Sand 

5 

1 0 

1 5 

20 

20 -35 0.6-I.0 

Silty Sand 

to 

Sandy Silt 
5 

1 0 

1 5 

20 

60 0.5 
Sand 

to 

Silty Sand 

5 

1 0 

1 5 

20 

70-125 0.4 Sand 

5 

1 0 

1 5 

20 

70-125 0.4 Sand 

5 

1 0 

1 5 

20 

70-125 0.4 Sand 
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2.5 Types of Profiles where T Ratio, pi and D 2 are Unable 

to Detect Layer Boundaries 

The applications of the layer identification statistics, namely, the T Ratio, pi and the 

D2 statistic have clearly indicated their superiority over the method popularly used 

at present, for discriminating layers. All these methods are based on the first and 

second moments of the samples on either side of the window center, d0. 

In the event of the presence of two adjacent layers, one with an increasing trend 

and the other with a decreasing trend (Type I, Fig. 2.28) the means of the two layers 

could possibly be approximately equal. The discriminating statistics depend on the 

difference of the means of the two adjacent layers and at the expected boundary at 

A in Fig. 2.28, the T Ratio, pi and D2 would all reach a minimum, instead of a 

maximum that is normally expected at a layer boundary. This type of profile is rare 

and none of the data available at UBC exhibited such a behavior. Therefore, a profile 

was simulated to reflect the above type of behavior. The variations of the T Ratio, pi 

and D2 statistics for the simulated profile is illustrated in Figs.. 2.29 to 2.31. While pi 

attains a minimum at approximately 10.0 m (around point A), the T Ratio and D2 

statistics reach zero. The latter two statistics become zero because the cone bearing 

immediately following the 10 m depth was simulated to have a trend exactly opposite 

to that of the cone bearing just prior to that depth. This is a hypothetical case, and 

in reality what could be expected is a minimum value as for pi. The effect of Fourier 

smoothing on the statistics are also illustrated in Figs. 2.29 to 2.31. It is evident 

that smoothing does not significantly improve the identification efficiency of the three 

statistics discussed. 

The other type of layer boundary which could be expected not to be detected using 

the above statistics is in a profile where the gradients on either side of a potential 

boundary, dQ, barely change with the mean on either side being approximately equal. 
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Figure 2.28: Type I Profile 



T RATIO T RATIO T RATIO 

Figure 2.29: T Ratio for Type I Profile for Different Degrees of Fourier Smoothing. 
NN = 300 Represents the Unsmoothed Profile, NN = 100 Represents the Profile with 
100 of the 300 Possible Harmonics Considered and NN = 50 with only 50 Harmonics 
(highest degree of smoothing). 



INT. CORR. COEFF INT. CORR. COEF. INT. CORR. COEF. 

Figure 2.30: Intraclass Correlation Coefficient for Type I Profile for Different Degrees 
of Fourier Smoothing. NN = 300 Represents the Unsmoothed Profile, NN = 100 
Represents the Profile with 100 of the 300 Possible Harmonics Considered and NN = 
50 with only 50 Harmonics (highest degree of smoothing). 
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Figure 2.31: D2 Statistic for Type I Profile for Different Degrees of Fourier Smoothing. 
NN = 300 Represents the Unsmoothed Profile, NN = 100 Represents the Profile with 
100 of the 300 Possible Harmonics Considered and NN = 50 with only 50 Harmonics 
(highest degree of smoothing). 
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This type of boundary will fall into the category of secondary layer boundaries. A 

profile to represent the above behavior (Type II) was also simulated and is illustrated 

in Fig. 2.32 and the point of concern is around B, where a layer boundary can be 

expected due to the change in the gradient. The T Ratio, pi and D2 statistics for the 

profile in Fig. 2.32 is illustrated in Figs. 2.33 - 2.35 which do not possess peaks at the 

expected layer boundary near B. A suggested method to identify layer boundaries in 

profiles similar to Types I and II is discussed below. 

It has to be reiterated that the Type I (Fig. 2.28) and Type II (Fig. 2.36) profiles 

are synthesized profiles to illustrate the effectiveness of the Gradient method more 

clearly. 

2.5.1 Change of Gradient Between Layers 

Soil properties are highly depth dependent and more commonly linearly depth de­

pendent. A linear description requires two statistics to fully describe its behavior, 

namely, the intercept and the gradient. Therefore, the intercept and the gradient are 

two possible statistics which could be used to identify different layers, when statistics 

such as the T Ratio, pi and 7J2'fail in performing this t for the cases illustrated 

in the previous section. 

An appreciable change in the intercept would be reflected in the change of the 

means and in turn would be reflected in the increased values of the T Ratio, pi and 

D2. However, as was illustrated before, the change in gradient alone may not be 

reflected in the above discriminating statistics. In an attempt to arrest the above 

problem of obtaining layer boundaries in situations such as Type I and Type II 

profiles, the window was moved along the data profile and the gradients on either 

side of its center, d„, were investigated. This study indicated that the absolute value 

of the difference of the gradients representing the linear influence before and after 
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Figure 2.32: Type II Profile. 



Figure 2.33: T Ratio for Type II Figure 2.34: Intraclass Correlation Figure 2.35: D2 Statistic for Type 
Profile. Coefficient for Type II Profile. II Profile. 

O S 



Chapter 2. Identification of Soil Layers 

Figure 2.36: Change of Gradient for Type I Profile. 
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dQ, would be a reliable statistic to define a layer boundary of the types discussed. 

The change of gradient profile for the Type I profile is illustrated in Fig. 2.36 and 

for the Type II profile, it is given in Fig. 2.37. It is evident from the above figures 

that the change of gradient reaches a local maximum at 10.0 m (point A) for Type I 

and at 8.60 m (point B) for the Type II profile, providing sufficient evidence as to its 

capability of picking up layers of the above types. 

Figure 2.38 illustrates that the effect of smoothing on the change of gradient is 

negligible. The T Ratio, pi and D2 statistics (Fig. 2.29 - 2.31) of the Type I profile 

also exhibited a lack of sensitivity to Fourier smoothing, providing evidence to the 

understanding that CPT data is relatively noise free. More elaborate descriptions of 

filtering and smoothing methods are described in Chapter 3. 

2.6 Sensitivity of Window Width 

As discussed in section 2.3.1, the effect of a narrow window width (WD) is the in­

troduction of noise into the statistic under consideration. However, this would not 

affect the selection of layer boundary depths. In contrast, the choice of a wider win­

dow width could lead to the possibility of missing out possible layer boundaries. The 

latter option could result in serious consequences and has to be avoided by choosing 

a low value for WD based on the autocorrelation function of the variables concerned. 

The effect of WD on the layer boundary depth was investigated in detail for selected 

depths for a soil stratum comprised mainly of sand (Mc Donald Farm) and of clay 

(Haney), and the results for the Intraclass Correlation Coefficient are tabulated in 

Table 2.4 and Table 2.5 for the two sites respectively. 

The results indicate that the primary layer boundary depth is not highly sensitive 

to the window width chosen. However, this does not preclude the possibility of missing 

out layers if too wide a WD is selected, with the secondary layer boundaries being 
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Figure 2.37: Change of Gradient for Type II Profile. 
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Figure 2.38: Change of Gradient for Type II Profile for Different Degrees of Moving 
Average Smoothing. oo o 
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Table 2.4: Effect of Window Width on Primary Layer Boundary Depth for the Intr­
aclass Correlation Coefficient for McDonald Farm. 

Window Width (m) 1.0 1.5 2.0 2.5 

Layer Boundary Depth (m) 
Intraclass Correlation Coefficient 

4.30 
0.8743 

4.35 
0.8783 

4.35 
0.8586 

4.35 
0.8725 

Layer Boundary Depth (m) 
Intraclass Correlation Coefficient 

9.05 
0.8975 

9.05 
0.9097 

9.03 
0.8771 

9.00 
0.8460 

Layer Boundary Depth (m) 
Intraclass Correlation Coefficient 

14.48 
0.8776 

14.50 
0.8809 

14.50 
0.8696 

14.48 
0.8723 

Table 2.5: Effect of Window Width on Primary Layer Boundary Depth for the Intr­
aclass Correlation Coefficient for Haney Site. 

Window Width (m) 1.0 1.5 2.0 2.5 

Layer Boundary Depth (m) 
Intraclass Correlation Coefficient 

6.70 
0.7752 

6.78 
0.7200 

6.73 
0.7051 

6.75 
0.7122 

Layer Boundary Depth (m) 
Intraclass Correlation Coefficient. 

9.30 
0.7742 

9.30 
0.8197 

9.30 
0.8317 

9.25 
0.7626 

Layer Boundary Depth (m) 
Intraclass Correlation Coefficient 

12.73 
0.7927 

12.75 
0.7963. 

12.70 
0.8016 

12.75 
0.7506 
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Table 2.6: Effect of Window Width on Primary Layer Boundary Depth for the D2 

Statistic for McDonald Farm. 

Window Width (m) 1.0 1.5 2.0 2.5 

Layer Boundary Depth (m) 
D2 Statistic 

4.30 
24.99 

4.30 
30.15 

4.33 
26.53 

4.33 
27.67 

Layer Boundary Depth (m) 
D2 Statistic 

9.05 
31.47 

9.10 
35.99 

9.03 
24.26 

9.03 
16.06 

Layer Boundary Depth (m) 
D2 Statistic 

14.50 
34.46 

14.60 
33.21 

14.53 
30.10 

14.50 
27.17 

more susceptible. The non sensitivity of the primary layer boundary depth to small 

changes in window width clearly reveals the robustness of the Intraclass Correlation 

Coefficient as an adequate parameter. A similar type of sensitivity analysis was also 

performed for the D2 statistic, the results of which are tabulated in Tables 2.6 and 

2.7 for the two sites. 

These results in Tables 2.6 and 2.7 also indicate that the depths of layer boundaries 

are not highly sensitive to the window width chosen. The absolute values of the D2 

however, seem to be dependent on the window width, with no specific pattern of 

variation with increasing or decreasing WD- This phenomenon is not of real concern, 

as long as the depths of local maxima (peaks) of the D2 profile are not significantly 

dependent on the. width of window selected: 

The secondary layer boundary depths are somewhat sensitive to Wj for both the 

Intraclass Correlation Coefficient and D2 and therefore the use of a WD based on the 

autocorrelation function will avoid the possibility of missing such boundaries. 
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Table 2.7: Effect of Window Width on Primary Layer Boundary Depth for the D2 

Statistic for Haney Site. 

Window Width (m) 1.0 1.5 2.0 2.5 

Layer Boundary Depth (m) 
D2 Statistic 

6.75 
28.63 

6.73 
25.19 

6.73 
18.89 

6.73 
15.52 

Layer Boundary Depth (m) 
D2 Statistic 

9̂ 25 
19.34 

9.28 
20.77 

9.30 
16.82 

9.25 
18.90 

Layer Boundary Depth (m) 
D2 Statistic 

12.70 
24.89 

12.68 
21.53 

12.68 
25.16 

12.65 
27.65 

2.7 Establishment of Critical Statistics 

The establishment of critical acceptance levels for the layer identification statistics 

is desirable to alleviate the need for picking out layers based on judgement of the 

variation of these statistics. As a result of the investigation of several data sets, 

representing different soil types, certain criteria have been developed to achieve the 

above purpose. It is suggested that a combination of the univariate and multivariate 

methods would be the optimum way by which certain guidelines could be established. 

2.7.1 Univariate Analysis 

The results obtained for the three sites already discussed reflect the close association 

of the T Ratio and / O j . The Intraclass Correlation Coefficient is a normalized form 

of a variability parameter with a typical range between zero and unity, rendering it 

especially convenient for comparison purposes. The T Ratio, however, suffers from 

the fact that it is somewhat dependent on the magnitude of the units of the data con­

sidered. For the aforementioned reasons, it is proposed that the Intraclass Correlation 
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Coefficient is more preferable to be used as a layer boundary identifying statistic, for 

the univariate case. 

A closer inspection of the pi profiles for the three data sets at McDonald Farm, 

Haney and Tilbury Island reveals the presence of certain bounds which can be identi­

fied for the purpose of defining primary and secondary layer boundaries. The critical 

ranges of these limits are given in Table 2.8. These limits need not be applied strin­

gently but an allowance of approximately ± 10% would be permissible. It should be 

reiterated that the fulfillment of these requirements alone is not sufficient, and for a 

layer to be identified as primary or secondary, the limits on the requirements for D2 

described in section 2.7.2 should also be satisfied. 

Table 2.8: Critical Levels of the Intraclass Correlation Coefficient for the Definition 
of Primary and Secondary Layer Boundaries. 

Boundary Type Range of pi 

Primary 

Secondary 

pi > 0.80 

0.80 > pT > 0.65 

2.7.2 D 2 Statistic for Multivariate Analysis 

In contrast to the Intraclass Correlation Coefficient the D2 statistic is a function of the 

cross correlation structure of the variables. The correlation structure of sand and clay 

are very different and, therefore, the critical limits will be different for different soil 

types. In addition to the sites already described, data from several other sites were 

also analyzed to obtain appropriate limits for the definition of primary and secondary 

layer boundaries. Two levels of maxima for these data are tabulated in Table 2.9 
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which also includes the soil type that predominates the stratum under consideration. 

The information given in Table 2.9 indicates relatively high values of D2 for sand 

compared to clay and will have to be given due consideration in- the formulation of 

significance levels. The discrepancy in their relative magnitudes is due to the variances 

and covariances of the variables in sand being relatively higher than their counterparts 

in clay. The ranges given in Table 2.9 lead to Table 2.10 which tabulates approximate 

critical levels for the definition of primary and secondary layer boundaries for both 

sand and clay type soils. 

Similar to limits on pi, these levels are not to be considered very stringently. 

These should only serve as a rough guide and aide for the purpose of layer boundary 

delineation and a tolerance of ±10% is similarly applicable. The criteria for the D2 

statistic has to be used in conjunction with the Intraclass Correlation Coefficient if 

any confidence is to be placed on the recommended procedure of identifying layers 

and classifying them as primary and secondary. 

2.7.3 Combined Critical Limits Based on pi and D 2 

The multivariate analysis contains more information than the univariate analysis 

because the D2 statistic considers the combined effects of the variables including 

their correlations. The results from the multivariate analysis therefore, deserves a 

higher recognition when discrepancies between the two methods occur. The results 

of the applications of these methods to the three sites indicated discrepancies at 

times, with the D2 statistic suggesting the presence of a primary layer boundary 

while pi revealed a secondary layer boundary or vice versa, although both of these 

types of events were the exception, rather than the rule. In such situations the result 

obtained from the multivariate analysis should be .given a higher weight due to the 

higher information content it carries. In all types of incidents similar to the above, it 
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Table 2.9: Levels of the D2 Statistic for the Definition of Primary and Secondary 
Layer Boundaries. 

Data File Soil Type Maximum Level 1 Maximum Level 2 

Mc Donald Farm Sand 20-25 15 - 20 

Tilbury Island Sand 20-30 8-15 

Laing Bridge Sand 20-30 10 - 20 

Mc Donald Farm Clay none 8 - 12 

Haney Clay 15-20 8-12 

Strong Pit Clay 15.-20 6-10 

Langley Clay 15-20 8-15 

Langley Sand 20 - 40 none 
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Table 2.10: Critical Levels of the D2 Statistic for the Definition of Primary and 
Secondary Layer Boundaries. 

Soil Type Range for Primary Boundary Range for Secondary Boundary 

Sand D2 > 20 20 > D2 > 10 

Clay D2 > 12 12 > D2 > 7 

was found that when the multivariate statistic attained a peak the univariate also did 

so, although one may have a magnitude representing a primary layer boundary while 

the other may predict a secondary layer boundary. In such extreme situations the 

following guideline can be used, so that the process of layer boundary discrimination 

is consistent. 

(a) If the D2 statistic indicates the presence of a primary layer boundary, verify 

whether pi indicates at least a secondary layer boundary. If so, the above depth is a 

primary layer boundary. 

(b) If the D2 statistic indicates the presence of a secondary layer boundary,, this 

depth will indicate a secondary layer boundary, irrespective of the boundary suggested 

by pi-

2.8 Conclusions 

The three examples described above, provide sufficient evidence that statistical meth­

ods should be employed in identifying layer boundaries. These statistical methods 

using univariate (Intraclass Correlation Coefficient and T Ratio) and multivariate 

(D2) methods have a sound fundamental basis for discriminating between different 
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soil layers. The main conclusions are as follows; 

(i) The primary layer boundaries from the statistical methods agree with the main 

layering obtained from the CPT classification chart. The main advantage of the 

statistical methods being the capability of picking depths devoid of the subjectiv­

ity involved in the latter. In addition, the proposed statistical techniques have the 

capability of picking secondary layers which are commonly known as sublayers in 

geotechnical engineering. 

(ii) .The Intraclass Correlation Coefficient (Univariate Analysis) and D2 (Multivari­

ate Analysis) are robust statistics in that the primary layer boundaries are not highly 

sensitive to small changes in the window width. 

(iii) The proposed critical limits for pi and D2 are recommended to.be used to differ- _ 

entiate between primary and secondary layer (main layers and sublayers) boundaries. 

For the D2 statistic, different sets of limits have been recommended for sand and 

clay type soils due to the dissimilarity of their correlation structure. In the event of 

contradicting results for the pi and D2 statistics, the latter should be given priority 

due to its relatively higher information content. It has to be emphasized that the 

particular soil has to be identified as predominantly clay or sand, prior to arriving at 

conclusions based on the value of the statistic concerned. 

(iv) In rare situations (Type I and Type II profiles) where pi and D2 fail in discrim­

inating between soil layer boundaries, the gradient method is recommended. For the 

gradient method to be valid, the profile should necessarily exhibit a trend which can 

be verified by regression analysis. 

In conclusion, the proposed statistical methods are recommended to be used in 

conjunction with the results of the CPT chart in order to obtain layer boundary 

depths with minimum amount of subjectivity. 

http://to.be


Chapter 3 

Trend Analys is 

3.1 Introduction 

Trend Analysis is used to describe large scale variations of a variable or group of 

variables in space and can be solved using the method of regression. Simple regres­

sion is used to describe the variation of a single variable while multiple regression is 

used when a group of variables is considered. Soil properties are highly depth depen­

dent and the procedures of trend analysis will enable to evaluate the pattern of this 

dependency. 

It is often advantageous to separate the spatial variation of a geologic variable 

into two or more components. If systematic changes in the average or mathematical 

expectation exist, the main component will be the trend. Deterministic functions 

such as polynomials can be employed to represent a trend. The second component is 

the residual and is generally treated as random. In general, the data can be expressed 

as, 

DATA = TREND + RESIDUAL (3.1) 

In any type of soil profile, a concern of great interest is the evaluation of station-, 

arity, since once it is established, many statistical. analyses can progress from there 

onwards. The presence of a trend or non-stationarity often is not apparent from a 

visual inspection, and a statistical test such as the RUN test may be used to verify 

this condition. 

Trend removal using regression methods is the most widely used technique to 

89 
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obtain stationary residuals. Data can also be made stationary by differencing which 

is widely used in Time Series methods and hence will be described in Chapter 5 of 

the thesis. 

Smoothing and filtering techniques would also enhance the identification of trends. 

Smoothing essentially removes high frequencies from a data set and results in a more 

uniform profile. Statistical filtering would remove extremities or anomalies in data, 

enabling easier visualization of trends in profiles. 

3.2 Smoothing and Filtering of Cone Profiles 

Filtering is performed to eliminate extremities of data in order to identify trends more 

accurately. It is important that the process of filtering removes only distinct anomalies 

and does hot remove thin layers. Filtering also requires engineering judgement and the 

particular method of filtering adopted is highly situation dependent. A thin anomaly 

of high bearing or strength in a soft clay could be removed without jeopardizing the 

design, since the strength availability for the foundation will not depend on this thin 

layer. However, the awareness of a thin layer of high strength, if present, might be 

important in the determination of the driveabilty of a pile. This emphasizes how 

situation dependent filtering is and the kind of engineering judgement the process of 

filtering requires. 

3.2.1 Smoothing 

The present literature is not clear as to the difference between filtering and smoothing. 

It is the author's opinion that in geotechnical engineering, processes such as three 

point, five point and seven point moving averages are methods of smoothing similar 

to Fourier smoothing. The procedures of autoregressive (AR), moving average (MA) 

and autoregressive moving average modeling (ARIMA) in time series analysis, also 
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fall into the category of smoothing. Techniques of smoothing, as the name indicates, 

smooths out a profile by removing the high frequency content and alter the entire set 

of data. Smoothing methods will even cause the 'good' and acceptable data to be 

modified, which of course is not desirable. In contrast to these methods, 'filtering' 

would filter out only the anomalies which fall outside a selected window width while 

the data inside this window remain unchanged. 

3.2.1.1 Moving Average Smoothing 

Methods of three point, five point and seven point smoothing would consider data in 

groups of three, five and seven, respectively, and the output of the complete data set 

would be modified; the smoothness of the profile increasing with the number of data 

considered in a group. In other words, the seven point smoothing would result iri the 

smoothest curve of the above three methods while the three point smoothing would 

result in the least smooth curve. 

A typical smoothing equation of degree m, for any point ' i ' is expressed as follows; 

Qfi = ai_m<5i-m + ^i-iQi-i + o-i-iQi-i + O'iQi 

+ai+1Qi+l + ai+2Qi+2 + ai+m<2i+m (3-2) 

where a;'s are the coefficients with ai — 1-

For example, for three point smoothing, = 0.5 and a,_i = a ; + i = 0.25. For five 

point smoothing a{ =0.4, = a i + 1 = 0.2 and a;_2 = ai+2 =0.1 with the weighting of 

the coefficients being inversely proportional to the distance from the centered point 

' i ' . There is also the more simplistic version of moving average smoothing where 

the smoothed value is equal to the simple average of the values around ' i ' which are 

grouped together. It is evident from Eq. 3.2 that Qfi would replace Qi in the smoothed 

profile irrespective of whether it is an anomaly or not. It is this adversity of losing 
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genuine and reliable data to modified values that renders the technique of moving 

average smoothing unsatisfactory. If the intention of the smoothing is merely to have 

a clearer picture of the profile, it may be acceptable, but is not suitable if further 

analysis is to be made using the smoothed profile. The moving average smoothing 

procedure is illustrated in Fig. 3.1 for different degrees of smoothing MA, with MA 

= 1 referring to the raw cone data. These clearly indicate how the smoothness-of the 

profile increases with increased degree of smoothing, MA. 

3.2.1.2 Fourier Smoothing 

Fourier smoothing, or more appropriately Fourier Transform of a data set transforms 

the entire data set. Fourier analysis is a technique whereby the profile or curve 

is expressed as a sum of sinusoids (sine and cosine curves) of varying number of 

harmonics. If a data set consists of 'n' number of points, the transform with exactly 

n/2 harmonics if n is even, and (n+l)/2 if n is odd would produce the original profile 

almost exactly. Decreasing the number of harmonics would result in a smoother 

profile. This is a procedure where high frequencies are removed from the profile, 

retaining the lower harmonics. Figure 3.2 illustrates the effect of Fourier transforming 

the data, where M is number of harmonics used with M = 800 referring to the original 

data profile with 1600 data points. Profiles with M equal to 200, 100 and 50 are the 

transformed profiles which have used 200, 100 and 50 harmonics respectively. The 

increased smoothness with decreasing harmonic number is apparent from the figures. 

The effect of the removal of the high frequency content is illustrated in Fig. 3.3 

which shows the spectral density function (Bendat and Piersol, 1971) at different 

frequencies. The entire region, comprising of zones A, B and C, depicts the spectra 

of the unsmoothed original data, with regions A and B representing the spectra 

with the high frequencies removed ( MA < 200). Zone A represents the spectra of 
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Figure 3.1: Cone Bearing Profiles at Tilbury Island after Moving Average Smoothing 
with MA = 1, 5, 7 and 9. to co 



Figure 3.2: Cone Bearing Profiles at Tilbury Island after Fourier Smoothing with M 
= 800, 200, 100 and 50. 
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Figure 3.3: Spectral Density Function of Fourier Smoothed Data. 
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profile with M < 50 with only the lowest frequencies. This clearly illustrates how the 

higher frequencies are removed with decreasing number of harmonics employed in the 

smoothing process. 

3.2.1.3 Autoregressive Integrated Moving Average Smooth­

ing 

The Autoregressive Integrated Moving Average (ARIMA) process can also be used 

for smoothing. This is essentially a process where a value at a point is expressed as a 

function of the properties at adjacent points (similar to other methods of smoothing). 

and suffers from the same shortcomings. This procedure is described in detail in 

Chapter 5 and hence will not be elaborated upon here. 

3.2.2 Statistical Filtering 

Different methods of statistical procedures can be used to filter out extremities from, a 

CPT profile. In the simplest case, the soil profile can be divided into sub layers of some 

thickness and the statistics of each of these layers calculated. The statistics, namely 

the mean, median and the standard deviation, are used to develop an acceptance 

band for a given depth. The recommended procedure has several options for both the 

filtering procedure and the method of replacement of data points outside the band. 

It is well accepted that the value of bearing obtained from the CPT depends both 

on the immediately past and future values. Therefore, when considering a sublayer 

in which the cone tip is advancing, it is reasonable and logical to also consider the 

immediately adjacent sublayers. 

The entire soil profile or layer is divided into several sub layers, the width of which 

is a variable. However, the width should not be too high to avoid the possibility of 

missing a definite layer by mis-recognizing it as an anomaly, and secondly, because 
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soil properties often exhibit a trend with depth. If the layers are too thick, thai is 

each sublayer comprising of too many points, the data in that region may not be 

stationary and the ensuing statistics will be inaccurate. A sublayer of lesser thickness 

will alleviate this problem. It is also important that the sublayers not be too narrow 

to ensure that the bias of the statistics to be calculated are within acceptable limits 

of reliability. From the above explanation, it is evident that a compromise has to 

be reached as to the optimum thickness of a sublayer. An increased thickness of the 

sublayer can introduce the possibility of filtering out actual thin layers which is highly 

undesirable. It has to be reiterated that the selection of the sublayer thickness is 

situation dependent. If the intention of filtering is solely for the purpose of inspecting 

trends, a large value can be selected. Considering all the above requirements, ten 

data points, that is a thickness of sublayer of twenty five centimeters is recommended 

for purposes of removing extremeties in data, while a thickness in the region of twenty 

five (10 data points) to seventy five centimeters (30 data points) is a good choice for 

purposes of trend evaluation. The technique proposed in the thesis is a modification 

of the method given by Vivatrat (1978) and Campanella and Wickremesinghe (1987). 

The detailed procedure is described below; 

(a) Select a band width (ten data points is a good choice) 

(b) For a sublayer ' i ' , calculate the standard deviations of layers ' i ' , 'i-1' and 'i+1', 

given by o~i, <Ti-i and < X ; + 1 , respectively. The first layer will not have a (i-l)th layer 

and the last will not have a (i+l)th layer. 

(c) Obtain a representative standard deviation o~ei defined by crai or tr^, whichever 

is lesser, where 

^ = ( c r i - 1

2 + ^ 2 ) 1 / 2 (3.3) 
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(3.4) 

(d) Calculate for layer ' i ' , the mean (mai) and median (m^) considering all data 

in all three layers 4-1', 4' and 4+1' as a group. For the first layer, only 4' and 4+1' 

will be considered while for the last layer, only 4' and 4-1' will be considered. The 

median of any data set is not dependent on the extremities of the data. That is, it is 

not affected by low or high values, since it is the middle term of an ordered data set. 

The mean, however, is a function of all the data and as a result, it can be severely 

affected by data which are high or low. 

(e) Compute for layer 4', the band width Wbi such that the data outside of it will 

be replaced or removed. 

If the mean method is adopted, 

(3.5) 

If the median method is adopted, 

Wbi = mdi ± (BS)aai 

where BS is a constant to be decided depending on the degree of filtering required. 

0.5 < BS < 1.5 has been found to be a reasonable range with BS = 0.5 resulting 

in a high degree of filtering and a value of BS = 1.5 resulting in a low degree of 

filtering. As Eqs. 3.5 and 3.6 indicate, the band width W^ will depend both on the 

method of filtering (mean or median) and the chosen value of BS. Since the mean 

o~bi — (o~i+i2 + °"i 2 ) 
1/2 

Wbi = mai ± (BS)<rai 

(3.6) 



Chapter 3. Trend Analysis 99 

is a function of all the data in the layer, an extremely high or extremely value will 

affect its value and thereby "also affect the band width, and this is not desirable. This 

effect will be prominent in a variable soil or even in a less variable soil.if wider layer 

thicknesses have been chosen for the sublayers. However, in the case of a less variable 

soil or where sublayers are relatively low in thickness (around ten data points or 25 

cm), this adversity is not of great concern as some of the results to be presented, will 

indicate. The median is not affected by extreme data points in a sample and hence 

the above problem does not apply if the median method of filtering is adopted. In 

general, for purposes of trend evaluation, a relatively low value of BS can be selected 

since losing thin layers is not of great concern. However, for purposes of filtering 

out extremeties, a high value of BS should be selected, alleviating the possibility of 

filtering out actual thin layers present in the profile. 

(f) Replace or remove data outside the acceptance band W^i-

Removal of data is an option but generally not recommended because it reduces the 

original data file creating practical difficulties. Replacement of data can be performed 

in several ways. Replacement by the mean of the immediately preceding and imme­

diately following unfiltered data points is a good choice, since the substitution is 

totally dependent on the closest neighboring points which are within the acceptable 

limits. Other possibilities of substitution are by the mean or median of the sublayer 

in which the filtered data points occur. The latter option is not suitable if the local 

region under consideration has significant trends. It should be noted that removal or 

replacement of data will not change Wbi in Eqs. 3.5 and 3.6. 

If thin layers are thought to be present, it is advisable to use the mean method, 

since the possibility of such thin layers being removed is avoided. Another safeguard 

against such an adversity is to reduce sublayer thickness, but under no circumstances 
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should it be less than eight data points for reasons already explained. The extent of 

filtering can be expressed by PF (as a percentage) which is given by, 

P F A T ' , < 3 ' 7 > 

where N l is the number of data outside the acceptance band and NTJM is the total 

number of data in the profile. A high value of PF indicates that a significant number 

of data have been filtered and a low value reflects the opposite. 

Statistical filtering has been performed on data from Tilbury Island for both the 

mean and median methods. The method of replacement used is by substituting the 

mean of the adjacent unfiltered data points. Figures 3.5 - 3.8 illustrate the filtered 

data profiles of Fig. 3.4. As can be observed, for an intense filtering of BS = 1.0, the 

PF value obtained for the median method is 20.12 (Fig. 3.5) and 25.81 for the mean 

method (Fig. 3.6). The higher value of PF for the mean method is also evident when 

BS = 1.5, by comparing Figs. 3.7 and 3.8. For the higher value of BS (=1.5), PF 

drops to 9.50 for the median and to 10.37 for the mean method, indicating a reduced 

degree of filtering. 

3.2.3 Evaluation of Stationarity of a Soil Layer 

For various reasons statistical applications like trend analysis, determination of pa­

rameters like the scale of fluctuation (Chapter 4), time series analysis (Chapter 5) and 

for the interpolation problem considering correlations (Chapter 6), it is important to 

evaluate whether a particular soil layer is stationary in the mean. Statistical methods 

such as autocorrelation and variogram analysis are also performed on stationary data 

and there is a significant difference between the above functions for stationary and 

non stationary data. Figures 3.9 and 3.10 illustrate the McDonald Farm site cone 

bearing profiles which will be tested for stationarity using the RUN test. Figures 3.11 

and 3.12 illustrate the different autocorrelation and variogram functions obtained for 
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Figure 3.4: Cone Bearing Profile at Tilbury Island. 
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Figure 3.5: Statistically Filtered Cone Profile using 
the Median Method with BS = 1.0 and MS = 5. 

CONE BEARING Qc (bar) 

Figure 3.6: Statistically Filtered Cone Profile using 
the Mean Method with BS = 1.0 and MS = 5. 
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Figure 3.7: Statistically Filtered Cone Profile usi 
the Median Method with BS = 1.5 and MS = 5. 
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Figure 3.8: Statistically Filtered Cone Profile using |_ i 

the Mean Method with BS = 1.5 and MS = 5. © 
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CONE BEARING Qc (bar) 

Figure 3.9: Different Layers in 15 meter Cone Bearing Profile. 
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Figure 3.10: Different Layers in 6 meter Cone Bearing Profile. 
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Figure 3.11: Autocorrelation Function of Original and Trend Removed Data of Layer 
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Figure 3.12: Variogram Function of Original and Trend Removed Data of Layer A. 
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the Layer A data in Fig. 3.9 for both stationary (trend removed) and non-stationary 

data. These two figures illustrate the importance of removing the trend, if there is 

one present, prior to any analysis. Methods such as trend removal, described in this 

chapter and techniques of differencing explained in Chapter 5 can be used to station-

arize data. Although a visual inspection of a profile may at times give an indication 

of the stationarity or non-stationarity, it is not always the case, and in instances such 

as above, the RUN test becomes a convenient and simple tool in assessing it. 

RUN is defined as a sequence of events of the same type (Bury, 1975). The criterion 

chosen here is comparing the mean of a selected sublayer against the global mean or 

the overall mean of the entire layer. There are two type of events possible: the local 

mean of the selected thickness being above the global mean, and the local mean being 

below the global mean. A sequence of events where the local mean is evaluated to be 

above or below the global mean is termed a RUN. A similar test can also be done for 

the standard deviation, but is not recommended due to the reason that the standard 

deviation is a second moment statistic. The reliability of second moment statistics on 

small samples is low due to the increased variability as compared to a large sample. 

In the situation under study, the entire soil layer is the large sample whose variability 

is not adequately represented by the smaller sublayers consisting of fewer data points. 

In the applications to follow, the sublayers were selected to comprise ten data 

points, that is, a sublayer thickness of 25 cm. It is important that these sublayers are 

not too thick, so that each sublayer could be assumed to be approximately stationary 

and not too narrow, since if it is, there will be too little data rendering it impossible 

to get good estimates of statistics such as the mean. Considering the above factors, 

ten data points seemed to be a reasonable choice. The number of RUNS with respect 

to the mean and standard deviation can be determined but as mentioned before, 

the RUN' test based on the standard deviation is not recommended due to the reason 
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that the standard deviation of the sublayers will not be representative of the standard 

deviation of the entire layer. 

Once the number of RUNS with respect to the mean is determined, it is compared 

to the values in the Tables of the RUN test (Swed and Eisenhart, 1943) where the 

number of RUNS required for stationarity or homogeneity for different significance 

levels are tabulated. More details of the RUN test are available in Bury (1975), 

Alonso and Krizek (1975) and Campanella and Wickremesinghe (1987). 

The RUN test has been performed on two sets of data, the profiles of which are 

given in Figs. 3.9 and 3.10. All layers depicted in the figures have been identified 

using methods described in Chapter 2. The detailed results of Layer A of Fig. 3.9 are 

tabulated in Table 3.1 and the summarized results of Layers A and B are tabulated 

in Table 3.2. The m and n values in the tables refer to the number of values above 

and below the global mean and they are interchangeable. 

As can be seen from Table 3.2, Layer A fails the test for stationarity at all levels of 

significance of 1%, 5% and 10%. Layer B fails the test for stationarity at significance 

levels of 5% and 10% and is at the border of acceptance even at a low level of 

significance of 1%. These results are as expected for a profile exhibiting a trend. 

Figure 3.13 illustrates the distribution of RUNS of Layer A with respect to the global 

mean of that layer, 87 bar. 

The detailed results of Layer D of Fig. 3.10 are tabulated in Table 3.3 while 

summarized results of both layers C and D, in Table 3.4. Layer C data is non-

stationary due to the presence of a trend while the Layer D data is stationary at all 

levels of significance since it does not possess a trend and is clearly homogeneous. 

Fig. 3.14 illustrates the distribution of RUNS for the Layer D data of Fig. 3.10. The 

Layer D data have also been used for the interpolation problem described in Chapter 

6 of the thesis, and unlike Layer C, there was no need to consider the cone bearing 
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value in two parts; namely the stationary residual and the non-stationafy trend. This 

is an ideal example where the RUN test was used to verify the stationarity of a soil 

layer. 

As Fig. 3.12 illustrates, stationarity or non-stationarity can also be verified us­

ing the variogram which is defined in section 6.2. The variogram (or semi-variogram) 

function attains a constant value (sill) for a stationary set of data. For non-stationary 

data the variogram function is of a continuously increasing nature (Fig. 3.12). How­

ever, this method suffers from the deficiency that particular levels of significance of 

acceptance or rejection of stationarity can not be established. In contrast, the RUN 

test affords this capability and the acceptance levels of stationarity can be based on 

the problem at hand and the required confidence. 

The above examples illustrate the applicability of the RUN test and is a con­

venient method to determine the homogeneity of a soil layer. Once this condition 

is verified, and if found to be non-stationary, the data can be made stationary by 

the popular method of trend analysis or by differencing. Different applications use 

different methods of stationarizing data. For example, while methods of time series 

analysis use differencing it is more convenient to use trend analysis for soil property 

interpolation considering correlations. These will be described in Chapters 5 and 6 

respectively. 



Chapter 3. Trend Analysis 113 

Table 3.1: Results of Run Test for Layer A Data in Fig. 3.9, 

Sub - Region Mean Standard Deviation 

1 37.89 3.57 
2 33.15 3.01 
3 30.76 0.84 
4 30.22 1.71 
5 39.04 7.53 
6 55.15 4.81 
7 55.59 13.51 
8 70.57 3.82 
9 61.45 13.44 
10 121.99 14.07 
11 145.48 2.15 
12 125.46 9.40 
13 97.44 9.09 
14 99.50 2.24 
15 99.89 3.41 
16 92.76 8.52 
17 93.46 1.25 
18 110.01 14.33 
19 144.75 6.21 
20 138J2 10.13 
21 135.21 4.61 
22 92.90 23.46 

Entire Layer 87.0 39.5 

Table 3.2: Comparison of the Actual Number of Runs (Mean) with the Number of 
RUNS Required for Stationarity for Different Levels of Significance for Layer A Data 
in Fig. 3.9. • ' •' , 

RUNS Obtained RUNS Required for Stationarity 
Layer for Data m n 90% 95% 99% 

A .2 13 9 7-15 6 - 16 5 - 17 
B 2 5 9 4 - 10 3 - 11 2 - 11 
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Table 3.3: Results of Run Test for Layer D Data in Fig. 3.10. 

Sub - Region Mean Standard Deviation 
1 30.53 14.98 
2 50.31 7.99 
3 27.10 8.21 
4 43.94 2.75 
5 52.91 1.22 
6 42.63 2.94 
7 47.43 4.12 
8 39.32 2.14 
9 44.18 2.11 
10 47.37 4.59 
11 28.27 2.29 

Entire Layer 41.06 10.60 

Table 3.4: Comparison of the Actual Number of RUNS (Mean) with the Number of 
RUNS Required for Stationarity for Different Levels of Significance for Layer D Data 
in Fig. 3.10. 

RUNS Obtained RUNS Required for Stationarity 
Layer for Data m n 90% 95% 99% 

C 2 2 4 5 5 5 
D 7- 7 4 3 - 8 2 - 9 2 - 9 
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3.3 Least Squares and Regression in Trend Analysis 

The least squares approach takes into account the location of sample points with 

respect to the estimated point and also the inter-relationships between sample points 

themselves. The major shortcoming of such an approach is that it neglects the struc­

ture of the variable under study, assuming that the variables considered in the analysis 

are uncorrelated and have a common variance. However, the treatment of the vari­

ables as non correlated results in the estimator being non-optimal. If correlation 

between the residuals exists, the traditional least squares methods do not yield satis­

factory results, and hence the generalized least squares techniques will have to be used 

(Draper and Smith, 1966). The method of generalized least squares incorporates the 

variance-covariance matrix into the calculation process of the regression coefficients, 

the details of which will be described in this section. 

A statistical model which is used to represent the trend of any soil parameter 

is termed linear if the dependent variable (soil parameter) can be expressed as a 

linear combination of the unknown coefficients and the independent variables (data 

co-ordinates). In some cases of trend analysis, a non-linear trend in the form of a 

second or third degree polynomial may be more appropriate to model the trend. In 

classical least squares estimation, the main objective is to minimize the function S 

where, 

S = E ^Qi - Qi 2 

' = - J2(Qi-QiY (3.8) 
7 1 1=1 

where n is the total number of data, Qi is the regressed value at location i and Qi is 

the actual observed value of the soil parameter. The regressed value Qi(= f{X;Bj}), 

where, X is the spatial co-ordinate system and Bj's being the regression coefficients. 

In classical least squares estimation procedures, the following assumptions are 



Chapter 3. Trend Analysis 116 

made on the residuals (Myers, 1986). 

(a) Constant Variance 

(b) Independence 

(c) Zero Mean 

(d) Normally Distributed 

The regression coefficients 3j are maximum likelihood estimates, only if (a), (b) 

and (c) above are satisfied. The assumption of normality is required if certain tests 

like the Student's t test or the F test are to be used to verify the effectiveness of the 

regression. The condition of zero mean will be satisfied only if there is a constant term 

(B0) in the regression equation. For example, if the intercept term in the expression 

for linear regression is made to be zero, condition (c) above will not be satisfied. 

When Eq. 3.8 is minimized, subject to, • 

the values of d'-s from above gives the regression coefficients. 

In matrix form, it can be expressed, as, 

{P}=[XTR-'XY1[XT\[R]-"{Q}. (3.10) 

where, { X } is the co-ordinate matrix given below and {Q} is the soil parameter matrix 

and {R} is the correlation matrix of the residuals. For a typical two dimensional linear 

problem, 
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[X] 

1 £ i 2 / i 

1 X2 J/2 

1 xn yn 

(3.11) 

and, 

0-2 

{Q} = (3.12) 

iQn) 

where, n is the number of data points where soil properties are known. The regressed 

estimate (Q0),at any point (x0,y0), is given by, 

Q0 = [1 x0 yQ] < 
f 

Ma J 

(3.13) 

As mentioned before, if there is found to be significant correlation among the resid­

uals, BjS will be accurate only if it is considered and Eq. 3.10 expresses the form of 

generalized least squares. If correlation among residuals is absent or negligible, and 

the residuals are of constant variance (cr2), {R} can be expressed as a n X n diagonal 

matrix in the form, 
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[R] = 

1 0 0 

0. 1 0 

0 0 1 

0 

0 

0 

0 0 0 0 0 1 

whereby, the expression for {/?} in Eq. 3.10 will reduce to, 

{$}=[XTX]-1[XT]{Q} 

(3.14) 

(3.15) 

which gives the classical least squares estimates. The form of Eq. 3.10 allows dif­

ferent functions to be used for the correlation matrix [R]. This function can be the 

autocorrelation function, the covariance function or the variogram function. The def­

initions of the autocorrelation and covariance functions are given in Chapter 4 and 

the variogram function is described in detail in Chapter 6. 

3.3.1 Verification of Residuals for Non Constant Variance 

In order for the traditional least squares method to be valid, two criteria have to be 

satisfied. That is, the residuals should have a constant variance and possess negligible 

correlation. The residual ej, which is the difference between the actual value Qi and 

the regressed value Qi, can be expressed as, 

ei = Qi - Qi (3.16) 

It is generally assumed that is normally distributed and have constant variance, 

t r 2 , given by, 

V? e-2 

2±i=iJ2_ 
n — p (3.17) 
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where, p is the number of unknown coefficients 3j to be estimated from the regression. 

For the verification of the constant variance of the residuals, residual plotting is 

adopted. The ordinate of such a plot will be a function of the residual in the form 
ei/^[ ei]> where the variance of the residuals, V[e{] can be obtained from Eq. 3.18 

below. It should be noted that V[ej] will be equal to a2 if the variance is constant. 

V\ei\ = (l-mii)<r2 (3.18) 

where, m-a is the diagonal element of the matrix [M], given by, 

[M] = [X] [x^X]'1 [XT] . • ' (3.19) 

As can be seen from Eqs. 3.18 and 3.19, V[ei\ is dependent on the form of [X]. If 

large variations of V[ej] are not expected, e;/<72 may be used instead of e^/Vfe;], as 

the ordinate of the residual plot which would have Qi or the independent variables 

Xi as the abscissa. The reason for plotting the residual function against Qi and not 

against Qi, is because the 's are usually correlated to Qi , while ê 's and Q'iS are 

independent. The ensuing plots, which are possible outcomes of such an analysis, 

are illustrated in Figs. 3.15a to 3.15d with the range of the residuals falling in the 

shaded bands. Figure 3.15a depicts a case where the variance is constant, while 

Fig. 3.15b illustrates the case where the variance is non constant. Figure 3.15c is a 

typical illustration when the linear effect of Xj has not been removed and Fig. 3.15d 

illustrates the need for extra terms in the regression equation or expresses the need for 

transformation of variables (Myers, 1986). While outcomes in Figs. 3.15c and 3.15d 

can be remedied by adding extra terms to the regression equation, the situation in 

Fig. 3.15b can be handled by deviating from the simple methods of least squares and 

performing weighted least squares. (Myers, 1986). 
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Figure 3.15: Different Relationships of the Residual Function with the Dependent 
Variable or the Independent Variable. 
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3.3.2 Verification of Residuals for Correlation 

. The presence or the absence of correlation (autocorrelation) is verified by using the 

Durbin - Watson Statistic (Durbin and Watson, 1951), d0, which is defined as, 

j Ej=2 ( e » ~ e t - i ) /Q on̂  
d ° = _

 V n p2 ( 3 - 2 0 ) 

ThisT value of ci0 should be compared with the values in the tables (" Testing for 

Serial Correlation in Least Squares Regression II ", - Durbin and Watson). The 

tables provide upper limits du and lower limits di for different number of predictor 

variables used in the model, for three different significant levels, 5%, 2.5% and 1%. 

lid0 > du, the autocorrelation of residuals is negligible and if d0 < d-i, the correlation 

is significant. If du > dQ > di, the test is said to be inconclusive and it is conservative 

to consider correlation (autocorrelation). 

In the event significant correlation of the residuals exists, the most convenient 

method of interpolation is for it to be done in two parts. The non-stationary compo­

nent, which is the trend, can be determined by the classical method of least squares 

and the stationary component can be subjected to methods where correlation is con­

sidered. Procedures of correlation analysis is described in Chapter 6 of the thesis. 

3.3.3 Statistical Tests to Measure Efficiency of Fit 

The quality of a fit of a regression analysis is measured by the multiple correlation 

coefficient, R e 2 (Graybill, 1961 and Brooke and Arnold, 1985), which is given by, 

. v . a f L i £ ' ; (,21) 

where, Q, is the mean of the data given by, 
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and Q is the regressed estimate. Brooke and Arnold (1985) suggest that Rg2 should 

be at least 0.5 for any confidence to be placed on the regression. Rg2 satisfies a Beta 

distribution with parameters 0.5 -Vi and 0.5u2 where v\ is equal to (k-1) and v2 is 

equal to (n-k), k being the number of regression coefficients iri the equation. 

The F test (Brooke and Arnold, 1985) can be used to verify whether the model 

is parsimonious (optimum number of variables in the regression equation). The most 

efficient model is not necessarily the model that gives the highest Rg2 value and the 

minimum variance of the residuals. It is also important that the optimum number 

of variables is used. The above test evaluates in a quantitative way the improvement 

gained by the addition of extra variables and its significance on the estimation. A 

different type of F test can also be used to verify the efficiency of the coefficient, 3i 

in simple regression. 

The 't' test (Brooke and Arnold, 1985) is performed on the coefficients of the 

regression to evaluate its efficiency. If the fitted regression is acceptable at a particular 

significance level, the null hypothesis Hi : 3j = 0 for all j = 1, ...k should be rejected. 

In the case of simple regression, the F test on coefficients is equivalent to the't' test 

(F = t2). More details of both the F and't' test are available in texts by Myers(1986), 

Brooke and Arnold (1985) and Draper and Smith (1981). 

3.3.4 Application of Trend Analysis to a C P T profile 

Methods of trend analysis described in the preceding sections have been applied to 

the CPT profile in Fig. 3.9. Using methods of layer identification already described 

in Chapter 2, two prominent layers have been identified between 4.50 m and 10.0 m 

(Layer A) and 10.0 m and 13.5 m (Layer B) considering the cone bearing profile. 



Chapter 3. Trend Analysis 123 

The statistics obtained for the Layer A data for a simple linear trend (model 1) 

and for a curvilinear trend (model 2) are given below. 

Layer A - Linear Trend (Model 1) 

Model 1 is given by, 

Qi = S 0 + B l V i (3.23) 

n = 221 fie

2 = 59.14 d0 = 0.03 

Sum of squares of residuals, <rrl

2 = 139776 

Variance of Data, a2 — 34410 

The statistics of the regression coefficients are given in Table 3.5. 

Table 3.5: Statistics for Layer A with Linear Trend. 

Coefficient Mean Standard Deviation t Ratio 
Bo -51.46 7.91 - 6.51 
Pi 19.06 1.07 17.89 

Layer A - Curvilinear Trend (Model 2) 

Model 2 is given by, 

Qi = Po + B l V i + 32Vl

2 (3.24) 

n = 221 . Re

2 = 66.70 da = 0.04 

Sum of squares of residuals, <rr2

2 = 114587 

Variance of Data, cr2= 34410 

The statistics of the regression coefficients are given in Table 3.6. 

Higher order polynomials resulted in higher Re values but were not selected due 

to the significant correlation between the independent variables, giving rise to multi-

coUinearity (Myers, 1986). The improvement in the model caused by a change from 

a linear (model 1) to a simple curvilinear was verified using the F test given by, 
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Table 3.6: Statistics for Layer A for Curvilinear Trend. 

Coefficient Mean Standard Deviation t Ratio 

A> -286.08 34.64 - 8.26 
Pi 87.09 9.87 8.82 

-4.69 0.68 -6.92 

™ <r r lV(n-*i) 

where, for the case considered, k1 and k2 ( the number of coefficients in models 1 and 

2 respectively) take the values two and three, respectively; v\ is equal to (k2 — k\) 

and i/2 takes the value [n — k\). 

The value obtained from Eq. 3.25 (F = 39.46) is greater than the value of F^t 

obtained (3.82) at 95% significance from the tables, suggesting that model 2 is more 

appropriate. The't' test on the coefficients also indicates the adequacy of the model. 

The t Ratios for the coefficients are all greater than i C P t f(= 1.645, from t tables), at 

a significant level of 95% for a degree of freedom [n — k), k being the number of 

coefficients; two for model 1 and three for model 2. However, the Durbin - Watson 

statistic, d0, is low (d0 < dt), indicating the presence of autocorrelation among the 

residuals. Due to the presence of correlation among the residuals, the exact value 

of the coefficients will be given by Eq. 3.10 and not Eq. 3.15. In geotechnical ap­

plications, however, there will be only one realization at a given point, rendering it 

impossible to evaluate the covariance matrix {R}. Therefore, the only option will be 

to perform interpolation on the residuals, separately. In the present example, only 

trend analysis will be performed and applications of residual correlation analysis will 

be explained in Chapter 6. With increasing degree of the polynomial used for the 

fit, the correlation among the residuals decreases. This behavior is reflected in the 

(3.25) 
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value of dQ which increases from 0.03 for model 1 to 0.04 in model 2. However, as 

explained before, the degree of the polynomial used for a trend is not only limited 

by considerations of multi -coUinearity in higher order models, but is also restricted 

from a practical point of view. Therefore, an intelligent compromise would be to tol­

erate correlations among the residuals instead of deciding on a model which exhibits 

multi-coUinearity. 

The analysis was also carried out for Layer B (10.0 m - 13.5 m) in a similar 

manner. As for the Layer A data, the only drawback was the presence of correlation 

among the residuals. Once again higher order polynomials were not. considered due 

to the high correlation among the independent variables. All other statistical tests 

were satisfied with the curvilinear model being more superior. As for the Layer A 

analysis, the value of dQ increases from 0.07 for model 1 to 0.08 in model 2. The F 

value obtained by using Eq. 3.25 was 9.65, reflecting the superiority of model 2 over 

model 1. 

The statistical details pertaining to Layer B are listed below. 

Layer B - Linear Trend ( M o d e l 1) 

As before, model 1 is given by, 

Qi = 30 + 3iyi (3.26) 

n = 141 Re

2 = 63.30 d0 = 0.07 

Sum of squares of residuals, c T r 2

2 = 158868 

Variance of Data, <r2= 432761 

The statistics of the coefficients are given in Table 3.7. 

Layer B - Curv i l inea r Trend ( M o d e l 2 ) 

Model 2 is given by, 

Qi=30 + BlVi + / W (3.27) 
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Table 3.7: Statistics for Layer B with Linear Trend. 

Coefficient Mean . Standard Deviation t Ratio 
. Po -430.76 33.50 - 12.86 

Pi 43.78 2.84 15.42 

. n = 141 Re

2 = 65.80 d0 = 0.08 

Sum of squares of residuals, <rr2

2 = 147992 

Variance of Data, <r2= 432761 

The statistics of the coefficients are given in Table 3.8. 

Table 3.8: Statistics for Layer B for Curvilinear Trend. 

Coefficient Mean Standard Deviation t Ratio 
Po 894.70 419.00 2.14 
Pi -183.31 71.62 -2.56 
Pi 9.66 3.04 3.257 

The linear trends of Layers A and B are illustrated in Fig. 3.16 and the curvilinear 

trends in Fig. 3.17. The distributions, of the residuals for the linear and curvilinear 

models considered fall into the category given in Fig. 3.15a. Therefore, there was 

no need for weighted regression to be performed and the simple regression procedure 

was adequate to model the profiles in Layer A a n d Layer B. 

3.3.4.1 Lower Confidence Limit of Cone Bearing 

The foregoing applications illustrated how trend lines in profiles can be obtained. In 

geotechnical engineering, the matter of greater concern is generally the establishment 

of lower bounds at a particular significance level. For example, a 90% lower confidence 

limit for a particular layer of soil will indicate the boundary above which the soil 

parameter under consideration will he ninety times out of hundred. 
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CONE BEARING Qc (bar) 

Figure 3.16: Linear Trends of Layer A and Layer B. 
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Figure 3.17: Curvilinear Trends of Layer A and Layer B. 
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Figures 3.18 and 3.19 illustrate the lower 95% confidence limits of Layer A and 

Layer B, for data assuming linear and curvilinear trends, respectively. The lower 95% 

is a highly conservative limit and if the engineer is willing to increase the element 

of risk in the design, it can be lowered to 90% or even 80%, shifting the lower limit 

desired towards the trend line. Once the lower confidence limit is decided upon, the 

graphs which correlate relative density and friction angle with cone bearing can be 

overlaid on the lower confidence bands, enabling the engineer to obtain reliability 

estimates on these soil parameters which will be used in design. 

For data assuming a linear trend, the lower confidence estimate of the trend (Qi) at 

a significant level of (1 - a) is given by (Brooke and Arnold, 1985), 

Qi = Qi — ia /2 . (n-2) 

where cr2 is the variance of the residuals given by Eq. 3.17 and i a / 2 ( n - 2 ) is obtained 

from Student's 't' tables. 

Similarly, the lower confidence estimate for data assuming a curvilinear trend (Q[) 

represented by a second degree polynomial is similarly given by, 

1 n E Zi Zzi2' - i ' l ' \ \ 

— Qi ~ tct/2.(n-3) l + i + 
71 

[1- • Zi Zi2] Ezi3 < Zi > 

\ -Ezi2 ZZi* z - 2 ) J 
(3.29) 

where, z-s are the depth co-ordinates. 
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Figure 3.18: Lower 95% Confidence Estimate of Bearing for Linear Trend. 
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Figure 3.19: Lower 95% Confidence Estimate of Bearing for Curvilinear Trend. 
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3.4 Conclusions 

The main conclusions drawn from this chapter are; 

(i) Methods of moving average smoothing and Fourier smoothing are only suitable 

for the evaluation of trends in a qualitative manner. These methods are not recom­

mended for other areas of applications where analysis of data is performed, because 

they modify even the acceptable ('good') data points. 

(ii) Statistical methods of filtering are recommended over smoothing methods be­

cause the removal or substitution of extreme data points is done with some statistical 

basis. The median method of filtering is preferable to the mean method, since the 

mean is dependent on extreme data points while the median is not. Substitution of 

filtered data points is best performed by the mean of the adjacent two unfiltered data 

points. 

(iii) The RUN test has proven to provide an efficient way of determining the 

stationarity of soil profiles. 

(iv) From a statistical standpoint the method of trend analysis using regression 

techniques is a convenient method of expressing soil property dependence with depth. 

A linear trend or a polynomial of degree two will be sufficient to model the variation 

of soil properties with depth. 

(v) Geotechnical engineers can use the lower confidence limits of their preference 

for design purposes, such that a high percentage of the soil property value of concern 

will be above an acceptable lower limit. 



Chapter 4 

R a n d o m F ie ld Theory in Geotechnical D a t a 

Analys is 

4.1 Introduction 

Modeling the stochastic character of soil properties is very important in geotechnical 

engineering. The natural heterogeneity of the soil, soil disturbance during testing 

or extraction of samples, measurement errors caused both by man and machine and 

most importantly the • limitation of data availability, all give rise to uncertainties in 

soil parameter estimation. There would be nothing random in the distribution of soil 

properties if all the points in the ground could be tested accurately. However, this is 

not feasible both practically. and economically and hence the need for the treatment 

of in situ soil data considering as if it were random has arisen. 

This chapter will investigate different types of applications from the point of ran­

dom fields. Parameters such as the variance function and the scale of fluctuation will 

be investigated from a geotechnical engineering point of view. A different method of 

obtaining the scale of fluctuation will be proposed and application areas of this pa­

rameter such as averaging effects of the cone bearing, sleeve friction and pore pressure 

from the CPT will be explored. The influence of trend on the scale of fluctuation will 

also be discussed with specific examples to illustrate its significance. This chapter 

will then look at the application areas of correlations between spatial averages and 

exceedance probabilities of CPT profiles. Most of the theories used are extensions 

of those derived by Vanmarke (1983). The effects of soil variability, accuracy and 

133 



Chapter 4. Random Field Theory in Geotechnical Data Analysis 134 

confidence levels of estimates on the optimum sample spacing for a given site will be 

described to show how the collection of unnecessary data can be avoided. 

4.2 Parameters Required to Fully Identify a Soil Stratum 

In geotechnical engineering, it is common to divide the heterogeneous soil stratum 

into statistically homogeneous layers. The means or some lower bound values of 

these statistically homogeneous layers are then considered for design and analysis, 

neglecting the effect of variation or fluctuation about these values. A constant mean, 

constant standard deviation and an autocorrelation function which is independent of 

the location and is a function only of the separation distance (lag distance) in the 

depth dimension, are necessary requirements for homogeneity or stationarity. If a 

soil stratum exhibits varying types of trends at different depths, it can be divided 

into distinct layers, each identified by a particular trend: linear, curvilinear, etc.. 

A trend in actual effect is a non constant mean and, therefore, in keeping with the 

above definition of stationarity, it will have to be removed for the soil layer to be 

classified as stationary. These layers are then treated individually, in order to derive 

their respective statistics. 

In addition to the mean (Q), two other parameters are required to describe the 

spatial variability of a soil property characteristic which is to be treated as random 

(Vanmarke, 1977). One of these parameters is the standard deviation (CTQ), which 

measures the degree to which the actual values differ from the mean. The coefficient of 

variation (r/) is a standardized form of a variability factor, which gives the relationship 

between the mean and the standard deviation. 

The coefficient of variation, 77, is defined as, 

(4.1) 
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The scale of fluctuation (6) is the other important parameter. This measures the 

distance within which the soil properties show strong correlation in the vertical or 

horizontal direction. The emphasis in this chapter will be on the scale of fluctuation 

in the vertical dimension. If two points in a soil layer He closer than its scale of 

fluctuation, the soil property values at both these points will be on the same side 

of the mean (either both above or both below). It is in this sense that 8 is also 

known as the distance of perfect correlation. A low value of the scale of fluctuation 

means rapid fluctuations of the property value about the mean (high variability) 

and a high value of £ reflects the slowly varying nature of the property value about 

the mean (low variability). The above explains why it is important to consider the 

scale of fluctuation in addition to the mean and the standard deviation, when a soil 

profile needs to be fully characterized. The name of this important parameter (6) is 

somewhat misleading since a higher value of the scale of fluctuation reflects a lower 

variability, and vice versa. In this regard, although it seems more appropriate for 8 

to be referred to as the ' scale of uniformity ', for the sake of consistency with the 

present literature, this thesis will continue to refer to it as the scale of fluctuation. 

4.3 Scale of Fluctuation 

4.3.1 Spatial Averaging 

The scale of fluctuation is a parameter which describes spatial variability. Therefore, 

it is important to acquire a complete understanding of the effect of spatial averaging 

prior to discussing the derivation and merits of the scale of fluctuation. 

Within a small volume or element , soil property values are approximately uniform 

and less variable. However, among the group of these small elements, some may have 

lower average values while some may possess higher average values. As a result, the 

within element variability will definitely be lower than the between element variability. 
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This phenomenon has been effectively used to identify different types of layering in 

Chapter 2. If the elements considered are large, the above concept will not be true 

since in the larger elements, the internal variations will balance out such that the 

average property values from one large element to another will not differ too much 

(Baecher, 1985). The averages of large volumes will be approximately equal to those 

of the smaller volumes but the standard deviation which reflects the variability will 

be significantly different. The variation of the standard deviation from one small 

element to the next will be greater than if the elements were larger. 

The extent of the variability of the standard deviation is dependent on the struc­

ture of the spatial variability of the soil property value under consideration and is 

expressed by the variance function, T 2(.), which will be defined and explained in 

section 4.3.2. 

4.3.2 Variance Function (J?2) 

The recommended procedure (Vanmarke, 1977) of determining the scale of fluctuation 

is in terms of the.variance function which adequately explains the effects of spatial 

averaging. The less frequently used method uses the autocorrelation function to derive 

the scale of fluctuation. The details of the latter method and its drawbacks will be 

described, in section 4.3.4. 

The procedure of obtaining the scale of fluctuation (6) in terms of the variance 

function is as follows; 

The data are first considered in pairs (n = 2) and a new series of data comprising 

of the respective averages of the adjacent data points are derived. The length of 

averaging will be equal to the spacing of data points, (Z2). The standard deviation 

(<T2) of this derived series is then calculated. The standard deviation of this series 
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(n = 2) will be less than the standard deviation of the original data set, <j\, because 

of the cancelling out of fluctuations due to spatial averaging. The above procedure 

is extended to the case n = 3, where three adjacent data points will be averaged to 

obtain the derived series for the case n = 3. The corresponding standard deviation 

of this series, cr3, is calculated with the spacing, Z 3 , being equal to twice the spacing 

between data points. For a typical CPT sounding which samples at 2.5 cm, Z2 will be 

equal to 2.5 cm and Z 3 will be 5.0 cm. This procedure is repeated for n = 4, 5, 6, 

until n approaches the total number of data points, N. The effect of spatial averaging 

will be more significant with increasing n with, 

< 7 1 > < T 2 > < T 3 > > <7jv 

For each n, the variance function, T2(Zn), can be calculated as, 

T 2 ( Z n ) = ̂ 2 (4.2) 

where, o~n
2 is the variance (squared of the standard deviation) of the derived moving 

average series of degree n and a^2 is the variance of the original data. If the spacing 

of the data is d, Zn in Eq. 4.2 will be equal to (n - l)d. The variance function 

given above can be determined for different lag distances (separation distances), Z. 

Figure 4.1 illustrates a typical variation of T2(.) which has a maximum value of unity, 

decaying towards zero for increasing lag distance values Z. 

From Vanmarke (1977), for large values, of Z (very large n) the variance function will 

become inversely proportional to Z and can be expressed as, 

T 2(Z) = | (4.3) 

The the relationship in Eq. 4.3 "can also be expressed as (Vanmarke, 1977), 
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where, n is the number of data points which are averaged and d is the sampling 

interval. The next step is to fix n (ra*) and observe T(n') and the scale of fluctuation, 

8, will be given by, 

6 =T2(n*)n*d (4.5.) 

The point of maximum curvature is a suitable point to obtain ra* (Vanmarke, 1988). 

For the variance function profile given in Fig. 4.1, ra* = 48 ( ra*d ."= 0.025.x 48 = 1.2 

m) and r2(ra*) = 0.27. Therefore, the scale of fluctuation (8) is given by (Eq. 4.5), 

<5 = 1.2 x 0.27 = 0.324m = 32.4cm (4.6) 

In the original method described above, the value of T2 is selected from the curve at 

a reasonably high value of Z, where there is a distinct change in the curve (point of 

maximum curvature). This has been verified by Vanmarke (1988). 

A practical variant of the above method of determining 8 is proposed and used 

in this thesis. It makes use of Eq. 4.3 directly and is very convenient for computer 

applications. At large values of Z, the function T2(Z).Z reaches a peak and this 

maximum value gives a good approximation for 8. Figure 4.1 gives a typical variation 

of a variance function, T2(Z), with a maximum value of unity and gradually decreasing 

with increasing distance, Z. Figure 4.2 shows the variation of T2(Z).Z with Z and 

as can be observed, T2(Z).Z reaches a maximum value of 31.25 cm, which compares 

well with the value (32.4 cm) obtained from the method recommended by Vanmarke 

(1977). The proposed method allows a consistent and objective determination of 8. 

(4.4) 
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o 

LAG (meters) 

Figure 4.1: Variance Function of Haney Data for Layer Between 9.3 and 15.51 meters. 
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6 

LAG DISTANCE z (meters) 

Figure 4.2: Variation of the Variance Function x Lag Distance (T2.Z) for Haney Data 
Between 9.3 and 15.51 meters. 
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Table 4.1: Comparison of the Two Methods for Obtaining the Scale of Fluctuation. 

Scale of Fluctuation (cm) 
Data Soil Property Vanmarke's Method Proposed 

Haney 2 Cone Bearing 32.40 31.25 
( 9.3 - 15.51 meters) Sleeve Friction 33.60 35.99 

Pore Pressure 26.68 30.45 

Langley 3 Cone Bearing 23.04 24.08 
( 2.60 - 10.80 meters) Sleeve. Friction 41.79 39.98 

Pore Pressure 21.98 17.91 

Strong Pit 1 Cone Bearing 27.99 26.22 
( 5.25 - 10.12 meters) Sleeve Friction 37.59 36.88 

Pore Pressure 17.75 13.76 

Vanmarke (1977) Cone Bearing 120.0 . 98.2 

The effectiveness and the advantage of of the proposed method of obtaining £ has 

been acknowledged by Vanmarke (1988). The above value of the scale of fluctuation 

(31.25 cm) relates to the cone bearing at Haney 2. Figures 4.3, 4.4 and 4.5 illustrate 

the CPT profiles for the Haney, Langley and Strong Pit sites for which the S values 

have been calculated. The values of S which have been obtained for the different 

sites listed above are tabulated in Table 4.1 for cone bearing, sleeve friction and pore 

pressure. It also gives a comparison of the proposed method with Vanmarke's (1977) 

method. All the results in Table 4.1 indicate the adequacy of the method suggested. 

4.3.3 Removal of Trend 

Soil properties are highly depth dependent and hence CPT parameters such as cone 

bearing, sleeve friction and pore pressure exhibit significant trends with depth. If 

the trends are not significant, data can be considered as stationary. In the presence 

of significant trends, these will have to be removed prior to determining the scale 



Figure 4.3: Cone Bearing, Sleeve Friction, 
at Haney Site. 

Pore Pressure and Friction Ratio Profiles 
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Figure 4.4: Cone Bearing, Sleeve Friction, Pore Pressure and Friction Ratio Profiles 
at Langley Site. CO 
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Figure 4.5: Cone Bearing, Sleeve Friction, Pore Pressure and Friction Ratio Profiles £ 
at Strong Pit. 
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of fluctuation. Different methods of trend removal have already been described in 

Chapter 3. A pre-requisite to this is the identification of statistically distinct layers, 

using the techniques described in Chapter 2. 

Cone bearing and sleeve friction often exhibit linear trends while it is usual for 

the pore pressure profile to possess a curvilinear trend as illustrated in Figs. 4.3 to 

4.5. If a linear trend is used on a pore pressure profile, the resulting residuals will not 

be stationary, due to the curvilinear effects of the trend not being removed. This will 

give rise to an incorrect value for 8. The decision as to what type of trend removal is 

necessary could be taken by inspecting the residuals as explained in Chapter 3. If a 

linear trend removal results in a stationary set of residuals, curvilinear trend analysis 

is unnecessary. 

In certain profiles where the curvature of the pore pressure profile is prominent, 

the scales of fluctuation obtained for the linear trend removed data and the curvilin­

ear trend removed data will show an appreciable difference, with the latter method 

giving lower values. As explained earlier, the curvilinear trend would always be more 

suitable, since it also includes the linear case as a subset. Table 4.2 provides sufficient 

evidence as to why a curvilinear trend removal method has to be adopted, if one 

exists. The 8 for the curvilinear trend is less than that for the linear trend, except for 

the result of Langley 3 data. The reason for the above is that the pore pressure trend 

is generally, much better represented by a curvilinear trend, than by a linear trend. 

The Langley 2 data seem to have approximately equal 8 values for the two methods 

of trend removal, suggesting that the pore pressure profile in this case may be ade­

quately represented by either a linear or a curvilinear trend. In Tables 4.1 and 4.2, 

Haney 1, Haney 2 and Haney 3 refer to different profiles obtained at the Haney site 

while Langley 1, Langley 2 and Langley 3 represent different cone profiles obtained 

from the Langley site. The cone bearing and sleeve friction results indicated in Table 
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Table 4.2: Comparison of the Scale of Fluctuation for Pore Pressure Obtained by 
Linear Trend Removal and Curvilinear Trend Removal. 

Scale of Fluctuation for Pore Pressure (cm) 
Data Layer Depths (m) Linear Trend Curvilinear Trend 

Haney 1 7.15 - 13.12 34.85 27.21 
Haney 2 9.30 - 15.50 34.21 30.45 
Haney 3 13.52 - 22.50 35.34 28.45 

Langley 1 2.60 - 10.75 46.08 26.15 
Langley 2 2.60 - 10.60 37.37 37.33 
Langley 3 2.60 - 10.60 17.91 18.41 

Strong Pit 5.25 - 10.12 20.18 13.76 

4.1 are for a linear trend while the scale of fluctuation results for pore pressure are 

for a curvilinear trend. A description of the above sites are given in section 1.7. 

4.3.4 Relationship with the Autocorrelation Function 

The scale of fluctuation can also be expressed in terms of the autocorrelation function 

(p). The autocorrelation function, as the name suggests, is the function which gives 

the correlation of a variable with the corresponding variable at different locations. 

For example, the autocorrelation function at a particular separation distance (lag 

distance) is the correlation of all data points separated by that distance. Equation 

4.7 explains this relationship more clearly. Soil properties generally show stronger 

correlation for closely located points, with the correlation decaying for increased lag 

distance. The autocorrelation function, which is the standardized form of the auto-

covariance function, has a maximum value of unity with the possibility of minimum 

values even in the negative region for large lag distances. 

The autocorrelation function at a lag distance l(p(l)) is defined as, 
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„m * Y,fLlh(Qi - Q){Qi+h - Q) ..... 

where, N is the total number of data, Qi is the soil property value at location i and 

Q is the mean of the data. If d is the sample spacing (depth increment) between data 

points, h in Eq. 4.7 is equal to l/d. 

Vanmarke (1978) expresses the scale of fluctuation, 8, in terms of the autocorre­

lation function, p(l), as given below. . . 

f+oo 

/

-t-oo 
p(l)dl (4.8) 

-oo 

Since the autocorrelation function given by Eq. 4.7 is an even function, 8 can also be 

expressed as, 

/•co 
8 = 2 p(l)dl. (4.9) Jo 

The above relationship of 6 with the autocorrelation function is approximate because 

the value of p(l) given by Eq. 4.7 will be accurate only at reasonably low values of the 

lag distance I. At increased values of I (large h), N — h will be low and therefore the 

value of p(l) will be biased. Agterberg (1970) suggests that for a data set with N data 

points, the value of p{l) will be a reasonable estimate only for I < (N/4). Expressing 

in terms of distance, the maximum lag distance to which p will be accurate, will 

therefore, be equal to (N/4).d. As a result of this, the value of the integralin Eq. 4.9 

with an upper limit of infinity cannot be expected to give a good result. However, 

at large lag distances, the autocorrelation functions of most soil profiles tend to show 

a cyclic effect with values close to zero, both from the positive and negative sides, 
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thereby forcing p(l) at large values of I not to have any significant influence on the 

estimation of 8 from Eq. 4.9. 

Vanmarke (1978) has also established relationships between possible autocorrela­

tion functions and the. respective scales of fluctuations which could be derived from 

them. These are listed in Table 4.3. The constants of the different relationships are 

denoted by a, b, c, k and m while AZ is the lag distance; 

4.4 Applications of the Scale of Fluctuation 

4.4.1 Comparison of Bearing, Friction and Pore Pressure 

The sleeve friction value obtained from the CPT is an average value of the sleeve 

friction extending along the 13.4 cm length of the friction sleeve. Due to the averaging 

effect, the scale of fluctuation could be expected to be higher than if it were measuring 

point values. This is because the averaging process would cancel out fluctuations, 

resulting in a lower variability. The cone bearing, however, is expected to give a 

lower scale of fluctuation since it is believed that bearing measures values at the cone 

tip. Results in Table 4.4 agree with the above explanation, because the 8 values for 

bearing is less than the corresponding values for friction. It is also interesting to note 

that the. 8 values for bearing are not as low as those for pore pressure. The pore 

pressure measures values over the length of the sensing element, which is about 5 

mm, and for all practical purposes, can be considered as measuring values at a single 

point. If the cone bearing too was measuring values at a single point, the £ value 

relating to it also should be as low as that of pore pressure. It is evident from Table 

4.4 that the bearing from the CPT is indicative of a value which is averaged out over 

some length. However, the fact that the bearing 8 value is not as high as that for 

friction also suggests that the bearing value from the CPT is representative of a value 

averaged over some length which is less than the averaging length for friction. Table 
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Table 4.3: Relationship Between Different Autocorrelation Functions and the Scales 
of Fluctuation (after Vanmarke - 1978) 

Function p (A Z) Shape ,6 

EXP [=£21] 
1 

0 +fa 
2a 

EXP [- ( ^ ) 2 ] 
I 

0 _ ^ *Az 

EXP f ^ 1 ] COS (AZ/c) 
/ 

0 V̂̂ ^ C 

EXP [=l£21] (1 + | AZ |/Jfc) 
1 

0 : • Az 

4k 

[SIN(AZ/m)]/(AZ/m) 

i 
/ 

i 

- \ / \ / S ^ *bz. 

•Km 
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Table 4.4: Comparison of Averaging Dimensions for Cone Bearing, Sleeve Friction 
and Pore Pressure for the CPT at UBC. 

Parameter Length (cm) Area (cm2) 

Cone Bearing - 3.1 10.0 
Sleeve Friction 13.4 150.0 
Pore Pressure 0.5 5.6 

Table 4.5: Comparison of the Scale of Fluctuation for Cone Bearing, Sleeve Friction 
and Pore Pressure. 

Data Layer Depths (m) 
Scale of Fluctuation (cm) 

Data Layer Depths (m) Cone Bearing Sleeve Friction Pore Pressure 

Haney 1 7.15 - 13.12 31.60 38.00 27.21 
Haney 2 9.30 - 15.50 31.25 35.99 30.45 
Haney 3 13.52 - 22.50 29.06 35.34 28.40 
Langley3 2.60 - 10.60 24.08 39.98 17.91 

Strong Pit 5.25 -.10.12 26.22 36.88 13.76 

4.4 indicates the approximate averaging lengths and areas for bearing, friction and 

pore pressure obtained from the CPT at UBC. 

The above argument that the cone bearing value is also indicative of an averaged 

value over a finite length, instead of the value at a point, is supported by the fact that 

the cone bearing at the tip is dependent not only on the soil property at the cone tip, 

but also on values immediately behind, in front of, and around the tip location. The 

low 8 values for pore pressure could also be indicative of the highly variable nature of 

this measurement since it also reflects diffusion and pore pressure dissipation effects. 

Figure 4.6 illustrates the relationship of the variance function x lag distance 

(T2(Z).Z) for the Strong Pit data for bearing, friction and pore pressure. The maxima 

of the respective curves give the scale of fluctuation values in Table 4.5. These values 

have been obtained using a linear trend for bearing and friction and a curvilinear 
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Figure 4.6: Variation of the Variance Function x Lag Distance (T2.Z) for Strong Pit 
Data Between 5.0 and 10.0 meters for Bearing, Friction and Pore Pressure. 
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trend for pore pressure. 

4.4.2 Scale of Fluctuation and Variability 

As mentioned in section 4.3.3, the scale of fluctuation of a layer represents the vari­

ability of a layer. The higher the variability of a layer, the more fluctuations about 

the mean are expected, resulting in a relatively low value of 8. On the other hand, 

a slowly fluctuating component about the mean represents low variability, giving rise 

to a relatively high value of 8. It can therefore, be expected that 8 is related to the 

coefficient of variation. 

Figure 4.8 illustrates the coefficient of variation profile for the bearing profile 

given in Fig. 4.7 which has been divided into three layers. The average values of 

the coefficient of variation (77) and the 8 values of the three layers are tabulated in 

Table 4.6. The variation of T2(Z).Z with Z from which the 8 values in Table 4.6 

were derived, is illustrated in Fig. 4.9. The results in Table 4.6 clearly indicate an 

inverse relationship of 8 with the coefficient of variation. Layer 2, which has the lowest 

variability (77 = 0.078), has the highest 8 value of 41.75 cm. Layer 3 has the second 

highest variability (77 = 0.180) and also the second highest value of 8 (32.63 cm). 

Layer 1 is the most variable (77 = 0.190) and appropriately, it has the lowest 8 value 

of 29.37 cm. The variabilities of Layers 1 and 3 are, however, not very different and 

so are their scales of fluctuation, providing further evidence of the close relationship 

between the coefficient of variation and the scale of fluctuation. 

4.4.3 Effect of Sample Spacing 

In addition to assessing soil profile variability and averaging characteristics of prop­

erties such as cone bearing, sleeve friction and pore pressure, the concept of the scale 

of fluctuation can also be used to determine an optimum sample spacing for a given 



Figure 4.7: Cone Bearing Profile 
at McDonald Farm. 
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Figure 4.8: Coefficient of Variation Profile 
at McDonald Farm. 
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Layer 1 (1.7 - 4.5 meters) 

Layer 2 (4.5 - 10. 0 meters) 

Layer 3 (10.0 - 13. 5 meters) 

o.o 0.5 1.0 

LAG DISTANCE (meters) 
1.5 

Figure 4.9: Variation of the Variance Function x Lag Distance (T2.Z) for the Three 
Layers Identified at McDonald Farm. 
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Table 4.6: Relationship of the Scale of Fluctuation and the Coefficient of Variation 
for McDonald Farm. 

Layer Layer Depths 
(m) 

Scale of Fluctuation 8 
(cm) 

Coefficient of Variation TJ 

1 1.17 - 4.50 29.37 0.190 
2 4.50 - 10.12 41.75 0.078 
3 10.12 - 13.50 32.63 0.180 

site. Closer spacing than optimum gives rise to redundant data and unnecessary ex­

penditure of time and effort and therefore, it is advisable to sample at the optimum 

spacing in order to characterize a soil profile. 

Typically, CPT data recording at UBC is performed at 2.5 cm intervals. In order '. 

to study the effect of sample spacing on the scale of fluctuation, data sampling was 

performed at 2 mm for a sounding performed at the B. C. Hydro Railway Site. A 

description of this site is given in section 1.7. With the data obtained at this close 

spacing, intermittent data points were systematically removed to form data sets with 

different sample spacings and the scale of fluctuation was calculated for each spacing. 

The £ values for cone bearing so calculated for different spacings are given in Table 

4.7. The.condition of the above site was uniform in the depth interval considered 

and, therefore, as Table 4.7 indicates, the scale of fluctuation is fairly insensitive to 

the sample spacing. In a soil profile where the variability is more pronounced, the 

scale of fluctuation could be expected to be more sensitive to the sample spacing, and 

is also expected to increase with increased sample spacing. Table 4.8 exhibits this 

feature for Layer 2 data in Fig. 4.7. For this case, £ is equal to 41.74 cm for a spacing 

of 2.5 cm. and increases to 48.74 cm for a spacing of 12.5 cm. The reason for this is 

that the higher sample spacing in a fairly variable soil would be unable to pick up the 

"real" fluctuations in between these points, thus causing the scale of fluctuation to 

increase. The Railway site data is of such low variability that even increased sample 
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Table 4.7: Effect of Sample Spacing on the Scale of Fluctuation for Lower 232 Data. 

Spacing of Data Points (cm) Scale of Fluctuation 8 (cm.) 

0.2 35.73 
0.4 35.21 
0.6 35.48 
0.8 36.25 
1.0 34.55 
1.2 35.61 
1.6 35.73 
2.0 35.03 
4.0 33.23 
6.0 35.58 
8.0 . 35.88 
10.0 36.92 . 
12.0 37.35 

spacing does not have any uniform effect on the scale of fluctuation. Instead, the 8 

value seems to fluctuate within a narrow band. 

The importance of the scale of fluctuation is apparent when two different test 

methods are being compared. In this type of situation it is recommended that the 

sampling interval should be less than the scale of fluctuation (Vanmarke, 1978) so that 

comparison is being done in a similar zone. The opposite is true.when sampling is 

performed using the same equipment, where for optimum sampling benefit a spacing 

Table 4.8: Effect of Sample Spacing on the Scale of Fluctuation for Layer 2 Data of 
McDonald Farm Site given in Fig. 4.7. 

Spacing of Data Points (cm) Scale of Fluctuation 8 (cm.) 

2.5 41.74 
5.o: 43.30 
7.5 43.96 
10.0 46.59 
12.5 48.74 
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greater than the scale of fluctuation is advisable (Campanella and Wickremesinghe, 

1987). 

4.5 Correlation Between Spatial Averages 

It is common in geotechnical engineering practice to determine coefficients of vari­

ation, probability density functions, etc., of data sets of measured soil properties 

without much emphasis on the characteristics of spatially averaged soil properties. 

The average shear strength on a failure surface and the average shear velocity in a 

soil stratum, which are of great concern to the geotechnical engineer, are some ex­

amples of these. Very often, it is assumed that the mean of a spatially averaged soil 

property does not depend on the averaging dimensions in a statistical homogeneous 

medium. The aspect of independence between soil property values and averaging 

dimensions is very desirable, although it is often violated. Lack of correlation will 

. only be exhibited by soil properties for which element averages combine linearly. Van­

marke (1978) also explains that the spatial averages will have narrower probability 

density functions than the corresponding 'point' values. 

The correlation coefficient concept derived by Vanmarke (1984) provides the basis 

for new methodology to analyze a wide range of stochastic problems in all three spatial 

dimensions. The almost continuous profile obtained from the cone penetration test 

(CPT) provides an ideal data base for such considerations in the vertical direction. 

This procedure introduced by Vanmarke (1984) can be used in the field of numerical 

methods in geomechanics, by generating the matrix of correlation coefficients between 

pairs of local averages of some soil property associated with different elements along 

the vertical axis. 

Considering Layers A' and B' in Fig. 4.10, let yly y2, y3, ya, y0 and yb be the distances 

illustrated in Fig.4.10 and T2(yi), T2(y2), T2(y3), T2(ya), T2{y0) and T2{yb) be their 
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Figure 4.10: Different Layers Used for the Determination of the Coefficient of Corre­
lation Between Spatial Averages. 
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Table 4.9: Correlation Coefficients for Layer A in Fig. 4.11. 

Va (m) Vb (m) Vo (m) Pab 

1.0 1.0 0.30 .4320 
0.50 .3500 
0.80 .0215 
1.00 .0125 

0.8 - 1.4 0.50 .2504 
1.00 .1463 
1.50 -.0227 

Table 4.10: Correlation Coefficients for Layer B in Fig. 4.11. 

Va (m) Vb (m) Vo (m) Pab 

1.0 1.0 0.20 .4497 
0.40 .3651 
0.60 .2853 
0.80 .2321 
1.00 .2167 

respective variance functions. 

The correlation coefficient pab between the spatial average of Layer A' (Qa) and the 

spatial average of Layer B' (Qb) in Fig.4.10 is given by, 

y0
2T2(y0) - yST2(yi) + y22T2(m) - y3

2T2(y3) 
Pab = / (4-10) 

2(J(ya*T*(ya).yb*T>(yb)) 

The derivation of Eq. 4.10 is given in Appendix A. 

The above concept of determining the coefficient of correlation has been applied 

to a cone bearing profile obtained from Tilbury Island (Fig. 4.11). The upper 20 

m of this profile was used in Chapter 2 (Fig. 2.25). Two distinct layers have been 

identified between 24.8 - 30.0 m (Layer A) and between 30.0 - 40.0 m (Layer B), 
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Figure 4.11: Cone Bearing Profile at Tilbury Island with Layers A and B. 
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using the methods described in Chapter 2. The stationarity of these layers have been 

confirmed using the RUN test described in Chapter 3.. 

As can be seen from Eq. 4.10, the only parameters needed to calculate the correla­

tion coefficient are the thicknesses of the layers and their respective variance functions. 

The variance functions of these two layers are illustrated in Figs. 4.12 and 4.13, to­

gether with the autocorrelation functions which will be required for the determination 

of exceedance probabilities to be described in section 4.6. The correlation coefficients 

for different sublayer thicknesses (ya and yb) and layer separation distances (yD) are 

tabulated in Table 4.9 for Layer A and Table 4.10 for Layer B. The discrepancy of the 

correlation values for similar separation distances in the two layers is due to the differ­

ence in the decay pattern of the respective variance functions (Figs. 4.12 and 4.13). 

Figures 4.12 and 4.13 show the variation patterns of the autocorrelation function 

and the variance function for lag distances of up to 2.0 and 4.0 meters, respectively. 

This is due to the reason that the autocorrelation function has been considered to be 

accurate up to 40% of the length of the data set. 

As mentioned previously, it is customary in geotechnical engineering to assume 

independence of soil properties, that is, considering the correlation coefficient to be 

zero. This is incorrect as demonstrated above, and could result in significant error 

of the estimates being calculated. In a geotechnical engineering study the estimate 

under consideration may be the settlement of a foundation. 

4.6 Exceedance Probabilities 

The theory of random functions could be applied to find the exceedance probabilities 

of a CPT profile. Instead of considering the entire soil layer, geotechnical performance 

may have to be evaluated based on the exceedance of some value q within a region 

of the soil profile. The slope stability problem in geotechnical engineering, where the 
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Figure 4.12: Autocorrelation Function and the Variance Function of Layer A ( 25.0 -
30.0 meters) of Tilbury Island. 
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o 

LAG DISTANCE (meters) 

Figure 4.13: Autocorrelation Function and the Variance Function of Layer B ( 30.0 -
40.0 meters) of Tilbury Island. 
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main concern is the non exceedance of the available shear strength by the disturbing 

force, is an example. If this is not satisfied even in a very thin layer of soil, this 

thin layer is liable to progressive failure. The theory was originally introduced by 

Vanmarke (1983) and was eventually extended to cover multi-layered systems by 

Tang et al.(1987). 

The mean rate of upcrossings (v^) above a threshold value q in a local region of 

length D is given by (Vanmarke, 1987 and Tang et al., 1987), 

q v: = V exp -X—^T2(D) (4.11) 
V2TVDT(D) • { 2cr2 

The derivation of Eq. 4.11 is given in Appendix B. 

There will be many segments of length D within the domain length L, and hence 

the probability of non exceedance (PL) for all such segments within the entire layer 

of length L will be approximately given by, 

PL =exp(- I/+L) (4.12) 

Therefore, the probability that the average of a local interval of length D will exceed 

(probability of exceedance) a threshold value q is given by, 

PE = l - e x p ( - i / + L ) (4.13) 

From Eqs. 4.11 and 4.13 it.is evident that the probability of exceedance is dependent 

on the local region of length D, mean (Q) and standard deviation (<TQ) of the entire 

layer, value of the autocorrelation function of the layer at D (PD)I square root of the 
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variance function at D, (T(D)), the threshold value q and L, the thickness of the 

domain. 

The theory of exceedance probabilities has been applied to the cone bearing profile 

of Layer A and Layer B in Fig. 4.11. The autocorrelation and variance functions of 

these two layers are illustrated in Figs. 4.12 (Layer A) and 4.13 (Layer B). The mean 

and standard deviation of Layer A are 149.30 bar and 43.17 bar, respectively, and 

for Layer B, the mean is 58.26 bar and the standard deviation is 24.65 bar. Layer 

B has a higher variability with a scale of fluctuation (8) of 20.0 cm and a coefficient 

of variation (77) of 0.411, as compared to Layer A which has a scale of fluctuation of 

21.34 cm. and a coefficient of variation of 0.289. 

Figure 4.14 illustrates the effect of the length of the local interval D and threshold 

value (q) on the probability of exceedance for Layer A. For any given local interval of 

length D, the probability of exceedance of a local average increases as the threshold 

value approaches the mean value of the layer as shown in Fig. 4.14. For any given 

q, the probability of exceedance decreases with increasing length of the local interval 

D, due to the effect of averaging within the local region. Figure 4.15 demonstrates 

a similar behavior for Layer B, which illustrates the increase of the probability of 

exceedance as the threshold value, q, approaches the mean value (58.26 bar) of that 

layer. The increase in the probability of exceedance with decreasing local averaging 

interval, D, is also evident from Fig. 4.15. 

When the length of a domain which comprises the smaller segments of length D 

is decreased, the probability of exceedance also decreases, as exhibited in Fig. 4.16. 

The probability of exceedance, Pg, for a given domain of length L, is the cumulative 

effect of all local intervals of length D (Tang, 1988). The number of local intervals 

which can be included in a domain increases with increasing L and this is the reason 

for the increase in PE for increasing L, for a given threshold value q (Fig.4.16). 
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Figure 4.14: Relationship of the Probability of Exceedance with Threshold Value for 
Different Local Regions of Length D for Layer A at Tilbury Island. 
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Figure 4.15: Relationship of the Probability of Exceedance with Threshold Value for 
Different Local Regions of Length D for Layer B at Tilbury Island. 



Figure 4.16: Relationship of the Probability of Exceedance with Threshold Value for 
Different Domain Lengths L for Layer B at Tilbury Island. 
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Figure 4.17 demonstrates the effect of variability on PE for local averaging intervals 

of 0.5 and 1.0 meters for both Layers A and B. For a given value of D, Layer B which 

has a higher variability (rj •=• .411 and 8 = 20.0 cm) exhibits a higher value of PE 

for any given value of q/Q, as compared to the less variable Layer A (T/ = .289 and 

8 = 21.34 cm.). For comparison purposes, the values of q have been normalized by 

dividing by the respective means, Q, to account for the difference of the means of the 

two layers under consideration. Higher variability reflects more uncertainty, which in 

turn influences the exceedance probabilities to increase. This phenomenon is amply 

evident from Fig.4.17. The increase of PE with decreasing D, is also apparent from 

Fig.4.17 due to reasons already explained. 

4.7 Optimum Sample Spacing 

A typical cone penetration test at UBC performs data logging at 2.5 cm. However, 

if the soil does not exhibit much variability, the sample spacing could be increased 

without losing much information. In section 4.4.3, a method was described to obtain 

an optimum sample spacing based on the scale of fluctuation. The technique to be 

described in this section is more advantageous in that an optimum sample spacing 

required can be determined based on the confidence level needed for a particular 

purpose. 

The actual mean of the data, Qg, is the mean calculated if all the points in a 

particular sublayer were sampled, and the average calculated. In the actual situation, 

what is available is an estimate Q. 

Assuming that the data are normally distributed, the limits of Q are given by, 

(4.14) Qe-Q\=-=.t'l_1 
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o 

Figure 4.17: Relationship of the Probability of Exceedance with Threshold Value for 
Layer A ( low variabilty) and Layer B ( higher variabilty) at Tilbury Island. 
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or. 

Qe=Q±^=.tl_1 (4.15) 

where, cr is the standard deviation of the data and t„_i is the Student's 't' variate 

with n — 1 degrees of freedom, n being the number of data. The above equations 

should satisfy, 

Piob{* > = 7 (4-16) 

where, ( 1 — 7 ) is the confidence level of the estimation. Let it be assumed that any 

layer is fully characterized when the mean obtained from the data, Q, for a particular 

layer is within ± A of the actual mean Qe- For example, if A , hereafter referred to as 

the degree of tolerance is. ± . 1 0 , the following condition results: 0.9Qg < Q < l.lOQe-

The tolerance is inversely related to the precision; the higher the tolerance, the lower 

the.precision. 

As a result of the above definitions, A can be. expressed as, 

A = * ^ « (4.17) 

The coefficient of variation 77 is given by, 

0 = 5 • (4.18) 

The sample size (n) required to estimate the mean to' the above precision or the 

sample size required to characterize a soil layer with respect to the mean of a soil 
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property considered, can be expressed as a function of the degree of tolerance, A, 

with a confidence level of ( 1 — 7 ) . 

By combining Eqs. 4.15, 4.17 and 4.18, the sample size (n) is given by, 

(4.19) 

According to Eq. 4.19, n depends on three factors; 

(a) Variability of the soil layer, expressed by 7/ 

(b) Confidence required of the estimate, expressed by t1

n_1 

(c) The degree of tolerance allowed, expressed by A 

The number of samples needed in a given thickness of soil stratum is proportional 

to the square of the coefficient of variation and the confidence required and inversely 

proportional to the square of the degree of tolerance. In other words, the sample 

spacing required, which is the inverse of n, is proportional to the square of the degree 

of tolerance and inversely proportional to the square of the coefficient of variation 

and the confidence level. 

The above concept has been applied to two sets of data; namely Layer A and the 

upper five meters of Layer B in Fig. 4.11. These two layers were selected to have 

the same thickness in order to demonstrate the effect of variability on the optimum 

sample spacing more explicitly. The results for varying degrees of confidence, 80%, 

90% and 95%, for two different degrees of tolerance ± .05 and ± .10 are tabulated in 

Table 4.10 for the two layers considered. 

In Table 4.11, for the same tolerance of ± .10 and a confidence level of 80%, the 
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sample spacing required in the soil of higher variability (77 =.410) is 17.2 cm while for 

the soil with a lower variability (7/ = .289), it is 35.0 cm. If a higher confidence level of 

90% is required, spacing will have to be decreased to 10.4 cm. in the more variable soil 

and to 20.0 cm. in the less variable soil. Similarly, if the engineer intends to reduce 

the tolerance by half to ± .05 in order to increase the precision of the estimate, the 

sample spacing will have to be reduced to 5.4 cm in Layer A for the same confidence 

90%. However, in the more variable soil, the sample spacing required for the same 

confidence level and tolerance is as low as 2.7 cm. For a higher confidence level of 

95%, the spacings required for a tolerance of ± .05 decrease even further with the low 

variable soil requiring a spacing of 3.8 cm and the high variable soil a very low 1.9 

cm. 

The usual sample spacing of 2.5 cm in the high variable soil will result in a 

confidence level between 90% and 95% for a tolerance of ± .05 while for a tolerance 

of ± .10 the confidence level of the required estimate will be in excess of 99%. In 

the lower variable soil the confidence level will be significantly higher than 99% for a 

tolerance level of ± .10 while for a reduced tolerance of ± .05 it will be close to 99%. 

All these significance level are well above what is required for all practical purposes 

in geotechnical engineering and therefore the sampling interval can be increased at 

the expense of a decreased confidence. The other option would be to fix a confidence 

level and study the effect of sampling on the precision (inverse of tolerance) of the 

estimate. 

The above examples clearly illustrate the importance of considering three impor­

tant criteria when selecting a sample spacing for a soil investigation. They are the 

variability of the soil, the acceptable precision and the confidence required in the esti­

mate. These criteria have different effects on the sampling rate and perhaps the most 

important factor is the variability of the soil stratum. In a soil stratum where the 
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Table 4.11: Effect of Variability on the Optimum Sample Spacing for the Soil Layers 
between 25.0 - 30.0 meters and 30.0 - 35.0 meters in Fig. 4.11. 

Layer (m) Tolerance A Confidence Level (%) n Spacing (cm) 
25.0 - 30.0 ±.05 80 58 8.7 

90 93 5.4 
Low Variability 95 132 3.8 

ri = 0.289 ±.10 80 15 35.0 
90 26 20:0 
95 36 13.8 

30.0 - 35.0 ±.05 80 112 4.5 
90 184 2.7 

High Variability 95 262 1.9 
77 = 0.410 ±.10 80 30 17.2 

90 49 10.4 
95 68 7.4 

coefficient of variation, 77, is unknown, it will be necessary to perform some tests and 

obtain an approximate estimate. The spacing required can then be determined using 

this estimate, and in the event it is greater than the spacing at which the testing has 

already been performed, there is no need for additional testing. However, if it is not, 

more testing will have to be done, also enabling a better estimate of the coefficient of 

variation, which in turn would result in a more accurate estimation of the optimum 

sample spacing. 

It is common to find soil profiles exhibiting a trend, resulting in a fairly high 

coefficient, of variation, thus giving rise to the need of closer sample spacing to ensure 

a higher accuracy of the estimates. If the above method is to be used to obtain 

the sample spacing, the uncertainty due to the trend will also have to be taken into 

account. Another available option would be to consider very thin soil layers, whereby, 

the effect of violating the assumption of stationarity would not be very drastic. 
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4.8 Conclusions 

The main conclusions of this chapter are, 

(i) The proposed method of obtaining the scale of fluctuation in this thesis gives 

comparable results to those of the original method suggested by Vanmarke (1977). 

The advantages of the proposed method are its adaptability to computer applications 

and the consistency of the approach, as compared to the subjectivity involved in the 

previous method. 

(ii) The scale of fluctuation is basically an enhanced estimator of variability. In 

contrast to the coefficient of variability, it also gives an indication of the spatial 

variation of soil properties. . 

(iii) The scale of fluctuation has to be determined on data which have been made 

stationary by trend removal. A linear trend can be used for the cone bearing and 

sleeve friction data while a curvilinear trend represents a pore pressure profile more 

adequately. Effects of non stationarity significantly increases the value of the scale of 

fluctuation and it is therefore important to select the most appropriate form of trend 

to remove it. 

(iv) Exceedance probabilities of soil properties over threshold values are useful in 

problems such as slope stability, where the requirement is the non-exceedance of the 

disturbing force over the available strength. The exceedance probability is strongly 

dependent on the variability of the soil under consideration. Exceedance probabilities 

are also heavily dependent on the length of the local region D, which decision is a 

matter of soil mechanics of sensitivity and progressive failure. 

(v) Economics play a vital role in site investigations for large projects, and in 

this regard, the unnecessary collection of data can be avoided in order to minimize 

costs. On the other hand, the increased risks involved in having insufficient data 

or failure to detect anomalous soil zones can be catastrophic. With the above two 
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considerations, an optimum sampling spacing can be derived. The optimum sampling 

spacing required to fully characterize a soil profile has been found to be dependent 

on the accuracy of the estimates required, the confidence level desired, and most 

importantly on the inherent soil variability. 

This chapter has amply demonstrated how applications of random field theory 

can be effectively extended to analyze cone penetration test data in order to better 

characterize a soil stratum. In the past, these techniques could not be used due to 

the lack of sufficient closely spaced data. This is not the case with the emergence and 

popularity of in situ testing devices such as the cone penetration test (CPT). It is 

recommended that geotechnical engineers not only use these large data bases for con­

ventional logging purposes, but should also attempt to utilize these data analytically 

from a statistical aspect, to obtain a better understanding of the characteristics of a 

soil stratum. Statistical techniques enable the accrual of valuable information at no 

additional cost and therefore, should be used at every opportunity in supplementing 

the information gathered from traditional deterministic methods. 



Chapter 5 

T ime Series Me thods 

5.1 Introduction 

A time series relates observations obtained in the past and present with values to 

be expected in the future. In data analysis dealt with in this thesis, data will be 

with respect to a spatial coordinate instead of time, although the methods of time 

series are directly applicable. Therefore " Time Series Methods " in this dissertation 

actually implies, " Time Series Methods Applied to Spatial Variations ". There are 

two conditions which have to be satisfied for the application of time series methods: 

the presence of correlation among data and the requirement that data are at equally 

spaced intervals. Geotechnical data obtained from in situ test methods satisfy both 

these conditions and therefore, provide an ideal base for the application of time series 

methods. There exists a major difference in the application of time series methods in 

geotechnical engineering and in the classical areas of applications in commerce, eco­

nomics, etc.. In the latter fields, both interpolation and extrapolation are performed 

while in geotechnical engineering it only makes sense to carry out interpolation. 

In this application, time series methods in geotechnical data analysis can serve two 

purposes: first to model soil data profiles in order to be able to interpolate between 

known data points and secondly to estimate the random error component of a data 

set obtained using a particular test method. Knowledge of the random error not only 

allows a comparison of the different test methods but also permits the determination 

of the inherent variability which is important to characterize a soil. 

177 
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Prior to modeling a profile it is necessary that the data be stationary. This can be 

performed either by using methods of trend analysis described in Chapter 3 or by the 

technique of differencing ,to be explained in section 5.2. The types of models which 

can be used are the Autoregressive (AR) model, Moving Average (MA) model and the 

Autoregressive Integrated Moving Average (MA) model and these will be described in 

sections 5.3.1 to 5.3.2. These methods are also referred to as Box - Jenkins methods 

(Box and Jenkins, 1976) and have been used in the SAS (SASLETS, 1982) package 

which was employed to perform the modeling to be described in this chapter. 

Box - Jenkins methods can also be employed to determine the random testing 

error of soil test data. These methods have also been made use of by Wu (1985). 

The random testing estimated from the direct use of time series methods can also be 

compared to the random error obtained by using the autocorrelation function of the 

data. 

This chapter will also contain a brief review of the types of errors encountered in 

geotechnical data analysis. 

5.2 The Method of Differencing 

Although trend removal using linear and non-linear regression techniques are widely 

used to stationarize data, time series methods use the method of differencing to 

transform the data to a stationary form. 

The method of differencing consists of subtracting values of the observations from 

one another in some prescribed order. A first order difference transformation is defined 

as the difference between adjacent observations. Second order differencing consists of 

taking differences of the single differenced series, and so on. Table 5.1 explains the 

concept of differencing more clearly. 

In Table 5.1, Qa-2j Qs-i,Qs, Qs+i
 a n d Q,+2

 a r e sequential data at depths, d„_2, 
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Table 5.1: Effects of the Degree of Differencing on Data. 

Depth 
Raw 
Data 

Modified Data at Different Degrees of Differencing 
Depth 

Raw 
Data First Degree Second Degree Third Degree 

d,-2 Qs-2 

da-i Qs-i Qs-1 ~ Qs-2 
d> Qs Q s - Q s - i Q . - 2 Q . - - L + Q.-2 

dt+i Qs+i Qs+i ~~ Qs Q a + i - 2 Q a + Q s _ x < ? . + i - 3 ( Q . - g . _ i ) - Q , _ 2 

ds+2 Qs+2 Qs+2 — Qs+1 Qa + 2 — 2<5« + l + Qs Qs+2 — 3(<5«+i —• Qs) — Qs-i 

da_i, da, da+i and da+2, respectively, and as can be observed, each degree of differenc­

ing results in the loss of a single data point. 

A first degree differencing removes a linear trend, second degree differencing re­

moves a polynomial trend of order 2, and third degree differencing removes a poly­

nomial of order 3. In most applications of space series (the equivalent of time series 

where the time domain is replaced by the spatial domain) analysis, stationarity of 

data is a pre-requisite. In geotechnical engineering, it is customary to divide the 

entire soil stratum into sub layers exhibiting a similar type of trend which is very 

often linear, but in rare occasions, curvilinear, necessitating a first or second degree 

differencing, respectively. A visual inspection of the soil parameter profile will very 

often give an indication as to the type of differencing required but may not always be 

the case. The following method can be used to determine the degree of differencing 

required for.the trend removal of a data profile. 

For data that have been differenced to different degrees ( j = 1, 2, 3, ), 

calculate the statistic Aj defined as (Gottman, 1981), . 

N/6 
X3 = J2pJk (5-1) 

k=0 

where N is the total number of data, k the number of lags and pjk is the autocorrelation 



Chapter 5. Time Series Methods 180 

coefficient of the data which has been differenced to the j degree at a lag k. When 

the data set is over differenced Xj begins to increase. The degree of differencing 

required to stationarize the data set is then taken to be as the value of j for which 

Xj+i < Xj. 

5.3 Types of Models 

5.3.1 Autoregressive (AR) Models 

A time series or space series can be described as an autoregressive process if the 

current value of the series Q„ can be expressed as a linear function of the previous 

values plus a random term a3. 

An AR model of order 'p' [AR(p)] can be expressed as (Box and Jenkins, 1976), 

QB = (j>\Qs-i + 4>2Qs-2 + faQss ++<j)PQs-p + aa 

where <f>i's are the autoregressive coefficients. 

An AR(1) model is simply expressed as, 

Qs = M . - i +aa (5.3) 

For the special case where (f>i is unity, the random walk model results, 

(5.2) 

Qs — Q„-\ + a. (5.4) 



Chapter 5. Time Series Methods 181 

5.3.2 Moving Average (MA) Models 

In a Moving Average (MA) model, the current value Q3 can be expressed as a sum­

mation of the present and past noise or shock terms (Box and Jenkins, 1976). 

A MA model of order 'q' [MA(q)] can be expressed as, 

Qs —O-s — Q l ^ s - l — ^2^,-2 — # 3 ^ - 3 — Q q ^ s - q (5.5) 

where #;'s are the moving average coefficients. 

A simple MA(1) process can be expressed as, 

Q,=as - .0ia s _i (5.6) 

5.3.3 Combination of A R and M A Models ( A R I M A ) 

In any method of modeling, it is preferable that the least number of parameters be 

used and in this regard, the ARIMA model which is a combination of both AR and 

MA models is very useful. 

A general form of a (p,q) ARIMA model can be expressed as, 

Qs = <t>\Qa-i + 4>iQ»-2 H + 4>PQs-p + a, ~ #10,-1 - 0 2 ^ - 2 - • • • - 0qa3_q (5.7) 

5.4 Choice of A n Appropriate Model 

The choice of the most appropriate model for a data profile is dependent on two 

functions. Namely, 

(a) Autocorrelation Function, 

(b) Partial Autocorrelation Function, p"(k, k) 
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The autocorrelation function has been defined and explained in Chapter 4. The 

partial autocorrelation function of any two observations, Qa and <5«+fc, is the corre­

lation between these two observations, taking the influence of the intervening obser­

vations, Qs+i and Qa+k-i into consideration. If the partial autocorrelation function 

between observations Q3 and Q a + 2 (= p"(2, 2)) is needed, not only is the relationship 

between Qa and Qa+2 required but also the effect of Qa+i on Qa+2- Similarly, if the 

partial autocorrelation between Qa and Q a + 3 is needed, both effects of Q a + L and Qa+2 

on <3a+3 have to be considered. In contrast, the autocorrelation function does not 

consider the effect of the intervening observations. 

The partial autocorrelation function p"(k,k), is given by, 

P'\k,k) = p k - ^ : \ p , , ^ - 1 ^ k - i (5.8) 

with k = 2, 3, 

In Eq. 5.8, 

/ ( M ) = Pi (5-9) 

p"(k,i)=p"(k-l,i)-p"(k,k)p"(k-l,k-i) (5.10) 

where, k = 3, 4, . .. and i = 1, 2, . .. , k — 1. 

The partial autocorrelation function defined above can also be derived directly from 

the Yule Walker equations (Box and Jenkins, 1976). For example, to obtain p"(2,2), 

the following multiple regression equation need to be solved; 

(5.11) 
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where p"(2,2) = fa. 

Similarly, for /o"(3, 3) solve, 

Q*s+3 = +^2<34

x

+i +(f>sQ*a +ca+3 .(5.12) 

where />"(3, 3) = fa and Q"^ are the respective mean removed values of the values. 

All higher order partial autocorrelation coefficients can be determined likewise. These 

procedures are explained in greater detail in Jenkins and Watts (1968) and Box and 

Jenkins (1976). 

The most appropriate model for a given data set can be obtained as follows. For an 

AR(p) model, the autocorrelation function tails off while the partial autocorrelation 

function is cut off after lag p. For a MA(q) model, the partial autocorrelation function 

tails off while the autocorrelation function cuts off after lag q. For an ARIMA(p,q) 

model, both functions tail off. In most applications of geotechnical engineering, the 

commonly encountered model is the ARIMA(p,q) model. The cut off levels of the cor­

relation functions are based on the standard errors (cr,) of the estimates as discussed 

below. 

The standard error of the autocorrelation coefficient, pk is given by (Box and Jenkins, 

1976), 
k-i 

2 l + 2 £ ^ 2 

i = l 
(5.13) 

Similarly, the standard error of the partial autocorrelation coefficient is given by, 
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*,(p"(k,k)) = -±= (5.14) 

If the estimated autocorrelation coefficient is less than twice the standard error given 

by Eq. 5.13, it can be considered as negligible at the 95% significance level. The same 

criteria applies to the partial autocorrelation coefficient. 

The adequacy of ARIMA models are governed by various conditions and the 

details are available in Box and Jenkins (1976). 

5.5 Application of A R I M A Model Fitting 

Methods of ARIMA model fitting have been performed on the DMT modulus profile 

given in Fig. 5.1. All the verifications and procedures already described, have been 

adopted in developing the most appropriate model to fit the data. The benefits of 

the use of this technique may not be apparent for CPT data since data logging is 

performed at very close intervals, but for tests such as the Dilatometer test where 

data spacing is 0.2 m, or other tests such as the SPT or the Field Vane where spacing 

is even farther apart, the advantage is that values in between tested points can be 

interpolated. A requirement of this technique is that the sampling points be equally 

spaced and most tests performed in situ satisfy this requirement. 

5.5.1 Mean Prediction 

Regression analysis was used to model the non - stationary part of the data, as it is 

apparent from Fig. 5.1 that the data exhibit a significant trend. First degree and 

second degree polynomials were rejected as the multiple correlation coefficient R2 was 

very low with a value of 0.48 for the first degree and 0.54 for the second degree. The 
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DMT MODULUS (bar) 

Figure 5.1: Comparison of the Dilatometer Modulus Profile of McDonald Farm with 
the Regressed Profile and the Estimated Profile. 
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Table 5.2: Statistics of the Parameters of the Trend. 

Coefficient Mean Standard Deviation t Statistic 
do • 110.82 58.15 1.91 
fix - 71.21 33.80 -2.11 

26.88 5.26 5.11 
- 1.47 0.23 - 6.38 

third degree polynomial resulted in a R2 value of 0.70 and the F test indicated that 

a fourth degree polynomial would not result in a significant improvement. 

The model selected was, 

Q i = 3 o + 3 1 s i + 0 2 s i

2 + 3 3 s i

3 + ei (5-15) 

where 30, 3\, 32 and 3z are the regression coefficients, Si the depth coordinate, the 

error term and Q i , the estimated soil property value at Si. 

The statistics of the parameters of the model are in Table 5.2. The correlation be­

tween the regression parameters were negligible and the t statistics of the coefficients 

were all close to 2.0 or greater, suggesting the adequacy of the model. Once the non-

stationary part is determined from the regression equation (Eq. 5.15), the residuals e; 

can be obtained. If the residuals are not correlated, the regression estimate obtained 

from Eq. 5.15 is sufficient for the prediction. 

If the residuals are correlated, two options are available to improve the estimates. 

One is to use generalized least squares to improve the regression coefficients, and the 

other is to consider the residuals separately and use time series methods to predict 

the properties at unknown locations. The latter method will be used here. 

The correlations of residuals can be checked by using the Durbin - Watson statistic, 

{d0), given by, 
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A — Ei=2(£i ei-l) , / r 
d ° - V - J V c 2 C 5 1 6) 

where ej's are the residual terms obtained from Eq. 5.15. 

In the example considered, d0 = 1.5, and from Durbin - Watson tables, the critical 

value di = 1.51, even at the 5% significant level, confirming the correlation of the 

residuals. 

The residuals were also checked for the variance pattern and it was revealed that 

the variance was practically constant with depth, eliminating the need for the use of 

weighted least - squares approach to obtain regression estimates. 

The ARIMA procedure of the SAS package (SASLETS, 1982) was used for the 

time series (spatial series) analysis. The autocorrelation function was of a gradually 

decaying type and the partial autocorrelation function cut off after the third lag. It 

was also found that all the partial autocorrelation coefficients, other than the first 

and third, were not significant. Considering all of the above, an AR(1,3) model with 

the following statistics was selected to model the stationary portion. 

Table 5.3: Statistics of the Parameters of the Autoregressive Model. 

Coefficient Mean Standard Deviation t Statistic 
fa 0.594 0.095 6.25 
fa -0.240 0.096 -2.51 

The correlation (p\z) between fa and fa was -0.213, which was well within ac­

ceptable limits. The high values of the t ratios of the parameters also indicated the 

efficiency of the parameters. The constant value estimate was equal to -1.57. The Q 

statistic (Box and Jenkins, 1976) was calculated for twenty four lags and resulted in 

a value of 24.95, which was well below the critical value of 33.9 (Chi - Square tables) 

at the 5% significance level and at 22 (= K - p) degrees of freedom. This verified 
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that the proposed AR(1,2) model has absorbed all of the correlation remaining in the 

stationary residuals. 

The total prediction from the stationary and non stationary part, the regression 

estimate of the non stationary part, and the actual DMT profile are illustrated in 

Fig. 5.1. The prediction is expressed as follows. 

Non-stationary component from Polynomial Regression 

Q'.o = 110.82 - 71.21s0 + 26.88s2, - 1.47a* (5.17) 

Stationary component from Time Series Analysis 

Q" < o = 0,60Q. o_ 1-0.24g. o_3-1.57 (5.18) 

The total prediction is the sum of Eqs. 5.17 and 5.18, and is given by, 

Q.. = Q'..+.Q\. (5-19) 

5.5.2 Variance Prediction 

The variance of the estimates also comprises of two parts; one from the stationary 

and the other from the non-stationary part of the estimation. 

The regression variance (VarfQ^j) at a point s0 is given by, 

•' V a r ^ ^ ^ t S o l J p J t C 1 ] ] . " 1 ^ ] 1 (5.20) 

where o~r

2 is the variance of the residuals and, 

[ S o]=.[l so- si si) (5.21) 



Chapter 5. Time Series Methods 189 

1 1 1 

fCl = 
Sl S2 s3 

s 2 a2 s2 

bl a2 ^3 

s3 s3 s3 

SN 

sN 

(5.22) 

In Eqs. 5.21 and 5.22, Si can be either the horizontal or the vertical co-ordinate. 

The variance of the stationary component can be obtained as follows. 

In the example considered, the stationary component is given by Eq. 5.18; 

The variance is estimated from the Taylor Series approximation (Bury, 1978) as, 

var[g \ j = i;5:^icov(^>^) 
i = l j = l 

for the AR(1,3) model under consideration, 

(5.23) 

i=l,3 j=l,3 
(5.24) 

where, 

0i = 

#3 = 
dQ"So 

Q'o-i 

— Qs„-3 

(5.25) 

(5.26) 

Expanding Eq. 5.24, 

Var[Q".J = ^ 2[Var(^ a)] + 03

2[Var(<£3)] + 2 ^ 1 3 [ V a r ( < ^ [Var(fo)]* (5.27) 

Substituting for the statistics and parameters of the above equation, 

Var[Q",J = 0.009Q2

to_1 + 0.009<?2

o_3 + 0.003Q.o_1Q.o_3 
(5.28) 
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Assuming the variances of the two components are independent, the combined vari­

ance of the prediction, Var[Q5o], is given by, 

VarlQJ = Var[Q'J + V™lQ"J (5.29) 

The 95% confidence band of the estimate based on the above combined variance is 

illustrated in Fig. 5.2. 

5.5.3 Engineering Significance 

Once the mean and the variance of the non stationary and stationary components 

of the estimation have been determined using methods described in sections 5.5.1 

and 5.5.2, the engineer is in a position to design at a desired confidence level. For 

example, the 95% lower bound based on the confidence band established is a value that 

the traditional geotechnical engineer will be comfortable with. The less conservative 

engineer who is willing to design with an element of higher risk can design based on 

90% or even 80% lower bounds. The level of the lower bound to be decided depends 

on the type of structure to be designed, the level of uncertainty of the soil parameter 

under consideration (eg. shear strength, bearing capacity) and on the degree of 

uncertainty of the load. In offshore structures for example, the highest uncertainty 

is normally in the design load which is a function of wind speed, wave height etc.. 

The estimate of the latter quantities can rarely be predicted with a high degree of 

reliability. 

5.6 Errors Encountered in Geotechnical Data 

Laboratory and field tests used to measure properties of geotechnical materials are 

subject to various errors. The scatter in data obtained from various types of in situ 
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o 

DMT MODULUS (bar) 

Figure 5.2: 95% Confidence Bands of the Estimated Dilatometer Modulus and the 
Actual Dilometer Modulus Obtained from Test. 
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testing methods are due to the. inherent variability of the soil, soil disturbance during 

sampling and errors caused by man and machine. The latter two types of errors can 

not be identified individually and are therefore lumped together and denoted as the 

random measurement error or measurement noise (er). If the true value of a property 

at a point ' i ' , is denoted by Qi, the value measured by a particular test method Qi, 

is given by, 

Qi = Qi + er + tb (5.30) 

where, 

eT is the random testing error 

ej, is the test method bias which is an unknown constant 

The scatter in the test data, Var [Qi], is given by, 

Vai[Qi] = Var[Q] + Var[er] . (5.31) 

where, 

Var [Q] is the inherent variability of the material 

Var [er] is the uncertainty of the testing error 

The uncertainty of the random measurement error, er, is given by, 

Var[e,] = i (5.32) 

In the above equation, E[Qi] is the mean of the observed values Qi, and typically 

it is non-stationary and is represented by a linear or curvilinear trend. It should be 
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emphasized that measurements Qi are not the true values Qi, and the immediate 

consequence of the above statement is E[Qi] / E[Qi]- Fig. 5.3 illustrates the different 

components of a data profile. 

The bias in the test method, eb, is expressed as, 

eb = E[Qi]-Qi (5.33) 

The sample variance, Var[Q»], in Eq. 5.31 is readily measured from the data and is 

given by, 

y^[Qi] = jrT,(Qi-QY ' (5-34) 
«=1 

The bias may be estimated by comparing the property measured by a given test 

method with that determined by using a more accurate test method or a reference 

method. However, any assumed standard does not measure the actual property ex­

actly and, therefore, the bias in a test method can not be evaluated precisely. 

The data scatter from in situ tests contains both Qi and where the effects of 

sample disturbance and measurement errors are included in er. If identical samples 

are available, er may be determined by replicate testing. The inherent variability, 

which is the error free scatter, introduces uncertainty into the estimate of the average 

property over a region. Therefore, prior to any type of detailed analysis, it is necessary 

to isolate the random error from the observed data, if it is found to be significant. 

The purpose of obtaining er is two-fold: 

(i) Permits the comparisons of the efficiency of different test methods: the lower 

the random error of a test equipment, the higher the efficiency 



Figure 5.3: Illustration of the Expected Value and Residuals of a Profile Exhibiting 
a Trend. 
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(ii) Permits the evaluation of the effect of improvements to test procedures. 

In the sections to follow, estimation of er will be attempted using two methods: 

one method employing Box - Jenkins Time Series methods and the other based solely 

on the autocorrelation function of the data. Comparisons of these two methods will 

be made on sets of data obtained from different in situ test methods. 

5.7 Determination of Random Noise 

5.7.1 Random Noise from Time Series Methods 

Once a data profile has been modeled using Time Series methods, as described in 

section 5.4, these procedures can be extended to obtain an estimate of the random 

error or measurement noise of the data. In this section, these methods has been 

applied to data from different in situ testing devices. 

The bearing profile from the Cone Penetration Test (CPT), the dilatometer mod­

ulus values from the Dilatometer Test (DMT), the Dynamic N values from the Dy­

namic Cone Penetration Test (DCPT) and the undrained shear strength values from 

the Field Vane Test (FVT) are illustrated in Figs. 5.4, 5.6, 5.8 and 5.10, respectively. 

These data are all from Mc Donald Farm. 

Only the detailed analysis of the CPT data will be described here although the 

results of all four test data will.be discussed in this section. Considering all the 

factors that contribute to a good model, the ARIMA( 1,1,1) was selected to model 

the linear segment (4.5 - 10.0 meters) of the bearing profile (Fig. 5.4) of the CPT. 

The autocorrelation function of the above data cut off after one lag, suggesting a 

MA(1) model, and the partial autocorrelation function also cut off after the first lag 

suggesting an AR(1) model. A single degree differencing was used for removing the 

approximately linear trend, and the following parameters resulted: 

http://will.be
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CONE BEARING(bor) 

Figure 5.4: Cone Bearing Profile at McDonald Farm Figure 5.5: Variation of the Autocorrelation Function at 
McDonald Farm and the Fitted Function for the Determination 
of Measurement Noise for the Cone Penetrometer Test (CPT). _ 
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Figure 5.6: Dilatometer Modulus Profile at McDonald Farm. Figure 5.7: Variation of the Autocorrelation Function at 
McDonald Farm and the Fitted Function for the Determination 
of Measurement Noise for the Dilatometer Test (DMT) . 

co 



DYNAMIC CONE N VALUE LAG (meters) 

Figure 5.8: Dynamic Cone Penetrometer Test (DCPT) Figure 5.9: Variation of the Autocorrelation Function at 
Profile at McDonald Farm. McDonald Farm and the Fitted Function for the Determination 

of Measurement Noise for the Dynamic Cone Penetrometer 
Test (DCPT) . £ 
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Figure 5.10: Undrained Shear Strength Profile at 
McDonald Farm Obtained from the Field Vane Test. 

Figure 5.11: Variation of the Autocorrelation Function at 
McDonald Farm and the Fitted Function for the Determination ^ 
of Measurement Noise for the Field Vane Test. <g 
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MA parameter ( # i ) = -0.348 

AR parameter (fa) = -0.301 

According to Box and Jenkins (1976) and Wu(1985), the variance of the data, o~z

2, is 

given by, 

cr2 = fad +cra

2 -9tCza(-l) + cr2 (5.35) 

where cr2 is the white noise variance, C\ the value of the autocovariance function at 

lag 1, aT

2 is the estimated variance of the random testing error. 

Cza(—1) in Eq. 5.35 is given by, 

Cza(-1) - (fa - 9 i W = 0.047cro

2 (5.36) 

Using the ARIMA procedure of the SAS package, C\ = 12.51 and a 2 = 874.80. 

Substituting the above values in Eq. 5.35, 

cr2 = 44.27 

Therefore, the percentage of random error (e*)is given by (Wu, 1985), 

e ; = 4̂ = 5.1% (5.37) 

The same procedure was applied for the other sets of data and the results are tabulated 

in Table 5.4, which clearly demonstrates the efficiency of CPT with its low percentage 

of random error. A 5% random error suggests that 95% of the CPT data scatter is 

due to the inherent variability of the soil tested. The random error obtained for the 
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DMT and the DCPT were not appreciably higher, while the Field Vane (FVT) result 

was significantly higher. A high proportion of random error indicates that the data 

variance is not representative of the inherent variability of the soil. The percentages 

of data scatter attributable to the inherent variability of the soil were approximately, 

95%, 92% and 61%, for the DMT, DCPT and FVT, respectively. It should be noted 

that the inherent variabilities indicated by the different test methods are not the 

same because they do not measure the same parameters or give the same properties. 

However, it is this inherent variability that is important but often overlooked in design 

considerations; 

Table 5.4: Comparisons of the Random Noise Estimates for Different Test Methods 

Test Method CPT DMT FVT DCPT 
. Model 1,1,1 1,1,1 0,0,2 0,1,2 

. Parameter 1 - 0.348 0.889 - 0.338 0.302 
Parameter 2 - 0.301 0.587 0.355 0.255 

Random Error Variance (<rr

2) 
Data Variance (<rz

2) 
44.62 322.36 50.65 0.6724 Random Error Variance (<rr

2) 
Data Variance (<rz

2) 874.80 5861.14 138.78 8.20 

Random Error (e?) % 5.1 5.5 36.5 8.2 

5.7.2 Random Noise from Autocorrelation Analysis 

The random measurement error can also be determined using the autocorrelation 

function. This method is only dependent on the autocorrelation function and unlike 

the previous method, it alleviates the need for modeling and performing the other 

calculations already described. 

If the true value of a property is denoted by Qi, the value measured by a particular 

test method, Qi, is given by, 
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• Qi = Qi+er (5.38) 

where er is the error term. 

If the autocovariances of Eq. 5.38 are taken, 

C{Qi) = C{Qi) + C{e) 

The autocovariance of Qi,C(Qi), is the variance of the data at zero lag distance (sep­

aration distance) and approaches zero as this distance increases. If the lag distance 

is denoted by s, the autocovariance of the random error term, 6, , which is given by 

0(6,) , has a non zero value at s = 0 and zero at all other values of s, since the random 

error is uncorrelated from point to point. From Eq. 5.39, it can be ascertained that 

at s = 0, the autocovariance function comprises of two parts; namely, the inherent 

variability of the soil arid the random error term. The autocovariance function is, 

therefore, a spike at s = 0 and a slowly decaying function for s greater than zero, 

exhibiting less dependance with increasing separation distance or lag. Considering 

the above, if the autocovariance function is extrapolated to meet the axis representing 

the autocovariance function at Cc, the difference between the autocovariance values 

at s = 0 (C0) and Cc will be the random noise term (Baecher, 1982). The same 

procedure is applicable to the autocorrelation function (p), which is the standardized 

form of the autocovariance function (C) and the relationship is given below. 

Pi = Ci/C0 (5.40) 

For example, the autocorrelation function (Fig. 5.5) of the cone bearing data, given in 

Fig. 5.4, meets the ordinate at 0.95 which is equal to the proportion of the inherent 

(5.39) 



Chapter 5. Time Series Methods 203 

variability of the of the total data scatter. The random error or measurement noise of 

the CPT data is therefore, 5%. The above procedure has also been applied to DMT ' 

(Fig. 5.6), Field Vane Test (FVT), (Fig. 5.8) and DCPT (Fig. 5.10) data. The 

actual values of the autocorrelation functions together with the fitted extrapolated 

curves are illustrated in Fig. 5.5 for the CPT, Fig. 5.7 for the DMT, Fig. 5.9 for 

FVT and Fig. 5.11 for the DCPT. The results of the above are.given in Table 5.5. 

5.7.3 Comparison of the Two Methods 

The values of the random error obtained using the two methods described in sections 

5.6.1 and 5.6.2 are listed in Table 5.5 for the different test types. 

Table 5.5: Comparisons of the Random Error Estimates for Different Analysis Meth­
ods. 

Test Method 
Random Error % 

Test Method Autocorrelation Analysis Time Series Method 
CPT 5.0. 5.1 
DMT 5.8 5.5 
Vane 36.0 38.7 

DCPT 6.1 8.2 

The results in Table 5.5 show a remarkable agreement between the two methods 

of random error determination, with the CPT giving the lowest component of random 

error and the FVT resulting in the highest. As mentioned previously, any of these two 

methods may be used to compare the accuracy of different test types. A measurement 

noise of 36% is extremely high and is an indication of severe sample disturbance during 

testing. The above theory has also been applied to a different set of data obtained at a 

site near the Fraser River Delta. The random error component for the CPT data was 

an appreciably low 4.8% while the vane test gave a high value of 30%, confirming the 

earlier findings. The value obtained for the SPT was 14%, which is not as significant 
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as for the vane, but significantly higher than the measurement noise level of the CPT. 

The very low random error values obtained for the CPT provide evidence as to the 

efficiency of this test method. 

Due to the possible inaccuracies in modeling, both methods of determining the 

random error should be considered. Although the autocorrelation method does not 

incorporate modeling in a strict sense, it makes use of a fitting procedure to obtain 

the best function for the data. This can also lead to inaccuracies and therefore, it 

is recommended that the random error from both methods be determined prior to 

making any decisions. 

5.8 Conclusions 

The main conclusions which can be drawn from this chapter are; 

(i) Time Series methods have been effectively used to model the stationary part 

of soil data profiles. The benefits of Time Series modeling is more apparent in testing 

methods where sampling is not performed at close spacings and where interpolation 

between tested points will be useful. This method can also be used to establish 

confidence bands which will be useful in engineering practice. 

(ii) Time Series methods also provide a convenient way of determining the random 

error component of an in situ testing technique. For the different tests considered, the 

results indicated a significantly low random error content (5%) in CPT data, reflecting 

its superiority over data obtained from other testing methods, such as the Field Vane 

test and the Dynamic Cone Penetration test which comprise higher proportions of 

random error. 

(iii) The random error derived directly from the autocorrelation function at zero 

separation distance for the different testing techniques compared appreciably well with 

that obtained from the Time Series method. It is recommended that both methods 
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be used if a reliable estimate of the random error is needed. A close agreement of 

the error values from the two methods will result in an increased confidence of the 

estimate. 



Chapter 6 

In terpolat ion Consider ing Correlat ions 

6.1 Introduction 

In traditional geotechnical engineering, various methods are used to interpolate be­

tween known field data values. In most site investigations, economics do not allow 

the acquisition of a large data base although the engineer would prefer a sizeable base 

for design. It is this limited data base which causes the variation of soil properties to 

be considered as random. In reality, there is nothing random about the variation of 

soil properties, since if every point in the ground can be tested and investigated, it 

turns.out to be a deterministic problem. However, it is not practical to do so, thereby, 

giving rise to the uncertainty of soil properties at untested locations. 

The traditional approach in geotechnical engineering to deal with the limited 

data base is to interpolate between known points using some simple functions. This 

approach neglects any correlation between data points. In most cases, the uncertainty 

is accounted for by adding a factor of safety, sometimes referred to as the factor of 

. ignorance. In a typical site investigation, a borehole or two will be drilled, and in some 

cases, supplemented by a few cone penetrometer tests. The designer may select a very 

conservative strength as that representative of the entire site and design for the largest 

load that is expected to be carried by the foundation, together with an appropriate 

factor of safety. It is obvious that this is a highly conservative approach but is done 

because of the highly uncertain nature of soil property variations in three dimensions 

combined with other adverse factors such as limited data availability and human and 

206 
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instrument errors encountered during testing. Many sophisticated models to explain 

the behavior of soils have been developed in recent years but many geotechnical 

engineers continue to use traditional approaches and are reluctant to sacrifice some 

of the conservatism and to consider statistical and probabilistic approaches. These 

latter methods consider the correlations between soil parameters as a vital ingredient. 

Soil properties are highly depth dependent. Dependence between points in the 

horizontal direction too may be present and will have to be considered in any multi­

dimensional interpolation procedure. Simple regression techniques assume indepen­

dence of soil properties and, therefore, the estimates will be biased in the presence of 

correlation. Regression methods also consider the soil properties at known locations 

as observed values of a random variable, the distribution of which depends on the 

co-ordinates of the locations which are not random (Kraus and Mikhail, 1972; Davis, 

1978). 

As mentioned above, it is common in geotechnical engineering to use simple re­

gression or simple weighting functions in problems of interpolation, disregarding the 

correlation completely and assuming that soil properties between points are indepen­

dent. In any three dimensional analysis or a two dimensional analysis which has the 

depth as one of its co-ordinate axes, it is necessary to consider correlations, if reason­

able estimates of soil parameters are needed. Some of the more common methods of 

interpolations used in geotechnical engineering practice are given in Appendix C. 

All the interpolation methods considering correlations do so using the autocorrela­

tion or the semi-variogram function of the data which essentially have to be stationary. 

Soil data, especially in the depth dimension, are non - stationary and will have to be 

made stationary using methods of regression already explained in Chapter 3. In the 

event the ensuing stationary residuals are not correlated, the least squares estimates 

will be deemed to be satisfactory. . If they are correlated, the method to be described 
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in this chapter will have to be used. The proposed method is a modified form of 

the procedure referred to as ' Kriging ' in the mineral industry (Matheron, 1963). 

Although the above technique will be emphasized in this thesis, there also exists a 

mathematically more rigorous procedure for dealing with non stationary data, known 

as ' Universal Kriging ' ( Matheron - 1967, 70). There also exists a more simplified 

version of ' Universal Kriging ', the credit for which is due to Gambolati and Volpi 

(1979). A simpler procedure where the trend and residuals are considered separately 

will be used in this chapter which will also describe a novel approach to handle two 

dimensional autocorrelation functions. 

6.2 Autocorrelation and Semi-Variogram Functions 

The autocorrelation function and the semi-variogram function are two versatile and 

essential tools which enable the investigation of spatial variation of soil property 

values. The basic purpose of these functions is to establish the influence of values 

at any point over values at neighboring points. Soil properties of points at closer 

distances apart are expected to show a higher correlation than for points which are 

widely spaced. The autocorrelation function gives this correlation for different values 

of the distance of separation, or the lag distance. 

The one dimensional autocorrelation function (p(l)) at a lag distance 1 is defined as, 

where, N is the total number of data and 1 = h.d, d being the sample spacing, and 

Q the mean of the data. The function given in Eq. 6.1 is applicable for anisotropic 

data in depth or in plan. For isotropic data, 1 can represent any dimension. 
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The semi-variogram function at a lag distance 1, (7(h)), is defined as, 

• N-h 
l{l)=2(N~h) (6-2) 

where N , h and Q have the same meaning as in Eq. 6.1 and Qi and Qi+Zi
 a r e the soil 

property values at locations i and i + h, respectively. The variogram function is equal 

to twice the value of. the semi-variogram function given by Eq: 6.2. 

As can be seen from Eq. 6.1, the autocorrelation function is a standardized form 

of the covariance function, C(h), where, 

c(l) = if^il(Qi-Q){Q^-Q) (6-3) 
i=i 

The denominator of Eq. 6.1 is the variance of the data, <x2, with, 

*a = 4 ( 6 . 4 ) 
l y . i=l 

The variance, cr2, is equal to the covariance at lag zero, C(0). 

Therefore, p(h), can also be expressed as, 

For the hypothesis of second order stationarity where the mean and the variance of 

the data are constant, with an autocorrelation function which is only dependent on 

the lag distance and independent of actual location, it can easily be shown that, 

7(0 = C(0) - C(l) (6.6) 
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Dividing Eq. 6.6 by C(0) and rearranging terms result in the following relationship 

between the autocorrelation function, p(l) and the semi - variogram function, 7(1). 

• " < - ' y = i - w ) (6:7) 

The above relationship shows how these two functions are closely related, enabling 

a choice for correlation analysis. 

6.2.1 Models for the Autocorrelation Function 

For analytical purposes, it is necessary for the actual autocorrelation function de­

rived for the data to be fitted with a closed form algebraic, exponential or sinusoidal 

function. It is common in geotechnical engineering to expect negative values for the 

autocorrelation function which could therefore be better represented by a sinusoidal 

function. Some of the more common autocorrelation functions used in the description 

of geologic data are expressed below. Functions for one dimensional data (Vanmarke, 

1978) have already been given in Chapter 4, and the ones to follow are an extension 

of the 1 - D functions to two dimensions, horizontal and vertical. 

p(Ax, Az) = E X P [-(ax | A z | +a2\ Az 

p(Ax, Az) = E X P [- (&!Az 2 + fc2Az2)] 

p(Ax, Az) = E X P [- (ci | A z | +c2 | Az |)] COS 

p(Ax, Az) = EXP Ax | I A z 

(6.8) 

(6.9) 

Az] 
(6.10) + (6.10) 

c2 J 

(6.10) 

1 Az f 
) (6-11) k2 t 

) (6-11) 

(6.12) / A A N ^ ™ T / A X Az\fAx AZ\ 
p(Ax,Az) = SIN — + — + — 

\ m i m 2 J \ m i m 2 J 

In Eqs. 6.8 to 6.12, Ax and Az are the distances in the horizontal and vertical 

directions respectively. The above expressions for possible autocorrelation functions 
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can also be extended to the three dimensional case by incorporating Ay, to represent 

the second horizontal axis. For the isotropic case, Az in the above equations will 

vanish, and the expressions will only consist of a single dimension term Ax. In 

geotechnical engineering, however, isotropy in all three dimensions is far from reality, 

with soilproperties being strongly depth dependent, not to mention lateral variations. 

In a typical geotechnical exploration program, it is very rare to obtain many data 

points and as a result, the estimation of a satisfactory autocorrelation function be­

comes difficult. Furthermore, at larger lag distances, the number of of points available 

for the calculation of the function is less than for shorter lag distances. Due to this 

reason, Agterberg (1974) states that the autocorrelation function will be accurate and 

least biased only up to about one fourth of the maximum separation between data 

points. Therefore, in order to obtain better estimates for the autocorrelation func­

tion, it has been recommended (Baecher, 1980) that a filtering process be performed 

by assigning a higher weight for points which are spaced closer. This procedure is 

essentially an application of a modified Bartlet filter (Jenkins and Watts, 1978) to 

the actual function values, p(i), obtained and can be expressed as, 

;•>. _ Pi-iNj-x + pjNj + pi+iNi+l  

P [ l ) ~ + 2Ni + Ni+1 

where, N is the number of data points used for making the estimate at i 

6.2.2 Models for the Semi-Variogram Function 

The more common models of the semi-variogram can be categorized into two main 

divisions; namely, models with a sill and models with no sill (Journel and Huijbregts, 

1978). The sill is the constant value attained by the variogram at some separation 

distance or lag. A typical variogram function is illustrated in Fig. 3.12 in Chapter 

3 where the trend removed data has a sill while the data with the trend does not 

(6.13) 
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possess a sill. The models to be listed below are all applicable to one dimension with 

the possibility of extension to two or three dimensions, similar to the autocorrelation 

function. Let 1 represent any one of the dimensions, Ax, Az or Ay and 7 * ( 1 ) be the 

normalized form of the semi - variogram, 7 ( 1 ) , given by, 

1^l) = 2^1 . (6.14) 

Models with a Sill 

C(0) 

r(i)-~-{-3 (6.15) 
la la" 

7*(0 = 1 - EXP (-6 I I |) (6.16) 

7 * ( Z ) = 1 - EXP (-cZ2) (6.17) 
Models with no Sill 

1*(l) = a'l (6.18) 

7*(0 = 6 ' M 0 (6.19) 

7*(/) = 1 _ c 'SIN(0 ( 6 2 Q ) 

In the above equations, a, b, c, a', b' and c' are constants. 

As mentioned before, in most applications of geotechnical engineering, the semi-

variogram functions in two perpendicular directions will not be similar, and in such 

cases, they should be transformed to an equivalent function by methods given in David 

(1977) and Journel and Huijbregts (1978). It is also important to remove any trend 

from the data, if it exists, to avoid serious errors in interpolation problems. The effects 

of trend on the semi-variogram is described in detail by Starks and Fang (1982). In 

exploration programs where the number of testing locations are limited due economic 

reasons, the best possible locations in order to obtain the optimal variogram for a site 

can be determined using methods of linear programming (Warrick and Myers, 1987). 

Russo (1984) also describes the design of an optimal sampling network for estimating 
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the variogram. The other advantage of such optimization methods is that they allow 

the determination of the best possible location for an additional testing location, 

based on the data already available. However; in all these methods of optimization 

. the number of data points have to be very large, to extents rarely available in normal 

geotechnical projects. If the number of data points are significant, these optimization 

methods should give highly beneficial results. Cressie (1985), Christakos (1985) and 

Sabourin (1976) all give valuable information regarding the estimation of variograms. 

6.3 Interpolation Based on the Autocorrelation Function 

The procedure of interpolation to be described is valid only for a stationary process. 

Therefore, in the presence of significant trends (non-stationarity), it will have to be 

first removed prior to the application on the stationary residuals. During the time 

of the author's research on this subject at UBC, Kulatilake (1987) has also used a 

procedure of interpolation considering the trend and residuals separately. However, 

the autocorrelation function of the residuals are handled in a different way in this 

thesis. 

The basic interpolation relationship is given by (David, 1976), 

Q(s0) = XxQ{Sl) + X2Q(s2) + X3Q(s3) + +XnQ(sn) .(6.21) 

where, Q(si),Q(s2), ,Q(sn) are the known soil property values at locations, slt 

s2, ,sn. In Eq. 6.21, s0 is the point where the interpolation is required and is a 

point in space with both a horizontal and a vertical (depth) co-ordinate. 

The weights Xi for i = 1, 2, 3, n, are obtained from Eq. 6.22 below. 

{L} = [P]-MM} (6.22) 
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where, 

[Pl = 

1
 PQ(si)Q(s2) P Q M Q M 

PQ{'2)Q(n) • 1 P Q M Q ( n ) 

PQMQi'i) PQ{,n)Q(,2) pQ(sn)Q(s3) 

1 1 1 

••• PQ(s2)Q(sn) 1 

••• PQ(s3)Q(sn) 1 

{M} = 

PQMQM 

PQMQ(s3) 

PQMQ(sn 

1 

r Ax i 

A 3 

W = 

(6.23) 

(6.24) 

(6.25) 

I PI°2 J 

where, s comprises of both a horizontal and vertical co-ordinate. {M} and [P] in 

above equations are for the case when the autocorrelation function is used. If the 

semi-variogram is used, the p terms in Eqs. 6.23 and 6.24 will be replaced by 7 
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terms, thereby causing a change in matrices [P] and { M } . However, the weights (A )̂ 

obtained by both methods will be identical due to the direct relationship between 

the autocorrelation and semi-variogram functions, expressed by Eq. 6.7. cr2 and p 

in Eq. 6.25 are the variance of the data and a Lagrange constant, respectively. A 

detailed derivation of Eq. 6.21 is given in Appendix D. This procedure is an exact 

interpolation method because if the property value of a known data point which was 

used for the analysis is determined using the above equations, it will give an identical 

value. In contrast, regression is not an exact interpolation method. 

In any estimation procedure, the variance of the estimator is a very important 

quantity in order to evaluate the efficiency of the procedure and to establish confidence 

bands on the estimations. 

The estimation variance (<xe

2) is given by (Appendix D), 

<re

2 = <T2 (l - f2XiPQ(>i)Q(>o)^J - / * (6.26) 

If the semi-variogram was used instead of the autocorrelation function, the estimation 

variance can be expressed as, 

n 
° e 2 = £ ^ifQ(si)Q(a0) ~ p '• (6.27) 

' »=1 

6.4 Development of a Two Dimensional Autocorrelation 

Function 

The method of interpolation to be proposed requires the development of a two di­

mensional autocorrelation function, so that interpolation can be performed in two 

dimensions (vertical and horizontal). In contrast to one dimensional autocorrelation 

functions already described, two different types of correlation functions have to be 
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defined for each lag distance. For example, consider the data array M l which is com­

prised of n cone holes at m different depths. At every depth, there exists n data 

points across the site, while any cone hole has data points at ra different depths. 

Data Array M l 

Qo,o Qo,i Qo,2 Qo,3 Qo,n-l 

Qi,o Qi,i Ql,2 Ql,n-1 

*?2,0 Q2.1 Q2,2 Q 2 , 3 . . . ^2,71-1 

'Qm-1,0 Qm-1,1 Q m - 1 , 2 Qm-1,3 Qm-l,n-l-

The two types of autocorrelation functions which can be defined for w (horizontal 

lag) and r (vertical lag) are as follows; 

p(r,w) = — — £ £ {QiJ ~ 0) {Qi+rJ+» - 0) (6-28) 

and, 

i m - 1 n-w-l . . . . . . 

^ • • ^ ( m - , ) ( » - , ) , » £ g ( Q u - Q ) ( Q - ^ - Q ) (6-29) 

where, Q is the soil property, Q and <r2 are the mean and variance of the data 

respectively. 

It should be noted that, 

p(r, w) = p(—r, — w) (6.30) 

p(—r, w) = p(r, — u;) (6.31) 
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Now, consider data array M2 which is given below where m and n have the same 

meaning as before. 

Data Array M2 

01,1 01,2 01,3 01 , 4 ••• ••• 01,n 

02,1 02,2 02,3 02 , 4 02,n 

03,1 03,2 03,3 03 , 4 • • • • 03,n 

0 m , l 0m,2 0 m ,3 0 m , 4 • • • • 0 m ,71 

Let the lag r in the vertical direction be positive from top to bottom, and the lag 

w in the horizontal direction be positive from left to right. Therefore, for example, 

the autocorrelation between Q2<i and Q33 in data matrix M2 will be represented by 

p(l, 2) and the autocorrelation between Q14: and $3,1 will be represented by p(—2, 3). 

Here, p(l,2) indicates one lag vertically down and two lags horizontally from left to 

right, while p(—2, 3) means two lags from bottom to top and three lags from left to 

right. However, due to the symmetry properties of the autocorrelation function given 

by Eqs. 6̂ 30 and 6.31, p(l, 2) and p(—2, 3) are also equal to p( — 1, —2) and p(2, —3) 

respectively. 

For convenience of representation and manipulation of the procedure, the available 

data points (Data Array M2) were numbered from top to bottom and proceeding from 

the left most cone hole, A, to the right most cone hole, G (Fig. 6.1). The numbered 

data points are shown in data array M3. With this modified notation, p(l,m + 3) will 

actually be the autocorrelation function between points 1 and m + 3 where w, the 
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o 

100.0 
CONE BEARING Qc (bar) 

Figure 6.1: Distribution of Cone Bearing Profiles Across the Site Used for the Inter­
polation at McDonald Farm. 



Chapter 6. Interpolation Considering Correlations 219 

horizontal lag, is equal to unity and the vertical lag (r) is equal to two, both being 

positive. 

Data Array M 3 

<2i,i(l) <2i,2(m + l) •Q l l 3 (2m + 1) Q M ( 3 m + l ) "-. Qhn 

Q2,i{2) g 2 l 2 (m + 2) Q2,3(2m + 2) Q2,4(3m + 2) . . . . . . . . . Q2,n 

<?3,i(3) ( ? 3 > + 3) Q3,3(2m + 3) Q3,4(3m + 3) Q3<n 

Qm,i(m) Qm,2(2m) <?m,3(3m) <2M,4(4m) Qm>n 

6.5 Application of the Interpolation Procedure 

The method of interpolation described was used to interpolate between cone holes 

obtained across a 30 meter stretch at the McDonald Farm site. Seven CPT's were 

performed at 5 meter intervals along a straight line. The depth of penetration was 6 

meters. The scatter of the seven cone profiles is illustrated in Fig. 6.1 which also gives 

the layout plan of the cone holes, A through G. In this exercise, the cone profiles at A, 

B, C, E, F and G will be used to predict the cone profile at D, so. that a comparison 

could be done between the predicted profile and the actual bearing profile obtained. 

The individual bearing profiles for cone holes A, B and C are illustrated in Fig. 6.2, 

and for E, F and G in Fig. 6.3. The data in the vertical direction were considered in 

groups of ten, so that spacing of data points would be 25 cm( 2.5 x 10 ). As a result, 

each data point in the vertical dimension represented an averaged cone bearing of a 

region of 2.5 cm.. This was done to alleviate the possibility of extremities affecting 

the predicted correlation functions. An increased vertical spacing would also be more 

preferable, since it is not advisable to have a two dimensional autocorrelation function 

which has a very high horizontal to vertical lag distance ratio (lh/h)- A vertical 
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CONE BEARING (bar) CONE BEARING (bar) CONE BEARING (bar) 

Figure 6.2: Cone Bearing Profiles at Locations A, B and C at McDonald Farm. 



CONE BEARING (bar) CONE BEARING (bar) CONE BEARING (bar) 

Figure 6.3: Cone Bearing Profiles at Locations E, F and G at McDonald Farm. 
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spacing of 2.5 cm would result in a lh/lv value of 200 while the increased spacing of 

25 cm would give a Ih/h value of 20, which is more desirable. 

Two prominent layers were identified in the 6 m profile (Fig. 6.1) using methods 

of layer identification discussed in Chapter 2. Layer 1 lies between 1.00 and 2.50 

m, and Layer 3 between 3.25 and 6.0 meters. Layers 2 was found to be stationary, 

while Layer 1 was non-stationary, which was confirmed using the RUN Test at a 95% 

significant level. A typical data layout is given in Data Array M4. The CPT's at A, 

B, C, E, F and G will be used to predict the bearing profile at D. 

D a t a A r r a y M4 

Depth A B C D E F G 

d\ 01,1 01,2 01,3 Q l , 0 01 ,5 01,6 01 ,7 

dl 02,1 02,2 02,3 Q»2,0 02 ,5 02 ,6 02 ,7 

^3 03,1 03,2 03,3 Q . 3 ,0 03 ,5 03,6 03 ,7 

dm 0 m , 1 0 m , 2 0 m , 3 Q m , 0 0 m , 5 0 m , 6 0 m , 7 

Let the horizontal dimension have a zero value at A and 30.0 at G. For Layer 1 

data, the vertical dimension will be zero at di and 1.50 at dm. Since layer 1 was non -

stationary, several functions were tried out to best represent the trend. Using methods 

described in Chapter 3, the following model was selected as the most appropriate. 

0 = 7.59 + 21.5y2 - 0.60xy (6.32) 

The ensuing residuals were checked for correlation using the Durbin - Watson statistic 

(Durbin and Watson, 1951). From tables, dL was found to be equal to 1.19 and du 

equal to 1.55. The actual value (dw) obtained was 2.51. Since 4 — dw = 1.49 < du 
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Table 6.1: Values of Constants for the Autocorrelation Model for Data in Layers 1 
and 2. 

Function c 2 c 3 c4 

Layer 1 p(Ax, Az) 18.61 0.49 3.80 0.57 
p(Ax, - A z ) 476.48 0.76 5.40 0.72 

Layer 2 p(Ax, Az) 7.35 0.46 7.35 0.46 
p(Ax, - A z ) 9.11 . 0.48 9.11 0.48 

even for a significance level as high as 97.5%, the autocorrelations of the residuals are 

significant and have to be considered in any efficient interpolation procedure. The 

process of verifying the stationarity and correlation of residuals have been already 

described in Chapter 3. 

The two dimensional autocorrelation function of Layer 1 exhibited both nega­

tive and positive values, and therefore, it was necessary to model the autocorrelation 

function, with an exponential sinusoidal type of function which has the capacity to ac­

commodate both positive and negative values. Layer 2 stationary data also exhibited 

significant correlation. The autocorrelation functions of these data had positive and 

negative values, emphasizing the need for an exponential sinusoidal function which is 

given by Eq. 6.33 below. It is somewhat similar to the one given in Eq. 6.10, except 

that it is more flexible with four constants instead of two. 

p(Ax, Az) = EXP [- ( C l | Ax | +c2 | Az J)] COS Acc Az 
L c 3 c 4 

(6.33) 

As mentioned before, two types of autocorrelation functions need to be considered 

and the values of the constants for these two types of functions are tabulated for the 

two layers in. Table 6.1. 

Table 6.1 shows that there is a significant difference in the two types of autocorre­

lation functions for data of both layers, with the difference in Layer 1 data being more 

significant. All the above functions gave a high multiple correlation coefficient, R2, 

in the region of 0.80. The dw value of the ensuing residuals also suggested that most 
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of the correlations have been absorbed by the respective autocorrelation functions, 

reflecting their adequacy. The fit was found to be extremely good especially at the 

closer lags. In the development of the above correlation functions, all the available 

data except for the data at D have been considered. However, when calculating the 

weights from Eq. 6.21 for predicting the bearing profile at D, only the two columns of 

data immediately adjacent (G and E) to D were considered. The influence of the data 

points in the other columns were negligible due to the screening effect. For example, 

column B will be screened by column C and column F will be screened by column 

E. The data in the two most outer columns will have even a lesser influence, due to 

the double screening effect. That is, A will be screened by both B and C, while G 

will be screened by.E and F. At this point, it should be emphasized that although 

only the data in columns C and E have been directly used in the final prediction from 

Eq. 6.21, all the available data with the exception of the data at D have been used 

in obtaining the model for the autocorrelation function. For the purpose of inter­

polation, {P} in Eq. 6.22 will always remain the same if the same data set is used 

for multiple interpolations. [M] will depend on the point at which interpolation is 

required, and therefore will change with different points of interpolation, s0. Once the 

autocorrelation function for a given set of data is obtained, {P} which is dependent 

on the data points to be used for the interpolation, can be determined. In a similar 

way, [M] can be determined by substituting the relevant Ax and Az terms in the 

derived autocorrelation function (Eq. 6.33). The values of Ax and Az in the case of 

[M] will be the respective distances from the point of interpolation s0(xo, z0) to the 

data points S i ( x i , Z\), s2(x2, z2), etc.). In {P}, the values of Ax and Az will be the 

respective distances between data points 3 1 (x 1 , Z i ) , s2(x2i z2) etc.. 

' Table 6.2 has the detailed results for the interpolation at D, together with the 

variance and 95% confidence bands. The Layer 1 results comprise of two parts: the 
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estimate from the regression and the estimate from the correlation analysis. Variance 

of the regressed part (<rr

2) was obtained from methods given in Chapter 3. The 

variance of the correlated estimates (<xe

2) was calculated from Eq. 6.26. The total 

variance, crt

2 was determined from Eq. 6.34 below, assuming that cr2 and <re

2 are 

independent. 

*t

2 = ar

2 + <re

2 (6.34) 

Assuming normality, the lower 95% confidence estimate, QL(S0), and the upper 95% 

confidence estimate, Qu(s0), are given by, 

QL{S0) = Q(s0) - 2<rt (6.35) 

QvM = Q{s0) + 2*t (6.36) 

Table 6.2: Results for the Interpolation at D 

Depth Regressed Correlation Total <7e vr QL Qu 
(m) Estimate Estimate Estimate 
1.13 7.59 -4.16 3.43 1.72 2.09 0.00 11.05 
1.38 6.68 -4.78 1.91 1.60 1.91 0.00 8.94 
1.63 8.47 3.66 12.13 6.50 1.66 0.00 28.44 
1.88 12.93 -6.99 5.95 2.50 1.45 0.00 13.84 
2.13 20.09 -4.03 16.06 5.60 1.79 1.28 30.82 
2.38 29.93 -1.01 28.83 5.72 2.89 11.61 46.05 

3.38 37.12 37.12 14.73 7.66 63.95 
3.63 ' - 34.49 34.49 11.66 - 11.17 57.81 
3.88 - 31.80 31.80 7.47 - 16.86 46.74 
4.13 • - 50.31 50.31 12.87 - 24.57 76.05 
4.38 • - 54.96 54.96 11.69 - 30.98 78.34 
4.63 - 49.97 49.97 10.06 - 29.35 69.59 
4.88 - 40.64 40.64 11.69 - 17.26 64.02 
5.13 - 38.47 38.47 12.87 - 12.73 64.21 
5.38 45.74 45.74 7.47 - 30.80 60.68 
5.63 - 50.49 50.49 11.66 - 27.17 73.81 
5.88 - 64.81 64.81 14.73 35.35 94.27 
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. The interpolated profile at D is given in Fig. 6.4 together with the actual measured 

profile. The two compare well, except between 3.5 and 4.0 meters. The prediction 

would exhibit even better results if the data in the six cone holes were more corre­

lated. The fairly high variance of the data is caused by the small data base which is 

generally the case in geotechnical engineering. The estimates, together with the 95% 

confidence bands are illustrated in Fig. 6.5 which also shows the actual profile at D 

for comparison purposes. The results are also tabulated in Table 6.2. 

As a second exercise, interpolation at point F was performed from the available 

data at A, B, C, D, E and G. A similar procedure was followed as for the interpolation 

at D and the results of the prediction are given in Fig. 6.6. The prediction at F models 

the actual profile satisfactorily, which is a significant improvement over the average 

profile of the entire site. The average profiles generally used by geotechnical engineers 

neglect correlation. 

Figures 6.7 and 6.8 illustrate predicted profiles at M and N, respectively. As 

shown in Fig. 6.7, M lies halfway between D and E, and point N in Fig. 6.8 is 2 

meters away from E towards F. The immediately adjacent profiles are also illustrated 

for comparison purposes. The predicted profiles indicate that they are significantly 

different from the mean values of the two adjacent profiles. 
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Figure 6.4: Comparison of Predicted Cone Bearing at D with the Actual Cone Bearing 
Profile and the Average Cone Bearing Profile Across the Site. 
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o 

CONE BEARING Qc (bar) 

Figure 6.5: Confidence Bands of Predicted Profile at D and the Predicted and Actual 
Cone Bearing Profiles. 
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CONE BEARING Qc (bar) 

Figure 6.6: Comparison of Predicted Cone Bearing at F with the Actual Cone Bearing 
Profile and the Average Cone Bearing Profile Across the Site. 



CONE BEARING Qc (Bar) 
Figure 6.7: Predicted Cone Bearing at M with the Adjacent Cone Bearing Profiles at 
D and M . 



Chapter 6. Interpolation Considering Correlations 231 

100.0 

CONE BEARING Qc (Bar) 
Figure 6.8: Predicted Cone Bearing at N with the Adjacent Cone Bearing Profiles at 
E and F . 
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6.6 Conclusions 

The main conclusions of this chapter are listed below; • ' _• 

(i) The proposed method of developing the two dimensional autocorrelation func­

tion provides a convenient and logical way for dealing with the two types of different 

correlations present in geotechnical data. 

(ii) The autocorrelation of two dimensional soil test data is best represented by 

exponential sinusoidal functions, due to its capability of having both positive and 

negative values. 

(iii) The fitting of the best possible function for the autocorrelation coefficients of 

the data was found to be the most tedious part of the analysis process. In situations 

where the correlation coefficient of the fit is not high, a higher weight can be given 

to points which are closer to the estimation point, since the points which are farther 

away from the estimation point have a lesser effect due to screening. 

(iv) The applications of the proposed procedure have indicated the need for the 

consideration of correlations, if they are found to exist. Often, it may be found that 

the correlation is negligible; in which case, it is sufficient to perform a deterministic 

trend analysis. However, if the correlation is appreciable, it has to be considered in 

any interpolation procedure where reasonable estimates are desirable. 

(v) The procedure of interpolations considering correlations, allows the designer 

to interpolate at some location based on limited data and yet with a confidence level 

in mind. In the traditional method neglecting correlations, the only options available 

to the engineer are either the use of the mean or more likely the minimum profile and 

vary the factor of safety accordingly. . 

(vi) One of the two major shortcomings in this interpolation procedure is that 

data points have to be regularly spaced. Generally, this requirement is satisfied in 

the vertical dimension but rarely so in the horizontal dimension. In such situations 
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data will have to be classified into groups having similar horizontal spacing. The 

other drawback of this technique is that it is only applicable to large geotechnical 

projects with a sizeable data base. 

What this chapter has demonstrated is a simple and efficient procedure of corre­

lation analysis which can be easily employed for large geotechnical problems where 

interpolations may be required with a reasonable degree of confidence. 



Chapter 7 

Stat is t ical Me thods to Evaluate Soi l 

Densi f icat ion: A Case H is to ry 

7.1 Introduction 

7.1.1 General 

Some of the statistical techniques described in the thesis have been applied to a 

ground improvement case history involving the Franki Tri Star probe (Massarsch and 

Vanneste, 1988). The site in which the soil compaction was performed is situated at 

the north side of Annacis Island along the north channel crossing and immediately 

east of the Alex Fraser Highway (Gray Beverage canning plant site). It has to be 

emphasized that the applications described in this chapter does not encompass all the 

techniques proposed and presented in this thesis. However, some of the techniques 

such as layer identification, trend analysis and the concept of the scale of fluctuation 

have been used to assess the effects of compaction on soil variability. The effects of 

soil densification were investigated with respect to distance from the Tri Star probe 

location as well as with respect to elapsed time of densification. The location of the 

CPT 's conducted before and after densification are given in Fig. 7.1. 

C P T data given by CT1, CT2 and CT3 were used for investigating the effect of 

time on soil improvement and C T l , CT3, CD1, CD2, CD3 and CD4 were used to 

study the effect of distance on densification. The above C P T profiles can be described 

as follows: 

234 
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Figure 7.1: Location Plan of CPT Soundings and Tri Star Probe Locations. 
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CT1 - before densification 

CT2 - 67 days after densification 

CT3 - 82 days after densification 

CD1 - 1 m away from CT1 

CD2 - 2 m away from CT1 

CD3 - 3 m away from CT1 

CD4 - 4 m away from CT1 

Note that C D l , CD2, CD3 and CD4 soundings were obtained 82 days after densifi­

cation. CT1, CT2 and CT3 were equidistant to probe locations. 

In the analysis to follow, it was assumed that there was no appreciable inherent 

variability across the site. This assumption would not have been necessary if all 

the above points were also tested prior to densification. However, this assumption 

is not of much concern here since the the main purpose of this exercise was not to 

evaluate the effectiveness of the testing program or the efficiency of the Tri Star probe 

but merely to demonstrate the applicability and usefulness of some of the statistical 

methods described in the thesis. 

7.1.2 Site Description 

Preliminary investigations indicated that the site was covered by a recently placed 

1.8 to 2.4 m thick sand fill on top of a 2.4 to 3.9 m thick clayey silt underlain by 

an alluvial sand extending below 10 m in depth. The water table was located about 

2.0 m below the existing ground surface. It was required to densify the saturated 

alluvial sand lying approximately between 5.0 and 10.0 m due to its susceptibility to 

liquefaction in the event of a strong earthquake (Massarsch and Vanneste, 1988). 



Chapter 7. Statistical Methods to Evaluate Soil Densification: A Case History 237 

7.1.3 Tri Star Probe 

The Tri Star probe which was selected for the densification, was inserted vertically 

using a heavy vibrator. It consists of three long steel plates, approximately 20 mm 

thick and 500 mm wide, welded along a common edge at an angle of 120 degrees. The 

length of the probe used was 12 m. The compaction process can be divided into three 

main phases (Massarsch and Vanneste, 1988): probe penetration which takes about 

two to three minutes to reach the desired depth of 10 m, steady state vibration during 

which period the tip of the probe was kept at 10 m for a pre-determined duration, 

and the extraction phase. To minimize the possibility of decomposition of the soil 

due to probe extraction, it was not withdrawn in one continuous movement but was 

performed in stages by stopping for a certain time at different depths on its way to 

the surface. 

7.2 Identification of Layers 

The CPT profiles at the different locations included cone bearing, sleeve friction and 

pore pressure (Fig. 7.2). In this study however, only the cone bearing results were 

analyzed because the main concern of this investigation was to study the effects of 

densification which would be best represented by the improvement in cone bearing 

stress. The profiles illustrated in Fig. 7.3 indicate the highly variable nature of the 

soil stratum in the top 10 m and also exhibit the presence of several layers. 

Two of the statistical methods described in Chapter 2 were used for the identi­

fication of the layering and included the Intraclass Correlation Coefficient (section 

2.3.2.2) and the Gradient method (section 2.5.1). A closer inspection of the bear­

ing profiles indicated that it exhibited similar characteristics to the Type I profile 

(Fig. 2.28) at certain depths. As already described in section 2.5.1, this type of layer 



CONE BEARING (bar) SLEEVE FRICTION (bar) PORE PRESSURE (m) FRICTION RATIO (%) g-

Figure 7.2: Cone Bearing , Sleeve Friction, Pore Pressure and Friction Ratio Profiles g 
of CT1 
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Figure 7.3: Cone Bearing Profiles Before Densification (CTl) and 67 Days (CT2) and 
82 Days (CT3) after Densification. 
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boundary was not picked up by the Intraclass Correlation Coefficient, thus neces­

sitating the need for the use of the Gradient method. Densification causes varying 

degrees of variability in the profile and in this respect statistical techniques such as 

the Gradient method would be most suitable in picking out different layers. The 

conventional method of selecting layers (using Friction Ratio - Bearing Classification 

chart) could not perform this task efficiently, since it can not differentiate layering by 

considering the difference of variability between the layers. The Gradient method of 

layer discrimination was chosen to pick sublayer boundaries due to the highly non­

uniform nature of densification. The effect of mixing of soils also contributed to the 

above. A visual inspection of the profiles (Fig. 7.2) indicated the presence of thin 

layers and therefore a window thickness of 0.5 m was selected. 

For practical convenience of comparison between the different profiles similar layer 

boundaries were selected for all profiles based on the layer boundaries determined for 

CT1, CT2 and CT3 (Table 7.1). Based on the results given in Table 7.1, the following 

depths were decided upon. 

Layer 1 : 0.0 - 0.85 m 

Layer 2 : 0.85 - 2.10 m 

Layer 3 : 2.10 - 5.45 m 

Layer 4 : 5.45 - 9.00 m 

Layer 5 : 9.00 - 11.00 m 

7.3 Trend Analysis 

Once the layers were identified it was necessary to investigate the type of depth de­

pendency of each layer. Trend analysis methods described in Chapter 3 were used 

for this purpose and linear trends were found to be satisfactory in all cases with 

correlation coefficients in excess of 0.70 (section 3.3.3). It was found in some cases, 
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Table 7.1: Layer Boundaries Based on Statistical Methods for CPT Profiles C T l , 
CT2 and CT3. 

Depth BEFORE 
DENSIFICATION 

( C T l ) 

NUMBER OF DAYS AFTER DENSIFICATION 
(m) 

BEFORE 
DENSIFICATION 

( C T l ) 67(CT2) 82 (CT3) 

0 

~ (0.85) (0.63) (0.92) 

(2 20) (2.15) (2.10) 

5 

(3.90) 

15.45) (5 60) (5.35) 

(8.70) 

10 

(6.90) 
(8.70) 

(9 15) 

(110) CI 10) (10.95) 

15 
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that curvilinear trends would only marginally increase the efficiency of the fit and 

therefore was abandoned in favor of linear trends which were more convenient for 

comparison purposes. A combination of linear and curvilinear trends for different 

sublayers of the same stratum is not recommended here since it only complicates the 

procedure and the comparison of the trends of different sublayers. As a result of the 

above considerations, linear trends were found to be most suitable. The relatively 

low thicknesses of the layers selected also helped to ensure the adequacy of linear 

trends and alleviated the need for the use of curvilinear trends. If the optimal layer 

boundaries were individually selected for the different profiles, the respective corre­

lation coefficients would be increased to values in the range between 0.74 and 0.80. 

However, this marginal reduction of the correlation coefficient compensates for the 

additional practical convenience gained in selecting similar layer boundaries for all 

profiles, facilitating easier comparison. 

7.4 Effect of Densification with Time 

Figure 7.3 illustrates the cone bearing profiles before densification (CTl), 67 days 

after densification (CT2) and 82 days after densification (CT3). Mitchell and Soly-

mar (1984) report that freshly deposited or densified sand may exhibit substantial 

stiffening and strength increase with time up to several months. This effect is amply 

evident from the bearing profiles in Fig. 7.3 although it seems to be exaggerated in 

profile CT3. While a proportion of the increase in CT3 can be attributed to the time 

effect on densification, the rest of the increase could be due to the reported lowering of 

the water table and the subsequent gain in strength of the sand. Another possibility 

for this significant change could be a result of the natural soil variability across the 

site. 
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Figure 7.4 shows how statistical filtering and smoothing improve the trend iden­

tifying capability of a variable profile. The data given in Fig. 7.3 were first filtered 

using the median method (section 3.2.2) and were subsequently smoothed by the 

method of Fourier transforms (section 3.2.1.2) as discussed in Chapter 3. The initial 

process of filtering enabled the extremeties of the data to be filtered out. The median 

method was used for this purpose with a filtering window, BS = 1.5 (a low degree 

of filtering) and replacement of filtered points were performed by the substitution of 

the mean of the the adjacent two unfiltered data points (section 3.2.2). As explained 

in section 3.2.2 a low degree of filtering (BS = 1.5) was used in order to avoid the 

possibility of missing out actual layers. Due to the low degree of filtering used, any 

trends present in the profile were not immediately apparent and therefore the profile 

was subsequently smoothed using Fourier transforms. It has to be reiterated that 

procedures of filtering and smoothing should be used with utmost caution, with its 

main purpose being to facilitate the easier identification of trends and is definitely 

not used for any analytical purposes. 

Figure 7.5 illustrates the coefficient of variation (section 4.2) with depth prior 

to filtering and smoothing. It shows clearly that the variability has decreased after 

densification, and that the effect of time on variability is minimal. The effect of den­

sification on variability can be more efficiently captured using the scale of fluctuation 

to be discussed in section 7.4.2. 

7.4.1 Evaluation of Trend and Confidence Estimates 

Figure 7.6 illustrates the trend of the cone bearing before and after densification 

(CT1 and CT2) for the different layers mentioned in section 7.2. The values of the 

correlation coefficients for all the linear trends were higher than 0.70, suggesting the 

adequacy of the fit. The trends in Layer 1 are similar but indicated no improvement 



Chapter 7. Statistical Methods to Evaluate Soil Densification: A Case History 244 

CONE BEARING Qc (bar) 

Figure 7.4: Filtered (BS = 1.5) and Fourier Smoothed Profiles of Fig. 7.3. 



Chapter 7. Statistical Methods to Evaluate Soil Densification: A Case History 245 

o d 

1 l 1 1 1 i 
0.0 0.2 0.4 0.6 0.8 1.0 

COEFFICIENT OF VARIATION 

Figure 7.5: Coefficient of Variation Profile of C T l , CT2 and CT3. 



Chapter 7. Statistical Methods to Evaluate Soil Densification: A Case History 246 

o 
d 

o 
tri 

2 

o 
d 

BEFORE DENSIFICATION 

67 DAYS AFTER DENSIFICATION 

82 DAYS AFTER DENSIFICATION 

o 
iri 

0.0 100.0 200.0 
CONE BEARING Qc (bar) 

300.0 

Figure 7.6: Trend Lines of C T l , CT2 and CT3. 
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with densification. Layer 2 shows a marked improvement with the bearing increasing 

with depth while Layer 3 reflects a decreasing trend which was significantly higher 

than the trend prior to densification. In all of the above three layers time effects were 

not apparent. The main layer of concern (Layer 4) shows a marked increase for both 

post densification profiles. The 67 day profile (CT2) has improved by approximately 

100% throughout the layer while the 82 day profile (CT3) has increased by about 50% 

at the beginning of the layer (5.45m) and by as much as 300% at the layer end depth 

(9.0 m). Layer 5 also shows improvement, but with a negative trend. Since the probe 

tip was at a depth of 10 m, the soil between 9.0 and 11.0 m could be expected to 

possess effects of soil mixing. A comparison of Fig. 7.6 with the cone bearing profiles 

in Fig. 7.2 reveals the apparent ease with which the improvement could be judged 

from the trend lines. The 'RUN' test (section 3.2.3) was performed to determine the 

non-stationarity of the different layers, and all the layers selected revealed that the 

cone bearing data was non-stationary with the existence of significant trends. 

Methods described in section 3.3.4.1 were used to obtain the confidence estimates 

of cone bearing (Eq. 3.28) and Fig. 7.7 gives the lower 95% confidence estimate which 

represents a lower bound where 95% of the cone bearing values lie above. The trend 

line is a 50% confidence estimate or a mean fine where 50% of the data will He below 

and 50% will He above. The 95% confidence estimate is a good value to be used for 

design purposes. This lower bound of 95% or even a less conservative value of say 

90% or 80% can also be used for design. Such lower bound values can also be used 

in contract specifications for soil densification projects. 

The ensuing residuals after trend removal (section 3.3.1) indicated that the vari­

ance was approximately constant, justifying the use of simple regression (section 3.3) 

to identify the trends. The very low correlation of the residuals were verified using 

the Durbin-Watson statistic described in section 3.3.2. The latter two verifications 
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Figure 7.7: 95% Confidence Estimates of Cone Bearing for C T l , CT2 and CT3. 
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Table 7.2: Scale of Fluctuation for Layer between 5.45 m and 9.00 m for profiles CT1, 
CT2 and CT3. 

C P T Profile Scale of Fluctuation (cm) 

Before Densification (CTl) 21.82 

After Densification 

67 Days After Densification (CT2) 
82 Days After Densification (CT3) 

33.21 
36.00 

suggested the adequacy of simple regression to model the soil property variation. 

7.4.2 Scale of Fluctuation 

The scale of fluctuation (section 4.3) was used to study the effect of densification on 

variability as a function of time. Table 7.2 lists the values of the scale of fluctuation 

for the three different times for the layer between 5.45 m and 9.0 m, since the main 

purpose of the project was to densify this particular layer. The increase in the scale of 

fluctuation indicates the reduction in variability. Table 7.2 suggests that densification 

results in the reduction of variability although time does not seem to have a significant 

influence as indicated by the marginal increase of the value of the scale of fluctuation 

from 33.21 cm for the bearing profile 67 days after compaction to 36.00 cm for the 

profile obtained 82 days after compaction. 

The scale of fluctuation is a more reliable estimator of variability, since it takes 

into account the spatial variability of the soil parameter under consideration. 
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7.5 Influence of Densification with Distance 

Figure 7.8 illustrates the cone bearing profiles before and after densification (82 days 

after). C T l and CT3 were along the centerline of densification while the other profiles 

CD1, CD2, CD3 and CD4 were located 1, 2, 3 and 4 m away from the centerline, 

respectively. The coefficient of variation profile given in Fig. 7.9 again reflects a 

decrease in variability after densification and illustrates how this effect was less with 

increasing distance away from the centerline. This was as expected since the cone 

profiles beyond 2 m from probe location indicate little, if any, effect of the densifi­

cation. Once again, it should be pointed out that the evaluation of variability from 

the coefficient of variation profile was tedious, necessitating the use of the scale of 

fluctuation as the descriptor of soil variability. Here too the nature of the residuals 

were such that the use of simple regression to represent the trend was adequate and 

therefore a similar procedure to that described in section 7.4.1 was used. 

7.5.1 Evaluation of Trend and Confidence Estimates 

Figure 7.10 shows how the effect of improvement decreases with increasing distances 

of 1 and 2 m away from the centerline. Although the trends of CD1 (1 m away) and 

CD2 (2 m away) were higher than that of the profile prior to densification (CTl), 

they were less than that of profile CT3 which was located along the centerline. The 

trends of the profiles CD3 (3m away) and CD4 (4m away) shown in Fig. 7.11 were 

virtually similar to the trend prior to densification, suggesting that the densification 

pattern and procedure adopted were effective only up to approximately 2 m. The 

slope reversals of the trend lines of some layers should also be noted. Figure 7.12 

illustrates the lower 95% confidence estimates of cone bearing for profiles C T l , CT3, 

CD1 and CD2 while Fig. 7.13 shows the same estimates of the trends for profiles C T l , 

CT3, CD3 and CD4. Fig. 7.13 reflects how the confidence estimates of CD3 and CD4 
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Figure 7.8: Cone Bearing Profiles before Densification ( C T l ) , at Centerline after 
Densification (CT3) and 1, 2, 3 and 4 m away from Centerline after Densification 
(CD1, CD2, CD3 and CD4). 
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COEFFICIENT OF VARIATION 

Figure 7.9: Coefficient of Variation Profile of C T l , CT3, CDl , CD2, CD3 and CD4. 
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Figure 7.10: Trend Lines Before and After Densification along Centerline (CT1 and 
CT3) and 1 and 2 m away from Centerline (CD1 and CD2). 
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Figure 7.11: Trend Lines Before and After Densification along Centerline (CT1 and 
CT3) and 3 and 4 m away from Centerline (CD3 and CD4). 
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Figure 7.12: 95% Confidence Estimates of Cone Bearing Before and After Densifica­
tion along Centerline ( C T l and CT3) and 1 and 2 m away from Centerline (CD1 and 
CD2). 
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Figure 7.13: 95% Confidence Estimates of Cone Bearing Before and After Densifica­
tion along Centerline (CT1 and CT3) and 3 and 4 m away from Centerline (CD3 and 
CD4). 
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Table 7.3: Scale of Fluctuation for Layer between 5.45 m and 9.00 m for profiles C T l , 
CT3, CD1, CD2, CD3 and CD4. 

C P T Profile Scale of Fluctuation (cm) 

Before Densification (CTl^ 21.82 

After Densification 

At Centerline of Densification (CT3) 33.21 
1 m from Centerline of Densification (CD1) 27.91 
2 m from Centerline of Densification (CD2) 25.06 
3 m from Centerline of Densification (CD3) 23.29 
4 m from Centerline of Densification (CD4) 19.04 

approach those of the virgin state (CTl) . Here too, this lower bound can be used for 

design and specification purposes. 

The similarity of profiles C T l , CD3 and CD4 also provides justification to the 

assumption that there was no appreciable inherent soil variability across the relatively 

close spacings considered in this study. 

7.5.2 Scale of Fluctuation 

Similar to the investigation on time effects on densification, the scale of fluctuation 

(section 4.3) was used to study the effect of densification on variability as a function 

of proximity to the centerline of densification. Values of the scale of fluctuation which 

were obtained for the layer between 5.45 and 9.0 m are given in Table 7.3. 

As observed from Table 7.3, the scale of fluctuation increases (variability de­

creases) after densification, and decreases towards the value of scale of fluctuation 

prior to densification. In other words, the variability of the soil at locations 3 and 4 
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m away from the centerline are similar to that before densification. This is in agree­

ment with the earlier observation that the trends of the bearing profiles 3 and 4 m 

away from the centerline are approximately equal to those prior to densification. 

7.6 Conclusions 

The main conclusions which could be drawn from this simple case history are: 

(i) Statistical methods of layer identification provide a good tool to identify sub­

layers present in a soil stratum subjected to densification. 

(ii) The improvement in cone bearing was clearly evident from the trend lines of the 

different layers and was much less tedious than analyzing the effects of densification 

directly from the cone bearing profiles. 

(iii) The lower 95% estimate of bearing provides the geotechnical engineer with a 

value for design considerations, and this lower bound was conveniently obtained using 

statistical methods. This lower bound could also be used for compaction control and 

in contract specifications as opposed to the traditional minimum value. 

(iv) The scale of fluctuation has proved to be an efficient indicator of soil unifor­

mity (inverse of variability) in contrast to the coefficient of variation which does not 

consider the spatial effects of variability. 

(v) Statistical methods such as layer identification, trend analysis and the scale 

of fluctuation have effectively demonstrated their ability to assess variability charac­

teristics of soil profiles. Without the use of these methods, evaluating the amount 

of improvement caused by densification and ascertaining the effectiveness of the Tri 

Star probe would be difficult and highly judgemental due to the highly variable and 

non-uniform nature of the site considered in this case history. 



C h a p t e r 8 

Summary and Conclusions 

The main purpose of this research was to develop and evaluate statistical approaches 

that could be applied to soil test data with the aim of enhancing the site characteri­

zation capabilities of in situ testing devices with special emphasis on the CPT. This 

thesis has amply demonstrated how statistical methods can be used on large data 

bases which result from close sample spacing during the cone penetration test. The 

statistical methods developed' can not only provide additional information at a given 

site, thereby allowing the reduction of uncertainty involved in the estimation of soil 

properties, but also provide an efficient way to ascertain the variation of soil prop­

erties with depth across the site. The ensuing results from such statistical analyses 

can then be used to supplement the results obtained by other coventional methods 

commonly used in geotechnical engineering practice. 

The cone penetration test has the capability of sampling at very close intervals 

in the vertical direction and hence provides a detailed description in the depth di­

mension. Soil strata are highly heterogeneous especially in the vertical direction and 

the conventional methods of layer identification based on the deterministic CPT clas­

sification chart are at times ambiguous due to the subjectivity involved in its use. 

Statistical methods have therefore been proposed in order to increase the reliabil­

ity of layer dilineation. Once the different layers in a stratum have been identified 

methods of trend analysis can be used to obtain a better understanding of soil prop­

erties and their variation with depth. Confidence estimates of the soil properties can 

then be determined for design using reliability approaches. Several applications of 

259 
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Random Field theory have been extended to provide another means of obtaining an 

enhanced knowledge of the soil property variation with depth. In this respect the 

scale of fluctuation provides an extremely efficient basis for ascertaining the variabil­

ity characteristics of various soil parameters. The amount of variability in a data 

set is affected by factors other than the inherent variability of the soil which the 

geotechnical engineer is concerned about. Part of this variability is caused by the 

measurement error which is sometimes referred to as random noise. This is mainly a 

result of errors caused by man and machine and could be approximately determined 

by methods of time series analysis. 

In addition to a detailed description of soil properties in the depth dimension, 

the geotechnical engineer involved in a typical site investigation will naturally be 

concerned about the variability across the site. A l l the techniques presented in the 

thesis can be similarly extended to the horizontal direction, provided a sufficient data 

base exists. In situations where enough data exist to establish a statistical model 

horizontally, the proposed two dimensional interpolation procedure considering soil 

property correlations can be used to obtain estimates and confidence limits of soil 

property values at untested locations. 

Identification of Soil Layers 

Different statistical techniques employing univariate and multivariate methods of 

analysis have been used to identify the soil layers present in a profile. The classical 

method of identifying soil layers based on the friction ratio is inadequate at times 

due to the subjectivity involved in the use of the interpretation chart. The statistical 

methods proposed, have proven to be a good substitute. A multivariate analysis which 

has the capability of considering the cone bearing, sleeve friction and pore pressure 

simultaneously, has been shown to be more advantageous than the univariate methods 

to discriminate between soil layers. Different levels for the values of the Intraclass 
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Correlation Coefficient and the D7 statistic enabled boundaries to be classified as 

primary or secondary for both clay and sand type soils. The location of the primary 

boundary layers was particularly effective since it was insensitive to the selected 

window width which was based on the autocorrelation function of the parameters 

concerned. This provided further evidence to the robustness of the proposed statistical 

measures of soil layer dilineation. A method based on the gradient of the trend also 

proved to be successful in identifying layer boundaries in rare situations where the 

statistical methods were inadequate. 

Trend Analysis and Filtering 

Trend analysis techniques have been effectively used to describe the characteris­

tics of different layers identified in a stratum. Methods of overcoming difficulties in 

regression analysis have been explained in detail. Techniques of statistical filtering 

and smoothing are sometimes required to remove extremeties in data sets in order to 

establish the trend of the data. Filtering methods must be applied with the utmost 

caution since the exact statistical parameters selected for the filtering process are 

highly situation dependent and the possibility of missing out a very thin layer with 

significantly different characteristics to the layers above and below, should be avoided. 

The median method of filtering was found to be more advantageous since, unlike the 

mean, the median is not a function of the extreme data points contained in a selected 

sublayer. Precaution should also be taken so that the sublayer depths chosen are not 

so wide as to miss actual layers in the soil stratum. On the other hand, too narrow 

a sublayer will result in biased statistics rendering the filtering process unreliable. 

Considering the above two limitations, an optimum width of 25 cm (10 data points) 

has been recommended for the depth or thickness of the filtering sublayer or window. 

Very often, the presence of a trend in a profile may not be apparent from a visual 

inspection. The 'RUN' test has been effectively used in this thesis, in order to verify 
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the stationarity or non-stationarity of a soil profile. Although the variogram function 

of a data set can also be used to verify stationarity, the 'RUN' test was more useful 

in the sense that specific levels of significance can be established for the acceptance 

or rejection of stationarity of a data set. 

Applications of Random Field Theory 

The geotechnical engineer is concerned that redundant or excess data is not col­

lected in a site investigation since it costs both time and money. In this regard a 

simple statistical procedure has been proposed to estimate the optimum sample spac­

ing in a given soil profile. The optimum sample spacing thus obtained was shown 

to be a function of the variability of the soil layer, the required confidence in the 

estimate and the degree of tolerance allowed. As the variability of a layer increases a 

closer spacing of data is required in order to obtain an estimate of a soil parameter 

at a given confidence and tolerance (or precision). 

The natural heterogeneity of the soil, hmited data availability and errors caused 

by man and machine, all contribute to the uncertainty in soil data and has resulted 

in geotechnical test data being treated as random. The application of random field 

theory to C P T data has been used to clearly demonstrate how the use of statistics and 

probability can provide additional information from a given set of data. This results in 

a less conservative analysis and a greate economy in design. The correlation coefficient 

between spatial averages and the probability of exceedance have been obtained for 

different profiles demonstrating its use for site characterization and design purposes. 

In a classical deterministic analysis these would not be normally considered, with the 

possible consequences of inaccurate results. 

Scale of Fluctuation and Soil Variability 

The concept of the scale of fluctuation has been shown to be an excellent indicator 
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of soil variability in the sense it considers the effects of spatial variability in contrast 

to the standard coefficient of variability which does not consider spatial variability. 

The proposed method of calculating the scale of fluctuation compared well with that 

originally proposed by Vanmarke (1977) and was found to be a more suitable method 

from the aspect of computational convenience. Several applications described in the 

thesis reveal the correlation between the variability and the scale of fluctuation and 

the sensitivity of it to variability. Studies on the scale of fluctuation have effectively 

demonstrated the averaging characteristics of cone bearing, sleeve friction and pore 

pressure measured by the CPT. It can be concluded that while the pore pressure is 

indicative of a measurement made at a point, the cone bearing is indicative of a value 

averaged over a finite length which is less, but comparable to the averaging distance 

of the sleeve friction. The scale of fluctuation has also been made use of to obtain an 

optimum sampling spacing for a given soil layer. 

Measurement Noise of Geotechnical Test Data 

The application of Time Series analysis to CPT data, illustrated its capability of 

adequately modeling the stationary component of a soil profile. The random error 

or the measurement error term obtained for different test methods compared well 

with that obtained from the autocorrelation function. The five percent random error 

obtained for the CPT clearly indicated its superiority over other testing methods like 

the field vane which gave a high value in excess of thirty percent. This reflected the 

high random error associated with vane testing in contrast to the CPT. 

Two Dimensional Correlation Analysis 

Soil properties are highly depth dependent. Therefore, any two dimensional inter­

polation procedure which includes the depth as one of the dimensions should consider 
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soil property correlation if accurate estimates are required. The need for the consid­

eration of two different types of autocorrelation functions for the representation of 

two dimensional soil property variation has been highlighted. The two dimensional 

autocorrelation function which was used for the interpolation yielded satisfactory re­

sults, with a good comparison between the predicted and actual profiles. This clearly 

indicated the need for the consideration of soil property correlations, in the event 

they do exist, if better estimates are desired. 

Case History to Evaluate Densification Effects 

A case history concerning site densification was used to show how some of the 

statistical methods proposed and presented in this thesis can be used to evaluate the 

effects of soil densification in a more quantitative manner. It has to be emphasized 

that the techniques used for the case history certainly do not encompass the whole 

range of applications described in the thesis, but only provide a simple demonstration 

of how effectively statistical methods can be used to assess soil variability. Methods 

of layer identification and trend analysis proved to be efficient tools for this purpose 

and the scale of fluctuation was found to be an ideal tool to assess soil variability. It 

is clearly evident from this example that in soil profiles of such high non-uniformity, 

it is impossible to draw reliable conclusions without the use of statistical techniques. 

Interactive Micro Computer Programs 

Most of the techniques described in the thesis have been performed using IBM-PC 

compatible interactive micro computer programs which have been developed by the 

author. These programs are adaptable to different data formats with several options 

available to the user. Detailed manuals with specific worked examples have also been 

prepared and is available in the Department of Civil Engineering at UBC. 
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Scope of Statistical Methods 

Finally, this thesis has effectively demonstrated how statistical techniques can be 

applied to in situ test data to enhance site characterization which, to date, is primarily 

performed using deterministic approaches. It is the author's belief that, in the light 

of the sophistication in design and analysis of geotechnical structures, it should not 

be long before statistical and probabilistic procedures will begin to supplement the 

deterministic approaches used to-day. Since probabilistic and statistical procedures 

result in reduced risk and less conservatism due to the additional information gathered 

from such analyses, the emergence of these methods in geotechnical engineering will 

be inevitable. In the past the reason for the reluctance in the use of statistical 

methods in geotechnical data analysis was the lack of an adequate data base. The 

emergence of in situ testing devices such as the CPT with its capability of sampling 

at close intervals provides the luxury of larger data bases, paving the way for the use 

of statistical methods. 
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Appendix A 

Corre la t ion Between Spat ia l Averages 

Let y0, ylt y2, 3/3, ya and yb be the distances illustrated in Fig.4.10. The shaded areas 

A and B can be expressed by the integrals /„ and 7b, where, 

rv+v*/2 

h= , Q(y)dy (A . l) 

ry+yt/2 

h= Q(y)dy (A.2) 
Jy-Vb/2 

Similarly, the areas corresponding to y0, yt, y2 and y 3 which are Ia, / a , 72 and 73 

respectively, can be so determined. 

The following relationships follow from above and Fig.4.10 
h = I a + J o (A.3) 

h = Ia + h + h (A.4) 

h = h + h (A.5) 

Evaluating If — I\ + 7|, results in the following equation. 

27a7b = / 0

2 - J a

2 + 7 2

2 - 7 3

2 (A.6) 

The local spatial averages of the segments ya and yb are Qa and 0b respectively, 

Qa = hlVa (A. 7) 
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Qb = h/Vb (A.8) 

The variance function, r2(ya), is defined as, 

(Va) = ~ T (A.9) 

where, o~a is the standard deviation of the segment ya and tr is the standard deviation 

of the whole stratum comprised of all the segments. 

Similarly, T2(yb), r2(y0), T2^), T2(y2) and r2(y3) can be defined for the respective 

segments. The procedure for obtaining the variance function is described in detail 

elsewhere under the section on the Scale of Fluctuation. 

The correlation coefficient between the spatial average of Layer A (Qa) and 

the spatial average of Layer B (Qb) in Fig.4.10 is given by, 

where, COV[QaQb] is the covariance between Qa and Qb. 

Consequent to the manipulation of Eqs. A.6 to A.10 it can be shown that, 

PQaQb = 
COV[QaQb] (A.10) 

pab = 
y0

2T2(y0) - ya 2r 2(y a) + y 2

2r 2(j, 2) - y3

2T2(y3) (A. l l ) 



Appendix B 

Probab i l i t y of Exceedance 

A classical formula for the mean rate of crossings of the level q (vq), by a stationary 

random process Q(l) is given by Rice (1945); 

r \ Q\fQ,Q{q,Q)dQ (B.l) 
J — oo 

where, fqq{Q,Q) is the joint probability density function of Q(l) and its derivative 

Q(l). Since Q(l) is stationary the random variables Q(l) and Q(l) are uncorrected. 

Ii.Q(l) is Gaussian, independence top is guaranteed; then, 

= /<?(?) [°° \ Q\ fqiQYQ 
J — oo 

= fQ(q)E[\Q\} (B.2) 

where, E [j Q |j is the mean of the absolute value of the slope of Q(l). Every q -

upcrossing (crossing of the level q with positive slope) is followed by a q - downcross-

ing, resulting in the mean rate of upcrossings, being equal to the mean rate of 

downcrossings, vq~. Hence, it follows that the mean rates of up and down crossings 

vq

+ and vq~ are equal to uq/2 . Therefore, 

= \fQ{q)E [I Q (B.3) 

Since differentiation is a linear operation, if Q(l) is Gaussian, its derivative Q too will 

be Gaussian. Therefore, 

E Q\} = 2 / J Jo 
Q exp{4̂ }̂  
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7T 
°o (B.4) 

Substituting for E \ Q\ in Eq. B.3 

" , + = ^ / 9 ( ? ) \ / f ^ (B.5) 

If Q(Z) is normally distributed, 

where, 0 and erg are the mean and standard deviation of the soil property, Q, of a 

local region of length D and q is the property value of which the exceedance or non 

exceedance is of interest, or in short the threshold value. 

Substituting for /<?(c/) in Eq. B.5 

+ 1 / (g-<5) 2l /2 

The mean rate of zero crossings, v0 is obtained when q = Q in Eq. B.7 and can be 

expressed as, 
1 °~n 

thereby, permitting Eq. B.7 to be written as, 

(B.9) 

Considering the autocorrelation function /3(D) and the variance function T2(D) 

for a local region D, the mean rate of crossings, u„, can also be expressed as (Rice -

1948); 

- { s i ® ) ) ' (»•») 
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From the definition of the Variance function, 

*2

Q=*2T2(D) (B.ll> 

Substituting for v0 and <TQ2 from Eqs. B.10 and B . l l 

9 V2irDT(D) P \ 2<r2 V ') K ' 

There will be many segments of length D within the domain length L and hence the 

probability of non exceedance (-PE), for all such segments within the entire layer of 

length L, will be approximately given by, (Vanmarke - 1987), 

P L=exp(-i/+I) (B.13) 

Therefore, the probability that the average of a local interval of length D will exceed 

a threshold value q, will be given by, 

PE = 1 - exp(-i/+I) (B.14) 

From Eqs. B.12 and B.14 it is evident that the probability of exceedance is dependent 

on the local region of width D, mean (Q) and standard deviation (<TQ) of the entire 

layer, value of the autocorrelation function of the layer at D (PD), square root of the 

variance function at D, (T(D)), the threshold value q and L, the thickness of the 

domain. 



Appendix C 

In terpolat ion Me thods Neglect ing Cor re la t ion 

C . l Weighting Functions 

Regression techniques require an adequate data set for interpolation to be carried 

out. In geotechnical engineering, the available data are very often scarce, and the 

only option may be to adopt methods of weighting functions for interpolation. The 

major drawback in all methods of weighting functions is that redundant information 

is not discriminated against. If A, B and C are points with known soil properties and 

are equidistant to a point P, where estimation is required, then these three points are 

given weights of 1/3. Now, if another known point D is very close to point A, but 

again equidistant to P, all four points (A, B, C and D) are assigned the same weight 

of 1/4. Similarly, if there is a cluster of points around point A, thereby increasing 

the number of data points around that point, equal weights are given to all points 

since they are equidistant to P. However, it is obvious that the effects of points B and 

C on the prediction point P should be negligible in the latter case. Therefore, it is 

very important that if weighting techniques are used for interpolation, the potential 

problem discussed should be recognized. 

C . 2 Distance Weighting Functions 

A convenient but very approximate way of an estimation procedure is to designate 

higher weights to those points which are situated closer to the point where estima­

tion is required. In order to accomplish this, inverse distant weighting functions or 
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inverse squared distance weighting functions are used. These methods again do not 

discriminate redundant information. For example, for a cluster of points equidistant 

to the point of estimation, the weights designated will be approximately equal. 

The estimated value, Q'(x0), at point xQ can be expressed as, 

Q'(x0) = J2*iQ(xi) ( C l ) 
i=l 

where, 

A <=ssfw ( c' 2 ) 

In the above equation, Li is the distance between the data point and the point where 

the estimate is required. If inverse distance weighting is adopted, r = 1 whereas for 

inverse squared distance weighting, r = 2. 

C .3 Functional Weighting Functions 

The concept that the weight decreases with increasing distance is used when a dis­

tance correlation function (e.g. exponential decay model) is used for interpolation at 

unknown points, viz; 

where, | x0 — Xj \= Lj is the distance and a is a appropriate constant in the expression, 

f(L) = EXP(—ctL). It should be noted that the weight A approaches zero, as the 

distance Lj increases. 



Appendix C. Interpolation Methods Neglecting Correlation 282 

C.4 Simple Weighting Functions 

The classical estimation of the mean or the average is also a weighting function with, 

Ai in Eq. C . l , given by, 

Ai = 1/n (C.4) 

for i = 1, 2, ,n with' all the weights being equal. 



Appendix D 

Interpolat ing Equat ions Consider ing Correlat ions 

As in any optimization procedure, an estimator, Q(s0), of a soil property value, Q(s0), 

will be termed a " best estimator ", if it minimizes the mean square error (David -

1976). 

That is, 

E\Q(S0) - Q(s 0)] 2 = MINIMUM (D.l) 

where, Q(sD), is the estimator of Q(s0) and E[.] is the expected value. 

The estimator, Q(sa), will be the " best unbiased estimator " if the following condition 

is satisfied. 

E [Q{*o) ~ Q(*o)] = 0 (D.2) 

The estimator, Q(sa), can also be expressed as, 

Q(SO) = J2\IQ(si) (D.3) 
i=l 

where n is the total number of data points and 5,'s are the locations of the data 

points, where soil properties are known, with i = 1,2, ,n. A;'s are the weights. 

The estimation variance, ae
2, follows from Eq. D . l . After substituting for Q(s0) from 

Eq. D.3, 

<re

2 = E 
t=i 

(D.4) 
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By expanding and taking expectations, the variance, cr e

2, can be expressed as, 

<Te2 = - 2 ^ ko-Q(,0)Q(,i) + £ £ A» Aj°"Q(«i)<?(»>) 
i=i j=i 

(D.5) 

The necessary condition for the best estimate is that <re

2 given by Eq. D.5 be a 

minimum. In addition, the estimate has also to be unbiased. That is on average, the 

estimate Q(s0), should be equal to the actual value Q(sD). 

If the estimated value, 

E Q(*o)} = t 

From Eqs. D.2 and D.3 

Therefore, 

For the unbiased condition, 

E 

Y:KE[Q(Si))=c 
t=l 

E[Q(«)]=t 

From Eqs. D.8 and D.9, it could be easily inferred that, 

(D.6) 

(D.7) 

(D.8) 

(D.9) 

(D.10) 

Therefore, in order to satisfy the unbiased condition as well as the minimum variance 

condition, Eq. D.5 will have to be minimized, subject to the condition stipulated 

by Eq. D.10. This is a case of finding the minimum value of a function of several 

variables A,-, when the relationship between the variables are given (Eq. D.10). The 

above criteria can be solved by using the Lagrange Principle (David - 1973, Kreyszig 

- 1983). The equation to be solved (Eq. D.5), subject to the restriction in Eq. D.10, 



Appendix D. Interpolating Equations Considering Correlations 285 

then transforms to a function ip, that has to be minimized. 

The function ip is given by, 

V>=<re

2 + 2/x $ > - l (D.ll) 
w=i 

where, p is a the Lagrange constant. Substituting for of, from Eq. D.5, 

V' = <rQM

2 - 2 ^ A i c r 0 ( 4 o ) Q ( , . ) + + 5 Z £ A i A j < 7 Q ( a i ) Q ( 4 > ) + 2p Ai - 1 (D.12) 
i=l i=l j'=l \ i = l / 

Taking partial derivatives of Eq. D.12 with respect to Ai's and p., 

For i = 1,2, ,ra 

dtp ^ 

— = - 2 o - Q ( , o ) 0 ( 5 i ) + 2 ^ AiO-Q^.jQ^) + 2|i (D.13) 

Equating Eq. D.13 and D . H to zero, to minimize F, 

n 
^i°~Q{>i)Q(>j) + V- = °Q(«0)Q(«.) (D.15) 

Equation. D.15 represents a linear system of n equations for i = 1, 2,... ,n . Eq. D.10 

together with the linear system of n equations given by Eq. D.15, comprise a system 

of (n-fl) equations, with a similar number of unknowns. The unknowns being the n 

number of Ai terms and the Lagrange constant p. 

Equations D.15 and D.10 can be expressed in the following matrix form ; 
[A]{B} = {C} (D.16) 
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where, [A] is the covariance matrix given by, 

ffQ(«i)Q(»2) aQ[»iYH'3) ••• 

°"9(»2)Q(.i) ° Q ( « 2 ) < ? ( « * ) VQMQW ••• 

<7'«(»»)Q(«a) orQ(»s)Q(»s) ••• 

[Al = 

1 1 1 . . . 

°"0(«o)Q(»i) 

ffQ (•«)«(«») 

°"Q(« 0 )<?(«3) 

{C} = { 

°"C>(»o ) < ? ( « » ) 

1 

An 
A 2 

A 3 

{B}=<| : 

I P ) 

° Q ( « l ) Q ( « n ) ! ' 

° " Q ( » 2 ) Q K ) 1 

° Q ( « 3 )<?(«») 1 

°"<?(»«)<?(*n) 1 

1 0 

(D.17) 

(D.18) 

(D.19) 

If both sides of Eq. D.15 are divided by the variance of the data (cr2), 

[P]{L} = { M } (D.20) 
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where, 

1 PQ(>i)Q('2) PQMQ(B3) 

PQ{»2)Q(>I) 1 PQMQ(»i) 

PQ('3)Q(>i) PQ(»3)Q(»2) 1 

PQMQ('i) PQ(>n)QM PQ(sn)Q(.3) 

1 1 1 

{M} 

PQ(»o)QM 

PQ{,„)Q(,2) 

PQ(.0)Q(,„) 

1 

A 3 

{L} = 

PQ(>i )<?(«„) 1 

PQ('2)Q(.n) 1 

PQ(»i)Q(»u) 1 

p/o-2 J 
Therefore, the matrix of unknowns, {L}, will be given by, 

{L} = [P]" 1^} 

(D.21) 

(D.22) 

(D.23) 

(D.24) 

{M} and [P] in above equations are for the case when the autocorrelation function 

is used. If the semi-variogram is used the cr terms in Eq. D.17 will be replaced by 7 

terms, thereby causing a change in matrices [P] and {M}. However, the weights ( 
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A;) obtained by both methods will be identical due to the direct relationship between 

the autocorrelation and semi-variogram functions. 

In all of the above expressions, sD is the point where the interpolation is required, 

while Si, 52, , <s„ are the locations where the property values are known. Once 

the weights, A are obtained from Eq. D.24, the estimator, Q at sD, can be determined 

from Eq. D.3 as follows ; 

QM = Aa<?(aa) + A2C?(s2) + X3Q(s3) + + KQM (D.25) 

where, Qgl,Qt7; >Q«„ a r e * n e known soil property values at sx, s2, ,sn. 

The estimation variance (<re

2) can be obtained considering Eq. D.5 together with 

the restrictions imposed by Eqs. D.15 and D.10, and is given by, 

cr7 = cj2(\-J2Kpei.)j -P (D.26) 

If the semi-variogram was used instead of the autocorrelation function, the estimation 

variance can be expressed as, 

<re

2 = £ A ^ - P (D.27) 


