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Abst_raict

_ Several statistical procedures that would enhance the site characterization capabilities
of insitu test data with special emphasis on the cone penetrometer test have been
proposed and presented.

Two methods to identify different soil la.yers from a profile have been descnbed
One of these procedures is based on the effects of the individual parameters, namely,
cone bearing, sleeve friction and pore pressure, while the other method 'employs a
multivariate scheme of analysis, which has the capability of handling all three or any
two parameters, simultaneously. The advantages of these statistical methods over the
conventional methods of soil layer identification, have also been highli§hted. Critical
levels of the values of the Intraclass Correlation coefficient and the D* statistic have
been proposed for the identification of layer boundaries as primary or secondary for
both sand and clay type soils.

Methods of trend analysis have been proposed while the complications arising
from the presence of correlations have been discussed. The role played by methods
of statistical filtering and smoothing, in the identification of trends, have also been
illustrated. Statistical procedures have been proposed, for the purpose of verification
of non-stationarity or statlonanty, in the event it cannot be determined from a v15ua.l
inspection. :

The need for the consideration of geotechmca.l data as random has been em-
phasized, together with applications of random field theory in the determination of
exceedance probabilities of given threshold values over spatial averages of a soil layer.
A computationally more convenient method for the determination of the scale of
fluctuation has been proposed while emphasizing its 1mporta,nce in several areas of -
applications, with respect to the cone penetration test.

Time Series methods have been émployed in order to model the stationary com-
ponent of soil profiles and also have been extended to obtain the measurement noise
of different test methods. A comparison of the measurement noise of different insitu .
testing devices, obtained by the time series method has been compared to a proce-
dure based solely on the autocorrelation function of the data, resulting in a good
agreement. The relatively low value of measurement noise obtained for the cone pen-
~ etration  test confirms its superiority over other insitu testing methods like the field
vane test which gave fairly high estimates of the measurement noise.

A two dimensional interpolation procedure considering the correlation between
data points has been recommended. This procedure which uses the autocorrelation
function, has béen applied to a set of cone penetrometer test data and the results of
which have been compared with the actual profile-at that -location. The reasonable
comparison of the predicted with the actual, clearly indicate the need for the consid-
eration of correlations if they do e)ust in 1nterpolat1ng geotechmca.l data in two or
three dimensions. :

IBM - PC compatible interactive micro computer programs have been developed
in order to perform most of the techniques proposed in the thesis. These programs
cater to any type of data format and have several inbuilt options available to the user.
Detailed user manuals for these programs are also avallable

1
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Chapter 1

Intro duction

1.1 The Need for a Statistical Approach

Seil properties are highly variable and exhibit considerable variation from point to -
point. Most of these variations cannot be quantified «a,nd therefore, it becomes very
important that the maximum amount of information is derived from an available sef
of data to reach conclusions. on the characteristics of a soil proﬁle.- In geotechnical
engineering, it is common to assume that the risk of failure is a function of the factor
of safety, but the fact that is often neglected is that the risk of failure also depends
‘on the accuracy Wlth Wh1ch the factor of safety is determined.

The variability or uncertamty in soil profile modehng has been explained by Van-
* marke (1977) to compnse the following. The main source of variability is the natural
1nherent heterogenelty caused by the differences in partlcle size, rmnera,l‘composlltlon‘
- and stress history which are all mainly due to various geological inﬂ.uen‘ces..' These
also give rise to ’nrends in both the hofizontal and vertical directions, with the effect
in the vertical dimension ‘generally being more significant. Limjted‘ availabﬂity of
data is fhe second source for the nncerta.inty svinlce soil properties have to be deduced
from field or labofatory tests on a limited number of samples. Thivs problem can be
averted or fednced'.by increased semphng, but since economics play a vital role this
option is not always feafs'ible except for major projects. Statisticel and‘probabilistic
approaches can maximize information that eould be derived from a given set of data,

and are therefore equivalent in some ways to performing more tests, if results are
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to be analyzed solely on a determiﬂistié basis. Measurement errors caused byArr'lan
,;md machine arevthe4 third séﬁrce of uncertaiﬁty in geotechnical test data. These are
caused by factors such as sample disturbance, inaccuracies in testing procedures and
human errors. All of the above uncertaintieé» contribute to the belief that a stochastic
approach employing statisticall methods ié the most efﬁcient‘ way of dealing with Soil
test data.. There is nofhing random if all the points in the ground could be tested
accurately. Howevér,' this is not a feasible idéa. .bot_h practically ;a_nd ecbnomically, :
giving rise to the neéd' for the consideration of stochastic approaches in analyzing
geotechnical test data. | |

This thesis examines a series of statisticall procedures that may be useful to en-
hance the identification of soil profiles and thereby increase the site charactégizatioh
capabilities of the cone penetrometer test (CPT). The high repeatabiﬁty of the CPT
and its‘capab’ility of sampling at closé intervals have caused.it to emerge as one of the
niost widely used in situ tesﬁng methods. The large data base that ;esults from the
CPT provides an .ideal tool for statisti'cél applications. Traditionally, geotechnicél en-
‘gineers have been conservative, with most of the designs and anzﬂyses_ being based on’
fairlsr scanty data, acquired by methods about which much was not known in ferrﬁs of
 theoretical basis. Over the years, more sophisticated testing methodé l')othv in the lab-
oratory and the ﬁeld‘ ha‘ve evolved, and the increased knowledge of soil behavior has
led .to the development of more elaborate theories and ﬁodels, capable of predicting
stress - strain charaéter@tics of soils more accurately. In spite of all these teg:hno-
: logicél and intellectual advancements, the uncertainty and the highly v'a,riable‘natureAl
of soil behavior are still preéent. The overall éccurapy of design analysés have not
_‘improv_ed significantly, caﬁsec.l' largeiy' by the reluctan.ce of the:geotechnica.\.l engineer
to repléce the traditional deterministic methods by proba,biiistic fechniques.-

In the last decade, geotechnical engineers have been confronted by new challenges,
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~ due to increased demands from field situations. Coinplicafed high risk structures such
as foundations for nuclear power plants and deep foundations for offshore .oi.l platforms
~ were required to ~be constructed. No more could a structure be built on the best site,
but instéaci, the ne'ed'of. the day is more for thé construction of the structure at
the available site which may comprise a soil stratum with advefse conditions. These
immense Chaliengés have rendered the statistical and probabilistic approaches as idea,l"
tools to isupplement the tradi‘tional deterministic methods of analysis and design.
- Additional conservatism.results in additional costs, and‘in very large projects a,s.
fhose mentioned ehi‘].ier,_'ﬁhis would be an unaffordable luxu;y in terms of economics.
Thus the use of prbba_bilistic methods which use statistical. techniques tb quantify
uncertainties and risks is gttracﬁve. | | o
Statistics enable thetacquisitior.l. of a better understaﬁding of limited data, pler-
mi‘ttihg' a better des.cription. of site Vcharac_teristics, Wthh 1n turn results in analysis
apd_'design requiring less conservatism. In the hgh:t of the above considérétions the
cone penetrometer test and statistical methods seem to be ideal partners which would
“enable the'enterprising geotechnical engineer to meet the present day challenges and
achieve the goals of dynamic design iﬁcurring the least cost, and most importantly‘;

at a reduced risk of failure.

1.2 Scope of the Thesis

This thesis examines several techniques" which may be used for tile statistical charac-

terization of soil profiles with special ‘eniphasis on applications to data obtained from
the CPT. These techniciues are new to geotechnical engineering and would énhance
the soil profile c_hara‘cteriz‘ation capébilities of in situ testing methods. These tech-
niques can aléo be applied to data obtained from other deﬁces such as geophysical

logging equipment which samples at reasonably close intervals.
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Most statiétical me’rhode depend on 'rhe stationaﬁty of data and ljkewise the tech-
niques used in this the51s too will often refer to stationarity of profiles. In view of this
frequent reference, 1£ 1s appropnate to ma.ke a precise definition and a clear dlstlnctlon
between one dimensional and two d1mensxona.l statlonanty,lnght at the outset._

Most soil properties inereese in ve.lue rvith depth giving rise to trends. The non-
stationary nature of soil pro‘pert‘y values are eeused by these:trends. .Therefore, soil
properties 1n the depth dimension can be expressed. to comprise of two components
as.follows; o

SOIL DATA = TREND + RESIDUAL -

The resulting residual after trend removal fluctuates around the trend and is sta-
tionary. This .‘expla,nation can also be extended to.the horizontal dimension -Where
applicable.

The ma.ln emphasis in this dissertation is on fhe investiéation of single profiles in
the depth dimension where the concern of stationarity. will be in the depth dimension.
- In 'terms of 'ﬁrst moments, sta.tionerityAimplies a constant meen although in a wider

sense, a sta’pionary data set is deﬁned as one which also has a constant va;riance '
~ and an autocorrelation function -which is dependent only on the separation drstance
~ (lag distance) between data poinfs. Two dimensional fdata analysis 1s performed
in .Chapter‘ 6 where correlations in both t'he‘vertica.‘l and horizontal dimensions are
determined. In.suc}r situations the stationarity of concern will be in the vertical and
horizontal dimensjons, although the Basic’ ‘deﬁnifcion remains the same. ‘Fignre 1.1
illustrates these two. types of stationarity more clearly. In the one dimensionel (depth
_ dlmensmn z dlrectlon in Flg 1. 1) situation, the stationarity of concern will be for
individual profiles. For example, the statlonanty of proﬁle V1 s mdependent of
profile V2 V3 and V4 which are handled individually in one dimensional analysis.

In the two dimensional analysis, not only vrill the concern be on the stationarity'in
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Figure 1.1: Illustration of Stationarity in One and Two Dimensions.
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fhe vertical dimension but also on the stationarity of the generated ﬁroﬁles H1, H2
etc., at differcnt depths z;, 2, and so on, respec;ci\}ely. The idea of sfﬁtionarity aﬁd
: methods of determination of stationarity for both cases discussed above will be dealt
" with more fhoroughly in the rele\}aﬁ_t é'ections of the thesis.”

Soil profiles are highly hetéfogeneous and may consist of sevéral substrata which
_exhibit different vcharac’teristics from layer to layer. It is of pﬁr_ne importance that
each of these subl.ayers 1s identified pﬁdr to any delsign or analysis, since a mere visual
“inspection of the froﬁle may not lead to the pr'oper delineation of iayérs.'
The cone peﬁétration test is aﬁ_ideal tool for the purpose of di.scrimjnating be-
- tween different layer types, ‘dué to its capability of sampling at close intervals and also
because of its high repeata.bility. Prior_.to any statistical analysié, it is neceséary to di-
" vide the entire profile iﬁto statistically hon-logenetrDuAs sublayefs, based on the mean, the
variance Va.hd‘ the trend. Well establiéhcd empiriéal charts based on the ﬁ'iétibﬁ ratio
and th‘ellA)orevpresAsure ratio exist to classify differént soil types pres'er}t in a soil profile
but at times, these methods are unable to determine layering accurately. The statisti-
cal methods to be described caﬁ be used to supplement the information obtaiﬁed from
the classical ﬁethdds of layer identification. The three statistical fechniques that will
be tested for layer identification are the T Rétio, Intraclass 'Correlationb Coefficient
and the D? statistic. |

The T Ratio or the Intraclass b(.Jorre‘la,tion Coefﬁciént can be used to inves.tigate any
one of the thrée inain parameters obtained from the CPT, namely the cone tip bearing,
sleeve friction and pore pressure, in determining the layer boundaries. A multivariate
analysis which uses the D? statistic will be employed to investigate the comb'i'.ned-
effécts of bearing, friction and pore f)ressure, together or for any combination of two
of the abové parameters. This type of analysis which coﬁsiders two -para.meters is

in a way equivalent to the conventional friction ratio method, if the two variables
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considered are cone'bean'ng and friction. On.the other hand, 1t 1s also equivalent_to '
| the soil classiﬁcation based on the pore pressure ratio, if the two variables considered
are cone bearlng and pore pressure In all of the above three methods namely, .T
-Ratio /Intraclass Correlation Coefﬁc1ent and the multlvanate analy51s ‘using the D?
ASta,tlStIC, a window of a pre-deternuned Width will be passed along the data proﬁle and
‘the statistics on either side of the window. center will be investi'gated...'lf the engineer
requires a detailed analysis, which requires a more severe 'discrimination between layer |
types a narrower wmdow width can be chosen. All of the above three methods w1ll
be applied on three sets of CPT data, in"an attempt to’ illustrate the advantages of
the statistical_ methods over the conventional method, in»identifying different layers
in a soil stratum. ‘ o

Once the layers are identified, the different tre_nds and other properties of these
- sublayers will have to be characterized. Soil properties -are highly dep'th dependent
and therefore_ significant trends in thei vertical dimension can be e)rpected; Methods of
trend analysis which essentially use regression techniques to describe different layers
will be described. A measured soil property is made up of three parts: namely,-
- the determimstic trend, the residual and the error term.. The trend obtamed from
a’ regression ,analys1s will be accurate only if it has succeeded in abs_orbing all the
correlations pr\esent- and if it has not, the residuals vvill alse have to he co_nsidered in
ebtaining accurate estimates. The difficulties arising when dealing with geotechnical
test data will be looked into in detail and methods of overcoming these' problems will
be highlighted.' If layering'in soil profiles is. correctly identiﬁed, it.is reasonable to -
- assume that trends in geotechnical data will be linear or curvilinear. The curvilinear
trend could be fitted with a polynornia.l of the second degree while the linear trend
can be modeled by a straight line. Two applications on real data illustrate how the

best model could be chosen. In some instances, a mere visual inspection may not
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~ reveal the preeeﬁce of-a trenld. in a’soil layer. In such cases, it may be a good idea to
N Aperform the ‘RUN’ test to determine the statlonanty of a soil layer. Two apphcatlons
of the ‘RUN’ test are used to 1llustrate the use of this method

© It 1s common that a CPT profile may - .consist of anomahes or extremltles In such
cases, statlstlcal ﬁltenng based either on the median or the mean can be employed
in order to remove these a,nomahes_. While the degree of ﬁltenng required is highly
situation. dependent, it has to be e'xercised' with utmost caution, so that genuine
aata _.giving.ris‘e to actual .thiﬁvlayers are not removed. The main purpose of filtering
should be to act as an’ g,id in identifying trends. Methods of smoofhing- such as
mevihg average smoothing and Fourier smoothing will be examined, together with
applications, with a view to illustrate the effects of smoothing on the identification
of frends |

Natural heterogenelty of soﬂs limitation of data avallablhty, soil dlsturbance dur-
1ng testing, etc., all contribute to the uncerta.mty of soil data, which lead to the behef
that the most appropnate method of analyzing soil data is by considering it as ran-
d‘om.v Different applications of the theory of random fields to cone penetratien tesf
data will be investigated in order to obtain a better understanding of the soil profile
cheracteristics.- - |

The seale of fluctuation is a pa_ll'ameter of great potential in:bt‘he etatistical eharac-v‘
terization of soil proﬁles; The concept of this parameter.and its multiple abp]ications
to CPT data will be investigafed in detail in this dissertaﬁoh. The idea ef the scale of
- fluctuation was introduced to geotechmcal engineering by Vanma.rke (1977) but since
: then other researchers have not made use of it. The present work has recogmzed its
- potential and will apply the concept to CPT data, from the pomt of 5011 vanablhty
and also as a tool to study the averaging effects of cone bearing, sleeve friction and

pore pressure. The method of derivation used is a practical variant of the method
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first nsed by Vanmarke (1977), and is very advantageous for 'computeriza_tion of this
procedure. The advantages of the proposed method will be highlighted together with
a comparison with the original method. The variance function from which the scale of
fluctuation is derived and the scale of fluctuation itself are also used to investigate the
correlation effects betvveen spatial averages. For examplel, in the computati'on ‘of foun-
dation settlements, the effect 'of the settlement of an adjacent footing is very rarely
considered in classical foundation‘engineering. I-lowever', correlations doie)'cist‘and
have to be considered if accurate estimates are required. Exceedance probabilities of |
spatial averages over threshold values with respect to layer thickness, threshold value
considered and variability of the soil layer will be described with applications on CPT
proﬁles. The concept of exceedance probabilities are of great concern to geotechnical
engineers who are concerned about the magnitudes of the disturb_ing force and the |
available soil strength, especially in slope stability analysis. » |
The geotechnical .engineer 1s very concerned that redundant data are not gath- :
ered in any site investigation program. Too much data acq.u‘i‘sition will result in over
expenditure While the effects of lesser exploration and testing than required could
be drastic and may even result .in .’catastrophic consequences. Therefore, it is very
important to strike a balance between the two and with this aim, the optimum sam-
~ pling distance has been derived as a function of‘ three_ main factors; soil variability,
the desi'red accuracy of the estimate and the confidence based on the estimate. |
.. Time series metho‘ds‘ will be used to demonstrate the beneficial use of‘ autore-
gressive and moving aVerage models to represent the stationary component of a soil -
profile after trend removal. Time series metliods' have also been used to eva.luate
the measurement noise in order to draw conclnsions on the efficiency of different test
methods. These results have also been compared to a different technique‘ recom-

mended by Baecher (1985). The other major component of errors in soils data is the
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;bias error which can ~oﬁ1y be_ determined with respect to a different test method and
the‘evaluat_ion of even an abproximate estimate of the random error would be useful
in determining the quality of a given set of data.

Soil properties are highly correle,ted eépecieily in the vertical dimension. Ahy
interpolation method similar to regression will be accufate only‘ in the absence of
correlation. This isa very common assumption which is often violated in geotechnical
engineering When estimating soil properties at ontested locations. Therefore, any two-
dimensional interpolat;on proceddre which has the depth dimension as one of its axes,
will necessarily have to consider 'c'orrelations, if accurate estimates are required. A
new mef':hod of formulating the two.dimensionel autocorrelafion fqnotions- applicable
~ to geotechnical test data analysis will be propo‘sed‘in order to perform interpolé.tion
: consideﬁhg the correlation between points. Different types of autocofrelation and
semi-variogram functions which can b.e used to model_ soil property correlations in
one, two or three dimensions will also be presented. Autocorrelat_ion functions for
a given set of two diinensiona.l CPT data have been developed and interéolaﬁon
performed. The results obtained will be compared with actual CPT data, in making |

evaluations of the recommended interpolation procedure.

1.3 Organization of the Thesis

Chapter 2 of the thesis will p'resent univariate and multivariate statistical methods
which can be used for the i_dentiﬁcation ofv layering in a soil profile.. These methods
include the T Ratio, ‘Intraclas‘s Correlation Coeflicient and the D? statistic.

Methods of Trend Analysis will be described in Chapter 3, with the objective of
obtainirllg. a better understanding of the characteristics of fhe soil profile. The effect
of smoothing and filtering on trends and a method for determining the sfationaﬁty

of a soil profile based on the ‘RUN’ test will also be explained in Chapter 3.
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Several applications of random field theory on CPT data will be detailed 'in. Cha_p-
ter 4. -The concept of the scale of ﬂuctuation in evaluating the variability of a soil
profile, apphcatlons of exceedance probabilities and the effect of vanablhty on the '
optlmum sample spacing for a given layer will also be presented in Chapter 4.

The role of time senes methods in the mterpola.tl'on of one dlmensmnal geotech-
nical test data will be dlscussed in Chapter 5 together w1th appromma,te methods
whlch can be used for the estimation of the random noise component of dlﬂ'erent in
~ situ testing devices.

Chapters 1 to 5 deal with data profiles in the depth dimensipﬁ and therefore
are all one,thiimensional types of analyses. | .

Chapter 6 presents a procedure for the interpolation of soil property values in
two dimensions with one of these dimensions being the depth. Correlation of soil
property ralues between data points.is .considered in the analysis. |

_ Chapter 7 describes a simple case history involving soil densitication where sta-

* tistical methods such as layer identiﬁcation trend analysis and the concept of the

‘. _ scale of fluctation have been used to venfy the effects of soil 1mpr0vement

Chapter 8 presents the ﬁnal conclusions of th1s dlssertatlon

1.4 Interactive Micro Computer Programs

Several interactive IBM - PC corrlpatible micro computer programs have been de-
veloped to accommodate different data‘ formats. These programs which have been
written in Microsoft Fortran are very flexible with several eptions' available to the
user N |

The pregram.s include procedures for layer idehtiﬁcation, statistical filtering, smooth-
ing and ~trend analysis. The deternﬁnation of the scale of fluctuation and the evalua-

tion of stationarity using the ‘RUN’ test to check for stationarity can also be perforrhed
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using these pfograms.
The detailed manuals of these programs are available in the Department of Civil

Engineering of the University of British Columbia.

1.5 In Situ Testing Devices

Tradiﬁona,lly, in situ testiné ‘methods have been used by geotechnical engineei‘s ‘to
gain a bAetter uhderstanding of the qualitative characteristics of the subsoil. Mod-
ern ;céchniques' have resulted in impro&ed methods of testing and sophisticated data -
aCQuisitiOﬁ systems which have stimulated rapid development in in sjfu testing meth-
o&s o?er the ye%;.rs, especia,ﬂy s_b in the last de'cade. It is poésible that in the no’p §0
distant future, in- situ testing methods will play a more déﬁﬁnant role in geotechni-
cal engineering: Mitchellvet al.(1978) ‘have listed four main reasons, supporting this |
prediction. They are,‘ .

(1) The ability to detefrﬁine properties' of soils, Squfl as sands and oﬁshore deposits,
that cannot be sampled in the undisturbed state.

_ (11) The ability to test a larger volume of soil thaﬂ can be conveniently tested in

the la,bofatory. _ | _ | |

(iii)‘ The. aBility to avoid some of the difﬁtulties of laboratory testing, such as
sample disturbance ana fhe proper simulation of in situ stresses. :

_(iv) The increased cost effectiveness‘ of an exploration and tésting program using
in .situ testing methods.. |

Difficulties such as the inabiﬁty to independently vary stress ”direction and stress
péths, the unkﬁown effects of principai stress rotation .during testing, the inability
- to control drainage independently and thé "s-emi empirical nat1_1re> of interpretation
methods are some of the shortcomingé of most in situ testing techniques. These

i shortcomings inhibit the development of a theoretical background which would be able
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~ to explain- fully the behavmr of a 5011 element a,d_]acent té an in situ testmg device. If
this adver51ty 1s overcome, it may be possible to replace all the emplncal correlations
available at present, with theoretical expressions _ha.vmg a sound fundamental basis.
Most of the data to be rdea.lt with in this thesi_s have been obtained "frbm the
cone fenetroineter 'te.st.' The CPT is becoming‘increa,singlky popular as an in situ
test for site investigatidn and geotechnical design, because ;)f its high repeatability |
and relatively low.me;dsur-ement noise (Wu, 1986). As a logging tooi fqr geotechnical
eﬁgineeﬁng pufﬁoses; it is efficient with respect to the delineation of sfratigréphy
aﬁd in its capability 6f performing simultaneous méasufements of data on several
channels. |
- Results from the CPT have been used to develop empiriéa.l correlations with soil
parameters such as friction angle, relative density -and- shear strength. "'Iv‘he seisﬁﬁc
cone - which is an improvement _l of the. basic CPT, measures the shear vﬁv,e veloc-.
ities from which the maximum - shear moduli can be estimated. In recent ‘timeé,
v researchei;s have developéd more rational correlations betweén the standard penetra-
tion test (SPT); ‘N’Ayalue with the cone bearing obta.ined from the CPT. As a result
ovf"these correlations, Seed’s original liqﬁefattion curves based on the SPT, have been -
extehded for use with the CPT, enhahcing its capabilities. Iﬁ spite of all these ad-
-~ vances, the CPT Ais primarily an efﬁcientv logging tool and interpretation charts have
- been ‘developed 'fo identify soil strata based on the friction ratiQ. and cone bearing.
" Detailed descriptioﬁs of these pr§cedurés are available in Campanella et al. ‘(198.3,
‘1988) and Robertson (1983). Descriptive accounts of the different tyi)es of ‘equ_ipr'nent -
and tes'ting. proéedures, -and methods of data acquisitid_n are available in Roberts_on
and Campaneﬂa_ (1986). | o |
The cone used for this research a.,t' the Uﬁiversity of British Columbia has a cone

tip of 10 em? base area with an apex angle of 60°. It is illustrated in Fig. 1.2. The.
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friction sleeve located immediately behind the cone tip has a standard area of 150
em?. The cone is made to penetrate at 2 em/sec and has the fa.cilify to safnple on
six aiﬂ'erent ch.a,n'nels at 2.5 cm intervalé, meé.suring the céne ‘beari‘ng, sleeve friction,
pore pressure at the tip and behind the sleeve, temperature- and inclination.

Thé most widely ﬁsed in situ te_stiﬁg déviée in North America‘i 1s the standard
.penetra,tion_ test (SPT). Many soil properties have been correiated to the ‘N’ value
. obtained for the SPT. Mqré details of the SPT are avaﬁlable in any text on foundation
' éﬁgineerilng. The flat plate dilatorﬁeter (DMT) 18 another test which is known for its
~ repeatability. Liké' the CPT, several empirical éorreiations have also been est’aiﬂished
for the ADMT. The most important parameters that could be derived from the DMT |
are the friction angle in'saﬁds, the lateral stress coefficient and the over conso]jdz;,tion
ratio which are all debendeﬁt on i;hree index parameters. These pafameters are also
used for soil classiﬁcatioﬁs. More details of the DMT is available in Jamiolkowski et
al.(1985), | |
- jThere are three types of preésuremeters being used in practice at present. They
are the Meliard pre-bored pressuremeter, the 'self—bored pressuremetér and thelfull-
diéplacement pressuremeter. The more important’ pa,ra,metérs which can Be obtained
from the pressuremeter are the shear modulus and the lift off pfessure which could
“be related to the lateral stress in the ground. |

The field vane test is us¢d to determine the undrained shear streﬁgth of cohesive
soils in Ithe field. This test measures the shear strength of soils, both in the‘iu}zdis-
turbed and remolded sfatés,. and hence could be ‘uset-i for dete;miniﬂg.the sensitivity
of the soil. Howevér, fhe performance of the vane test is questionable due to the high
_disturbénce; of tlll‘.ebsoil é,rqund the appdratus‘,‘ and the ensuing measurement noise
which is found to be very signiﬁé'a.nt.

- The dynamic cone penetrometer (DCPT) is somewhat similar to the SPT since it
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measures the nurﬁber of blowcounts required for each foot of penetfation. However, |
- unlike the SPT, it uses a dynamilc load to drive the rods, thus causihg'an enormous -
disturbarnice in the surrounding soil. Inconsistency and the very low repeatability “of
the DCPT are the causes for its limited usage in. geotechnical site investigations. ‘.

The screw piate test is a modified form of the plate load test with the ability of
| peffo'rming unloading and reloading cycles of load on the soil atldepth; The load |

- éettlement curve which is the main product from s'uch' a test, is used to obtain
‘the vertical modulus of deformation of thé soil, which in turn is used to determine
' settlement charaéteriétics of soils under load.

A fairly recent iﬁno_vation in in situ testing devices, is the Iowa Stepi)ed Blade
(Handy et al., 1982) which is used to estimate the in situ horizontal stress. This |
instruméﬁt is made uﬁ of sections of‘ varying blade thickness along its length and the
hQﬁzoﬁtal stress of .the soil can be measured at the center of each of these sections of
different thicknesses. The resulting extrapolated value of stress at zero blade thickness
gives a.reasonableAestimate of the in sifu‘ horizontal stress. |

‘More comprehensive details of all of the above in situ testing methods are found
in Jamiolkowski et al. (1985). The insitu testing devices briefly desc'rib.ed_ above are -
only those directly relafed to gé_otechnical_ ir;vestigatioﬁs. The statistical methods
Apresented in this thesis are also applicable to geophysical loggihg techniques such as
.gamma ray, sonic, nuclear and electrical loggiﬁg 'etc.: . A comprehensive description of

most of the 4.geophysic'al logging devices are given in Telford et al.(1976).

1.6 General Geology and Site Descriptions

The statistical techniques presented in this thesis will be applied to data obtained
from several research sites in the lower mainland in British Columbia. They are,

. Mc_Donald : Farm
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e Haney Site
" o Tilbury Island
e Langley (Upper 232nd)
. St.ro'ng Pit
e B. C. Hy:dro Raiiwa.y Site
o Annacis Island Site

v The genéxal location of the above sites are shown in Fig. 1.3.-

1.6.1 McDonald Farm

McDonaid Farm is located at the northern edge of Sea Island in the municipality _of
Richmond. The island is one of several that make up tile Fraséf River (ielta. The
general geology c‘on’s)is_t_s‘ of déltaic disscributory chann_el fill and _overbank dépésits
whiéh overﬁé post glacial estuarine and maﬁne Sedimeﬁts (Aimsfrong, 1978). The
general stratigraphy of the sites consists of a soft organic clay in the fop 2m underla.iﬁ :

by loose to dense coarse sand upto about 15 m. The soft normally consolidated clayey

- silt which lies below this sand exfénds to a depth of‘30_0 m (Greig, 1985).

1.6.2 Haney Site
The Haney site is lo‘c.':.z,ted in the Haney Slid_e site and is situ'ated é.pproximately 30
km eaét of Vancouver almosf directly below the town (::entré' of -Haney. The site is‘
a remnant of the Hanéy slide of January, 1880. The general geology consists'_of in-
terbedded marine, glaciomé,riné and glaﬁié‘l' sgdiments of the Fort Langley Formation.
" ‘The so1l proﬁle consists of a fill in the top 2 m underlain by a meter of sand which

overlies a sandy silt to silty clay extending to 30 m (Greig, 1985).
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1.6.3 Tilbury Island

The 'site from which the data was obtained is situated immediately adjacent to the |
B.C. Hydro LPG plant located towards the north-eastern side of Tilbury Island. It
consists of overbank sandy silt to silty loam (abgﬁt 2m thick) overlying 15 m or more
of deltaic and distribﬁtory channel fill including tidal flat deposits. These are mainly

interbedded fine to medium sand with intrusions of slight silt lenses.

"1‘._6'.4 - Langley Site

The site is Ibcated at the 232nd St. exit of the Trans Canada Highway in Langley. It
is about 1 km east of the B. C. Hydro railway site. This site is on ‘a.compz.xcted clay
fill that forms the approach for_ the 232nd St. overpass and lies at the western extent

. of the Fort Langley Formation (G-reig, 1985). This férma.tion has recorded at least
three advances and retreats of a valley glacier and comprises of interbedded marine,

_glaciomaﬁne and glacial sediments (Armstrong, 1978).. The stratigraphy consists of .

" a 2.5m cdmpaded organic clay fill followed By a overc_onsolidaited silty clay beween

approximately 2.5 aﬁd 7.5 m. This is underlain by a normally consolidated silty clay

 with occasional sand lenses, extending below 20 m.

1.6.5 Strong Pit

This site is located at the Strong Gravel Pit near Aldergrove (in British Columbia)
“which is in the central Fraser Valley in the Fort Langley glaciomarine deposifs. The
stratigraphy at Strong Pit consists of a outwash 'sa,ndy’grayel (Sﬁmas Formation) in

~ the top 1.5m. Below the sandy gravel is an overconsolidated clay extending past 10

" m with a thin layer of sand at aBou‘_c 9 m.
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1.6.6 B. C. Hydro Railway Site

This site is located at the base of a 5m’cut adjacent to the Trans Canada Highway in
Langley.- It is situated approximately 100 m west of the B. C. Hydro railway overpass’

| (Greig, 1985). The site is located at the eastern extent of the Capilano sediments

which consist of raised deltas, intertidal and beach deposits and glaciomarine sedi-

ments'(Armstrong,l 1978). The top 2.5 m of this site consist's of mjxed gravel and |

. sand fill underlain by a hghtly overconsohdated silty clay w1th occasional silty sand

layers between 2.5 and 10 m. The layer below this is a normally consolidated silty

clay extending beyond 30m.

1.6.7 ‘Anna_cisllslan.d Site

The site in which the soil compaction was perzformed is.situated at the north side
“of Annacis Island along theAnorth channel crossing and immediately east of the
Alex Fraser nghway (Gray Beverage cannmg plant site). It constltutes an artlﬁcral :
promonotory built by 1nﬁlhng with dredged sand behmd a rockfill dike. Investlgatlons
‘ 1nd1cated that the site was covered byal8to24m thrck sand fill on top of a 2.4 to

39 m th1ck clayey silt -underlain by an alluvial sand extending below 10 m.

1.7 Review of Literature on Statistical Methods:

The piorleerirrg work of statistical applications to soil test data was performed‘vby
Lumb (1966) who investigated the .variability of natural soils. Subsequent work I;y
‘ Llrmb (1967,°70,’74,75) all refer-to-basicv stat_isticalI applicatrons -which covered topics
| such as the s‘amp.ling patternsb, identification of trends, distributionvfunctio"n- of soil
' properties and the precision and accuracy of soil tests, etc.. |

Kay and Krizek (1971) considered the effects of correlations of estxmates and

also the coefﬁcrent of varlatron in denvmg probablhty drstnbutlons of soil propertres
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Holtz and Krizek (1971) made use of stéﬁsticél p.arameters in la;rge projects such
as dam and bnidge jconstructiont Krizek’s real contributioﬁ to the field of statistics _
and brobability in geotechnical engineering is found 1n Alonso and Krizek (1975) who
'conéidered soil pfoberties as._random variables. The autocorrelation( function Was
used to éxpress soil property corrélations while also introducing thé spectral density
fﬁnction as an adequate descriptor of soil pfoberties. Rizkallah et al.(1975) have
- made use of regression techniques in obtaining soil para_mefers, néglecting eﬁeqts of
cofrela.tioné. Rizkallah et al.(1979) have also  used the concept of energy to perform
compariéons between the static cone penetrdméter and the dynamic cone .p‘enetrajtion
“test, employing methods of multiple reg;eséion.

The knowledge in the field of statistics in soil engineering has been enhanced -
- significantly, by the contribution of Baecﬁer (1982) who was especially intérested in
probabilistic site explorétio_n _pr;)blems, and emphasized the need for thc idehtiﬁca—‘- :
tion of sfa;tistiCally hofno'geneous layers pﬁor to any analysis. Baecher and Ingra.
(1979) and Baecher (1981), co.nsidered the autocorrelation function in exﬁressing’ soil
property correlations. The sourcés of data scatter and the different types of ér_rors
_ encountered in geotechnical data have been desci’ibeci by Baecher (1984a,.1984b) who
describea a proéedure by which Ithe measurerﬁent noise .of data could be determi'ned.
In addition to detailed desvc'riptions of error é,nalysis and uncertainty. in geotechnical
engineering, the importance of the autocorrelation function énd the correlation coef:
ficient of soil property values in the determination of accurate estimates for problems
of bearing capacity and settlement have been reiterated in Baecher (1985_).

Several appliéation's of simple statistical procedares, similar to the evaluation of

probability distribution functions, correlation of soil properties such as shear strength

through methods of regression, etc., are found in Cheong at al.(1980), Haldar (1981),
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‘Asacka et al.(1982), Krahn et al.(1983) and Anderson et al.(1984) and Johannes-
son (1985). All of these publjcations,b have concentrated on basic statistical aspects,
Adisregard_ing the more sophiétiéated problems in‘th(‘e characterization - of soil profiles.

The first major attempt in introducing Bayesian concepts- to geotechnical engi-
r.xeeringb was fnade by Tang (1971). This is an exce]lent introduction to Bayesian
evaluation and mformatlon for foundation engineering. Smce ‘then Bayesian methods
in the estlmatlon of soil properties have also been used by Veneziano et al. (1975)-
where modeling has been performed, accounting for soil property uncertainty, with
the exponential fﬁﬁction being used to represent soil property correlation. In ﬁore
recent times Vita (1984a, 1984b) has used Bayesian methods, incorporating both the -
soil property variability and the uncertlaint.y factor caused by the limitation §f data
availability. | | B |

The réal 'maj_or‘ contﬁbutioh to the area of ‘mode.rn’A statistical soil profile fnod-
eling Was made by Vanmarke (19773.) who used.t.he théory of random fields, in the
derivation of various parameters which definitely improved the knowledge in problems
. of site characterization. In additiop to the introduction of the scale of fluctuation to
geotechnical engineering, theories on thé probabilities of exceedance and the correla-
tion of sbai;ial a{ferages (Vanrﬁarke - 1978a, 1978b) have also been ix-ltroduced._i These -
coﬂcépts have been applied in the’v estimation of the rg]jability of earth slopes (Van-
marke - 1977b). The text Random Fields' Analysis and Synthests (Vanmarke - 1983),
is a significant contnbutlon to the understandmg and apphcatlon of random ﬁeld
theory, wh1ch is relatively new in geotechmcal engmeenng |

Tang (1984a, 1984b, 1987) has also apphed the theory of random fields to geotech-
‘nical test data. In addit_ion, Tang (1979) ha.s performed a probabilistic evaluation of
penetration resistances, considering uncertainties of the inherént spatial vaﬁability of_

soil and location of sampling point on the determination of unbalanced moments on
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gravity platforms. Ta.ng et al.}(.1984) also give a conclusive description of a procedure
| for the probabilistioeva,luatioﬁ of gravity .platfdrms. v

| Wau et al.(1985) used methods of Time SeriesAAnallysis on geotechnical data fo
represent soil broperty Vaﬁation with autoregressive and moving average models.-
Thé importance of probébih’stic and statistical approaches has been highlighted in
- Wu (1973) and also in the extensive probabilistic site exploration studies (Wu - 1981),
including methods suited for offshore conditions (Wu - 1986)

In the area of two and three dimensional site characterization, fhe only recog-
~ nizable atfempt since Baecher (1982) has been made by Tabba et al..(1981a., _1981b)
who used polynomial equations to represent the autocorrelation. funCtioﬁs. A similar
approach has also been used by Kulatilake et al.(1987,’88). Prior to this work in the
field of intérpblation of soil test data, Tabba and Yong (1979) described a procedure,
where the maximum likelihood function st used to_estifnate trend coefficients. Yong
(1984) also analyzed the probabilistic nafdi‘e of soil properties such as shear stfength,
consolidation characteristiés, Atterberg limits and chemical composition, before con-
cluding most a.ppropria,tely, that the degree to which samples are repgeéentatiye of
the soil stratum under investigation is the mbst importént fa_ctor that controls the..
‘determination of the real soil property. | .

‘ With the advent of geostatistics in ;che field of geology and mining (Agteri)erg,
1970,’74), gedtechnical ‘eﬁéineers too have begun in recent years, to appreciate its
practical afdvan'tages‘. (Soulié, 1984).- In addition to- the proce(il.lre fo identify sbii lay-
ers ﬁsing the variogram, its versatility .in the area :of soil property interpolation, seems
promiéing (Christakos, 1985,'87). Although variogram modelling and techniques of
‘Krigiﬁg’ have not been ﬁséd in geotechnical éhgineering they have found Wide, appli-
cations-in soil science (Websfer, 1980,’85), mininé and.geology (Journel et al., 1978,
Davis et al., 1978, Delfiner, 1973,’76). |



Chapter 2
Identification of Soil Layers

2.1 Introduction

2.1.1 General :

The proper identification of soil layers‘ is impOrfa.nt for .design in order to obtain’
reusonable engineering parameters for the different layers. Accurate identification of
sublayers is a.lsolimporta,nt from a statistical view point, since all statistical analyses
have to be performed on essentially statistically homogeneous layers..

The cone penetration test (Ci’T) performs data logging at close intervals and
does simultaueous measurements on several chaunels yieldiﬁ_g, for.example, values
- of cone bearing, sleeve friction and pore pressure. The electrical cone penetrometer '
18 essentiu]ly a logging tool and proper methods of layer idenriﬁca'qion should be a
vhigh priority. At present, th_is’importa:nt task 1s performed by visual inspection of
the rvarious soil parumeter profiles and by studying the vuriatiou of either the friction
ratio, Rf (the ratio between the sleeve friction and the cone beanng) or the pore
pressure ratio, B (the ratio between the excess pore pressure and corrected cone
_ bearmg) with the cone bearing.

A low friction ratlo with high beanng is evidence of so11 which is predommantly
granular and a hlgh.ratlo.wrth low bearing implies a soil which is mainly cohesive
with composites and silty soils lying somewhere befween. AThe ratios obtarned are then
used together with the cone beanng to predlct the oartlcular type of soil encountered '

from well established soil cla551ﬁcat10n charts such as the one shown in Fig. 2. 1

24
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Figure 2.1: Simplified Soil Classification Chart for the CPT (after Robertson and
Campanella, 1986)
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2.1.2 Soil Classification Chart for the CPT

The classiﬁcation ‘ché,rt given in Fig. 2.1 identifies soil types as indicated, but fails
~ to identify soil sublayers which may be present‘in a la,yér of sand, silt or clay. Once
the majﬁ §oil types are determined, ;orrela.tion graphs are uéed to obtain appropﬁate
values of friction angle and relative density in conjunctioh .Wifh cone bearing. The
resulting values of different friction angles and relative densities wouldv givé an in-
dication a;s to the different sublayers present in the stratum. The above p'rocedure‘
is subjective and could resﬁlt in erroneo_us demarcation 'of sublayef boundaries and
could be imprqved_ if a method can be deployed to identify different sublayers. Ha,viilg
a khowledge of the existing sublayers, the classification chart based on the friction
ratio and the cdrrelati;ﬁn graphs of relative densities and friction angles could then
be used to determine.the different parameters. The classification chart covers a wide
range of values, éspecia]ly in the case_of sands. For example, a soil having a cone
* bearing value between 70 and 180 bar and a Ry value less than 1.4% is classified as
. sand while a soil which has a cone bearing value between 180 bar and 500 bar with
a Rp value of less than 2.0% is cléssiﬁed as a gra\?é]ly.sand. ‘it is obvious that a soil
, en_compaséing such a wide range of bearing values will have several sublayers of dif-
ferent’ relative'densities and friction angles which could be obtained from correlationb
graphs. As mentioned previously, this procédure would be siﬁphﬁed and made less
ambiguous, if the sublayers céuld be accurately identiﬁed._ |

The friction ratio is a function of the sleeve fArictionv and cone bearing. The cone
precedes the sleeve which is also much idnger, resulting in the .sleeve friction being
indicative of an‘avejrag'ed v‘alu_e. This eﬁ'e‘c"c certainly imposes a mechanical limitation
on diécernible layer thicknéss. : | |
A survey involving fifteen people who have all had prior experience with the CPT

chart, was conducted to ascertain the subjectivity involved in its use. The results
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indicated a fair amount of disérepancies' in the layers identified by the fifteen subjects.

2.1.3 Improved'Methods of I;ayerIIdéntiﬁcation

Wifh the intention of ident'ifying-layerir.lg rﬁére accurately, éeveral statistical proce-
- dures will be descri.béd and followed up with several apph'éations to illustrate the
a,("lva;ntages"and superiority of such methods.

The ;statistical methods proposed will also‘e‘nab‘le the engineer to decide on the
* different n-umbgr of layers he could select, by inspecting the statisticé' of the sub-
regions within the main layer. If the design requires more detail and sophistication, a
- number of layers based on less criti'cal limits can be chosen, while for a general design
for a low risk structure, the la.yeﬁng can be based only on the more critical or the
highest peaks of the statistic profile. Details of these procedures will be described

later in the chapter.
2.1.4 Characteristics of a CPT Profile
- The data from a typical CPT profile comprise of the folibwing characferistics.

(a) The data may have a lot of short range vaﬁatiqns and a search for a lbnger '

pattern is difficult. Such variations are often erratic and may be regarded as noise.

' (b) The data are highly irregular and often consist of sharp changes. There is no
way of representing these variations as functional forms: between soil parameters and
.depth, unless different layers are clearly identified depending on the acceptance level

of the engineer.

(c) The data are multivariate, that is bearing, friction and pore pressure -have an

influence on the soil type encountered. It may be that the dependency on bearing is
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much higher than the other parameters; but there is no a pﬁoﬁ reason for accepting '
‘,it.' Furthérinore, since the. CPT gives all these data, it is always more meaningful to

base pfedictions on the maximum amount of information that can be derived. |

From the‘ above _explanation,.’i’.c is evident_Athat a statist_ical method of idéntify--
ing different types of layérs is justifiable. Most of the statistical and probabilistic
methods rely oh the homogéneity or sta.tioﬁarity criteria of soil ?roperties ‘within a
sﬁblayer and the proper._id_entiﬁcation of layers becomes -vi;ca,lly important. In ad-
dition to the univariate and multivariate statistical methods, a detailed.'procedure
of nonlinear vopt\imjzatibn techniques wés als;é applied in an attempt to estimate soil

layer boundaries, but this method was not successful as described below._ A

2.2 Nonlinear Optimization Techniques

Traditional trend analjfsis techniqueé use the concept of nﬁninﬁzing the squared dif-
ference’s7 which is known as least Vsql.xares. This is a.iso a process of linear optimization
"in the case of linear trend analysié since the layer start anci end depths are known.
The optimization equation or the equation to be mirﬁmié_ed can be simply expressed
‘for each layer Which has been decided a priori. The details of these proée_dures are |
described in the chapter on Trend Analysis. As explained in that chapter, the s‘quared
differences are minimized with respect to the unknown regréssion coeflicients. How-
| éver, thé simplicity of this procédu_re is lost, when the different léye‘rv bvdepths are
" unknown and the layer depths, too,'. become variables, resulting in the linear prob—.A
lem‘being traﬁsformed into a more cérhplicated nonlinear optimization problem. The

nonlinear optimization function F can be expressed as,

CR=YY@-0 2.1)
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‘where, Q 1s the regressed estimate, [y is the number. of layers vanc'l' N is the number of

* data in a particular layer: Three different types of trends were tried for the estimation

~

of Q;

(a),Linear trend with continuity at the border (Fig. 2.2a).
. (b) Linear trend with discontinuity at the border (Flg 2.2b).

(c) Linear constant trend (Fig. 2.20)..‘" .

If Iy is the number of layers (starting and ending co-ordinates unknoWn) the
: numbér of unknowns (coefficients of the t%end line) would be, 21y for case (a), 3ly—1
.for case (b) and 2y — 1 for case (c). Due to the nature of the optimization equation
above, it is imp{ossibl_'e to determine the partial derivatives of F with respect to the
variables in closed form. Therefore, tWo nonlinear optimization routines available in
the UBC MTS-system were used. Out of these two, 'the routine NLPQO (Vaessen,
1984) calculates the derivatives within it while the routine .P.OWEL (Vaessen, 1984)
does not require the partial derivatives of the opt_i_mizatioh function. For thé iterative
_ procedures adopted iﬁ these routines to be efficient #nd yleld satisfactory results,
Both*theée progfams need good .starting points for the Va,ri.ables. Due to the irregular
shépe of the function Fj, convexity is not aésured, and invariably the local minimum
is not the global minimum. The original intention was to perform thehlanalys.is for
diffgrent layer numbers (lN) and to investigate the mininﬁzed value of the function
Fr(Fy,... ) in order to select the layer number which results in the lowest Fp_. . A
detailed analyéis was done for different types of profiles and in about ninety percént
of thé cases it was found that the oi)'timum layer depth$ oléta.ined for both NLPQO
and POWEL wérc higﬁly sénsiti_ve to the prescribéd starting values. As a result of
this adversity the idea of uéing nonlinear optimization techniques for estimating layer

boundaries waslabandoned in favor of the preferred simple statistical methods to be
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Figure 2.2: Different Types of Trend Patterns Used for Non Linear Optimization:
(a) Continuous Trend Lines with Non Constant Mean (b) Discontinuous Trend Lines
with Non Constant Mean (c) Discontinuous Trend Lines with Constant Mean.
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described in section 2.3:

. 2.3 Layer Boundary Locatioh Using Statistical Methods

Consider a section of a transect along which a property :such as béaﬂng has been
recorded at a number of ‘sampling points and Within which the presence of a soil
boundary can be expected. The efféct of the boundary is to divide the sampling
poin£s into two groups which can be vefiﬁedvfor dist'inAct.nesAs. This effect of variability |
can be assesseci by comparing the difference between the two classes. The larger- the
difference betWeen the two classes and lesser the variation within them, .t}.1e better is
the classification. This effect can be measured using either the T ‘_Ratio or thé Intr-
‘ acl.asleor.rela{tion Coefficient which will be explained in sectidns 2.3.2.1 and 2.3.2.2
respectively. For multivariate records, the bearing, friction and pore pressure are used
together to determ’ine the D? statistic (section 2.3.3.1) which is used to obtain op-
timal boundary demé,r'cations. These methods have never beeh‘ used in geotechnical
engineering or in a wider séﬁse in Civil Engineeﬁng where statistical methods have

not made significant inroads.

2.3.1 Moving Wind(_)W

In analyzing long préﬁles where th_e presence of several boimdari_es are suspected it
is not practical to considér. the entire profile to invgstigate for inciividual boundaries.
Similarly, it is also not advisa.blé to.bracket éegments of data arbitrarily (Webster,
- 1973). In order to avo;id the above impracticalities, a ‘window’ of fixed width (WD)
“is made use of and the exposed ‘portion of the data Withiﬁ the window is examined,
with the center point' of the ‘v;/indow do, being a Vpotlentia,l bounciary. This ‘window’
is moved along the profile in steps equal to the sampling spacing and at each point

do (the center of the window), the two sets of data one above and one below d,,
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are exa,mined for distinctness, using. any one of the foﬂowing statistics; the T' Ratio
or the Intraclass Correlation Coefﬁcient for univariate data and the D? statistic for
multivariéte dete.. The l,x;arjations of the above s_tétistics are plotted aéainst d,, with
the me.xiina or peaks of these giﬁng the oi)timal layer boundaries. If only th\e layers
- with highly dissimilar characteristics are required, only those d, values which have
the highest values of the statistic need be ehoeen. However, if a more elaborate layer
identification is necessary, even d, values giving moderately high values shelﬂd be
selected. o

The width of the winidow is another matter of concern and it should idee,,lly lie
between two limits. It should not be too wide, so that it includes more than one
bopndary and on the other hand, should not be too ﬁarrow because if 1t is so the -
values of the étatistjc will be strongly influenced by noise; rendering any interpre-
. tations of the calculated statistic almost impossible. Soulie (1984) states that an
" -approximate estimation of the a.veljage‘ ldyer thicknesees of a stratum can be obtained
from the autocorrelation fuﬁc_tion which is defined and described in section 4.3.4. A
conservative value of about ﬁfty‘ percent of the above estimate is recommended for
'_ the window width in order to alleviate the possibility of missing layers.n However,. 1f
lrthe spacing bet\}veen beundaries differs significantly, it is advisable to use ; fa,iﬂy lov? _
window width, to avoid missing any layer boundaries. If relatively sharp changes are
presenf between soil types and the distance between layers do not change too much,
the autocorrelation _function will decrease stea,dilfwith increesing lag dista'mce,. from
‘a maximum of unity to a minimum value and ﬁuctuate»afound this minimum. In
pi‘a.ctice the autocorfeietien function first decreases gradually, and then ﬂuctua.tes;
z;;round some rt;iﬁimu(m; giving several local maxima and minima. The distance a{t'
which the first minimum is reached can be taken as the expected average distance be-

~ tween layers. As mentioned previously, half of this distance is a safe estimate for the
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- window Awidth. If the window widths are narrow, the number of data on either side of
dovwill be 'a,lso.low, résulting in the additional restraint that the data be mﬁltivariate
nbrrﬁal (Johnson‘ and Wichern - 1982)._ For a one meter Window width, each sample
~ will have twenty data poih'tsA (05 m divided by the 0.025 m CPT data interval) and
| for all practical purposes, could be assumed as normally distribu.ted, without serious
adverSe consequences. As a result of this restriction, it is recqmmehded that window
widths of less than 1.0 m not be selected. In ﬁhe évent it is absolutely necessary to

select narrow window widths, the data should be verified for normality.

2.3.2 Univariate Records

The two statistics used to identify soil layers from single records are;
(a)v'I._‘ Ratio -
| (b) Intraclass Correlation Coefficient ‘pI
2.3.2.1 T Ratio
On either side of the window center d,, there will be two samples, and Q,. Let Q,
and Q, be the means of the samples and o2 and o2 be the variances with n; and n,

the sample sizes; respectively;

where,
wegiphe-er e

2 _ 1 & 3.\2 |
o' = oy (@i - Q) . (23)
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For two samples with equal number of data points, n, on eit_hér side of the window

center, d,, a pooled combined variance, T,2, can be defined as,

n
o
2n—'1

Twz 12 +

— o : 2.4
on — 1 2 ; (, )
In the above equation 01 and o,? can be expected to be reasonably homogeneous, if

the window widths are not too wide. The T Ratio can now be defined as,
n Ql - Qz ' . - o
ro fE(2sG s
(22 (2:5)

Equatidn 2.5 is a modified form of the ('me'given by Webster(1968) which is a ger;eral
' expression for samples with ﬁn_équal mlmbei' of data. One requirement for the best
possible differentiation of any two adjacent layers, is that the_diﬁ‘efence between the
means (Q; — Q) , be maximum. ff the two sémplés 0, gnd_ Q, are clearly_distiﬁct,
“another requirement is that-the individ_uai variances of the two segments, 0,2 and &22,
_be relatively low, impl);ing that thé wéightéd pooleci variance given by Eq. 2.4,valso .
bé appreciably low. Considering the aforemenfioned requirements, the T rafi6 given
by Eq. 2.5 will necessarily have to pgak at potential iayer boundaries. The T ratio,
~-thus obtained for kdifferen}t values of dg, gives an indication of thé_layer boundaries of

the profile.
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2.3.2.2 Intraclass Correlation Coefficient (p;)

As for the previous case; let 02 and o? be the variances of samples €, and Q, and
" the pooled combined variance Twz, given by Eq. 2.4. The between class variance T,?
1s the variance of the combined sample given by,
1 n1"+n2

ST@-QF (26

=1

.'rbz‘: '

n, + Mg — 1
where, ) is the mean of all the data'@; with i = 1,2...(n; + ny).

For equal number of data in each sa,mplé,

=3 @-Q) en

. The Intraclass Correlation Coefficient Pr ié defined by (Webster, 1968),

. _ —I-bz .
PImTesT,

(2.8) |
It is evident that if each sample {2, énd 2, hé,s minimum variability, 0'12 énd os? in
Eq. 2.4 will both approacil zero and so will 1,2 In addition, if the difference between
the ‘samples is not significant, Y3? in Eq. 2.7 will also approach zero. Siﬁce T,? and
T,? are both positive quahtities, 'T'bbz»_in Eq. 2.8 will ‘approach zero faster than the
quantity (1% + ’I‘;‘,Zr). Therefore, for two such’ samples, {}; and {2, on either side of
do, pr will approach zero. This is for the ex.treme case and in general, if fhe differences
between thé samples aré not sighiﬁcant and they poéseés some variability, then 1,2

and py are not significantly greater than 'zergj. The other scenario is when the two -



Chapter 2. Identification of Soil Layers » - 36

* samiples ; and have minimum variabi_iity but ére significantly different in re_specf
to _fheir mean values. In this circumstance, T',? will a,pproach zero as before, while
T2 will have soir_1e value; resulting in pr being eqﬁal to unity. pr will therefore always )
lie between 'fhese two hypothetical extremes bf zero and unity. In reality, a relafively
hjgh value of prata partiéular depth d, §vi11 indi%:ate the p'resénce of a layer boundary
. at that pc‘>int.‘ As with»lthe. T Ratio, the value of p; can"be plotted against depth, in
“order to determine the best layer boundaries v.along the profile. ‘ |
* Several applications of using b'oth the T Ratio and the Intraclass Correlation

Coefficient will be illustrated later.

2.3.3 Multivariate Records

The CPT performed at .UBC performs data logging. on égvereﬂ channels, the cone
beariﬂg', sleeve friction and the pore .pre's.sure'-being the most importanf of these from =~
an engineering p'oiﬁt of view. All these paramétérs exilibit a different kind of behavior B
in different types of soils, and therefére, any method which considers the combined
effects of cone bearing, sleeve ﬁ'ictvio.n' and pore pressure together in one analysis, will
definitely be the mor'é efficient and accurate method dué to the additional information
contained in such an é,nalysis. .. While the ’Il‘ARa,tio aﬁd the Intraclass 'Correlation
Coefficient contain the vaziance (second moment) and the mean (first moment) of the
data the D2 statistic also includes the covariances of the diffefent variables in addition
to the mean and the variance. In contrast to these ‘statistical methods the ICOnventional‘
method of layer identification using the CPT chart entails only the mean Valués of
the parameters. FIn this regard it is obvious that the statisvtical' m'et‘ho.ds should be

‘better with the D? statistic being the most superior.
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'2.3.3.1 D? Statistic

The D? statistic gives .most weight to those variates that discriminate best between
segments. Problems arise if there are several vériates, in comparison to the numbér.
of data (Rao - 1952). lHowever,” in the problems dealt with here, this is not of major ’
concern even for the case of narrow window widths, since the number:of variates do
» not exceed thrce. ' | |

The use of the discriminant functibn may be considered in terms of a sample ),
consisting of m variates, Whicl.p form a cluster of points in m - dimensional spé.ce.
Another sé,mple {); may be described similarly By the same m variables in m - dimen-
sional space. The determination of a (m - 1) - dimensional plane that separates the
two clusters of points is the discriminant function '(Ha_rbaugh and Merriam, 1968).
The D? is the distahée‘betWeen the multivariate meaﬁs of fhe two dimensional sample
spacés Q; and §,, implying that greater the value of D2, the more distinct the two
sémplés would be (Rao - 1965). This is illustrated in Fig. 2.3 for the case of two
variables, a; and de (m = 2). ‘ - |
The D? statistic is given by,

D* = {Q1 - Q)" W1 Q1 - Q) (29)

where, {Q; — Q2} is the ccﬂumn matrix of the mean differences of the variates in the
two éamples. For the case with m variables, {Q; — Q2} is a m x 1 matrix. [W] is the
_pooled variance - cov.ari_a.nc.e matrix of the samples ; and Q,. For layeridentiﬁcation
purposes using the cone, th'e maximum number of variates (m) will be equal to three.
Let the set of ny data,. points frofn ; and nz}vdata, points from 2, be described by thé

following bvariables;
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-} -}

Figure 2.3: D? Statistic for Two Samples Q; and Q, with Two Variates a; and o, (after
Harbaugh and Merriam, 1968).
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q1, f1, 1 -being the bearing, friction and pore pressure in ),

g2, f2, 1y being the bearing, friction and pore pressui:é in §,

39

The means of the respective parameters in sample {2, are given by, ¢, f1 and @; and

for sample Q,, by @,, f» and @,, and their variances by, 0,,2%, 04,2, 04,2, 0,2, 04,2 and

2
A

The mean differences of the variates of the two—samples are given by,
Aq=q —§s Af=fi—F L Au=ay -

The covariances are given by,

2 _ Yim qufu Xt qu ity fu

. —
ah n n12
2 _ Dok Quls Dimq Qi Ding U
Oqu; = - Py
ny ny :
. 2 E?:lrfliuli 2?:11']611' E?:ll Ui
Ofiuy = . j - 2
nq 5]
2 E:Zl Qaifa 2121 g2 2121 fa
Oqfs — - 2
Ty Ty
2 YiZ1 Qaitlai _ o2 Qi 2oitq Ua
Ogou, = ) ny TLQZ |
: 2 221 Saiug Z?& fai Z?ﬁl U2
Ofoug = - - )

Uyl Uy
" The pooled weighted variances are given by,

. - Ny ny - 2
qu-: ‘quz + : Og,
n1+n2—1 n1+n2—1

(2.10).

(2.11)
(2.12)
(2.13)
(2.14)

(2.15)

(2.16)

(2.17)
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T,2 ™ 2y T2 2 '_ - (2.18
} f nl'_l_nz_la-fl n1+n2_A10.f2. ' ( ) )
nq : g ' ' ' _
ri=—0,’+ —>—0,,° ‘ 2.19
'n,l-i—nz—lal+n1—1—n2—10-2 ’ ( )
Similarly, the pooled weighted covariances are given by,

Pyl=—"—0upn’+————04,1° (220

o L+, — 17uh + Ty + g — 1712 ' ( )
n, . (7))

[ l=——— 6 0+ O, 2.21

q n1+n2_10-q1 1 +n1~+n2_10-q2 2 ( )
ny : N

T l=————— 040+ ——————0p,” 2.22

! n +.n2_1af1 1 +n1+n2—_lo-f2 2 - ( )

If equal number of data points are considered in sa.mpi‘es Q1 and Q; (as usually the
case.is), ny/(n1+ny—1) and'ny/(n1+ny—1) in Egs. 2.17 to 2.22 can be approximated
by, | |

an . TL2

_ —05 -  (223)

n1+n2—1_n1+n2~1_.

The variance covariance matrix [W] can be now formulated and is comprised of the

elements derived above,

W= T2 Tul

{Q1 — Q2} in Eq. 2.9 is given by,
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. Aq . 4
AQ1 —Qz2} = | Af o - (2.25)
In using the D? statiétic; to identify soil la;yer boﬁﬁdaries, the window is mqved along
the dAa,ta.pr(‘)ﬁle; with d, the mid-point of the window separating the two samples and |
for each do',. the value of D? is calculated and plotted against depth. The'peaks of
the ensuing plot would illustrate the best positions of the layer boundares. If only a
- few boundaﬂes are needed, thé. poinfs at _Which the highest D? values occur can be

selected. If in the engineer’s mind more layers are needed, the less critical D? values

too can be used in order to obtain more layer demarcations.:

2.4 Applicat_ion to CPT Profiles

The above concepts of statistically identifying layers-have been applied to three sets
of data in order to illustrate the advantages of the methods explained above. The
locations from which the data have been obtained are given below and their geology

and site descriptions are given in section 1.7.

(a) McDonald Farm Site
(b) Haney Site- |
(c) Tilbury Island Site

- All the data have been obtained using a cone of sectional area 10cm? with pen-
“etration at 2 cm/sec and data logging being performed at 2.5 cm intervals. The
McDonald Farm site is predominantly sand, the Haney site predominantly clay and

the Tilbury Island site is mainly silt and éahd. These particular sites were selected as
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they cover a wide area of soil types which could be encountered in a site investigation
" and in the event the statistical methods prove successful in all three sites, it'becomes

pOssibIe to infer that the prop.oséd methods are applicable to any type of soil profile.

.2.4.1 Mc]DonaldA Farm Site

The McDénzﬂd Farm, typically consists of sand and sandy silts in the top 15 m with
clayey soils ektending below the sand. The cone bearing, sleeve ﬁfiction,» pore pressuré
aﬁdﬁﬁ-i_dion atio proﬁles‘a,re illustrated in Fig. 2.4.

At _the‘ outset, an a@itdcofrélafion ana,lyé_is was performed for the thrée valfiables
and the Variation of the fuﬁctioh with lag distance (separation distahéé b~e-tween>’
points) is illustrated in Fig. 2.5 The purpose of this was to determine an optimal
-Wiﬁdow' width, Wp, WhichA-ideally‘_,sho‘uld iie- between two limits: not too wide, in
_6rder to Vav'oivd the 'possiBi]ity of missing thinner layers and not too 4narrow, in order
‘to minimize noise in the calculated statistics. The plot éf thve.r éutocorrelatiqn function
in Fig. 2.5 results in three different initial minimum points for thé three va1:'~i,able‘s,‘
'.iiidica'.ted by the arrows which réad as .6.8‘2 m for cone bearing, 2'.7__4‘m for friction
and 1.,5;22 for pore pressure. The mﬁltivaria.te .ana;lysis requires a single‘ xvfalu..e’ for Wp
since all three variables are handled si‘multa,neousliy,‘ while for the ‘urﬁvaria‘te alnalys‘is,} :
thfee different widths can bé used for the three variables. ﬁowever, it is suggested to
decide on a single Wp even for the univariate case to facilitate comﬁa.risdﬁs befWeen
"~ variates. The more serious _conseqﬁence of chloosing an incdrrect' Who ‘is that if it is
too wide, pqtential' l;clyers' wiﬂ be missed. Thebonsequence of missing layers is highly
undesirable and has to be avdidgd. As expla‘x.ine’dv eairlier, the upper limit of the Wp
will héve to Be below the tru'nimum value of 2.74 m, and preferably about ﬁalf of 2.74

in order to a#void any possibility of missing any dominant layers.

An initial value of 0.5 m was selected for Wp to illustrate the effects of noise,
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when thé thickness ‘is low. A Wp of 3.0 m Was also used:to illustrate the more. crucial
' eﬁ'ect. of missing layers with wide window widths.- These effects will be aiscusséd later
with the appropriate ﬁgureé. As a consequence of further investigdtioﬁs, the most
adequate Wp was selected as 1.5' m and all the detailed analyses -and coinparisons to
fo]low wi]l» deal with this window width. | |

- The variations of the Intraclass Correlation Coefficient (pr) with débth for bearing,
ﬁiqtioh and i)ore pressure are illustrated in Figs. 2.6, 2.7 and 2.8. The variation of

the T ratio for the three properties are given in Figs. 2.9 to 2.11. The results for the

case with WD‘of 3.0 m, for both T Ratio and p; are illustrated in Figs. 2.12 and 2.13 o

respectively. BAy' comparing Figs. 2.6 to 2.11 for Wp = 1.5 m to the cofresponding
- Figs. 2.12 and 2.13 for Wp = 3.0 m, it is evident that a Wp of 1.5 m is spp_erior due
to the apparent convenience in Whichil_ayer boundaries'- can Be picked up without the
rlsk of 'missiﬁg out thinner 1ay¢rs. Figures 2.14 and 2.15 illustrate the variation of -
" bearing, friction and pore >pressu're overlaid oh one énother for the‘ T Ratio and pI.
| reépecﬁvely,‘ for a Wp of 1.5 m. _ | |

The fQHoWing depths have been obté,ined-as the most critical layer depths, con- '

sidering the T Ratio for cone bearing, sleeve friction and pore pressure in Fig. 2.14.

" Cone Bearing : 0.65, 0.93, [4.35], 6.60, [9.05], 10.03, 11.93, 12.80, [14.50] m.
Friction : 0.65, [4.33], 6.53, 7.35, [9.05], 9.90, [14.53], 17.70 m.

~ Pore Pressure : 3.13, [4.30],:5.43,6.48, 8.03,_[9.10], 11.98, [14.78], 17.80 m.

The bracketed values indicate the depths at which the statistic attains a high mag-

nit'udevfor at least two variates.

For the Intraclass Correlation Coefficient’ (-Fig. 2.15), the results are as follows;

- Cone Bearing : 1.25, [4.35], 6.60,~[9:O5], 10.03, 11.98, 12.80, [14.50], 15.48 m. -
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Friction : 0.63, [4.33], 6.50, 7.38, [8.98], 9.90, [14.53], 17.70 m.

Pore Pressure: 0.63, [4.28], 5.43, 6.48, [9.10], 11.98, [14.68], 16.03, 17.80 m. -

Here too, the; bracketed values indicate the depths at which the highest values of
pr occur for at least two variates. These résuits agree app_récia,bl'y well with thé depths
obtained using fhe T Ratio. The léyer boundaries that could be selected fro@ the
results of the Intraclass Correlation Coefficient are 4.30; 9.05 and 14.60 m and agree
Wéll with those obtained for the T rétio. In situations where the T Ratio and py of the
variables coﬁsidered are not in total agreeme’nt»‘, the decision of layer b.ounda_rié.s will
have to be based on the results of the multivariate an;ﬂysis. From the above ré‘sults,
it can- be concluded that the two statistics, the Intraclass Correlatioﬁ Coefficient and
the T Ratio are a.ppropria.té statistics for discriminating between layers.

‘A multivariate analysis was perforrhed for the three ‘variables ;J.nd the D? was
calguiaj;ed. The variation of D? is illustrated in Fig. 2.16 and t’he.most prominent
peaks for layer differentiation was obtained >a.s 4.30, 9.10, 14.60. m. Aﬁother possible
but less donﬁr;ant layer boundary' caﬁ be found at 10.0 m. These results agree with
the ones obtaiﬁed for the univariate aha.iysis except for the 12.85 m depth where only
the cone bearing suggested a layer boundary for the'i;nivariate analysisb. The D?
étatistic for W, §élue of 0._5', i]lqstrated.in Fig. 2.17, -shovsfs the effect of noise.

- Itis .widely accepted that the friction ratio in éonjunction with the cone bearing,
is a reliable method for idenﬁfying different léyers in a soil stratum. If the CPT
classification chart was used for layer boundary location, the layer bo'undaries. wbuld
have been identified at i.O, 4.25,13.0 and 14.75 m. Furthermore, these estimates of
layering are b_aséd on a fair amouﬁt of judgement, leaving room for subjectivity and
inconsistency. Table 2.1 gives a comparison of the layer boundaries identiﬁéd by the

statistical methods with that based on the CPT classification chart_. The statistical
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Figure 2.17: D? Statistic from Multivariate Analysis at McDonald Farm for a Window

Width of 0.5 meters.
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'techxﬁques prépos_ed can be used to identify two typés of layers as follows. The pm-
mary layer boﬁnda;ies define dep;ché ‘with relatively large values of the T Ratio, py
and D? Whi_le the secondary layer boundaries define depths which have lesser magni-
tudes of the .above statistics. The significance of these magﬁitudes will be discussed
in a subsequent section. As can be seen from Table 2.1, the convenﬁonal method
has f.ailedA tof detect the layer boundaries at 6.50,. 9.05'and 17.80 m. In addition, the
'p::opc.>sed statistical methods Wefe also ;ible tolsup;‘)lement informafioh on layering
-by ;assigning 1exacit depths whi;:h are generally estimated by eye if the method based
on .the_ CPT chart is used. The statistical methods of layering are based on some
speciﬁc .numerical values; alleviating the possi_bi]ity of erroneoﬁs, classification due‘tok
misjudgement. O'nce-thek pattern of detailed Iayei'ing is_reéognized, corre_laﬁon gra.i:hé ‘
can be used vﬁth less uncertainty to obtgiﬁ values of friction angle, relative density,
- etc., for the different sublayers. ‘The deta;iled layéring péttern will also be uS_efﬁl for
~ engineering design, since the engineer is iﬁfdrméd Qf the different lﬁyers in existence,
80 thét averaging of properties can be done for the statistically horﬁogeneous layers

. determined from above.

2.4.2. Han’ey Site

- The measured cone bearing, sleeve friétion, pore pressure and friction ratio profiles of
- the Haney site a.re.illustrated in Fig. 2.18. The soil conditions at Haney is predomi-
nantly clay alterﬁating between clayey silt and silty clay. As for the previous example
" an autocorrelation analysis was pei'fo;med on the three iraria,bles and the expected
layer thicknesses were not similar. The lowest value was obtained for friction with a -
‘value of approximately 3.8 m. Therefore, a window .wid"ch Wp, of 2.0 m was selected

to avoid the possibility of missing layer boundaries.
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Figure 2.21: Intraclass Correla-
tion Coeflicient for Pore Pressure at
Haney Site for a Window Width of

2.0 meters.
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| The Intraclass Correlat1on Coefficient, pI, was calculated and the best layer bound-
aries for the three vanables (F1gs 2. 19 to 2 21) were obtained as follows; |
~ Cone Beanng 7.70, 9.30, 11.80, 15 95, 17. 93 m
| F_ncﬂ_qg: 3.70, [6.70], 7.68, 9.28, 11.55, [12.65] 15.95, 17 83 m.
 Pore Pressure : [1.10], [6.73], 7.78, .30, 11.88, [12.70], 15.88, 17.93 m.

Table 2.2 iIlcludes the best layer' selections from the three statistical methods as well

from the classification chart. based on the above depths which have been obtained for

| individual parameters. The combined plot of pr for the three Vanables 1s 1llustrated ’
in F1g 2 22. v
 TheT Ratlo profiles (Fig. 2. 23) suggest smular layer boundanes as those obtained
from the Intraclass Correlation - Coefﬁc1ent '
The D? determmatmn, ,conmdermg all three variables, resulted in the following
layer houndaries (Fig. 2.24); , -
[1.25], [6.73], 7.78, [9.30], [12.68],'15.95 and 17.93 m.

. The bracketed values above indicate the depths where D? attained relatively high

magnitu‘des. These depths are a.lso-ca'tego'rized into two types of layering with the =

bracketed depths indicating -the main layer boundaries and the other depths repre-
senting less prominent boundaries.
- Table 2.2 shows that the statistical methods are in agreement with the identifi- .

cation of layer boundaries u‘sing the CPT chart on qﬁalitative basis, although the

less dominant boundaries at 9.30, 15. 95 and 17. 93 m are not picked up by the latter

"'method In contrast to the sub_]ectwlty of plckmg layer boundanes using the Rf pro-
file in conjunctmn with the beanng profile, the other statlstmal-proﬁles, namely the
Intraclass Correlation Coefficient, T ratio and especially the D?, fecognize the layer

boundaries distinctly and conve‘niently..
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Figure 2.22: Intraclass Correlation Coefficient for Cone Bearing, Friction and Pore
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Figure 2.23: T Ratio for Cone Bearing, Friction and Pore Pressure at Haney Site for

a Window Width of 2.0 meters.
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'2.4.3 Tilbury Island Site
The Tilbury Island profile (Fig. _'2.25)'is predominantly sand with some surface silt.
Po_re‘ pressure data wefe ﬁofb availablé and only thé coﬁe bearihg anci friction Wiﬂ be-
considered. Based on an autocorrelation analysis of the variables concerned, a Wp
of 2'0' m was selected for the analysis. The .varia,tion of the Intraclass ‘Correla.tion
Coeﬁiciénf (Fig.' 226), picked the following bouhdaries er: bearing and ﬁictiéﬁ.
. Cone Bearing : [1.26], [2.13], [7.58], 9.70, [11.70], 12.68, 17.18 m. |

Friction : [1.23], [2.13), [7.55], [11.60], 12.67, 17.17 m.

~ The D? profile (Fig. 2:27), gave the following bouhdaries;-

- [1.28], [2.'18], [7.78], [11.75]? 12.68 and 17.20 m. .

T#bie 2.3 shows the bbmparison of brthe two rﬁethods and the results are agreeable
qualita,t'i;rely ali;hough the statistical methods have the adcied advé.ntage of recogniz-
ing’additiénél sublayering. Even in situations such.a's this, the -advantages‘o‘f the
- statistical methods are self explanétory from Table 2.3, with its abi]jty of pjcking
specific layers. It should ﬂbe réiteratéd that alfhough the tra;ditional méthbd picks the
'l:;.Lyei' boundaries by judgement suppérted by the classiﬁqation chart, the statistical
rriethods of identification e»nfailI no érroré caused by incorrect judgement. As in the
_ previoué examples, once t'h-e layer boundaries are specifically determjned, the well
estaBlished methods in in situ’geotechni_ca;l engineering can be used to characterize ,

- these 1ayefs.

2.4.4. Primary and SécondaryLayer__ Bou_n,d}aries"

The stafi_stics already described will have varying magnitudes depending on the power
of discrimination between layers. The higher the value of the statistic at peaks of the

statistic profile, the g’feater,is' the chance for a layer boundary to occur at that point.
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Figure 2.26: Intraclass Correlation Coefficient for Cone Bearing and Friction at
Tilbury Island for a Window Width of 2.0 meters. :
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FWh.ile there will be very high peaks of these staﬁstics, it is also possible to have
'pea.ks. possessing significantly lowert fnagni‘tudes. Different ranges of these p.‘eaks may
be established, ‘With each range_-depicting sublayer boundaries. Ho_wever, the peaks
Qf the profiles that are.Ao.f .concern in this stﬁdy will be the group of the méximum
peaks and t>he‘ peaks thét fall into a lower range of magnitﬁdes of the statistics. On
the above ﬁnes, two types of layering can be defined as follows; - ‘ :

(a) A primary laye£ boundary is found at a dépth at which the statistic under
- consideration attains a very high value (points giving the highest peaks). »A

(b) A secondary layer boundary is found at a depth at which the statistic attains
a peak, but not té the extent as given by (a) above. These peaks will be in a raﬁge
lower than that of the Ihé,)dmum .pefaks. |
This concept of primary and sécondary layer boundaries is analogous to the layering
“and sublayering in geotechnical engineering. In the overall sehse, when the variation
of both the univariate and multivariate statisﬁcs are considered in layer boundary
identiﬁcation,/ there are further (reéuifements which have to be met in déciding' which
is a t)rjmary and which is a sééoﬁdary layef boundary. However, the above (ieﬁnition
v.‘wou.ld éufﬁce at this stage and the detailed requirements as mentioned‘above', will
be. described 'in a subsequent section. The values of the depths obtained from the
CPT chart in Tables 211, 2.2 and 2.3 hafle been based on the results of the survey
conducted to evaluate the subjectivity involved in the use of the chart. The values
-decided by the subjects in the survey consisted. of a fair' amount of dispersion and
therefore the depths selected represent the approximate means of the different layer

boundary depths obtained from the survey.
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Table 2.1: Comparison of the Layer Boundaries Identified Using the CPT Chart with
the Proposed Statistical Methods, for McDonald Farm Data.

Soil Characteristics

Layering and

Proposed Statistical Methods

Depth B%g?i%g F'iCtiP“ Sotl Type from Llyor':::n:':nrlol Llyosv.:::::zies
(m) | (bary | 30| cprchant [7 [ P:] 02 T | Pl 02
Organic
<30 4.0 | siity Clay
Silty Sand
30-40 [0.75-2.0 and
Sondy Silt
5--—-_l-———
Medium
to
80-140 0.4 |Dense Sand
10
80 |0.6-1.0|siity Sand
] S
Silty
10 0.8
Clay

20
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Table 2.2: Comparison of the Layer Boundaries Identified Using the CPT Chart with
the Proposed Statistical Methods, for the Haney Data. '

Soil Characteristics

Layering and

Proposed Statistical Methods

Depth | Cone | Friction | Soil Type from Layor Boundaries Layer Boundaries
(m) | (ary | Pale | cpTchart [ Pr| 02| T [Pi] D2
' Organic
0-5 2-6 | siify Clay
e on s cEr apn aae o -
20-50 2-6 | Clayey Silt
5
10 2.5-3.5] Silty Clay
10
15
12-18 2 Sandy Silt

20
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Table 2.3: Comparison of the Layer Boundaries Identified Using the CPT Chart with
the Proposed Statistical Methods, for the Tilbury Island Data.

Soil Characteristics|Layering and Proposed Statistical Methods
Depth | Cone | Friction|Sol Type from| . ,"yliiies | taverBounsuris
(m) | Cbary | "o | OPT Chart [~ py D2 Pi | D2
Gravelly Sond |
30 2-6 to Sand
o c cEe ame oV e s oV o
Silty Sond
5| 20-35 |0.6-1.0 to
Sandy Silt
Sand
i0 60 0.5 to
Silty Sond
15
70-125 0.4 Sand
20
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2. 5 Types of Profiles Where T Ratlo, P1 and D? are Unable

to Detect Layer Boundar1es

The applications of the layer identification statistics, namely, the T Ratio, py and the
'D? statistic have clearly indicatecl their superiority over the method popularly used
at present, for discriminating layers. All these methoas are based on the first and
second moments of the samples on either sidelof the window center, d,. |
In the event of the presence of two adjacent layers one with an 1nc1‘easmg trend
and the other with a decreasing trend (Type I, Fig. 2. 28) the means of the two layers
‘ : could possibly be approxlmately equal. The discriminating statistics depend on the
_ d1fference of the means of the two adJacent layers and at the expected boundary at
A in Flg 2. 28 the T Ratio, p; and D? would all reach a minimum, instead of a |
maximum that is normally expected at a la.yer boundary. This type of profile is rare '
and}.none of the data available at UBC exhibited such a behavior. Therefore, a profile
was simulated to reﬂect the above type of behavior. The variations of the T Ratio, pr-
and D2 statistics for the simulated profile is illustrated in Figs.. 2.29 to 2.31. While p;
.attams a minimum at apprommately 10.0 m (around point A) the T Ratio and D?
stat1st1cs reach zero. The latter two statistics become zero because the cone beanng
1mmed1ately following the 10 m depth was 51mulated to have a trend exactly opposite.
to that of the cone beanng just prior to that depth. This is a hypothetical case, and
in reality what could be expected is. a minimum value as for pr- .The effect of Fourier
smoothiué on the statistics are also illustrated in Figs. 2.29 to 2.31. It is evitlent :
- that smoothing does not signlﬁcantly improve the identification efficiency of the three'
_st‘atistics‘ discussed. - |
_The other type of layer boundary which could be expected not to be detected using
~ the above statistics is in a profile where the gradlents on either side of a potential

‘bounda‘ry, d,, barely change with the mean on either side being approximately equal.
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This type of‘boundary will fall into the eetegery of secondary layer boundaries. A
profile to fepreseﬁt the above behavior (Type II) was also simulated and is illustrated
in Fig. 2.32 and the point of concern is around B, where a layer Bounda,ry can be
expected due to the change in fhe gredient. The.T Rafio,_ pr and D? statistics for the
profile in Fig. 2.32 is illustrated in Figs. 2.33 - 2.35 which do not possess peaks at the
expected layer boundary near B. A suggested method to.identify layer boundaries in
pfoﬁlee einﬁlaf to Types I and II i1s discussed be_lov;r. :

"It has to be .reiterated that the Type I (Fig. 2.28) and Type 1I (Fig. 2.36‘) profiles
are synthesized profiles to illustrate the effeetiveness_ o_f the Gradient method more

clearly.

2.5.1 Change of Gradieht Between Layers

Soil pr.o’pertieS are highly depth dependent and ‘more commonly linearly depth de-
_pendent. A linear description requires two s.ta,tistics to fully describe itks behavior,
namely, the intercept and the éradient. Therefore, the i_ntercept and the gradient are
two possible statistics which could be used to identify different layers, when statistics
such as the. T Ratio, py ahd D‘2 -f;iil n pefforming this task, as for the cases illustrated
in the previous section. _ |

An appreciable change in the intercept vyoeld be reflected in the change of the
.means and in turn would be reﬂected. n the increased' values of fhe T Ratio, pr é,nd ‘
D2‘, However, a‘s‘ was illustrated before, t}.ie' change in gradient alone may not be
reflected in the above discriminating étatisﬁcs. In an aftempt to arrest the ;bove ‘
pfoblem of obtaining la,yer boundaries in sitﬁetions such as Type I_and- Type 11
Vproﬁles, the window was moved along the data profile and the gradients on either
side of its center, d,, were investigated. This stuciy indicated that the absvolute value

of the difference of the gradients representing the linear influence before and after
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do,vwould be a reiiable statistic vto'deﬁne aulaye_r bour_ldaryvof the types ‘disbcussed.‘
The change of grédient’ profile for tile Type I profile is inﬁstrated n Flg '2.36 and
for the Type IT profile, it is given in Fig. 2.37. It is.ev‘ident from the above ﬁgurfzs
' thét the change of gradiént reaches a local maximum at 10.0 m (boint A) for Type Iv
~and ét 8.60 m (péint B) for the Type. II profile, providing sufficient evidence as to its
capability of picking up layers of the above Vtypés. |
Figure 2.38 illustrates that the effect of smoothing' oﬁ the change .of gradient is
negligible. - The T Ratio, py and D? statistics (Fig. 2.29 - 2.31) of the Type I profile
also exhibitéd él@ck ‘of sensitivity to Fourier smoothing, providing evidence to the
understanding that CPT data 1s relatively noise free. vMo.re.él'aborate descﬁptions of

‘ﬁltering"a.nd smoothing methods are described in Chapter 3.

26 ' Sénsitivity o-f ‘Window Widfh' '~ .

‘As discussed in section 2.3.1, the effect of a narrow window width (‘WD) is the in-
tréduction of noise into the statistic under consideration. However, this would not
affect the selegtion bf ldye'r boundary (iepths. In contrast, the éhéice of a Wi‘def win-
 dow Widtil could .leavdv to the possibility of missing out possiblé layer ;boundaries. The
latter option could result in serioﬁs consequences and has to be avoided by choosing
é low _value for Wp based on the autocorrelation function of the variables coﬁcerned.

Theeffect of Wp on the layer boundary depth was investigated in detail for selected
depths fér a soil stratum comprised mainly of sand (Mc .Donald Farm) and of clay
(Haney), and the results for the Intraclass Correlation Coefficient are tabulated in
Table 2.4 and Table 2.5 for the two sites respecfivély.

The}resul.ts indicate that the primaryﬂlayer boundary depth is not highly sensitive -
- to the window width chosen. However, this does not preclude the possibility of missing

out layers if too wide a Wp is selected, with the s_econddry layer boundaries being
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Table 2.4: Effect of Window Width on Primary Layer Boundary Depth for the Intr-
~aclass Correlation Coefficient for McDonald Farm. ‘

Window Width (m) 1.0 1.5 20 | 25

Layer Boundary Depth (m) 430 | 435 4.35 435
Intraclass Correlation Coefficient | 0.8743 | 0.8783 | 0.8586 | 0.8725

. Layer Boundary Depth (m) 9.05 9.05 9.03 9.00
Intraclass Correlation Coeflicient | 0.8975 | 0.9097 | 0.8771 | 0.8460

Layer Boundary Depth (m) 14.48 | 14.50 | 14.50 | 14.48
Intraclass Correlation Coeflicient | 0.8776 | 0.8809 | 0.8696 | 0.8723

Table 2.5: Effect of Windov& Width on Primary Layer Boundary Depth for the Tntr-
aclass Correlation Coefficient for Haney Site.

Window Width (m) 10 | 15 | 20 | 25

* Layer Boundary Depth (m) | 6.70 | 6.78 | 6.73 | 6.75
Intraclass Correlation Coefficient | 0.7752 | 0.7200 | 0.7051 | 0.7122

Layer Boundary Depth (m) 9.30 9.30 9.30 | 9.25
Intraclass Correlation Coefficient | 0.7742 | 0.8197 | 0.8317 | 0.7626

Layer Boundary Depth (m) 12.73 | 12.75 | 12.70 | 12.75
Intraclass Correlation Coefficient | 0.7927 | 0.7963 | 0.8016 | 0.7506
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- Table 2. 6 Effect of Window Wldth on anary Layer Boundary ‘Depth for the D?
Statistic for McDonald Farm '

~ Window Width (m) 1.0 | 15 2.0 2.5

Layer Boundary Depth (m) | 4.30 | 4.30 | 4.33 | 4.33
D? Statistic 2499 | 30.15 | 26.53 | 27.67

Layer Boundary Depth (m) | 9.05 | 9.10 | 9.03 | 9.03
D? Statistic 31.47 | 35.99 | 24.26- | 16.06

Layer Boundary Depth (m) | 14.50 | 14.60 | 14.53 | 14.50
- D? Statistic® 34.46 | 33.21 | 30.10 | 27.17

mo,re»s.usceptible. The non sensitivity of the primary layer boundary depth tov small
'cha.nges in window width clearly reveals the robustness of the Intraclass Correlat_ion
Co_efﬁcient as an adequate paramefer. A similar type of sensitivity analysis was also
_pérfo_rmed fdr the Dzlstatistic', the results of which are t.abulated in Tables 2.6 and
2.7 for the two sites. - .

These results in Tables 2.6 and 2.7 also indicaté that the depths of»laye;r boundaries
are not highly sensitive to the window width chosen. The absolute values of the D?
however, seem to be dependent on the window width, with no specific pattern ofb
: variatién with {néreasing or decreasing WD.. This phenomenon is not of real concern,
" as loﬁg as thg depths of local maxima (peaks) of the D? profile are not significantly :
~ dependent on the width of window selected: - |
The secondary layer boundary depths are’ somewh?,t sensitive to Wy for 'both the
TIntraclass Correlation Coefficient and D? and therefore the use of a Wy basea on the

autocorrelation function will avoid the possibility of missing such boundaries.
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_Table. 2.7: Effect of Window Width on .Primary Layer 'Boundary Depth for the D2
Statistic for Haney Site. ) . : ‘

Window Width (m) 10 | 15 | 20 | 25

Layer Boundary Depth (m) | 6.75 | 6.73 6.73> 6.73
D? Statistic 28.63 | 25.19 | 18.89 | 15.52

Layer Boundary Depth (m) | 9.25 | 9.28 | 9.30 | 9.25
D? Statistic 19.34 | 20.77 | 16.82 | 18.90

| Layer Boundary Depth (m) | 12.70 | 12.68 | 12.68 | 12.65
D? Statistic | 24.89 | 21.53 | 25.16 | 27.65"

2.7 Establishment of Critical Statistics

The establishment of critical acceptance levels .for the layer identification statistics
is desirable to alleviate the need for picking out layers b‘a,s‘ed on judgement of the
variation, of these statistics. As a result of the investigation of several data sets.
- representing different sbﬂ types, certain criteria ‘have been developed to a,chieve the
above purpose. It is suggested tha.t.a’combination of the univariate and multivariate

methods would be the optimum way by which certain guidelines could be established.

2.7.1 TUnivariate Analysis -

The results obtained for the three sites already-.diseussed reflect the close association »
~of the T Ratio and’p;.” The Intraclass Correlation Coefficient is a normalized form
of a variability parameter with a typical range between zero and unity, rendering it
»especially convenient for comparison purposes. The T Ratio, however, suffers from

the fact that it is somewhat dependent on the magnitude of the units of the data con-

sidered. For the aforementioned reasons, it is proposed that the Intraclass Correlation
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Coefficient Ais more preferable to be uﬁed as a layer boundafy identifying statistic, for
| the univariate case. ' | | |
A,closef inspection.of the pr profiles for the thrge data s'ets at McDonald Farm,
Haney and Tilbul;y Island reveals the presence of éertain bounds which can be identi-
ﬁed for fhe purpose of defining prima;y and secbndar_y layer boundaries. The critical
raﬁges of these limits are given in Table 2.8. These limits need ﬂot be Aapplieci strin-
gently but an allbwance of approximately 4 10% would be ﬁernu'ssible. It should' be
réitera,ted that the fulfillment of theée feciuiréments alone is not sufficient, and for a
layer to be identified as primary or secondary,‘ the limits on the requirements for D?

described in section 2.7.2 should a_lso be satisfied.

Table 2.8: Critical Levels of‘.the Intraclass Correlation Coefficient for the Definition
of Primary and Secondary Layer Boundaries. S '

Boundary Type - ' Range of pr
Primary - pr =080
Secondary - 0.80 > p; > 0.65

2.7.2 D? Statistic for Multivariate Analysis

‘ In contrast to the Intraclass Correlation Coefficient the D? statistic is a fﬁnction of the
cross correlation structure of the variables. The correlation structure of sand and clay
are very different and, therefore, the critical limits will-be different for different soil
types. In addition to the sites already described, data from several other sites were

also analyzed to obtain approprnate limits for the definition of primary and secondary

layer boundaries. Two levels of maxima for these data are tabulated in Table 2.9
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which also includes the soil type that predominates the stratum under consideration.’ |
- The information 'given-in Table 2.9 indicates relatively high values of D? for sand
compared to clay and will have to be giyen due consideration 111 the formulation of
significance levels. The discrepancy in their relative magnitudes is due to the variances
and covariances of the variables insand being relatively higher than their counterparts
in clay. ‘ The ranges given in Tal)le2‘.9 lead to Table 2.10 which tabulates approxiinate
critical levels for the definition of primary and secondary layer boundaries for both
sand anld clay type soils. | |
Similar to limits on pr1, these levels are not to be cons1dered Very stringently

. These should only serve as a rough guide and aide for the purpose of layer boundaryi
delineation and a tolerance of £10% is similarly -appli_cable. The criteria for the D2
- statistic has to be-used in conjunction with the Intraclass Correlationi Coeﬂicient ii
any confidence is to be placed on the recommended procedure of 1dent1fy1ng layers '

and clas51fy1ng them as primary and secondary

2.7.3 Combined Critical Limits Based on pr and D?

 The multiyariate- a'nalysis' contains mOre. information than the univariate analysis
“because the D? statistic considers the combined effects k‘of the variables including
_their correlations. The results from the multivariate anal_ysis therefore, deserves a
higher ~recognition iavhen discrepancies between the.two methods occur. The results
of the applications of these methods to the three sites indicated discrepancies at
v'times with the D? statistic suggesting the presence of a primary layer boundary
while p; revealed a secondary layer boundary or vice versa, although both of these
types of events were the exception, rather than the rule. In such situations the result
obtained from the multivariate analysis 'should be given a higher weight due to the

higher information content it carries. In all types of incidents similar to the above, it
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Table 2.9: Levels of the D? Statistic for the Deﬁmtlon of anary and Secondary

- Layer Boundaries.

. Langley

Data File Soil Type | Maximum Level 1 | Maximum Level 2
Mc Donald Farm | Sand 20 - 25 15 - 20
Tilbury Island Sand 20 - 30 | 8- 15
Laing Bridge Sand 20 - 30 10- 20
Mc Donald Farm |  Clay none 8- 12
Haney Clay »‘15 - 20 8-12
Strong Pit ' Ci@ ' 15 - 20 6- 10
Langley Clay 15 - 20 8- 15
| 'Sanri. 20 - 40 none
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Table 2.10:. Critical Levels of the D? Statlstlc for the Definition of anary and
Secondary Layer Boundanes

-Soil Type | Range for Primary Botuida.rj Range for Secondary Boun.dary

Sand | - D?>20 1 w>Dp?>10

Clay o D?>12 O 12>D2>7

was found "tha,t When the multivariate statistic attained a peak the univariate -also did: “
S0, although one vmay‘ have a maghitude -representin‘g‘ a primary layer boundery while
the. other fnay_predict a lsecondar& layer boundaty:. In such extreme situations' _the
’~followihg guideline can be used, so that the proeees .of layerheundary discrimination
is consistent. | | |

(a) If the D? statistic iﬁdicateé the presence'ef a primary la.yer boundary, 'verify

| whether oI mdlcates at least a secondary layer boundary If so, the above depth is a

pnmary layer. bounda,ry .

(b) If the _D»2 statistic indicates the presence ot a secondar& lajrer boimcidry,_ this
depth will indicate a 4seconda,ry layer boundary,. irrespective of the boundary suggeéted :

by pr.
2.8 Conclusions

The three exarhples described above, provide sufficient evidence that statistical meth-
ods should be employed in identifying la&er boundaries. These statistical methods
using univariate _(Intréclass Correlation Coefficient and T Ratio) and multivariate

( DZ) rﬁethod_s ha_ve a sound fundamental basis for discrimjna,ting between different
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soil la&ers Thie main conclusions are as follows; _

(1) The _primary layer boundaries from the statlstlcal methods agree with the main
layerlng obtained from the CPT classification chart. The main advantage of the
statistical methods being the capability  of picking depths‘ devoid of the subjectiv- -
ity involved in the latter. In addition, the ‘proposed statistical techniques have the
capability of picking secondary layers which are commonly known as sublayers in.
- geotechnical engineering. o '

(ii). The Intraciass Correlation Coefficient (Univariate ‘Analysis) and'D2 (Multivari-
ate Analysis) are robust statistics in that the primary layer boundaries are not hrghly
sensitive to small changes in the window vtridth. |
' (i'ii)d The proposed critical limits for p'I and D? are recommended to be used to differ- -
entiate between primary and secondary layer (ma.ln layers and sublayers) boundanes
For the D2 statistic, dlfferent sets of hmlts have been recommended for sand and
» clay type s01ls due to the d1ssumlar1ty of .their correlatlon structure. In the event of
contradicting results for the p; and D? statlstlcs the latter should be glven pnonty
due to its relatively higher 1nformat10n content. It has to be emphasized that the
particular soil has to be identified as predominantly clay or sand, prior to arriving at
conclusions based :on the vaiue'.of the statistic concerned.-

(iv) In rare situations (Type I and Type II‘ profiles) where pr and D>2 fail .in discrim-
1nat1ng between soﬂ layer boundanes the gradient method 1s recommended For the
gradlent method to be valid, the profile should necessanly exh1b1t a trend ‘which can -
be verified by regress1on analys1s

In conclusmn the proposed statistical methods are recommended to be used in
: conjunctlon W1th the results of the CPT chart 1n order to obtam layer boundary _

‘ depths with minimum amount of subjectivity.
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Chapter 3
" Trend Analysis

: 31 Introduction

Trend Anaiysis is used to describé iarge scale. variations of a variable 01'- grouplof v’
variables in space and can be solved using the method of regréssior}. Simple regres-
sion is used to describe the variation of a single variable Wilﬂe multiple regression ‘is '
: uéed when a group of variables is considered. SQil properties are highly depth- depen-
dent and tHe proéedures éf trend énalysié will enable to evaluate the pattern of this
~ dependency.

It is often advantageous to separate‘ the spatial variation of a geologic variable .
into two or more components. If systematic changes in the average or mathematical
expectation exist, the main component will be the trend. Deterministic functions
such as polynomials can be eml.)lo_yed to represent a trend. The second component is
the residual and is generally treated as raﬁdom. in general, fhe data can be expressed
as, - ‘

DATA =TREND + RESIDUAL —~ (31)

Iﬁ any type of .éoil profile, a concérn of great interest is the evaluation of stz;\.t_ion—v

arity, since once it is established, many statistical .analyses can progress froni there

: onwaras. The presénce of a trend or n&n-stationarify often is not Aapparent from a

visual inspectio.n, and a statistical test such as the RUN test.may_ be used to verify
this condition.

Trend removal using regression methods is the most widely used technique to

89
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obtain stationary residuals. Data can also be made stationary by differencing which
is widely used in Time Series methods and hence will be described in Chapter § of
the thesis. | )

Smoothing and filtering tec_hniqﬁes would also énhénce the identiﬁéation of tren.ds.'.
» .Smoo_thing essentially rérﬁoves hi'gh'frequencies from a data_sét and resuits inl a moré

uniform profile. Statistical filtering would remove extremities or anomalies in data,

~ enabling easier visualization' of trends in profiles. |

3.2 Smoothing and Filtering of Cone Profiles

Filtering is performed to eliminate extremities of data in order to identify trends more
accurately. It is important that the process of filtering removes only distinct anomalies
and does not remove thin layers. Filtering also requi1;es enéineering judgemenf and the-
particular method of filtering adopted is highly situation depehdent. A thin anomaly
of high bearing or strength in a soft clay could be removed without jeépardizing the
design, since the strength availability for the foundation will not depend on this thin
layer'.‘ Hov;(ever, the awareness of a thin layer of high strength, if present, might be
important .in the determination of the driveabilty of a pile. This emphasizes how
situation dependent filtering is and the kin}d of engineerin'gA judgement the process of

filtering requires.

3.2.1 Smoothing

The present literature is not clear as to the difference between filtering and smoothing.
It is the author’s opinion that in geotechnical engineering, processes such as three
point, five point and seven point moving averages are methods of smoothing similar
to Fourier smoothing. The procedures of autoregressive (AR), moving average (MA)

and autoregréssive moving average mddeling (ARIMA) in time series analysis, also
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fall .into the c_ategory of stnoothing. Techniques of srhoothihg, as the name invdicates,
smooths out a profile by removin_g- the high frequency content and alter the entire set
of data. Smoothing methods will even 'ceuse the ‘good’ z_m(l acceptable data to be
modified, which of course is not desu'able In contrast to these'methods ‘ﬁltering’
would filter out only the anomalies wluch fall outs1de a selected window width while

the data inside this window remain unchanged.

3.2.1.1 Moving Average Smoothing

Methods of three pomt ﬁve pomt and seven point smoothing would consider data in
groups of three, five and seven, respectively, and the output of the complete data set .
would be modified; the smoothness‘ of the profile lncreasing with the number of data
considered in a group. Ih other wordé, the seven point smoothihg would‘result in the
smoothest curve of the above three methods while the three point smoothing Would
. result in the least smooth curve. -

A typical smoothing equation of degree m, for any point ‘i’ is expressed. as follows;

Q4 = WGmQicm...... tai2Qion + 3 1Qio1 + a:iQ;

+di+1Qi+1 + ai+2Qi+2‘ ...... + a,-_';in_i_m (32)

where a;’s .are the coefﬁcients with 370, a; = L.

For example, for three pomt smoothmg, a; = O 5 a.nd a;_1 = a1+1 = 0.25. For five
point smoothlng a; —0 4,a;1 =a;4; =02 and @iy = Gif2 =0.1 with the We1ght1ng of
the coefficients being inversely proportional to the distance from the centered point
‘’. There is also the more simplistic version of moving average smoothlng where
the smoothed value is equal to the simple a'trerage of the values around 4’ which are

grouped together. It is evident from Eq. 3.2 that @ would replace Q; in the smoothed

profile 1rrespect1ve of Whether it is an anomaly or not. It 1s th1s advers1ty of losing
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genuine and reliable data to ‘modified values that renders the technique of moving
average smoothing unsatisféétory. If the intention of the smoothing is merely to have
“a clearer picture of the. proﬁie, it may be acceptable, but is not suitable if further
analysis is to be made ﬁsing the smoothed profile. The moving average smdpthing
-V procedure is illustrated in Fig. 3.1 for diﬁ'erent degrees of smoothing MA, with MA
=1 referring té the raw cone data. These clearly indicate how the ksmoofhness\of the

profile increases with increased degree of _smoothing, MA.

3.2.1.2 Fourier anoothing'

* Fourier smqothiﬁg, or more appropriately Fourier Traﬁsform of a da.ta set transforms
the entire data set. Foiirier analysis 1s a technique whereby the profile or curve
is expréssed‘ as a sum of sinﬁsojds (sine and cosine curves)> of varying number of
harmoni'cs. If a data set consists of ‘n’ number of points, thé transform with exactly
| n/2 harménics if n is even, and (n+1)/2 if n is odd would produce the origirial profile
almost exactly. -Decréasing the number of harmonics would result in a smoother
profile. This is a pfocedufe where high'frequeﬁdies are removed from the profile,
retaining the lowér harménicé. Figure 3.2 illust»rates' the effect of .Fourier fransfprming
the data, where M is numb(;r of harfnonics used Qith M = 800 referrihg to the.original '
data profile with 1600 data points. Profiles with M équal to 200, 100 and 50 are the
transformed profiles which have used 200, 100 and 50 harmonics respectively.” The
incréaséd smoothness with decreasing harmonic number is apparent from' the ﬁgurés.
The effect of the removal of the high frequency confent is illustrated in Fig. 3.3
which shows the spectral density fﬁnction '(Be‘ndat and Piérsol, 1971) at diﬂ'_erént
frequencies. The entire region, comprising of zones A, B and C, depi_cts'the .spectra,
of the unsmoothed original data,. with regioné A and B representing the spectra

with the high frequencies removed ( MA < 200). Zone A represents the spectra of
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profile with M < 50 with only the lowest frequencies. This clearly illustrates how the
higher frequencies are removed with decreasing number of harmonics employed in the

smoothing process.

3.2.1.3 Autoregressive Integrated Moving Average Smooth-
ing |

The Autoregressive Integrated Moving Average (ARIMA) process can also be used

for smoothing. This is essentially a process where a value at a point is expressed as a

function of the properties at adjacent points (similar to other methods of smoothing)

and suffers from the same shortcomings. This procedure is described in detail in

Chapter 5 and hence will not be elaborated upon here.

3.2.2 Statistical Filtering

Different _methods of statisﬁcal proced“ures can be used to ﬁlter out extremities from a
CPT profile. In the simplest case, the soil prgﬁle can be divided into suB layers of some
thickness and the statistics of each of these 1ayers calculated. The statistics, namely
the mean, median and the standard deviation, are used to develop an acceptance
band for a given depth. The recommended. procedure»h'as several options for both the
filtering pfocedu;'e and the method of replacement of data poirits outside the band.
It is well accepted that the value of bearing obtained from the CPT dépends both
on the immediately past and futufe values. VTherechre, Whep considering a s-ublay'er -
in which the cone ti.p is advancing, it is reasonable and logical to-a,l‘so consider the
immediately adjacént subléye-rs. | |

The entire soil profile 61: layer is divided iﬁto several sub layers, the width of which
is a variable. However, thé width should ﬁot be too high to avoid the bossibility of .

missing a definite la,yer by mis-recognizing it as an anomaly, and secondly, because -
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soil propértiesv often exhibit a treﬁd with dépth. If the’laye_rs are too thick, that is
each sﬁblayer comprisiﬂg of too many points, the data in that region may not be
stationary and the ensuing statistics will be inaccurate. A sublayer of lesser thickﬁess
will dﬂeviéte this vf)roblem. It is also important that the sublayers not be too narrow ‘
_té .Qnsure that the bias of the.‘sta,tistics to be calculated are Within acceptable Hnljts
‘of 4r‘eli‘abi1i‘ty. From the above explanation, it is evident that a compromise has to
be reached as to the optirﬁum thickness of a sublayer. An increaséd thickness of the
sﬁblayer can intréduce the possibility of filtering out actual thin layers which'is highly
undesirable. It has to be reltera.ted that the selectlon of the sublayer thlckness is
situation dependent. If the 1ntent10n of filtering is solely for the purpose of inspecting
trends, a large value can be'selected. Conmde_nng all the above requirements, ten
data pb_ints, that is é'thickness of sublayer of twenty five centimeters is recommended
for purposes of rer'noving‘ extremeties in data, while a thickxklessr ih.the region of twenty
five (10 data‘poiﬁts) ‘to seventy five centimeters (30 data.points) is a good choiqe for’
purposes of trend -evaluatioﬁ. The technique prdpos_ed in the thesis is a modification
of the method givén by Vivatfat (1978) and Campénella, and Wickremeéinghe (1987).

The detailed procedure is described below;
(a) Select a band width (ten data points is a good choice)

b) For a sublayer ‘1’, ca.lculate the standard dev1at10ns of layers ‘i, 4-1" and ‘i+1’,
. . y
gi_veﬁ by ¢;, 0,1 and 0y41, respectively. The first layer will not have a (i-1)th layer

and the last will not have a (i+1)th layer.

(c) Obtain a representative standard deviation o,; defined by o,; or oy;, whichever
1s lesser, where

vi= (o o?)” (3.3)
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Opi = (Uz'+12 + ¢i2)1/2 (3.4)

| (d) Calcﬁlate for layer 4, thev mean (m;,-) and.me.dian ('rﬁd‘,-) considering all dat;a.
in all three lé,yers 4-1’, 4 and 441 as a grblip. _Fér the ﬁ;sf la,yer; only 4’ and ‘i+1’
will bve‘ considered while for the last layer, only i’ and ‘-1’ will be _cons’id'ered. The -
median }of any datakset is not dependent:on the extremities of the data. That is, it is
not affected by low or high Valﬁes, since it is. the middle térm of an ordered data set.
» The mean, however, is a function of all th¢ data and as a result, it can be severely

affected by data which are high or low.

(e) Compute for layer 1’, the band width W;; such that the data outside of it will
be réplacéd or removed. | :

If .;phe mean method is adoptéd_,

- Wi = mgi + (BS)ow: | (3.5)

If the median method is adopted,

Wy =mg (BS)O‘m ) (36)

~where BS is a constant to be ‘decidecil ,depending on the degree of filtering required.
0.5 < BS < L.5 has béen fouﬁd to be a reasonable range with BS = 0.5 re‘sultin'g _
in a high degree of filtering and a value of BS = 1.5‘resuv1ti1.1g in a lo§v degree of
| ﬁlteﬁng. As Eqs.v 3.5 and 3.6 indicate, thé band width W,; will depend both on ;che

method of filtering (mean or median) and the chosen value of BS. Since the mean
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is a function of all the data in the layer, an extremely high or_extreme‘lyi value will |
afl'ect its valne and thereby ‘also affect the band width, and this is not desirable. This
effect will be prominent in a variable soil or’even in a less ‘variable_ soil if wider layer
thicl(nesées have been chosen for the sublayers. However, in the case of a less variable
soil or where sublayers are relatively' low in thickness (around ten data points or 25
m),:this adversity 1s not of great concern as some of the results to be presented, will
indicate. The median is not affected by extreme data points in a sampleb and hence
‘the above problem does not apply if the median method of filtering is adopted’. ‘In
~ general, for purposes of trend evaluation, a relatively low value of BS can be selected
since losing thin layers is not of great concern. However, for purposes of ﬁltering
out extremeties a high Value of BS should be selected allev1at1ng the p0551bihty of

ﬁltenng out actual thin . layers present in the proﬁle
(f) Replace or remove data outside the acceptance band Wi;.

Removal of’data is an option-but generally not recommended because it reduces the’
original data file creatmg practical difficulties. Replacement of data can be performed

in several ways. Replacement by the mean of the 1mmed1ately preceding and imme-

diately following unfiltered data points is a good ch01ce,' since the substitution is
totally dependent on the closeet neighboring points which are within the acceptable

limits. Other possibilities of cubstitution are by the mean or median of the sublayer

in which the filtered data points o.ccur..i -Tlhe latter option is not suitable if the local

region under consideration has significant trends'. It sh'ould.be noted that removal or

replacement of data will not change Wi in Egs. .3.'5 and 3.6.

| If thin layers are tho‘ught‘to be preeent, it is advisable to use the mean method,

since the possibility of such thin layers being removed is avoided. Another safeguard

against such an adversity is to reduce sublayer thickness, but under no circumstances
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should it be less than eight 'data points for reasons already explained. The extent of
~ filtering can be expressed By PF (as.a percentage) ‘which i§ given by,
szj\g]—;lxwo_ - @
where N1 is the number of data.outside the accep;ﬁance band and NUM is the total
number of data in the profile. A high Valﬁe of PF indicates that a significant number
of data have been ﬁlte;'ed and a low value reflects the opposite. '
Statisfical ﬁl_tering has been i)erformed on data ﬁom TilBury Isldnd for both thév
mean and median methods. The method of replacemenf used is by substituting the
mean of the adjacent unfiltered data points. Figures 3.5 - Z:l.S illustrate the filtered
data profiles of Fig. 3.4. As can b‘e observed, for an inteﬁse ﬁlteriﬁg of BS = 1.0, the
PF value obtained for the media.nimethodvi;sv20'.124(Fig. 3.5) and 25..81 for thé mean
" method (Fig. 3.6). The higher Valué of PF fof the mean methpd is also evident when
BS = 1.5, by éomparing Figs. 3.7 and 3.8. For the higher value .of BS (=1.5), PF
' dropé to 9.50 for the meciian and t041'0.37 for the mean method, indicating a reduced ‘

degree of filtering.

3._2'.3 Evaluation of Stationarity of a Soil Layer

For various reasons statistical applicatiéns hke trend analysis, determination of pa-
rameters like the scale of fluctuation (Chapter 4), time series analysié (Chapter 5) and -
for the interpolation problem conéidering correlations (Chapter 6), it is irﬁportant to
evaluate whether a particular soil layér 1s stationary in the mean. Statistical methods
such as autocorrelation ‘and variogram analysis 4are also performed on stationary data
and there is av significant difference between the above functions for stationary and.
non stationary dzﬁa. Figures 3.9 and 3.10 illustrate the McDonald Farm site cone
bearing .proﬁl.es whivch Wi]l be tested for stationarity using the RUN test. Figures 3.11

" and 3.12 illustrate the different autocorrelation and bvariogram functions obtained for
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the Layer A data in Fig. 3.9 for both stationary (trend removed) and.non-stationary
data. These two figures illustrate the importance of removing the trend, if there is
one present, prior to any analysis. Methods such as trend removal, described in this
chapter and techniques of differencing explained in Chapter 5 can be used to station-
arize data. Although a visual inspection of a profile may at times give an indication
of the stationarity or non-stationarity, it is not always the case, and 1n instances such
as above, the RUN test becomes a convenient and simple tool in assessing it.

RUN is defined as a sequence of events of the same type (Bury, 1975). The criterion
chosen here is comparing the mean of a selected sublayer against the global mean or
the overall mean of the entire layer. There are two typé of events possible: the local
mean of the selected thickness being above the global mean, and the local Iﬁean being
below the global mean. A sequence of events where the locai mean is evaluated to be
above or below the global mean is termed a RUN. A similar test can also be done for
the standard deviation, but is not recommended due to the reason that the standard
deviation is a second moment statistic. The-reliability of second moment statistics on
small samples is low due to the increased variability as compared to a large sample.
In the situation under study, the entire soil layer is the large sample whose variability
is not adequately represented by the smaller sublayers consisting of fewer data points.

In the applications to follow, the sublayérs were selected to comprise ten data
points, that is, a sublayer thickness of 25 cm. It is important that these sublayers are
not too thick, so that each sublayer could be assumed to be approximately stationary
and not too narfow, since if it is, there will be too little data rendering it impbssible.
to get good estimates of statistics such as the mean. Considering the above factors,
ten da'tai points seemed to be a reasonable cho‘ice.i The number of RUNS with respect
to the mean and standard deviation can be determined but as mentioned before,

the RUN test based on the standard deviation is not recommended due to the reason
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that the standard deviation of the sublayers will not be representatlve of the standard
E dev1at10n of the entire layer.

Once the number of RUNS wrth respect to the mean is determined, 1t is compared
to the values in the Tables of the RUN test (Swed and Eisenhart, 1943) where the
» rlumber of RUNS required for statlonanty or homogeneity for differerrt significance
levels are tabulated. More details .of the RUN test are available irl Bury (1975), - -
| Alonso ‘and Krizek (1975) and Campanella and Wickremesinghe (.1987);

The RUN test has been performed on two sets of data, the proﬁles of which are
given in Figs. 3.9 and 3. 10 All layers deplcted in the figures have been identified
using methods descnbed in Chapter 2. The detailed results of Layer A of Fig. 3.9 are

" tabulated in Table 3.1 and the summarized results of Layers A and B are tabuldted

in Table 3.2. The m and n valuesv in the tables refer to the number of values above

. and below the. glohal mean and they are interchangeable.

As can be seen from Table 3.2, Layer A fails the test for stationarity at all levels of
signiﬁcance of 1%, 5% and 10%. Layer B fails the test for stationaritly: at eigniﬁcance
levels of 5% and 10% and is at the border of acceptance even at a low level of
: 51g.mﬁcance of 1%.. These results are as expected for a profile exhlbltlng a trend.
Figure'3.13 ilhrstrates the distribution of RUNS of Layer A With respect to the gtobal
mean of that layer, 87 bar. | ‘ |

The detailed results of 'La.‘yer D of Fig. 3.10 are tabulated in Table 3.3 while
srrmmarized res.ultsl of both layers C and D, in Table 3.4. L‘ayer C data is non- »
:stationary ‘due to the preéence of a trend while the Layer D date is stationary at all
levels of significance since it doee-not possess a t_rend and 1s clearl)r homogeneous.'
F1g 3.14 illustrates the distribution of RUNS- for the Layer D data of Fig. 3.10. The
‘Layer D data have also been used for the interpoletion prohlem described in Chapter

6 of the thesis, and unlike Layer C, there was no need to consider the cone bearing



Chz;pter 3. Trend Analysis

150.0

1215.0

109.0

RUN 1 : RUN 2

OVERALL MEAN = 87 Bar _

v

MEAN Qc (Bar)
50.0 75.0

25.0
1

0.0

4.0

6.0 7.0 8.0 9.0
DEPTH (meters)

10.0

T

1n.0

Figure 3.13: Distribution of RUNS for Data of Layer A.

110



Chapter 3. Trend Analysis

60.0

2,3, 4 S, 6 7 =—RUNS

59.0

OVERALL MEAN = 41 bar

MEAN Qc (bar)
40.0

39.0

20.0

3.0

40 5.0 6.0 7.0
' DEPTH (meters)

Figure 3.14: Distribution of RUNS for Data of Layer D.

8.0

111



Chapter 3. Trend Analysis : | _ 112

value in two ‘parvts; na,m'ely the stationafy residuél and the noﬁ-statibnafy trend. This
is an ideal example 'Wher(: theiRUN test was used tovxvferify the stationanty of a soil
layer. | |

As Fig. 3.12 illustrates, stationarity or hon—étatiénaﬁ‘.cy can also be Veriﬁeci us-
| ing the véfidgram which is defined in _éécfion 6.2. The variogram (or semi-variogram) |
function attains a constant value (sill) for a stationary set of data. For hon-stationary
~ data the variogi'am‘ function is of a continuously increasing natufe (Fig. 3.12); How-
evef, 'this method suffers from the deficiency that particular levels of significance of
| acceptance or rejection of stationarity can not be established. In contrasf, thé- VRUN |
test afférds tilis capability and the aéceptance levels of stationa,rit& can be based on
the problem at hand and the required confidence. _ |

.Thg abovevexarlnplé.s illustrate the applicability of the RUN test and is a con-
venieﬁt rr'lethAod_‘ to determipe the homogeneity‘ of a soil layer. Once this condition
.is verified, and if found to be non-stationary, the data can be made stationary by
the popular method of trend analysis or by differencing. Different applications use
different methods of stationariZing data. For example, while methods of time series
analysis use differencing 1t 1s more convenient to use vtfend ana,lysis' for soil p'toperfy
interpolation considering correlations. These will be described in Chapters 5 and 6

respectively.
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Table 3.1: Results of Run rI.‘est.for Layer A Data in Fig. 3.9.

Sub - Region | Mean | Standard Deviation
1 37.89 | 3.57
2 33.15 3.01
3 30.76 | - 0.84
4 30.22 1.71
5 39.04 7.53
6 55.15 | 481
7 55.59 13.51
8 7057 | 3.82
9 61.45 13.44
10 121.99 14.07
11 145.48 215
12. 125.46 9.40
13 - 97.44 - 9.09
14 199.50 224
15 99.89 3.41
16 02.76 8.52
17 93.46 ° S 1.25
18 110.01 14.33
19 14475 | . 621
20 . 138.72 | 10.13
21 . 135.21 4.61
22 92.90 23.46

Entire Layer | 87.0 -39.5

Table 3.2: Corhpa.rison ‘of the Actual Number of Runs (Mean) with the Number of
RUNS Required for Stationarity for Different Levels of Significance for Layer A Data
in Fig. 3.9. " ' '

“TRUNS Obtéined - | RUNS Required for Stationarity

Layer | for Data m | n 90% 95% - 99%
A 7 3]9] 7-15 | 6-16 517
B 2 5191 4-10 3-11 2-11
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_Table 3.3:- Results of Run Test for Layer D Data in Fig. 3.10.

Sub - Region | Mean | Standard Deviation
' 1 30.53 14.98
50.31 7.99
3 27.10 8.21
4 43.94 2.75
5 5291 | | 1.22
6 42.63 2.94
7 47.43 4.12
8 39.32 2.14
9 4418 | . 211
10 47.37° 4.59
11 | 28.27 229
Entire Layer | 41.06 10.60

Table 3.4: Comparison of the Actual Number of RUNS (Mean) with the Number of -
RUNS Required for Stationarity for Different Levels of Significance for Layer D Data
in Fig. 3.10. o : . : - ‘

RUNS Obtained RUNS Required for Stationarity

| Layer for Data m|n 90% 95% 99%
C 2 54 5 | 5 5
D | 7 7

4 3-8 | 2-9 2-9
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3.3 Least Squares énd_Regression in Trend Analysis

The leést squares 'abproach takes into account the location of sample poihts with
respect to the estimated i)oint and also the intef-‘relationships between sample points
themselves. The major éhortcoming of such an approach is that it néglecfs the struc-
tui'e of the variable under study, assuming that the variables considered in the analysis
are uncorrelated and have a common variance. However, ,the t;eatment of _tvhe vaﬁ-
ables as non correlated resultvs in the estimator being non-optimal. If correlation
" between the residuals exists, the traditional least squares methods do not yield satis-
. vfa.cb’tory results', and hence the generélized least squares techniques will have to be used
(Draper and Smith, 1966). The method of genéra,]jzed least squares incorporates the
variance-covariance matrix into the calculation 'broceés of the regression coefﬁcients,-
 the details of which will be described in this section.

A statistical model which is used to represent the trend of ahy soil p-aramefer
is termed linear if the dependent variable (soil parameter) can be expi'essed a.s'a
linear combination of the unknown coefficients and the independent variables (data
_co—ordinates). In some cases of trend énalysis, a non-linear trend in the form of a
second or third degree pOlynomial may be more appropriate to model the trend.. In
classical least squares estimation, the main objective is to minimize the function S

where,

Coa2
S = E[@i-Q ,
o 1. D) . . : )
= - ; (Qi - Qi) ' ‘ ' (38)
where n is the total number of data, Q,- is the regrlessed"va,lue at location 1 and @); is
the actual observed value of the soil parameter. The regressed value Qi(: f{X i Bi}),

Where, X is the spatial co-ordinate system and $3;’s being the regression coefficients.

In classical least squares estimation procedures, the following assumptions are
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made on the residuals (Myers, 1986).

(a),ConsfaIit Variance
(b) Independence
(c) Zero Mean

(d)

d) Normally Distributed

The regression coefficients §; are maximum‘likelihood'éstimates, only if (a), (b)
and (c) above are satisfied. The assumption of nofmality is required if certain tests
like the Student’s t test orbthe FV test are to be used to verify the effe'c_tiivene_s;s of the
regression.- The condition of zero mean will be satisfied only if theré 1s a _constanf term
(ﬂo) in the regressibn equation. For example, if the interlcept term in the expressioh
for linear regre's.sion is made to be zero, condition (c) above will not be satisfied.

When Eq. 3.8 is minimized, subject to,

85 . : -

— =10 3.9
98; - 39)
the values of ,B;-.é from above gives the_regr'essioﬁ_ coefficients.

In matrix form, it can be éxpressed, as, A
o -1 . _ . .
| {8} = [xTRX]" [XT) [R"* {Q}. (3.10)
. where, {X} is the co-ordinate matrix given below and {Q} is the soil parameter matrix

and {R} is the correlation matrix of the residuals. For a typical two dimensional linear

problem,
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;1 T, Y|
1 = Y2

X]=|: | . (3.11)
L1 wn" Yn |

and,

o] |
@=y: ey

Qn )
where, n is the number of data points where soil properties are known. The regressed

estimate (Q,), at any point (z,,y,), is given by,>

Ba o
Q=[1 2o w]{A @ - (3.13)

As mentioned before, if there is found to be significant correlation among the resid-
uals, BJ’-s will be accurate only if it i‘s considered e.nd Eq; 3.10 expressesr the form of
generalized 1eas>t squares. If correlation among residuals is absent or negligible, and
 the residuals are of constant variance (%), {R} can be expressed asan xn -diagohal :

matrix in the form,
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10 0 01
0. 1 0 0
Rl=¢?| 0 0 1 ... ... 0 o (3.14)

Lo-0 0 0 0 1

Whereb‘y,‘ the exéression for {B } iﬁ Eq. 3.10 will reduce to,
{8 - [x7x)” [x7) @) e

. which gi‘ves ‘the classical least squares estimate.s.‘ The form of Eq. 3.10 allows dif-'
ferent functions to be used for the correlation matrix [R]. This fyﬁction can be the
au_tocorre-latiof‘l function, the covariance function or the variogram funétion. The def-"
initions of the autocorrelation aﬁd covariance functions are given in Chapter 4 and

the vz;rioéram function 1s described in detail in Chapter 6.

3.3.1 Veriﬁcatio'n of Residuals for Non Constant Variance

In order for the traditional least squares method to be valid, two criteria have to be _
satisfied. That is, the residuals should have a constant variance and possess negligible
correlation. The residual e;, which is the diﬁ'erénce between the actual value @; and

the regressed value Qi, can be expressed as,

& = Qi - Qi A (3.16)
It is generally assumed that e; is normally distributed and have constant variance,
o?, given by,

of ===~ (3.17)
n—p
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where, p is the number of unknown coefficients 3; to be estimated from the regression. -
For the verification of the constant Avariance of the residualé, residual plotting is
adopted. The ordinate of such a plot will be a function of the residual_ ih the form
-¢;/Ve;], where the variance of the residuals, V[e;] can be obtained from Eq.I 3.18 .

below. It should be noted that V[e,-] will be equal to o2 if the variance is constant.

Vied = (1 - ma)o® (3.18)

where, m,; 1s the diagonal element of the matrix [M], given by,

[M] = [X] [XTX]—I x| o 7 (3.19)

Asvca’.n v;be seen from Eqgs. 3.18 and 3.19, V[ei] is dependent"on the form of (X]. If
large variations of V[e;] are not expegted, e;/oc? may be used instead of e;/V]e;], as
the ordinate of the _residual. plot which would have Q; or the independent variables
X; as the abscissa. The reason for plotting-t_he residual function against Q; and not
agiain'st Q;, 1s b'ecaus’eAthe e; 's are usually correlated. to Q; , while e;’s and Q:s are
indépendent. The ensuing plots, which are possible outcomes of such an analysis,
are illustrated in Figs. 3:15a. to 3.15d with the range of the residuals falling in the
shaded bands. Figul;e’3.15a depicts é,_casé where the variance is constant, while
Fig. 3.15b illustrates the case where the variance is non cbns’_caht. Figuré 3.1‘5c 1s a
" typical illustration when the linear effect of X j .has not been removed and Fig. 3.15&
1llustrates the need for exfrd terms in the regression eqﬁation OT eXpresses the need fof
transférmation of variables (Myers, 1986). While outcomes in Figs. 3.15c and 3.15d
| cé,n be remedied by adding extra terms to the regression equa,tioﬁ, the sitﬁation in
Fig. 3.15b can bé handled by deviating from the simple methods of least squares an(i

performing weighted least squares. (M'yers, 1‘986).
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Figure 3.15: Different Relationships of the Residual Function with the Dependent
Variable or the Independent Variable.
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3.3;2 - Verification of Residuals for Correlation

‘The preseﬁce or the absence of correlation (autocorrelation) is verified by using the

" Durbin - Watson Statistic (Durbin and Watson, 1951), d,, which is defined as, »

Ty (e — ein1)’
?:1 eiz

d, =

(3.20)

<This,ira.l.ue of d, should be compared with the values in the tables (“ Testing f(l)r »
Serial Correlatioﬁ in Least Squares_ Régression IT 7, - Durbin mand Watson). The
tables provide upper limits d, and lower limits d; for different number of predictor
variables used in the ﬁodel, for three different sigrﬁﬁcant levels, 5%, 2.5% and 1%.
If d, >. d., the autocorrelation of residuals is negligible and if d, < d;, the correlation
is signiﬁbcant. ifd, >d, > dl,‘the test is said fo be vinconclusive and it is conservative
_fo consider correlation (autocorrelation). |

In the event sig'niﬁ‘cant correlation of the residuals exists, the most convenient
mefhod of interpolatibh is for it to be done in two parts. The non-stationary compo-
nent, which i1s the trend, can be determined by the classical metho}d of least squares
and the stationary component (;an Be subjected to methods where correlé.tion‘is con-

- sidered. Procedures of correlation analysis is described in 'Chapter 6 of the thesis.

3.3.3 Statistical Tests to Measure, Efficiency of Fit

The qﬁa.lity of a fit of a regression analysis is measured by the multiple correlation
chfﬁcie'nt,'Rg2 .(Graybﬂl,_ 1961 and Brooke and Arnold, 1985), which is given by,
N -\ 2
?: Qi - Q ) .
R’ = 1,( - _)2 o | (3.21)
where, @, is the mean of the data given by,

'Q—_—%Zﬂ:c)i - (3.22)

=1
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and Q is the regressed eétimate. Brooke and Arnold (1985) suggest that RQ.Z should
be at least 0.5 for any confidence to-be placed on the regréssion. Rg? satisfies a Beta |
distribution with parameters 0.5-v; and O.Suz where v, 1s equal to (k-1) and v, is
equal to (n-k), k being the numbef éf regression coefficients in' the equation.

The F test (Brooké and Arnold, 1985) can be used to Ve'rify' whéther the model
is pérsimoﬁiou_s (optimum number of variables in the regression equation). The most‘
efficient model is not necessarily the-model that ’gives the highest R,? value and the
minimum variance of the residuals. It 1s also important that the optimum number ‘
of variables is used. The above test evaluates in a’quantitative way the improverﬁént
gaiﬁed.by the addition of extra variables and its s;igniﬁcance én thé e_stimati'on. A
different type of F test can also i)e used to verify the efficiency of the coefﬁcient, ,6‘1
in simple regression. | A

Tﬁe ‘v’ test (Brooke and Arﬁold, 1985) is perforin‘ed on the coefficients of the
regression to evaluate its efficiency. If the fitted regression is acceptable .at a particulé;r
: sfgniﬁcance level, the null hypothesis H; : §; = 0 for éllj = 1,..k should be rejected.
In the case of simple regression, the F test on cpefﬁcieﬁts is equivalent to the ‘t’ tesf
(F =t?). Moie details of thh‘ the F and ‘t’ tés;c are available in texts'by Myers(1986), a

Brooke and Arnold (1985) and Draper and Smith (1981).

3.3.4 ~ Application of Trend Analysis to a CPT profile

Methods of trend analysis described in the preceding sections have been applied to
the CPT profile in Fig. 3.9. Using methods of layer identification already described
in Chaptér 2, two prominent layers have been identified between 4.50 m and 10.0 m

~ (Layer A) and 10.0 m and 13.5 m (Layer B) considering the cone bearing profile.
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The statistics obtained for the Layer A data for a simple linear trend (model 1)

and for a curvilinear trend (model 2) 'ai'eAgiven-..below. :
Layer A - Linear Trend (Model 1) |
Model 1 is given by, , '
| | Qi = Lo + Py
n=221 . Re*=59.14 -~ d, =003
Sum of squares of residuals, 0'T12 = 139776
" Variance of Data, 0? = 34410

The statistics of the regression coefficients are given in Table 3.5.

' Ta,blé 3.5: Statistics for Layer A with Linear Trena.

Coeflicient Mean | Standard Deviation | ¢ Ratio
B -51.46 791 - 6.51
B4 - 19.06 1.07 17.89
" Layer A - Cufvilinear Trend (Model 2)
Model 2 is given by, ‘ ‘
| | Qi =Bo + Py + Bay:®
n=221 | Re? = 66.70 4, =004

Sum of squéres of residuals, o,,2 = 114587
Variance of Data, o?= 34410 -

The statistics of the regression coefficients are given in Table 3.6.

(3.23)

(3.24)

* Higher order polynomials resulted in higher Ry values but were ﬁot selected due

to the significant correlation between the independent variables, giving rise to multi-

collinearity  (Myers, 1986) The improvement in the model caused by a change from

a linear (model 1) to a simple curvilinear was verified using the F test given by,
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- Table 3.6:' Statistics for Layer A for Curvilinear Trend.

Coeflicient Mean | Standard Deviation | t Ratio
B, -286.08 34.64 | -8.26
B . 87.09 ' 9.87 8.82
B3 -4.69 ’ 0.68 -6.92

(0712 - 0,22)/(k2 — ki) -
o2/ (n—ky)

Fopy = (3.25)

where," for the case considered, k; and kg ( the number of coefficients in models 1 and
2 respectively) take the values twd and thfee, fespectively; vy is equal“tO‘(kz - kl)'-
#nd v, takes the value (n — klj. ‘ _ ' .
The value obtained from Eq. 3.25 (F = 39.46) is greater than the.valugA of Fc,.;t
‘obtained (3.82) at 95% significance from the tables, suggesting that rﬂodel’ 21is more
'apbropﬁate. The ‘t’ test on the coefficients also indicates the adequady of the model.
The t Ratios for the ’coeﬂ%ients are ‘all greafer than tm-t(—; 1.645, from t tables), at
a. significant level of 95% for a degree of freedom (n — k), k being the number of
coefficients; two for model 1 and three for model 2. However, the Durbin - Wafson
- statistic, d,, is low (d, < d;), indicating the presence of autocorrelation among the
residuals. ‘Due to the presence oflcorr.ela.ttion among the residuals, the exact value
of the coefficients will be given by Eq. 3.10 and not Eq. 3.15. In geotechnical ap-
plicatiéﬁs, however, there will be only one rgalization at a given point, rendering it
impk.)ssible to evaluate the covariance matrix {R}. Therefore, the only option will be
to perform in‘terp_olat‘ionA on the residuals, separately. In the présent example, oniy
* trend analysis will be performed and applications of residual correlation analysis will
be expiained in Chapter 6. With increasing degree of the polynorrﬁal used for the

fit, the correlation among the residuals decreases. This behavior is reﬁccted in the .
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value of d, which inc;‘eaées from 0.03 for model 1 to 0.04 iﬁ model 2. However, as
explained béforé, thé degree of the polynomial used for a trend is not only limited
by éonsiderétions of multi - collinearity in higher ord;ar models, but is also restri_cted :
from a practical point of view. Therefore, an intelligent comprbmise would be to tol-
erate correlations- dmong the residuals instead of deciding on a mo;Iel which 'exhi'bitsv
multi-coliineéﬁty. | |
The analysis was also carried out for Layer B (10!0 m - 1V3.5 m) in a similar

manner. As f>011 the Layer A data, the only drawback was the presence Qf correlation
: among the residuals. Once ;cigajn higher order polynomials were not. consider¢d>d1.1‘e
to the high correlation. among the inaepeﬂdent variables. All other statistical tests
‘were satisfied with the curvjlinear model .being more superior. As for the Layer A
aﬁalysis, the value of d, increases from 0.07 for model 1 to‘ 0.08 in model 2. The F
value obtained by using Eq. 3.25 was 9.65, reﬂectiﬁg the sﬁperiority of model 2 over
model 1. - |

- The statistical details pertaining to Layer B are listed below.

Layér B ; Linear Trend (Model 1)

As befpre; model 1 is given by, |

Qi = Bo + By (3.26)

n = 141 , Rs% = 63.30 . d, = 0.07
Sum of squares of residuals, o,,2 = 158868
Variance of Data, o?= 432761

The statistics of the coefficients are given in Table 3.7.

| ‘Layer B - Curvilinear Trend ( Model 2)
Model 2 is gi%fen by,

Qi = Bo + Bry; + Bay: ’ ' (3.27)
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Table 3.7: Statistics for Layer B with Linear Trend.

Coefficient Meah | Standard Deviation | t Ratio
- Bo -430.76 33.50 - 12.86
B . 43.78 2.84 15.42
n=141 R=658  d, =008

Sum of squares of residuals, o,;% = 147992
Variance of Data, o2= 432761

The statistics of the coeflicients are given in Table 3.8.

Table 3.8: Statistics for Layer B for Curvilinear Trend.

Coeflicient Mean | Standard Deviation | t Ratio

B, 894.70 | . 419.00 T 214
B, -183.31 71.62 -2.56
8, | 966 304 | 3.257

The linear trends Qf Layers A and B are illustrated in Fig. 3.16 and the curvilinear
trends in Fig. 3.17. The distributions. of the residuals for the linear and curvilinear
models considered fall into the 'catAe;go'ry given in.Fig. 3.15a. Therefore, there was
no need for weighted regression to'.be"p‘erformed and the simple vregressio.h procedure

was adequate to model the pfoﬁles in Layer A and Layer B.

'3.3.4.1 Lower Confidence Limit of Cone Bearing

The foregoing applications illustrated how trend lines in pi:oﬁles can be obtained. In
geotechnical engineerihg, thé matter of greatér concern is generally the establishment
of lower bounds at a particular significance level. 'Fo,r‘ example, a 90% lower confidence
limit for a particular layAer. of soil will indicate the boundary above Which the soil

parameter under consideration will lie ninety times out of hundred.
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Figures 3.18 and 3.19 illustrate the lower 95% confidence limits of "Lafyer A and
- Layer B, for data aséuming linear and cqrvilineai trends, reéﬁectively. The lower 95%
is a highly coﬁservative limit and if the engineer is willing to increase the element
of risk in the design, it can be lowered to 90% or even 80%, shifting the lower hrmt
“desired towards th:e-tfend line.‘ Once the lower confidence hnﬁt is decided upon, the
‘graphs which correlate relative density and friction angle with cone bearing can be
overlaid on the»vlower conﬁdence Bands, enabling the engineer to obtain rehabiﬁty
e;timates on these soil parameters which .v.vill be used in design.

For data assuming a linear trend, the lowe; cohf{dence estimate of t.he trend (Ql) at
a signiﬁ(zant level of (.1 - a) is given by (Brooi(e and Arnold, 1985); '

P A | | 1: 4 1._‘ 52 ' |
Qi=0Q: — ta/z.(n-z)\"<1+;; + ?(f(Qi C—Q)Q)2> a? (3.28)

where ‘o2 is the variance of the residuals given by Eq. 3.17 and t,/3(n_2) is obtained
from Student’s ‘¢’ tables.
Similarly, the lower confidence estimate for data assuming & curvilinear trend (Q))

represented by a second degree polynomial is similaﬂy given by,

) n ) Z Z; - Z Z,'z -1 1
Qi = Q = taja(n-y) |1+ —+ [1 2 2z°]| Xau Xz* Ta° 2 o .

Yz2 Yzt Yzt z;? }
| (3.29)

where, z]s are the depth éo—ordinates. _
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:3.4 " Conclusions

The main conclusions drawn from this chapter are;

- (i) Methods of moving average smoothing and Fourier smoothing are only suitable
- for the evaluation of trends in a qﬁalitative Iﬁanner. These methods are nof recom-
mended for other areas of appljcations. where analysis of data is performed, because
they modify even the acceptablé (‘good’) data points. |

| (ii) Statistica.bl’ methods of ﬁlteﬁng are recommended over smoothing methods be-
cause the removal or substitution of extreme data points is done with some statistical
basis. The media%l method‘of filtering Ais preferable to the mean meth.od, since the
mean is dependent on extreme data poinfs while the Iﬁedian is not. Substitution of
Afiltered datavpoints is best performed by the mean of the ddjacent two unfiltered Adata,
poinfs ' | | o _ |

(i) The RUN test has proven to prov1de an efficient way of determmmg the -
statlonanty of soil profiles. ' -

(iv) From a statistical standpdint the inethod of trend analysis using re-g‘ression
techmques 1s a convenient method of expressmg soil property dependence with depth. '
A linear trend or a polynomial of degree two will be sufficient to model the vana.tlon _
of soil propertles with depth.

(v) Geotechmcal engineers can use the lower confidence limits of their ~preference
for design purposes, such that a high percentage of the soil property value of concern

will be above an acceptable lower limit.



Chapter 4

Random Field Theory in Geotechnical Data

Analysis

4.1 Introduction

Modeling the stochastic character of soil ?roberties 1s very important in geotechnical
engineeﬁng. The natural heterogeneity of the soil, soil distui‘bance during testing
or extraction of samples; measurement errors caused both by man and machine.ahd
"most importantly the'h'mjtation of data availability, all give rise to uncertainties in
soil parameter estimation‘.' There. would be nothing random in the distribution of séil
properties if.all the points in the ground could be tested accurately. Howe\.rer, this is
not fea.sible‘bovth practiéélly_ and economically and hence the need for the treatment
of in sitﬁ soil data considering as if it were random- has arisen.

This chaptér will i.nvestigate different t.ypes of 'applicﬁtions from the‘}')oint of ran-
dom fields. Parameters ysﬁc::h as fhe variance function and tl_ie scale of ﬂuctuation will
be investigated ﬁom @lgeotechnical engineering point of view. A different method of -
obtaining the scale of ﬂﬁctudtion will>_be proposed and application areas of this pa-
rameter such as averaging effects of the cone bearing, sleeve friction and pore p're-ssu're
from the CPT will be explored. The influence of tfeﬁd on the scale of fluctuation will
also be discussed with specific examples to illustrate its .signiﬁcance. This chapter
will then look at the apphcétion areas of correlationé ‘between spatial averages and
exceedance probabilities of CPT proﬁle‘s.. Most of the theories used are extensions |

of those deﬁved by Vanmarke (1983). The effects of soil Variabilify, -accuracy and

133
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confiderice levels of estimates on the optimum' sample spacing for a given site will be

~described to shdw how the '.collecti_on of unnecessary data can be avoided.

4.2 Parameters Required to Fully Identify a Soil Stratum

In geétechnical_ ¢ngineérihg, it 1s common to diﬁde the heterogeneous soil stratum
: ‘into s’tatistically homogeneous layers. .Thé means or some lower bound values of
these statistically homogeneous léyers are then considered for design and analysis,
neglecting the effect of vaﬁation or fluctuation about these values. A constant mean,
constant standard. deviation-and an aﬁt.ocorrela,tion function which is independent of
the location and is a function only of the sépa_ration distance (lag distance) in the
depth dimension, are necessary requirements for homogeneity or stationafity." If a.
soil stfatum gxhibit; varying types of trénds at different depths, it can be divided
'inté ‘distinct layers, eagh identified by a particular trend: linear, curvilinear,.' etc..
A trend in actual effecf is a non constant mean and, therefore, in kee‘p:ing with the
above deﬁnitioﬁ of stationarity, it Wiﬂ have to be removed for the soil layer to beb :
classified as stétionary. These layers are then treated individually, in order to d_erive'
. their respective statistics. | |

. In addition to the mean (Q), two other parameferé aré required to describe the
spatial variability of a soil property ché,ra_cte;'istic which is to be treated as random
: (Va.ﬁmarke, 1977). One of these parameters is the standard deviation (&Q), which
meésufes the degree to which the actua.lbva,lues differ fro.m the mean. The coefficient of
“variation (7]) is a standardized form of a variability faétor; which gives the relationship

between the mean and the standard deviation.

The coefficient of variation, 7, is defined as,

(41) |

=
Il
@nlé‘
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_ .T‘he scale of ﬂuctuation (6) is the other imp‘o‘rltant parameter. This measures the
distance.within which tkhe soil properties >show'bstrong cbrrelation in the vertical or
’ hqﬁéonfal _direc'tion. The emphasis in‘this chapter will be on the scale of ﬁuctuatién
-in the vertical dimenéion. If two points in a soil layer lie closer than its scale of
fluctuation, the soil property values at both 'thgsc points will be on the*saﬁe side
of the mean (either both abdvé.br both below). It is in this sense that & is é.lso »
known as the distance of perfect correlation. A low value of the scale of ﬂuctuvat'ion
means rapid ﬂuctﬁations of the property value -a,bout the mean (high variability)
and a high value of é reflects the slowly varying nature of the property value about
the mean (iow variability). The above explains why it is important to consider the
scale of fluctuation in additidn to the mean and the stand#rd deviation, when a soil .
i)roﬁle nééds to be fully characterized. The name of this important Aparame-ter (6) is
somewhat misleading since a higher value of the scale of ﬂuctuafion reflects a lower
variability, and vice versa. In this regard, although it seems more appropriate for §

[4

to be referred to as the ¢ scale of uniformity ’, for the sake of consistency with the

present literature, this thesis will continue to refer to it as the scale of fluctuation.
4.3 Scale of Fluctuation

4.3.1 Spatial Averaging

The scale of fluctuation is a parameter which describes spatial variability. Therefore,
it is important to acquire a complete understanding of the effect of épatial averagi_hg
prior to diséussing the derivation and merits of the' scale of fluctuation.

Within a small volume or element , soil prépérty values are approximately uniform
and less variable. However, am;)ng _the_.group of these small elements, some may have
lower average values while some rhay pdssess higher average values. _As. a result, the

within element variability iwill definitely be lower than the between element variability.
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This phenomenon has been effectively uvsedv to identify different types of layering in
Chapter 2. If the elernents considered are large, the above concepf will not be true
since in the larger elements, .the internal variations will balance out such that the
average property values from one'large element to another will not differ too much
. (Baecher, 1985)-. The averages of lafge volumes will be approximately equal to those
of the smaller velumes but fhe standard. deviatio‘n which reﬂ'ects the variability Wiil
be signiﬁeanfly different. The variation of the standard deviation from one small
element to the n.ext will be greater than if the elements were larger. |

Tne extent of the variability. of the standard deviation is dependent on -the struc- N
ture of the spatial variability of the soil property value under consideretion and 1s
expressed by the variance function, ’FZ(.), which will be defined and explained in -

section 4§3.2.

4.3.2 Variance Function VI(I‘Z)

The recommended procedune ('V.a,nmarke,‘ 1977) of determining the scale of fluctuation
‘is‘in terms of tne.varia.nce function which adeqnately explains the eﬂ'eets of spatial
averaging. The less frequently used method uses the autocorrelation function to derive
the scale of fluctuation. ’fl_ie details of the latter fnethod and its drawbacks will be |
described. in section 4.3.4. |

The procedure of obtaining the scale of fluctuation (§) in terms of the variance

function is as follows;

‘The data are first considered in pairs (n = 2) and a new series of data comprising
- of the respective averages of the adjacent data points are derived. The length of
averaging will be equal to the specing of data points, (Z;). The standard deviation

(o) of this derived series is then calculated. The standard deviation of this series
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(n = 2) will be less than the standar.d deviation of the origfna.l data set, 01., b.ecé,use
of the cancelling out of fluctuations due to spatial averaging. The above procedure -
is extended to the case n = 3, where three adjacent data poinfs wili be average(i to
~obtain the derived series for the case n = 3. The corresponding standard deviatibn ,
of this serigé, 03, i1s calculated with the's-pacing, Z;,, being equal to twice the _spacing
between data points. For a typical CPT spu_nding which samfles a.t:2.5> cm, Z, will be
equal to 2.5 cm and Z3 will be 5.0 cm. This procedure is repeated for n — 4,5, 6,v ......
until n approaches the total number of data points, N. The effect of spaﬁal averaging

will be more significant with increasing n with,
TS0 > 03> ... > on

For each n, the variance function, I'?(Z,), can be calculated as,

. o.nZ

I%(2,) = i o | (4.2)
where, d,;z 1s the variance (squ‘are_dA of the standard deﬁétioh) of the derived moving
average series of degree n and o2 is the variance of the original data. ‘If the spacing
of the data is d, Z, in Eq." 4.2 will be ‘equ;al to (n - 1)d. The variance function

-given above can be determined for different lag distances (separation distances), Z.
Figure 4.1 illustrates a typical variation of I'}(.) which has a maximum value of unity,
decaying towards zero for incréasingilag distance values Z.

From Vanmarke (1977); for large values of Z (very large n) the varia.ncé function will
become inversely proportional to Z and ca;n be expressed as, |

r?(z) = (4.3)

N o

" The thé relationship in Eq. 4.3 can also be expressed as (Vanmarke, 1977), ‘
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where, n is the number of data points which are averaged and d is the sampling
interval. The next step is to fix n (n") and observe I'(n") and the scale of fluctuation,

§, will be given by,
§ =T*n")n"d _ (4.5)

The pomt of maximum curvature is a suitable point to obtam n* (Vanmarke, 1988).
For the variance function profile given in F1g. 4.1, n* =48 (n*d = 0.025. x 48 =12
m) and I'*(n") = 0.27. Therefore, the scale of ﬁuctua.tien (8) is given by (Eq. 4.5),

§=12%0.27=0.324m = 32.4cm  (4.6)

In the origin.a.l method described above, the value of I'? is selected from the curve at
‘a reasonably high value of Z, where there is a dlstmct change in the curve (point of
“maximum curvature) This has been-verified by Vanmarke (1988).

A pract1ca1 variant of the above method of determmlng 5 is proposed and used
in thls thesis. It makes use~of Eq. 4.3 directly and is very convenient for computer
appﬁcations. At large values of Z, the function T'%(Z).Z reaches a peak and this
maximum A;va,'lue gives a gooci approximation for §. Figure 4.i gives a typical variation
of a variance function, ['?(Z), with a maximum value of unity and gradually decreasing
with increasing distance, Z Figure 4.2 shovs?s -the variation of I?(Z).Z with Z and
as can be ob‘serx'/ed, I'?(Z).Z reaches a maximum ualue of 31.25 em, which' compares
" well with the value (32:4 cm) obtained from the method recommended by Vanmarke

(1977). The proposed method allows a consistent and objective determination of §.
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Figure 4.1: Variance Function of Haney Data for Layer Between 9.3 and 15.51 meters.
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T'ciblc 4.1: Comparison of the Two Methods for Obtaining the Scale of Fluctuation.

o Scale of Fluctuation (cm)

Data Soil Property | Vanmarke’s Method | Proposed

_ Haney 2 | Cone Bearing 132.40 31.25 -
(9.3 - 15.51 meters) | Sleeve Friction - 33.60 ©35.99
Pore Pressure - 26.68 30.45
Langley 3 | Cone Bearing 23.04 24.08
( 2.60 - 10.80 meters) | Sleeve Friction 41.79 39.98
. . Pore Pressure 21.98 - 17.91
Strong Pit 1 Cone Bearing 97.99 2622

( 5.25 - 10.12 meters) | Sleeve Friction | 37.59 136.88
Pore Pressure 17.75 _ 13.76
Vanmarke (1977) Cone Bearing | - 1200 | 982

The eﬁ'ectiveneés and the advantage of of the proposed method of »ob‘taining § has
been acknowledged by Vanmarke (1988). The -a_bone value of the scale of fluctuation
(31.25 cm) relates to the cone Beaﬁng at Haney 2. Figures 4.3, 4.4 and 4.5 illustrate
the CPT profiles for the Haney, Langley and Strong Pit sités for which the § values
have beén calculated. The valuesf)i} 6 which have Been obtained for the different
sites listed above are tabuia._ted in Table 4.1 for cone.bea.ring, sleeve fricti‘on and poré |
pressure. It also gives' a comparison of the proposed method with V_an'marke’s (1977) |

method. All the results in Table 4.1 indicate the adequacy of the method suggested.

| 4.3.3 Removal of Trend

Soil propérties are highly depth dependent and hence CPT parameters such as cone-
bearing, sleeve friction and pore pressﬁ;e exhibit significant trends- with depth. If -
" the trends are not signiﬁcant, data can be _cohsidcred as bs_tationary. In the presence’

of signiﬁéant trends, these will have to be removed prior to determining the scale
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of fluctuation. Different metheds of trend removal have already been described in’
Chapter 3. A pre—requ151te to this is the 1dent1ﬁcat10n of statistically dlstlnct layers,
using the techniques descnbed n Chapter 2.

Cone bearing and sleeve friction often eﬁghibit ﬁnear trends while it is usual for
the pore pressure profile to possess a curviljneal; trend - as illustrated in Figs. 4.3 to
4.5. If a linear trend is used on a pore preesure proﬁle, the resulting residuals will not -
be stationary, due to the curvilinear effects of the trend not Being removed. This will
give rise to an ineorrect value for §. The decision as to what type of trend removal is
necessary could be taken by inépecﬁng the residﬁals as explained in Chapter 3. Ifa
linear trend remova_l results in a stationary set of residuals, curvi].inea',r. trend analysis
is unnecessary.

In certain p’roﬁle‘s where the curvature of the pore pressure profile is prominent,
the scales of fluctuation obtained for.the linear trend removed data and the curvilin-
ear trend removed dafa will show an appreeiable difference, with the latter method
giving lower values. As explained -earlier, the curvilinear trend would always be more
suitable, since it alse includes the linear case as a subset. Table 4.2 provides sufficient
Y evidence as to why z_ibcur'vilinear trend remoyai'mefhod has to be adoptéd_7 if one
exists. The & for the curvilinear trend is less than that for the ljnear trend, except for
the ;esult of Langley 3 data. The reason for the above is that the pore pressure trend
18 'generally, much better represented by a curfihnear trend, than by a liﬁear f_rend.
The Langley 2 deta seem fo have approzdmafeiy equal & vaiues fo1:' the two methods
'.of trend removal, suggesting that .the pore pressure profile in this case may be ade-
qua.fel& represented by either a linear or a curvilinear trend. In Tables 4.1 and 4.2,
Haney 1, Haney 2 and Haney 3 refer to d1fferent profiles obtained at the Haney site
while Langley 1, Langley 2 and Langley 3 represent dlﬂ'erent cone profiles obtained

from the Langley site. The cone bearing and sleeve friction results indicated in Table



Chapter 4. 'Random Field Theory in Geotechnical Data Analysis 146

‘Table 4.2: Companson of the Scale of Fluctuatlon for Pore Pressure Obtamed by
Linear Trend Removal and Curvilinear Trend Removal.

- - Scale of Fluctuatlon for Pore Pressure (cm)
Data Layer Depths (m) | Linear Trend Curvilinear Trend
Haney 1 | 715-1312 | 34585 27.21
Haney 2 9.30 - 15.50 34.21 -30.45
Haney 3 13.52 - 22.50 ' 35.34 28.45
Langley 1 |  2.60 - 10.75. 46.08 2615
- Langley 2 2.60 - 10.60 37.37 37.33
Langley 3 2.60 - 10.60 1791 ' . 1841
Strong Pit 5.25 - 10.12 - 20.18 _ 13.76

4.1 are for a linear trend while the scale of fluctuation results for pore pressure are

for a curvilinear trend. A description of the above sites are given in section 1.7.

4.3.4 Relationship with the Autocorrelation Function

The scale of fluctuation can a.lso be expressed in terms of the autocorrelation function
(p). The autocorrelation function, as the name suggests, is the function which gives
the correletion of a variable with the eorresﬁonding.veriable at different locations. _
For example, the autocorrela_tipﬁ function at a particular separation distance (lag
distance) is the correlation of{a,All da.ta.poin'ts separated by that di..sta_nce; Equation -
4.7 explains this relationship more cleariy. Soil properties generally shew stronger
correlation forclosely located points, with the correlation decaying for increased lag
distance. The 'autocorrelatien function, which is the standardised form of the auto-
covariance functien,‘ has a maximum value of unity with the possibility ef minimum
values even in the negative region for large lag distances.

The autocorrelation function at a lag distance I(p(l)) is defined as,
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‘ . where, N is the‘ total number of data, Q; is the soil property value .a.vt lbcétion 'i.and

| Q is the mean of thé data. If d is the sarhple spacing (depth increment) between data
pbints, h in Eq. 4.7 is equal to l/d. | | |

" Vanmarke (1978) expresses the scale of fluctuation, §, in terms of the dutocorfe-

lation function, p(l), as giveﬁ below. .
‘ +o0 o : .
5:/ o(hdl . (4.8)

Since the autocorrelation function given by Eq. 4.7 is an even function‘, 4 can also be

expressed as,
5;2/“M0a‘ | (4.9)
o o )

Tile abqve relationship ;)f 6 with the autocorrelation‘ function is appi‘dximai:e because »
the value of p(l) giveﬁ by Eq. 4.7 will be accurate only at reésonably low values of the
lag distance I. At incre#séd values of [ (large h), N — b will be low and therefore the
value of p(1) will be biased. Agferberg .(19'70) suggests that for a data set wit>h N data
points, the vaiue of p(1) will be a reasonable estimate only for | < (N/4). Expressing
in terms of distance, the maximum lag distance to which p will be accurate, will
therefore, be equal fo (N /4).d. As a result' of this, the value of the integral'i.n Eq. 4.9
with an upper limit >Qf infinity cannot be cxpécted to bgive a good result; Howéver,
at large lag distances, the autécorrelation functions of most soil profiles tend to show

a cyclic effect with values close to zero, both from the positive and negative sides,
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: therebvy forcing p(l ):a,t' large values of I not to have any ,signiﬁcaht.,inﬂuence on the
: lestima,tion of § from Eq. 4.9. |

| Vanmarke (l978) has also éstablished relationships bet_ween possible autocorrela-
tion functions and the. respective scales of fluctuations which could be derived from
them.- These are listed in Table 4.3. The constants of the different relationships are

denoted by ‘a, b, c, k and m while AZ is the lag distance.

4.4 Applications of the Scale of Fluctuation

4.4.1 Comparison of Bearing, Friction and Pore Pressure

The sleeve friction value obtained from the CPT is an atverage value of the sleeve
friction extending along the 13.4 cnl length of the friction sleeve. Due to the a\-reraging
effect, the scale of fluctuation could be expected to be higher than if it were measurihg
point values ThlS is because the averaging process would cancel out fluctuations,
resultmg in a lower variability. The cone beanng, however, is expected to gwe a
lower scale of fluctuation since it is believed that bearing measures values at the cone
t1p Results in Table 4.4 agree with the above explanation, ‘because the § values for
. beanng is less than the corresponding va.lues for friction. It is also 1nterest1ng to note
that the. § values for bearing are not as low as those for pore pressure. The pore
pressure measures values over the length of the sensing: element, which is about 5
mm, and for all practical purposes, can be consideled as measuring values at a single
boint. If the cone bearing too was measuring values at 'zi single point, the § value
relating to it also sho'uldvbe as low as that of pore pressure. It is evident from Table
4.4 that the bearing from the CPT is indicative of a value which is atveraged eut over
some length. However, the fact ‘that the bearing § value is not as high as that for
friction also suggests that the bearing value from the Cl?T ls representative of a value

averaged over some length which is less than the averaging length for friction. Table
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Table 4.3: Relationship Between Different Autocorrelation Functions and the Scales
of Fluctuation (after Vanmarke - 1978)

Function p (A Z) Shape 6

! f
EXP [=122]] 2a
0 Az
I
EXP [~ (42)’] K N
0 > Az

.t

EXP [=22l] COS (AZ/c) | c
Az

EXP [Z82| 1+ |AZ |/k) | ! N 4k
0 - — Az
[
[SIN(AZ/m)] /(AZ/m) m
| 0 Az
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Table 4.4: Comparison’ of Averaging Dimensions for’ Cone Beanng, Sleeve Friction

and Pore Pressure for the CPT at UBC.

Parameter‘ Length (cm) | Area (cm?) |
Cone Bearing | - 3.1 100
Sleeve Friction - 134 150.0
Pore Pressure 0.5 5.6

Table 4.5: Comparison of the Scale of Fluctuation for Cone Bearing, Sleeve Friction :
“and Pore Pressure.

v ~ . Scale of Fluctuation (cm) =
Data Layer Depths (m) | Cone Bearing | Sleeve Friction | Pore Pressure
Haney 1 7.15 - 13.12 31.60 38.00 27.21°
" Haney 2 1 9.30 - 15.50 31.25 |  35.99 30.45
Haney 3 13.52 - 22.50 29.06 35.34 28.40
Langley3 2.60 - 10.60 24.08 39.98 17.91
Strong Pit 5.25 -.10.12 26.22 36.88 13.76

.~ 4.4 indicates the approximate averaging lengths and areas for bearing, friction and -
pore pressure obtained from the CPT at UBC. |
| The above argument that the cone bearing value is also indicative of an avefaged
~ value 6vef a finite length', instead of theAvalue at a point, is supported by the fact that
| the cone bearing at the tip 1s dependent not only on the soil property at the cone tip,
but also on values immediafely behind, in front of, and arouﬁd the tip location. The
low § values for pore pressﬁre céuld also be indicaﬁve of the highly variable nature of ~
this measurement since it also reﬂects diffusion and pore preésure dissipation effects.
- Figure 4.6 illustrates the relationship of the variance function x lag distance
(T'3(Z).Z) for the Strong Pit data for bearing, friction and pore pressure. The maxima
‘of the respective curves give the scale of fluctuation values in Table 4.5. These values

have been obtained using a linear trend for bearing and friction and a curvilinear
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Figure 4.6: Variation of the Variance Function x Lag Distance (I'%.Z) for Strong Pit
Data Between 5.0 and 10.0 meters for Bearing, Friction and Pore Pressure.
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trend for pore pressure.

4.4.2 ~ Scale of Fluctuation and Variability

As mentioned in section 4.3.3, the sczﬂe of fluctuation of a layer represents the vari-
ability of a layer. The higher the variability of a layer, the more fluctuations about
the mean are expected, resulting in a relatively low value of §. On the other hand,
a slowly fluctuating component about the mean represents low vari&bility, giving rise
to a relatively high value of §. It can therefore, be expected that § is related to the
coeflicient of variation.

Figure 4.8 illustrates the coefficient of variation profile for .the bearing profile
given in Fig. 4.7 which has been divided into three layers. The average values of
the coefficient of variation (7) and the § values of the three layers are tabulated in
Table 4.6. The variation of T*(Z).Z with Z from which the & values in Table 4.6
were derived, is illustrated in Fig. 4.9. The results in Table 4.6 clearly indicate an
" inverse relationship of § with the coefficient of variation. Layer 2, which has the lowest
variability (7 = 0.078), has the highest § value of 41.75 cmb. Layer 3 has the second
highest variability (p = 0.180) and also the second highest value of § (32.63 cm).
Layer 1 is the most variable (n = 0.190) and appropriately, it has the lowest § value
of 29.37 cm. The variabilities of Layers 1 and 3 are, however, not very different and
so are their scales of fluctuation, providing further evidence of the close relationship

between the coefficient of variation and the scale of fluctuation.

4.4.3 Effect of Sample Spacing

In addition to assessing soil profile variability and averaging characteristics of prop-
erties such as cone bearing, sleeve friction and pore pressure, the concept of the scale

of fluctuation can also be used to determine an optimum sample spacing for a given
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Table 4.6: Relationship of the Scale of Fluctuation and the Coefficient of Variation
for McDonald Farm. : ' :

Layer | Layer Depths | Scale of Fluctuation § | Coefficient of Variation 7

(m) __(em)

T | 117 - 450 2937 T 0190
2 | 450-1012 475 - 0.078

3 .| 10.12 - 13.50 ' 32.63 0.180

site. Closer spacing than optimum gives rise~t‘o redundant dafa and unnecessaryAe.x-

penditure of time and effort and therefore, it is advisable to sample at the optimum

- spacing in order to characterize a soil pr(;ﬁle. |

.Typically, CPT data recording at UBC is performed at 2.5 cm intervals. In order
" to study the effect of.sa,mi)le spacing on the scale of fluctuation, data sampling was -
pgrformed at 2 mm for a souﬁding performed at the -B. C. Hydro RailWay Site. A

description of this site is given in section 17 With the{ data obtained a,t.'this close

spécing, intgrnﬁtteﬂt déta_ points were systematicdﬂy removed to form data sets With

different sample spacings and the scale of ﬂuctuation was calculated for each spacing.

The '5 values for cone beé.ring so calculated for diﬁ;erent spacings are given in Table

4.7. ' The. condition of the above site was uniform in the depth intervél consideféd

and, 'theréfore, és, Table 4.7 indicates, the scale of fluctuation is faiﬂy insensitive to

the_sa_mplé spacing. In a soil profile where the variability is more pronounced, the

scale of ﬂuctuation c_ouid be expected to be more sensitivé to the sémple spacing, and

is also expected to increase with incre_a,sed sample spacing. Table 4.8 exhibits thi_s

feature for Layer 2 data in Fig. 47 For this case, § is equal_‘té 41.74 cm for a spacing
of 2.5 cm. and increases to 48.74 cm for a spéd_ng of 12.5 cm. The reason for this is

that the .h'igher sample épacing in 'a, fairly variable soil would be unable to pick up the

“real” fluctuations in between these p()-ints, fhus causing the scale of fluctuation to

‘increase. The Railway site data is of such low variability that even increased sample
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Table 4.7: Effect of Sample Spacing on the Scale of Fluctuation for Lower 232 Data.

Spacing of Data Points (cm) | Scale of Fluctuation § (cm.)
0.2 : 35.73 -
0.4 ' 3521
0.6 35.48
0.8 36.25
1.0 ’ - 3455
12 3561
1.6 : 35.73
2.0 - ' 35.03
40 , - 3323
6.0 | 35.58
8.0 , 135.88

110.0 | 3692
12.0 5 : 37.35

spaciﬁg does not have aﬁy uniform effect on the ééale of fluctuation. Instead, the §
value seems to fluctuate within a narrow band. |

- The 1mportance of the scale of ﬂuctuatlon is apparent when two dlfferent test
methods are belng compared. In thlS type of situation it is recommended that the
‘ _sampling interval should be less than the scale of fluctuation (Vanmarke, 1978) s0 tha“t
comparison is being done in a similar zone. The opposite is true. when sampling is

performed using the same equipment, where for optimum sampling benefit a spacing

- Table 4.8: Effect of Sample Spacing on the Scale of Fluctua,tlon for Layer 2 Data of
McDonald Farm Site glven in Fig. 4.7.

Spacing of Data Points (cm) | Scale of Fluctuation § (cm.)

25 - 41.74
50 43.30
75 ' 43.96
10.0 S 46.59

12.5 ' " 48.74
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greater than the scale of fluctuation is advisable (Campanella and Wickremesinghe,

1987).

4.5 Corr‘elation Between Spatial Averages .

It is common ingeotechnical- engineerin_g practice to determjne_bcoetﬁcients' of van-
ation, probability density functions etc.,, of data sets of measured soil properties
 without much emphasis on the character1st1cs of spatially averaged soil propertles
| .The average shear strength on a failure surface and ‘the average shear velocity in a
soil stratum, which are of great concern to the geotechnical engineer, are some ex-
~ amples of these. Very often, 1t is assumed that the mean of a spatially averaged soil
- property does not depend on the averaging dimensions in a statistical homogeneous
medium. The aspect .of 1ndependence between soil property ‘values and averaging
dimensions is very desirable, although _it is often violated. Lack of correlation will
.only be e;chibited by soil properties for which element averages combine linearly. Van-
‘marke (1978) also expla.ins that the spatial averages will have narrower probabih'ty
dens1ty functlons than the corresponding po1nt’ values.

The correlation coefﬁc1ent concept derived by Vanmarke (1984) provides the basis
for new methodology to analyze a wide range of stochastic problems in all three spatial -
dimensions. The almost continuous profile obtained from the cone penetration test
(CPT) provides an 1deal data base for such con51derat10ns in the vertical direction.
This procedure 1ntroduced by Vanmarke (1984) can be used in the field of numerical
methods in geomechanics, by generating the matnx of correlation coefﬁc1ents between
pairs of local averages of some soil property associated vlrith different elements along
the vertical axis. | _

ConSideﬁng L_ayers A’ and B’ in Fig. 4.1(l, let yl, Y2, Y3, Ya» Yo and Yp bei the distances
illustrated in Fig.4.10 and I'’*(y,), I‘é(yz), T'%(y3), I'*(ya), I‘Z(g./‘vo) and T'*(y;) be their |
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Figure 4.10: Different Layers Used for the Determination of the Coefficient of Corre-
lation Between Spatial Averages.
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-

Table 4.9: Correlation Coeflicients for Layer A in Fig. 4.11.

Ya (m) ¥ (m) Yo (m) Pab

1.0 | .0 0.30 4320

' - 0.50 3500
0.80 0215

1.00 0125

08 | 14 | 050 2504
- .00 - 1463

1.50 -.0227

Table 4.10: Correlation Coeflicients for Layer B in Fig. 4.11.

Ya (m) Y (m) Yo. (m) - Pab '
1.0 1.0 0.20 ' 14497

' : 0.40 3651

0.60 2853

0.80 2321

1.00 : 2167

respective variance functions.
The correlation coefficient pab between the spatial average of Layer A (Qa) and the

spatial average of Layer B’ (Q,) in Fig.4.10 is given by,

_ 90" T2(y0) — 91T (y1) +92°T*(y2) — y3°T%(ya) |
Pab =
: 2(\/(ya21“2(yq)-yb’1“2(yg))

* (4.10)

The derivation of Eq 4.10 is given in Appendix A.
'The.a.bbve' concept of determining the coéfﬁcient of correlatién has been applied
to a cone bearing profile obtained from Tilbury Island (Flg 4.11). The upper 20
- m of this profile was used in Chapter 2 (Fig. 2.25). Two distinct layers have béen
identified between 24.8 - 30.0 m (Layer A) and between 30.0 - 40.0 m (Layer B),
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1'1.sing the methods described in Chapter 2. The stationdrity of these layers have been
confirmed using the RUN test described in Chapter 3.. |
As can be seen froﬁ1 Eq. 4.10, the only paramet.ers ne_eded. to calculate fch_e correla-
: tion coefﬁcie’n.t are the thicknesses of the layers and their respective va.lfiance functions.
The va,rie-mce functions of these two layers are illustrated in Figé. 4}12 and 4.13, to-
géther with the autocorrelation functions which will be reduiféd for the determination -
of exceedance probabilities to be described in section 4.6. The correlation coefficients -
~ for different sublayer thicknesses (y, and y) and'layer separation distances (y,) are
tabulated in Table 4.9 for La&er A and Table 4.10 for Layer B. The»discrepancy of the
correlation values for similar sépafation distances in the two layers is due té the differ-
ence in thle decay pattérﬁ of the respectii/g variance functiéﬁs (Figs. 4.12 and 4.13).
Figures 4.12 and 4.13 show the variation p@tterns of the autocorrelation function
and the variance function for lag distances ofv up .to 2.0 and 4.0 meters, resﬁectivel_y.
This is due td the reason that the autocorrelation function has been considered to bé
“accurate up to 40% of the léngth of the data set.
As _méntioned,previously, it is cu‘stor.naryAin geotechnical engineering to assume
. independenée of soil properticles,fi that is, considering the correlation coefficient to be
~zero. This is ‘incorrect as demoﬁstrated abové, and could result in significant erfor
‘of the estimates being calculated. In a geotechnical engineering study the estimate

under consideration may be the settlement of a foundation.

4.6 Exceedance Pfobabilities

The theory of random functions could be applied to find the exceedance probabilities
of a CPT profile. Instead of considering' the entire soil layer, geotechnical performance
may have_v to be evaluated based on the exceedance of some value g within a regidn

of the soil profile. The slope stability problem in geotechnical engineering,. where the
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Figure 4.12: Autocorrelation Function and the Variance Function of Layer A ( 25.0 -
30.0 meters) of Tilbury Island. '
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Figure 4.13: Autocorrelation Function and the Variance Function of Layer B ( 30.0 -
40.0 meters) of Tilbury Island.
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" main concern is the non exc'eeda.nce‘ of the available shear _étrength by the disturbiﬁg'
force,‘ is an e);amplé. If this is not satisfied even in a very thin layer of soil, thisl
‘thin layer is liable kto' prog'ressive'v failure. .-The theory -was originally intfod_uced by
.Vanmarké (1983) and was e.ventually_extended to cover multi-layered systems by

Tang et al.(1987).
 The mean rate of upcrossings (1) above a threshold value q in a local region of

length D is given by (Vanmarke, 1987 and Tang et al., 1987),

. J1-p(D) {_Mrzw)}

v, = 202

\/EFDI‘(D)G'XP (4.11).

The derivation of Eq. 4.11 is givén iﬁ Appendix B.
There will be many segments of length D within the domain length L, and hence
the probability of non exceedance (Pr) for all such segments within the entire laye'r'

of length L will be approximately given by,
Pr, =exp(—v] L) ' E (4.12)

Therefore, the probability that the average of a local interval of length D will exceed
(probability of exceedance) a threshold value q is given by,

s

Pg =1—exp(—v] L) ' : - . (4.13)

From Eqgs. 411 aﬁd 4.13 it is evident that the probability of exceedance is dependent
" on the local region of length D, mean (Q) and standard deviation (og) of the entire

layer, value of the autocorrelation function of the layer at D (pp), square root of the -
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variance function at D, (['(D)), the threshold v.a;lue q and L, the thi"cl‘{ness of the
domain. | | | -

The theory of exceedance pfoba.bilities has been applied t;) the cone bearing profile
of Lay‘er A and La&er B in Fig. 4.11. The autoéon;elation_ and variance functions of
these two layers arevillustra'ted in Figs. 4.12 (Layer A) and 4.13 (Layer B). The mean
and staildard deviation of Layer A are 149.‘30 bar And 43.17 Bar, respecfively, and
for Layer B, thé mean 1s 58.26 bar and the standard deviation is 24.65 bar. Layer'
B has a higher variability with a scale of ﬂﬁctuation (6) of 200 cm and a coefficient -
of variation (n) of 0.411, as compared to Layer A which has a scale of fluctuation of
21.34 cm. and a coefficient of variation of 0.289.

Figure 4.14 illustra,tés the effect of the length of.th'e lbqal inferval D and thfesh_old
veﬂue (q) on the probability .of exgeedance for Layer A. For any given local interval of
lengtth, the probability of exceedance of a local average increases ‘as the threshold
value approaches the mean value of the layer as shown in Fig. 4.14. For any given
q, the probability of exceédance decreases with incréasing length of the lo;;al interval
D, due to the effe‘ct of a,ve'raging. Wit'hin the local region. Figure 4.15 demonstrates
a similar behavior for Layer B, which .i]l‘ustr‘ates the increase of the probai)ih'ty of
exceedance as the threshold value, q, approaches the mean value (58.26 bar) of that
layer. The incr‘eése in the probability of exceedaﬁce. thh decreasing local. avera;ging
‘ interval, D, is also evidenttfrom'Fig. 4.15. |
" When the 1ength of a domain which cdmprises the smaller segments of length D
is decreased, t:he probabilify of exceedance also decreasves, as exhibited in Fig. 4.16.
The Iﬁrobability of exceedance, Pg, for a- givep domaiﬁ of length L, is the cumulative
effect of all local intervals of length D (Tang, 1988). The number of local iﬁtervals
which can be‘included in a domain iﬁci‘eases wit‘h incfeasing L and this i1s the reason

for the increase in Pg for increasing L, for a given threshold value q (Fig.4.16).
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Figure 4.14: Relationship of the Probability of Exceedance with Threshold Value for
Different Local Regions of Length D for Layer A at Tilbury Island.
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Figure 4.15: Relationship of the Probability of Exceedance with Threshold Value for
Different Local Regions of Length D for Layer B at Tilbury Island.
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Figure 4.16: Relationship of the Probability of Exceedance with Threshold Value for
Different Domain Lengths L for Layer B at Tilbury Island.
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Figure 4.17 demonstrates the effect of variability on PE for local averaging intervals
of 0.5 and 1.0 meters for both Layers A and B. For a given value of D, Layer B which
| has a hlgher vanablhty (n = 411 and § = 20.0 cm) exhibits a higher value of Pg
for any giv-en value of ¢/Q, as compared to the less variable Layer A (n = .289 and
6 = 21.34 cm.). vFovr comparison bpurposes fhe values of q have been normalized by
d1v1d1ng by the respective means, Q, to account for the difference of the means of the

two layers under con51dera.t10n ngher Va.nablhty reflects more uncertalnty, which in
turn influences the exceedance probabilities to increase. This phenomenon is amply
evident from Fig.4.17. The 1 increase of Pg with decrea.smg D, is also apparent from

Fig.4.17 due to reasons already explained.

4.7 Optimum Sample Spacing’

A ty;.)i.ca,l cone 'penetration test at UBC pérférmé daté logging at 2.5 cm. However,
Cif the séil does not .exhibit much variability, the sample spacing could be increased
without losing much inforrﬁation. In section. 4.4.3, a method was described to obtain
- an optimum éample-,spacving based on the scale of fluctuation. The technique to be
'described in this section is more 'a,dvantalgeou's in that an optimum sami)le spacing
-recﬂiired can be determined based on the cohﬁdence level heeded fo.r' a partict.llar'r
purpose.

The actual mean of the data, (), is the mean calculated if all the points in a
particular sublayer were sample‘d,"a;nd the average calculated. In t‘he actual situation,
what is available is an estimate Q.

Assumjng that the data are normally distributed, the limits of Q are given by,

Qe —Q |= \%.t:{_l | (4.14)
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Figure 4.17: Relationship of the Probability of Exceedance with Threshold Value for
Layer A ( low variabilty) and Layer B ( higher variabilty) at Tilbury Island.
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Qs =Q £ —=.t, : ' (4.15)

where, o 1s the standard deviation of the data and t;_, is the Student’s ‘t’ variate
with n — 1 degrees of freedom, n being the number of data. The above equations

should satisfy,
Prob{t >t ,} =~ ' : (4.16)

where, (1 — v) is the confidence level of the estimation. Let it be a,ssurﬁed that any
la;yer is fully characterized when the mean obtained from the da,ta Q; for a particuiar
- layer is within A of the actual mean Qg For example, if A hereafter referred to as-
the degree of tolera.nce 1s. +. 10 the followmg condltlon results: 0. 9Qg <Q<1. lOQg

The tolerance is inversely related to the precision; the higher the tolerance, the lower
the .precision. -

- As a result of the above.deﬁ.nitions’, A can be. expressed as,

| Qs —Q
A= = - (4.17
] (4.17)
The coefficient of variation 7 is given by,
o A -
= — 4.18
=5 (4.18)

The sample size (n)‘required to estimate the mean to the above precision or the

sample size required to characterize a soil layer With respect to the mean of a soil
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property coneidered, can be eXpressed as a function of the degree of tolerance, A;

 with a confidence level of (1—7).

By combining Eqgs. 4.15, 4.17 and 4.18,'the sample size (n) is given by,
. - 2 .
Nny : :
= , 4.19
o= (%) (4.19)

According to Eq. 4.19, n depends on three factors;

N

(a) Variability of the soil layer, expressed by 7
(b) Confidence requlred ‘of the estlmate expressed by t_, -
(c) The degree of tolerance allowed, expressed by A

The number of saﬁples needed in a given thickness of soil str-at(umAis proportional
to the square of the coefficient of variation and the confidence required and inversely
proportional to the square of the degree of tolerance: In other words, the sample
spaciﬁg required, which is the inverse of n, is proportional to 4t}_1e square of the degree
of tolerance and inversely proportional lto the square of the coefficient of variation
and the confidence level. |

" The above concept has been applied td two sets of data; _namely Layer A and the
upber five meters of Layer B in Fig. 4.11. These two layers were selected to have
the same thickness in order to derﬁonstrate the effect of ve,riabiljty on the optimum
sample spacing more exphc1tly The results for varying degrees of confidence, 80%,
90% and 95%, for two different degrees of tolerance & .05 and + .10 are tabulated in
‘Table 4. 10 for the two layers considered.

In Table 4. 11, for the same tolerance of + .10 and a conﬁdence level of 80%, the
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sampte spacing required in the soil of higher variability (7 :_.410) is 17.2 cm while for
the soil with a lower variability ( = .289), it is 35.0 cm. If a high’erﬁ confidence level of -
90% is required, spdcing Wﬂl. have to be decreased to 10.4 cm. in the more variable soil
and to 20.0 cm. in the less variable soil. Slrmlarly, if the engmeer 1ntends to reduce
the tolerance by half to + 05 in order to 1ncrea.se the precision of the estlmate the
sample spacing w1ll have to be reduced to 5.4 cm in Layer A for the same conﬁdence
90%. However, in the more variable soil, the sample spacmg required for the same
confidence level and tolerance is as low as 2.7 cm. For a higher conﬁdence level  of
'95%, the snacin_gs required for a tolerance of + .05 decrease even further with the low
variable soil reqniring a spacing of 3.8 cm and the high variable soil a very low 1.9

The usual sarnple spacing of 2.5 cm in the high variable soil witl result in a
con'ﬁdence' level between 90% a.nd 95% for a tolerancé of + .05 while for a tolerance.
of + .10 the confidence le.vel of the required estirnate will be in excess of 99%. In
the lower variable soil the conﬁdence level will be 'signiﬁca,ntly. higher than 99% for a
tolerance level of j:l.10 W‘hile'for a _rednced tolerance of + .05 it will he close to 99%.
. All these significance level are well above whatt 1s required for all: practical purposes
in geotechnical engineering and therefo'rel the sampling interval can‘be‘increased e,t
the expence of akdec‘reased confidence. The other option would be to fix a confidence
level and study the etfect of sampling on the precision (inverse of tolerance) of the
estixna.te |

The above edcamples clearly 1llustrate the 1mportance of considering three i 1mpor—
tant cntena when selectlng a sample spacmg for a soil investigation. They are the
~variability of the soil, the acceptable precision and the confidence required in the esti-
miate. These cntena have different effects on the samphng rate and perhaps the most

1mportant factor is the vamablhty of the soil stratum. In a soil stratum where the
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Table 4.11: Effect of .Variability on the Optimum Sa,mf)le Spacing for the Soil Layers
between 25.0 - 30.0 meters and 30.0 - 35.0 meters in Fig. 4.11.

Layer (m) Tolerance A | Confidence Level (%) n Spacing (cm)
25.0 - 30.0 - +.05 o 80 - l 58 8.7
- 90 o 93 5.4
Low Variability ' 95 132 _ 38
7 = 0.289 +.10 80 15 35.0
. 90 26 20.0
. v 95 . 36 13.8
30.0 - 35.0 +.05 80 112 4.5
| o 0 184 2.7
High Variability : 95 : 262 1.9
7 = 0.410 +.10 80 30 17.2

| - | 90 | 49 104

95 68 74

coefficient of variation, .7, is unknown, it Wiﬂ be necessary to perform some tests a.nci '
vob‘téin an approximate estimate. The spacing required can then be determined using
this éstimate, and in the event it is greater than the spacing at which the testing has
already been performed, there is no need for additional testing. Ho'wever, if it is not,.
more testing will have to be done, also enabling a better estimate of the coefficient of
Vé,;iation, which in turn would result in a'more accurate estimatioﬁ of the optimum
..Sample spacing. |

.‘ It is common to find soil prbﬁles exhibiting a trend, resulting in a fairly high
coefficient of variafion, thus giving rise to the neéd of clcéser samplé spacing to ensure
a higher a;ccuracy of the estimates. If the above method is to be‘ used to obtain
the sample spacing, the uncertainty due to the trend will also have to be taken into
account. Another available option Wdﬁu.ld be to consider Very thin soil layers, whereby,

the effect of violating the assumption of stationarity would not be very drastic.
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4.8 Conclusions

The Iﬁajn conclusions of this chépter are,

(1) The proposed method of obtaiﬁing the scale of fluctuation in this thesis gives
.comparable results to those of the original method suggested by Vanmarke (_1977).'
‘The édvantages of the proposed method are its adaptability to computer applica.tibns
and the coﬁsistency of the approach, as compared to the subjectivity involved in the
_ previous method. | | |

(ii) The scale of fluctuation is‘basically an enhanced eétimator of variability. In
cqntraét to thg coefficient df variability, it also gives an‘indication of the spatial
variation of soil properties. -

(iii) The scale of fluctuation has to be determined on data which have been 'maae

sta.ﬁona.ry bsf trend removal. A linear trend can be used for ﬂle cone bearing- and
sleeve friction data while a curvilinear trend represeﬁts a .pére pressure profile more
adequately. Effects of non station_a,rity- significantly increases the value of the scalé of
“fluctuation and it ig thér,efére important to select the most appropriate form of trend
to -remove it. |

(1v) Exceedance probal.)ilities, of soil properties éver th1:eshold values are useful in
problems s‘uc}i as slope sfabi]ity, Where’the requiremént- is the non-exceedance of the
disturbing force overv the available strength. The exceedance probability is stfoﬁgly
dependent on the variability of the soil gnder consideration. Exceedance probabilities
are also heavﬂy dependeént on the length of the local region D, which decision is a
matter of vsoil mechanics',o.f'sensitivity and progressive failure.

(v) Economics pl#y a vital role in site investigations for large projécfs, and in
this .rega.rd, the unnecessary collection of data can be avoided in order to minimize -
costs. On the other hand, the i_ﬁcreased risks involvedAin having insufficient data

or failure to detect anomalous soil zones can be catastrophic. With the above two
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~considerations, an optiﬁum sampling sp_aging can be derived. T he optimum sampling
spacing required to fﬁ]ly characterize a soil profile has been found to be dependent
on the ‘accuracy of the estimates required, the confidence le\}ei desired, and mdsf_
importantly on the inherent soil variability.

This chapter has ainply demonstrated how applications of random field theory
can be eﬁ'ectively extended to analyze cone penetrétion test daté, in orde£ to better
ch#racterize a soil stratum. in the past, these techniques could not be used due to
the lack of sufficient c}lorsely spaced data. This is not the case W.it}-l the emergence and
popularity of in situ testing devices such as thé cone penetration - test (CPT) It is
recommended that geotéqhnical engineérs not only use these large data bases for con-
ventional lbgging purposes, but should also a’;tempt to utilize these data analytically '
from a statiéfical aspect, to obfain a Better ﬁnders'tand.ing of the chafacteristics of a
soil stratum. Statis;cical techniqugs enable the accrual of valuable i-nforma.tion at no
additional cost and therefore,v should be use‘d at every opportunity in supplementing

‘the information gathered from traditional deterministic methods.



- Chapter 5
Time Séries Methods

5.1 Introduction

A time series relates observations obtained in the past and present with values to
be expected in the future. In data analysis dealt with in this thesis, data will be
with respect to a spatial coordinate instead of time, although the methods of time

”

series are directly applicable. 'Ther_efore “ Time Series Methods ” in this disseitétion

?. There are

‘actually implies, “ Time Series Methods Applied to Spatial Variations
two cénditions' which have to be satisfied for the application of time series methoas:
the presence of correlation arﬁong data and the requirement thét da._ta, are at équally
spaced intervals. Geotechnicé.l data obtaiﬂed from in situ test mefhods satisfy both »
these cond_itioqs and therefore, proﬁde an.ideal base for the application of time series
methods. There exists a major difference in the applicaﬁon of time series methods in
geotechnical engineering and in the claésical areas of applications in commerce, eco- |
nomics, etc.. In the latter ﬁelds, both interpola.tion‘ and extrapolation are performed
while in geotechnical engineering it only makes sense to carfy out interpolation. |
In this application, time series methods in geotechnical data analysis can s.erve two
purposes: first to model soil data pfoﬁles in o.rdeI'»to be able to interpplate between
known'da,ta.;»)oints and secondly t;o estimate the random.error coﬁpoﬁent of a data
set obtained using a particular test method. Knowlecigé of the random error not only.

allows a comparison of the different test methods but also permits the determination

of the inherent variability which is important to characterize a soil.

177
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Prior to modeling a profile rt is necessary that tne data be stationary. -This can be
performed either by using metnods of trend analysis described in Chapter 3 or by the
technique of differencing to be expiained in section 5.2." The types. of models which
can be used are the Autoregressive (AR) model, Moving Average (MA) rnodel and the
Auteregressive Integrated Moving Average' (MA) model and these will be described in
sections 5.3.1 to 5.3.2. These methods are aiso referred .to‘ as Box - Jenkins methods
(Box and Jenkins, 1976) and have been used in the SAS (SASLETS, 1982) peckage
w_hi_ch. _W.as eInployed- to perform the modeling" to be 'described in- this chapter.

. Box - Jenkins methods can also be employed to determine the ra.ndor}n testing
error of soil test data. Tnese methods have also been made use of by Wu (1985).I
The random testing estimated ﬁ'om-the direct use of time. series methods can also be
compared to tne random error obtained by using the autocorrelation function- of the
data. |

| This chapter will also contain a brief review of the types of errors encountered in

" geotechnical data analysis.

5.2 The Method of Differencing

Although trend removal ucing ldnea.r and non-linear regression techniqnes are widely
used to stationarize date., time series methods use the method _ofAdifferen-cing to
transform the data to a stationary form.

The met}rod of diﬁ'erencing consists of subtracting values of the observations from .
one another in some prescribed order. A first order difference transformation is defined
as the difference between ad_]acent observations. Second order differencing consists of
taklng dlfferences of the s1ngle d1fferenced series, and so on. Table 5.1 explains the
concept of dlfferencmg more clearly

In Table 5.1, Q,_1;, Q,_l,'Q,, Q.41 and @, are sequential data at depths‘,.d,_z,
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Table 5.1: Effects of the Degree of Differenciﬁg on Data.

Raw | Modified Data at Different Degreee of Differencing

Depth | Data | First Degree Second Degree Third Degree
da—Z QB—Z V '

da—l Qa—l Qs—l - Qa—Z

da _ Qs Qa - Qafl Qa - 2Qa—1 + Qa—z _ .
da‘-f-l Q.H—l Qa+1 - Qa Qa-{-l - 2Qa + Qs—-l Qa+1 (Qa Qa—l) - Qs~2
dor2 | Qo2 | Qag2 — Qot1 | Qo2 — 2Qu41 + Q4 | Qorz — 3(Qot1— Qs) — Qsi

de_1,ds, doy1 ahd d,‘+2,_ ‘respectively, and as can be ebserved, each degree of differenc-
ing' results in the loss of a single data point. A

A ﬁrsf _degreevdiﬁ'erencing removes a linear trend, second degree differencing re-
moves a polynomial trend of order 2, and ﬁhiifd degree differencing removes a poly-
nomial of order 3. In most applications of épace series (the equivalent of time series
where the time domaln is replaced by the spatlal domam) analysm statlonanty of
data 1s’ a pre—reqmsﬂ;e In geotechnlcal engmeermg, it 1is customary to d1v1de the
en;cire soil stratum into sub layers exhibiting a similar type of trend which is. ve;y.
often linear, but in rare oceasions, curvilinear, necessitating a first or second degree
differencing, respectively. A visual inspeetion of the .soii parameter profile will very
often give an indication as to the type of differencing requiI;ed but may not always be
the case. The following method can be used to deterr_nine the degree of differencing
required forithe trend removal of a data profile.

For data that have been differenced to different degrees (ij=1,2 3, ),

_calculate the statistic' A; defined as (Gottman 1981)

N/6

=) pir A (5.1)
' k=0 ) .

where N is the total number of data, k the number of lags and pj,; is the autocorrelation
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coefficient of the data which has been differenced to the j** degree at a lag k. When
the data set is over differen;ed A; begins to increase. The degree‘ of differencing
réquired to stationarize the data set is then taken to be as the value of J for which .

/\j+i < /\j.
5.3 Types of Models
5.3.1 Autoregressive (AR) Models

A time series or space series can be described as an autoregressive process if the
current value of the series (), can be expressed as a linear function of the previous
values plus a random term a,.

An AR model of order ‘p’ [AR(p)] can be expréssed as (Box and Jenkins, 1976),

Qa.: ¢1Q9—1 + $2Qu-2 + $3Q,-3 + -+ . + ¢an—p + a, | (5.2)

~ where ¢;’s are the autoregressive coefficients.

An AR(1) model is simply expressed as,
Qa = ¢1Qa—1 + a, : | S (53)
For the special case where ¢, is unity, the random walk model results,

Q. =0Q.1+a, o : (5;-4)
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5.3.2 Moving Average (MA) Models

In a Moving Average (MA) model, the current value @, can be expressed as a sum-
mation of the present and past noise or shock terms (Box and Jenkins, 1976).

A MA»moc.lel of order ‘g’ [MA(q)] can be expressed as,

Qa =a; — 91(1,_1 - 02(1,._2 - 03(1,_3 """ — an,;q : (55)

where 6;’s are the moving average coefficients.

A éimple MA(1) process can be expressed as,

Qa =a; — 9143——1 » | ' (56) ‘

5.3.3 Combination of AR and MA Models (ARIMA)

In anjr methbd of modeling, it is preferable that the least number éf‘pa;rameters be
used and in this regard, the ARIMA model which is a combination of both AR and
' MA models is very - useful. | |

A general form of a (p,q9) ARIMA model can be expressed as,

Q= 1Qu-1+ $2Quz+ - + $pQump + 8y — 0184 — 638, 3 — -~ — Byap_y (5.7)
5.4 " Choice of An Appropriate Model

" The choice of the most appropriate model for a data proﬁle is dependent on two
functions. Namely, -
“(a) Autocorrelation Function, py

(b) Partial Autocorrelation: Function, p"(k, k)
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The autocorrelation function has been defined and explainéd in Chapter 4. The
pa,rfia,l autocorrelation functioﬁ of any fwo observations; @, and @, , is the corré-
lation between these two observations, taking the influence of the intervening obser-
vatiohs, Q.+1 and Q, k-1 into‘_'consideration. If the partial aﬁtocorrelatipn fuﬁcﬁon
 between observations Q. and AQH_Z_ (_=' p"(2,2)) is needed, not only is the relationship
between @, and @,,, required but also the effect of Q,+1 on Q4. Sirhjlarly, if the
‘partial autocorrelation between Q, and @, is needed, both effects of Q.1 and Q, 2 -
on @,,3 have to be considered. In contrast; the autocorrelation function does not

consider the effect of the intervening observations.

The partial autocorrelation function p"(k, k), is given by,

_ I;_—l e — 1.3 —i' »
- Pk ‘21—1 p ( )Z)pk (58)

n k k
PR = S T = Ly
‘withk=2,3,......
In Eq. 5.8,
P’ =p (5.9)
 p(ky3) = p"(k — 1,4) — p"(k, k)p"(k = 1,k —3) C (5.10)

where, k =3,4,...and i =1,2,...,k— 1.
The partial autocorrelation function defined above can also be derived directly from ~
the Yule Walker eQuations (Box and Jenkins, 1976). For example, to obtain p"(2,2),

the following multiple regression equation need to be solved;

Qir= hQin + 6@ tas (5.11)
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where p"(2,2) = ¢,.

'Similarly, for p”(3, 3) solve,
Q:+3 = qSIQ:.J,.z + ¢2Q:+1' + ¢3Q: + Ag43 S (512)

where h" (3,3) = #3 and Qz) é,rel the respective mean removed values of the Q) values.

All higher order pﬁrtial autocorrelation coefficients can be determined 1ike§vise.. These
ﬁxocedures are explained in greatér detail in Jenkins and Watts (1968j and Box _and
. Jenkins (1976). . |

The most appropfié.te model for a given data set can be obtqined as follows. -For an
AR(p) model, the autocorrelation function tails off while the partial autocorrelation
function is cut off after ldg p. For a MA(q) model, the partial autocorrelation function
tails off while the autocorrelation function cuts off after lag q. Foi' an ARIMA(p,q)
model, both’ functions tail off. In most a,pp]jcations‘of geotechnical engineering, the
commonly encoﬁntered model is the ARIMA(p,q) model. The cut off levels of the cor-
relation functions a;e.based on the st'c_lnda,.rd errors (o,) of the estimates. as discussed

below. -

The standard error of the autocorrelation coefficient, py, is given by (Box and Jenkins,

1976),

a,(pk):(% [Hégpﬂ)% | (5-13).‘

Similarly, the standard error of the partial autocorrelation ‘coefficient is given by, .
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o) = (5.14)

If the estimated autocorrelation coefficient is less than twice the standard error given
by Eq. 5.13, it can be considered as negligible' at the 95% significance level. The same

criteria applies to the partial autocorrelation coefficient.

The adequacy of ARIMA models are governed by various conditions and. the

details are available in Box and Jenkins (1976).

A 5.5 _ Application of ARIMA Model Fi_tting

Methods of ARIMA model ﬁtting have Been performed on the DMT modulus profile
g}ive'nbin Fig. 5.1. All the verifications and ipvroced‘ures already described, have been
adoptedlin- developing the most appropriate model to fit the data. The beneﬁ;cs of
thevuse of this techhique ‘may not 'be‘ apparent for CPT data since data logging is
performed at very close intérval_s, but for tests such aé the Dilatometer test where
cia.ta spacing is 0.2 m, or other fest_s such as the SPT or the Field Vane where spacing
is even farther apart, the advantage is that values in between tested points can be
- interpolated. A requirement of this technique is that the sampiing points be equally

spaced and most tests performed in situ satisfy this requirement.

5.5.1 Mean Prediction
Regression ‘-a‘nalvysis was used to model the non - stationary pai‘t of the data, as it is
apparent from Fig. 5.1 that the data exhibit a significant trend. First degreé and

~ second degree polynomials were rejected as the multiple correlation coeficient R? was

vefy low with a value of 0.48 for the first degree and 0.54 for the second degree. The
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Figure 5.1: Comparison of the Dilatometer Modulus Profile of McDonald Farm with
the Regressed Profile and the Estimated Profile.
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Table 5.2: Statistics of the Parameters of the Trend.

- - Coeflicient Mean | Standard Deviation | t Statistic
B, 110.82 » 58.15- 191
51 | -T71.21 . 33.80 2,11
B2 26.88 | 5.26° 5.11
Ba |- 1.47 S 0.23 - 6.38

third degree polynomial resulted in a R? value of 0.70 and the F test indicated that
a fourth degree bolynomial would not result in a significant improvement.

The model selected was,
Qi =B, + B8 + Basi® + Pas® +e& | ‘ (5.15) -

'Wilere Bo, B1, B2 and ﬁs are thé regression coefﬁcieﬁts, s; thev dépth cobrdiﬁaté, €; the
error term é,nd Qi? the e‘s.timated .soil property value at s;.

The statistics of 't}ie pararnetefs of the model are in Table 5.2. The correlation be- -
tween the regreséion parameters. were negljgible and the t statistics of the coefficients
were all close to 2.0 or greater, suggesting the adequacy of ﬂ_le model. Once the non-
stationary part is determined from the regress'ion‘equat'i-c;n (Eq. 5.15), the residuals €
can be obtained. If thé residl.J.als» are not'correlated, the .regression estirﬁate~ obtained
from Eq. 5.15 is sufficient for the prediction. |

If th¢ residuais are correlated, two options are available to improve the estirhates.v
One is.to use generalized least squares to improve the regression coefficients, ‘arid_the :
other is to consider the residuals sepé,rately and use.time series' methods to predict |
the prop-erties at unknown locations. The latter method will be used here.

The correlations of residuals can be checked by using the Durbin - Watson statistic,

(d,), given by,



Chapter 5. Time Series Methods : 187

N (e er) | | |
'dozz’ﬂ(i’, ";“1) ~ - (5.16)

2ui=1 &

where ¢;’s are the residual terms obtaiﬁed frém Eq. 5.15.

In the example considéred, d, = 1.5, and from Durbin - Watson tables, th¢ critical
value d; = 1.51, even at the 5% significant level, vconﬁrming the correlation of the
residuals.

The residﬁals were also checked for the variance pattern and it was revealed that
the variance was practically constant with depth, elinﬁnating the need for the use of
weighted least —: squares approach to obtain regression estimates-.

‘The ARIMA procedure of the SAS i)ackgge (SASLAETS, 1982) was used for the
time series (spatial series) analysis. The a,utb_corre_lation function was of a gfadually
decaying type ana the partial autocérrelation function cut off after the third >la,g. It
was also found that all the partial autocorrelation coefficients, other thanvth_evﬁrst
and third, were not Signiﬁcant. Cdnsidefing all of the'aBove, an AR(1,3) model with

the folldwing »statistic‘s was selected to model the stationary portion.

Table 5.3: Statistics of the Parameters of the Autoregressive vM.odel. :

Coeflicient Mean Sfandard Deviation | t Statistic
b1 ‘ 0.594 0.095 . 6.25
oy -0.240 ' 0.096 - -2.51

The correlation ‘(pla) between ¢, and ¢; was -0.213, which was well within ac-
ceptable 1imits. ri‘he high values of the t ratios of the parameters also indicated the
efﬁ_ciency of t.he parameters. Thé consfaht value estimate was equal to -1.57. bThe Q
statistic (Box aﬁd Jenkins, 1976) was calculated for tWenty four lags and resulted in
a vaiue of 24.95, which was well below fhe ériti_cal value of 33.9 (Chi - Square tables)

at the 5% signiﬁcancé level and at 22 (= K - p) degrees of freedom. ‘This verified
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that the proposed AR(I,?) model has absorbed all of the correlation rerﬁaining in the
stationary residuals. | | | |

The total predictioﬁ_ from the stationary and non stationary part, the regfes‘sion
estimate of the non stationary part, and t}>1e‘ actual DMT profile arev,illustrated n

Fig. 5.1. The prediction is expressed as follows.

Non-stationary component from Polynomial Regression

Q',, = 110.82 — 71.21s, + 26.88s% — 1.47s} - (5.17)

Stationary cofnponent from Time Series Analysis

A

Q",. = 0.60Q,,_, — 0.24Q,, s — 1.57 . (5.18)

The total prediction is the sum of Eqs. 5.17 and 5.18, and is given by,

A LA

0, =@, +q., S (519)

5.5.2 Variance Prediction-

The variance of the estimates also comprises of two parts; one from the stationary
“and the other from the non-stationary part of the estimation.

The regression variance (Va,r[Q;o]) at a point s, is given by,

varl@,,] = o8] [[CICT] " ST 20

where 0.2 is the variance of the residuals and,

Sol=[1 s 2 s3] | o (5.21)
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1 1 1 ... ... 17

: 31 89 83 ... SiN . L -
[C] = | (5.22)
. 2 2 2 2 I .
8] 83 83 ... ... &8N
3 L3 3 3
L8] 83 83 ... ... S8y

In Egs. 5.21 aﬁd 5.22, s; can be either the horizontal or the vertical co-ordinate.

The variance of the statidnary component can be obtained as follows.

In the example considered, the stationary component is given by Eq. 5.18;

~ The variance is estimated from the Taylor Series approximation (Bury, 1978) as

Var| Q” Z Z 6:6,COV(¢;,d;) . : (5.23)
] i=1j=1 '

for the AR(1,3) model under con51dera,t1on

Var[Q” = 2 > 6.8; COV(¢,,¢,) (5.24)

1=1,37=1,3
where,
o oQ",, B |
6, 36, Q,,,_l» | o (5.25)
, _ 99", .
%= Th e 29

Expandiﬁg Eq. 5.24,

N

 Varlg",] = 6:7(Vax(go)] + 667 Var(ga)] + 26u0apra[Var(gi) Var(da)]}  (5.27)

¢

Substituting for the statistics and parameters of the above equation,

Var[@"”, | = 0.009Q% _, + 0.009Q2% _, + 0.003Q,,-1Q.,—3 - (5.28)
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. Assuming the variances of the two components are independent, the combined vari-
ance of the prediction, Var[Q,o], 1s given by, |

Var[Q,,] = Var[Q,,] +Vaz[Q", | (5.29)
The 95% confidence band of the estimate based on the above combined variance is

illustrated in Fig. 5.2.

5.5.3 Engineering Significance

Once the mean and the variance of thé non stationary anq stationary components
: of the estimation have been determined using methods described in sections 5.5.1:
-and 5.5.2, fhe engineer is in a.“pcj)siti.oﬁ to design at ; desired confidence level. For
example, the 95% lower bound based on the confidence band established is a value .tha’.t‘ -
the traditional geétechni;al engineer Wi]i be comfortable with. The léss conservative
engineer who is willing to design with an element of higher risk can design based on
90% or even 80% lower bounds. The lével of the lower bound to be decided depends
on the type of st;ucture to be désigned, the level of uncertainty of the soil paraméter _
under cbnsideration (eg. shear strength, bearing Ac'apacity) and on the degree of.
uncertainty of the load. In offshore structures for example, the highest uncertainty
1s normally in‘the design load Which is a function of wind speed, §vave Eeight etc..
‘The estimate of the latter quantities‘ can rarely be predicted with a high deg.ree of

reliability.

5.6 Errors Encountered in Geotechnical Data

Laboratory and field tests used to measure properties of geotechnical materials are

subject to various errors. The scatter in data obtained from various types of in situ
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Figure 5.2: 95% Confidence Bands of the Estimated Dilatometer Modulus and the
Actual Dilometer Modulus Obtained from Test.
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testing methods are due to the inherent variébility of the soil, soil disturbance during
‘Sampﬁng and errors -caused by man and machiﬁe. The latter two types of errors can
not be identified individually and are therefore lumped togethér and denoted as the
' raﬁdom measurement error or méasurement noise (e,.j. If the true value of a property
at a point 7', is denoted by Q;, the value mea.suréd by a particﬁlap .tést method @),

is given by,

Qi=0Qi+tetea | (5.30)
Wheré,
€ is the random testing error

€ 1s the test method bias which is an unknown constant -

The scatter in the test data, Var [Qi], is given by,

Var[Q;] = Var[Q) + Varle, | | o ’ - (5.31)

where, |
Var [Q] is the inherent variability of the material

Var [e,] is the uncertainty of the tesﬁng ‘error

The uncertainty of the random measurement error, ¢,, is given by,

1 XN
Varle,| = N

i=1

Qi — BlQ:])" L (5.32)

In the above eduation, E[Q:] is the mean of the observed values @;, and typically

it is non-stationary and is repreéented by a linear or curvilinear trend. It should be
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empha_sized' that measurements Q; are not the true values @;, and the immediate
- consequence of the above statement is E[Q;] # E[Q;]. Fig., 5.3 illustrates the different -
components of a data profile.

" The bias in the test method, €, is expressed as,

& = E[Q:] — O - | (5.33)

The sample variance, Var[Q;], in Eq. 5.31 is readﬂy measured from the data and 1s
given by,
v [Q]—li(Q? Q)" ’(534) |
_varjly; — N i o .

i=1

The .bias may be estimated by comparing the property measured by a givenvtest
method with that determined by using a more accurate test method or a refererice
method. However, any assumed standard does not measure the actual property ex-
éctly and, therefore, thie bias in a test method can not be evaluated precisely.

The data scatter from in situ tests contains both Q; and e,. where ﬁhe effects of
sample di'sturrbance, and measurement errors are included in ¢,. If identical samples
are available, €, may be determjned by replicate testing. The inherent Variability,
which is the error free s_cafter, introduces uncertainty into the estimate of the average
property over a region. Therefore, prior to any type of detailed analysis, it is necessary

to isolate the random error from the observed data, if it is found to be significant.
The purpose of obtaihing € 18 two-fold:

(1) Permits the comparisons of the efficiency of different test methods: the lower

the random error of a test equipment, the higher the efficiency.
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Figure 5.3: Illustration of the Expected Value and Residuals of a Profile Exhibiting
a Trend.
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(ii) Permits the evaluation of the effect of improvements to test procedures.

In the sections to follow, estimation of €, will be attempted- using two methods:
one method employing Box - Jenkins Time Series methods and the other based solely
on the autocorrelation functlon of the data. Compansons of these two methods will

“be made on sets of data obtained from different in situ test methods

5.7 Determin'ati‘on of Random Noise

5.7.1 Random Noise from Time Series Methods

.’ Oncee, data profile has been modeled using Time Series methods, as described in
section 5.4, these procedures can be extended to obtain an estimate of the random
. error or.measurement noise of the data. In this .section, these methods has been
applied to data from different in situ testing devices. _

The bearing proﬁle from the Cone Penetrettion Test (CPT), the dilatometer mod- ‘
ulus values from the Dilatometer Test (DMT), the Dynarmc N Values from the Dy-
-namic Cone Penetration Test (DCPT) and the undrained shear strength values from _
the Field Vane Test (FVT) are illustrated in Figs. 5.4, 5.6, 5. 8 and 5.10, respectively
These data are all from Mc Donald Farm.

Only the detailed - analysis of the CPT data will be described here .although the
results of all four test data will be discu’ssed in this —section. Considering’i all the
factors that _contribute to a good model, the ARIMA(1,1,1) was selected to model
the linea,i segment (4.5 - 100 meters) of the bearing profile (Fig. 5.4) of the CPT.
The autocorrelation function of the above data cut off after one lag, suggesting a
MA(l) model, and the partial autocoi'relation functionialso cut off after the first lag
suggesting e.n AR(1) model. A single degree differencing was used for -removing the

. approximately linear trend, and the following parameters resulted:


http://will.be

1.0

MEASUREMENT NOISE ‘
FITTED CURVE
o o o ACTUAL VALUES
©
o
z
o)
Be
b
T 2
Z
£ e
e <+
o § g
5
<
~
pd
I
e °
ﬂ" T ° Y Y A g T
0.0 100.0 200.0 0.0 02 04 06 0.8 0
CONE BEARING(bar) LAG (melers)

Figure 5.4: Cone Bearing Profile at McDonald Farm.  Figure 5.5: Variation of the Autocorrelation Function at
McDonald Farm and the Fitted Function for the Determination
of Measurement Noise for the Cone Penetrometer Test (CPT).

Spoyg3jeJN sollag 2Wly ¢ .Iaf}quD

et

96



1.0

3 MEASUREMENT NOISE

FITTED CURVE

o o o ACTUAL VALUES

06
Spoyjapy solIag sully, ‘¢ Jojdeyn)

DEPTH (meters)

0.4
L

AUTOCORRELATION FUNCTION

15.0
0.0

0.0 500.0 1000.0 . 0.0 05 1.0 15 20
DMT MODULUS (boar) LAG (meters)

Figure 5.6: Dilatometer Modulus Profile at McDonald Farm. Figure 5.7: Variation of the Autocorrelation Function at
McDonald Farm and the Fitted Function for the Determmatlon
of Measurement Noise for the Dilatometer Test (DMT).

L61



0.0

DEPTH (meters)

10.0
't

20.0

-

20.0 80.0

v v
40.0 60.0

0.0 :
' DYNAMIC CONE N VALUE
Figure 5.8: Dynamic Cone Penetrometer Test (DCPT)
Profile at McDonald Farm.

1.0

MEASUREMENT NOISE
2
FITTED CURVE &
o o o ACTUAL VALUES g
o- =
=
5
(5]
N
5 g,
°-4
2 =
[}
é B
g 2.
n
[ R4
8°
5
<
~
o
o
o 1 L U L]
0.0 1.0 20 3.0 4.0 5.0
LAG (meters)

Figure 5.9: Variation of the Autocorrelation Function at
McDonald Farm and the Fitted Function for the Determination
of Measurement Noise for the Dynamic Cone Penetrometer

Test (DCPT).

861



5.0
1.0

S
[
FITTED CURVE S
o o o ACTUAL VALUES -
9] | MEASUREMENT NOISE ~
3
14
tn
2 gz- A
7] z S
£ g &
3 g
o G e
8
°
& 2
~
o
o °
8 . s
0.0 50.0 100.0 ) ] 30 40 5.0
UNDRAINED STRENGTH Su (kPo) °e * 2!3\(3 (meters) )
Figure 5.10: Undrained Shear Strength Profile at - Figure 5.11: Variation of the Autocorrelation Function at

McDonald Farm Obtained from the Field Vane Test. McDonald Farm and the Fitted Function for the Determination
of Measurement Noise for the [Field Vane Test.

661



Chapter 5. Time Series Methods o ' : .200

MA parameter (6;) = -0.348
AR parameter (¢;) = .0.301

According -to Box and Jenkins (1976) and Wu(1985), the vatiance of the data, 0.2, is

. given by,

0'22 = ¢101 +-Q¢12 —'61020.(_1) + Urz - V (535)

where 0,2 is the white noise.vaﬁance, O, the value of the autocovariance function at
lag 1,_0',2 is the estimated variance of the random testing error.

Cza('—l) in Eq. 5.35 is given by,

Coa(—1) = (¢1 — 61)0a? = 0.0470,  (5.36)

Using the ARIMA pr“ocedure of the SAS package, C: = 1'2.51 and 0,% = 874.'80.
FSubstitutAing t.he. above values in Eq. 5.35, |
0.2 = 44.27
‘ Tl‘lerefore,‘ the percentage of random erfor (e)is given by (Wu, _i985),
. : L

=2 -51% o (5T

0,2

The same procedure was applied for the other sets of data and the results are tabulated
in Table 5.4, which Clearly demonstrates the efficiency of CPT with its low percentage
of random error. A 5% random error suggests that 95% of the CPT data scatter is

due to the inherent variability of the soil tested. The random error obtained for the
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' DMT and the DCPT were not é,ppreciably higher, while the Field Vane (FVT) result
was significantly higher. A high proportion of random error indicates that the data
‘variance 1s not representdtive of the inherent variabihty of the soil. The peréentages
of data scatter attributabie tO‘t}ie inherent variability of the soil were approximately,
95%; 92% and 61%, for'the' DMT, DCPT a.nd FVT, res‘.pectively. It should be noted
that t_hé inherent varia.bilitigs indicated by the different testlmethocvi_s are noi; the
sarﬁe because they do not measure the same parameters or give the same properties. -
Howéver, it is this inherent variabi].ity that is importa.n'fc but' often overlobked in design

considerations:

Table 5.4: Compaﬁsons of the Random Noise Estimates for Different Test Methods

Test Method CPT DMT FVT | DCPT
" Model 111 | LI1 | 002 | 0,12
. Parameter 1 - |-0348 | 0.889 |-0.338 | 0.302
Parameter 2 - | -0.301| 0.587 | 0.355 | 0.255
Random Error Variance (o,2) | 44.62 | 322.36 .| 50.65 | 0.6724
Data Variance (0,2) | 874.80 | 5861.14 | 138.78 | 8.20 |
Random Error () % | 5.1 5.5 36.5 8.2

5.7.2 Random Noise from Autocorrelation Analysis

The 'random mgasurement error can Alsb be determined using the autocorrelation
- function. This method is only dependent on the ,a.utocoi‘relafién function and un]ike.
the previous method, it alleviates the need for modeling and perfofminé the other
‘calculati_c.)ns_ already described." ‘

va the true vél_ue of a property is‘ denoted by Q;, the value measured by a partiéular

test method, Q;, is given by,
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Qi=Gite : C o (5.38)

where €, is the error term.

: If Jche autocovariances of Eq. 5.38 are taken,

c@=c@+ow 6w

The autocovariance vof Q;, C(Qi), is the vafiaﬁce of the Vdatva at zero lag distance (sep— ‘
“aration _distancé) and aﬁproaches zero as this distance increases. If the lag distance
is denoted By s, the aﬁtocovarién(:e of the random .e1"1for term, €, , which is given By
C(e,), has a non zero value at s =0 a,nd‘ zero at all other values of s, since the random
error is uncorrelated from point to point. From Eq. 5.39, 1t can be ascertained that
at s = 0, fhe autocovariance function comprises of two parts; némely; thé inhérent‘
variabilitj( of the soil and the ra.ndom-erfor’te'rm'.‘ The autocovariance funcﬁon is,
therefore, a spike at s =0 and a slowly decaying function for s 'grea,ter than zero,
~ exhibiting le‘s_sbde.penda,nce with increasing sepafét_ion distancé orlla.g. Cons'idefing -
the above, if the aﬁtbco&arianc'e function is extrapolated to meet the axis representing' o
‘the autocévariz_mée function at C., the difference ‘bet’w'eén the autocoyaﬁance values
at s = 0 (C,) and C. will be fhe raﬁdom_ noise term (B-aecher,'_v.17982); The same
procedure is applicable to thé ;;utoc'oi'relatioh “function (p)s which is the standardized

form of the autbcova,riance function (C) and the_relations'hip‘ is given below.

p=C/Co - (540)

For example, the autoéoxrelafion fuh(_:tion’ (Fig. 5.5) of the cone b‘earing data.given in
Fig. 5.4, meets the ordinate ‘at 0.95 which is equal to the proi)ortion of the inherent

o
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variability of the of the totatl data scatter. The random error or measurement noise of
' ‘the CPT data is the;‘efd_re, 5%. The above procedure has also been ztpplied ‘to' DMT"
(Fig. 5.6), Field Vane Test (FVT), (Fig. 5.8) and DCPT (Fig. 5.10) data. The

actual values of the eutocorrela,tion functions together with the fitted eﬁ;trapoléted

“curves are illustrated in Fig. 5.5 for the CPT, Fig. 5.7 for the DMT, Flg 5.9 for

FVT and Fig. 5.11 for the DCPT. The results of the above are given in Table 5.5.

A5.7.3. Comparison of the Two Methods

- The values of the random error obtained using the two methods described in sections

5.6.1 and 5.6.2 are listed in Table 5.5 for the-different test types.

Table 5.5: Comparisons of the Random Error Estimates for D1fferent Ana.lysm Meth-
ods.

o Random Error %
Test Method | Autocorrelation "Analysis | Time Series Method
CPT ' 5.0 5.1
DMT 58 5.5
Vane , 36.0 38.7
DCPT 6.1 ' . 8.2

The results in Table 5.5 show a remarkable agreement between the two methods
of random error determmatlon with the CPT giving the lowest component of random
.error and the FVT resultmg in the highest. As mentioned prewously, any of these two
methods may be used to compare the accuracy of different test types. A measurement
noise of 36% is extremely high and is an indication of severe sample d1sturbance during
testmg The above theory has also been applied to a different set of data obtained at a
site near the Fraser River Delta. The random error component for the CPT data was
an appreciably low 4.8% while the vane test gave a high value of 30%, conﬁrmjng the

earlier findings. The value obtained for the SPT was 14%, which is not as significant
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as for the vane, but significantly higher than the measurement noise level of the CPT.
The very léw random error values obtained for the CPT provide evidence as to the
 efficiency of this VtesAt method. |

Due to thé possible inaccuracies in modeling; both methods of determining the
random error should be' considered. Although> the autocorrelation rriethod>d'oes not
-i‘ncofporate mode]ing‘ in a strict sexilise, it makes use of a fitting procedure to obtain
the best function for the data. This can also 1ead to inaccuracies and therefore, it |
i1s recommended thé'p the random e‘rrvor from both methods be detgrmined prior to

making any decisions.

5.8 Conclusions

The mai.n'conclusions which can be drawn from this chapter are;

(1) Time Series methods.ha.ve been effectively ﬁsed to model the stationary part
of soil data profiles. -The benefits of Time Series modeling is more apparent in testing '
v,met.hods where sampling is not performed at cIosé spacings and where inte£polation
between tested points will be useful. This method can also be used to estébli_sh
“confidence bands which will be .usefgl in engineering practice.

(ii) Time Series methods é.lso provide a convenient way of determining the random
error c'omp;)nent of an in situ testing technique. For the different tests considered, the
results indicated a significantly low random error cdntenf (5%) in CPT aata, reflecting
its sﬁperiority over data obtained from other testing methods, such as the Field Vane
test and the Dynamic Cone }Pe'n'etration_test which comprise higher propoi‘tions of
random error. o

(iti) The random error derived directly from the aﬁtocorrela,tién function a:c zefo
separation distance for the different testing techniques compared appfeciably well with

that obtained from the Time Series method. It is recommended that both methods ‘
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be used if a reliable estimate of the random error is needed. A close agreement of

- the error values from the two methods will result in an increased confidence of the

estimate.



Chapter 6
Interpolation Considering Correlations

6.1 | Introductioh

In traditional geotechnical engineéring, various methods are used to interpo.late be-
tweén ‘known field data values. In most site inv.estigations, econonﬁcs do not allow
the acquisifibn of a large data base although the engineer W(Suld prefer a sizeable base
for design. it is this limited data base which causes the variation of soil properties‘ to .
" be considered as randOm.- In reality, there is nothing random about the variation of
soil properties, since if every po-int in the ground can be tested and investigated, it’
turns.out to bé a deterministi¢ problem. However, it is not pfactical to do sO, the'reby,
giving ris‘eAto the uncertainty of soil properties at untested loéations. |

The .tra‘ditional af)proa'ch in geotechnical engineering to deal with the limited
data base is to interpolate between known points using some simple functions. This
approé,ch neglects any correlation' between data points. In most cases, the uncertainty
is accounted for by édding a faétor of §afety; sometimes referred to as the factor of
_ignorance. In a typical_site investigatio.n,‘ a borehole or two will be drilled, and in some
cases, vsupplemented. by a few cone penetromei;er tests. The designer may select a very
conservative strength as that representative of the entire site aan design for the largest
load that is expected to be carried by the foundétion, togefher with an appropriate
factor of safety. It is bbv_ious that this ié a highly coﬁservative approach but is done
‘because of the highly uncertain nature of soil 'pro.perty variations in three dimensions

combined with other adverse factors such as limited data availability and human and

206
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instrument errorslerlcoiuitered during testing. Many sophisticated models to ei{plain
the behavior of soils _haife been developed in recent years but many" geoteehnical
engineers continue tovuse traditional approaches and are reliicta.nt to sacrifice some
_of the conservatism and to consider statistical ‘and probabilistic eppranhes. T'hese.
vla,tter methods con51der the correlatlons between soil parameters as a vital mgredlent

Sorl properties are highly depth dependent. Dependence between points in the
horizontal direction too may be present and will have to be considered in any multi;
dimensional interpolation procedure. Simple regression techniques assume indepen; _
dence of soil_ properties and, therefore, the estimates will be biased in the ipresence of
correlation. Regression methods also consider the soil properties at known locations
© as observed values of a random varieble, the distribution of which depends on thev
co-ordinates of the locations which are not rendom (Kraus and Mikhail, 1972; Davis,
- 1978).

As mentioned above, it is common in geotechnical engineering to use simple re-
gression or simple weighting functions 1n problems of interpolation, disregarding the
correlatiori completely and assuming that 'soil properties between points are indepen-
dent.- In any three dimensional an&iysis or a two dimensional analysis which has the
depth as one of its co-ordinate axes, it 1s necessary to consider co.rrelations, if reason- :
able estimates of soil p.a,rameters are needed. Some of the more comrnon methods of
interpola,tions used in »geotechn’ical engineeringi preetice .'a.re given ini Appendix C.

All the interpola.tion methods considering correlations do so using the autocorrela-
tion or theiseriii-variogram functiori of the datakwhich essentielly »have to bevstationery. _
Soil deita, especially in the depth dimension, are non - ‘stationary and will have to be
.made sta.tiona'ry using methods of regres'sion already explained in Chapter 3. In the
event the ensuing stationary residuals are not correlated, the lea,st squares estimates

will be deemed to be satisfactory. . If they are correlated, the method to be described
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in fhis chapter will have to be use(i. Thel proposed method is a r.nodiﬁed. form of - |
" the procedure referred to aé ‘ Kriging ’ in the mineral industry »l(Mathteon, 1963).
Although the above technique will be emphasized in this t}Alesis,, there also exists a
 mathematically more rigorous procedure for dealing with non stationary data,‘ known

s ¢ Universal Kriging ’ ( Matheron - 1967, ’70). There also exists a more simplliﬁed«
version of * Universal Kriging ’, the credit fOr which i1s due to Gamboiati and Volpi
(1979). A simpler procedure where the trend' and residuals are considered separately
will b‘e usedvin this chaptér which will also describe a novel approach to -handle two

dimensional autocorrelation functions.

6.2. Autocorrelation and Semi-Variogram Functions

The autécorrelétion‘funétion and th.cya éenﬁ;vaﬁogram funétion are tv-vo.versatil.e and
essentlal tools Wthh enable the 1nvest1gat10n of spatial variation of soil property’
values. The ba.sm purpose of these functions is to estabhsh the 1nﬂuence of values
at a,ny point over values at neighboring points. Soil properties of points at closer
| distanéés 'a'par\t érevexp'ected to show a higher correlation than for points‘_ which are
widely spacedf The autocorrelation function gives this éorrelation for different values

of the 'di.stance of separation, or the lag distance.
Tile one dimensional autocorrelation fuﬁcﬁon (p(1)) at a lag distance 1 is defined as,

(l) . N | Zﬁ?h(Qz - Q)(Qz—{-h - Q)
PUTN=R SN (@-Q)

(61)

' Where, N is the total number of data and | = h.d,‘ d being the safnple spacihg, and
Q the mean of the data. The function given in Eq. 6.1 is applicéble for a.niéofropic

data in depth or in plan. For isotropic data, 1 can represent any dimension.
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The semi-variogram function at a lag distance 1, (y(h)), is defined as,
. N- h |

1,=1

where N, h and Q haVAevthe sarﬁe méaning as in Eq. 6.1 and Q; and Q4 are the soil
- property values at locations -i and 1 + h, respectively. The variogram function is eqﬁal
. to twice the va,lue:_of, the senﬁ-vaﬁogram function given by Eq: 6.2.

As can be seen from Eq. 6.1, the autocorrelation function is a standardized form

of the covariance function, C(h), where,
C(l Z (Qi — Q) Qisn— Q) | (6.3)

The denominator of Eq. 6.1 is the variance of the data, %, with,

1 X : _'2 ‘ ‘
=52 (@-Q) (6.4)

Ci=1

The variance, o2, is equal to the covariance at lag zero, C(0).

Therefore, ﬁ(h),_ can also be expressed ds, ~
p(l) = | (6.5)

For the hypothesié of second order stationarity where the mean and the varance of
-the data are constant, with an autocorrelation function which is only dependent on

" the lag distance and independent of actual location, it can easily be shown that,

A1) = C(0) —C) - (6.6)
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Dividing- Eq. 6.6 by C(0) and rearranging terms result in the following relationship

between the autocorrelation function, p(l) and the semi - variogram function, ¥(1).

o) =1- %)) o 67)

The above relationship shows how these two functions are closely related, enabling

a choice for correlation analysis.

6.2.1 Models for the Autocorrelation Function

- For ‘analytica.l purposes, it is necessary for thé actual autocorrelation fun_qtioh de- .
~ rived for the data to be ﬁtted with a closed form algebraic, exponential or sinusoidal
>functiovn. It is common in geotechnical engineering to expect nega,ﬁve values for the
autocofrelation function which could therefore be better represented by é, sinusoidal"
function. Some of the more common .autocorrela'tion_ functions used in the descriptién
of geologic data are éxpressed i)elow. Functions for 6n¢ dimeﬂsional data (Vanmarke,
1978) have already been given in Chapter 4, and the ones to follow are an extension

of the 1 - D functions to two dimensions, horizontal and vertical.

p(Aw, A7) = EXP (e | Az | +a;] Az )] 68
p(Az, Az) = EXP [~ (b, Az® + b A2%)| - (6.9)
Az, A2) = EXP[~ (e | Az | 4e; | Az [)]COS [i—f + %25] (6.10)
| | |Az| | Az] e\ (182} oy
- p.(Am,Az) = EXP [— ( k1‘ + 5 )} _(1+ h ) + ( i ) | (6.11)
o(Az, Az) = sm-(f‘nf + %) (i—‘f + %"’2-) (6.12)

In ‘Eqs. 6.8 to 6.12, Az and Az are the distances in the horizontal and vertical

‘directions respectively. The above expressions for possible autocorrelation functions
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can als_o' be extended to the three dimensional case by incorporating Ay, to represent
fhe second ‘horizontal axis. For the iso'lcropvic case, Az in the above equations will
vanisil, and the expressions will only consist of a single .dimension term Az. .In
geotechnical engineeﬁng, hoWe_ver, isotropy in a.ll three dimensions is far frorﬁ reality,
with sQil'properﬁes being strongly depth dependent, not to mentioﬁ lateral variations.
Ina typical geotechnical exploration program, it is very rare ;co obtain many data
points 'a_ﬁd as a result, th¢ estimation of a satisfaétory autocorrelation function be:
. comes difficult. Furthermo;e, at larger lag distaﬁces, the number of of points a,Avaﬂable
for the c;a,lculationv of the function is less than for shorter 1an distances. Due to this
reason, Agterberg (1974) states that the vautocbrrel.a.tion funct'ion will be accﬁrat'e and
least biased only up to about one fourth of the. maximum sepa;ation between data
points. Thefefore, in order 't;o obtain better estimates for the autocorrelation func-
tion, it has been recorﬁmended (Baecher, 1980) that a ﬁlferihg process be performed
by assigning a higher weight for points which ate .spaced c_losér. This - procedure is
essentiéﬂ&_ an a,pp;_lication of a modified Bartlet filter (Jenkins and Watts, 1978) to

the actual function values, p(7), obtained and can be expressed as,

2 pi—1iNi_1 + pilN; + piy1 Nips

1 : 6.13
.p( ) _ Ni-1 +2N; + Ni, (6:13)

where, N; is the number of data points used for making the estimate at i.

6.2.2 Models f(_)r:thé Semi-Variogram‘Funqtion .

The_rﬁo_re cofnmon. model-s of the semi-variogram can be categorized ‘into two main
divisions; na;mely, models with a sill and models with no sili (Jou'rnel and Huijbregt»s,‘
1978). The_ sill is the constant value atbtain‘e(‘i by the va.riogra_ni at sorﬁe‘ separation
d:istance or lag. A typical variogram function is illustrated in Fig. 3.12 ih'Chapter

3 where the trend removed data has a sill while the data with the 'trend does not

[N
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possess a sill. The models to be listed below are all applicable to one dimension with
the possibility of extension to two or three dimensions, similar to the autocorrelation
function. Let 1 represent any one of the dim‘ensions7 Az, Az or Ay and v*(1) be the

normalized form of the semi - variogram, (1), given by,

Y (1) = —g——% S - (6.14)
Models with a Sill - | |
)= 2%— 2% : - (6.15)
v (l)=1-EXP(=b]|1]) | (6.16) -
) y*(l) = 1 — EXP (—c?) | | - '(-6,.17)
Models witi; no Sill | g | |
y(O)=al . (6.18)
() =blog(l) (6.19)
_7*(1) —1 - c'—sil\;Ll) y , (6.-20) "

In the above equa;ci_ons, a,'b,'c, é’, b’ and ¢’ are constaﬂts..

As mehtione& before,. in most applications of geotechnical engineéﬁng, the senﬁ-
variogram functions in two vp‘erpendicular directions will not be simﬂar,~ and in such
cases, they should be transformed to"an equivalent function by methods given in Dawid -
(1977) and Journel aﬁd Huijbregts (1978). It ié also important fo remove any trend

from the data, if it exists, to avoid serious errors in interpolation problems. The effects
of trend on the semi-varibgré,m is described iﬁ detail by Stérks and Fang (1982). In
expldration programs where the number of testing locations ‘are limjteci due economic
réa_.éons, the best possible locatioﬁs in order to obtain the optimal varfogram for a site
can be dete’rminedﬁsing methods of linear programming (Warrick and Myers, 1987).

Ru.sso (1984)_3,150 describes the design of an opﬁmal sampling network for estimating
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. the variogram. The othér advantage'of-such optimization methods is that they allow
the deternﬁngtion of the best'pbssible lécationl for an additibnal testing - location,
based on the data aifea_dy available. However; in all these methods of optimization
_the number of data p/oints have to be very large, to extents ré.rely available in normal
geotechnicai projects. If the nurﬁber of data-p‘oints are significant, thes¢ optimization

methods should give highly beneficial results. Cressie\(1‘985)‘, Christakos (1985) and

Sabourin (1976) all give valuable information regarding-.the estimation of variograms.

6.3 Interp.olation. Based on thé Auto'correlatlion Funcfion

 The procedure of interpolation to be described is valid onlj fqr a stationary process. |
Therefore, in the presence of significant trgnds (non-stationarity), it will have to be
first removed prior to the application on the stationary residuals. During thé time
of the.auth'or’s. research on this subjecf at UBC, Kulatilake (1987)" has also used a
?rocédure of interpolation considering the trend aﬂd residuals sepératelf. ﬁoweﬁer;
the autocorrelation function of the ?esid_i;als are handled in a _different way in. this
thésié. |

" The basic interpolation relationship is given by (David, 1976),

Q(s0) = MQ(s1) + X2Q(s2) + AsQ(s3) + .-+ +A.Q(sn) . (6.21)
where, Q(s1),Q(s2),.-.... ,Q(sn) are the known soil property values at lbcatjon_s, 81,
82, cuun.. ,8n. In Eq. 6.21, s, is the point where the interpoiation is required and is a

' point in space with both a horizontal and a vertical ,(dépth) co-ordinate.
The weights A; forz =1,2,3,...... ‘n, are obtained from Eq. 6.22 below.

L)y =[PIM) C 622)
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.Where, :
[ 1 PR PReeRGs)
PGy - L PQ(52)Q(ss)
PQUQ(e)  PQsa)Qlz) . L
P] = : :

PQ(n)Q(s1)  PQ(sn)Q(s2)  PQ(s2)Q(s3)
1 1 1
PQ(s0)a(s1) )
PQ(50)Q(s2)
PR(5)Q(s)
{M} = :

{L} =

where, s comprises of both a horizontal and vertical co-ordinate.

pQ(ﬂa)Q(‘n)
1.

A

A

( p/o? )

7/

214
PQ(s1)Q(on) 1]
PQ(s2)Q(sn) 1
PR(e)Ren) 1
: (6.23)
1 1
1 0]
(6.24)

(6.25) -

{M} and [P] in

above equations are for the case when the autocorrelation function is used. If the

semi-variogram is used, the p terms in Egs. 6.23 and 6.24 will be replaced by «v
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terms,'thereBy capging a change in matrices [P] and' {M}. However, thé.weights (A:)
'obta.ined by both methods will be identical due to the direct relationship_ between
the autocorrélation én'd semi-variogram fﬁnctions, e);pres-sed by Eq. 6.7. 02 and p
in Eq. 6.25 are the"variar‘lce of the data and a Lagraﬂge cohstant; respectively. A
detaiied derivation of Eq. 6.21 is given in Appendix D. This_procedure-__ 1s an exact
' interpolation method because if the property value of a known data poiﬁt which was
used for the analysis is determined using the above equations, it will gifré an Iidentical
vé.lue.' In contrast, regression is not an exact intérpolation méthod. |

In any estimation procedure}7 the variance of the-éstimator ié a very {mportanf
quantity in order to evaluate the efﬁcieﬁcy of the proceduré and to establish confidence
“bands on the estimation.s. | | 4
The éstimation variance (o.?) is given by (Appendix D),

gl =0’ (1 - 2; Aipé(’,i)Q(.o')> —;@ | | | (6-26)

If the sem.i-vafiogram was used instead of the auto‘correlation function, the estimation
~variance cah be expressed as,

ot =3 Aeeee) —H - (6.27)

Ti=1

6.4 Development. of a TWQ Dimensional Autocorrelation
Function

The method of interpolation to be pr'oposed requires the development of a two di-
mensional autocorrelation function, so that interpolation can be performed in two

dimensions (vertical and horizontal). In contrast to one dimensional autocorrelation

~ functions already described, two different types of correlation functions have to be
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defined for each lag distance. For example consider the data array M1 which is com-
pnsed of n cone holes at m dlﬁ'erent depths At every depth, there exists n data

pomts actoss the site, whlle any cone hole has data points at m dlﬁerent depths

. _ Data Array M1 :
Qo,o Q0,1 v Qo,z Qo,s cee e e QO,n—l

Q_1,o Q@11 Q1,2 | @iz v o oo Quno
Qz,o ‘ Q2,1 Qz,z Qz,s cee e e Qz,n—l
'Qm—l,O Qm—l,l Qm;1,2 Qm——l,a e e e Qm~1,n—1~

The two types of autocorrelation functions which can be defined for w (horizontal

lag) and » (vertical lag) are as follows;

E

1 0-2'_"1‘21.:— ) (Qt] - Q) (Qi+r,j‘+w — Q) - (6.28)

i=0 F]

p(rw) =

. and

p(=rw) = — Ty ( i~ @) (Qicrjww — Q) " (6.29)

(m =) = w)o? i= =0

where, Q is the soil property, Q and o? are the mean and variance of the data
respectlvely

It should be noted that,

plr,w) = pl=r, —u) - © (6.30)

p(—r,w) = p(r, ~w) » | (631)
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Now, consider data array M2 which is given below. where m and n have the same

meaning as before.

Data Array _M2

Q1,1 QI,Z Q1,3 Q1,4 B ‘Ql,n
Q21 Q22 Qa3 Raa o o oo Qan
Q3,1 .Qa,z Qa3 Qsa ... ... L Qa,n .
Qm,l Qm,Z Qm,s Qm,‘l; R Qm,n

Let.the lag r in the vertical direction be positive from top to bettorﬁ, and the lag
w in the herizontal direction be positive from left to right. Therefore for example,
‘the autocorrelatlon between ;1 and Q33 in data’ matnx M2 w1ll be represented by
p(1,2) and the autocorrelatlon between Q1 . and Q3 1 will be represented by p(—2 3)
Here, p(1,2) 1nd1catee one lag vertically down and two lags honzontally from left to
- right, while p( 2,3) means two lags from bottom to top and three lags from left to -
right. However, due to the symmetry properties of the autocorrelatlon function given
by Egs. 6:30 and 6.31, p(l, 2) and p(-2, 3) are also equal to p(—1, —2) and p(2, —3)"
reepectiQely. ‘ A |
For convenience of representaﬁoh and manipulation of the procedure; the available
A.data. points (Date Array M2) were numbered fi'om top to bottom and proceeding from
| the left most cone hole, A, to the right most cone hole, G (Fig. 6.1). The numbered
data points are shown .in'data array M3. With this modiﬁed notation, p(i,m +3) will

actually be the autocorrelation function between points 1 and m + 3 where w, the
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Figure 6.1: Distribution of Cone Bearing Profiles Across the Site Used for the Inter-
polation at McDonald Farm.
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~* horizontal lag, is equal to unity and the vertical lag (r) is equal to two, both being

positfvé.
Data Array M3 -
CQua(1) Qua(m+1) QuaPm A1) Qua@Bm+1) ... ... .. Qua
Q21(2) Qaz(m+2) Qus(@m+2) Qua(3m+2) ... ... .. Qan
QR31(3) Qaz(m+3) Qsz3(2m +3) Qs34(8m+3) ... ...‘.»..‘Qs,,,
@mi(m)  Qma2m)  Qma(m)  Qmalbm) .. . . Qmp

6.5 Application of the Interpolation Procedure

The method of interpolation described was used to interpolate between cone holes
oBtained across a 30 meter. stretch at the McDonald Farm site. Seven CPT’S were
perfo'rfried at 5 metér intervals along a straight line. The dept’h of penétration was 6 :
meters.‘b The scatter of the seven cone profiles 1s illustrated in Fig. 6.1 which also gives °
the léyout plan of the cone holes, A through G. In this exercise, the coné profiles at A,
B, C, E, F and G will be used to predict the cone profile at D, so that a comparisoh
‘could be done between the predicted profile and the actual bearing profile obtained.
The individual bearing profiles for cone holes A, B and C are ilustrated in Fig. 6.2,
~and fpr E, F and G in Fig. 6.3. The data in the vertical direction were considered in -
: grouﬁs of ten, so that spacing< of data points would be 25 cm( 2.5 x 10 ). As a result,
each data point in the vertical dimension represented an averaged ‘cone>bearing ofa
" region of 2.5 cm.. This was done to a.lleviat_-e the possibility of extremities affecting
the predicteci .correlation functions. An increased verticalspaci‘ﬁg would also be more
preferable, since it is not advisable to have a two dimensional autocorrelation function

which has a very high horizontal to vertical lag ‘distance ratio (l,/l,). A vertical
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s_ﬁacfng of 2.5 cm would resﬁlt in a lh/lu value of 200 whilé the increased spacing of
25 cm would give a l; /1, value of 2A0, v}hich is mofe desirable.

Two prominent layérs were identified in the 6 m.pfoﬁle (Fig. 6.1) using methods»
'_of layer identiﬁéatibn discussed in Chaptef 2" Layef .1 lies between_ 1.00 and 2;50.
m, and Layer 3 between 3.25 and 6.0 meters. Laye'rslv 2 v&fas found to be stationary,
- while Layer'1 v?asvnon—stationafy, which was confirmed using the RUN Test -at a 95%
_signiﬁcént lé\}el. A typicaI' data layout 1s given in Data Array M4. The CPT’s at A,
B; C,EF and G will Be used to predict ,the:,bear_ing profile at D.

‘Data Array M4
Depth A B ¢ D E F G

dy Q1,1 Q1,2,— _Ql,a Ql,o: le Q1,6 Q1,7
dz @21 Q22 Q23 Qz,o Q25 Q26 Q27 .
d @1 Qa2 Qss Qso Qa5 Qae Qsr

dm Qm,l Qn-t,z Qm,s Qm,o _Qm,s Qm,6 Qm‘,7.

Let the horizontal dimension have a zero vzilue,at A and 30.0 at G. For Layer 1
data, the vertical dimension will be zero at d; and 1.50 at d,,. Since layer 1-was non -
stationary, several functions were-tried out to best represent the trend. Using methods

~ described in Chapter 3, the following model was selected as the most appropriate.
Q=759+ 21.5y> — 0.60zy | (6.32)

The ensuing residuals were checked for correlation using the Durbin - Watson statistic.”
(Durbin and Watson, 1951). From-tables, dj was fouﬁd to be equal to 1.19 and d,

equal to 1.55. The actual value (dw) obtained was 2.51. Since 4 — d, = 1.49 < d,
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Table 6.1: Values of Constants fdr the Autocorrelation Model for Data in 'LayersA 1
and 2. ‘ ' ‘

- Function ¢ | . e ©oc3 C4
Layer 1 | p(Az,Az) 18.61 0.49 3.80 0.57
p(Az,—~Az) | 47648 | 076 | 540 0.72
| Layer 2 | p(Az, Az) 7.35 0.46 7.35 0.46
A p(Az, —Az) 911 | 048 9.11 0.48

even for a signiﬁéa,nce level as high as 97.5%, the autécorrelations of the resi_dua.is ‘.a,re.
signiﬁéant and have to bé considered in any efficient interpolation procedure. The
process of verifying the statibnarity andl'correlation of residuals have been a.h"ea,dy"
described in Chapter 3. | |
The two dimensional autocorrelation function of Layer ‘1 exhibited both nega-
tive and .positive values, and therefore, it lwa,‘s necessary to model the a,utocbvrrel‘ation '
-~ function, with an exponential sinusoidal type of function which has the capacity to ac-
éo:mmodate both positive and negativé vé,lues. Layer 2 stationary data alsb'exhibited
significant correlation. The autocorrelation functions of these 'dat.a had positive and
" negative valués, empha,sizilig the need for an éxponential si_nusoidal function which is
given by' Eq. 6.33 below. It is somewhat similar to the one given in Eq. 6.10, except
that i-t is ﬁore ﬂexible with four constants instead of two. | |
Az, Az) = EXP [ (e, | Az | +e | Az |)]COS [‘z‘—: + f] ' (6.33)
As mentioned before, two types 6f autocorrelafion functions '.n.eed fo be considered
and the values of the constants for these 'twov‘.cypes of -functions are tabulated for the
two layers in.Table 6.1.
Table 6.1 shows that there is a signiﬁcanf difference in the two types' of autécorre-
lation functions for data of bb_th layers, withrthe difference in Layer 1 data being more

significant. All the above functions gave a high multiple correlation coefficient; R?,

in the region of 0.80. The d,, value of the eﬁsuihg residuals also suggested that most
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of the correlations have been absorhed .hy the respective autocorrelation functions,
reflecting their adequacy The fit was found to be extremely good espec1ally at the
closer lags. In the development of the above correlation functions all the available
data except for‘the'data at D have been.con51dered. However, when calculating the
weights from Eq. 6.21 for predicting the bearing profile at D, only the two columns of
data immediately adjacent (C and E) to D were considered. The influence of the data
points in the other columns were negligible due to the screening effect. For example,
column B will be screened by column C and column F will be screened by column
E. The data in' the two most outer columns will have even a lesser influence, due to
the double screening effect. That is, A will be screened by both B and C, while G
will be screened by E and F At this point, it should be eniphasized that although
. only the data in colurnns Cand E have been directly ‘used- in the final prediction frorn
Eq. 6.21, all the available data with the exception of the data at D have been used
in obtaining the model for the autocorrelation function. For the purpose of inter- -
polation, {P} in Eq. 6.22 will always rernain the same if the same data set is used
for multiple interpolations. [M] will depend on the point at which interpolation is
required, and therefore W1ll change with different points of interpolation, So.- Once the
autocorrelation fnnction for a given set of data is obtained, {P} which is dependent
on the data points fo be used for the interpolation, .can be determined. In a similar
way, [M] can be determined by substituting the relevant Az and Az terms in the
derived autocorr'elatio.n function (Eq. 6.33). The values of Az and Az in the case of
[M] will be the respective distances from the pomt of 1nterpolat10n s (a:o, zo) to the
data pomts s1(z1, 21), sz(mz, zq), etc.). In {P}, the values of Az and Az will be the
" respective dlstances between data points s;(z, zl) sz(:cz, zq) etc..

Table 6.2 has the detailed results for the 1nterpolation at D, together w1th the

variance and 95% conﬁdence bands. The Layer 1 results comprise of two parts: the
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estimate from tile régressibn and the estimate from the correlation a,‘r.ra.lysis'. Variance
of the regressed part (0,2) was obtained from methods gi_ven'in Chapter 3. The
variance of th.e. correlated estimates (U._,z)l was ‘calculated from Eq. 6.26. Th;.e total
variance, 0,2 was determined from Eq. 6.34 below, assuming that o.% and 0.2 are
independent. | |

ol = 0,2 + 0.2 C (6.34)
Assﬁ_ming_ normélity, the loﬁer 95'% confidence estimate, QL(SO), and the upper 95%

confidence estimé,te, QU(so),'are given by,
QL(s0) = Q(s,) — 20 T (6.35)
Qu(so) = Q(s,) + 200 - | (6.36)

Table 6.2: Results for thé Interpolation at D

Depth | Regressed | Correlation Total | o o, Qr | Qu

(m) Estimate | Estimate | Estimate . S
1.13 7.59 -4.16 3.43 1.72 [2.09 | 0.00 | 11.05
1.38 6.68 - -4.78 191 1.60 | 1.91| 0.00 | 8.94
1.63 8.47 3.66 - 12.13 | 6.50 | 1.66 | 0.00. | 28.44
'1.88 12.93 -6.99 5.95 2.50 | 1.45| 0.00 | 13.84
2.13 2009 | -4.03 16.06 | 5.60 | 1.79| 1.28 | 30.82
2.38 29.93 -1.01 28.83 | 5.72 | 2.89 | 11.61 | 46.05
3.38 - 37.12 37.12 | 14.73| - | 7.66 | 63.95
363 | - 34.49 34.49 | 11.66 | - |11.17|57.81
3.88 - 31.80 31.80 | 747 | - | 16.86 | 46.74
4.13 - - ©50.31 | 50.31 | 12.87| - |24.57|76.05
438 | - - 54.96 54.96 | 11.69 | - | 30.98 | 78.34 |
4.63 - 49.97 © 49.97 | 10.06 | - | 29.35 | 69.59
4.88 - 40.64 40.64 [ 11.69 | - |17.26 | 64.02
513 | - 38.47 38.47 | 12.87| - |12.73|64.21
5.38 45.74 45.74 | 74T | - 3080 | 60.68
5.63 - 50.49 50.49 | 11.66 | - |27.17 | 73.81
588 | - 64.81 64.81 | 1473 | - | 3535 94.27
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The interpolated profile at D is given iﬁ Fig. 6.4 together with the actual measured

_.proﬁle. The twb compare well, except between 3.5 and 4.0 meters. The predjction

would exhibit even better results if the data in the six cone holes were more_éorré- |
lated.. Tl_le. _fairly high 'va',ria,ncevof the dé.ta is_ qaused by the small dvata_ base which is

genérally the case in geotechnical engineéring. The estimates, together with the 95%

confidence bands are iﬂustrated in Fig. 6.5 which also shows the actual proﬁle at D

for comparison purposes. The results are also tabulated in- T_a.ble 6.2.

As a‘sec_ond exercise, interpoiation at point F was performed from the a&é.ilable
dataat A,B,C,D,E and G. A similar procedure Wés followed as for the interpolation
at D and the results of the prediction are given in Fig. 6.6. The prediction at F models
the actual profile ‘satisfa,ctorily, which is a significant improvement over the average
profile cf_ the entire site. The average profiles generally used by geotechnical engineers

. .neglect correlation.

Figures_ 6.7 a,nci 6.8 illustrate predicted profiles at M and N, respectively. As
_ showq in Fig. 6.7, M ]jes halfwayvbet.\';veen D and E, ana point N in Fig. 6.8 1s 2
meters é,wa,y from E towards F. The immédiately adjacent profiles are also illustrated
for comi)a;rison purposes. The'predicted profiles indicate that they’ are significantly

different from the mean values of the two adjé.ceﬁt proﬁles.
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- Figure 6.4: Comparison of Predicted Cone Bearing at D with the Actual Cone Bearing
Profile and the Average Cone Bearing Profile Across the Site.
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Figure 6.5: Confidence Bands of Predlcted Profile at D and the Predicted and Actual
Cone Bearing Profiles.
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Figure 6.6: Comparison of Predicted Cone Bearing at F with the Actual Cone Bearing

Profile and the Average Cone Bearing Profile Across the Site.
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Figure 6.7: Predicted Cone Bearing at M with the Adjacent Cone Bearing Profiles at
D and M.
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6.6 Conclusions

The main conclusions of fhis chapter are listed below; - -

(i) The proposed method of developing the trvo dimensional autocorrelation func-
tion provides a convenienﬁv.and logrcaI- way for dealing vrith the two types of different
correlations present in geotechnical data. |

(11) The autocorrelation of two dirrrensional soil test deta. is best represented by
exponentia,l. sinusoidal functions, due to its capapihty of having both positive and

| negat_ive values. | | |

(.iii) The ﬁttirlg of the best’pos:sible function for the autocorrelation coefficients of
the data was found to be the most' tedious part of the analysis process. In’ situations
where the correlation coefficient of the fit is not high, a }righer Weight can be given
to points which are cloSer to the estimation point, since the points rvhieh are farther -
away from the estlma,tlon point have a lesser effect due to screening. | 4

(iv) The apphcatlons of the proposed procedure have mdlcated the need for the
con51deratlon of correlations, if they are found to exist. Often, it may be found that
the correlation is neghglble; in which case, 1t 1s sufﬁc1ent to perform a deterministic
trend analysis. ﬁowever, if the correlation is a.ppreciable, it lras to be considered in
any irrterpolafion .procedure rvhere reasonable estimates are desirabie.

(v) The procedure of interpolations considerirlg correlations, allows the designer
to interpolate at some location based on limited data and yet with a conﬁdence level
in mjnd.l In t_he treditional method neglecting correlations; the only options available .
- to the engineer are either the use of the mean or more ﬁkely the minimum profile and

~ vary the factor of safety aceordingly., :
(vi) One of the two major shortcomings in this int.erpola.tion procedure ie that
data pointsl have to be regularly spaced. Generally,. this requirement is satisfied in

the vertical dimension but rarely so in the horizontal dimerl'sion. In such situations
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data will have to be classified into groups>having similar horizontal spacing. The
other dr’awback of this technique is thatvit is only épplicable to large geotechnical
projects wi;ch a sizeable-déta 'base. o

- What this cha,ptér has demonstrated is a simple and efficient procedure of corre-
-latioh analysis Which can be easily employed for large geotechnical problemg where

interpolations may be required with a reasonable degree of confidence.



Chapter 7

Statistical Methods to Evaluate Soil

Densification: A Case History

7.1 Introduction

7.1.1 General

Some of the statistical techniques described' in the thesis have been applied to a
ground improvement case history involving the Franki Tri Star probe (Massarsch and
Vanneste, 1988). The site in which the soil compaction was performed is situated at
the north side of Annacis Island along the north channel crossing and immediately
east of the Alex Fraser Highway (Gray Beverage canning plant site). It has to be
emphasized that the applications described in this chapter does not encompass all the
techniques proposed and presented in this thesis. However, some of the techniques
such as layer identification, trend analysis and the concept of the scale of fluctuation
have been used to assess the effects of compaction on soil variability. The effects of
soil densification were investigated with respect to distance from the Tri Star probe
location as well as with respect to elapsed time of densification. The location of the
CPT’s conducted before and after densification are given in Fig. 7.1.

CPT data given by CT1, CT2 and CT3 were used for investigating the effect of
time on soil improvement and CT1, CT3, CD1, CD2, CD3 and CD4 were used to
study the effect of distance on densification. The above CPT profiles can be described

as follows:

234
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CT1 - before densification

CT2 - 67 days after densification
CT3 - 82 days after densification
CD1 - 1 m away from CT1

CD2 - 2 m away from CT1

CD3 - 3 m away from CT1

CD4 - 4 m away from CT1

Note that CD1, CD2, CD3 and CD4 soundings were obtained 82 days after densifi-
cation. CT1, CT2 and CT3 were equidistant to probe locations.

In the analysis to follow, it was assumed that there was no apprevciable inherent
variability across the site. This assumption would not have been necessary if all
the above points were also tested prior to densification. However, this assumption
is riot of much concern here since the the main purpose of this exercise was not to
evaluate the effectiveness of the testing program or the efficiency of the Tri Star probe
but merely to demonstrate the applicability and usefulness of some of the statistical

methods described in the thesis.

7.1.2 Site Description

Preliminary investigations indicated that the site was covered by a recently placed
1.8 to 2.4 m thick sand fill on top of a 2.4 to 3.9 m thick clayey silt underlain by
an alluvial sand extendihg below 10 m in depth. The water table was located about
2.0 m below the existing ground surface. It was required to densify the saturated
alluvial sand lying approximately between 5.0 and 10.0 m due to its susceptibility to

liquefaction in the event of a strong earthquake (Massarsch and Vanneste, 1988).
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7.1.3 Tri Star Probe

The Tri Star probe which was selected for the densification, was inserted vertically
using a heavy vibrator. It consists of three long steel plates, approximately 20 mm
thick and 500 mm wide, welded along a common edge at an angle of 120 degrees. The
length of the probe used was 12 m. The compaction process can be divided into three
main phases (Massarsch and Vanneste, 1988): probe penetration which takes about
two to three minutes to reach the desired depth of 10 m, steady state vibration during
which period the tip of the probe was kept at 10 m for a pre-determined duration,
and the extraction phase. To minimize the poésibility of decomposition of the soil
due to probe extraction, it was not withdrawn in one continuous movement but was
performed in stages by stopping for a certain time at different depths on its way to

the surface,

7.2 Identification of Layers

The CPT profiles at the different locations ipcluded cone bearing, sleeve friction and
pore pressure (Fig. 7.2). In this study however, only the cone bearing results were
analyzed because the main concern of this investigation ﬁas to study the effects of
densification which would be best represented by the improvement in cone bearing
stress. The profiles illustrated in Fig. 7.3 indicate the highly variable nature of the
soil stratum in the top 10 m and also exhibit the presence of several layers.

Two of the statistical methods described in Chapter 2 were used for the identi-
fication of the layering and included the Intraclass Correlation Coefficient (section
2.3.2.2) and the Gradient method (section 2.5.1). A closer inspection of the bear-
ing profiles indicated that it exhibited similar characteristics to the Type I profile

(Fig. 2.28) at certain depths. As already described in section 2.5.1, this type of layer
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boundary was not picked up by the Intraclass Correlation Coefficient, thus neces-
sitating the need for the use of the Gradient method. Densification causes varying
degrees of variability in the profile and in this respect statistical techniques such as
the Gradient method would be most suitable in picking out different layers. The
conventional method of selecting layers (using Friction Ratio - Bearing Classification
chart) could not perform this task efficiently, since it can not differentiate layering by
considering the difference of variability between the layers. The Gradient method of
layer discrimination' was chosen to pick sublayer boundaries due to the highly non-
uniform nature of densification. The effect of mixing of soils also contributed to the
above. A visual inspection of the profiles (Fig. 7.2) indicated the presence of thin
layers and therefore a window thickness of 0.5 m was selected.

For practical convenience of comparison between the different profiles similar layer
boundaries were selected for all profiles based on the layer boundaries determined for

CT1, CT2 and CT3 (Table 7.1). Based on the results giveﬁ in Table 7.1, the following

depths were decided upon.

Layer 1 : 0.0 - 0.8 m
Layer 2 : 0.85- 210 m
Layer 3 : 210- 545 m
Layer 4 : 545 - 9.00 m
Layer 5 : 9.00 - 11.00 m

7.3 Trend Analysis

Once the layers were identified it was necessary to investigate the type of depth de-
pendency of each layer. Trend analysis methods described in Chapter 3 were used
for this purpose and linear trends were found to be satisfactory in all cases with

correlation coefficients in excess of 0.70 (section 3.3.3). It was found in some cases,
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Table 7.1: Layer Boundaries Based on Statistical Methods for CPT Profiles CT1,
CT2 and CT3.

Depth BEFORE NUMBER OF DAY
P DENSIFICATION S AFTER DENSIFICATION
(CT1) 67(CT2) 82(CT3)
o -
JF (0.85) (0.83)] (0.92)
(2.20) (215) | (2.10]
B (2.90)
5 —
= (5.45) (5 e0) (5.35)
[ (8.90) (8.70) o)
10 }— '
B (11.0) (11.0) (10.95)
15
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that curvilinear trends would only marginally increase the efficiency of the fit and
therefore was abandoned in favor of linear trends which were more convenient for
comparison purposes. A combination of linear and curvilinear trends for different
sublayers of the same stratum is not recommended here since it only complicates the
procedure and the comparison of the trends of different sublayers. As a result of the
above considerations, linear trends were found to be most suitable. The relatively
low thicknesses of the layers selected also helped to ensure the adequacy of linear
trends and alleviated the need for the use of curvilinear trends. If the optimal layer
boundaries were individually selectea for the different profiles, the respective corre-
lation coefficients would be increased to values in the range between 0.74 and 0.80.
However, this marginal reduction of the correlation coefficient compensates for the
additional practical convenience gained in selecting similar layer bouhdaries for all

profiles, facilitating easier comparison.

7.4 Effect of Densification with Time

Figure 7.3 illustrates the cone bearing profiles before densification (CT1), 67 days
é,fter densification (CT2) and 82 ciays after densification (CT3). Mitchell and Soly-
mar (1984) report that freshly deposited or densified sand may exhibit substantial

stiffening and strength increase with time up to several months. This effect is amply
evident from the bearing profiles in Fig. 7.3 although it seems to be exaggerated in
profile CT3. While a proportion of the increase in CT3 can be attributed to the time
effect on densification, the rest of the increase could be due to the reported lowering of
fhe water table and the subéequent gain in strength of the sand. Another possibility
for this significant change could be a result of the natural soil variability across the

site.
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Figure 7.4 shows how statistical filtering and smoothing improve the trend iden-
tifying capability of a variable profile. The data given in Fig. 7.3 were first filtered
using the median method (section 3.2.2) and were subsequently smoothed by the
method of Fourier transforms (section 3.2.1.2) as discussed in Chapter 3. The initial
process of filtering enabled the extremeties of the data to be filtered out. The median
method was used for this purpose with a filtering window, BS = 1.5 (a low degree
of filtering) and replacement of filtered points were performed by the substitution of
the mean of the the adjacent two unfiltered data points (section 3.2.2). As explained
in section 3.2.2 a low degree of filtering (BS = 15) was used in order to avoid the
possibility of missing out actual layers. Due to the low degree of filtering used, any
trends present in the profile were not immediately apparent and therefore the profile
was subsequently smoothed using Fourier transforms. It has to be reiterated that
procedures of filtering and smoothing should be used with utmost caution, with its
main purpose being to facilitate the easier identification of trends and is definitely
not used for any analytical purposes.

Figure 7.5 illustrates the coefﬁcient of variation (section 4.2) with depth prior
to filtering and smoothing. It shows clearly that the variability has decreased after
densification, and that the effect of time on variability is minimal. The effect of den-
~ sification on variability can be more efficiently captured using the scale of fluctuation

to be discussed in section 7.4.2.

7.4.1 Evaluation of Trend and Confidence Estimates

Figure 7.6 illustrates the trend of the cone bearing before and after densification
(CT1 and CT2) for the different layers mentioned in section 7.2. The values of the
correlation coefficients for all the linear trends were higher than 0.70, suggesting the

adequacy of the fit. The trends in Layer 1 are similar but indicated no improvement
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Figure 7.4: Filtered (BS = 1.5) and Fourier Smoothed Profiles of Fig. 7.3.
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Figure 7.5: Coefficient of Variation Profile of CT1, CT2 and CT3.



~ Chapter 7. Statistical Methods to Evaluate Soil Densification: A Case History 246

v
3
O
3
:
)
9-!
— BEFORE DENSIFICATION
e—eo—o 07 DAYS AFTER DENSIFICATION
—e— B2 DAYS AFTER DENSIFICATION
‘J
o
Q
0.0 100.0 200.0 300.0

CONE BEARING Qc (bar)

Figure 7.6: Trend Lines of CT1, CT2 and CT3.
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with densification. Layer 2 shows a marked improvement with the bearing increasing
with depth while Layer 3 reflects a decreasing trénd which was significantly higher
than the trend prior to densification. In all of the above three layers time effects were
not apparent. The main layer of concern (Layer 4) shows a marked increase for both
post densification profiles. The 67 day profile (CT2) has improved by approximately
100% throughout the layer while the 82 day profile (CT3) has increased by about 50%
at the beginning of the layer (5.45m) and by as much as 300% at the layer end depth
(9.0 m). Layer 5 also shows improvement, but with a negative trend. Since the probe
tip was at a depth of 10 m, the soil between 9.0 and 11.0 m could be expected to
possess effects of soil mixing. A comparison of Fig. 7.6 with the cone bearing profiles
in Fig. 7.2 reveals the apparent ease with which the improvement could be judged
from the trend lines. The ‘RUN’ test (section 3.2.3) was performed to determine the
non-stationarity of the different layers, and all the layers selected revealed that the
cone bearing data was non-stationary with the existence of significant trends.

Methods described in section 3.3.4.1 were used to obtain the confidence estimates
of cone bearing (Eq. 3.28) and Fig. 7.7 gives the lower 95% confidence estimate which
represents a lower bound where 95% of the cone bearing values lie #bove. The trend
line is a 50% confidence estimate or a mean line where 50% of the data will lie below
and 50% will lie above. The 95% confidence estimate is a good value to be used for
design purposes. This lower bound of 95% or even a less conservative value of say
90% or 80% can also be used for design. Such lower bound values can also be used
in contract specifications for soil densification projects.

The ensuing residuals after trend removal (section 3.3.1) indicated that the vari-
ance was approximately constant, justifyigg the use of simple regression (section 3.3)
to identify the trends. The very low correlation of the residuals were verified using

the Durbin-Watson statistic described in section 3.3.2. The latter two verifications
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Figure 7.7: 95% Confidence Estimates of Cone Bearing for CT1, CT2 and CT3.
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Table 7.2: Scale of Fluctuation for Layer between 5.45 m and 9.00 m for profiles CT1,
CT2 and CT3.

CPT Profile Scale of Fluctuation (cm)

Before Densification (CT1) 21.82

After Densification

67 Days After Densification (CT2) ©33.21
82 Days After Densification (CT3) 36.00

suggested the adequacy of simple regréssion' to model the soil property variation.

7.4.2 Scale of Fluctuation

The scale of fluctuation (section 4.3) was used to study the effect of densification on
variability as a function of time. Table 7.2 lists the values of the scale of fluctuation
for the three different times for the layer between 5.45 m and 9.0 m, since the main
purpose of the project was to densify this particular layer. The increase in the scale of
fluctuation indicates the reduction in variability. Table 7.2 suggests that densification
results in the reduction of variability although time does not seem to have a significant
influence as indicated by the marginal increase of the value of the scale of fluctuation
from 33.21 cm for the bearing profile 67 days after compaction to 36.00 cm for the
profile obtained 82 days after compaction.

The scale of fluctuation is a more reliable estimator of variability, since it takes

into account the spatial variability of the soil parameter under consideration.
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7.5 Influence of Densification with Distance

.Figure 7.8 illustrates the cone bearing profiles before and after dénsiﬁcation (82 days
after). CT1 and CT3 were along the centerline of densification while the other profiles
CD1, CD2, CD3 and CD4 were located 1, 2, 3 and 4 m away from the centerline,
respectively. The coeflicient of variation profile given in Fig. 7.9 again reflects a
decrease in variability after dehsil;ication and illustrates how this effect was less with
increasing distance away from the centerline. This was as expected since the cone
profiles beyond 2 m from probe location indicate little, if any, effect of the densifi-
cation. Once again, it should be pointed out that the evaluation of variability from
the coeflicient of variation profile was tedious, heéessitating the use of the scale of
ﬂuctuation as the descriptor of soil variability. Here too the nature of the residuals
were such that the use of simple regression to represent the trend was adequate and

therefore a similar procedure to that described in section 7.4.1 was used.

7.5.1 Evaluation of Trend .and Confidence Estimates

Figure 7.10 shows how the effect of improvement decreases with increasing distances
. of 1 and 2 m away from the centerline. Although the trends of CD1 (1 m away) and
CD2 (2 m away) were higher than that of the profile prior to densification (CT1),
they Wére less than that of profile CT3 which was located along the centerline. The
trends of the profiles CD3 (3m away) and CD4 (4m away) shown in Fig. 7.11 were
virtually similar to the trend prior to densification, suggesting that the densification
pattern and procedure adopted were effective only up to approximately 2 m. The
slope reversals of the trend lines of some layers should also be noted. Figure 7.12
illustrates the lower 95% confidence estimates of cone bearing for profiles CT1, CT3,
CD1 and CD2 while Fig. 7.13 shows the same estimates of the trends for profiles CT1,
CT3, CD3 and CD4. Fig. 7.13 reflects how the confidence estimates of CD3 and CD4
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Figure 7.8: Cone Bearing Profiles before Densification (CT1), at Centerline after
Densification (CT3) and 1, 2, 3 and 4 m away from Centerline after Densification
(CD1, CD2, CD3 and CD4).
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Figure 7.9: Coefficient of Variation Profile of CT1, CT3, CD1, CD2, CD3 and CDA.
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Figure 7.10: Trend Lines Before and After Densification along Centerline (CT1 and
CT3) and 1 and 2 m away from Centerline (CD1 and CD2).
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Figure 7.11: Trend Lines Before and After Densification along Centerline (CT1 and
CT3) and 3 and 4 m away from Centerline (CD3 and CD4).
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Table 7.3: Scale of Fluctuation for Layer between 5.45 m and 9.00 m for profiles CT1, .
CT3, CD1, CD2, CD3 and CD4. ‘

CPT Profile Scale of Fluctuation (cm)

Before Densification (CT1) ' 21.82

After Densification

At Centerline of Densification (CT3) 33.21
1 m from Centerline of Densification (CD1) 27.91
2 m from Centerline of Densification (CD2) 25.06
3 m from Centerline of Densification (CD3) 23.29
4 m from Centerline of Densification (CD4) 19.04

approach those of the virgin state (CT1). Here too, this lower bound can be used for
design and specification purposes.

The similarity of profiles CT1, CD3 and CD4 also provides justification to the
assumption that there was no appreciable inherent soil variability across the relatively

close spacings considered in this study.

7.5.2 Scale of Fluctuation

Similar to the investigation on time effects on densification, the scale of fluctuation
(section 4.3) was used to study the effect of densification on variability as a function
of proximity to the centerline of densification. Values of the scale of fluctuation which
were obtained for the layer between 5.45 and 9.0 m are given in Table 7.3.

As observed from Table 7.3, the scale of fluctuation increases (variability de-
creases) after densification, and decreases towards the value of scale of fluctuation

prior to densification. In other words, the vanability of the soil at locations 3 and 4
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m away from the centerline are similar to that before densification. This is in agree-
ment with the earlier observation that the trends of the bearing profiles 3 and 4 m

away from the centerline are approximately equal to those prior to densification.

7.6 Conclusions

The main conclusions which could be drawn from this simple case history are:

(1) Statistical methods of layer identification provide a good tool to identify sub-
layers present in a soil stratum subjected to densification.

(ii_) The improvement in cone bearing was clearly evident from the trend lines of the
different layers and was much less tedious than analyzing the effects of densification
directly from the cone bearing profiles.

(iii) The lower 95% estimate of bearing provides the geotechnical engineer with a
value for design considerations, and this lower bound was conveniently obtained using
statistical methods. This lower bound could also be used for compaction control and
in contract specifications as opposed to the traditional minimum value.

(iv) The scale of fluctuation has proved to be an efficient indicator of soil unifor-
mity (inverse of variability) in contrast to the coefficient of variation Which does not
consider the spatial effects of variability.

(v) Statistical methods such as layer identification, trend analysis and the scale
of fluctuation have effectively demonstrated their ability to assess variability charac-
teristics of soil profiles. Without the use of these methods, evaluating the amount
of improvement caused by densification and ascertaining the effectiveness of the Tri

Star probe would be difficult and highly judgemental due to the highly variable and.

non-uniform nature of the site considered in this case history.



Chapter 8
Summary and Conclusions

The main purpose of this research was to develop and evaluate statistical approaches
that could be applied to soil test data with the aim of enhancing the site characteri-
zation capabilities of in situ testing devices with special emphasis on the CPT. This
thesis has amply demonstrated how statistical methods can be used on large data
bases which result from close sample spacing during the cone penetration test. The
statistical methods developed can not 6nly provide additional information at a given
site, thereby allowing the reduction of uncertainty involved in the estimation of soil
properties, but also provide an efficient way to ascertain the vamation of soil prop-
erties with depth across the site. The ensuing results from such statistical analyses
can then be used to supplement the results obtained by other coventional methods
commonly used in geotéchnical engineering practice.

The cone peﬁetration test has the capability of sampling at very close intervals
" in the vertical direction and hence provides a detailed description in the depth di-
mension. Soil strata are highly heterogeneous especially in the vertical direction and
the conventional methods of layer identiﬁcatioﬁ based on the deterministic CPT clas-
sification chart are at times ambiguous due to the subjectivity involved in its use.
Statistical methods have therefore been proposed in order to increase the reliabil-
ity of layer dilineation. Once the different layers in a stratum have been identified
methods of trend analysis can be used to obtain a better understanding of soil prop-
erties and their vanation with depth. Confidence estimates of the soil properties can

then be determined for design using reliability approaches. Several applications of
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Random Field theory have been extended to provide another means of obtaining an
enhanced knowledge of the soil property variation with depth. In this respect the
scale of fluctuation provides an extremely efficient basis for ascertaining the varabil-
ity characteristics of various soil parameters. The amount of variability in a data
set is affected by factors other than the inherent variability of the soil which the
geotechnical engineer is concerned about. Part of this varability is caused by the
measurement error which is sometimes referred to as random noise. This is mainly a
result of errors caused by man and machine and could be approximately determined
by methods of time series analysis.

In addition to a detailed description of soil properties in the depth dimension,
the geotechnical engineer involved in a typical site investigation will naturally be
concerned about the variability across 'the site. All the techniques presented in the
thesis can be similarly extended to the horizontal direction, provided a sufficient data
base ex'ists.' In situations where enough data exist to establish a statistical model
horizontally, the proposed two dimensional interpolation procedure considering soil
property correlations can be used to obtain estimates and confidence limits of soil

property values at untested locations.

Identification of Soil Layers

Different statistical techniques employing univariate and multivariate methods of
analysis have been used to identify the soil layers present in a profile. The classical
method of identifying soil layers based on the friction ratio is inadequate at times
due to the subjectivity involved in the use of the interpretation chart. The statistical
methods proposed, have proven to be a good substitute. A multivariate analysis which
has the capability of considering the cone bearing, sleeve friction and pore pressure
simultaneously, has been shown to be more advantageous than the univariate methods

to discriminate between soil layers. Different levels for the values of the Intraclass
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Correlation Coefficient and the D? statistic enabled boundaries to be classified as
primary or secondary for both cla& and sand type soils. The location of the primary
boundary layers was particularly effective since it was insensitive to the selected
window width which was based on the autocorrelation function of the parameters
concerned. This provided further evidence to the robustness of the proposed statistical
measures of soil layer dilineation. A method based on the gradient of the trend also
proved to be successful in identifying layer boundaries in rare situations where the

statistical methods were inadequate.

Trend Analysis and Filtering

Trend analysis techniques have been effectively used to describe the characteris-
tics of different layers identified in a stratum. Methods of overcoming difficulties in
regression analysis have been explained in detail. Techniques of statistical filtering
and smoothing are sometimes required to remove extremeties in data sets in order to
establish the trend of the data. Filtering methods must be applied with the utmost
caution since the exact statistical parameters selected for the filtering process are
highly situation dependent and the possibility of missing out a very thin layer with
significantly different characteristics to the layers above and below, should be avoided.
The median method of filtering was found to be more advantageous since, unlike the
mean, the median is not a function of the extreme data points contained in a selected
sublayer. Precaution should also be taken so that the sublayer depths chosen are not
so wide as to miss actual layers in the soil stratum. On the other hand, too narrow
a sublayer will result in biased statistics rendering the filtering process unreliable.
Considering the above two limitations, an optimum width of 25 cm (10 data points)
has been recommended for the depth or thickness of the filtering sublayer or window.
Very often, the presence of a trend in a profile may not be apparent from a visual

inspection. The ‘RUN’ test has been effectively used in this thesis, in order to verify
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the stationarity or non-stationarity of a soil profile. Although the variogram function
of a data set can also be used to verify stationarity, the ‘RUN’ test was more useful
in the sense that specific levels of significance can be established for the acceptance

or rejection of stationarity of a data set.

Applications of Random Field Theory

The geotechnical engineer is concerned that redundant or excess data is not col-
lected in a site investigation since it costs both time and money. In this regard a
simple statistical procedure has been proposed to estimate the optimum sample spac-
ing in a given soil profile. The optimum sample spacing thus obtained was shown
to be a function of the variability of the soil layer, the reqﬁired confidence in the
estimate and the degree of télerance allowed. As the variabiiity of a layer increases a
closer spacing of data is required in order to obtain an estimate of a soil parameter
at a given confidence and tolerance (or precision).

The natural heterogeneity of the soil, limited data availability and errors caused
by man and machine, all contribute to the uncertainty in soil data and has resulted
in geotechnical test data being treated as random. The application of random field
theory to CPT data has been used to clearly demonstrate how the use of statistics and
probability can provide additional information from a given set of data. This results in
a less conservative analysis and a greate economy in design. The correlation coeflicient
between spatial averages and the probability of exceedance have been obtained for
different profiles demonstrating its use for site characterization and design purposes.
In a classical deterministic analysis these would not be normally considered, with the

possible consequences of inaccurate results.

Scale of Fluctuation and Soil Variability

The concept of the scale of fluctuation has been shown to be an excellent indicator
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of soil variability in the sense it considers the effects of spatial vanability in contrast
to the standard coefficient of vériability.which does not consider spatial variability.
The proposed method of calculating the scale of fluctuation compared well with that
originally proposed By Vanmarke (1977) and was found to be a more suitable method
from the aspect of computational convenience. Several applications described in the
thesis reveal the correlation between the vanability and the scale of fluctuation and
the sensitivity of it to variability. Studies on the scale of fluctuation have effectively
demonstrated the averaging characteristics of cone bearing, sleeve friction and pore
“pressure measured by the CPT. It can be concluded that while the pore pressure is
indicative of a measurement made at a point, the cone bearing is indicative of a value
averaged over a finite léngth which is less, but comparable to the averaging distance
of the sleeve friction. The scale of fluctuation has also been made use of to obtain an

optimum sampling spacing for a given" soil layer.

Measurement Noise of Geotechnical Test Data

The application of Time Series analysis to CPT data, illustrated its capability of
~ adequately modeling the stationary component of a soil profile. The random error
or the measurement error term obtained for different test methods compared well
with that obtained from the autocorrelation function. The five percent random error
obtained for the CPT clearly indicated its superiority over other testing methods like
the ﬁeid vane which gave a high value in excess of thirty percent. This reflected the

high random error associated with vane testing in contrast to the CPT.

Two Dimensional Correlation Analysis
Soil properties are highly depth dependent. Therefore, any two dimensional inter-

polation procedure which includes the depth as one of the dimensions should consider
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soil property correlation if accurate estimates are required. The need for the consid-
eration of two different types of autocorrelation functions for the representation of
two dimensional soil property variation has been highlighted. The two dimensional
autocorrelation function which was used for the interpolation yielded satisfactory re-
sults, with a good comparison between the predicted and actual profiles. This clearly
indicated the need for the consideration of soil property correlations, in the event

they do exist, if better estimates are desired.

Case History to Evaluate Densification Effects

A case history concerning site densification was used to show how some of the
statistical methods proposed and presented in this thesis can be used to evaluate the
effects of soil densification in a more quantitative manner. It has to be emphasized
that the techniques used for the case history certainly do not encompass the whole
range of applications described in the thesis, but only provide a simple demonstration
of how effectively statistical methods can be used to assess soil variability. Methods
of layer identification and trend analysis proved to be efficient tools for this purpose
and the scale of fluctuation was found to be an ideal tool to assess soil variability. It
is clearly evident from this example that in soil profiles of such high non-uniformity,

it is impossible to draw reliable conclusions without the use of statistical techniques.

Interactive Micro Computer Programs

Most of the techniques described in the thesis have been performed using IBM-PC
compatible interactive micro computer programs which have been developed by the
author. These programs are adaptable to different data formats with several options
available to the user. Detailed manuals with specific worked examples have also been

prepared and is available in the Department of Civil Engineering at UBC.
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Scope of Statistical Methods

Finally, this thesis has effectively demonstrated how statistical techniques can be
applied to in situ test data to enhance site characterization which, to date, is primarily
performed using deterministic approaches. It is the author’s belief that, in the light
of the sophistication in design and analysis of geotechnical structures, it should not
be long before statistical and probabilistic procedures will begin to supplement the
deterministic approaches used to-day. Since probabilistic and statistical procedures
result in reduced risk and less conservatism due to the additional information gathered
from such analyses, the emergence of these methods in geotechnical engineering will
be inevitable. In the past the reason for the reluctance in the use of statistical
methods in geotechnical data analysis was the lack of an adequate data base. The
emergence of in situ testing devices such as the CPT with its capability of sampling

at close intervals provides the luxury of larger data bases, paving the way for the use

of statistical methods.
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Appendix A
Correlation Between Spatial Averages

Let ¥, ¥1, ¥2, ¥3, ¥a and y, be the distances illustrated in Fig.4.10. The shaded areas

A and B can be expressed by the integrals I, and Iy, where,

y+ya/2

1;=L:d2Q@My ' (A.1)
Y4y /2

="y (42)

Similarly, the areas corresponding to ¥., ¥1, y2» and y3 which are I, I;, I, and I3
respectively, can be so determined.

The following relationships follow from above and Fig.4.10

L=I+1, | (A.3)
Li=L+1+1, (A.4)
Ii=1+1, | (A.5)

Evaluating I? — I3 + I3, results in the following equation.
2L, =1, - .2+ 1,2 — I;? (A.6)
The local spatial averages of the segments y, and y;, are (), and @, respectively,

Qa = Iav/ya v (A7)
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Qs = L/y . : (A.8)

The variance function, I'*(y,), is defined as,
Mi(y,) = %5 | (A9)

where, o, is the standard deviafion of the segment‘ Y, and o is the standard deviation
of the whole stratum comprised of all the segments.

Similarly, I'*(ys), T*(%,), I'*(31), T?(y2) and T'?(y3) can be defined for the respective
segments. Tile procedure for obtaining the variance function is described in detail
elsewhere under the section on the Scale of Fluctuation.

The correlation coefficient pa; between the spatial average of Layer A (Q,) and

the spatial average of Layer B (@) in Fig.4.10 is given by,

COV[QaQb]

PR.Qy = — | (A.10)

where, COV[Q,Qy] is the covariance between @, and Q.

Consequent to the manipulation of Eqs. A.6 to A.10 it can be shown that,

%0-T2(¥o) = y1°T2(y1) + ¥2°T?(y2) — ya’I'*(ys)
2(y/(¥a?T2(ya ) 92T ?(w))

pab = (A.ll)




Appendix B
Probability of Exceedance

A classical formula for the mean rate of crossings of the level q (v,), by a stationary

random process @Q(!) is given by Rice (1945);
Vg = /_: |Q | fo.6(q,Q)dQ (B.1)

where, fQ,Q(Q,Q) is the joint probability density function of Q(I) and its derivative
Q(l). Since Q(I) is stationary the random variables Q(I) and Q(1) are uncorrelated.

"~ H Q(1) is Gaussian, independence too is guaranteed; then,

v = fol@) [ 1Q15e(Q)Q
= fo@E][ Q1] (B.2)
where, E [I Q |] is the mean of the absolute value of the slope of Q(l). Every q -
upcrossing (crossing of the level q with positive slope) is followed by a q - downcross-
ing, resulting in the mean rate of .upcrossings, v, , being equal to the mean rate of

downcrossings, v,~. Hence, it follows that the mean rates of up and down crossings

v,* and v,” are equal to v4/2 . Therefore,
1 .
v = 5 fo@E || Q] (B.3)

Since differentiation is a linear operation, if @(l) is Gaussian, its derivative Q too will

be Gaussian. Therefore,
. o Q { -Q? } :
E = 2 —_— d
[l @ ” ./0 \/2—71’0’Q‘exp 20’Q'2 Q :
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Substituting for E [I Q ]] in Eq. B.3,

If Q(1) is normally distributed,

-l ep-1(129)
fQ(Q)—\/Z—mQ P{ 2( - )} (B.6)

where, @ and og are the mean and standard deviation of the soil property, Q, of a

local region of length D and g is the property value of which the exceedance or non
exceedance is of interest, or in short the threshold value.

Substituting for fo(q) in Eq. B.5

= iﬁexp {—M} | (B.7)

The mean rate of zero crossings, v, is obtained when ¢ = @ in Eq. B.7 and can be

expressed as, _
1 o5
Vo = ——2 (B.8)
2w o
thereby, permitting Eq. B.7 to be written as,

vF = voexp {_(_q—‘ﬁz)—z} (B.9)

Considering the autocorrelation function p(D) and the variance function I'’(D)
for a local region D, the mean rate of crossings, v,, can also be expressed as (Rice -

1948);

Ve = {-2;—21‘%%5}% (B.10)
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From the definition of the Variance function,
of = o’I'*(D) (B.11}

Substituting for v, and og? from Egs. B.10 and B.11

f_V1-pD) f (4-QF,
vy = \/QWDF(D)CXP{— Y I‘v(D)} (B.12)

There will be many segments of length D within the domain length L and hence the
probability of non exceedance (Pg), for all such segments within the. entire layer of

length L, will be approximately given by, (Vanmarke - 1987),

Pp = exp(—v}L) (B.13)

q

Therefore, the probability that the average of a local interval of lengtli D will exceed

a threshold value q, will be given by,

Pg =1-exp(-v/L) (B.14)

From Eqs. B.12 and B.14 it is evident that the probability of exceedance is dependent
on the local region of width D, mean (@) and standard deviation (og) of the entire
layer, value of the autocorrelation function of the layer at D (pp), square root of the
variance function at D, (I'(D)), the threshold value q and L, the thickness of the

domain.



Appendix C

Interpolation Methods Neglecting Correlation

C.1 Weighting Functions

Regression- techniques require an adequate data set for interpolation to be carried
out. In geotechnical engineering, the available data are very often scarce, and the
only option may be to adopt methods of weighting functions for interpolation. The
major drawback in all methods of weighting functions is that redundant information
is not discriminated against. If A, B and C a,l"e points with known soil properties and
are equidistant to a point P, where estimation is required, then these three points are
given weights of 1/3. Now, if another known point D is very close to point A, but
again equidistant to P, all four points (A, B, C and D) are assigned the same weight
of 1/4. Similarly, if there is a cluster of points around point A, thereby increasing
the number of data points around that point, equal weights-are given to all points
since they are equidistant to P. However, it is obvious that the effects of points B and
C on the prediction point P should be negligible in the latter case. Therefore, it is
very important that if weighting techniques are used for interpolation, the potential

problem discussed should be recognized.

C.2 Distance Weighting Functions

A convenient but very approximate way of an estimation procedure is to designate
higher weights to those points which are situated closer to the point where estima-

tion is required. In order to accomplish this, inverse distant weighting functions or
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inverse squared distance weighting functions are used. These methods again do not
discriminate redundant information. For example, for a cluster of points equidistant

to the point of estimation, the weights designated will be approximately equal.

The estimated value, @~(z,), at point z, can be expressed as,
Q" (z.) = X X:Q(=) (c.1)

i=1

where,
YLy
' ?:1 l/Lir

(C.2)
In the above equation, L; is the distance between the data point and the point where
the estimate is required. If inverse distance weighting is adopted, r = 1 whereas for

inverse squared distance weighting, r = 2.

C.3 Functional Weighting Functions

The concept that the weight decreases with increasing distance is used when a dis-
tance correlation function (e.g. exponential decay model) is used for interpolation at

unknown points, viz;
N ()
=1 f (| 2o — 2 |)

(C.3)

where, | z,—z; |= L, is the distance and a is a appropriate constant in the expression,
f(L) = EXP(—al). It should be noted that the weight A approaches zero, as the

distance L; increases.
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C.4 Simple Weighting Functions

The classical estimation of the mean or the average is also a weighting function with,
A; in Eq. C.1, given by,
Ai=1/n (C.4)

fori=1,2,...... ,n with'all the weights being equal.



Appendix D
Interpolating Equations Considering Correlations

As in any optimization procedure, an estimator, Q(so), of a soil property value, Q(s,),

will be termed a “ best estimator ”

, if it minimizes the mean square error (David -
1976).

That 1s,
E[Q(s0) — @(s.)]” = MINIMUM (D.1)

where, Q(s,), is the estimator of Q(so) and E[] is the expected value.
The estimator, Q(s,), will be the “ best unbiased estimator ” if the following condition

is satisfied.
E [Q(so) — Q(s0)] = 0 (D.2)
The estimator, Q(so), can also be expressed as,

Q) =2 AQ) (D.3)

i=1

where n is the total number of data points and s;’s are the locations of the data
points, where soil properties are known, with 7 =1,2,...... ,m. A;’s are the weights.
The estimation varance, 0.2, follows from Eq. D.1. After substituting for Q(s,) from

Eq. D.3,

0 = |Q(s.) - X 0Q(s) (.4
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By expanding and taking expectations, the variance, 0.2, can be expressed as,

0e® = 00y = 2D Ni0QGa)a(e) + 2 D AiAioo()a(es) (D.5)

=1 i=1j=1

The necessary condition for the best estimate is that o.% given by Eq. D.5 be a
minimum. In addition, the estimate has also to be unbiased. That is on average, the
estimate Q(so), should be equal to the actual value Q(s,).

If the estimated value,
E[Q(s.)] = ¢ (D.6)

From Eqs. D.2 and D.3

Therefore,

S ME [Q(se)] = ¢ (D.8)

=1

For the unbiased condition,
E1Q(s:)] = ¢ | (D.9)

From Egs. D.8 and D.9, it could be easily inferred that,

=1 (D.10)

Therefore, in order t§ satisfy the unbiased condition as well as the minimum variance
condition, Eq. D.5 will have to be minimized, subject to the condition stipulated
by Eq. D.10. This is a case of finding the minimum value of a function of several
variables )Q, when the relationship between the variables are given (Eq. D.10). The
above criteria can be solved by ﬁsing the Lagrange Principle (David - 1973, Kreyszig
- 1983). The equation to be solved (Eq. D.5), subject to the restriction in Eq. D.10,
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then transforms to a function ), that has to be minimized.

The function % is given by,

i=1

Y=ol +2 (iz\.-— 1) (D.11)

where, p is a the Lagrange constant. Substituting for ¢Z, from Eq. D.5,

¥ = 000" — 23 Matuate + + 30 3 Adiaat + 2% (Z'\ - 1) (D.12)

=1 i=1j=1 i=1

Taking partial derivatives of Eq. D.12 with respect to A;’s and g,

Fori=1,2,...... , M
& _
B, = 2000ne0) t 22 Ai0Q(a:)Q(s0) + 21 (D.13) .
i=1
% _sa-1 | (D.14)

Equating Eq. D.13 and D.14 to zero, to minimize F,

n

,; A9Q(s)Q(e;) T H = TQ(00)Q(s:) (D.15)
Equation. D.15 represents a linear system of n equations fori =1,2,...,n. Eq. D.10
together with the linear system of n equations given by Eq. D.15, comprise a system
-of (n+1) equations, with a similar number of unknowns. The unknowns being the n
number of A; terms and the Lagrange constant pu.

Equations D.15 and D.10 can be expressed in the following matrix form ;

[A){B} = {C} (D.16)
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where, [A] is the covariance matrix given by,

9Q(01)Q(s1)  9Q(1)Q(s2)  TQ(a1)RAss) v o TQ(s1)Q(sn) 1]
0Q(s2)Q(s1) OQ(s2)Q(sz) OTQ(e2)Q(s3) -+ - 0Q(s2)Q(sm) 1

0Q(:)Q(s1) TQ(s2)Q(s2) OQ(s2)Q(s3) - -+ OQs3)Q(sn) 1

>
I

0Q(s2)Q(s1) OQ(sn)Q(s2) TQ(sn)Q(s3) -+ -+ OQ(sa)Q(sn) 1

L 1 1 1 1 0

[ 0Q(s,)Q(e1) )
0Q(s0)Q(s2)

TQ(80)Q(e3)

{C}ZT : >

TQ(8)Q(2n)
\ 1 J
()
Az
A3
{B}=<¢ :

An

\ u /
If both sides of Eq. D.15 are divided by the variance of the data (o?),

[P{L} = {M}

286

(D.17)

(D.18)

(D.19)

(D.20)
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where,
-1 PQ(21)R(s2)  PQ(s1)Q(s3)
PQ(s2)Q(1) 1 PQ(s2)Q(s3)
PR(3)R()  PQ(s3)R(s2) 1
[P] = ' :

PQ(sn)Q(e1) PQ(ex)R(s2) PQ(8n)Q(s3)
| 1 1 1

[ PQ(s0)Q(e1) )
PQ(2,)Q(e2)

PQ(20)Q(s3)
{M} = E .

PQ(2:)Q(2n)

{L}y=9 : ¢

An

| p/o? )

Therefore, the matrix of unknowns, {L}, will be given by,

{L} =PI {M}

PQ(s1)Q(sn) 1]
PQ(s2)Q(sn) 1
PQ(s3)R(sa) 1
: (D.21)
1 1
1 0]
(D.22)
(D.23)
(D.24)

{M} and [P] in above equations are for the case when the autocorrelation function

is used. If the semi-variogram is used the o terms in Eq. D.17 will be replaced by v

terms, thereby causing a change in matrices [P] and {M}. However, the weights (
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A;) obtained by both methods will be identical due to the direct relationship between
the autocorrelation and senﬁ-vaﬁogram functions.

In all of the above expressions, s, is the point where the interpolation is required,
while sy, 82, ...... , 8n are the locations where the property values are known. Once
the weights, A are obtained from Eq. D.24, the estimator, Q at 8., can be determined
from Eq. D.3 as follows ;

Q(50) = MQ(s1) + X2Q(s2) + A3Q(s3) + . o-v.... + A Q(s,) (D.25)

where, Q,,,Q,,,-----. ,&,, are the known soil property values at s;, 85, ......
The estimation variance (o.?) can be obtained considering Eq. D.5 together with

the restrictions imposed by Egs. D.15 and D.10, and is given by,

0.l = ol (1 - ZAgp,i,o) —-u (D.26)
=1

If the semi-variogram was used instead of the autocorrelation function, the estimation

variance can be expressed as,

o’ = Z AiVsis, — M | (D.27)
=1



