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ABSTRACT'

The purpose of this 1nvestigati6n was to develop an eighteen parameter
flat triangular finite element for analyzing plate and shell structures. The
development of the element was accomplished by combining a plate bending
element with a new . plane stress element. The well known ﬁine_paraméter
triangle using the normal displacement and two slopes at each vertex was
used for the plate bending element. This element contains an incomplete
cubic for the normal displacement. For the in-plane element, complete cubics
were used initially for the displacements-and then various constraints were
imposed to reduce the number of generalized co-ordinates to nine, namely
the two in-plane displacements and an in-plane rotation at each vertex. One
of the constraints, namely that the included angle at each vertex was
invariant, destroyed the completeness of the element. However, the element
was compatible in the plane. |

A patch-type test of the in-plane element showed that it could not
represent all constant strain states exactly. However, the errors were small.
The complete element was then tested on a plane stress cantilever beam, a
square plate subjected to membrane stresses only,a cylindrical shell, a
spherical shell énd a non-prismatic folded plate structure. In all cases,
reasonable engfneering accuracy was achieved'with modest grids of elements.
Thus it was concluded that the: 1ncomp1eteness of the in-plane element was
not too important. |

Finally, a compatible beam element was formulated and tested to
supplement the triangular e1ement.‘ The beam element formulation included

unsymmetric crosssections.



- iii -

TABLE OF CONTENTS

Page
Abstract ii
List of Tables - v
List of Figures vii
Symbols . p:4
Acknowledgements xiii
Chapter 1: Introduction 1
Chapter 2: General Information 3
2.1 Finite Element Technique 3
2.1.1 Description of Method 3
Chapter 3: Derivation of the Element's Properties 5.
3.1 General Information 5
3.2 In-Plane Formulation 6
3.2.1 Integrating the Stiffness Matrix 23
3.2.2 Static Condensation of Centroidal Degrees of
Freedom : 2L
3.2.3 Characteristics of the Plane Stress Element 25
3.3 Bending Element Formulation 25
3.4 Assembling the In-Plane and Bending Element
Stiffnesses 37
3.5 Co-ordinate Transformations L0
3.6 Element Dimensions L6
3.7 Summary of the Combined Element : Lé
Chapter 4: Stress Computations L8
4.1 In General L8 -

4.2 In~-Plane Stresses ' 50



4.2.1

4,2.2

4,2.3

4.3
Chapter 5:

5.1

5.2
Chapter 6:

6.1

6.2

6.3

6.4

6.5

6.6

6.7
Conclusions
Appendix A:

Al

A2

A.3

Bibliography

Consistent Formulation

Constant Strain Formulation
Linear Strain Formulation
Bending Stresses

Beam Stiffener Element

Symmetric Bending

Unsymmetric Bending

Numerical Applications

Constant Stress Applications
Cantilever Beam Problem
Parabolically Loaded Square Plate
Cylindrical Shell Roof

Point Loaded Spherical Shell
Non-Prismatic Folded Plate Structure

Beam Stiffener Application

Computer Program Information
Discussion of Program
Input Data

Flow Chart

50
52
57
70
71
72
83
89
89
o4
99
112
121
130
142
145
148
148
151
160
164



LIST OF TABLES

Table

3.1 Trigonometric Relations for the Element

3.2 Transformation Matrix for Plane Stress Element

3.3 Area Co-ordinates for Numerical Integration of
the Bending Element

3.4 Strain-Displacement Matrix for Plate Bending

4.1 Strain-Displacement Matrix for L.S.T. Stresses

5.1 Stiffness Matrix for Symmetric Beam Stiffener

Element

Constant Stress Applications:

6.1 Deflections for Constant Shear Stress
6.2 Deflections for Constant Normal Stress
6.3 Deflections for Constant Moment

Cantilever Beam Problem:

6.4 Tip Deflection and Normal Stress

Parabolically Loaded Square Plate:

6.5 Deflections and Strain Energy for Various Grid Sizes
6.6 Stresses (C.S.T., L.S.T., Consistent Formulation and
Exact)

Cylindrical Shell Roof:
6.7 Deflections for Various Gridworks

6.8 Stresses (L.S.T.)

Point Loaded Spherical Shell:

6.9 Deflections for Various Grid Sizes
6.10 Stresses (L.S.T.)
6.11 Stress Comparison (C.S.T., L.S.T., Consistent

Formulation, and Exact)

10
18
36
34
6L

82

92
92

93

97

103

105

115

118

12k

12L

127



Non-Prismatic Folded Plate:

6.12 Deflections vs Grid Sizes 136
6.13 Longitudinal Stresses 138
Appendix A

A2.1 Format of Input Data Cards 151



Figure

3.1
3.2
3.3
3.4
3.5
4.1
4.2
4.3
4.4
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

5.9

- vii -

LIST OF FIGURES

Co-ordinate Systems

Rotations for an Element

Degrees of Freedom of Bending Element

Area Co-ordinates

Co-ordinate Systems

Constant Strain Triangle

Area Co-ordinate of L.S.T.

Tangential Displacements (for L.S.T. Stresses)
Normal Displacements (for L.S.T. Stresses)

Beam Stiffener Element

Beam Stiffener Geometry (Strong.Direction)

Beam Stiffener (Degree of Freedom Strong Direction)
Beam Stiffener Géometry (Weak Direction)

Beam Stiffener (Degrée of Freedom Weak Direction)
Beam Stiffener (Torsion)

Resultant Beam Stiffener (12 Degrees of Freedom)
Beam Subjected to Couples

Deflected Beam Under Pure Bending

Constant Stress Applications:

6.1

6.2

6.3

Constant Shear Stress

Constant Normal Stress

Constant Moment

Cantilever Beam Problem

6.4

6.5

Cantilever Beam (Grids and Loading)

Tip Deflection vs No. of Degrees of Freedom

12

9

N
N

96
98



- viii -

Parabolically Loaded Square Plate:

6.6
6.7
6.8
6.9
. 6.10
6.11

6.12

General Layout and Loading

Strain Energy vs Total Number of Degrees of Freedom

10 VD vs Total Number of Degrees of Freedom

N_and N vs Finite Element Grid Size
xD: yB —

NyA-XE Finite Element Grid Size

NyC vs Finite Element Grid Size

NyD vs Finite Element Grid Size

Cylindrical Shell Roof:

6.13

6.14

6.15

6.16

6.17

General Layout

W - Deflection Along Edge B - C

WB.XE Total Number of Degrees of Freedom
Nx Along Edge A - B

M& Along Edge D - C

Point Loaded Sphere:

6.18

6.19

6.20

6.21

6.22

General Layout and Loading

Deflection at Pole vs Finite Element Grid
Normal Displacement vs Angle ¢ Near Pole
Membrane Stresses vs ¢ Angle Near Pole

Membrane Stresses v

1]

® Angle Remote from Pole

Non-Prismatic Folded Plate Structure:

6.23

6.24

6.25

6.26

6.27

General Layout and Lbading

Plate Geometry

Model and Finite Element Mesh Patterns
Vertical Deflection Along Fold Line c

Longitudinal Stress Along Fold Line c

102
104
104
108
109
110
11

1ML
116
117

119
120

123
125
126

128
129

133
134
135

137
139



- ix -~

6.28 Longitudinal Stress Along Fold Line E(Q.L) 140

6.29 Transverse Moment at Midspan 1

Beam Stiffener Problemn:
6.30 General Layout 1043

6.31 Load Case 2 10l

A.l.1 Beam Stiffener Section Properties 159



LIST OF SYMBOLS

Symbols Definition

A Area of triangle

{A} Column vector of polynomial coefficients
a,b,c Element dimension, Figure 3.5

a; Coefficients of the displacement polynomials,

Equation 3.2

[B] Strain-displacement matrix

Cj’ Sj Cosine & sine of the angle a, Figure 3.1

C.L. Centre line

C.S.T. Constant strain triangle formulation

[D] Elasticity matrix

E Modulus of elasticity of the material being modelled

& that of the finite elements

e Eccentricity, Figure 5.2

Eqn. Equation

F(m,n) Modified Euler's beta function, Eqn. 3-33

{r} Load vector

Fig. Figure

G Shear modulus of elasticity

IN. Inches

Iy’Iyz’Iz Moment of inertiats

J Polar moment of inertia

[X] Stiffness matrix

zi Area co-ordinates used in the linear strain
triangle

L Length of beam stiffener element

L _ Area co-ordinates used in plate bending formulation



...Xi_

L.S.T. Linear strain triangle

N Number of sub-divisions (grid refinement)

Ni Shape functions used in the plate bending formulation
N;’Ny'ny Membrane stresses

Ny Ny Nog

{p} Load vector

T 57,5 Length of element's sides

ry,rz Radii of curvature

[T] Transformation matrix gz:LEquation 3-28

U Strain Energy

u, Vv Displacements in the x & y direction, respectively
unij Normal displacement at node i to node j

ﬁnk Normal displacement at node k

Tangential displacement at node i to node j

tij

ﬁtk Tangential displacement at node k
W Normal out of X,y ﬁlane displacement

wizwe Internal & external work

X,¥,2 Global cartesian co-ordinates

o Angle tangent to element side & axis, Figure 3.1
{8} Deflection vector

{e} Strain vector

£,C Local co;ordinates, Figure 3.5

{0} Stress vector

6,¢ Angle, Figure 6.12

Ix] Direction cosine matrix

Bi Shear strain at node i



v Poisson's ratio
W Rotation
< Corresponds to

Subscripts

A With respect to polynomial coefficients

b Flexural action (bending)

c Centroid of element

G Global co-ordinate system

L Local co-ordinate system

P Membrane action (plane stress)

X,¥585C Denote derivatives of displacement with respect to
X,¥,€,C

é With respect to the actual degree of freedom

SuEerscriEt

T Denotes transposition of rows and columns of a matrix

Special Symbols

[ 1 Denotes a matrix

{1 Denotes a column vector



- xiii -

- ACKNOWLEDGEMENTS -

The author would like to express his appreciation to his
advisor, Dr. M. D. Olson.for his assistance, encouragement and for reading

and checking the entire thesis.

Also, the author would like to thank Dr. N. D. Nathan for

his assistance.

The author would like to extend his thanks to Sarah Dahabieh

for typing the manuscript.

I am also very grateful to the Defence Research Board and

the National Research Council for their financial assistance.



" ' INTRODUCTION

The method of finite elements originated about twenty years
ago in the field of engineering and has since developed immensely. The
basic idea behind the method is that a solution region can be approximated
by replacing it with an assemblage of descrete elements. The finite element
procedure reduces the problem to one of a finite number of unknowns by divi-
ding the solution region into elements and by expressing the unknown field
in terms of assumed approximating functions within each element. The appro-
ximating or interpolation functions used herein are defined in terms of the
values of the displacement field variables at specific points called nodes.
These nodal variables are the unknowns which are solved for. The interpo-
lation functions cannot be chosen arbitrarily because certain compatibility
conditions have to be satisfied. The accuracy of the solution depends not
only on the size of elements used but also on the interpolation functions
incorporated. One major advantage of the finite element method is that the
force - displacement or stiffnéss characteristics of each eiement can be
- camputed and then the elements assembled to represent the stiffness of the

overall structure.

When choosing the interpolation functions that are to be incor-
porated in deriving an element's stiffness characteristics, discretion has
to be used. The higher the order of the functions used the more camplex-the
formulation becomes and the prcblem size increases greatly demanding more
canputer memory to be utilized. However if the polynamials are very low in

order then accuracy can be lost even though a great many elements can be



used in the analysis. .It is desired to develop. a relatively low order trian-
gular finite element .in.plane stress:.which.when cambined with a triangylar
plate bending element, .can be used to model shell ' and folded plate structures
with reasonable accuracy. andeoonamy Start:.ng with. lepiete cubic polyno-
mials to represent the two in-plane displacements and an in-plane rotation

at each node of the plane stress element, various constraints.-are then
introduced to reduce the mumber of degrees of freedom to nine for the element.
This element was then combined with the well known Zienkiewicz nine parameter
plate bending triangular element which uses a cubic polynomial for the

normal displacement.

A camputer program employing the new eighteen degree of freedom
trianqular finite element was developed. Various shell structures and a
folded plate one were analyzed and results were campared with analytical
solutions. Subseduently a twelve degree of freedom unsymmetrical beam
stiffenei‘ element was formulated so that stiffened plate and stiffened shell

structures could also be modeled.
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. 'CHAPTER 2-.

 Finite Element Technique: . The assumptions. used in the finite element

method. herein are:' -

1)

2)

3)

4)

.5)

The element's thickness is uniform.

The material is elastic, isotropic and hamogeneous. -
Elements. are assumed to be connected only(g;lode points.
Relation between forces and.deformations is linear.

Small deflection theory is assumed from plate theory; therefore

there isn't any coupling of the in-plane and bending actions .

Description of Method - Displacement Approach: Using the potential

energy (P.E.) principle, we assume a displacement field within the

element. For equilibrium, the P.E. is a minimum and the internal

work (strain energy) is equivalent to the work done by the external

- forces acting on the element. From this approach the stiffness

characteristics of the element can be defined. This is illustrated.

below:

The stresses in a continuum are expressed in terms of strains

where { ¢ }

{ag} [D1{¢e} ' 2 -1

~Stress Vector

I D]

'{ e } = Strain Vector

Elasticity Matrix

The strains at any point within an element can be described in terms

of the nodal displacements as.

{e} = 1IB1{s} ' 2 -2


http://can.be

-

where {1} nodal displacement vector

strain-displacement matrix.

[B]

4 : ‘ *
assuming a virtual displacement {8} at the nodes, the external work

We done by the nodal loads { P} is:
W, o={s¥T {p} 2-3

e

Similarly the internal work W; done by the element when subjected to

the virtual displacement is:

. *T.
Wy =/F{e} { o} dwl. 2-4
vol.

substituting equations 2-1 and 2-2 into 2-4 vyields
Wi =/ 61T IB1T (DI B {5} vl 2-5
equating the internal work with the external work yields

: *. SR *T . T .
(6} {PY¥=s {6} s, 1B1T [DIIB]dvol {6}

2-6
then for an arbitrary virtual displacement { § }*
'{P}=fvol[B]T[D][B]dvol'{s} 2-7
and {P} = [K] {6} 2-8
So
[k1 =4 1817 [ D] [B] dvol. 2-9

vol

where [ K] = element stiffness matrix



CHAPTER 3

 DERIVATION OF 'THE ELEMENT'S PROPERTIES

General Information:

A triangular element is used because its shape affords easy applica-
tion to many types. of problems where rectangular elements could not

be used. For example modelling odd shaped objects and desiring sub-
sequent grid refinements in regions of high stress gradients. This

is illustrated later with a non-prismatic folded plate roof and various
shell roofs. It is assumed that the behavior of a continuously curved
surface can be adequately represented by the behavior of a surface
built up of small, flat elements. From.plate theory small deflections
are assumed so that the in-plane and bending actions are assumed

uncoupled within each flat element.

It is desired to make the finite element as near to being compatible
as possible. A campatible element is one which satisfies sufficient
inter-element continuity requirements that the total potential energy
in the structure converges monotonically towards a minimum as the
mesh of finite elements is progressively refined(7) . The potential
energy is a minimum when; among all the kinematically admissible dis-
placements, those satisfying the equilibrium conditions make the
potential energy stationary. The definition of compatibility may
also be expressed as follows; if a dependen£ variable in a structure
enters the energy expression with highest derivative of order g > 0,
then the (q - 1) derivative of that variable must be continuous

between adjacent campatible elements(7) . For plate bending, the



3.2

b

highest derivative is two so the first derivative of the nommal dis-
placement or the slope must be continuous. The element to be compa-
tible must have continuous slopes (rotations) and displacements for
modelling plate and shell structures. For in plane or membrane

action, the highest derivative is one, so only the displacements and

not the slopes have to be continwus for compatibility.

Convergence to the correct minimum.potential energy is cbtained if
the polynamials are camplete to order P. Where P is the maximum
derivative in the energy expression. Only completeness to order P

is necessary for convergence. The finite element descfibed herein

is the result of cambining an in-plane and a plate bending element.
For the in-plane portion the highest derivative in the energy expres-
sion is one, so only complete first order polynomials in u and Vv

ae required to ensure convergence of the potential energy. The
energy expression for plate bending has highest derivatives of order
two. Then at least a complete quadratic polynamial must be used for

the normal displacement to ensure convergence.

In-Plane Element Formulation:

As mentioned earlier it is desired to combine a 9 degree of freedom
triangular plane stress element with the well known Zienkiewicz 9
parameter plate bending triangular element to represent folded plate
and shell structures.. So the two displacements u and V.and an in-
plane retation are used at each node to define the plane stress finite

element. (refer to fig. 3.5)
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Beginning with complete cubic polynamials for each of the two in-

plane displacements, constraints are introduced to force the displace-
ment parallel to an edge to vary only linearly along that edge and

to force the included angle at each vertex to remain fixed. Condensa-
tion of the remaining two degrees of freedom then yields the 9 parameter

element.

Then proceding as mentioned above, the 9 x 9 stiffness matrix in local

co~ord is developed:

Starting with camplete cubic polyncmials:

u =2, + azéu+ asg + a4g2 + a5£g + a6c2 + a7g3 + angg + agggz +

10° : 3-1

V=a,, +a,6+a,;+a §2+a.£;+a §2'+a g3+a g2;+

~ 11 12 13 14 15 16 17- 18
ajgee” + a0t 3-2

But constraints are to be introduced to force the displacement parallel
to an edge to vary linearly along it, so, u can be rewritten omitting

the squared and cubic terms in ¢ only. (for side one_).

_ 2 2 2 3 3-1a
u.= al + azg + a3§ + a4£2; + a52;. + a6g z + a.7gz; + a82;
In series notation:
8 : pi
u== a; Eml z 3-1b
i=1
10 1li ni
V = Lo -
is,‘= 1 a1+8 £ z 3-2a



where

{m3}T <01010210>

{p} <oov112123/‘

{15 10321c>

I
A
=
o
N

{ny <o10120123

So initially we begin with 18 parameters and wish to reduce these to
9.

First Reduction: Force a displacement parallel to an edge to vary

linearly along it. (refer to fig. -3.1)

sV
k
let s = Sin o
C = COs g
then
u=uc+Vvs 1
3—3 - -
V=-us + Vc -~ Fig. 3.1 Co-ordinate Systems
also
£ = B, +% - ys
3-4

L = Xs + ycC
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Referring to equations 1b and 2a and swbstituting equations

4 then;
8 - - . _ - .

u= £ a:-L (& + xc - ys)nl ( Xs +'yc )pl 3-1c
i=1 ’

and
10 . - - N - - N

V= = asy o " (g,,+xc—ys)ll(xs+yc)nl 3-2b
N 1+8
i1=1

but

u=uc +WVs from equations 3

so the tangential displacement along an edge is u

- 8 - - i - - i
u=clf a (& +x~-35)™ (& +3c)P +
i=1
-;‘j. 10 _ _ . _ _ Y
ts [ a. (& +=xc —ys)ll ( xs + yc )nl] 3-5
i=1 M8

‘and we are interested in u along an edge,

where y =0 therefore

- 8 - s - : 10 - :
u=c [= ai(£°+xc)ml(xs)pl]'+s[-z;. a (.£o+xc}l
i=1 i=1

Ges) ™ 3-6

i+8 -

For u to vary linearly along an edge, we want the squared and cubic
terms of x to vanish:

Squared tenms:

2 ) Y/
sc”a;, + cs (ca4 + sal3) + s (ca5 + sal4) +
+ s3c215o al5 + cs2g, (ca6 + sa16) +

+ szgo (Ca-7 + sa17) =0 3-7



-10-

Cubic Terms:-
sc3a + czs (ca,. + sa, ) + szc (ca. + sa,.) +

15 6 16 5 17

3 oy -
+ s (ca8+sa18)—0 3-8
Note:

Equations 7 and 8 are constraint equations.for sides 2 and 3 of the
element. Therefore actually 4 constraints are applied, leaving 5

parameters to be removed to ‘yrield the 9 desired.

The cos o and sin a ( c and s ) should actually be subscripted
where j = 1, 2, 3 (side number).

Table 3.1 Trigonometric relations for the Element

Side Cj Sj '&03
J
1 1 0 0
Z —a/r2 c/r2 a
3 b/r3 c/r3 -b

where
rl=_a.+b, r-2=\/a2+c2, r3=\/> b2+c2 are

the lengths of the 3 sides of the elements.
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In-Plane Rotations:

Déf:i.ne the rotation of one side of the element to be

‘ 9 X
where )
3V _ 38 3V 3T 3V
X 93X 9% 3X 93¢
from equations 4 and 3
CEA R B
9 X 9 X
therefore
az - o 2V +s'av‘.
9 X 9 & 3z

- +.V + - . —
c ( uEs gc) s ( ucs+vcc) 3-9

where -

u = 2% ete.
2

o

oy

fram equations 1b and 2 a :

8 i-1 pi ° 10 1i-1 ni
w, = £ amer- P, v =g a . ol g
g i=1 i1 13 i=1 i+
8 . . 10
. _ mi pi-l ) .
un F = a. p. « _ : .. 11 ni-1
¢ i=1 1 pl - VC C= 2 ai_’_& nig g



12—

then
a V. _ 8 mi-1 pi 1 1i-1 ni
— = c, [-s, = amg o+ oc. a, o lig ™ 1+
) X ] Ji=1 * R

8 ni pi-1 10 o 1li ni-1 _
i"..fij [ 85 ii laipig z + S5 lz'= L a g 4E 1 3-10

for the jth side of the element

Define: The rotation at a node to be the average of the 2 side

rotations at the node (refer to fig. 3.2)

1 W2 2

wfl = w-lz + w13
2

wrz = _w'z-l .+}U‘23 3-11
2

UJ3 =" w32 + w3l
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' ‘Rotation at riede (1):

_ o S .2 _
quz = a, 2a12b + 3a15b 3-12
o 2 ' 2
Wiy = = .bca.2 + b ( a9 ~ 2a12b» + 3a15b )+
T 2
I3 3
® (ay-as b+abd) +bc (a. -aib +a b 3-13
7 a3 ~ay b+ agh’) +be (a; —a;b+an
2 2
I3 3
then
2
W _—~1§c a, +a (H%+l)'—2b (1%%)+3 b2(1+]9_2)+
1 7 r 27 M0 Vr 312 r 315 r
3 3 3 73
' ’cz ‘ 2 be 2 1
- — oo bl -— i1k =
7 (a3 -agrb+aby) +=5 (aj; -ajb+a b5
T3 I3
3-14
Rotation at node (2):
(Ey2z,) = (a, 0)
N = a,, + 2a,,a + 3a a2 3-15
W21 10 12 15
W _ gg_‘aé + EE;( a)g t 23, at 3a15a2 ) +
23 2 2 -
2 2
02 2, ca 2
- (a3+a4a+a6a)-—2(all+al3a+a16a)
r2 . r2

3-16
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then
‘ e - 2 2 5 2
w, =[—2'—az+alo(l+;7)+2aau-(1+?)+3a.a15(1+;7)+
Ty Ty 2 2
‘é( +aa+aa2)—9-a;(a +a,.a+a 2)]*1
7 L a3 7T 3y 6 2 ‘911 T 33 162 5
r r
2 2
3-17
Rotations at node (3):
(63,-2;3) = (o, )
.2
ac 2. 2 2
m32 = rg(a2+a,_'-_-nc+a7c)+r§ _( a10+a13c+al7c)+
2
c_ 2 ca 2
- r,‘z’, (a3 + 2a5c+ 3a8c) —rg (all +2al4c+ 3a18c)
3-18
be 5 B2 2
\1.3;31 = —r:2>)‘(a2+a4c+a7c)+r§ (a10+al3c+al7c)+
e , ke )
—r§ (a3+2asc+3a80) +r§ (all+2al4c+3a180)
3-19
then
a_ b_ 2 a2 B
w = [c( 2-_2)(a,+a,c+ac)+ (.2 + _2)
3 r, r3» 2 4 az r2 r3
(a,.+ta .c+a c2)' -cz(}?+£2-)(a + 2a_c+ 3 c2)+
10 7 213 17 r, ' 3 3 5 3g
P bi-a 2, .1
Lot TR ,
(r;2>, rg) (all+2al4c+3a180)]"§' 3-20
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Shear Strains:.

Shear strain is normally defined as the change in angle fram a right
angle but since our element's sides are not initially at right angles

to one another, we have to redefine the shear strains as:

Define
y = The difference of the side rotations at

a node.

So

Y, Uy T3 3-21a
Ha 13

Y o = Wyt Uy 3-21b
2 5

Y3 = W3y Wi 3-21c
3

Shear strain at node (1) is:

From equations 12, 13 substituted into equation 2la, yields

2 2

_ bc _b _ _b
1= 22t (1m) m2app (1) e

3 3 3
: 2 2
2 b c ) 2, _ bc
+ 3a15b ( 1l- ;2 ) + ? ( a3 a4b + a6b ) r2
3 3 3
2, ;1
Capy —app +ayh") 1 7 3-22

Shear strain at node (2):

From equations 15 and 16 substituted into equation 21b gives

2 .2

= 1-=2 -2 -2
Y, = [-=a+ta,(l-=)t2aa, (1l-=)+

r2. r2 r2.
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2 2 .
2 Al e 2 ‘ca
+3aa (1-=5)+ ;ihl('aB t a,a t+ aga’l t ;§~
Ty 2 2
(a. +a.a+a a) 1«4+ 3-23
11 13 16 2
Shear Strain at node (3):
Substitute equations 18 and 19 into 2lc yields:
2 2
Y3 = [ e ( §§-+ 92-) ( a, + a,ct a7cz) + ( Ej-- - )
r, I3 r, 13
2 2,1 1 2
(alo+a13c+al7c)+c (—2-- 7) (a3+2a5c+3a8c)+
r r
3 2
a b 2. .1
—c(7+—2_) (all+2al4c+ 3a18c -), ]*5 3-24
2 I3

Summarizing the generalized displacement vector is:

{ 6} =<u 14 Vll’l?,ll uz,....u“3 ') uc' Vc, Yl; Y2]Y3 LY 010)0’9

|

| - 2Jr

9 desired degrees of Shear strains
freedom : set to 0 quare &
cubic side 3§
centroidal degrees of square & cubic
freedam to be statically| side 2
condensed later. :

Note:

The nodal shear strains are all set to zero later.

Y1=.Y2= Y3 =0
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coefficients is:

{s§} =171 {Aa} 3-25
18 x 1 18 x 18 18x 1

where
[ T] = Transformation matrix
i . N
{ay =%
a1
alg

The transformation matrix is written out in full on next page

(Table 3.2)

" where

- C. s, are sine and cosine of angle,d for side i
= B, C and A are dimensions of the element -

= Iys Iy T3 are the lengths of the 3 sides of the

element.
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TABLE 3.2:

20~

| 'A2

2

@

N N

2r

3
C,5;

CS, A

NN

NN

N ™M

N ™M

2
S

oy

28]

(& - B)

Olm

TRANSFORMATION. MATRTX FOR PLANE STRESS ELEMENT (CONT'D) (3)

o ™M

BC
2r

N

- AC
2r

o~

282

. S,
\

1

L

O
3

[+]=

o,

A

—
—

19,9

8,1




TABLE 3.2: TRANSFORMATION MATRIX FOR PLANE STRESS ELEMENT (CONT'D) (4)

o
} |
A-B c @a-82 la-Bc c? a-8° | a-mn%|@a-8
3 3 3 3 3 9 3 3 3 3 o9
T - - B —
(L -B) L g -B (-8} BX 3820 -84 -8%
& 52 2| 22 , 2| a2
3 3 3 - r3 r3
La-8) | o ha-2) | o 32’0 -n) el
10,10 10,18 2 2 2 2 [N 2
» r, 2r2 r, 2r2 |2 r2 2r2
T = 2 2 !
5,16 T, @8) 1 l-ca +B) le@-8) - Pa +B) @l - B
" 2 2 2 2.2 2 2 2 2 2 2 S 2 2
2 13 2 '3 2 T3 2 T3 2 T I
2 2 3 2. 2. 3
S, C5 c, 85 s 35,C2A. | C,552A S5 A
3 2.2 3
5% €252 525
2 2 3 2. 2 3
53 G Cy S5 53 lscle  cshe 538
3 2.2 3
5.C5 cZs? 53 ¢, ¢
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- Stiffness Matrix:

The elemental stiffness matrix can be cbtained fram the strain

energy. In plane stress the energy expression is:.

U = Et FILu w2+ uy, + 1=V (u, +Ve )21 de dg
—_— 3 s et _— g g
2(1-vfy & 2

area of
element 3-26

where E is Young's modulus, t is the plate thickness and‘v is

Poisson's ratio.

Equations 1lb and 2a:are substituted into equation 26 and the integra-

tions are carried out to yield the quadratic strain energy form

US =  Et - a3t [-ff;]'{A} 3-27
2 (1-w2)

know {8} = [T] {a]}

then 1
{A} = [T]1 {8} 3-28

putting equation 28 in 27 yields

e - %.'—EE.—’——Z—[[T]_]"{G}:' [R] [(T170 (63 329
- (1 -2

Equate the strain energy to the external work done by the loads

{p1}:

EE-REENS = £’_'_'§.§'_2__-{ s 1T [IT]—lT [ %, [T]_l]{ 5 3
2 @Q-w9) _

3-30

and { P} =IK6]'{6}
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then
T 1 - -1
[KJ = Is1 IKJ I[s] 3-31
11 x11 11 x18 18 x 18 1B8xn
where

[ s ]—l is the first 11 colums of [ T ]—l since =, =
18 x11: 18 x 18

Y3 = 0 and the square and éubic terms of sides 2 and 3
are set to zero.

3.2.1 Integrating the Stiffness Matrix

The entries of the stiffness matrix [ K¢] may be determined in closed

form. First a formula for the integral
FrE™ & & = F (mon) 3-32
A

taken over the area of the element is obtained (4)

where

F(mn)=ct1 {amJ’l— (—b)m+lj%;f!n;2“ 3-33

When equations 1b and 2a are substituted into equation 26 and we

incorporate the symmetry requirement, the result in closed form is;

Kij -_-_miij(mi+mj—2, pi+pj.)+ninjF(li+lj' ni+pj =2)

l1-v

+ [piij(mi+m.'pi+pj—2)+liljF;"f'

J

(li+lj_2’ni+nj)]+[l£v pj li+vmjni]F

(mj+li_—l,pj+ni—l)+[l;v pilj+vminj]F

(mi+lj_l"pi+nj-l) 3-34
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where m;and p;run from 1;to 8 and ljand n;run from 1 to 10, as

defined following equation 2a.

3.2.2 Condensation of Centroidal Degrees of Freedom:

Since the centroidal displacements Yc and V¢ lie inside the element,
these displacements will be unaffected when the elements are joined
together to represent the structure. Therefore we may solve for

them before the elements are joined together, without affecting the

final result.

Minimizing the potential energy in one element:

11 | K12 61 1

2x9 [9x2 9x1 9x1

[ Rgl[ 671 = - DY [ 3-35
11x11 11 x1 Ky l Koo 5, P,
L 2 x9 12 x2 2 x 1 2x1
Evaluating:

Kjp 8 t Ky 65, = B 3-36
Ko *+Kpd, =P, | 3-37

Solving for 62 in equation 37

| )
82 = Kpp (Py - Kjey)
Equation 36 becomes

_l _
K28 + KoKy (B = Ky08)) = By
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or
-1 | ;
81 Ky = KoKy Kypd =By = K K0 Pody 3-38
and
P =K & < 3-39

A * _ -1
Therefore { P} = P KK P,

and

x -1
[RKI = Ky - KK5 Ky 3-40
9x9

. *
where { P }* and [ K] are the final load vector and stiffness

matrix for the nine degree of freedam plane stress element.

3.2.3 Characteristics of the Plane Stress Element

The tangential displacement along an edge is continuous for a linear
variation. The other in-plane displacement normal to each edge varies
cubically along the edge. At the nodes of the element the rotation

is continuous but it is not continuous along the element's sides.

Because of the restriction Y1 = v = 0, the element is not

273
complete but the approximation affects the element's performance
only slightly as will be illustrated later in same {fumerical appli-

cations. Inter-element campatibility (Co) is easily achieved.

3.3  Bending Element Formulation:

The Zienkiewicz nine parameter plate bending triangular element is
used with the nine parameter plane stress element. Nine degree of .
freedom would imply that a complete cubic be used for out of plane

displacements W. However a difficulty arises as the full cubic
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expansion contains ten:terms and any amission has to be made arbitra-
rily. - To retain a certain symmetry of appearance (isotropy) ali ten
terms could be retained and two coefficients made equal to limit

the number of unknowns to nine. Several such possibilities have

been investigated but a much more serious prablem occurs. The
transformation matrix becomes singular for certain orientations of
the triangle sides. This happens for instance, when two sides of

the triangle are parallel to the x and y axes. O. C. Zienkiewicz
pointed out that difficulties of such asymmetry can be avoided by

the use of area co-ordinates (9). R.D. Cook also pointed out that

invariance could be achieved by the use of area co-ordinates (2).

The nine terms of a cubic expression are formed by the products of

all possible cubic term conbinations (9) in area co-ord.;

9

W= gw; Ny 3-41
i=1

‘vwhere : N, = shape functions and are defined as follows:

N; =D + 51y *?L12L3 - L5 - L1
N, = = by (LfLy + FIjLLy) +by (Lytd + FTiIL, )
Ny=-¢c;3 LjL, + %'L1L2L3 ) e, ('L3Li + %'L1L2L3 )
N4 = L2 +’L§L3 + Lng - L2L§ - LZL?.
Ng = = by (L3L + LT3 ) +by ( L2 + 3 LiLoLy )
Ne==-¢ ( L%L3 * —21-'L1LéL3 )+ ( Lng + -]zlLleL3 )

_ 2 2. w2 _ o -2
N.7 = L3 + L3Ll + L3L2 L3L1 L3L2
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Ng = = b, (LiL + %‘LleIB ) tby (LT3 + %L1L2L3 ) ,
Ng = = ¢y (L3 +FLyL,La) + ¢ L3 + 3 Dylyly ) T
L; = Triangular or area co-ordinates
Effectively then an incomplete cubic in w is used.
vhere

by =¥, - v3 Cp = X3 7%

b2 =Y3~ Yy Cy =% - X3 3-42a

b3=v; Y, C3= % =X

Z, W

Fig. 3.3 Degreés of Freedom of the Bending Element

As shown in Fig. 3.3 the nine parameters chosen to represent the

element's configuration are:

W, =.<:w-, O, 4 B, (Was «..0
i 1 X0 yt2 y3>

b, = W and o, = —H
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Area- co-ordinates (’Ll' L2,.L3 )} are used since the formulation is

more direct and easier. ( refer to fig. 3.4)

where A1 = area of

Y o)
triangle 3P2,etc.
- X
Fig. 3.4 Area Co-ordinates

Then Ay = A +tA, tA; 3-43

__ A o _ A,

L =1 L, =" L, =3

By B By

so

Ll+L2+I-.3=l 3-44

Area of Element: ( A )

1 1 1
% % % evaluating and using
2 A =det |71 2 3 equations 42A yields
Y1 Y2 Y3
248 = c.b,-cb 3-45

271 T172
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131

second derivatives of

Jacobian matrix

' ‘Rejlatio'nship between Cartesian and Area Co-ordinates:
We know:
B -X
1 1 1 1 L,
o T I B S L 3-46
Y Y Y Y3 L3
evaluating equation 46 yields
X = lel +-x2]'_.2 + x3L3 3-46b
y = y]_Ll + yzL2 + y3L3 3-46c
but from equation 44
L3= 1—L1—L2 3-44a
so equations 46b and 46c using equation 44a become:
X= LCz~ Lsz + X3 3-471a
Y=-Libztlabitxg 3-41b
we want: . L
{Ly= L9 {3} e
%ﬁEYYe oL } = second derivatives of the area co-ordinates - (L;)

cartesian co-ordinates

Note: second derivatives are used since strain operator has the

same derivatives.

so from equation 3-48:

=[J]

\. axayJ

3-49



Using the chain rule to relate the 2 co-ordinate systems:-

oL

In matrix

i .

Q

o |
NN DD HDDD N

N

L oLy oL |

-30-

3x 3 3y 3
L, X 3L, 9y
,cz _3 - b2 _3
X oy
3x 3 L, 3y 3
3L, X 3L, 3y
o oy
2 2
G 25 - 2cp, 2 +b
X €)%
2 2
c% —22- - 2c1bl 2 + b
0x X3y
T R
- ch2 + v
X 2

) 2

- - blb2 =
3y

9xdy

form, expressing equation 3-49 we obtain:

3-50

3-51

3-52

3-53

3-54

3-49a
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Strain-Displacement . Relationship:. [ B ]

We know:
{el = {XY{W)} 3-55
Where

{ e } = Strain vector ey

Sxy
, 9 -
(W} = {E;fl w;N; = displacement (normal to plane)
= {w}{N}

{x} [317Y (L} from equation 48

Then equation 3-55 can be expressed as:.

et = (31 (Lytwr Ny

= (a1 (BN - 3-55a
so
[B] = {L}{N} 3-56

Knowing Lz = 1 -1, - L, s+ equations 42 can be rewritten,

eliminating their dependence on L3-:

Nl' = 3Lf_12_ - ZLi - 2L1L§ - 2L§L2 + 2L1L2

Ny - - by (3 I7L + 5 Lk 345 ) +b, ( I3 - 1 - %‘Lil‘z:?*
ty Lyl %‘ Lng)

Ny = -y (FI3L, + 7 LTy- L3 ) + oy (T} -1 - S LI, +
sipn - Lgp12

7 By -3 L, )



or .
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Ny = m2-ad-amg?o2td oL,

N = -b (Lg ngLl-ngé-%-L'ité L2L2)+b (2Ll§
+%‘LL 'I 2)

Ng = -¢) (Lj=3LL - 13 + 5 L4T, Lil, ) + oy (FI4I5 +
’“é Lk %L%L

N, = 1-303 - 4L, + 4L, +2 L + 4LoL, =302 + 213

Ng = =b, (Lj - 212 - 3LL + 312, +IP+ 310 ) +
+by (L2—§L2L1—2L2+§-L1L2+%-LiL2+ L3 )

N9 = c2(Ll—2L]2._%L1L2+%L]2.L2+Li+%L§Ll)+
+c1”“2"%1‘12 2L§ %LngJ’%L?.Lz*Lg)

Now equation 3-56 can be evaluated

[ B]

. o
—2' : < Nl ’ N2 [ N3 S N9 >
BL2

L BLl 3L2

3-42a



oL, 9L

2 * 000w oo
2

o

2

[SF]
[Xo]

Ho

o’

Xe]

o L

NN

oL. oL

3-56a

This yields the [ B ] matrix printed on the following page. (Table

34).



‘TABLE 3.4

STRATN~DISPLACEMENT MATRIX (BENDING ELEMENT)

— —
6 - 121 t| - - - - - = -
1 b,L, + Cqly + 4L, b;L, c,L, 6+ 12L, b, (54 + |, (-4 +
- 4L
2 b, @2 - o, (2-61; b4, 4L, + 8L, 6L; + 3L,) |6L; + 3L,)+
6L; - 3L,) | - 3L,) | + byL, + oL,
b,L, - ,
-4Ly 371 cyly - 6 -4 - |b) @-3L] ¢ 2~ |-6+8L + |bL, + eIy + o
b, L
_ 21 Sl 12L, 6L, )+ |t 12L, Py (F4 6L g 6L, +
[B1]= 2 2
~-6L,) +
b L, 2’ 1, + 3L,) + 3L))
2 - 4L, - | by (Ll - ey (Ll—L2 H2-4a, - -by (—‘3L2 4 —Ci..i."(s‘_73L2 —,4_;,+.:81f-1~;jv» —b2(3Ll+L2+ —02(3L1+L2
1 1, L, + 1) +bj ., 1 N
4L, L+ + {3+ c, AL, 175 T3Lp4 P o+ 8L, u 5)+b; §Ll _%) to, (@,
- + 3L, - 3)
b,(-3L; - |(-3L;-L, + (L, - Ly + freg (L,-Lg 272 3
L |1 1 1 * 3y
L, + ) =) >) 5 2
272 2 2 2

-11{'.-



- Stiffriess Matrix

From the virtual work approach, as discussed in section 2.1.1, the

stiffness matrix is derived from equation 2-9

[ K] =S[B]TIDJ[B]dArea 2-9
area

For plate bending, the elasticity matrix [ D ] is

ID] = Et u
2 (1-v%) [V 1 0 3-56b

Then equation 2-9 can be rewritten as:

SBJ]*[B]JT [D] [[—J]‘l[B]] a
[R] —

3
< [ R1] * weight * area 2-9b
i=1

[K]

I

A nurerical integration procedure is used which is exact for the
element. Since strain varies linearly so does stress. This yields

a.quadratic order for the stiffness. Refer to Table 3.3

" where

i = side no. of the element.
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" 'TABLE 3.3:

'AREA Q0-ORDINATES FOR NUMERTCAL INTEGRATTION

Side Ll L2 L3 wt
1 L L 0 1
2 2 3
A
2 o | L | 1| 1
2 2 3
3 Lo 1|1
2. 2 3

Note: Refer to figure 3.4. -
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'{sb}
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‘Assenbling.the .In-Plane and Bending.Element Stiffresses: s .. ..

Shell. and vfoldedl.,lplate,,. structures. support .their. applied loadings

by a coupling of.in-plane resistance.and bending resistance. Thus
structural action may be represented by cobining the in-plane stiff-
ness with the bending stiffness. The resulting stiffness matrix in
local co-ordinates treats the in-plane and bending actions as being
independent of each other (uncoupled). However when the stiffness
matrix is referenced to the global system coupling does result between
the membrane and bending actions. When the elements modelling a body
are assenbled, coupling also exists between adjacent elements.

The degrees of freedam chosen to describe the in-plene action are:

i T : ) - o
{ (SP} = <ulvlw1 ’ U~2 -..S.\.!3>

1x9

where W= 6, ( in plane rotation)
Similarly those degrees of freedom used for bending action are:
T = w. 6 6 W 0
17 "x1 " "yl "2" **°%3

1x9

For the combined element ( in-plane and bending), the displacement

vecfor is to be arranged as follows:.

T _ ‘A
} ‘"<11 r Ny r Wy By %1 1951+ Yy ¥ "'9z3>
1x 18 '

In terms of the force - displacement relationships:

" In-Plane

p

{F_ 1} = IKp]{GP}
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Where | Kp'f;J = in-plane stiffness matrix.in local co-ordinate.
9x9
" bending:
{Fp } = 1K1 {6}

- where [K ] = plate bending stiff-matrix in local co-ordinate.

aAkY
Caombined:
1.o11
K x 12 g 13
2Px 2 . 2Py 2 B
%1 | %12 13
3x3
1
K sz Kp3
1X]. lx Xl
K2]_ KZZ KA.S
{F}= b P P L @&
. 2 x 2 2 x 2 2 x 2
: 18x1
18x1 %21 K 22 K23
K4 Kps KG
T N 1x1 - I x 1 1x1
3 * 33
K K
P L Kb o)
2 x 2 P x 2 2 X 2
K31 K3z K33
< 7 X 8 .
P P P |
lxﬂ L l x 1 i 1 x 1]

18 x 18
IR
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To further clarify what has happened, here is how the bending

stiffness matrix has been paritioned and addressed for use in [IiE].

(v
exl
eyl

K1 | %2 K13 oo
3x 3 "2
%2
(F b= | M | %e22 Kp23
0
9x 1 -_¥.2_
' wen
K31 Kp32 K33 3
ex3
[ < ] 9x9 L ey3 J

9x1

And the in-plane stiffness matrix is addressed as follows

K
K11 ¥p12 pl3
T 2 3
K
% % D
. K21 Ko22 K23
P
K 2 K 3 x 6
P P | P
K31 Kp32 o33
. j |
5 8] 9
K 8| K
% p | D
IK ]
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=140

Now the resultant stiffness matrix can be used.

Fram. the .stiffness method technique, the stiffness matrix for a
structure is developed by summing the element stiffness matrices at
the appropriate nodes. However prior to summing the element matrices,
they must all be referenced to a common co-ordinate system (global

or structure co-ordinate) .

Co-ordinate Transformations

Each element in this study has associated with it, its own local
co-ordinate system. - Each system has the same orientation with
respect to the element, regardless of how the element may be
orientated in global co-ordinates the element displacement field is
expressed in terms of local co-ordinates and as long as the displace-
ment function used has a balanced representation of terms, then
invariance will be achieved even though incomplete polynomials are

used (2). Fig. 3.5 illustrates the use of local and gldbal axes.
The local degree of freedam must be related to the global co-ordinate
system so that the total structure stiffness matrix can be computed

by simply sumning the element stiffnesses.

Let some matrix say [ A ] relate the 2 co-ordinate systems.



b1 -

z,V

Local system

—> XU

\g]obo] system

Fig. 3.5 Co-ordinate Systems
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Then.
u U
= | v 3-57:
w
and
-
ex eX
{ ,
ey‘ = [ 2] BY | 3-57a
g ez eZ

where <U, V., W, ex, eY, ez> are the degrees of freedom in
terms of global co-ordinates.
u, Vo Wy 6y ey, ez> are the degrees of freedom in

terms of the local axes for each node of the 'element.

The [ A ] is merely a matrix of direction cosines:

% SR S
Lxl = Ayx ‘ )‘yY . - >‘yZ
rax oy ‘ Az

~ For the whole element, the transformation from global to local is:



1
[2]
exl eXl
{ eyl.,?‘: \ %1
) dia Sh'af ]
zl 3mcx\-\:\r-\ce_s z1
| )
i e
, Iy ,
, [ ,
23 } [ | 3
18x 1 18 x 1 18x 1
Or
'{GL} = [T]'{aG} 3-58

The elemental stiffness matrix in local co-ordinate is transformed

to the global co-ordinate system:

[Kg1 = [T1  [K] [T] 3-59
18 x 18 18x18 18 x 18

To find the direction cosine matrix [ A ], consider the equation
of the plane which passes through nodes 1, 2 and 3 of figure 3.5.

The global co-ordinates of the three nodes are Xi Yi Zi for i =1,

2, 3.



X - Xl Y- Yl_ 7z - Zl

det X2 —Xl YZ - Yl' Z2 - Zl = 0 3-60
X3-% Y% 43—

This yields:

(x—xl)I(yz-—yl) (Zé_zl)—(yfyl) (z2—zl)]+
-('Y-Yl)I(Xz—xl) (z3—zl)—(x3—xl) (z, =2z ) 1+

+(‘z-zl) [(,xz—vxl) (y3-y1) -(‘x3—xl') (Yz'Y1)=°

- Or:

X1 (v =y ) (ay=2) = (yg-v,) C(zp-2) 1+

ty [ (%3-x%x) (zp-2) ) - (% =-%) (z3-2) 1+

tz [ (x-x%) (y3-yp) - (%3 -x%) (¥, =¥y ) 1= constant

3-61

AX+BY+CZ= constant 3-62

to
Now relate to the X - Y axes“the direction cosines of the normal

to the X - Y plane flitto are-

_ component projection
vector length

A

vector length is E = _-\/A2 + B + C2-

>

I
ey B>

>

i
m|

>0

1
O

363
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The direction cosines for the x axis from node 1 to 2 ‘are:

Vector length = a+b=1

1
or
- 2 42 _ 2'
ll—\/(xz-xll +(y2—Yl) +(zz-21)
Then :
= X5 TX =Yy T Y - Zn T 2
Aex =21 Ay =22 71 A =201 3-64
ll ll ll

Thendirection cosines for the y axis are:

The y axis is perpendicular to both x and z -so use the dot product.

This yields:
Ay dax T Agy Ay FAgp Axg = 0
Ayx >‘zx+>‘yY _Asz)‘yZ oz = 0
and A2+ + 2 = 1

gt T At ‘vz
and the vector length is:

2 1

L= [(Yz_yl)c-(zz_zl)B] +[(x2-xl)c_(22—zl)

A+ (% -5 )B-(y, -y ) 212

then
- _(y,~y,)ec=-(2z,~-2,)B
\ Y% 2 1 2 1
' L
_ (x,=-x)ec-(2,~-2,)A
Ay " 2 1 2 1

L
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3.7

~Li6m

and : , ,
| Ayz = ..—. Ky Xl)_. B - (YZ .'?—.yl). A 3-66

L

Element Dimensions (in terms of global co-ordinate) refer to fig. 3.5.

The length of side (1] has already been defined as 1,. The length
of side (2), between nodes (2),.and (3) is 12:
A/ 2 2 27
L "V(X3 TERL At 3 m )Tt (23 -z
a =] (x2 - x3) (x2 - Xi)‘ + .(y2 - y3), ,(y2 = .yl.). + .(22 - .z3). ,(22 - zl)]
h

|8

Summary of-the Cambined Element:

As a result of conbining the nine parameter plane stress element with
the nine parameter plate bending element, the triangular element can
model the six possible movements at a node in space, namely three
translations and three rotations. The displacement tangential to
each side of the element varies linearly, but the normal (membrane)

displacement and plate bending vary cubically along the edges.

Therefore, all displacements are continuous between elements. However

the bending slopes normal to the edge are not campatible except at
the nodes.

As mentioned in section 3.1 if the element is to model shells and
Plate structures, both displacements and slopes must be continuous

for the element and from element to adjacent element. However only
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slope continuity is satisfied at the nodes and not along the sides

of -the element. For slope continuity along the.sides of the element,
both the translations. and the rotations have to be continuous. These
sacrifices. did not hinder the elements performance to a great extent

as will be illustrated later in some numerical exanples.
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' 'CHAPTER 4

- STRESS COMPUTATIONS

When a structure is modelled using finite elements, the deflections

of the nodes are solved fram the foroe-deformation equation:

{F}= [K}{G} 4-1
where

oS
[K] = master stiffness matrix in global co-ordinate

{6} = nmaster deflection vector in global co-ordinate

The master stiffness matrix is decomposed and the nodal displacements

are easily camputed.

Before the stresses can be computed, this deflection wvector should
be transformed to the local system for each element and the in-plane
movements and the bending movements separated. These have to be
separated because the elasticity matrices [ D ] and the strain -
displacement matrices [ B ] are different for each type of action.
Even though the maximum stress at a point in a body is totally
independent of any co-ordinate system used, it is convenient here to’
work with the local system for each element. Using equation 3-58

Loy} = [T1 {a

18 x 1 18x 18 18x 1 matrix.

} where [ T ] = transfomation
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Now the local solution vector of deflections can be broken down for

each element as follows:

I

x 1

L= e i) 4-3

Now the stresses can be computed. In general, the strains are

computed fram equation 2-2

{e}= [B] {6} ’ 4-3a

" where

[B]

strain—-displacement - matrix
and then the stresses fram equation 2-1 are:

{o}= [Dl{e}
The resultant stress at a node is computed by calculating the average

stress of all the surrounding element conditions.
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In Plane Stresses:

In the following, three different methods for approximating the stresses
from the calculated displacements are presented. The first method
(consistent) .uses the same strain-displacement matrix as in the stiffness
calculation. The second method (C.S.T) uses the strain-displacement
matrix from the constant stress triangle and just ignores the rotational
degree.of freedom at each node.v The third method (L.S.T.) uses the
linear strain triangle strain-displacement matrix and involves calcula-
ting effective mid-side node displacements, thus making use of the

nodal rotations.

Consistent Formulation:

The word consistent implies solving for the stresses in the usual manner
described in the previous section, deriving the strain-displacement

matrix [B] that is consistent with the element formulation of Sec. 3.2.

Having the solution vector of the in-plane displacements‘{ép} in
local co-ordinate, we can proceed to solve for the stresses anywhere

within the element.

{8} = [D 1 {e_} A
P P P
where v 0
E 0
o1 = 1=
P 0 0 1-v
2
. ep e
{c.} = plane stress vector Y oy
P Txy
(ex
{e_} = the strains ey
P Xy

{e } [B_1 {8} 4-5
P P P



where [ Bp ] =  strain-displacement matrix. -
- S0 equation 4-4 can be expressed as:

{op}='IDpJIBp]{6p} 4-6

3x1 3x3 3x 3 3x1

The' strain-displacement matrix is formulated from the original displa-

cement polyncmials:

8 ) -
u =g a g 3-1b
T=1
10 Ly i oni _
V=.2 al+8€ g 3-2a
T=1
where:
tm)T 2 {01010210)
B
{p)r = {o112123)
| T
{1} = <0102103210>
in¥ = {Qo10120123)
knowing
_ ou
eXx = 5—5—
ey = & 4-7
Cau LW
3 = - 4+ =
xy Y 3%

Equations 4-7 can be evaluated anywhere in the element and in particular

at the nodes resulting in nine strains per element.
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An alternate approach of computing. the plane stresses was tried in
an-effort to improve on the previously mentioned method. This is
based on the.Linear Strain Triangle approach. Also the constant
Strain Triangle was-computed to.serve as a camparison to the validity

of the results.

‘Constant Strain Formulation: (C.S.T.)

This triangular- element shown in Figure 4.1 has six degrees of freedom,
two per node. The element is rather limited because of its simplicity.
It can only represent a constant state of strain ( and stress) across
the entire element. However, this element does yield stresses which

can serve as an approximate check on higher order elements.-

Vi,

>-U.,E

Fig. 4.1 Constant Strain-Triangle Degree of Freedom
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Again we start with the solution vector in local co-ordinates { Gp' }

but for the constant strain triangle we only need a linear variation
for the displacement polynamials since the strain-displacement
operator is only of first order, giving a constant strain variation

across the element.

u = a; +'a2£- +a3c.€

a, + aS_g + a6t 4-9

- Then only six parameters are required so we will use only u and V

at each of the nodes.
Writing equations 4-8 and 4-9 in matrix form yields:

ul=1{1 ¢ 00 o0 1

v 0 0 01 ¢ ¢
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{U} = Talilo6} 4-10

where "{ 8 } = vector of prescribed degree of freedam

! d' 1 = matrix of prescribed coefficients -

We want to find a relation which relates the u and v displacements

directly to the triangle's degree of freedom.

{u}t= [A] {s} 4-11

where { U} = assumed displacement field

{s} actual degree of freedom of element
'So assume that { 6 } is related to { s } by { B }=

{s}= I811{e} 4-12

Building the [ 8 ] matrix

@ node (1)

”
[
I
Y
=
Y
|
Y
=

n
N
1i
o
o2
+
e
|—J
+
QO
()]
‘H .
’—l

[43]
>
I
v
KN
+
[\



@ node B) : E= By f =g
S5 = .3 taiytagny. 4-13
86 = a4 + aSEB + a62;3

Putting equations 4-13 in matrix form of equation 4-12 results in
the following [ £ ] matrix.

 —.

1 g g 0 0 0

o o 0 1 g g
[81 = 5% &5 o0 0 0
6 x6 0. 0 0 1 g ot

1 o o0 o0

From equation 4-12, { 6 } can be solved for:

te} = [g17F (s 4-14
But we want

{U} = [A]{s} ' 4-11
and know

{U} = [al{e} 4-10

then substituting equation 4-14 into equation 4-10 yields

{ul = [allgl V(s 4-15
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. : -1

so [A] = Jallgl™
Now we can proceed to derive the strain displacement matrix.

Strains are expressed as-

{e} = [L1{U} 4-16
(2 o]
where L = strain displacement operator = ng
for plane stress 0 g_C
3 3
| 3¢ 3F ]
and
£X
e = strain matrix
ey
XY

Suwbstituting equation 4-15 into equation 4-16 yields

{el = [L1lallgl V(s 4-17

Then [B] = [L] [a] [81 1= the strain-displacement matrix.

Once the strains are computed the stresses follow fram the equation.

{o =1 D, 1{e} 4-18

where Dp = elasticity matrix for plane stress, defined

in section 4.2.1.
oX
oy
Txy

o = stress matrix
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4.2.3 Linear Strain Formulation: (L.S.T.)

This element has mid-side nodes'as well as the nodes at the vertices,

as shown-in figure 4.2.

The element is one higher order than the constant strain element
(section 4.2.2) because not only can it represent a constant state

of strain (and stress), it can also model a linear variation..

Implicit fram the title, the strains over the element are to vary
linearly, so since the strain-operator for plane stress is - first
order, the assumed displacement field must vary quadratically. Here
area co-ordinates are used since the computation is more direct, and

efficient. Noting that complete quadratics in two space require:

2
( 2) = 403 6 parameters for each displacement
2 2

function. Then in total 12 values of displacement must be camputed
for each element. A logical choice would be to use u and Vi~ ... at

the mid-side nodes with the 3 existing nodes (refer to figure 4.2).

Y.v
A S where: .
¢ 21s%,23 = area co-ordinate
A] + AZ + A3 = AT
53
[ S
(2,,2, 0,)°
- X U

Fig. 4.2 Linear-Strain Triangle
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The area co-ordinates are defined as follows:

o= =2 R
Ay A Ap

(Same as section 3.3)

Noting that each shape function should be unity at one node and
zero at all others (since the shape functions are actually interpola-

tion formulae), we cbtain the following shape functions:

N2 = 2,2 (22,2 - 1)
Ny = 85 (285 - 1)
4-19
N4 = ;4‘2:122
N5 = 42223
Then
12
U = g Ni s; 4-20
i=1
where
. i }T_ o ’ -
{U “<ul r Vlr u~2! \Vzl u3l ---oY'6>
O_r
{U}= [A]l{s} 4-20a

where

{s} = solution vector of displacements



s

[A]
12 x 2

2.1 (22;1 - 1)

2,2 (22,2- --1)

%4 (25&3 -1}

42,12,2

Area of the Element: A

let

_ 1
= 5 det

1 1

- 'i det
¥y
& TX3T XK
a T X T X5
a3 =% 7%

1454

423%

3 2~ %3

_Y3 YZ_Y3
by =¥, ~ ¥,
by=v3~¥

4-21
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i = %X Tlab -b

2 271 2a1]

— —
1 1 1 1 ,Q,l
Y Yy Yo Y3 % 3

- |

1 2 3 ’
Or

Py =1 -0y -, 4-23
gives:

X = 'Xlzl + x222 + x3 a - ILl - 22),

4-24

Y =¥l tYply Yy (1 -0y - 0)

Wewant {L}= [J] {X } 4-25

where
{ L} = first derivative of area co-ordinates ( 25 )
X1}
[J]

1l

 first derivative of Cartesian co-ordinates

- Jacobian matrix

Note : First derivatives are used because the strain operator is

first order (contains only first derivatives).
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From equation 4-25

(3 ) 3
82,1 ox
ﬁ } = [J]

- N
o8 9
ey Y

Using the chain rule to relate-the two co-ordinates systems

L - X 3 4 By 3
321 321 X azl oy
3
= — - p. 2
a2 >4 2 oy
and:
S > S R ) A )
3%2 352,2 ax 3L 5 )%
= -y 2 + bl_—_af
ox oy

4-26

4-27a

4-27b

then expressing equation 4-27a and 4-27b in the form of equation

4-26, yields the following Jacobian matrix.

where A= area of the element
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- Strain-Displacement Relationship:-

We knows: .
{e} ='{X}1u}t 4-28

where U = displacement (in-plane), {¢ } = vector of strains

then from equation 4-25:

Xy = 1317 (1) =29
So
el = [3170 (L) (U3 4-30°
-1 . .
= [J] {L} [A] {s} 4-30a
- Therefore
[B] = {L} [A] is the strain-displacement matrix.
— _
where L = strain operator = | -2 0
ax
0 2
)
L8
3% 3x
Evaluating equation 4-30a — -
(b, +b, — |
4y )
]_Z;tf.g 2 0
9%y a2,
-1 1 . "
821 822
(al___a + a, B)Qol G +b2__i_>
821 8&2 : 22 322

and incorporating the equation 23 =1 - '2'1 - 22 into [ A]
yields:
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Y 0
4] zl czzl - 1)
2y 2% - 1) 0
0 b, (2L, - 1)
@ -8y =) [2 (-2, = &) - 1] 0
) Q- -2y =29) T2 (1= gy -2y - 1]
[A] =
45,2 0
12 x 2 12
0 42122
a8, (L -2, -8 0
0 42, (1= t- 1))
401 -2 =004 0
0 401-0) -0y i

The resulting [ B ] premultiplied by [ J 1% for use in equation

4 - 30a is shown in table 4.1 on the next page.
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.| TABLE .4.1: STRAIN-DISPLACEMENT. MATRTX FOR L.S.T.

ta, (4-4n-82%)

by (4gy-1) Q- a; (42, -1)
0 a; (427 -1) by (42, - 1)
bz('422-1) 0 a2(422—l)
0 a2(422—1) b2(4z2e1)
by (4ey +40,-3)+ . a; (42 + 4%, -3) +
to, ( 4g, + 42, - 3) ta, (4%, + 4 - 3)
. a) (48 +48, =3) + |b) (4% +4%, -3) +
ta, (4R, + 42 - 3) b, (4%, + 42 -3)
4 (byf, +byk ) 0 4 (aty +agh )
0 4 Caply +ayly 4 (b % +byky )
by (- 4g,) + a; (- 4%)
0 (4-4p -8e )
+ a, . -4 -
+b2(4-421—822) 2 ul IZ2
a) (-4n,) + by (4% ) +

b2(4—491—8512)

b1(4-8gl'—492)+

0

al(4—821—422)+

Where A = Area of Element

+b, (44 ) ta, (-44)
a; (4-8y-40)+ |b) (4-88-4%) +
0
;'+a2 (—'4%__) +b2 (-491)
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Now the stresses can be camputed:

{o} = 1D1{e} | 4-31
o |

to} =Ip11B1" [s} 4-32

where [B]1 = [J1711B]

and {s} = the u and v displacements at the corner

and midside nodes.

Mid-Side Node Displacements:

We are not through yet because u and V-of the mid:side nodes have

not been defined.

Fram the u and v displacements of the three vertices, we must samehow

derive reasonable mid-side displacements.

First resolve the cartesian u and ¥V displacements into tangential

and normal displacements at each vertex.

The tangential displacements are shown in figure 4.3.
4V

Fig. 4.3 Tangential Displacements
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The relations used to resolve the cartesian displacements into

tangential components at the vertices are:

@ Node (1):
Ui, =g 4-33
U g5 = - .\('lsin Sl - u; cos Bl 4-34
@ Node (2):
Y1 T %2 | 4-35
U y3 ="V, sin By —u, cos B, 4-36
@ Node (3):
W3y =V, sin B, - uy cos By 4--37
Uy g =-—Vf3 sin 61,; - u, cos B]:, 4-37 .

Now define the tangential displacement of a mid-side node to be the

average of its end node tangential displacements.

u +u

u, = 12 * %21 | 4-39
2
. = %23 % Y3 4-40
5 Lo Toc
2
u . = %31 T %3 4-41
6 BL=CH G -1~
2

The normal displacements are shown on figure 4.4.
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“Unes

. Fig. 4.4 Normal Displacements

The relations used to resolve the cartesian displacements into

nomal components at the vertices are:

@ Node (1):
Yo = Y 4-42
Ui3= Y sin By —-Ml cos By 4-43
@ Node (2):
Uos =V, 4-44
U3 =~u2 sm By = ‘VZ cos 8., 4-45
@ Node (3):
U3 = YU sin Bl - \1,3 oos sl 4-46

Uizp =~ u3 sin 52 - _«V/3 oos 62 4-47
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Define the normal displacement of the mid-side node by an interpol-
-ation of Hermihan cubic (shape] functions.:

_ 2, .3 ; 2, 3 2 _,.3

"~ 3,2 _
+ 31“’1 (&~ -£71 4-48
‘where;
. = in-plane rotation at node i

s; = length of side i

£ = a running dimensionless parameter, varying linearly
along an edge from 0 at starting node to 1 at end node.

Therefore =3 of the mid-point of a side.

As can be seen, the Hermition polynomials are a set of shape
functions for an element's side at the ends of which the slopes. and

values of the normal displacements are used as variables.

Simplifying equation 4-48 yields:

un4 = _un 12 + ‘Slwl + un'21 - ,siyz 4-48
. 2 8 2 8
Similarly:
Us = UWog t. _sz% +. .%32 L Sy 4-49
2 8 2 8
un6 = un 31 + .S3w3 + 'un13 - ,s3wl 4-50
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The final step before these mid-side displacements can be used to
compute the strains is to transform them back to the cartesian co-

ordinate system. The following equations perform the task: .

@ Node (1):
uhy = Y9 4-51
VLl =4, 4-52
@ Node (2):
UL2 = Woy 4-53
VLZ ='un21' 4-54
@ Node (3) :
uL3 = = U4, COS B, - ut3l.sin 831 4-55
VL3 = U5, sin 52 = U3 COs 531 4-56
@ Node (4):.
uL4 = Uy 4-57
VL, = Uy 4-58
@ Node (5):
uL5 =-uc 51n»52 - ut5 cos §2 4-59
MLS = - uhscos 52 + U sin 32 4-60
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@ Node (6) =

ULg = Ue SIn 6y - u .

VL6 ==

he OS5 8 — U sin gy

" Bending Stresses: .

The bending stresses are camputed by applying the equation:

Loy} =In 118 1{s ]}

T
where'{gb} = n.y
m
Xy

cos £y

cin- k

in.of length

(assumed to be valid over the whole element)

Note
[ D, ] is defined by equation 3-56b
[ Bb ] is defined in Table 3.4

and { &_ } = solution vector of w2

b
displacements.
(\"e'Fev- +o ‘FIS_ 3,3)

>y

4-61

4-62

Again the stresses may be evaluated amywhere within the element

but n pnr‘k\'of%r ot the nodes as used hereun.
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- 'CHAPTER 5

" BEAM STIFFENER EIEMENT

A beam stiffener element is used in conjunction with a plate.
The beam element strengthens the plate, increasing the flexural rigidity of
the system. Deformations caused by bending are considered and as in section
3.2 for finite element formulation the assumed displacement fields are

substituted into the strain energy and an element stiffness matrix is obtained.

An unsymmetrical section implies that the centroid of the
cross section and shear centre do not coincide. Consider an " L " shaped

section which acts as a stiffener for the plate shown below

y¥ Note: Right-handed system
—— is used throughout.

Z,w
f |
A
_ // =~ T ONJONE FINITE ELEMENT G A PLATE
~ AN
-~ AN
< : . X,U
€ I ! | N.A node at mid-ht. of sldb.
i > L-SECTION BEAM STIFF ENER
ELEMENT

Fig. 5.1 Beam Stiffener Element

Define: - bending about y-axis in the x-z plane to be the strong action

of the s_tiffener.

- bending about the z-axis in the x-y plane to be the weak action
of the stiffener.
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e = vertical distance from the shear centre of the beam to the

neutral plane of the plate section.

If possible we want the beam stiffener element to be campatible with the

adjoining plate it is stiffening.

Consider. first the bending of a symmetric section. The bending of a doubly
unsymmetric section is merely a change in the stiffness matrix of the

symmetric bending case.

5.1 Symmetric Bending:

Strong Direction: — consider bending in the vertical (z - x ) plane

about the y - axis.

z>W ¥
displaced position of beam after bending
|
[}
e : c N.A —- X

Fig. 5.2 Beam Stiffener Geometry (Strong Direction)



73~

To describe the beam's displaced position u, w and éy are used at

each end of the elament.

Fraom geometry:

Uy =4, - e dWc 5-1
dx
WB = Wc 5-2

For a compatible element, since w of plate is a cubic variation,

then w of beam must be. cubic.

_ ] 2 +3 -
wc =3y + a.z)s + a3?( + a4,2(i 5-3

= ,Z 1
let u, ag + a6§ + a7i§.. ,- 5-4

Then from equation 5-1

2 _ 2
a5+a6)$+a7x. e(a2+a32x+a3x)

Y5 4

- _ _ - 2 _
= ,(as eaz) + (a6 e2a3) X + (a.7 e3a4) X 5-5

but if u of beam is to be continuous with u of plate, it must have

a linear variation.

Then the x° term of equation 5-5 must vanish:

(a7 - e3a4) =0
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‘Relate the Degree of Freedom to, the. polyncmial coefficierts:.

{s§}=IT] [A} 5-7

%2

and [ T ] = transformation matrix

Knowing:-
_ _ Ow - _ _ 2 _
ey = c = a, 2a3x 3a4x 5-8
ax
Y = _ (a5 - ea2) + (a6 - 2ea3) X 5-9 |
w=a‘+ax+~a2+ax3
B~ %17 % 3* 4

and @ node (1) x=0; @node (2) x= 12



Then:
0 - 0 0 1 0
1 0 0 0 o
Q - —2el 0 1 '
1 % 22 g3 0 0
0 - =22 =32 9 0
L H

Now~the stiffness matrix in terms of the polynomial coefficients can

be developed fram the strain energy (U):

u= 2L dur e+ w2 g 5-11
2 o Cc 2 ° c

Where the first termm of equation 5-11 is the strain enrgy stored
in the beam due to pure bending and

=07 the second term is due to axial deformation

Using expression 5-3 and 5-4 and 5-6, equation 5-11 becames:

u=EL [ 42% + 12a.a,0% + 122243 1 +
2 3 374 4
+ EA [azz +2a2a 2,2 +£‘-a§23]
2 6 6 7 3
A2 2 23 2 EA 2
—2a352, EI +-6a3a42, EI+6a45L EI+a622— +3a6a4e2, EA +
+6a2e223 =2
2
_ 2 _ 2. 2-.3 2 2 A
= E I2a3zI+6a3a4sz,I+a ' (GI+6eA,)+a62§v+

2 ,
+ 3ea6a42, A] 5-12
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But we also know that (quadratic form of U)
L, T _
U= F{a) IK 114} 5-13

So writi_ng equation 5-12 in the form of equation 5-13 and making use

of symmetry yields:

201 321
[Ky]1=2E
3221 23 (6I+6e2A) ' =;’- eJLzA
5 e,Q,ZA 23
. | 2 —
Iet Jo = I+ e2A ’ [ K;\‘,‘] becomes :
—_ —
(K J- & 41 | 60°1
A
621 22316 30822
et - RA
— i . -
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The stiffnessmatrix [ K, ] in tems of the polynomial coefficients

can be transformed to be expressed in terms of the nodal degree of

freedom as follows:

Know

and

{Aa}

U

= [T]

l. T .
= 2—{A} II%]{A}

-1

{s

}

then substituting equation 5-10 into equation 5-13

where [ K ] =[T]

{s

[ N

=N

}T

{a’}TIK(SJ'{a}

matrix of the beam stiffener element.

The resulting KG matrix is:

SRS N B R

L2 T
0 12(r2+e2) Symnetric

-l len(re?) | ar? (rPe?)

- 12 0 e 12
0 |12 024y 6L Ze?) | 0 12(r%+e?)

er?  lenePeedi |l e - a?  |onre?) Wr2ae?)

5-10

5-13

5-14

Tig 11T 171 is the docal stiffness
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z,W ' where :
‘ r= VI'
_ A

A= X-SECTIONAL
ARE A,

lN‘ k L.
m\i/
@ .
~n
>
[+}
[+
(]

Oy Pyl e
N e

Fig. 5.3 BEAM ‘STIFFENER"CDEGREE OF FREEDOM) 'STRONG DIRECTION
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- Weak direction bending in the horizontal.(x - y) plane about z -

The formulation is analogous to that of the strong direction formula-
tion except the x and y axes are used instead of the x and z axes.
The degree of freedom used to describe the deformed position of the

beam are u, Vv and Gz at each end of the stiffener. Refer to Fig. 5.4

and Fig. 5.5.

y,v

A

gVe — o
X 2
— 8
€4

1 Tj* ~ X, W

Fig. 5.4 Beam Stiffener Geometry ( Weak Direction)

From Geametry:

uB=uc-eg‘__-_-9_ 5-15

A complete cubic in v is used since the variation along the plate is
cubic.

_ 6oy 2 3
Vc = alx + a2x + a3x + a4x 5-16
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and so on;-as.in the. strong direction derivation.

4,v
|
V| ‘Vz
A
Gz.f',;,,_,m . ) ©zz2 4 U —X U
. v / v M )
rL L

Fig. 5.5 Beam Stiffener (Degree of Freedom Weak Direction)

The same stiffness matrix is obtained as given for the strong direc-

tion formulation.but velohve 4o the d.o.f. in +ig. 5.5.

Torsion: So far we have not considered twisting (rotation) of the

section. Refer to figure 5.6.

Fig. 5.6 Beam Stiffener (Torsion).



81w

Since we do not have continuity of €  between nodes (1) and (2),
there is no point in striving for a compatible element in torsion.
But the twist at the nodes will be campatible if we use a linear

variation for ¢.

0=9 (1-F)+¢, (F) 5-17

Knowing, - the strain energy for Torsion (U) is

o
u="C%er @92 ax 5-18
2

The stiffness is:

Where J = polar moment of inertia
_ 1 -1
[ Kp 1= 6 'Jeff = %‘zhb?’ for thin sections
-1 1 '

2

Now we can canbine the stiffnesses together to form the overall
X u

12 x 12 matrix for one beam element.

yv=

Fig. 5.7 Resultant Beam Stiffener ( 12 degrees of freedom)
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tnsymetrtc sending: (reference 8

Consider. bending of a beam by couples my and mé acting in two

arbitrarily chosen perpendicular axial planes zx and yx.- Refer

to figure below:

X section area

‘f_‘ig.' 5.8 Beam Stiffener Subjected to Couples

Bending in zx plane:

Assume that the magnitudes of the couples are such that bending
occurs in the zx plane, so that the neutral axis in each cross
section is parallel to the y axis. The radius of curvature due to

the bending is s and the bending stresses will be:

Ty =E ¢ 5-19-
and e = rE 5-20
oz
~ _ Ez
Therefore O = 7 5-21
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Then the bending couples can be expressed as:

M. = fzo, dA="¥y 5-22
Y A X T
b4
ET .
Mz = [ Yo, dA ="""yz 5-23
A r

" Bending 'in xy plane:

If the magnitudes of the couples cause bending in the xy plane,

then you get the analogous equations:

Bending stresses:

o‘x= E ¢ and e = %
Yy
Therefore
oy = X 5-24
Yy

M = [ yo_d = oL 5-25.
z X —
A
r
Y
EI
M = Zg., dA = Z 5-26
YT 4 =
r
b'g
Note:
_ 2
Iz—_fydA
_ 2
I =/2%d 5-28
Y
I = da
vz =/ Y2
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and

@
@

5-28

Bending in Both xy and xz plane:  (ooupled action)

In the general case, the beam deflects.:in both planes. The relations
between the bending maments and curvatures are obtained by conbining

khe equations for the uncoupled cases.

My = y + Yz 5-29
r, ry

M, = E—I—zﬁ + EIyz 5-30
ry r, '

Since the beam stiffener will always be attached to a plate, then
the bending (couples) can always be chosen to act in. the xz plane,

so M_ = 0.
z

Therefore from equation 5-30

I I
2z =¥z
ry rz
Or
_ I
ry ="z rz 5-31
I
vz

then equation 5-29 becomes:



I,
M =E tTyz
et
X
v
B | LT, -L2 5_32
r Xz ¥z
z Tz

Fig. 5.9 Deflected Beam Under Pure Bending

For pure bending, the total strain energy is:

u = %0 5-33
2
Note:
2
ez=]—}. ds =§>_<.: i—;—zwc"dx 5-34
z r dx
z
- L
Also ez = &_ _ 5-35
ET

Then equation 5-33 can be expressed as:

2
u =Mt 5-36

2ET
Y
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If the strain energy due to axial deformations is also considered,

the strain energy for an incremental length &k is:

L

Ly | |

U= 1 fMyzdx + ;o )2 ax 5-37

ZEI o [o] c
Y

EA
2

Incorporating equation 5-32 and 5-34

- 2
v==2- | L'z T Tyt Pl oax o+ B )2 i
J 2 /Y e

21 b 2

Y IZ ] z Q

) 2

2T I ¢ 2 c

y z o 0

5-38

Note: If a symmetric section is evaluated using equation 5-38,

I = 0, then the equation becomes

Yz
L 2
ve By i mZa o+ BB n?
20 ° © 2 ° €
b4

which is the same as equation 5-11

nete ! (IZ# 0)
We know
W. = w, =a, + x+ax2+ax3
c® VB T TH 3 4
u = a +ax+a2
C -5 6 7

So proceeding as was. done for the symmetric case, the stiffness

matrix can be developed.
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The resulting K. matrix is found to be analogous to the one given

for a symmetric section in table 5.1

" where the values Re and rE become:

Re = (e‘2 +02)
rE = (E2 -l-:l_.l?)
and 2
2 2.
s |amend]
I, Ty A
2
2 2
2 r, AIZ - IYZ 1
e - I r2 A2
z z
E = distance from z axis to shear centre (ey -~ horizontal distance)
e = distance from center of gravity .of slab to shear centre

(ez + vertical distance).
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CHAPTER 6

NUMEﬁICAL APPLICATIONS

Constant Stress Applications:

The nine degree of freedom plane stress element developed in section 3.2
is first tested under simple stress conditions. This is to see how much
the element's incompleteness hinders its performance. Because of the
nodal shear strain constraints, the element will not be able to model
the true stress state exactly but perhaps it will be able to make a

good or reasonable approximation to it.

A square plate supported as shown in figure 6.1 is subjected to a constant
shear stress, a constant normal stress and a linearly varying normal stress
(constant moment). The plate is modelled by two finite elements and
dimensionless units are used throughout. Rotational degrees of freedom

are allowed at all nodes but because the nodal shear strains (rotations)
are constrained for each element (section 3.2) there may be some dis-

crepancy here.

The constant shear stress state is simulated by loading the plate as
shown in figure 6.1. Table 6.1 presents the resulting deflections and
the exact values are also tabulated directly under these values. The u
displacements are the same as the exact and the v displacements are only

about 7% in error of the exact values. At the free end of the plate,

(nodes 3 and 4) the rotational results are reasonable; enly about 7% error.

The cantilevered plate using the same grid and boundary conditions as in
the constant shear stress loading (figure 6!1) is used to model constant

normal stress. The loading is illustrated in figure 6.2. Table 6.2
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compares the resulting deflections from the finite element idealization
to the exact ones. The u displacements are 16% in error at the free

end but the v displacements and the rotations are much greater in error.

A linearly varying normal stress (constant moment) is simulated by the
loading shown in figure 6.3. Table 6.3 presents the displacements using
the finite elements and also the exact displacements. The u and v
displacements are about 267 in error at the free end. The relative

error in the rotations at the free ends are 21% (node 3) and 4% (node 4).

In general, the element is unable to model these stress states exactly
as was expected due to its incompleteness which is due to constraining
the nodal shear strains (rotations). The displacements and rotations
in the constant shear stress case were only slightly in error of the
exact values. However, in the other two cases with the exception of

the u displacements, the predictions from the element were relatively poor.

It is_interesting to note the strain energy results from these tests.
That is, in the first-two constant stress tests, the strain energy error
was only 7.5 and 3.1%, respectively, whereas for the last linear stress

case, it was much higher at 32%.

In examples to follow, we shall see to what extent the element's

incompleteness hinders its performance.
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CONSTANT STRESS APPLICATION

TABLE 6.1: DEFLECTIONS FOR CONSTANT SHEAR STRESS

POINT
> DISPL. POINT (1) POINT (2) POINT (3) POINT (4)
u 0.0000 0.0000 0.0000 0.0000
v 0.0000 0.0000 2.4044 2.4044
@ 1.2022 0 1.2022 1.2022 1.2022
Yoo 0.'0000 0.0000 0.0000 0.0000
Voo 0.0000 0.0000 2.6000 2.6000
W 1.3000 1.3000 1.3000 1.3000
NOTE: EX = EXACT VALUE )
Strain Energy, U = 1.2022, UEX‘= 1.3000
TABLE 6.2: DEFLECTIONS FOR CONSTANT NORMAL STRESS
POINT S
SISPL. POINT (1) POINT (2) :POINT (3) POINT (&)
u, 0.0000 0.0000 0.8353.. 0.8353
\ 0:1353 0.0000 0.1353 - 0.0000
o +0.1690 -0.6355 =0.6355 0.1690
U 0.0000 0.0000 1.0000 1.0000
Vg 0.3000 0.0000 0.3000 0.0000
X 0.0000 0.0000 0.0000 0.0000
U = 0.4847, U_ = 0.5000

EX




TABLE 6.3: DEFLECTION FOR CONSTANT MOMENT
POINT :

BISPL. POINT (1) POINT (2) POINT (3) POINT (4)
U 0.0000 0.0000 4.4241 ~4. 4247
\' -0.1911 0.0000 4.4241 4,2329
w -2.6446 -0.6625 9.5108 11.4929
UEX 0.0000 0.0000 6.0000 -6.0000
VEX 0.0000 0.0000 6.0000 6.0000
wEX 0.0000 0.0000 12.0000 12.0000

= 6.0000

U= 4.0934, U

EX"




Cantilever Beam Problem:

Although the element developed in Chapter 3 was meant to model plateand
shell type structures, it was felt that it would be beneficial to
compare the nine degree. of freedom plane stress element (Section 3.2)

to other common elements in a familiar plane stress application.

The well known cantilever beam was selected to be modellea. Tﬁe beam
has unit thickness and is loaded by lumping the parabolically varying
shear stress at the end nodes as loads. The material properties and
the various gridworks used in the analysis are shown in figure 6.4.
The boundary conditions at the cantilevered end are fixed entirely.
Since tﬁe nodal rotation and U-displacement here are fixed, then the
U-displacement between the nodes (along the elements' side) is

constrained to be zero also.

The results are compared with the constant strain triangle (C.S.T.) and
the linear strain triangle (L.S.T.). Table 6.4 presents the tip (end)
deflection obtained from the C.S.T., L.S.T., as well as the nine d.o.f.
element (section 3.2). From the table, it appears that the C.S.T. has

a higher convergence rate but the nine d.o.f. element is more accurate
for a given grid of elements. The L.S.T. deflections are superior to
both the other two elements. For a grid of four the three element types
yield reasonably accurate deflections. The exact deflection is computed
from flexural theory., Figure 6.4 illustrates the performance of the
three elements as more grid refinements are used. All three types of
elements appear to be converging at a réasonable rate to the exact tip

deflection. However, for relatively coarse grids, the nine d.o.f. element



is far more accurate than the C.S.T. element. Referring back to

table 6.4, the stresses obtained from the three types of elements are
presented for the various grid:.sizes. All the stresses appear to be
reasonably accurate and are converging - it appears to the exact value.
The nine d.o.f. element stresses are more accurate than the C.S.T.
stresses. The L.S.T. stresses are better than the other two element
types, however, it requires far more d.o.f. for a given gridwork than

the other two element types.

In general, the nine d.o.f. element performed better than the constant

strain element and not quite as good as the linear strain element.
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CANTILEVER BEAM

TABLE 6.4: TIP DEFLECTION AND NORMAL STRESS

TIP DEFLECTION (IN) *%%XNORMAL STRESS (K/INZ)
FINITE NINE D.O.F. .
ELEMENT CONSTANT STRAIN PLANE STRESS | LINEAR STRAIN PRESENT
GRID TRIANGLE (C.S.T.) ELEMENT* TRIANGLE (L.S.T.) C.S.T. TRIANGLE* L.S.T
1 0.0909 0.2302
2 0.1988 0.2983 0.3550 43.28 47.855 59.145
4 0.3115 0.3291 0.3556 53.51 55.774 60.024
EXACT | 0.3558 60
*% 1
FINITE NOTE:
ELEMENT ELEMENT NO. OF DEGREES *Refers to the 9 D.0.F. plane stress
TYPE GRED" = OF FREEDOM trlangle derlved 1n section 3. 2 hereln
) (using CST~ stress calculations
*% Exact solution obtained from flexural
C. 1 16 theory.
9 .F. 24
*%% Normal stress O
c. 50 . (a) x = 12" and y = 6.0"
9 D.0O.F. 2 34 | y
L. 160
C. 162
9 F. q 242
L. 576
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" Parabolically Loaded Square Plate:

This example serves to test the new plane stress element derived in
section 3.2. Here the elements only act in plane stress because they
are loaded in their plane. No bending stresses are induced. The
problem is a square plate loaded on two opposite sides by a paraboli-:
cally distributed normal stress. The other two sides are free.

The loading and a typical grid layout are shown in figure 6.6, making
use of symmetry only one quarter of the plate is modelled. Various
gridworks are used and the results are compared to an exact solution
(3). The load vector used is a consistent one based on the V:Lrtual
work of the parabolic distribution times the cubic distribution for
the edge displacement. Table 6.5 illustrates a comparison of the
various deflections and strain energy with the exact solution for
various gridworks. With each refinement in grid, the deflections Uy
U Mc' VD appear to be converging menotonically to some values slight-—
ly in error of the exact values. The reason for this apparent error
is due to the fact that the element is incamplete vand the nodal shear
strains are constrained, making the element stiffer. The strain
energy is also converging in a similar manner, mpotonically to a
value 13% in .error of the exact. Figure 6.:7‘;(‘. illustrates the manner
in which the strain energy oonVerges with each refined gridwork.

Similarly in figure 6.83 the end deflection Vp in the direction of
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the applied load .is -converging-but.to.a value.roughly. 13% in error

of .. the exact.:

The resultant.stress at.a node was. camputed by calculating the ‘average
stress.of all. the surrounding element contributions. Some characteris-
tic or typical stresses.are compared in table 6.6 with the exact for

various. grid refinements.. The linear strain (L.S.T.), constant strain

(C.s.T.}) and consistent formulation (section 4.2.1) are computed.

As illustrated all three values campare to the exact with only slight
error. For all gridworks Neg 7 B N and NyD are exactly the

same for the three stress computations. In general the C.S.T. values
were better where the three stress values differed. Figure 6.9 shows
the rapid convergence of N LD and NyB for refined gridworks to values
only slightly in error (2%) of the exact. The reason again is due

to the element's. incompleteness and the nodal shear strain constraints
making the element stiffer, therefore inhibiting it from absorbihg

as much strain energy as it would if it were complete and no constraints

introduced.

The variation of NyA with grid refinements is illustrated in figure
6.10. Here the consistent formulation (section 4.2.1) stresses are
very poor and converge slowly to a value approximately 30% in error
of the exact. The C.S.T. stresses however converge rapidly and are
o:_t;q‘.yusl.ightly in error (for 10 x 10 gridwork 4%). The L.S.T. values
| ‘on the other hand converge more slowly than the C.S.T. values and

for a gridwork of ten are 12%iin error with the exact. This is
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prbably-due to.the.displacement. field.limitations.put.on. the mid-side
nodes.(section 4.2.3]. . Figure.6.i again illustrates the superiority
of the C .VS T stresses. for convergence and relatively small error for
Nyé 'vs grid.size. Here the consistent formulation stresses appear
better but they have converged to a value in error of the exact,
whereas the C.S.T. are still converging. The variation of NyD with
grid size is plotted on figure 6.2° The L.S.T., C.5.T. and consistent
formulation yielded identical results for each gridsize. Convergence

again is rapid and is only about 3% in error of the exact value.

In general the deflection valueé compare closely with the exact ones
and the stresses (C.S.T.) converge quickly to values only slightly
in error of the exact solution. The L.S.T. stresses are not quite
as good as the C.S.T. but in same instances are the same. In general
the consistent formulation stresses converge slowly and in some

instances are in great error with the correct values.
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'PARABOLICALLY LOADED SQUARE PLATE
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. . 'TABLE 6.5 : ;DEFLECTIONS ; AND. STRAIN ENERGY. . .

", 'PARABOLICALLY. LOADED SQUARE 'PLATE

2

FINITE 10 Bt u, [10" Bt u |10E v |10 Bt V_ [STRAIN ENERGY U

O-vINL | (-UINL T 10-wdNL | (-DNLT [0, 2 u ¥
' ELEMENT . 5

G| Lav?) ta2
I X1 0.9726 2.4235 1.49079 3.90615 .2.330552
2Xz2 1.04971 | 1.57514 1.32862, 4.21986 2.374308
3X3 1.11621 | 1.79154 1.25831 4.28982 2.395800
4x4 1.15116 | 2.01203 1.21533 4.32766 .2.407972
5x5, 1.1715 2.15556 1.1889 4.35060 2.415322
- eXe 1.1844 2.24697 1.17198 4.36557 2.420083
" lox16 1.2076 2.4023 1.14202 4.39366 2.428882
EXACT 1.519928| 1.7837 1.27727 5.073478 2.7935695

*
NOTE: U FOR WHOLE PLATE.
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PARABOLICALLY LOADED SQUARE PLATE
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TABLE 6.6: STRESSES

PARABOLICALLY TOADED SQUARE PLATE

L.S.T.

FINITE STRESS C.S.T. CONSISTENT EACT
ELEMENT (K/IN} FORMULATTON = | FORMULATION = | FORMULATION
GRID
N, 0.51201 0.145689 - 0.14095
N 0.98334 0.52098 0.85904
VA
Nyp - 0.11547 - 0.11547 0.115468 0.0
N 0.26352 0.26352 0.263517 0.41067
1
N 0.097672 0.19957 0.0
XC
N 0.56899 0.295608 0.0
ycC
Np 0.31081 0.31081 0.31081 0.41067
Nop 0.87447 0.87447 0.87447 1.0
N, - 0.047936 |- 0.011036 0.12776 ~ 0.14095
Noa 0.73788 0.77478 0.56219 0.85904
N - 0.01905 - 0.019095 9.019095 0.0
Nop 0.37108 0.37108 0.371079 0.41067
2 N, 0.039165 0.12447 0.073391 0.0
Noo 0.42188 0.62819 0.144118 0.0
Np 0.3809 0.3809 0.380904 0.41067
Nop 0.96216 0.96216 0.96216 1.0
N - 0.978739 |- 0.10797 0.12403 - 0.14095
Noa 0.78049 0.75126 0.57773 0.85904
Ng - 0.003557 |- 0.003557 0.003557 0.0
Nop 0.38307 0.38307 0.383068 0.41067
3 N, 0.02494 0.097614 0.04086 0.0
N 0.3098 0.4980 0.09228 0.0
N, 0.39493 0.39493 0.39493 0.41067
0.97066 0.97066 0.97066 1.0
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TABIE 6.6: STRESSES (CONT'D)

PARABOLICALLY ILOADED SQUARE PLATE

FINTTE STRESS C.5.T: L.S.T. CONSISTENT EXACT
gg?gENT (K/IN) | FORMULATION | FORMULATION = | FORMULATION

N - 0.09141 - 0.14005 0.12215 - 0.14095
NYA 0.79883 0.75019 0.58526 0.85904
Ng 0.004855 0.004855 0.004855 0.00
Nop 0.39143 0.39143 0.39143 0.41067

4
Ny o 0.017319 0.077801 0.02837 0.0
N 0.24129 0.39898 0.047519 0.0
N 0.40544 0.40544 0.405441 0.41067
Nop 0.97369 0.97369 0.973689 1.0
Ny - 0.098101 | - 0.15529 - 0.12113 - 0.14095
Noa 0.80855 0.75135 0.589336 0.85904
Ng 0.0098762 0.009875 0.009876 0.0
NYB 0.39638 0.39638 0.396379 0.41067

> N, 0.012509 0.064284 0.02199 0.0
Nya 0.196605 0.32961 0.05460 0.0
N 0.41144 0.41144 0.41144 0.41067
NYD 0.97471 0.97471 0.97471 1.0
N - 0.102087 | - 0.16399 0.12048 - 0.14095
NyA 0.81430 0.75239 0.59174 0.85904
Ng 0.013098 0.01309 0.013097 0.0
NyB 0.39940 0.39940 0.39940 0.41067
N, 0.009304 0.05470 0.01816 0.0

6 Nyc 0.165477 0.27958 0.04574 0.0
N 0.41483 0.41483 0.41483 0.41067
N 0.97489 0.97489 0.97489 1.0




TABLE 6.6 CONT'D:
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STRESSES

PARABOLICALLY LOADED SQUARE PLATE

FINITE STRESS C.S.T. L.S.T. CONSISTENT EXACT

ELEMENT (K/IN) FORMULATION FORMULATION FORMULATION

GRID
NXA -0.112275 -0.17772 0.11934 -0.14095
Nya 0.823605 0.7545 0.59566 0.85904
NXB 0.018819 0.018819 0.018819 0.0

1o NYB 0.40412 0.40411 0.40411 0.41067

NXC 0.003467 0.034398 0.0
NYC 0.100574 0.17194 0.0
NXD 0.41922 0.41922 0.41067
N 0.97364 0.97364 1.0

YD
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PARABOLICALLY LOADED SQUARE PLATE
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Cylindrical Shell Roof

A cylindrical shell roof is modelled using the flat triangular

element derived in Chapter 3. The shell shown in figure 6.13, because
of its configuration is between what is normally termed a shallow
shell and what is defined as a deep shell. For this reason, the

exact analytical results obtained by shallow shell theory and those
obtained from deep shell theory are both presented. The shell is
loaded by its own weight, and the loads are lumped at the nodes as
vertical forces. The geometry and a typical gridwork is shown in

figure 6.13. Only one quarter of the shell is modelled using symmetry.

The deflections are tabulated in table 6.7 and are compared to exact
values from reference 3. All deflections converge very rapidly to
values only slightly in error of the exact, even for relatively

coarse grids. The reason for this convergence to a value slightly

in error of the exact is because the element is incomplete and shear
strain constraints are imposed at the nodes. Figure 6.14 illustrates
graphically the variation of deflection w along edge B - & for various

grid refinements. Note the rapid convergence of w_, to a value slightly

B
off the analytical one, even for coarse gridworks. Figure 6.15 plots
Wg VS the total number of degrees of freedom. Convergence again is
rapid, to a value only 1% in error of the exact for a 10 x 10 grid.
Results from a fifteen degree of freedom.triangular element which
combjines the constant strain triangle (six degrees of freedom) for
the membrane action and the Zienkiewicz nine parameter plate bending

element (Ref. 10) is also presented. Note the larger error for the

fifteen d.o.f. element, even when more d.o.f. are used. For very course
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gridworks, the fifteen d.o.f. element is far too stiff compared to the

eighteen d.o.f. element used herein.

The stress at a node is the average of the surrounding element stress
contributions. The C.S.T. stresses were the same as the L.S5.T. stresses.
These values were used instead of the consistent formulation stresses
(section 4.2.1.) because of the improved accuracy and convergence
characteristics as was illustrated in section 6.1. Table 6.8 compares
the various membrane and bending stresses (section 4.3) and the strain
energy with the exact values (3) obtained from shallow shell theory.

The stresses and strain energy converged to values only slightly in
error of the exact. However the bending stress ch appears to be
fluctuating considerably. The variatfon of NX along edge A - B is plotted
for the different gridworks in figpre 6.16. As shown for successively

finer grids, the NX is rapidly approaching a value slightly in error

B
of the exact. |In figure 6.17 the distribution of My along edge D - ¢
is shown for the various grid sizes. Again it is seen that even for

the extremely coarse grid the error is small.

In general the deflections and stresses compare exceptionally well with
the exact values but appear to be converging to values slightly in
error of the predicted. The reason as was mentioned earlier is due to
the fact that the element is incomplete and shear strain constraints

are imposed at the elements' nodes.
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DIAPHRAM

N
T

E = 3000 KSL
t = 3.0"
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NOTE: MODEL 1/4 OF STRUCTURE DUE TO
SYMMETRY CONDITIONS.

Fig. 6.13: CYLINDRICAL SHELL GEOMETRY
(3x3 GrID)
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TABLE 6.7 :

[EF LECTIONS

CYLINDRICAL SHELL

FINITE - NET NO. 10 UA WB VB 10 WC.
ELEMENT o (IN) (IN) (IN) (IN)
GRID EQUATIONS ‘

2 x 2 30 -0.735 -4.571 2.375 6.010
3 x 3 63 -1.049 -3.629 1.912 5.281
4 x 4 108 -1.201 -3.530 1.861 5.234
5x5 165 ~-1.285 -3.527 1.860 5.275
10 x 10 630 -1.417 -3.564 1.881 5.414
EXACT * ? -3.607 ? ?
EXACT ** -1.5133 -3.7033 | 1.9637 5.2494

NOTE : * FROM DEEP SHELL THEORY

** FROM SHALLOW SHELL THEORY
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CYLINDRICAL SHELL ROOF

TABLE 6.8 : STRESSES

(C.S.T.)
g?é E) Nyp Myc Myc ﬂfvi\ﬁ 131 ENERGY
(K/IN) (K-IN/IN) | (K-IN/IN) #

2 x 2 |3.065 -0.099 -2.010 70.93
3x3 |4.536 -0.075 - 1.822 56.62

4 x 4 |5.223 0.005 - 1.788 55.56
5x5 [5.59 0.085 - 1.744 55.79

10 x 10 |6.113 0.254 -1.650 56.78
EXACT * | 2 ? ? ?
EXACT **|6.4124 0.0927 | -2.056 58.828

NOTE : # STRAIN ENERGY FOR TOTAL STRUCTURE

* FROM DEEP SHELL THEORY

** FROM SHALLOW SHELL THEORY
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" Paint. loaded.gpherical .Shell -

VAL sphericalshellis modelled by using. the flat eighteen degree of

freedom triangular. finite element derived.in Chapter 3. The spheri-
cal shell subjected to a point load creates regions of large bending
stresses, a region where there are mainly menbrane stresses and a
region of high stress concentration. Because the problem is axisym-
metric and rectangular co-ordinates are used throughout the analysis,
one quarter of half the sphere is modelled. A non-uniform grid
spacing is used where the ratios of successive elements are taken

as 1l :2:3: 4, ...N, to provide a better representation of results
in the region of high stress gradients near the pole. Figure 6.18

illustrates the general layout and the loading.

The deflections resulting from #hespoint loading at the pole are
tabulated in table 6.9. The exact values obtained analytically
reference 6 are also given. Convergence is rapid and for a relative-
ly coarse grid, the deflections at the pole and equator campare
extremely well. Figure 6.19 illustrates graphically the rapid
convergence to a value sligiﬂtly in error of the exact of the z dis-
placement at the pole with the number of elements used. The normal
displacement near the pole vs the colatitude direction along the
sphere is shown in figure 620 with the exact values. The displace-

ments canpare very well with the exact ones.

The stresses based on the C.S.T. and L.S.T. formulation are presented
in table 6.ff with the exact ones. The L.S.T. stresses appear to be

better where they differ radically from the C.S.T. values. In many



instances the C.S.T..and L.S.T. stresses.are.almost:.the same. In
~general the stresses. are only slightly in error of. the exact values.

Table G.i_Ocozrpares' the stresses N, NQ, Mg and MQ at the pole and
equator with the ekact .ones based on shallow shell theory. These
stresses are fram the L.S.T. formulation and are reasonably close

to the exact values £6r the finer grids. The distribution of the
membrane stresses near the pole in the colatitude direction are
shown in figure 6.2). Again both Ng and NQ are close to the exact
solution (FIﬁGGE - reference 6). More remote from the pole at cola-
titude angles of twenty to ninety degrees, the menbrane stresses are
canpared to the exact ones in figure 6.22. The stresses based on

the finite element solution follow very closely the distribution of

the stresses based on the analytical results.

In general the displacements away fram the pole region compare very
closely with the exact solution. Away fram the pole the bending
stresses die out and the membrane stresses daminate. These membrane
stresses remote fram the pole follow the analytical values very closely.
Again it is seen (figure 6.19) as in the previous examples that the
displacements appear to be voonverging rapidly but to values only
slightly in error of the exact. This is due to the fact that the
element is incomplete and also because of the nodal shear constraints
introduced.
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TABLE 6.9: DEFLECTIONS
BOINT.TORD ST
FINITE DEFLECTION . . | DEFLECTTON
ELEMENT @ POLE (IN.) | @ EQUATOR (IN.)
GRID (Et W/P) (Et wW/P)
2 6.1054 - 0.2908 ' NOTE:
4 8.0346 - 0.2235 * . Value for deep shell
8 20.1638 - 0.1993 Theory.
10 21.8660 - 0.19901 ** vValue for Shallow Shell
12 22.3918 - 0.1984 Theory.
14 22.4478 - 0.1979
EXACT 21.200 ? STRESS UNITS:
EXACT | 21.093 -~ 0.2069 N= K/ v
M= K, - I/ N
i
i TABLE 6.10: STRESSES (L.S.T.)
éINITE AT POLE AT EQUATOR .
g’iIED];IENT N, Np M x 107t My X 1077 Ny Np M, X 1073 My X 10"?
| 2 - 0.9589 | 2.0684 |- 0.0788 |- 0.069 | 0.4996 0.3043 | 0.5376 | 0.2162
4. 4.7133| 5.099 0.501 0.287 |-0.1861 0.1329 |- 6.319 | 5.987
8 12.388 [12.331 1.307 |- 0.601 |-0.1334 0.1473 | 0.0267 | 0.00310
10 | 12.660 [12.637 2.210 |--0.913 [-0.1318 0.1462 | 0.0279 | 0.00347
12 12.465 [12.455 3.012 |- 1.209 |-0.1301 0.1458 | 0.0264 | 0.00217
14 12.180 [12.177 3.685 |- 1.470 |-0.1287 0.1458 | 0.0278 | 0.00134
ExacT | 10.313 [10.313 w = lo.1502 |+ 0.152 | =0 =0
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POINT LOADED SPHERE

__EXACT W = 21.2 *

SY ERROR

NOTE: * FROM DEEP SHELL THEORY

NUMBER OF ELEMENTS IN BOTH DIRECTIONS (N)

DEFLECTION AT POLE VS FINITE ELEMENT GRID
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POINT LOADED SPHERE
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TABLE 6.11_STRESSES
~ POINT LOADED SPHERE

FINITE STRESSES C.S.T. L.S.T. EXACT
ELEMENT (K/IN) FORMULATION FORMULATION
GRID
NeP -0.5974 -0.9589 10.313
NQP 2.1221 2.0684 10.313
2
NGE -0.6921 0.4996 -0.1592
NQE 0.0746 0.3043 0.1592
NeP 3.3125 4.7133 10.313
NQP 4.7298 5.099 10.313
4
NOE -0.18113 -0.1861 -0.1592
NQE 0.15643 0.1329 0.1592
NOP 10.546 12.388 10.313
NQP 11.7947 12.331 10.313
8
NOE -0.1603 -0.1334 -0.1592
NQE 0.1498 0.1473 0.1592
NOP 11.5366 12.660 10.313
N 12.305 12.637 10.313
10 ®
NeE -0.1564 -0.1318 -0.1592
NQE 0.14658 0.1462 0.1592
NOP 11.7286 12.465 10.313
NQP 12.2365 12.455 10.313
12
NOE 0.1542 0.1301 -0.1592
NQE 0.1457 0.1458 0.1592
NOTE: - SUBSCRIPT P <5POLE

SUBSCRIPT E <5 EQUATOR
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POINT LOADED SPHERE

MEMBRANE STRESSES VS ANGLE  NEAR POLE -
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" Noni~prismatic.Folded Plate Structure

The next appllcatJ.on is to a non-prismatic folded plate structure.
This structure will deform in an unsymmetrical manner when subjected
to loads. The structure's geometry and loading are shown in figure
6.23. A uniform line loading is applied at. +op fald ~Ii"r”\l'é.'s . .as
indicated. The basic plate units which make up the structure are
trapezoidal in shape (shown in figure 6.24). The eighteen degree
of freedam finite element developed in Chapter 3 is used. The
various gridworks employed are shown in figure 625 The results

are compared with:

(1) Experimental (reference 5) - Tests performed on a scale model.

(2) Analytical (reference 5) - A theory for long non-prismatic

folded plates is presented and applied.

(3) High Order Finite Element (Beavers - reference 1) - A finite
element representation using a high order finite element is
presented. A complete quintic polynamials :s: used for bending
and complete cubics are utilized for the two in-plane displace-
ments. An eighteen degree of freedom in-plane element is
carbined with an eighteen degree of .freedom,;j plate bending
element, resulting in a thirty-six degree of freedom triangular
element. Sprecial constraint equations are also introduced for

the skewed boundaries.

The stresses are computed by averaging the stresses of the surrounding
element contributions that are all coplanar to each other. The

stresses presented include the menbrane stresses which are constant . - -
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over the thickness.of.the element,and the small bending stresses

. that. are. assumed .to be: constant._across: .the,width@fwvth_e' element but

‘are extremely small. The stresses. from the L.S.T. formilation
(section 4.2.3). are presented for.the menbrane portion and the

bending .stresses based on section 4.3 are presented.

Table 6.l2presents the vertical deflection along.fold lines ¢ and E
for the various finite element grids. The deflections cobtained fram
the element derived in Chapter 3 herein, compare reasonably well
with the Beavers (1), experimental (5) and analytical (5) results.
This is shown graphically on figure 626 the vertical deflection
along fold line ¢ is plotted for each of the gridworks used. Notice
the steady convergence toward the analytical result for each subse-

quent grid refinement.

The longitudinal stresses along fold line ¢ and E are tabulated in
table 6l3 for each gridwork. Again the values appear to be steadily
converging to the experimental and analytical results;_‘v“v:_‘_r‘\-h each grid
,refinemeht. The stresses presented are based on the C.S;T. and L.S.T.
stresses (section 4.2.2 and 4.2.3). Figures 6.27 and 6.28 illustrate
graphically the variation of lengitudinal stresse;s along fold lines

.. € and E respectively for the different gridworks. In both figures

one can see the rapid convergence toward the analytical values.

The transverse mament at midspan is illustrated in figure 6.29 for the
~gridwork N = 128. The moments are compared with Beaver's high

order finite element results. The results are not too far apart
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and in some.instances differ only slightly.

In general the.finite.element. representation of.the non-prismatic

folded plate structure. yielded reasonably good results. -
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TABLE 6.12: DEFLECTIONS

NONPRISMATIC FOLDED PLATE °

VERTICAL DEFLECTION ALONG

VERTICAL DEFLECTION*

FINITE | DISTANCE
ELEMENT | ALONG FoLp | FOLD LINE € X;43 IN ALONG FOLD LINE E X;4-3
GRID -~ JLINEOF L | F.E. |BEAVERS |EXPT. |ANALYTIC|] F.E.  [|EXPT.  |ANALYTIC |
- 1/4 L 1.402 2.2 2.3 2.1 2.027 | 3.1 3.1
%2 172 L 2,168 3.5 [3.1 3.2 2.502 | 3.9 3.8
} 3/4 L 1.800 2.9 2.6 2.7 1.652 | 2.4 2.5
174 L 1.532 2.2 ]2.3 2.1 2.264 | 3.1 3.1
64 |1/2L 2.384 3.5 3.1 3.2 2.755 | 3.9 3.8
3/4 L 2.003 2.9 |2.6 2.7 1.814 | 2.4 2.5
l
|
| 174 L 1.816 2.2 2.3 2.1 2.693 | 3.1 3.1
128 |1/2L 2.832 3.5 | 3.1 3.2 3.304 | 3.9 3.8
| 3/4 L 2.365 2.9 2.6 2.7 2.165 | 2.4 2.5
|
|
NOTE:
F.E. = RESULTS FROM FINITE ELEMENT

DERIVED IN CHAPTER 3
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TABLE 613 LONGITUDINAL STRESSES (PSI)

NONPRISMATIC FOLDED PLATE

FINITE | DISTANCE ALONG FOLD LINE C DISTANCE ALONG FOLD LINE E (C.L.)
ELEMENT
GRID 1/4 L 1/2'L 3/4 L L 174 L 172 L 3/4 L L
32 -94.14 % | -271.69 [-190.95 |[-237.79 |-196.44 |-245.49 |-87.00 | -85.60
-178.90 |-386.66 |[-324.32 | -350.47 | -334.67 [-396.11 [-201.09 |-162.48
64 -94.95 [-303.97 |-259.71 |-187.64 | -264.30 |-271.63 [-84.73 |-41.48
| -203.70 |-438.39 [-415.70 |-270.51 [ -427.83 |-455.02 |-240.86 |-135.80
|
| -226.47 |-466.69 |-465.92 |-245.90 | -488.65 |-488.20 |-260.57 |-77.55
128
-279.25 |[-533.34 |-546.30 | -294.44 | -574.35 |[-575.68 [-331.90 |-99.71
- EXPTAL. | -356. -586 -666. -710. -702 -418
ANALYTIC | -344. -573 -635. -676. -655 -428
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' ‘Beam.Stiffener. Application:.

. The twelve degree.of. freedam beam. stiffener.element developed in:

section 5.1 is tested using two different. load cases... The section
in each case is symmetric. The general layout is shown in figure
6.30. The beam elements support a thin flexurally weak plate which
is modelled with the finite element developed in Chapter 3.

For load case cne, the beam is simply supported and a vertical
load is applied at midspan. From flexural theory, the maximum
deflection is camputed as a check. The beam elements yielded an

answer less than two per cent in error.

Load case two is a moment applied at 30 degrees to the major principal
plane of the section (refer to figure 6;3'I?) -at each end of the

simply supported beam.: The deflection was again camputed from ref-
erence 8 as a check. The result using the beam elements was less

than one per cent in error.’

It appears that the stiffness matrix derived in section 5.1 for
the beam element, using the strain energy approach is an accurate

representation.
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" BEAM PROPERTIES:
A=2.94
Ly = 12.3
R_=.2.05
y =
I, =1l.22
R = 0.64
_—
N
E.= 2.5
" G
' E = 0.0
(7} S
Y T, = 0.0
VA
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i
BOUNDARY CONDITIONS
SIMPLY SUPPORTED.
AX
Y
=2
)
Y “——?- i ‘f',:O-,"
- f Ep=LOKSI
'Vp=o.25
=
S 5x10

E = 30,000KSI
G = 12,000 KS§1I

* FIGURE s.so BEAM STIFFENER PROBLEM




LOAD CASE (1):

~1hh=-

BEAM STIFFENER PROBLEM

VERTICAL LOAD APPLIED AT MIDSPAN. P = -1.0K
RESULTS:
FROM FLEXURAL THEORY AC.L. = PL> = -0.021"

PROGRAM YIELDED

% ERROR IN A = 1.9%

LOAD CASE (2):

MAX

AC.L.
MAX.

48ET

= -0.0206"

Please refer to figure 6.3[

- -RESULTS:

PREDICTED A MAX = 0.5722"

8118.4

FROM TIMOSHENKO STR. OF MAT'LS. PG. 232

PROGRAM RESULTS:

2

2
8EIY

7Z ERROR IN A = 0.7867%

2

2
A MAX™ = [ ML 'COSG) + (%L SIN

8EIZ

6)2

ONE SUPPORT:

M = 50"K

43,301"K
-25.00"K

My

M

S.Ss.

OTHER SUPPORT S.S.

~43.301"K
25.00"K

"y

My

A=5.34, 1,=56.9, 1,=3.8
J = 60.7, L = 144"

RZ = 0.844

.2, .2, ,2" _ "
A MAX --Vrkx. + o, + 8, = 0.5677

RY = 3.264
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" 'CONCLUSTONS

Presented herein has been a shallow shell element of arbi-
trary triangular shape. The element was: developed by cambining a nine degree
of freedam plate bending element with a nine degree of freedom in-plane
element. An incamplete cubic polynomial was used to describe the nommal out
of plane displacement and cubic polynomials were used to describe the two
in-plane displacements. Constraints and static condensation were used to
reduce the number of generalized co-ordinates for the in-plane displace-

ments.

The eighteen degree of freedom triangular finite element
was developed Wlth the intent of modelling platé and shell structures. It
is assumed that the behavior of a continuously curved surface can be
adequately represented by the behavior of a surface built up of small flat
elements. The stresses are camputed three different ways. The consistent
formulation (strain-displacement matrix, etc.) is compared with the constant
strain triangle étresses. A technique is developed to compute the midside
node displacements from the vertex nodes and the element configuration.

Then the iinear strain triangle stresses are camputed and campared to the

other two stress results.

To assess the new nine parameter plane stress element,
a parabolically loaded square plate was modelled. The plate, due to its
in-plane loading, had only membrane stresses. The deflections and strain
energy converged rapidly to values only marginally in error of the exact

solution. The consistent stresses were very poor but the constant strain
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triangle and linear strain.triangle.stresses.converged.rapidly to values

that campared closely with the exact values.

A cylindrical shell roof was represented next. ILoaded
only by its own weight, the load was lumped at the various nodes as vertical
forces. 1In general the deflections and stresses (C.S.T. and L.S.T.) con-.
verged rapidly to values only slichtly off the analytical results. Even

for relatively coarse grids, the results obtained were reasonable.

We wanted to investigate how the element might perform in
regions of large bending stresses, regions of large membrane stresses and
finally in regions of high stress concentration. So a point loaded spherical
shell was modelled. The results again indicated relatively rapid conver-
gence and reascnable accuracy with the analytical values for both deflections

and stresses.

In each case the deflections, stresses and strain energy
appeared to converge fairly rapidly toward values slightly in error of the
analytically predicted ones. This characteristic is attributed to the fact
that shear strain constraints were used at the nodes and the finite element

is incomplete.

A non-prismatic folded plate structure was studied next.
We were not sure how the element would act for this type of unsymmetrical
bending and whether the fold lines might introduce errors. However, the
results were quite enocouraging. The deflections and stresses were compared
to experimental, analytical and a finite element analysis using a high

order element.
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A twelve degree of freedom beam stiffener element was
formulated using the. strain.energy .eséres’sion, with the intent of carbining
it with the finite element.. At first.the formulation.was.performed for a
symmetric. crossecﬁion..- Then two numerical. e.xamples were tested. The def-
lections were only marginally in error with those. predicted from flexural
theory even when the beam stiffeners were loaded unsymmetrically. Later
the formulation was generalized to include beam stiffeners with unsymmetri-

cal crossections.
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APPENDIX A.1l

. DISCUSSION OF PROGRAM

A camputer program using Fortran IV language was developed
for the analysis of folded plate and shell structures. The program utilizes
the eighteen degree of freedom finite element and the twelve degree of free-
dom beam stiffener element based on the theory discussed earlier. A general
flow chart of the program 1s given in Appendix A.3.- .- |

Given a structure, a geometrical model is constructed from
it. The model is divided up into a suitable gridwork of elements. These
triangular elements should have relatively low aspect ratios although it is
not essential. Next the apexes of these elements are numbered but care should
be taken so as to minimize the band width of the master stiffness matrix.

With the nodal points nurbered, the degrees of freedom are determined next by
suming the constraint numbers. For each node it must be determined if same
nodal movements are inhibited from motion or not. This vector of nodal move-
ments (constraints) represents the boundary and symmetry conditions of the
structure. The appropriate node numbers are then associated with each element.
The beam stiffeners are treated the same way. Note that each beam stiffener
element only extends owver the region of one finite element. This way the

band width from the finite elements is not destroyed.
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The main features of the program can be.considered to be

divided into the following procedure:

1)

2)
3)
4)

5)

6)

7)
8)

9)

Number nodal degrees of freedom, establish band width, check

problem size, and read in Finite Element data.

If beam stiffeners are used read in the pertinent data.
Compute the bending element stiffness matrix.

Campute the in-plane element stiffness matrix.

Carbine the bending and in-plane stiffness matrices and build

the structure (master) stiffness matrix.

If beam stiffeners are used campute each beam stiffener's

stiffness matrix and add to the structure stiffness matrix.
Build the master load vector.
Solve for the unknown degrees of freedom ‘(nodal displacements).

Compute the membrane stresses and bending stresses for each
element then find the resultant values at each node by averaging

all surrounding element contributions.

Of course co-ordinate transformations .and other steps have been omitted but

these represent the core to the whoie procedure.

The program is set up to handle 2,000,000 bytes. One million of

are

these ¥ set aside for the master stiffness matrix. This means that the
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Master stiffness matrix can handle 125,000 double preciSion,ﬂx«_zords-';(_@:_. two.
full wordsl... .The other. 1,000,000 bytes.are. used. by the. remainder of the
program. . 'Iheexamplespresented herein. did not. utilize all of this availa-

ble ocore area.

Note:  All units are expressed in kips and inches.

All real numbers are double precisien and all integers are single

full words.
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. APPENDIX.A.2 |

A description of input items.is discussed, following Table

" 'TABLE A.2.1: FORMAT OF INPUT DATA CARDS
CARD/ IDENTIFIER DESCRIPTION FORTRAN CARD
ITEM FORMAT COLUMNS
1 NLC TOTAL NO. OF LOAD CASES I5 1-5
NSTRT STRUCTURE IDENTTFICATTION NO. I5 6- 10
NDOF CONTROL FOR DUPLICATING DEGREE 15 11-15
OF FREEDOM NO. ( NO. = NUMBER)
2 v POISSON'S RATIO FOR F.E. (FINITE ELEMENT) F5.3 1-5
T THICKNESS OF F.E. F5.3 6- 10
E YOUNGE'S MODULUS OF ELASTICITY FOR F.E. F15.2 11-25
NBEAM TOTAL NO. OF BEAM STIFFENERS USED I5 26-30
NOELEM CONTROL FOR WHETHER PROBLEM I5 31-35
IS TO BE SOLVED WITH OR WITHOUT F.E.
ITER NUMBER OF ITERATIONS REQUESTED FOR I5 36-40
VARIABLE BANDWIDTH MATRTX DECOMPOSITION
ROUTINE
3 NE TOTAL NO. OF FINITE ELEMENTS IN PROBLEM I5 1-5
NNODES TOTAL NO. OF NODES IN PROBLEM I5 6-10
NVAR NO. OF VARIABLES (DEGREE OF FREEDOM) PER
NODE 15 11-15
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. UTABIE A.2.1 (CONT'D)

ARD/ D
MEM B eI T FORET  COLUMNS
 NODEL  KO. OF NODES PER ELEMENT 15 16-20
ICOFW FIELD WIDTH USED FOR READING I5 21.25
IN EACH ELEMENT'S NODE NUMBERS.
(EXPLAINED FOLLOWING TABIE]
NODAL DATA (FOR EACH NODE)
4 X, Y, AND 2 COORDINATES AND 3F10.0 1 -30
NODAL CONSTRAINTS (IX VECTOR) : IF NDOF = 0 612 31-42
"'OR IF. NDOF = 1 614 31-54
'OR IF NDOF = 2 6I5 31-60
FINITE ELEMENT DATA (FOR EACH ELEMENT)
5 I00 (I, J), J NODE NO.'S FOR THE I'TH EIEMENT :
IF ICOFW = 2 312 1-6
OR IF ICOFW = 3 313 1-9
BEAM STIFFENER DATA (FOR EACH STIFFENER)
6 JINL (LOWER NODE NO.) 15 1-5
ING (GREATER NODE NO.) I5 6- 11
JINP (ORTENTATION NODE USED TO DEFINE 15 11-15
ORTENTATION OF STIFFENER'S WEAK PIANE)
7 X (JNP) GLOBAL COORDINATES OF JNP F10.1 1- 10
Y (JINP) NOT DEFINED IF JNP IS NOT F10.1 11-20
Z (JNP) SPECIFIED — EXPLAINED FOLIOWING F10.1 21-30

THIS TABLE.
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. 'TABLE A.2.1  (CONT'D)

*%
'FOR EACH BEAM STIFFENER

RG RY RADIUS OF GYRATION (GREATER) F7.3 1-7
RS RZ RADIUS OF GYRATION (SMAUER) F7.3 8- 14
A TOTAL XSECT. AREA OF STIFFENER F7.3 15-21
ECG EY ECCENTRICITY (GREATER) F7.3 22-28
ECS EZ ECCENTRICTTY (SMALLER) F7.3 29-35
PJ POLAR MOMENT OF INERTTIA F7.3 36-42
E YOUNGE'S MODULUS OF ELASTICITY F7.3 43-49

FOR BEAM STIFFENER MATERIAL

G SHEAR MODULUS OF EILASTICITY F7.3 50-56
*

Iz MOMENT OF INERTIA W.R.T.Z AXIS F7.3 57-63

IyZ PRODUCT OF MOMENT OF INERTTA. F7.3 64-70

W.R.T. Y AND Z AXES.

Note:

* If the beam stiffener is symmetric then the value of IZ can be any
value other than zero, but it must be entered. (Stiffener will bend with .

only R
A\’ y)

** If all beam stiffeners are the same shape, enter a 0.0 for RG an sub-

sequent cards and the values on the previous card are assumed.

** If all beam stiffeners are of the same material, enter a 0.0 for E on

subsequent cards and the values on the previous card are assumed.

Refer to Figure A.1.1.
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TABLE A:2.1 (CONT'D)

.............................................. FORMAT - COLIIMNS
LOAD INFORMATION
JINODES TOTAL NO. OF LOADED NODES 15 1-5

IVERT CONTROL USED TO INDICATE IF LOADS NEED TO BE I5 6- 10

TRANSFORMED TO THE GLOBAL SYSTEM.

FOR EACH IOADED NODE (K AND INCHES)

KNODE LOADED NODE NO. I5 1-5
FX LOAD APPLIED IN X-DIRECTION F10.2 6- 15
FY LOAD APPLIED IN Y-DIRECTION Fl10.2 16-25
FZ IOAD APPLIED IN Z-DIRECTION F10.2 26-35
MX MOMENT APPLIED ABOUT X-AXIS F10.2 36-45
MY MOMENT APPLIED ABOUT Y-AXIS F10.2 46-55
Mz MOMENT APPLIED ABOUT Z-AXIS F10.2 56-65
IEL IF LOADS ARE TO BE TRANSFORMED I5 1-5

TO THE GLOBAL SYSTEM, THIS IS THE
ELEMENT WHICH IS NORMAL TO FZ AND
PARALIFEL TO FX AND FY.

(EXPLAINED FOLLOWING THIS TABLE)

Detailed Description:

The first card of the program allows the user to assign the structure an

identification number so that he may easily refer to it at some future date.
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If more than one load case.is to:be applied to the structure,.then the solu-
tion routine saves. the decomposed .structure .stiffness: matrix -and the subse-
quent displacements and. stresses. are camputed.very. quickly.without having
to decampose. the structure stiffness matrix each time.. The NDOF is used to
facilitate where one wants to.assign duplicate degree of freedom numbers to

various nodes. Here is how it is used:

- If no duplicate degree of freedom nurbering is desired, leave NDOF

blank.

- If you wish to use duplicate degree of freedom nunbering, then
- for reading in actual degree of freedom number in fields of 4,
enter 1 for NDOF
- for reading in actual degree of freedom number in fields of 5,

enter 2 for NDOF

Example
Want node 13's degree of freedom to be same as node 4's degree of

freedom, then enter - 4 - 4 - 4 - 4 - 4 - 4 for constraints of node

13.

Example
Want w of node 16 to be same as Wof node 5, thenenter 0 1 19 0

1 1 for constraints of node 16 , where the actuel dof no. 19 c5 +he
actual do¥. no. for uw 'c\LSpL. of node S.

The second card defines the material properties of the finite elements. All
finite elements are assumed to have the same thickness T. If beam stiffeners
are used, .then enter the total number (NBEA]VQ . If no beam stiffeners are
used, then leave NBEAM blank. Note: Each beam stiffener element extends

over the length of one finite element only. It may be desired to run a
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. structure that is camposed.of beam.stiffeners. only.or you may wish to neglect
the strength of the adjoining.slab of. finite elements. ..If.the. user enters

a 1 for NCELEM, then only the stiffness: of.;i:helbeam.;stiffenSeré; is considered
and the deflections due to.the . applied. loads are. computed. .. Nomally one
would wish.to include the effect .of the.plate of finite -eleﬁ‘ents-so NOELEM
is. left blank. - ITER is the number. of.iterations used by the solution routine
for decamposing the variable bandwidth. master stiffness matrix. For no

iterations, this value is left blank.

The third card is used to indicate the total number of nodes and elements in
a problem. For the element used, NVAR, the number of degree of freedom per
node is six.  The number of nodes per element, NNODEL is three. The variable
ICOFW is used to indicate the width of the fields for reading the node

nutbers of each element.

- If the total number of nodes is less than or equal to 99 then set
ICOEW = 2 and the nodes are read in fields of 2.
= If the total number of nodes is greater than 99 then set ICOFW =3

and the nodes will be read in fields of 3.

The fourth item regards specifying .the global x, y, and z co-ordinates and

the six oconstraint values for each node. The six constraints correspond to
u, vV, w, ex, ey, ez movaments. Either a 1 (free) or a 0 (fixed) is entered
for each of the constraints. Note: all 1's do not need to be entered since

a blank here represents a 1 (free :lei unconstrained motion).:

The fifth item entails denoting the three node nurbers which correspond to

each element. These values are entered three per card (each element) and
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are in field widths according. to the value of ICOFW.

If beam stiffeners are not used in a particular prdblem, then.items six and
seven can be disregarded. -

Ttem six regards inputting the lower node rumber (JNL), the greater node
nurber (ING) and a third node number (INP) of the beam stiffener. The JINP
node nunber's-co-ordinates are used to define the orientation of the weak

plane of the stiffener. There are three cases which could exist:

(1) The weak axis of the stiffener is in the x - y plane (horizontal) i.e.
the stiffener is vertical. Then JNP does not need to be entered. The

X (ONP), Y (JNP) and Z (JINP) does not need to be entered either.

(2) The weak plane of the stiffener is not in the horizontal plane but its
orientation can be defined by using the co-ordinates of a known node.
Then the node number is entered for JNP. On the following card enter

only - 0.0 for X (JNP) and leave Y (JNP) and Z (JNP) blank.

(3) The weak plane of the stiffener is not in the horizontal plane and its
orientation has to be described by introducing the co-ordinates of a
new constrained node. Give JNP a number in the range [‘ NNODES + 200 =<2
NNODES + 400] and on the next card, enter the values of X (JNP),

Y (INP), Z (JINP).

Item six is done for each beam stiffener.

Item seven is also done for each beam stiffener. On each card, one per

stiffener, the section and material properties are entered (noted in Table

A.2.1) .
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Item eight. the total number of . loaded nodes. (JNODES) is.entered. If the
loads are acting in the Z - direction.(vertical)., then there is . no need to
transform them,.so a.blank or 0 is entered for IVERT. If they are acting
in a different direction, then they should be transformed to the global

system before the master load vector is built, so a 1 is entered for IVERT.

Item nine; for each loaded node, its number is entered and then its magni-
F‘Z) -

tude (F, Fy,V Mer Mo MZ') . If the load has to be transformed (IVERT = 1),

then the next card should indicate the number of the element (IEL) for which
FZ is normal and Fo and Fy are acting in the same plane ( w.r.t. local

axes of the element). If IVERT = 0 then IEL is not entered.

Note: It is impossible to load in a direction which is constrained from

motion.
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APPENDIX A.3

FLOW CHART FOR COMPUTER PROGRAM

START

\

READ & WRITE
-STRUCTURE I.D. NO., NO. OF LOAD CASES

-F.E. MATERIAL PROPERTIES, NO.:OF NODES,

ELEMENTS & BEAM STIFFENERS.

1

READ & WRITE
- ALL FINITE ELEMENT (F.E.) DATA, i.e.

NODAL CONSTRAINTS & GLOBAL CO-ORDINATES,

NODE NO. FOR EACH ELEMENT.

- COMPUTE THE ACTUAL D.0.F. NO.

FOR EACH ELEMENT & THE HALF BAND WIDTH

FOR MASTER STIFFNESS MATRIX (K).

PROBLEM
SIZE CHECK

- ELEMENTS IN (K}
< NO. OF ELEM.& NODES
NO. OF BEAM
STIFFENERS

T0O

PRINT
MESSAGE

STOP




/BEAM
STIFFEN-
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| - ALL BEAM STIFFENER

READ & WRITE

DATA: i.e. MATERIAL. &
SECTION PROPERTIES &
STIFFENERS' ORIENTATION

YES

BEAM STIFFEN-
RS TO RE-
SIST

LQAD

NO

FOR EACH

,\\\ FINITE ELEMENT

COMPUTE THE 18X18
ELEMENT STIFF. MATRIX
[R] IN GLOBAL CO-ORD.

[

BUILD (K] BY )
ADDING [R] TO IT ’

Y

TRANSFORM THE NODAL GLOBAL |
CO-ORD. TO THE LOCAL SYSTEM

¢ COMPITE i EUEEYTS

Y

COMPUTE THE 9X9
PLATE BENDING STIFFNESS
MATRIX (kb]

i

COMPUTE THE IN-PLANE
STIFFNESS MATRIX [kp];,

COMBINE THE TWO MATRICES
[kp}‘& (R, ] TO GET 18X18

(k, 1 IN LOCAL CO-ORDINATE.

" TRANSFORM THE (R, ]
MATRIX TQ_ GLOBAL CO-ORD;
K}




\ 1ABLE BAND WIDTH [K]

ARE
THERE

BEAM
STIFFENERS?
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CONVERT THE CONSTANT
BAND WIDTH [K] TO A VAR-

INITIALTZE MASTER

Y

L®

LOAD VECTOR TO ZERO.

READ & WRITE
-LOADS & IF NECESSARY
TRANSFORM THEM TO
GLOBAL CO-ORD-

DECOMPOSE ( INVERT)

 THE MASTER STIFFNESS MATRIX

{k] & IF MORE THAN ONE LOAD
CASE SAVE.

\

COMPUTE THE DEF-
LECTIONS OF THE NODES
FROM PK-1 = &

Lo

|

_-><:iWFOR EACH BEAM STIFFENER

)

1

TRANSFORM THE NODAL CO-
ORDS. DEFINING THE BEAM'S

& COMPUTE ITS LENGTH.

ORIENTATION TO THE LOCAL SYS.

\

COMPUTE THE 12X12
BEAM STIFFENER STIFFNESS
MATRIX ( bS) & TRANSFORM

TO GLOBAL SYSTEM.

)

BUILD [K] BY ADDING
(kbs) TO IT.

)

4
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ONLY THE
TIFFNESS OF BEAM

YES

STIFFENERS
TO RESIST
LOADS

7 FOR FACH
FINITE ELEMENT

|

TRANSFORM THE GLOBAL
CO-ORDINATE OF THE 3 NODES
TO THE LOCAL SYSTEM.

\

FROM THE SOLUTION

VECTOR OF DISP. IN
GLOBAL CO-ORDINATE, COMPUTE
THE STRESSES

. COMPUTE THE AVERAGE
BENDING STRESSES, PLANE
STRESSES (C.S.T.) & PLANE
STRESSES- (LST) AT EACH
NODE

\

TRANSFORM SOLUTION
VECTOR (8) TO LOCAL
SYSTEM

SEPARATE (8) INTO ITS
9 INPLANE (S ) & 9 BENDING

ng) COMPONENTS

'

COMPUTE THE BEND-
ING STRESSES (ob)

l

COMPUTE THE PLANE STRES-
SES USING ONLY u & V AT
EACH NODE (C.S.T.)

s

COMPUTE THE DISPL. OF MID-
SIDE NODES BY USING
THE END NODE DISPLS & HERMITIAN
POLYNOMTATLS FOR A SIDE-

COMPUTE THE PLANE
STRESSES USING L.S.T. y
—..FORMUTLATTION g

YES

STOP
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