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Abstract 

In t h i s investigation, the dynamic c h a r a c t e r i s t i c s of a 

submerged cylinder were determined by performing vibration 

tests on a model underwater. These c h a r a c t e r i s t i c s are 

expressed in terms of the added mass and damping values of the 

c y l i n d e r . Such quantities are required in the design of 

offshore structures in seismic zones. Sinusoidal tests were 

used to determine these values as a function of excitation 

frequency. The frequency range was varied from 0.5 to 6.0 

Hertz, which i s the primary range of interest of most 

earthquakes. The testing was c a r r i e d out in the Seismic 

Simulation Laboratory of the Department of C i v i l Engineering 

at the University of B r i t i s h Columbia. 

The experimental values of added mass and damping versus 

frequency were compared with the values produced using 

po t e n t i a l flow theory. The experimental and th e o r e t i c a l 

r e s u l t s were found to agree very c l o s e l y . 

The t h e o r e t i c a l added mass and damping values were then 

used to develop the frequency transfer function for the base 

shear developed in the cylinder as a result of an input 

acceleration record. To check the v a l i d i t y of t h i s 

t h e o r e t i c a l l y derived transfer function, the base shear was 

measured for a given random acceleration input and compared to 

the r e s u l t s obtained using the th e o r e t i c a l transfer function. 

The transfer function derived from Fourier transforms of the 

random test records, as well as the transfer function 

developed through sinusoidal tests were also compared to the 



t h e o r e t i c a l transfer function; the agreement was good. 

This study i s r e s t r i c t e d to structures which f a l l into 

the large body or wave d i f f r a c t i o n regime. This means that 

f l u i d separation does not occur and Laplace's equation for 

potential flow can be used in solving the problem with the 

assumption of i n v i s c i d f l u i d and i r r o t a t i o n a l flow. The 

th e o r e t i c a l solution used in t h i s work contemplates complete 

free surface boundary conditions, which account for the 

production of surface waves in the physical problem. These 

boundary conditions are usually ignored in other studies of 

this problem, as they increase the d i f f i c u l t y of the solution. 

Part of the work for t h i s thesis involved the design and 

construction of testing apparatus and procedures to be 

employed in the studies of seismic e f f e c t s on offshore 

structures. This aspect of the research i s described in some 

d e t a i l . 

The study reported in t h i s thesis confirms that an 

exi s t i n g potential theory wave d i f f r a c t i o n program can be used 

to accurately determine the added mass and added damping 

values for application in the aseismic design of offshore 

structures. These parameters can then be applied to evaluate 

the transfer function for such systems. 
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I . INTRODUCTION 

1 . BACKGROUND 

The subject of f l u i d - s t r u c t u r e interaction has been 

studied for many years. The fact that structures react 

d i f f e r e n t l y to a given loading when located in water rather 

than in a i r has been the topic of much research. Marine 

engineers and hydrodynamicists have examined t h i s problem 

quite thoroughly, p a r t i c u l a r l y as i t pertains to ship design 

and coastal structures. More recently, s t r u c t u r a l engineers 

have become seriously involved in t h i s important problem as a 

result of the large increase in offshore construction. 

Structures which pose a po t e n t i a l danger to the environment, 

such as o i l r i g s and storage tanks, are being b u i l t in 

continuously harsher locations and an accurate analysis of a l l 

forces acting on such structures i s e s s e n t i a l . 

Offshore structures undergo loading as a result of waves, 

currents, wind, operating machinery and seismic a c t i v i t y . 

Much work has been done on evaluating wave and current loading 

on submerged structures, but only recently have e f f o r t s been 

directed to determining the forces r e s u l t i n g from seismic 

loading. O i l r i g s and other offshore structures are being 

b u i l t or proposed for construction in increasing numbers in 

various seismic zones, including the east and west coasts of 

Canada. This has led to the need for more research into their 

design for t h i s environment. The present study, which is 

intended as a contribution to t h i s general problem, is 
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concerned with evaluating the hydrodynamic forces resulting 

from the seismic motions of a structure in water. 

These hydrodynamic forces result from the moving body 

having to displace and accelerate a volume of f l u i d in 

addition to i t s own mass, and from drag forces developed at 

the surface of the moving body. 

The force r e s u l t i n g from the body having to accelerate a 

volume of f l u i d i s an i n e r t i a l force and i s treated as an 

'added mass' that i s hypothetically attached to the body's own 

mass and i s l i n e a r l y proportional to the body's acceleration. 

The drag force consists of form drag, which i s a result 

of f l u i d separation from the body, and skin f r i c t i o n , which 

occurs between the f l u i d and the body surface. The drag force 

di s s i p a t e s energy from the system and i s therefore treated as 

a damping force. This term i s generally not l i n e a r l y 

proportional to the structure's v e l o c i t y and produces a 

nonlinear problem. Methods of l i n e a r i z i n g the damping and 

including i t as an 'added damping' term are used in some cases 

[24,26], Additional 'added damping', which can be taken as 

being l i n e a r l y proportional to the v e l o c i t y , comes from the 

structure producing waves by i t s motion and d i s s i p a t i n g 

energy. This term i s s i g n i f i c a n t in some problems. 

These two terms, added mass and added damping, and the 

manner in which they are derived from the hydrodynamic force 

w i l l be discussed further in chapter two. The determination 

of these two dynamic c h a r a c t e r i s t i c s for structures in water 

i s the object of much research done in t h i s area. 
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The type of force which predominates - either form drag 

or i n e r t i a , determines the type of solution which can be used 

to solve for the hydrodynamic forces. The shape of the body, 

v i s c o s i t y of the f l u i d , and the r e l a t i v e motion between the 

body and the f l u i d , determine the amount of drag force 

present. The i n e r t i a force depends on the body dimensions, 

f l u i d density and frequency of the body motion. 

In the study of wave forces on structures there are two 

separate regimes of behaviour depending on the predominant 

type of force [26]: 

1) small body regime, and 

2) large body regime. 

The small body regime i s one in which s i g n i f i c a n t flow 

separation occurs and the form drag forces are large. 

Structures which f a l l into t h i s class are those whose 

dimensions, shape and r e l a t i v e f l u i d - s t r u c t u r e motion result 

in f l u i d separation. This occurs i f the cross section of the 

structure i s small in r e l a t i o n to the r e l a t i v e motion between 

the structure and the water. This class of problem i s mainly 

concerned with wave loading, as the wave length may be large 

in r e l a t i o n to the body cross section. Structures with sharp 

edges or other abrupt changes in cross section also induce 

flow separation and may f a l l into t h i s regime. In the 

solution of thi s problem, the nonlinear drag term i s the 

predominant force and the analysis i s performed by means of 

the well known Morison equation [21]: 
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F = O.SpDCjjUlUl + 0.25p7rD2Cm(dU/dt) (1.1) 

where, F i s the f l u i d force, p i s the f l u i d density, D i s the 

body cross section (diameter), U is the r e l a t i v e v e l o c i t y 

between the structure and the f l u i d , i s the drag 

c o e f f i c i e n t and C m i s the i n e r t i a c o e f f i c i e n t . Due to the 

nonlinear nature of the problem and the d i f f i c u l t y in 

attaining accurate drag and i n e r t i a c o e f f i c i e n t s , which must 

be determined empirically, t h i s solution i s usually d i f f i c u l t 

to obtain accurately. 

The large body regime i s concerned with structures and 

r e l a t i v e f l u i d - s t r u c t u r e motions which do not cause flow 

separation. In t h i s class of problem the i n e r t i a forces 

predominate. Form drag i s not present as there i s no flow 

separation. Although some drag force may resu l t from skin 

f r i c t i o n , t h i s i s usually quite small. In general, the drag 

term i s neglected or assumed to be small and vary l i n e a r l y 

with the v e l o c i t y of the structure. Structures whose cross 

sections are large in re l a t i o n to the r e l a t i v e f l u i d - s t r u c t u r e 

motion, and whose changes in shape are smooth, such that flow 

separation i s not induced, f a l l into this regime. Another 

designation for t h i s class of problem i s the ' d i f f r a c t i o n 

regime' as the incoming wave t r a i n , having a wave length which 

i s not too much larger than the body cross section, i s 

interrupted and d i f f r a c t e d by the body [26]. In the case of a 

structure undergoing motions, either from earthquake or wave 
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loading, the waves radiated by the structure motion result in 

energy d i s s i p a t i o n which can be represented as an additional 

damping term. This damping i s usually much larger than any 

drag damping from skin f r i c t i o n and i s taken to be l i n e a r l y 

proportional to the structure v e l o c i t y . This energy 

d i s s i p a t i o n i s considered as an 'added damping' which acts in 

addition to the structural damping; i t i s dependent on the 

structure dimensions, t o t a l water depth and frequency of 

structure motion. 

When flow separation does not occur, viscous e f f e c t s can 

usually be ignored, and the resulting l i n e a r problem i s 

expressed by Laplace's equation for potential flow with the 

assumption of i r r o t a t i o n a l flow. If li n e a r i z e d kinematic and 

dynamic free surface boundary conditions are included in the 

analysis, the added damping due to surface wave production i s 

incorporated in the solution [4,14,19,26]. The equations and 

solution governing t h i s problem are given in appendix A. 

Structures which have some l o c a l flow separation may also 

be studied in thi s regime but the eff e c t of the degree of flow 

separation on the solution must be considered. The large body 

regime i s easier to analyze than the small body regime, as the 

hydrodynamic force and thus the added mass and damping can be 

evaluated t h e o r e t i c a l l y using Laplace's equation for potential 

flow. 

Most e x i s t i n g t h e o r e t i c a l and experimental studies for 

the earthquake design of offshore structures have been 

performed on the class of structures which s a t i s f y the large 
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body ' d i f f r a c t i o n ' regime. There are two reasons for t h i s : 

f i r s t , the problem can be solved a n a l y t i c a l l y by potential 

flow theory and second, the degree of r e l a t i v e motion between 

the structure and the f l u i d in seismic loading i s not usually 

very large, so that the assumption of no flow separation i s 

v a l i d . This w i l l be discussed further in chapter two. 

The present study i s concerned with the earthquake 

loading problem and therefore w i l l be r e s t r i c t e d to structures 

which s a t i s f y the large body regime. 

2. REVIEW OF LITERATURE ON EXPERIMENTAL STUDIES 

In 1779, Pierre Louis Gabriel Du Buat conducted some 

experiments on pendulums underwater [27]. He noted that t h e i r 

periods of motion were d i f f e r e n t from the corresponding 

results obtained for the same pendulums tested in a i r . He 

explained t h i s in terms of an added mass ef f e c t acting on the 

pendulums. Since that time, t h i s added mass ef f e c t has been 

studied for a variety of shapes and by a variety of methods. 

Several experiments have been performed in which a body 

on a f l e x i b l e support was set into free v i b r a t i o n in a i r and 

in water and i t s natural frequencies in these environments 

were measured [5,6,8,20,27,28]. With the assumption that the 

support s t i f f n e s s remains constant, the two frequency values 

were compared and the added mass taken as the difference in 

the mass values calculated from the measured frequencies. 

Thus, i f w and m represent the frequency and mass of a system 

respectively and the subscripts A and w the i r respective 
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values in a i r and in water, the added mass, ma i s obtained by 

equating the st i f f n e s s e s in both mediums such that: 

w A 2 m A = ww 2 mw (1.2) 

from which 

mw = wA2n>A (1.3) 
w ~2 
w 

yie l d s the t o t a l mass in water. The added mass i s then 

determined from: 

m a = mw-mA (1.4) 

In 1955, Stelson and Mavis [27], conducted experiments of 

th i s type. They suspended cylinders, spheres and rectangles 

from a f l e x i b l e beam, set them into free vibr a t i o n and 

determined added mass quantities for the f i r s t mode 

frequencies in the manner described above. There was good 

agreement between their results and those obtained from a 

potenti a l flow solution. 

In 1960, Clough [6] performed si m i l a r experiments on 

hori z o n t a l l y oriented cylinders, plates and rectangles. By 

changing the length of the f l e x i b l e supports attached to these 

models he was able to r e a l i z e a set of systems with varying 
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f i r s t mode natural frequencies. He measured the added mass by 

performing tests which excited the f i r s t mode response of his 

models; his results also agreed clo s e l y with those predicted 

from pot e n t i a l flow theory. His testing was done by mounting 

a stationary water tank over a shaking table excited by a 

pendulum s t r i k i n g the edge of the table. In addition, Clough 

made measurements on a f l e x i b l e , v e r t i c a l cantilever model and 

evaluated the added mass corresponding to second mode 

vibrations by adding weights to the model in a i r to reproduce 

the same natural period as was measured underwater. He 

measured damping values as well in free v i b r a t i o n tests and 

found increased damping when the models were submerged. 

Clough also came to the important conclusion that i t was 

unlikel y that the st r u c t u r a l vibrations r e s u l t i n g from seismic 

loading would be large enough to induce flow separation, thus 

enabling one to use pote n t i a l flow theory in solving t h i s 

problem. 

In the free vibration experiments discussed above, the 

dependence of the added mass and damping on the actual base 

exci t a t i o n was not considered. The e x c i t a t i o n may vary in 

amplitude and frequency. In applying a potential flow 

solution, the added mass and damping must be independent of 

amplitude, since i t i s assumed that no flow separation occurs. 

This fact was checked in the present experimental study and 

found to be v a l i d . However, the added mass and damping values 

do depend on exc i t a t i o n frequency [4,19,26,31]. This i s 

because the amount of energy required to produce the surface 
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waves caused by structural motion varies with wave frequency, 

which i s the same as the structure's excitation frequency. 

The present study i s concerned with exploring how these 

parameters vary with excitation frequency. A dimensional 

analysis [20,26] of the problem (see Chapter 2.3) c l e a r l y 

i l l u s t r a t e s the frequency dependence of the hydrodynamic 

force. The problem i s governed by a second order d i f f e r e n t i a l 

equation with variable c o e f f i c i e n t s , representing the 

frequency dependent added mass and damping terms. 

In 1965, McConnell and Young [20] investigated the 

dependence of added mass and damping on the Stokes number, 

wa2/v, for a sphere in a bounded f l u i d . Here, w i s the 

excitation frequency, a i s the radius of the sphere and v i s 

the kinematic v i s c o s i t y of the surrounding f l u i d . They 

performed harmonic tests varying both w and v to give the 

added mass and damping as a function of the Stokes number. 

Although t h i s study was concerned mainly with the e f f e c t s of 

v i s c o s i t y and of an enclosing f l u i d boundary, variables which 

do not apply in the present problem, i t did show a s i g n i f i c a n t 

v a r i a t i o n in the added mass and damping with excitation 

frequency. These investigators i l l u s t r a t e d that for a given 

f l u i d , at a given excitation frequency, the problem can be 

resolved into a second order d i f f e r e n t i a l equation with 

constant c o e f f i c i e n t s , but that i f either the f l u i d properties 

or the excitation frequency are changed, the added mass and 

damping c o e f f i c i e n t s change also. In solving Laplace's 

equation for potential flow (where viscous e f f e c t s are 
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neglected), t h i s dependence on excitation frequency i s part of 

the solution, provided that f u l l kinematic and dynamic free 

surface boundary conditions are included in the analysis. A 

discussion of the boundary conditions i s contained in Appendix 

A. 

Taylor and Duncan [31], developed matrices of added mass 

and damping for a cylinder as functions of excitation 

frequency. Each element of the matrix i s represented by a 

graph of added mass or damping versus frequency corresponding 

to the d i s t o r t i o n mode of the matrix element. These were 

derived from potential flow theory. In the dynamic analysis 

of underwater structures, these 'wet' matrices from the added 

mass and damping are added to the corresponding 'dry' matrices 

and regular modal analysis follows for the structure. To 

v e r i f y t h e i r t h e o r e t i c a l l y derived matrices, the authors 

conducted experiments on a hinged cylinder capable of being 

deformed into f i r s t and second modes by a system of levers and 

cams. The model was excited sinusoidally by moving i t s top 

while the base was hinged to the bottom of a stationary wave 

tank. They concluded that their measured added mass and 

damping matrices were indeed a function of excitation 

frequency and that they agreed well with their t h e o r e t i c a l 

values. 

Perhaps the most extensive experimental study of the 

forces r e s u l t i n g from earthquake loading on underwater 

structures was c a r r i e d out on the shaking table in the 

Earthquake Engineering Laboratory at the University of 
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C a l i f o r n i a by Byrd in 1978 [4]. As i s the case in this 

present study, the table used by Byrd i s capable of sinusoidal 

and random motion from recorded earthquakes. This allows a 

wide range of excitation c h a r a c t e r i s t i c s and adds a r e a l i s t i c 

aspect to the study in that the models can be tested using 

actual earthquake records. In Byrd's study a pool l i n e r was 

placed over the table and supported by perimeter walls 

constructed independent of the table. A well instrumented 

model of a c y l i n d r i c a l underwater storage tank was attached to 

the table such that the bottom of the tank and the model 

underwent the same motion. The hydrodynamic forces a r i s i n g 

from horizontal, v e r t i c a l and ro t a t i o n a l motion were measured. 

Byrd performed free vibration tests to determine the natural 

frequency of the model in a i r and in water and sinusoidal 

tests to evaluate the added mass and damping terms as well as 

the t o t a l hydrodynamic force as a function of excitation 

frequency. He compared these re s u l t s to potential flow theory 

ignoring the free surface boundary conditions. 

As discussed e a r l i e r , the ommission of f u l l free surface 

boundary conditions results in the added mass and damping 

terms being independent of exc i t a t i o n frequency; they become 

constants for a given structure. As Byrd conducted his 

experiments at frequencies above 3 Hz, where the frequency 

dependence has been shown to be r e l a t i v e l y i n s i g n i f i c a n t 

[4,8], his values corresponded well with the t h e o r e t i c a l 

analysis. He concluded that while frequency dependence of the 

added mass and damping can be important for some structure 
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types at low frequency excitations, i t was not s i g n i f i c a n t for 

design purposes for structures whose dimensional proportions 

were similar to those of his model when excited over t h i s 

higher frequency range. As w i l l be discussed in a la t e r 

section, the present study investigates added mass and damping 

for frequencies between 0.5 and 6.0 Hz. For certain structure 

dimensions the frequency dependence of the added mass and 

damping i s quite s i g n i f i c a n t in this lower range of 

frequencies. 

Byrd also conducted random vibration tests and compared 

the experimentally measured base shear developed in his model 

to that obtained using the potential flow solution. 

In addition to laboratory experiments, some f u l l scale 

f i e l d tests on submerged structures have also been reported in 

the l i t e r a t u r e . Ruhl and Budhall [25], attached hydraulic 

actuators to an o i l r i g and applied sinusoidal forced 

vibrations to i t . They measured the f i r s t few mode shapes and 

periods and determined the damping c h a r a c t e r i s t i c s of the 

structure. This information i s useful for detecting damage 

from future earthquakes or heavy sea states by comparing the 

results with those obtained from similar measurements 

following such events. 
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3. OBJECT AND SCOPE OF INVESTIGATION 

The purpose of t h i s investigation i s to determine the 

dynamic c h a r a c t e r i s t i c s of large offshore structures (those 

which c l a s s i f y for a Laplace regime solution) from underwater 

tests of a c y l i n d r i c a l model. Such information i s required 

for the seismic design of prototype systems. In the process, 

a testing f a c i l i t y to study the e f f e c t s of earthquakes on a 

variety of underwater structures was developed. 

Testing was performed on a simple c y l i n d r i c a l structure 

f a l l i n g into the large body, d i f f r a c t i o n regime, which 

encompasses fl u i d - s t r u c t u r e interaction problems where flow 

separation does not occur. This allows a potential flow 

solution to be used. This i s the case for most earthquake 

excited motions of a submerged structure, since the r a t i o of 

displacement to cross-section i s usually small. 

The added mass and damping values were determined as a 

function of excitation frequency through a series of 

sinusoidal tests ranging from 0.5 to 6.0 Hz, encompassing the 

range of predominant frequency components found in an 

earthquake record. These values were then compared to added 

mass and damping values derived t h e o r e t i c a l l y by solving 

Laplace's equation for potential flow by means of a wave 

d i f f r a c t i o n theory computer program available in the 

Department of C i v i l Engineering at the University of B r i t i s h 

Columbia [18]. 

The added mass and damping values were then used to 

develop a transfer function between the input base 
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acceleration and the output base shear on the c y l i n d e r . This 

t h e o r e t i c a l l y derived transfer function i s then compared to 

experimentally derived transfer functions from the input and 

output data taken from random motion and sinusoidal t e s t s . 

Also, the output base shear frequency domain spectra derived 

from the t h e o r e t i c a l transfer function for a given random 

input were compared to the output spectra measured in the 

random experiments. 

The o v e r a l l goal i s to experimentally v e r i f y the use of 

the t h e o r e t i c a l l y derived added mass and damping values in 

developing a transfer function for application in the aseismic 

design of structures submerged in water. Figure 1 outlines 

the work done in t h i s study. 

Some discussion of these results in comparison to other 

similar studies i s included, p a r t i c u l a r l y to the findings of 

Byrd [4], whose testing program also covered some aspects of 

the research presently under consideration. 
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Figure 1 - Schematic of Work Performed in This Study 
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I I . THEORY 

Many a n a l y t i c a l studies which deal with f l u i d forces on 

submerged structures have been performed. Most of these are 

concerned with moving f l u i d s or waves on stationary 

structures. However, there are some studies which consider 

the structure moving in a stationary f l u i d ; t h i s i s the 

si t u a t i o n in the case of a submerged structure excited by an 

earthquake [1,9,14,16,18,19,21,22,23,24,29,30,31,33,34,35]. 

The purpose of t h i s chapter i s : to further define the 

type of problem with which t h i s study i s concerned, to offer a 

brief review of previous t h e o r e t i c a l work, to discuss the 

t h e o r e t i c a l solution used in t h i s study, and to develop the 

theory which describes how the added mass, added damping and 

the transfer functions may be obtained from the experimental 

work. 

1. DEFINITION OF THE PROBLEM 

The type of f l u i d - s t r u c t u r e interaction problem of 

concern in t h i s study i s that in which no flow separation w i l l 

occur. There have been several t i t l e s given to t h i s class of 

problem in e a r l i e r sections of t h i s report: large body regime, 

wave d i f f r a c t i o n regime, Laplace potential flow regime and no 

flow separation regime. This class of problem w i l l be 

referred to from here on in as the Laplace regime. 
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It has the following c h a r a c t e r i s t i c s : 

- the body cross section is large in r e l a t i o n to the 

r e l a t i v e f l u i d - s t r u c t u r e motion, such that no flow 

separation occurs. This allows the assumption of an 

i r r o t a t i o n a l flow. 

- the body s i g n i f i c a n t l y interferes with and d i f f r a c t s 

any incoming wave t r a i n or, as in th i s earthquake case, 

i f the body i s near or penetrating the surface i t may 

produce appreciable surface waves. 

Laplace's equation for potential flow can be used to solve for 

the hydrodynamic force on a structure exhibiting the above 

c h a r a c t e r i s t i c s . 

A common parameter used in determining whether bodies 

f a l l into the Laplace regime i s the Keulegan-Carpenter number, 

K defined as [26]: 

K = 2jrA (2.1) 
D 

where, 

A = amplitude of the r e l a t i v e displacement between 
f l u i d and structure, 

D = structure diameter 

This number determines the significance of the flow separation 

and viscous drag forces in a problem. If K i s less than 10, 

i n e r t i a forces predominate over drag forces. If K i s greater 
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than 10, the drag forces are predominant and the problem moves 

into the small body, viscous flow regime. If K i s less than 

2, flow separation, and thus the drag force, i s n e g l i g i b l e . 

Therefore, a structure which exhibits a K value of less than 2 

under either earthquake or wave loading can be studied using 

Laplace's equation for potential flow. Most st r u c t u r a l 

motions res u l t i n g from earthquakes f a l l into t h i s category, 

since the displacements would generally be less than 32% 

(A/D<1/7T) of the structure's diameter. 

This study pertains to r e l a t i v e l y smooth structures 

having well rounded shapes. Very rough surfaces or abrupt 

changes in cross section may result in s i g n i f i c a n t flow 

separation even i f the body cross section i s large in r e l a t i o n 

to r e l a t i v e f l u i d - s t r u c t u r e motion. 

2. ASSUMPTIONS AND CONDITIONS OF FLUID STATE 

In analyzing for the hydrodynamic forces on a submerged 

body in the Laplace regime, the following assumptions of the 

f l u i d state are usually made: 

i) No Flow Separation: Separation of the f l u i d from the 

body i s prevented by ensuring that the Keulegan-Carpenter 

number i s less than 2 as discussed in section 1 of t h i s 

chapter. Any l o c a l i z e d separation due to abrupt changes 

in shape or body appendages i s neglected. With th i s 

s i t u a t i o n , no s i g n i f i c a n t drag forces w i l l occur. This 

i s also a necessary condition of the physical problem in 
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order to make assumption i i ) . 

i i ) I r r o t a t i o n a l Flow: This results in an ideal potential 

flow and allows the use of Laplace's equation for 

potential flow to solve the problem. 

i i i ) Linear Wave Theory: This i s also referred to as 

small amplitude wave theory. The wave height i s assumed 

small in comparison to the o v e r a l l water depth and wave 

length thus allowing the free surface boundary conditions 

to be l i n e a r i z e d and applied at the s t i l l water l e v e l 

(appendix A), reference [26], 

iv) S t i l l F l u i d : We assume that the water disturbances 

are due only to the structure motion; currents, waves and 

other outside disturbances of the water around the 

structure are neglected (and kept to a minimum in the 

experimental t e s t s ) . 

v) Incompressible F l u i d : This assumption i s v a l i d for 

most studies of f l u i d - s t r u c t u r e i n t e r a c t i o n . Liaw and 

Chopra [19] studied t h i s topic in r e l a t i o n to dams and 

submerged towers and came to the conclusion that for most 

p r a c t i c a l applications, f l u i d compressibility can be 

ignored. However, for some structure dimensions and for 

high frequency e x c i t a t i o n , the energy dissipated in f l u i d 

compression waves becomes s i g n i f i c a n t and f l u i d 
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compressibility must be considered. 

vi) Surface Wave Production: As can be seen in appendix 

A, ignoring surface wave radiation in the analysis 

s i m p l i f i e s the free surface boundary conditions and thus 

the solution of Laplace's equation. For some structures 

t h i s assumption leads to good re s u l t s ; however, for many 

sit u a t i o n s , t h i s condition should be included, as the 

surface waves produced by the structure influence the 

value of added mass and damping. The production of 

surface waves by the moving body results in the existence 

of the added damping and in the added mass and damping 

both being dependent on excitation frequency 

[4,19,26,31]. The e f f e c t of surface waves i s included in 

t h i s study in both the t h e o r e t i c a l and experimental 

determination of added mass and damping. 

3. REVIEW OF THEORETICAL.STUDIES 

A b r i e f review of e x i s t i n g t h e o r e t i c a l studies pertaining 

to structures in the Laplace regime when excited by harmonic 

or random base motion i s offered here. This i s desirable in 

r e l a t i o n to the interpretation of the experimental data 

obtained in t h i s study. 

An analysis of the equation of motion (discussed in the 

next section), s i m p l i f i e d by the fact that the added mass and 

damping are considered to be constant (independent of 

structure e x c i t a t i o n ) , has been c a r r i e d out by Penzien and 
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Kaul, who performed regular modal and spectral analysis on 

offshore towers [23]. In t h i s analysis, the added mass and 

damping are simply added to the dry mass and damping of the 

structure. This approach appears to give results which are 

suitable for design approximations of some types of 

structures; i t is used quite often in practice. 

The solution of Laplace's equation for potential flow on 

o s c i l l a t i n g bodies has been studied in varying degrees of 

complexity. The most comprehensive investigation was done by 

Liaw and Chopra [19], who developed a solution for a surface 

piercing cylinder which incorporates water compressibility and 

the surface waves produced by the moving structure. A simpler 

solution for the same problem neglecting these e f f e c t s was 

presented by Helou and Tung [14,33]. The ef f e c t of including 

surface waves and water compressibility can be seen in Figure 

2, taken from the work of Liaw and Chopra. Helou and Tung 

also extended their work to f u l l y submerged structures. 

Laplace's equation, the necessary boundary conditions and the 

solution used in the present investigation are discussed in 

appendix A. 

Taylor and Duncan [31], developed a design method 

employing added mass and damping matrices which were dependent 

on exc i t a t i o n frequency. These are derived from Laplace's 

equation for potential flow and are used in design with a 

regular modal analysis. They v e r i f i e d their t h e o r e t i c a l 

results of these matrices by experiment. 

In addition to the c l a s s i c a l solution of Laplace's 
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equation, studies for evaluating f l u i d forces have been 

performed using f i n i t e element techniques [16,19,22]. 

Although these investigations are often c o s t l y , due to the 

large number of equations to be solved, they are very useful 

in examining the response of bodies exhibiting complex 

geometry. Some recent studies [16] using f i n i t e elements have 

also included viscous e f f e c t s . 
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FREQUENCY RESPONSES OF SQUATTY TOWER (^/Hi«0.25) WITH l/f02 

FIRST MODE RESPONSES-Y,: 
I-NO SURROUNDING WATER,H>0 
Z-FULLY SUBMERGED TOWER, H^H. 

SECOND MODE RESPONSES - \ : 
S-NO SURROUNDING WATER, H«0 
4-FULLY SUBMERGED TOWER.H^H. 

0 I 2 S 4 

ttCITATION FREQUENCY 

5 6 7 
WATER COMPRESSIBILITY 

INCLUDED 
NEGLECTED 

gure 2 - Ef f e c t s of Surface Waves and Compressibility 

from Liaw and Chopra, reference 19 
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4. EQUATION OF MOTION 

The equation of motion for a single degree of freedom 

system submerged in water i s developed in t h i s section. This 

i s usually the star t i n g point in any study dealing with the 

dynamic behaviour of a system. 

In general, the kinetic energy of the system gives us the 

i n e r t i a terms of the equation of motion. In the submerged 

case, the t o t a l kinetic energy i s made up of the kinetic 

energy of the structure, T s: 

T s = JmX2 (2.2) 
2 

where m i s the structure mass and X i s the structure v e l o c i t y , 

and the kin e t i c energy of the f l u i d , Tf: 

Tf = lm aX 2 (2.3) 
2 

where ma i s the mass of a volume of f l u i d set into motion by 

the structure. The t o t a l kinetic energy of the system T^ i s 

then: 

TT • T s + Tf = _1_(m + m a)X 2 

2 
(2.4) 
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Using the Lagrange method [7] of formulating the equation of 

motion, we may write: 

where X i s the structure acceleration. 

The damping term in the equation i s determined from the 

energy d i s s i p a t i o n in the system. In addition to the usual 

s t r u c t u r a l damping, C, experiment and theory both show that 

the f l u i d also contributes some damping to the system. For 

the Laplace regime t h i s comes mainly from the energy 

dissipated by the structure producing surface waves, although 

some damping from skin f r i c t i o n w i l l also be present. 

Assuming that t h i s added damping i s proportional to the 

structure v e l o c i t y , the t o t a l damping term i s then: 

where C a i s the added damping from the f l u i d . 

Since in our experiments i t was d i f f i c u l t to measure only 

the damping which was due to the f l u i d , the t o t a l damping of 

the system was measured and a t o t a l damping value, X= C + C &, 

i s used. The st r u c t u r a l damping was determined by tests in 

a i r and subtracted from the t o t a l damping to obtain the added 

(2.5) 

which gives the i n e r t i a term: 

(m + ma)X (2.6) 

(C + C a)X (2.7) 
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damping values used as a comparison to the th e o r e t i c a l values. 

Now, including the s t i f f n e s s term, K, and a forcing 

function term, F ( t ) , the equation of motion for a single 

degree of freedom system in water i s : 

(m + ma)X + XX + KX = F(t) (2.8) 

It has been shown [20,26] (see section 5) that ma and C a 

are dependent on the f l u i d density, the size and shape of the 

structure and the frequency of o s c i l l a t i o n of the body. The 

dynamic analysis of f l u i d - s t r u c t u r e systems usually involves 

the determination of the added mass and damping terms and 

the i r dependence on the above factors. The present study i s 

concerned with such an evaluation. 

5. DIMENSIONAL ANALYSIS OF HYDRODYNAMIC FORCE 

As was stated in section 4, for the case of structures in 

the Laplace regime, the added mass and damping are dependent 

on the f l u i d , body size and shape, and the frequency of 

ex c i t a t i o n . The added mass and damping are derived from the 

hydrodynamic force and i t can be shown by a dimensional 

analysis that these quantities are dependent on the above 

factors. 

In general, for any type of r i g i d body f l u i d - s t r u c t u r e 

problem, the f l u i d force can be given as [26]: 
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F = f ( d,, H, D, Re ) (2.9) 
pgdD2 L L L 

where, 

F = f l u i d force 
p = f l u i d density 
g = gra v i t a t i o n a l acceleration 
H = wave height 
D = structure cross-section (diameter) 
d = water depth 
L = wave length; for the earthquake problem t h i s 
represents excitation frequency 
Re = Reynolds number = VD/u where v is kinematic 
v i s c o s i t y and V i s v e l o c i t y 

Using the f l u i d assumptions discussed in section 2.2 for 

th i s regime of problem, the dimensionless parameters Re and 

' H/L disappear, as viscous e f f e c t s are assumed ne g l i g i b l e and 

the wave height i s assumed s u f f i c i e n t l y small for lin e a r wave 

theory to apply. The dimensional equation for the 

hydrodynamic force then becomes: 

F = f ( _d, _D ) (2.10) 
pgcS 2 L L 

It i s seen here that the f l u i d force i s dependent on the 

f l u i d density, structure size and frequency of ex c i t a t i o n . A 

similar analysis was carried out by McConnell and Young [29], 

who came to the same conclusion. 
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6. DESCRIPTION OF AXIDIF COMPUTER PROGRAM 

AXIDIF i s the name of a computer program developed at the 

University of B r i t i s h Columbia for studying f l u i d forces on 

offshore structures. The theory and method used in the 

program to solve such problems are taken from references 26 

and 18. It calculates t h e o r e t i c a l values of added mass and 

damping for r i g i d body, axisymmetric structures in the Laplace 

regime as a function of excitation frequency. 

AXIDIF was developed for the purpose of determining wave 

loading on structures, but the added mass and damping values 

derived from i t are v a l i d also in the case of the base motion 

problem, as discussed in Appendix A. 

AXIDIF solves Laplace's equation using wave d i f f r a c t i o n 

theory. The ve l o c i t y potentials for the incoming and 

r e f l e c t e d wave trains and for the radiated waves due to the 

structure motions are determined separately and then combined 

for the t o t a l v e l o c i t y p o t e n t i a l . The approach used i s based 

on a boundary element method involving an axisymmetric Green's 

function [26,18], The f u l l kinematic and dynamic free surface 

boundary conditions are incorporated in t h i s way and thus the 

dependence of the added mass and damping on excitation 

frequency i s included. 

The goal of t h i s study i s to v e r i f y experimentally the 

added mass and damping values determined from AXIDIF. Once 

t h i s has been done the program can then be used with 

confidence to provide these values for the design of f u l l 

scale structures f a l l i n g in the Laplace regime. 
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7. DERIVATION OF ADDED MASS AND DAMPING FROM EXPERIMENT 

As w i l l be discussed in la t e r sections, sinusoidal and 

random tests were used in the experimental program. The 

sinusoidal tests were conducted over a range of frequencies 

lying between 0.5 and 6.0 Hz in order to determine the added 

mass and damping c o e f f i c i e n t s as a function of excitation 

frequency. In each frequency t e s t , the forces acting on the 

test cylinder were determined by measuring i t s base shear 

r e s u l t i n g from a known sinusoidal input acceleration. The 

base shear V ( t ) , for an acceleration excitation a ( t ) , given 

by: 

a(t) = acos(wt) (2.11) 

where a i s acceleration amplitude and w i s the excitation 

frequency i s : 

V(t) = Vcos(wt + 0 ) (2.12) 

where V i s the base shear amplitude, and <t> i s the phase s h i f t 

between the acceleration and base shear records. 

A free body diagram of the forces acting on the cylinder 

i s shown in Figure 3. Here, F f ( t ) i s the f l u i d force on the 

cyli n d e r , ma(t) i s the i n e r t i a force of the cylinder with m 

being the dry mass of the cyl i n d e r , V(t) i s the base shear and 

M(t) the base moment acting on the cylinder at any time t. 



30 

F f ( t ) m a ( t ) 
<-

V ( t ) 

M ( t ) 

F i g u r e 3 - F r e e Body D i a g r a m o f F o r c e s A c t i n g on M o d e l 

C y l i n d e r 

F o r a g i v e n s i n u s o i d a l d i s p l a c e m e n t 

X ( t ) = X c o s ( w t ) ( 2 . 1 3 a ) 

w here X i s t h e a m p l i t u d e o f d i s p l a c e m e n t , t h e v e l o c i t y i s : 

X ( t ) = - X w s i n ( w t ) ( 2 . 1 3 b ) 

a n d t h e a c c e l e r a t i o n i s : 

a ( t ) = X ( t ) = - w 2 X c o s ( w t ) ( 2 . 1 3 c ) 
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where w2X represents the acceleration amplitude a, previously 

defined. 

Taking equilibrium of forces on the free body diagram 

(Figure 3), the resulting equation i s : 

Ff(t) + V(t) = matt) (2.14) 

and applying equations 2.12 and 2.13c to 2.14 gives: 

F f + Vcos(wt + 4>) = -mw2Xcos(wt) (2.15) 

The moment on the cylinder was not considered in th i s 

a n a l y s i s . The base shear can be resolved into i t s components: 

V(t) = Vcos(wt + <t>) = V,cos(wt) + V 2sin(wt) (2.16) 

where V, = Vcostf and V 2 = Vsin0. Introducing t h i s into 

equation 2.15 gives: 

-mw2Xcos(wt) = V,cos(wt) + V 2sin(wt) + F f (2.17) 

For sinusoidal input, the f l u i d force Ff i s sinusoidal 

and can be resolved to represent added mass and added damping 

as follows: 
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Sinusoidal F l u i d Force 

/ \ 
Kinetic Energy Energy Dissipation 

I I 
Inertia Force Damping Force 

I I 
In Phase 
With Motion 

In Quadrature 
With Motion 

Added Mass = m. Added Damping = C a 

The f l u i d force can then be represented as: 

F f = F,cos(wt) + F 2sin(wt) = m X + XX (2.18) 

Applying equation 2.18 along with 2.13, equation 2.17 becomes: 

-mw2Xcos(wt) = V,cos(wt)+V2sin(wt)+m_w2Xcos(wt)+XwXsin(wt) 

(2.19) 

Re-arranging 2.19 yi e l d s the equation of motion for t h i s 

problem, similar to equation 2.8, only lacking the s t i f f n e s s 

term KX, since the cylinder i s r i g i d : 
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-(m + ma) w2Xcos (wt) - XwXsin(wt) = V^ostwt) + V 2sin(wt) 

(2.20) 

On solving for the added mass ma, and the t o t a l damping 

X, which includes both structural and f l u i d damping, one 

obtains: 

- (in + mn)w2X = V, or ma = V̂., - m = JL, - m (2.21 ) 
w2X a 

and 

-XwX = V 2 or X = zS 2 X = _2.2w (2.22) 
wX a 

The same tests were f i r s t performed in a i r to determine 

the 'dry' mass and damping values. 

It should be noted here that ma and X are functions of 

both e x c i t a t i o n frequency w, and displacement X. By invoking 

the f l u i d assumptions of section 2, the problem s a t i s f i e s the 

Laplace regime so that the displacement i s eliminated as an 

influencing variable. This fact was checked in t h i s study 

experimentally by varying X at a constant frequency w, and 

determining m a and X for our model. 

The experiments were performed to v e r i f y the added mass 

and damping values derived from the Laplace equation. It i s 

important, therefore, that any forces which a r i s e as a result 

of viscous action do not have a large influence on the added 

mass and damping values derived from our model te s t s . Since 

we are dealing with a rea l f l u i d which does have v i s c o s i t y , i t 

was expected that the measured added mass and damping values 

would have some dependence on displacement. This condition 
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was, in fact, observed. The ef f e c t was small, however, and 

the experiments therefore represented the c h a r a c t e r i s t i c s of 

potential flow reasonably well. 

8. DEVELOPMENT OF TRANSFER FUNCTION 

The transfer function r e l a t i n g cylinder base shear V in 

water, with input acceleration a, i s a useful design 

parameter. The transfer function for the r i g i d cylinder model 

of t h i s experiment or for any r i g i d submerged structure can be 

derived as follows. 

The equation of motion for t h i s case, from equations 2.14 

and 2.18, can be written: 

Letting X = Xexp(iwt) and V = Vexp(iwt), where X and V are 

both amplitudes, we get: 

(m + m a)(iw) 2Xexp(iwt) + X(iw)Xexp(iwt) = Vexp(iwt) (2.24) 

which gives: 

The transfer function r e l a t i n g base shear to displacement i s 

then: 

(m + ma)X + XX = V (2.23) 

[ -(m + ma)w2 + Xiw ]X = V (2.25) 

V = /(m + ma)w4 + X2w2 

X 
(2.26) 
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U s i n g a = w 2X, t h e t r a n s f e r f u n c t i o n r e l a t i n g b a s e s h e a r 

t o a c c e l e r a t i o n i s : 

|H(w) | = V 
a 

= 1 /(m + m j 2 w 2 + X 2 (2.27.) 
— cL 
W 

where m a and X a r e f u n c t i o n s o f f r e q u e n c y w, a s s t a t e d e a r l i e r 

i n s e c t i o n 5. T h e s e v a l u e s c a n be d e r i v e d f r o m e x p e r i m e n t o r 

t h e o r y . 

9. DERIVATION OF TRANSFER FUNCTION FROM EXPERIMENTS 

As s t a t e d i n s e c t i o n 7, t h i s s t u d y i n v o l v e d s i n u s o i d a l 

a n d random t e s t i n g . The s i n u s o i d a l t e s t s were u s e d t o 

d e t e r m i n e a d d e d mass an d d a m p i n g v a l u e s a s a f u n c t i o n o f 

f r e q u e n c y , w h i c h were c o m p a r e d t o t h e t h e o r e t i c a l l y d e r i v e d 

v a l u e s . They were a l s o u s e d t o d e v e l o p t h e t r a n s f e r f u n c t i o n 

by t a k i n g t h e r a t i o o f t h e i n p u t t o t h e o u t p u t a t e a c h 

f r e q u e n c y v a l u e ( e q u a t i o n 2 . 2 8 ) . 

H(w) = V(w) ( 2 . 2 8 ) 
a (w) 

The random t e s t s were u s e d a l s o t o d e v e l o p , 

e x p e r i m e n t a l l y , t h e t r a n s f e r f u n c t i o n r e l a t i n g b a s e s h e a r t o 

i n p u t b a s e a c c e l e r a t i o n f o r t h e c y l i n d e r m o d e l . T h i s l a t t e r 

t r a n s f e r f u n c t i o n was t h e n u s e d t o c h e c k t h e v a l i d i t y o f t h e 

t r a n s f e r f u n c t i o n d e r i v e d t h e o r e t i c a l l y . The a d d e d mass an d 

d a m p i n g v a l u e s o f t h e t h e o r e t i c a l l y d e t e r m i n e d t r a n s f e r 

f u n c t i o n w e r e d e r i v e d u s i n g t h e A X I D I F c o m p u t e r p r o g r a m . 
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In the random tests, earthquake excitations a ( t ) , were 

used to excite the cylinder in water. The random base shear 

V ( t ) , was recorded. The power spectral densities, Sa(w) and 

Sv(w) corresponding to a(t) and V(t) respectively, were 

calculated from: 

Sv(w) = [ ; v ( t ) e " i w t d t ] 2 (2.29) 
-OO 

and Sa(w) = [ Ja(t ) e ~ i w t d t ] 2 (2.30) 
-oo 

These power spectral densities were evaluated using a 

Fast Fourier Transform (FFT) computer program. From random 

analysis theory [2,7], the transfer function i s then 

calculated as: 

|H(w)|2 = Sv(w) (2.31) 
Sa(w) 

The measured output base shear spectrum, Sv(w), was also 

compared to the spectrum derived t h e o r e t i c a l l y . This was 

accomplished by multiplying the input base acceleration 

spectrum of the earthquake record by the t h e o r e t i c a l l y derived 

transfer function. The experimental base shear spectrum was 

determined by performing a Fourier analysis of the recorded 

output data. 
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I I I . MODEL AND TESTING APPARATUS 

It was the intention in this study to create experiments 

which represented a structure undergoing base motion in the 

Laplace regime of flu i d - s t r u c t u r e interaction. The conditions 

necessary to qu a l i f y for t h i s regime were outlined in chapter 

two. As described in the following sections, a model and 

testing apparatus were developed which enabled these 

conditions to be s a t i s f i e d . 

1. DEVELOPMENT OF TESTING APPARATUS 

The te s t i n g was performed in the Seismic Simulation 

Laboratory of the C i v i l Engineering Department at U.B.C. This 

laboratory contains a single degree-of-freedom shaking table 

capable of a maximum peak-to-peak displacement of six inches. 

A PDP-11 mini-computer i s used to operate the table. It i s 

capable of ex c i t i n g the table with sinusoidal frequencies from 

0.0 to 30.0 Hz and with simulated earthquake records which are 

stored on tape. The table was used to produce the sinusoidal 

and random base excitations on the model. The PDP-11 was also 

used to tabulate and process a l l of the data recorded in the 

experiments. Figure 4 shows a photograph of the shaking 

table. 

A water tank was constructed to straddle the table so 

that the model could be set into motion underwater. The goal 

in designing the tank was to create the required f l u i d 

conditions for testing and to enable the model to be properly 
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excited through the base by the table. The required f l u i d 

conditions were: 

i) no wave r e f l e c t i o n from the walls. 

i i ) no water disturbances caused by the table motion 
other than through the test model. 

i i i ) no viscous interaction between the tank walls 
and the model. 

In addition to these requirements, i t was also desired to 

construct a f a c i l i t y which could incorporate future testing of 

a variety of models and experiments. 

Two similar studies involving experimental tests [4,6], 

used a water tank with the shaking table acting as the floor 

of the tank. It was f e l t that t h i s approach would not be 

suitable in the present test case since the U.B.C. table 

moves by rocking on four legs and thus has a small v e r t i c a l 

component which would cause water disturbances. It was 

decided to construct the tank independent of the table with 

only the model base in contact with the moving table. As a 

re s u l t , the table was designed to completely straddle the 

table and to be supported on the laboratory floor surrounding 

i t . A hole was cut in the center of the tank f l o o r , through 

which the model could be fastened to the table. Figure 5 i s a 

photograph of the tank and model apparatus. 

Figure 6 shows a schematic of the tank. The tank 

dimensions are 1 2 X 1 3 X 4 feet and i t consists of a steel 

frame with plywood sheathing. A p l a s t i c pool l i n e r i s used as 
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a seal. Horse hair f i l t e r s are placed around the inside 

perimeter of the tank to dissipate the surface water waves and 

prevent them from being r e f l e c t e d back from the walls. The 

tank i s supported by ten legs around i t s perimeter, which rest 

on the floor surrounding the table. 

Since the model was attached to the shaking table through 

a hole in the tank f l o o r , i t was necessary to design a 

watertight seal at the assembly base to allow for the motion 

of the model. Figure 7 shows the sealing arrangement used. 

An aluminum plate was fastened to a r i g i d wood block which was 

mounted to the table through a plywood sheet. The model base 

was attached to th i s plate. Another aluminum plate was sealed 

into the bottom of the tank at i t s center through which an 18 

inch hole was placed. A round rubber sheet was then fastened 

between the base plate on the table and the plate on the 

bottom of the tank by means of a stain l e s s steel sealing ring. 

This formed a seal between the tank and the table allowing 

f u l l transfer of table motion to the model. To prevent f l u i d 

disturbances from t h i s mounting apparatus, an aluminum sealing 

ring, which reduced the hole diameter to 9 inches, was used to 

seal the rubber to the tank f l o o r . Over t h i s aluminum ring, a 

smaller 14 inch diameter plexiglass disc was attached to the 

model support. This e f f e c t i v e l y kept the water set into 

motion by the mounting apparatus from disturbing the water 

surrounding the model. 



Figure 5 - Photograph of Tank and Model Apparatus 



F i g u r e 6 - Schematic of T e s t i n g Tank 



Stainless Steel Shoft Support 
Stoinless Steel Sealing Ring 
Rubber Sealing Membrone 
Aluminum Sealing Ring 
Aluminum Plate - Tank Bottom 
•Aluminum Plate - Table Motion 
•Wooden Block - Table Motion 
-Shaking Table 

Scale= 1"= 8" 
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2. DESIGN OF MODEL 

The test model was selected to s a t i s f y the requirements 

for a potential flow si t u a t i o n . The available AXIDIF computer 

program yie l d s a theoretical solution to Laplace's equation 

for axisymmetric bodies. Accordingly, a c y l i n d r i c a l model was 

chosen for the tests, since t h i s i s the simplest shape for 

representing the Laplace regime and, as well, i t i s quite 

common in offshore construction. Furthermore, the few 

exis t i n g experimental studies which are available for 

comparison purposes also used c y l i n d r i c a l shapes. 

The dimensions of the cylinder were chosen so as to meet 

the requirements of no flow separation (Keulegan-Carpenter 

Number < 2). This corresponds to a maximum allowable 

displacement to diameter r a t i o of A/D < 1/TT or D/A > ir (see 

chapter 2). The maximum base amplitude used in the tests was 

1.5 inches. An 11 inch diameter cylinder was chosen, such 

that D/A = 11/1.5 = 7.3 > jr. 

The cylinder model i s shown in Figure 8. It i s 22 inches 

high and made of aluminum. The c y l i n d r i c a l s h e l l i t s e l f i s 

meant to be r i g i d . It consists of a 3/32 inch outer s h e l l 

with a 3/4 inch plate at the top and a 1/8 inch plate on the 

bottom. The cylinder i s attached r i g i d l y to the top of a 

1 and 1/4 inch diameter steel shaft which i s fastened at the 

bottom to the shaking table through a stainless s t e e l base. 

The cylinder i s made water tight by sealing the 4 inch 

diameter hole through which the shaft passes in i t s bottom 

with a rubber membrane. The res u l t of t h i s arrangement i s 
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that a l l force on the outside of the cylinder i s transferred 

to the top of the shaft. The shaft then acts as an end loaded 

cantilever through which we can measure the t o t a l force on the 

c y l i n d e r . 

The c r i t e r i a for designing the model were: 

i) to have i t act as a r i g i d cylinder 

i i ) to have the s t e e l shaft f l e x i b l e enough to 

measure strains at a l l load l e v e l s 

i i i ) to have the natural frequency of the system 

high enough so as not to cause any resonant 

interference with the test frequencies used 

(preferably above 20 HZ). 

Meeting these c r i t e r i a proved to be quite d i f f i c u l t . It 

was not possible to select a steel shaft which was f l e x i b l e 

enough to measure small strains yet s t i f f enough to have a 

natural frequency above 20 Hz. The design f i n a l l y s e t t l e d on 

had a natural frequency in water of about 16 Hz (determined 

from free v i b r a t i o n t e s t s ) ; the small strains developed were 

measured with the aid of considerable electronic 

a m p l i f i c a t i o n . 
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F i g u r e 8 - Diagram of Model C y l i n d e r 
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3. DATA MEASUREMENT 

As discussed in chapter 2, the data necessary for 

determining the added mass and damping values in these tests 

was the input base acceleration record, a, and the resulting 

cylinder base shear record, V. In addition to these values, 

the displacement of the base, X, also was measured to keep 

track of i t s value during the tests and as a check on the 

acceleration record through the simple harmonic r e l a t i o n a=-

w2X, where w i s the harmonic input frequency. 

The displacement was measured by means of an LVDT 

situated on the shaking table. The acceleration was recorded 

by an accelerometer attached to the table. This l a t t e r record 

was used in analysis instead of the known exci t a t i o n record in 

order to account for any discrepencies between the input 

command motion and the actual recorded table motion. 

The base shear was measured by a Wheatstone bridge 

arrangement using four s t r a i n gauges mounted on the steel 

shaft. The steel shaft, base and stra i n gauges are shown in 

the photograph of Figure 9. This system measured the strains 

at the top and bottom of the shaft, from which the moments at 

these points could be calculated. Thus 

M = eEI (3.1) 
y 

where 

M = moment 

e = s t r a i n measured 
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E = Young's modulus of the shaft material 

I = moment of i n e r t i a of the shaft cross 
section 

y = distance between the neutral axis and the 
surface of the shaft 

The Wheatstone bridge set up also yielded the difference 

between the top and bottom moments, after which the base shear 

could be determined from: 

base height of shaft 
( 3 . 2 ) 

The model was ca l i b r a t e d i n i t i a l l y through s t a t i c load 

tests which correlated a given base shear value with a voltage 

output from the bridge. The c a l i b r a t i o n curve was l i n e a r . 

The required data from the tests were the amplitudes of 

the base shear, V, the base acceleration, a, and the phase 

s h i f t between these variables, <j>. More information on how the 

data were recorded and processed to give the above values i s 

provided in Appendix B. 
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Figure 9 - Photograph of Steel Shaft, Base and Strain 

Gauges 
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IV. DESCRIPTION OF EXPERIMENTS 

The purpose of th i s study was to experimentally determine 

the dynamic c h a r a c t e r i s t i c s of submerged structures due to 

seismic loading. The dynamic c h a r a c t e r i s t i c s of interest are 

the added mass and damping due to the f l u i d . The th e o r e t i c a l 

derivation of the frequency transfer function, H(w), re l a t i n g 

base shear to base acceleration was also tested 

experimentally. Of pa r t i c u l a r interest in t h i s study i s the 

frequency dependence of the added mass and damping values, 

which i s s i g n i f i c a n t at the lower end of the frequency scale 

and in surface piercing structures which produce surface 

waves. The testing consisted of two phases: 

1) Sinusoidal tests between 0.5 and 6.0 Hz which i s 

the frequency range of importance in most recorded 

earthquakes. 

2) Random motion tests, using records of actual 

earthquakes, to confirm the t h e o r e t i c a l l y derived 

transfer function between input base acceleration 

and output base shear on the cylinder 

The tests were carr i e d out with the cylinder in two 

sit u a t i o n s : 

1) Surface Piercing 
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2) Submerged to a depth of one times the cylinder 

radius 

1. SINUSOIDAL TESTS 

The f i r s t set of sinusoidal tests were done at frequency 

leve l s of 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, and 6.0 Hz. 

After these were analyzed i t was r e a l i z e d that the greatest 

fluctuation in added mass and damping values occurred below 

2.5 Hz, so additional testing at increments of 0.25 Hz was 

conducted in t h i s range. Photographs of the sinusoidal 

testing being performed are shown in Figures 10 and 11. 

The analysis for added mass and damping was based on 

linear wave theory (chapter 2). This was checked v i s u a l l y in 

the testing and controlled by reducing the input amplitude i f 

any peaking or nonlinear wave c h a r a c t e r i s t i c s appeared. At 

the lower frequencies t h i s was not a problem and quite large 

amplitudes could be used. However, at the higher frequencies 

the amplitudes had to be kept small in order to prevent the 

waves from breaking and becoming nonlinear. This situation 

would probably be re f l e c t e d in real earthquake loading, as 

displacements at higher frequencies are usually not large. 

In applying Laplace's equation, i t i s necessary that the 

added mass and damping values be independent of displacement, 

which means that viscous effects are considered to be 

n e g l i g i b l e . In r e a l i t y , of course, water i s viscous and some 

eff e c t s on the results are to be expected. This was checked 
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by running tests at a given frequency for several displacement 

amplitudes and determining added mass and damping values. The 

results of t h i s study are shown in Figures 12 and 14, where 

more than one value of added mass and damping i s noted at a 

given frequency. 

When the results were f i r s t analyzed, i t was suspected 

that at higher frequencies there was some amplification in the 

acceleration of the top of the cylinder r e l a t i v e to the base 

value, presumably as a res u l t of approaching a resonant 

condition for the model. This would result in the cylinder, 

undergoing a rocking mode rather than a pure t r a n s l a t i o n a l 

mode. This was checked by repeating the tests with an 

accelerometer attached to the top of the cylinder as well as 

to the bottom. A small increase in the top acceleration was 

noted at higher frequencies and could be accounted for through 

the resonant amplification factor: 

*top= a b a s e [ i 1 ( ^ 2 ] (4.1) 

where w i s the excitation frequency and wn i s the natural 

frequency of the model in water (16 Hz). A correction was 

applied to account for t h i s small ef f e c t when analyzing the 

data, as discussed in the next chapter. 



Figure 11 - Photograph of Sinusoidal Test 
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2. RANDOM TESTS 

As was shown in chapter 2, the transfer function for the 

model can be determined experimentally from random tes t i n g . 

The transfer function can also be evaluated experimentally 

from a series of sinusoidal tests. The former approach serves 

as a v e r i f i c a t i o n of the theoretical transfer function in 

pseudo earthquake loading. The base acceleration, a ( t ) , and 

base shear, V ( t ) , time h i s t o r i e s were recorded for input 

excitations of the E l Centro N-S, 1940 and San Fernando S74W, 

1971 earthquakes. The earthquake data were taken from taped 

records of the actual earthquakes. 

In order to keep the displacements within the l i m i t s of 

the shaking table and of the model during t e s t i n g , the 

earthquake records were scaled in amplitude to an acceptable 

l e v e l . Again the wave condition was monitored v i s u a l l y ; no 

nonlinear c h a r a c t e r i s t i c s were observed. 

The time series data were transferred into the frequency 

domain in the form of power spectral density functions by way 

of a Fast Fourier Transform program. These power spectral 

density functions were then employed to calculate an 

experimental transfer function, which was used to check the 

theo r e t i c a l values. Also, the spectral density of the output 

derived using the the o r e t i c a l transfer function was compared 

to the spectral density of the recorded output data. The time 

series derived from this theoretical spectral density of the 

base shear output was also compared to the time series output 

recorded during the random test. 
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3. SURFACE PIERCING AND SUBMERGED TESTS 

The frequency dependence of the added mass and damping 

values results from energy dissipation in the system due to 

the production of surface waves. Byrd [ 4 ] and Liaw and Chopra 

[ 1 9 ] , discussed this e f f e c t . This frequency dependence i s 

accounted for in the a n a l y t i c a l determination by incorporating 

f u l l dynamic and kinematic free surface boundary conditions in 

the solution of Laplace's equation. 

Frequency dependence i s most s i g n i f i c a n t for surface 

piercing structures at low freqencies. As the structure i s 

submerged, and as the frequency increases, i t has less 

tendency to produce surface waves, and the frequency 

dependence becomes n e g l i g i b l e . Liaw and Chopra show t h i s 

t h e o r e t i c a l l y in solving Laplace's equation for p o t e n t i a l flow 

and Byrd shows thi s experimentally in his tests on models 

which are submerged and are excited at higher frequencies. 

Byrd defined a factor, 27rg/w2, which i s the wavelength 

for a wave of frequency w, such that i f the depth of 

submergence of the structure i s greater than t h i s value, the 

effect of surface waves diminishes. This factor also gives an 

indication of the effect of frequency on the hydrodynamic 

force. For lower values of frequency, the factor i s large, 

indicating higher frequency dependence and t h i s reduces 

quickly for increasing frequency values. 

In order to explore t h i s condition, tests were performed 

on both a surface piercing cylinder and a cylinder submerged 

to a depth of one times i t s radius under the surface. It was 



55 

expected, and indeed observed, that the frequency dependence 

of the added mass and damping for the surface piercing 

cylinder was much more s i g n i f i c a n t than for the submerged 

case. The frequency values tested (0.5 - 6.0 Hz) were also in 

the frequency range necessary to investigate this dependence. 

Byrd's tests were c a r r i e d out above 3 Hz. Earthquakes can be 

expected to contain considerable power below th i s frequency so 

that an investigation below th i s 3 Hz l i m i t was considered to 

be desirable. 
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V. RESULTS AND DISCUSSION 

1. ADDED MASS FOR SURFACE PIERCING CYLINDER 

The added mass values were determined as a function of 

frequency through a series of sinusoidal tests as discussed in 

chapter 4. The base acceleration and base shear time history 

records were processed as discussed in appendix B to obtain 

the peak values and phase s h i f t s . These values were then used 

as shown in chapter 2 to calculate the added mass. The 

theo r e t i c a l values of added mass versus frequency were 

determined using the computer program AXIDIF, which solves 

Laplace's equation for potential flow (chapter 2 and appendix 

A). 

Figure 12 shows the added mass versus frequency for the 

surface piercing cylinder. The added mass i s plotted as a 

dimensionless value, n^/pr 3, where p i s water density and r i s 

the radius of the cylin d e r . The agreement between experiment 

and theory i s very good. 

It i s important f i r s t to note the large fluctuation in 

the curve below 2.5 Hz. The frequency dependence of the added 

mass i s quite evident at frequencies less than t h i s value. As 

the frequency increases above 2.5 Hz, the added mass tends to 

be a constant, independent of frequency. This agrees well 

with the experimental work of Byrd [4], who ca r r i e d out tests 

above 3.0 Hz and obtained a constant value of added mass, 

independent of frequency. This also agrees well with the 
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t h e o r e t i c a l work of Liaw and Chopra [19], whose results for 

hydrodynamic force were previously shown in Figure 2. 

The radiation of surface waves by a moving structure i s 

c l a s s i f i e d as a dispersive type of energy propagation [2]. 

This means that the ve l o c i t y of the energy propagation wave i s 

dependent on the frequency of o s c i l l a t i o n of the structure. 

The propagation velocity increases with the excitation 

frequency for the case of surface wave production by a moving 

structure. The phase s h i f t between the v e l o c i t y of the 

structure and the ve l o c i t y of the propagating waves also 

varies. It i s t h i s phase s h i f t that causes the large 

fluctuation in added mass and damping at the low end of the 

frequency scale and not at the higher end. This was noted in 

the experiments, where the phase s h i f t between the structure 

acceleration (velocity) and the f l u i d force on the structure 

exhibited the same peaking tendencies as the added mass and 

damping curves - starting at 0° for 0. Hz, r i s i n g to a peak at 

about 1.0 Hz and then dropping back to 0° as the frequency 

increased. 

The degree of fluctuation in the added mass values also 

depends on the depth of the structure. The dependence on 

frequency i s more s i g n i f i c a n t for shallow structures, where a 

greater percentage of the body surface i s affected by wave 

action. For the surface p i e r c i n g case i t might be expected 

that the frequency dependence would be most s i g n i f i c a n t for 

shallow, large diameter structures which have a high 

percentage of surface area in contact with surface waves. The 
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e f f e c t would be least s i g n i f i c a n t for t a l l , deep, small 

diameter structures (but s t i l l f a l l i n g within the Laplace 

regime). This e f f e c t i s apparent i f one uses the AXIDIF 

program to solve the problem t h e o r e t i c a l l y for various sizes 

of c y l i n d e r s . 

It should also be noted in Figure 12 that there is more 

than one value of added mass plotted for most of the frequency 

values tested. This arises from the dependence of added mass 

on displacement, which i s related to the fact that water i s 

viscous, and not a true ideal i n v i s c i d f l u i d . As discussed in 

chapters 2 and 4, th i s was checked by running several 

sinusoidal tests at d i f f e r e n t displacement amplitudes for a 

single frequency value. Of course, t h i s v a r i a t i o n does not 

show up in theory, as the solution of Laplace's equation for 

potent i a l flow imposes the assumption of i n v i s c i d flow. As 

can be seen, the ef f e c t i s quite small and i t appears that our 

tests s a t i s f i e d the requirements of potential flow quite well, 

and that the viscous e f f e c t s were n e g l i g i b l e . 

From Figure 12, i t may be concluded that the added mass 

values can be accurately derived from theory using the AXIDIF 

program. 

2. ADDED MASS FOR SUBMERGED CYLINDER 

Tests were also performed on a submerged cylinder and the 

data were processed in the same manner as for the surface 

piercing cases. Fewer tests were ca r r i e d out, since these 

were primarily intended for comparison with the surface 
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piercing cylinder. Also, since the added mass did not 

fluctuate s i g n i f i c a n t l y with frequency, i t was not necessary 

to have a fine v a r i a t i o n in the frequency. 

Figure 13 shows the results of these t e s t s . There i s 

good agreement between the experimentally and t h e o r e t i c a l l y 

derived added mass values. By comparing Figure 13 with Figure 

12, i t may be concluded that the frequency dependence of the 

added mass for the submerged case i s n e g l i g i b l e . This agrees 

well with the findings of Byrd [4], and Liaw and Chopra [19], 

Physi c a l l y , t h i s can be explained by the fact that the 

structure i s unable to produce any surface waves when i t i s 

submerged. This was v e r i f i e d in the tests, during which no 

apparent surface disturbances of the water were observed. 

The values derived t h e o r e t i c a l l y can be used quite 

s a t i s f a c t o r i l y in c a l c u l a t i n g the transfer function for the 

submerged cyli n d e r . Also, since added mass i s e s s e n t i a l l y 

frequency independent in t h i s case, a t h e o r e t i c a l solution 

ignoring the free surface kinematic and dynamic boundary 

conditions should give good values for the added mass of a 

submerged cylinder. This solution i s much easier to obtain, 

and since i t i s independent of frequency, only has to be 

solved once for a given structure. 
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3. ADDED DAMPING 

The added damping, which results from the energy 

dissipated in producing surface waves, was determined from the 

sinusoidal data according to the method described in chapter 

2. Figures 14 and 15 show the results for the surface 

piercing cylinder and the submerged cylinder respectively. 

The experimental and the o r e t i c a l values agree quite well. 

As for the added mass values, the peaks occur at the low end 

of the frequency range. 

Figure 14 shows the influence of displacement amplitude 

at any one frequency on the added damping. As noted in the 

added mass re s u l t s , t h i s i s related to the influence of f l u i d 

v i s c o s i t y . 

In comparing Figures 14 and 15, i t i s noted that the 

damping values for the surface piercing case are much greater 

than for the submerged case. This i s to be expected, since 

the surface waves diminish as the structure i s submerged. 

The graphs are plotted in dimensionless values, C a/wpr 3, 

where Ca i s the added damping in kg/s, kg i s kilograms, s i s 

seconds, w i s frequency, p i s ~water density and r i s the 

radius of the cylin d e r . The peak value for the surface 

pierci n g cylinder, Figure 14, corresponds to about 3.5% of 

c r i t i c a l damping for the model. The peak for the submerged 

case i s less than 1.0% of c r i t i c a l damping. 



61 

4. TRANSFER FUNCTIONS 

Tests using both sinusoidal and earthquake records were 

used to develop experimental transfer functions as discussed 

in chapter 2. These experimentally derived transfer functions 

were then used to check the v a l i d i t y of the theoreti c a l 

transfer functions determined from the solution of Laplace's 

equation (see chapter 2.8). 

Figures 16 and 17 show the results for the surface 

piercing and submerged cylinders respectively from the 

sinusoidal t e s t s . The comparison i s quite good in both cases. 

For the surface piercing cylinder (Figure 16), the peaks from 

the sinusoidal tests are larger than the corresponding 

t h e o r e t i c a l values. 

Figures 18 and 19 show the comparison of the experimental 

and t h e o r e t i c a l transfer functions for the surface piercing 

cylinder when subjected to the E l Centro N-S 1940 and the San 

Fernando S74W, 1971 earthquakes respectively. Figure 20 shows 

the comparison between these functions for the submerged case 

for the E l Centro earthquake record. 

The surface piercing cylinder transfer function i s quite 

frequency dependent. For input accelerations in the lower 

frequency range ( < 3 Hz), t h i s becomes important. If the 

solution was obtained ignoring the wave radiation boundary 

condition, and thus ignoring frequency dependence, the 

res u l t i n g forces from input accelerations below 3 Hz would be 

unconservative. The analysis would not accurately represent 

the real s i t u a t i o n . 
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As would be expected, the transfer function for the 

submerged cylinder does not show as much frequency dependence 

as the surface piercing case. 

Figures 21 and 22 show the spectra of the output base 

shear for the surface piercing and submerged cylinders 

respectively. The s o l i d l i n e s indicate the results obtained 

by multiplying the spectrum of the input acceleration record 

by the t h e o r e t i c a l l y derived transfer function (equation 

2.27). The broken l i n e s are the spectra of the base shear 

recorded in the random t e s t s . The t h e o r e t i c a l transfer 

functions predict good r e s u l t s . 

Comparison between experimental and t h e o r e t i c a l results 

i s generally considered to be best performed in the frequency 

domain for random tests [2], However, the time series output 

derived t h e o r e t i c a l l y was also compared to the time series 

output data of the E l Centro test (Figure 23). This was 

obtained by multiplying the complex frequency spectrum of the 

input acceleration by the complex transfer function derived 

from theory and then performing an inverse Fourier transform 

to obtain the output time s e r i e s . 

The agreement between experiment and theory was quite 

good in a l l cases. This establishes the v a l i d i t y of using the 

t h e o r e t i c a l AXIDIF computer program for developing transfer 

functions for offshore structures. 
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5. RESONANT EFFECTS IN THE MODEL 

The theoretical solution applies to a cylinder undergoing 

r i g i d body acceleration in water. As discussed in chapter 3, 

the model had to be f l e x i b l e enough to measure the 

hydrodynamic forces developed, yet s t i f f enough to act as a 

r i g i d body. The natural frequency of the model in water, 

measured from free v i b r a t i o n tests, was 16 Hz. At the higher 

frequency range, towards 6 Hz, the cylinder moved in a rocking 

mode, while the cylinder shape remained r i g i d , and, as a 

res u l t , some amplification of the acceleration at the top of 

the cylinder with respect to the base acceleration was noted. 

This amplification was small and could be determined by 

equation 4.1; t h i s fact was checked by measuring the 

accelerations at the top and base of the cylinder. 

To correct for t h i s condition, the acceleration at the 

center of gravity of the cylinder was determined from: 

and used in the calc u l a t i o n s for the added mass and damping. 

Here, aegis the acceleration of the center of gravity of the 

cylinder and 0.64 i s the r e l a t i o n of the position of the 

center of gravity to the height of the cylin d e r . 

( 5 . 1 ) 
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6. VISCOUS EFFECTS 

The assumption of i n v i s c i d f l u i d is made when applying 

Laplace's equation for potential flow. The model and 

experiments were designed to s a t i s f y the requirements of this 

s i t u a t i o n as c l o s e l y as possible. However, water is viscous 

and i t was anticipated that t h i s condition might influence the 

experimental r e s u l t s . The v i s c o s i t y of the water could be 

expected to cause: 

i) the added mass and damping values to exhibit a 

small dependence on displacement amplitude 

i i ) some additional damping due to skin f r i c t i o n 

drag forces 

The dependence on displacement amplitude has already been 

discussed in sections 1 and 3 of t h i s chapter. This effect 

did show up, but i t was quite small and could be neglected in 

the analysis. 

Any viscous damping forces which were present would be 

included in the added damping measured in the experiments. To 

v e r i f y that t h i s viscous term was quite small in r e l a t i o n to 

the t o t a l damping, the t o t a l drag force on the cylinder (which 

for t h i s case i s the drag force from skin f r i c t i o n only) was 

estimated by employing the approximate expression [26]: 

F d= l/2C dA plp|u|u (5.2) 
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where; 

F(j= viscous drag force on the cylinder 

C<j = drag c o e f f i c i e n t , taken equal to 1.0 

Ap = projected area of cylinder 

p = density of water 

1 = length of the cylinder 

|u| = absolute value of u 

ii = peak r e l a t i v e v e l o c i t y between the cylinder and 

the water 

The nonlinear term, |u|u, was l i n e a r i z e d using |u| = 

{/8/i:)a^1 for small amplitudes [26], where a^= root mean square 

of the ve l o c i t y which equals u//2~ for sinusoidal motion. This 

viscous drag term was calculated for each of the tests and 

found to be small in r e l a t i o n to the t o t a l damping term which 

consisted of both the wave radiation and viscous damping 

terms: i t had a maximum value of 9% of the t o t a l damping value 

and was less than 5% for most of the tests. The assumption of 

i n v i s c i d flow therefore seems to be quite reasonable for these 

t e s t s . 
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Figure 12 - Added Mass for Surface Piercing Cylinder 
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-e ©- THEORY 
-4 +-EXPERIHENT 

See Table 2 For Plot Values 

r^: 1 — —"cr 

— i ( 1 1 1 1 1 1 1 r ^ - i i i i i ~ i 
0 0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 

FREQUENCY (HZ) 

F i g u r e 13 - Added Mass f o r Submerged C y l i n d e r 
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-a? o THEORY 
-+ +-EXPERIHENT 

See T a b l e 1 F or P l o t V a l u e s 

FREQUENCY (HZ) 

F i g u r e 14 - Added Damping f o r S u r f a c e P i e r c i n g C y l i n d e r 
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-e © — T H E O R Y 
-+ +-EXPERIDENT 

See T a b l e 2 F o r P l o t V a l u e s 

F i g u r e 15 - Added Damping f o r Submerged C y l i n d e r 
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Experiment Theory 
Base Added Added Added Added 

Frequency Shear / Acceleration I )isplacement Mass Damping Mass Damping 
(Hertz) 00 (m/s*) (cm) 

0 .6 6 .61 0.165 1 .75 11.2 1.1+3 11.9 1 .3 

13.6 0.311+ 2.31 12.3 0 .63 

5.5 0.131+ 1 .38 11.21+ 1.1+3 

0.75 15.6 0.361+ 1 .75 11.5 2.02 12.0 2 . 3 

. 1.0 39.8 0 .907 2.37 11.1+ 6 . 0 10.9 1+.1+ 
2 2 . 7 0 .513 1.30 11.6 5.5 

10.8 0.236 0.6ll+ 12.1 5-8 

19-6 0.1+13 1 .09 11.. 7 6.7 

26 .9 0.587 1.51+ 11.5 6 .6 

1.25 2 0 . 7 0 .633 1.05 7.7 1+.12 8.2 1+.9 1.25 
2 0 . 9 0.61+3 1 .08 7-5 1+.36 

H+.3 0.1+31 0.723 7-8 1+.31 

1.5 17-2 0.577 0.69 6 .6 1+.11+ 6.5 3.1+ 
15 -1 0.527 0.606 6.1+ 3.5 

2 0 . 0 0.673 0.782 6 .6 3 .9 

1.75 39-6 1.1+8 1.21+ 6.1 2 . 0 6 .3 2 . 0 

2 . 0 17-5 0.61+1 0.1+16 6.5 1.2 6.1+ 1.2 

35-1+ 1.32 0.859 6 .3 1.1+ 
10.6 0.391 0.26 6 . 3 1.1 

50.5 1 .81 1 .21 6.7 1.5 
28.2 1 .02 0.665 6.5 1 .3 

2.5 50.7 1 .83 0.71+ 6.7 0.35 6 .8 0.5 

3 .0 1+0.6 1 .39 0.1+02 7 .3 0.03 7 .3 0.25 3.0 
81.6 2 .8 0 .80 7 .2 0 . 0 1 

2 2 . 8 0.7!+ 0.22 7.7 0.07 

1+.0 35.8 1.17 0.181 7.61+ 0 . 0 7-7 0.08 

53.8 1.75 0.27 7.65 0 . 0 8 

59.7 1 .96 0.30 7.7 0.03 

5 .0 77 .1 2.1+3 0.23 8.2 0.12 7.9 0.01+ 
8 0 . 9 2 . 6 l 0.236 7-9 0 . 0 
7 6 . 0 2.1+ 0.209 8 . 0 0 . 0 

1+0.3 1 .27 0.120 8.2 0 . 0 

6 . 0 51+.8 1.65 0.105 8.6 0 . 0 8 .1 0.03 
51+.5 1 .7 0.106 8 .1 0 . 1 

N=Newtons m=meters s=seconds cm=centimeters kg=kilograms 
p=density r=radius v=frequency 

T a b l e I - Recorded Data - S u r f a c e P i e r c i n g C y l i n d e r 
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Experiment Theory 

Frequency 
Base 
Shear Acceleration Displacement 

Added 
Mass 

Added 
Damping 

Added 
Mass 

Added 
Damping 

(Hertz) (N) (m/s2) (cm) (^) 'swf r3) 

0 . 6 3.66 0.098 1.03 10.2 0.23 10.8 0.1+2 

1 . 0 9 .85 0.265 0.679 1 0 . 0 1.3k 10.6 1.1+2 

2 . 0 32.1+ 0.902 0.587 9.6U 0.2 10.1+ 0.02 

3 . 0 1+1+.7 1.30 0.35 9-8 0 . 0 10.2 0 . 0 

1+.0 Ik.k 2.00 0.297 10.2 0 . 0 10.1+ 0 . 0 

5 .0 75.5 2 .00 O.llh 10.5 0 . 0 10.3 0 . 0 

6 . 0 9h.6 2.1+0 0.133 10.6 0 . 0 10.7 0 . 0 

N=Newtons m=meters s=seconds cm=centimeters kg=kilograms 
Q=density r=radius v=frequency 

Table II - Recorded Data - Submerged Cylinder 
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Figure 16 - Transfer Function for the Surface Piercing 

Cylinder Derived from Sinusoidal Tests 
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& — I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 r— 
0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 

FREQUENCE (HZ) 

Figure 17 - Transfer Function for the 

Derived from Sinusoidal 

Submerged 

Tests 

Cylinder 
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Figure 18 - Transfer Function for Surface Piercing 

Cylinder: E l Centro N-S, 1940 
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Figure 19 - Transfer Function for Surface Piercing 

Cylinder: San Fernando S74W, 1971 
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"i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0.0 0.8 16 2.4 3.2 4.0 4.8 5.6 6.4 

FREQUENCY (HZ) 

Figure 20 - Transfer Function for Submerged Cylinder: E l 

Centro N-S, 1940 
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Figure 2 1 - Frequency Spectrum of Output Base Shear on 

Surface Piercing Cylinder 
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Figure 22 - Frequency Spectrum of Output Base Shear on 

Submerged Cylinder 



THEORY 
EXPERIMENT 

F i g u r e 23 - C o m p a r i s o n o f Time S e r i e s O u t p u t f o r t h e E l 

C e n t r o N-S 1940 E a r t h q u a k e R e c o r d 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

The experimental and th e o r e t i c a l values for the added 

mass, added damping and transfer functions agreed very well. 

This means that, for structures which meet the c h a r a c t e r i s t i c s 

of the Laplace regime (chapter 2), the added mass and damping 

values calculated from the AXIDIF computer program can be used 

in design to evaluate the response of a structure as a result 

of seismic e x c i t a t i o n . 

For surface piercing structures, the frequency dependence 

of the added mass and damping due to the production of surface 

waves i s quite s i g n i f i c a n t . In solving for these values 

t h e o r e t i c a l l y , the f u l l kinematic and dynamic free surface 

boundary conditions should be included in the solution to 

account for t h i s frequency dependence. 

The submerged structure tests showed that the frequency 

dependence of the added mass and damping becomes less 

s i g n i f i c a n t as the structure i s submerged below the surface. 

Solutions which do not include the surface wave e f f e c t s would 

probably be quite s a t i s f a c t o r y when solving for the f l u i d 

forces for most f u l l y submerged structures. 

Several areas of investigation are recommended for future 

study: 

determine added mass and damping v&lues as a 

function of mode shape for f l e x i b l e c ylinders. 
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eva luate f l u i d f o r c e s on s t r u c t u r e s whose 

dimensions and motions approach the s m a l l body 

regime, where v i s c o u s e f f e c t s may be impor tant . 

determine e x p e r i m e n t a l l y the added mass and 

damping fo r s t r u c t u r a l shapes other than c y l i n d e r s , 

p o s s i b l y to support numer ica l methods for 

c a l c u l a t i n g these parameters . 

study more i n t e n s i v e l y the e f f e c t of submergence 

on the frequency dependence of the dynamic 

c h a r a c t e r i s t i c s . 
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APPENDIX A SOLUTION OF LAPLACE'S EQUATION FOR ADDED MASS AND  
DAMPNG FOR A CYLINDER USING THE AXIDIF PROGRAM 

In t h i s study, the experimental results for added mass 

and damping were compared with the solution obtained from a 

wave d i f f r a c t i o n theory computer program c a l l e d AXIDIF [18]. 

The solution for the forces on submerged structures due to 

earthquake loading i s d i r e c t l y related to the wave loading 

case as the same added mass and damping values determined by 

the computer programs are needed to account for the f l u i d -

structure i n t e r a c t i o n . AXIDIF i s for axisymmetric structures 

only, and i s considerably more economical in terms of computer 

costs than a program for any a r b i t r a r i l y shaped body. 

The t h e o r e t i c a l development of the AXIDIF program given 

here i s e s s e n t i a l l y that of reference [18]. The solution i s 

based on a boundary element method involving an axisymmetric 

Green's function. 

A sinusoidal, u n i d i r e c t i o n a l base motion, Xexp(-iwt) i s 

applied to a r i g i d axisymmetric structure of c y l i n d r i c a l 

coordinates, (r,0,z), where X i s a complex amplitude, w i s the 

excitation frequency, r i s the r a d i a l coordinate , z i s the 

v e r t i c a l coordinate and 8 i s the angle measured from the 

di r e c t i o n of motion. The f l u i d i s considered to be 

incompressible and i n v i s c i d and the flow i r r o t a t i o n a l . The 

f l u i d motion can then be described by the v e l o c i t y potential 

s a t i s f y i n g Laplace's equation: 
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32<i> 
3r 2 

1_3$ 
r3r 

32<*> 3 2* = 
dz1 

0 (A.1) 

The assumption of incompressible f l u i d to the case of a body 

vibrating in water i s discussed at some length by Liaw and 

Chopra [19], For most structure dimensions and frequencies of 

vibration t h i s assumption is quite v a l i d but for some cases, 

water compressibility should be considered. 

With the assumption of small amplitude motion and the 

f l u i d assumptions discussed in chapter 2, the usual l i n e a r i z e d 

boundary conditions are applied to the d i f f e r e n t i a l equation. 

The relevent boundary conditions are: 

1. 3j?(r,O,0,t) = O (A.1a) 
3z 

defines the v e l o c i t y condition normal to the ocean 
fl o o r at z=0 

2. 3$(R,z, 6, t)= -iw cosa cost? (A.1b) 
3n 

s p e c i f i e s that the f l u i d p a r t i c l e motion and the 

motion of the structure i s the same at the structure 

boundary; n i s the d i r e c t i o n normal to the structure 

surface and a i s the d i r e c t i o n of n in re l a t i o n to 

the horizontal axis. 

3. 3f$(r,H,0,t)=-g_3f (r,H,0,t) (A.1c) 
3t 2 3z 

describes a l i n e a r i z e d free surface condition 
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including dynamic and kinematic boundary conditions; 

H=total depth of water. 

4. j)$(r,z,0,t) = 3$(r ,z , 7 r,t) (A.1d) 

stip u l a t e s symmetry about 0=0 plane 

The v e l o c i t y potential i s harmonic and proportional to 

the amplitude of motion, $Xexp(-iwt). In the boundary 

int e g r a l method, the unknown pote n t i a l , $(x), at the general 

point, x=(r , 0,z), i s represented as due to a source 

d i s t r i b u t i o n over the structure's surface S 0, and i s thus 

expressed as: 

$(x) = J _ f f(x)G(x,y)dS (A.2) 

Here, f(x) i s a source strength d i s t r i b u t i o n function, G(x,y) 

i s a Green's function for the general point x due to a source 

of unit strength at y, and the integration i s c a r r i e d out for 

a l l points y over S 0. G i s i t s e l f chosen to s a t i s f y the 

Laplace equation, the seabed and l i n e a r i z e d free surface 

boundary conditions, and the radiation condition. This 

ensures that $ also s a t i s f i e s these equations, and i t remains 

for f to be chosen so as to ensure that the boundary condition 

on the structure surface i s s a t i s f i e d . 

Boundary condition Al.b equating the f l u i d v e l o c i t y 

normal to the structure surface to the v e l o c i t y of the 
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structure surface, together with equation A.2 gives r i s e to a 

surface integral equation for f: 

-J_f(x) +_J_ J f (y) 3G(x,y)dS = -iw cosa cos0 (A.3) 
2 4TT ' 9n 

Here, n i s measured from the point x, and the integration i s 

ca r r i e d out over the point y. In equation A.3, x l i e s on the 

structure surface and may be defined by the coordinates (s,0), 

where s i s the surface coordinate and y may be defined by 

corresponding coordinates (s',0'). 

Because of the structure's axisymmetry, the functions 

f and G for points on the structure surface may be expanded as 

Fourier s e r i e s : 

CO 
*(s,t5) = I * m(s)cosm0 (A.4) m=l 

f(s,0) = ̂  f m(s)cosm0 (A.5) m=l 

G(s,0,s',0') =°E G m(s,s')cosm(0-0') (A.6) m=l 

and only the terms corresponding to m=1 w i l l be required here. 

Substituting equations A.5 and A.6 into A.3, algebraic 

manipulation y i e l d s a set of l i n e integral equations, of which 

the equation corresponding to m=1 i s : 

- f ^ s ) + _Lf f ! (s' )R(s' ) 3Gj (s,s' )ds' = 2iwcosa (A.7) 
2 s« 9n 
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Here, s 0 i s the structure's entire contour described by s, and 

R(s') i s the structure's radius at s'. 

In a numerical solution to equation A.7, the contour s 0 

i s d i s c r e t i z e d into N short segments with the function f, 

taken to be uniform over each segment, and equation A.7 i s 

applied at the centre of each segment. Thus equation A.7 may 

be approximated by a matrix equation: 

N 
L Ajfcf}^ 1) = -2iwcosa for j = 1,2,...N (A.8) k—X 

where ffc( 1) denotes f ^ s f c ) . Expressions for the matrix 

c o e f f i c i e n t s Ajk are given by Isaacson [18]. Once the source 

strengths ffc( 1)are determined, the potential i t s e l f can be 

obtained by a d i s c r e t i z e d form of equation A.2. The necessary 

Fourier c o e f f i c i e n t at the j-th segment centre can be 

approximated as: 

^ ( s - j ) = 1/2 I f k ( 1 ) C j k for j = 1,2,...N (A.9) k—1 

Once more, Isaacson [18], provides expressions for the 

co e f f i e n t s C j ^ . 

Now that the potential function $, i s known, the 

hydrodynamic loads on the structure may be evaluated. 
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The hydrodynamic pressure p acting on the structure surface i s 

given by the l i n e a r i z e d Bernoulli equation, p = iwp $ exp(-

iwt), where p i s the f l u i d density. Thus the horizontal force 

F/ ^ exp(-iwt) and overturning moment F 2 ^ ^ exp(-iwt) due to 

the f l u i d may be expressed as: 

F j ( f ) = _ i w p j s $rijds , for j = 1,2 (A.10) 

where n t = cosacosfl 

n 2 = zcosacosf? - rsinacosa 

Substituting the Fourier expansion of equation A.5, and 

integrating with respect to 6, we obtain 

-wiwp ^.Ljcr^njk*! (% ) for j = 1,2 (A. 1 1 ) 

where i s the length of the k-th segment, and 

"ik = cosqc 
n 2 k = zkcos (% ) - rksin(cqc) 

The f l u i d forces Fj(^) are conveniently expressed in terms of 

added masses n ^ j , and damping c o e f f i c i e n t s Xj, by taking: 

F j ( f ) = w2maj + iwXj (A.12) 

in which m aj and Xj may be retrieved by separating the real 

and imaginary parts of F j ( f ) . It i s emphasized that % j and 
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Xj are frequency dependent variables. 

Many authors [4,19,4 and 33], set the free surface 

boundary condition, equation A.1c, equal to 0: 

9 2 * ( r , H , e , t ) =0 (A.13) 
a t " 5 

This greatly s i m p l i f i e s the solution but neglects any surface 

wave e f f e c t s and results in the solution being independent of 

the exc i t a t i o n frequency. These e f f e c t s can be important for 

some structures as discussed in chapter 5. 
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APPENDIX B MEASUREMENT AND ANALYSIS OF DATA 

1 . MEASUREMENT APPARATUS 

A. Base Acceleration 

The measurement of the base input to the cylinder 

was made with an accelerometer fastened d i r e c t l y to the 

shaking table. A K i s t l e r MD 305A 50g accelerometer, in 

conjunction with a servoamplifier, was used for this 

purpose. 

B. Base Displacement 

The displacement of the table (and hence the base of 

the cylinder) was recorded as a check on the acceleration 

measurements. These measurements were taken with the 

LVDT, which i s attached permanently to the arm of the 

hydraulic jack exciting the table. 

C. Base Shear 

The shear developed at the base of the cylinder was 

measured using s t r a i n gauges. Four s t r a i n gauges were 

used on the shaft of the model arranged in a f u l l 

Wheatstone Bridge (Figure 24). The bridge was set up to 

measure the difference between the average s t r a i n at the 

top of the shaft and at the bottom of the shaft. The 

base shear i s d i r e c t l y proportional to t h i s difference in 

s t r a i n : 
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V = eEI (B.1) 
yH 

where: 
V = base shear 
E = modulus of e l a s t i c i t y of the shaft (steel in 
t h i s case) 
I = moment of i n e r t i a of shaft 
e = difference between the average s t r a i n at the top 
and at the bottom of shaft 
y = distance from neutral axis to outer f i b e r of 
shaft 
H = height of shaft between s t r a i n gauges 

The constant El/yH was evaluated by a load c a l i b r a t i o n 

test of the model prior to conducting the experiments; in 

t h i s t e s t , e was measured for known values of V and EL/yH 

was calculated from B.1. 

The base shears and thus the s t r a i n gauge output 

voltages varied over a wide range of values, being very 

small at low loads to quite large at high load l e v e l s . 

As a r e s u l t , i t was necessary to use a variable amplifier 

to boost and condition the data signals to a suitable 

l e v e l for recording on the PDP-11 mini computer. 

2. DATA COLLECTION 

The experiments were ca r r i e d out in the Earthquake 

Simulation Laboratory of the Department of C i v i l Engineering 

at the University of B r i t i s h Columbia. This f a c i l i t y i s 

equipped with a PDP-11 mini computer with disc drive, backed 

by an RT-11 operating system. It i s capable of handling 17 

channels of input; the tests required only three. Each 
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channel i s equipped with a variable amplifier and a variable 

f i l t e r to bring the generated signals up to recordable l e v e l . 

The data for the base shear V, base acceleration a, and 

base displacement X, were recorded onto a floppy d i s c . Each 

sinusoidal test was recorded over a ten second period at a 

sampling rate of 100 samples per second. To aid in smoothing 

the data, the f i l t e r s were set at cutoff values of at least 

twice the test frequency. 

A t y p i c a l set of results from the sinusoidal tests i s 

shown in Figure 25. As can be seen the plots are not pure 

sinusoids. This was caused by imperfections in the shaking 

table system, which produce small, high frequency vibrations 

other than those desired in the test. This problem cannot be 

corrected and must be compensated for in the analysis by using 

Fourier spectra as described in the next section. 

The random tests were recorded in the same manner. Real 

earthquake records were fed into the table through the PDP-11 

system to provide the random ex c i t a t i o n . Figure 26 i s an 

example of the base shear, acceleration, and displacement 

recorded during a test of the surface pierc i n g cylinder using 

the 1940 N-S E l Centro record. The data for the random tests 

were f i l t e r e d at 50 Hz to eliminate high frequency noise from 

the system. 
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3. ANALYSIS OF DATA 

A. Sinusoidal Tests 

The sinusoidal tests provided information on the 

amplitudes of the base shear V, and the base acceleration 

a, and the phase s h i f t <f>, between these variables. The 

table displacement X, was used as a check on the 

acceleration through the simple harmonic r e l a t i o n a=-w2X. 

The added mass and damping were then derived from t h i s 

information as discussed in Chapter 2. 

If the data were purely sinuoidal i t would be quite 

easy to determine the above values; however, as can be 

seen in Figure 25, t h i s was not the case. To iso l a t e the 

peak value at the test frequency from the data, a Fourier 

analysis was used to produce Fourier spectra. Fourier 

amplitude and phase spectra were produced for the base 

shear and the base acceleration of each test (see 

example, Figure 27). The required amplitudes, V and a, 

and the phase s h i f t , <t>, were then taken d i r e c t l y from the 

spectra, the phase s h i f t being the difference between the 

phase values of V(t) and a ( t ) . 

A given record in the time domain: 

x(t)=Xcos(wct + t9<>) = X0exp(i(w„t + e,)) (B.2) 

can be transformed into the frequency domain by taking 

i t s Fourier transform: 

F(w)= Jx(t)exp(-iwt)dt = X£Xp(i$) fexp(i(w 0-w)t)dt (B.3) 
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This may be written as: 

F(w) = X,exp(i6>j6(w-wJ where /exp(iwt)dt = 6(w) (B.4) 

which on expansion becomes: 

F(w) = X0cosc906(w-w<,)+X0 isin^>6(w-w0) (B.5) 

Then the Fourier Amplitude = i/Re2 + Im2 = |F(w) | 

« X o V/cos 20 o + sin2~£ 6(w-wJ = X06(w-wJ (B.6) 

and the phase angle = 0 = tan' 1 _Im = tan' 1X n sing6(w-wj 
Re Xocos06(w-w,) 

= tan" 1 (tanf?,) = 6B (B.7) 

This analysis i s true for each frequency component, 

An cos(wnt + dn) in the data. 

B. Random Tests 

Random tests were performed in which the cylinder 

base shears and accelerations were measured when using 

the E l Centro 1940 N-S and the San Fernando S74W, 1971 

earthquakes as the input e x c i t a t i o n . The parameter of 

interest here was the frequency transfer function 

r e l a t i n g the input acceleration and the output base 

shear. 
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Assuming a stationary process, which may be taken as 

reasonable for at least part of the earthquake records, 

the frequency transfer function can be derived from the 

spectral densities of the input and output records [7]: 

Sv = |H(w)|2 (B.8) 
Sa 

where: 

Sv i s the spectral density of the output base shear 
Sa i s the spectral density of the input acceleration 
record 
|H(w)| i s the amplitude of the frequency transfer 
function 

The base shear V ( t ) , and the acceleration a ( t ) , data 

were run through a Fast Fourier Transform program (FFT) 

from which the power spectral densities were calculated 

(see Figure 28). The graph of the r a t i o of the power 

spectral density values, |H(w)|2, at each frequency 

produces the frequency transfer function. 
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Figure 24 - Wheatstone Bridge - Strain Gauge 

Configuration 
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Figure 25 - Example of Data From Sinusoidal Tests 
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Figure 26 - Example of Data From Random Earthquake Tests 
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Figure 27 - Fourier Amplitude Spectra for Sinusoidal Data 

of Base Shear and Acceleration 
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Figure 28 - Spectras of Base Shear and Acceleration and 

Transfer Function Derived from them 


