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Abstract

In this investigation, the dynamic characteristics of a
submerged cylinder were determined by performing vibration
tests on a model underwater. These characteristics are
expressed in terms of the added mass and damping values of the
cylinder. Such gquantities are required in the design of
offshore structures in seismic zones. Sinusoidal tests were
used to determine these values as a function of excitation
frequency. The frequency range was varied from 0.5 to 6.0
Hertz, which 1is the primary range of interest of most
earthquakes. .The testing was carried out in the Seismic
Simulation Laboratory of the Department of Civil Engineering
at the University of British Columbia.

The experimental values of added mass and damping versus
frequency were compared with the wvalues préduced using
potential flow theory. The experimental and theoretical
results were found to agree very closely. .

The theoretical added mass and damping values were then
used to develop the frequency transfer function for the base
shear developed in the cylinder as a result of an input
acceleration record. To check the - wvalidity of this
theoretically derived transfer function, the base shear was
measured for a given random acceleration input and compared to
the results obtained using the theoretical transfer function.
The transfer function derived from Fourier transforms of the
random test records, as well as the transfer function

developed through sinusoidal tests were also compared to the
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theoretical transfer function; the agreement was good.

This study 1is restricted to structures which fall into
the large body or wave diffraction regime. This means that
fluid separation does not occur and Laplace's equation for
potential flow can be used in solving the problem with the
assumption of inviscid £fluid and irrotational flow. The
theoretical solution used in this work contemplates complete
free surface boundary conditions, which account for the
production of surface waves in the physical problem. These
boundary conditions are wusually ignored in other studies of
this problem, as they increase the difficulty of the solution.

Part of the work for this thesis involved the design and
construction of testing apparatus and procedures to be
employed in the studies of seismic effects on offshore
structures. This aspect'of the research is described in some
detail.

The study reported 1in this thesis confirms that an
existing potential theory wave diffraction program can be used
to accurately determine the added mass and added damping
values for application in the aseismic design of offshore
structures. These parameters can then be applied to evaluate

the transfer function for such systems.
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I. INTRODUCTION

1. BACKGROUND

The subject of fluid-structure interaction has been
studied for many years. The fact that structures react
differently to a given loading when located in water rather
than in air has been the topic of much research. Marine
engineers and vhydrodynamicists have examined this problem
quite thoroughly, particularly as it pertains to ship design
and coastal structures. More recently, structural engineers
have become seriously involved in this important problem as a
result of the 1large increase in offshore construction.
Structures which pose a potential danger to the environment,
such as oil rigs and storage tanks, are being built in
continuously harsher locations and an accurate analysis of all
forces écting on such structures is essential.

Of fshore structures undergo loading as a result of waves,
>currents, wind, operating machinery and seismic activity.
Much work has been done on evaluating wave and current loading
on submerged structures, but only recently have efforts been
directed to determining the forces resulting from seismic
loading., ©0il rigs and other offshore structures: are being
built or proposed for construction in increasing numbers in
various seismic zones, including the east and west coasts of
Canada. This has led to the need for more research into their
design for this environment. The present study, which is

intended as a contribution to this general problem, is



concerned with evaluating the hydrodynamic forces resulting
from the seismic motions of a structure in water.

These hydrodynamic forces result from the moving body
having to displace and accelerate a volume of fluid in
addition to its own mass, and from drag forces developed at
the surface of the moving body.

The force resulting from the body having to accelerate a
volume of fluid is an inertial force and 1is treated as an
'added mass' that is hypothetically attached to the body's own
mass and is linearly proportional to the body's acceleration.

The drag force consists of form drag, which is a result
of fluid separation from the body, and skin friction, which
occurs between the fluid and the body surface. The drag force
dissipates energy from the system and is therefore treated as
a damping force. This term 1is generally not linearly
proportional to the structure's velocity and produces a
nonlinear problem. Methods of 1linearizing the damping and
including it as an 'added damping' term are used in some cases
[24,26]. Additional ‘'added damping', which can be taken as
being linearly proportional to the velocity, comes from the
structure producing waves by 1its motion and dissipating
energy. This term is significant in some problems.

These two terms, added mass and added damping, and the
manner in which they are derived from the hydrodynamic force
will be discussed further in chapter two. The determination
of these two dynamic characteristics for structures in water

is the object of much research done in this area.



The type of force which predominates - either form drag
or 1inertia, determines the type of solution which can be used
to solve for the hydrodynamic forces. The shape of the body,
viscosity of the fluid, and the relative motion between the
body and the fluid, determine the amount of drag force
present. The inertia force depends on the body dimensions,
fluid density and fregquency of the body motion.

‘In the study of wave forces on structures there are two
separate regimes of behaviour depending on the predominant
type of force [26]:

1) small body regime, and
2) large body regime.

The small body regime is one in which significant flow
separation occurs and the form drag forées are large.
Sfructures which fall into this class are those whose
dimensions, shape "and relative fluid-structure motion result
in fluid separation. This occurs if the cross section of the
structure 1is small in relation to the relative motion between
the structure and the water. This class of problem is mainly
concerned with wave loading, as the wave length may be large
in relation to the body cross section. Structures with sharp
edges or other abrupt changes in cross section also induce
flow separation and may fall into this regime. In the
solution of this problem, the nonlinear drag term is the
predominant force and the analysis is performed by means of

the well known Morison equation [21]:



F = 0.5pDC4U|U| + 0.25p7D?Cp(du/dt) (1.1)

where, F is the fluid force, p is the fluid density, D is the
body cross section (diameter), U 1is the relative velocity
between the structure and the fluid, C4 is the drag
coefficient and C, 1is the inertia coefficient. Due to the
nonlinear nature of the problem and the difficulty in
attaining accurate drag and inertia coefficients, which must
be determined empirically, this solution is usually difficult
to obtain accurately.

The large body regime is concerned with structures and
relative fluid-structure motions which do not cause flow
separation. In this class of problem the inertia forces
predominate. Form drag is not present as there 1is no flow
separation, Although some drag force may result from skin
friction, this is usually quite small. 1In general, the drag
term 1is neglected or assumed to be small and vary iinearly
with the velocity of the structure. Structures whose éross
sections are large in relation to the relative fluid-structure
motion, and whose changes in shape are smooth, such that flow
separation is not induced, fall into this regime. Another
designation for this <class of problem is the 'diffraction
regime' as the incoming wave train, having a wave length which
is not too much larger than the body cross section, is
interrupted and diffracted by the body [26]. In the case of a

structure undergoing motions, either from earthquake or wave



loading, the waves radiated by the structure motion result in
energy dissipation which can be represented as an additional
damping term. This démping'is usually much larger than any
drag damping from skin friction and is taken to be linearly
proportional to the structure velocity. This energy
dissipation 1is considered as an 'added damping' which acts in
addition to the structural damping; it 1is dependent on the
structure dimensions, total water depth and frequency of
structure motion.

When flow separation does not occur, viscous effects can
usually be 1ignored, and the resulting 1linear problem is
expressed by Laplace's equation for potential flow with the
assumption of irrotational flow. If linearized kinematic and
dynamic free surface boundary conditions are included in the
analysis, the added damping due to surface wave production is
incorporated in the solution [4,14,19,26]. The equations and
solution governing this problem are given in appendix A.

Structures which have some local flow separation may also
be studied in this regime but the effect of the degree of flow
separation on the solution must be considered. The large body
regime is easier to analyze than the small body regime, as the
hydrodynamic force and thus the added mass and'damping can be
evaluated theoretically using Laplace's equation for potential
flow.

Most existing theoretical and experimental studies for
the earthquake design of offshore structures have been

performed on the class of structures which satisfy the 1large



body 'diffraction' regime. There are two reasons for this:
first, the problem can be solved analytically by potential
flow theory and second, the degree of relative motion between
the structuré and the fluid in seismic loading is not wusually
very large, so that the assumption of no flow separation is
valid. This will be discussed fufther in chapter two.

The present study 1is concerned with the earthquake
loading problem and therefore will be restricted to structures

which satisfy the large body regime.

2. REVIEW OF LITERATURE ON EXPERIMENTAL STUDIES

In 1779, Pierre Louis Gabriel Du Buat conducted some
experiments on pendulums underwater [27]. He noted that their
periods of motion were different from the corresponding
results obtained for the same pendulums tested in air. He
explained this in terms of an added mass effect acting on the
pendulums, Since that time, this added mass effect has been
studied for a variety of shapes and by a variety of methods.

Several experiments have been performed in which a body
on a flexible support was set into free vibration in air and
in water and its natural frequencies 1in these environments
were measured [5,6,8,20,27,28]. With the assumption that the
support stiffness remains constant, the two frequency values
were compared and the added mass taken as the difference in
the mass values calculated from the measured frequencies.
Thus, if w and m represent the frequency and mass of a system

respectively and the subscripts A and w their respective



values in air and in water, the added mass, myg is obtained by

equating the stiffnesses in both mediums such that:

WAZMA = Wy lmy (1.2)
from which
5 _ 2

Vw

yields the total mass in water. The added mass is then

determined from:

My = M ~My (1.4)

In 1955, Stelson and Mavis [27], conducted experiments of
this type. They suspended cylinders, spheres and rectangles
from a flexible beam, set them into free wvibration and
determined added mass quantities for the first mode
frequencies in the manner described above. There was good
agreement between their results and those obtained from a
potential flow solution,

In 1960, Clough [6] performed similar experiments on
horizontally oriented cylinders, plates and rectangles. By
changing the length of the flexible supports attached~to these

models he was able to realize a set of systems with varying



first mode natural frequencies. He measured the added mass by
performing tests which excited the first mode response of his
models; his results also agreed closely with those predicted
from potential flow theory. His testing was done by mounting
a stationary water tank over a shaking table excited by a
pendulum striking the edge of the table. 1In addition, Clough
made measurements on a flexible, vertical cantilever model and
evaluated the added mass corresponding to second mode
vibrations by adding weights to the model in air to reproduce
the same natural period as was measured underwvater. He
measured damping values as well in free vibration tests and
found increased damping when the models were submerged.
Clough also came to the important conclusion that it was
unlifely that the structural vibrations resulting from seismic
loading would be large enough to induce flow separation, thus
enabling one to ﬁse potential flow theory in solving this
problem,

In the free vibration experiments discussed above, the
dependence of the added mass and damping on the actual base
excitation was not considered. The excitation may vary in
amplitude and frequency. In applying a potential flow
solution, the added mass and damping must be independent of
amplitude, since it is assumed that no flow separation occurs.
This fact was checked in the present experimental study and
found to be valid. However, the added mass and damping values
do depend on excitation frequency [4,19,26,31]. This 1is

because the amount of energy required to produce the surface



waves caused by structural motion varies with wave frequency,
which is the same as the structure's excitation freguency.
The present study 1is concerned with exploring how these
parameters vary with excitation fregquency. A dimensional
analysis [20,26] of the problem (see Chapter 2.3) clearly
illustrates the freguency dependence of the hydrodynamic
force. The problem is governed by a second order differential
equation with wvariable coefficients, representing the
frequency dependent added mass and damping terms.

In 1965, McConnell and Young [20] investigated the
dependence of added mass and damping on the Stokes number,
wa?/v, for a sphere in a bounded fluid. Here, w is the
excitation frequency, a is the radius of the sphere and » is
the kinematic viscosity of the surrounding fluid. They
performed harmonic tests varying both w and » to give the
added mass and démping as a function of the Stokes number.
Although this study was concerned mainly with the effects of
viscosity and of an enclosing fluid boundary, variables which
do not apply in the present problem, it did show a significant
variation in the added mass and damping with excitation
frequency. These investigators illustrated that for a given
fluid, at a given excitation frequency, the problem can be
resolved into a second order differential equation with
constant coefficients, but that if either the fluid properties
or the excitation freguency are changed, the added mass and
damping coefficients change also. In solving Laplace's

equation for ©potential flow (where viscous effects are
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neglected), this dependence on excitation frequency is part of
the solution, provided that full kinematic and dynamic free
surface boundary conditions are included in the analysis. A
discussion of the boundary conditions is contained in Appendix
A,

Taylor and Duncan [31], developed matrices of added mass
and damping for a <cylinder as functions of excitation
frequency. Each element of the matrix is represented by a
graph of added mass or damping versus frequency corresponding
to the distortion mode of the matrix element. These were
derived from potential flow theory. In the dynamic analysis
of underwater structures, these 'wet' matrices from the added
mass and damping are added to the corresponding 'dry' matrices
and regular modal analysis follows for the structure. To
verify their ‘theoretically derived matrices, the authors
conducted experiments on a hinged cylinder capable of being
deformed into first and second modes by a system of levers and
cams. The model was excited sinusoidally by moving its top
while the base was hinged to the bottom of a stationary wave
tank. They concluded that their measured added mass and
damping matrices were indeed a function of excitation
frequency and that they agreed well with their theoretical
values.

Perhaps the most extensive experimental study of the
forces resulting from earthquake 1loading on underwater
structures was carried out on the shaking table in the

Earthquake Engineering Laboratory at the University of
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California by Byrd in 1978 [4]. As 1is the case in this
present study, the table used by Byrd is capable of sinusoidal
and random motion from recorded earthquakes. This allows a
wide range of excitation characteristics and adds a realistic
aspect to the study in that the models can be tested using
actual earthquake records. 1In Byrd's study a pool 1liner was
placed over the table and supported by perimeter walls
constructed independent of the table. A well instrumented
model of a cylindrical underwater storage tank was attached to
the table such that the bottom of the tank and the model
underwent the same motion. The hydrodynamic forces arising
from horizontal, vertical ana rotational motion were measured.
Byrd performed free vibration tests to determine the natural
frequency of the model in air and 1in water and sinusoidal
tests to evaluate the added mass and damping terms as well as
the total hydrodynamic force as a function of excitation
frequency. He compared these results to potential flow theory
ignoring the free surface boundary conditions.

As discussed earlier, the ommission of full free surface
boundary conditions results in the added mass and damping
terms being independent of excitation freguency; they become
constants for a given structure. As Byrd conducted his
experiments at frequencies above 3 Hz, where the frequency
dependence has been shown to be relatively insignificant
[4,8], his values corresponded well with the theoretical
analysis. He concluded that while frequency dependence of the

added mass and damping can be important for some structure
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types at low frequency excitations, it was not significant for
design purposes for structﬁres whose dimensional proportions
were similar to those of his model when excited over this
higher frequency range. As will be discussed in a later
section, the present study investigates added mass and damping
for frequencies between 0.5 and 6.0 Hz. For certain structure
dimensions the freguency dependence of the added mass and
damping is guite significant in this 1lower range of
frequencies.

Byrd also conducted random vibration tests and compared
the experimentally measured base shear developed in his model
to that obtained using the potential flow solution.

In addition to laboratory experiments, some full scale
field tests on submerged structures have also been reported in

.the literature. Ruhl and Budhall [25], attached hydraulic
actuators to an 611 rig and applied sinusoidal forced
vibrations to it. They measured the first few mode shapes and
periods and determined the damping characteristics of the
structure. This information is useful for detecting damage
from future earthquakes or heavy sea states by comparing the
results with those obtained from similar measurements

following such events.
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3. OBJECT AND SCOPE OF INVESTIGATION

The purpose of this investigation is to determine the
dynamic characteristics of large offshore structures (those
which classify for a Laplace regime solution) from underwater
tests of a cylindrical model. Such information 1is required
for the seismic design of prototype systems. 1In the process,
a testing facility to study the effects of earthquakes on a
variety of underwater structures was developed.

Testing was performed on a simple cylindrical structure
falling into the 1large body, diffraction regime, which
encompasses fluid-structure interaction problems where flow
separation does not occur. This allows a potential flow
solution to be used. This is the case for most earthquake
.excited motions of a submerged structure, since the ratio of
displacement to cross-section is usually small.

The added mass and damping values were determined as a
function of excitation frequency through a series of
sinusoidal tests ranging from 0.5 to 6.0 Hz, encompassing the
range of predominant frequency components found in an
earthqﬁake record. These values were then compared to added
mass and damping values derived theoretically by solving
Laplace's equation for potential flow by means of a wave
diffraction theory computer program available in the
Department of Civil Engineering at the University of British
Columbia [18].

The added mass and damping values were then wused to

develop a transfer function between the input base
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acceleration apd the output base shear on the cylinder. This
theoretically derived transfer function is then compared to
experimentally derived transfer functions from the input and
output data taken from random motion and sinusoidal tests.
Also, the output base shear frequency domain spectra derived
from the theoretical transfer function for a given random
input were compared to the output spectra measured in the
random experiments.

The overall goal is to experimentally verify the use of
the theoretically derived added mass and damping values in
developing a transfer function for application in the aseismic
design of structures submerged in water. Figure 1 outlines
the work done in this study.

Some discussion of these results in comparison to other
similar studies 1is included, particularly to the findings of
Byrd [4], whose testing program also covered some aspects of

the research presently under consideration.
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Experimental Theoretical

Determination of compare Determination of

Added Mass and Damping Added Mass and Damping
Using Computer Program

!

Experimental Random Theoretical Development
Excitation Tests of Transfer Function for
used to Verify the compare Model using Added
Theoretical Transfer Mass and Damping
Function Values from Above

Use Theoretical Determination
of Added Mass and Damping to
Develop Transfer Function in

Design of Offshore Structures

Figure 1 - Schematic of Work Performed in This Study
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II. THEORY

Many analytical studies which deal with fluid forces on
submerged structures have been performed. Most of these are
concerned with moving fluids or waves on stationary
structures. However, there are some studies which consider
the structure moving in a stationary fluid; this is the
situation in the case §f a submerged structure excited by an
earthquake [1,9,14,16,18,19,21,22,23,24,29,30,31,33,34,35].

The purpose of this chapter is: to further define the
type of problem with which this study is concerned, to offer a
brief review of previous theoretical work, to discuss the
theoretical solution wused 1in this study, and to develop the
theory which describes how the added mass, added damping and
the transfer functions may be obtained from the experimental

work.

1. DEFINITION OF THE PROBLEM

The type of fluid-structure interaction problem of
concern in this study is that in which no flow separation will
occur. There have been several titles given to this class of
problem in earlier sections of this report: large body regihe,
wave diffraction regime, Laplace potential flow regime and no
flow separation regime. This class of problem will be

referred to from here on in as the Laplace regime.
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1t has the following characteristics:

- the body cross section is 1large in relation to the
relative fluid-structure motion, such that no flow
separation occurs. This allows the assumption of an

irrotational flow.

- the body significantly interferes with and diffracts
any incoming wave train or, as in this earthquake case,
if the body 1is near or penetrating the surface it may

produce appreciable surface waves.

Laplace's equation for potential flow can be used to solve for
the hydrodynamic force on a structure exhibiting the above
characteristics.

A common parameter used 1in determining whether bodies
fall into the Laplace regime is the Keulegan-Carpenter number,
K defined as [26]:

K = 27A (2.1)
D

where,

A = amplitude of the relative displacement between
fluid and structure,

D = structure diameter

This number determines the significance of the flow separation
and viscous drag forces in a problem. If K is less than 10,

inertia forces predominate over drag forces. If K is greater
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than 10, the drag forces are predominant and the problem moves
into the small body, viscous flow regime. If K is less than
2, flow separation, and thus the drag force, 1is negligible.
Therefore, a strﬁcture which exhibits a K value of less than 2
under either earthguake or wave lqading can be studied using
Laplace's eguation for potential £flow. Most structural
motions resulting from earthguakes fall into this category,
since the displacements would generally be less than 32%
(A/D<1/7w) of the structure's diameter. |
This study pertains to relatively smooth structures
having well rounded shapes. Very rough surfaces or abrupt
cHanges in cross section may result in significant flow
separation even if the body cross section is large in relation

to relative fluid-structure motion.

2. ASSUMPTIONS AND CONDITIONS OF FLUID STATE

In analyzing for the hydrodynamic forces on a submerged
body in the Laplace regime, the following assumptions of the

fluid state are usually made:

i) No Flow Separation: Separation of the fluid from the
body is prevented by ensuring that the Keulegan-Carpenter
number 1is less fhan 2 as discussed in section 1 of this
chapter. Any localized separation due to abrupt changes
in shape or body appendages is neglected. With this
situation, no significant drag forces will occur. This

is also a necessary condition of the physical problem in
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order to make assumption ii).

ii) Irrotational Flow: This results in an ideal potential
flow and allows the use of Laplace's equation for

potential flow to solve the problem.

iii) Linear Wave Theory: This is also feferred to as
small amplitude wave theory. The wave height is assumed
small in comparison to the overall water depth and wave
length thus allowing the free surface boundary conditions
to be linearized and applied at the still water level

(appendix A), reference [26].

iv) Still Fluid: We assume that the water disturbances
are due only to the structure motion; currents, waves and
other outside disturbances of the water around the
structure are neglected (and kept to a minimum in the

experimental tests).

v) Incompressible Fluid: This assumption 1is valid for
most studies of fluid-structure interaction. Liaw and
Chopra [19] studied this topic in relation to dams and
submerged towers and came to the conclusion that for most
practical applications, fluid compressibility can be
ignored. However, for some structure dimensions and for
high frequency excitation, the energy dissipated in fluid

compression waves  becomes significant and fluid
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compressibility must be considered.

vi) Surface Wave Production: As can be seen in appendix
A, 1ignoring surface wave radiation 1in the analysis
simplifies the free surface boundary conditions and thus
the solution of Laplace's eguation. For some structures
this assumption leads to good results; however, for many
situations, this condition should be included, as the
surface waves produced by the structure influence the
value of added mass and damping. The production of
surface waves by the moving body results in the existence
of the added damping and in the added mass and damping
both being dependent on excitation frequency
[4,19,26,31]. The effect of surface waves is included in
this study in both the theoretical and experimental

determination of added mass and damping.

3. REVIEW OF THEORETICAL STUDIES

A brief review of existing theoretical studies pertaining
to structures in the Laplace regime when excited by harmonic
or random base motion is offered here. This is desirable in
relation to the interpretation of the experiméntal data
obtained in this study. |

An analysis of the equation of motion (discussed in the
next section), simplified by the fact that the added mass and
damping are considered to be constant (independent of

structure excitation), has been carried out by Penzien and
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Kaul, who performed regular modal and spectral analysis on
offshore towers [23]. In this analysis, the added mass and
damping are simply added to the dry mass and damping of the
structure. This approach appears to give results which are
suitable for design approximations  of some types of
structures; it is used quite often in practice.

The solution of Laplace's equation for potential flow on
oscillating bodies has been studied 1in wvarying degrees of
complexity. The most comprehensive investigation was donevby
Liaw and Chopra [19], who developed a solution for a surface
piercing cylinder which incorporates water compressibility and
the surface waves produced by the moving structure. A simpler
solution for the same problem neglecting these effects was
presented by Helou and Tung [14,33]. The effect of 1including
surface waves and water compressibility can be seen in Figure
2, taken from the work of Liaw and Chopra. Helou and Tung
also extended their work to fully submerged structures.
Laplace's equation, the necessary boundary conditions and the
solution wused 1in the present investigation are discussed in
appendix A.

Taylor and Duncan [31], developed a design method
employing added mass and damping matrices which were dependent
on excitation frequency. These are derived from Laplace's
: equation for potential flow and are used in design with a
regular modal analysis. They verified their theoretical
results of these matrices by experiment,

In addition to the classical solution of Laplace's
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equation, studies for evaluating fluid forces have been
performed usiﬁg finite element technigues [16,19,22].

Although these investigations are often costly, due to the
large number of eqguations to be solved, they are véry useful
in examining the response of bodies exhibiting complex
geometry. Some recent studies [16] using finite elements have

also included viscous effects.
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4, EQUATION OF MOTION

The equation of motion for a single degree of freedom
system submerged in water is developed in this section. This
is usually the starting point in any study dealing with the
dynamic behaviour of a system.

In general, the kinetic energy of the system gives us the
inertia terms of the equation of motion. In the submerged
case, the total kinetic energy 1is made up of the kinetic

energy of the structure, Tg:

mk 2 (2.2)

Tg = 1
2

where m is the structure mass and X is the structure velocity,

and the kinetic energy of the fluid, Tr:

Ty = ImyX? | (2.3)
2

where mg is the mass of a volume of fluid set into motion by
the structure. The total kinetic energy of the system Tp is

then:

Tp = Tg + Tf = 1(m + ma)fi2 (2.4)

N
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Using the Lagrange method [7] of formulating the eguation of

motion, we may write:

T .
_i"—" =.g.(m + m )X = (m + )di (2-5)
dtx dt 2 e dt

which gives the inertia term:
(m + m )% (2.6)
where X is the structure acceleration.

The damping term in the equation is determined from the
energy dissipation in the system. 1In addition to the usual
structural damping, C, experiment and theory both show that
the fluid also contributes some damping to the system. For
ﬁhe Laplace regime this comes mainly from the energy
dissipated by the structure producing surface waves, although
some damping from skin friction will also be present.
Assuming that this added damping 1is proportional to the

structure velocity, the total damping term is then:
(C + Cp)X (2.7)

where C, is the added damping from the fluid.

Since in our experiments it was difficult to measure only
the damping which was due to the fluid, the total damping of
the system was measured and a total damping value, A= C + C_,
is used. The structural damping was determined by tests in

air and subtracted from the total damping to obtain the added
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damping values used as a comparison to the theoretical values.
Now, including the stiffness term, K, and a forcing
function term, F(t), the equation of motion for a single

degree of freedom system in water is:

(m + mg)¥ + AX + KX = F(t) (2.8)

It has been shown [20,26] (see section 5) that mg and Cj
are dependenﬁ on the fluid density, the size and shape of the
structure and the frequency of oscillation of the body. The
dynamic analysis of fluid-structure systems usually involves
the determination of the added mass and damping terms and
their dependence on the above factors. The present study 1is

concerned with such an evaluation.

5. DIMENSIONAL ANALYSIS OF HYDRODYNAMIC FORCE

As was stated in section 4, for the case of structures in
the Laplace regime, the added mass and damping are dependent
on the fluid, body size and shape, and the frequency of
excitation. The added mass and damping are derived from the
hydrodynamic force and it can be shown by a dimensional
analysis that these quantities are dependent on the above
factors.

In general, for any type of rigid body fluid-structure

problem, the fluid force can be given as [26]:
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F =f(d, H, D, Re ) (2.9)
pgdD? L L L
where,
F = fluid force
p = fluid density .
g = gravitational acceleration
H = wave height
D = structure cross-section (diameter)
d = water depth
L = wave length; for the earthguake problem this

represents excitation frequency
Re = Reynolds number = VD/v where v is kinematic
viscosity and V is velocity
Using the fluid assumptions discussed in section 2.2 for
this regime of problem, the dimensionless parameters Re and
" H/L disappear, as viscous effects are assumed negligible and
the wave height is assumed sufficiently small for linear wave

theory to apply. The dimensional equation for the

hydrodynamic force then becomes:

F = f(

Je! ) (2.10)
pgdD? L '

14

D
L

It 1is seen here that the fluid force is dependent on the
fluid density, structure size and frequency of excitation. A
similar analysis was carried out by McConnell and Young [29],

who came to the same conclusion.
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6. DESCRIPTION OF AXIDIF COMPUTER PROGRAM

AXIDIF is the name of a computer program developed at the
University of British Columbia for studying fluid forces on
offshore structures. The theory and method wused in the
program to solve such problems are taken from references 26
and 18. It calculates theoretical values of added mass and
damping for rigid body, axisymmetric structures.in the Laplace
regime as a function of excitation frequency.

AXIDIF was developed for the purpose of determining wave
loading on structures, but the added mass and damping values
derived from it are valid also in the case of the base motion
problem, as discussed in Appendix A.

AXIDIF solves Laplace's eqguation using wave diffraction
theory. The velocity potentials for the incoming and
reflected wave trains and for the radiated waves due to the
structure motions are determined separately and then combined
for the tétal velocity potential. The approach used is based
on a boundary element method involving an axisymmetric Green's
function [26,18]. The full kinematic and dynamic free surface
boundary conditions are incorporated in this way and thus the
dependence of the added mass and damping on excitation
frequency is included.

The goal of this study is to verify experimentally the
added mass and damping values determined from AXIDIF. Once
this has been done the program can then be used with
confidence to provide these values for the design of full

scale structures falling in the Laplace regime.
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7. DERIVATION OF ADDED MASS AND DAMPING FROM EXPERIMENT

As will be discussed in later sections, sinusoidal and
random. tests were used 1in the experimental program. The
sinusoidal tests were conducted over a range of frequencies
lying between 0.5 and 6.0 Hz in oraer to determine the added
mass and damping coefficients as a function of excitation
frequency. In each frequency test, the forces acting on the
test cylinder were determined by measuring its base shear
resulting from a known sinusoidal input acceleration. The
base shear V(t), for an acceleration excitation a(t), given

by:
a(t) = dcos(wt) (2.11)

where 3 is acceleration amplitude and w 1is the excitation

frequency is:
V(t) = Vcos(wt + ¢) (2.12)

where V is the base shear amplitude, and ¢ is the phase shift
between the acceleration and base shear records.

A free body diagrém of the forces acting on the cylinder
is shown in Figure 3. Here, Fe(t) is the fluid force on the
cylinder, ma(t) 1is the inertia fbrce of the cylinder with m
being the dry mass of the cylinder, V(t) is the base shear and

M(t) the base moment acting on the cylinder at any time t.
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Fr(t) | ma(t)

—> y(t)

\—/M(t)

Figure 3 - Free Body Diagram of Forces Acting on Model

Cylinder

For a given sihusoidal displacemént:
X(t) = ZXcos(wt) (2.13a)
where X is the amplitude of.displacement, the velocity is:
X(t) = -Xwsin(wt) (2.13b)
and the acceleration is:

a(t) = ¥(t) = -w2Zcos(wt) (2.13¢c)
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where w?2X represents the acceleration amplitude 3@, previously

defined.

Taking equilibrium of forces on the free body diagram

(Figure 3), the resulting equation is:
Fe(t) + V(t) = ma(t) (2.14)
and applying equations 2.12 and 2.13c to 2.14 gives:
Fp + Vcos(wt + ¢) = -mw2Xcos (wt) (2.15)

The moment on the cylinder was not considered in this

analysis. The base shear can be resolved into its components:
v(t) = Vcos(wt + ¢) = V,cos(wt) + V,sin(wt) (2.16)

where V, = Vcos¢ and V, = Vsing. Introducing this into

equation 2,15 gives:

-mw2Xcos(wt) = V,cos(wt) + V,sin(wt) + Fg (2.17)

For sinusoidal input, the fluid force Fy is sinuscidal
and can be resolved to represent added mass and added damping

as follows:
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Sinusoidal Fluid Force

. \

Kinetic Energy Energy Dissipation
| 1
Inertia Force Damping Force
| l
In Phase ’ In Quadrature
With Motion With Motion
Added Mass = mg, Added Damping = Cq4

The fluid force can then be represented as:
Fg= Fycos(wt) + Fpsin(wt) = m X + Ax (2.18)
Applying equation 2.18 along with 2.13, eguation 2.17 becomes:

-mw2Xcos(wt) = V,cos(wt)+V,sin(wt)+myw?Ecos(wt)+AwXsin(wt)

(2,19)

Re-arranging 2.19 yields the equation of motion for this
problem, similar to equation 2.8, only lacking the stiffness

term KX, since the cylinder is rigid:
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-(m + my)w2Kcos(wt) - AwXsin(wt) = V,cos(wt) + V,sin(wt)
(2.20)

On solving for the added mass mgyz, and the total damping

A, which includes both structural and £fluid damping, one

obtains:
-(m + my)w?X =V, or mg = -V, -m =¥, - m (2.21)
w2X a
and
-AawX = V, or \ = =V, A= Vv (2.22)
W a

The same tests were first performed in air to determine
the 'dry' mass and damping values.

It should be noted here that my and A are functions of
both excitation frequency w, and displacement X. By invoking
the £fluid assumptions of section 2, the problem satisfies the
Laplace regime so that the displacement is eliminated as an
influencing variable. This fact was checked in this study
experimentally by varying X at a constant frequency w, and
determining m_, and A for our model.

The experiments were performed to verify the added mass
and damping values derived from the Laplace equation. It is
important, therefore, that any forces which arise as a result
of viscous action do not have a large influence on the added
mass and damping values derived from our model tests. Since
we are dealing with a realcfluid which does have viscosity, it
was expected that the measured added mass and damping values

would have some dependence on displacement. This condition
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was, in fact, observed. The effect was small, however, and
the experiments therefore represented the characteristics of

potential flow reasonably well.

8. DEVELOPMENT OF TRANSFER FUNCTION

The transfer function relating cylinder base shear V 1in
water, with input acceleration a, 1is a wuseful design
parameter. The transfer function for the rigid cylinder model
of this experiment or for any figid submerged structure can be
derived as follows,

The equation of motion for this case, from eduations 2.14

and 2.18, can be written:
(m + my)X + AX = V (2.23)

Letting X = Xexp(iwt) and V = Vexp(iwt), where X and V are

both amplitudes, we get:
(m + my) (iw)?Rexp(iwt) + A(iw)Xexp(iwt) = Vexp(iwt) (2.24)

which gives:

[ -(m + my)w? + Aiw ]X =V (2.25)

The transfer function relating base shear to displacement is

then:

I = V(m + my)w® + A2w? (2.26)

i<
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Using 8 = w2?X, the transfer function relating base shear

to acceleration is:

|H(w)| = H fm +mg) 2w o+ A2 (2.27)

where my and X are functions of frequency w, as stated earlier

in 'section 5. These values can be derived from experiment or

theory.

9. DERIVATION OF TRANSFER FUNCTION FROM EXPERIMENTS

As stated in section 7, this study involved sinusoidal
and random testing. The sinusoidal tests were used to
determine added mass and damping values as a function of
frequency, which were compared to the theoretically derived
values. They were also used to develop the transfer function
by taking the ratio of the input to the output at each

frequency value (equation 2.28).

H(w) = V(w) (2.28)
a(w) :

The random tests were uéed also to develop,
experimentally, the transfer function relating base shear to
input base acceleration for the cylinder model. This latter
transfer function was then used to check the validity of the
transfer function derived theoretically. The added mass and
damping values of the theoretically determined transfer

function were derived using the AXIDIF computer program.
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In the random tests, earthquake excitations a(t), were
used to excite the cylinder in water. The random base shear
V(t), was recorded. The power spectral densities, Sa(w) and
Sv(w) corresponding to af(t) and V(t) respectively, were

calculated from:
sviw) = [ Fv(t)e tWtae)> (2.29)
-

and sa(w) = [ Ja(t)e 1"tat]? (2.30)

These power spectral densities were evaluated using a
Fast Fourier Transform (FFT) computer program. From random
analysis theory [2,7], the transfer function is then

calculated as:

[H(w)|? = Sv(w) (2.31)

The measured output base shear spectrum, Sv(w), was also
compared to the spectrum derived theoretically. This was -
accomplished by multiplying the input base acceleration
spectrum of the earthquake record by the theoretically derived
transfer function. The experimental base shear spectrum was
determined by performing a Fourier analysis of the recorded

output data.



37

ITII. MODEL AND TESTING APPARATUS

It was the intention in this study to create experiments
which represented a structure undergoing base motion in the
Laplace regime of fluid-structure interaction. The conditions
necessary to qualify for this regime were outlined in chapter
two. As described in the following sections, a model and
testing apparatus were developed which enabled these

conditions to be satisfied.

1. DEVELOPMENT OF TESTING APPARATUS

The testing was performed in the Seismic Simulation
Laboratory of the Civil Engineering Department at U.B.C. This
laboratory contains a single degree-of-freedom shaking table
capable of a maximum peak-to-peak displacement of six inches.
A PDP-11 mini-computer 1is used to operate the table. It is
capable of exciting the table with sinusoidal frequencies from
0.0 to 30.0 Hz and with simulated earthquake records which are
stored on tape. The table was used to produce the sinusoidal
and random base excitations on the model. The PDP-11 was also
used to tabulate and process all of the data recorded in the
experiments. Figure 4 shows a photograph of the shaking
table.

A water tank was constructed to straddle the table so
that the model could be set into motion underwater. The goal
in designing the tank was to create the required fluid

conditions for testing and to enable the model to be properly
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excited through the base by the table. The required fluid

conditions were:

i) no wave reflection from the walls.

ii) no water disturbances caused by the table motion
other than through the test model.

iii) no viscous interaction between the tank walls
and the model.

In addition to these requirements, it was also desired to
construct a facility which could incorporate future tésting of
a variety of models and experiments.

Two similar studies involving experimental tests [4,6],
used a water tank with the shaking table acting as the floor
of the tank. It was felt that this approach would not be
suitable in the present test case since the U.B.C. table
moves by rocking on four legs and thus has a small vertical
component which would cause water disturbances. It was
decided to construct the tank independent of the table with
only the model base in contact with the moving table. As a
result, the table was designed to completely straddle the
table and to be supported on the laboratory floor surrounding
it. A hole was cut in the center of the tank floor, through
which the model could be fastened to the table. Figure 5 is a
photograph of the tank and model apparatus.

Figure 6 shows a schematic of the tank. The tank
dimensions are 12 X 13 X 4 feet and it consists of a steel

frame with plywood sheathing. A plastic pool liner is used as
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a seal. Horse hair filters are placed around the inside
perimeter of the tank to dissipate the surface water waves and
prevent them from being reflected back from the walls. The
tank is supported by ten legs around its perimeter, which rest
on the floor surrounding the table.

Sinde the model was attached to the shaking table through
a hole in thé tank floor, it was necessary to design a
watertight seal at the assembly base to allow for the motion
of the model. Figure 7 shows the sealing arrangement used.
An aluminum plate was fastened to a rigid wood block which was
mounted to the table through a plywood sheet. The model base
was attached to this plate. Another aluminum plate was sealed
into the bottom of the tank at its center through which an 18
inch hole was placed. A round rubbér sheet was then fastehed
between the base plate on the table and the plate on the
bottom of the tank by means of a stainless steel sealing ring.
This formed a seal between the tank and the table allowing
full transfer of table motion to the model. To prevent fluid
disturbances from this mounting apparatus, an aluminum sealing
ring, which reduced the hole diameter to 9 inches, was used to
seal the rubber to the tank floor. Over this aluminum ring, a
smaller 14 inch diameter plexiglass disc was attached to the
model support. This effectively kept the water set into
motion by the moﬁnting, apparatus from disturbing the water

surrounding the model.
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Figure 4 - Photograph of Shaking Table

Figure 5 - Photograph of Tank and Model Apparatus
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2. DESIGN OF MODEL

The test model was selected to satisfy the reqguirements
for a potential flow situation. The available AXIDIF computer
program yields a theoretical solution to Laplace's equation
for axisymmetric bodies. Accordingly, a cylindrical model was
chosen for the tests, since this is the simplest shape for
representing the Laplace regime and, as well, it is quite
common in offshore construction. Furthermore, the few
existing experimental studies which are available for
comparison purposes also used cylindrical shapes.

The dimensions of the cylinder were chosen so as to meet
the requirements of no flow separation (Keulegan-Carpenter
Number < 2). This corresponds to a maximum allowable
displacement to diameter ratio of A/D < 1/7 or D/A > 7 (see
chapter 2). The maximum base amplitude used in the tests was
1.5 1inches. An 11 inch diameter cylinder was chosen, such
that D/A = 11/1.5 = 7.3 > =.

The cylinder model is shown in Figure 8. It is 22 inches
high and made of aluminum. The cylindrical shell itself |is
meant to be rigid. It consists of a 3/32 inch outer shell
with a 3/4 inch plate at the top and a 1/8 inch plate on the
bottom. The cylinder 1is attached rigidly to the top of a
1 and 1/4 inch diameter steel shaft which is fastened at the
bottom to the shaking table through a stainless steel base.
The cylinder is made water tight by sealing the 4 inch
diameter hole through which the shaft passes in its bottom

with a rubber membrane. The result of this arrangement is
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that all force on the outside of the cylinder is transferred
to the top of the shaft. The shaft then acts as an end loaded
cantilever through which we can measure the total force on the
cylinder.

The criteria for designing the model were:
i) to have it act as a rigid cylinder

ii) to have the steel shaft flexible enough to

measure strains at all load levels

iii) to have the natural frequency of the system
high enough so as not to cause any resonant
interference with - the test frequencies used

(preferably above 20 HZ).

Meeting these criteria proved to be quite difficult. It
was not possible to select a steel shaft which was flexible
enough to measure small strains yet stiff enough to have a
natural frequency above 20 Hz. The design finally settled on
had a natural frequency in water of about 16 Hz (determined
from free vibration tests); the small strains developed were
measured with the aid of considerable electronic

amplification.
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3. DATA MEASUREMENT

As diécussed in chapter 2, the data necessary for
determining the added mass and damping values in these tests
was the input base acceleration record, a, and the resulting
cylinder base shear record, V. 1In addition to. these values,
the displacement of the base, X, also was measured to keep
track of its value during the tests and as a check on the
acceleration record through the simple harmonic relation a=-
w2X, where w is the harmonic input frequency.

The displacement was measured by means of an LVDT
situated on the shaking table. The acceleration was recorded
by an accelerometer attached to the table. This latter record
was used in analysis instead of the known excitation record in
order to account for any discrepencies between the input
command motion and the actual recorded table motion.

The base shear was measured by a Wheatstone bridge
arrangement using four strain gauges mounted on the steel
shaft. The steel shaft, base and strain gauges are shown in
the photograph of Figure 9. This system measured the strains
at the top and bottom of the shaft, from which the moments at
these points could be calculated. Thus

M = eEI (3.1)
Yy

where

K4
]

moment

m
n

strain measured
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E = Young's modulus of the shaft material

I = moment of 1inertia of the shaft cross
section

y = distance between the neutral axis and the
surface of the shaft

The Wheatstone bridge set up also yielded the difference
between the top and bottom moments, after which the base shear

could be determined from:

\' =M - M (3.2)
base height oE sﬁaft

The model was calibrated initially through static load
tests which correlated a given base shear value with a voltage
output from the bridge. The calibration curve was linear.

The required data from the tests were the amplitudes of
the base shear, V, the base acceleration, a, and the phase
shift between these variables, ¢. More information on how the
data were recorded and processed to give the above values is

provided in Appendix B.
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Figure 9 - Photograph of Steel Shaft, Base and Strain

Gauges
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IV. DESCRIPTION OF EXPERIMENTS

The purpose of this study was to experimentally determine
the dynamic characteristics of submerged structures due to
seismic loading. The dynamic characteristics of interest are
the added mass and damping due to the fluid. The theoretical
derivation of the frequency transfer function, H(w), relating
base shear to base acceleration was also tested
experimentally. Of particular interest in this study is the
frequency dependence of the added mass and damping values,
which is significant at the lower end of the frequency scale
and in surface piercing structures which produce surface

waves. The testing consisted of two phases:

1) Sinusoidal tests between 0.5 and 6.0 Hz which is
the frequency range of importance in most recorded

earthquakes.

2) Random motion tests, wusing records of actual
"~ earthquakes, to confirm the theoretically derived
transfer function between input base acceleration

and output base shear on the cylinder

The tests were carried out with the cylinder in two

situations:

1) Surface Piercing
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2) Submerged to a depth of one times the cylinder

radius

1. SINUSOIDAL TESTS

The first set of sinusoidal tests were done at frequency
levels of 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, and 6.0 Hz.
After these were analyzed it was realized that the greatest
fluctuation in added mass and damping values occurred below
2.5 Hz, so additional testing at increments of 0.25 Hz was
conducted in this range. Photographs of the sinusoidal
testing being performed are shown in Figures 10 and 11.

The analysis for added mass and damping was based on
linear wave theory (chapter 2). This was checked visually in
the testing and controlled by reducing the input amplitude if
any peaking or nonlinear wave characteristics appeared. At
the lower frequencies this was not a problem and quite large
amplitudes could be used. However,‘at the higher frequencies
the amplitudes had to be kept small in order to prevent the
waves from breaking and becoming nonlinear. This situation
would probably be reflected in real earthquake 1loading, as
displacements at higher frequencies are usually not large.

In applying Laplace's eguation, it is necessary that the
added mass and damping values be independent of displacement,
which means that viscous effects are considered to be
negligible. 1In reality, of course, water is viscous and some

effects on the results are to be expected. This was checked
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by running tests at a given frequency for several displacement
amplitudes and determining added mass and damping values. The
results of this study are shown in Figures 12 aﬁd 14, where
more than one value of added mass and damping is noted at a
given frequency.

When the results were first analyzed, it was suspected
that at higher frequencies there was some amplification in the
acceleration of the top of the cylinder relative to the base
value, presumably as a result of approaching a resonant
condition for the model. This would result in the cylinder.
undergoing a rocking mode rather than a pure franslational
mode. This was checked by repeating the tests with an
accelerometer attached to the top of the cylinder as well as
to the bottom. A small increase in the top acceleration was
noted at higher frequencies and could be accounted for through

the resonant amplification factor:

atop= abase[1 1 ( )J (4.1)

where w is the excitation frequency and wn is the natural
frequency of the model in water (16 Hz). A correction was
applied to account for this small effect when analyzing the

data, as discussed in the next chapter.
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Figure 10 - Photograph of Sinusoidal Test

Figure 11 - Photograph of Sinusoidal Test
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2. RANDOM TESTS

As was shown in chapter 2, the transfer function for the
model can be determined experimentally from random testing.
The transfer function can also be evaluated experimentally
from a series of sinusoidal tests. The former approach serves
as a verification of the theoretical transfer function in
pseudo earthguake 1loading. The base acceleration, a(t), and
base shear, V(t), time histories were recorded for input
excitations of the El Centro N-S, 1940 and San Fernando S74W,
1971 earthquakes. The earthquake data were taken from taped
records of the actual earthquakes.

In order to keep the displacements within the limits of
the shaking table and of the model during testing, the
earthquake records were scaled in amplitude to an acceptable
level. Again the wave condition was monitored wvisually; no
nonlinear characteristics were observed.

The time series data were transferred into the frequency
domain in the form of power spectral density functions by way
of a Fast Fourier Transform program. These power spectral
density functions were then employed to calculate an
experimental transfer function, which was used to check the
theoretical values. Also, the spectral density of the output
derived using the theoretical transfer function was compared
to the spectral density of the recorded output data. The time
series derived from this theoretical spectral density of the
base shear output was also compared to the time series output

recorded during the random test.
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3. SURFACE PIERCING AND SUBMERGED TESTS

The freguency dependence of the added mass and damping
values results from energy dissipation in the system due to
the production of surface waves. Byrd [4] and Liaw and Chopra
[19], discussed this effect. This frequency dependence 1is
accounted for in the analytical determination by incorporating
full dynamic and kinematic free surface boundary conditions in
the solution of Laplace's equation.

Frequency dependence 1is most significant for surface
piercing structures at low fregencies. As the structure is
submerged, and as the frequency increases, it has less
tendency to produce surface waves, and the frequency
dependence becomes negligible. Liaw and Chopra show this
theoretically in solving Laplace's equation for potential flow
and Byrd shows this experimentally 1in his tests on models
which are submerged and are excited at higher freguencies.

Byrd defined a factor, 2wng/w?, which is the wavelength
for a wave of freguency w, such that if the depth of
submergence of the structure is greater than this value, the
effect of surface waves diminishes. This factor also gives an
indication of the effect of frequency on the hydrodynamic
force. For 1lower values of frequency, the factor is large,
indicating higher frequency dependence and this reduces
quickly for increasing frequency values.

In order to explore this condition, tests were performed
on both a surface piercing cylinder and a cylinder submerged

to a depth of one times its radius under the surface. It was
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expected, and indeed observed, that the frequency dependence
of the added mass and damping for the surface piercing
cylinder was much more significant than for the submerged
case. The frequency values tested (0.5 - 6.0 Hz) were also in
the freguency range necessary to investigate this dependence.

Byrd's tests were carried out above 3 Hz. Earthguakes can be
expected to contain considerable power below this fregquency so
that an investigation below this 3 Hz limit was considered to

be desirable.
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V. RESULTS AND DISCUSSION

1. ADDED MASS FOR SURFACE PIERCING CYLINDER

The added mass values were determined as a function of
frequency through a series of sinusoidal tests as discussed in
chapter 4. The base acceleration and base shear time history
records were processed as discussed in appendix B to obtain
the peak values and phase shifts. These values were then used
as shown in chapter 2 to calculate the added mass. The
theoretical values of added mass versus frequency were
determined using the computer program AXIDIF, which solves
Laplace's equation for potential flow (chapter 2 and appendix
a).

| Figure 12 shows the added mass versus frequency for the
surface piercing cylinder. The added mass is plotted as a
dimensionless value, ma/pr3, where p is water density and r is
the radius of the cylinder. ‘The agreement between experiment
and theory is very good.

It is important first to note the large fluctuation in
the curve below 2.5 Hz. The frequency dependence of the added
mass is quite evident at frequencies less than this value. As
the frequency increases above 2.5 Hz, thevadded mass tends to
be a constant, independent of frequency. This agrees well
with the experimental work of Byrd [4], who carried out tests
above 3.0 Hz and obtained a constant value of added mass,

independent of frequency. This also agrees well with the
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theoretical work of Liaw and Chopra [19], whose results for
hydrodynamic force were previously shown in Figure 2.

The radiation of surface waves by a moving structure is
classified as a dispersive type of energy propagation [2].
This means that the velocity of the energy propagation wave is
dependent on the frequency of oscillation of the structure.
The propagation velocity increases with the excitation
frequency for the éase of surface wave production by a moving
structure. The phase shift between the velocity of the
structure and the velocity of the propagating waves also
varies., It is this phase shift that causes the large
fluctuatibn in added mass and damping at the low end of the
frequency scale and not at the higher end. This was noted in
the experiments, where the phase shift between the structure
acceleration (velocity) and the fluid force on the structure
exhibited the same peaking tendencies as the added mass and
damping curves - starting at 0 for 0.Hz, rising to a peak at
about 1.0 Hz and then droppihg back to 0° as the frequency
increased.

The degree of fluctu;tion in the added mass values also
depends on the depth of the structure. The dependence on
frequency 1is more significant for shallow structures, where a
greater percentage of the body surface 1is affected by wave
action, For the surface piercing case it might be expected
that the frequency dependence would be most significant for
shallow, large diameter structures which have a high

percentage of surface area in contact with surface waves. The
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effect would be least significant for tall, deep, small
diameter structures (but still falling within the Laplace
regime). This effect is apparent if one wuses the AXIDIF
program to solve the problem theoretically for various sizes
of cylinders.

It should also be noted in Figure 12 that there 1is more
than one value of added mass plotted for most of the freguency
values tested. This arises from the dependence of added mass
on displacement, which is related to the fact that water is
viscous, and not a true ideal inviscid fluid. As discussed in
chapters 2 and 4, this was checked by running several
sinusoidal tests at different displacement amplitudes for a
single frequency value. Of course, this variation does not
show up in theory, as the solution of Laplace's equation for
potential flow imposes the assumption of inviscid flow. As
can be seen, the effect is quite small and it appears that our
tests satisfied the requirements of potential flow guite well,
and that the viscous effects were negligible.

From Figure 12, it may be concluded that the added mass
values can be accu;ately derived from theory using the AXIDIF

program.

2. ADDED MASS FOR SUBMERGED CYLINDER

Tests were also performed on a submerged cylinder and the
data were processed in the same manner as for the surface
piercing cases. Fewer tests were carried out, since these

were pfimarily intended for comparison with the surface
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piercing cylinder. Also, since the added mass did not
fluctuate éignificantly with freguency, it was not necessary
to have a fine variation in the frequency.

Figure 13 shows the results of these tests. There is
good agreement between the experimentally and theoretically
derived added mass values. By comparing Figure 13 with Figure
12, it may be concluded that the freguency dependence of the
added mass for the submerged case is negligible. This agrees
well with the findings of Byrd [4], and Liaw and Chopra [19].
Physically, this can be explained by the fact that the
structure is unable to produce any surface waves when it is
submerged. This was verified in the tests, during which no
apparent surface disturbances of the water were observed.

M The values derived theoretically can be used quite
satisfactorily in calculating the transfer function for the
submerged'cylinder.' Also, since added mass 1is essentially
frequency independent in this case, a theoretical solution
ignoring the free surface kinematic and dynamic' boundary
conditions should give good values for the added mass of a
submerged cylinder. This solution is much easier to obtain,
and since it 1is independent of frequency, only has to be

solved once for a given structure.
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3. ADDED DAMPING

The added damping, which results from the energy
dissipated in producing surface waves, was determined from the
sinusoidal data according to the method described in chapter
2., Figures 14 and 15 show the results for the surface
piercing cylinder and the submerged cylinder respectively.

The experimental and theoretical values agree quite well.
As for the added mass values, the peaks occur at the low end
of the frequency range.

Figure 14 shows the influence of displacement amplitude
at any one frequency on the added damping. As noted in the
added mass results, this is related to the influence of fluid
viscosity. |

In comparing Figures 14 and 15, it is noted that the
damping values for the surface piercing case are much greater
than for the submerged case. This is to be expected, since
the surface waves diminish as the structure is submerged.

The graphs are plotted in dimensionless values, Cg/wpr?,
where Cg 1is the added damping in kg/s, kg is kilograms, s is
seconds, w is frequency, p is “water density and r 1is the
radius of the «cylinder. The peak value for the surface
piercing cylinder, Figure 14, corresponds to about 3.5% of
critical damping for the model. The peak for the submerged

case is less than 1.0% of critical damping.
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4, TRANSFER FUNCTIONS

" Tests using both sinusoidal and earthquake records were
used to develop experimental transfer functions as discussed
in chapter 2. These experimentally derived transfer functions
were then used to <check the wvalidity of the theoretical
transfer functions determined from the solution of Laplace's
equation (see chapter 2.8).

Figures 16 and 17 show the results for the surface
piercing and submerged cylinders respectively from the
sinusoidal tests. The comparison is quite good in both cases.
For the surface piercing cylinder (Figure 16), the peaks from
the sinusoidal tests are larger than the corresponding
theoretical values.

Figures 18 and 19 show the comparison of the experimental
and theoretical transfer functions for the surface piercing
cylinder when subjected to the El Centro N-S 1940 and the San
Fernando S74W, 1971 earthquakes respectively. Figure 20 shows
the comparison between these functions for the submerged case
for the El1 Centro earthguake record.

The surface piercing cylinder transfer function is quite
frequency dependent. For input accelerations in the lower
frequency range ( < 3 Hz), this becomes important. If the
solution was obtained ignoring the wave radiation boundary
condition, and thus 1ignoring frequency dependence, the
resulting forces from input accelerations below 3 Hz would be
unconservative.r The analysis would not accurately represent

the real situation.
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As would be expected, the transfer function for the
submerged cylinder does not show as much freguency dependence
as the surface piercing case.

Figures 21 and 22 show the spectra of the output base
shear for the surface piercing and submerged cylinders
respectively. The solid lines indicate the results obtained
by multiplying the spectrum of the input acceleration record
by the theoretically derived transfer function (equation
2.27). The broken 1lines are the spectra of the base shear
recorded in the random tests. The theoretical transfer
functions predict good results.

Comparison between experimental and theoretical results
is generally considered to be best performed in the frequency
domain for random tests [2]. However, the time series output
derived theoretically was also compared to the time series
output data of the El1 Centro test (Figure 23). This was
obtained by multiplying the complex frequency spectrum of the
input acceleration by the complex transfer function derived
from theory and then performing an inverse Fourier transform
to obtain the output time series.

The agreement between experiment and theory was quite
good in all cases. This establishes the validity of using the
theoretical AXIDIF computer program for developing transfer

functions for offshore structures.
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5. RESONANT EFFECTS IN THE MODEL

The theoretical solution applies to a cylinder undergoing
rigid body acceleration in water. As discussed in chapter 3,
the model had to be flexible enough to measure the
hydrodynamic forces developed, yet stiff enough to act as a
rigid body. The natural frequency of the model 1in water,
measured from free vibration tests, was 16 Hz. At the higher
frequency range, towards 6 Hz, the cylinder moved in a rocking
mode, while the cylinder shape remained rigid, and, as a
result, some amplification of the acceleration at the top of
the cylinder with respect to the base acceleration was noted.
This amplification was small and could be determined by
equation 4.1; this fact was checked by measuring the
accelerations at the top and base of the cylinder.

To correct for this condition, the acceleration at the

center of gravity of the cylinder was determined from:

a = a 1.0 + 0.64 1 -1 (5.1)
CG BASESL [1 - (w“,)l2 B

and wused in the calculations for the added mass and damping.
Here, aggis the acceleration of the center of gravity of the
cylinder and 0.64 1is the relation of the position of the

center of gravity to the height of the cylinder.
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6. VISCOUS EFFECTS

The assumption of inviscid fluid is made when applying
Laplace's eqguation for potential flow. The model and
experiments were designed to satisfy the requirements of this
situation as cloéely as possible. However, water is viscous
and it was anticipated that this condition might influence the
experimental results. The viscosity of the water could be

expected to cause:

i) the added mass and damping values to exhibit a

small dependence on displacement amplitude

ii) some additional damping due to skin friction

drag forces

The dependence on displacement amplitude has already been
discussed in sections 1 and 3 of this chapter. This effect
did show hp, but it was quite small and could be neglected in
the analysis.

Any viscous damping forces which were present would be
included in the added damping measured in the experiments. To
verify that this viscous term was quite small in relation to
the total damping, the total drag force on the cylinder (which
for this case is the drag force from skin friction only) was

estimated by employing the approximate expression [26]:

Fg= 1/2CqAplel|ifu (5.2)
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where;

F4= viscous drag force on the cylinder

Cq = drag coefficient, taken equal to 1.0
Ap = projected area of cylinder

p = density of water

1l = length of the cylinder

|9} = absolute value of u

u = peak relative velocity between the cylinder and

the water

The nonlinear term, |[G|U, was linearized wusing |0] =
(/g/n)aﬁ for small amplitudes [26], where oy= root mean square
of the velocity which equals u/yY2 for sinusoidal motion. This
viscous drag term was calculated for each of the tegts and
found to be small in relation to the total damping term which
consisted of both the wave radiation and viscous damping
terms: it had a maximum value of 9% of the total damping value
and was less than 5% for most of the tests. The assumption of
inviscid flow therefore seems to be quite reasonable for these

tests.
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Experiment -~ Theory
Base Added[Added f[Added]Added
Frequency] Shear |Acceleration [Displacement! Mass |DampingjMass |Damping
(Hertz) | (V) | (u/s%) (cm) (583 | (s58r3) | ($83) K2
0.6 6.61 0.165 1.75 11.2 | 1.43 f{11.9 | 1.3
’ 13.6 0.31L 2.31 12.3 | 0.63
5.5 0.134 1.38 11.24) 1.43
0.75 |15.6 0.364 1.75 11.5 | 2.02 -[{12.0 | 2.3
. 1.0 39.8 0.907 2.37 11.4k | 6.0 10.9 | 4.4
22.7 0.513 1.30 11.6 | 5.5
10.8 0.236 0.614 12.1 | 5.8
19.6 0.413 1.09 1.7 1 6.7
26.9 0.587 1.54 11.5 | 6.6
1.25 |20.7 0.633 1.05 7.7 k.12 (8.2 k.9
20.9 0.643 1.08 7.5 L.36
1k.3 0.431 0.723 7.8 L.31
1.5 17.2 0.577 0.69 6.6 4,14 || 6.5 3.k
15.1 0.527 0.606 6.4 3.5
20.0 0.673 0.782 6.6 3.9
1.75 | 39.6 1.48 1.24 6.1 2.0 6.3 2.0
2.0 |17.5 0.641 0.k16 6.5 | 1.2 [l6.L | 1.2
35.L4 1.32 0.859 6.3 1.k
10.6 0.391 0.26 6.3 1.1
50.5 1.81 1.21 6.7 1.5
28.2 1.02 0.665 €.5 1.3
2.5 50.7 1.83 0.7k 6.7 0.35 | 6.8 0.5
3.0 Lo.6 1.39 0.402 7.3 .03 7.3 0.25
81.6 2.8 0.80 7.2 0.01
22.8 0.7k 0.22 7.7 0.07
k.o 35.8 1.17 0.181 7.6L 1 0.0 7.7 0.08
53.8 1.75 0.27 7.65| 0.08
59.7 1.96 0.30 7.7 0.03
5.0 T7.1 2.43 0.23 8.2 0.12 §17.9 0.0L
80.9 2.61 0.236 7.9 0.0
76.0 2.4 0.209 8.0 0.0
40.3 1.27 0.120 8.2 0.0
6.0 54.8 1.65 0.105 8.6 0.0 8.1 0.03
5h.5 1.7 0.106 8.1 0.1

N=Newtons m=meters s=seconds cm=centimeters kg=kilograms
p=density r=radius w=frequency

Table 1 - Recorded Data - Surface Piercing Cylinder
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Experiment Theory
Base Added [Added ] Added|Added
Frequency|Shear|Accelgration|Displacement Mass |Damping! Mass |Damping
[

(Hertz) | (N) | (@/s%) (cm) ,(}6%3) (s’b'%r?/ (16%33 (Sk r3)
0.6 3.66 0.098 - 1.03 10.2 | 0.23 }10.8 | 0.k2
1.0 9.85 0.265 0.679 10.0 | 1.34 }f10.6 | 1.k2
2.0 32.4 0.902 0.587 9.64 | 0.2 10.4 0.02
3.0 Ly, 7 1.30 0.35 9.8 0.0 10.2 0.0
k.o 4.4 2.00 0.297 10.2 | 0.0 10.4 0.0
5.0 T5.5 2.00 0.174 10.5 0.0 10.3 | 0.0
6.0 9k.6 2.0 0.133 10.6 | 0.0 10.7 | 0.0

N=Newtons m=meters s=seconds cm=centimeters kg=kilograms
o=density r=radius w=frequency

Table I1 - Recorded Data - Submerged Cylinder
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VIi. CONCLUSIONS AND RECOMMENDATIONS

The experimental and theoretical values for the added
mass, added damping and transfer functions agreed very well.
This means that, for structures which meet the characteristics
of the Laplace regime (chapter 2), the added mass and damping
values calculated from the AXIDIF computer program can be used
in design to evaluate the response of a structure as a result
of seismic excitation.

For surface piercing structures, the frequency dependence
~of the added mass and damping due to the production of surface
waves 1is quite significant. In solving for these values
theoretically, the full kinematic and dynamic free surface
boundary conditions should be included in the solution to
account for this frequency dependence.

The submerged structure tests showed that the frequency
dependence of the added mass and damping becomes less
significant as the structure is submerged below the surface.
Solutions which do not include the surface wave effects would
probably be quite satisfactory when solving for the fluid
forces for most fully submerged structures.

Several areas of investigation are recommended for future

study:

- determine added mass and damping values as a

function of mode shape for flexible cylinders.
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- evaluate fluid forces on structures whose
dimensions and motions approach the small body

regime, where viscous effects may be important.

- determine experimentally the added mass and
damping for structural shapes other than cylinders,
possibly to support numerical methods for

calculating these parameters.

- study more intensively the effect of submergence
on the frequency dependence of the dynamic

characteristics.
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APPENDIX A SOLUTION OF LAPLACE'S EQUATION FOR ADDED MASS AND
DAMPNG FOR A CYLINDER USING THE AXIDIF PROGRAM

In this study, the experimental results for added mass
and damping were compared with the solution obtained from a
wave diffraction theory computer program called AXIDIF [18].
The solution for the forces on submerged structures due to
earthquake loading is directly related to the wave loading
case as the same added mass and damping values determined by
the computer programs are needed to account for the fluid-
structure interaction. AXIDIF is for axisymmetric structures
only, and is considerably more economical in terms of computer
costs than a;program for any arbitrarily shaped body.

The theoreticgl development of the AXIDIF program given
here is‘essentially that of reference [18]. The solution is
based on a boundary element method involving an axisymmetric
Green's function.,

A sinusoidal, unidirectional base motion, Xexp(-iwt) is
applied to a rigid axisymmetric structure of cylindrical
coordinates, (r,6,z), where X is a complex amplitude, w is the
excitation frequency, r is the radial coordinate , z is the
vertical coordinate and 6 is the angle measured from the
direction of motion. The fluid is considered to be
incompressible and inviscid and the flow irrotational. The
fluid motion can then be described by the velocity potential

satisfying Laplace's equation:
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920 L 19% 41 _08%2% L 32% - o ' (a.1)
oar? ror r?96¢ 0dz*

The assumption of incompressible fluid to the case of a body

vibrating in water is discussed at some length by Liaw and

Chopra [19]. For most structure dimensions and frequencies of

vibration this assumption is quite valid but for some cases,

water compressibility should be considered.

" With the assumption of small amplitude motion and the

fluid assumptions discussed in chapter 2, the usual linearized

boundary conditions are applied to the differential equation.

The relevent boundary conditions are:

3%(r,0,6,t)=0 (A.1a)
0z

defines the velocity condition normal to the ocean
floor at z=0

9®(R,z,6,t)= -iw cosa cosé (A.1b)
on

specifies that the fluid particle motion and the
motion of the structure is the same at the structure
boundary; n is the direction normal to the structure
surface and a is the direction of n in relation to

the horizontal axis.

32&(r,H,6,t)=-g3%(r ,H,6,t) (A.1c)

2
ot? 9z

describes a linearized free surface condition
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including dynamic and kinematic boundary conditions;

H=total depth of water.

4, 09(r,z,0,t)=0%(r,z, 7, t) (A.14)

0 0
stipulates symmetry about 6=0 plane

The velocity potential is harmonic and proportional to
the amplitude of motion, $Xexp(-iwt). 1In the boundary
integral method, the unknown potential, ®(x), at the general
point, x=(r,8,z), is represented as due to a source
distribution over the structure's surface S,, and is thus
expressed as:

®(x) = Jo £(x)G(x,y)ds (A.2)

1

an

Here, f(x) is a source strength distribution function, G(x,y)
is a Green's function for the general point x due to a source
of unit strength at y, and the integration is carried out for
all points y over Sp,. G 1is itself chosen>to satisfy the
Laplace equation, the seabed and linearized free surface
boundary conditions, and the radiation condition. This
ensures that ¢ also satisfies these equations, and it remains
for £ to be chosen so as to ensure that the boundary condition
on the structure surface is satisfied.

Boundary condition Al.b equating the fluid velocity

normal to the structure surface to the velocity of the
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structure surface, together with equation A.,2 gives rise to a
surface integral eguation for f:

f(x) + jsﬁ(y)gg(x,y)ds = -iw cosa cosé (A.3)

- i
2 a7 on
Here, n is measured from the point x, and the integration is
carried out over the point y. 1In egqguation A.3, x lies on the
structure surface and may be defined by the coordinates (s,#8),
where s is the surface coordinate and y may be defined by
corresponding coordinates (s',6').

Because of the structure's axisymmetry, the functions &,
f and G for points on the structure surface may be expanded as

Fourier series:

®(s,0) - % ®m(s)cosmd (A.4)
m=1

f(s,0) =;§1fm(s)cosm8 (A.5)
o0

G(s,0,s',0') =m§16m(s,s')cosm(9—6') (A.6)

and only the terms corresponding to m=1 will be required here,
Substituting equations A.5 and A.6 into A.3, algebraic
manipulation yields a set of line integral eguations, of which

the equation corresponding to m=1 is:

-f,(s) + 1f f,(s')R(s')ng(s,s')as' = 2iwcosa (A.7)
2 So an
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Here, s, is the structure's entire contour described by s, and
R(s') is the structure's radius at s'. |

In a numerical solution to equation A.7, the contour s,
is discretized into N short segments with the function f,
taken to be uniform over each segment, and equation A.7 is
applied at the centre of each segment. Thus egquation A.7 may

be approximated by a matrix equation:

N

k§1Ajkfk(1) = -2iwcosa for j=1,2,...N (A.8)

where fk(‘) denotes f,(sx). Expressions for the matrix
coefficients Ajk are given by Isaacson [18]. Once the source
strengths fk(‘)are determined, the potential itself can be
obtained by a discretized form of equation A.2. The necessary
Fourier coefficient &, at the j-th segment centre can be

approximated as:
P g (1) i
®,(s5) = 1/2k£1fk Cik for j=1,2,...N (a.9)

Once more, Isaacson [18]), provides expressions for the
coeffients Cjk.
Now that the potential function &, is known, the

hydrodynamic loads on the structure may be evaluated.
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The hydrodynamic pressure p acting on the structure surface is
given by the linearized Bernoulli equation, p = iwp ® exp(-
iwt), where p is the fluid density. Thus the horizontal force
F,(f)exp(-iwt) and overturning moment Fz(f)exp(-iwt) due to

the fluid may be expressed as:

Fs{) = -iwp fg @njds , for j=1,2 | (A.10)
where n; = cosacosé
n, = zcosacosf - rsinacosa

Substituting the Fourier expansion of ¢, equation A.5, and

integrating with respect to 6, we obtain

Fj(f)= —wiwpkglbkrknjk¢1(5k) for j=1,2 (a.11)

where Ly is the length of the k-th segment, and

Nk cosak

nzk zxcos(ax) - rksin(ak)

The fluid forces Fj(f) are conveniently expressed in terms of

added masses myj, and damping coefficients Aj, by taking:
FilE) = wimaj + iwdj (a.12)

in which maj and Aj may be retrieved by separating the real

and imaginary parts of Fj(f). It is emphasized that myj and
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kj are frequency dependent variables.
Many authors [4,19,4 and 33], set the free surface

boundary condition, equation A.1c, equal to O:

3%®(r,H,6,t) =0 (A.13)
at?

Q

This greatly simplifies the solution but neglects any surface
wave effects and results in the solution being independent of
the excitation frequency. These effects can be important for

some structures as discussed in chapter 5.
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APPENDIX B MEASUREMENT AND ANALYSIS OF DATA

1. MEASUREMENT APPARATUS

A, Base Acceleration

The measurement of the base input to the cylinder
was made with an accelerometer fégtened directly to the
shaking table. A Kistler MD 305A 50g accelerometer, in
conjunction with a servoamplifier, was used for this

purpose.

B. Base Displacement

The displacement of the table (and hence the base of
the cylinder) was recorded as a check on the acceleration
measurements. These measurements were taken with the
LVDT, which is attached permanently to the arm of the

hydraulic jack exciting the table.

C. Base Shear

The shear developed at the base of the cylinder was
measured using strain gauges. Four strain gauges were
used on the shaft of the model arranged in a full
Wheatstone Bridge (Figure 24). The bridge was set up to
measure the difference between the average strain at the
top of the shaft and at the bottom of the shaft. The
base shear is directly proportional to this difference in

strain:
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(B.1)

where:

V = base shear

E = modulus of elasticity of the shaft (steel in
this case)

I = moment of inertia of shaft

e = difference between the average strain at the top
and at the bottom of shaft

y = distance from neutral axis to outer fiber of
shaft

H = height of shaft between strain gauges
The constant EI/yH was evaluated by a load calibration
test of the model prior to conducting the experiments; in
this test, e was measured for known values of V and EL/yH
was calculated from B.1.

The base shears and thus the strain gauge output
voltages varied over a wide range of values, being very
small at low loads to quite large at high load levels.

As a result, it was necessary to use a variable amplifier
to boost and condition the data signals to a suitable

level for recording on the PDP-11 mini computer.

2. DATA COLLECTION

The experiments were carried out in the Earthqguake
Simulation Laboratory of the Department of Civil Engineering
at the University of British Célumbia. This facility is
equipped with a PDP-11 mini computer with disc drive, backed
by an RT-11 operating system. It is capable of handling 17

channels of input; the tests reqguired only three. Each
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channel is equipped with a variable amplifier and a variable
filter to bring the generated signals up to recordable level.

The data for the base shear V, base acceleration a, and
base displacement X, were recorded onto a floppy disc. Each
sinusoidal test was recorded over a ten second period at a
sampling rate of 100 samples per second. To aid in smoothing
the data, the filters were set at cutoff values of at least
twice the test frequency.

A typical set of results from the sinusoidal tests is
shown in Figure 25, As can be seen the plots are not pure
sinusoids. This was caused by imperfections in the shaking
table system, which produce small, high frequency vibrations
other than those desired in the test. This problem cannot be
corrected and must be compensated for in the analysis by using
Fourier spectra as described in the next section.

The random tests were recorded in the same manner. Real
earthquake records were fed into the table through the PDP-11
system to provide the random excitation. Figure 26 is an
example of the base shear, acceleration, and displacement
recorded during a test of the surface piercing cylinder using
the 1940 N-S El Centro record. The data for the random tests
were filtered at 50 Hz to eliminate high fregquency noise from

the system.
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ANALYSIS OF DATA

A, Sinusoidal Tests

The sinusoidal tests provided information on the

‘amplitudes of the base shear V, and the base acceleration

a, and the phase shift ¢, between these variables. The
table displacement X, was used as a check on the
acceleration through the simple harmonic relation a=-w?X.
The added mass and damping were then derived from this
information as discussed in Chapter 2.

If the data were purely sinuoidal it would be quite
easy to determine the above values; however, as can be
seen in Figure 25, this was not the case. To isolate the
peak value at the test frequency from the data, a Fourier
analysis was used to produce Fourier spectra. Fourier
amplitude and phase spectra were produced for the base
shear and the base acceleration of each test (see

example, Figure 27). The required amplitudes, V and a,

and the phase shift, ¢, were then taken directly from the

spectra, the phase shift being the difference between the
phase values of V(t) and a(t).
A given record in the time domain:
x(t)=Xgos(wt+6,) = Xsexp(i(wt+q)) (B.2)
can be transformed into the frequency domain by taking
its Fourier transform:

F(w)= fx(t)exp(-iwt)dt = Xpxp(ig)fexp(i(wo-w)t)dt (B.3)
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This may be written as:

F(w) = Xexp(i6)8(w-w) where Jexp(iwt)dt = &(w) (B.4)

which on expansion becomes:

F(w) = X,cos88(w-w)+X,isings(w-v) (B.5)
Then the Fourier Amplitude = yRe?+Im? = |F(w)|
= X,/cos2?8, + sin?6, §(w-w,) = X,8(w-w) (B.6)

and the phase angle = 6 = tan~'! Im = tan-'X,s5in8é(w-w)
Re X,c05608 (w-w,)

= tan-'(tang,) = 6, | (B.7)

This analysis is true for each frequency component,

An cos(wnt + 6n) in the data.

B. Random Tests

Random tests were performed in which the cylinder
base shears and accelerations were measured when using
the E1 Centro 1940 N-S and the San Fernando S74W, 197
earthquakes as the input excitation. The parameter of
interest here was the frequency transfer function
relating the input acceleration and the output base

shear.
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Assuming a stationary process, which may be taken as
reasonable for at least part of the earthguake records,
the frequency transfer function can be derived from the

spéctral densities of the input and output records [7]:

Sv = |H(w)|? (B.8)
Sa '

where:

Sv is the spectral density of the output base shear
Sa is the spectral density of the input acceleration
record

|H(w)| is the amplitude of the frequency transfer
function

The base shear V(t), and the acceleration a(t), data
were run through a Fast Fourier Transform program (FFT)
from which the power spectral densities were calculated
(see Figure 28). The graph of the ratio of the power
spectral denéity values, |H(w)|?, at each frequency

produces the frequency transfer function.
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E =
A J ) B R
£ ERs [ARs _ AR, +ARC_ARA]
4(R+RG) RB RD Rc RA
e o+ - _ AR
RA-RB-RC-RD GF-?

2E,(R+R,)
ERGF

C D € =strain
E, =measured voltage
mode!l R =stroin gouge resistonce

Rg=galvanometer resistance
E =excitation voltage
F =gauge factor

Figure 24 - Wheatstone Bridge - Strain Gauge

Configuration
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Figure 27 - Fourier Amplitude Spectra for Sinusoidal Data
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