THE ABSORPTION AND FLUORESCENCE OF ANTHRACENE IN THE NEAR ULTRA-VIOLET bу #### SEIKO KATAGIRI B. En., The University of Niigata, Japan, 1962 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF M. Sc. in the Department of Chemistry We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA April, 1964 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. | Department of | Chemistry | |--------------------------------|-------------------------------| | The University Vancouver 8, Ca | of British Columbia,
anada | | Date | 6,1964 | #### ABSTRACT The fluorescence and absorption spectra of anthracene in the near ultra-violet were investigated in n-heptane, fluorene, biphenyl and n-hexane matrices at low temperature. The assignment of the excited electronic state as 'Biv was confirmed. In the ground electronic state eight ag and five b_{32} , and in the 'B_N upper electronic state seven a_{4} and five b_{34} fundamentals were assigned. It was deduced that the potential surfaces of the A_4 and the B_{iv} states were similar in shape as there was an approximate agreement between the values of corresponding fundamental vibrations in the two electronic states. The potential surfaces were unusually harmonic for a polyatomic molecule, at least along the normal co-ordinates available to this study. No evidence for the presence of anharmonicity was found in even the highest overtone (the third) measured, although several possible examples of Fermi resonance between vibrational modes were observed both in fluorescence and in absorption. The Fermi resonances were assigned primarily on the basis of intensity transfer between lines rather than line shifts. The presence of a weaker long-axis polarized transition $('B_{20} \leftarrow 'A_{2})$ in anthracene predicted by theory was not detected. The lowest energy electronic transition in fluorene was found to be polarized along the long axis of this molecule. #### ACKNOWLEDGMENT I am deeply grateful to Dr. Alan V. Bree for his guidance and encouragement in every phase of this work; his assistance has developed my interest and understanding in the work. I wish to express my appreciation to Miss V.V.B. Vilkos for her help in many ways, and also to the technicians in this department for the preparation of some equipment. ## CONTENTS | | Page | |---|------------| | SURVEY OF PREVIOUS WORK | l | | Theoretical Predictions | ı | | Electronic States of Anthracene | 1 | | Vibrational States of Anthracene | 3 | | Mixed Crystal Phenomena | 5 | | Previous Experimental Work | 6 | | EXPERIMENTAL ARRANGEMENT | 8 | | Preparation of the Samples | 8 | | Measurement of the Spectra | 10 | | Apparatus | 10 | | Measurement of the Lines | 11 | | RESULTS | 14 | | DISCUSSION | 31 | | Fluorescence Spectra | 31 | | Fundamental Modes | 31 | | Fermi Resonance | 34 | | Other Features | 3 5 | | Absorption Spectra | 38 | | Fundamental Modes of the 'Bio Upper State | 38 | | Comparison of the Fundamentals on the 'A and on | | | the 'B. Electronic States | . 39 | | | | | iv | | |-----|---|---|------------|--| | | | P | age | | | | Fermi Resonance | • | 41 | | | | Other Lines | • | 43 | | | | Shift of the Origins of the But A Transition in the | | | | | | Different Matrices | • | 4 9 | | | מדם | T.T.OGRAPHY | | 50 | | # TABLES | Table | | Page | |----------|--|------| | <u>ו</u> | Character Table of Dam and the Axis Convention | | | | of the Anthracene Molecule | . 2 | | 2 | A Summary of Some Calculations on the Electronic | | | | States of Anthracene in the Near Eltra-Violet | . 2 | | 3 | 0, and by Fundamentals Observed in Anthracene | . 7 | | 4 | Fluorescence Spectra of Anthracene in Various | | | | Matrices | . 17 | | 5 | Absorption Spectra of Anthracene in Various | | | | Matrices | . 24 | | 6 | Absorption Spectrum of Fluorene at 4.2°K | . 31 | | 7 | Possible Examples of Fermi Resonance in the | | | | Fluorescence of Anthracene | • 34 | | 8 | The Fundamentals of Anthracene in the Ground and | | | | the 'B _{IU} Upper State | . 40 | | 9 | Possible Examples of Fermi Resonance in the | | | | Absorption of Anthracene | . 41 | | 10 | Similarity of the Structure around Some Strong | | | | Absorption Lines | . 44 | # FIGURES | Figure | | Page | |--------|---|------| | 1 | Low Temperature Sample Cells | 12 | | 2 | The Fluorescence Spectrum of Anthracene in n- | | | | Heptane at 4.2°K | 15 | | 3 | The Fluorescence Spectrum of Anthracene in | | | - | Fluorene at 4.2°K | 15 | | 4 | Relative Intensities of the Lines in Fluores- | | | | cence | • | | | (a) Anthracene in n-Heptane at 4.2°K | | | | (b) Anthracene in Fluorene at 4.20K | 16 | | 5 | Absorption Spectrum of Anthracene in n-Heptane | | | | at 4.20K | 28 | | 6 | Absorption Spectrum of Anthracene in Fluorene | | | | at 4.2°K | 22 | | 7 | Relative Intensities of the Lines in Absorption | | | | (a) Anthracene in n-Heptane at 4.20K | | | | (b) Anthracene in Fluorene at 4.20K | 23 | ### SURVEY OF PREVIOUS WORK #### Theoretical Predictions ## Electronic States of Anthracene Group theory may be usefully applied to the calculation of the molecular orbitals (MO's) of an anthracene molecule using as a basis set the atomic $2P_{X}$ functions centred on each carbon nucleus. Anthracene possesses D_{2h} molecular symmetry and its character table and axis convention are shown below. It can be shown (1) that the one-electron MO's are A_{V} , B_{18} , B_{28} and B_{30} yielding the configurations A_{19} , B_{10} , B_{20} and B_{30} . According to Weissman (2) antisymmetric spin functions have $A_{\mathbf{q}}$ symmetry, so singlet π - electron configurations retain the symmetry given above. Thus the only allowed transitions arising from the $A_{\mathbf{q}}$ ground state are to $B_{\mathbf{10}}$ and $B_{\mathbf{20}}$ excited states polarized along the long and short axis of the molecule, respectively. Many calculations (3)-(13) have been carried out on the energies of the electronic transitions of anthracene and the corresponding oscillator strengths (f) in different approximations (e.g. allowing for the interaction between many configurations, the inclusion of many-centred integrals Table 1 Character Table of D2h and the Axis Convention of the Anthracene Molecule | D2h | E | %
C2 | y
C2 | C2 | i | 6
yz | 6
3X | 6*Y | T | R | |--|---------|--------------------------------|--------------------------------|--------------------------------|---|-------------------------------|---------|--------------------------------|----------------|----| | Ag
Au
Blg
Blu
B2g
B2u
B3g
B3u | 1 1 1 1 | 1
-1
-1
-1
-1
1 | 1
-1
-1
1
-1
-1 | 1
1
-1
-1
-1
-1 | | 1
-1
-1
1
-1
1 | -1
1 | 1
-1
-1
-1
-1
1 | Tz
Ty
Tx | Rу | in the secular equation, etc.). All calculations put only $^{\dagger}B_{10}^{\dagger}$ and $^{\dagger}B_{20}^{\dagger}$ levels in the region of the 3800 Å system. Only one calculation (9) found the $^{\dagger}B_{20}^{\dagger}$ level lower than $^{\dagger}B_{10}^{\dagger}$. The escillator strength of the $^{\dagger}B_{10}^{\dagger} \leftarrow ^{\dagger}A_{2}^{\dagger}$ transition was much higher than that of the $^{\dagger}B_{20}^{\dagger} \leftarrow ^{\dagger}A_{2}^{\dagger}$ in every approximation, and for the latter Pariser (8) and Mataga (10) calculated zero. Table 2 A Summary of Some Calculations on the Electronic States of Anthracene in the Near Ultra-Violet | ` | ref. | 'B'u (IIM) | f | 'B_u (((L) | f | | |------------------------|------------------------|-----------------------|---------------------|--------------------|-------|----------------------| | V.B.
M.O. | 3
4 | 0.836 r | | 3.07 ev
1.261 r | | Y=resonance integral | | Modified
MO Methods | 5
6 , 7
8 | 3.72 ev
3.6 | 0.11
0.10
0.4 | | 0.005 | | Table 2 continued | | ref. | 'Bt (11M) | f | 1820 (IIL) | f | | |------------------------|----------|---|--|----------------------|--|---| | Modified
MO Methods | 11
12 | 3.6
3.48
3.15
3.44
3.44
3.23
3.15 | 0.39
0.283
0.265
0.395
0.290 | 3.51
3.61
3.51 | 0.00
0.116
0.063
0.162
0.087 | TBX Approximation IRX Approximation TBM Approximation IRM Approximation | #### Vibrational States of Anthracene The anthracene molecule has 66 fundamental vibrational modes classified as 12 Aq, 5 Au, 4 big, 11 biu, 6 big, 11 biu, 11 big and 6 big. Among them only Qq and big modes are expected to be built on the allowed Biu and Biu origins by vibrational perturbation of the electronic transitions. No calculations of the energies of the fundamental vibrations have been reported. However, **Q8** and **by8** fundamentals are active in Raman spectra and so any available data may be consulted to aid in the assignment of the vibrational structure in fluorescence. The energy deviation of combination bands from their harmonic value can occur due to anharmonicity of the potential field in the molecule. For
accidentally degenerate or very close lying vibrational levels the anharmonicity gives rise to a Fermi resonance (14) which causes a splitting of the two degenerate levels, or a further separation of two levels of the same symmetry. These two effects (anharmonicity and Fermi resonance) are mentioned here because they might be expected to appear in the observed spectra. The matrix element of the dipole moment operator M is defined as (15) where $m = \int \psi_{el}^{**} \hat{M} \psi_{el}^{*} dT_{el}$. The initial and final vibrational wave functions G_{nucl}^{**} and G_{nucl}^{**} are stationary state functions of a many-dimensional ascillator. The Franck-Condon principle states that m does not depend on the coordinates of the nuclei. At a sufficiently low temperature the molecule normally exists in its vibrationless ground state, and since only those transitions are possible for which the overlap integral $\int G_{nucl}^{**} G_{nucl} dT_{nucl}$ does not vanish, totally symmetric vibrations are active in the upper state. For anthracene these are G_{g} fundamentals or any odd overtone. Although the intensity of a line is given by M², it cannot be predicted because the overlap integral depends on the change in geometry of the molecule between the ground and the excited states which is not known. Conversely from the observed intensities of members of a vibrational progression, changes in molecular dimensions may be dis - cussed. (16),(17). ## Mixed Crystal Phenomena If the solute molecule does not interact with the surrounding solvent molecules that make up the host crystal lattice, then the solute molecules may be regarded as an "oriented gas". The solvent molecules would then only serve to hold the guest molecules in a fixed orientation in space and the observed spectrum would be identical with the free molecule spectrum observed in the vapour phase. However, various modifications on the free molecule spectrum are found in the mixed crystal spectrum and these arise from the perturbations caused by the surrounding solvent molecules (18) (19). These are (i) a shift of the entire spectrum to the red or to the blue and (ii) a change in the intensities of the individual lines in the spectrum due to intensity stealing from other nearby systems. Effect (i) is difficult to predict and only one calculation has been made (20); calculations of effect (ii) have been made using secondorder perturbation theory for some systems (21). Shpol'skii (22) (23) has shown that well-resolved spectra of organic molecules may be obtained in normal paraffin solid solution at 77°K. This method provides an abundance of precise data concerning the vibrational structure of electronic states. A theoretical treatment of the Shpol'skii effect has been presented by Rebane and Khizhnyakov (24) (25). #### Previous Experimental Work absorption system of anthracene as arising solely from a 'B'' - 'A' transition. The predicted 'B'' - 'A' transition has not been observed. The system has been analysed in the vapour (26), solution (27), solid solution (28) and crystal (29) at various temperatures as low as 4.2°K. At 20°K several A fundamentals were resolved in the mixed crystals of naphthaline and phenanthrene both in absorption and in fluorescence spectra (30). In a rigid solution of n-heptane at 77°K Bolotnikova also resolved many frequencies (28). Some Raman (31) and IR (32) (33) data are available for anthracene. In table 3 the available data concerning a and ba fundamentals in the 'A and 'B'' electronic states are summarized. The aim of the present experimental investigation is to analyse the vibrational and electronic states of the molecule in the 3800 Å region and to search for the origin of $^{1}B_{20}^{-}$ $^{4}A_{3}$ transition with its associated vibrational structure. Table 3 As and by Fundamentals Observed in Anthracene | | | naph-
thalene
200K
(30) | anthra-
cene in
phenan-
threne
20°K
(30) | anthra-
cene in
MeoH-FroH
90°K
(27) | anthra-
cene in
n-
heptane
770K
(28) | | spectra | anthra-
cene
solu- | | |--------------------------------|-------------------|----------------------------------|---|---|---|------------|--------------------------------|------------------------------|------------------| | ¹ B ⁺ 10 | 350 ^{cm} | -1
399 cm | -1
393 ^{cm}
739
1031 | -1
400 ^{ĉm} | -1 | a 4 | | | | | | 1170
1400 | 1164
1401 | 1159
1389 | 1450 | | * | | _ | | | | 415 | 403 | | | 390 | ag | 397
475
522
606 | 474
522 | og
 | | | 757 | 752 | | | | | 655
749(?)
1009 | 652
745(?)
1012 | 624
P28 | | Ag | 1163 | 1165 | | | 1165 | ag | 1165
1180 | 1012 | 04
04 | | | 1264
1407 | 126 4
1416 | | | 1265
1407 | ag | | 1262(?)
1397 | ag
ag
 | | | 1559 | 1567 | | | 1567
1645 | ag | 1439
1481
1555
1632 | 1444
1481
1551
1631 | bas
ag
bas | #### EXPERIMENTAL ARRANGEMENT #### Preparation of the Samples Scintillation grade anthracene obtained from Reilly Tar and Chemical Corporation was subjected to fourteen passes in a Fisher zone refiner. Solutions of the purified anthracene with concentrations ranging from 0.73 x 10⁻³M to 5.0 x 10⁻⁴M were prepared in spectroquality n-heptane and n-hexane supplied by Matheson Coleman & Bell. All solutions were stored in darkness to avoid photo-oxidation of anthracene. Mixed crystals of anthracene in fluorene and in biphenyl were grown in an evacuated pyrex tube using a Bridgeman furnace (34). Eastman red label biphenyl was used without further purification. The anthracene impurity contained in a solution of Eastman red label fluorene dissolved in petroleum ether was extracted into concentrated sulfuric acid. The extraction procedure was repeated until the sulfuric acid layer remained colourless (about twelve times). The purified fluorene was recovered and was passed forty-six times through a zone refiner. Ingots about 10 cm long and 0.8 cm diameter were grown over a period of about 24 hours in a Bridgeman furnace. Monocrystalline portions of the ingots were isolated using a polarizing microscope. Selection of a single crystal sample was made after checking for complete extinction in orthoscopic projection under a Leitz-Wetzlar polarizing microscope. The desired crystal face was found after locating the crystal axes under conoscopic examination. The chosen samples were chopped up along cleavage planes using thin razor blades, and polished by hand to the required thickness first on fine emery-paper and then on Kleenex tissues or lens tissues soaked in ethanol water mixture (1:1). The crystal thickness and the concentration of anthracene were adjusted so that the optical density of the 389 cm⁻¹ Og fundamental mode in b polarization was about 0.5 - 1.5 at room temperature. This range of the optical density was chosen to detect the various lines of different The concentrations of the mixed crystals were $0.993 - 8.00 \times 10^{-4} \text{M/M}$ and the full thickness range available (about 0.2 mm to 2 mm) was used. The thinner crystals were prepared by mounting a larger single crystal with correct axis alignment in a brass ring packed with plaster of Paris. The samples were carefully ground and polished after the plaster of Paris had set. Before the final polish the packing around the thin crystal protected it from breakage. method produced crystals of about the same thickness as the ring. Large single crystals of fluorene were easier to grow than biphenyl crystals. #### Measurement of the Spectra #### Apparatus It was important to work at a sufficiently low temperature to resolve the vibrational structure. Liquid helium (4.2°K) and liquid nitrogen (63°K and 77°K) were used as refrigerants. The biggest problem in taking spectra at low temperature is to ensure good thermal contact between sample and refrigerant. Some liquid cements or nail polish (35) have been recommended for this purpose. Silicone grease, rubber cement (36), nail polish and GE 7031 cement were used in the work at 4.2°K. GE 7031 cement gave the best results since the lines were sharpest (width 4 cm⁻¹ for an average line in n-heptane). For the work at 4.2°K the crystal was attached to a copper disc with GE cement and the disc was secured firmly to the inner helium can. The brass solution cell (Figure 1) for n-heptane and n-hexane were attached with bolts and GE 7031 cement to ensure a good thermal contact between the cell holder and copper helium can. The n-heptane and n-hexane solutions were also studied at liquid nitrogen temperatures using the cells shown in Figure 1. The solution was syringed into the cell through a small hole that was later sealed with a small lead ball held under pressure against the opening by a spring strip. The two quartz windows were sealed with indium 0-rings. Temperatures lower than 77°K were obtained by pumping on the liquid nitrogen, the temperature being estimated by measuring the nitrogen vapour pressure. The temperature was reduced in this way to about 63°K, the triple point of nitrogen, and this temperature was maintained for about 50 minutes before the nitrogen was completely pumped off. Some spectra at 77°K were obtained using the apparatus shown in Figure 1. The sample was placed in the spade-shaped inner silica cell and frozen by immersion in liquid nitrogen. Resistance wire was wound in a coarse spiral around a silica dewar to avoid frosting. In this arrangement the light had to traverse both the polycrystalline sample and the liquid nitrogen around the cell. #### Measurement of the Lines All low temperature spectra in this thesis were obtained using a Hilger and Watts E 201 large Littrow spectrograph. The source for absorption and emission spectra was a high pressure Xenon lamp (Asram XBO
162). Kodak 103 a-0, 103-F and III-F spectroscopic plates were subjected to a wide range of exporsures to bring out all the lines in optimum contrast and were processed in the manner recommended by the manufacturers. The plates were enlarged by a factor of about ten on to high contrast photographic paper (Ilford Bromide - B 3 26 K and Kodabromide A5) and the spectral lines were measured from the prints by interpolation or extrapolation using nearby iron standard lines (37). Distances between lines were measured to an accuracy of about 0.1 mm by means of a precisely engraved ruler or a travelling microscope. An error of about 1 cm⁻¹ was introduced by these measuring methods for even the sharpest lines. Kayser's table (38) was used to convert the wavelengths in air to the wave numbers in vacuum. #### RESULTS In Figures 2 to 7, original prints used for line measurement and sketches roughly indicating the relative line intensity are shown both in n-heptane (4.2°K) and in fluorene matrices. More precise energy values are tabulated in Tables 4 and 5 for the fluorescence and absorption spectra, respectively. The numbering in the figures correlate with those in the tables, separately for the fluorescence and absorption data. Some dotted lines in Figure 4 indicate spectral lines which were found only in special samples and whose intensities relative to other lines are not known. Not all the impurity lines for the fluorene matrix are shown; these extra lines probably arise from fluorene itself and/or some impurity such as carbazole or phenanthrene. Table 6 shows absorption lines arising from the fluorene matrix at 4.2°K. - (a) fluorene 11 b(M) - (b) n-heptane - (c) fluorene IIc(L) FIG 4 RELATIVE INTENSITIES OF THE LINES IN FLUORESCENCE Table 4 Fluorescence Spectra of Anthracene in Various Matrices | | bipheny | l,a.4.2°K
llL (g) | n-
hexane
77°K | fluorene, | 4.2°K
11L (g) | n-hep-
63,77°K | tane
4.2°K | remarks b. | |---|---------------------|----------------------|----------------------|--|---|-------------------|-------------------|------------------------| | 1
2
3
4
5
6
7
8
9
10 | | | | -2744
-2446
-2154
-1814
-1600
- 809
- 282
- 226 | -2744
-2446
-2154
-1814
-1600
- 809
- 282
- 226
- 164 | | - 166 | | | 11
12
13
14 | 26056 | 26056 | 26498 | 25975 | - 131
- 46
25975
16
51 | 26247 | 26211 | 0-0, origin | | 15
16 | 136
184 | 136
184 | | 148
196 | · | | 179
214 | | | 17
18
19
20 | 406
466 | 406
466 | | 396
429
4 7 1 | 398 | 398 | | 394-25
394, ag | | 21
22
23 | 532 | 532 | | 527 | | | 510
553
575 | 510, ag? impurity | | 24
25
26 | 620
6 7 5 | 620
675 | | 621
670 | 625
670 | 627 | | 629, ag | | 27
28
29 | 754 | 754 | | 755 | 755 | 763 | 734
759 | 759, ag | | 30
31 | 795 | 7 95 | 794 | 794
828 | 792 | 792 | 778
787 | 2x394-1 | | 32
33 | 880 | 880 | | 870
894 | | | 874 | | | 34
35
36 | 962 | 905
962 | | 950 | 917 | | 911 | 911, b3g | | 36
37 | 1025 | 1025 | | 1019 | 1022
1052 | 1021
1044 | | 1020, ag
1045, b3g? | | 38 | | | | 1130 | | ⊸ - 1 T | 1141 | 394+759-12,
FRd | | 39 | 1173 | 1173 | 1177 | 1175 | 1175 | 1169 | 1163 | 1163, ag | Table 4 continued | | | ,a.4.20K | n- | Fluorene, | 4.2°K | n-hep | | remarks b. | |----------------------------|------------------|------------------|----------------|----------------------|------------------------------|---------|----------------------|--| | | 11M (<u>b</u>) | TTT (<u>C</u>) | hexane
77°K | llM (b,a) | TTP (G) | 63,770K | 4.20K | | | 40
41 | | 1193 | | | 1186 | 1194 | 1180
1233 | 1180, b3g
2x616 (b2u)
+ 1? | | 42
43
44 | 1244 | 1244 | 1272 | 1268 | 1268 | 1267 | 1257
1267
1283 | 2x629-1,FR
1267, ag | | 45
46 | · | 1269 | | 1305
1356 | 1305
1356 | | 1305
1340 | 394+911 | | 47
48
49 | 1414
1454 | 1414
1454 | 1415 | 1411
1442 | 1411
1442 | 1413 | 1383
1409
1431 | 1409-25-1
1409, ag
629+2x394
+14,FR | | 50
51
52
53
54 | 1516 | 1516 | | 1484
1501 | 1484 | | 1516
1538
1652 | ?e 2x759-2 1568-25-5 394+1163+5 | | 55
56
57
58 | 1559
1620 | 1559
1620 | 1567
1699 | 1562
1598
1640 | 1562
1597
1640
1675 | 1568 | 1568
1639
1660 | 1568, ag 1639, b3g 1660, b3g | | 59
60
61 | | | | | 1706 | | 1715
1736
1781 | 2x394+911-16
629+1163-10;
759+1020+2;
394+1409-25
+3 | | 63
64 | 1810 | 1810 | 1809 | 1806
1826
1848 | 1806 | 1808 | 1803 | 394+1409
? | | 65
66
67
68 | 1877 | 1877 | | 1877
1906
1922 | | | 1888
1910
1924 | 629+1267 - 8
394+2x759 - 2
759+1163 - 2 | | | 1962 | 1962 | 1963 | 1957 | 1957 | 1963 | 1960
1996 | 394+1568-2
? | | 71
72
73 | 2039 | 2039 | 2037 | 2030
2061 | 2030
2061 | 2037 | 2033
2049
2072 | 394+1639
394+1660-5
510+1568-6,? | | 74
75
76 | | | | 2160 | 2100 | | 2124
2163 | 759+1409-5 | Table 4 continued | | | l,a.4.20K
llL (<u>e</u>) | | Fluorene, llM (b,a) | 4.2°K
11L (<u>c</u>) | n-hep
63,770K | | remarks b. | |------------------------------|----------------------|-------------------------------|------|---------------------|---------------------------|------------------|------------------------------|---| | 77
78 | 2202 | 2202 | | 2193
2237 | 2198 | 2204 | 2195 | 2x394+1409-2 | | 79
80
81 | | | | 2286
2322 | | | 2270
2290
2329 | 629x1639+2
1020+1267+3
759+1568;
2x1163+3 | | 82
83 | 2340 | 2340 | | 2352 | 2354 | | 2358
2399 | 2x394+1568+2
759+1639+1 | | 84
85 | 2435 | 2435 | | 2427 | 2427 | 2435 | 2426
2502 | 1020+1409-3 | | 86
87
88
89 | 2587 | 2587 | 2577 | 2523
2580 | 2523
2580
2594 | 2572 | 2523
2571
2591
2637 | 2x1267-11
1163+1409-1
1180+1409+2
1020+1639-22 | | 90
91 | 2681 | 2681 | 2671 | 2737 | 2729 | 2677 | 2669
2730 | 1267+1409 - 7
1163+1568 - 1 | | 92
93 | 2828 | 2819
2828 | 2821 | 2815 | 2815 | 2819 | 2753
2818
2831 | 1180+1568+5
2x1409
1267+1568-4 | | 94
95
96
9 7 | 2906 | 2906 | | 2897 | 2897 | 27% | 2894
2905
2923 | 1267+1639-12
1267+1660-4;
2x759+1409-4 | | 98 | 2978 | 2978 | 2967 | 2966 | 2965 | 2973 | 2969 | 394+2x1267-5
1409+1568-8;
394+1163+
1409+3 | | 99
100
101 | 3047 | 3047 | | 2999
3050 | 2999
3050 | 3041 | 3043
3064 | 1409+1639-5
394+1267+
1409-3 | | 102
103
104 | 3122 | 3122
3220 | | 3084
3131 | 3084
3131
3199 | 3136 | 3090
3129 | 3090, ag?
2x1568-7
1568+1639 | | 105 | 3205
32 73 | 3273
3303 | | 3211 | | 3212 | 3208
3271
3301 | 394+2x1409-4
2x1639-7
629+1267+ | | 108 | 3359 | 3359 | | | | 3365 | 3363 | 1409-4
394+1409+
1568-8;
2x394+1163+ | | 109 | 3425 | 3425 | | 3434 | 3440 | 3450 | 3438 | 1409+3
629+2x1409-9
394+1409+
1639+4 | Table 4 continued | | | l,a.4.2°K
11L (c) | Fluorene
11M (b,a) | | n-hep-
63,77°K | | remarks b. | |------------|-----------------------|----------------------|-----------------------|-------|-------------------|---------------|--| | | 3492
35 7 9 | 3492
3579 | 3521
3598 | 3598 | | 3526
3596 | 2x394+2x1409
-11;
629+1409+
1568-11;
2x394+1163+ | | 112 | | | | | | 3732 | 1409+4
759+1409+
1568-4;
911+2x1409+3
394+759+1163 | | 113 | 3778 | | 3756 | 3758 | | 3754 | +1409+9
2x394+1409+ | | 114 | 3841 | | 3838 | 3838 | | 3833 | 1568 - 13
1020+2 x 1409- | | | 3935
3992 | | 3912
3984 | | | 3978 | 5
1163+2x1409
-3,?;
1020+1409+ | | 117 | 4087 | | 4080 | | | 40 7 5 | 1568-19
1267+2x1409
-6 | | 118 | | | | | ١ | 4125 | 394+1409+
2x1163-4 | | 120
121 | 4164
4246 | | 4138
4222
4301 | | 4228 | 4297 | 3x1409-3 | | | 4398 | | 4372 | 4.450 | 4379 | 4372 | 1568+2x1409
-14 | | 123 | | | | 4450 | | 4449 | 1639+2x1409
-8 | | 124 | | | 4524 | 4524 | | 4524 | 1409+2x1568
-21 | | 125 | | | 4600 | | | 4605 | 394+3x1409
-16 | | 126 | | | 4692 | 4681 | | 4696 | 394+1267+
1409+1639+7 | | 127 | | | 4765 | 4757 | | 4767 | 394+1568+
2x1409-13;
2x1568+1639
-8
2x394+1163+ | | 128 | | | 4832 | | | | 2x1409-2 | #### Table 4 continued - a. Crystal axes are shown in brackets while M and L show molecular short and long axes, respectively. - b. Assignments are made using the data from the n-heptane spectrum. - c. The origins in the different matrices are given in cm⁻¹, and all the other entries in the table show differences from the origin. - d. (FR) Fermi resonance. - e. Doubtful in its appearance. - (a) fluorene || b (M) - (b) n-heptane - (d) fluorene II c (L) FIG 7 RELATIVE INTENSITIES OF THE LINES IN ABSORPTION Table 5 Absorption Spectra of Anthracene in Various Matrices | | biphe | | | fluore | ene, | n- | -heptar | ne | | b. | |--|------------------------------|-----|----------------|----------------------|------|-------------|---------------|--|--|-------------------| | | a. 4.
11M
(<u>b</u>) | | hexane
770K | 4.20
llM
(b,a) | llL | 770K | 63 9 K | 4.2°K | remarks | | | 123456 7 89 | | • | - 136 | | | | | -154
-144
-127
-112
- 92 | | | | 6
7 | | | | - 73 | | | | - 80
- 73 | | |
 10
11
12
13 | 26056 | | 26498 | 25975
29 | | 26247
24 | 26239
24 | 25
4 7
70
85 | 0-0, ori
25, latt
2x25-3?; | ice | | 14
15
16
17
18 | | | | | | | | 105
118
133
146
178
187 | | | | 19
20
21
22 | | | 253 | 219 | | | | 211
229
236
254 | | | | 23
24
25 | | | 299 | 273 | | | | 262
279 | | | | 26
27 | | | | 317 | | | | 299
316 | | | | 28
29
31
33
34
36
37 | 391 | 385 | 389 | 392
422 | 385 | 387 | 389 | 340
351
389
410
420
436
457
464 | 389, ag
389+25-4
2x211-2
389+2x25 | FR ^u ? | | 38
39
40
41 | | | • | 523 | | | | 474
484
521
531
539
553 | | | | 42
43 | 583 | | 581 | 585 | | 590 | 589 | 566
590 | 590, ag | | Table 5 continued | | ···· | | | | | | | · | |----------------------------|----------------------|--------------|--------------------|-------|------------|---------------|---------------------------------|---| | | biphenyl
a. 4.20K | n-
hexane | fluor | | n-l | neptan | е | remarks b. | | | llM llL
(b) (c) | 77°K | | 11L 7 | 770K | 63 ° K | 4.2°K | | | 44 | | | 610 | | | | 616
628 | 590+25+1 | | 45
46
47
48 | | | 652 | | | 658 | 663
687
703
709 | 663, ag? | | 49
50
51
52
53 | 735
778 | 729
773 | 733
780
812 | | 740
777 | 740
780 | 744
779
798
809
823 | 744. ag
2x389+1
2x389+25-5
389+2x211-2 FR? | | 55
56
57 | | | 8 36
859 | | | | 840
857
871 | | | 58
59 | | 882 | | 891 | 890 | 892 | 894
918 | 894,b3g | | 60
61 | | | | 927 | | | 926
941 | | | 62
63 | . (| | 977 | | | | 955
979 | 389+590 | | 64
65
66
67 | 1024 | 1023 | 1028
1055 | | | 1027
1062 | 1005
1030
1057
1084 | 2x211-7 FR?
1030, ag
389+663+5, FR? | | 68
69 | | | 1096 | | | | 1102
1126 | | | 70
71
72
73 | 1158 | 1152 | 1169 | 1166 | | 1143
1160 | 1135
1157
1166
1190 | 389+744+2
1157, ag
1166, b3g | | 74
75 | | | 1199 | 1199 | 9 | ě | 1199
1213 | 11L:1166+24+9 | | 76
77 | | | 1239 | | | | 1247
1266 | 1247, ag? | | 78
79
80 | | | 1311 | 1285 | 5 | | 1283
1297
1304 | 389+894 | | 81
82
83 | | | | | | 1327 | 1318
1338
1354 | 2x663-8?
590+744+4, FR? | | 84
85
86 | 1391 | 1386 | 1396
1422 | | 1396 | 1397 | 1374 | 590+2x389+6, FR
1399, ag
389+1030-1, FR | Table 5 continued | | biphe | | | fluor | | n- | -hepta | ne | , | |------------------------|------------------------------|---|----------------|---------------------------------------|--------------|------|----------------------|----------------------|--| | | a. 4.
11M
(<u>b</u>) | | hexane
77°K | 4.2
11M
(<u>b</u> , <u>a</u>) | 111 7 | 77°K | 63°K | 4.2°K | remarks b. | | 87
88 | | | | | 1443 | | 1427 | 1431
1447 | 1399+25+7, FR | | 89
90 | | | | 1467 | | 1458 | 1463
1482 | 1464
1480 | 111:1464, b3g
590+894-4, FR | | | 1496 | , | 1491 | 1498
1532 | 1 437 | 1498 | 1504 | 1503
1533 | 1503, ag
744+2x389+11, FR; | | 94 | 1541 | | 1554 | 1555 | 1560 | 1547 | 1551 | | 1503+25+5
389+1157+1
389+1166+4 | | 95
96
9 7 | | • | | | | | 1601 | 1578
1604
1619 | 389+1157+25+7
590+1030 - 1 | | 98
99 | | | | | | | | 1641
1658 | 389+1247+5? | | 100
101
102 | | | | |] | L591 | 1699 | 1700
1720
1727 | 663+1030+7 ?
389+2x663+5 ? | | 103
104 | | | | | _ | | 7.570.0 | 1749
1785 | 590+115 7 +2
2x894-3 | | 105
106 | | | 1779 | 1783 | _ | 1786 | 1789 | 1788
1809 | 389+1399
2x389+1030+1;
389+1399+25-4 | | 107
108 | | | | 1814 | | | | 1822
1834 | 663+1157+2, FR?
663+3x389+4? | | 109 | 1890 | | 1880 | 1860
1892
1917 | 1853 | | 1860
1893 | 1855
1885
1917 | 389+1464+2
389+1503-7 | | | 1935 | | 1932 | 1941 | | 1050 | 1971 | 1936
1963 | 2x389+1157+1 | | | 1979 | | | 1978
2006 | | | 1990 | 1993
2008 | 590+1399+4 | | | 2048 | | 2035 | 2056 | | 2052 | 2051
2094 | 2051
2071
2112 | 2x1030-9
663+1399+9?
2x389+2x663+8? | | 119
120 | 2128
2178 | | 2171 | 2176 | | | 2141
2181 | | 744+1399-2
2x389+1399+1 | | | 2243 | | | 2202 | | 2248 | 2225
2256
2287 | 2220
2254
2285 | 389+663+1157+6
744+1503+7
2x389+1503+4 | | | 2322 | | 2276
2321 | | 2286 | | | 2296
2319 | 894+1399+3
2x1157+5 | | 127 | | | | | 2336 | 2770 | 2331 | 2329 | 1157+1166+6 | Table 5 continued | | biphenyl n-
a. 4.20K hexane | | | fluor | | | n-hept | ane | | |---------------------------------|--------------------------------|------|---------------|--------------------------------|---------------------|----------------------|----------------------|--------------------------------------|---| | | a. 4.
11M
(<u>b</u>) | | 770K | 11M
(<u>b</u> , <u>a</u>) | 11L
(<u>c</u>) | 7 7 °K | 63°K | 4.2°K | remarks | | 128
129
130 | | | | | | | 2348 | 2347
2378
2404 | 389+590+1399
1157+1247?;
894+1503+7? | | 131
132
133
134
135 | 2481 | 2416 | , | 2422
2555 | 2425
2482 | 2426
2449 | 2428
2458 | 2428
2457
2490
2508
2533 | 11M:1030+1399-1?
389+663+1399+6?
1030+1464-4
389+663+1464-8?
1030+1503 | | | 2560 | | 2548 | 2561 | 2561 | 2560 | 2562 | 2559 | 11M:1157+1399+3;
11L:1166+1399 | | 137
138 | | | | 2637 | 2623
2637 | 2607 | 2617 | 2620
2638 | 1157+1464-1
11M:389+744+1503+2:
11L:3x389+1464-7? | | 139
140 | | | 2650 | 2665 | 2668 | 2655 | 2665 | 2648
2660 | 1247+1399+2?
11M:1503+1157
11L:1503+1167+1 | | 142 | 2710 | | 2715 | 2701 | 2729 | | | 2720 | 389+1157+1166+8 | | 143
144
145
146 | | | | 2751
2783
2816 | | 2728
2796 | 2730
2800 | 2734
2798
2818 | 590+744+1399+2, FR
2x1399
389+1030+1399;
2x1399+25-5 | | 147 | | | | | 2055 | 0063 | 0067 | 2832 | 663+2x389+1399+8?;
2x389+894+1157+4? | | | 2893
2941 | | 2886
2947 | 2890
2945 | | 2861
2897
2947 | 2863
2901
2955 | 2864
2900
2954 | 1399+1464+1
1399+1503-2
111:1464+1503-11;
11M:389+1399+1157+ | | | 2964
3 0 07 | | | 2978 | 3022 | | 3010 | 2954
3004
3020 | 2x744+1503, FR
2x1503-2
389+1157+1464+10 | | | 3039 | | | 3053 | 3057 | | 3052 | 3048 | 11M:389+1157+1503+
11L:389+1166+1503- | | 155 | | | | | | | | 3081 | 3x1030-9;
2x389+2x1157-11 | | 156
157
158
159 | 3174 | | 31 7 8 | 3176 | 3126
3191 | 3187 | 3189 | 3100
3119
3152
3193 | 2x389+1157+1166-1
C-H stretch, b3g?
590+1157+1399+6
11M:389+2x1399+6
11L:389+590+744+14 | | 160 | | | | | | | | 3212 | +6
2x389+1030+1399+5 | Table 5 continued | | | | | | | | · | | | |------------|----------------------|------------|---|--------------|---------------------|-------------|--------------|---|------------------------------------| | | biphenyl
a. 4.20K | | n-
hexane | exane 4.20K | | | n-hept | tane | | | | 11M
(<u>B</u>) | 11L
(c) | 77°K | 11M
(b,a) | 11L
(<u>c</u>) | 77°K | 630K | 4.20K | remarks | | 161 | | • | | | | | | 3227 | 389+590+744+1503+1 | | 162 | | | | | 3248 | 3254 | 3258 | 3264 | 389+1399+1464+12 | | 163 | 3283 | | 3277 | 3280 | | 3288 | 3292 | 3293 | 389+1399+1503+2 | | 164 | 3333 | | 3339 | 3340 | | 3342 | 3345 | 3348 | 2x389+1164+1399+7? | | 165 | | | | 3365 | | | 3389 | 3384 | 590+2x1399-4 | | 166 | | | | _ | | | | 3394 | 389+2x1503-1 | | 167 | | | | 3416 | | | | 3414 | 744+1157+1503+7 | | 168 | | | 3433 | 3443 | | 3446 | 3439 | | 2x389+1157+1503+4 | | 169 | | | | 3476 | | | ~500 | 3460 | 1399+2x1030+1 | | | 3565 | | 3569 | 3564 | | 3573 | 3580 | | 2x389+2x1399-3 | | 171 | | | | 7600 | | | | 3588 | 1030+1157+1399+2 | | 172 | | | | 3602 | | | | 3609
3674 | 590+2x1503+13 | | 173 | | | | 7660 | | | 76E 4 | 3634 | e
744.1700.1507.2 | | 174 | | | 7666 | 3668 | | 7670 | | 3648 | 744+1399+1503+2 | | 175 | | | 3666
3718 | 7710 | | 3678 | 2000 | 3678 | 2x398+1399+1503
1399+2x1157+1 | | 176
177 | | | 5110 | 3718
3750 | | 3723 | 3737 | 3 714 | 3x389+1157+1399+8 | | 178 | | | 3813 | 3804 | | 3823 | | 3826 | 1030+2x1399-2; | | 110 | | | .)(1) | J004 | |)02) | 7027 | 7020 | 1503+2x1157+9? | | 179 | | | | 3838 | | 3858 | 3857 | 385 3 | 389+663+2x1399+3? | | 180 | | | | | | | ١٠٠١ | 3886 | 1030+1399+1464-7? | | 181 | | | | | | | | 3903 | 1157+1247+1503-4? | | TOT | | | | | | | | | 894+2x1503+3? | | 182 | | | | | | | | 3922 | 1030+1399+1503-10; | | | | | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 389+744+2x1399-9? | | 183 | 3955 | | 3944 | 3948 | | | 3968 | 3955 | 1157+2x1399 | | 184 | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | 3985 | 389+1030+1166+1399+1; | | • | | | | | | | | | 389+1030+1157+1399+10 | | 185 | | | | | | 4013 | | 4017 | 1157+1399+1464-3 | | 186 | | | | | | | 4035 | 4030 | 1030+2x1503-6 | | 187 | | | 4042 | 4066 | | 4058 | 4073 | | 1157+1399+1503 - 4 | | 188 | | | | 4097 | | | | 4100 | 389+1399+2x1157-2 | | 189 | | | 4108 | 4117 | | 4118 | 4134 | | 1157+1464+1503-6 | | 190 | | | | 4149 | | | | 4160 | 1157+2x1503-1 | | | 4177 | | 4180 | 4172 | | 4197 | 4199 | | 3x1399-2 | | 192 | | | | 4198 | | | | 4214 | 389+1030+2x1399-3; | | | | | | | | | | 4000 | 389+2x1157+1503+8 | | 193 | | | | | 4005 | 4000 | 4007 | 4227 | 663+2x389+2x1399-12? | | 194 | 4000 | | 4050 | 4000 | 4225 | 4262 | | | 1464+2x1399+3 | | | 4280 | | 4278 | 4280 | | | 4301
4352 | | 1503+2x1399-4
389+1157+2x1399-7 | | | 4328 | | 4339 | 4327 | 1760 | 4249 | 4774 | 4フフエ | 392+1166+2x1396+18 | | 197 | | | | | 4368
4388 | | | 4380 |
1399+1464+1503+14 | | 198 | | | | | 4)00 | | | 4700 | エフフライエキロキイエフロフイエキ | Table 5 continued | | biphenyl
a. 4.20K | | n- | fluor | | n- | -hepta | ane | | |--------------------------|-----------------------------|------------|----------------|----------------------|------------|------|--------|------------------------------|---| | | a. 4
11M
(<u>b</u>) | 11L
(c) | hexane
770K | 4.20
11M
(b,a) | 11L
(c) | 77°K | 63°K | 4.20K | remarks | | 199 | | | 4433 | 4438 | | | 4447 | 4446 | 389+1157+1399+1503+2;
389+1166+1399+1503-7? | | 200
201 | | | 4572 | 4515
4552 | | 4505 | | 4509
4545 | 3x1503
389+1157+2x1503 - 7 | | 202
203 | | | 4572 | 4582
4630 | 4630 | | 4589 | 4584
4655 | 389+3x1399-2
389+1464+2x1399+4 | | 204
205 | | | 4668
4723 | 4667
4700 | 4000 | 4684 | | 4683 | 389+1503+2x1399-7
2x389+1157+2x1399+6;
2x389+1166+2x1399-3 | | 206
207 | | | | 4829 | | | | 4832
4890 | 2x389+1157+1399+1503-5
389+3x1503-8;
590+1503+2x1399-1 | | 208
209 | | | | | | | | 4973
5047 | 2x389+3x1399-2
2x389+1464+2x1399+7;
744+1503+2x1399+2 | | 210
211 | | | | | | | | 5076
5126 | 2x389+1503+2x1399-3
2x1157+2x1399+14?;
1157+1166+2x1399+5 | | 212 | | | | | | | | 5227 | 1157+1100+2x1599+5
1030+3x1399;
1030+1503+2x1399-4;
1399+1503+2x1157+11?
1157+1166+1399+1503+2? | | 213 | | | | | | | | 5366 | 1157+3x1399+12;
1166+3x1399+3 | | 214
215
216 | | | | | | | | 5417
5437
5458
5522 | 1157+1464+2x1399-2;
1247+3x1399+7?
1157+1503+2x1399
1157+1399+1464+1503-1 | | 217
218 | | | | | | | | 5567 | 1464+3x1399+6;
1157+1399+2x1503+5? | | 219
220 | | | | | | | | 5596
5672 | 4x1399
1157+3x1503+6; | | 207 | | | | | | | | 5684 | 1464+3x1399+11
1503+3x1399 - 16 | | 221
222 | | | | | | | | 5741 | 389+1157+3x1399-2;
389+1166+3x1399-11? | | 223 | | | | | | | | 5825 | 389+1166+1464+2x1399+8
389+1157+1464+2x1399+
17 | | 224
225
226
227 | | | | | | | | 5846
5910
5983
6053 | 389+1157+1503+2x1399-1
1399+3x1503+2
389+4x1399-3
389+3x1399+1464+3 | Table 5 continued | bipheny
(a. 4.201
11M 111
(b) (c | L hexane | fluorene,
4.2°K
11M 11L
(b,a) (c) | n-heptane
77°K 63°K 4.2°K | remarks | |---|----------|--|------------------------------|--| | 228
229 | | | 6084
6135 | 389+1503+3x1399-5
2x389+1157+3x1399+3;
2x389+1166+3x1399-6 | - a. Crystal axes are shown in brackets while M and L show molecular short and long axes, respectively. - b. Assignments are made using the data from the n-heptane spectrum. - c. The origins in the different matrices are given in ${\rm cm}^{-1}$, and all the other entries in the table show differences from the origin. - d. (FR) Fermi resonance. - e. This line is doubtful. Table 6 Absorption Spectrum of Fluorene at 4.20K $^{\rm a}\cdot$ | ` | llM (<u>b</u>)b. | 11L (c) | | 11M (<u>b</u>) | 11L (g) | | llM (b) | 11L (g) | |-------------------------------------|---|---|--|---|---|--|---|--| | 12345678901234567890123456789012343 | 31182
31256
31290
31318
31363
31377
31409
31439
31517
31520
31524
31550
31619 | 31062
31080
31130
31141
31157
31190
31230
31255
31264
31290
31299
31319
31319
31319
31410
31417
31478
31478
31478
31478
31512
31524
31548
31584
31656
31656
32766 | 5678901234567890123456785
123456785 | 31665
31666
31695
31716
31742
31795
31809
31857
31863
31919
31959
31984
32005
32066
32086
32109
32130
32148
32154
32206
32805 | 31668
31696
31738
31750
31813
31835
31844
31857
31860
31892
31902
31928
31956
31961
31967
31992
32001
32017
32049
32082
32110 | 690
772
777
777
778
888
888
888
899
999
999
990
100
100
100
100 | 32219 32246 32254 32274 32298 32319 32367 32381 32394 32420 32433 32455 32455 32455 32569 32569 32569 32569 32569 32569 32569 32619 32752 32761 32752 32761 32761 32761 | 32230
32262
32323
32359
32385
32398
32455
32480 | | 104 | 32787 | | 106 | 32815 | | 108 | 32858 | | a. The frequency of each line is given in cm⁻¹. b. Crystal axes are shown in brackets while M and L show molecular short and long axes, respectively. ### DISCUSSION ### Fluorescence Spectra ### Fundamental Modes Spectral lines in fluorescence may arise from anthracene molecules, molecules of the matrix or some other impurity molecule. Unknown impurities present a real problem in fluorescence spectroscopy since a very small trace of impurity (as low as 10^{-6}M) can make a large contribution to the overall emission. Lines due to fundamental modes of anthracene may be distinguished from other emission lines since only these form combinations built on the origin and the origin can be assigned from the absorption spectrum. On the basis of their intensities, polarization and ability to form combinations eight as fundamental modes of the 'As electronic state were assigned: 394, 629, 759, 1020, 1163, 1267, 1409 and 1568 cm⁻¹. Theoretically twelve as fundamentals are predicted for anthracene and among them three due to C-H stretches appear in the region of 2900 - 3100 cm⁻¹ (39). So below 2000 cm⁻¹ nine as modes should be found. From their intensity and polarization behaviour either 510, 874 or 1340 cm⁻¹ may be selected as this ninth as fundamental. Among these 510 and 1340 cm⁻¹ modes appeared one and four times respectively in combination with known 4 modes while 874 cm⁻¹ did not appear at all. From this point of view, the ninth fundamental is most probably the line at 1340 cm⁻¹ with the line at 510 cm⁻¹ preferred next. However, 1340 cm⁻¹ did not appear in biphenyl while the other two did. Further, Raman data (31) shows 522 cm^{-1} as a_{3} in anthracene crystal and in solution which is probably close enough to our 510 cm⁻¹. No lines corresponding to the other two vibrations were found in the Raman. Thus although no definite assignment could be made for the ninth a_3 fundamental, the line at 510 cm⁻¹ seems to be the most probable contender if emphasis is placed on its appearance in the Raman spectra. The other two must be interpreted as impurity lines, or by belonging to the electronic state if for some reason fluorescence appears from a $^{1}B_{20}$ origin. 3090 cm $^{-1}$ may be assigned as an fundamental due to C-H stretching since it does not analyse as a combination line, it agrees with previous empirical data (39) and it has the expected polarization. However, 3526 cm⁻¹ is probably too high to be assigned as an ag C-H stretching frequency. Five by fundamentals were found for the 'Aq electronic ground state at 911, 1045, 1180, 1639 and 1660 cm⁻¹. They were usually weaker in intensity than the Aq modes and so detection of combinations was difficult. However, combinations involving all modes except 1045 cm⁻¹ were found. The by assignment rests primarily on polarization data (i.e., all these lines appeared more strongly in the c direction of the fluorene matrix). The modes at 1180 and 1639 cm⁻¹ agreed closely with Raman data (31). Although the 1045 cm⁻¹ mode did not combine with other fundamentals, it is tentatively assigned as a by fundamental since it is close to the 1012 cm⁻¹ by fundamental observed in the Raman spectrum (31). ### Fermi Resonance Three possible examples of Fermi resonance were observed in fluorescence (Table 7). All of these occured near strong a_{\S} fundamentals as expected. In set (a) energy shifts of those two lines were found, in set (b) intensity transfer was more significant, while in set (c) both intensity and energy were affected strongly. Table 7 Possible Examples of Fermi Resonance in the Fluorescence of Anthracene | set | line No. | in n-heptane | in fluorene | in biphenyl | |-------------|----------|-------------------|-------------------|-------------------| | (-) | 38 | 1141=394+759-12 | 1130=396+755-21 | | | (a) | 39 | 1163 ag | 1175 ag | | | (Ъ) | 42 | 1257=2x629-1 | | | | (b) | 43 | 1267 ag | | | | (0) | 48 | 1409 ag | 1411 ag | 1414 ag | | (c) | 49 | 1431=2x391+629+14 | 1442=2x396+621+29 | 1454=2x406+620+22 | ### Other Features If errors of measurement due to line broadening (see lines 59, 86 and 95) are taken into account, the combinations suggest the usual diatomic type of potential curve, which is anharmonic in high quantum region. Combinations of four fundamentals represented the most complex lines observed in our spectra and these
were perhaps beginning to show anharmonicity of the 'A₃ potential surface. However, the potential surface was surprisingly harmonic for such a large polyatomic molecule. The origin and the 25 cm⁻¹ lattice mode built on the origin did not appear in fluorescence and this can be explained in terms of reabsorption of the emission. Both of these lines appeared strongly in absorption. Theoretically, fundamental modes of any symmetry species may combine provided that the combination has the symmetry a_0 or b_{30} . In practice, combinations of this general type do not appear. However, line 41 at 1233 cm⁻¹ might be interpreted as the overtone of the b_{20} mode at 616 cm⁻¹ observed in the infra-red (32); no combination of the observed a_0 and a_{30} can account for this line, although the possibility of arising from impurity must be considered. Some lines appeared, which could not be assigned in terms of the observed **A3** and **b3** fundamentals. These may be separated into two kinds: (i) lines which appeared in only one of the four matrices, and (ii) lines which appeared in more than one matrix. The lines belonging to (i) may arise from impurities in the matrix or from the host molecule. Further if we assume a "solvent" shift of the 'Bau - 'Ag origin different from that of the $B_{10} \leftarrow A_{g}$ origin, then the unexplained lines could be interpreted as ground state vibrational modes from a 'Bau upper electronic state. Phenanthrene, carbazole and acridine are possible impurities in the matrices, fluorene and biphenyl because they are isomorphic with those impurities. Phenanthrene (41) (42) and carbazole (43) fluoresce near the origin of anthracene. Since acridine does not fluoresce in its crystal state or in organic solvent (44) at least at room temperature and since its fluorescence spectrum is to the red of the anthracene spectrum (44), the presence of acridine is not important in the analysis of fluorescence. In general if a line appears only in a special matrix and if the intensity relative to the other common lines differs over a number of samples. it may be taken as an impurity line. In this sense only line 22 at 533 cm⁻¹ apparently arose from some impurity. Since the spectra of phenanthrene and carbazole measured under the same experimental conditions as here are not available, the precise assignment of impurities is not possible at present. Fluorene fluoresces to the blue of the origin of anthracene (43) and the lines 1 and 2 probably form part of the fluorene fluorescence spectrum because they agree closely with the data taken at 77°K in n-heptane (43). Biphenyl does not fluoresce in this region (27) and neither do n-heptane nor n-hexane. The remaining possible interpretation of the lines (i) involved a transition from a 'B₂₀ upper state. If this is true, a somewhat similar intensity and energy separation to vibrational modes from the 'B₁₀ system should be observed. However, this was not so and this last possibility may be excluded. For the lines belonging to (ii) three possible interpretations may exist: impurities in anthracene, lines from the light source, and vibrational modes due to fluorescence from the 'Bau state assuming no "solvent" shift. As impurities in anthracen anthraquinone must be considered in addition to carbazole and phenanthrene, for the oxidation of anthracen could occur especially in the presence of light and oxygen. Anthraquinone vapour (45) fluoresces in the region $20,000 - 23,000 \text{ cm}^{-1}$. Thus the lines 115 and 121 could be due to anthraquinone, and the lines near the origin (9, 15, 16, 20 and 35) might arise from either carbazole or phenanthrene, but again precise assignment is impossible for the lack of data. If emission from the source appeared, the line must show the same energy independent of the matrix. From this point of view no lines arose from the common source Thus to account for the presence of the unassigned lines in the fluorescence spectra, the existence of some impurities must be claimed. ## Fundamental Modes of the 'Bu Upper State From a preliminary examination of their polarization, intensity and appearance in combinations, fifteen intervals may be chosen as fundamentals with energy less than 2000 cm⁻¹; e.g. eleven a fundamentals: 389, 590, 744, 1030, 1157, 1399, 1503, 663, 1057, 1247 and 1338 cm⁻¹, and four by fundamentals: 894, 1166, 1464 and 926 cm⁻¹. Since there can be only twelve a fundamentals in all and three are expected in the region of C-H stretching frequencies near 3000 cm⁻¹ there must be only nine a fundamentals below 2000 cm⁻¹. The first seven a fundamentals and the first three by fundamentals are assigned with certainty. Thus two more a fundamentals must be selected from the last four listed. The interval 3119 cm⁻¹ in n-heptane might be added as a by C-H stretching frequency. The line at 663 cm⁻¹ may be assigned as an **Qg** fundamental with some certainty although it did not appear in n-hexane or in biphenyl. No alternative explanation for it was possible, and many lines could be best interpreted as combinations involving 663 cm⁻¹ as an **Qg** fundamental. The line at 1057 cm⁻¹ was slightly stronger than 663 cm⁻¹ and appeared in n-heptane at 77°K while 663 cm⁻¹ did not. However, it was not so useful as 663 cm⁻¹ in interpreting combinations and 1057 cm⁻¹ could itself be interpreted as the combination (590+663) cm⁻¹ especially when the possibility of Fermi resonance between this combination and the strong as fundamental 1030 cm⁻¹ was considered. Thus 1057 cm⁻¹ was taken as a combination rather than an as fundamental. Both 1247 and 1338 cm⁻¹ could be taken as fundamentals or as the combinations 1247 = 590+663-6 and 1338 + 590+744+4; although the lines appeared to be too intense to be simple combinations. The line at 1338 cm⁻¹ was sufficiently close to the strongest line in the spectrum at 1399 cm⁻¹ for its intensity as a combination to be accounted for. However, the line at 1247 cm⁻¹ was more isolated from other strong lines so that, in this case, a Fermi resonance could not readily be assumed. Again the line 1247 cm⁻¹ appeared in the fluorene matrix while the other did not. Thus, on these grounds, 663 and 1247 cm⁻¹ are tentatively assigned as as fundamentals and added to the previous list of seven. As a $_{24}$ fundamental 926 cm⁻¹ is quite doubtful, however the alternative explanation (894+25+7) is also doubtful, and the line at 2428 cm⁻¹ could be accounted for as a combination of 926 and 1503 cm⁻¹ (long axis polarized). The combination of 926 cm⁻¹ with the stronger a_{3} fundamental at 1399 cm⁻¹ could not be found since it was hidden beneath the combination 2329 = 1157+1166+6. # Comparison of the Fundamentals on the 'As and on the 'Bru Electronic States All possible fundamentals of anthracene in the ground and in the excited state 'Biu are summarized in Table 8. For the fundamentals which have been assigned with certainty, a correspondence between each fundamental at the two electronic states have been observed both in energy value and intensity. This indicates that the potential energy surfaces of the ground and the excited electronic state are similar in these normal coordinates at least. This leads to the expectation that there will be a correspondence for all the intervals, and the two Aq fundamentals tentatively assigned (663 and 1247 cm⁻¹) might be added to the six certain ones to account for the nine Aq fundamentals as predicted. Further there is a tendency that the fundamentals in the 'A₁ state have higher energy than those in the 'B₁U state. This behaviour has been also observed in naphthalene (46). Table 8 The Fundamentals of Anthracene in the 'Ag Ground and the 'Bu Upper State | ¹Ag. | 'Βιυ | Remark | |----------------------------------|---|---| | 394 cm ⁻¹ 510 629 759 | 389 ^{cm} -1
590
663
744 | certain probable probable certain | | 874
1020
1163 | 1030
1057
115% | doubtful
certain
389+663+5, FR??
certain | | 1267
1340
1409 | 1247
1338
1399 | probable
590+744+4:in 'B ₁₀ state only
certain | | 1568
3018
911 | 1503
 | certain
C-H stretch??
certain | | 1045
1180 | 926
1166 | possible
certain | | 1639
1660 | 1464
3119 | certain
certain
C-H stretch?? | ## Fermi Resonance Possible examples of Fermi resonance in absorption are summarized in Table 9. Table 9 Possible Examples of Fermi Resonance in the Absorption of Anthracene | set | line
No. | in n-heptane, at 4.20K | in fluorene, at 4.20K | |-------|-------------|------------------------|-------------------------| | | 65 | 1030, ag | 1028, ag | | ∴ a | 66 | 1057 = 389+663+5 | 1062 = 387+657+18 | | | 82 | 1338 = 590+744+4 | | | 1. | 84 | 1374 = 590 + 2x389 + 6 | | | , b | 85 | 1399, ag | 1396,ag | | | 86 | 1418 = 389+1030-1 | 1422 ± 392+1028+2 | | | 89 | 1464, b3g | 1462, b3g | | C · | 9 0 | 1480 = 590+894-4 | 1495 = 585+891+19 | | d | 105 | 1788 = 389+1399 | 1783 = 392+1395-5 | | u | 107 | 1822 = 663+1157+2 | 1814 = 652+1169-7 | | | 144 | 2734 = 590+744+1399+2 | | | е | 145 | 2798 = 2x1399 | | | | 150 | 2954 = 389+1157+1399+7 | 2445 = 392+1169+1396-12 | | f
 | 151 | 2991 = 2x744 + 1503 | 2978 = 2x733+1498+14 | All of these examples show a more pronounced Fermi resonance in the fluorene matrix; this was the tendency in fluorescence also. The sets in the fluorene matrix a, c and f show good examples of the effect both in terms of the energy shift and intensity transfer. The other sets in fluorene and all the sets in n-heptane show only an intensity transfer. In set b the strong a fundamental at 1399 cm⁻¹ seems to share the intensity among several nearby combinations. However, since there must be some error in estimating intensities from the photographic prints, particularly near the strong line at 1339 cm⁻¹, actual Fermi resonance might occur only between the lines 85
and 86. Although anharmonicity increases in the higher energy region, no Fermi resonances were identified because of the decreasing intensity of the lines with a consequent increase in the measurement error due to line broadening. In the other two matrices a lower resolution of the spectra did not allow Fermi resonance to be identified. From the measurement of the energies of the fundamentals and their various combinations and of the relative intensity distribution amongst them, it is seen that the potential energy surface of the 'Biu electronic state is surprisingly harmonic. This fact may also account for the small numbers of examples of Fermi resonance in the anthracene spectra. ### Other Lines The lines which could not be assigned in terms of the observed **ag** and **bg** fundamentals may be separated into the following types: - 1. lines which appeared in only one of the four matrices, (a) in n-heptane, and (b) in fluorene - 2. lines which appeared in more than one matrix. Type 1 (a): in n-heptane. Some weak lines were grouped around the origin and other strong Qq modes of the 'Bw electronic state, as summarized in Table 10. This structure might be found in the higher quantum region, but its identification is impossible because of the appearance of much stronger combinations of the fundamentals. weak lines have two possible interpretations. Firstly these may be a number of special sites in the lattice, each sites having a different environment and giving rise to a different "solvent shift". Thus for each different environment a separate shifted spectrum should be observed; the intensity of each "shifted" spectrum would depend on the number of anthracene molecules occupying that type of site. The different possible sites that might be considered are substitutional sites, interstitial sites, sites next to a vacancy, or next to other anthracene molecules (either one or more) (47). Table 10 Similarity of the Structure Around Some Strong Absorption Lines | | 154 | 144 | | 127 | | cm-1
1192 | 80 | 73 | 43 | a V, cm-1
0-0
MS | 25 | 47 | + 4
70 | 65 cm | 133 | 146 | | 178 | |----------|--------------------|-----|-------------|------------|-------------------------|--------------|-----------|-----------|-----------|------------------------|--------------------|-----------|-----------|-------------------|------------|-------------|------------|------------| | d | 153
236 | | 135
254 | 127
262 | 110
279 | 90
299 | - | 73
316 | 49
340 | 389
vvs | 21
4 1 0 | 47
436 | | 95
484 | 132
521 | 142
531 | 164
553 | 177
566 | | e | 154
436 | | 133‡
457 | • | 116
474 | - | - | 69
521 | 51
539 | 590
S | 26
6 1 6 | - | 73
663 | 97
687 | - | - | - | _ | | d
e | 15 1
628 | | _ | - | 116 ¹
663 | 687 | 76
703 | 70
709 | - | 779
MS | 19
798 | 44
823 | 78
857 | 92
87 1 | 918 | 147f
926 | 162
941 | | | | 153 | 144 | 134 | 127 | 114 | 91 | 78 | 71 | 48 | Δ cml | 23 | 46 | 74 | 92 | 135 | 145 | | 177 | | 1.7 | W | W., | VW: | VVW | W | VVW | VVW | W | VW | C ′ | S | MM | W | W | VW | VW | VW | W | - a. the centers of the structure: the origin and ag fundamentals - b. average energy difference from $\mathcal{V}_{\mathbf{o}}$ - c. s: strong, MW: medium weak, W: weak, VW: very weak, VVW: very very weak, MS: medium strong, VVS: very very strong - d. this row shows the difference of energy value from \mathcal{V}_{\bullet} in cm⁻¹ - e. this row shows the difference of energy value from the origin in ${ m cm}^{-1}$ Another possibility which must be considered is the formation of clathrate compounds. It has already been suggested by Ciais (48) and Shpol'skii (49) that saturated normal paraffin molecules form a cage about the solute molecule. Evidence favouring this point of view is found in the following experiment (50). 3.4 - benzpyrene in cyclohexane gave a diffuse spectrum at 77°K. Addition of 10% n-octane was sufficient to produce the sharp spectrum at 77°K typical of the Shpol'skii effect. If the assumption is true that clathrate compounds are formed, then the molecule may undergo free or hindered rotation. This allows an alternate explanation for the closely spaced weak lines to the blue of the origin. However there are closely spaced lines of about the same intensity to the red of the origin, and to explain the presence of these lines it is necessary to assume that the molecules rotate in the ground state. This is not possible at the low temperature used and so this explanation is not preferred. The stronger lines about 200 cm⁻¹ to the blue of the origin are hard to account for. However, if the symmetry of the crystal field at the site occupied by the anthracene molecule is lower than the molecular point group then intramolecular vibrations other than Q_3 or b_{33} modes may appear. The intensities of these extra lines would depend on the strength of the coupling between the molecule with its environment. This coupling is weak in such a molecular crystal and so perturbation theory may be applied. interactions between solvent and solute molecules are of two kinds. There is a mixing of electronic wave functions of solvent and solute molecules giving rise to a solvent shift (20); we are not concerned with this effect here. There is also an interaction between the vibrational states of the anthracene molecule with the vibrational states of the environment which occurs in the following way. anthracene molecule is slightly bigger in the excited state; this behaviour has already been observed in benzene (51) and naphthalene (46). The evidence in support of this conclusion is that the origin is not the strongest line in the spectrum, rather the line at 1399 cm⁻¹ is. That is, the Franck-Condon overlap factor is greatest to the excited electronic state with one quantum of the 1399 cm-1 fundamental and so there is an expansion in the corresponding normal coordinate. However, the expansion of the anthracene molecule is felt by the surrounding molecules. mations rather than intramolecular vibrations of the solute molecule tend to be excited, because the restoring forces are much weaker between the molecules of the lattice than between the strongly bonded atoms of the molecule. there is an interaction between the internal vibrations of anthracene and lattice vibrations. Application of first order perturbation theory leads directly to the result that the mixing of the states is greatest when the energy separation between them is smallest. But the frequencies of lattice modes are usually less than 100 cm⁻¹. Hence the low energy vibrational states of anthracene will be most effected. In this way low energy anthracene fundamentals of symmetry other than a or be may appear. Naphthalene has low energy fundamentals of symmetry be and be and be and the overtone of the 211 cm⁻¹ fundamental gaining intensity from the strong a fundamental at 389 cm⁻¹ by Fermi resonance. Type 1 (b) in fluorene. Most of the lines in this spectrum can be readily interpreted in terms of the anthracene fundamentals and their combinations. In fluorene the lines are broader than in n-heptane even at 4.2°K. This is especially true in higher energy regions where closely spaced combinations have not been resolved. No evidence for the presence of impurities (like carbazole which is known to form a solid solution in fluorene (40)) has been found. The absorption spectrum of fluorene itself was observed above 31000 cm⁻¹. While the detail of this spectrum is not understood, it is apparent that the first group of lines is polarized along \underline{c} axis. Thus, the low energy transition in fluorene is polarized along the long axis of the molecule. Type 2. The low frequency intervals (about 25 cm⁻¹), built on all strong lines, are common to the spectra in all matrices. These are due to lattice modes which couple to the internal modes of anthracene as explained earlier. It is not unexpected to find the lattice modes of different molecular crystals being about the same energy, since the frequency (*) of a vibration is related to the force constant (k) and the reduced mass of the system (*) by $$\mathcal{V} = \frac{1}{2\pi} \left(\kappa / \mu \right)^2$$ The force constant (k) is directly related to bonding between the molecules which in turn is given by the heat of sublimation. The heats of sublimation for molecular crystals are of the same order of magnitude, e.g. for fluorene (53) it is 19.8 kcal/mole; biphenyl (54), 17.9 kcal/mole; naphthalene (53), 17.3 kcal/mole; n-octadecane (55), 36.8 kcal/mole. No data is available for the heat of sublimation of n-heptane but we will assume that it is about the same as for n-octadecane. The heat of sublimation is temperature dependent and the values given above were measured around If it is assumed that the heats of room temperature. sublimation at 4.20% for all the matrices are nearly equal (and larger than the room temperature value), then we can conclude that the force constants are also within the same order of magnitude. Because the molecules considered have about the same molecular weight (fluorene, 166; biphenyl, 154; naphthalene, 128; anthracene, 178; n-heptane, 100), the reduced masses of the systems are nearly enough the same. Therefore the frequencies of the lattice modes should be very similar (fluorene, 29 cm⁻¹; n-heptane, 25 cm⁻¹; naphthalene (30), 26 cm⁻¹). Thus these low frequency intervals are assigned as lattice modes. In one sample of anthracene in fluorene a weak line at 73 cm⁻¹ to the red of the origin was observed. This is taken to represent the presence of a ground state phonon. The intensity of this line was about one tenth that of the origin and so the temperature of this sample was about 50°K. The line was measured in an earlier spectrum in which the crystal was cemented to the helium can with silicone grease. This is further evidence that silicone
grease provides poor thermal contact at low temperature. # Shift of the Origins of 'Bu - 'As The energy of the $^{\prime}$ Bu \leftarrow $^{\prime}$ Ag transition showed a red shift as the matrix was changed from n-hexane, n-heptane, biphenyl to fluorene. And a shift was also observed in n-heptane as the temperature was lowered as seen in Table 5. According to McClure (20) dispersion forces between host and guest molecules causes the energy shift, and his calculations for the $^{\prime}$ Bu \leftarrow $^{\prime}$ Ag transition of anthracene in the vapour phase and in solid matrices of naphthalene and phenanthrene show fairly good agreement with experiment (30). Since the fluorene molecule is slightly polar, this interpretation gives reasonable agreement with our result. #### BIBLIOGRAPHY - 1 D.P. Craig and P.C. Hobbins, J. Chem. Soc. <u>1955</u>, 539. - 2 S.I. Weissman, J. Chem. Phys. <u>18</u>, 232 (1950) - 3 T. Forster, Z. Phys. Chem. <u>41</u>, 287 (1938) - 4 C.A. Coulson, Proc. Phys. Soc. (London) A60, 257 (1948) - 5 W. Moffitt, J. Chem. Phys. <u>22</u>, 320 (1954) - 6 M.J.S. Dewar and H.C. Longnet-Higgins, Proc. Phys. Soc. (London) A67, 795 (1954) - 7 J.A. Pople, Proc. Phys. Soc. (London) <u>A68</u>, 81 (1955) - 8 R. Pariser, J. Chem. Phys. 24, 250 (1956) - 9 N.S. Ham and K. Rudenberg, J. Chem. Phys. <u>25</u>, 1 (1956) - 10 N. Mataga, Bull. Chem. Soc. Japan 31, 463 (1958) - 11 H. Foetz and E. Heilbrowner, Helv. Chim. Acta 44, 1365 (1961) - 12 R.L. Hummel and K. Ruedenberg, J. Phys. Chem. <u>66</u>, 2334 (1962) - 13 J. Koutecky, J. Paldus, and R. Zahradnik, J. Chem. Phys. 36, 3129 (1962) - 14 E. Fermi, Z. Physik, 71, 250 (1931) - 15 D.P. Craig, J. Chem. Soc. <u>1955</u>, 2302 - 16 D.P. Craig, J. Chem. Soc. <u>1950</u>, 2146 (1950) - 17 J.B. Coon, R.E. DeWames and C.M. Loyd, J. Mal. Spect. 8, 285 (1962) - 18 D.P. Craig and T. Thirunamachandran, Pro. Roy. Soc. A271, 207 (1963) - 19 D.P. Craig and T. Thirumamachandran, Pro. Chem. Soc. 1961, 253 (1961) - 20 D.S. McClure, Symposium on on electrical conductivity in organic solids (April, 1960) - 21 D.P. Craig and H.S. Walmsley, Mal. Phys. 4, 113 (1961) - 22 E.V. Shpolskii, Usp. Fiz. Nauk <u>71</u>, 215 (1960) - 23 E.V. Shpolskii, Usp. Fiz. Nauk 77, 321 (1962) - 24 K.K. Rebane and V.V. Khizhnyakov, Optics and Spectroscopy 14, 193 (1962) - 25 Ibid., <u>14</u>, 262 (1963) - 26 G. Kortum and B. Finckin, Z. physik. Chem. <u>B52</u>, 263 (1942) - 27 E. Clar, Spectrochim Acta <u>4</u>, 116 (1950) - 28 T.N. Bolotnikova, Izvest. Akad. Nauk SSSR, Ser. Fiz. 23, 29 (1959) - 29 J.W. Sidman, Phys. Rev. <u>102</u>, 96 (1956) - 30 J.W. Sidman, J. Chem. Phys. 25, 115 (1956) - 31 L. Columbo et J.P. Mathieu, Bull. Soc. Franz. Miner. Crist. LXXXIII, 250 (1960) - 32 W. Bruhn and R. Mecke, Z. Elektrochemie <u>65</u>, 543 (1961) - 33 S. Califano, J. Chem. Phys. <u>36</u>, 903 (1962) - 34 S.K. Lower Ph.D. thesis - 35 G.K. White, Experimental Techniques in Low-Temperature Physics (Oxford, 1959) - 36 J. Ferguson, private communication - 37 W.R. Brode, Chemical Spectroscopy (John Willey and Sons, 1946) - 38 H. Kayser, Tabelle der Schwingungszahlen (S. Hirzel, 1925) - 39 E.R. Eippincott and E.J. O'Reily Jr., J. Chem. Phys. 23, 238 (1955) - 40 M. Brandstatter Kuhnert and H. Weiss, Monatsh. <u>88</u>, 1007 (1957) - 41 H. Zimmermann and N. Joop, Z. Elektrochemie <u>65</u>, 66 (1961) - 42 R.M. Hochstrasser and R. Zwarich, private communication - 43 R.N. Nurmukhametov and G.V. Gobov, Optika i Spektroskopiya 13, 676 (1962) - 44 E.J. Bowen, N.J. Holder, and G.B. Woodger, J. Phys. Chem. 66, 2491 (1962) - 45 N.A. Borisenich and V.V. Gmzinskii, Izvest. Akad. Nauk SSSR Ser. Fiz. 24, 545 (1960) - 46 D.P. Craig and J.M. Hollas, et al., Phylosophical translations of the Royal Society of London, A253, 543 (1961) - 47 R.E. Behringer, J. Chem. Phys. 29, 537 (1958) - 48 A. Ciais, J. Chem. Phys. <u>58</u>, 190 (1961) - 49 E.V. Shpol'skii, Soviet Physics Uspekhi 6, 411 (1963) - 50 B. Muel and G. Lacroix, Bull. Soc. Chim. France, 2139 (1960) - 51 D.P. Craig, J. Chem. Soc. 1950, 2146 - 52 J.M. Hollas, J. Molecular Spect. 9, 138 (1962) - 53 Bradley and Cleasby, J. Chem. Soc. <u>1953</u>, 1690 - 54 A. Aihara, J. Chem. Soc. Japan, Pure Chem. Sect. <u>76</u>, 492 (1955) - 55 Bradley and Shellard, Proc. Roy. Soc. A198, 239 (1949)