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ABSTRACT 

Refluxing c i s - and trans- 1 . 2-cyc 1ohexanedio 1 

d i n i t r a t e s i n excess anhydrous pyridine at l l 8 ° - 1 2 0 ° C 

lead to a slow decomposition of the d i n i t r a t e s and the 

< formation of a gaseous product. It was found that the 

tra n s - d i n i t r a t e decomposed 1 . $ times f a s t e r than the 

cis-isomer, and that no 2-nitroxyCyclohexanols or 

1 , 2 - cyclohexanediols were formed. Nine components 

were detected i n the reaction mixture by paper 

chromatography. Pyridinium n i t r a t e , succinic and 

adipic acids, and a polymer were shown to be- produced 

i n the trans-denitration mixture. The use of 

3-methylheptane i n place of pyridine as solvent gave 

the decomposition products: oxalic, succinic and 

adipic acids, water, carbonized material, a reddish-

brown gas and unsaturated compounds. The reaction 

of quinoline with the tr a n s - d i n i t r a t e at l6.f?,0C yielded 

mainly water and a pyridine soluble polymer. 
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GENERAL INTRODUCTION 

In recent years Hay-ward and coworkers have shown 

that the action of dry pyridine on the hexanitrates of 

manni.tol and d u l c i t o l s e l e c t i v e l y removed the 3- (or chem­

i c a l l y equivalent 4-) nitrate:; group. A similar p a r t i a l 

d e n i t r a t i o n of the p e n t i t o l pentanitrates was also observed. 

The r e l a t i v e rates of these reactions appeared to be a function 

of the configuration of the a c y l i c molecules. 

In an attempt to determine the required stereo­

chemical rel a t i o n s h i p between n i t r a t e ' groups for s e l e c t i v e 

denitration, c i s - and trans- 1,2-cyclohexanediol d i n i t r a t e s 

of known configuration were selected for study. As these 

isomers may have d i f f e r e n t conformations, i t was expected 

that they would show some s e l e c t i v i t y and difference i n 

r e a c t i v i t y toward pyridine. 
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HISTORICAL INTRODUCTION 

A. Selective Denitration of Polynitrate Esters 

Wigner i n 1 9 0 3 ( 7 1 ) observed that a l c o h o l i c pyridine 

reacted with mannitol hexanitrate to give a pentanitrate, but 

that the reagent had no e f f e c t on d u l c i t o l hexanitrate even at 

the b o i l i n g point. On the other hand, he found that warm, dry 

pyridine caused a reaction accompanied by evolution of a gas 

and the formation of d u l c i t o l pentanitrate. This work was con­

firmed by McKeown and Hayward i n 1 9 5 5 (4-4) who showed that the 

denitrating action of the pyridine i s s p e c i f i c to the 3 - (or 

equivalent 4-) p o s i t i o n of the d u l c i t o l hexanitrate. 

Hayward ( 3 D had e a r l i e r shown that D- mannitol 

- 1 , 2 , 3 , 5 * 6 - pentanitrate was obtained by pyridine reaction on 

D- mannitol hexanitrate at room temperature. No inversion of 

configuration occured i n these sel e c t i v e reactions. 

The gas produced from the D- mannitol hexanitrate was 

analyzed by Brown and Hayward (14). From a O . 3 6 8 M solution of 

the hexanitrate i n pyridine at 3 0 + 5°C> a gas consisting of 

n i t r i c oxide, nitrous oxide, and nitrogen was evolved. The 

amount and composition of the gas mixture were sensitive to 

traces of moisture i n the pyridine. Establishment of a material 

balance for the reaction indicated that approximately two moles 

of pyridine suffered r i n g cleavage while 0 . 2 5 moles of hexa­

n i t r a t e was completely denitrated and 0 . 7 5 moles of pentanitrate 

was found. 

E l r i c k and collaborators ( 2 3 ) have recently shown that 
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treatment of D-mannitol hexanitrate with an aqueous acetone 

solution of ammonium carbonate also gave a good y i e l d of the 

same D-mannitol pentanitrate. 

Tichanowitsch (59) i n 1864 had obtained a pentanitrate 

of mannitol by passing dry ammonia gas into an etheral s o l u t i o n 

of mannitol hexanitrate. 

Bowering i n 1956 (12) found that the newly synthesized 

a l l i t o l hexanitrate reacted more slowly with dry pyridine at 

room temperature than the corresponding D-mannitol d e r i v a t i v e , 

and produced pyridinium n i t r a t e but no gaseous products. A 76% 

y i e l d of an o i l y product which was thought to be the pentanitrate 

was obtained. 

Wright (70) i n 1957 synthesized and i d e n t i f i e d the 

new explosive compounds x y l i t o l , y i b i t o l and L - a r a b i t o l penta-

n i t r a t e s . These c r y s t a l l i n e compounds reacted with dry pyridine 

i n much the same manner as the h e x i t o l hexanitrates. The x y l i t o l 

d erivative evolved more gas and gave a reaction mixture darker 

i n color than those obtained with the a r a b i t o l and F i b i t o l com­

pounds. P a r t i a l l y denitrated syrups were recovered from each 

of the three pyridine solutions on d i l u t i o n with water. 

Jackson (35) i n 1957 prepared the d i n i t r a t e s of the 

three known 1,4 : 3»6- dianhydrohexitols (isomannide, i s o -

sorbide and isoic^dide) and tested t h e i r reaction with pyridine. 

Isomannide d i n i t r a t e was found to react more r a p i d l y than i s o -

sorbide d i n i t r a t e , and the l a t t e r faster than isolodide d i n i t r a t e . 

The inves t i g a t i o n of the reaction products i s s t i l l going on. 

The action of pyridine on n i t r o c e l l u l o s e has also been 
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studied. Angelis(2) found that pyridine-moistened n i t r o ­

c e l l u l o s e gave an 80$ y i e l d of the o r i g i n a l weight of n i t r o ­

c e l l u l o s e with a nitrogen content reduced from an o r i g i n a l 12$ 

to 9-10$ nitrogen indicating decomposition. Giannini ( 2 6 ) 

extended t h i s work i n 1924, and showed that a gas containing 

carbon dioxide, n i t r i c oxide, nitrous oxide, and nitrogen was 

given o f f . 

In 1944 Gladding and Purves (28) found that pure, dry 

pyridine caused a vigorous decomposition of dissolved, s t a b i l ­

ized gun-cotton at 100°C. 

Pyridine-induced elimination reactions were shown to 

occur by Lame ( 3 9 ) i n 1953* Secondary and t e r t i a r y n i t r a t e s 

refluxed with pyridine formed o l e f i n s . Thus cyclohexyl n i t r a t e 

and t e r t i a r y butyl n i t r a t e gave cyclohexene and butylene 

respectively. Primary n i t r a t e esters formed quaternary ammonium 

sa l t s (26,39) 

Ryan and Casey (54) i n 1928 studied the effect of 

primary, secondary and t e r t i a r y amines on various carbohydrate 

n i t r a t e esters. Dimethylaniline reacted with mannitol hexanitrate 

at an elevated temperature to evolve a gas consisting of 70% 

nitrous oxide and 3 0 $ nitrogen. T e r t i a r y a l i p h a t i c amines 

reacted at r e f l u x temperatures with primary n i t r a t e esters to 

form quarternary s a l t s (26,39) 

In 1946 Segall (55) showed that excess hydroxylamine 

i n pyridine at room temperature acted on c e l l u l o s e t r i n i t r a t e to 

give a c e l l u l o s e d i n i t r a t e with the evolution of one mole of 

nitrogen per mole of an-hydroglucose. The n i t r a t e groups 
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attacked proved to be secondary i n nature. The product was 

stable to pyridine. Methorylamine reacted s i m i l a r l y except 

that no nitrogen was evolved. With excess hydroxylamine hydro­

chloride the product appeared to be a c e l l u l o s e ketoxime 

d i n i t r a t e and the gas evolved consisted of 8 5 $ nitrous oxide 

and 15% nitrogen. 

Falconer and Purves ( 2 5 ) recently showed that the 

hydroxylamine-pyridine s o l u t i o n at room temperature reacted 

with c e l l u l o s e t r i n i t r a t e to give c e l l u l o s e - 3 , 6 - d i n i t r a t e , 

a baoo stable compound. 

Hayward ( 3 2 ) investigated the action of free hydro-

xylamine i n pyridine on methyl-ifr- and p-D-glucopyranoside 

t e t r a n i t r a t e s . He found that an alcoholic solution of hydro-

xylamine had l i t t l e or no eff e c t on these compounds, but that 

a vigorous exothermic reaction ensued on addition of hydroxy-

lamine i n anhydrous pyridine to methyl -p-D-glucoside t e t r a -

n i t r a t e . Nitrogen gas was evolved i n the r a t i o of 1 . 3 moles 

per mole of t e t r a n i t r a t e , and the product contained methyl-p-D-

g l u c o s i d e - 2 , 3 , 6 - t r i n i t r a t e ( 5 3 $ )» methyl -B-D-glucoside - 3 , 6 -

d i n i t r a t e (33%)» and an unidentified methyl -B-D-glucoside t r i ­

n i t r a t e . 

Rooney ( 5 3 ) showed that methyl -p-D-glucopyranoside 

t e t r a n i t r a t e reacted slowly with hydroxylamine hydrochloride i n 

pyridine at room temperature and evolved a gas composed of 70% 

nitrous oxide and 30% nitrogen. The syrupy products obtained 

consisted of a mixture of p a r t i a l l y n i t r a t e d methyl-glucosides 

and completely denitrated polyoxime products. 
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Methyl - p-D-glucopyranoside - 2 , 3 , 6-trinitrate and a substance 

believed to be methyl-jB-D-glucopyranoside - 2 , 6-dinitrate were 

is o l a t e d . 

When simple a l k y l n i t r a t e esters were heated with 

ammonia, or primary or secondary a l i p h a t i c amines, N-alkylation 

occurred. Piperidine ( 2 7 ) and diethylamine have been alkylated 

by heating with primary, secondary, and t e r t i a r y a l k y l n i t r a t e s . 

The action of quinoline on methyl-£-D-glucoside 

t e t r a n i t r a t e was also investigated by Swan ( 5 8 ) . Some de-

n i t r a t i o n occurred accompanied by evolution of a gas. 

B. Mechanism of Denitration 

Recent studies ( 5 , 6,41) have established the simul­

taneous occurrence of three d i s t i n c t reactions i n the al k a l i n e 

cleavage of n i t r a t e esters. These reactions, i l l u s t r a t e d with 

hydroxide ion, are as follows: 

(§) Nacleophilic s u b s t i t u t i o n 

HO" + R 0 W 0 2 tr+> ROH + NO^" 

(b) Elimination of p-hydrogen 

H 0 ~ + R-CH 2CH 2 0N0 2 — * RCH - CH2 •* H 2 0 + N O 3 " 

(c) Elimination of <?c - hydrogen 

HO" + RCH 2 0 N 0 2 — » RCH « 0 + H 2 0 + N 0 2 ~ 

Neutral hydrolysis occurs too, where water acts as a nucleo-

p h i l i c agent. 
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HO + -C- X — ^ HO-C- + X 

where X = 0W02 or a halogen. 

However, i n a l k a l i n e hydrolysis there i s some retention of con­

f i g u r a t i o n i n going from n i t r a t e to alcohol. The most reasonable 

mechanism appears to be that involving cleavage of the 0-N bond, 

analogous to the usual acyl-oxygen cleavage i n carboxylate 

esters (22). 

A base independent carbonium ion process (SN1) i s also 

available. This was shown to take place i n alcohol-producing 

hydrolyses of t e r t i a r y butyl n i t r a t e and p a r t i a l l y i n the neutral 

hydrolysis of isopropyl n i t r a t e ( 5 ) » 

Olefin-formation occurs must extensively i n the 

hydrolysis (either neutral or alkaline) of t e r t i a r y butyl n i t r a t e 

( 5)41) but small amounts of o l e f i n are found i n the alkaline 

hydrolyses of ethyl (2$) and isopropyl (10$) n i t r a t e s ( 5 ) . It has 

been d e f i n i t e l y established that N02~ i s formed d i r e c t l y from the 

n i t r a t e ester, and i s not the r e s u l t of a secondary reaction i n 

which alcohol i s oxidized to aldehyde ( 5 ) . 

It appears that pyridine, and mixtures of pyridine and 

hydroxylamine, and other;amines, cause nitroxy-bond cleavage of 

n i t r a t e esters. Segall i n 1946 ( 5 5 ) postulated the following 

reaction on the basis of the l a b i l e hydrogen atom i n hydroxy­

lamine: 
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Hayward and coworkers ( 3 1 , 3 2,44) and Rooney ( 5 3 ) showed that 

no inversions occurred i n the den i t r a t i o n reactions with pyridine, 

and pyridine and hydroxylamine mixtures. 

In the thermal decomposition of n i t r a t e esters, most 

investigators agree that the i n i t i a l step i s the s c i s s i o n of 

the nitroxy bond to give N0 2 and an alkoxyl r a d i c a l (R0«) ( 3 , 5 0 , 

4 0 , 6 8 ) . Thermal decomposition of c e l l u l o s e n i t r a t e produced 

carbon monoxide, carbon dioxide, n i t r i c oxide, nitrous oxide, 

nitrogen dioxide, nitrogen, methane, hydrogen, water and formalde­

hyde ( 6 8 ) . Working at 3 0 mm pressure Wolfrom ( 6 8 ) reported 

water, formic acid, formaldehyde, glyoxal and carbonyl compounds 

as the main thermal decomposition products. He suggested that 

the i n i t i a l product at any pressure was a fragmented oxycellulose 

n i t r a t e . The l i g h t e r the ambient pressure, the greater was the 

proportion of t h i s i n i t i a l product undergoing additional degrada­

t i o n . As the pressure increased above 6 0 mm., a l l the fragmented 

oxycellulose n i t r a t e disappeared and the rate of change i n the 

y i e l d s of the organic products with pressure decreased, producing 

a range of pressure ( 2 0 0 - 5 0 0 mm.) i n which the y i e l d s were almost 

pressure independent. The value for the t o t a l carbonyl, however, 

decreased s t e a d i l y with pressure which could, he explained, bp 

due to the further oxidation of formaldehyde, glyoxal and formic 

acid, and that the three l a t t e r compounds were produced by the 

further degradation of the more complex e n t i t i e s ( t r i o s e s , e t c . ) . 

The possible mechanisms are shown below: 



CHzONC-i 
Q 

C H t O W O ^ 

0 

o w 
c c 

O N O ^ 

O H 
C - C - O R 

H 

t 
H 

H 1 

P> - o 

. /C = 0 
c 

' v c = o 
B E 

H-C =0 



1 0 

With v i c i n a l d i n i t r a t e s , Kuhn and Angelie ( 3 8 ) showed 

that c i s - and t r a n s - 1 , 2 - cyclohexanediol d i n i t r a t e s i n vapour 

form were degraded at 2 6 0 ° - 280°C to higher than 70% y i e l d s of 

adipaldehyde and n i t r i c oxide. They proposed the following 

mechanism: 

RCH(0N0)-CH(ONO)R — * RCH(0*)-CH(0N0)R • NO 

2 RCHO + NO. 

In the l i q u i d state and i n a nitrogen atmosphere, 70% of the 

decomposed t r a n s - l , 2 - d i n i t r i t e s could be i d e n t i f i e d as aldehyde, 

dialdehyde, d i o l and oc-hydroxy-ketone. 

C. Conformational Studies of 1 , 2-Cyclohexane Derivatives 

It i s well known that a r e l a t i o n s h i p exists between the 

conformation of cyclohexane derivatives and t h e i r physical pro­

p e r t i e s . ( /^>^«-rs-Skita Rule). P i t z e r and Beckett (49) and l a t e r 

workers ( 1 , 8 ) have shown that for c i s - trans-pairs of disub-

st i t u t e d cyclohexanes, the isomer which has the higher index of 

r e f r a c t i o n and the higher density i s the isomer with the lowest 

conformational s t a b i l i t y . 

It was shown by Ottar i n 1947 that both a x i a l and 

equatorial oxygen atoms exist i n both the c i s - and trans-cyclo-

hexane-l , 2-diols. The d i a x i a l conformation i s understood to pre­

dominate i n the case of the t r a n s - d i o l ( P i t z e r , Review 1 9 5 6 ) . 

In 1 9 5 0 , Smith and Byrne ( 5 6 ) showed that the r e l a t i v e 
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rates of e s t e r i f i c a t i o n of cyclohexane-1,2- tricarboxylic acids 

depend on the geometrical and p o s i t i o n a l arrangement of the 

carboxyl groups, p a r t i c u l a r l y on the number of equatorial groups 

available for reaction. From the rate constants obtained for 

acid-catalyzed e s t e r i f i c a t i o n , the c i s - isomer was found to be 

e s t e r i f l e d twice as fast as the trans- isomer. It was concluded 

that the trans- isomer had an a x i a l - a x i a l conformation, whereas 

the c i s - a c i d was a x i a l - e q u a t o r i a l . 

K i l p a t r i c k and Morse ( 3 6 ) i n 1953 showed that the 

d i s s o c i a t i o n constant of an acid depended upon the structure of 

the molecule and was a function of the o r i e n t a t i o n and s p a t i a l 

i n t e r a c t i o n of dipolar groups and the distance of the dipolar 

centers from the ionizable proton. The trans-1,2- cyclohexane-

dicarboxylic acid and the trans- -1- hydroxy-cyclohexane -2-

carboxylic acid were stronger i n water than the corresponding c l s -

isomers, but weaker i n solvents of lower d i ^ e l e c t r i c constants 

(methanol, ethanol, and ethylene g l y c o l ) . It was concluded that 

the more stable configuration was the one i n which the distance 

between the groups was largest, thus favoring the a x i a l - a x i a l 

conformation over the equatorial-equatorial f o r the trans- isomer. 

Hence, the trans- isomer was d i e q u a t o r i a l i n water, but d i a x i a l 

i n non-aqueous solvents. 

Pascual (48) i n 1949 showed that the d i f f e r i n g r e a c t i v i t y 

of the hydroxyl and carboxyl groups i n 1- hydroxyeyelohexane -2-

carboxylic acid must be r e l a t e d to the conformation. The trans-

isomers were found to be less reactive than the c i s - isomers. 

These differences were ascribed to the r e l a t i v e l y greater ease of 
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e s t e r i f l c a t i o n and hydrolysis of an equatorial as compared with 

an a x i a l substituent. 

The trans-isomers of 1,2- dihalocyclohexane were shown 

to exist as equilibrium mixtures of the d i a x i a l and the diequa-

t o r i a l conformations (10). T u l i n s k i e and collaborators ( 6 2 ) found 

that the dipole moment of trans-1,2- dichloracyclohexane at 40°C 

i n benzene solut i o n almost equalled that i n vapour state at 2 3 9°C, 

showing an absence of any appreciable s h i f t to another form of 

di f f e r e n t moment with change of temperature and molecular environ­

ment. The trans- 1,2- dichlor^cyclohexane was estimated to have 

5 6 $ equatorial-equatorial form i n the gaseous state ( 2 3 9°C) and 

7 2 $ i n benzene at 40 GC. 

D. Elimination Reactions of 1,2- Cvclohexane' Derivatives 

The elimination of t o s y l (p- tolvenesulfonyl) groups 

from the cyclohexane ring has been studied i n some d e t a i l . 

The most common reactions of esters o f . s u l f o n i c acids 

are nucleophilic displacements, by the SN1 and SN2 mechanisms, 

at the a l k y l carbon atom. Nucleophilic attack on sulfur i s not 

observed unless the r e a c t i v i t y at the a l k y l carbon atom i s 

markedly decreased. Bunton and F r e i (16) i n 1951 showed that the 
1 8 

a l k a l i n e hydrolysis of phenyl-p-tolwenesulfonate i n H 20 
1 8 

solution introduced the 0 atom into the p- tolwene sulfonate 

but not the phenolate. 
C 7H y-S0 2-OC 6H 5 + H 2 0 1 8 — * C ?H 7S0 20 l 8H + C ^ O " 
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Detosylation i n carbohydrates with sodium iodide i n 

cdcetone solution was found by Oldham and Rutherford i n 1932 (47) 

to be r e s t r i c t e d to the primary tosylate groups. Some exceptions 

(11,61,46) to t h i s generalization have been reported, and i t now 

appears that a secondary tosylate group may be reactive towards 

sodium iodide i f i t i s contiguous to one i n a primary p o s i t i o n . 

There are also a few cases (34) of an i s o l a t e d secondary tosylate 

reacting with sodium iedide. Quite recently Tipson, Clapp and 

Cretcher (60) have shown that the tosylate group of some secondary 

a l i p h a t i c alcohols, and of cyclohexanol, borneol, and menthol, 

reacted with sodium iodide to form sodium to s y l a t e . Evidently 

the secondary tosylate groups i n these compounds are considerably 

more reactive than are similar groups i n a carbohydrate molecule. 

The other products of the reaction were not i d e n t i f i e d . 

Clark and Owen (17) i n 1949 found that the trans -2-

hydroxycyelohexyl-p-tolvene sulfonate reacted r e a d i l y with sodium 

iodide i n cicetone solution at 85°C to give a f t e r f i v e hours a 

high y i e l d of sodium tosylate and trans-2-iedocyclohexanol. 

Winstein and Buckles (64 , 6 5 ) i n 1942 showed that trans-1-

bromo-2-acetoxycyclohexane and trans -1,2- dibromocyclohexane 

with s i l v e r acetate i n dry g l a c i a l acetic acid produced trans-

diacetates, whereas with the presence of small amounts of water 

inversion took place. They also observed that cis-2-chlorocyclo-

hexylacetate was unaffected by s i l v e r acetate under conditions i n 

which the trans-isomer r e a d i l y gave trans-diacetate. These workers 

attributed the low r e a c t i v i t y of the c i s - derivatives to i t s i n ­

a b i l i t y to form an intermediate ring- compound. 
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In 1948, Winstein and coworkers ( 6 7 ) studied the rates 

of acetolysis of tosyl-oxycyclohexane, I, trans - 2-acetoxytosyloxy-

cyclohexane, I I , and cis - 2-acetoxytosyloxycyclohexane, I I I , i n 

g l a c i a l acetic acid. They showed that the r e l a t i v e r e a c t i v i t i e s 

were: I, l*OCy>II, O 3 0 ^ > I I I , 4.5 x 1CT 4. Also, the t r a n s - 2 -

acetoxy-p-bromo-benzenesulfonoxycyclohexane was found to be 6 3 O 

times more reactive than the corresponding cis-isomer. Both 

acetolyses yielded the trans- diacetate. In order to correlate 

the observed r e a c t i v i t i e s , Winstein and coworkers suggested that 

the reaction of the trans - 2-acetoxycyclohexyltosylate, I, pro­

ceeded by way of a one-stage r i n g closure mechanism to y i e l d the 

acetoxonlum ion, I I , and that t h i s process involved a much more 

favourable free-energy of a c t i v a t i o n than does the formation of 

the ion, I I I , by d i s s o c i a t i o n of the c i s - ester, IV, f o r which 

p a r t i c i p a t i o n of the neighbouring acetoxy group would involve 

p r o h i b i t i v e s t r a i n . 



Furthermore, the p a r t i c i p a t i o n of neighbouring groups 

i n the replacement reactions were calculated to be i n the order 

of decreasing a c t i v i t y as follows: l)>0Ac./> Br y OCH3. Neigh­

bouring chlorine atom or hydroxy group showed l i t t l e tendency 

for p a r t i c i p a t i o n and i n these cases the rate - determining ion­

i z a t i o n was predominantly the formation of the open carbonium ion. 

where AS = I, OAc, Br, O C H 3 , CI, OH. In c i s - and trans-

1,2- dibromobenzenesulfonoxycyclohexane, the rate constants for 

acetolysis was found to be equal. Therefore, Winstein concluded, 

the arenesulfonoxy groups were i n a f f e c t i v e i n t h i s p a r t i c i p a t i o n . 

Clarke and Owen (17) i n 1949 supported the views of 

Winstein and coworkers ( 6 7 ) i n intermediate r i n g formation i n 
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t h e i r observations of the much greater r e a c t i v i t y of the t r a n s - 2 -

hydroxycyclohexyl-p-tolvene sulfonate and trans - 2-hydroxycyclohexyl-

methane sulfonate toward a l k a l i , sodium iodide and lithium chloride 

as compared to the c i s - derivatives. The trans- compounds with 

a l k a l i , sodium iedide or lithiu m chloride gave cyclohexene oxide, 

trans - 2-l6docyclohexanol or trans-2-chlorocyclohexanol respec­

t i v e l y . The c i s - compounds, with a l k a l i , gave cyclohexanone, and 

with the aqueous reagent, cis-cyclohexane - 1 , 2 - d i o l , and reacted 

only slowly with sodium iodide or lithium chloride.. Replacement 

of the sulfonyloxy group i n the trans- series resulted i n o v e r a l l 

retention of configuration, probably as a r e s u l t of two successive 

inversions, whilst i n the c i s - s e r i e s , where formation of an 

intermediate c y c l i c compound was less l i k e l y , a single inversion 

occurred. 

C r i s t o l and Fran*us ( 1 9 ) i n 1 9 5 7 studied the rate con­

stants for acetolysis of c i s - and trans - 2-nitroxy-p-tolvene-

sulfonoxycyclohexane, and c i s - and trans - 2-nitroxybromobenzene-

sulfonoxycyclohexane i n acetic acid at 8 8°C. They found that the 

trans-isomers were less than twice as reactive as the corres­

ponding cis-isomers, and very much less than the corresponding 

acetoxy compounds studied e a r l i e r by Winstein ( 6 7 ) . The a f f e c t 

of the nitroxy groups seemed to be limited to t h e i r inductive 

effect (similar to the cis-acetoxy and the avenesulfonoxy groups 

of Winstein ( 6 7 ) ) which thus slowed down the rate s i g n i f i c a n t l y . 

An intermediate, such as the one shown below may have been 

f<narai;ed • 
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II 
o 

The elimination process may be s t e r e o s p e c i f i c , but, 

i n c e r t a i n cases at l e a s t , i s not the rate determining step of 

the o v e r a l l reaction. C r i s t o l and coworkers ( 2 0 ) i n 1 9 5 6 found 

that the elimination with sodium iodide i n n-propyl alcohol at 

70°C of trans - 1 , 2-dibromocyclohexane, trans - 2-bromocyclohexyl-p-

tolvene sulfonate, and trans-2-bromocyclohexyl-p-bromobensene-

sulfonate followed the r e a c t i v i t y r a t i o s of 1 : 2 3 : 9 0 respectively. 

This appeared to be consistent with the concerted elimination 

process of equation I, where the carbon-X bond i s broken. 

-C-C- > -C = C - > IBr + X" + - c = c -
Br 1 ! 

Br 
I 

where X : OTs, Br, OBs. 

A reasonable path for the o v e r a l l slow c i s - elimination was 

postulated as follows: 
X 

_C-,:C- + I ^ -C- C- + OTs" 
I i ' • 

Br OTs Br 
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C i s - and trans-2-bromocyclohexyl n i t r a t e s were found to have the 

same rates of elimination and were also much slower as compared 

to the c i s - atrenesulfonate derivatives. Assuming that the r a t e -

determining step i n either case involved displacement of either 

bromide or n i t r a t e (more l i k e l y bromide) by iodide, then, accord­

ing to C r i s t o l and coworkers, the following mechanism was 

possible. 

0 N 0 2 

Br 6N0 2
 s l o w ' I 

l l -L I 1 
-C-C- ^ -C -C- + Br" 

(trans-iodo) 

I" rapid 

ONOo 
1 1 c -

I 2 + -C = C - + Br 
I"J fast 

and -C-C- i > -c -C-
Br' s l o w I 0N0 2 

(cis-iodo) 

The cis-iodo compound r e s u l t i n g from displacement on the trans-

isomer might be expected to epimerise with iodide ion i n a 

r e l a t i v e l y f a s t process and thus render unimportant the question 

of whether a c i s - or a trans- iodo compound was formed. The 

lower rate constants of the n i t r a t e esters were thought to be 

due to the r e l a t i v e ineffectiveness of n i t r a t e as a displaceable 

group compared with bromide or arenesulfonates ( i n trans-
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elimination), or that of bromide or n i t r a t e compared with arene-

sulfonate ( i n the f i r s t step of the process with the c i s - isomers). 

The concept of displacement preceding c e r t a i n eliminations i n 

these c y c l i c systems finds considerable support i n recent work 

of Hine and Brader ( 3 3 ) . 

a cyclopentane r i n g was studied by Barton ( 7 ) i n 1 9 5 0 . A 1 , 2 -

s h i f t occurs i n which the r i n g bond plays the part of the 

migrating group. Only an equatorial substituent can form part of 

the trans- system necessary f o r such a 1 , 2 - s h i f t to occur. 

studied by Pollack and Curtin ( 5 D and McCasland ( 4 3 ) . The 

possible conformations of the c i s - and trans- compounds are shown 

i n (I) and ( I I ) . 

Ring contraction where a cyclohexane ri n g contracts to 

The rearrangements of 2-amino-cyclohexands nave been 

C I S -

Q. 

T R M M S -

O H 



McCasland (43) i n 1951 found that the trans-2-amino-

cyclohexanol on treatment with nitrous acid gave a high y i e l d 

of cyclopentylmethanol, which indicated that (II) reacted as 

(IIA) (equatorial-equatorial), and not as (IIB) ( a x i a l - a x i a l ) 

The cis-2-aminocyclohexanol ( I ) , however, yielded a mixture of 

the cyclo-entylmethanol and cyclohexanone i n d i c a t i n g that i t 

reacted p a r t l y as (IA) and p a r t l y as (IB). An a x i a l - a x i a l con 

formation would give an epoxide. This work and the work of 

Barton i n 1950, explained the formation of an epoxide and a 

Ketone i n Clarke and Owen's (17) work of 1949. 

Although, most of the t r a n s - l , 2 - d i - s u b s t i t u t e d 

cyclohexane compounds i l l u s t r a t e d here were found to be much 

more reactive than the corresponding cis-isomers, a few 

exceptions did occur. The rates of acetolysis of c i s - and 

t r a n s - 2 - n i t r oxybr omo.b enz ene s.u If onoxyc y c 1 ohe.xan e were very much 

less than the corresponding acetoxy compounds, and i t seemed 

that the inductive effect of the nitroxy groups were respon­

s i b l e . The rates of elimination with sodium iodide of c i s -

and trans - 2-bromocyclohexylnitrates were found to be the same, 

and were also much slower as compared to the cLs.-arenesulfon-

a.te. derivatives. The n i t r a t e seemed to be i n e f f e c t i v e here 

as a displaceab.le group. 
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DISCUSSION OF RESULTS  

A« c i s - and trans- Cyclohexanediol D i n i t r a t e s 

These compounds were prepared so that t h e i r behavior 

with pyridine could be investigated and compared with the r e s u l t s 

of previous investigations of the pyridine-denitration reactions. 

( 3 1 , 3 9 , 4 4 ) 

trans-l , 2-Cyclohexanediol d i n i t r a t e was f i r s t syn­

thesized i n 1951 by C h r i s t i a n and Purves (18) by the n i t r a t i o n 

of the trans-l T 2-cyclohexanediol. Their compound had m.p . l 8 . 5 ° -
o 

19 C. Soffer and coworkers ( 5 7 ) and Brook and Wright ( 13) 

reported b.p . 9 2 ° - 93°C at 1 mm. and n^ 7 1 * 4 7 3 2 , and b.p. 118°C 
20 

at 5«5 mm. and nip 1*4756 respectively. The trans- d i n i t r a t e 

prepared for t h i s work was a colorless o i l with b.p.66° - 67°C 

at 0 . 0 3 mm. and n D
2 7 * ^ 1*4732. 

c i s - 1 , 2 - Cyclohexanediol d i n i t r a t e was also o r i g i n a l l y 

made by C h r i s t i a n and Porves ( 1 8 ) by the n i t r a t i o n of the c l s -

1 , 2-cyclohexanediol i n a n i t r i c - s u l f u r i c acid mixture at o°C 

(m.p. 24 . 5 ° - 2 5°C). Soffer and coworkers ( 5 7 ) , using a n i t r i c -

acetic acid-acetic anhydride mixture, obtained an o i l a f t e r 

vacuum d i s t i l l a t i o n of the crude product, b.p. 1 0 6 ° - 108°C at 

1 mm. and i ^ 2 ? 1*4758. The c i s - d i n i t r a t e was prepared for t h i s 

work according to Soffer's method and had b.p. 1 0 6 ° - 108°C at 

1 mm. and . 1 » 4 7 5 7 . 

B. c i s - and trans- 2-Nitroxycyclohexanols 

Since c i s - and trans- 2-nitroxycyclohexanols were l i k e l y 
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products i n the pyridine reaction on the corresponding d i n i t r a t e s , 

samples of these compounds were synthesized by established 

methods. 

trans- 2-Nitroxycyclohexanol was f i r s t prepared by Brook 

and Wright ( 1 3 ) i n 1 9 5 1 by a 1 0 0 $ n i t r i c acid n i t r a t i o n of 1 , 2 -

epoxycyclohexane. Their product was obtained as a colorless o i l 

( 5 5 $ y i e l d ) with b.p. 1 0 0 ° - 105°C at 3 . 5 mm. and n D
2 0 1 » 4 7 8 9 . 

The trans- 2-nitroxycyclohexanol prepared for t h i s work was made 

by treating trans- 2-bromocyclohexanol ( 6 4 ) with s i l v e r n i t r a t e 

i n dry a c e t o n i t r i l e at 0°C. After d i s t i l l a t i o n (b.p. ? 8°C at 

0 . 7 5 mm.), the o i l r e a d i l y c r y s t a l l i z e d out i n the cold to a 

colorless s o l i d (m.p. 2 9 ° - 3 1°C) 

c i s - 2-Nitroxycyclohexanol was prepared for t h i s work 

before the synthesis of C r i s t o l and Franzus ( 1 9 ) appeared i n 

the journals i n 1 9 5 7 * c i s - 1 , 2 - Cyclohexanediol was p a r t i a l l y 

acetylated by the method of Winstein ( 6 5 ) to give a co l o r l e s s 

o i l y product aft e r vacuum d i s t i l l a t i o n , (b.p. 103°C at 4 . 5 mm. 
24 *J 

and n D *J 1 * 4 5 7 2 ) . This o i l i s believed to be a mixture of 

the monoacetate and the diacetate ( 1 9 , 6 5 ) . N i t r a t i o n of t h i s 

product at - 1 0°C i n a n i t r i c acid-phosphorus pentoxide mixture 

yielded a c o l o r l e s s o i l (b.p. 93°C at 1 » 3 mm. and n D
2 4 ' ^ 1 * 4 5 3 7 ) . 

C r i s t o l and Franaus ( 1 9 ) , using a n i t r i c - s u l f u r i c acid mixture 

at - 7 0°C obtained a colorless o i l after d i s t i l l a t i o n with b.p. 

6 8 ° - 7 3°C at 0 » 5 mm. These products probably contained some 

diacetate. Deacetylation of the c i s - l-acetoxy - 2-nitroxycyclo-

hexane was ca r r i e d out i n d i l u t e barium methylate-methanol 

solution. C r i s t o l and Franeus ( 1 9 ) using a l * 4 M-sodium hydroxide 
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s o l u t i o n i n 7 5 $ ethanol, and obtained a 5 4 $ y i e l d of a c o l o r l e s s 

o i l with b.p. 63°C at 0 . 3 mm. and n D
2 0 1 « 4 7 9 7 . The barium 

methylate-methanol method gave a 3 6 $ y i e l d of the mononitrate. 

C. Decomposition of c i s - and trans- 1 , 2 - Cyclohexanediol 

D i n i t r a t e s . 

Refluxing the respective d i n i t r a t e s i n excess dry 

pyridine at 116° - 120°C caused a decrease i n d i n i t r a t e content 

with time. (Figure 1 . ) . The decomposition of the d i n i t r a t e s 

was a " F i r s t Order Reaction" i n that the plot of the logarithm 

of the concentration of unreacted d i n i t r a t e against reaction 

time gave a straight l i n e for both the c i s - and the trans-

isomers. The trans- d i n i t r a t e decomposed 1.8 times faster than 

the c i s - d i n i t r a t e as shown by the calculated h a l f - l i f e times 

(23.9 and 43.J hours r e s p e c t i v e l y ) . 

Referring to the work of C h r i s t i a n and Purves ( 1 8 ) , 

the trans- d i n i t r a t e was shown to be about twice as unstable 

thermally as the c i s - d i n i t r a t e at 106°C, but the c i s - isomer 

reacted more ra p i d l y with 0 » 1 M sodium hydroxide at 100°C i n 5 0 $ 

aqueous ethanol solution than the trans- isomer. 

Suspecting thermal decomposition we heated the d i n i t r a t e 

with a hydrocarbon solvent, 3-methyIneptane, which had almost the 

same reflux i n g temperature as the p y r i d i n e - d i n i t r a t e mixture. 

After a forty-eight-hour r e f l u x i n g period, i t was observed that 

about 3 0 $ of the d i n i t r a t e remained unchanged as against 2 5 $ for 

the pyridine run. In the 3-methylheptane case, insoluble black 
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product ( 1 1 $ by weight of d i n i t f a t e used) and a colorless l i q u i d 

were formed i n the reaction mixture. The black product burned 

and did not dissolve i n s u l f u r i c acid and N,N-dimethylformarnlde, 

and was thought to be l a r g e l y free carbon. The colorless l i q u i d 

was non-flammable and insoluble i n benzene but soluble i n water 

and believed to be water. In the pyridine run, 9«3$ of a black 

powder was also formed, but i t was found to be soluble i n con­

centrated s u l f u r i c acid. It i s most probable that thermal decom­

pos i t i o n does occur to a large extent, and that i n the case of 

the pyridine run, the basic media aided i n the polymerization 

of the d i n i t r a t e and pyridine decomposition products. 

The presence of small amounts of water ( 1 $ - 3$ by 

volume of pyridine used) seemed to i n h i b i t the decomposition of 

the d i n i t r a t e s . Table I shows the re s u l t s at one hour reaction 

time for the c i s - d i n i t r a t e with pyridine containing 1-3$ by volume 

of water. With increase i n water content there was a decrease i n 

d i n i t r a t e decomposition. Less intensely colored reaction mixtures 

were obtained with an increase i n water content from 1$ to 1 0 $ . 

This was observed i n runs car r i e d out at 8l°C and at r e f l u x 

temperatures. 

The quenching of the pyridine reaction mixture i n excess 

cold water followed by removal of the unreacted d i n i t r a t e with 

ether extractions gave the so-called "aqueous-pyridine s o l u t i o n " . 

On evaporating i t to dryness, an aqueous-pyridine residue was l e f t 

behind. The y i e l d of t h i s dark material was over twice greater 

for the trans- than for the c i s - isomer, and increased exponent­

i a l l y with reaction time (Table I I ) . 



TABLE I. 

DECOMPOSITION OF THE DINITRATES 

Run' Reflux 
time 
(nr.) 

Moles 
Water 
added 

D i n i t r a t e Recovered Run' Reflux 
time 
(nr.) 

Moles 
Water 
added % Recovered n D

2 i ^ $N** % d i o l 

13.15 (CIS-) 1 1 n i l 9 6 . 9 1 4 7 6 3 1 3 . 4 ^ 
1 3 . 3 5 

2 k n i l 9 3 , 6 1.V763 1 3 . 5 6 

3 n i l 70.0 1.4763 --

k* 48 n i l kk-k 1 4 7 6 3 — 

5 1 0.0083 9 6 . 6 1.4763 — — 

13.22 
6 1 0.0170 97-3 1.4764 1 3 . 2 7 

7 1 0.031+0 9 8 . . 0 1 . 4 7 . 6 3 — 

(TRATNS -)... l " ' r " " 1 n i l 9 3 . 9 1.4747 — — 1.4747 
1 3 . 8 4 

k n i l 85.4 1.4745; 13.84 — 

3 24 n i l 50.8 1-4743 — 9 6 

48 n i l 25.5 1.474^ 9 9 

Moles of dinitrate/moles of pyridine used = 0 .04 

""""" Nitrogen analyses done by the method of Brown and Purves 
( l 5 ) and Ma and Zuazaga ( 4 2 ) . Freshly prepared c i s - and trans-
d i n i t r a t e s had ni ) 2 4 o I . I4 .763 and nj )24o 1.4743* respectively, 
and 1 3 . 6 2 , 13.59% N (Theoretically 1 3 . 5 9 # N . ) 

Reaction mixture quenched i n excess water. 
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TABLE II. 

AQUEOUS PYRIDINE RESIDUE 

Run Weight 
Di n i t r a t e 

(gm.) 

Reflux 
time 
(nr.) 

Aqueous 
Pyridine 
Residue 
(gm.) 

(CIS-) 8 l j . , 0 k ' 0 . 1 0 

3 . 2 . 1 0 . 1 6 

(TRKNS-) i ] + . - 0 £ 0 min. 0 . 0 9 

6 i | . 0 7 0 min. 0 . 1 1 

7 k..o k . 0 . 3 7 

2 k 0 . 3 1 ^ 

8 • 1 0 0.14-3 

-

k 3 . 0 ^ 8 - 0 . 6 1 
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Examination of t h i s material showed the presence of 

pyridinium n i t r a t e , adipic and succinic acids, and the absence 

of the d i o l s and the mononitrates. 

Pyridinium n i t r a t e was shown to be produced only i n 

the presence of moisture (14). During the present investigation, 

when the r e f l u x condenser and drying tube were detached from the 

reaction f l a s h , pyridinium n i t r a t e c r y s t a l l i z e d out immediately 

on the "wet" upper half of the reaction f l a s k . 

The formation of adipic acid could be explained on 

the basis of previous works on thermal decomposition of n i t r a t e 

and n i t r i t e esters ( 3 8 , 6 8 , 6 9 ) . The decomposition of our n i t r a t e 

would have undergone the following steps: 

N 

I 
O 
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The adipaldehyde i s e a s i l y oxidized by a i r to adipic 

acid, and would be probably immediately oxidized i n the hot 

reaction mixture containing d i f f e r e n t oxides of nitrogen (14). 

The formation of succinic acid should be accompanied 

with the production of oxalic acid i f an elimination reaction 

or thermal decomposition occurred. The interference of p y r i ­

dinium n i t r a t e prevented the detection of the oxalic acid. 

According to Hughes and Ingold ( 3 7 ), elimination reactions take 

place i n disubstituted compounds with a x i a l - a x i a l (trans-) and 

axia l - e q u a t o r i a l ( c i s - ) conformations —- more r e a d i l y i n the 

former case. Thermal decomposition of esters give o l e f i n s only 

i n the cases where the conformation of the 1 , 2-substituents are 

axia l - e q u a t o r i a l ( c i s - ) and a x i a l - a x i a l (trans-), and where a 

planar t r a n s i t i o n state i s possible. In either case, the 

reactions probably are: 

O X C l l i c a n d s u c c i n i c a c i d s 
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1 , 3-cyclohexadiene r e a d i l y polymerizes when exposed to l i g h t . 

Under the oxidative conditions i n the reaction mixture, the 

diene was probably oxidized to oxalic and succinic acids. 

In 3-methylheptane with trans-l , 2-cyclohexanedioI 

d i n i t r a t e at about the same r e f l u x temperature as that of the 

py r i d i n e - d i n i t r a t e mixture, i t was shown that o x a l i c , succinic 

and adipic acids were formed as decomposition products. Again, 

thermal decomposition, elimination and oxidation reactions would 

account for these products. 

The reaction products also included some lead-tetra-

acetate-oxidizable material which did not correspond to the c i s -

and trans- d i o l s . If any d i o l was formed by thermal decom­

posi t i o n of the d i n i t r a t e , i t may have undergone oxidation to 

the adipaldehyde and then to the adipic acid stage. 

The presence of carbonyl compounds i n the pyridine 

reaction products was demonstrated by the formation of several 

colored spots with p-anisidiue reagent. Glutaconaldehyde i s 

known to be produced from pyridine by the oxidative opening of 

the ring ( 7 1 ) . In acid solution i t has the yellow-brown d i -

aldehyde structure and i n the basic media i t i s i n the form of 

the dark red enolate ion. 

OHC- CH 2- CH = CH - CHO K OCH = CH - CH = CH-CHO -

(acid) + H* (base) 

In the present case, glutaconaldehyde, i f formed probably 

polymerized or condensed with the decomposition products from the 

d i n i t r a t e . 
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When the pyridine-reaction mixture was vacuum d i s ­

t i l l e d at room temperature aft e r one hour of re f l u x i n g , a 

colorless d i s t i l l a t e was c o l l e c t e d . This solution, when a c i d i f i e d 

with hydrochloric acid, reacted with a n i l i n e to produce a red 

solution. Paper chromatography showed the presence of a new red 

derivative which did not correspond to glutaconaldehyde 

d i a n l l i d e (71). Phenylhydrasine gave no c r y s t a l l i n e d e r i v a t i v e 

with the d i s t i l l a t e but heating produced a red color i n d i c a t i n g 

again that some carbonyl compounds may have been present. 

The presence of unsaturated compounds and (or) e a s i l y 

oxidizable low molecular weight aldehydes and alcohols was demon­

strated by permanganate-carbonate reduction of the d i s t i l l a t e . 

A c i d i f i c a t i o n of the reduced solu t i o n produced some non-acidic 

material melting at 130° - 140°C. 

The d i s t i l l a t e of the 3-methylheptane-dinitrate 

reaction mixture also showed unsaturation with both bromine and 

permanganate solutions. Presence of some e a s i l y oxidizable 

material was also noticed when a small amount of an a c i d i c sub­

stance pre c i p i t a t e d out of the d i s t i l l a t e a f t e r standing for a 

few days at room temperature. 

The reaction with quinoline of the trans- d i n i t r a t e at 

165°C produced water and some dark pyridine-soluble polymer. 



CONCLUSIONS 

The decomposition of c i s - and trans- 1,2-cyclohex-

anediol d i n i t r a t e s by pyridine, 3-methylheptane and quinoline 

produced o x a l i c , succinic and adipic acids, pyridinium n i t r a t e , 

water, aldehydes, alcohols, unsaturated compounds, polymeric 

materials and a gaseous product. The absence of the 2-nitroxy-

cyclohexanols and 1,2-cyclohexanediols among the products was 

noted i n a l l cases. 

Although water was produced i n the 3-methylheptane 

and quinoline reactions, i t was not shown to be present i n the 

pyridine reactions. Its presence Indicated vigorous oxidation 

conditions i n the reaction mixtures, and also the p o s s i b i l i t y 

of the formation of other fragmentary products such as formal­

dehyde, formic acid, g l y o x y l i c acid and carbon dioxide which 

were not detected. 

Oxalic acid was not detected i n the pyridine r e a c t i o n 

products because of the interference of the pyridinium n i t r a t e ; 

i t was believed to be produced however, together with succinic 

acid through thermal decomposition and (or) elimination reactions. 

Adipic acid originated from the ri n g opening of the d i n i t r a t e s 

by thermal den i t r a t i o n followed by oxidation. 

The various polymers formed appeared to be secondary 

decomposition products from the d i n i t r a t e and the pyridine. 

When a basic media was not present, as i n the 3-methylheptane 

reactions, carbonization was observed rather than polymerization. 

The absence of 2-nitroxycyclohexanols and 1,2-cyclo­

hexanediols could not be attributed to a lack of free proton 

because of the profound decomposition suffered by both the 
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pyridine and the d i n i t r a t e . 

The conformation of the trans-1.2-cvclohexanediol 

d i n i t r a t e must be at least p a r t i a l l y a x i a l - a x i a l i n order to 

explain the production of oxalic and succinic acids. The 

hydrolysis work of C h r i s t i a n and Purves (18) supported t h i s 

view. 

The rates of decomposition depended upon the con­

formation of the isomers; the trans- d i n i t r a t e decomposed 

l . S times faster than the c i s - isomer i n pyridine solution. 
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EXPERIMENTAL 

A. Materials 

N i t r i c Acid; Red fuming n i t r i c a c i d , supplied by 

Baker and Adams, was dried by d i s t i l l i n g i n vacuo from twice 

i t s weight of concentrated s u l f u r i c acid. 

Pyridine; Reagent-grade pyridine was dried by 

refluxi n g with technical grade barium oxide and d i s t i l l e d . 

The f r a c t i o n b o i l i n g between 114° and 115°C was co l l e c t e d and 

stored over calcium hydride. It was d i s t i l l e d from calcium 

hydride under anhydrous conditions just before use. 

Quinoline: Reagent grade quinoline was d i s t i l l e d 

i n vacuo and the middle f r a c t i o n collected to give a pale 

yellow l i q u i d , b.p. 1 1 5 ° - 116°C at 18 mm. 

3-Methylheptane; Technical grade Bios Laboratory 

product was washed with concentrated s u l f u r i c acid ( u n t i l the 

washings were colorless) and then with water. It was dried 

over anhydrous magnesium sulfate and then over calcium hydride 

before being d i s t i l l e d . The f r a c t i o n b o i l i n g between 116° and 

117°C was used. 

Hexane-Methanol Chromatography Solvent; Technical-

grade hexane was washed several times with concentrated s u l f u r i c 

acid, then with water, and dried over anhydrous magnesium 

sulfate . The f r a c t i o n d i s t i l l i n g between 67° and 69°C was 

saturated with reagent-grade methanol and used i n p a r t i t i o n 

paper chromatography. 
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c i s - and trans- 1 , 2 - Cyclohexanediols: c i s - 1 , 2 -

Cyclohexanediol was prepared from cyclohexene by the method 

of Clark and Owen ( 1 7 ) . It was r e c r y s t a l l i z e d from ethyl 

acetate and melted c o r r e c t l y at 9 7 ° - 9 8°C. 

trans- 1 , 2 - Cyclohexanediol was also prepared from 

cyelohexene by a modification of method of Roebuch and Adkins 

( 5 2 ) . R e c r y s t a l l i z a t i o n from ethylacetate yielded a c o l o r l e s s 

product, m.p. 1 0 2 ° - 1 0 3°C. 

Barium Methylate; Barium methylate for deacetylation 

reaction was prepared by r e f l u x i n g 2 5 gm. barium oxide with 

5 0 ml. absolute methanol for two hours. The insoluble barium 

hydroxide was f i l t e r e d o f f , and the f i l t r a t e d i l u t e d to 1 0 0 ml. 

with absolute methanol. T i t r a t i o n with IN- s u l f u r i c acid 

established the normality of the solution. 

Palladized Charcoal Catalyst; The palladium on 

charcoal catalyst for hydrogenobysis of n i t r a t e groups was 

prepared by the method of Hartung ( 3 0 ) . 

Alumina; Merck's acid-washed alumina was used for 

column-chromatographic separation of n i t r a t e esters. 

Diphenylamine Reagent; Diphenylamine reagent for 

testing for the presence of n i t r a t e was prepared after the 

method of Mulliken ( 4 5 ) . 

Lead Tetracetate Spray Reagent: A solu t i o n of lead 

tetraacetate 1 . 0 gm. i n benzene ( 1 0 0 ml.) was shaken with 

charcoal and f i l t e r e d . The dry paper chromatograma were 

moistened with a l i t t l e xylene, sprayed with the reagent and 

dried at room temperature. Wherever glycols were present, the 
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lead reverted to the bivalent state whereas the brown lead 

dioxide pr e c i p i t a t e d on the rest of the paper. White patches 

on a brown background were considered to be a positive t e s t . 

p_- Anisidine Spray Reagent; 

p-Anisidine reagent was prepared by dissolving 5 gm. 

pure p-anisidine i n 1 6 6 ml. n- butanol, and then adding 3 . 8 ml. 

of concentrated hydrochloric acid. The chromatogram was dried, 

then sprayed with t h i s reagent and developed at 1 3 0 ° - 150°C i n 

an oven for a few minutes. This reagent i s frequently used 

for detecting aldohexoses, ketohexoses, aldopentoses and uronic 

acids. Different shades of colors are produced. 

Bromocresol Green Spray Reagent; Bromocresol green 

(0.04 gm.) was dissolved i n 9 5 $ ethanol to give a green solution. 

Thoroughly-dried chromatograms were sprayed with t h i s reagent. 

Yellow patches on a green background were considered to be 

posit i v e tests for the presence of acids. 

Paper-Partition Chromatography; 

( 1 ) Organic Acids: The chromatography solvents 

Butanol-Formic Acid - Water ( 4 : 1 : 5 ) and ( 2 : 1 : 1 ) , Butanol-A c e t i c 

Acid-Water ( 4 : 1 : 5 ) , and Phenol-Formic Acid-Water ( 7 5 : 1 : 2 5 ) were 

used for the separation and i d e n t i f i c a t i o n of organic acids 

present i n the reaction products. 

( 2 ) Nitrate Esters: Hexane-Methanol Chromatography 

solvent was used to separate the n i t r a t e esters. This method 

was developed i n this laboratory by Michael Jackson. 
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B. Syntheses of 1 , 2-Cyclohexanediol D i n i t r a t e s 

(a) Trans-l , 2-Cyclohexanediol D i n i t r a t e 

t r a n s - 1 , 2 - Cyclohexanediol D i n i t r a t e was prepared 

by the method of Soffer and coworkers ( 5 7 ) . t r a n s - 1 , 2 - Cyclo­

hexanediol was ni t r a t e d by an anhydrous n i t r i c acid, acetic acid 

and acetic anhydride mixture. The yellow n i t r a t e product was 

p u r i f i e d by vacuum d i s t i l l a t i i o n to give a c o l o r l e s s , musty-

smelling o i l , b.p. 6 6 ° - 67°C at 0 . 0 3 mm. 

n D
2 ? - 5 1 . 4 7 3 2 Y i e l d = 6 7 $ . 

(°) c i s - 1 , 2 - Cyclohexanediol D i n i t r a t e 

The same method of n i t r a t i o n was ca r r i e d out on the 

c i s - 1 , 2 - cyclohexanediol. The yellowish o i l y product was 

p u r i f i e d by f r a c t i o n a l d i s t i l l a t i o n to give a c o l o r l e s s , musty-

smelling o i l , b.p. 7 4 ° - 76°C at 0 . 0 3 mm. or 1 0 6 ° - 108°C at 

1 mm. n D
2 7 , 0 1 . 4 7 5 7 . 

Hydrogenation of about 1 gm. samples of the trans-

and c i s - 1 , 2 - cyclohexanediol d i n i t r a t e s at 40 p . s . i . hydrogen 

and room temperature using 40 ml. alcohol as solvent and 1 gm. 

of palladizeefc charcoal as c a t a l y s t , yielded 9 5 $ to 9 8 $ of the 

th e o r e t i c a l amount of the respective dliols. 

C. Syntheses of 2-Nitroxycyclohexanols 

(a) trans- 2 - Nitroxycyclohexanol 

Twenty-five grams ( 0 . 1 5 m.) of s i l v e r n i t r a t e was 

dissolved i n 3 1 ml. of dry reagent-grade a c e t o n i t r i l e . The 
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temperature of the mixture was lowered to 0°C, and t r a n s - 2 -

bromocyclohexanol ( 2 5 gm., 0.14 m.) ( 6 6 ) was added dropwise 

with gentle swirling. The mixture was then kept at 0°C f o r 

48 hours and then at room temperature for another 2 1 hours. 

The whitish p r e c i p i t a t e was then f i l t e r e d o f f , and the clear 

solution warmed up to 85°C for 5 minutes. The pr e c i p i t a t e 

that formed was f i l t e r e d o ff and the f i l t r a t e was extracted 

with dry ether. The ether extract ( 1 0 0 ml.) was washed with 

5 0 ml. water and evaporated. The product remaining was a 

yellowish o i l . (19 . 2 gm.) On d i s t i l l a t i o n , a colorless o i l 

was obtained, b.p. 78°C at 0 . 7 5 mm. Y i e l d was 1 1 . 7 gm. or 

5 2 $ of t h e o r e t i c a l y i e l d . This o i l c r y s t a l l i z e d out into a 

white s o l i d with m.p. 2 9 ° . o - 3 1 ° .OC. Hydrogenation of a 

sample of t h i s product using palladized charcoal as a catalyst 

gave a co l o r l e s s c r y s t a l l i n e product that melted from 1 0 0 ° to 

102°C. R e c r y s t a l l i z a t i o n from ethyl acetate gave a new melting 

point of 105°C and a mixed melting point with an authentic 

sample of trans-l , 2-cyclohexanediol was not depressed, 

(b) c i s - 2 - Nitroxycyclohexanol 

c i s - 2 - Nitroxycyclohexanol was prepared by the 

following scheme. 
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( i ) Acetylation of c i s - 1 . 2 - Cyclohexanediol 

The monoacetate of ci s - l , 2 - c y c l o h e x a n e d i o l was pre­

pared by the method of Winstein ( 6 5 ) . A colo r l e s s o i l was 

obtained with b.p. 103°C at 4 . 5 mm. and n D
2 4 * ^ 1 . 4 5 7 2 . This 

o i l i s understood to be made up mostly of the monoacetate and 

to have a c i s - orientation. 

H i ) N i t r a t i o n of c i s - 2 - Acetoxycyclohexanol 

To 16 . 8 gm. (o . 2 7 m.) of ice- c o l d fuming anhydrous 

n i t r i c acid was added 1 2 ml. of dry chloroform. This mixture 

was cooled to about - 1 0°C before 0 . 6 gm. of phosphorus 

pentoxide was added with s t i r r i n g . To t h i s n i t r a t i o n mixture 

was then added slowly (dropwise) and with S t i r r i n g the mono­

acetate ( 2 1 . 0 gm.). Addition took 3 0 minutes, and the reaction 

mixture was then l e t to stand for 7 5 minutes at 0 ? C. It was 

then poured into 3 0 0 ml. of ice-cold water, where an o i l y 

product separated out on the bottom. Two ether extractions 

of 1 5 0 ml. each was followed by washing with 2 0 ml. of 5% 

sodium carbonate solution, and twice with 3 5 ml. of water. 

Drying for h a l f an hour over anhydrous sodium sulfate and then 

d i s t i l l i n g o f f the ether produced a l i g h t yellow-colored o i l . 

Vacuum d i s t i l l a t i o n yielded a colorless o i l with b.p. 93°C at 

1 . 3 mm. and n D
2 4 * 5 1 . 4 5 3 7 . Y i e l d : 14 . 9 gm. 

( i i i ) Deacetylation of the c i s - 1 - Acetoxy - 2-nitroxy-

cyclohexane. 

About 5 . 8 gm. of the nitrated acetate was dissolved 

i n 1 2 0 ml. of absolute methanol and the solution cooled to 0°C. 
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Then 4 . 3 ml. of 0 . 2 7 5 N barium methylate was added and the 

solution swirled and l e f t to stand for 24 hours at 0°C. IN-

s u l f u r i c acid was added t i l l the solution was a c i d i c to phenol-

phthalein followed by reagent grade barium carbonate to 

neutralize any excess acid present. The solution was f i l t e r e d 

and then evaporated down to give a yellowish o i l that p a r t l y 

c r y s t a l l i z e d out. Hexang extraction removed the o i l y product 

from the c r y s t a l l i n e material that was found to melt at 9 7 ° -

9 8°C. The hexane extract showed two n i t r a t e spots i n hexane-

methanol paper chromatography — the unreacted n i t r a t e d acetate 

at R f 0 . 2 0 , and, what i s considered to be the mononitrate at 

R f 0 . 5 1 . By pouring t h i s o i l on a dry alumina column and 

eluting i t with, f i r s t , a benzene-ethanol ( 5 0 0 : 1 ) mixture, then, 

benzene-ethanol ( 2 0 : 1 ) , the unreacted cis-l-acetoxy - 2-nitroxy-

cyclohexane was eluted o f f before the cis - 2-nitroxycyclohexanol. 

Any c i s - 1 , 2 - cyclohexanediol present would have stayed on the 

column. On evaporation of the solvent, a yellowish o i l was 

collected ( 1 . 6 4 gm.) or 3 6 $ . 

Hydrogenation (40 p . s . i . hydrogen) of a sample of 

t h i s o i l at room temperature using palladized charcoal as 

catalyst, yielded a co l o r l e s s c r y s t a l l i n e product with m.p. 

9 3 ° - 9 6°C. Mixed melting-point with genuine c i s - 1 , 2 - cyclo­

hexanediol did not lower the melting point of the l a t t e r . 
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D. Decomposition of c i s - and trans- 1 , 2-Cyclohexanediol 

Di n i t r a t e s i n Byrldine Solution 

(a) Preliminary Experiments: 

1 , 2 - cyclohexanediol d i n i t r a t e ( 3 gm.) was dissolved 

i n 3 0 ml. of dry pyridine, and the c o l o r l e s s solution was 

refluxed at 1 1 8 ° - 120°C i n anhydrous conditions. At about 

100°C the solution started to turn yellow, and after f o r t y 

minutes of reflu x i n g i t was dark amber, and c r y s t a l l i n e p y r i ­

dinium n i t r a t e and a brownish-red gas appeared i n the r e f l u x 

condenser. Lengthy re f l u x i n g produced insoluble black residue 

and more colored gas. When a dry-ice-acetone trap ( - 8 5°C) was 

attached to the straight water-cooled r e f l u x condenser, only a 

blue s o l i d (^O^) was c o l l e c t e d . After a given refluxing period, 

the reaction mixture was allowed to cool to room temperature, 

f i l t e r e d , and then poured into about 2 5 0 - 3 0 0 ml. of i c e - c o l d 

water where a heavy o i l separated out i n an amber-colored 

solution. Several ether extractions of t h i s aqueous-pyridine  

solution removed the colored o i l . In several runs, t h i s water-

quenching step was omitted. Instead, the pyridine-reaction 

mixture was d i s t i l l e d at room temperature under vacuo to give 

a colorless p y r i d i n e - l i k e d i s t i l l a t e and a dark-colored o i l y 

residue. This o i l y residue was f i r s t checked for the presence 

of any mononitrate by paper-chromatography using Hexane-Methanol 

solvent, and then either taken up with some ether and washed 

with an equal amount of cold water, or immediately chromatographed 

on an alumina column. 
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Several runs were made with pyridine containing from 

0 . 5 $ to 3 * 0 $ by volume of water, and the reaction rates were 

found to be i n h i b i t e d . With increase i n r e f l u x i n g time, the 

amount of insoluble jet-black material that formed i n the 

refluxin g reaction mixture increased. A 3 gm. (0.0.45 m.) 

sample of the trans- 1,2-cyclohexanediol d i n i t r a t e i n 3 0 ml. 

dry pyridine after two days of refluxing gave 0 . 2 8 gm. of a 

black powder that was found to be insoluble i n pyridine, ether, 

acetone, formamide, dimethylformamide, 3 0 $ NaOH, and concen­

trated hydrochloric acid, bat was soluble i n cold concentrated 
°y 

s u l f u r i c acid to give a dark solution. 74 . 5 $ the trans-

d i n i t r a t e reacted and only 0.610 gm. of a h a r d - p l a s t i c - l i k e 

material was found i n the aqueous-pyridine sol u t i o n a f t e r 

vacuum d i s t i l l a t i o n of the solvent. 

A 2.1 gm. (0.0.02 m.) sample of the c i s - l , 2 - c y c l o -

hexanediol d i n i t r a t e i n 21 cc (0.26m.) dry pyridine after two 

days of r e f l u x i n g gave 0.24 gm. of the black p r e c i p i t a t e that 

was also found to be soluble only i n concentrated s u l f u r i c 

acid. 5 5 * 6 $ of the c i s - d i n i t r a t e reacted, and only 0.164 gm. 

of the aqueous-pyridine residue was obtained. 

(b) I s o l a t i o n of the Unreacted D i n i t r a t e ; 

About one gram of the o i l y residue, previously 

obtained by vacuum d i s t i l l a t i o n of the reaction mixture at 

room temperature, was poured on top of a dry alumina column 

(1 . 8 x 5 0 cms.) and eluted with ether. The d i n i t r a t e ran 

with the fro n t , leaving dark yellow, b l u i s h green, and red 
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bands at the top of the column. Normally i t took 2 5 - 3 0 minutes 

of dripping time for a l l the d i n i t r a t e to come through. After 

a lapse of another 3 0 minutes, any mononitrate present would 

begin coming through too. The ether was then removed by 

vacuum d i s t i l l a t i o n at room temperature to give a colorless 

o i l y residue (the d i n i t r a t e ) which was checked as to i t s 

r e f r a c t i v e index and nitrogen values, and d i o l content. 

(c) Fractionation of the Aqueous-Pyridine Residue: 

The reaction mixture was d i l u t e d with cold water and 

extracted with ether to remove the unreacted d i n i t r a t e . Evap­

oration of the aqueous-pyridine solution at 40° - 45°C (bath) 

l e f t a dark-brown amorphous residue whose weight increased 

exponentially with reaction time. The material was completely 

soluble i n methyl alcohol, and over bQ% soluble i n acetone or 

hot water. Most of the material could be dissolved by f i r s t 

extracting i t with acetone and then hot water, the f i n a l residue 

was soluble i n pyridine. Most of the color was retained i n the 

aqueous and pyridine extracts. These fr a c t i o n s were studied 

chromatographically. The colored extracts were concentrated 

i n vacuo oniihe steam bath to a volume of 5 - 10 ml and then 

spotted on a Whatman No. 1. chromatographic paper, and eluted 

with d i f f e r e n t solvents. 

( i ) Butanol-Ethanol-Ammonia-Water Solvent (40:10:1:49) 

Between seven to nine blue, purple, r e d , green and 

yellow spots showed up under u l t r a - v i o l e t l i g h t from both the 

c i s - and trans- runs. Diphenylamine reagent brought out only 
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the pyridinium n i t r a t e (R f 0 . 2 6 ) , and the p-anisidine-H61 

reagent exposed two spots f o r Run 5 ( 5 0 min. refluxing) — — 

a reddish-brown spot at R f 0 . 2 6 , and a yellowish-brown spot 

at R f 0.46. The reagent was found to have no effect on the 

pyridinium n i t r a t e . An aqueous-pyridine residue obtained 

after four hours of ref l u x i n g did not give any spottings with 

the p-anisidine reagent, but showed eight to nine spots of 

various colors under u l t r a - v i o l e t l i g h t . Bromocresol green 

also picked up a strong acid spot just below the st a r t i n g front. 

Run 3 ( c i s - d i n i t r a t e ) , after 48 hour re f l u x i n g period, 

gave with bromocresol green strong acid spots at Rf 0.10 and 

0 . 2 0 (the l a t t e r was also p o s i t i v e to diphenylamine reagent 

and corresponded to pyridinium n i t r a t e ) , a weak acid spot at 
R f 0 . 3 3 and a strong basic spot (blue patch) at Rf 0.42. A 

corresponding acetone extract of Run 1 ( t r a n s - d i n i t r a t e ) , a f t e r 

an hour of re f l u x i n g , showed a weak acid spot at R^ 0 . 1 2 , and 

a strong one at Rf 0.22 (also positive to diphenylamine t e s t and 

corresponding to pyridinium n i t r a t e ) and a weak acid spot at 

R f 0.44. Nothing was picked up with lead tetraacetate spray, 

( i i ) Butanol-Acetic-Acid-Water Solvent (2:1:1) 

p-Anisidine reagent brought out two spots for Run 5 

( 5 0 min. refluxing) and four spots for Run 6 ( 7 0 min. r e f l u x i n g ) . 

The Rf values were 0 . 2 6 (dark red); 0.62 (yellowish-brown), 

0 . 7 7 (yellowish-brown) and 0.91 (dark red). The R f values 0 . 6 2 

and 0 . 7 7 were both found i n the two runs. U l t r a v i o l e t l i g h t 

showed between four to f i v e spots, and the diphenylamine reagent 

picked up the pyridinium n i t r a t e @ Rf 0.20. Bromocresol green, 
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to adipic acid (Run 8 , 10 hr. refluxing) 

( i i i ) Butanol-Acetic Acid Water Solvent ( 4 : 1 ;5) 

Acetone extract of Run 8 ( 1 0 hr. refluxing) and the 

aqueous extract of Run 4 ( 4 8 hr. refluxing) both gave strong 

acid spots with bromo-cresol green at Rf O . 8 3 corresponding 

to adipic acid. A weak acid spot appeared at R^ 0 . 7 3 corres­

ponding to succinic acid. The presence of any oxalic acid was 

camoflaged by a c i d i c pyridinium n i t r a t e . 

(iv) Phenol-Formic Acid-Water Solvent (75:1:25)  

(Upward Blow) 

For acetone extract of Run 8 and aqueous extract of 

Run 4 , strong acid spots were detected with bromo-cresol green 

at Rf 0 . 7 4 , corresponding to adipic acid, and weak acid spots 

at Rf 0 . 6 3 j corresponding to succinic acid. Oxalic acid, i f 

present, should show up at Rf 0 . 3 2 , but again a c i d i c pyridinium 

n i t r a t e i n t e r f e r r e d . 

(v) Xylene-Methyl-ethyl-ketone-Water Solvent ( 1 : 1 : 1 ) 

In the aqueous extract of Run 4 ( 4 8 hours r e f l u x i n g ) , 

lead-tetraacetate reagent picked up only a narrow white streak 

extending from the spotting l i n e . Standard trans- and c i s -

cyclohexane, 1 , 2 - d i o l s spottings did not correspond with that 

streak. 

Bromo-cresol green, however, showed a heavy yellow 

streak extending almost half-way down the paper. A standard 

pyridinium n i t r a t e spot did not move from i t s o r i g i n a l spotting 

position and was detected by the diphenylamine reagent. 
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(vi) Butanol-Formic acid-Water Solvent (4:1:5) 

Aqueous extract of Run^4 showed a strong acid spot 

at R f 0 . 8 7 , and a weak one at R f 0 . 7 6 corresponding to adipic 

and succinic acids respectively. Acidic pyridinium n i t r a t e 

again interfered i n the detection of any oxalic acid. 

(d) I s o l a t i o n of the Mononitrate 

One gram sample of the colorless c i s - 1,2-eyclo-

hexanediol d i n i t r a t e was dissolved i n 10 ml. of dry pyridine, 

and the solution was well stoppered and l e f t to stand for 

3 3 days at room temperature. Samples were taken out after 

the f i r s t , second, and t h i r d hour, and then at twenty-four 

periods, and chromatographed against standard d i n i t r a t e and 

mononitrate i n hexane-methanol solvent. No mononitrate or 

d i o l was detected at any time by diphenylamine reagent and 

lead tetraacetate. After 3 3 days, the s o l u t i o n became orange-

yellow i n color and contained some pyridinium n i t r a t e . 

About 0 . 3 gm. samples of f r e s h l y d i s t i l l e d trans-

1,2-cyclohexanediol d i n i t r a t e were dissolved i n 3 ml. of 

freshly d i s t i l l e d pyridine containing from 0% to 10$ of water 

by volume. These were heated at 81°C for 4 days, and samples 

taken out at various time i n t e r v a l s and chromatographed i n 

hexane-methanol solvent. No mononitrate was ever detected. 

The sample containing dry pyridine became yellov/ish i n 45 

minutes, reddish-brown i n 48 hours, and dark-amber after 9 6 

hours. Samples containing water were a l l l i g h t e r i n color 

after 9 6 hours. 
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About 3 gm. of f r e s h l y prepared trans- 1 , 2-eyclo-

hexanediol d i n i t r a t e was refluxed with 3 0 ml. pyridine con­

taining 2 5 $ by volume of water. After a 6 0 minute period, 

the solution turned only yellow i n color, and paper chroma­

tography showed no mononitrate. 

When 3 0 ml. of BaO-dried pyridine was decanted o f f 

dry potassium hydroxide p e l l e t s and refluxed with 3 gm« of trans-

1 , 2-cyclohexanediol d i n i t r a t e for an hour, no mononitrate was 

detected i n the residual o i l , after the reaction mixture was 

vacuum d i s t i l l e d at room temperature. But, with the addition 

of a small amount of water (1 - 3 $ by volume) followed by 

refluxing for ann hour, some mononitrate was detected i n the 

residual o i l . This was shown by chromatographing the r e s i d u a l 

o i l against standard trans- 1 , 2-cyclohexanediol d i n i t r a t e 

( H F 0 . 8 0 ) and trans- 2 nltroxycyclohexanol (Rf 0 . 3 3 ) i n hexane-

methanol. Alumina column chromatography using dry ether as 

eluant could give a good separation of the mononitrate from the 

d i n i t r a t e i n the residual o i l . About 1 gm. sample of the 

residual o i l was poured on top of a dry alumina column ( 1 . 8 x 

5 0 cm.) and dry ether added. The d i n i t r a t e flowed with the 

front, and was washed o f f i n about 3 0 minutes, while the mono­

ni t r a t e only appeared a f t e r an i n t e r v a l of 3 0 to 40 minutes. 

Diphenylamine reagent was used to check for the appearance and 

disappearance of the n i t r a t e s . 

(e) Examination of the D i s t i l l a t e from the Reaction Mixture; 

About 4.1 gm. of trans- 1 , 2-cyclohexanediol d i n i t r a t e 
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was refluxed for 5 0 minutes with 40 ml. of Analar Reagent 

pyridine that was not previously dried over barium oxide. 

Then the reaction mixture was d i s t i l l e d at 30°C and reduced 

pressure to give a colorless d i s t i l l a t e that smelled strongly 

of pyridine. 

To 3 ml. of t h i s d i s t i l l a t e was added some concen­

trated hydrochloric acid to make the sol u t i o n a c i d i c . Then 

about0.2 ml. of fre s h l y d i s t i l l e d , c o l o r l e s s a n i l i n e was added. 

The solution turned pink immediately. This mixture was chroma-

tographed i n Butanol-Water solvent against genuine glutaconal-

dehyde dianihide-hydrochloride ( 7 1 ) . The l a t t e r ran at Rf 0 . 7 5 

as an reddish-orange spot, while the former as a red spot at 

R f 0 . 4 5 . 

To 2 ml. of the d i s t i l l a t e , about 4 ml. of g l a c i a l 

acetic acid was added t i l l the solution was a c i d i c and then 

about 1 ml. of phenylhydrazine solution. The solution turned 

yellow, and heating just below the b o i l i n g temperature turned 

i t red. No c r y s t a l l i z a t i o n occurred i n the f r i g i d a i r e overnight. 

The d i s t i l l a t e was found to reduce 1%- potassium 

permanganate i n 2% sodium carbonate slowly at room temperature. 

To 20 ml. of the d i s t i l l a t e at 40° - 50°C was added slowly about 

20 ml. of t h i s 1% permanganate-carbonate solution. When the 

decolorization seemed to have stopped, the manganese dioxide was 

f i l t e r e d o f f . Concentrated hydrochloric acid was then added t i l l 

the solution was a c i d i c ; Some c r y s t a l l i n e material appeared as 

a suspension i n the yellowish solution. Ether extraction removed 

the c r y s t a l l i n e suspension and most of the yellowish color. The 
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evaporation of the ether extract yielded a mixture of white 

crystals and orange-colored powder. ( 0 . 1 2 5 gm.) This material 

melted and burned when heated leaving a charred mass. Chroma­

tography i n Butanol-Water gave a yellowish spot at R f 0.84 and 

an acid spot at R f 0.04 (standard succinic, glutanic and adipic 

acids had higher R f values). When some of the ether extract of 

t h i s c r y s t a l l i n e material was added to an aqueous-pyridine 

solution, some l i g h t , f l a k e - l i k e , golden c r y s t a l s appeared, 

which after f i l t r a t i o n melted at 130° to 140°C, and were found 

not to be a c i d i c . 
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E. Decomposition of trans- 1,2-Cyclohexanediol D i n i t r a t e  

i n 3-lfethylheptane Solution 

(a) Preliminary Experiments: 

trans- 1,2-Cyclohexanediol d i n i t r a t e ( 1 . 9 9 gm.) was 

dissolved i n 2 5 ml. 3-methylheptane at room temperature, and 

the c o l o r l e s s mixtures/was refluxed at 1 1 9 ° - 120°C gently for 

40 hours i n anhydrous conditions. Immediately a brownish-red 

gas that smelled of nitrogen dioxide was evolved. After eight 

hours, the solution became only s l i g h t l y yellow and some co l o r ­

less droplets were noticed to condense out with the 3-methyl­

heptane i n the cooler part of the r e f l u x condenser. Next 

morning, a coating of black, insoluble material appeared adhering 

to the bottom and sides of the reaction f l a s k , together with 

some col o r l e s s c r y s t a l l i n e material i n the condenser. This 

c r y s t a l l i n e product was a c i d i c to bromocresol green. With pro­

longed refl u x i n g more insoluble black residue formed. After 

48 hours, the reaction mixture was swirled up, and decanted 

from the insoluble black residue. This was then washed twice 

with small amounts of 3-methylheptane, vacuum-dried at room 

temperature, and then extracted with 3 0 ml. pyridine, and again 

with an a d d i t i o n a l 20 ml. i n order to remove the l a s t trace of 

color. The black residue was a i r - d r i e d overnite and weighed. 

(0.22 gm.) It was found to be insoluble i n acetone, alcohol, 

ether, N,N-dimethylformamide, 3 0 $ - NaOH and concentrated 

s u l f u r i c acid. 

The red-colored pyridine extract was evaporated down 
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at 4 5 ° - 50°C to give a dark gummy material. ( 0 . 0 9 0 gm.) 

This substance was extracted with a t o t a l of 5 0 ml. of hot 

water, and the extracts evaporated down at 4 5 ° - 50°C to give 

a yellow o i l y material, which, after standing overnite i n vacuo 

and over phosphorous p&ntoxide, p a r t i a l l y c r y s t a l l i z e d out 

( 0 . 0 5 0 ) gm.) Paper chromatography of t h i s material i n Butanol-

Acetic Acid-Water ( 4 : 1 : 5 ) showed the presence of three acids 

that corresponded to oxalic (R f 0 . 2 6 ) , succinic (R f O . 7 6 ) , and 

adipic (Rf 0 . 8 4 ) . If an ether instead of a pyridine extraction 

was carried out on the black residue, followed by an aqueous 

extraction of the ether extract, then the aqueous extract would 

be almost c o l o r l e s s . On evaporation to dryness at 4 5 ° - 50°C, 

almost co l o r l e s s c r y s t a l l i n e material was obtained. Chromato­

graphy i n Phenol-Formic Acid-Water ( 7 5 : 1 : 2 5 )(upward flow) 

yielded three acid spots corresponding again to oxalic (Rf 0 . 3 2 ) , 

succinic (Rf 0 . 6 1 ) , and adipic acid (R f 0 . 7 5 ) . Chromatography 

i n Xylene-Methylethylketone-Water ( 1 : 1 : 1 ) , and development of 

the paper chromatogram with lead tetraacetate spray reagent 

revealed a white streak at Rf 0 . 1 3 , whereas genuine c i s - and 

trans- d i o l s ran at Rf 0 . 3 0 and Rf 0 . 2 0 respectively. 

(b) I s o l a t i o n of the Unreacted D i n i t r a t e : 

The decanted yellow reaction s o l u t i o n from the black 

residue was d i s t i l l e d at 6 5 ° - 70°C at 8 0 mm. to give a co l o r l e s s 

d i s t i l l a t e and a yellowish o i l y residue. The l a t t e r weighed 

1 . 4 3 5 gm., and when chromatographed i n Hexane-Methanol solvent, 

showed, besides the unreacted d i n i t r a t e , trace amounts of the 



trans- 2-nitroxyeyclohexanol. This o i l y residue (1.184 gm.) 

was put on an alumina column (1.8 x 5 0 ) cms. and eluted with 

dry ether. The d i n i t r a t e t r a v e l l e d with the front leaving the 

yellow-colored material behind. On evaporation of the ether 

solution, 0 . 5 7 2 gm. of a c o l o r l e s s o i l was l e f t behind. 

Chromatography showed the presence of the d i n i t r a t e only. 

n D
2 4 * 5 = 1.4675 (should be about 1.4745 i f pure d i n i t r a t e ) . 

This o i l was then subjected to high vacuum of 3 mm. at 60°C 

for half an hour, and then for an hour at 2 mm. at room 

temperature. Weighing gave (0.497 gms.) and n j ) 2 4 * ^ = 1.4719. 

A 0.468 gm. sample of the o i l was then hydrogenated with 

5 0 ml. ethanol and 1 gm. palladized charcoal at 48 p . s . i . of 

hydrogen at room temperature. After 5 hours the colorless 

solution showed no n i t r a t e t e s t with diphenylamine reagent. 

It was f i l t e r e d , washed, and evaporated down to dryness at 

45° - 50°C. Light-brown c r y s t a l s formed. After drying i n 

vacuum over phosphorus pentoxide, the y i e l d was 0.278 gm. and 

m.p. 96° - 100°C. After d i s s o l v i n g these c r y s t a l s i n e t h y l -

acetate followed by f i l t r a t i o n , washing and evaporation, a 

new y i e l d of 0 . 2 6 3 gm. of c o l o r l e s s c r y s t a l s was obtained m.p. 

98° - 101°. (100$ d i o l y i e l d ) . Mixed melting points with 

genuine trans- d i o l gave m.p. 103°-4° . P u r i f i c a t i o n with 

charcoal, followed by three consecutive f r a c t i o n a l c r y s t a l ­

l i z a t i o n s only yielded material of m.p. 1 0 3 ° - 104°C. On the 

basis of hydrogenolysis, then, 30.2$ of the trans- 1,2-cyclo-

hexandiol d i n i t r a t e remained unreacted. 
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(c) Examination of the D i s t i l l a t e from the Reaction  

Mixture: 

trans- 1 , 2-Cyclohexanediol d i n i t r a t e ( 2 . 6 2 gm.) 

dissolved i n 3 0 ml. 3-methylheptane was refluxed at 120°C for 

8 8 % hours. The reaction solution was then decanted o f f the 

black residue, and d i s t i l l e d at 6 5 ° - 70°C and 8 0 mm. To 

t h i s d i s t i l l a t e was added bromine t i l l the color stopped 

being discharged. About 0 . 1 ml. of l i q u i d bromine was used. 

The co l o r l e s s solution was then evaporated o f f at 6 5 ° - 70°C 

and 6 0 mm. to leave a l i g h t yellow, medicine-smelling o i l 

( 0 . 0 7 2 gm.). 3rMethylheptane did not discharge the bromine 
color. 

In an e a r l i e r run, the d i s t i l l a t e was found to 

deposit a small amount ( 1 mg.) of white c r y s t a l l i n e material 

after standing stoppered for a few days at room temperature. 

These c r y s t a l s were a c i d i c to bromocresol green. 

Baeyer's test for unsaturation was then c a r r i e d 

out. To 1 ml. of the d i s t i l l a t e was added a drop of 2% 

potassium permanganate solution and shaken up. The colour of 

the permanganate was discharged immediately. Several more 

drops were also decolorized. 3-methylheptane did not show 

any decolorizing e f f e c t s . 
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F. Decomposition of trans- 1 , 2-Cyclohexanediol D i n i t r a t e  

i n Quinoline Solution; 

trans- 1 , 2-Cyclohexanediol d i n i t r a t e ( 0 . 6 gm.) was 

mixed with 6 cc of quinoline, and the temperature of the 

mixture was raised to 165°C within the f i r s t hour, and main­

tained at 1 6 0 ° - 165°C t i l l the end of the second hour. During 

that time some c r y s t a l l i n e material c r y s t a l l i z e d out i n the 

condenser, and a colorless insoluble l i q u i d was seen to r e f l u x 

i n the condenser. No mononitrate nor d i n i t r a t e was detected 

i n the mixture by paper chromatography. D i s t i l l a t i o n at 160°C 

yielded a few droplets of a colorless l i q u i d which was found 

to be insoluble i n quinoline and benzene, but soluble i n water. 

Heating of 2 . 6 2 gm. of trans- 1 , 2-cyclohexanediol 

d i n i t r a t e i n 2 5 ml. of quinoline for 7% hours between 145° -

165°C yielded some blue s o l i d ( N 2 O 3 ) i n a dry-ice trap ( - 8 5°C). 

No d i o l nor mononitrate was detected i n the black reaction 

mixture — only the unreacted d i n i t r a t e . About 1 2 0 cc of 

sodium-dried henzene was added to the reaction mixture, and 

the heavy p r e c i p i t a t i o n occurred. Aseotroping of t h i s mixture 

for 6 hours yielded 0 . 6 ml. of a colorless l i q u i d which showed 

a l l the properties of water. On f i l t e r i n g the benzene-quino-

l i n e solution, 1 . 0 7 gm. of a dark-brown material was c o l l e c t e d . 

This substance was insoluble i n water, s l i g h t l y soluble i n 

acetone, and very soluble i n pyridine. 
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