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AN INFRARED STUDY OF SMALL MOLECULES IN INERT MATRICES 

ABSTRACT 

Infrared absorption spectra of HC1 and HBr, suspended 
i n s o l i d argon, krypton and nitrogen, were recorded i n 
order to obtain information on intermolecular forces. 
SO2 i n argon and nitrogen, and CO i n argon were also 
studied. The spectra were observed i n the temperature 
range from l i q u i d helium temperatures up to the melting 
point of the matrix. 

The halogen acids gave more complicated spectra i n the 
noble gas matrices than i n nitrogen. This has been cor­
related with the d i f f e r e n t thermal properties of the 
matrix materials. Matrix to solute r a t i o s from 100 to 
800 to 1 were used and evidence was found for solute-
solute i n t e r a c t i o n s , a r i s i n g from incomplete i s o l a t i o n 
of solute molecules at the lower r a t i o s . During the warm-
up period at the end of an experiment, a d d i t i o n a l peaks 
appeared i n the spectra. I t i s suggested that these new 
peaks were due to c l u s t e r s of solute molecules produced 
by d i f f u s i o n of the solute through the l a t t i c e . 

Semi-empirical c a l c u l a t i o n s were c a r r i e d out to e s t i ­
mate s h i f t s of v i b r a t i o n a l frequencies of the trapped 
molecules. From these cal c u l a t i o n s i t was concluded that 
repulsive intermolecular forces play an important part 
i n determining the magnitude, and d i r e c t i o n of the s h i f t s . 
A f i r s t order perturbation c a l c u l a t i o n was made, using a 
Lennard-Jones' p o t e n t i a l , to determine the e f f e c t of the 
matrix on the r o t a t i o n a l energy le v e l s of a trapped 
molecule. 

Spectra of the clathrate-hydrates of SO2, H2S and 
krypton were recorded at l i q u i d nitrogen temperatures, and 
the SO2 hydrate was studied i n the temperature range 
from t? to 120° K. The spectrum of the water s k e l e t a l 
v i b r a t i o n s exhibited several i n t e r e s t i n g features. The 
assignment of the 1600 cm"''- and 2200 cm"! peaks to v 2 and 
U^+l^w/as confirmed and a new peak at 2410 cm"l was 
observed. A l a t t i c e mode i n the spectrum of the S02 
hydrate was observed.in combination with V$ of SO2. 
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A B S T R A C T 

I n f r a r e d absorption s p e c t r a of HC1 and HBr, suspended i n 

s o l i d argon, krypton and n i t r o g e n , were recorded i n order to 

ob t a i n i n f o r m a t i o n on i n t e r m o l e c u l a r f o r c e s . SO2 i n argon and 

n i t r o g e n , and CO i n argon were a l s o s t u d i e d . The sp e c t r a were 

observed i n the temperature range from l i q u i d helium temperature 

up t o the me l t i n g p o i n t of the m a t r i x . 

The halogen acids gave more complicated s p e c t r a i n the 

noble gas matrices than i n n i t r o g e n . This has been c o r r e l a t e d 

w i t h the d i f f e r e n t thermal p r o p e r t i e s of the ma t r i x m a t e r i a l s . 

M a t r i x to s o l u t e r a t i o s from 100 to 800 t o 1 were used and 

evidence was found f o r s o l u t e - s o l u t e i n t e r a c t i o n s a r i s i n g from 

incomplete i s o l a t i o n of so l u t e molecules at the lower r a t i o s . 

During the warm-up p e r i o d a t the end of an experiment, a d d i t i o n a l 

peaks appeared i n the spe c t r a . I t i s suggested t h a t these new 

peaks were due to c l u s t e r s of s o l u t e molecules, produced by 

d i f f u s i o n of the s o l u t e through the l a t t i c e . 

Semi-empirical c a l c u l a t i o n s were c a r r i e d out t o estimate 

s h i f t s of v i b r a t i o n a l frequencies of the trapped molecules. 

From these c a l c u l a t i o n s i t was concluded t h a t r e p u l s i v e i n t e r ­

molecular f o r c e s p l a y an important p a r t i n determining the 

magnitude and d i r e c t i o n of the s h i f t s . A f i r s t order p e r t u r b a t i o n 

c a l c u l a t i o n was made, u s i n g a Lennard-Jones' p o t e n t i a l , t o de t e r ­

mine the e f f e c t of the ma t r i x on the r o t a t i o n a l energy l e v e l s of 

a trapped molecule. 
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Spectra of the clathrate-hydrates of S O 2 , H 2 S and krypton 
were recorded at liquid nitrogen temperatures, and the S O 2 

hydrate was studied in the temperature range from 4-° to 120°K. 
The spectrum of the water skeletal vibrations exhibited several 
interesting features. The assignment of the 1600 cm-'' and 
2200 cm-'' peaks to 1?z and + iS/i was confirmed and a new 
peak at 24.10 cm-'' was observed. A lattice mode in the spectrum 
of the S O 2 hydrate was observed in combination with V 3 of S O 2 . 

K.B. Harvey 
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CHAPTER 1. INTRODUCTION. 

1-1 P r e l i m i n a r y Remarks. 

The bulk of the work f o r t h i s t h e s i s was c a r r i e d out on small 

molecules i n i n e r t m a t r i c e s . The emphasis throughout has been on 

the e f f e c t s of environment on the i n f r a r e d s p e c t r a , which n a t u r a l l y 

leads to a d i s c u s s i o n of i n t e r m o l e c u l a r f o r c e s . I n t h i s l i g h t the 

work on gas-hydrates becomes d i r e c t l y r e l a t e d t o the ma t r i x work, 

sin c e we are e f f e c t i v e l y studying small molecules i n a water "matrix". 

The spectroscopic s t u d i e s of small molecules i n h i g h pressure 

gas, l i q u i d , s o l u t i o n and s o l i d s t a t e s , which are reviewed i n s e c t i o n 

1-4, c o r r e l a t e w i t h the present m a t r i x and gas hydrate work, si n c e 

i n these environments i n t e r m o l e c u l a r f o r c e s determine the shapes, 

widths, s h i f t s and s p l i t t i n g of i n f r a r e d bands. The present work 

attempts t o extend t h i s i n f o r m a t i o n and apply i t to the i n t e r p r e t a t i o n 

of s p e c t r a of molecules i n ma t r i x and gas hydrate environments. 

1-2 Studies of Molecular ..Interactions by the M a t r i x I s o l a t i o n 
Method. 

The m a t r i x i s o l a t i o n technique i n c o n j u n c t i o n w i t h i n f r a r e d 

spectroscopy, o f f e r s a unique approach to the problem o f i n t e r a c t i o n s 

between molecules. The technique c o n s i s t s of d i s p e r s i n g the substance 

( s o l u t e ) of i n t e r e s t i n an i n e r t f r o z e n m a t r i x at a temperature low 

enough t o permit s e p a r a t i o n and i s o l a t i o n of s i n g l e s o l u t e molecules. 

This i s u s u a l l y achieved by condensing gas mixtures on a p l a t e 

cooled by l i q u i d hydrogen, or l i q u i d helium, as i n the present work. 

M a t e r i a l s most commonly used f o r matrices are n i t r o g e n and the ra r e 

gases. 
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Under c o n d i t i o n s of p e r f e c t i s o l a t i o n , the molecule under 

examination i s subject only t o s o l u t e - m a t r i x i n t e r a c t i o n s . Such 

i d e a l c o n d i t i o n s occur, w i t h proper d e p o s i t i o n c o n d i t i o n s , at very 

h i g h m a t r i x t o s o l u t e r a t i o s . I n t e r a c t i o n s between s o l u t e molecules 

become important at low m a t r i x to s o l u t e r a t i o s , and the method can 

be employed to study i n t e r m o l e c u l a r f o r c e s which manifest themselves 

i n changes i n the i n f r a r e d spectrum of the i s o l a t e d molecule. 

The m a t r i x i s o l a t i o n method, i n i t i a l l y employed f o r t r a p p i n g 

and r e t e n t i o n of very r e a c t i v e species such as f r e e r a d i c a l s , has 

been wi d e l y used i n recent years f o r the study of small molecules 

i n a m a t r i x environment. For example, Pimentel et a l ( 1 , 2 , 3 ) have 

recorded s p e c t r a of s e v e r a l small molecules i n s o l i d n i t r o g e n at 

20°K, and M i l l i g a n and co-workers ( 4 , 5 , 6 ) have c a r r i e d out many 

i n v e s t i g a t i o n s w i t h small molecules u s i n g m a t r i x i s o l a t i o n methods. 

Of p a r t i c u l a r i n t e r e s t i s the work c a r r i e d out on water by 

these two groups, both of which reported complex s p e c t r a i n the 

regions of the three fundamentals of the water molecule. Pimentel 

( 2 ) i n t e r p r e t e d the sp e c t r a i n terms of i s o l a t e d monomers, hydrogen-

bonded dimers and higher polymers. M i l l i g a n and h i s co-workers ( 4 , 5 ) 

put forward evidence f o r f r e e r o t a t i o n of the trapped molecules i n 

the s o l i d m a trix; the l a t t e r view was supported by G l a s e l ( 7 ) on 

the b a s i s of r e s u l t s from s i m i l a r work. A disagreement i n i n t e r ­

p r e t a t i o n o f r e s u l t s from m a t r i x - i s o l a t i o n s t u d i e s of ammonia, 

between Pimentel et a l and M i l l i g a n et a l , i s found i n references 

( 3 ) and ( 6 ) . . 

Previous m a t r i x s t u d i e s on HBr and H C 1 were c a r r i e d out by 

Becker and Pimentel ( 1 ) who recorded survey s p e c t r a under low 
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r e s o l u t i o n of HBr and HC1 i n s o l i d n i t r o g e n as a t e s t of the m a t r i x 

i s o l a t i o n technique. Since t h i s work was s t a r t e d , a note by Schoen 

et a l (8) has been published, r e p o r t i n g the r o t a t i o n - v i b r a t i o n 

spectrum of m a t r i x - i s o l a t e d hydrogen chloride.. These workers used 

h i g h m a t r i x to s o l u t e r a t i o s and observed a simple spectrum, which 

they i n t e r p r e t e d u s i n g a hindered r o t a t o r model. 

Maki (9) reported i n f r a r e d s p e c t r a of CO as a s o l i d and i n 

s o l i d m a trices. The s p e c t r a observed were, complicated only by weak 

shoulders and peaks due to i s o t o p i c CO molecules. 

Recent work i n t h i s l a b o r a t o r y (10) i n d i c a t e d t h a t s t r a i g h t ­

forward explanations based on molecular a s s o c i a t i o n or f r e e r o t a t i o n , 

were inadequate and t h a t a more, d e t a i l e d study of i n t e r m o l e c u l a r 

f o r c e s should be considered i n the i n t e r p r e t a t i o n of. r e s u l t s obtained 

at low m a t r i x to s o l u t e r a t i o s . With t h i s i n mind, and i n view of 

the r e l a t i v e l y s m a ll a t t e n t i o n which has been given to m a t r i x 

i s o l a t i o n s t u d i e s of the simple molecules HC1, HBr and CO, a d e t a i l e d 

i n v e s t i g a t i o n on these molecules was undertaken. I t was hoped t h a t 

such a study would provide i n f o r m a t i o n which could be a p p l i e d to the 

i n t e r p r e t a t i o n of r e s u l t s obtained from more complex systems. 

I n f r a r e d s p e c t r a of HC1, HBr and CO i n n i t r o g e n and argon 

matrices were recorded at various m a t r i x - t o - s o l u t e r a t i o s . Change i n 

environment was a l s o s t u d i e d during warming of the deposit from 4°K 

up to the m e l t i n g p o i n t of the matrix. By a d d i t i o n of other s o l u t e 

i m p u r i t i e s to the gas mixtures, i t was hoped to demonstrate the 

extent of s o l u t e - s o l u t e i n t e r a c t i o n s , and thus s i m p l i f y the i n t e r ­

p r e t a t i o n of the m a t r i x - s o l u t e s p e c t r a . 

S e v e r a l t h e o r e t i c a l treatments ( I I - I 4 ) have been c a r r i e d out 
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on molecular r o t a t i o n i n s o l i d s and s o l i d m a t r i c e s , u s i n g various 

hindered r o t a t o r models. These c a l c u l a t i o n s p r e d i c t s h i f t s of band 

centres and s p l i t t i n g of degenerate r o t a t i o n a l l e v e l s . C a l c u l a t i o n s 

of s h i f t s of v i b r a t i o n a l fundamentals due to s o l u t e - m a t r i x i n t e r ­

a c t i o n s have been made w i t h some success. One of the e a r l i e s t 

c a l c u l a t i o n s due t o Kirkwood, Bauer and Magat (15,16) was based on a 

simple d i e l e c t r i c theory. This approach was used more r e c e n t l y by 

P u l l i n (17), who developed an improved theory. Buckingham (18), i n 

a quantum mechanical c a l c u l a t i o n , d e r i v e d a u s e f u l formula which has 

been t e s t e d s u c c e s s f u l l y by Maki (9) and Ewing and Pimentel (19). 

A t h i r d approach, based on c l a s s i c a l e l e c t r o s t a t i c f o r c e s , was used 

by Linevsky (20) i n h i s m a t r i x work on l i t h i u m f l u o r i d e . 

In Chapter 4 of t h i s t h e s i s , c a l c u l a t i o n s of hindered r o t a t o r 

energy l e v e l s f o r the hydrogen h a l i d e s , u s i n g a Lennard-Jones 1 (6-12) 

p o t e n t i a l are c a r r i e d out. In a d d i t i o n , i n t e r m o l e c u l a r f o r c e s between 

so l u t e molecules i n nearest neighbour, next-nearest neighbour, e t c . , 

p o s i t i o n s are considered and the corresponding v i b r a t i o n a l s h i f t s 

c a l c u l a t e d . 

1-3 Molecular I n t e r a c t i o n s i n the Gas Hydrates. 

D i r e c t l y r e l a t e d to the m a t r i x i s o l a t i o n s t u d i e s from the 

p o i n t of view of molecular i n t e r a c t i o n s i s the present work on the 

i n f r a r e d s p e c t r a of gas hydrates. The gas hydrates are i n t e r e s t i n g 

compounds because of t h e i r .unusual c l a t h r a t e , or cage s t r u c t u r e . -

Von Stackelberg (21) i s r e s p o n s i b l e f o r much of our present knowledge 

of the s t r u c t u r e and p r o p e r t i e s of the gas hydrates. The compounds 

st u d i e d i n the present work a l l belong t o the M»6H20 c l a s s w i t h the 
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s t r u c t u r e designated as Type I by Von Stac k e l b e r g . 

A p r e l i m i n a r y i n f r a r e d study on SC^, argon and krypton hydrates, 

was made i n t h i s l a b o r a t o r y by McCourt ( 2 2 ) . S h i f t s i n frequency of 

c e r t a i n peaks i n the s k e l e t a l water spectrum and the appearance of a 

new peak, not present i n the spectrum of i c e , were the main f e a t u r e s 

observed i n t h i s work. I t was f e l t t h a t a more d e t a i l e d study might 

r e v e a l i n f o r m a t i o n on i n t e r m o l e c u l a r i n t e r a c t i o n s and molecular motion 

i n the cage. 

A comprehensive study of SC^-hydrates, u s i n g both normal and 

heavy water was undertaken at l i q u i d n i t r o g e n temperatures. Spectra 

of krypton and H 2 S hydrates were al s o recorded. The s k e l e t a l water 

v i b r a t i o n s and the v i b r a t i o n s of the e n c l a t h r a t e d molecules were 

examined under hig h r e s o l u t i o n , u s i n g the P e r k i n Elmer 4-21 s p e c t r o ­

meter. In one s e r i e s of experiments w i t h the SO?- hydrate, the 

r e g i o n of S O 2 was s t u d i e d under hig h r e s o l u t i o n at various temper­

atures from 4° up to 120°K us i n g the P e r k i n Elmer 1 1 2 G spectrometer. 

1-4 A Summary of Related Work on the Hydrogen Halides and Carbon 
Monoxide. 

Intermolecular f o r c e s , as manifested i n i n f r a r e d s p e c t r a of 

the hydrogen h a l i d e s and Carbon monoxide, i n gas, l i q u i d and s o l i d 

phases, have been the subject of a great deal of work i n recent 

years. The appearance of a Q-branch produced by high pressures of 

f o r e i g n gas i n the 1-0 bands of H C 1 and HBr has been observed by 

Vodar and h i s co-workers ( 2 3 ) . S i m i l a r s t u d i e s were, made by Rank et 

a l (24), who suggested t h a t the formation of a molecular complex 

between the hydrogen.halide and the rare-gas atoms used as p r e s s u r i z i n g 
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agents occurred. Pressure-induced s h i f t s of HG1 caused by noble 

gases have been measured by Ben-Reuven et a l (25) and a theory 

developed which accounts f o r the main features of the observed 

s h i f t s . 

Among the e a r l i e s t workers i n the f i e l d , West and Edwards 

(15) examined the sp e c t r a of H d i n s o l u t i o n s of various s o l v e n t s , 

and i n t e r p r e t e d t h e i r r e s u l t s u s i n g the Kirkwood-Bauer-Magat formula 

(16) . Recently, Kwok and Robinson (26) s t u d i e d HC1 i n l i q u i d Xenon 

and observed a broad band w i t h two shoulders i n the r e g i o n of the 

fundamental. They a t t r i b u t e t h e i r r e s u l t s t o unresolved P and R 

branches combined w i t h solvent-induced 0, Q and S branches. The 

i n f r a r e d s p e c t r a of HC1 and HBr i n s o l u t i o n i n various I n e r t solvents 

have been recorded by Lascomb et a l (27) who r e p o r t gas t o s o l u t i o n 

s h i f t s v a r y i n g from -40 t o -142 cm-'', depending on the p o l a r i t y of 

the s o l v e n t . I n s i m i l a r s t u d i e s , other workers (28,29) conclude 

from the shapes of the absorption bands t h a t there i s some degree 

of r o t a t i o n of s o l u t e molecules. 

A very recent study of the overtone bands of pure s o l i d CO 

and i t s s o l u t i o n i n n i t r o g e n and argon i n the gaseous l i q u i d and 

s o l i d s t a t e s has been made by Vu, Atwood and Vodar (30). These 

workers concluded t h a t the anharmonicity constant was v i r t u a l l y 

unchanged i n t h e ' l i q u i d and s o l i d s t a t e s , compared w i t h the gaseous 

s t a t e , and the observed small band s h i f t was due only t o the change 

of v i b r a t i o n frequency. In s i m i l a r experiments on HC1 and HBr (31) 

the same workers found t h a t the anharmonicity constant f o r these 

molecules decreases c o n s i d e r a b l y i n the s o l i d s t a t e . The spectrum 

of s o l i d CO has a l s o been reported by Ewing and Pimentel (19). 
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St r a i g h t f o r w a r d assignments of peaks to the fundamentals of various 

i s o t o p i c CO molecules were made, and a broad f e a t u r e +70 cm from 

the main peak was assigned to combinations of the v i b r a t i o n a l mode 

w i t h both r o t a t i o n a l and t r a n s l a t i o n a l l a t t i c e modes. 

S o l i d HC1 and HBr at low temperatures have been s t u d i e d by 

Hornig and Osberg (32). I n the r e g i o n o f the fundamental, sharp 

doublets were observed w i t h s p l i t t i n g s of 42 cm"'' f o r HC1 and 

34 cm-'' f o r HBr. The gas t o s o l i d s h i f t s were l a r g e , -161 cm-'' f o r 

HC1 and -137 cm - 1 f o r HBr, and i t was concluded t h a t these molecules 

form hydrogen-bonded chains i n t h e i r low temperature c r y s t a l l i n e 

phases. I n a l a t t e r paper, Hornig and Hiebert (33) reported the 

spe c t r a of mixed HC1-DC1 and HBr-DBr c r y s t a l s over the e n t i r e 

composition range. At low concentrations of DC1 i n HC1 a s i n g l e 

peak due t o i s o l a t e d DC1 molecules, was found. More complex spe c t r a 

observed f o r higher DG1 concentrations were a t t r i b u t e d to super­

p o s i t i o n of peaks a r i s i n g from hydrogen-bonded chains of va r y i n g 

l e n g t h . 
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CHAPTER 2 . EXPERIMENTAL. 

2-1 Experimental Methods. 

The m a t r i x i s o l a t i o n technique has been described by Pimentel 

et a l (1,34), by s e v e r a l authors i n the book e d i t e d by Bass and 

B r o i d a (35), and was o u t l i n e d i n s e c t i o n 1-1 of t h i s t h e s i s . 

I n the present m a t r i x work, a gaseous mixture of a hydrogen 

h a l i d e or carbon monoxide w i t h argon or n i t r o g e n , was prepared i n a 

4 l i t r e storage bulb s e v e r a l days before an experiment. A convection 

c u r r e n t i n the gaseous mixture was produced by heating the bottom of 

the storage bulb. This ensured thorough mixing of the gases p r i o r to 

d e p o s i t i o n . 

A schematic diagram of the apparatus i s given i n F i g . 1 and a 

diagram of the low temperature c e l l , i n F i g . 2 . During a run, the 

mixture was passed through a d e p o s i t i o n tube i n t o the low temperature 

c e l l where the gas stream was allowed to impinge on a caesium i o d i d e 

p l a t e cooled b y - l i q u i d helium. A needle valve was used to c o n t r o l 

the d e p o s i t i o n r a t e which was i n d i c a t e d by the pressure reading of 

a thermocouple gauge. D e p o s i t i o n was continued u n t i l a f i l m of 

condensed m a t e r i a l s u i t a b l e f o r i n f r a r e d study had been produced. 

This o f t e n r e q u i r e d d e p o s i t i o n times of s e v e r a l hours since the 

mixture must be deposited s l o w l y t o prevent temperature r i s e of the 

d e p o s i t , w i t h subsequent d i f f u s i o n of the trapped s p e c i e s . 

High m a t r i x t o s o l u t e r a t i o s ( ^ 500 : 1) were used to study 

i s o l a t e d molecules, whereas low r a t i o s (/\> 100 : 1) were employed 

when i t was d e s i r e d to observe the e f f e c t s of molecular i n t e r a c t i o n s 

on the i n f r a r e d s p e c t r a . In some experiments, c o n d i t i o n s such as 
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fig 2 . THE LOW TEMPERATURE CELL 
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r a p i d d e p o s i t i o n , or formation of the deposit at temperatures w e l l 

above l i q u i d helium temperatures, were u t i l i z e d to ensure t h a t 

d i f f u s i o n occurred during d e p o s i t i o n . I n a d d i t i o n , s e v e r a l e x p e r i ­

ments were c a r r i e d out i n which a t h i r d p o l a r molecule, SO2 or CO 

was added to the gas mixture. 

The gas hydrate s t u d i e s were made mostly at l i q u i d n i t r o g e n 

temperatures i n a low temperature c e l l ( F i g . 4 ) . A few experiments 

were c a r r i e d out at l i q u i d helium temperatures u s i n g the same 

apparatus used f o r the ma t r i x i s o l a t i o n work. Mixtures of water 

vapour and the hydrate former were prepared by a procedure s i m i l a r 

to t h a t used i n the m a t r i x work, and deposited on a caesium i o d i d e 

p l a t e cooled by l i q u i d n i t r o g e n . Short d e p o s i t i o n times, of the 

order of seconds, were necessary because i c e absorbs s t r o n g l y i n 

the i n f r a r e d , and very t h i n f i l m s were e s s e n t i a l to produce s a t i s ­

f a c t o r y s p e c t r a . 

When i t was d e s i r e d to examine the s k e l e t a l water v i b r a t i o n s , 

a mixture was prepared c o n t a i n i n g a s l i g h t excess over the s t o i c h i o ­

m etric r a t i o of the hydrate former. This ensured t h a t a l l the water 

was t i e d up as hydrate. Conversely, when the v i b r a t i o n s of the 

en c l a t h r a t e d molecule were s t u d i e d , a s l i g h t excess of water was 

used to e l i m i n a t e the formation of s o l i d hydrate former. 

2-2 D e t a i l s of the Low Temperature C e l l s . 

The c e l l used f o r the ma t r i x i s o l a t i o n s t u d i e s i s of the 

Duerig-Mador (36) type and i s i l l u s t r a t e d i n Fig.2. I t c o n s i s t s 

e s s e n t i a l l y of a c e n t r a l l i q u i d helium container surrounded by a 

r a d i a t i o n s h i e l d and an outer v e s s e l equipped w i t h o p t i c a l windows 
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of caesium i o d i d e . The c e l l i s connected to a vacuum system of the 

conventional type. 

The l i q u i d helium container i s made of copper and i s 

suspended by a s t a i n l e s s s t e e l neck to minimize heat i n f l o w by 

conduction, which would a c c e l e r a t e the evaporation of l i q u i d helium. 

To improve the e f f i c i e n c y of the r a d i a t i o n s h i e l d , i t i s u s u a l l y 

f i l l e d w i t h a l i q u i d r e f r i g e r a n t such as l i q u i d n i t r o g e n . A copper 

block at the bottom of the helium container holds a caesium i o d i d e 

p l a t e on which the deposit forms. A f t e r s e v e r a l u n s u c c e s s f u l runs 

during the e a r l y p a r t of the present work, the window holder was 

modifie d to improve thermal contact between the window and the copper 

bl o c k . A l a r g e r block was machined (see F i g . 3) w i t h a recess to 

support the caesium i o d i d e p l a t e which i s t i g h t l y h e l d against the 

block by means of a copper gasket secured w i t h four copper screws. 

A l l space between the edges of the window, the gasket and the copper 

block i s f i l l e d w i t h s i l v e r conductive p a i n t . 

The c o l d j u n c t i o n of a g o l d - s i l v e r / g o l d - c o b a l t thermocouple 

i s attached to the copper block and the "hot" j u n c t i o n i s maintained 

at l i q u i d n i t r o g e n temperature. The E.M.F. from t h i s thermocouple 

i s a m p l i f i e d and recorded as a t r a c e on the same chart paper as the 

spectrum, thus g i v i n g a re c o r d of the temperature a t which the 

spectrum was observed. No attempt was made to c a l i b r a t e the thermo­

couple at p o i n t s between 4 0 and 77°K; intermediate temperatures were 

estimated by l i n e a r i n t e r p o l a t i o n . 

The l i q u i d helium container w i t h the attached window holder 

may be turned through 90° so tha t the caesium i o d i d e p l a t e can face 

e i t h e r the d e p o s i t i o n tube or the windows of the outer v e s s e l . 
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The c e l l used f o r the gas-hydrate work i s shown i n F i g . 4 . 

This c e l l r e t a i n s the s a l i e n t c h a r a c t e r i s t i c s of the Duerig-Mador 

c e l l j u s t described but i s smaller and has no r a d i a t i o n s h i e l d . 

Other notable f e a t u r e s are the heating and c o o l i n g devices by means 

of which the temperature may be v a r i e d from 77°K to w e l l above room 

temperature, as r e q u i r e d . The heating i s e f f e c t e d by passing a 

c o n t r o l l e d e l e c t r i c c u r r e n t through a c o i l of pyrotenax wi r e . The 

c o o l i n g i s r e g u l a t e d by a flow of c o l d n i t r o g e n gas or l i q u i d 

n i t r o g e n through a c o i l e d copper tube. Both heating and c o o l i n g 

c o i l s are wound c l o s e to the window holder. I t has been found 

expedient when working at 77°K to keep the c e n t r a l tube f i l l e d w i t h 

l i q u i d n i t r o g e n i n a d d i t i o n t o c i r c u l a t i n g l i q u i d n i t r o g e n through 

the c o o l i n g c o i l . 

There i s a l s o a d i f f e r e n c e i n the device f o r r o t a t i n g the 

window through 90°. I n the l i q u i d helium c e l l , o n l y the innermost 

container i s r o t a t e d , by means of a bearing l o c a t e d at the neck of 

the c o n t a i n e r . I n the l i q u i d n i t r o g e n c e l l , both the outer v e s s e l 

and the l i q u i d n i t r o g e n container move through 90° on a bearing 

s i t u a t e d at the base of the outer v e s s e l . 

The c o l d j u n c t i o n of a copper-constantan thermocouple i s 

attached to the bottom of the window holder and the hot j u n c t i o n i s 

maintained at room temperature. The thermocouple E.M.F. i s observed 

by means of a Leeds and Northrup m i l l i v o l t potentiometer and the 

corresponding temperature obtained from t a b l e s . 

2-3 D i f f u s i o n i n S o l i d M a t r i c e s . 

In the present study, some e a r l y m a t r i x experiments and some 
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l a t e r runs i n 'which the deposit was r a p i d l y formed, gave r e s u l t s 

which i n d i c a t e d t h a t d i f f u s i o n of the trapped species had occurred 

during d e p o s i t i o n . The problem of d i f f u s i o n i n s o l i d matrices has 

been discussed by Pimentel i n Chapter 4 of reference (35). I t was 

found t h a t small molecules d i f f u s e r a p i d l y at 0.4 - 0.6 of the 

m e l t i n g p o i n t of the matrix. During d e p o s i t i o n the f i l m temper­

ature may r i s e w e l l above that of the c o l d p l a t e i f the d e p o s i t i o n 

r a t e i s r a p i d . This e f f e c t i s serious because of the poor thermal 

c o n d u c t i v i t y of most of the common m a t r i x m a t e r i a l s . For example, 

during the d e p o s i t i o n of n i t r o g e n at 4-°K, Fontana (37) observed a 

temperature r i s e of approximately 10°K at a d e p o s i t i o n r a t e of 

30 cc/min. (S.T.P.) The d e p o s i t i o n r a t e i n t h i s work during a 

t y p i c a l two hour run was 12.5 cc/min., so one might expect a 

maximum temperature r i s e of 4°K. Such a r i s e would b r i n g the 

temperature of the f i l m up t o 0.14 and 0.11 of the m e l t i n g po i n t 

of argon and n i t r o g e n r e s p e c t i v e l y , which should be w e l l below the 

temperature at which r a p i d d i f f u s i o n s e t s i n . 

There i s another f a c t o r which must be considered i n a d d i t i o n 

t o the temperature r i s e of the s o l i d m a t r i x f i l m . I t i s p o s s i b l e 

that i n c e r t a i n cases thermal contact d e t e r i o r a t e s between the 

caesium i o d i d e window and the window h o l d e r , r e s u l t i n g i n warming 

of the window and consequently a l s o of the de p o s i t . Evidence f o r 

t h i s was obtained i n e a r l y experiments before the new window holder 

was designed. I n these experiments, e i t h e r no i s o l a t i o n of the 

so l u t e molecule was achieved, or peaks were observed which were not 

normally present at 4°K, but which had been observed a t higher 

temperatures during warm-up s t u d i e s . However, w i t h the modif i e d 



c e l l and u s i n g slow d e p o s i t i o n r a t e s , reasonable i s o l a t i o n was always 

achieved. 

2t4 M a t e r i a l s . 

Regular grade argon and p r e p u r i f i e d n i t r o g e n f o r m a t r i x work 

were obtained from Matheson Co. Inc. Anhydrous S 0 £ , HBr and H C 1 , 

p u r i f i e d H^S and C P . grade CO were a l s o obtained from the Matheson 

Company. High p u r i t y Krypton was s u p p l i e d by A i r Reduction Corpor­

a t i o n . D 2 O of 99.8% p u r i t y , supplied.by General Dynamics Corporation, 

L i q u i d Carbonic D i v i s i o n , and double d i s t i l l e d water were used i n the 

gas hydrate work. The r a r e gases and n i t r o g e n were used without 

f u r t h e r p u r i f i c a t i o n . A l l other m a t e r i a l s were t r e a t e d by f r e e z i n g 

and pumping on the s o l i d to remove t r a c e s of non-condensable gas. 

Mass.spectroscopic analyses of argon, krypton and n i t r o g e n i n d i c a t e d 

an upper l i m i t of i m p u r i t y f o r argon and n i t r o g e n of 5 - 1 0 p a r t s per 

m i l l i o n , and 50-60 p.p.m. f o r krypton. Minimum p u r i t i e s s t a t e d by 

the manufacturer f o r . t h e other gases were as f o l l o w s : S O 2 - 99-98%; 

HBr - 99.8%; H C 1 - 9 9 . 0 % ; H 2S - "99-5%; and CO - 99.5%. 

2 - 5 The Spectrometers. 

The Per-'kin Elmer 1 1 2 G Spectrometer i s a high r e s o l u t i o n 

s i n g l e beam, double pass instrument. The main fea t u r e s a r e : a 60° 

Potassium bromide f o r e - p r i s m , which acts as a f i l t e r to e l i m i n a t e 

the energy of unwanted orders, and a 7 5 l i n e s per m i l l i m e t e r e c h e l e t t e 

g r a t i n g , b l a z e d f o r maximum i n t e n s i t y at 1 2 jl ( 8 5 0 cm~1) i n the f i r s t 

order. The instrument was c a l i b r a t e d u s i n g the a c c u r a t e l y known l i n e s 

of the v i b r a t i o n - r o t a t i o n s p e c t r a of H C 1 ( 3 8 ) , HBr (39), CO ( 4 O ) , and 
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other molecules ( A l ) . 

The o p t i c a l path l e n g t h i n the 112 G instrument i s about 

5 metres and atmospheric water and CCU, show strong absorption i n 

the neighbourhood of ^ and b ft- . This i n t e r f e r e s s e r i o u s l y w i t h 

s p e c t r a recorded i n these regions and i t i s very d e s i r a b l e t o remove 

these vapours by passing a cu r r e n t of dry n i t r o g e n gas through the 

instrument housing f o r some time before a spectrum i s recorded. 

The P e r k i n Elmer 421 spectrometer i s a double beam i n s t r u ­

ment capable of h i g h r e s o l u t i o n . The d i s p e r s i o n u n i t comprises 

two g r a t i n g s , each used i n the f i r s t order only. I n t e r f e r e n c e 

f i l t e r s are used to r e j e c t unwanted orders of r a d i a t i o n d i f f r a c t e d 

by each g r a t i n g ; these r e p l a c e the customary f o r e - p r i s m . The 

standard instrument operates i n the range 4000 - 650 cm~1, but a 

g r a t i n g interchange i s a v a i l a b l e which extends the a c c e s s i b l e l o n g 

wavelength r e g i o n out t o 300 cm-''. 

In an i n f r a r e d spectrometer, the r e s o l u t i o n obtained under 

given c o n d i t i o n s depends on the frequency i n t e r v a l passed by the 

e x i t s l i t . For a p a r t i c u l a r frequency ~V0 t h i s i n t e r v a l may be 

expressed as: 

where: i s the s p e c t r a l s l i t width. 

The s p e c t r a l s l i t width, which depends on the m e c h a n i c a l . s l i t width 

and on the o p t i c a l design of the instrument i s approximately equal 

to the s e p a r a t i o n of two l i n e s which are j u s t r e s o l v e d . Using 

formulae given by S i e g l e r (42) f o r the model 112-G spectrometer, 

and t a b l e s given by Roche (43) f o r the model 421 spectrometer, 

s p e c t r a l s l i t widths have been estimated f o r the instrument s e t t i n g s 
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used i n the present work and have been i n c l u d e d on the s p e c t r a 

reproduced i n Chapter 3. 
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CHAPTER 3 RESULTS. 

3-1 I n f r a r e d Spectra of HC1 i n S o l i d Argon. 

Gas mixtures c o n t a i n i n g one p a r t of HC1 to 100, 200, 500 

and 800 p a r t s of argon were deposited at 4°K. The s p e c t r a obtained 

from these deposits are shown i n F i g . 5 and the frequencies and 

r e l a t i v e i n t e n s i t i e s of the observed peaks are t a b u l a t e d i n Table I . 

The spectrum of HC1 i n argon at h i g h m a t r i x to s o l u t e r a t i o s 

c o n s i s t s of a strong peak at 2889 cm-'', a peak of medium i n t e n s i t y 

at 2853 cm-'', and a weak shoulder at 2 9 0 0 cm-''. These peaks c o r r e s ­

pond to those reported by Schoen et a l (8). However, s e v e r a l 

a d d i t i o n a l f e a t u r e s are observed at a l l m a t r i x r a t i o s used i n t h i s 

work, and at low r a t i o s c e r t a i n of these new peaks are more 

important than the t r i o mentioned above. An i n t e r e s t i n g f e a t u r e 

of t h i s d i l u t i o n study i s the change i n r e l a t i v e i n t e n s i t y of the 

peaks i n the spectrum as the m a t r i x to HC1 r a t i o i n c r e a s e s from 

100:1 to 800:1. 

In F i g . 6 a warm-up study i s depicted f o r an argon t o HC1 

r a t i o of 500:1. Some of the new peaks which appear i n the spectrum 

as the temperature r i s e s correspond to c e r t a i n peaks p r e v i o u s l y 

observed i n experiments conducted at low m a t r i x to HC1 r a t i o s . 

Furthermore, the peaks which appear during warm-up do not disappear 

or decrease i n i n t e n s i t y on r e c o o l i n g the deposit to 4°K. During 

warm-up s t u d i e s i t was found necessary to increase the monochromator 

s l i t widths as the temperature rose because l i g h t s c a t t e r i n g by the 

deposit i n c r e a s e d c o n s i d e r a b l y . This may i n d i c a t e the formation of 

m i c r o c r y s t a l s of the s o l u t e . 
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TABLE 1. 

I n f r a r e d absorption of HC1 i n argon at 4°K. 
Li n e i n t e n s i t i e s ( l o g I $ / l ) r e l a t i v e to the 
peak at 2889 cnr*1 • 

Frequency • Argon t o HC1 r a t i o 
cm"1 100:1 • 200:1' 500:1 800:1 

2787.5 1.11 .16 -

2817 1.59 .82 .07 .15 

2853 .40 .37 .22 .29 

2863 - .13 .05 .10 

2867.5 .33 .13 .05 ' .05 

2889 1.00 1.00 1.00 1.00 

2900 sh sh .07 _ 

sh = shoulder 
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To i l l u s t r a t e the e f f e c t of s o l u t e - s o l u t e i n t e r m o l e c u l a r 

i n t e r a c t i o n s on the spectrum of HG1 i n argon, mixtures c o n t a i n i n g 

CO or S O 2 w i t h HC1 and argon were prepared. The s p e c t r a obtained 

from deposits of these mixtures are shown i n F i g . 7. For the 

HCl/CO/argon mixture, the i n t e n s i t i e s of the peaks were changed 

r e l a t i v e to the HCl/argon case, but the main fea t u r e s of the 

spectrum were u n a l t e r e d . When S O 2 was added to the HCl/argon 

mixture s e v e r a l new features were observed i n the HC1 spectrum. 

Three new peaks were found: a very strong peak at 2808 em~1, 

a shoulder at 2821 cm-'' and a weak peak at 2829 cm-''. 

3-2 I n f r a r e d Spectra of HC1 i n S o l i d Nitrogen and Krypton. 

At 4-°K the spectrum of HC1 i n a n i t r o g e n m a t r i x c o n s i s t s 

of one strong peak w i t h two very weak s a t e l l i t e s (see F i g . 8 ) . 

During the warm-up, however, many changes occur i n the spectrum. 

(See F i g . 9). Several peaks appear and disappear before the 

s o l i d n i t r o g e n sublimes away from the window l e a v i n g s o l i d HC1. 

Figure 10 shows the spectrum of s o l i d HC1 deposited at and 

warmed s l o w l y to 55 K. Comparison of Figures 9 and 10 i n d i c a t e s 

t h a t the f i n a l form of the spectrum of HC1 i n - n i t r o g e n i s indeed 

i d e n t i c a l w i t h t h a t of s o l i d HC1 at the same temperature. The 

observed frequencies f o r HC1 i n n i t r o g e n are compared w i t h the 

s p e c t r a of HC1 i n argon and krypton i n Table 2. 

S o l i d HC1 deposited at 4-°K gives a broad band centred at 

2762 cm~1, but as the temperature r i s e s t h i s band r e s o l v e s i n t o 

three peaks at 2712, 2753 and 2780 cm-''. The changes i n r e l a t i v e 

i n t e n s i t y of the peaks i n the spectrum of s o l i d HC1 are shown i n Fig.10. 
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TABLE 2. 

I n f r a r e d Absorption of HC1 i n Argon, Krypton and 
Nitrogen at 4°K. (Frequencies i n cm -^). 

Argon Krypton Nitrogen HC1 
500:1 300:1 200:1 gas 

2787.5 (m) - - -

2817 (a) 2800 (s) - -

2853 (m) 2838 (m) 2814 (vw) 2864 P(1) 

2863 M - - -

2867.5 M 2854 (w) 2842 (vw) -
2889 (vs) 2874 (vs) 2852 (vs) 2905 R(0) 

2900 sh - 2875 (vw) 2925 R ( 1 ) 

In t h i s and subsequent t a b l e s the f o l l o w i n g 

a b r e v i a t i o n s f o r i n t e n s i t i e s are used: vs = very s t r o n g , 

s = str o n g , m = medium, w = weak, vw = very weak, and 

sh = shoulder. 
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f i g 7. 

I N F R A R E D S P E C T R A O F H C l IN A R G O N A T 4°K 
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3-3 I n f r a r e d Spectra of HBr' i n Argon, Krypton and Nitrogen 
M a t r i c e s . 

The s p e c t r a of HBr i n argon, krypton and n i t r o g e n are 

compared i n F i g . 11, and the observed frequencies t a b u l a t e d i n 

Table 3. The spectrum of HBr i n krypton at a m a t r i x t o s o l u t e 

r a t i o of 320:1 i s seen to be very s i m i l a r to t h a t of HBr i n argon 

at a r a t i o of 500:1. The main d i f f e r e n c e i s a s h i f t of the whole 

spectrum t o lower wave numbers i n the krypton m a t r i x . I n s o l i d 

n i t r o g e n , a simple spectrum c o n s i s t i n g of one main peak w i t h 

three very weak s u b s i d i a r i e s i s observed. The s u b s i d i a r y peaks 

increase i n i n t e n s i t y during warm-up (see F i g . 12), i n a way 

s i m i l a r t o t h a t observed f o r HC1 i n n i t r o g e n . 

A d i l u t i o n study of HBr i n argon at m a t r i x r a t i o s of 100, 

300 and 500 t o 1 was c a r r i e d out, and the r e s u l t i n g s p e c t r a are 

shown i n F i g . 13. The frequencie s, w i t h i n t e n s i t i e s at the 

various argon to HBr r a t i o s , are given i n Table 4« A v a r i a t i o n 

i n the number and r e l a t i v e i n t e n s i t i e s of peaks w i t h d i l u t i o n i s 

evident i n t h i s s e r i e s of experiments. 

A t y p i c a l warm-up study i s i l l u s t r a t e d by F i g . 14, where 

v a r i a t i o n s i n the spectrum of HBr i n argon at a m a t r i x to s o l u t e 

r a t i o of 300:1 are shown. New peaks which appear during warm-up 

do not disappear on r e c o o l i n g to 4°K., and f u r t h e r deposit at t h i s 

temperature adds only to the i n t e n s i t y of the peaks o r i g i n a l l y 

observed at Spectra of HBr, perturbed by other s o l u t e 

molecules i n an argon m a t r i x , were recorded as i n the work w i t h 

HC1. These s p e c t r a are reproduced i n F i g . 15. The main f e a t u r e s 

of the HBr spectrum remain unchanged, but when GO i s present a new, 
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very strong peak i s observed a t 2520 cm -' and w i t h SO2, three new 

peaks are found at 2484, 2517 and 2524 cm-''. 

TABLE 3. 

I n f r a r e d absorption of HBr i n various matrices 
at 4°K. (Frequencies i n cm -^). 

Ar (505:1) Kr (320:1) N 2(l75:1) HBr (gas) 

2465 w - -

2496 m 2491 s 2493 vw -
2550 m 2531 s 2506 vw 2542 p(1) 
2558 vw 2541 w . 2535 w -

2569 s 2551 vs 2545 vs 2575 R(0) 
2575 sh - 2591 R ( D 

TABLE 4 

I n f r a r e d absorption of HBr i n argon at 4°K. Line i n t e n s i t i e s 
( l o g I 0 / l ) r e l a t i v e to the peak at 2569 cm-1. 

Frequency Argon to HBr r a t i o 
cm-1 110:1 215:1 300:1 " 505:1 

2465 - 1.60 .50 .21 
2496 1.24 1.15 .98 .71 

2550 .41 .36 .40 .36 
2558 .18 .09 .20 .14 
2569 1.00 1.00 1.00 1.00 
2575 sh sh sh sh 
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f i g 1 3 . 
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j i g 15 . 

INFRARED SPECTRA OF HBr IN ARGON AT 4°K 
SHOWING THE EFFECT OF OTHER SOLUTES 
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3-4 M a t r i x I s o l a t i o n Studies on CO and SO^. 

The spectrum of CO i n argon ( F i g . 16) c o n s i s t s of one very-

strong peak at 2138.5 cm-'', w i t h a peak of medium i n t e n s i t y at 

2152 c m . Three very weak s a t e l l i t e s were a l s o observed on the low 

frequency side of the main peak when very t h i c k deposits were examined. 

No changes i n the spectrum of CO were observed when some CO molecules 

were replaced by HC1 or HBr. I n the overtone r e g i o n of CO, one weak 

peak at 4253 cm-'' was found. The observed frequencies together w i t h 

r e s u l t s obtained by other workers f o r both s o l i d and matri x i s o l a t e d 

CO are in c l u d e d i n Table 5. 

TABLE 5. 

I n f r a r e d Absorption of CO i n Argon at 4°K, 
Compared w i t h Results of Other Workers. 

(Frequencies i n cm-'') 

This Work Maki (9) Ewing and Pimentel (19) 
CO/Ar at 4°K. CO/Ar at 20°K. S o l i d CO at 20°K. 

4253 w - 4253.5 
2152 m 2148.0 

21̂ ,2 • l^. — 

2138.5 vs 2137.2 2138.1 

2115 vw - 2112.3 

2091 w - 2092.2 

2088.4 

2065 
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I n f r a r e d s p e c t r a i n the regions of the symmetric and 

antisymmetric s t r e t c h i n g fundamentals ( V; and ~])^ ) of S O 2 i n 

argon and n i t r o g e n matrices are presented i n F i g . 17. A s i g n i ­

f i c a n t d i f f e r e n c e between the spectrum of S O 2 i n the two matrices 

i s observed. In argon, both the ~V, and V 3 bands c o n s i s t of a 

strong doublet w i t h a weak s a t e l l i t e . I n n i t r o g e n , however, 

only one strong peak i s found i n each r e g i o n , again w i t h a weak 

s a t e l l i t e . The doublets coalesce i n t o a s i n g l e peak during 

warm-up. 

In Table 6 the observed frequencies are l i s t e d f o r gaseous 

S O 2 , s o l i d S O 2 , S O 2 i n argon and n i t r o g e n matrices and S 0 2 i n the 

gas hydrate. 
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TABLE 6. 

I n f r a r e d Absorption of SCvj (frequencies i n cm-''), 

SO2 Gas S o l i d Hydrate In Argon I n Nitrogen 
reference (44) 80°K 80°K 4©K 4°K 

518 521 s 521 s -

528 sh - -

1035 v -

II4I.8 m - 1140.0 v 

1151 H44.5 vs 1148.8 s 1147.3 s 1145.0 u 

1152.1 s 1152.6 s 

1305.5 s 

1312.0 vs 

1325.0 vs 1326 w 

1336 sh 1334.3 u 1334.8 w 

1342.5 vs 1351.4 vs 1346.7 sh 

1349 sh 1355.6 vs 1351.8 vs 

1362 
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3-5 Gas Hydrates. 

The s k e l e t a l water spectrum of SC>2 and krypton hydrates i s 

compared w i t h the spectrum of i c e i n F i g . 18. The corresponding 

frequencies, which are t a b u l a t e d i n Table 7, are the averages of 

s e v e r a l runs. Due to the u n c e r t a i n t y i n l o c a t i n g the maxima o f 

these broad bands, the. frequencies i n Table 7 are accurate only 

t o _ 10 cm '. I n s p i t e of t h i s however, F i g . 18 c l e a r l y shows 
_ - i 

s h i f t s of the peaks at 820 and 1600 cm" i n the spectrum of i c e 

t o 780 and I64O cm-'' i n the SO2 hydrate, and a new peak at 

2420 cm-'' i n the krypton and SOg hydrates i s , a l s o evident. 

The frequencies a s s o c i a t e d w i t h the S O 2 molecule i n the 

hydrate and the s o l i d are compared i n F i g . 19- S i g n i f i c a n t 

d i f f e r e n c e s are found f o r each of the three fundamentals. 

The V 3 r e g i o n of SOg during an experiment i n which S O 2 hydrate 

was formed at 80°K cooled to 4°K and rewarmed to 120°K, i s 

presented i n F i g . 20. The c e n t r a l peak at 1340 cm i s seen t o 

have two shoulders at 120°K, one of which i s not present at 4°K. 
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TABLE 7. 

S k e l e t a l Water Spectrum i n the Gas Hydrates at 8G°K 
(frequencies i n cm-''). 

Ice S0 2.6H 20 Kr . 6 H 20 H 2S.6H 20 Assignment 

820 s 780 s 820 s 815 s 

1600 m 1640 m 1610 m 1620 m 

2220 2220 •w- 2210 2190 VI 
2410 vw 2420 w -

3230 vs 3230 vs 3260 vs _ 
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f i g 1 8 . 

f i g 1 9 . 



44 

f i g 2 0 . 
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CHAPTER A. THEORETICAL. 

4-1 I n t r o d u c t o r y Remarks. 

The c a l c u l a t i o n s described i n t h i s chapter f a l l i n t o three 

c a t e g o r i e s : 

( i ) C a l c u l a t i o n of s h i f t s of v i b r a t i o n a l frequency due 

to i n t e r a c t i o n s between so l u t e and ma t r i x . 

( i i ) C a l c u l a t i o n s of p e r t u r b a t i o n energies f o r r o t a t i o n a l 

l e v e l s of i s o l a t e d s o l u t e molecules. 

( i i i ) C a l c u l a t i o n of s h i f t s of v i b r a t i o n a l frequency due 

to mutual i n t e r a c t i o n s between p a i r s of s o l u t e 

molecules i n nearest neighbour, next nearest 

neighbour, e t c . , s i t e s i n the l a t t i c e . 

The formulae and r e s u l t s developed i n t h i s chapter w i l l be 

a p p l i e d i n Chapter 5 to the i n t e r p r e t a t i o n of the observed sp e c t r a . 

4-2 S h i f t s of V i b r a t i o n a l Frequencies Due to M a t r i x - S o l u t e 
I n t e r a c t i o n s . 

The energy of i n t e r a c t i o n between a s o l u t e molecule and the 

surrounding m a t r i x i s made up of the sum of three terms (45): 

0 = 0 (ind) + 0 ( d i s ) + 0 (es) ( l ) 

A f o u r t h term should be added to Eq. ( l ) t o take account of r e p u l ­

s i v e f o r c e s . However, t h i s e f f e c t w i l l be t r e a t e d e m p i r i c a l l y 

l a t e r . 

The i n d u c t i o n energy 0 (ind) may be estimated from the 

energy of i n t e r a c t i o n between the permanent charge d i s t r i b u t i o n of 

one molecule and the moments induced i n the other. The term 0 ( d i s ) 
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i s the London dispersion energy and represents the interaction 

between the two induced charge d i s t r i b u t i o n s . The t h i r d term, 

0 (es) i s the purely e l e c t r o s t a t i c interaction energy between the 

permanent charge d i s t r i b u t i o n s . The el e c t r o s t a t i c energy i s zero 

for the rare gas matrices, but i s non-zero f o r nitrogen which has 

an e l e c t r i c quadrupole moment. 

The induction potential i n the case of the nitrogen or 

rare gas matrices i s given by (45): 

0 (ind) = -pi oL6 (icos1 G •+• \)/[r6 (2) 

. where: 0(5 i s the p o l a r i z a b i l i t y of the matrix atom, /4a. i s 
the dipole moment of the solute molecule, -r i s the 
internuclear distance i n the s o l i d rare gas, and Q 
i s the angle between the z axis (chosen as a cube 
axis) and the axis of the dipole (the molecular a x i s ) . 

By considering the average i n t e r a c t i o n , the angular part of 

Eq. (2) gives a contribution of +2 regardless of the orientation of 

the solute molecule. The rare gases c r y s t a l l i z e with the cubic 

close-packed structure (46), and the Lennard-Jones' sum for an 

inverse s i x t h power potential for t h i s l a t t i c e i s 14.45 (47). 

This sum gives the effective number of nearest neighbours, and 

takes account of interactions between the isola t e d solute molecule 

and the rare gas atoms or nitrogen molecules i n the whole l a t t i c e . 

Hence Eq. (2) becomes: 

0 (ind) = -14.45 JUJ QCj, (3) 
T 6 

which gives r i s e to a frequency s h i f t given by: 
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A V (ind) = -14.45 AC"l) oCb = C, ^ O f * ) (4) 

r t f h e 

where: /I (f^a.) i s the change i n the square of the d i p o l e 
moment between the ground and f i r s t e x c i t e d v i b r a t i o n a l 
s t a t e s . 

For the n i t r o g e n m a t r i x , there w i l l be a d d i t i o n a l terms i n 

the p o t e n t i a l i n v o l v i n g the e l e c t r i c quadrupole of the n i t r o g e n 

molecule; however, the c o n t r i b u t i o n from these terms w i l l be much 

smaller than Eq. (4) and they can be neglected. 

An approximate expression f o r the d i s p e r s i o n energy i s 

given by (45): 

0 ( d i s ) = ( • ) (5) 

where: C^a. and 0^4 are the p o l a r i z a b i l i t i e s of the sol u t e 
molecule and m a t r i x atom or molecule, and E a a n d E f e 

are approximately equal to t h e i r r e s p e c t i v e i o n i z a t i o n 
energies. 

Eq. (8) may be used to estimate the d i s p e r s i o n c o n t r i b u t i o n 

to the s h i f t i n v i b r a t i o n a l frequency of a sol u t e molecule, i n the 

f o l l o w i n g way. Both the p o l a r i z a b i l i t y and the i o n i z a t i o n p o t e n t i a l 

of the s o l u t e molecule change during a v i b r a t i o n a l t r a n s i t i o n . Thus: 

/ ( d i s ) = - C\f*}°- (6) 

a _ '/ 

0 (dis) = ^ = (7) 

where; the double prime denotes the ground v i b r a t i o n a l s t a t e 
and the s i n g l e prime the f i r s t e x c i t e d v i b r a t i o n a l 
s t a t e . The constant 02.= 3° <4 ̂ 6 /iT6 
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Subtracting Eq. (7) from Eq. (6) we get: 

</>—</> - - Ci 
O^a Ea. Ot-a. tig. ( 8 ) 

¥e again introduce a factor of I 4 . 4 5 to account for the 

inter a c t i o n of the solute molecule with the entire matrix. The 

dispersion contribution to the s h i f t of v i b r a t i o n a l frequency i s 

given by: 

E« +£(> 

" c " 
(9) 

In the case of the nitrogen matrix the e l e c t r o s t a t i c term 

consists of a dipole-quadrupole interaction given by ( 4 5 ) : 

cos &aO£os2&b-l) -25>n<9«Sw6b COSC^f^- tfb) (10) 

where: i s the quadrupole moment of N 2, i s the dipole 
moment of the solute molecule, 9<̂ , 9t, 0 a, 0b, are 
the polar angles associated with the dipole (HC1 or HBr) 
and the quadrupole (N 2), and v i s the nearest neighbour 
distance i n the s o l i d matrix. 

The average of the angular terms i n Eq. (10) i s zero; 

however, i n the case of nitrogen, the symmetry of the substitutional 

s i t e i s not spherical and the el e c t r o s t a t i c interaction .is not 

expected to vanish. An estimate of the order of magnitude of 

0(es) may be obtained by assuming maximum interaction which leads 

to a value of ~^//^ P e r nitrogen molecule regardless of the 
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o r i e n t a t i o n of the s o l u t e molecule (20). Nitrogen below 35°K 

c r y s t a l l i z e s i n a cubic close-packed s t r u c t u r e (4-8), and the 

Lennard-Jones' sum f o r an in v e r s e f o u r t h power p o t e n t i a l i n t h i s 

l a t t i c e i s 25.34 (47). Eq. (10) now becomes: 

and the s h i f t i n v i b r a t i o n a l frequency of the'solute, i s given by: 

fiV(es)- _ l ™ 0 / ^ * Qt> = A/^a (12) 

where: A / ^ a.is the change i n d i p o l e moment between the ground 
ana f i r s t e x c i t e d v i b r a t i o n a l s t a t e s . 

In Table 8, the constants i n Eqs. (4)> (9) and (12) are 

evaluated f o r argon, krypton and n i t r o g e n m a t r i c e s , u s i n g the values 

of p o l a r i z a b i l i t y , i n t e r n u c l e a r d i s t a n c e , e t c . , from Appendix I . 

TABLE 8. 

Values of Constants i n C a l c u l a t i o n s of M a t r i x S h i f t s . 

Formula AV(fod) - A V (dis) 
f \ Oi'd Ea. 
Cl[ 

Ay(es) -

-Cz Apcu 

Expression f o r 14.. 45 oCh 21.68 E i , oC b 17.00 0.4 
the constant he 

U n i t s of C -3 -2 
cm J esu cm-;l+ -2 -1 

cm esu 
Ar 3.76 x 10 1.42 x 10 -

Kr 3.95 x 10 1.32 x 10 -

N 2 3.17 x 10 1.18 x 10 5.03 x 10 
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4 - 3 Rotation of Molecules Trapped i n S o l i d Rare Gases. 

Schoen et a l (8) assumed that the solute molecule was 

confined i n a f i e l d of c y l i n d r i c a l symmetry. The potential barrier 

to rotation was taken as C1(1-COS29) where i s the barrier height 

and 6 the angle between the molecular axis and the cylinder axis. 

Using this model for HC1 i n argon, these workers predicted a three 

l i n e spectrum corresponding to R(0), P(1) and R*(1), where R*(1) i s 

due to a blend of transitions of the hindered rotator. 

The potential function used by Schoen et a l i s e s s e n t i a l l y 

that used by Pauling ( I 4 ) ; V (1-cos 29)^ for a diatomic molecule 

rotating i n a c y l i n d r i c a l w e l l . 

Armstrong (12) investigated the effect of e l e c t r o s t a t i c 

interactions on the r o t a t i o n a l energy levels of an isolat e d solute 

molecule trapped i n a rare gas l a t t i c e at low temperatures. He 

concluded that these interactions produce no effect on the r o t a t i o n a l 

energy levels of the solute molecule, and his expression for the 

interaction energy i s very si m i l a r to the sum of Eqs. (6) and (8) 

of the previous section. Armstrong also considered dipole-dipole 

interactions between the solute molecules. For a diatomic molecule 

i n a s o l i d rare-gas his results indicate that a s l i g h t mixing of 

rot a t i o n a l states occurs, the J = 2 l e v e l being the f i r s t l e v e l to 

be s p l i t . 

More recently Flygare (11) presented a theory dealing with 

the same problem. This author agrees with Armstrong that the 

t V (1-cos 26) = 2V s i n 2 e = C1(1-COS29) 
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dipole-induced dipole term does not effect the r o t a t i o n a l energy, 

but goes on to show that higher multi-polar interactions can be 

responsible for the r o t a t i o n a l perturbations experienced by the 

solute molecules. 

A l l the above authors ignore exchange interactions a r i s i n g 

from overlap of electronic charge distributions of the solute 

molecule and surrounding matrix atoms. The repulsive exchange 

forces would give r i s e to a "blue" s h i f t of the v i b r a t i o n a l 

frequency, whereas a "red" s h i f t i s usually observed. However, i t 

i s possible that the effect of the repulsive interactions i s 

undetected because the attractive e l e c t r o s t a t i c forces give r i s e 

to a large "red" s h i f t of the v i b r a t i o n a l frequency. 

The following calculations are based on the assumption that 

the i s o l a t e d solute molecule experiences repulsive forces i n 

addition to attractive forces which perturb the r o t a t i o n a l energy 

l e v e l s . 

4-4 The Hindered Rotator Potential. 

In t h i s section a potential w i l l be developed for the case 

of a hydrogen halide molecule surrounded by twelve nearest neighbour 

matrix atoms. The model used for the calculation assumes that the 

hydrogen halide molecule rotates about i t s centre of mass which i s 

taken to be at the nucleus of the halogen atom."!" We also assume 

that the molecular centre of mass i s on a l a t t i c e point, which i s 

not s t r i c t l y true. In f a c t , the centre of volume of the molecule 

t The actual C.O.M. of HG1 i s 0.035A from the chlorine nucleus; 
t h i s may be compared with the Internuclear distance i n HG1 1.275A. 
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• w i l l more probably be on a l a t t i c e p o i n t . However, i t may be 

shown (4-9) t h a t r e g a r d l e s s of the choice of o r i g i n , the angular 

dependence of the p o t e n t i a l w i l l be the same. 

A u s e f u l mathematical form f o r an i n t e r a c t i o n p o t e n t i a l 

which i n c l u d e s r e p u l s i v e and a t t r a c t i v e forces i s the Lennard-

Jones' (6-12) p o t e n t i a l (50)z 

V(r) = €( ( U ) 

where: Tyi i s the i n t e r n u c l e a r d i s t ance of the i n t e r a c t i n g atoms, 
-Co i s the i n t e r n u c l e a r distance at which the p o t e n t i a l 

i s a minimum, and <£<? i s the depth of the p o t e n t i a l minimum. 

Eq. (14) may be r e w r i t t e n as: 

Ver) = V 0 T - - V o T y i •t=lJ2,.-,/2. (15) 

where: Vo = €<> and VC = l^ofo^ 

The matrix-halogen i n t e r a c t i o n s w i l l be d i f f e r e n t from the m a t r i x -

hydrogen i n t e r a c t i o n s , and V 0 and V '0 w i l l not be the same f o r the 

two cases. 

The co-ordinate system used i n the f o l l o w i n g c a l c u l a t i o n i s 

i l l u s t r a t e d i n F i g . 21. The distance T j i between the nucleus of 

the halogen atom and each of the twelve nearest neighbour m a t r i x 

atoms i s equal t o the i n t e r n u c l e a r distance i n the s o l i d r a r e gas, 

and equation (15) g i v e s : 

V ( r ) = 12 V c r - ' 2 - -12 V</ r - 6 (16) 

where: r i s the i n t e r n u c l e a r distance i n the s o l i d r a r e gas. 
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Thus, the halogen-matrix i n t e r a c t i o n s give r i s e to an angle-

independent term i n the p o t e n t i a l which we w i l l c a l l V . 

For the hydrogen-matrix i n t e r a c t i o n s the p o t e n t i a l has an 

angular dependence, since the i n t e r n u c l e a r distances 7*j i depend on 

6 and 0 (see F i g . 2 l ) . The T|£ may be evaluated u s i n g the formula 

of a n a l y t i c a l geometry: 

T U - J ( x . - * y * ( y - - y y * f y - P z ( 1 7 ) 

which leads t o expressions of the form: 

r , i = r / | + ^ t ^ f(ej) ~ (is) 

where: d i s the i n t e r n u c l e a r distance i n the s o l u t e molecule 
and -f (erf) i s a f u n c t i o n of 9 and 0. 

A t y p i c a l Y\l ^-s: 

r , 4 = rj\ + + ~ ^ (sinQ Si"* -Cos ©) ( 1 9 ) 

2 
Future c a l c u l a t i o n s w i l l be s i m p l i f i e d i f we neglect d / r 2 compared 

2, o 

to 1. This i s a poor approximation s i n c e d / r * f o r HC1 i n argon 

i s 0.111. The square root may be expanded by the binomial theorem 

to g i v e : 

(20) 
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Again we neglect terms i n d V R S and higher powers. By t h i s 

procedure the y, t' are found to be: 

yz plane V ( \ ± CCOS& ± C $'» 6> 6<>S <j> ) 

xz plane 7- £ / ± £ COS 6 ± C 0 St" 4) (21) 

xy plane y ± Ct\»6CO$p ± CSl*6 \ 

where: 

(22) 

2 r 

On substituting the values of "f,'L into Eq. (15) we get twelve 

terms of the form: 

where: x = c-f(efi) 

Expanding the inverse twelfth and inverse s i x t h power terms by the 

binomial theorem gives: 

L 2» - 1 

(23) 

I t i s necessary to take the inverse twelfth power expansion up to 

the s i x t h power of x because the binomial coeficients are large, 

and ( ^ / r ) n does not decrease rap i d l y enough with n. However, for 

the inverse s i x t h power expansion, only the terms up to the fourth 

power of x are important. 
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When the twelve expressions for x are substituted i n Eq.23, 

and after much s i m p l i f i c a t i o n , the expression f o r V(00) becomes: 

V (e f) = v. + V2 + i/j Cose sinze + VV sin+e cos*d> smz0 ^ ^ 

+ V$ Si»6e COSl0 S'mz<fi 

•where: 
• VI = 12V0 T - - ' 2 -\l\Joy-6 

Mi - (\7.+$* + H-j8 Vo-FU-(i^ +4-5 +4-*$) Vox'6 

V3 = C f / i + / 8 » V o r - / 2 T-6 

with oC = 78 dVr 2- o~ = 21 d V r 2 

A = 682.5. dVr^- ' T= 63 d % * -

^ = 1547 d % « 

In Eq. (24), + w i l l give r i s e to a constant perturbation which 

affects a l l r o t a t i o n a l energy levels equally and thus w i l l not effect 

the r o t a t i o n a l structure of the spectrum of the solute molecule. 

Hence the angle dependent potential V (60) may be written: 

V(e<p) - V3 cos©sin^e + (\4 s'm^e + Vssm6e) Cos'tp s'tfy (25) 

The potential given by Eq. (25)^may be considered as a 

perturbation and may be used to calculate corrections to the energy 

levels of the hindered rotator. 

1" I t has been pointed out (49) that the p o t e n t i a l , Eq.24, does not have 
the symmetry of the octahedral s i t e , due to the i n c l u s i o n of s i x t h 
power terms. Although t h i s i s inconsistant with the treatments of 
previous workers (11,13) the r e s u l t s are expected to be q u a l i t a t i v e l y 
c o r r e c t . 

file://-/l/Joy-6
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4-5 Calculation of Energy Levels of the Hindered Rotator. 

From perturbation theory (51), the f i r s t order energies 

for a degenerate l e v e l E y are the roots of a secular determinant. 

The number of rows and columns of the determinant i s 2 J + 1, the 

degeneracy of the l e v e l E Such a determinant may be written: 

CO 

V Zi< 

v ( 1 

Vol! - E 0> 

(26) 

with v ^ = <<n- / v where V i s the perturbation and 
tyi , f-A a r e normalized orthogonal wave functions belong­

ing to the unperturbed degenerate l e v e l E c* ; . The corrected 
energy levels are given by: 

E 
7 M 

(27) 

In the case of a diatomic molecule, the normalized spherical 

j are the zero order r o t a t i o n a l wave functions. The 

f i r s t order corrections are given by: 

.0 ) 
0 (28) 

J = 1 (V„ - E,„) V IS 

V 31 

= 0 (29) 
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where: VU = < Y * l \ \ / < * 4 » I Y^> 

with M;, M^= 1, 0, -1 

(30) 

J = 2 ) V i a > V i 3 V , 4-

( V EW> 

V , , V 32 

V«r5 

0 (31) 

where; 

with M;, = 2, 1, 0, -1, -2. 

A l l off diagonal terms i n Eqs. (2.9) and (31) vanish because they 

(32) 

a l l involve integrals of the form: 
.TT 

exp + i n 0 d 0 ' = O (n = a r e a l non-zero integer) 
J o 

A further s i m p l i f i c a t i o n results from the property 

a) 
E i) i 

tn 
E ito 

E Z , I 

II) 
2,0 

E 

— + ^ Yj** 1 s ° t h a t Eqs* ^29^and ̂ 31^give: 

£"!, = < Y ! | v < « ^ i Y ! > 

< Y r | v t - e ^ / y ° > 
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The normalized s p h e r i c a l harmonics f o r J = 0, 1 and 2, 

are (51): 

Sine A 

Y o — ( 4-F ) * 

Y; 
\/o ( 3 \ x COS 0 

Y <r<?5 0 fine -e 

Y ° - (if?) * ^ ° s ' e -0 
The and the p e r t u r b i n g p o t e n t i a l V (9 0) from Eq. (25) 

(i) . . 
were s u b s t i t u t e d i n t o the expressions f o r E T ( W ) from Eqs. (33) and 

the r e s u l t i n g i n t e g r a l s evaluated. Use was made of t a b l e s of 

standard i n t e g r a l s (52) i n the e v a l u a t i o n of the E T M . 

The f i r s t order energies were found to be i d e n t i c a l f o r 

the J = 0 and J = 1 l e v e l s , but small s p l i t t i n g s of the J = 2 

l e v e l s were found. Numerical r e s u l t s were obtained u s i n g accepted 

values f o r the constants T" and d . f - 3-83 A f o r s o l i d argon (4-5), 

d = 1.275 A f o r HG1 (38) and d = 1.4.20 A f o r HBr (39). The r e s u l t s 

are t a b u l a t e d i n Table 9. 

To c a l c u l a t e the r o t a t i o n a l energy l e v e l s f o r HG1 and HBr, 

values must be assigned t o the constants K, and of Table 9. 

Reasonable f i r s t order c o r r e c t i o n s to the r o t a t i o n a l energy l e v e l s 

are obtained by g i v i n g 7 " / _ the value 0.85 and 6Q the value 10cm""''. 
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TABLE 9. 

F i r s t Order Energies for the Hindered Rotator. 

( J , M ) HC1 
E ' ( J , M ) 

HBr 

(00) 
(1,0) 12.7K,- 0.62K2 21.8K,- 0.95 K x 

(1,+ 1) 

(2,0) 9.50K,- 0.44K* 16.4K, - 0.68K2 

(2,± 1) U.8K,- 0.73K2 25.5K,- 1.13Kt 

(2,+ 2) 12.2K,- 0 . 59K2 . 20.9K,- 0.91Kt 

where K, = V, o and K 2 = 

Using these a r b i t r a r y values the constants K, and K% 

were found to be 1.4-2 cm-^ and 3.77 cm-'' respectively. The f i r s t 

order energies were calculated, and are l i s t e d i n column two of 

Table 10. Since we are only interested i n energy differences, 

E*(0 ,0) i s set equal to zero, and the other f i r s t order energies 

are given r e l a t i v e to E ' ( 0 , 0 ) . The unperturbed r o t a t i o n a l 

energies for the ground v i b r a t i o n a l state are given by: 

E ' J = B " J( J + 1 ) - D " J ( J + 1 ) (35) 

where: B " and D " are the r o t a t i o n a l constants for the ground 
v i b r a t i o n a l state, 

and have been tabulated i n references (38) and (39) for HC1 and 

HBr respectively. The hindered r o t a t i o n a l levels are l i s t e d i n 

column three of Table 10 and the l a s t three columns give the 

r e l a t i v e populations of the energy levels at 5°, 1 0 ° and 20°K 
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u s i n g the formula: 

N(J,M) = N(0,0) g exp - E(«T,M)/kT (36) 

where: N(J,M) i s the number of molecules i n the l e v e l (J,M), 
N(0,0) i s a r b i t r a r i l y s e t equal to one ; g i s the 
degeneracy of the l e v e l ; 1 k, the Boltzmann constant, 
and T, the absolute temperature. 

I t should be noted t h a t the r e s u l t s of the above c a l c u l a t i o n 

are only q u a l i t a t i v e i n nature, owing to the•many assumptions and 

approximations made. 

TABLE 10. 

Hindered R o t a t i o n a l Energy Levels and Populations 
f o r HC1 and HBr i n Argon. 

(a) HG1 

level 1st Order Energy Corrected Energy R e l a t i v e P o p u l a t i o n 
J,M E 7(J,M) cm-1 L e v e l cm-1 5°K 10°K 2QOK 

0. 0 0.0 0.0 1 1 1 
1,0 0.0 20.9 .002 .05 .22 
1, +1 0.0 20.9 .004 .10 .44 
2,0 -3.8 58.8 - - .01 
2, +1 +2.6 65.2 - - .02 
2,+2 -0.6 62.0 - - .02 

(b) HBr 

L e v e l 1st Order Energy Corrected Energy R e l a t i v e P o p u l a t i o n 
J,M E'(J,M) c u r l L e v e l cm - 1 5°K 10°K 20OK 

0. 0 0.0 0.0 1 1 1 -
1,0 0.0 16.7 0.008 0.09 0.30 
1, ±1 0.0 .16.7 0.016 0.18 0.61 
2,0 -6.6 43.6 - 0.001 0.03 
2, ±1 +4.6 54-8 - 0.002 0.06 
2,+2 -1.1 49.1 - 0.002 0.06 
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4 - 6 Shifts Due to Solute-Solute Interactions. 

In t h i s section, interactions between solute molecules i n 

nearest neighbour, next nearest neighbour, etc. s i t e s w i l l be 

considered. 

The potential energy of interaction between two id e a l 

dipoles i s given by ( 4 5 ) : 

-2cose acos eb-Sinoa Smeb Cos (<j>b-<f>*) (37) 

At low temperatures, where <j>ab i s greater than kT, the dipoles 

are assumed to be aligned to give maximum attr a c t i o n . That i s , 

0b = 0 and Qb = 6 a ; Eq. (37) then becomes: 

The maximum value of Eq. (38) i s obtained when Q= 0, hence 

A> = _ Mb ( 3 9 ) 

The s h i f t i n v i b r a t i o n a l frequency for the case of inte r a c t i o n 

between l i k e dipoles i s then given by: 

&b 

(40) 

where: /[ (jj}) i s the change i n the square of the dipole moment 
during a t r a n s i t i o n from the ground state to the f i r s t 
excited v i b r a t i o n a l state. 
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For the case of interaction between unlike dipoles: 

Values of the constant C. i n Eqs. (40) and (4I) are tabulated 
4 

i n Table 11 for various values of Tab encountered i n the cubic 

l a t t i c e s of argon, krypton and nitrogen, assuming that the dipoles 

are trapped on substi t u t i o n a l s i t e s i n the l a t t i c e . 

Other terms i n the interaction energy between pairs of 

dipoles could be included. These arise from induction and disper­

sion forces. However, the intermolecular potentials due to these 

effects both involve the inverse s i x t h power of the intermolecular 

distance, and even for the case of contiguous solute molecules, 

the contribution to the s h i f t of v i b r a t i o n a l frequency i s n e g l i g i b l e . 

TABLE ,11. 

Values of the constant i n Eq.(40) i n units 
of 10^7 e s u - 2 cm - 3. 

r ab Argon Krypton Nitrogen 

J2v 

/ 3 r 

17.92 

6.34 

3.45 

2.24 

15.27 

5.40 

2.94 

1.91 

15.85 

5.60 

3.05 

1.98 
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CHAPTER 5. DISCUSSION. 

5-1 C l a s s i f i c a t i o n of Peaks i n the Matrix Spectra of HC1 and 
HBr. 

The observed peaks i n the matrix spectra can be c l a s s i f i e d 

according to t h e i r behaviour under various conditions. Closer 

examination of the spectra of HC1 (Figs. 5-7) and HBr (Figs. 13-15) 

reveals that the observed peaks f a l l into four groups: 

( i ) Peaks which are present at a l l matrix to solute 

r a t i o s , whose i n t e n s i t i e s r e l a t i v e to other peaks 

i n the spectrum increase with d i l u t i o n . 

( i i ) Peaks which are present at low matrix to solute 

ra t i o s whose i n t e n s i t i e s r e l a t i v e to group ( i ) 

decrease with d i l u t i o n . 

( i i i ) Peaks which appear during warm-up studies. 

(iv) Peaks which are only present when other solutes 

are included i n the mixtures. 

Di v i s i o n of peaks i n the spectra of HC1 and HBr among the 

f i r s t three categories i s made i n Table 12. 

The behaviour with d i l u t i o n of the four most important 

peaks i n the spectra of HBr and HG1 i n argon, i s i l l u s t r a t e d 

graphically i n F i g . 22. In the case of HBr, i t i s seen that, 

r e l a t i v e to the peak at 2569 cm-'', the i n t e n s i t y of the peak at 

2550 cm"'' remains constant, while those at 2496 and 2465 cm-'' 

decrease with d i l u t i o n . A similar s i t u a t i o n i s found for HC1 where 

the i n t e n s i t y of the peak at 2853 cm-'' r e l a t i v e to the peak at 

2889 cm-'' remains constant, while those at 2817 and 2787.5 cm-'' 
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TABLE 12. 

C l a s s i f i c a t i o n of Observed Peaks i n the Spectra 
of HC1 and HBr i n argon. 

Group ( i ) Group ( i i ) Group ( i i i ) 

HC1 

2749* 
2761* . 

2787 2787 
2817 

2853 

2863 

2867 
2889 

2900 sh 

HBr 

2426* 

2436-

2450* 

24.65 

2496 

2550 

2558 

2569 

2575 sh 

!:"These peaks were only observed during warm-up and were not 
previously included i n Table 1. 
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decrease rap i d l y on d i l u t i o n . 

I t seems reasonable to assume that peaks i n the f i r s t category 

are due to isola t e d HC1 or HBr molecules. These peaks would be the 

only ones observed i n studies of very d i l u t e mixtures c a r e f u l l y 

deposited to minimize the p o s s i b i l i t y of d i f f u s i o n of solute molecules. 

I t i s suggested that interactions between pairs of solute molecules 

i n contiguous and other adjacent s i t e s , as i l l u s t r a t e d i n F i g . 23, 

account for the peaks which decrease i n i n t e n s i t y with d i l u t i o n . 

P r o b a b i l i t i e s for finding such pairs at various matrix to solute 

ratios have been calculated (53) assuming a random d i s t r i b u t i o n of 

solute molecules on substitutional s i t e s i n a cubic close-packed 

c r y s t a l . 

For the peaks which only appear during warm-up, a similar 

explanation i s offered. In t h i s case, however, interactions 

between more than two solute molecules are suggested. Such 

interactions are expected to be important during warm-up, since 

d i f f u s i o n of the trapped molecules would enable t r i p l e and larger 

clusters to be formed. At temperatures close to the melting point 

of the matrix, peaks appear i n the region of s o l i d HG1 or HBr. 

From the work of Hornig and his co-workers (54-,55,56), i t i s 

reasonable to assume that these peaks are due to hydrogen-bonded 

chains of varying length. 

In many cases i t was possible to resolve peaks i n the 

spectrum of HG1 into doublets due to the HCl35 and HCl^? isotopic 

molecules. I t i s perhaps s i g n i f i c a n t that certain other peaks i n 

the same spectrum remained unresolved under the same conditions 

of high resolution. These peaks were usually broader than the 
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resolvable ones and often corresponded to the group ( i ) peaks. 

However, the problem of scattering with the consequent loss of 

resolution makes t h i s l a t t e r c l a s s i f i c a t i o n uncertain. 

5-2 Isolated Solute Molecules. 

The observed infrared spectra of HC1 and HBr i n s o l i d 

matrices, indicate that the s t a t i s t i c a l l y predicted i s o l a t i o n of 

solute molecules (57) was never achieved under the experimented 

conditions employed i n t h i s work. However, i s o l a t i o n approaching 

the s t a t i s t i c a l values was usually obtained when high matrix to 

solute ratios were used. 

The three peaks which are assigned to HC1 molecules 

iso l a t e d i n argon are; the very strong peak at 2889 cm-'', the 

shoulder at 2900 cm-'' and the peak of medium i n t e n s i t y at 2853 cm~^. 

These three peaks make up a vibration-rotation band centred at 

2871 cm-'' which i s shifted by -13.5 cm"'' from the gas phase. 

A similar s i t u a t i o n holds for HBr i n argon where the observed 

frequencies are: 2550, 2569 and 2575 cm-''. The corresponding band 

centre i s at 2559.5 cm , which represents a s h i f t from the gas 

phase of +1 cm-''. 

In a discussion of the behaviour of isola t e d solute molecules 

i n i n e r t matrices i t i s necessary to consider several effects which, 

for the purpose of interpreting the observed infrared spectra, w i l l 

be considered separately under the headings of vibrat i o n and rotation. 

In the f i r s t case, we examine the causes and effects of perturbations 

of the v i b r a t i o n a l potential function of the molecule. Under the 

second heading, we consider the hindered rotation of the is o l a t e d 
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solute molecule. 

One could circumvent the problem of the observed gas-matrix 

s h i f t of the vibration-rotation band centre by invoking a change 

i n the force constant of the solute molecule. Hornig and Osberg 

(54) estimated that the force constant of HC1 decreases from 

4.81 md/A i n the gas to 4.31 md/A i n the s o l i d state. A smaller 

change i s expected going from gas to matrix, and for HC1 i n argon 

the calculated value i s 4.73 md/A. However, for HBr i n argon, a 

sl i g h t increase i n the force constant i s necessary to account for 

the observed frequency s h i f t . Force constants for HBr and HC1 i n 

various matrices are compared i n Table 13 using the expression: 

f(matrix) = f (gas) ["V^^riag)"] 2 

L y(gas) J 

TABLE 13. 

Force constants of HBr and HC1 i n 
various matrices. 

Force Constant (md/A) 
State HBr HC1 

gas 3.85 4.81 

s o l i d 3.45 4.31 

argon matrix 3.85 4.77 

krypton matrix 3.'SO 4.72 

nitrogen matrix 3.75 4.64 
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One might also consider the anharmonicity of the vibration 

of the solute molecule i n a discussion of the s h i f t of the vibra­

t i o n a l frequency. An increase i n the anharmonicity constant 

6J«Xe -would resu l t i n a s h i f t to lower wave numbers, i n agreement 

with experiment. However, Vodar et a l (31) note that OJ^Xe for 

HC1 or HBr decreases considerably i n the s o l i d state and as a 

r e s u l t , the change of We i s larger than the observed s h i f t . I t i s 

not possible, however, to discuss changes i n the anharmonicity of 

a matrix i s o l a t e d solute molecule without knowledge of frequency 

s h i f t s of overtone bands. The i n t e n s i t y of the overtones of HC1 

and HBr were too weak to be observed i n the matrix work, because of 

the small amounts of material i n the deposits studied. 

In the event that changes of force constants or anharmoni-

c i t i e s could account for the observed v i b r a t i o n a l s h i f t s i n a 

consistant way, the question of the o r i g i n of these effects would 

s t i l l remain unanswered. A fa r more satisfactory approach i s to 

consider the perturbing forces which could effect the potential 

function of the solute molecule. 

5-3 Intermolecular Forces Between Solute and Matrix. 

In section 4-2 we considered induction, dispersion and 

e l e c t r o s t a t i c effects, a l l of which give r i s e to a "red" s h i f t 

of the v i b r a t i o n a l frequency. To these three a t t r a c t i v e i n t e r ­

actions we must add the repulsive forces which produce a s h i f t 

i n the opposite direction. Repulsive forces are usually ignored 

(11, 12, 20), but Maki and Decius (58), van der Elsken (59) and 

Bryant and T u r r e l l (60) considered these forces i n t h e i r i n t e r -
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pretation of spectra of ions isola t e d i n a l k a l i halide l a t t i c e s . 

The observed s h i f t s of band centres for matrix i s o l a t e d 

HC1 and HBr, which are tabulated i n Table 14, can be expressed as 

a sum of four terms: 

AV Cobs) - AVCind) +- AV(d*s) ±Av(es) +Av(-rep) ^ 

( A V (es) being zero for the rare gases.) 

TABLE 14. 

Observed Band Centres of Matrix-Isolated HC1 and HBr. 

Molecule Gas Phase In Argon In Krypton In Nitrogen 
HC1 band centre* 2884-. 5 2871 2856 2833 

s h i f t - -13.5 -28.5 -51.5 

HBr band centre 2558.5 2559-5 254-1 2525.5 
s h i f t - +1 -17.5 -33 

---mean value for H C l 3 5 and HC1 3 7. 

¥e w i l l now consider s h i f t s of the band centre of HC1 i n 

the various matrices. The f i r s t term i n Eq. (42) i s given by Eq.4: 

Av (ind) = - C, A(H-l) 

Values of the constant C( have been tabulated i n Table 8, so to 

evaluate AV (ind) we need a value for the change i n the square of 

the dipole moment during the vi b r a t i o n a l t r a n s i t i o n . Benedict et 

a l (61) have given a dipole moment function for HC1: 

a + ^.(r-re) + Mx(-r-r<,f+ ... (43) 
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where: M 0 = 1 .085 Debye 
M , = 0.880 D/A 
M 2 = 0.082 D/A2 

Values of dyu/dr for the c r y s t a l l i n e hydrogen halides have been 

reported by Fr i e d r i c h and Person (62) and for HC1, djU/dr = 2.12 

D/A. Neglecting the quadratic term i n Eq. (43), we obtain an 

expression for A ( r

l ) 

/U,*-/U0

2 = M * [ ( Y l - r ^ 1 - to-r.)1 ] + 2 M o M , ( ^ - r 0 ) (44) 

where: To and 7", are the internuclear distances i n HC1 for 
the ground and f i r s t excited v i b r a t i o n a l states, and 
fe i s the equilibrium internuclear distance. 

For HC1 gas Te = 1.275 A and ~T0 = 1.284 A from reference (38). 

To obtain an estimate of AC/*1) i n the matrix, we use the observed 

s p l i t t i n g of the R(0) and P(1) peaks to calculate *r, , assuming: 

V R(O) - V P ( 0 = 4 8, (45) 

where: B, i s the r o t a t i o n a l constant for the f i r s t excited 
v i b r a t i o n a l state. 

This i s a poor approximation since: 

V R(0) -VP (D = 2(B 0 + B () (46) 

where: B0 i s the ro t a t i o n a l constant for the ground state, 

and probably also changes i n the matrix. However, using Eq.(45) 

we can obtain an order of magnitude for the induction s h i f t . The 

observed value of V R(0) - V ^ O ) was 36 cm-'' for HC1 i n both argon 

and krypton, and 38 cm-"! i n the nitrogen matrix. Now yt i s given 

by: 

T, = I h ' ^) 
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In a private communication from D. F. Eggers J r . , i t was pointed 

out that i n the above c a l c u l a t i o n , A V (ind) vanishes i n the harmonic 

approximation ( i . e . when Yi - T » —^e ). However, the approach used 

by Maki and Decius (58) gives a non zero value f o r A V (ind) i n any 

approximation. These workers follow the treatment adopted i n chapter 

4-2 as f a r as Eq. (3). 

(j>(ind) = _ Jul 

Then, to estimate the e f f e c t upon the v i b r a t i o n a l frequencies ^Xa. i s 

replaced by \ (.^Ma/^Q }o ^ • I n t h i s c a s e t n e change i n the 

square of the dipole moment between the ground and f i r s t excited v i b r a ­

t i o n a l states i s given by: 

(42 a) 

where: ^ } denotes a quantum mechanical mean value. 

Using the harmonic o s c i l l a t o r wave functions we f i n d : 

<Qf>-<a:> = -pfcs 
where: ~lS0 i s the gas phase v i b r a t i o n a l frequency i n cm~l. 

By s u b s t i t u t i o n of Eq. (42b) and Eq. (42a) into Eq. (3), the 

s h i f t of v i b r a t i o n a l frequency i s given by: 

A V (ind) = _ I^M1 C J, 

where: C, , i s the value i n Table 8. 

V° (42c) 
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(42d) 

we f i n d f o r HC1: 

F i n a l l y , the v i b r a t i o n a l s h i f t s were found to be: 

A V f ' n c O = - 1' 5 c m - 1 f o r Ar and Kr, 

and AV(WcL) — -1.2 cm - 1 f o r N 2. 

I t i s seen that these s h i f t s are an order of magnitude l e s s than 

those c a l c u l a t e d i n the anharmonic approximation. The two treatments 

would appear to supplement each other, and i n s p i t e of the inaccuracy of 

the present c a l c u l a t i o n , i t seems that the anharmonic contribution i s the 

most important term. I t i s unfortunate that no data on the overtone bands 

of HC1 i n the matrix i s a v a i l a b l e at t h i s time since t h i s would give 

valuable information on the anharmonicity of the p o t e n t i a l function. 
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where: h i s Planck's constant, c i s the v e l o c i t y of l i g h t 
and m the reduced mass for HC1. 

Hence T, = 1.38 A i n the rare gas matrices and 77 = 1.35 A i n nitrogen. 

Substituting the values of Te , T0 and r j into Eq. (44) together 

with a value for M, of 1.8 D/A for HC1 i n the matrix, we f i n d 

A (jji1) = 4.2 x 10-3'7 e s u 2 c m 2 fQT jjCl i n argon or krypton and 

A (jU l) = 2 .6 x 10~3'7 f o r jjCl i n nitrogen. Wow, using the 

results of Table 8, we may calculate the s h i f t s due to the induction 

forces: 

A U (ind) = -16 cm-'' i n argon 

l\ j) (ind) = -17 cm-1 i n krypton 

A V (ind) = -8 cm-'' i n nitrogen. 

The second term i n Eq. (42) can be evaluated i f we can 

estimate the change i n c<ei and Ea i n Eq. C'T) : 

1 c1 " r " 

E > E . E'i'+E, 

where: two primes denote the ground state and one prime 
the f i r s t excited v i b r a t i o n a l state. 

The i o n i z a t i o n potentials E (, for argon, krypton and nitrogen 

are 126,475 cm - 1, 112,359 cm - 1 and 125,104 cm - 1, respectively (63). 

The i o n i z a t i o n potential of HC1 i n the ground state E a i s 111,311 

cm-"' (63) and the difference between the ground and f i r s t excited 

v i b r a t i o n a l state i s taken as the v i b r a t i o n a l frequency i n the 

matrix. Hence E a i s 108,440 cm - 1 i n argon, 108,455 cm-' i n krypton 

and 108,478 cm-'' i n nitrogen. 

To estimate the change i n p o l a r i z a b i l i t y , we expand ex. i n 
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terms of the change i n internuclear distance ( T — TE }: 

= dQ 4- <tfi ( Y" — re) + * • - (48) 

Values of c<i for various molecules have been estimated by 

Stansbury et a l (64) from i n t e n s i t y measurements of Raman spectra. 

For HG1 the value was 1.0 A 2. Taking c<o as 2.63 A 3 (65) and 

oC, as 1.0 A 2 i n Eq. (48) we get <*a = 2.74 A 3 for HC1 i n argon 

and krypton matrices, and c<a = 2.70 A 3 i n nitrogen. Using these 

values, together with E„ , E a , and E^, the s h i f t s due to the 

dispersion forces were calculated: 

A V (dis) = -48 cm-'' for argon, 
A V (dis) = -49 cm-'' for krypton, 
A V (dis) = -18 cm-'' for nitrogen. 

Thus, the s h i f t s due to dispersion forces are larger than those 

due to induction forces, i n agreement with the work of Ben Reuven 

et a l (66). These workers used an approach sim i l a r to the present 

one, to calculate pressure-induced s h i f t s of HC1 l i n e s due to 

noble gases. 

In the case of HC1 i n nitrogen, there i s a contribution 

from the t h i r d term i n Eq. (42). The expression for A V (es) was 

given by Eq. (jl) J 

AV(es) = - Q Aft* 

Using Eq. (43) the change i n dipole moment of HG1 during a 

vib r a t i o n a l t r a n s i t i o n i s : 

Ay- = M, (r.-n ) 
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Using the same values of ra and r, as before, Eq. (4.9) gives 

A ft- =0.11 D for HC1 i n nitrogen, and the corresponding s h i f t 

A l>(es) = -56 cm-''. 

The results of the above calculations for HG1 i n argon, -

krypton and nitrogen matrices are l i s t e d i n Table 15 together 

with the observed gas-matrix s h i f t s . Although the accuracy of 

these calculations i s undoubtedly questionable, they do consist­

ently predict a greater "red" s h i f t than was observed. Thus, i t 

i s reasonable to assume that repulsive forces contribute to the 

over a l l s h i f t . 

Since repulsive forces arise from overlap of charge clouds, 

i t i s i n s t r u c t i v e to compare the r e l a t i v e sizes of HC1, argon, 

krypton and nitrogen. This i s done i n Fig. 2L,, where i t i s seen 

that the HC1 molecule i s larger than a substitutional s i t e i n any 

of the three matrices. On s p a t i a l grounds one would expect the 

repulsive i n t e r a c t i o n to increase i n the order krypton, nitrogen, 

argon, but from Table 15 the apparent order obtained by subtracting 

A V (obs) from A V (calc) i s nitrogen, krypton, argon. The 

explanation f o r t h i s may well l i e i n the value taken for r, , the 

internuclear distance i n the excited v i b r a t i o n a l state. The 

value estimated for t h i s quantity was very approximate, and a 

smaller value of r, would r e s u l t i n smaller values of A V (ind) 

and £ U (disp). Thus the contribution from the repulsive forces 

for HC1 i n nitrogen could be between the values for the argon and 

krypton matrices. 

I t should be emphasised that the numerical results of th i s 

section are orders of magnitude only, since many assumptions and 
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TABLE 15. 

Vibrational Shifts i n cm-'' for HG1 i n Various Matrices. 

Matrix V ( t o t a l ) AV ( es) z l v(ind) ^ V ( d i s p ) 
observed. calc. calc. calc. 

Ar -13.5 - -16 -48 

Kr -28.5 - -17 ' -49 

N 2 -51.5 -56 -8 -18 
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approximations were made i n the calculations. 

Calculations of the gas-matrix s h i f t s for HBr could be 

carried out i n the same way as for HC1. This has not been done 

here because the value of r, calculated from the observed s p l i t t i n g 

between R(0) and P(1) peaks i s not reasonable.- However, an idea 

of the magnitudes of the s h i f t s r e l a t i v e to those calculated for 

HC1 can be obtained by comparing the dipole moments, p o l a r i z -

a b i l i t i e s and io n i z a t i o n potentials of HC1 and H^r, l i s t e d i n 

Appendix 2. 

The dipole moment of HBr i s smaller than that of HG1, 

which suggests a smaller dipole derivative. The value of d-f^/^y 

quoted by F r i e d r i c h and Person (62) for s o l i d HBr was 1.72 D/A 

compared with 2.12 D/A for s o l i d HC1. A similar gas-matrix 

change i n r, i s expected for HBr as for HC1. Thus, the value of 

A C i n Eq. (44) i s expected to be smaller for HBr than for 

HC1, hence the value of £V (ind) for HBr w i l l be smaller. 

The dispersion s h i f t depends on the p o l a r i z a b i l i t y and 

ion i z a t i o n potential i n the ground and f i r s t excited v i b r a t i o n a l 

states Eq. (12). In Appendix 2, the ion i z a t i o n potential of 

HBr i s seen to be less than that of HC1, while the p o l a r i z a b i l i t y 

i s considerably larger for HBr than for HC1. I t i s expected, 

therefore, that &~0 (dis) for HBr i n the matrix w i l l be larger 

than the values for HC1. The ove r a l l attractive effects compared 

with HC1 may well be similar or perhaps larger for.HBr. 

On s p a t i a l grounds, one would expect the repulsive forces 

to be greater i n HBr than i n HC1, since the HBr molecule i s larger 
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than HC1 (see Fig. 24.). Repulsive forces usually give r i s e to 

an upward s h i f t of v i b r a t i o n a l frequency, thus an increase i n 

repulsive interaction could account f o r the smaller "red" s h i f t s 

observed for HBr i n the matrix compared to the HG1 case. 

5-4- Rotation of Isolated Solute Molecules. 

There i s considerable evidence i n the l i t e r a t u r e supporting 

free or nearly free rotation of small molecules i n i n e r t matrices. 

In the present study, groups of absorption peaks i n the spectra of 

HC1 and HBr i n argon, krypton and nitrogen matrices, are assigned 

to vibration-rotation bands. However, several features must be 

explained before the issue i s f i n a l l y s e t t l e d . 

The f i r s t problem i s the observed s p l i t t i n g of the R(0) and 

P(1) peaks i n the matrix spectra of HC1 and HBr, which gives r i s e 

to r o t a t i o n a l constants smaller than the gas phase values. No, 

t h e o r e t i c a l treatment to date has predicted a change of 

V R(0) -1>P(1) i n the matrix. However, very recently, Gebbie and 

S'tone (67) measured widths,and s h i f t s of pure rotation l i n e s of 

HC1 perturbed by rare gases and found that the only l i n e for which 

there was any measurable s h i f t was the J(0-1) l i n e . This corres­

ponds to R(0) of the vibration-rotation spectrum. A perturbation 

which affects R(0) more than P(1) could account for the observed 

change i n 4B^ i f both s h i f t s were to the "red". Ben-Reuven et a l 

(66) report "red" s h i f t s of vibration-rotation l i n e s of HG1 

perturbed by.noble gases, except R(0) i n argon and krypton which 

t Actually, the separation of R(0) and P(1) i s 2 ( B - | + B 0 ) , and both 
B-j and BQ may change i n the matrix. 
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i s shifted to the "blue". These workers also note that f o r low J 

numbers the s h i f t s of corresponding l i n e s are greater i n the P 

branch than i n the R branch. In other words, the observed s p l i t t i n g 

between R(0) and P(1) i s increased by addition of noble gases, 

contrary to the observations for HC1 i n s o l i d rare gases. 

An interesting feature of the spectrum of HC1 i n nitrogen 

was the small change i n the separations between R(1), R(0) and 

P(1), going from gas to matrix. On t h i s basis i t would appear . 

that the HC1 molecule experiences less perturbation of i t s 

r o t a t i o n a l levels i n nitrogen than i n the rare gas matrices, i n 

spite of the greater s h i f t of the band centre. This could be due 

to smaller repulsive forces i n the nitrogen matrix, i n agreement 

with the calculations of the previous section. 

The perturbation treatment of the previous chapter predicts 

a s p l i t t i n g of the R(1) peak of HC1 or HBr into three components. 

The calculated frequencies are l i s t e d i n Table 16 for these 

molecules i n argon. For these calculations the selection rules 

J = + 1 and M = 0,+ 1 apply, and no violations of these 

selection rules are predicted by f i r s t order perturbation theory 

(69). The frequencies of the allowed transitions are given by: 

V R° (0) = Vo'R(0) + E'(1,0) 
V R ° (1) = VJR(1)+ E'(2,0) - E'(1,0) 
1 ^ R ± ( 1 ) = ^ R 0 ) + E'(2,±1) - E ' U , ^ ) 
Vv° (1) = I ^ P ( 1 ) - E'(1,0) 
VTC (1) = V J R (0+ E'(2,±2) - Ey(l,±l) 

where: E'(0,0) has been a r b i t r a r i l y set equal to zero. The 
Vo are the gas phase frequencies corrected for the 

s h i f t of the band centre i n the matrix. The superscript 
on the symbol V R M(0) refers to the value of the 
quantum number M, of the lower l e v e l . 
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TABLE 16. 

Predicted Spectrum of HC1 and HBr i n Argon, Compared With 
Observed and Gas Phase Spectrum. 

(a) HC1 

Peak Calculated 
Frequencies i n cm ^ 

Observed Gas Phase 

P° (D 2850.5 2853 2864 

R° (0) 2891.5 2889 2905 

R° (D 

R ± 1 (D 

2907.5 
2914 
2911 

2900 . 2925 

(b) HBr 

Peak Calculated 
Frequencies i n cm-'' 

Observed Gas Phase 

P° (D 2543 2550 2542 

R° (0) 2576 2569 2575 

R° (D 

R ± 1 (D 

2585 
2596.5 
2591 

2575 2591 
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S p l i t t i n g of the R(1) peak was not observed i n either the 

present work or the work of Schoen et a l (8). Previous hindered 

r o t a t i o n a l calculations (8, 12, 13, 14-) also predicted a s p l i t t i n g 

of the R(1) peak. Thus, i t appears that a theory i s needed which 

w i l l predict perturbations of a l l r o t a t i o n a l energy l e v e l s of the 

solute molecule, but which does not remove the degeneracy of these 

l e v e l s . 

I t has been suggested (69) that In an octahedral f i e l d 

with a barrier height of about 10 cm , the J = 0 l e v e l 

(E =0.0 cm-'') of HG1 would be perturbed considerably more than 

the J = 1 l e v e l (E = 20.9 cm -1). The physical interpretation of 

t h i s (69) i s that a molecule i n the J = 0 l e v e l does not rotate, 

but executes o s c i l l a t i o n s about some mean position, whereas a 

molecule i n the J = 1 l e v e l can undergo more or less free rotation. 

Such a model would predict a spectrum i n agreement with the 

observed spectrum. 

A second major problem i s the observed r e l a t i v e i n t e n s i t i e s 

i n the matrix spectra. In Table 17, the observed i n t e n s i t y ratios 

of the R(0) and P(1) peaks of HC1 and HBr i n various matrices, are 

compared with calculated ratios at several temperatures. A simple 

explanation for the observed i n t e n s i t i e s i s that the temperature 

of the deposit during the recording of the spectrum may not have 

been 4°K, but i n f a c t , several degrees higher. The very poor 

thermal conductivity of the s o l i d rare gases (70) could enable a 

thermal gradient to be established i n the deposit, with the surface 

layers at, a higher temperature than the layers near the caesium 
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iodide plate. This idea i s supported by the i n t e n s i t y ratios for 

HC1 and HBr i n nitrogen which are much closer to the 5°K figure 

(see Table 17). The thermal conductivity of nitrogen (71) i s 

2.5 times that of argon and 7 times that of krypton at 5°K, thus 

the warming of the deposit by the incident radiation should be 

less important i n the nitrogen matrix. Further evidence for the 

warming of the rare gas deposits was provided by the warm-up study 

of HC1 i n nitrogen (see Fig. 12). At 15°K the in t e n s i t y of P(1) 

r e l a t i v e to R(0) was the same as that observed for HG1 i n the 

rare gas matrices at the lowest temperature, when the thermocouple 

recorded 4°K. 

TABLE 17. 

Intensities of the P(1) peak of HC1 and HBr 
Relative to R(0) = 100, i n Various Matrices. 

(a) HC1 

Observed Calculated 
Matrix 4°K--- 5°K 1 0 O K 2 0 O K 

Ar 30 0.6 15 66 
Kr 30 0.6 15 66 
N 2 4 0.6 15 66 

(b) HBr 

Observed Calculated 
Matrix 4°K* 5°K 10°K 20°K 

Ar 40 2.4 2 7 91 
Kr 35 2.4 27 91 
N 2 3 2.4 27 91 

i fIt i s believed that i n the noble gas matrices the temperature 
was several degrees above 4°K. See text for discussion of t h i s 
point. 
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One further i n t e n s i t y anomaly i s found i n the spectra of 

HBr and HC1 i n the rare gas matrices. The shoulder on the high 

frequency side of R(0), which i s assigned to R(1), i s much weaker 

than the P(1) peak. The i n t e n s i t i e s of these peaks should be 

comparable since they both originate from the J = 1 l e v e l . 

In f a c t , i n the gas phase, R(1) i s somewhat stronger than P(1), 

due to the difference i n absorption frequencies and t r a n s i t i o n 

moments for these two l i n e s . The energy absorbed during a 

t r a n s i t i o n from the mth to the nth energy l e v e l i s given by (68): 

where: K i s a constant, Nm i s the population of the mth l e v e l , 
V mn i s the absorption frequency, and | yU w n | i s the 
t r a n s i t i o n moment. 

From Eq. (53.) the r a t i o of the i n t e n s i t i e s of R(1) and P(1) 

In the gas phase IR(1 ) / I P ( 1 ) i s found to be 1.5 for HG1 and 1.3 

for HBr, while i n the matrix, the r a t i o i s of the order of 0.3. 

The explanation may be that the R(1) peak i n the matrix i s close 

to the r e l a t i v e l y broad R(0) peak and some of the R(1) i n t e n s i t y 

i s included i n t h i s very strong peak. However, i t seems doubtful 

that t h i s could account for the factor of f i v e between the gas and 

matrix i n t e n s i t i e s . 

d.E = K NL V, 

(51) 

i s : 

(52) 
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5-5 Interactions Between Solute Molecules. 

I t i s suggested that interactions between non-isolated 

solute molecules give r i s e to the peaks c l a s s i f i e d i n section 

5-1 into groups i i , i i i and i v . Such pairs, t r i p l e c l u s t e r s , etc., 

could be formed by d i f f u s i o n of solute molecules i n the l a t t i c e . 

The thermal conductivity of the s o l i d rare gases i s very small (70), 

and i t i s quite possible that the new layers of deposit are not 

cooled to 4°K rapidly enough to prevent d i f f u s i o n e n t i r e l y . This 

i s supported by experiments i n which a mixture was deposited at 

the normal rate, and very ra p i d l y , and the re s u l t i n g spectra 

compared. In the case of rapid deposit, additional peaks were 

observed, many of which were only observed during warm-up of the 

slowly deposited mixture. 

S t a t i s t i c a l l y (53), the most probable pair of solute 

molecules i s the t h i r d nearest neighbour pair (see F i g . 23). 

However, when di f f u s i o n occurs, the nearest neighbour pair 

( i . e . the dimer) i s energetically more favourable. Shifts of 

vi b r a t i o n a l frequencies due to dipole-dipole interaction between 

pairs of solute molecules may be calculated using the values of 

A(jA ) for HG1 estimated i n section 5-2, and Eq. (AO) developed 

In section 4-6: 

The s h i f t s calculated from t h i s equation are added to the matrix 

s h i f t s from Table 14, and the results compared with the observed 

spectra i n Table 18. 

AV = -C 4 Mr

2) 
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TABLE 18. 

Calculated S h i f t s * i n cm-'' for Interactions Between 
Pairs of HC1 Molecules. 

Internuclear 
Distance 

Ar 
calc. obs. 

Kr 
calc. obs. 

N 2 

calc. obs. 

r -89 -67.5 -88.5 -84.5 -92.5 -
ft r -4.0 - -51 - -67 -

V J r -28 -21.5 -41 -30.5 -59.5 -42.5 

2 r -23 -17 -36.5 - -56.5 -

*These s h i f t s include the matrix s h i f t s from Table 14. 

In the case of interactions between solute molecules i n 

si t e s other than nearest neighbour s i t e s , the observed s h i f t s w i l l 

be less than predicted i n Table 18, because screening by the 

matrix atoms w i l l tend to reduce the intermolecular forces. With 

t h i s i n mind, the agreement between observed and calculated s h i f t s 

i n Table 18 i s remarkably good. I t i s also s i g n i f i c a n t that i n 

the case of HC1 i n nitrogen, no peak i s found near 2790 cm-'', the 

predicted frequency for HC1 molecules i n nearest neighbour s i t e s 

i n t h i s matrix. The only observed peak corresponds to the s t a t i s ­

t i c a l l y favourable second nearest neighbour pai r . These obser­

vations are compatible with the higher thermal conductivity and 

smaller heat of sublimation (see Appendix 1) of nitrogen at 4°K 

compared with the rare gases, since i f di f f u s i o n i s minimized a 

s t a t i s t i c a l d i s t r i b u t i o n of solute molecules i n the l a t t i c e would 
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be expected. 

Peaks at frequencies lower than the "nearest neighbour" 

frequency must be due to interactions between three or more 

solute molecules. Many of these peaks are found only during 

warm-up (see Figs. 6 and 14) and the others are only found at 

low matrix to solute r a t i o s (see Figs. 5 and 13). 

The effect of solute-solute interaction was also demon­

strated i n experiments where other solute molecules were added 

to the gas mixtures. Several new features were introduced into 

the spectra of HG1 and HBr (see Figs. 7 and 15), which can be 

explained q u a l i t a t i v e l y on the basis of dipole-dipole interactions 

between the hydrogen halide and the other solute molecule. 

5 -6 Matrix I s o l a t i o n Studies of GO and S O 2 . 

The observed spectra of CO and S O 2 i n the matrix are 

simpler than the HC1 or HBr spectra. In the case of S O 2 , the 

large dimensions of the molecule compared to argon or nitrogen 

(see Fig. 24.) make rotation very u n l i k e l y . Shifts of band 

centres from the gas phase are surprisingly small for these 

molecules. In the case of SOg, t h i s could be due to the 

balancing of repulsive and attractive forces, with a small net 

eff e c t , as was found for HBr i n argon. CO, on the other hand, 

has a very small dipole moment and a smaller p o l a r i z a b i l i t y than 

the hydrogen halides, thus interactions with the matrix are 

expected to be l e s s . 

On s p a t i a l grounds, CO should be able to rotate i n an 
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argon matrix. Nevertheless, i t i s d i f f i c u l t to correlate the 

observed matrix spectrum with the gas phase vibration-rotation 

spectrum. I t i s inter e s t i n g to note that a calculation by 

Ewing (72) predicts a Q branch i n the vibration-hindered rotation 

spectrum of l i q u i d CO. I f Ewing's theory could be carried over 

into the present matrix s i t u a t i o n , the very strong peak at 2138.5 

cm~1 could be assigned to an unresolved t r i p l e t due to the P(1), 

Q(0) and R(0) t r a n s i t i o n s . The peak at 2152 cm-1 would then be 

assigned to R(1). However, i t i s very doubtful that such an 

explanation could be correct. The ro t a t i o n a l constant for CO i s 

about 2 cm-1 (40) and the expected separation of P(1) and Q(0) 

or Q(0) and R(0) would be approximately 4 cm-1 . The 112 G 

spectrometer should be capable of resolving these peaks, whereas 

the 2138.5'cm-'peak was unresolved. Furthermore, no v i o l a t i o n 

of the A J = ± 1 selection rule i s expected i n the matrix 

environment ( 6 9 ) . 

The very weak peaks at 2115 and 2091 cm-'' are undoubtedly 

due to isotopic CO molecules (19)- In the spectrum of CO 

perturbed by HC1 (see Fig. 17'), i f we assign the peak at 2065 cm-^ 

to CO molecules interacting with HC1 molecules i n nearest neighbour 

s i t e s , then the change i n dipole moment of CO during a v i b r a t i o n a l 

t r a n s i t i o n may be calculated from Eq. (41)s. 

of magnitude as that estimated for HC1 i n the matrix i n section 5-3. 

In the gas phase spectrum of SO2 the band centres are at 

AV 

which i s of the same order 
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1151.4 cm_1 and 1361.8 cm~1 for \ ) [ and V3 respectively (44). 

The s h i f t s i n the nitrogen matrix for ~)){ and V3 were + 1.2 cm""1 

and -10 cm-1, and i n argon, -1.7 cm-1 and -8.3 cm~1 respectively. 

These s h i f t s are small compared with the gas-solid s h i f t s of 
1 -1 

-8 cm- and -46 cm for these bands. I t may be noted also that 

the gas-solid s h i f t s are much smaller for SO2 than for HC1 or 

HBr, because there i s no hydrogen bonding i n s o l i d SO2. 

Rotation of the S0 2 molecule i s u n l i k e l y on s p a t i a l grounds, 

and the appearance of the matrix spectrum supports t h i s conclusion. 

The SO2 molecule has ro t a t i o n a l constants: A = 2.03 cm~1, 

B = 0.34 cm-1 and G = 0 .29 cm - 1 (73). I t i s therefore a nearly 

prolate symmetric top with asymmetry parameter K = -0.94- Using 

the formulae given i n reference (68) the lower r o t a t i o n a l levels 

were calculated and are tabulated i n Table 19 together with 

r e l a t i v e populations at 5°, 10°, and 20°K. 

At 5 K, a l l levels up to 3-f are appreciably populated, 

and at 10°K, higher levels w i l l also be important. Thus, the 

rotation-vibration bands even at 5°K would be very complex, 

consisting of several groups of unresolved l i n e s . The simple 

appearance of the spectrum of S0 2 i n argon and nitrogen 

matrices, therefore, indicates that rotation of the trapped 

molecule does not occur. 

I t i s interesting to note that i n the argon matrix both 

the 1// and 2/3 bands consist of strong doublets, while i n 

nitrogen, the main feature i n each of these bands i s a single 

strong peak. One might put forward an explanation analogous to 

inversion doubling (74) based on the following argument. 
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TABLE 19. 

Rotational Energy Levels of the S0 2 Molecule. 

J T cirri Populations Relative to 0 o 

5°K 10°K 20°K 

0 o 0.00 1 1 1 
1- 1 O.64 .84 .91 .96 
1 0 2.32 .51 .72 .84 

1, 2.37 .51 .71 .84 

2- 1 1.63 .63 .79 .89 
2- i 3.55 .36 .60 .78 
2 0 3.70 .35 .59 -77 
2, 8.75 -08 .28 .52 

2 J > 9.03 . 07 . 27 . 52 

3- 1 3.77 .34 -58 .76 
3-Z 5.34 -21 .46 .68 
3-1 5.65 .20 .44 .67 
3 0 10.63 .05 .21 .46 
3, 10.65 .05 .21 .46 

31 19.22 .004 .06 .25 

3 3 19.21 .004 .06 .25 
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Assuming that the SO2 molecule i s prevented from rotating by 

the surrounding matrix atoms, then the molecule can only execute 

vibrations i n an equilibrium position i n the cavity. I f the 

sulphur atom passes between the oxygen atoms to an equivalent 

position on the other side, an inverted configuration i s obtained. 

This s i t u a t i o n could not occur i n the free molecule because the 

equivalent position could be obtained by a simple rotation. The 

two equilibrium positions may be described mathematically by a 

double minimum po t e n t i a l , which gives r i s e to a doubling of the 

vi b r a t i o n a l energy l e v e l s of the molecule (74-)• This phenomenon 

has been observed for the ammonia molecule i n the gas phase, 

and more recently i t has been suggested that inversion doubling 

may occur.in s o l i d phosphine (75). 

The s p l i t t i n g i n the ground state i s very small, but as 

the energy levels approach the barrier height the separation 

increases r a p i d l y (74). Thus, i f the observed s p l i t t i n g s for 

V/ and V3 of SO2 are due to the type of inversion doubling 

described above, then the s p l i t t i n g s for the overtones 2Vi and 

2Vj should be much larger. Also, i t i s expected that the bending 

mode yx should exhibit greater s p l i t t i n g (74). Unfortunately, 

i t was not possible to study these bands i n the present work 

because the overtones are too weak, and the region of the bending 

mode was inaccessible. 

Arguments against the above explanation are: the absence 

of doubling i n nitrogen, and the large reduced mass of SO2, which 

would be expected to l i m i t the s p l i t t i n g s to very small values, 

unless the barrier to inversion was low (74)- In view of t h i s , 
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the observed s p l i t t i n g s of 4 .8 cm~1 for V, and 4 .2 cm- for 2̂ 3 

would appear to be too large to arise from inversion doubling. 

Another explanation.involving multiple trapping s i t e s 

could be considered. Harvey and Ogilvie (76) i n t h e i r work on 

formaldehyde i n an argon matrix, suggested that the formaldehyde 

molecule could be trapped i n a substit u t i o n a l s i t e , or i n larger 

holes i n which two or three argon atoms were displaced. Applying 

t h i s suggestion to the SC^/argon spectrum, one can account for 

the doublets observed for the and bands. 

5-7 Gas Hydrates. 

The hydrates studied i n the present work have the compo­

s i t i o n M'6H20 and have been c l a s s i f i e d as type I hydrates by 

von Stackelberg (21). In these compounds the hydrate former M 

i s trapped i n hydrogen bonded cages of water molecules. The 

structure of the type I gas hydrates has been worked out by 

von Stackelberg (21), Pauling and Marsh (77) and Claussen (78), 

and i s i l l u s t r a t e d i n Fig. 25. 

Two types of cages are formed i n the type I hydrates, 

pentagonal dodecahedra enclosing nearly spherical c a v i t i e s of 

diameter 5.1 A, and tetraxa*decahedra enclosing s l i g h t l y oblate 

c a v i t i e s of diameter 5.8 A (79). These cavities should be large 

enough to allow rotation of small molecules, and X-ray d i f f r a c t i o n 

data (21,77) for SO2, H2S and CI 2 could be interpreted as i n d i ­

cating free rotation of these molecules i n the cages. 

The physical properties of some of these compounds are 

l i s t e d i n Table 20. 
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TABLE 20. 

Properties of Some Gas Hydrates. 

M M.P. of M diss , press, 
atm. at 0°C 

decomp. temp. 
°C at latm. 

Ar -190 105 -42.8 

Kr -152 14-5 -27.8 

Xe -107 1.5 - 3.4 

c i 2 - 34 0.33 9.6 

H2S - 60 0.96 0.35 

so2 - 10 0.39 7.0 

Discussion of the spectra of the gas hydrates can be 

considered i n two parts. The spectrum of the sk e l e t a l water 

vibrations, and the spectrum of the hydrate former (where i t 

e x i s t s ) . 

The sk e l e t a l water spectrum has several points of int e r e s t . 

In the S0 2 hydrate, the l i b r a t i o n a l frequency of H20 i s shifted 

by -40 cm-'', while the peak at 1600 cm-'' i n ice i s shifted i n 

the opposite dire c t i o n by 40 cm-'', confirming i t s assignment to 

rather than 2 , as has been suggested (80). The peak at 

2230 cm-'' i n i c e , usually assigned to 1?x + , has almost the 

same frequency i n the hydrate, i n agreement with the above con­

clusion. 

A new feature i n the s k e l e t a l water spectrum at 2410 cm-'' 

i s observed i n a l l the hydrates studied i n t h i s work. This may 
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f i g 2 5 . 

S T R U C T U R E O F T Y P E I G A S H Y D R A T E S 

A p o r t i o n o f t h e h y d r o g e n - b o n d f r a m e w o r k , 
o x y g e n a t o m s a r e a t t h e c o r n e r s o f 
t e t r a k a i d e c a h e d r a a n d d o d e c a h e d r a . 

The a r r a n g e m e n t o f t h e d o d e c a h e d r a i n 

t h e g a s h y d r a t e c r y s t a l . T h e o p e n c i r c l e s 

d e n o t e c e n t r e s o f c a v i t i e s . 
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be a second component of the combination band Vx + VR . The s h i f t 

of the l i b r a t i o r i a l frequency i n the S0 2 hydrate precludes the possi­

b i l i t y that the new peak i s an overtone of • 

The S0 2 peaks i n the hydrate are generally broader than i n 

the s o l i d (see F i g . 19) which may be due to unresolved ro t a t i o n a l 

structure or intermolecular forces. The s p l i t t i n g of peaks observed 

i n s o l i d S0 2 i s not found i n the hydrate, since the S0 2 molecules 

are isola t e d i n t h i s environment and c r y s t a l effects (81) are 

absent. The weak peak at 1035 cm-"' i s assigned to 2 24 . This 

overtone peak was not reported i n previous work on s o l i d S0 2 

(82,83). 

An anealed deposit of SO^ hydrate was studied over the 

temperature range 4°-120°K. In Fig. 20, the J/J peak was seen to 

have two shoulders at 120°K spaced at 6.5 cm-"' above and below 

the p r i n c i p a l peak at 134-2.5 cm-''. The i n t e n s i t y of the low 

frequency shoulder decreases as the temperature i s lowered. This 

observation i s explained by a sum and differences of the V j funda­

mental with a rotatory or translatory l a t t i c e mode, the decrease 

i n i n t e n s i t y of the difference peak with lowering of the temper­

ature would res u l t from depopulation of the upper l e v e l i n the 

ground state. 

I t might be i n t e r e s t i n g to examine the spectrum of the SO?-

hydroquinone clathrate compound (84) since the cavity size i s much 

smaller (79) than i n the case of the hydrate, and motion of the S0 2 

molecule would be even more r e s t r i c t e d than i t appears to be i n the 

S0 2 hydrate. 
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5-8 Conclusions. 

I t i s concluded that hydrogen halide molecules isola t e d 

i n s o l i d rare gases and nitrogen are able to execute hindered 

rotations. At the same time, the vi b r a t i o n a l potential function 

of the solute molecule i s perturbed by interactions with the 

surrounding matrix. I t has been possible to correlate the s h i f t 

of the v i b r a t i o n a l frequency with various intermolecular forces 

and i t was found that the repulsive forces play an important role 

i n determining the magnitude and direc t i o n of.the s h i f t . 

Thus, the main features of the matrix spectra of HC1 and 

HBr may be interpreted as a vibration-rotation band. Other peaks 

i n the observed spectra are attributed to mutual interactions 

between clusters of solute molecules i n contiguous and other . 

neighbouring s i t e s . At the lowest temperatures, only isol a t e d 

solute molecules and pairs of solute molecules are present i n 

si g n i f i c a n t concentrations. 

Arguments against rotation of isolat e d hydrogen halide 

molecules may be ra t i o n a l i z e d . In the spectra of HC1 and HBr i n 

s o l i d argon, three of the peaks observed were assigned to R(0), 

R(1) and P(1), but at 4°K only the R(0) should have an observable 

i n t e n s i t y . The explanation i s probably that the argon matrix 

warms s l i g h t l y during the recording of the spectrum, due to poor 

thermal conductivity of s o l i d argon. The temperature r i s e allows 

the J = 1 l e v e l to become appreciably populated, and thus the R(1) 

and P(1) transitions are observed. In nitrogen, the R(0) peak 

predominates and i t may be concluded that the temperature i n t h i s 
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matrix remains near 4°K. This i s reasonable because s o l i d nitrogen 

has a higher thermal conductivity than s o l i d argon. A second 

argument against rotation i s the f a i l u r e to observe changes i n 

r e l a t i v e i n t e n s i t y of peaks i n the spectra of HC1 and HBr i n 

argon, as the temperature r i s e s during warm-up. The explanation 

for this may be that d i f f u s i o n sets i n rapidly enough to reduce 

the concentration of iso l a t e d solute molecules before the changes 

i n the vibration-rotation band are observed. This i s supported 

by the warm-up studies on HBr and HG1 i n nitrogen, where the R(1) 

and P(1) peaks do increase i n i n t e n s i t y r e l a t i v e to R(0) i n the 

early part of the warm-up. The i n t e n s i t i e s of R(2) and P(2) are 

negligible below 20°K and are therefore not observed. 

I t would be interesting to observe the spectra of DC1 and 

DBr under the same conditions as i n this work, since the bond 

lengths, force constants and dipole moments are the same as for 

HC1 and HBr, to a good approximation (85,86). The expected 

v i b r a t i o n a l s h i f t s should be the same for the heavy hydrogen 

halides as for the '•rio.r.mal halides. The vibration-rotation l i n e s , 

on the other hand, should be closer together since the rot a t i o n a l 

constants are smaller. There i s also the p o s s i b i l i t y that the R(2) 

and P(2) tr a n s i t i o n s could be observed during the early part of a 

warm-up study. Thus, the matrix spectra of DC1 and DBr could 

provide supporting evidence for the interpretation given i n th i s 

thesis of the observed spectra of HG1 and HBr. I t i s also possible 

that further information could be obtained on the causes of the 

reduced separation of the R(0) and P(1) peaks. 
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Problems a r i s i n g from d i f f u s i o n of solute molecules during 

deposition can be reduced by using d i l u t e mixtures and forming the 

deposits slowly. The problem of warming of the sample by the 

incident radiation could be eliminated by arranging the spectro­

meter optics so that the infrared beam i s dispersed before passing 

through the sample. By th i s means, the t o t a l i n t e n s i t y of the 

radiation f a l l i n g on the deposit w i l l be a f r a c t i o n of i t s value 

i n t h i s work. 

The observed spectra of CO i n argon i s generally i n good 

agreement with previous work. However, a different interpretation 

involving r o t a t i o n of the CO molecule i s put forward. A new peak 

i n the CO spectrum when HC1 was added to the gas mixtures i s 

explained on the basis of a dipole-dipole interaction between CO 

and HC1 molecules i n nearest neighbour s i t e s . 

An in t e r e s t i n g difference i n the spectrum of SO2 i n argon 

and nitrogen matrices was found. In the argon matrix both the 

1/| and 2/3 bands consist of strong doublets, while i n nitrogen 

the main feature of each band i s a single strong peak. The s h i f t s 

from the gas phase i n both cases were small, from which i t i s 

concluded that repulsive and att r a c t i v e forces are nearly balanced. 

Two possible explanations for the doubling i n the SO^argon spectrum 

have been suggested. The f i r s t was based on a type of inversion 

doubling, a r i s i n g from r e s t r i c t i o n of rot a t i o n a l freedom of the 

trapped molecule. The second explanation involved multiple trapping 

s i t e s i n s o l i d argon i n which the SO2 molecule replaces one or two 

argon atoms. I t would be useful to be able to observe the bending 
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mode V i of SO2 i n the two matrices. There i s a small upward 

s h i f t of vi b r a t i o n a l frequency (+3 cm-'') going from gaseous to 

s o l i d SC>)j so one would expect l i t t l e or no s h i f t i n the matrix. 

I t would be inter e s t i n g to see i f s p l i t t i n g of the i/^ peak i n 

the argon matrix occurs. The magnitude of the s p l i t t i n g might 

give some indication of the o r i g i n of the effect since, i f 

inversion doubling occurs, the bending mode i s expected to show 

the greatest s p l i t t i n g (74). Further work with SO2 i n various 

matrices might provide additional information on intermolecular 

forces and r e s t r i c t i o n of rotation. 

The work on the gas hydrates has provided confirmation 

of the assignment of the ,1',600 cm-'' peak i n the spectrum of i c e , 

to the bending mode l/x . A new peak i n the s k e l e t a l water 

spectrum has been observed which may be a second component of the 

combination mode Vz + IS*. . Evidence for r e s t r i c t e d motion of 

the SO2 molecule i n the hydrate was found from variations with 

temperature of the spectrum. Further studies on the gas hydrates 

by infrared spectroscopic methods are contemplated to study the 

motion of molecules i n the cages, and to investigate the o r i g i n 

of the new peak i n the water spectrum. 
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APPENDIX 1. 

Physical Properties of Matrix Materials. 

Properties Ar Kr N 2 References 

melting point °K 

b o i l i n g point °K 

heat of fusion cal/mole 

heat of vaporization cal/mole 

83.9 116.6 63.3 

87.5 120.3 77.4 

284 392 85.3 

1555 2162. 667 

(61) 

(61) 

(87) (88) 

thermal conductivity at 5°K 

milliwatts/cm °K at 10°K 

at 20°K 

20 7 50 

40 15 26 

15 10 -4 

(68) (69) 

c e l l constant A 

internuclear distance (r) A 

5.43 5.71 5.64 

3.83 4.04 3.99 
(45) (47) 

p o l a r i z a b i l i t y 102^ cm 3 

i o n i z a t i o n potential e.v. 

1.63 2.36 1.76* 

15.68 13.93 15.51 

(63) 

(61) 

* mean p o l a r i z a b i l i t y oC — y (o<,-h o(z + c<j ) 

•where: oCt > ^ 3 a r e "three p r i n c i p a l 
components of the p o l a r i z a b i l i t y tensor. 
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APPENDIX 2. 

Properties of Some Diatomic Molecules. 

Property Units HG1 HBr CO References 

melting point °K 

b o i l i n g point °K 

161 184.5 66 

189.5 206 83 
(61) 

(gas) cm-1 

R(0) ., (gas) cm-1 

2884.5 2558.5 2143 

2905 2575 2147 

(41) 

(41) 

i o n i z a t i o n potential e.v. 

dipole moment D 

p o l a r i z a b i l i t y * 10~ 2 4 cm3 

13.8 13.2 U.1 
1.085 0.78 0.112 
2.63 3.61 1.95 

(61) 
(89)(44)(90) 

(63) 

molecular dimensions 

A 
4-27 4.57 3.73 

3.60 3.90 2.80 
(91) 

internuclear distance (r ) A 1.275 1.42 1.13 (38) (39) (40) 

-"mean p o l a r i z a b i l i t y 
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