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ABSTRACT

Currenﬁly the formulation of a valid force constant
matrix poses the largest problem in the ﬂormal coordinate
analysis or the mechanical interpretation of vibrational
spectra. Usuélly a preselected set of trial force constants
is iteratively corrected by means of first order perturbation
theory and the principle of.least squares. This thesis
breaks that tradition and operétes the normal coordinate

"tAL_l ,

analysis through an implied force constant matrix, F = L
whe;e LLt = G, the familiar Wiiéon G-matrix. The MA-matrix is
composed of the experimental vibrational frequencies for a
selected basis molecule and the'L-matrix is parametefizéd in

a general way. Thé L-matrix parameters are varied until the
implied force constant matrix generates an optimum mechanical
picture of the basis molecule and its isotopic homologs. How-
ever this thesis emphasizes the vibrational fundamentals of
isotopic homologs ih specifying the implied force field.

In application six_L—matrix parameters encoﬁpass the
sixty~three planar vibrational frequencies of ethylehe and its
deuterohomologs with siightly less error than traditional
calculations using as many as fifteen potential energy
parameters. As well, the implied force constants comply with
the existing picture of chemiéal bonding without deliberate a

priori reference to it. In particular, aspects of the

hybrid orbital force field are confirmed without prior constraints.
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In more detailed computational studies the implied force
field has févealedhavsystématic tréhd in anharmonic effects:
which can be understood in terms of different vibrational
amplitudes'for different isotopic homologs. The influence of
vibrational amplitude has been parameterized and iﬁcluded
withih the implication method as a simple anharmonicity
correction. | For example, one L-matrix parameter and three
vibrational amplitude parameters encompass the nine obsérved
vibrational frequencies of water and its deuteiohomologs with
an average freguency error of 0.4 cm—l. Without amplitude
corrections the average frequency error becomes}lO.? cm"l with
onhe L-matrix parameter or 12.8 cm—l with four potential enexrgy
parameters. It is particularly significant that this simple
picture of anharmonicity employs thevobserved Vibrational freguencies
rathexr that the empirically derived harmonic freqguencies. @sv
well, the vibrational amplitude parameters comply with expected
features of potential energy surfaces such as the dissociation
limit.

The principle advantage of the implication method is that
there a fewer L—matrik parameters than F-matrix parameters.

The principal disadvantage is that approximations and intuitive
notations are not easily bﬁilt ihto the implication method.
However, as experimental information becomes more complete and
better understood, the need for improved analytic foundations

dominates the need for handy approzimations.
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CHAPTER ONE: INTRODUCTION

(1-1) Molecular Structure

Several branches of chemistry meet in the domain of
molecular structure; here, chemists see an electronic
structure superimposed on a rigid nuclear frame with
specified geometry. This picture furnishes a simple
basis for understanding chemical activity, for example,
in terms of simple molecular orbital theory. Thus, to
some extent, all measures of molecular stfucture belong
to every branch of chemistry.

From an interior position, the study of molecular
structure joins rigorous physics, abstract mathematics,
and experimental information into a self-contained body
of knowledge. This joining process, the analysis of
molecular structure, should not be viewed as a closed ring
of things to do with data and theory. Rather, especially
in chemistry, the analysis of molecular structure must
contribute to a perview of the topic in a way that
encompasses the various contributing branches.

To achieve that objective, the chemist adds an exterior
concept to his scheme of analysis.  In effect, the chemist
expects the parameters of molecular structure to exhibit
a reasonable pattern which complies with the basic notions
of chemical bonding. Existing studies confirm the

expectation.



The electronic structure, when organized into chemical
bonds, provides binding energy which 1s a function of
the number of electrons, nuclear charge, and nuclear
configuration. Nuclear mass does not significantly
influence the binding energy. For stable molecules the
binding energy 1s such that nuclear configuration is
constrained to a neighbourhood of minimal potential energy
(maximal binding energy).

This picture does not imply a rigid structure. Rather,
molecular structures are semirigid geometrical entities
embedded within the potential energy surface imposed by
the electronic superstructure. The rigidity depends
upon the curvature of the surface and the inertial mass
of the nuclei.

Consequently, the analysis of molecular structure will
involve much more than simple geometry. Further, if
chemical bonding is recognized, more than pure physics
will appear. In practice, the analysis is sufficiently
cumbersome that some mathematical tools which are not

part of the physics will enter the picture.

(1-2) Molecular Vibrations

Within limits, molecular vibrations or the variation
in configuration is governed by the vibrational secular

-equations. The usual classical presentation of these



equations (1,2,3) expressés poténtial and kinetic energy
as quadratic forms with translational and rotational
kinetic energy removed. ‘A modest quantum mechanical
presentation, suitable for teaching purposes can be
found in appendix one of this thesis.

The dynamic variables, configuration displacement
coordinates, measure the distortion of the molecule from
its equilibrium configuration - the point of minimum
potential energy.

If these coordinates are defined with chemical bonding
in mind, the definition of potential energy becomes
greatly simplified in both approximative and interpretive
aspects. Clearly bond stretching (an internuclear distance)
and valence angle bending will be useful choices.

In the harmonic oscillator approximation, dynamic
distortions are assumed to be sufficiently small that
potential and kinetic energy can be expressed as quadratic
forms in configuration displacement coordinates, i , and

their conjugate momenta, ib; , respectively.

kinetic energy = '/2_:;23 G‘j:P‘P_\ (1.2.1)

potential energy = l/z_ Z.ZJ F".l Qi D’j (1.2.2)



It is not possible to properly justify the kinetic
energy expression 1n a few lines; see Wilson Decius and
Cross (1) especially their appendix VII, or appendix
one of this thesis for an account of thé kinetic energy.

Present purposes require only a clear definition of
the G-matrix elements; these depend only upon the nuclear
masses and the equilibrium geometry df the molecule. All
possible G-matrix elements for bond stretching and
valance angle bending have been tabulated in appendix VI
of Wilson, Decius and Cross (1); otherwise they may be

calculated from the following expression.
G‘j = Zoc/um (YZr,O'.3'(YZc,O:j) (1.2.3)

‘}%r is the reciprocal mass of the (QC th nucleus (or atom)
and Q& is the cartesian gradient for the indicated atom:.
After the selected configuration coordinates have been
written as functions of the cartesian coordinates of the
individual atoms, the G -matrix follows; however,
considerable labor is involved.

From the outset 1little is known about the potential
energy except that the concept of chemical bonding is
involved. Currently potential energy is parameterized in

various ways and experimental information is used to
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specify the parameters. The principal parameters are the
quadratic force constants - the Fij's (F-matrix) of
expression (1.2.2) above.

Of the several types of experimentai information
dependent on potential energy, fundamental vibrational
frequencies have provided the bulk of what is known about
potential energy parameters. Quadratic force constants
and fundamental vibrational frequencies are related

through the vibrational secular equations.

[GLE =1 the identity matrix (1.2.4)

ISF L= A a diagonal matrix (1.2.5)

Here kinetic and potential energy have been simultaneously

diagonalized via the transformation

Q= e Lir Qe (1.2.6)

where the Qk are normal coordinates. 1In classical mechanics
each normal coordinate is a periodic function of time with
period )42 . (See Wilson, Decius and Cross (1) or
appendix one of this theslis for a development with physical

substance.)



The diagonal /\ -matrix is related to the various

periods (or frequencies) of vibration;

2 .
Aer = ()//e//305a/) (1.2.7)

where bk is the kg—1 vibrational frequency in wavenumber
units, potential energy is expressed in millidyne Angstroms,
mass is expressed in atomic mass units (carbon-twelve =
12.0000), and distance is measured in Angstroms.

Matrix multiplication of (1.2.4) and (1.2.5),

L'GFL = A
shows that the /« -matrix and the L-matrix are
respectively composed of the elgenvalues and eigenvectors
of the matrix product GF; consequently the relation
connecting potential energy parameters and vibrational
frequencies 1s generally cumbérsome.

Usually the relation is described through perturbation
techniques (1, 4, 5, 6) like those developed in the
following section (1-3), Perturbation Methods. However,
the bulk of this thesis seeks to establish an improved
understanding of the relation by more abstract methods
which are none the less more directly related to the

physical problems.



(1-3) Perturbation Methods

In broad outline the calculation of potential energy
parameters by perturbation methods involves the variation
of preselected parameters until calculated information
agrees with experimental information. The information
to be fitted includes vibrational frequencies, their
symmetry type (1,6), and when known, related mechanical
quantities such as mean square amplitudes (7,8), centrifugal
distortion constants (8), and Coriolis coefficients (9,10).

In rigorous applications, a given set of parameters
span only the experimental information belonging to a
series of isotopic homologs; moreover this information
shouid be corrected for anharmonic effecté. The work of
Aldous and Mills (11) on the methyl halides represents a
guidepost in rigorous applications for moderately complex
molecules. (In triatomic molecules, rigor may assume
meaning well beyond the scope of this thesis; see Suzuki's
analysis (12) of carbon dioxide).

When rigor is relaxed, a given set of parameters may
span the vibrational frequencies for a series of related
molecules. The analysis of the chlorinated benzenes
delineated by Scherer (14) as well as the papers of Snyder
and Schachtschneider (13,15,16,17) have added substantial
credence to this approach - especially when valence force

fields are employed. Very briefly, the valence force



field is built on patterns which describe the chemical
bonding structure of the molecule. In this case, the
potential energy function may be assembled from potential
energy parameters belonging to a few sihple bonding
units.

The perturbation methods begin with the selection
of potential energy parameters, and some of these must
be assigned nonzero initial values. Neither task should
be considered as trivial (18,19), but both the set of
parameters, ¢im , and adequaté initial values, 9@: R
will be assumed. Aldous and Mills (11) illustrate some
of the problems.

The G-matrix is constructed from geometric information

and the F-matrix is constructed from the parameters.

F=F° + Zm (0F/0m) (Sn-#)

The matrix (8F/6¢m) is a convenient notational device

intended to cover various kinds of parameterization (or

model-building) in quadratic potential energy functions.
First order perturbation theory (1,4,5) provides a

system of linear equations valid for small perturbations.

Ner + Zm L (8F /@) Lo E (¢ - @, )=/\m(1.3.1)

where

L GFeL, = N



Fyl,ana A° are constructed from the ¢°—par'ameter's
either directly or by solving the above vibrational
secular equation. (This latter problem, solving the
vibrational secular equation by computef methods has
been described by Shimanouchi and Suzuki (5).
Schachtschneider's technical report (4) provides all
relevant details for the application of perturbation
methods.)

The expressions (1.3.1) represent one useful linear
equation for each secure assignment of an experimental
fundémental frequency; clearly more than one molecule
may be involved in the set of useful linear equations.

It is assumed that experimental frequencies can be
unambiguously assigned to the individual linear equations.
Further it is assumed that the number of useful linear
equations 1s larger than the number of potential energy:
parameters to be determined.

In equation (1.3.1), a perfect fit of experimental
frequencies, /C:g s 1s not expected; consequently the
errors, €r , defined by the identity

/\nn.== ‘<€n.'* Er

are minimized as a weighted sum of squares,

> r WeEE

with respect to the parameter corrections,ﬁ%m—-é;),
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The least squares solution (4,5,6,11),
-1 @ Aro
9{’: % + ZR{(JtWJ) th} ( m—/\m) (1.3.2)
m.m mRr

where J—m,q = ( Lto (@F/a¢m)o[-—o )ﬁen

and VV is a diagonal matrix of positive weighting factors,
provides improved estimates of the potential energy
parameters; however, because higher order perturbation
terms have been ignored, the above cycle of calculations
requires iteration.

The perturbation method outlined above suffers one
major difficulty; both initial and target parameterization
must exhibit é satisfactory formulation from the outset.

Quite generally, initial parameterization is
oversimplified and target parameterization involves the
identification of next-most significant factors. Except
(perhaps) for the hybrid orbital force field of Mills
(11,20,21,22), the guldelines for ab initio target
parameterization are seriously limited; see Aldous and

Mills (11).
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The wvalidity of initial parameters is readily tested
through the calculated.vibrational frequencies and normal
modes ; unfortunatelylthe value of a target parameterization
is not easily tested. Schachtschneider's multiple
regression analysis (4) has been applied with convincing
success; see Gayles, King and Schachtschneider (19).

To understand the results of a faulty target
parameterization, let us define simple circumstances for
illustrative purposes. Consider three linear equations in
two parameters; each linear equation provides a straight
line in parameter space (with allowance for error, each
line becomes a band or strip). The intersection point(s)
of the lines or bands specify the parameters; however a
genuinely unique specification need not appear, as is

illustrated in cases B and C below.

CASE A CASE B CASE C
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Case A, included for visual reference, indicates a
physically significant-specification'of the parameters;
the three lines intersect near a common point.

Case B fails to'specify significant parameters; the
failure may be due to a poor choice of parameters or it
may be due to more deeply rooted effects such as failure
of the harmonic oscillator approximation itself.

Here equation (1.3.2) provides a solution with 1little
physical significance. In case B situation, the weighting
factors will unduly influence the specification of |
parameters as has been shown by Nibler and Pimentel (23).

Case C, ill-conditioning, provides no unique solution;
with error bands, the three lines become a single hand -
the equivalent of one equation. More experimental
information may specify a unique solution; thus the
parameters need not be incorrectly chosen. However,
within the limitations imposed by the given experimental
information, the parameterization must be considered faulty.

Both cases B and C fail to provide a unique
specification of the parameters, but only case C,
ill-conditioning, has received deliberate attention in the
literature (5,6,11,24) - probably due to the failure of

equations (1.3.2).
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In more general examples, similar uniqueness problems
will appear but with complications that guickly become
less and less tractable.

In short summary, perturbation methéds expect more
fore-knowledge than is provided by the existing gulidelines

to chemical bonding.

(1-4) Implication Methods

If the normal coordinates or the L-matrix of equation
1.2.6 were specified by some means, then the complete set
of quadratic force constants, the F-matrix would be

specified by inversion of equation 1.2.5.

F = LCEA L (1.4.1)

where A is determined by experimental vibrational
frequencies. This abPproach, the basis of implication methods,
was noted by William J. Taylor in 1950 (25).

It is the objective of this thesis to devise both
rigorous methods and intuitive grounds for specifying the
L-matrix.

The implication methods, developed in subsequent chapters,
have revealed aspects of potential energy, experimental
information, and even geometric details (25) which have not

or could not be determined by perturbation methods. These



methods appear to furnish a more definitive tool for the
analysis of small molecule information; moreover,
implication methods have indicated a fresh approach,
partitioning and participation, to the analysis of
larger molecules.

Implication methods are not entirely new; Pulay and
Torok (27), Freeman (28) and others (29,30,31) have
discussed specific forms of the L-matrix which may serve
useful purposes. In particular Strey's minimized
bending force constants (32) indicate useful initial
parameterization, but his technique is limited to simple
molecules where initial parameterization is not needed.

Though still in the formative stages, the implied
force field obtained by implication methods offers several
significant advantages over the parameterized force field
obtained by perturbation methods.

(1) Implication methods are constrained to positive
definite force constant matrices as required by a minimum
in the potential energy surface (3); perturbation methods
need not obey this constraint.

(2) The positive definite constraint improves
uniqueness in a specification of the force constants.

(3) An improved description of nonuniqueness can be
obtained in that the range of possible sélutions can be

examined.
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(4) Initial parameterization of the potential energy
can be helpful, but it 1is not essential.

(5) Implication methods help to identify essential
force constants when target parameterization is involved.

(6) The 'mixing parameters' of implication methods
are fewer in number than the potential energy parameters
of equilivalent form.

When applied to:the molecules selected in this thesis
implication methods have;

(7) presented a simple account of major anharmonic
effects;

(8) confirmed some aspects of the hybrid orbital force
field of Mills (21) without assuming it;

(9) shown the hafmonic bending fundamental of HOD (33)
to be inconsistant with respect to the other harmonic
fundamentals of water;

(10) shown geometric distortions to be an important
factor in the analysis of solid state spectra (see McQuaker
(26) for a description of this application).

However implication methods suffer one serious
disadvantage. It is difficult, but not entirely impossible
to invoke approximate descriptions involving the principles
of chemical bonding. This is a natural feature of the

perturbation methods.



CHAPTER TWO: SIMPLE MIXING IMPLICATION METHODS

If point group theory predicts nk vibrations in the
kEE symmetry species, then the NV distinct vibrational
frequencies, the NF distinct quadratic force constants,

and the NL distinet L-matrix elements are numbered as

follows (1)

il

Ny = 2, Ny

Ne

12« NMe(Net)

Ne = =, Mg

The distinct L-matrix elements are constrained by NF

equations of the form,
t
L =G

thus the L-matrix exhibits NV fewer degrees of freedom than

the F-matrix.

Nk = M- Ne = % Tk Ne(Ne-1) = Ne-Ny

The basic hypothesis overlaying this entire thesis is
that molecular mechanics can be securely analyzed in terms of

the L-matrix belonging to a preselected basis molecule. The
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main support for this hypothesis stems from the reduced

number of parameters involved in the mechanical picture.
The quadratic force constants are formed by

implication through the observed vibrational frequencies

and L-matrix belonging to the basis molecule.
F= AL

Any mechanical quantity that is a function of the
quadratic force constants is also a function of the L-
matrix belonging to the basis molecule. These related
mechanical quantities include the vibrational frequencies
of isotopic homologs of the basis molecule (1),
centrifugal distortion constants (8), Coriolis coupling
constants (9, 10), and mean square amplitudes of

vibration (7, 8).

In. effect the NV vibrational frequencies of the basis
molecule eliminate NV parameters from the mechanical picture.
Howevér, the L-matrix, for the basis molecule only, needs
to be expressed in terms of the NK independent parameters it

contains as will be done in the following section.

The case where NK = 1 has been designated as simple

mixing; here the implication method is somewhat less abstract

than the more general case dealt with in chapter three.
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As yet the mechanical picture has been limited to
isotopic homologs; here only deuterium substitution
provides sufficient information to specify the L-matrix.
Other isotopic substitutions appear to have too small an
effect on vibrational frequencies to allow a proper
interpretation of the mechanical picture by either
implication or perturbation methods (34) without the aid
of constraints (35) or mechanical information other than
vibrational frequencies. However, the isotopic homologs
of atoms heavier than deuterium have not been as thoroughly

studied by implication methods as the hydrogenic homologs.

The failure of the harmonic oscillator approximation
is already known through application of the product rules
(1) and many previous force constant calculations. In
section two of this chapter, we suggest a novel anharmonicity
correction with an apparent physical basis which allows
us to use the observed vibrational frequencies with almost

as much success as derived harmonic frequencies (2).

The final section of this chapter is given over to

calculations involving the simple mixing implication method.
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(2-1) The Implied Force Field

When the L-matrix i1s expressed in the form,

I,

L = ur P (2.1.1)

l} and P are orthogonal matrices if r is

diagonal such that

(J{‘&Gu = [ (2.1.2)

The P-matrix encompasses exactly the NK parameters
needed to span the family.
Equation (1.2.4) is obeyed for all orthogonal P-

matrices.

-}

-t € -l T =/, - ¢
LGL =Pr*yGcur™ P = PP=171 (2.1.3)
But the implied force constant matrix,

F = AL = urpapir”y* (2.1.1)

will not exhibit its proper point group symmetry (1) unless the

P-matrix exhibits the property:
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Pij = O unless /"\\ and AJJ designate vibrations belong-
ing to the same symmetry species. (2.1.5)

The proof of this fact depends upon the application of
point group theory in molecular Vibratiohs (1). If a molecule
exhibits symmetry, there exists a simple orthogonal transform-

ation matrix, S , such that

ses = &'
and EFFKS = f:’

where CSI and FJ are in a block diagonal form consistant with
the symmetry of the molecule. Each distinct block belongs to a
different symmetry species.

Clearly there exists an orthogonal matrix //i also in

block form, such that
t_.r
/CIG/Zl.:F

Both (G and C;' have the same eigenvalues (1), and, because

both./jl and © are orthogonal,

Consequently the equal matrices,

UWFU = uFu = rpapir™
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are also in block form consistant with the symmetry of the
molecule. Notice the essential block form of the P-matrix.
In combination (2.1.4%) and (2.1..5) provide an N, para-
meter family of implied force constaﬁt matrices if P 1s not
specified. The role of the P-matrix 1s to mix the /\ﬁ
belonging to the same symmetry species. Here the P-matrix

contains N, elements constrained by N_ conditions of orthog-

L F
onality. NK degrees of freedom remain.
In general applications, the family is generated by
the orthogonal matrix Qﬁ< where K 1is a skew symmetric matrix.
This will be developed in later chépters.
| However when exactly two fundamentals, Vi and Lj
‘belong to the same symmetry species, the mixing is simple. In

simple mixing the family is generated by a single mixing para-

meter; here an alegraic form is preferred by the author.

-
Pii = pJJ = (/+ Xz) -
. i
-— PJ‘ = P'- = X(/+X2)
J
P= 1 elsewhere (2.2.6)

Substitution of (2.1.6) into (2.1.4) gives a one para-
meter family of force constant matrices generated by the mixing

parameter X
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F=Fo v AX(ex) + Bxee)
ez UrAW

}\ - LA(jVZZ_P”LLX
B = Ilzbf‘ u*

aij = ClJ. = n“ —nii a,-'- O elsewhere

| = b]‘\ = /\J-j-—n;‘. b= O eisewhere (2.1.7)

If the mathematical formalism of equations (2.1.6) and
(2.1.7) were reduced to the form of 2 x 2 matrices, then iso-
topic homoloés of lesser point group symmetry could not be
treated by convenient means.

When the mixing fundamentals are degenerate, the'F{,CL
and b matrix elements are repeated so as to comply with the
degeneracy. As well, the corresponding columns of the U-matrix
must be formed into properly oriented linear combinations so that
the optimum symmetry factorization is obtained (1).

It has been assumed that each normal coordinate defined
by the L-matrix can be assigned an experimehtal vibrational
- frequency.

With the implied force constant matrix now expressed in
terms of an unspecified mixing parameter, 1t is possible to
calculate the vibrational frequencies of any isotopic homolog

of the basis molecule as a function of the mixing parameter.



The corresponding experimental frequencies then specify the
mixing parameter and by implication, the force constants.
However, various isotopilc vibrational frequencies specify
various mixing parameters and implied force constants. The
range of specified values indicates the error or dispersion
to be associated with thé implied force constants. These
errors are to be associated with the harmonic oscillator
approximation rather than the implication method.

(2-2) A Simple Anharmonicity Correction

According to the Born-Oppenheimer approximation potential
energy is independent of nuclear mass (2); consequently quad-
ratic (and higher) force constants are considered to be isotopic
invariants.

But the harmonic oscillator approximation includes only
gquadratic force constants and at least one very important feat-
ure of the potential energy surface is ignored. All stretching
coordinates are expected to exhibit a dissociation limit. In
this case the potential energy surface is expected to exhibit
less-than-quadratic curvature.

Consequently, for isotopic homolog.: studies within the
harmonic oscillator approximation it is natural to associate
smaller effective force constants with larger amplitudes -of
vibration.

The same argument applies to valence angle bending
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coordinates as well. One needs to consider the limiting
values of potential energy for large distortions of the
molecule.

We have incorporated these qualiﬁative features of
potential energy into the harmonic oscillator approximation
as follows. The effective quadratic force constants for
different isotopic homologs are related through amplitude

1
factors, the @s below.

Fﬂj (isotopic homolog) = €5\€5 F:U (basis molecule) (2.2.1)

The p’s can be treated as a diagonal matrix. |

To a first approkimaﬁioﬁ; a disfiﬁéﬁ-'@; is ﬁeeded.for
each distinct isotopically substituted coordinate. For water
and i1ts deuterohomologs, only three amplitude factors are
needed:

(5(013), @(HOD) and @(DOD).

Here (OD) designates the OD stretching coordinate; (HOD) and
(DOD) designate valence angle bending coordinates.

The amplitude factors are easily calculated via the
determinants of the vibrational secular equations for the isotopic

homologs. The homolog 1s noted with a tilde.

/GFI: /AI and IGEI: //TI

Here both A and 'A are composed of experimental vibrational
P
frequencies. Substitution of (2.2.1) for F gives the simple
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equation:

o

>
o

(2.2.2)

Each symmetry species of each isotopic homolog furn-
ishes zan equation of the type (2.2.2); it is usually possible
to obtain the individual amplitude factors by considering all
equations of the type (2.2.2) in combination.

Calculations presented in the following section show
that:

(1) Expected trends for less-than-quadratic curvature
are confirmed.

(2) A few amplitude factors enable the use of observed
frequencies with nearly as much success as the harmonic freqg-
uencies (2) which are not generally available.

(3) The bending coordinates contribute almost as much

to the anharmonicity as do the stretching coordinates.

(2-3) Applications of Simple Mixing Methods

In our initial work, simple mixing was to be no more than
a prologue to general studies; however, simple mixing itself
began to grow into a powerful analytic method. The advantage

of simple mixing appeared from the outset.
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Using perturbation methods Shimanouchi and Suzuki (5)
feport force constants for the harmonic frequencies of H2O,

HDO, and D.O determined by Benedict, Gailer and Plyer (33).

2
Unfortunately the symmetric stretching fundamental for D2O was
misprinted. In their calculation Shimanouchi and Suzuki could
not detect the rather large misprint error; they use the

correct value in a later note (36). This simple oversight is
very important; it unambiguously demonstrates the inadequacy of
perturbation methods in the analysis of quantitative experimental
information.

By contrast, the simple mixing method showed a gross
error which proved to be no more than the misprint already
noted. MoreZover simple mixing methods show that the harmonic
bending fundamental of HOD is uniquely inconsistent (see table
one). This fact has not been previously noted elsewhere; a
minor revision of the anharmbnicity constants associated with
this vibratién is suggested.

Harmonic frequenciles are rarely available. A comparison
of implied force fields for different basis molecules using the
observed frequencles or zero-one transitions, H2O and D20 for
example, revealed the anharmonicity picture described in the
previous section. Calculations will show that zero-one
transitions can be used with nearly as much confidence as the
harmonic frequencies.

Finally, within our research group, simple mixing methods

became sufficiently well understood that molecular distortions

in the solid state were explored (26). Usually geometric para-



- 27 -

meters are not investigated by means of vibration spectros—
copy.

Though a substantial number of simple mixing molecules
have been studied with various objectives in mind, the pres-
entation here shall be limited to genuinely new information.

In particular, the anharmonicity picture of the previous section
will be established.

A few preliminary notes and notational devices will
simplify the presentation of the computations.

(1) All frequencies are expressed in cm_l.

(2) A stretching coordinate is designated as (XY) and
the associated bond length as r(XY). Both are in A.

(3) A valence angle bending coordinate 1s noted as
(XYZ) and is expressed in radian measure. The equilibrium bond
angle, ©(XYZ), will be expressed in degrees as is usual. Y
designates the central atom.

(4) Force constant units are as follows:

Stretch-stretch millidynes/ 7
Stretch-bend millidynes/radian
bend-~bend millidyne - A/(radian)2

(5) Force constants are noted with the appropriate co-
ordinate palr in parentheses and separated by a colon. Common
atoms within the coordinate pair are underlined. Sometimes this

provides a unique notation for all gquadratic force constants.
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- IF'or example, in methane, the stretch-stretch force
constants are F(CH:CH) and F(QH:QH), the stretch-bend constants
are F(gﬂ:ﬂQH)-and F(CH:HCH), and the bend-bend constants are
F(HCH:HCH), F(HCH:HCH) and F(HCH:HCH). For :. diagonal or prin-
cipal force constants, all atoms afe underlined. If some
atoms are underlined, the force constant will be said to be
connected. If no atoms are underlined, the force constant is
unconnected, _

This notation devised here Saves constént reference to

(o

related figures and diagrams; howeﬁer,it is not yet sufficiently

!

well defined for general usage.

(2-3a) = H,0, HDO and D,0: Harmonic Fundamentals

Benedict, Gailer; and Plyér (33) have analyzed the vib-

ration-rotation bands for water and ‘its deuterohomologs; the
harmonic frequencies were established by empirical methods (2)

which involve only experimental data.

~ For H20; the basis moleculé,fthe two_symmétrip frequenc-

ies are oo

W, = 3832.2 .

W

and the antisymmetric frequency is

1648.5

CbbA= 3942.5 .

" Analyses of the rotational bands furnish the geo-

t

metric parameters ' -



o
r(0OH) = 0.9572 A

Cos ©(HOH) = -0.25210

or 6(HOH) = 104.6°

| This information enables us to calculate the quadratic

force constants and the harmonic frequencies of the isotopic

homologs as a function of the mixing parameter. These quan-

tities were calculated over a large range, but only the inter-

esting portiocns shall be reported here.

TABLE 1: Calculated Harmonic Fundamentals: HDO and

X HDO D 0%
0.000 1445, 9 2822.7 3888.14 1208.8 2757.3
~0.050 144Y.7 2824.1 3889.9 1205.8 2764.3
~0.100 1442.9 2827.2 3890.3 1202.6 2771.5
-0.150 1440.7 2832.0 3889.7 1199.5 2778.7
~0.200 © 1438.0 2838.4 3888.2 1196.4 2785.8
EXPTL. 14%0.2 2824.3 3889.8 1206. 4 2763.8%%
X=-0.045 1444.8 2824.0 3889.8 1206.1 2763.6
ERROR ~4.6 0.3 0.0 0.3 0.2

%
ws for D2

0 is not a function of the mixing parameter.

The calculated and experimental values agree exactly

2888.8.

¥% Misprinted as 2783.8 in (33). See (36).



Of the five fundamentals tabulated in table one, four
of the experimental values appear in the domain predicted by a

mixing parameter in the following interval.
- 0.051 X & - 0.037

The bending fundamental for HOD sits by itself at X =
-0.156. It is clearly inconsistent with respect to the remaining
fundamentals including those of the basis molecule. Excluding
the outlier and including .the three basis frequencies, the mean
error in fitting the experimental data is 0.1 cm_l. Shimanouchi
and Suzuki, who did not detect én outlier, report a mean error
to(36).

The above interval for the mixing parameter places the

1.3 cm

implied force constants in the domain specified by table 2.

TABLE 2: Harmonic Force Constants H2o, HDO , D2Q'
force constants - THIS WORK SHIMANOUCHI and SUZUKI
F(Qﬂ:gﬁ) 8.4534 + 0.0002 8.4522 + 0.0079
F(OH:0H) -2.0999 * 0.0002 -0.1053 + 0.0079
F(OH:HOH) 0.2276 + 0.0160 0.1608 + 0.0606
T (HOH : HOH) 0.6977 + 0.0016 0.6929 + 0.0019

-1 -1
Mean frequency error 0.1 cm 1.3 cm

Though the force constants of Shimanouchi and Suzuki (36)
do not substantially differ from the implied force constants of

this work, their dispersions do. The larger force constant



dispersions and larger mean frequency error are due to the fact
that perturbation methods fail to detect inconsistent data.
The implication method clearly identifies the inconsist-

ent frequency in this case.

(2—3b)'_§20, HDO, DéO: Observed Pundamentals

Benedict, Gailer and Plyer (33) have reported the observed

fundamentals, zero-one transitions, for H_O, HDO and D,O0. For H,O,

2 2 2

the basis molecule, the two symmetric frequencies are

V,
Ve

3656.7

i

1594.6

and the antisymmetric fundamental is
Vs = 3755.8

The bond length and valence angle are as before. Again the fund-

amental frequencies of HDO and D_.O 'are calculated as a function

2
of the mixing parameter; however, the corresponding experimental

values do not place the mixing parameter in a small interval.
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Calculated Fundamentals:

HDO and D_O

2
X HDO D, 0¥
0.30 1395. 2718. 3679. 1183.7 2599.
0.20 1398. 2703. 3691.¢ 1179.8 2607.
0.10 1399. 26914, 3101. 1174.9 2618.
0.00 1398. 2691. 3707. 1169.3 2631.
-0.10 1395. 2695. 3708. 1163.3 2644 .6
-0.20 1391. 2706. 3706. 1157.3 2658.3
-0.30 1384, 2722. 3701. 1151.6 2671.4
-0..40 1378.1 . 2742, 3692. 1146. 2683.
EXPTL. 1k402. 2726. 3707. 1178. 2671.
X=-0.25 1388. 2713. 3704, 1154. 2664,
error (cm—v __1u, 12. 3. 23. 6.
% Lé(calculated) 2752. Lé(exptl.) 2788.1

significant mixing parameter,

Beyond the fact that Table 3 falls to indicate a clearly

1itfle can be said except that the

errors appear to be systematic in that the bending frequencies

fall together at one end of the range and the 0D stretching

fundamentals fall at the other end.

= -0.25, gives errors of the same sign.

The least squares fit,
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The implied force constants specified by the interval

-0.30€ X &£ 0.10

are poorly defined but comparable to those reported by Shimanouchil

and Suzuki (5).

TABLE U: Force Constants: H_O, HDO, D

5 o

2

Implied'(H2O basis) Shimanouchi and Suzuki

F(OH:0H) 7.59 % 0.10 7.67 + 0.11
F(QH QH) -0.10 * 0.10 -0.15 + 0.11
F (OH : HOH) 0.13 + 0.66 ~0.17 + 0.42
F (HOH : HOH) 0.70 *+ 0.06 0.67 + 0.04
mean frequency error 10.7 em™ T 12.8 cm™t

The anharmonicity correction described in section two of
this chapter improves the calculation by more than one order of
magnitude. %3 (OD) can be calculated from the antisymmetric

fundamentals of H2O and D2O through equation (2.2.2). Next

F,(DOD) is calculated from the symmétric frequencies of H,0 and D.O

2 2
and @(OD) calculated previously. Finally (Q(HOD) is calculated

from all of the vibrational frequencies of H2O and HDO. These

amplitude factors
@ (op) = 1.013133
@(DOD)= 1.009937
@(HOD)= 1.00266U4
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furnish the force constant trends

F (OH:0H) <  F(OD:0D)

F(HOH:HOH) < F(HOD:HOD) < F(DOD:DOD)

which are consistent with less than quadratic curvature for both
bending and stretcﬁing distortions of water.

When vibrational frequencies are calculated via equation
(2.21) as a function of the mixing parameter, the observed
frequencies furnish a clear and distinct specification of the

mixing parameter and subsequently implied force constants.

TABLE 5: Calculated Fundamentals with Amplitude Factors HDO
and D2g.
X HDO D20*
0.05 1403.2 2726.8 3704.8 1183.8 2659.0
0.00 1402. 4 2726.6 3707.1 1180.9 2665.6
-0.05 1401.1 2728.1 3708.5 1177.9 2672.4
-0.10 ~1399.4 2731.1 3709.9 117k.9 2679.3
EXPTL. 1402.2 2726.7 3707.5 1178.3 2671.5
=-0.04 1401.4 2727.8 3708.2 1178.5 2671.0
error 0.8 -1.1 -0.7 -0.2 ~0.5

¥ The experimental and calculated values for b@ agree exactly.

These are used to calculate ﬁ(OD).
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Table Five shows that the mixing parameter falls
in the interval
-0.05 < X< 0.00

which in turn provides implied force constants

F(OH:0H) = 7.681 % 0.003
F{OH:0H) = -0.080 * 0.003
F(QOH:HOH) = 0.274 * 0.063

F(HOH:HOH)= 0.663 + 0.009

mean frequency error = 0.4 cm_l

In this calculation F(Qﬁ:HQE) is clearly positive as predicted by
Mills' (21) hybrid orbital force field. Without anharmonicity
corrections, the sign of this constant is not clearly defined (see

table Four).

(2-3¢) HCCH, HCCD, AND DCCD :0Observed Fundamentals

According to the symmetry of linear moleculés, the
longitudinal and transverse modes do not mix in the harmonic osc-
illator approximation, Here only the longitudinal modes will be
considered.

For the basis molecule, HCCH, the two symmetric long-

itudinal fundamentals have been placed at

Vi
V2

and the antisymmetric fundamental has been placed at

3372.9

1974.0

Vg = 3285.8
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These values, and those of the isotopic homologs, were selected
out of the literature by Pimentel and Nibler (23); the combin-
ation‘ﬂz+li*+ QS) is very close to V5 and reported values for
1/5 vary to some extent.

Without amplitude factors, the observed fundament-

als of HCCD and DCCD place the mixing parameter in the interval,

0.09 <« X < 0.16

In the interval the minimum errors attainable cover-
age as 10.5 cm—l. This compared with the average error obtained
by Nibler and Pimentel (23) which ranges from 8.2 to 10.1 cm-1
depending on their choice of weighting factors. As well, the
implied force constants agree with their force constants.

The introduction of amplitude factors recduces freg-
uency errors and force constant dispersions by nearly an order of

magnitude; however, amplitude corrections for the nonisotopically

substituted coordinate (CC) are required.

(E’> (CD) = 1.011654
for HCCD @(cc) = 1.001905
for DCCD @(cc) = 1.004785 -

Again the trend expected for a potential with a dissociation limit
is obeyed. The effective quadratic force constant decreases with
increasing amplitude.

With these amplitude factors the observed fundamentals
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of HCCD and DCCD place the mixing parameter in the interval:

0.112 < X < 0.118.

The minimum mean frequency error attainable 1is reduced to 0.9 em

TABLE 6: Vibrational Fundamentals: deutero-acetylenes
observed calculated with
No amplitude factors Amplitude factors
V, (HCCD) = 3335.6 3333.1 3333.4
V,(HCCD) = 1853.8 1845.5 1855.1
Vy(HCCD) = 2583.6 2562 .4 2583.6
J,(DCCD) = 2705.3 2687.14 2708.0
Lé(DCCD) = 1769.6 1752.6 1768.0
)/3(DCCD) = 2U439.2 2411.1 2439.2
-1 -1
mean frequency error 10.5 cm 0.9 cm

The implied force constants and their dispersions are
given in table Seven along with the force constants calculated via
perturbation methods (without anharmonicity corrections) by Nibler
“and Pimentel (23). Notice that the implied interaction constants
are not clearly different from zero but the constants obtained by
usual methods indicate, with limited confidence, otherwise for

F(CH:CC).
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TABLE 7: Force Constants: Acetylene

Implied¥: HCCH BASIS NIBLER & PIMENTEL.
F(CH:CH) 5.920 * 0.005 ' 5.906 + 0.043
F(CH:CH) 0.014 + 0.005 -0.033 + 0.043
F(CC:CC) 15.677 + 0.026 16.066 + 0.222
F(CH:CC) -0.2C5 * 0.020 -0.109 * 0.069
-1 -1
mean frequency error 0.9 cm 8.2 cm

¥ The amplitude factors employed here will be found in the pre-

ceding text.

This calculation shows that anharmonic effects of

the type under consideration need not be confined to nonisotopically
substituted coordinates. Implication methods confirm this with a
certainty equal to the certainty in the assigned fundameﬁtals.

To be physically significant, amplitude factors should
be subject to unambiguous interpretation. The amplitude factors
associated with the (CC) - stretching force constants should not
be interpreted via the amplitude of the (CC) - stretching coordin-
ate. In acetylene, the amplitude factors which modify F(gg:gg)
bélong more properly to the transverse modes of vibration.

The appropriate limit to be considered is designated
by large transverse displacements of acetylene. In this case it
is reasonable to associate a (CC) -~ double bond with large trans-

verse displacements. Ior smaller displacements something less
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than triple bond strength can be assumed.

H

C—

N _ _/
N\, VRN

and

Consequently it is plausible to expect F(CC:CC) to decrease as
the average transverse displacements increase. The expected
trend F(CC:CC), . .. < F(CC:CC) ey < F(CC:CC)
is confirmed by the calculated amplitude factors.

Dcchd

Multiple bond anharmonicity of the kind described
here may be expected for the multiple bonds contained in planar
molecules. In the planar molecule, the amplitude of the out-

of-plane modes will determine the multiple bond amplitude factors.

(2-3d) Methane and Deuterohomologs: Observed Fundamentals

If the 29 distinct fundamentals of methane and its
deuterohomologs can be encompassed by a single mixing parameter
and three amplitude factors, @(CD), (S(HCD), and @(DCD),
then the vower of implication methods and the simple picture of

anharmonic effects will have withstood a very severe test.



Jones and McDowell (37) have reviewed, measured
and assigned the fundamentals of methane and its deuterohomologs.

The four fundamentals of CHM’ the basis molecule, are

Yy(a) = 2916.5
L{(E) = 1534.0
Lé(F2) = 3018.7
M'(Fz) = 1306.0

"Rotational analysis provides the bond length.

O
r (CH) = 1.0936 A

The tetrahedral symmetry defines the bond angles.

Without amplitude corrections, the 25 observed
fundamentals of the four deuterohomologs fail to imply a well
defined solution. A least squares solution is included in table
eight as a reference for the fregquency errors.

ﬁs (DCD) was calculated from 1/2 for CH, and CDj.

FS (CD) was calculated from MS and LQ for CH, and CD,.

Y
FS (HCD) was calualated as an average from the observed fundam-

entals of the three mixed deuterohomologs (and methane).

p(CD) = 1.01417
B (DCD) = 1.00635
= 1.00421

f3(HCD)

These amplitude factors resemble those determined for water and

they comply with the expected trend.
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TABLE 8: Vibrational Fundamentals: Deuteromethanes

Observed Calculated Calculated
CDH3 1155 (E) 1155 1159
1300 (A;) 1303 1306
1471 (E) 1472 1473
2200 (A;) 2185 + 2215 +
2945 (Al) 29U6 , 29146
3021 (E) 3017 3017
mean frequency error bh.o | h.7
CD,H, 1033 (Aj) 1026 1032
1090 (Bl) 1084 1089
1234 (B2) 1232 1237
1329 (A2) 1329 1334
1436 (Al) 1434 1436
2202 (Al) 2142 + 2172 +
2234 (B2) 2229 2260
2976 (Al) 2971 2972
3013 (B)) 3016 3016
mean frequency error 10.0 8.1
CD3H 1003 (Al) 997 1002
1036 (E) 1029 1036
1291 (E) 1289 1295
2142 (A)) 2101 + 2131 +
2263 (E) 2229 + 2259
2993 (A]) 2994 2994
mean frequency error 15.2 3.5
CDU 997 (F2) 991 997
1092 (E) 1085 1092
2108 (Al) 2063 + 2092 +
2259 (F,) 2226 + 2258
mean frequency error 22.9 4.3
overall mean frequency error 10.4 b, 1

¥ with amplitude corrections given in the text.

+ error larger than 10 em™ L.



Comparison of calculated frequencies given in table
Eight indicates a substantial reduction in the error following
the inclusion of amplitude corrections but not as much as was
obtained in the previous examples. Most.of the persisting error
is contained in the (CD) —Vstretching frequencies; apparently
each homolog needs its own amplitude factor for this coordinate.

A fact more significant than the error reductlion is that
most of the observed frequencies imply a mixing parameter in a

small interval,

- 0.18< X< - 0.2b,

when the amplitude factors are employed. In turn this mixing

parameter interval implies force constants as follows:

P(CH:CH) = 4.966 + 0.009
F(CH:CH) = 0.028 t 0.009
F(HCH:HCH)= 0.443 + 0.003
F(CH:HCH) = 0.104 + 0.020
F(CH:HCH) = -0.104 t 0.020
F(HCH:HCH)= -0.093

F(HCH:HCH)= -0.072 % 0.003

The redundant coordinate system employed to describe
methane, briefly described as U(CH) + 6 (HCH), exhibits the

symmetry coordinates, 2A1 + E + 2F2 (1). The genuine vibrations

are Al+ E + 2F2; thus~two of the Al force constants,
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F(CH:HCH,A,) F(CH:HCH) + F(CH:HCH)

F(HCH:HCH,A ) F(HCH:HCH) + 4(HCH:HCH) + F(HCH:HCH),
are often said to be indeterminate (1, 38, 39). We have reviewed
the redundant coordinate system and have added new arguments in
favour of the deterministic school of thought (40,41). These
arguments (and counter arguments) are collected in appendix two

of this thesis where 1t is shown that both of the force constants

in question here are zero. In the present case

\

F(CH:HCH) = - F(CH:HCH)

which agrees with the hybrid orbital force field proposed by Mills
(21).

In simple mixing situations it is possible to express the
vibrational frequencies belonging to isotopic homologs of a basis
molecule as a function of a single mixing parameter. The corres-
ponding observed frequencies locate the mixing parameter in a
specified interval which in turn places the implied force constants
in specified intervals.

As shown through the preceding examples, implication
methods prove to be a powerful technigue for the analysis of

experimental information.



CHAPTER THREE: GENERAL MIXING IMPLICATION METHODS

Generalization of the simple mixing method depends
on the completion of several tasks.

(1) The orthogonal P-matrix of equation (2.1.4) must
be generalized and parameterized.

(2) The NK parameters need to be expressed in terms
of related mechanical information such as the Vibfational freqg-
uencies of isotopic homologs.

(3) An estimate of error or dispersion within the
implied force constants needs to be formulated.

These aspects of the general problem are developed

in the following three sections of this chapter; the fourth

section is given over to applications.

(3-1) K- Space
The desired parameterization of a generalized orthogonal

matrix 1s achieved by the orthogonal form

P = fg CZL#< (3.1.1)

where Fg is orthogonal and denotes a convenient expansion point.
The exponential matrix defined and reviewed in appendix three, is
orthogonal when the K-matrix is skew symmetric,‘<g<= ”Hg;

The task of determining a useful Pe depends upon
useful approximations. This topic is explored in chapter four of

this thesis; however, the identity matrix, R,=:I is sometimes



adequate, On substitution of (3.1.1) into (2.1.1), (2.1.4) and

(2.1.5), the generalized implication equations are obtained.

L=ur*ge”

(3.1.2)
K_t -l

F=Ur e N Breu®

(3.1.3)

NN
0 O
[
it

. ;(5 =0 unless Aﬁ and AJS designate genuine
vibrations belonging to the same

symmetry species (3.1.4)

As in the simple mixing case, these equations refer only
toeépecified basis molecule with well known wibrational funda-
mentals. Again, parameters belonging to the basis molecuie are
developed from related mechanical information,most conveniently
.the vibrational frequencies of 1ts isotopic homologs.

For present purposes, assume that the matrix,

-1fy

L.=UIMR (3.1.5),

dictates a specified ordering of the ‘A - matrix. If symmetry
species are identified by experimental means, then the problem is

reduced. If qualitative normal coordinates are known then the
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problem of ordering the /\— matrix 1s solved; however, such
knowledge can be safely assumed only in the case of small or
very symmetrical molecules. This problem is studied in greater
depth in chapter four. |

As noted in chapter two, a K-space expansion contains
fewer parameters than the F-space expansion; thus the magnitude

of a general force field specification is reduced from the outset.

(3-2) Isotopic Homologs in K-space

The vibrational secular equation for an isotopic homolog

can be arranged in a form most suitable for the problem in mind,

t 2 _t -2

BN U GUr ™ PA B = A (3.2.1)

where U, r’, A and P belong to the basis molecule and /3; g

and ,K belong to the isotopic homolog. However, ﬁS is not
related td the isotopic homolog in the same way that f’ is
vrelated to the basis molecule. Rather it expresses the isotopic

flmatrix in terms of the basis L-matrix.
-y 1773

L = LA ﬁ/T (3.2.1)

Equation (3.2.1) can be formulated from the vibrational

secular equation in determinant form,

/é’F—iI]?—
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by substituting (2.1.4) and rearranging to yield

NP Eur™pa*- 31| =

a contained matrix which is symmetric and diagconalized by an
orthogonal P.
A small perturbation in K-space is predicted by the

partial derivative

olee\ — 5(F) B g Amzhom
=2/
Amn lo ki e me V/\Y\Y\;imm (3.2.3)

K
where FJ:F%CZ» furnishes the K-space perturbation and

Wz, & =l ¢~

/\ PF Gu/—' “RA é=//\: (3.2.1)

represents the expansion point.

Equation (3.2.3) depends on properties of the expon-
ential matrix designated in appendix three.

In application, equations (3.2.3) and (3..2.4) provide
the nucleus of an exfremely efficient computational scheme. The
U-matrix provides automatic symmetry factorization of the G-matrix
(see section 1 of chapter two). An equivalent formulation in F-

space requires 2N matrix diagonalizations per isotopic homolog

M
(NM homologs) or large storage capabilities; the K-space formul-
ation required NM—l matrix diagonalizations with partial pre-

diagonalization provided by the U-matrix.



What remains is the sclution of linear equations of

the form

~

T = A+ Z (el soun .25

RR Amm 7/\nn
which has already beeﬁ discussed in equations (1.3.1) and (1.3.2).
Equation (3.2.5) is a Taylor series expansion of 7TKK-
Given a sufficient body of experimental information, the

K-matrix elements are calculated and the exponential matrix e
is formed. But higher terms in the expansion of (3.2.1) are
ignored; thus the P -matrix is replaced by POQK and the calcul-

ation is iterated until convergence is attained.

(3-3) Implied Dispersion

In simple mixing, the implication methods provide an
easily understood projection scheme for determining the érror»
assocliated with implied force constants. In general mixing
situations, error or dispersion can be established by more general
methods.

Consider a force constant matrix, F such that for

© 3

a series of isotopic homologs:

LL: L=/, (3.3.1)

the corresponding implied force field
-t -1
F=LNL,

is composed from the experimental frequencies. The scatter in the
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implied force constants for a series of isotopic homologs
defines our measure of implied dispersion.
The dispersion can be concisely expressed in terms

of the maximum frequency error.

A = W/)/,e_y/eo/

(3.3.2)
0 A s\ o\l
/F‘J -Fil = % (Gi) (F3)™ (3.3.3)
o1 . A ( G-‘-.)l/&(F_'Q ):/z.
and |F5J-“F'J'\ T B (3.3.1)
The proof follows:
IF-"}'F"JP\ ’—‘\Zn (Lo )ei( L Je; (/\m-/\omc)\
set: AR:—: VE‘ Vlg
where sz is calculated and )/IQ is experimental,
|Fy-Fi = (e | 2o da( )y Ae |
Terms of the order AL\?. are igno‘red. The Cauchy 1nequality

(42) provides

. , N f,. YAV o
-] = e (T (£t (e )5 02

&<
A1l AR\A consequently equation (3.3.3) is obtained. Recall

Z\Q (L:o, )/:. = (G-l)f[
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Polo (43) has written explicit expressions for G -

matrix elements; however exact expressions are not needed to
estimate force constant dispersions. Study of Polo's work

will justify the following approximate éxpressions.

For a stretching coordinate:

The sets of atoms %x and ES are disjoint and cover all atoms

in the molecule.

For a valence angle bending coordinate:

SN :[R:[B
169 - IA +IB
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where ’& is the distance from the central atom in the bending
coordinate to the Gftﬁ atom. The set A designates all
atoms connected to one branch of the angle and B designates
all of the atoms connected to the second branch of the angle.
Neither set includes the apex atom or atoms belonging to the
other branches. |

In combination with implied force constants and a
frequency error, the approximate inverse G-matrix elements givé
an estimate of the error or dispersion to be associlated . with the
implied force constants when isotopic frequency information is
the determining factor. |

The implied dispersions of equations (3.3.2), (3.3.3)
and (3.3.4) will not always agree with statistical dispersions
calculated by means of the formulation of Overend and Scherer (46).
Qualitative agreement between the two sets of dispersions can be
expected for the principal force constants, but for some.of‘the
off diagonal force constants dispersions will be very significantly
different.

‘Most of the differences are due to the different meaning
that the two expressions of dispersion carry. The implied dispers-
ions tell how much the implied force constants must be changed to
cover all vibrational frequencies; by contrast, the dispersions
of Overend and Scherer tell how much the force constants can be
varied without exceeding a specified frequency error.

However the statistical dispersions of Overend and
“Scherer may in some cases seriously overestimate the dispersion

as will be shown by the following argument. Since the potential
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energy surface exhibits a minimum the force constant matrix is
positive definite (3, U44). 1In turn, this requires the force

constants to obey inequalities of the kind (45).
Fig > O

/4 .
F‘j < Fir £y (3.3.5)

For dichloromethane Shimanouchi and Suzuki (5) report
force constants and dispersions calculated by the Overend-Scherer
method as follows: (only the magnitude of the numbers is import-

ant here.)

F22 = 3,8 + 10.0
F2M = 0.2 * 32.1
FHM = 1.3 & 23.3

Clearly the positive definite rules, equations (3.3.5),
cannot be obeyed over the full range of the reported dispersions.
Briefly perturbation methods assume force constants to
be independent variables not constrained by the positive definite
rules; consequently dispersion can be inflated. By contrast,
impliéd force constants are always positive definite if the
/\-matrix is positive definite (3). In the current context, positive
definite means that every distortion from equilibrium configuration

generates an increase in potential energy; otherwise equilibrium
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configuration would not correspond to a minimum in potential
_energy. |

In summary neither measure of dispersion provides
exactly what is wantéd. Implied dispersion may be too small
but the Overend-Scherer dispersions may be too large. Neither
tells how unique the specified force constants are. Continued
work in this area will reveal more appropriate measures of
significance; the implied force field seems to be more subject

to development élong the lines of uniqueness.

(3-4) Selected Applications in K-Space

The interplay of calculation of experimental inform-
ation and of the connecting mathematical structure generally
influences the development of the mathematical structure in a
favorable manner. From the beginning of this project, calculat-
ions and mathematical structure were built in parallel. In this
way several uninteresting notions were eliminated; and several
interesting notions were uncovered.

In the present situation the need for parallel calcul-
ations resulted in two limitations. Confiéuration coordinates
were limited to bond stretching and valence angle bending. When
isotopic substitution lowers the point group symmetry within a
series of 1sotoplc homologs special control mechanisms for degener-
ate fundamentals are required for the application of implication
methods; these have not yet been included in the general mixing
program. In effect, symmetric tops are excluded until a modified

edition of the program 1s written.
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A program designed for general application has not yet
been writtén; it awaits the completion of several added tasks.

The K-space picturesof centrifugal distortion constants (8),
Coriolis coupling coefficients (9, 10), and the mean square
amplitudes of electron diffraction experiments (7, 8) need to be
developed and cast into the language of automatic computing.
Further, the K-space picture awaits the development of various
approximation techniques. To some extent, the groundwork for
these tasks is established in the following chapter.

Thus far only the vibrational fundamentals of isotopic
homologs - as a means to specify the implied force field - have
been discussed. Of three isotopic series‘studied,

a) formaldehyde and its deuterohomologs

b) ethylene and its deuterohomologs

c) dichloromethane and 1ts deuterohomologs,
only formaldehyde and ethylene specify well defined implied force
fields of the most general quadratic form. As could be expected
in dichloromethane, the mixing of V (cC1, Al) and ) (cicel, Al)
is not specified by the vibrations of the deuterohomologs. Per-
turbation methods also fail to specify a general force field
for dichloromethane as has been shown by Shimanouchi and Suzuki (5)

Though a complete mechanical picture of implication
methods is not yet available, the present calculations demonstrate
the effectiveness of more general implication methods. The cél—
culations for formaldehyde and ethylene i1llustrate the positive

cases.
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In the case of dichloromethane, calculations will
not be présénted; here it is important that implication methods
do not indicate uniqueness when the experimental information
employed does not provide it. Several distinctly different
force fields which provided very small frequency errors were
determined for dichloromethane; additional experimental infor-

mation must be included to specify a single force field.

(3-4a) Formaldehyde and its Deuterohomologs

Shimanouchi and Suzuki (5) have reviewed the fundam-
entals of formaldehyde and its Deuterohomologs and calculated
the general quadratic force constants. Their carefully executed
perturbation study forms a reference for comparison with fthe
implication method.

The in-plane normal coordinates of the C molecules,

2V

briefly represented in the form 3Al + 2B. (see footnote), indic-

1
ate nine quadratic force constants but only four mixing para-
meters. Consequently, the implication method 1s easier to apply,
faster to converge and initial estimates of the force constants

are not needed. The calculated force constants and frequency

errors differ somewhat from those of Shimanouchi and Suzuki (5).

The symmetry species notation used here for formaldehyde
and later for ethylene is used consistently throughout the liter-
ature even after the Joint Commission on Snectroscopy published
its recommendations (47) for the selection of molecular axes. For
spall moleculer the earlics rule (2), L' Typ ¢ Tea - 2007

gh.
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TABLE 9: Vibrational 'requencies: H,_ CO, HDCO, D_CO.

2 1=
Observed CALCULATED
Shimanouchi & Suzuki (10) This Work
H2CO 2780 (Al) 2796.3 (-16.3)% 2780.0 (0.0)
1743.6 (Al) 1752.7 (=9.1) 1743.6 (0.0)
1503 (Al) 1510.6 (-7.6) 1503.0 (0.0)
2874 (Bl) 2871.9 (2.1) 2874.0 (0.0)
1280 (Bl) 1273.2 (6.8) 1280.0 (0.0)
D,CO 2055.8 (A)) 2049.0 (6.8) 2045.7 (10.1)
1700 (4;) 1694.3 (5.6) 1679.7 (20.3)
1105.7 (Ap) 1102.0 (3.6) 1095.8 (9.9)
2159.7 (B) 2167.6 (=7.9) 2178.0 (18.3)
990 (Bl) 9obh. 4 (-4.4) 995.9 (-5.9)
HDCO 284k .1 (aM) 2833.7 (10.3) 2831.8 (12.3)
2120.7 (&) 2116.6 (4.1) 2105.0 (15.7)
1723.4 (ah) 1720.0 (3.L) 1717.0 (6.04)
1400 (&) 1397.1 (2.9) 1399.1 (0.9)
1041 (A") 1042.1 (-1.1) 1038.6 (2.04)
mean error
H,CO 8.4 0.0
HDCO 5.8 7.5
D,CO b,y 12.9
Overall mean error 6.2 ’ 6.8 cm

*¥ (observed - calculated)



The implied force constants belong to the basis molecule,
HZCO, and the corrésponding vibrational frequencies are
calculated without error. In terms of the mean error in the
frequencies, the four parameter K-space fit is very nearly
as good as the nine parameter F-space fit.

The five configuration coordinates required to span

the in-plane modes of formaldehyde can be represented in the

form: 2(CH) + (CO) + (HCH) + (OCHH)

Though appendix three shows that a redundant coordinate
system can be used, non-redundant coordinate systems are used
whenever possible. -Consequently an in-plane-wag has been
defined as follows: (OCXY) = (OCX) - (OCY).

| The geometric parameters selected by Shimanouchi and
Suzuki (5) haQe been employed so that the calculations will be

comparable in every way.

@]
r(CH) = 1.1139 A
0]
r(CO) = 1.2078 A

O(HCH) = 116.56°

The implied dispersions for the implied force constants
are based on the maximum frequency error, 20 cm_l. By contrast,
the dispersions reported by Shimanouchi and Suzuki are, in
several cases, much larger. The larger intervals specify the
range of variation that an individual force constant can display
without exceeding a specified frequency error. The smaller

intervals specify the range of variation necessary to match

exactly all of the frequencies employed.



(OCHH) contributes only to the B, modes while (HCH)

1

modes; consequently point

1
group theory (1) requires that both F(OCHH:CO) and F(OCHH:HCH)

and (CO) contribute only to the A

be 1dentically zero. As well, symmetry properties require

F(OCHH:CH) = - F(OCHH:CH).

TABLE 10: ~ The force Constants of Formaldehyde,

Force Constant " Implication Perturbation
F(gﬁ:gﬁ) 4,320 + 0.063 4,361 £+ 0.084
F(QH:QH) 0.089 + 0.063 0.092 + 0.084
F(gg:gg) 13.415 + 0.309 12.577 + 0.271
F(QQ:QH) 0.295 + 0.140 0.704 + 0.409
F(HCH:HCH) 0.819 + 0.022 0.840 + 0.034
F(HCH:CH) 0.156 + 0.037 -0.115 + 0.255
F(HCH:CO) -0.920 #* 0.082 -0.448 +£°0.146
F(OCHH:0CHH) 0.445 + 0.032 0.432 + 0.014
F(OgﬁH:gﬁ) -0.115 + 0.046 _ -0.071 + 0.126

Neither the implied force constants nor the frequency
érrors calculated by implication methods differ greatly from those
obtained by Shimanouchi and Suzuki (5). Consequently the four
parameter implication method appears to be equivalent to the
more cumbersome perturbation method.

The implied force constants are heavily biased to.the
basis molecule; whether or not this bias can be used to advan-

tage awaits further analysis.
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Toward the end of this chapter it will be shown
that implied force constants display a pattern of consistency
which agréés with some of the principles of the hybrid orbital
force field of Mills (21). The implication method generalizes
without loss of significance - in terms of frequency errors or

molecular structure.

(3-4pb) Ethylene and its Deuterohomologs.

In conjunction with experimentai work Crawford,
Lancaster, and Inskeep have calculated the quadratic force
constants of ethylene (48) from the vibrational frequencies

of the two homologs, CgHu and C They imposed one constraint,

2DM'
F(HCH:CH) = 0, and did not attempt to adjust their force con-
stants to minimize frequency errors.

Later Brodersen (49) repeated the determination with
a deliberate attempt to minimize frequency errors and without
constraints. Again the full symmetry homologs dominated the
calculation; intermediate homolbgs were uséd to define one of
the force constants. Though Brodersen's choice of fundamentals
differed little from those of Crawford, Lancaster and Inskeep,
the‘reported force constants differ significantly (see table
eleven); however, the Brodersen force constants can be viewed
as a refinement of the earlier work.

Since automatic computing became available, a general
valence force field for ethylene ﬁas not been repbrted. Séherer
and Overend have reported a six parameter Urey Bradley force

field (UBFF) (50). More recently Fletcher and Thompson have

reported a ten parameter Hybrid Orbital Tforce field (HOFF) (22).
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Automatic computing would enable the use of data
from all thé déﬁterohomologs and provide minimum frequéncy errors
in the least squares sense. In effect the implied force field
reported here completes the refinement of the quadratic force
constants for ethylene.

The fifty-four fundamentals of the six deutero-
ethylenes (51) are used to fix the six mixing parameters for
the basis molecule H202H2. Though significant differences appear,
the implied force constants appear to be a refinement of the
earlier work reported by Brodersen.

It is possible to classify the vibrations of the
deuteroethylenes under the point group of the potential energy,
D2h . When isotopic substitution reduces the point group

symmetry, [&hf-species are scrambled but in accord with the

lower point group. Consequently all vibrations can be classified

by enclosing the scrambled D2h - speciles in parentheses.
H.C.H.  + D.C.D : +
2¥ota T PLERR) 3Ag * 2By, * 2By, + 2By
HDC.H_ + HDC.D : +
ol oDy (3Ag 2Blg + 2B, ¥ 283u)
trans -~ HDC_.HD : +
5 (3Ag 231g) + (2B, + 2B3u)
cis ~HDC ,HD : A + 2B +
> (3 g 2 2u) (2Blg + 2B3u)

1,1-dideuterocethylene : A + B ¥
> (3 o 3u ) (2B1g + 2B, )

This notation immediately reveals the information
needed to formulate the product rules. Further it shows at a
glance the dependence of vibrational frequencies on symmetry

factored force constants.
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For example, in trans dideuteroethylene, the five symmetric

vibrations, (3Ag + 2 B, ), depend on the six Ag—force constants

lg
and the three quQforce constants. In K-space these five

vibrations depend on the three Ag and the one B, mixing para-

lg
meters. This structure carries over to the K~-zpace perturb-
ation equations, (3.2.5), and is of great help in assigning
experimental frequencies to the individual linear equations.
It should be realized that the classification under ‘)2“,

(3Ag + 2B1g) + (2B2u + 2B, ), means exactly the same thing

3u
as the classification, 5Ag + MBu, obtained under c2h5 however,

the D2r1 notation emphasizes the underlying structure.

The vibrations of the basis molecule, H202H2, indicate
fifteen independeht quadratic force constants but only six
mixing parameters.

The planar configuration coordinates adopted for this
study,

L(cH) + (cC) + 2(HCH) + 2(CCHH),

contribute to the vibrations as follows:

4(CH) Ay * Byg * Byt By
(CQ) A,

2(HCH) Ay * By

2(CCHH) By, * Blg

Fortunately the CH-stretching vibrations and the (CC)
-stretching vibration are known to be characteristic; thus no

problems are expected in structuring the implied force field.
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For clarity let us note that

(CCHH), = @B— [
2(CCHH) =
(CCHH), = @3—@‘\
~ 8 s
C y C

The symmetry properties of the configuration coord-

inate impose five symmetry restrictions on the force constants,

F(CCHH:CC) = 0

F(CCHH:HCH) = O

F(CCHH:HCH) = O
F(CCHH:CH) + F(CCHH:CH) = O

F(CCHH:CH, cis) + F(CCHH:CH, trans) = O

In this calculation the geometric parameters selected

by Herzberg (2) have been employed.

0

r(CH) = 1.086 A

! (6]
r(cc) = 1.339 A
O(HCH) = 117.6°

Beginning with _P =1 in equation (3.2.4), mean
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error in the frequencies of 20.6 cm—1 the K-space iteration

s
sequence described in séction (3-2) proceeds smoothly to the
implied forcé constants given in table éleven and calculated
frequenciés givén in tablé twélvé;

The largést frequéncy error appears in the (CC)-
stretching fréquenéy for 1,1-dideutercethylene (the calculated
frequency falls 33 cm_l below the observed frequency). In
fact all of the implied (CC) stretching fundamentals fall below
the observed fundamental. The same discrepancy appears in
- formaldehyde for the (CO)-stretching fundamentals. In these
cases; multiple bond anharmonicity like that described for
acetylene is suspected.

The remaining large frequency errors in the deutero-
ethylenes appear, as expected, in the (CD)-stretching frequencies.

The force constant dispersions, calculated by the
implication technique of section (3-3), have not been included
in table eleven. Dispersions based on twice the mean fréquency
error are reported separately below. All but eleven 057%;1cu1-
ated frequencies fall within this range. For the principal

force constants the implied dispersions are comparable to those

implied Fletcher & Thompson (22)
F(CC:CC) +0.18 £0.15
F(CH:CH) £0.044 £0.036
F(HCH:HCH) +0.013 +0.008
F(CCHH:CCHH) +0.018 - +¥0.009

determined by Fletcher and Thompson. The remaining implied dis-

of, :
persions are geometric means/@he above values, see equation (3.3.3).



TABLE 11: The Force Constants of Ethylene

Crawford Brodersen Scherer & Fletcher & This

Lancaster & (49) Overend Thompson work

Inskeep (48) (50) (22)
F(gg;gg) 10.896 11.08 9.038 9.305 11.184
F(CH:CH) 6.126 .77 5.149 5.168 5.004
F(EQE:EQE) 0.731 0.708 0.661 0.683 0.725
F(CCHH:CCHH) ©0.373 0.334 0.248 0.269 0.332
F(HQH:QC) -0.920 -0.826 -0.264 -0.273 -0.943
F(HCH:CH) 0.369 0.130 -0.123 0.087 0.182
F(HCH:CH) 0.000 0.141 0.000 0.000 0.241
F(HCH:HCH) 0.035 -0.012 0.000 0.022 0.066
F(CCHH:CH) 0.511 ~0.163 0.123 0.098 ~0.199
F(CCHH:CH, cis) 0.234 -0.332 0.000 0.000 -0.313
F(CCHH:CCHH) 0.035 0.006 . -0.048 -0.048 0.014
F(CH:CC) 0.000 0.00 0.367 0.000 -0.154
F(CH:CH) 0.043 0.02 0.000 ~0.012 0.031
F(CH:CH, Cis) -0.020 - -0.06 0.000 -0.018 -0.104
F(CH:CHJ trans) 0.050 0.14 0.000 -0.018 0.089
Constraints F(CH:HCH) = 0 NONE UBFF ¥ HOFF NONE
Parameters 14 15 6 10 6
mean error (cm_l) 13.4 8.1 12.0 8.8 6.5

¥ This is the valence bonding image of the Urey Bradley force field (14).
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TABLE 12: Vibrational Fundamentals: ethylene and deuterohomologs

SYMMETRY OBSERVED IMPLIED BRODERSEN MOLECULE
3026 3026 3026
1623 1623 1630
3Ag 1342 1342 1350
3103 3103 3110
2Blg 1236 1236 . 1238
3106 3106 3110
2B2u 810 810 815
2990 2990 3001
2B3u 1444 144y 1455
mean frequency error 0.0 6.0 H202H2
2660 2238 2253
1518 1508 1511
3Ag ' 985 977 978
2310 2312 2308
2Blg 1011 1007 | 1009
2345 2336 2340
2B, 584 576 580
, 2200 2169 2189
2}33u 1078 1065 1067
mean frequency error 11.8 6.2 D2C2D2
3017 2998 3009
2230 2231 2236
1585 1552 1561
1384 1387 1402
(3Ag + 2B3u) 1031 1024 ..1022
3093 3096 3100
2334 2334 2336
1150 1153 1155
(2Blg + 2B2u) 660 6564 668
mean frequency error 8.1 9.7 ASYM-H C D,

2 2 ¢
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SYMMETRY OBSERVED IMPLIED BRODERSEN MOLECULE
3059 3069 3066
2299 2283 2300
1571 1562 1574
1218 1213 1209
(3Ag + 2B2u 646 647 652
3054 : 3051 3057
2254 2238 2253
1342 1336 1335
(ZBlg + 2B3u) 1039 o .1o43 . 1048
mean frequency error 7.8 v 5.8 CIS—HDC2HD
3045 3043 3069
2285 2285 2279
1571 1562 1572
1286 1281 1284
(3Ag + 2 Blg) 1004 lOOO o 1007
3065 3059 3040
2273 2268 2298
1299 1288 1280
(2B2u + 2B3u) 678 659 664
mean frequency error 6.9 13.2 TRANS-HDC,HD

2
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H,C,HD (3Ag + 2B18 + 2B2u + 2B3u) D202HD
OBSERVED IMPLIED IMPLIED OBSERVED
3096 3101 3051 3049
3061 3062 2331 : 2332
3002 3000 2269 2281
2276 2278 2205 2222
1606 1589 1532 1547
1401 1401 1280 1289
1290 1288 1043 1045
1129 1128 994 999
713 716 612 610

mean frequenc& erfor 3.7 7.2

Neither Crawford, Lancaster and Inskeep nor Brodersen pres-
ent calculated frequencies for the low symmetry homologs. Fletcher and
Thompson calculate frequencies for H202HD and report a mean frequency
error 9.1 cm—l for this molecule. The six parameter Urey Bradley force
field 1s too highly constrained to compare calculated frequencies.

If the five calculations are intercompared by multiplying
the mean frequency error and the number of adjustable parameters, then
the implied force field takes first rank. Moreover by this measure of

merit, the hybrid orbital force field follows the Urey Bradley force

field.
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(3-U4¢c) Chemical Significance

On one hand quadratic forge constants are mechanical
parameters consistant with mechanical information of exper-
imental origin. On the other hand, as measures of bonding
forces and interactions, quadratic force constants should
comply with chemical bonding structure. Consequently the
quadratic force constant serves both physical and chemical
purposes. Physical significance, though subject to well
defined measurement, is limited to pure mechanics. Chemical
significance establishes itself through chemical bonding
and is subject to a wider interpretation, but chemical sig-
nificance is not subject to well defined measurement.

Because implied force constants are formulated with
minimal reference to chemical bonding structures, their
chemical significance needs deliberate emphasis. In some
respects, it is remarkable that implied force constants
exhibit any degree of chemical significance at all.

Ethylene and formaldehyde are in fact closely related
molecules; if one CH2—group'of ethylene is regarded as a
single atom, the resultant molecule would be an isotopic
homolog of fofmaldehyde. Table thirteen shows that force
constants for the two related molecules exhibit unexpected
sign and size agreement. However the bonding unit, H2C= 3
does not possess a set of force constants which are largely

independent of the substituent as has been shown (17,20)

for the bonding unit H3C—
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TABLE 13: Similar Implied Force Constants

Formaldehyde Ethylene'

(X= oxygen) (X= Carbon)
F(CH:CH) 4.320 5.004
F(CX:CX) 13.415 11.184
F(CH:CH) 0.089 0.031
F(CH:CK) 0.295 : -0.154
F(HCH:HCH) 0.819 0.725
F(CH:HCH) 0.156 0.182
F(QX:HQH) -0.920 ~-0.943
F ( XCHH : XCHH) 0.445 0.332

F(XCHH:CH) -0.115 -0.199

The similarities confirm some of the principles used by
Mills in the hybrid orbital force field (21). He suggests that
F(HCH:CH) = k F(CH:CH)
F(HCH:CX) = le(CX:CX)
where the constants k and k1 depend mostly upon hybridization and
to some extent on the nature of the substituent. If 5PL hybrid-
ization dominates other effects, then kt = -2k,
In both formaldehyde and ethylene the central atom is
hybridized and the hybridlization constants should be nearly the

same.
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HYBRIDIZATION CONSTANTS

formaldehyde ethylene
K 0.0361 0.036U
Kl ~0.0686 ~0.0841
1l /x ~1.90 ~2.31

The hybridization constants, k , are nearly equal for
the two molecules. Those involving the double bonds, kl',
are comparable and related to the single bond hybridization
constant, k, the expected way. It is gratifying to confirm
these aspects of the hybrid orbital force field (21) without
assuming it. However, the hybrid orbital force field predicts

F(CCHH:CH) = F (HCH:CH), but the implied force constants agree

more closely with a Urey Bradley force field here (14),

F(CCHH:CH) = - F(HCH:CH).

As well, neither of the model force fields includes stretching
interactions but the implied force field indicates definife
stretching interactions. |

As shown by Heath and Linnett (52), interaction force
constants can be interpreted on strictly geometrical grounds. -
Let all coordinates except AL and ﬁ;j be fixed at thelr equil-
lbrium values. Let A%) be assigned a definite displacement, 05
These constrained conditions imply a pseudo-equilibrium value,
AQ& , for the internal coordinate associlated with Qi in ﬁhat

the potential energy is minimized.

<

Q-2 = ~Hia
fig
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In formaldehyde, if the (C0O) bond is étretched, the (CH)
bond is shortened. In ethylene, if the (CC) bond is shortened
the (CH) bond is lewngthened. Consequently the psuedo-equilib-
rium geometry of formaldehyde tends toward the equilibrium
geometry of ethylene and conversely. In this sense the only
signature disparity in table thirteen is quite creditable.

The very few implied force constants now in hand do not
provide a sufficient foundation for a general discussion of
their special chemical significance; however, these examples
indicate the definite value of continued studies with implic-

ation methods.



CHAPTER FOUR: APPROXIMATION TECHNIQUES

| Thus far the implication method has been limited
to the case where there exists sufficient experimental
information to specify all gquadratic force constants.
Clearly larger molecules with low symmetry, methylamine
for example, need not submit to such a general approach.
Consequently, further progress with implication methods
will depend ﬁpon approximation techniques which either
operate entirely within the implication scheme or cooperate
with the more traditional methods of parameterized
potential energy.

The weighted trace equations delineated in section
one of this chapter provide some information about the
latter objective: cooperation of implication methods and
traditional parameterization of molecular potential energy.

Fortunately the implication scheme lends itself
to a unique approkimative technigue whenever some vibrations
of a molecule can be said to be characteristic vibrations.
The second section of this chapter describes the role of
characteristic vibrations in the analysis of the vibrational

secular equations entirely within the implication scheme.

(4-1) The Weighted Trace Equations

Consider the function

Thaee WE = Z;ZJ ijFij (4.1.1)
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F=Ur ‘A B Ut

(4.1.2)

as defined in equations (3.1.3) and § is an ordering
parameter - see appendix three. The weighting matrix W
is some specified matrix with the same symmetry as the F-
matrix. In essence',/for'ms various linear combinations of
force constants; explicit choices for the W -matrix will
follow from the general development.

Notice that

-K
Tnace WE = Traee (BT Uil “p) (2N e”)
Thus Po is defined such that

t

o

WU R =

(4.1.3)

wher’eM is a diagonal matrix.

The dlagonaljw’matrlx entries are the eigenvalues of the

matrix product, G V\/

The techniques described in appendix three give the

general weighted trace equation: fe? /I!QIQ M 2 AJer

Twace W = 2¢ ann t S 2 AN )/,

A >2J

+ higher terms (4h.1.4)
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Consequently

Trace WH is maximum if ,u): <}4_)3

Trace WF is minimum if AJ5 > Ld:‘

Trace WF is saddle point if LJ; :,u):\
with respect to the mixing parameter ;(u

Suppose that the three force constants me, an and
an dominate the two vibrational frequencies Xn and )Lﬂ
(or the mixing parameter Kmn is most important). Then

equations (4.1.3) and (4.1.4) provide bounds for the force
constants. ( Ap 2 Am

<:§%n1;?”1 éé Fi%’n fl CS};W\ ;IH
Gon At £ Fan £ Goun Ao
2F e £ Gon (At Am) + (An-2m)Y G O
Z‘an 7 G:,'nn(ﬂn+3m)" (An= Am)V G G

(4.1.5)

Equations (U4.1.5) are formed from three different W-matrices -
one to select each different Tcrce constant.

The inequalities (4.1.5) are exact for the vibrational
secular equation of order two. Otherwise they are not exact but
they may indicate important interaction force constants.

For example, the two B2u modes of benzene and the

inverse G-matrix elements (symmetry factored) (1) give the

following bounds for the symmetry factored force constants.
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< . ‘.
3.353 = F(<,c.cc,B2u) £ 4.375
0.916 < F(HCCC:HCCC,B2u) < 1.195
-1.658 < F(HCCC:CC,Bgu) < -0.593

Here the application of (4.1.5) is exacﬁ and limits for an
essential interaction constant have been set by simple means.
Thus, F(HCCC:CC,B2u) has not been specified but 1t pannot

be zero. The importance of this interaction constant has
already been established (53).

Equations (4.1.5) may prove most useful in selecting
important interaction constants. Another way of identifying
important interaction force constants by implication methods
follows.

Assume an approximate force constant matrix [y
and solve the. secular equations

Lo Folo =/,
where /10 represents calculated frequencies.

The associated implied force field

F o= L7AL
may well indicate important corrections to the approximate
force constants used to assemble F§> . The /\—matrix is
composed of experimental frequencies. In this application
the dispersion equations, (3.3.3) and (3.3.4), show that if
the calculated and observed frequencies are close, so are the

trial and implied force constants close. Consequently 1like
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the perturbation method itself, this approach may assume
more fore-knowledge than is provided by the existing
guidelines to chemical bonding.

Yet it is believed that the implied force constant
matrix associated with approximate force constants will
provide a less cumbersome approach than perturbation methods
when the problem is too complex to solve entirely within

the perturbation scheme.

(b-2) Participation and Molecular Partitioning

It is often possible to associate selected
vibrational frequencles with selected parts of the whole
molecule - usually chemical groups such as —NH2 or —CH3.

If a vibrational frequency belongs to a chemical group, then
the remaining atoms participate to a much lesser extent in
that vibration. This section considers the partitioning of
a molecule into two sets of atoms and describes the
participation of the individual sets in the various
vibrations.

Characteristic frequencies are closely related to
mass dependence within the vibrational secular equations.
Characteristic frequencies will depend mostly on selected

atoms and consequently their masses.

Differentiation of the matrix equations

G = LL__t and LYF L =N
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with respect to the reciprocal mass of the ﬁg—kl atom

leads to the eguations:

z
L [OG \ e YL -1 IL
~ = L &= + —
- (a/u[)L e 91'(’6) (4.2.1)
LRI YRl
JUs e +( ,u,a> (h.2.2)

Both A and @A/&M‘éare diagonal. Consequently

-1 HL AN
AL g/ap* yz(aju()* Ke (£.2.3)

Where K{g is a skew symmetric matrix.
In combination (4.2.1) and (4.2.3) provide the

fundamental mass equation.

C = K8« IR, K]

Because [K’ KP]JJ =0

- al Snh;; h.2. 1
LA T i (4.2.1)
( )JJ Y ke Mg

The G-matrix is of the form

= 5, Mg ) @)
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therefore (see appendix one)

), - e

which is positive semi definite (44),

3 In
Qe

and moreover G = ‘Zo( Ay (@G/Q,L(o() (4.2.5)

2> O

-1 - _
Thus the equation L G L. = I

gives Z /ao( Q—%\;JA% =1 (b.2.6)

Consequently the quantity

. ( Q’z /é/o( a/&’lAJJ
@J = M 94@ S/L(OL (4.2.7)
th
can be viewed as the participation of the (f, atom in the
. th

J = vibrational frequency.
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As well, it can be established that

- ' 96
ZJ@J”/L&MG@&“

|G|
- /um @,QM
8 U (4.2.8)

The latter equation follows from the identity (54).
A &/GI - ( J
Il

Partitioning.

Let a molecule be partitioned such that each of its

atoms belongs to either the set A or the set B

Define the participation matrices:

( -1 9G -t)

TI(A) = d:eR
By = 2 e (L Q;u“ )
TEB (4.2.9)

Both TT[H) and Tr(B) are square positive semidefinite matrices
and their diagonal elements are sums of atom-participations.

Through (4.2.5) they sum to the identity matrix

TT(A) + TI(B) = 1 (4.2.10)
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and they obey positive semidefinite inequalities (45).

MM 20 THAN, < T TIiA);

For a nonplanar molecule

namk TTA) < 3Ng

where NA is the number of atoms in A (Ly,45),

The quantity TT(AbJ defines the participation of the
_ At—h set of atoms in the J th vibration. If the A th

set of atoms does not participate in the n th vibration, then

A, = O 7(8),, = 1

and the positive semidefinite inequality

Ty € TT(Ann TTA);

gives TT(F”nJ =0 for all j
again ]T(B)nJ =0 for all j except Jj=n

recall J7(A) +TI(B) = I

moreover note the strong implication of null participation

_ Infan _
TT(A)nn" O implies Ada Qé—:ai‘v‘\ =0

for all 0C contained in the A-set.



Consequently isotopic substitution within the ;4 -set leaves
the characteristic vibrations of the /B - set invariant. This
fact provides a test for the validity of null participation !
As an example of partitioning and participation let us
consider methylamine. Let there be six modes characteristic of
the methyl-set, three modes characteristic of the amine-set,

and six mixed modes.

- —

AT

( \ o

/ L ~
S 7B
\

V% \H 7

The principles just described require 7T(CH3)and
TT(NH2) to be of the form given by table fourteen. Unity
designates the identity matrix and the arrows show the inter-

relationships used to formulate ‘TT(CH3) and TTZNHE);
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TABLE 114: Participation Matrices for Methylamine

The distribution of unit, nonzero, and zero blocks
in the participation matrices for (CH3) (NH2); the arrows
summarize the derivation of the zero-blocks for limited

participation.

CH
T7( 3)
(CHB)—MODES ZERO ZERO
UNITY A
LAY + 2A"
ZERO MIXED MODES ZERO
NONZERO A
3A' + 3A"M
ZERO = ZERO— ZERO
(NH2)-MODES
L 6 6 Py, 3
Z%RO ZERO p ZERO
(CHB)-MODES
MIXED MODES
ZERO NONZERO " ZERO
ZA' o+ 3AM
Y (NH2)-MODES
ZERO ZERO UNITY
2A' 4+ AW

TY(NHZ)
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The symmetry species show the further factorization
obtained when methylamine 1s given a plane of symmetry.

The fundamentals assigned by Dellepiane and Zerbi
(55) support the hypothesis of complete separation. The
three modes characteristic of amine are easily identified.

CH,NH CD_,NH

3772 372
3361 A 3361
1623 Al 1624
-1 " -1
3427 em A" 3427 em

It is important to note that these invariant fundamentals
support the hypothesis of null participation over the methyl

group. Similarly for the six methyl modes:

CH3NH2 CH3ND2
2961 ‘ A’ 2961

2820 A 2817

1473 A 1468

1430 At 1430

2985 A" 2985

1476 cm ™t A" 1485 cm™ L

And these fundamentals support the hypothesis of null
participation over the amine group. Note the violation

of the rule of monotony (1) which states that all
vibrational fTrequencies must decrease upon heavier isotopic

substitution (see equation 4.2.7).
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The question as to how limited participation infor-
mation can be used in connection with implication methods

now arises.

TT(A) andT(B)can be written in the form:
= tale it > oG =t
TI(A) = P a{MGA,uam ur:p
P=RC" (4.2.11)
TT(A) = @‘% z”

where -,/2 Z J,(o( Gd}Uﬁ{éE:é

XeA

and q% is a diagonal matrix

The matrices

2
i Uda,ua ur' U {0026:8 A @Maﬂ

aeh

and

sum to the identity matrix, therefore they commute and are
simultaneously diagonalized by a single orthogonal F%
According to the principles set down in appendix three
for the exponential matrix and the principles of limited par-
ticipation, the skew-symmetric K-matrix of equation (4.2.11)

exhiblts the mixing property:
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n

O unless Aii and fﬁs represent genuine

e

vibratipns of the same symmetry species
and cover the same set of atoms.

In the present example, the selected forms of the
1 — matrices cause the methyl-modes to mix only with
themselves, the amine-modes to mix only with themselves
and the mixed-modes to mix only with themselves. The
mixed modes are not coupled to any of the characteristic
modes; this 1s a remarkable and unexpected property !

With a plane of symmetry methylamine exhibits 66
independent possible quadratic force constants or 51 possible
general mixing parameters. But if limited participation is
assumed - and experimental evidence validates the assumption
- the number of mixing parameters is reduced to 14.

Through molecular partitioning it seems quite
likely that feasonable implied force constants could be
obtained for a class of more complex molecules. As well

partitioning applies in other senses. The G-matrix can be
partitioned into two parts, G(A4) and G(B)such that

G(R) + G(B)=G with much the same results.

The atom-participation densities, ngj , pbrovide

an interesting description of vibrational modes. The

6 = (Shnlly[otmu)

provides meaning in that /ﬁgj is directly related to small

equation

isotopic shifts.



EPILOGﬁE

Unfortunately the exploration df implication
methods in.the description of molécular méchanics and
chemical bonding structure is not yet complete bﬁt this
theéis has'estéblished the basic approach to a cumbersome
problem by new methods. The ingfédients of.the implication
method include two important factors.

An experimentally well known basis mplecule is
adopted and its vibrational frequencies remove a corres-
ponding number of parameters from thé ﬁure mechanical
description. The reducedlparameterization ha§ been cast
into a mathematical form thét.is handy in computations as
well as analysié, as delineated in chapter four.

Applicafion of the implication technigue has led
to a simple account of some domiﬁating anharmonic effects.
Ir continued application oflthe method is as rewarding, then.
further studies are definitely warranted. To this end, the
concepts of participation and molecular partitioning appear
to offer the optimum prospects.

If molecules not rich in hydrogen are to be
considered in more rigorous terms,.the role of mechanical.
information other than vibrational frequencies must be
included in the implication scheme, Jones, Asprey and'Ryan
(34) have shown that a complete picture of mechanical-

information is essential in the perturbation method.
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Therefore, the limitation to hydrogen rich molecules is
not specific for the implication method. The limitation
is merely one. of development within the implication
method.

When the molecular systém pregludes a more
rigorous approach,it is plausible that implication tech-
niques may contribute substantially to a simple but

proper parameterization of the potential energy function.
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APPENDIX ONE: THE VIBRATIONAL SECULAR EQUATTONS

- A Simplified Quantum Meghanical Description -

The concepts of classical mechanics, mainly well
defined trajectories, fail to provide a genuine description
of microsystems (56, 57). In some examples such as the
hydrogen atom, the failure of classical concepts is sub-
stantial; in other cases such as the harmonic oscillator,
classical concepts remain adequate within limits, especially
for polyatomic molecules. Consequently, é classical picture
of molecular vibrations has persisted while the necessary
concepts of quantum mechanics grew to dominate the
description of microsystems, especially molecular structure.

Though chemists are not quantum mechanicilans,
they are becoming more and more quantum oriented; classical
mechanics has in fact almost entirely disappeared from the
latticework of chemical logic. Thus, to the student of
physical chemistry, a classical picture of molecular
vibrations is buillt upon unfamiliar, almost irrelevant,
foundations.

A quantum mechanical description of molecular
vibrations falls within the quantum picture usually presented
to chemists; moreover both molecular vibrations and the
existing quantum pilcture would benefit from a connected

development.
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Quantum descriptions including molecular
vibrations already exist but these (1, 56, 57) are written
for the experienced spectroscopic specialists or the pure
mechanicians. 1In short, a handy reference for molecular
vibrations, written in quantum mechanical language suitable
for introductory purposes, is not known (to the author).

The following description is intended to serve
the above-stated purposes; it includes all classical
information, captures the flavor of rigor in quantum mechanics

/7

and provides a firm foundation for further rigor and detail.

(I-1) Transformation of the Schrodinger Equation

The Cartesian coordinate Schrodinger equation for
N particles of reciprocal mas%/um interacting under a
potential energy function V, governs the total energy of

(o Ja @ + 2K (=0 P = O

(r.1.1)

*
the system,E, and the probability,f? 1@ of a configuration
specified by the Cartesian coordin&tesﬂ&sﬁallq) where QC

counts particles.

In the Cartesian Schrodinger equation (T.1.1)
= (2 ,9_ ., S_
%z (5% 30 52
Viz(L, + & + 2 )

P

L= ( Xt oy T oz

is Planck's constant;

ey St

the Cartesian wave function, is a function of

Cartesian coordinates.
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\/ the potential energy, is a function of the
configuration of the molecule (in the absence
of significant external influences). It is
invariant wifh respect to rotations and
translations. For present purposes electronic
motion is considered to be embedded within the
potential energy function; see the Born-
Oppenheimer separation of electronic and nuclear

motion (2).

/Léﬁ Whether or not the electronic masses should be
included in the masses of the individual particles
under consideration is not cémpletely clear. The
Born-Oppenheimer separation calls for nuclear
masses but detailed studlies usually employ atomic

masses with satisfactory agreement (2).

The invariance of the potential energy with respect to
rotation and translation, as well as the principles of |
chemical bonding, suggests a transformation of coordinates.,.
New coordinates would include three translation coordinates,
three rotation coordinates and (3N-6) coordinates of
configuration - bond lengths, valence angles, and related

geometric measures. The transformation is curvilinear.



To this end let the transformation properties of (I:1l.V)
be established; let the new coordinates be designated as ti.

The rules of partial differentiation (42) establish

%)

the identity:

A

(I.1.2)

Differentiation of (I.1.2)with respect to )&c provides a

second identity:

2 2
@ = L2y (g)t(. \( axoc) %2.7515

8 - (T.1.3)

When cast into generalized coordinates, the kinetic

part of the Cartesian coordinate Schrodinger equation bccomes

Y _
) |
Lo Ja? = 55 Gy L5 Shat 2 1% atJ (1.1.1)

where the following quantities have been defined for brevity.

Z /Ua'( )( t) (T.1.5)
- 24,
%j: ZOC e ‘ZLtJ (T.1.6)

)
It



With reflection, paper, and pencil, the first of these
quantities (I.1.5) will be recognised as the familiar G-
matrix of Wilson, Decius and Cross (1); this form, but not
the derivation, of the G-matrix has been previously written
by Malhiot and Ferigle (58). However, in the present
context, the G-matrix elements may be dynamic variables.

From the outset, quantum mechanics furnishes a natural
and efficient origin for the G-matrix; in classical mech-
anics the origin of the G-matrix can be cumbersome.

As could be exbected, gquantum mechanics leads to new
terms without simple classical analogs; the i% 's of
(T.1.6) - local angular momentum? - contribute to the zero
point energy and generate distortions in the average
geometry of the molecule depending on the vibrational state
of the molecule (within the harmonic oscillator approximation.)
(We are not prepared to endow these higher order kinetic
energy terms with physical significance.)

Equation (I.1.4) is nothing more than a generalized
Laplacian operator; the simple derivation and form of (I.1.4)
gives it some advantage, depending on objective, over the
equivalent expression found in Margenau and Murphy (54) and
the usual quantum mechanical textbooks (1, 57). In our

notation, the usual generalized Laplaclan reads:

. lk_gi- -2, .
V = Z_‘Zj |G| At |G| GJ%‘Q (T.1.7)
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where lGl is the determinant of the G-matrix (including
rotation and translation). '

The equivalence of-(I.l.M) and (I.1.7) can be seen
through the action of the operator (I.1.7) on the
generalized coordinates themselves.

..I/L

Y2 |
I - 3 )
Vztn - Z'. |G at; Gl Gin (T.1.8)

recall: sz{'n = %n %{‘% = S'J (the identity matrix)
With reflection, (T.1.8) brings (TI.1l.7) into the form (T.1.4);
the converse, (T.1.4) to (I.1.7) is much mofe difficult.

The transformation is not yet complete. The transformed
wavefunction carries a density factor if it is to preserve
its meaning as a probability distribution when squared (57).

I/c,
Q_L(Car’tesian) = /G/ /Z,b (generalized)
Consequently the generallized Schrodinger equation is

frequently expressed in the form (1, 36).

{lc{l"" el + 2k (E- v)} Y = O

But the Cartesian wave function can be retained if its

meaning and the role of the density factor is recalled.
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(I-2) Separation of Rotation, Translation and Configuration

The three following translational coordinates define

the centre of mass of the molecule; these are dynamic
-4
)(o = AA zz:a: ,nhQAQK
Aa\
Yo = N\ Z:.o(_ mo("/o(
Nl
Zio = M jz:a: ryk(;zo‘

variables.

(I.2.1)

where M = Z_“ M

and f  is the mass of the OCEE- particle.

The three rotational éoordinates for a semirigid body
appear to be difficult to define (56); however the 3N
Cartesian vector quantities below will be shown to exhibit

desired mechanical properties.

GRx = Me{ o ,(22),-(K-%)S
‘Z(RY = M {_(Zot_zo)) O ,(Xoé")(‘b)}

VR, = Me{(k-%),~tX)y, O |

(I.2.2)

Here, Rx’ Ry, and RZ are presumed to be rotational

coordinates.
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With these rotational and translational coordinates,

the G-matrix takes the form:

G = G(translation) 0 0

0 G(rotation) 0
0 0 G(configuration)

(T.2.3)

When the potential energy is a function of configuration
only, the Schrodinger equation, according to the above
representation, separates into translational, rotational
and vibrational parts. The separation of translation is
rigorous but the separation of rotation depends upon the
rigidity of the molecule.

For rotation and translation the higher order kinetic
terms, (I.1l.6), are all identically zero; thus the
decoupling is complete.

The matrix form (T.2.3) is most easily derived by
considering the translational (and rotational) G-matrix
elements in a Cartesian vector form. Let t denote a

generalized coordinate.

(G(Xjt), GYyt) ) G(2.,8)} = M Za Gt
[G(Rat) y G (Ryyt), G(Rast)} = T (et)x(/l)

where J1. 2 ( YKoy e by Bam2a)



Rotational and all configurational coordinates exhibit

the property:

Zx YZ(‘t - (O)OJO)
And all configuration coordinates exhibit the property:

> o (Gt) = (0,0,0)

These properties can be verified by carrying out the
indicated operations for the various coordinates.

With very 1little labor it can be shown that
-

G(translation) = | O ©
O t O
o o |

Ixx "va ‘Ixa
Iy Tyy - Iva
"Iix "IZY Iz.z_

G(rotation)

and the most common configuration G-matrix elements have
been tabulated elsewhere; otherwise these can be written via
(T.1.5).

" The moment of inertia tensor, G(rotation), depends upon
the orientation of the molecule and its instantaneous
configuration; thﬁs the separation of rotation and configur-

ation (or vibration) is not complete. Vibration-rotation
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interactions are discussed by Wilson, Decius and Cross
(1, see Chapter 11) and in greater detail by Bodi (56);
however, both references employ the Eckart conditions
and differ from this development in that respect.

Because the Eckart conditions have not been invoked
here, linear molecules are not exceptional cases (from
‘the outset); moreover the equations derived thus far need
not be constrained to rigid systems. However, the physical
substance of this development, which depends on equations
(T.2.2), the rotational coordinates, remains largely
unexplored.

Equations (TI.2.2) have not been previously written but
here they indicate a useful role in the analysis of molecular
mechanics. The author suggests that these equations be
named "the Harvey conditions" in memory of K.B. Harvey,

director of this research.

(1-3) The Vibrational Schrodinger Equation

After the separation of rotation and translation the
vibrational Schrodinger equation remains to be solved. An
approximate solution adequate for many purposes can be
obtained by replacing kinetic énergy coeffiéients by either
their average ot equilibrium values and expressing the
potential energy as a quadratic form in configuration-

displacement coordinates, Q1 . Here it is assumed that
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the molecule remains near its equllibrium configuration
while it vibrates.

To solve the vibrational Schrodinger equation,

LY ad 2 (E IS Y. En o\ =
LTG5 Shap, t TG -éz_\+z‘ﬁ( L IE R0

when CEB ,‘}3 and FU are all constant coefficients, a

linear transformation of the form,

=S e O (T.3.2)
RAr = ZJ L.RJ Q\‘
-1
QJ = 2y [L R Qr (T.3.3)
such that
-/ "t
L GL, = T (the identity matrix) (T.3.4)

FLf_FT-L_-Z f\ (a diagonal matrix) (T.3.5)

reduces (T.3.T) to a sum of independent quantum oscillators

in the normal coordinates, Gh

& . 0.3 _i*y F\D==2hE
2 36: T 3 3G, oy )= y
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Except for the terms

,6‘ = Zn '%‘Ln [——Jh (T.3.7)

the solution of (I.3.6) is a product of harmonic oscillator
wavefunctions and the energy is a sum of harmonic
oscillator energies (1). With nonzero ﬂ&;s , Standard
methods for solving differential equations (42) indicate

a solution as follows:

E = {Zn ﬁ(@‘): (Vn+'Z)JF\7//T"’:
Va= O,1,2
7},} W ¢(Qn (T.3.9)

b=, P, (E,)

(I.3.10)
2 ”q
oz &+ A(7)
nn (T.3.11)
'y If2
EE; = /\nn <:DY\/Q3E)
n (T.3.12)
+
FJW\ is the Vg'h hermite polynomial

van is the normalizing factor
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For the wavefunctions (T.3.10) the expected value of

the normal coordinates is not zero. For example,

oy = — _Filn
<O\Qn\> Zm

and the magnitude of the shift depends on the quantum
numbers.

The added zero~point energy is simply the potential
energy of the molecule when it assumes ifs expected

ground state configuration.

2
éZn [\nn <O\Qn\o>2 = ’./Zzn (7%3)

However the physical significance of these higher
order kinetic terms, given the approximations invoked, is

not yet certain.
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APPENDIX TWO: REDUNDANT COORDINATE SYSTEMS

Redundant coordinate systems areAsometimes needed for
the analysis of molecular structure in familiar geometrical
terms. This appendix deals with the questlion as to whether
or not redundant coordinates imply related interdependencies
for mechanical quantities such as force constants as has{
been suggested by Hubbard (40) and Gold, Dowling and Meister
(41). Crawford and Overend (39) have attempted to show
that such relations for force constants are in fact
arbitrary.

All of these authors have treated the redundant
coordinate system as though the coordinates were independent
variables subject to constraints or redundancy conditions.
Potential energy 1is expressed as a Taylor series in redundant
coordinates.

In their approach it is not clear that the Taylor series
coefficlents, formed by partial differentiation, can be
called upon without substantial justification when the
coordinates cannot be independent. Unfortunately the
previously cited authors have not considered the propriety
of the Taylor series coefficients when redundant coordinate
systems are employed.

Further, there is something intrinsically unsatisfying
with an agb-initio expression of potential energy in terms

of redundant coordinates. If necessary, one can accept the
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notion of potential energy in terms of redundant coordinates
but only as a derived or auxliliary qﬁantity - not as an
initial assumption or intrinsic property.

In this appendix, the redundant coordinate system and
all related quantities shall be strictly referred to a
non redundant coordinate system. The significant step here
is that the transformation matrix is not square and therefore
not invertible 1n the usual simple way.

Our approach provides the supplementary information needed
to resolve the indeterminacy noted by Crawford and Overend
(39). The two approaches are infact complementary rather

than contradictory.

(IT-1) Transformations involving redundant coordinates

As geometrical quantities defined on a set of points or
atoms, the redundant coordinates ( (3 ) can be defined

without question in terms of nonredundant coordinates ( T ).

Z: (E;G%.) |
P g\ Ot + higher terms (IT.1.1)

Clearly every configuration of the molecule specifies
exactly all of the non redundant coordinates and all of the
redundant coordinates. Consequently the relation between
redundant coordinates and nonredundant coordinates is one-
to-one, in terms of the molecular configuration. This means -

e
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~ that the inverse transformation exists even though the
matrix (8@1 /Gt,e)c is not square!

For infinitesmal distortions, equations (IT.1.1)
define an overdetermined system of linear equations; thus
the nonredundant coordinates can be expressed in terms of

the redundant coordinates.
Let Sne = (a(f /&tﬂ)o (TT.1.2)

t ! T
The matrix CSéﬂ és is the left hand inverse of

fhe matrix S s

(5*5)-’5fj g = (s%s)'(s%s) = T

(5?5) is a square matrix of full rank and (3N-6) x (3N-6),

where N is the number of atoms.

~) <t
Therefore: {,e = Zf\ {_(Sts) S}KV\ Pﬂ (IT.1.3)

If the potential energy is properly defined in terms of

nonredundant coordinates,

2V = 2:;:25 FTU'titﬁ

substitution of (II.1.3) provides an equivalent expression

in terms of redundant coordinates.
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2V = Z.Z, <FR3MV‘ f’m e

where the F}L—matrix,
<y F(sts) ' oF

Fo = S (sS)'F (IT.1.4)
represents the force constant matrix for redundant
coordinates. As well

—_— g
GR S6S (IT.1.5)
Le = SL (IT.1.6)

where ["R. and CSR_ are redundant coordinate representations

of L and O for nonredundant coordinates.
Pseudo inverses of Fk 5 C@t and L-R , noted as ﬁﬁaj é?k

and ZZR respectively, can be written in the form

o
I

SF s (IT.1.7)

S(sts)y' G'(s%) 8%

()
)
(i

(IT.1.8)

- v~
Le = L (_5 s) 'S (I1.1.9)
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-1
Decius (8) has shown that F gives the potential
energy in terms of generalized forces - a fact later

iterated by Cyvin (7).

Decius and Oden (59), because the inverse transformation

is not needed to formulate F/e , have used the above

relation to specify all of the constants involved in F_ﬁa

The eigenvectors of GR which correspond to zero

elgenvalues span the null space of the S-transformation

(impossible configurations of the molecule). Let

Nv = 3N-6 the number of genuine vibrations

Ng be the number of redundant coordinates

UR be the orthogonal matrix with dilagonalizes GR

UEG&UR = s

where rR\ is diagonal but NR—NV of the diagonal

entries are zero.

Let UR be partitioned as a matrix

Ur=(W \U\a\ such that
GgA= T and  Gplp =O

where up\ are eigenvectors with zero eigenvalues

and U are eigenvectors with nonzero eigenvalues

noted by the diagonal N, xNv  matrix I

t
S ug: O (see reference 42)
X et -
therefore F&ug = 5(5t5) /:(StS) 's Mg =0

and Ug{' FR L(g =0

(IT.1.10)

(I1.1.11)

(I1.1.12)
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Equations @I.1.11) and (1I.1.12) which follow from (11.1.4)
and @T.1.10) provide the relations needed to define the
so called indeterminate force constants arising from the
redundant coordinate system.

It will be observed that the equations of this thesis
are correct'és written if the U-matrix is understood to
be composed of the eigenvectors of the ng matrix with
nonzero eigenvalues. Here the U—matrix.need not be square
but its columns remain orthogonal.

In summary once it is realized that all coordinate
transformations covering the possible configurations of
a molecule are one-to-one whether the transformation
generates redundant coordinates or not, then the redundancy
conditions on force constants follow via the inverse

transformation.
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APPENDIX THREE: THE EXPONENTIAL MATRIX

The exponential matrix is defined like the exponential

function,
n-m

2=z Z K's'n
Nzg

where ¥ is a square matrix and S is an ordering
parameter. The ordering parameter enables us to establish
the essential properties of the exponential matrix with

little algebraic labor. For example, the formula

Ks
- ke = K
S

is easily derived.

More general properties can be established by considering

H= .@Ksﬂ "

where _(l_ is, for the present purpose, a square matrix;

the matrix function

K and S are as defined above.

Matrix differentiation gilves
K “Ks
%2_ - IxHl = @ I, Nl @

The (\’H\)th derivative can be expressed in terms of the

» th . R
Y\ — derivative,

(3" - (& & - (G I

Js os) 95 \o

<, @n)

i
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FH [KJ[__K)H]]

E=

Consequently S

=
o
i

LK, In [k, W1

In our applications we are inter'ested in the H-matrix
as a perturbed form of the _f\_ -matrix and conversely.
The H and _{L matrices are related through the K-
matrix and ordering parameter by the

expansion about S =0.

H=_(_+ kK,L]ls + IkIk,nNJ]s2! +

+ higher terms

recall that: Limit H = Ao
S50

When _{)_ is the identity matrix, the above equations

show that
Ks —xs
7 & =T (the identity matrix)

or (Q/Ks)—' - @’KS
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As wéll, when the K-matrix is skew symmetric (skew

K= -K

hermitian),

the exponential form is orthogonal (unitary).

7

Consequently the _{) -matrix can be viewed as a
diagonal matrix composed of the eigenvalues of H; in
Ks
this case the orthogonal matrix & represents the

eigenvectors of H.

The exponential matrix may appéar in the literature
of mathematics (60) usually in connection with the
theory of lie groups. Applicafions'of the exponential
matrix have not been extensive in chemistry nor in any
area where mathematics is more a tool than a logical art.

Yet its properties indicate that it can be a useful tool.



