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ABSTRACT 

Th i s work involved preparat ion of c y c l i c a l dimeric or t r ime r i c ga l lazanes 

of general formula: (RNHGaHg) where n= 2 or 3 and R = E t , P r " , P r 1 , Bu", EuV 

s t 

Bu , or Bu . The e f f e c t of l a rger R group on r i n g s ize ( n value ) was de te r 

mined. Some, deuterated analogues of these compounds were a l so prepared. These 

were (EtNHGaD ) , (BuSffiC-al)^, and (PrHffiGaP ) 2 . 

Attempted prepara t ion of j#NHGaH2 r e su l t ed i n i s o l a t i o n of Ji^NH.GaH^.Me^. 

React ions were undertaken with jfeH. GaH 2 . NMe.j and i t p a r t i a l l y deuterated analogue 

^KITGaD9.IIf-Ie^, and shown to involve proton t rans fe r through a '+-centre t r a n s i t i o n 

s t a te . 

Add i t i ona l work on the e f f e c t s of R group on the n i t rogen w i th in the 

ga l lazanes involved preparat ion o f d imer ic ga l lazanes of general formula 

((CE 2) y.lT.GaH 2) where x = 2,3,k or 5. 

Add i t i ona l work on double r i n g systems invo lved preparat ion o f analogous 

alazanes o f general formula ( ( d l ) x N . A l H 2 ) n where x = 2,3,^,5 and n = 2 or 3. 
S im i l a r borazanes were l ikewise prepared and were o f general formula : 

( (CH 2 ) x l I . BH 2 ) n where x = 2,3,'+, 5 and n = 2 or 3. 
Adducts of general formula: ' (CH^NH.EMe^ where E = B, A l , Ga, In , 

were a lso prepared. Upon p y r o l y s i s these adducts y i e l d methane p lus mater ia ls 

of the general formula: ((CH )2N.EMe2)-j where E = Al,C-a, In . 

Cha rac t e r i za t i on of these mate r i a l s as wel l as gaseous r ea c t i on products was 

accomplished by i n f r a r ed spectroscopy. A d d i t i o n a l data was obtained by 60MHz and 

100MHz ' H nmr as wel l as mass spectrometry. Molecular weights were determined 

c r y o s c o p i c a l l y i n benzene and analyses f o r ga l l u im , aluminum or h y d r o l y s a b l e / 

hydrogen ca r r i ed out by standard means. 
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INTRODUCTION 

The chemistry of gallium hydride has developed quickly since 

the discovery of the stable adduct, Me^N.GaH^, trimethy1amine gallane (1). 

Previous to t h i s there had been a long search f o r uncoordinated gallium 

hydride and i t s d e r i v a t i v e s . 

Free gallium hydride, although o r i g i n a l l y believed to be a 

temperature stable dimer d i g a l l a n e . Ga 0H (2), has recently been shown 

to be a viscous polymeric l i q u i d which disproportionates at -15°C in t o 

gallium and hydrogen (3). On the basis that, t h i s material was benzene 

i n s o l u b l e , these workers suggested that i t was not dimeric, but rather, 

polymeric l i k e aluminum hydride. IR spectroscopy showed the 
-1 -1 c h a r a c t e r i s t i c strong oGa-H at 1980 cm and AGa-H at ca. 700 cm f o r 

th i s compound. In add i t i o n , analysis showed a gallium to hydrogen r a t i o 

of one to three, proving that t h i s was the long sought a f t e r (4) hydride 

of gallium. 

By a procedure analogous to that used f o r the preparation of 

gallium hydride, monochloro gallium hydride (GaH^Cl)^ was prepared and 

characterized as polymeric (5). Subsequently di c h l o r o gallium hydride 

( G a H C ^ ^ w a s prepared (6) by a d i f f e r e n t route and shown to be dimeric 

rather than polymeric. 

Lithium gallium hydride, LiGaH^, was f i r s t i s o l a t e d by F i n h o l t , 

Bond and Schlesinger (7) by the r e a c t i o n : 

Et 0 
4LiH(s) + GaCl 3(s) — — - LiGaH^ + 3LiCl(s) . 

This compound i s the only complex metal gallium hydride which i s stable 
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at' room temperature, and then only as an ether s o l u t i o n . Two other 

unstable analogues, both d i s p r o p o r t i n a t i n g at below -15°C, are 

AgGall. (8) andTl(GaH,)„ (9). The reaction of LiGaH, with water causes 4 4 3 4 

vigorous evolution of four moles of hydrogen. Hence anhydrous conditions 

are necessary for preparation and storage of t h i s compound. 

The GaH^ moeity forms complexes with a number of organo 

compounds of the group V and group VI elements, i n addition to adducts 

formed with the hydride ion (H ), as found.in LiGaH^. The preparation 

of these compounds i s summarized i n a recent review on gallium hydride 

and d e r i v a t i v e s (10). 

Trimethylamine. gallane, Me^N.GaH^, i s , i n comparison with other 

gallium hydrides, f a i r l y temperature stable and can r e a d i l y be sublimed 

at room temperature. It can be prepared e a s i l y by the reaction of excess 

l i t h i u m gallium hydride with timethylamine hydrochloride i n the 

following manner: 

LiGaH. (s) + Me 0NHCl(s) »- Me„N.GaH (s) + L i C l ( s ) 4- Ht<8^ 
4 3 3 3 

This compound was the f i r s t metal hydride to have s u f f i c i e n t vapor 

pressure to enable the gas phase IR spectrum to be recorded (11). The 

gas phase IR spectrum exhibited strong absorptions due. to \5 Ga-H at 

1853 cm ^ and SGa-H at 758 cm These assignments were confirmed by 

deuteration of the protons on the gallium atom. The s h i f t of the Ga-H 

s t r e t c h i n g and deformation, v i b r a t i o n s to lower frequency was by a 

factor of , as expected. 

Trimethylamine gallane has been shown by tensiometric 

t i t r a t i o n to add a molar equivalent of trimethylamine gas and form a 



2:1 adduct (11). Upon warming to room temperature t h i s m a t e r i a l reverted 

back to the s t a r t i n g m a t e r i a l with evolution of trimethylamine gas. 

Dimethylamine gallane was prepared recently by transamination 

of trimethylamine gallane with dimethylamine gas (12). 

Me2NH(g) + Me N.GaH (s) =• Me 3N(g) + Me^H.GaH (s) 

2Me2NH#'GaH (s) —»• 2H 2 + Me2N - GaH 2 

H 2Ga - NMe2 

Over a period of a few weeks Me2NHGaH evolved one molar equivalent of 

hydrogen to give the gallazane shown i n the second equation (above). I t 

was shown that t h i s adduct was dimeric in.benzene s o l u t i o n . From con

s i d e r a t i o n of the gas phase IR spectrum, i t was concluded, however, that 

this compound was monomeric i n the gas phase, having C 2 symmetry (12). 

The transamination r e a c t i o n with gaseous ammonia has recently 

been shown to proceed v i a hydrogen e l i m i n a t i o n to give a q u a n t i t a t i v e 

y i e l d of the polymeric s o l i d (NH^GaH,^)^ (13) according to the following 

r e a c t i o n : 

Me 3N.GaH 3(s) +• NH (g) -a- H^N.GaH^s) + Me N(g) + E^g) . 

A s i m i l a r r e a c t i o n with methylamine gas gave a mixture of two 

isomers of t r i m e r i c (MeNH.GaH2) according to the o v e r a l l equation: 

Me3N.GaH (s) + MeNH^g) — * MeNH.GaH^s) +'Me N(g) + H 2(g).. 

The present study involved an extension of t h i s s e r i e s of 

gallazanes, (RNH.GaH^^, i n an attempt to eluc i d a t e the various factors 



which govern the value of n, the degree of a s s o c i a t i o n . In a d d i t i o n to 

the use of primary alkylamines [R = E t , P r
1 1
, P r

1
, Bu

11
, Bu^", B u

S
, Bu

1
"], 

the t r a n s a m i n a t i o n r e a c t i o n using a n i l i n e was al s o i n v e s t i g a t e d . 

The second part of t h i s work was concerned w i t h a study o f the 

r e a c t i o n of c y c l i c i m i n e s , [ (CI^) NH where x = 2, 3, 4 or 5] w i t h t r i -

methylamine g a l l a n e . The imino g a l l a n e products [(CH ) NGaH„] , were 

expected to i n v o l v e some double r i n g s t r a i n and an i n v e s t i g a t i o n of t h i s 

e f f e c t was undertaken. A f u r t h e r extension of t h i s l a t t e r study i n v o l v e d 

the p r e p a r a t i o n and c h a r a c t e r i z a t i o n of s i m i l a r boron [CH^^NBB^]^ and 

aluminum [ ( C I ^ ^ A I H ] compounds. 

The r e a c t i o n of imine bases w i t h diborane to y i e l d adducts w i t h 

the g e n e r a l f o r m u l a , [CH^^NH.BH^, where x = 2, 3, 4, 5 was s t u d i e d i n 

1956 by Burg and Good ( 1 4 ) . Three of these adducts gave, on hydrogen 

e l i m i n a t i o n , m a t e r i a l s of composition:-(CI^) N.BI^ [where x = 3, 4, 5 ] . 

However, the a z i r i d i n e compound, x = 2, appeared to give ring-opened, 

polymeric p r o d u c t s , and was not i s o l a t e d . In 1969 S. A k e r f e l d t et a l (15) 

prepared the adduct a z i r i d i n e borane, as w e l l as a z i r i d i n o borazane. 

The l a t t e r compound was u n t i l then b e l i e v e d unpreparable. Simultaneously, 

a c r y s t a l s t r u c t u r e of the adduct (CI^^NH'M^ w a s reported ( 1 6 ) , i n 

a d d i t i o n t o a "*"H nmr and i n f r a r e d study of both the adduct and the 

a z i r i d i n o borazane (17). This l a t t e r study r e j e c t e d the previous 
p.NH2 

f o r m u l a t i o n of a r i n g opened product,! \ , i n the p r e p a r a t i o n of the 
L_BH 

adduct. (18) 

The p r e p a r a t i o n of a z i r i d i n o alazane and r e l a t e d c y c l i c imino 

alazanes has r e c e i v e d some recent a t t e n t i o n . The f i r s t p r e p a r a t i o n of 

the c y c l i c compounds dates back to 1962, when some I t a l i a n workers 



i s o l a t e d the p i p e r i d i n o and p y r o l i d i n o alazanes (19). Their preparation 

of a z i r i d i n o alazane was hampered by the fac t that t h i s m a t e r i a l 

decomposed with some violence at room temperature i n the absence of 

solvent. More r e c e n t l y , E h r l i c h (20) discussed i n d e t a i l the preparation 

and subsequent r i n g opening of t h i s m a t e r i a l ; which he suggests i s 

polymeric. The present study on c y c l i c imino boremones and alaiemev has a 

twofold purpose. F i r s t l y , as i n d i c a t e d p r e v i o u s l y , to compare these 

compounds with the gallium d e r i v a t i v e s ; and secondly to reinv e s t i g a t e 

and extend the previous s t u d i e s . 

The f i n a l part of t h i s work involved preparing the a z i r i d i n o 

metal dimethyl d e r i v a t i v e s , [ (CH^^^MM^^ where M = B, A l , Ga, In, i n 

order to i n v e s t i g a t e the e f f e c t , on the degree of as s o c i a t i o n , of 

rep l a c i n g the hydrogens on the group I I I atom with methyl groups. 



EXPERIMENTAL . . 

A. Experimental Techniques 

(a) Desiccation 

A l l gases were dried f i r s t by f r a c t i o n a t i n g under high vacuum 

through a trap at -20°C, to remove large amounts of water, and then 

condensed at-196°C into one limb of a drying p i s t o l , see Figure 1, packed 

with a mixture of glass-wool and phosphorus pentoxide. The gas i s passed 

through the phosphorus pentoxide by a l t e r n a t e l y cooling one limb and then 

the other limb. The dried gases are then stored at less than one 

atmosphere i n large glass bulbs attached to the vacuum l i n e . 

A l l solvents were drie d and r e d i s t i l l e d before use; d i e t h y l 

ether over l i t h i u m aluminum hydride, benzene and cyclohexane over 

molten potassium. The amine ligands which were commercially a v a i l a b l e 

were dried by r e f l u x i n g over CaR^ followed by d i s t i l l a t i o n . 

S o l i d components were p u r i f i e d by sublimation, e i t h e r by 

vacuum bulb-to-bulb sublimation or as with trimethylamine hydrochloride, 

sublimed to the cooled c e n t r a l f i n g e r of the apparatus shown i n Figure 2. 

Trimethylamine gallane was sublimed, under dynamic vacuum from the f l a s k 

to the large v e r t i c a l tube, marked as A, of the apparatus, which was 

cooled to -80°C, shown i n Figure 3. 

A l l glassware was washed with acetone, oven dri e d , evacuated 

and f i l l e d with nitrogen before use. A l l nitrogen used was Canada 

Li q u i d A i r "L" grade, p u r i f i e d nitrogen. ^ 

The hydride and a l k y l d e r i v a t i v e s , because of t h e i r r e l a t i v e 

i n s t a b i l i t y and extreme r e a c t i v i t y with oxygen or water vapour were 
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Me 3NGaH 3 Sublimer 

Figure 3 



a l l p r e p a r e d and h a n d l e d i n e i t h e r a h igh-vacuum sys t em o r a n i t r o g e n 

f i l l e d d r y b o x . The h i g h vacuum sys tem d e v e l o p e d f o r t he work i s shown 

i n F i g u r e 4 . A d o u b l e - s t a g e r o t a r y o i l pump (Welch S c i e n t i f i c C o . ) and 

an e l e c t r i c a l l y h e a t e d s i n g l e s t a g e mercu ry d i f f u s i o n pump were used to 

-4 

o b t a i n a vacuum o f g r e a t e r t han 10 mm of Hg . 

The d r y box (Kewaunee S c i e n t i f i c Equ ipment ) had a s p e c i a l f o r t 

chamber t h a t c o u l d be e v a c u a t e d by a d o u b l e - s t a g e r o t a r y o i l pump and 

t h e n f i l l e d w i t h d r y n i t r o g e n t o e n s u r e the p u r i t y o f the a tmosphere i n 

the b o x . . The d ry box i s a l s o c o n n e c t e d t o a c i r c u l a t i n g pump wh ich 

c i r c u l a t e s the b o x ' s a tmosphere t h rough a d r y i n g t r a i n c o n t a i n i n g 

m o l e c u l a r s i e v e ( F i s h e r t ype 5A) and a c o p p e r f u r n a c e t o remove any 

oxygen . _ 

(b) R e a c t i o n - F i l t r a t i o n A p p a r a t u s 

The a p p a r a t u s shown i n F i g u r e 5 f ound e x t e n s i v e use i n our wo 

The a p p a r a t u s i s e v a c u a t e d , f i l l e d w i t h d r y n i t r o g e n , and the r e a c t a n t s 

a re p l a c e d i n f l a s k A . A d d i t i o n a l r e a g e n t s may be added d u r i n g the cou 

o f a r e a c t i o n by r o t a t i n g the dumper tube B_, the r e a c t i o n m i x t u r e i s 

s t i r r e d by a m a g n e t i c b a r C_. The p r o d u c t s , i f gaseous may be removed b 

a T o p l e r pump t h r o u g h one o f the s t o p c o c k s , o r i f i n s o l u t i o n can be 

f i l t e r e d t h rough the s i n t e r e d d i s c p_ (medium p o r o s i t y ) by c o o l i n g o r 

e v a c u a t i n g the r e c e i v e r f l a s k Ê . 

(c ) M o l e c u l a r We igh ts 

M o l e c u l a r w e i g h t s were d e t e r m i n e d by the c r y o s c o p i c method , 

t he d r y box an a c c u r a t e l y known w e i g h t o f p u r e compound was d i s s o l v e d i 

a we ighed sample o f pu r e benzene (about 10 m l ) . The benzene s o l u t i o n 

was p o u r e d i n t o the m o l e c u l a r w e i g h t a p p a r a t u s , see F i g u r e 6, and remov 



Vacuum L i n e , P a r t A 

Figure 4 



from P a r t A 



Figure 5 
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M o l e c u l a r Weight Apparatus 

Figure 6 



from the.dry box. A slow stream of pure nitrogen was flushed through the 

apparatus as i t was cooled i n an i c e bath. The fre e z i n g point of the 

s o l u t i o n was recorded and compared with that of pure benzene solvent and 

with standard s o l u t i o n s of biphenyl i n benzene solvent. The following 

e m p i r i c a l formula was used to c a l c u l a t e the molecular weights. 

[K^]X[weight of sample (gms)] 
molecular weight = 

[weights of benzene solvent (gms)]X 
[change i n temperature (°C)] 

K.£ = f r e e z i n g point depression constant 5.20°C per molal. 

(d) Spectroscopy 

: I n f r a r e d spectroscopy was used throughout t h i s work f o r semi

q u a n t i t a t i v e a n a l y s i s and for s t r u c t u r a l determination of compounds. 

Infrared s p e c t r a were recorded on a Perkin-Elmer Model 457 spectrometer 

(4000 - 250 cm The observable range f o r both l i q u i d and gas samples 

was between 4000 and 400 cm ^ because KBr windows were used. 

For gaseous or v o l a t i l e samples a 10 cm gas c e l l was used with 

KBr windows. For l i q u i d or s o l u t i o n samples a 0.05 cm f i x e d path length 

s o l u t i o n c e l l with KBr windows was used and a variable-thickness c e l l 

f i l l e d with pure solvents (usually benzene) was placed i n the reference 

beam to. compensate f o r solvent absorption. Because of the i n s t a b i l i t y 

of most of the hydride adducts prepared, a l l i n f r a r e d s o l u t i o n c e l l s were 

loaded i n the dry box and a spectrum run as r a p i d l y as p o s s i b l e . 

As with i n f r a r e d spectroscopy, nuclear magnetic resonance 

spectroscopy, NMR, was used as a t o o l to i n v e s t i g a t e reactions and f o r 

s t r u c t u r a l determination. The instruments used were a Varian A-60 and 

Varian T̂ -60 both operating with a radiofrequency of 60 megacycles per 
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second and a Varian HA-100 which operates at a radiofrequency of 100 

megacycles per second. Most samples were run i n benzene s o l u t i o n with a 

concentration of about 0.1 M to 1 M. The benzene proton s i g n a l was used 

as an i n t e r n a l , standard and was defined as T = 2.840 p.p.m. Tetra-

methylsilane, TMS, was used as an external standard on several samples 

and i s defined as = 10.000 p.p.m. 

The NMR sample tubes were s p e c i a l l y f i t t e d with a flame-seal 

c o n s t r i c t i o n and a B-10 q u i c k - f i t cone so that the samples could be loaded 

and sealed under an atmosphere of nitrogen. As with the i n f r a r e d samples, 

the NMR spectra were run as r a p i d l y as possible since steady decomposition 

at room temperature often impeded prolonged i n v e s t i g a t i o n . 

(e) Elemental Analysis  

(i ) Active Hydrogen: 

Active hydrogen was measured by pla c i n g a small weighed amount 

of compound i n a round bottom f l a s k i n the dry box, attaching a stopcock 

adaptor and evacuating on the vacuum l i n e . A small volume of degassed, 

d i l u t e aqueous HNO^ s o l u t i o n was then condensed onto the s o l i d at -196°C. 

The mixture was allowed to reach room temperature and l e f t to react f o r 

about one hour with s t i r r i n g . 

Me 3NGaH 3 + 3H + — Me3N + G a + 3 + 3H 2 

The volume of hydrogen gas, non-condensable at -196°C, was then measured 

using a Topler pump. The amount of active hydrogen i n the compound was 

then cal c u l a t e d . 

This aqueous s o l u t i o n was made up to.a known volume and an 

aliqu o t was used i n the determination of gallium as i n d i c a t e d below. 
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( i i ) Gallium (Aluminum): 

A measured aliquot of the s o l u t i o n prepared i n section ( i ) was 

measured out into a beaker. The s o l u t i o n was f i r s t made n e u t r a l with 

d i l u t e ammonia s o l u t i o n , then was made s l i g h t l y a c i d i c , pH 5-7, with d i l u t e 

aqueous HC1. The s o l u t i o n was then heated to 80°C and!a s l i g h t excess of 

a 5% s o l u t i o n of 8-hydroxyquinoline i n g l a c i a l a c e t i c acid was added 

followed by an aqueous s o l u t i o n of saturated ammonium acetate u n t i l pre

c i p i t a t i o n of Ga(C H NO) i s complete. A f t e r digestion at 80°C f o r one 

hour, the yellow p r e c i p i t a t e was c o l l e c t e d i n a f i l t r a t i o n c r u c i b l e and 

the p r e c i p i t a t e washed, f i r s t with hot, then cold water. The p r e c i p i t a t e 

was then d r i e d at 120°C, weighed and i t s gallium content c a l c u l a t e d from 

the formula Ga(CgHgNO)^ which i s 13.89% g a l l i u m b y weight. This method 

has been found to give accurate determinations f o r a minimum concentration 

of 10 mg of gallium i n 50 ml of s o l u t i o n . Aluminum was determined 

s i m i l a r l y as i t s 8-hydroxyquinolate. 

B. Preparative 

(a) Preparation of Gallium T r i c h l o r i d e (23) GaCl^ 

Gallium t r i c h l o r i d e xjas prepared by d i r e c t combination of the 

elements. Pure chlorine gas (Matheson Ltd.) was dried by passing through 

concentrated sulphuric acid i n a bubbler and was then passed into the a l l 

glass apparatus shown i n Figure 7. The gallium metal, about 15 gms, 

(A l f a Inorganics Inc.) placed i n A soon melted on warming with a bunsen 

burner, and reacted with the c h l o r i n e , f i r s t to give a colo u r l e s s l i q u i d , 

g a l l i u m t e t r a c h l o r o g a l i a t e (21), Ga 2Cl^ (melting point 170.5°C (22)). On 

adding more chlorine t h i s l i q u i d Ga 9Cl, disappeared and the l i q u i d gallium 



Gallium Trichloride Apparatus 

Figure 7 
ca 



burned w i t h a grey-white flame g i v i n g a v o l a t i l e white s o l i d , g a l l i u m 

t r i c h l o r i d e G a C l^, (melting p o i n t 79°C). 

2Ga(l)'+ 2 C l 2(g) ^ (Ga
+
)(GaCl 4") 

i 
+
 1 

(Ga ) ( G a C l 4 )(1) + C l 2 ( g ) — — * G a 2 C l 6 

The r a t e of flow of c h l o r i n e gas and r a t e of he a t i n g the molten 

g a l l i u m were adjusted so that most of the v o l a t i l e GaCl^ was deposited i n 

the cooled r e c e i v e r boat C!. A f t e r a l l the g a l l i u m had reacted ( e s s e n t i a l l y 

100%) , any sublimate i n A was d r i v e n i n t o C_ by warming and then flame 

s e a l i n g the c o n s t r i c t i o n at B_. The apparatus was then evacuated and flame 

se a l e d at F_. The crude h a l i d e was then resublimed i n t o the ampoules E_ 

and then these were sealed at t h e i r c o n s t r i c t i o n s . The g a l l i u m t r i c h l o r i d e 

was found to remain s t a b l e i n d e f i n i t e l y when st o r e d t h i s way. 

(b) P r e p a r a t i o n of L i t h i u m G a l l i u m Hydride ( 7 ) , LiGaH^ 

Et 0 
4LiH + GaCl_ = *• LiGaH. + 3 L i C l 

3 room Temp. 4 

An ampoule of GaCl^, was weighed and broken open i n the dry box 

and p l a c e d i n a c o n i c a l f l a s k . The g a l l i u m t r i c h l o r i d e was then d i s s o l v e d 

i n d i e t h y l ether and the ampoule washed s e v e r a l times to ensure q u a n t i t 

a t i v e removal of GaCl^. The empty ampoule was reweighed and the weight 

of GaCl^ determined. The e t h e r e a l s o l u t i o n of GaCl^ and a l l the washings 

were now added to the n i t r o g e n f i l l e d r e a c t i o n - f i l t r a t i o n apparatus (see 

F i g u r e 5) and the s o l u t i o n brought up to about 150 m l . 

From the weight of GaCl c a l c u l a t e d , (8.59 gms; 48.8 mmoles) 



,20 

the weight of about 16 molar e q u i v a l e n t s of f i n e l y ground l i t h i u m hydride 

(7.45 gms; 938 mmoles) ( A l f a Inorganics I n c . ) , enough f o r a f o u r - f o l d 

e x c e s s , was weighed out under n i t r o g e n i n t o the dumper tube. 

The r e a c t i o n f l a s k was cooled to -50°C i n an a c e t o n e - s o l i d C0 o 

bath and the dumper tube r o t a t e d upwards to permit the slow a d d i t i o n of 

Li H to the r e a c t i o n f l a s k over a p e r i o d of about t h i r t y minutes. A 

bubbler was attached to the apparatus so that the r e a c t i o n could be 

c a r r i e d out under a constant pressure of one atmosphere of n i t r o g e n . 

The coolant was allowed to warm up to room temperature and the mixture 

was s t i r r e d f o r about f i f t y hours to ensure.complete r e a c t i o n . 

The r e s u l t i n g r e a c t i o n mixture was f i l t e r e d through the g l a s s 

s i n t e r e d d i s c and a c l e a r c o l o u r l e s s f i l t r a t e r e s u l t e d . This f i l t r a t e 

was then t r a n s f e r r e d , i n the dry box, to a c o n i c a l f l a s k f i t t e d w i t h a 

break s e a l and an extended neck which was flame sealed f o r s t o r a g e . The 

LiGaH^ ether s o l u t i o n was observed to be i n d e f i n i t e l y s t a b l e i f st o r e d i n ' 

a l l g l a s s ampoules under a n i t r o g e n atmosphere and cooled below 0°C. 

L i t h i u m g a l l i u w d e u t e r i d e , LiGaD^, was prepared and s t o r e d i n 

e x a c t l y the same manner as LiGaH^, only l i t h i u m d e u t e r i d e , L i D , ( A l f a 

I n o rganics Inc.) was s u b s t i t u t e d i n the p r e p a r a t i o n f o r l i t h i u m h y d r i d e , 

(c) P r e p a r a t i o n of Trimethylamine Gallane ( 1 ) , Me^NGaH^ 

Et 0 
LiGaH. + Me NHC1 * Me NGaH + L i C l + H 0 

4 3 room temp. 3 3 2 

A known amount of l i t h i u m g a l l i u m hydride (2.38.gms; 29.4 mmoles) 

i n ether s o l u t i o n was placed i n the r e a c t i o n - f i l t r a t i o n apparatus, see 

Figure 5. S l i g h t l y l e s s than the s t o i c h i o m e t r i c amount of trimethylamine 

h y d r o c h l o r i d e , Me_NHCl, (2.644 gms; 27.6 mmoles) ( A l f a Inorganics Inc.) 
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d r i e d and p u r i f i e d by sublimation, was placed i n the dumper tube of the 

re a c t i o n vessel which contained a nitrogen atmosphere. 

The ether s o l u t i o n of LiGaH, was f i r s t cooled to -50°C i n a drv-
4 * 

i c e cooled acetone bath, as the trimethylamine hydrochloride was added 

over a period of about 10 minutes. Then the s o l u t i o n was allowed to warm 

up to room temperature and s t i r r e d f o r about four hours' to ensure complete 

reactio n . 

The s o l u t i o n was next f i l t e r e d through the glass s i n t e r and the 

receiver f l a s k containing the c l e a r ether s o l u t i o n was attached to the 

sublimation apparatus, see Figure 5. This apparatus was attached to the 

vacuum l i n e and the ether was pumped o f f at -50°C. When most of the ether 

was removed, the residue was allowed to warm up to room temperature while 

the large bulb part of the sublimation apparatus was immersed i n an 

acetone-solid CO^ slush bath. The pure trimethylamine gallane was vacuum 

sublimed as long needle l i k e c r y s t a l s i n t o the cooled r e c e i v e r . The. 

o v e r a l l y i e l d i n going from gallium t r i c h l o r i d e to trimethylamine gallane was 

about 60%. 

„ i The deuterated compound, trimethylamine t r i d e u t e r o g a l l a n e , Me^NGaD^ 

was prepared i n the same manner only l i t h i u m gallium deuteride was 

s u b s t i t u t e d for l i t h i u m gallium hydride. Trimethylamine alane , Me^NAlH^, 

was also obtained s i m i l a r l y from commercially a v a i l a b l e L i A l H ^ and t r i 

methylamine hydrochloride. 

(d) Preparation of Alkylamino Gallazanes (RNHGaH^^ 

As the procedures are s i m i l a r f or preparation of a l l the gallazane 

compounds, only the procedure for the ethylamino compound w i l l be given as 

an example. 
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benzene. A weighed q u a n t i t y of this; s o l u t i o n was removed from the cryo-

s c o p i c molecular weight apparatus and h y d r o l y s e d . The volume of hydrogen 

evolved on h y d r o l y s i s was then determined. The g a l l i u m content was 

determined g r a v i m e t r i c a l l y by standard procedures. The d e u t e r i o d e r i v a t i v e , 

(EtNHGaD^)^*
 w a s

 obtained by an e x a c t l y s i m i l a r procedure to the above, 

but u s i n g Me^NGaD^ as the s t a r t i n g m a t e r i a l . Experimental d e t a i l s f o r the 

other alkylamino g a l l a z a n e s are summarized i n t a b l e 1. 

(e) Reaction of Me„NGaH„ w i t h a n i l i n e (C,HCNH„) 
J J p J z 

A n i l i n e (.405 g, 4.352 mmoles) was condensed onto trimethylamine 

g a l l a n e (.573 g, 4.351 mmoles) at -196°C and allowed to warm to room temperature 

A f t e r complete r e a c t i o n (about two days) the f l a s k was cooled to -196°C and 

the volume of evolved hydrogen measured (Found: 92.5 ml; C a l c . 97.8 m l ) . 

The mixture was then allowed to warm t o room temperature and a t r a c e of 

Me^N was gas d e t e c t e d . The white s o l i d p roduct, Me^NGaH^NH , was mono-' 

meric i n benzene (Found: 224, C a l c . 223) and gave the f o l l o w i n g a n a l y s i s : 

Ga: Found: 31.9%, C a l c : 31.2%. > H a c t i v e : Found: 1.12%, C a l c : 1.12%. 

Reaction of a two m o l a l q u a n t i t y of a n i l i n e l e d to an i n s o l u b l e polymeric 

m a t e r i a l . I t evolved a 2 molal q u a n t i t y of hydrogen as w e l l as a m o l a l 

q u a n t i t y of Me^N. 

Reaction of c^NHGaR^NMe^ w i t h Methylamine 

A measured amount of methylamine gas (42.8 ml) was condensed 

onto a weighed q u a n t i t y of (JiNHGaH^NMe^ (.426 g, 1.878 mmoles) at -196°C 

and t h i s mixture was then permitted t o warm to room temperature. No 

hydrogen was e v o l v e d . The volume of trimethylamine gas was measured 

(Found: 92.4 m l , C a l c : 91.8 ml) a n d . i t s p u r i t y was checked by gas phase 

i n f r a r e d s p e c t r o s c o p y . This product, as w e l l as the products r e s u l t i n g 



Table 1 
A n a l y t i c a l d a t a ' f o r c y c l o g a l l a z a n e compounds prepared by the r e a c t i o n : -

Me.NGaH. + RNH„ (RNHGaH.) + H_ + Me.N 
j j / 2. n l J 

Compound Phase Moles H 2 per Moles Me3N Degree of assoc A n a l y s i s 

at 25°C mole RNH2 • per mole RNH2 i a t i o n , n Found % (RNHGaH?) r e q u i r e s 7J per mole RNH2 
Ga Hydrolysable 

hydrogen 
Ga Hydrolysable 

hydrogen 

EtNHGaH2 Viscous 
l i q u i d 

1.01 1.01 2,92 60.1 1.73 60.2 1.73 

Pr
n
KHGaH 2 Viscous 

l i q u i d 
0.98 1.02 2.64 53.5 1.53 53.7 1.54 

Bu
I1
NHGaH2 Viscous 

l i q u i d 
1.00 1.09 2.57 48.4 1.37 48.5 1.39 

Pr
X
NHGaH 2 Mobile 

l i q u i d 
0.92 0.98 1.91 53.6 1.55 53.7 1.54 

Bu
X
NHGaH2 Viscous 

l i q u i d 
0.95 1.03 2.15 48.4 1.38 48.5 1.39 

• 

Bu
S
NHGaH2 Mobile 

l i q u i d 
. 0.92 1.02 1.83 48.5 1.40 48.5 1.39 

Bu
t
NHGaH2 White 

s o l i d 
0.97 1.02 1.83 48.4 1.37 48.5 1.39 



from the reac t i o n s : a n i l i n e plus Me^NGaD^, a n i l i n e plus Me NGaH , 

methylamine plus (^NHGaD^NMe^, and methylamine plus (JlNHGaH^NMe^ were 

characterized by i n f r a r e d and ̂"H nmr spectroscopy. 

(f) Preparation of C y c l i c Imino Gallazanes 

Since the procedure f o r the preparation of these "double r i n g 

s t r a i n " gallazanes i s standard throughout the s e r i e s , and since the 
I 

technique, and apparatus are e s s e n t i a l l y the same as those used i n pre

paration of the simple gallazanes, only a short, procedure for a z i r i d i n o 

gallazane w i l l be given as an example. 

Preparation of A z i r i d i n o Gallazane . 

A z i r i d i n o gallazane was prepared by condensing a z i r i d i n e gas 

(23.8 ml; 1.50 mmoles) onto trimethylamine gallane (0.140 g; 1.60 mmoles 

at -196°C, and allowing the mixture to warm slowly to room temperature. 

A f t e r complete reaction (about 1 h) the f l a s k was cooled to -196°C, and 

the volume of evolved hydrogen measured (Found: 23.6 ml, Calc: 23.8 ml). 

The mixture was again brought to room temperature and.the volume of 

trimethylamine gas was measured (Found: 24.4 ml, Calc: 23.8 ml). The 

pur i t y of the Me^N was checked by i t s gas phase i . r . spectrum. The 

white, c r y s t a l l i n e s o l i d product was analysed for hydrolysable hydrogen 

and f o r gallium by the previously discussed methods. The a n a l y t i c a l dat 

for the compounds prepared i n t h i s s e r i e s are given i n table 2. 

(g) Preparation of C y c l i c Imino Alazanes 

The procedure for the preparation of t h i s s e r i e s of alazane 

compounds i s standard throughout the s e r i e s . Hence the p y r r o l i d i n o 

alazane preparation, only i s given as an i l l u s t r a t i v e example. 



Tabie 2 
Analytical data for imine cyclogallazane compounds prepared by the reaction:-

. Me3NGaH3 • + (dft2)xNH ===== ((CTI2)x1lGaII2)n + H2 + Meyi 

Compound Phase Moles H2 per 
mole imine 

Moles MeoN Degree of association ,1 Analysis 
at 25*C 

Moles H2 per 
mole imine per mole imine n. Found % Theory % 

1 Ga IJydrol. 
j hydrogen 

Ga Hydrol. 
hydrogen 

'CH2)2NGaH2 White solid 
1.01 . 1.00 2.00 (2.56) 

i 
\ • 

62.1 1.76 61.1* 1.76 

(CH2)3NGaH2 White solid 0.99 1.01 2.00 5̂ .1 1.55 5̂ .5 1.56 

;CH2)^IGaH2 White solid 0.99 0.99 2.02 |̂ 9.0 
! i 

1.38 '+9.2 l.'H 

;CH2)5NGaH2 White solid 0.99 0.98 1.89 |̂ 3.9 1.26 1.28 

* Degree of association immedtately after dissolving imine cyclogallazane in benzene. 

\ 



27 

Preparation of P y r r o l i d i n o Alazane (CH„).NA1H„ 
t t- 4 2 

The b i s trimethylamine alane used i n the reaction was prepared 

by condensing excess Me^N gas onto trimethylamine alane at -196°C. Af t e r 

e q u i l i b r a t i o n pf t h i s system at room temperature, the excess trimethylamine 

was removed at -20°C, leaving the b i s adduct. 

P y r r o l i d i n e (35.0 ml, 1.559 mmoles) was condensed onto b i s 

trimethylamine alane (0.228 g; 1.542 mmoles) dissolved i n 5 ml of dry 

benzene. This mixture was permitted to warm to room temperature. A f t e r 

the evolution of hydrogen had ceased, the f l a s k was cooled to -196°C and 

the volume of hydrogen measured (Found: 35.2 ml; Calc: 35.0 ml). The 

benzene solvent and trimethylamine gas from the reaction were then removed 

at -20°C to leave a white c r y s t a l l i n e s o l i d i n the reaction v e s s e l . 

Analyses for aluminum and hydrolysable hydrogen were performed only on 

the a z i r i d i n o alazane since most of these compounds had been previously 

prepared and analysed (23). Experimental data for t h i s s e r i e s of compounds 

i s summarized i n table 3. 

(h) Preparation of C y c l i c Imino Borazanes 

The procedure for the preparation of these borazane compounds 

i s standard for three of the d e r i v a t i v e s , (CH ) NBH where x = 3, 4, 5 

and therefore the preparation of p y r r o l i d i n o borazane only w i l l be given. 

The preparation of a z i r i d i n o borazane d i f f e r s s l i g h t l y and w i l l be 

described l a t e r . 

Preparation of P y r r o l i d i n o Borazane 

P y r r o l i d i n o borazane was prepared by condensing p y r r o l i d i n e 

(100 ml, 4.45 mmoles) on a previously condensed sample of diborane 

(50 ml, 2.22 mmoles) i n a 500 ml break-seal f l a s k . The mixture was 



Table 3 
A n a l y t i c a l data f o r iminC cycloalazane; compounds prepared by the r e a c t i o n : -

(Me 3N) 2AlH 3 + (CH 2) XNH - ((CH 2) xKAlH 2) n+ H 2 + 2 M e 3 N 

Compound Phase, 
at 2$*C 

Moles H per' 
mole imine 

Molecular .. j 
weight i 

j 

Degree of a s s o c i a t i o n 
n 

(CH 2) 2NA1H 2 White 
s o l i d 

1.02 298 4.20 (3.14*) 

(CH 2) 3?LA1H 2 White 
s o l i d 

1.00 263* 3.06* 

(CH^NAIIL. White 
s o l i d 

1.01 308 3.10 

(CH 2) 5NA1H 2 White 
s o l i d 

0.98 243 2.17 

A n a l y t i c a l data f o r imino cycloborazane compounds prepared by the r e a c t i o n : -

H H 6 + (CH 2) XMI (( C H 2 ) y H B H ? ) n + H 2 

Compound Phase 
at 25*C 

j Holes IT2 per 
i mole imine 
! 

Molecular 
weight 

Degree of a s s o c i a t i o n , 
n 

CCH 2) 2KBH 2 White 
s o l i d 

— 165 3.00 

(CH 2) 3NBJI*' White 
s o l i d 

0.97 134 1.9*+ 

(CH 2)^JB.H 2 White 
s o l i d 

1.03 166 2.00 

(CH 2)ra.H 2 White 
s o l i d 

1.08 196 2.02 

• 

* Private communication Dr. B. S. Thomas. 



allowed to warm to room temperature to form the l i q u i d adduct. The bulb 

was then cooled and sealed o f f under vacuum. I t was then placed i n an oven 

at 128°C f o r 3 1/2 hours to pyrolyse the adduct. A f t e r p y r o l y s i s was com

ple t e , the f l a s k was attached to the vacuum l i n e , cooled to -196°C and the 

f r a g i l e break-seal ruptured with a bar magnet. The evolved hydrogen was 

measured (Found: 103 ml, Calc: 100 ml). The product was then warmed to 

room temperature and checked for non-condensibles. Experimental data f o r 

these compounds i s given i n the lower part of table 3. 

( i ) Preparation of A z i r i d i n o Borazane 

This compound was prepared by condensing a z i r i d i n e (100 ml, 

4.45 mmoles) onto a sample of diborane (50 ml, 2.22 mmoles) at -196°C. 

About 5 ml of s t r i c t l y dry d i e t h y l ether was condensed onto t h i s mixture 

and the mixture warmed to -130°C. At t h i s point the mixture was per

mitted, by means of a propane slush bath, to warm slowly to -78°C. The 

ether was removed g i v i n g a product, which when solvent free was a white 

c r y s t a l l i n e s o l i d . The i n f r a r e d and "̂H nmr spectra of t h i s adduct agreed 

with those found i n the l i t e r a t u r e (18). The adduct was dissolved i n 

benzene and refluxed under an atmosphere of dry nitrogen f o r three to 

four hours. The a z i r i d i n o borazane product was separated by removing 

the benzene solvent at -20°C. The IR and nmr spectra recorded f o r 

the a z i r i d i n o borane obtained by t h i s method, agreed with those found 

i n the l i t e r a t u r e (18). 

Attempts to prepare t h i s complex by a p y r o l y s i s method using the 

reaction of a z i r i d i n e with e i t h e r Me^N.BH^ or diborane f a i l e d to give the 

desired product. These reactions were non-stoichiometric, y i e l d i n g 40% 

of the t h e o r e t i c a l hydrogen and 77% of the Me^N i n the f i r s t case and 

only 54% of hydrogen i n the l a s t . The products i n each of these cases 



gave l i q u i d plus s o l i d but were not soluble i n benzene to any s i g n i f i c a n t 

extent. 

(j) Preparation of A z i r i d i n e Gallium trfmethyl and A z i r i d i n o  
Gallium dimethyl 

The adduct a z i r i d i n e gallium trimethyl was prepared by condensi: 

a z i r i d i n e (75.5 ml, 3.36 mmoles) onto gallium trimethyl (75.5 ml, 3.36 mm< 

at -196°C and warming to room temperature. The adduct was a clear mobile 

l i q u i d which was stable to methane e l i m i n a t i o n at room temperature. 

The a z i r i d i n o gallium dimethyl was prepared by pyrolysing a 

0.413 g sample of the previously prepared adduct at 110°C f o r 5 hours i n 

a break-seal bulb. A f t e r the f i v e hour reaction time the bulb, now con

t a i n i n g a white s o l i d (mp 184°C).was connected to the high vacuum l i n e , 

cooled to -196°C, the glass break seal ruptured and the methane measured 

(Found: 56.8 ml, Calc: 58.8 ml). The product was then warmed to room 

temperature and checked for the presence of condensibles. 

The a n a l y t i c a l data for the other compounds of t h i s s e r i e s i s 

given i n table 4. 

(k) Preparation of A z i r i d i n e ^NM 

Since commercial samples of a z i r i d i n e were not a v a i l a b l e the 

preparation of t h i s m a t e r i a l was undertaken using the following route. 

The methods of Wenker (24) Leighton (25) and Reeves (26) were a l l t r i e d 

but gave lower y i e l d s than the following method. 

96% H 2 S 0 4 ( 1 0 9 - 9 S» 1 > 0 ^ m ° l e s ) w a s added d i r e c t l y to a s t i r r e d 

sample of ethanolamine (65.7 g, 1.07 moles). This mixture was then heated 

to 100°C under water a s p i r a t o r vacuum to give a q u a n t i t a t i v e y i e l d of 

ethonolamine s u l f a t e according to the following scheme: 



Table 4 
A n a l y t i c a l data f o r imine metal trimethyl and imino metal dimethyl compounds 

prepared by the following: 

(CHg) NH IZZZZ Me 3M.HH(CK 2) 2 

Me3M.KH(CH ) 2 (Me 2M.N(CH 2) 2) n + CH^ 

Compound Phase at 
25*C 

Moles methane 
per mole imine ; 

j 

P y r o l y s i s : 
temperature 

Degree of as s o c i a t i o n 
n 

Me 3GaM-l(CH 2) 2 ; mobile 
l i q u i d 

110*C,5h 

Me 2GaH(CH 2) 2 | white : 
! s o l i d 

0.97 2.88 

Me 3EKH(CH 2) 2 

• 

'. mobile 
l i q u i d 

• 
180 C,12h 

Me 2EN(CH 2) 2 v/hite 
s o l i d 

0.68 polymeric s o l i d s 
and l i q u i d s 

M e 3 A l M ( C H 2 ) 2 mobile, 
l i q u i d 

evolves CH^ : 

at r . t . 
60*,4h 

Me 2AlK(CH 2) 2 v/hite . 
s o l i d 

. " " 0.88 ! 
• | 

2.96 

iMeoInKH(CH ) 0 i i ?
 1  

mobile 
l i q u i d 

evolves CH^ •• 
at r . t . 

80'c,12h 

Me In!Sf(CII ) 
i 2 2 2 

white 
s o l i d 

' 0.70 ' '3.00* 

*Private communication Dr. B. S. Thomas. 



- H0CH 2CH 2NH 2 + H2SO 

The white s o l i d product was ground with 95% EtOH, suction f i l t e r e d and 

dried i n a vacuum descicator over 

The ethonolamine s u l f a t e was then placed i n a 1000 ml round 

bottomed f l a s k surmounted by a s t i l l head and water condenser set for 

downward d i s t i l l a t i o n and o v e r l a i d with a 40% NaOH s o l u t i o n (95 g NaOH, 

143 g H 20). The f l a s k was heated with an open flame and the d i s t i l l a t e 

c o l l e c t e d r a p i d l y i n a w e l l cooled 500 ml rece i v e r . Once d i s t i l l a t i o n 

was complete, enough KOH to obtain a saturated s o l u t i o n was added and the 

f l a s k stored i n the f r i d g e overnite. The upper organic layer was then 

removed and dried over CaH2/K0H. The product, when water and ethanol 

free was stored over CaH 2 at +5° u n t i l required. ( Y i e l d ~ 1 5 % ) . 

Azetidine (27) f CHH • 

Azetidine was prepared by the same procedure as above but 

s t a r t i n g with propanolamine instead of ethanolamine. The y i e l d was 

about 1%. 

H 20 + CH 2-CH 2 

O.-SO3- N 1 I3 



DISCUSSION 

Part 1 

The ease of intramolecular hydrogen e l i m i n a t i o n from adducts 

of the type MeNH^, EH^, where E i s B, A l or Ga follows 1' the sequence 

B < Ga < A l as i l l u s t r a t e d i n fi g u r e 8. Note that 90° |(28) i s required 
i 

for hydrogen e l i m i n a t i o n with boron* MeNH^GaH^ eliminates hydrogen at 

room temperature (13) , while MeNH^AlH^ eliminates two molar equivalents 

of hydrogen at -20° (29). Stone (30) explains t h i s sequence i n terms of 

the r e l a t i v e e l e c t r o - n e g a t i v i t y values of the atoms involved. 
5+H H5- 6+H H5-

| I V S 
Me-N >- G-H y Me-N > E ~H _ >- Me-N — E - H + H 

I \ * I \ \ A I 2 

H H . H H H H 

In the above scheme the hydrogen attached d i r e c t l y to the 

nitrogen atom i s considered to lose e l e c t r o n density on formation of an 

el e c t r o n donor bond by the donor moeity. Hydrogen attached to the 

acceptor atom, E, simultaneously increases i n ele c t r o n density and an 

e l e c t r i c a l s t r a i n i s thus created i n the adduct. The s t r a i n i s r e l i e v e d 

when hydrogen e l i m i n a t i o n occurs. On the basis that the diff e r e n c e s 

between the Allred-Rochow (31) e l e c t r o - n e g a t i v i t i e s of the E atoms and 

that of hydrogen (at 2.1)increase i n the order B, Ga, Al,the hydxidic 

character i n EH^, and hence the ease of hydrogen e l i m i n a t i o n should 

decrease i n the order A l through Ga.to B }as observed. 

The factors a f f e c t i n g the as s o c i a t i o n of the products from -

hydrogen e l i m i n a t i o n are believed to be the following (32). 

( i ) S t e r i c E f f e c t - With the same donor and acceptor atoms 
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increased s i z e of R groups on the E atom cause a shift, to lower oligomers. 

( i i ) Valency angle s t r a i n - Dimers contain more s t r a i n than trimers, 

but this i s easier to t o l e r a t e with larger donor and acceptor atoms, 

( i i i ) Entropy - Prefers monomer over dimer and dimer over trimer. 

(iv) Nature of rea c t i o n intermediates. | 

The cyclogallazanes prepared i n t h i s study ranged from white 

s o l i d s to mobile l i q u i d s and a l l had s a t i s f a c t o r y analyses f o r gallium 

and hydrolysable hydrogen; a l l were soluble i n common organic solvents. 

As i s evident from Table 1, increasing the s i z e of the R group coincides 

with the formation of lower oligomers. Thus, s t e r i c i n t e r a c t i o n s i n 

cyclohexane-type trimers become too large and a preference f o r the 

angularly-strained, dimers, with lower s t e r i c requirements, becomes 

apparent. With both the t r i m e r i c and dimeric species the p h y s i c a l data 

( i . r . and '̂ H nmr spectra) i n d i c a t e the presence of at le a s t two con-

f i g u r a t i o n a l isomers i n benzene s o l u t i o n . 

T rimeric Cyclogallazanes (RNHGaH^)^ 

A cyclohexane-type ri n g structure f o r t r i m e r i c cyclogallazanes, 

(RNHGaH^)^, i s proposed on evidence c o l l e c t e d from "̂H nmr data and from 

supplementary evidence from i . r . spectroscopy measurements. As observed 

with the methyl d e r i v a t i v e , (13) at l e a s t two co n f i g u r a t i o n a l isomers 

are present i n benzene solutions of the new trimers. Figure 9. The 

most s t a b l e isomer, on s t e r i c grounds, i s the one i n which a l l three 

N-alkyl groups occupy equ a t o r i a l p o s i t i o n s on the r i n g . The next most^ 

stable isomer, s t e r i c a l l y , i s one i n which one N-alkyl group i s a x i a l 

and the remaining two N- a l k y l groups e q u a t o r i a l to the (Ga-N) r i n g . 
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These isomers w i l l be termed c i s and trans r e s p e c t i v e l y . 

(EtNHGaH^)^ - 1,3,5-Triethylcyclpgallazane, a viscous l i q u i d at 

room temperature, i s t r i m e r i c i n benzene s o l u t i o n . The p a r t i a l "*"H nmr 

spectrum of the benzene s o l u t i o n at 100 MHz (Figure 10) shows c l e a r l y the 

presence of a number of non-equivalent ^-CH^ groups. 'The s i g n a l s from 

these groups consist of three well-defined t r i p l e t s (J,.!™, ca. 7 Hz). The. 
HCOH 

pattern of s i g n a l s suggests that the t r i p l e t s A and B a r i s e from ^-CH^ 

groups i n s i m i l a r environments whereas the t r i p l e t C, at higher f i e l d , 

appears unique. It i s therefore tempting to assign t r i p l e t s A and C to 

the trans-isomer.(ca. 2:1 r a t i o ) , and the t r i p l e t B to the cis-isomer. 

The t r i p l e t s A and B, both assigned to e q u a t o r i a l p-CE^ groups, occur very . 

close together which i s to be expected since l i t t l e change i n e q u a t o r i a l 

"CH^ environment w i l l occur between the two isomers. These assignments 

would i n d i c a t e that the trans-isomer i s i n greater abundance, which i s 

somewhat s u r p r i s i n g f o r a cyclohexane-type ri n g on purely s t e r i c arguments. 

S i m i l a r t r i m e r i c borazanes, (33) however, show t h i s same preference f o r 

trans-isomer formation. An alternate explanation i s to assign the t r i p l e t 

A to the cis-isomer and the t r i p l e t s B and C (ca. 1:2 r a t i o ) to a twist 

conformation s i m i l a r to the one recently reported for the ethyleniminodimethyl-

aluminium trimer (34). In the twist conformation one could again obtain 

yS-CH^ groups i n d i f f e r e n t environments i n a 1:2 r a t i o , the unique /3'CĤ  

group being attached to the nitrogen on the two-fold axis of the molecule. 

This alternate explanation would then i n d i c a t e the s t e r i c a l l y favoured 

cis-isomer i n greater abundance. I f the chair-type model i s accepted for 

the t r i m e r i c gallazanes, i t i s i n t e r e s t i n g to note the appearance of the 

a x i a l ^3-CH^ s i g n a l i n (EtNHGaH^)^ at higher f i e l d than the e q u a t o r i a l 



1 

a 

9 . 0 6 9 . 0 8 . 9 . 2 7 

Fig. 10 lOOMc/s 'H n.m.r. spectrum of E t N H G a H in benzene solution 
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s i g n a l s . This i s i n contrast to the a x i a l NMe s i g n a l i n the 

trans-(MeNHGaH^)^ trimer, which appears at.lower f i e l d than the 

equ a t o r i a l s i g n a l s (13). I t seems that t h i s downfield s h i f t f o r methyl 

groups a x i a l to- cyclohexane-type rings i s quite common, occurring i n a 

va r i e t y of inorganic r i n g systems, (MeNHBH^)3» (35) (MeCH.S)^, (36) 

(MeCH.CH 2) 3, (37) and (MeCH.O)3, (38) two of which are shown i n Figure 11. 

Perhaps, t h i s phenomenon can be accounted for by invoking van der Waals 

deshielding due to 1,3-axial i n t e r a c t i o n s . With the /?-CH 3 groups of 

(EtNHGaH 2) 3 the proximity to a x i a l hydrogens on the nitrogen atoms i s 

evidently not s u f f i c i e n t to give t h i s type of deshielding. The methylene 

protons i n (EtNHGaR^).^ do not give w e l l resolved signals but overlapping 

quintets are apparent i n the "4l nmr spectra (J ?r J ) (Figure 12), 
rlCiUrl HNCH 

presumably a r i s i n g from the a x i a l and e q u a t o r i a l environments i n the 

di f f e r e n t isomers. The NH resonance i s p a r t l y 'hidden' under the 

fl-CR^ signals i n the hydride compound occurring at ca t 9.3, but i t 

appears as a broad t r i p l e t (J . --7 Hz) at higher f i e l d ( t 9.52) i n the 

spectrum of the de u t e r i o d e r i v a t i v e , (EtNHGaD 2) 3, at 100 MHz (Figure 13). 

Signals due to GaH protons were not observed p r i n c i p a l l y because of low 

concentrations but also perhaps because of nuclear quadrupole broadening 

(39, 40). 

The "4l nmr spectra of the remaining t r i m e r i c gallazanes 

(R = Pr 1 1 and Bu11) are l e s s c l e a r l y resolved, even at 100 MHz. The V -CH 3 

proton s i g n a l s i n • (Pr^JHGa^) 3 appear as a se r i e s of t r i p l e t s ( J
H C C H 

ca. 7.2 Hz) centred at t-9.43, 9.44, and 9.46 again i n d i c a t i n g the 

presence of at least two isomers. These t r i p l e t s are t e n t a t i v e l y 

assigned to c i s - and trans-isomers, the t r i p l e t at higher f i e l d being 







assigned to the a x i a l J*-CH^ group of the trans-isomer. The H nmr spectra 

of the n-butyl d e r i v a t i v e are very complex, even at 100 MHz, and no assign

ment i s attempted. 

Dimeric Cyclogallazanes, (RNHGaH ) ! 
i 
i 

Dimeric cyclogallazanes, (RNHGaH^^ may e x i s t as c o n f i g u r a t i o n a l 

isomers with the N-alkyl groups c i s or trans on the r i n g [ ( I l a ) and ( l i b ) 

r e s p e c t i v e l y ] . A number of a d d i t i o n a l v a r i a t i o n s are possible i f the 

(Ga-N)^ r i n g i s nonplanar, which has been shown to be the case f o r 

numerous analogous substituted cyclobutane d e r i v a t i v e s (41, 42). Non-

planar configurations may be expected more e s p e c i a l l y i n the cis-isomer, 

to r e l i e v e s t e r i c i n t e r a c t i o n s between adjacent, bulky, R groups. 

(Pr NHGaH 2) 2 - 1,3-Di -isopropylcyclogallazane i s a mobile 

l i q u i d at room temperature and i s r e a d i l y sublimed. In benzene s o l u t i o n 

i t s molecular weight corresponds to a dimer. The .''"H nmr spectrum i n 

benzene s o l u t i o n consists of a s e r i e s o f doublets i n the "5"-CĤ  region of 

the spectrum (Figure 14). The major doublets, D and E (J o r,„ 1 T 6.3 Hz) at 
HL.Cn 

tr 9.14 and 9.15 are assigned to the c i s - and trans-isomers of the dimer. 

The remaining small doublets i n t h i s region may be due p a r t l y to NH 

signals (JJJ^QJ 6.3 Hz) or to the presence of small amounts of other 

oligomers. Attempted f r a c t i o n a l d i s t i l l a t i o n , however, f a i l e d to 

separate any components and a l l f r a c t i o n s when dissolved i n benzene gave 

s i m i l a r spectra to that shown i n Figure 14. The p o s s i b i l i t y of r e s t r i c t e d 

r o t a t i o n of the is o p r o p y l groups i n one isomer leading to both the major 

doublets A and B i n the spectrum was investigated by obtaining spectra 

at a s e r i e s of temperatures (0 - 60°). Although the separation between 

the two doublets decreased s l i g h t l y at higher temperatures there was no 

http://HL.Cn
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i n d i c a t i o n . o f a co l l apse to j u s t one doublet and therefore the assignment 

of A and B to c i s - and trans-isomers i s p r e f e r r ed . 

The neat l i q u i d (P^NHGaR^^ and i t s deuterio'analogue gave the 

nove l *H nmr spec t ra shown in F igure 15. Here, f o r the f i r s t t ime, the 

GaH s igna l s are c l e a r l y seen as broad resonances at tr 4.71 and 4.88. The 

s igna l s are f i e l d dependent and i nd i ca te the presence of d i f f e r e n t 
i 

environments f o r hydrogens on ga l l ium atoms. These s igna l s a re , of course, 

absent i n the spectrum of the deu te r i o-de r i va t i v e , thus conf i rming the 

assignment. In a d d i t i o n , the CH mu l t i p l e t ( J u _ n u = J T T _ 7 „ . T ) , centred at 

f 6 . 3 4 , and the broad NH resonance at T 7.94 are c l e a r l y d i s t i ngu i shed . 

The remaining doub le ts , A and B, (J 6.4 Hz) due to ft -CH groups are 
HL.CH ' 3 

centred at T 8.15 and 8.32. Again a mixture of c i s - and trans-dimers 

(F igure 16) i s pos tu la ted and i t i s seen as fo r tu i tous that the r a t i o of 

the y3-CH^ doublets i s approximately 1:2. The presence of the t r imer i n 

the l i q u i d form, which could give r i s e to th i s r a t i o , i s d iscounted on 
the mass spec t ra data obtained fo r the deuterio-compound, (Fr^NRGaT)^)2' 

The ions of h igh m/e values are l i s t e d i n Table 5 and correspond to the 

pa t te rn expected from the dimer (Pr^HGaD^) ^ taking in to account the 

69 

i s o t o p i c d i s t r i b u t i o n of ga l l ium atoms in the molecules [ Ga(60%), 

^Ga(40%) ] . Molecu lar- ion peaks, although weak, occur i n the mass 

spectrum i n add i t i on to peaks due to the more abundant ions which have 

l o s t deuterium from ga l l i um. The most intense peak in the spectrum 

occurs at m/e = 44 and may correspond to the propane ion C 0 H o
+ . The 

spectrum gave no i n d i c a t i o n of the presence of t r ime r i c u n i t s , and s ince 

i t i s u n l i k e l y fo r the dimer to be converted in to t r imer i n going from 

vapour to l i q u i d , a d imer ic c o n s t i t u t i o n fo r the neat compounds i s 
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p r e d i c t e d . 
s 

(Bu NHGaH^)^ ~ 1,3-Di-s-butylcyclogallazane i s a mobile l i q u i d 

at room temperature. I t i s dimeric i n benzene s o l u t i o n and i n t h i s solvent 

i t has a *H nmr spectrum which exhibits two strong doublets (J ca. 6.6 Hz) 
HCCH 

at T 9.13 and 9.16 which are assigned to the 3 -CH^ groups i n the c i s - and 

trans-dimers. Signals due to the V -CH^ protons appearj at higher f i e l d but 

the t r i p l e t s expected on a f i r s t - o r d e r basis are poorly resolved. The 

nmr spectrum of the neat l i q u i d showed e s s e n t i a l l y the same pattern as 

the s o l u t i o n spectrum but once again, i n ad d i t i o n , the GaH signals are 

c l e a r l y v i s i b l e at T4.64 and 4.81 (Figure 17). 

(Bu NHGaH ) - 1 , 3 - D i - i s o b u t y l c y c l o g a l l a zane i s a viscous l i q u i d 

at room temperature and i n s o l u t i o n probably e x i s t s as a mixture of dimers 

and trimers. Branching of the hydrocarbon chain of the R group at the 

£ -carbon atom po s s i b l y reduces the s t e r i c i n t e r a c t i o n s u f f i c i e n t l y to lead . 

to both dimer and trimer formation. Four well-defined doublets (Junnu 

ca. 6.6 Hz) at TT 9.27, 9.30, 9.31, and 9.38 appear i n the high f i e l d region 

of the ''"H nmr spectrum i n benzene s o l u t i o n at 100 MHz. These are assigned 

to p 8 r o u P s b u t no further assignment i s attempted. 

(B^NHGaH^)^ - 1,3-Di-t-butylcyclogallazane i s a white s o l i d at 

room temperature, dimeric i n benzene s o l u t i o n , and di s p l a y i n g three y'S-CĤ  

s i g n a l s i n i t s "̂H nmr spectrum i n t h i s solvent. Two of these si g n a l s are 

close together at t 8.96 and 8.97, and a t h i r d , much weaker s i g n a l , occurs 

at higher f i e l d ( f 9.15). The signals are a l l f i e l d dependent and 

therefore not due to coupling. The major signals are assigned to the 

c i s - and trans-dimers, the t h i r d weaker s i g n a l , accounting f o r ca. 5% of 

the t o t a l i n t e g r a l , i s pos s i b l y due to monomer i n s o l u t i o n . 
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Table 5 
Ions of high m/e in mass spectrum of (Pr NHGaD ) 

m/e Relative Abundance 

266 0.5 

265 0.5 

264 5.0 

• 263 2.5 

262 17.5 

261 3.7 

260 27.7 

259 12.5 

258 16.0 

257 
• 

0.5 

• 

44 100.0 
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I.'r. Spectra of Cyclogallazanes (RNHGaH) 
2 n 

I.r. spectra of the cyclogallazanes (RNHGaH„) , and t h e i r 
L n 

deuterio-derivatives (RNHGaD„) i n some cases, i n benzene s o l u t i o n were 
2 n 

recorded i n the range 4000 - 250 cm As observed previously with 

gallane d e r i v a t i v e s (5, 11), the strongest absorptions were a t t r i b u t a b l e 

to the Ga-H and Ga-D s t r e t c h i n g and deformation modes. Selected absorption 

bands are l i s t e d and assigned i n Table 6 for the et h y l and iso p r o p y l d e r i 

vatives which are representative of the t r i m e r i c and dimeric cyclogallazanes 

r e s p e c t i v e l y . As expected on amass e f f e c t the r a t i o V(Ga-H)/ -0(Ga-D) i s 

close to 1.4. The NH s t r e t c h i n g abosrptions are i n t e r e s t i n g i n that three 

bands occur i n t h i s region f o r t r i m e r i c species but two bands only, f o r 

dimeric species. Presumably the d i f f e r e n t p o s s i b l e environments f or the 

NH u n i t i n the various c i s - and.trans-isomers lead to the observed 

v i b r a t i o n s but i s i s noteworthy that the band at 3280 cm ^ i n the e t h y l 

d e r i v a t i v e s i s concentration dependent, decreasing i n r e l a t i v e i n t e n s i t y 

on d i l u t i o n . Perhaps hydrogen bonding of the type invoked recently by 

Brown et a l (43), to explain the i . r . spectra of similar.cycloborazanes 

at various concentrations, could be operative, a l s o , i n these gallium 

systems. 

The i . r . spectra of neat (Pr^HGaH^)^ and i t s deuterio-analogue 

were also recorded. In each spectrum the NH s t r e t c h i n g v i b r a t i o n 

occurred as a broad band at 3270 cm S i m i l a r l y , Ga-H(D) s t r e t c h i n g 

v i b r a t i o n s appeared as broad bands at 1875 and 1825 (1350) cm The 
-1 

Ga-H(D) deformation modes occurred at 725 and 690 (510, 493) cm and 

absorptions a t t r i b u t a b l e to r i n g v i b r a t i o n s came i n the region 540 -

590 cm"1. 



Table 6 
Infrared spectra of some cyclogallazane derivatives in benzene solution 
EtM.GaH2 EtN-H.GaD2 Gall 

GaD 
Assignment 

3338 w 
3318 m 
3280 s 

3338 w 
3316 m 
3280 s 

N-H stretch 

1875 vs 
1825 vs 

1350 vs 
• 1335 vs 

1.37'+ Ga-F.(D) stretch 

745 vs 502 vs 
496 vs 

1.404 Ga-H(D) defn. 

580 s 
550 s 
510 m 

542 s 
. 522 s 

Ring modes 

PrHlHGaH^ 
3 3 2 0 m 
3283 s 

Pr1NHGaD2 

3 3 2 0 w 
3283 m 

Gall 
GaD 

Assignment 
N-H stretch 

1875 vs 
1820 vs 

1355 vs 
1330 s 

1.3 64 Ga-H(D) stretch 

745 vs 508 vs 
J+97 vs 

1.465 Ga-H(D) defn. 

586 s 
560 m 
4-90 m 

596 s 
552 s 
536 m 

Ring modes 

Bt̂ NHGaTTg 
3307 v 3208 vs 

EutKKGaD2 

3 3 1 2 s 
3264 s 

GaH 
GaD 

Assignment 

N-H stretch 

1890 vs 
1820 m 

1318 vs 1.408 Ga-H(D) stretch 

745 s 538 vs 
5 2 1 vs 

1.402 Ga-H(D) stretch 

598 s 554 s Ring modes 



53 

Part 2 

The reaction of a n i l i n e with trimethylamine gallane proceeded as 

indi c a t e d i n the following equation: 

Me 3N.GaH 3(s) + <$NH2(g) -—» 4>NH.GaH .NMe (s) + H fg) 

The monomeric m a t e r i a l , <^NH.GaH2.NMe3, giv i n g the \l nmr shown i n Figure 18, 

was somewhat unexpected since with the primary alkylamine reactions d i s 

cussed i n part 1, complete e l i m i n a t i o n of trimethylamine occurred with the 

production of a gallazane (Ga-N) r i n g species. In the present case i t 
n 

appears that due to some electron withdrawing e f f e c t of the phenyl r i n g a 

c y c l i c gallazane was not formed. This e f f e c t seems to have reduced the 

donor properties of the lone p a i r on the a n i l i n e nitrogen atom, and hence 

prevents coordination to a second gallium and consequent r i n g formation. 

I t was beli e v e d that in t r o d u c t i o n of a strong acceptor would 

remove the trimethylamine from the complex, ̂ NH.GaH^.NMe^, since a strong 

donor such as nitrogen always prefers a strong acceptor over a weak 

acceptor. . • 

The acceptor of choice was diborane since i t i s both a strong 

acceptor and would not undergo any unwanted side reactions such as might 

occur i f the (oron t r i f l u o r i d e , BF , acceptor were used. However, the 

reaction of diborane with 4NH.GaH^.NMe^ re s u l t e d , not i n production of 

the desired gallazane, d)NH.GaH2, but i n decomposition into gallium, 

hydrogen, a n i l i n e as w e l l as the expected trimethylamine borane. The ̂  

following sequence of reactions summarizes these experimental 

observations:" 



2.84 
'Fig: 18'60Mc/s 'H n.m.r. spectrum of (J)NHGaH2-NMe3 in benzene solution 
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Me N.GaH .NH$ + 1/2B.H, * Me.N.BH + (ĵ NHGaH 
5 L L o 5 5 L 

4)NHGaH2 > <j>NH + Ga + 1/2H 

It seems l i k e l y that when the ' r^NH.GaH^' i s formed i n the 

reac t i o n , the donor strength of the nitrogen connected'to the phenyl r i n g 

i s so reduced that formation of a sta b l e c y c l i c gallazane does not occur. 

The monomeric unit i s evidently unstable, when formed and decomposes to 

i t s components even below 0°C. 

I t was of further i n t e r e s t to react ctNH.GaH^.NMe^ with methyl

amine i n the hope that displacement of trimethylamine would occur and 

y i e l d a novel c y c l i c gallazane on hydrogen e l i m i n a t i o n according to the 

following sequence of reactions: 

'(J>NH.GaH2.NMe3 + MeNH^ *• Me^ + <j>NH.GaH2,NH Me 

<p NH. GaH 2. NH2Me ' $ NH. GaH. NHMe' + H 2 

The a c t u a l mixture of products obtained was i d e n t i f i e d by nmr and i n f r a r e d 

spectroscopy. Figure 19 shows the N-H str e t c h i n g region f o r each of 

a n i l i n e and methyl-gallazane as w e l l as the reac t i o n mixture. I t should 

be noted that the two upper spectra combine to give the lower spectrum. 

Hence, although trimethylamine was displaced as expected, the eli m i n a t i o n 

of a n i l i n e and production of the f a m i l i a r (MeNH.GaH,^)^ trimer occur as 

follows: 

Me3N.GaH2.NH<$> + MeNH£ + t}>NH2+ 1/3[MeNH.GaH2] 



Fig. 19 Infrared spectra of: a aniline; b MeNHGaH2 ; 

,c aniline & MeNHGaH2 
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The p r o d u c t s were i d e n t i f i e d a l s o by means o f t h e i r c h a r a c t e r i s t i c "*"H nmr 

s p e c t r a . 

I t was o f i n t e r e s t to t hen e s t a b l i s h the mechanism o f h y d r o g e n 

t r a n s f e r . The two most p r o b a b l e mechanisms f o r t h i s t r a n s f e r a r e 

i l l u s t r a t e d b e l o w : 

H H H 
0-N-—-Ga - NMe — > 0 N H 2 + GaH .NHMe 

H H 

H 
B. 0-N*3-GaH 

I t 

Me 5NHMe 

In the f i r s t mechan i sm, the p r o t o n wh i ch t r a n s f e r s to the a n i l i n e comes 

f rom the g a l l i u m . In the second mechanism a f o u r c e n t r e i n t e r m e d i a t e i s 

formed w i t h the h y d r o g e n atom f o r a n i l i n e p r o d u c t i o n coming f r om the 

me thy l am ine n i t r o g e n . The d e u t e r a t e d compound, <f> NH. G a D 2 .NMe^ was 

t h e r e f o r e p r e p a r e d and r e a c t e d w i t h m e t h y l a m i n e . The i n f r a r e d s p e c t r u m 

of-, the p r o d u c t s d i d n o t d i s p l a y e i t h e r a N-D s t r e t c h f o r a n i l i n e o r a 

Ga-H s t r e t c h f o r the g a l l a z a n e , thus e l i m i n a t i n g mechanism A as a p o s s i b l e 

r o u t e to t he p r o d u c t s . I t t h e r e f o r e seems l i k e l y t h a t mechanism B i s the 

a c t u a l mode o f p r o t o n t r a n s f e r . 
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P a r t 3 Imino.Gallazanes 

The r e a c t i o n of a z i r i d i n e , a z e t i d i n e , p y r r o l i d i n e and p i p e r i d i n e 

w i t h trimethylamine g a l l a n e y i e l d s compounds of. the type [ (CR^^NGaH^ ] 

where x = 2, 3, 4 or 5; f o l l o w i n g e l i m i n a t i o n of molar e q u i v a l e n t s of 

i 

hydrogen and t r i m e t h y l a m i n e . Cryoscopic measurements on c e n t r i f u g e d 

benzene s o l u t i o n s i n d i c a t e t h a t a l l these m a t e r i a l s arej d i m e ric (Table 2) 

i n benzene. 

R e c e n t l y , however, an x-ray c r y s t a l l o g r a p h i c study (45) on a 

s i n g l e c r y s t a l of a z i r i d i n o g a l l a z a n e produced by s u b l i m a t i o n under about 

5 - 7 cm of n i t r o g e n p r e s s u r e , r e s u l t e d i n the c h a r a c t e r i z a t i o n of t h i s 

compound as a t r i m e r i n which the (Ga-N)^ r i n g . i s i n the c h a i r conformation 

(Figure 2 0 ) . The mean dimensions, found were Ga-N 1.97, N-C 1.54, 

C-C 1.55A; N-Ga-N = 1 0 0°, Ga-N-Ga = 121, Ga-N-C = 116°; w h i l e the angles 

i n the t h r e e membered r i n g s were c l o s e to 6 0°. 

This s t r u c t u r e , although confirming the p r e d i c t i o n s i n p a r t 1 

concerning the c o n f i g u r a t i o n of the (Ga-N) r i n g , i s somewhat unexpected 

i n view of the c r y o s c o p i c molecular weight i n benzene s o l u t i o n . The 

r e s o l u t i o n of t h i s apparent dilemma could be the f o l l o w i n g . 

I t has been found that f r e s h l y d i s s o l v e d samples of a z i r i d i n o 

g a l l a n e , whether f r e s h l y prepared or n o t , g i ve degrees of a s s o c i a t i o n of 

2.55 to 2.65. Samples d i s s o l v e d i n benzene and s t o r e d f o r a few days give 

a degree of a s s o c i a t i o n of 2.00. Since the s o l i d i s t r i m e r i c , i t would 

seem t h a t the c r y o s c o p i c r e s u l t s i n d i c a t e the gradual formation of dimer 

i n the benzene s o l v e n t . I t was a l s o observed that a s i g n i f i c a n t amount 

of i n s o l u b l e m a t e r i a l was formed on d i s s o l v i n g the s o l i d . The f o l l o w i n g 

mechanism seems p l a u s i b l e : 



C1' 

C1 
S t r u c t u r e o f A z i r i d i n o Gallazane 

Figure 20 
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( A z i r G a H 2 ) 3 ( A z i r G a H ^ + ( A z i r ' G a H ) 

( A z i r GaH ) 2 x 

Thus the t r i m e r g i v e s u n s t a b l e monomer which p o l y m e r i z e s , l e a v i n g the 

dimer i n s o l u t i o n . Another p o s s i b l e mechanism appears to be the 

f o l l o w i n g : 

( A z i r G a H 2 ) 3 

( A z i r G a H 2 ) 2 

( A z i r GaH n ) 2 x 

where two competing rearrangements o c c u r , one g i v i n g po lymer , the o ther 

dimer . 

I f the degree of a s s o c i a t i o n of g a l l a z a n e s i n benzene i s not 

n e c e s s a r i l y an i n d i c a t i o n of the a s s o c i a t i o n i n the s o l i d or neat l i q u i d 

phase , p o s s i b l y the neat nmr spectrum of i s o p r o p y l a m i n o g a l l a z a n e ( F i g u r e 15) 

c o u l d be a l s o r a t i o n a l i z e d i n terms of a t r a n s t r i m e r c o n f i g u r a t i o n , i n 

agreement w i t h the observed i n t e n s i t y r a t i o of 2 :1 f o r the . |3.-CH p r o t o n 

s i g n a l s . 

The nmr spectrum of a z i r i d i n o g a l l a z a n e ( F i g u r e 21) shows o n l y 

a sharp s i n g l e t , i n d i c a t i n g a s i n g l e i s o m e r i c c o n s t i t u t i o n which i s 

expected on the b a s i s of a p l a n a r (GaN) 2 r i n g w i t h a l l hydrogens e q u i v a l e n t . 

F i g u r e 22 shows the ^"H nmr spectrum of d i m e r i c a z e t i d i n o 

g a l l a z a n e , w i t h i n t e g r a l s of the two areas of resonance i n the r a t i o of 

2 : 1 . The s p l i t t i n g observed i s tha t expected on the b a s i s of a p l a n a r 

(GaN) 2 r i n g , a t r i p l e t f o r the f o u r c< pro tons and a q u i n t e t f o r the two 

/3 p r o t o n s . 
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Figures 23 and 24 show the H nmr spectra of p y r r o l i d i n o 

gallazane ( i n t e g r a t i o n of 1:1 as expected for the four oc and four (3 

protons) and p i p e r i d i n o gallazane ( i n t e g r a t i o n of 4:6 for ©C : f$ + o~ 

proton m u l t i p l e t s ) . The l a t t e r two spectra are no longer simple, with 

evidence of complicated spin-spin i n t e r a c t i o n . 
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P a r t 4 Imino Alazanes 

The r e a c t i o n between ethylenimine ( a z i r i d i n e ) and b i s t r i m e t h y l 

amine alane was f i r s t attempted i n 1962 by Marconi (19). These workers 

d i d not i s o l a t e the a z i r i d i n o alazane product. 

A more recent d i s c u s s i o n of t h i s r e a c t i o n product (20) suggests 

th a t r i n g opening of the a z i r i d i n e r i n g occurs on solvent removal y i e l d i n g 

an average degree of a s s o c i a t i o n of n = 10. 

The product prepared i n t h i s study gave i n i t i a l l y the nmr 

spectrum of f i g u r e 25. 

Since t h i s spectrum contains a h i g h f i e l d t r i p l e t and evidence 

of a lower f i e l d q uartet the previous f o r m u l a t i o n (20) of r i n g opening to 

g i v e e t h y l groups seems f a i r l y c o n c l u s i v e . However, the spectrum a few 

hours l a t e r (Figure 26) showed an increased i n t e n s i t y of the high f i e l d 

t r i p l e t w i t h respect, to the broad s i n g l e t f o r the a z i r i d i n e r i n g s . The 

f o l l o w i n g day, a f t e r storage at +5°CJ) :., the nmr spectrum showed 

the h i g h f i e l d t r i p l e t to be even more in t e n s e than p r e v i o u s l y . These 

r e s u l t s i n d i c a t e that r i n g opening occurs at a f a i r l y steady r a t e at 

o o 

5 - 25 C. The i n i t i a l aluminum to a c t i v e hydrogen r a t i o was found to be 

A l - H„ w h i l e the a n a l y s i s of the same product l e f t at room 

temperature f o r three days under dry n i t r o g e n was found to be A l ^ QQ H^ 

These r e s u l t s i n d i c a t e t h a t i n the l i m i t , complete a z i r i d i n e r i n g opening 

could occur to give a l l N - e t h y l groups i n an i n s o l u b l e polymeric product. 

I t was of i n t e r e s t to see what the degree of a s s o c i a t i o n would 
» 

be i f r i n g opening could be h e l d to a minimum. Thus the degree of 

a s s o c i a t i o n of f r e s h l y prepared a z i r i d i n o alazane was determined i n 
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Fig.26 60Mc/s 'H n.m.r. spectrum of (CH2)2NAIH2 in benzene solution , w 
. 0 0 
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benzene s o l u t i o n with a minimum of delay. This worker was able to obtain 

a minimum value of n = 4.2 w h i l s t a co-worker was able to obtain n = 3.14. 

These r e s u l t s suggest that the degree of association before 

r i n g opening sets i n , i s l i k e l y n = 3. This i s . t h e expected degree of 

a s s o c i a t i o n i n view of the r e s u l t s f or the other alazanes of table 3. 

The product from the reaction of the b i s trimethylamine alane 

with a z e t i d i n e did not give up a l l i t s trimethylamine, some of which 

remained coordinated to i t (Figure 27). Pumping at 0°C removed most of 

t h i s trimethylamine to give the spectrum of Figure 28. The i n t e g r a t i o n 

r a t i o i s 2:1 f o r the or: <5 protons. The molecular weight i s consistent 

with the formulation of t h i s compound as a trimer. 

S i m i l a r l y the 'Hi nmr spectrum of t r i m e r i c p y r r o l i d i n o alazane 

shows two areas of resonance i n the r a t i o of 1:1. One resonance i s 

centred at 1 = 7.10 and the other at T = 8.50. The p i p e r i d i n o alazane 

appears to be mainly dimer i n benzene s o l u t i o n (n = 2.17) p o s s i b l y 

r e s u l t i n g from the l a r g e r s t e r i c requirements of the p i p e r i d i n o r i n g . 

The nmr spectrum f o r t h i s compound shows two resonances i n the r a t i o 

of 6:4 at Tr = 8.61 and at = 7.18 r e s p e c t i v e l y . These correspond to 

(&+ T~ and o< proton resonances. 

I t appears that t r i m e r i c species are common with the imino 

alazanes and i n t h i s respect they d i f f e r from the dimeric imino gallazanes. 

Since the bond lengths of Al-N and Ga-N are known to be almost i d e n t i c a l , 

the reason f o r t h i s d i f f e r e n c e probably l i e s more i n the nature of the 

reaction intermediate leading to these species than i n s t e r i c or other 

e f f e c t s . P o s s i b l y t h i s d i f f e r e n c e i s due to the r e l a t i v e ease with which 

aluminum can go 5-coordinate i n the intermediate, but t h i s i s highly 

speculative as no mechanism u t i l i z i n g a 5-coordinate aluminum has a c t u a l l y 

been demonstrated. 



2.84 
F i g 
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Fiq.27 60Mc/s *H n.m.r. spectrum of (CH2)3NAIH2 in benzene solution 
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Part 5 Imino Borazanes 

The f a c t that azetidino, p i p e r i d i n o and p y r r o l i d i n o borazane 

are dimeric i n benzene i s not s u r p r i s i n g since boron-nitrogen systems 

generally p r e f e r a monomeric or dimeric state to that of trimer. 

The nmr spectra of these three compounds are given i n 

Figures 29, 30 and 31 and are a l l i n agreement with the formulation of 

these compounds as having planar (B-N)^ rings and containing each a 

s i n g l e isomeric form. 

The a z i r i d i n o borazane prepared by the method of Akerfeldt (17) 

gave a s i n g l e t f o r the a z i r i d i n o r i n g hydrogen i n agreement with the 

l i t e r a t u r e (18) (Figure 32). The adduct, prepared by the Burg method (14) 

gave the nmr spectrum of f i g u r e 33 i n agreement with the l i t e r a t u r e (18). 

The a z i r i d i n o borazane has a t r i m e r i c c o n s t i t u t i o n i n contrast to the 

remaining members of t h i s s e r i e s . The reasons for t h i s d i f f e r e n t 

c o n s t i t u t i o n may be a r e s u l t of the preparative route used to obtain the 

compound. 
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Part 6 Reactions of Imine Bases with EMe E = B, A l , Ga, In 

Reaction of EMe^ with a z i r i d i n e gave, on methane e l i m i n a t i o n , 

compounds which were t r i m e r i c i n benzene s o l u t i o n . Since the hydrido 

analogues previously prepared were t r i m e r i c as w e l l , t h i s r e s u l t suggests 

that the groups about the E atom have l i t t l e e f f e c t i n determining the 

f i n a l degree of ass o c i a t i o n of the complexes studied here. 

The compound Ke^B^(CE^)^ was not i s o l a t e d , as the high 

temperatures necessary to achieve methane el i m i n a t i o n from the adduct 

also cause polymerization. 

The nmr spectra of the two stable adducts Me^BNR^CH^^ 

(Figure 34) and Me^GaNH(CH^)^ (Figure 35) are c h a r a c t e r i s t i c but very 

d i f f e r e n t . The a z i r i d i n e r i n g protons of the boron compound give r i s e 

to a s i n g l e t at low f i e l d - probably the r e s u l t of nitrogen in v e r s i o n 

or f a s t exchange reactions i n s o l u t i o n . The higher f i e l d s i n g l e t i s 

the resonance of the boron methyl protons. The a z i r i d i n e r i n g protons 

of the gallium adduct, on the other hand, appear to be s p l i t into a 

m u l t i p l e t . This complex s p l i t t i n g i s believed to be the r e s u l t of 

not only primary but also second order magnetic coupling of the hydrogen 

nuclei- on the a z i r i d i n e r i n g , . ) . 

The three methane e l i m i n a t i o n products had simple and very 

s i m i l a r nmr spectra. These spectra consisted of a lower f i e l d s i n g l e t 

for the a z i r i d i n o protons and a high, f i e l d s i n g l e t for the methyl 

groups of the E atoms. 
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Fig.33 6.0 Mc/s 'H n.m.r. spectrum of H3B-NH(CH2)2 in benzene solution 
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Fig.34 60Mc/s 'H n.m.r. spectrum of Me3B-NH(CH2)2 in benzene solution CO 



Bz 

2.84 10.46 
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