REACTIVITY AND COORDINATION CHEMISTRY OF RUTHENIUM(II) AMINOPHOSPHINE COMPLEXES WITH $\mathrm{H}_{2} \mathrm{~S}$, THIOLS, $\mathrm{H}_{2} \mathrm{O}$ AND OTHER SMALL MOLECULES

By
ERIN SHU FEN MA
B.Sc. (Hons.), University of British Columbia, 1994

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
in
THE FACULTY OF GRADUATE STUDIES
(Department of Chemistry)

We accept this thesis as conforming to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
August 1999
© Erin Shu Fen Ma, 1999

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, 1 agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Chemistry
The University of British Columbia
Vancouver, Canada
Date October 5,1999

Abstract

The coordination of small molecules $\left(\mathrm{H}_{2} \mathrm{~S}, \mathrm{RSH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{ROH}, \mathrm{H}_{2}, \mathrm{NH}_{3}, \mathrm{~N}_{2}\right.$ and $\mathrm{N}_{2} \mathrm{O}$; $\mathrm{R}=$ alkyl $)$ to the coordinatively unsaturated complexes $\mathrm{RuX}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I} ; \mathrm{P}-\mathrm{N}=$ [o-(N, N-dimethylamino)phenyl]diphenylphosphine; $\mathbf{R}=\mathrm{Ph}, p$-tolyl), themselves prepared from $\mathrm{RuX}_{2}\left(\mathrm{PR}_{3}\right)_{3}$ and $\mathrm{P}-\mathrm{N}$, was investigated (see figure). The species containing the $\mathrm{Ru}(\mathrm{P}-\mathrm{N})$ moiety were characterized spectroscopically, particularly by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR and in some cases in conjunction with X-ray crystallography.

Cis-RuX $\mathbf{X}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{L})$ species $\left(\mathrm{X}=\mathrm{Cl}, \mathrm{L}=\mathrm{H}_{2} \mathrm{~S}, \mathrm{MeSH}, \mathrm{EtSH} ; \mathrm{X}=\mathrm{Br}, \mathrm{L}=\mathrm{H}_{2} \mathrm{~S}\right)$ were isolated from the reaction of $\mathrm{RuX}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ with excess L in acetone, and characterized crystallographically. The geometry of these complexes is pseudo-octahedral with the halogen atoms in mutual cis positions with the coordinated S-ligand cis to the P -atom of the P-N ligand and trans to a halogen atom; all H -atoms on the coordinated S-ligands were refined isotropically. The S-H bond lengths are of equal or shorter distances (1.20-1.34 \AA) than those of free gaseous ligands (1.33-1.40 \AA); in particular, the bond length of $1.03 \AA$ for the coordinated MeSH complex is the shortest S-H distance yet reported. Of interest, the ${ }^{1} \mathrm{H}$ NMR spectrum of cis-RuX$X_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$ shows three-bond coupling of only one
proton of the coordinated $\mathrm{H}_{2} \mathrm{~S}$ to the P -atom of the $\mathrm{P}-\mathrm{N}$ ligand $\left(\mathrm{X}=\mathrm{Cl},{ }^{3} \mathrm{~J}_{\mathrm{HP}}=3.5 \mathrm{~Hz}\right.$; $\left.\mathrm{X}=\mathrm{Br},{ }^{3} \mathrm{~J}_{\mathrm{HP}}=4.3 \mathrm{~Hz}\right)$ at $-50^{\circ} \mathrm{C}$, and this represents an extension of the Karplus relationship to vicinal coupling within a P-Ru-S-H system.

The reaction of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)$ with $\mathrm{H}_{2} \mathrm{O}$ gave trans $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)\left(\mathrm{OH}_{2}\right)$, which was crystallographically characterized. The geometry is pseudo-octahedral with mutually trans Cl -atoms; the $\mathrm{H}_{2} \mathrm{O}$ ligand is trans to the P -atom of the $\mathrm{P}-\mathrm{N}$ ligand. The orientation of incoming monodentate ligand L in either cis or trans positions (see figure) is affected by the mutual trans influence of L and of the apical phosphine of $\mathrm{RuX}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)$.

The thermodynamics for the reversible binding of $\mathrm{H}_{2} \mathrm{~S}$, thiols, H_{2} and $\mathrm{H}_{2} \mathrm{O}$ to $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$, in solution, were determined using UV-Vis and NMR spectroscopies. The low $\Delta \mathrm{H}^{\circ}$ values (-22 to $-54 \mathrm{~kJ} / \mathrm{mol}$) imply relatively weak $\mathrm{Ru}-\mathrm{L}$ bond energies and the negative ΔS° values (-32 to $-140 \mathrm{~J} / \mathrm{mol} \mathrm{K}$) are consistent with binding of a small molecule at a metal site. Differential scanning calorimetry on solid state samples also allowed for determination of $\Delta \mathrm{H}^{\circ}$ values, and estimation of enthalpy changes for a cis- to transrearrangement in solution.

Cis- $\mathrm{RuX}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ reacted with NaSH or proton sponge (in the presence of added $\left.\mathrm{H}_{2} \mathrm{~S}\right)$ to give initially $\mathrm{Ru}(\mathrm{SH}) \mathrm{Cl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ and then $\mathrm{Ru}(\mathrm{SH})_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$. The mercapto species, however, are thermally unstable and were only observed by NMR spectroscopy at $-78^{\circ} \mathrm{C}$.

Reaction of 1 atm NH_{3} with $\mathrm{RuX}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ in the solid state led to the formation of trans-RuX $(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)$ which, when dissolved in solution, subsequently isomerized to cis-RuX ${ }_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)$. Evidence for bis- and tris-ammine species, as well as for $\left[\mathrm{RuX}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{X}\right]$ with a 'strongly associated' halide, is also presented.

The formation of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{N}_{2} \mathrm{O}\right)$ was observed by NMR spectroscopy at $-40^{\circ} \mathrm{C}$ when $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ was subjected to $6 \mathrm{~atm} \mathrm{~N}_{2} \mathrm{O}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. The coordination of $\mathrm{N}_{2} \mathrm{O}$ is of particular interest because of the rarity of such a reaction and because of the potential of discovering an effective catalytic oxidation system using $\mathrm{N}_{2} \mathrm{O}$ as an O -atom donor. In fact, cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{N}_{2} \mathrm{O}\right)$ appears to form cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\eta^{1}-\mathrm{N}_{2}\right)$ and O_{2} at $\mathrm{T}>-40^{\circ} \mathrm{C}$. When the system was warmed to room temperature, $\mathrm{O}=\mathrm{PPh}_{3}$ and $(\mu-\mathrm{O})(\mu-\mathrm{Cl})_{2}[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})]_{2}$ were formed. The crystallographically characterized μ-oxo complex was also formed when $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ was reacted with O_{2}.
$\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ also reacted with $\mathrm{HC} \equiv \mathrm{CPh}$ to give the crystallographically characterized cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(=\mathrm{C}=\mathrm{CHPh})$. The carbene complex reacted with $\mathrm{H}_{2} \mathrm{~S}$ and $\mathrm{H}_{2} \mathrm{O}$ to give cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{S}=\mathrm{C}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{Ph}\right)$ and a mixture containing $\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{Ph}\right)(\mathrm{CO})$ and $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{CO})$, respectively. The formulations of the products were based on ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR and IR spectroscopic data.

The reactions of $\mathrm{RuCl}_{2}\left(\mathrm{PR}_{3}\right)_{3}$ with aminophosphine ligands other than $\mathrm{P}-\mathrm{N}$ were also explored: $\mathrm{RuCl}_{2}(\mathrm{BPN})\left(\mathrm{PR}_{3}\right)(\mathrm{BPN}=\operatorname{bis}[o-(N, N$-dimethylamino $)$ phenyl $]$ phenylphosphine $)$ and $\mathrm{RuCl}_{2}(\mathrm{PAN})\left(\mathrm{PR}_{3}\right)(\mathrm{PAN}=1$-(N, N-dimethylamino)-8-(diphenylphosphino) naphthalene) were isolated and characterized; $\mathrm{RuCl}_{2}(\mathrm{AMPHOS})\left(\mathrm{PPh}_{3}\right)(\mathrm{AMPHOS}=(R)-(+)-N, N$-dimethyl-1- $[o-$ (dimethylphosphino)phenyl]ethylamine) was observed in situ; and an impure sample of $\mathrm{RuCl}_{2}(\mathrm{ALAPHOS})_{2}(\operatorname{ALAPHOS}=[(S)$-2-(dimethylamino)propyl]diphenylphosphine) was isolated. PTN (tris[o-(N, N-dimethylamino)phenyl]phenylphosphine) did not react with $\mathrm{RuCl}_{2}\left(\mathrm{PR}_{3}\right)_{3}$.

Table of Contents

Abstract. ii
Table of Contents. V
List of Figures xiii
List of Tables XX
List of Symbols and Abbreviations xxii
Table of Compound Numbers. xxvi
Acknowledgements xxvii
Chapter 1 Introduction 1
1.1 Natural and Industrial Occurrences Sulfur Compounds 2
1.1.1 The Natural Sulfur Cycle. 2
1.1.2 Hydrodesulfurization (HDS) and the Claus Process 3
1.2 Coordination Chemistry of $\mathrm{H}_{2} \mathrm{~S}$ and Thiols 5
1.2.1 Physical Properties of $\mathrm{H}_{2} \mathrm{~S}$ and Thiols. 5
1.2.2 Reactions of $\mathrm{H}_{2} \mathrm{~S}$ and Thiols with Transition Metal Complexes. 7
1.2.2.1 Mononuclear Mercapto and Thiolato Complexes 8
1.2.2.2 Bridging Mercapto and Thiolato Ligands 11
1.2.2.3 Recovery of H_{2} from $\mathrm{H}_{2} \mathrm{~S}$ using $\mathrm{Pd}_{2} \mathrm{X}_{2}\left(\mu_{2}-\mathrm{dpm}\right)_{2}$ 17
1.3 The Chemistry of Transition Metal Aminophosphine Complexes 19
1.4 Overview of Thesis 22
1.5 References 23
Chapter 2 Experimental Procedures 29
2.1 Materials 29
2.1.1 Gases 29
2.1.2 Solvents 29
2.1.3 Compounds. 30
2.2 Instrumentation 30
2.2.1 Nuclear Magnetic Resonance Spectroscopy 30
2.2.2 Infrared Spectroscopy 31
2.2.3 Ultraviolet Spectroscopy 31
2.2.4 Thermal Analysis. 32
2.2.5 Microanalysis 32
2.2.6 X-ray Crystallography 32
2.2.7 Gas Chromatography 33
2.2.8 Magnetic Susceptibility Studies 33
2.2.9 Conductivity Measurements 33
2.3 Syntheses of Ligands 34
2.3.1 [O-(N, N-Dimethylamino)phenyl]diphenylphosphine, P-N 35
2.3.2 Bis[o-(N, N-dimethylamino)phenyl]phenylphosphine, BPN 36
2.3.3 Tris[o-(N, N-dimethylamino)phenyl]phosphine, TPN 36
2.3.4 (R)-(+)- N, N-Dimethyl-1-[o-(diphenylphosphino)phenyl]ethylamine, AMPHOS 37
2.3.5 1-(N, N-Dimethylamino)-8-(diphenylphosphino)naphthalene, PAN 38
2.3.6 [(S)-2-(Dimethylamino)propyl]diphenylphosphine, ALAPHOS 39
2.3.7 o-Diphenylphosphineanisole, PO 41
2.4 Syntheses of Ruthenium Precursors. 42
2.4.1 Dichlorotris(triphenylphosphine)ruthenium(II), $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ (1) 42
2.4.2 Dichlorotris(tri-p-tolylphosphine)ruthenium(II), $\mathrm{RuCl}_{2}\left(\mathrm{P}(p \text {-tolyl })_{3}\right)_{3}$ (2) 43
2.4.3 Cis-dichlorotetrakis(dimethylsulfoxide)ruthenium(II), Cis-RuCl ${ }_{2}$ (DMSO) ${ }_{4}$ 43
2.4.4 Trichlorobis(triarylphosphine)(dimethylacetamide)ruthenium(III)•DMA solvate $\mathrm{RuCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{DMA}) \cdot(\mathrm{DMA})$ (4a) and $\mathrm{RuCl}_{2}\left(\mathrm{P}(p-\text { tolyl })_{3}\right)_{2}(\mathrm{DMA}) \cdot(\mathrm{DMA})$ (4b).. 43
2.5 Dichlorobis(o-diphenylphosphinoanisole)ruthenium(II), $\mathrm{RuCl}_{2}(\mathrm{PO})_{2}$ (5) 44
2.6 Syntheses of Ruthenium(II) Aminophosphine Complexes 44
2.6.1 Dichloro\{[o-(N, N-dimethylamino)phenyl](diphenylphosphine) $\}-$ (triphenylphosphine)ruthenium(II), $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ (6a) 44
2.6.2 Dibromo\{[o-(N, N-dimethylamino)phenyl](diphenylphosphine) $\}$ - (triphenylphosphine) ruthenium(II), $\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ (6b) 45
2.6.3 Diiodo $\{[o$-(N, N-dimethylamino)phenyl](diphenylphosphine) $\}$ - (triphenylphosphine)ruthenium(II), $\mathrm{RuI}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ (6c) 45
2.6.4 Dichloro\{[o-(N, N-dimethylamino)phenyl](diphenylphosphine) $\}$ - (tri-p-tolylphosphine)ruthenium(II), $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p-\text { tolyl })_{3}\right)$ (7a) 46
2.6.5 Dibromo $\{[o-(N, N$-dimethylamino)phenyl](diphenylphosphine) $\}$ - (tri- p-tolylphosphine)ruthenium(II), $\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)$ (7b) 46
2.6.6 Diiodo\{[o-(N, N-dimethylamino)phenyl](diphenylphosphine) $\}$ - (tri- p-tolylphosphine)ruthenium(II), $\operatorname{RuI}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)(7 \mathrm{c})$ 47
2.6.7 Dichlorobis $\{[o$-(N, N-dimethylamino)phenyl](diphenylphosphine) $\}$ - ruthenium(II), $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})_{2}(8)$ 47
2.6.8 Dichloro[(1-(N, N-dimethylamino)-8-(diphenylphosphino)naphthalene]- (triphenylphosphine) ruthenium(II), $\mathrm{RuCl}_{2}(\mathrm{PAN})\left(\mathrm{PPh}_{3}\right)$ (9) 48
2.6.9 Dichloro[(1-(N, N-dimethylamino)-8-(diphenylphosphino)naphthalene]- (tri- p-tolylphosphine)ruthenium(II), $\mathrm{RuCl}_{2}(\mathrm{PAN})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)$ (10) 48
2.6.10 Dichloro\{(R)- N, N-dimethyl-1-[o-(diphenylphosphino)phenyl]ethylamine $\}$ - (triphenylphosphine)ruthenium(II), RuCl_{2} (AMPHOS) $\left(\mathrm{PPh}_{3}\right)$ (11) 48
2.6.11 Attempts to Prepare Dichlorobis\{[(S)-2-(dimethylamino)propyl]- (diphenylphosphine) \}ruthenium(II), $\mathrm{RuCl}_{2}(\mathrm{ALAPHOS})_{2}$ (12) 49
2.6.12 Dichloro\{bis[o-(N, N-dimethylamino) phenyl](phenylphosphine) $\}$ - (triphenylphosphine)ruthenium(II), $\mathrm{RuCl}_{2}(\mathrm{BPN})\left(\mathrm{PPh}_{3}\right)$ (13) 50
2.6.13 Dichloro\{bis[o-(N, N-dimethylamino)phenyl](phenylphosphine) $\}$ - (tri-p-tolylphosphine) ruthenium(II), $\mathrm{RuCl}_{2}(\mathrm{BPN})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)$ (14) 51
2.7 Syntheses of Ruthenium(III) Aminophosphine Complexes 51
2.7.1 Trichloro\{[o-(N, N-dimethylamino)phenyl](diphenylphosphine) $\}$ - (triphenylphosphine)ruthenium(III), $\mathrm{RuCl}_{3}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ (15a) 51
2.7.2 Trichloro\{[o-(N, N-dimethylamino)phenyl](diphenylphosphine) $\}$ - (tri-p-tolylphosphine) ruthenium(III), $\mathrm{RuCl}_{3}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)$ (15b) 52
2.7.3 Mer-trichloro\{bis[o-(N, N-dimethylamino) phenyl](phenylphosphine) $\}$ - ruthenium(III), $\mathrm{Mer}-\mathrm{RuCl}_{3}(\mathrm{BPN})$ (16) 52
2.7.4 Di- μ-chloro- μ-oxo-bis\{chloro[o-(N, N-dimethylamino)phenyl]- (diphenylphosphine)ruthenium(III) $\}$, $(\mu-\mathrm{O})(\mu-\mathrm{Cl})_{2}[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})]_{2}$ (17) 53
2.8 Syntheses of Ruthenium(II) Complexes Containing Coordinated $\mathrm{H}_{2} \mathrm{~S}$ or Thiols: Cis-dichloro\{[0-N,N-dimethylamino)phenyl](diphenylphosphine) \}- (triarylphosphine)(ligand)ruthenium(II), $\mathrm{Cis}-\mathrm{RuX}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)(\mathrm{L})$ 53
2.8.1 Cis-RuCl $(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right) \cdot($ acetone $)$ (18a) 54
2.8.2 Cis-RuBr $2(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right) \cdot($ acetone $)(18 b)$ 55
2.8.3 In situ Preparation of $\mathrm{Cis}-\mathrm{RuI}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)(18 \mathrm{c})$ 55
2.8.4 Cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)\left(\mathrm{SH}_{2}\right) \cdot($ acetone) (19a) 56
2.8.5 Cis-RuBr $2(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)\left(\mathrm{SH}_{2}\right) \cdot($ acetone $)(19 b)$ 56
2.8.6 In situ Preparation of $\left.\left.\mathrm{Cis}^{-\mathrm{RuI}_{2}(\mathrm{P}-\mathrm{N})(\mathrm{P}(p-t o l y l}\right)_{3}\right)\left(\mathrm{SH}_{2}\right) \quad$ (19c). 56
2.8.7 Cis-RuCl ${ }_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{MeSH}) \cdot($ acetone $)(20)$ 57
2.8.8 Cis-RuCl $\mathbf{C l}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{EtSH}) \cdot(\mathrm{EtSH}) \cdot($ acetone) (21) 57
2.8.9 In situ Preparation of Cis $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{RSH}), \mathrm{R}=n-\mathrm{Pr}, \boldsymbol{i}-\mathrm{Pr}, n-\mathrm{Pn}$, $n-\mathrm{Hx}$, and $\mathrm{Bz}(\mathrm{Pr}=$ propyl, $\mathrm{Pn}=$ pentyl, $\mathrm{Hx}=$ hexyl, $\mathrm{Bz}=$ benzyl $)$ 58
2.9 In situ Preparation of $\mathrm{Ru}(\mathrm{L}) \mathrm{X}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{L}=\mathrm{SH}, \mathrm{OH}, \mathrm{H})$ and $\mathrm{Ru}(\mathrm{L})_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{X}=\mathrm{Cl}, \mathrm{Br} ; \mathrm{L}=\mathrm{SH}, \mathrm{OH}, \mathrm{H})$ 59
2.9.1 Ru(SH)Cl(P-N) $\left(\mathrm{PPh}_{3}\right)(27 a)$ 59
2.9.2 $\left.\mathrm{Ru}(\mathrm{SH}) \mathrm{Br}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right) \mathbf{(2 7 b}\right)$ 60
2.9.3 $\mathrm{Ru}(\mathrm{OH}) \mathrm{Cl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(28 a)$ 60
2.9.4 $\left.\mathrm{Ru}(\mathrm{OH}) \mathrm{Br}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right) \mathbf{(2 8 b}\right)$ 61
2.9.5 Ru(H)Cl(P-N) $\left(\mathrm{PPh}_{3}\right)(29)$ 61
2.9.6 Ru(SH) $)_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(30)$ 61
2.9.7 Ru(OH) $)_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(31)$ 62
$2.9 .8 \mathrm{Ru}(\mathrm{H})_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(32)$ 62
2.10 Syntheses of Ruthenium(II) Complexes Containing Coordinated $\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$, or EtOH 62
2.10.1 Trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right)$ (33a), 62
2.10.2 Trans $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(\mathrm{p} \text {-tolyl })_{3}\right)\left(\mathrm{OH}_{2}\right)$ (33b) 63
2.10.3 Trans $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{MeOH})(34)$ 63
2.10.4 Trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{EtOH})$ (35) 64
2.11 Syntheses of Ruthenium(II) Complexes with Other Coordinated Gases 65
2.11.1 Cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}-\mathrm{H}_{2}\right)$ (36) 65
2.11.2 Reactions with NH_{3} 66
2.11.3 Cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\eta^{1}-\mathrm{N}_{2}\right)(43)$ 69
2.11.4 Cis-RuCl $2(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{N}_{2} \mathrm{O}\right)(44)$ 70
2.12 Synthesis and Reactions of Ruthenium(II) Carbene Complexes 70
2.12.1 Cis $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(=\mathrm{C}=\mathrm{CHPh})$ (45) 70
2.12.2 Cis $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(\mathrm{p}-\text { tolyl })_{3}\right)(=\mathrm{C}=\mathrm{CHPh})$ (46) 71
2.12.3 Cis $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(=\mathrm{C}=\mathrm{CHPhCH} 3$) (47) 71
2.12.4 Cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SCHCH}_{2} \mathrm{Ph}\right)$ (48) 72
2.12.5 Reaction of Cis-RuCl $(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph})(45)$ with $\mathrm{H}_{2} \mathrm{O}$. 72
2.13 References 74
Chapter 3 Synthesis and Reactivity of Ruthenium Aminophosphine Precursors 76
3.1 Introduction 76
3.2 Preparation of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)(\mathrm{R}=\mathrm{Ph}(6 \mathrm{a}), \mathrm{R}=p$-tolyl (7a)) 76
3.2.1 Decomposition of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 a)$ to $(\mu-\mathrm{O})(\mu-\mathrm{Cl})_{2}[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})]_{2}(17)$ 79
3.3 Metathesis Reactions 85
3.3.1 Synthesis and Characterization of $\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)(6 \mathrm{~b})$ and $\mathrm{RuI}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)(\mathbf{6 c})$ 86
3.3.2 In situ Formation of $\mathrm{Ru}(\mathrm{OH}) \mathrm{X}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{X}=\mathrm{Cl}(28 a), \mathrm{Br}(\mathbf{2 8 b}))$ and $\mathrm{Ru}(\mathrm{OH})_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathbf{3 1})$ 88
3.3.3 In situ Reactions of $\mathbf{6 a}$ or $\mathbf{6 b}$ with $\mathrm{NaSH} \cdot \mathrm{xH}_{2} \mathrm{O}$ 91
3.3.4 In situ Formation of $\mathrm{Ru}(\mathrm{H})_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(32)$ 92
3.4 Synthesis of $\mathrm{RuCl}_{2}(\mathrm{BPN})\left(\mathrm{PR}_{3}\right)(\mathrm{R}=\mathrm{Ph}(13), p$-tolyl (14)) 93
3.5 Synthesis of $\mathrm{Mer}-\mathrm{RuCl}_{3}(\mathrm{BPN})(16)$ 96
3.6 The Reactions of TPN with Ru (II) and (III) 99
3.7 Characterization and Reactivity of $\mathrm{RuCl}_{2}\left(\mathrm{PAN}^{2}\right)\left(\mathrm{PR}_{3}\right)(\mathrm{R}=\mathrm{Ph}(9)$, p-tolyl (10)) 100
3.8 Attempted Synthesis and Reactivity of RuCl_{2} (AMPHOS) $\left(\mathrm{PPh}_{3}\right)(11)$ 101
3.9 Attempted Preparations of $\mathrm{RuCl}_{2}\left(\mathrm{ALAPHOS}_{2}(12)\right.$ 104
3.10 Miscellaneous: Reactivity of Trans $-\mathrm{RuCl}_{2}(\mathrm{PO})_{2}(5)$ with $\mathrm{H}_{2} \mathrm{~S}$ 104
3.11 Summary 105
3.12 References 107
Chapter 4 Transition Metal H_{2} S AND Thiol Complexes: Synthesis and Characterization of Cis-RuX(P-N)(PR)(L); $L=\mathbf{H}_{2} S$, Thiols. 110
4.1 Introduction 110
4.1.1 Transition Metal $\mathrm{H}_{2} \mathrm{~S}$ Complexes. 110
4.1.2 Transition Metal Thiol Complexes 115
4.2 Synthesis and Characterization of Cis-RuX $2(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right), \mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$ 119
4.2.1 Cis-RuCl $\mathbf{2}^{(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)(18 a) ~}$ 120
4.2.2 $\mathrm{Cis}-\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)(\mathbf{1 8 b})$ 131
4.2.3 In situ Preparation of Cis- $\mathrm{RuI}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)(18 \mathrm{c})$ and Cis-RuI $2(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p-\text { tolyl })_{3}\right)\left(\mathrm{SH}_{2}\right)(19 \mathrm{c})$ 135
4.3 The Synthesis and Characterization of Cis - $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{RSH})$ Species ($\mathrm{R}=$ alkyl) 136
4.3.1 Cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{MeSH})(20)$ 136
4.3.2 $\mathrm{Cis}-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{EtSH})(21)$ 140
4.3.3 In situ Preparation of Cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{RSH})$ Species, $\mathrm{R}=n-\mathrm{Pr}$, i-Pr, n-Pn, $n-\mathrm{Hx}, \mathrm{Bz}$ 145
4.4 Comparison of Coordinated S-H Vibrational Frequencies for 18a, 18b, 19a, 20 and 21 148
4.5 The UV-Vis Spectra of $\mathrm{RuX}_{2}(\mathrm{PN})\left(\mathrm{PR}_{3}\right)(\mathrm{X}=$ halogen; $\mathrm{PN}=\mathrm{P}-\mathrm{N}, \mathrm{PAN}$ or AMPHOS; $\mathrm{R}=\mathrm{Ph}$ OR p-tolyl $)$ and Cis -RuX $\mathrm{X}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{L})\left(\mathrm{L}=\mathrm{H}_{2} \mathrm{~S}\right.$, MeSH or EtSH) Species 149
4.6 Solution Thermodynamics for Reversible Formation of $\mathrm{H}_{2} \mathrm{~S}$ and Thiol Complexes 152
4.7 The Ru-S Bond Strengths in the Solid State: DSC Experiments 156
4.8 The Acidity of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{H}_{2} \mathrm{~S}\right)$: Proton Abstraction with Proton Sponge 158
4.9 Reaction of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ with SO_{2} 166
4.10 Decompositon of Cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$ 167
4.11 Summary 168
4.12 References 169
Chapter $5 \quad$ Coordination of $\mathbf{H}_{\mathbf{2}} \mathbf{O}$ and Alcohols to $\mathbf{R u C l}_{\mathbf{2}}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{\mathbf{3}}\right)$. 173
5.1 Preparation of Trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)\left(\mathrm{OH}_{2}\right)$ 173
5.2 X-Ray Crystal Structures of Trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right)$ (33a) 175
5.3 NMR Spectra Trans-RuCl $2(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right)(33 \mathrm{a})$ 181
5.4 Trans Influence of Ligands and its Effect on ${ }^{31}$ P NMR Chemical Shifts 186
5.5 UV-Vis Spectral Studies of the $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right) / \mathrm{H}_{2} \mathrm{O}$ System 191
5.6 The Preparation of Trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{L})(\mathrm{L}=\mathrm{MeOH}(34)$ and EtOH (35)) 195
5.7 DSC Data for Complexes Containing O-Donor ligands 198
5.8 Summary 201
5.9 References 202
Chapter 6 Reactions of $\mathbf{R u C l}_{\mathbf{2}}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)$ with Dihydrogen, Ammonia, Nitrous Oxide, Alkynes, and Hydrogen Chloride 205
6.1 The Structure and Reactivity of Cis-RuCl $(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}-\mathrm{H}_{2}\right)$ (36) 205
6.1.1 The Crystal Structure Cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}-\mathrm{H}_{2}\right)(36)$ 206
6.1.2 Thermodynamic Studies of $\mathrm{Cis}-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}-\mathrm{H}_{2}\right)(36)$ in Solution and in the Solid State 208
6.1.3 The pK_{a} of Cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}-\mathrm{H}_{2}\right)(36)$ 211
6.2 Reactions of $\mathrm{RuX}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ with NH_{3} 214
6.2.1 Isolation of $\left[\mathrm{RuX}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{X}\right]$ (37) in the Presence of Excess NH_{3} 214
6.2.2 The Solution Chemistry of $\left[\mathrm{RuX}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{X}\right]$ (37) 216
6.2.3 The Solid State Reaction of $\mathrm{RuX}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ with NH_{3} 219
6.2.4 The Preparation of $\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{PF}_{6}(41)$ 220
6.3 The Coordination Chemistry of $\mathrm{N}_{2} \mathrm{O}$ 225
6.3.1 $\mathrm{N}_{2} \mathrm{O}$ as a Potential Oxidant 225
6.3.2 The Reaction of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ with $\mathrm{N}_{2} \mathrm{O}$ 229
6.4 Ruthenium Carbene Complexes: The Synthesis and Reactivity of Cis $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)\left(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{R}^{\prime}\right)\left(\mathrm{R}, \mathrm{R}^{\prime}=\mathrm{Ph}, p\right.$-tolyl $)$. 235
6.4.1 Characterization of $\mathrm{Cis}-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{R})$ 235
6.4.2 The Reactivity of $\mathrm{Cis}-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph})(45)$ 240
6.5 The Reaction of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 \mathrm{a})$ with HCl 243
6.6 The Catalytic Hydrogenation of $\mathrm{PhC}(\mathrm{H})=\mathrm{NPh}$ Using Complexes Containing the $\mathrm{Ru}(\mathrm{P}-\mathrm{N})$ Moiety 244
6.7 Summary 246
6.8 References 248
Chapter 7 General Conclusions and Recommendations for Future Research 253
7.1 References 256
Appendices 257
Appendix I X-Ray Crystallographic Analysis of $\mathrm{Bis}[0-\mathrm{N}, \mathrm{N}-$ dimethylamino)phenyl]phenylphosphine, BPN. 258
Appendix II X-Ray Crystallographic Analysis of Mer - $\mathrm{RuCl}_{3}(\mathrm{BPN})(16)$ 261
Appendix III X-Ray Crystallographic Analysis of $(\mu-\mathrm{O})(\mu-\mathrm{Cl})_{2}[\operatorname{RuCl}(\mathrm{P}-\mathrm{N})]_{2}(17)$ 266
Appendix IV X-Ray Crystallographic Analysis of Cis-RuCl $2(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right) \cdot($ acetone $)(18 a)$ 271
Appendix V X-Ray Crystallographic Analysis of Cis- $\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right) \cdot($ benzene $)(\mathbf{1 8 b})$ 276
Appendix VI X-Ray Crystallographic Analysis of Cis-RuCl $2(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{MeSH}) \cdot($ acetone $)(20)$ 279
Appendix VII X-Ray Crystallographic Analysis of $\mathrm{Cis}-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{EtSH}) \cdot\left(1.5 \mathrm{C}_{6} \mathrm{D}_{6}\right)(21)$ 284
Appendix VIII X-Ray Crystallographic Analysis of Trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right) \cdot\left(2 \mathrm{C}_{6} \mathrm{H}_{6}\right)(33 \mathrm{a}, \mathrm{I})$ and Trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right) \cdot\left(1.5 \mathrm{C}_{6} \mathrm{H}_{6}\right)(33 \mathrm{a}, \mathrm{II})$ 287
Appendix IX X-Ray Crystallographic Analysis of Cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}-\mathrm{H}_{2}\right)(36)$ 295
Appendix X X-Ray Crystallographic Analysis of Cis-RuCl $2(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(=\mathrm{C}=\mathrm{CHPh})(45)$ 298
Appendix XI Thermodynamic Calculations and Data for the Reversible Formation of Cis-RuCl $2(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{L})\left(\mathrm{X}=\mathrm{Cl}, \mathrm{Br} ; \mathrm{R}=\mathrm{Ph}, p\right.$-tolyl; $\mathrm{L}=\mathrm{H}_{2} \mathrm{~S}$, MeSH, EtSH) 302
Appendix XII Thermodynamic Calculations and Data for the Reversible Formation of Trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right)$ (33a) 308
Appendix XIII Thermodynamic Calculations and Data for the Reversible Formation of Cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}-\mathrm{H}_{2}\right)(36)$ 316

List of Figures

Figure 1.1 The sulfur cycle in nature. 2
Figure 1.2 The most widely utilized methods for the synthesis of thiols 6
Figure 1.3 Some common coordination modes of $\mathrm{SR}^{-}\left(\mathrm{R}=\mathrm{H}\right.$ or alkyl) and S^{2-} ligands to transition metal centres (M) 7
Figure 1.4 Formation of hydrido mercapto and bis(mercapto) Ru (II) phosphine complexes 9
Figure 1.5 Formation of trans- $\mathrm{IrCl}(\mathrm{H})(\mathrm{SH})(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ 9
Figure 1.6 Reactions of trans- $\mathrm{Mo}\left(\mathrm{N}_{2}\right)_{2}(\mathrm{dppe})_{2}$ with thiols 10
Figure 1.7 Formation of five-coordinate, trigonal bipyramidal mercapto and thiolato complexes. 11
Figure 1.8 Reactions of $\mathrm{H}_{2} \mathrm{~S}$ with monomeric complexes to form di- and tri- $\mu_{2}-\mathrm{SH}$ dinuclear complexes 12
Figure 1.9 Reaction of $\left[\operatorname{Ir}(\mathrm{H})_{2}(\mathrm{MeCO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]$ with $\mathrm{H}_{2} \mathrm{~S}$ 13
Figure 1.10 Formation of dinuclear mercapto and thiolato-bridged complexes containing arene co-ligands. 14
Figure 1.11 Clusters containing μ_{2} - and μ_{3}-SR bridged ligands. 15
Figure 1.12 Formation of $\mu_{2}-\mathrm{S}$ and μ_{2}-SMe dinuclear complexes 16
Figure 1.13 S-H bond activation in $\mathrm{H}_{2} \mathrm{~S}$ and thiols by (a) $\operatorname{RhRe}(\mathrm{CO})_{4}(\mu-\mathrm{dpm})_{2}$ and (b) $\left[\mathrm{Pt}_{3}\left(\mu_{3}-\mathrm{CO}\right)(\mu-\mathrm{dpm})_{3}\right]^{2+}$. 17
Figure 1.14 Structure of intermediate formed during the reaction of $\mathrm{Pd}_{2} \mathrm{X}_{2}(\mu-\mathrm{dpm})_{2}$ With $\mathrm{H}_{2} \mathrm{~S}$ en route to $\mathrm{Pd}_{2} \mathrm{X}_{2}\left(\mu_{2}-\mathrm{S}\right)(\mu-\mathrm{dpm})_{2}$ and H_{2} 18
Figure 1.15 Homogeneous catalytic cycle for the recovery of H_{2} from $\mathrm{H}_{2} \mathrm{~S}$ 19
Figure 1.16 Proposed transition state for the reconversion of $\mathrm{Pd}_{2} \mathrm{X}_{2}(\mu-\mathrm{dpm})_{2}$ from $\mathrm{Pd}_{2} \mathrm{X}_{2}\left(\mu_{2}-\mathrm{S}\right)(\mu-\mathrm{dpm})_{2}$ 19
Figure 1.17 [$o-(N, N$-dimethylamino)phenyl]diphenylphosphine] (P-N) 19
Figure 1.18 Reaction of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)$ with small molecules L 21
Figure 2.1 Ligands studied in this thesis work 34
Figure 3.1 The preparation of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)(\mathrm{R}=\mathrm{Ph}(6 \mathrm{a}), \mathrm{R}=p$-tolyl (7a)) 76
Figure 3.2 The ORTEP plot of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)(7 \mathbf{a})$ 78
Figure 3.3 The ORTEP plot of $(\mu-\mathrm{O})(\mu-\mathrm{Cl})_{2}[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})]_{2}(17)$. 80
Figure 3.4 Antiferromagnetic coupling between two Ru centres through an O^{2-} ligand 83
Figure 3.5 UV-Vis spectrum of $(\mu-\mathrm{O})(\mu-\mathrm{Cl})_{2}[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})]_{2}(17)$ in DMSO at $25^{\circ} \mathrm{C}$ 84
Figure 3.6 The catalytic oxidation of PPh_{3} to $\mathrm{O}=\mathrm{PPh}_{3}$ by 6 a in the presence of O_{2} 85
Figure 3.7 Synthesis of $\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 \mathrm{~b})$ and $\mathrm{RuI}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 \mathrm{c})$ 86
Figure $3.8{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectra $\left(81.0 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}\right.$) for (a) $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 \mathrm{a})$, (b) $\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 b)$ and (c) $\mathrm{RuI}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 \mathrm{c})$ 87
Figure $3.9{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $(121.4 \mathrm{MHz})$ for the reaction of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathbf{6 a})$ with NaOH in d_{6}-acetone after (a) 2 h and (b) 20 h at $25^{\circ} \mathrm{C}$ 89
Figure 3.10 The subsitution of Cl^{-}ligands by OH ligands. 90
Figure 3.11 High field ${ }^{1} \mathrm{H}$ NMR spectrum $(300 \mathrm{MHz})$ for the reaction of $\mathbf{6 a}$ with NaH in d_{6}-acetone at $25^{\circ} \mathrm{C}$. 93
Figure 3.12 The ORTEP plot of BPN 94
Figure 3.13 Possible structures of $\mathrm{RuCl}_{2}(\mathrm{BPN})\left(\mathrm{PR}_{3}\right)$. 95
Figure 3.14 The ORTEP plot of mer $-\mathrm{RuCl}_{3}(\mathrm{BPN}) \cdot \mathrm{CHCl}_{3}(16)$ 97
Figure 3.15 The ORTEP plot of TPN 99
Figure 3.16 Possible structures for $\mathrm{RuCl}_{2}(\mathrm{PAN})\left(\mathrm{PR}_{3}\right)$. 100
Figure 3.17 Synthesis of $\mathrm{RuCl}_{2}(\mathrm{AMPHOS})\left(\mathrm{PPh}_{3}\right)(11)$. 102
Figure 3.18 Synthesis of $\left[\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{2}-\mathrm{H}_{2}\right) \mathrm{Ru}(\mu-\mathrm{H})(\mu-\mathrm{Cl})_{2} \mathrm{Ru}(\mathrm{H})\left(\mathrm{PPh}_{3}\right)_{2}\right]$. 102
Figure 3.19 Synthesis of $\mathrm{Ru}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)_{3}$ using AMPHOS as the base. 103
Figure 3.20 Structure of $\mathrm{RuCl}_{2}\left(\mathrm{ALAPHOS}_{2}\right.$ (12) (proposed) and $\mathrm{RuCl}_{2}\left[\mathrm{~K}^{2}(P, N)-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right]_{2}$ 104
Figure 3.21 Reactions of $\mathrm{RuCl}_{2}(\mathrm{PO})_{2}(5)$ with $\mathrm{H}_{2} \mathrm{~S}$ 105
Figure 4.1 The (a) preparation, (b) structure and (c) oxidation of $\left[\mathrm{Ru}\left(\mathrm{SH}_{2}\right)\left(\mathrm{PPh}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right]$.. 111
Figure 4.2 Formation of $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SH}_{2}\right)\right]$ 112
Figure 4.3 Formation of $\mathrm{W}(\mathrm{CO})_{5}\left(\mathrm{SH}_{2}\right)$ 113
Figure 4.4 Formation of metal carbonyl $\mathrm{H}_{2} \mathrm{~S}$ salts. 114
Figure 4.5 Formation of $\left[(\mathrm{ThiCp}) \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2}\right][\mathrm{OTf}]$ 114
Figure 4.6 Preparation of thiol complexes containing the electron rich $\mathrm{CpM}(\mathrm{M}=\mathrm{Ru}, \mathrm{Fe})$ moieties 116
Figure 4.7 Formation of $\left[\mathrm{Ru}\left(\eta^{3}: \eta^{3}-\mathrm{C}_{10} \mathrm{H}_{16}\right) \mathrm{Cl}_{2}(\mathrm{HSR})\right]$ 117
Figure 4.8 Preparation of $\left[\operatorname{IrH}\left(\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\left(\mathrm{HSCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})\right] \mathrm{Cl}$ 118
Figure 4.9 In situ formation of $\left[\mathrm{MH}(\mathrm{CO})(\mathrm{N}-\mathrm{SH})\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]$. 119
Figure 4.10 The ORTEP plot of cis $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$ (18a). 121
Figure 4.11 Bond distances between H -atom and C -atom of phenyl ring to indicate SH / π interactions in $\left(\mathrm{PhMe}_{2} \mathrm{P}\right)_{3} \mathrm{Ru}(\mu-\mathrm{SH})_{3} \mathrm{Ru}(\mathrm{SH})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ 123
Figure 4.12 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (202.47 MHz) of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$ (18a) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at various temperatures 125
Figure $4.13{ }^{1} \mathrm{H}$ NMR spectra $(121.4 \mathrm{MHz})$ of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right) \cdot($ acetone $)$ (18a) in $\mathrm{C}_{6} \mathrm{D}_{6}$ 126
Figure 4.14 VT ${ }^{1} \mathrm{H}$ NMR spectra $(500 \mathrm{MHz})$ of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)(18 a)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (under $1 \mathrm{~atm} \mathrm{H}_{2} \mathrm{~S}$) for the region $\delta 0.0$ to $\delta 4.0$ 127
Figure 4.15 ${ }^{1} \mathrm{H}$ and ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ NMR spectra $(500 \mathrm{MHz})$ of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$ (18a) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (under $1 \mathrm{~atm} \mathrm{H}_{2} \mathrm{~S}$) at $-50^{\circ} \mathrm{C}$ for the region $\delta 0.2$ to 1.6 128
Figure 4.16 ${ }^{1} \mathrm{H}$ NMR (500 MHz) signal at $\delta 1.49$ for cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$ (18a) with decoupler transmitter centred at 202.4685838 MHz with increasing ${ }^{31} \mathrm{P}$ decoupler power 129
Figure 4.17 The vicinal Karplus correlation. Relationship between dihedral angle (ϕ) and ${ }^{3} J$ 130
Figure 4.18 End-on schematic view of the solid state structure of 18a. 131
Figure 4.19 The ORTEP plot of Cis-RuBr $2(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)(\mathbf{1 8 b})$. 133
Figure 4.20 End-on view schematic view of the solid state structure of $\mathbf{1 8 b}$. 135
Figure 4.21 The ORTEP plot of $c i s-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{MeSH})(20)$ 137
Figure $4.22{ }^{1} \mathrm{H}$ NMR spectra of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{MeSH}) \cdot($ acetone) (20) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (a) $20^{\circ} \mathrm{C}$ andb) $-50^{\circ} \mathrm{C}$ 139
Figure 4.23 The ORTEP plot of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{EtSH})$ (21) 141
Figure $4.24{ }^{1} \mathrm{H}$ NMR spectrum (500 MHz) of 21 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $20^{\circ} \mathrm{C}$ 143
Figure $4.25{ }^{1} \mathrm{H}$ NMR spectra of $21\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: (a) simulated spectrum; (b) expanded regions. 144
Figure $4.26{ }^{1} \mathrm{H}$ NMR resonance of $\mathrm{Ru}-\mathrm{S}-\mathrm{H}_{\mathrm{a}}$ in cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{EtSH})(21):(a){ }^{1} \mathrm{H}$ NMR spectrum; (b) ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ NMR spectrum $\left(500 \mathrm{MHz}, 20^{\circ} \mathrm{C}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$. 145
Figure $4.27{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (300 MHz) spectra of in situ reactions of 6 a with (a) i - PrSH and
(b) n-PnSH in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $20^{\circ} \mathrm{C}$. 147
Figure 4.28 The vibrational modes for $\mathrm{H}_{2} \mathrm{~S}$ (or any bent triatomic molecules) 148
Figure 4.29 UV-Vis spectra for $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 a)$ and cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$ (18a) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 151
Figure 4.30 Van't Hoff plots for the K equilibria (see p. 42) for (a) 18a, (b) 18b, (c) 19a, (d) 20 and (e) 21 in $\mathrm{C}_{6} \mathrm{D}_{6}$ 153
Figure $4.31{ }^{1} \mathrm{H}$ NMR spectra in the region $\delta-0.5$ to $4.5\left(300 \mathrm{Mhz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ for the equilibrium between $18 \mathrm{a}, 6 \mathrm{a}$ and $\mathrm{H}_{2} \mathrm{~S}$ at (a) $20^{\circ} \mathrm{C}$, (b) $36^{\circ} \mathrm{C}$ and (c) $50^{\circ} \mathrm{C}$. 154
Figure 4.32 DSC curves for cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{L})$ complexes. 157
Figure 4.33 Proposed reaction scheme for the loss of L from cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{L})$. 158
Figure 4.34 Structure of a typical proton sponge. 158Figure 4.35 (a), (b) Dihydrogen activation by $\mathrm{Ru}(\mathrm{II})$ complexes in the presence of addedbase, and (c) abstraction of proton from $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$.159
Figure $4.36{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) spectra for various Ru (II) complexes containing sulfur ligands: (a) $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$ at $20^{\circ} \mathrm{C}$; $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)+3 \mathrm{PS}+1 \mathrm{~atm} \mathrm{H}_{2} \mathrm{~S}$ at (b) $20^{\circ} \mathrm{C}$, (c) $-25^{\circ} \mathrm{C}$, (d) $-60^{\circ} \mathrm{C}$ and (e) $-70^{\circ} \mathrm{C}$161
Figure $4.37{ }^{1} \mathrm{H}$ NMR spectra ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.) of (a) PS and (b) $\mathrm{PSH}^{+} \mathrm{Cl}^{-}$. 162
Figure 4.38 (a) Équilibrium for formation of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$ (18a); (b), (c), (d) are subsequent equilibria en route to the formation of $\mathrm{Ru}(\mathrm{SH})_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(30)$ in the presence of added PS 163
Figure 5.1 TGA spectrum of 33a 174
Figure 5.2 PLUTO plots of 33a $\left(\right.$ trans $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right) \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{I})$ and trans- $\left.\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right) \cdot 1.5 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{II})\right)$ 176
Figure 5.3 The ORTEP plot of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right) \cdot 1.5 \mathrm{C}_{6} \mathrm{H}_{6}$ (33a (II)) 177
Figure 5.4 Rapid equilibrium between 6a and 33a 182
Figure 5.5 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right)(33 a)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at various temperatures 183
Figure 5.6 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $\left(20^{\circ} \mathrm{C}\right)$ of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 a)$ in d_{6}-acetone with various $\mathrm{H}_{2} \mathrm{O}$ concentrations. 184
Figure $5.7{ }^{1} \mathrm{H}$ NMR spectra of trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right)(33 a)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at various temperatures 186
Figure 5.8 The relationship between $\mathrm{Ru}-\mathrm{P}_{\mathrm{A}}$ bond length (\AA) and $\delta \mathrm{P}_{\mathrm{A}}$ (in CDCl_{3}) for the complexes containing the $\mathrm{Ru}(\mathrm{P}-\mathrm{N})$ moiety 188
Figure 5.9 Proposed mechanism for the formation of $c i s-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)(18 a)$. 190
Figure 5.10 Species in equilibrium when $\mathbf{6 a}$ is dissolved in a coordinating solvent in the presence of $\mathrm{H}_{2} \mathrm{O}$ 191
Figure 5.11 Spectral changes observed upon addition of $\mathrm{H}_{2} \mathrm{O}$ to $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 a)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 192
Figure 5.12 Spectral changes observed upon addition of $\mathrm{H}_{2} \mathrm{O}$ to $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 a)$ in $\mathrm{C}_{6} \mathrm{H}_{6}$ 192
Figure 5.13 Spectral changes observed upon addition of $\mathrm{H}_{2} \mathrm{O}$ to $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 a)$ in acetone 193
Figure 5.14 Spectral changes observed upon addition of $\mathrm{H}_{2} \mathrm{O}$ to $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathbf{6 a})$ in THF 193
Figure 5.15 Solving K for the addition of $\mathrm{H}_{2} \mathrm{O}$ to 6 a at $25^{\circ} \mathrm{C}$ 194
Figure 5.16 ${ }^{1} \mathrm{H}$ NMR spectrum of trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{MeOH})(34)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ 196
Figure $5.17{ }^{1} \mathrm{H}$ NMR spectrum of trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{EtOH})(35)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ 197
Figure 5.18 DSC curves for trans $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{L})$ 199
Figure 5.19 DSC curves for trans $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right)(33 a)$ and trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)\left(\mathrm{OH}_{2}\right)(33 \mathrm{~b})$ 200
Figure 6.1 The ORTEP plot of cis-RuCl $(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}-\mathrm{H}_{2}\right)(36)$ 207
Figure $6.2{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (81.0 MHz) of 36 in equilibrium with $\mathbf{6 a}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $20^{\circ} \mathrm{C}$. 210
Figure $6.3{ }^{1} \mathrm{H}$ NMR spectrum (200 MHz) of 36 in equilibrium with 6 a in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $20^{\circ} \mathrm{C}$ 210
Figure 6.4 DSC curve for cis-RuCl ${ }_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}-\mathrm{H}_{2}\right)(36)$ 211
Figure $6.5{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121.4 \mathrm{MHz}, 20^{\circ} \mathrm{C}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) spectrum of the in situ reaction of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 \mathrm{a})$ with 1.5 equiv PS under $1 \mathrm{~atm} \mathrm{H}_{2}$ 213
Figure $6.6{ }^{1} \mathrm{H}$ NMR $\left(121.4 \mathrm{MHz}, 20^{\circ} \mathrm{C}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ spectrum in the region $\delta 2.0$ to 4.0 of the in situ reaction of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ (6a) with 1.5 equiv PS under $1 \operatorname{atm} \mathrm{H}_{2}$ 213
Figure 6.7 Proposed structure of $\left[\mathrm{RuX}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{X}\right]$ (37) 215
Figure $6.8{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of $\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{Cl}\right](\mathbf{3 7 a})$ under $1 \mathrm{~atm} \mathrm{NH}_{3}$ at $20^{\circ} \mathrm{C}$. 215
Figure $6.9{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectra $\left(121.4 \mathrm{MHz}, 20^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right)$ for $\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{Cl}\right]$ (37a): (a) with $1 \mathrm{~atm} \mathrm{NH}_{3}$ and (b) absence of excess NH_{3} 217
Figure 6.10 Reversible conversion of $\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{Cl}\right](37 \mathrm{a})$ to cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)$ (39a) 218
Figure $6.11{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (121.4 MHz) of trans $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)$ (38a) after 5 min of being dissolved in CDCl_{3} at $20^{\circ} \mathrm{C}$ 220Figure 6.12 ${ }^{1} \mathrm{H}$ NMR spectrum (300 MHz) of trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)$ (38a) (after5 min of being dissolved in CDCl_{3} at $20^{\circ} \mathrm{C}$) in the region $\delta 0.0$ to 4.0 .220
Figure $6.13{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of (a) $\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ (41) and (b) $\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{Cl}\right](37 \mathrm{a})$.222
Figure $6.14{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum for the in situ formation of $\left[\mathrm{Ru}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{3} \cdots \mathrm{Cl}\right]\left[\mathrm{PF}_{6}\right](40 \mathrm{a})$222
Figure 6.15 Reaction scheme for the preparation of NH_{3} complexes containing $\mathrm{PF}_{6}{ }^{-}$ions. . 223
Figure 6.16 ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ (41) 224
Figure 6.17 Potential catalytic cycle for the oxidation of organic substrates using $\mathrm{N}_{2} \mathrm{O}$ 226
Figure 6.18 Stoichiometric formation of $\mathrm{PhCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{Ph}$ utilizing $\mathrm{N}_{2} \mathrm{O}$ 227
Figure 6.19 Transfer of th O -atom of $\mathrm{N}_{2} \mathrm{O}$ into $\mathrm{Ni}-\mathrm{C}$ bond. 228
Figure 6.20 Formation to Ru-OH complexes by O -atom insertion from $\mathrm{N}_{2} \mathrm{O}$ 228
Figure 6.21 Possible coordination modes of $\mathrm{N}_{2} \mathrm{O}$ to $(\mathrm{dmpe})_{2} \mathrm{Ru}(\mathrm{H})_{2}$ 229
Figure $6.22{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(121.4 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of (a) $\mathbf{6 a}$, and the reaction of $\mathbf{6 a}$ with $6 \mathrm{~atm} \mathrm{~N}_{2} \mathrm{O}$ at (b) $20^{\circ} \mathrm{C}$, (c) $-40^{\circ} \mathrm{C}$, (d) $-90^{\circ} \mathrm{C}$ and (e) $20^{\circ} \mathrm{C}$ after reaction time of 2 days. 231
Figure $6.23{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra ($121.4 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) for the reaction of $\mathbf{6 a}$ with (a) $6 \mathrm{~atm} \mathrm{~N}_{2}$ at $20^{\circ} \mathrm{C}$ and (b) $6 \mathrm{~atm} \mathrm{~N}_{2} \mathrm{O}$ at $-40^{\circ} \mathrm{C}$. 232
Figure 6.24 Proposed reaction scheme for the formation of 17 and $\mathrm{O}=\mathrm{PPh}_{3}$ if $\mathrm{N}_{2} \mathrm{O}$ is initially coordinated to $\mathbf{6 a}$ via the terminal N atom 233
Figure 6.25 The catalytic oxidation of PPh_{3} by $\mathrm{N}_{2} \mathrm{O}$. 234
Figure 6.26 Formation of a vinylidene complex from a 1-alkyne ligand. 236
Figure 6.27 The ORTEP plot of cis $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph})(45)$ 237
Figure $6.28{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(81.0 \mathrm{MHz}, 20^{\circ} \mathrm{C}\right)$ of cis $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph})(45)$ in CDCl_{3}. 239
Figure $6.29{ }^{1} \mathrm{H}$ NMR spectrum ($200 \mathrm{MHz}, 20^{\circ} \mathrm{C}$) of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{C}_{\mathrm{\alpha}}=\mathrm{C}_{\beta}(\mathrm{H}) \mathrm{Ph}\right)(45)$ in CDCl_{3}. 240
Figure 6.30 Proposed mechanism for the formation of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{S}=\mathrm{C}(\mathrm{H})$ - $\mathrm{CH}_{2} \mathrm{Ph}$) (48) from 45 and $\mathrm{H}_{2} \mathrm{~S}$ 241
Figure 6.31 The reaction of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph})(45)$ with $\mathrm{H}_{2} \mathrm{O}$ at $80^{\circ} \mathrm{C}$ in THF 243
Figure 6.32 Reaction of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 a)$ with HCl : formation of $\mathrm{RuCl}_{3}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ (15a). 244
Figure $6.33{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra for the reaction of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 a)$ with (a) 1 equiv HCl and (b) 5 equiv HCl in $\mathrm{C}_{6} \mathrm{D}_{6}$ 244
Figure 7.1 Examples for the modification of P-N 255

List of Tables

Table 1.1 Some physical properties of $\mathrm{H}_{2} \mathrm{~S}$ and thiols. 6
Table 3.1 Selected bond lengths (\AA) for $(\mu-\mathrm{O})(\mu-\mathrm{Cl})_{2}[\operatorname{RuCl}(\mathrm{P}-\mathrm{N})]_{2}(17)$ 81
Table 3.2 Selected bond angles $\left({ }^{\circ}\right)$ for $(\mu-\mathrm{O})(\mu-\mathrm{Cl})_{2}[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})]_{2}(17)$ 81
Table 3.3 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data for the in situ reactions of $\mathrm{RuX}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ with NaOH in d_{6}-acetone 91
Table 3.4 ${ }^{1} \mathrm{H}$ NMR data for the in situ reactions of $\mathrm{RuX}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ with NaOH in d_{6}-acetone. 91
Table 3.5 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopic data for $\mathrm{RuCl}_{2}(\mathrm{BPN})\left(\mathrm{PR}_{3}\right)$ in CDCl_{3}. 95
Table 3.6 ${ }^{1} \mathrm{H}$ NMR chemical shifts for $\mathrm{RuCl}_{2}(\mathrm{BPN})\left(\mathrm{PR}_{3}\right)$ in CDCl_{3}. 95
Table 3.7 Selected bond lengths (\AA) for $m e r-\mathrm{RuCl}_{3}(\mathrm{BPN})(16)$ 98
Table 3.8 Selected bond angles (${ }^{\circ}$) for mer- $\mathrm{RuCl}_{3}(\mathrm{BPN})(16)$. 98
Table 4.1 Selected bond lengths (\AA) for cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)(18 a)$ and cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)\left(\mathrm{SH}_{2}\right)(19 a)$ 122
Table 4.2 Selected bond angles $\left({ }^{\circ}\right)$ for $c i s-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)(18 a)$ and cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)\left(\mathrm{SH}_{2}\right)(19 \mathrm{a})$ 122
Table 4.3 Selected bond lengths (\AA) for cis- $\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)(\mathbf{1 8 b})$ 134
Table 4.4 Selected bond angles $\left({ }^{\circ}\right)$ for $c i s-\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)(\mathbf{1 8 b})$ 134
Table 4.5 Selected bond lengths (\AA) for cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{MeSH})(20)$ 138
Table 4.6 Selected bond angles $\left(^{\circ}\right)$ for cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{MeSH})(20)$ 138
Table 4.7 Selected bond lengths (\AA) for cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{EtSH})(21)$ 142
Table 4.8 Selected bond angles $\left({ }^{\circ}\right)$ for $c i s-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{EtSH})(21)$ 142
Table $4.9{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts (121.4 MHz) for cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{RSH})$ in the presence of added RSH 146
Table $4.10 v_{\mathrm{s}-\mathrm{H}}\left(\mathrm{cm}^{-1}\right.$) frequencies (v_{1} and v_{3} bands) for $\mathrm{H}_{2} \mathrm{~S}$ and thiols, in the free gaseous state and upon coordination to Ru 149
Table $4.11 \lambda_{1}$ and $\lambda_{2} \mathrm{UV}$-Vis bands for $\mathrm{RuX}_{2}(\mathrm{PN})\left(\mathrm{PPh}_{3}\right)(\mathrm{L})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ 150
Table 4.12 Thermodynamic parameters for the formation of $c i s-\mathrm{RuX}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)(\mathrm{L})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ 155
Table 4.13 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemicals shifts of $\mathrm{Ru}(\mathrm{II})$ mercapto complexes in d_{6}-acetone. 165
Table 5.1 Selected bond lengths (\AA) for trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right) \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{I})$, trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right) \cdot 1.5 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{II})$ and trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\left(\mathrm{OH}_{2}\right)\right.$ (33b) 179
Table 5.2 Selected bond angles $\left({ }^{\circ}\right)$ for trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right) \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{I})$, trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right) \cdot 1.5 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{II})$ and trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\left(\mathrm{OH}_{2}\right)(33 \mathrm{~b})\right.$ 180
Table 5.3 P_{A} and P_{X} chemical shifts for $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 a)$ and trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right)(33 \mathrm{a})$ 182
Table 5.4 Comparison of ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts and $\mathrm{Ru}-\mathrm{P}$ bond lengths 187
Table 5.5 $\mathrm{Ru}-\mathrm{Cl}$ bond lengths (\AA) for trans $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)(\mathrm{L})$ 189
Table 5.6 $\mathrm{Ru}-\mathrm{Cl}$ bond lengths (\AA) for cis $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)(\mathrm{L})$. 190
Table 6.1 Selected bond lengths (\AA) for $c i s-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}-\mathrm{H}_{2}\right)(36)$ 208
Table 6.2 Selected bond angles $\left({ }^{\circ}\right)$ for $c i s-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathbf{3 6})$ 208
Table 6.3 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data for $\mathrm{Ru}(\mathrm{II})$ ammonia complexes in CDCl_{3} 217
Table $6.4{ }^{1} \mathrm{H}$ NMR data for $\mathrm{Ru}(\mathrm{II})$ ammonia complexes in CDCl_{3} 218
Table 6.5 Selected bond lengths (\AA) for cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph})(45)$ 238
Table 6.6 Selected bond angles $\left({ }^{\circ}\right)$ for cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph})(45)$ 238
Table 6.7 Hydrogenation of $\mathrm{PhC}(\mathrm{H})=\mathrm{NPh}$ using ruthenium aminophosphine complexes 246

List of Symbols and Abbreviations

δ	chemical shift (parts per million)
μ	descriptor for bridging
ε	extinction coeffiecient or molar absortivity ($\mathrm{M}^{-1} \mathrm{~cm}^{-1}$)
K	kappa, coordination of different atoms of ligand
λ	wavelength (nm)
v	frequency (cm^{-1})
Λ_{M}	molar conductivity ($\mathrm{ohm}^{-1} \mathrm{~mol}^{-1} \mathrm{~cm}^{2}$)
$\eta^{\text {n }}$	hapticity of degree n
(R)-	absolute configuration (Latin: rectus; right)
$(S)-$	absolute configuration (Latin: sinister; left)
。	degrees
*	chiral centre
\#	transition state
[]	molar concentration
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$	carbon-13-observed proton-decoupled (NMR)
${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$	proton-observed phosphorus-31-decoupled (NMR)
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$	phosphorus-31-observed proton-decoupled (NMR)
A	angstrom, $10^{-10} \mathrm{~m}$
ALAPHOS	[(S)-2-(dimethylamino)proplyl]diphenylphosphine
AMPHOS	(R)-(+)-N,N-dimethyl-1-[o-(dimethylphosphino)phenyl]ethylamine
anal.	analysis
atm	atmosphere(s)
b.p.	boiling point
bdpp	($2 S, 4 S$)-2,4-bis(diphenylphosphino)pentane
binap	(R)- or (S)-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl
BPN	bis[o-(N, N-dimethylamino)phenyl]phenylphosphine
br	broad
bu	butyl
bz	benzyl
calcd	calculated

cct	cis, cis, trans
chiraphos	2,3-bis(diphenylphosphino)butane
Cp	cyclopentadienyl
Cp*	pentamethylcyclopentadienyl
Cy	cyclohexyl
d	doublet
dd	doublet of doublets
ddd	doublet of doublet of doublets
diop	4,5-bis[(diphenylphosphino)methyl)-2,2-dimethyl-1,3-dioxolane]
dippe	1,2-bis(diisopropylphosphine)ethane
DMA	N, N-dimethylacetamide
dmpe	1,2-bis(dimethylphosphino)ethane
DMSO	dimethylsulfoxide
dpm, dppm	1,1-bis(diphenylphosphino)methane
dppb	1,4-bis(diphenylphosphino)butane
dppe	1,2-bis(diphenylphosphino)ethane
dppn	1,5-bis(diphenylphosphino)pentane
dppp	1,3-bis(diphenylphosphino)propane
dq	doublet of quartets
DSC	differential scanning calorimetry
e.e.	enantiomeric excess
equiv	equivalent(s)
Et	ethyl
h	hour(s)
HDS	hydrodesulfurization
hx	hexyl
Hz	Hertz, cycles per second
i	iso
IR	infrared (spectroscopy)
isn	isonicotinamide
isoPFA	1-[α - N, N-dimethylaminoethyl]-2-(diphenylphosphino)ferrocene
J	coupling constant (Hz)

K	equilibrium constant
L	litre
m	multiplet (NMR), medium (IR), milli-, meter
M	molarity ($\mathrm{mol} / \mathrm{L}$), mega-
m	meta
m.p.	melting point
Me	methyl
\min	minute(s)
MNAA	2-(6'-methoxynaphth-2'-yl)acrylate anion
n	normal
N-S	pyridine-2-thiolate or quinoline-8-thiolate
NMR	nuclear magnetic resonance (spectroscopy)
NP_{3}	tris(2-diphenylphosphinoethyl)amine
0	ortho
OTf	triflate
OTs	p-toluenesulfonate
p	para
P-N	[o-(N, N-dimethylamino)phenyl]diphenylphoshine
PAN	1-(N, N-dimethylamino)-8-(diphenylphoshino)naphthalene
Ph	phenyl
PN	aminophosphine ligand
pn	pentyl
PNP	$1-N, N$-bis[(diphenylphosphino)ethyl]propylamine
PO	o-diphenylphosphineanisole
PP_{3}	tris(2-diphenylphosphinoethyl)phosphine
PPFA	1-[N, N - α-dimethylaminoethyl]-2-diphenylphosphinoferrocene
ppm	parts per million
Pr	propyl
PS	proton sponge or 1,8-bis(dimethylamino)naphthalene
psi	pounds per square inch
q	quartet
qn	quintet

r.t.	room temperature
s	singlet, second(s), strong (IR)
t	tertiary
t	triplet
T_{1}	longitudinal relaxation time (NMR)
TGA	thermogravimetric analysis
THF	tetrahydrofuran
ThiCp	2-(thienylmethyl)cyclopentadienyl
TPN	tris[o-(N,N-dimethylamino)phenyl]phenylphosphine
TPP	tetraphenylporphyrin
triphos	$1,1,1$-tris(diphenylphosphinoethyl)ethane
trpy	2,2 '2"-terpyridine
UV-Vis	ultraviolet-visible (spectroscopy)
VT	variable temperature
w	weak

Table of Compound Numbers

Number	Compound	Number	Compound
1	$\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$	25	cis $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(n-\mathrm{HxSH})$
2	$\mathrm{RuCl}_{2}\left(\mathrm{P}(p-\text { tolyl })_{3}\right)_{3}$	26	cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{BzSH})$
3	cis- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$	27a	$\mathrm{Ru}(\mathrm{SH}) \mathrm{Cl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$
4a	$\mathrm{RuCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}$ (DMA) $\left.{ }^{(\mathrm{DMA}}\right)$	27b	$\mathrm{Ru}(\mathrm{SH}) \mathrm{Br}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$
4b	$\mathrm{RuCl}_{3}\left(\mathrm{P}(p-\mathrm{tolyl})_{3}\right)_{2}(\mathrm{DMA}) \cdot(\mathrm{DMA})$	28a	$\mathrm{Ru}(\mathrm{OH}) \mathrm{Cl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$
5	$\mathrm{RuCl}_{2}(\mathrm{PO})_{2}$	28b	$\mathrm{Ru}(\mathrm{OH}) \mathrm{Br}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$
6 a	$\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$	29	$\mathrm{Ru}(\mathrm{H}) \mathrm{Cl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$
6b	$\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$	30	$\mathrm{Ru}(\mathrm{SH})_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$
6 c	$\mathrm{Rul}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$	31	$\mathrm{Ru}(\mathrm{OH})_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$
7a	$\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p-\mathrm{tolyl})_{3}\right)$	32	$\mathrm{Ru}(\mathrm{H})_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$
7 b	$\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p-t o l y)_{3}\right)$	33a	trans-RuCl ${ }_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right)$
7 c	$\mathrm{RuI}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)$	33b	trans-RuCl ${ }_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p-\mathrm{tolyl})_{3}\right)\left(\mathrm{OH}_{2}\right)$
8	$\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})_{2}$	34	trans-2uCl ${ }_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{MeOH})$
9	$\mathrm{RuCl}_{2}(\mathrm{PAN})\left(\mathrm{PPh}_{3}\right)$	35	trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{EtOH})$
10	$\mathrm{RuCl}_{2}(\mathrm{PAN})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)$	36	$c i s-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}-\mathrm{H}_{2}\right)$
11	RuCl_{2} (AMPHOS)(PPh_{3})	37a	$\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{Cl}\right]$
12	RuCl_{2} (ALAPHOS) ${ }_{2}$	37b	$\left[\mathrm{RuBr}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{Br}\right]$
13	$\mathrm{RuCl}_{2}(\mathrm{BPN})\left(\mathrm{PPh}_{3}\right)$	38a	trans-RuCl ${ }_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)$
14	$\mathrm{RuCl}_{2}(\mathrm{BPN})\left(\mathrm{P}(p-\text { tolyl })_{3}\right)$	38b	trans- $\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)$
15a	$\mathrm{RuCl}_{3}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$	39a	cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)$
15b	$\mathrm{RuCl}_{3}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p-\mathrm{tolyl})_{3}\right)$	39b	trans-RuBr ${ }_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)$
16	$m e r-\mathrm{RuCl}_{3}(\mathrm{BPN})$	40a	$\left[\mathrm{Ru}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{3} \cdots \mathrm{Cl}\right][\mathrm{PF} 6]$
17	$(\mu-\mathrm{O})(\mu-\mathrm{Cl})[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})]_{2}$	40b	$\left[\mathrm{Ru}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}$
18a	cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$	41	$\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$
18b	$c i s-\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$	42	$\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)\right]\left[\mathrm{PF}_{6}\right]$
18c	cis-Rul ${ }_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$	43	$c i s-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\eta^{1}-\mathrm{N}_{2}\right)$
19a	cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)\left(\mathrm{SH}_{2}\right)$	44	cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{N}_{2} \mathrm{O}\right)$
19b	cis- $\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)\left(\mathrm{SH}_{2}\right)$	45	cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(=\mathrm{C}=\mathrm{CHPh})$
19c	cis- $\mathrm{RuI}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p-\mathrm{tolyl})_{3}\right)\left(\mathrm{SH}_{2}\right)$	46	cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)(=\mathrm{C}=\mathrm{CHPh})$
20	cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{MeSH})$	47	cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{C}=\mathrm{CHPhCH}_{3}\right)$
21	cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{EtSH})$	48	cis-RuCl ${ }_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SCHCH}_{2} \mathrm{Ph}\right)$
22	cis-RuCl 2 (P-N) ($\left.\mathrm{PPh}_{3}\right)(\mathrm{n}-\mathrm{PrSH})$	49	$\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{Ph}\right)(\mathrm{CO})$
23	cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(i-\mathrm{PrSH})$	50	$\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{CO})$

Acknowledgements

I offer my most sincere gratitude to my supervisor, Prof. Brian R. James for his expert guidance and support throughout this thesis work. The opportunity to work in his laboratory has provided me with invaluable experience for my career as a scientist. I would like to thank the past and present members of the James group, in particular Ian Baird, Terrance Wong, Graham Cairns, Patric Meessen, Nathan Jones, Craig Pamplin, Paul Cyr, Matt LePage, and Elizabeth Cheu for their friendship, encouragement and useful discussions. Thanks for your support and proofreading parts of this thesis.

I would also like to thank the departmental services, especially Dr. Nick Burlinson, Lianne Darge, and Marietta Austria from the NMR labs; the late Dr. Steve Rettig from the X-ray crystallography lab; Peter Borda from the microanalysis lab and Steve Rak from the glassblowing lab for their indispensable assistance. I am also gratful to Jim Sawada for assistance with the TGA/DSC instruments.

Finally, I would like to thank my parents and sisters for their support, encouragement and understanding over the years. Many thanks to Susan Ong, thanks for listening.

Chapter 1

Introduction

The reactions of $\mathrm{H}_{2} \mathrm{~S}$ with transition metal complexes have been one of the main focuses in this laboratory. ${ }^{1}$ One aspect of such research emphasizes the development of homogeneous catalytic systems for the recovery of H_{2} from $\mathrm{H}_{2} \mathrm{~S}^{2-7}$ From another perspective, we are interested in studying the mechanisms of simple models in homogeneous systems and correlating these findings to those of heterogeneous catalytic systems. ${ }^{8-13}$ One such system is the catalytic hydrodesulfurization (HDS) of S-containing hydrocarbons in fuel (see below).

This thesis work was largely initiated by the synthesis and characterization of the stable coordinated $\mathrm{H}_{2} \mathrm{~S}$ complex, cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p-t o l y l)_{3}\right)\left(\mathrm{SH}_{2}\right) \quad(\mathrm{P}-\mathrm{N}=[o-(N, N-$ dimethylamino)phenyl]diphenylphosphine. ${ }^{14}$ The discovery of this complex provided a rare opportunity to investigate the properties, including thermodynamic and kinetic aspects, resulting from the binding of $\mathrm{H}_{2} \mathrm{~S}$ to a transition metal $(\mathrm{Ru}(\mathrm{II}))$ centre.

The precursor, five-coordinate complex $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)(\mathrm{R}=\mathrm{Ph}$ or p-tolyl), is also fascinating as a range of small molecules including $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, \mathrm{CO}$ and SO_{2} can also be coordinated to the vacant sixth site. ${ }^{15,16}$ Thus, it was also the objective of this thesis to investigate further the reactivity of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ with these molecules and other small, neutral molecules, as well as with reagents such as salts and bases.

In this Chapter, the natural and industrial occurrences and implications of $\mathrm{H}_{2} \mathrm{~S}$ chemistry are briefly reviewed, some structural types of transition metal complexes containing S-moieties are presented, and the general chemistry associated with ruthenium aminophosphine complexes is discussed.

1.1 Natural and Industrial Occurrences of Sulfur Compounds

1.1.1 The Natural Sulfur Cycle

Sulfur is essential for life as it plays key roles in growth and metabolism of all organisms. Assimilatory actions of plants and animals (via plants) convert sulfur compounds to amino acids (e.g. L-methionine and L-cysteine), proteins and vitamins (e.g. thiamine and biotin) while dissimilatory processes, mediated by bacteria, involve metabolic reduction and oxidation of sulfur compounds. ${ }^{17}$ Upon death of an organism, a large portion of organic sulfur is reduced to $\mathrm{H}_{2} \mathrm{~S}$ during decomposition. ${ }^{18}$ The above biological conversions constitute the biogeochemical sulfur cycle (see Figure 1.1). ${ }^{18}$

Figure 1.1 The sulfur cycle in nature (adapted from ref. 18).
$\mathrm{H}_{2} \mathrm{~S}, \mathrm{~S}_{8}$ and S-containing organics, which originate from the degradation of biological matter, are found in coal, natural gas, oil, volcanoes, soil, sulfur springs, undersea vents, swamps, marshes, and stagnant bodies of water. The natural biogenic sources account for up
to 50% of sulfur in the atmosphere. ${ }^{19}$ In many industrial process such as HDS of petroleum ${ }^{20-25}$ (see Section 1.1.2) and the Kraft process ${ }^{26}$ for chemical wood pulping, $\mathrm{H}_{2} \mathrm{~S}$ is formed as a by-product. In the Kraft process, $\mathrm{Na}_{2} \mathrm{~S}$ is added to the alkaline (NaOH) pulping liquor to strengthen wood pulp; as a result, $\mathrm{H}_{2} \mathrm{~S}$ is given off during the recovery of spent chemicals.

1.1.2 Hydrodesulfurization (HDS) and the Claus Process

The presence of S-containing hydrocarbons in petroleum causes environmental concerns because during the combustion of fuel, SO_{2}, a major source of anthropogenic emission, is produced. In the atmosphere, SO_{2} is oxidized to SO_{3} that subsequently reacts with $\mathrm{H}_{2} \mathrm{O}$ to form $\mathrm{H}_{2} \mathrm{SO}_{4}$ which causes acid rain, smog and corrosion of materials. Acyclic and cyclic sulfides (including highly stable aromatic types such as benzothiophenes) are the major components of sulfur compounds in petroleum feedstocks. Besides environmental issues, desulfurization of oil stocks is implemented for several other reasons. Removal of sulfur in naphtha-reforming (conversion of gasoline range hydrocarbons into high-octane-number gasoline) is economically favourable as this prevents poisoning of precious metal catalysts. At high temperatures and pressures, sulfur compounds cause corrosion of burner heating equipment. Further, it is also desirable to remove offensive odours caused by volatile sulfide species.

HDS is the industrial process in which sulfur is removed from organosulfur compounds found in natural gas and petroleum. This process, based on the reaction

$$
\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{~S}+2 \mathrm{H}_{2} \xrightarrow{\text { catalyst }} \mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}+2}+\mathrm{H}_{2} \mathrm{~S} \text {, }
$$

is catalyzed by Co- or Ni-doped MoS_{2} or WS_{2} catalysts supported on $\mathrm{Al}_{2} \mathrm{O}_{3}$ at high temperatures ($400-825^{\circ} \mathrm{F}$) with H_{2} pressures of $150-3000 \mathrm{psi} .{ }^{21,23,24}$ Sulfides of Ru, Os, Ir
and Rh have been shown to be much better catalysts than those of Co or Ni^{27} but are not used commercially because of their high costs. Despite the importance of HDS, details about the catalyst structures and the mechanism of the HDS reaction remain obscure. Thiophene is chosen as the model substrate in many studies because it has the simplest structure of thiophenes, which are most difficult class of compounds to desulfurize. The products of thiophene HDS are $\mathrm{H}_{2} \mathrm{~S}$ and a mixture of n-butane, n-butenes and butadiene. Continuing debate on the mechanism is centred on the bonding mode of thiophene, on the way the C-S bond is cleaved, and whether desulfurization occurs before or after hydrogenation of the thiophene ring. ${ }^{20,22,23,25,28}$

The majority of the $\mathrm{H}_{2} \mathrm{~S}$ generated by HDS is converted to $\mathrm{H}_{2} \mathrm{SO}_{4}$, the largest volume inorganic substance industrially produced (43 billion kg in the US in 1995). ${ }^{29} \mathrm{H}_{2} \mathrm{SO}_{4}$ is used in the synthesis of fertilizers, organic sulfuric acids, plastics, explosives, batteries and refining of petroleum. For ease of transport and storage, elemental sulfur is recovered from $\mathrm{H}_{2} \mathrm{~S}$ by the Claus process: ${ }^{30,31}$

$$
\begin{aligned}
& 2 \mathrm{H}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
& 2 \mathrm{H}_{2} \mathrm{~S}+\mathrm{SO}_{2} \xrightarrow{\text { catalysts }} 3 / 8 \mathrm{~S}_{8}+2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

The Claus reaction, catalyzed by alumina, combines $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2} to give S_{8} and $\mathrm{H}_{2} \mathrm{O}$. The interactions of $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2} on alumina, however, are not well understood. Three models for the surface-catalyzed process have been proposed: (1) adsorbed SO_{2} is attacked by $\mathrm{H}_{2} \mathrm{~S}$, (2) adsorbed $\mathrm{H}_{2} \mathrm{~S}$ is attacked by SO_{2}, and (3) both gases are adsorbed on alumina before reaction. ${ }^{32}$

It is clear that both important industrial processes, HDS and the Claus reaction, involve the interactions of $\mathrm{H}_{2} \mathrm{~S}$ with catalyst surfaces. However, the nature of these
interactions are uncertain. Thus, it is advantageous to study the reactions of $\mathrm{H}_{2} \mathrm{~S}$ and S-containing organic compounds with metal complexes in homogeneous systems and correlate these findings to those of heterogeneous systems.

1.2 Coordination Chemistry of $\mathrm{H}_{2} \mathrm{~S}$ and Thiols

1.2.1 Physical Properties of $\mathrm{H}_{2} \mathrm{~S}$ and Thiols

Perhaps the most distinguishable physical characteristic of $\mathrm{H}_{2} \mathrm{~S}$ and thiols is their unpleasant odour. $\mathrm{H}_{2} \mathrm{~S}$, in particular, has an odour that resembles rotten eggs. Some physical properties of $\mathrm{H}_{2} \mathrm{~S}$ and thiols used in this thesis work are shown in Table 1.1. Thiols are more acidic than their corresponding alcohols by 5 to $6 \mathrm{pK}_{\mathrm{a}}$ units. Notably, $\mathrm{H}_{2} \mathrm{~S}$ and thiophenol are more acidic than alkanethiols. For $\mathrm{H}_{2} \mathrm{~S}$, the greater acidity has been attributed to formation of a symmetrical solvation shell around the SH^{-}ion upon deprotonation, this effect being greatly reduced when the H -atom is replace by an alkyl group. For thiophenol, the negative charge on the S-atom of the conjugate base is stabilized by the resonance effect of the aromatic ring, and thus the acidity is increased.
$\mathrm{H}_{2} \mathrm{~S}$ and thiols are extremely toxic. Exposure to $1400 \mathrm{mg} / \mathrm{m}^{3} \mathrm{H}_{2} \mathrm{~S}$ for a few minutes results in human deaths; inhalation of thiol fumes may lead to failure of the olfactory senses, headaches, nausea, and loss of consciousness.

Alkanethiols are generally prepared by acid-catalyzed (sulfuric or phosphoric acid) reactions of alcohols (Figure 1.2(a)) or alkenes (Figure 1.2(b)) with $\mathrm{H}_{2} \mathrm{~S}$. Halide displacement is most effective in the preparation of α-toluenethiol (Figure 1.2(c)). Arenethiols such as benzenethiol are synthesized by reduction of the arene sulfonyl chloride (Figure 1.2(d)). The principal applications of thiols are in the production of synthetic rubber, agricultural chemicals and other organosulfur compounds.

Table 1.1 Some physical properties of $\mathrm{H}_{2} \mathrm{~S}$ and thiols.

Compou Common Name(s)	Structure	Melting Point $\left({ }^{\circ} \mathrm{C}\right)^{a}$	Boiling Point $\left({ }^{\circ} \mathrm{C}\right)^{a}$	$\begin{gathered} \Delta \mathrm{H}^{\circ} \\ \text { formation } \\ (\mathrm{kJ} / \mathrm{mol})^{\mathrm{a}} \end{gathered}$	$\begin{gathered} \Delta \mathrm{G}^{\circ} \\ \text { formation } \\ (\mathrm{kJ} / \mathrm{mol})^{a} \end{gathered}$	pK_{a} (aqueous media) ${ }^{\text {b }}$
hydrogen sulfide	$\mathrm{H}_{2} \mathrm{~S}$	-85.5	-60.3	-20.6	-33.6	$\begin{gathered} 7.0 \\ 14.9^{c} \end{gathered}$
methanethiol; methyl mercaptan	$\mathrm{CH}_{3} \mathrm{SH}$	-123.0	6.0	-22.9	-9.80	10.3
ethanethiol; ethyl mercaptan	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{SH}$	-147.9	35.0	-46.3	-4.81	10.5
1-propanethiol; n-propyl mercaptan	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SH}$	-113.2	67.7	-67.5	2.58	10.7
2-propanethiol; isopropyl mercaptan	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHSH}$	-130.5	52.6	-75.9	2.18	10.9
1-pentanethiol; n-pentyl mercaptan	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{SH}$	-75.7	126.6	-110	18.0	d
1-hexanethiol; n-hexyl mercaptan	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{SH}$	-80.5	152.7	-129	27.6	d
α-toluenethiol; benzyl mercaptan	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{SH}$	-29.2	198.9	93.3	163	9.4
benzenethiol; thiophenol	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SH}$	-14.9	169.1	112	148	6.5

${ }^{\mathrm{a}}$ (ref. 33), $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{G}^{\circ}$ values are for formation of gaseous product; ${ }^{\mathrm{b}}$ (ref. 34), pK_{a} values were measured at $25^{\circ} \mathrm{C}$; ${ }^{\mathrm{c}}$ second dissociation constant; ${ }^{\mathrm{d}}$ thiol is essentially insoluble in water.
(a) $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}_{2} \mathrm{~S} \xrightarrow{\text { catalyst }} \mathrm{CH}_{3} \mathrm{SH}+\mathrm{H}_{2} \mathrm{O}$
(b) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{~S} \xrightarrow{\text { catalyst }}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHSH}$
(c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{NaSH} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{SH}+\mathrm{NaCl}$
(d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{Cl}+\mathrm{H}_{2} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SH}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{HCl}$

Figure 1.2 The most widely utilized methods for the synthesis of thiols.

1.2.2 Reactions of $\mathrm{H}_{2} \mathrm{~S}$ and Thiols with Transition Metal Complexes

There are comparatively few examples of transition metal complexes containing $\mathrm{H}_{2} \mathrm{~S}$ or thiols ($\mathrm{RSH} ; \mathrm{R}=\mathrm{H}$, alkyl) as ligands owing to the acidic and therefore ionic nature of the ligands. ${ }^{1}$ A summary of the complexes reported is presented in Sections 4.1.1 and 4.1.2 (p. 110). Although coordination of RSH to transition metal centres (M) has been demonstrated, it is more often proposed as an intermediate step in reactions of RSH with M that usually result in cleavage of S-H bonds and formation of mercapto or thiolato (SR') complexes. The S-H bond strengths of $\mathrm{H}_{2} \mathrm{~S}, \mathrm{PhSH}$ and alkanethiols (an average value) are 381, 314 and $362 \pm 6 \mathrm{~kJ} / \mathrm{mol}$, respectively. ${ }^{35}$ Structural chemistry of transition metal sulfur complexes is diverse because of the versatility of sulfur ligands to act as two-, four- or six-electron donors (Figure 1.3).

(a)

(b)

(f)

(c)

(g)

(d)

(h)

Figure 1.3 Some common coordination modes of $\mathrm{SR}^{-}\left(\mathrm{R}=\mathrm{H}\right.$ or alkyl) and S^{2-} ligands to transition metal centres (M) (adapted from ref. 36).

Literature dealing with metal mercapto and thiolato complexes is plentiful, partly because of their utilization in model studies for HDS catalysts (Section 1.1.2) and their
occurrence in metalloenzymes such as nitrogenase and ferredoxins. ${ }^{37}$ While no effort is given to describe comprehensively the metal complexes containing the SR^{-}and S^{2-} ligands in the literature, examples of complexes with structures shown in Figure 1.3 are presented in this Chapter to display the intriguing and versatile coordination modes of SR $^{-}$. In particular, focus is given to work done in this laboratory regarding the reactions of transition metal complexes with $\mathrm{H}_{2} \mathrm{~S}$ and thiols.

1.2.2.1 Mononuclear Mercapto and Thiolato Complexes

In many cases, cleavage of the S-H bonds leads to the oxidative addition of RSH to metal complexes. James et al. showed that the reactions of $\mathrm{Ru}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ or $c c t-\mathrm{Ru}(\mathrm{H})_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(c c t=c i s, c i s$, trans $)$ with $\mathrm{H}_{2} \mathrm{~S}$ in solution give (with the liberation of $\left.\mathrm{H}_{2}\right) \quad c c t-\mathrm{Ru}(\mathrm{H})(\mathrm{SH})(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ at $-35^{\circ} \mathrm{C}$ and the structurally characterized $c c t-\mathrm{Ru}(\mathrm{SH})_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ at ambient conditions (Figure 1.4(a)). ${ }^{8,10,11}$ A similar reaction of a mixture of cis- and trans- $\mathrm{Ru}\left(\mathrm{H}_{2}(\mathrm{dpm})_{2}\left(\mathrm{dpm}=\right.\right.$ bis(diphenylphosphino)methane) with $\mathrm{H}_{2} \mathrm{~S}$ gives initially trans $-\mathrm{Ru}(\mathrm{H})(\mathrm{SH})(\mathrm{dpm})_{2}$, which subsequently reacts with further $\mathrm{H}_{2} \mathrm{~S}$ to produce a mixture cis- and trans- $\mathrm{Ru}(\mathrm{SH})_{2}(\mathrm{dpm})_{2}$ and H_{2} (Figure 1.4(b))..11,12 A range of thiols RSH (R $=\mathrm{Me}, \mathrm{Et}, \mathrm{Ph}, \mathrm{CH}_{2} \mathrm{Ph}, o$-, m - and p-tolyl) also oxidatively add to $\mathrm{Ru}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ or $c c t-\mathrm{Ru}(\mathrm{H})_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ to generate solely $c c t-\mathrm{Ru}(\mathrm{H})(\mathrm{SR})(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ at $20^{\circ} \mathrm{C}$ with no tendency to form the bis(thiolato) species. ${ }^{8,10}$ The reaction of cis- and trans $-\mathrm{Ru}(\mathrm{H})_{2}(\mathrm{dpm})_{2}$ with thiols generate cis- and trans- $\mathrm{Ru}(\mathrm{H})(\mathrm{SR})(\mathrm{dpm})_{2}{ }^{12}$ Kinetic studies showed that the rate-determining step for the reaction of $c c t-\mathrm{Ru}(\mathrm{H})_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ with RSH is the loss of H_{2}, while an initial protonation of dpm precursor to give $\left[\mathrm{Ru}(\mathrm{H})\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{dpm})_{2}\right]^{+}$followed by dissociation of H_{2} is proposed for the dpm system; the difference in mechanism is attributed to the higher basicity of the hydride ligands in cis-/trans- $\mathrm{Ru}(\mathrm{H})_{2}(\mathrm{dpm})_{2} .{ }^{12}$

(a)

Figure 1.4 Formation of hydrido mercapto and bis(mercapto) Ru (II) phosphine complexes.

Pignolet's group has shown that $\mathrm{H}_{2} \mathrm{~S}$ also oxidatively adds to trans $-\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ forming the crystallographically characterized $\operatorname{IrCl}(\mathrm{H})(\mathrm{SH})(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ (Figure 1.5). ${ }^{38}$
 $+$

$\mathrm{H}_{2} \mathrm{~S} \longrightarrow$

Figure 1.5 Formation of trans $-\operatorname{IrCl}(\mathrm{H})(\mathrm{SH})(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$.

Reaction of trans $-\mathrm{Mo}\left(\mathrm{N}_{2}\right)_{2}(\text { dppe })_{2}($ dppe $=$ bis(diphenylphosphino)ethane $)$ with RSH $\left(\mathrm{R}=\right.$ alkyl or aryl) generates the intermediate species cis $-\mathrm{Mo}(\mathrm{H})(\mathrm{SR})(\mathrm{dppe})_{2}$ en route to trans- $\mathrm{Mo}(\mathrm{SR})_{2}(\mathrm{dppe})_{2} .{ }^{39}$ However, the intermediate species can be stabilized and isolated by using a $1: 1$ ratio of RSH and Mo , or a bulky $\mathrm{RSH}\left(\mathrm{R}=\operatorname{Pr}^{i}, \mathrm{Bu}^{t}, 2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right.$, 2,4,6- $\operatorname{Pr}_{3}{ }_{3} \mathrm{C}_{6} \mathrm{H}_{2}, 4,2,6-\mathrm{Br}^{2}{ }^{i}{ }_{2} \mathrm{C}_{6} \mathrm{H}_{2}$) (Figure 1.6). ${ }^{40}$ The mechanism is proposed as follows: dissociation of one N_{2} ligand results in an equilibrium between the six-coordinate precursor and a five-coordinate species; RSH oxidatively adds to the five-coordinate species forming the hydrido thiolato species; a second N_{2} ligand then dissociates, and a second RSH oxidatively adds; H_{2} is finally eliminated to form the bis(thiolato) species.

Figure 1.6 Reactions of trans $-\mathrm{Mo}\left(\mathrm{N}_{2}\right)_{2}(\mathrm{dppe})_{2}$ with thiols.

Stabilization of unsaturated five-coordinate complexes can be achieved by using bulky ligands such as 1,2-bis(diisopropylphosphine)ethane (dippe). Reaction of $\left[\mathrm{MCl}(\text { dippe })_{2}\right]\left[\mathrm{BPh}_{4}\right](\mathrm{M}=\mathrm{Ru}, \mathrm{Os})$ with PhSH results in $\left[\mathrm{M}(\mathrm{SPh})(\text { dippe })_{2}\right]\left[\mathrm{BPh}_{4}\right]$ (Figure 1.7(a)), and the Ru analogue is structurally characterized. ${ }^{41}$ The formation of $[\mathrm{M}(\mathrm{SR}) \mathrm{L}]\left[\mathrm{BPh}_{4}\right]\left(\mathrm{M}=\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni} ; \mathrm{L}=\operatorname{tris}\left(2\right.\right.$-diphenylphosphinoethyl)phosphine $\left(\mathrm{PP}_{3}\right)$, tris(2-diphenylphosphinoethyl)amine $\left(\mathrm{NP}_{3}\right)$) further indicates that the stability of monomeric metal-sulfur complexes is influenced by sterically demanding and electron rich ligands (Figure $1.7(\mathrm{~b}))$; the X -ray structures of $\left[\mathrm{Fe}(\mathrm{SH})\left(\mathrm{PP}_{3}\right)\right]\left[\mathrm{BPh}_{4}\right], \quad\left[\mathrm{Co}(\mathrm{MeS})\left(\mathrm{NP}_{3}\right)\right]\left[\mathrm{BPh}_{4}\right]$, and $\left[\mathrm{Ni}(\mathrm{SH})\left(\mathrm{PP}_{3}\right)\right]\left[\mathrm{BPh}_{4}\right]$ were reported. ${ }^{42}$
(a)

(b) $\quad\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{L}\right]^{+}+\mathrm{RSH}+$

$$
\begin{aligned}
& \mathrm{L} \longrightarrow \\
& \mathrm{M}=\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni} \\
& \mathrm{R}=\mathrm{H}, \mathrm{Me} \\
& \mathrm{~L}=\mathrm{XP}_{3} ; \mathrm{X}=\mathrm{P}, \mathrm{~N}
\end{aligned}
$$

Figure 1.7 Formation of five-coordinate, trigonal bipyramidal mercapto and thiolato complexes.

1.2.2.2 Bridging Mercapto and Thiolato Ligands

The monomeric mercapto or thiolato complexes discussed above are relatively rare compared to dinuclear complexes because sulfur ligands have a tendency to utilize their lone pairs of electrons to bridge two or more metal centres. ${ }^{43}$ Di- and tri- μ_{2}-SR dinuclear complexes are often formed by initial oxidative addition of RSH to a monomeric metal complex followed by dimerization. $\mathrm{H}_{2} \mathrm{~S}$ reacts with $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}{ }^{38}$ and $\mathrm{RhCl}($ triphos $)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ (triphos $\left.=\mathrm{MeC}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{3}\right)^{44}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions to form the structurally characterized, SH-bridged, dinuclear complexes $\left.\quad\left[\operatorname{RhCl}(\mathrm{H})\left(\mu_{2}-\mathrm{SH}\right) \mathrm{PPh}_{3}\right)_{2}\right]_{2} \quad$ (Figure $1.8(\mathrm{a})$) and $\left[\mathrm{Rh}(\text { triphos })(\mathrm{H})\left(\mu_{2}-\mathrm{SH}\right)\right]_{2}{ }^{2+}$ (Figure $\left.1.8(\mathrm{~b})\right)$, respectively. Interestingly, the reversible elimination of $2 \mathrm{~mol} \quad \mathrm{H}_{2}$ from $[\mathrm{Rh}$ (triphos $\left.)(\mathrm{H})\left(\mu_{2}-\mathrm{SH}\right)\right] 2^{2+}$ to form $\left[\operatorname{Rh}\right.$ (triphos) $\left.\left(\mu_{2}-S\right)\right] 2^{2+}$ was also observed. Similar reactions of $\mathrm{H}_{2} \mathrm{~S}$ with $\mathrm{Ru}(\mathrm{H})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{4}$ and $\left[\mathrm{Ir}(\mathrm{H})_{2}(\mathrm{MeCO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]$ lead to the formation of the
structurally characterized $\left(\mathrm{PhMe}_{2} \mathrm{P}\right)_{2}(\mathrm{SH}) \mathrm{Ru}\left(\mu_{2}-\mathrm{SH}\right)_{3} \mathrm{Ru}\left(\mathrm{PhMe}_{2} \mathrm{P}\right)_{3} \quad$ (Figure $\left.1.8(\mathrm{c})\right)^{45}$ and $\left[\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{H}) \operatorname{Ir}\left(\mu_{2}-\mathrm{H}\right)\left(\mu_{2}-\mathrm{SH}\right)_{2} \operatorname{Ir}(\mathrm{H})\left(\mathrm{PPh}_{3}\right)_{3}\right]\left[\mathrm{BF}_{4}\right]$ (Figure 1.9), ${ }^{46}$ respectively; generation of $\mathrm{H}_{\mathbf{2}}$ was observed for both reactions. In the latter reaction, a minor product containing three different bridging ligands, $\left[\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{H}) \operatorname{Ir}\left(\mu_{2}-\mathrm{H}\right)\left(\mu_{2}-\mathrm{SH}\right)\left(\mu_{2}-\mathrm{SPr}^{i}\right) \operatorname{Ir}(\mathrm{H})\left(\mathrm{PPh}_{3}\right)_{3}\right]\left[\mathrm{BF}_{4}\right]$, was also formed.
(a)
 $\xrightarrow[-2 \mathrm{PPh}_{3}]{+2 \mathrm{H}_{2} \mathrm{~S}}$

(b)

(c) $2\left[\mathrm{Ru}(\mathrm{H})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{4}\right] \xrightarrow[-3 \mathrm{PMe}_{2} \mathrm{Ph}]{+4 \mathrm{H}_{2} \mathrm{~S}}$ $-4 \mathrm{H}_{2}$

Figure 1.8 Reactions of $\mathrm{H}_{2} \mathrm{~S}$ with monomeric complexes to form di- and tri- $\mu_{2}-\mathrm{SH}$ dinuclear complexes.

Figure 1.9 Reaction of $\left[\operatorname{Ir}(\mathrm{H})_{2}(\mathrm{MeCO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]$ with $\mathrm{H}_{2} \mathrm{~S}$.

In addition to phosphine ligands, arene ligands have also been utilized to stabilize complexes containing bridging mercapto and thiolato ligands as shown in Figure 1.10. Dinuclear molybdenum complexes $\left.\left[\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{Mo}(\mu-\mathrm{SR})_{3} \mathrm{Mo}\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right)\right)\right]\left[\mathrm{BF}_{4}\right]$ are formed by treatment of $\left[\mathrm{Mo}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}\right)\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right)\right]\left[\mathrm{BF}_{4}\right]$ with RSH (Figure $\left.1.10(\mathrm{a})\right) .{ }^{47}$ Formation of di- $\mu_{2}-\mathrm{SR}$ or tri- $\mu_{2}-\mathrm{SR} \operatorname{Ir}($ III $)$ dinuclear complexes is dependent on the nature of the substituent R (Figure $1.10(\mathrm{~b}))$. When the precursor $\left[\mathrm{Cp}{ }^{*} \operatorname{IrCl}\left(\mu_{2}-\mathrm{Cl}\right)\right]_{2}\left(\mathrm{Cp}^{*}=\eta^{2}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ is treated with $\mathrm{RSH},\left[\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\mu_{2}-\mathrm{SEt}\right)_{3} \operatorname{IrCp}{ }^{*}\right] \mathrm{Cl}$ is formed when $\mathrm{R}=\mathrm{Et}$, and $\left[\mathrm{Cp}{ }^{*} \operatorname{IrCl}\left(\mu_{2}-\mathrm{SR}\right)_{2} \mathrm{ClIrCp}{ }^{*}\right]$ is formed when $\mathrm{R}=\mathrm{Pr}^{i}$, Cy (cyclohexyl) or $\mathrm{CH}_{2} \mathrm{Ph}^{48}$ Reaction of the $\mathrm{Ir}(\mathrm{III})$ precursor complex with excess $\mathrm{H}_{2} \mathrm{~S}$ afforded first the doubly-bridged $\mu_{2}-\mathrm{SH}$ complex [$\mathrm{Cp}{ }^{*} \operatorname{IrCl}\left(\mu_{2}-\mathrm{SH}\right)_{2} \mathrm{CLICp} *$] which subsequently consumes more $\mathrm{H}_{2} \mathrm{~S}$ to form the triply-bridged μ_{2}-SH complex $\left[\mathrm{Cp}^{*} \operatorname{Ir}\left(\mu_{2}-\mathrm{SH}\right)_{3} \mathrm{IrCp}{ }^{*}\right] \mathrm{Cl}^{49}$ As the R groups become more bulky, formation of the triply-bridged species is disfavoured, for example, when $\mathrm{R}=\mathrm{Bu}^{t} \mathrm{SH}^{48}$
(a) 2

$\left[\mathrm{BF}_{4}\right]$
(b)

Figure 1.10 Formation of dinuclear mercapto and thiolato-bridged complexes containing arene co-ligands.

Sulfur ligands constitute the fundamental building blocks of the metal clusters found in enzymatic and industrial catalytic processes. ${ }^{50,51}$ Bridging thiolate ligands are used to connect metal centres in the clusters shown in Figure 1.11: (a) reaction of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ with PhSH
in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ and $\mathrm{Me}_{4} \mathrm{NCl}$ affords $\left[\mathrm{Me}_{4} \mathrm{~N}_{2}\left[\mathrm{CO}_{4}(\mathrm{SPh})_{4}\left(\mu_{2}-\mathrm{SPh}\right)_{6}\right]{ }^{50}\right.$ (b) reaction of $\mathrm{Co}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ with $\mathrm{RSH}(\mathrm{R}=\mathrm{Me}, \mathrm{Et})$ in the presence of PEt_{3} and NaBPh_{4} or TPF_{6} yields $\left[\mathrm{Co}_{3}\left(\mu_{2}-\mathrm{SR}\right)_{6}\left(\mathrm{PEt}_{3}\right)_{3}\right] \mathrm{X}\left(\mathrm{X}=\mathrm{BPh}_{4}, \mathrm{PF}_{6}\right) ;{ }^{52}$ and (c) reaction of ZnMe_{2} with $\mathrm{Pr}^{i} \mathrm{SH}$ gives octameric $\left[\mathrm{Me}_{3} \mathrm{Zn}\left(\mu_{3}-\mathrm{SPr}^{\prime}\right)\right]{ }_{8} .{ }^{53}$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{Me}, \mathrm{Et} \\
& \mathrm{X}=\mathrm{BPh}_{4}^{-}, \mathrm{PF}_{6}{ }^{-}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \mathrm{Zn}=\mathrm{Zn}-\mathrm{Me} \\
& \mathrm{~S}=\mathrm{S}-\mathrm{Pr}^{i}
\end{aligned}
$$

Figure 1.11 Clusters containing μ_{2} - and μ_{3}-SR bridged ligands.

Both H -atoms of $\mathrm{H}_{2} \mathrm{~S}$ can be cleaved from the S -atom upon reaction with metal complexes resulting in formation of species containing a bridging \mathbf{S}^{2-} ligand. Examples include $\left[\left(\mathrm{P}_{3}\right) \mathrm{Ni}\left(\mu_{2}-\mathrm{S}\right) \mathrm{Ni}\left(\mathrm{P}_{3}\right)\right]^{2+}\left(\mathrm{P}_{3}=1,1,1\right.$-tris $(\text { diphenylphosphinomethyl)ethane; see Figure 1.12(a) })^{54}$ and $\mathrm{Pd}_{2} \mathrm{X}_{2}\left(\mu_{2}-\mathrm{S}\right)(\mu-\mathrm{dpm})_{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I} \text {; see Figure 1.12(b) and Section 1.2.2.3 })^{2}$ produced as shown. Cleavage of the $\mathrm{S}-\mathrm{C}$ bond of alkanethiols, however, is not favoured as shown by the formation of $\left[\mathrm{Pt}_{2}(\mathrm{H})_{2}\left(\mu_{2}-\mathrm{SMe}\right)(\mu-\mathrm{dpm})_{2}\right]^{+}$from the reaction of $\left[\mathrm{Pt}_{2}(\mathrm{H})(\mathrm{CO})(\mu-\mathrm{dpm})_{2}\right]^{+}$and

MeSH (Figure 1.12(c)). ${ }^{55} \quad$ Further evidence to display the different reactivities of $\mathrm{H}_{2} \mathrm{~S}$ and thiols are shown in Figure 1.13. When $\operatorname{RhRe}(\mathrm{CO})_{4}(\mu-\mathrm{dpm})_{2}$ is treated with $\mathrm{H}_{2} \mathrm{~S}$, $\operatorname{RhRe}(\mathrm{CO})_{4}\left(\mu_{2}-\mathrm{S}\right)(\mu-\mathrm{dpm})_{2}$ and H_{2} are generated quantitatively, while the analogous reaction with $\operatorname{RSH}(\mathrm{R}=\mathrm{Et}, \mathrm{Ph})$ yields $\operatorname{RhRe}(\mathrm{CO})_{3}\left(\mu_{2}-\mathrm{H}\right)\left(\mu_{2}-\mathrm{SR}\right)(\mu-\mathrm{dpm})_{2}$ (Figure $\left.1.13(\mathrm{a})\right)^{56}$ Similarly, reaction of an equal molar quantity of RSH with $\left[\mathrm{Pt}_{3}\left(\mu_{3}-\mathrm{CO}\right)_{3}(\mu-\mathrm{dpm})_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}$ gives $\left[\mathrm{Pt}_{3}(\mathrm{H})\left(\mu_{3}-\mathrm{S}\right)(\mu-\mathrm{dpm})_{3}\right]\left[\mathrm{PF}_{6}\right]$ when $\mathrm{R}=\mathrm{H}, \mathrm{Bu}^{t}$, and $\left[\mathrm{Pt}_{3}(\mathrm{H})\left(\mu_{3}-\mathrm{SR}\right)(\mu-\mathrm{dpm})_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}$ when $\mathrm{R}=$ $\mathrm{Me}, \mathrm{Et}, \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$, Ph or p-tolyl (Figure 1.13(b)). ${ }^{57}$ The formation of the $\mu_{3}-\mathrm{S}$ complex when $\mathrm{Bu}^{t} \mathrm{SH}$ was used is attributed to the loss of the relatively good leaving group $\mathrm{Bu}^{\text {t+ }}$ during the reaction. ${ }^{57 \mathrm{~b}}$
(a) $2\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \xrightarrow{+2 \mathrm{P}_{3} \mathrm{H}^{+}}$

(b)

$$
\xrightarrow[-\mathrm{H}_{2}]{+\mathrm{H}_{2} \mathrm{~S}}
$$

$$
\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}
$$

(c)

Figure 1.12 Formation of μ_{2}-S and μ_{2}-SMe dinuclear complexes.
(a)

(b)

Figure 1.13 S-H bond activation in $\mathrm{H}_{2} \mathrm{~S}$ and thiols by (a) $\operatorname{RhRe}(\mathrm{CO})_{4}(\mu-\mathrm{dpm})_{2}$ and (b) $\left[\mathrm{Pt}_{3}\left(\mu_{3}-\mathrm{CO}\right)(\mu-\mathrm{dpm})_{3}\right]^{2+}$.

1.2.2 . Recovery of $\mathrm{H}_{\mathbf{2}}$ from $\mathrm{H}_{2} \mathrm{~S}$ using $\mathrm{Pd}_{2} \mathrm{X}_{\mathbf{2}}(\mu \text {-dpm })_{\mathbf{2}}$

Study of $\mathrm{H}_{2} \mathrm{~S}$ interactions with transition metal complexes is of great interest in this laboratory because of their potential utilization in H_{2} recovery. ${ }^{1-7}$ The reaction of $\mathrm{Pd}_{2} \mathrm{X}_{2}(\mu-\mathrm{dpm})_{2}$ with $\mathrm{H}_{2} \mathrm{~S}$ to give $\mathrm{Pd}_{2} \mathrm{X}_{2}\left(\mu_{2}-\mathrm{S}\right)(\mu-\mathrm{dpm})_{2}$ and H_{2} (Figure 1.12(b)) was the first homogeneous system demonstrating a $1: 1 \mathrm{H}_{2} \mathrm{~S}: \mathrm{H}_{2}$ stoichiometry at a metal centre. ${ }^{2}$ Kinetic
and mechanistic studies showed first-order behaviour in both $\mathrm{Pd}_{2} \mathrm{X}_{2}(\mu-\mathrm{dpm})_{2}$ and $\mathrm{H}_{2} \mathrm{~S}$. The reaction proceeds via oxidative addition of $\mathrm{H}_{2} \mathrm{~S}$ to the Pd_{2} dimer which results in formation of the hydrido mercapto dinuclear intermediate $\mathrm{Pd}_{2} \mathrm{X}_{2}(\mathrm{H})(\mathrm{SH})(\mu-\mathrm{dpm})_{2}$ (Figure 1.14); which was detected at $-78^{\circ} \mathrm{C}$ by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy. ${ }^{3,4}$

Figure 1.14 Structure of intermediate formed during the reaction of $\mathrm{Pd}_{2} \mathrm{X}_{2}(\mu-\mathrm{dpm})_{2}$ with $\mathrm{H}_{2} \mathrm{~S}$ en route to $\mathrm{Pd}_{2} \mathrm{X}_{2}\left(\mu_{2}-\mathrm{S}\right)(\mu-\mathrm{dpm})_{2}$ and H_{2}.

Pursuance of a catalytic cycle for the conversion of H_{2} from $\mathrm{H}_{2} \mathrm{~S}$ revealed that the bridged S-atom of $\mathrm{Pd}_{2} \mathrm{X}_{2}\left(\mu_{2}-\mathrm{S}\right)(\mu \text {-dpm })_{2}$ can be effectively abstracted by dpm with formation of $\operatorname{dpm}(S)$ and quantitative reconversion of $\mathrm{Pd}_{2} \mathrm{X}_{2}(\mu-\mathrm{dpm})_{2}$ from $\mathrm{Pd}_{2} \mathrm{X}_{2}\left(\mu_{2}-\mathrm{S}\right)(\mu-\mathrm{dpm})_{2}$ (Figure 1.15). ${ }^{5}$ This is the first reported homogeneous catalytic process that generates H_{2} from $\mathrm{H}_{2} \mathrm{~S}$. ${ }^{1}$ Solution kinetic and mechanistic studies showed that this reaction is first-order in both $\mathrm{Pd}_{2} \mathrm{X}_{2}\left(\mu_{2}-\mathrm{S}\right)(\mu-\mathrm{dpm})_{2}$ and dpm. ${ }^{5}$ Further, this process is thought to proceed via a transition state where a five-membered ring is formed by binding one end of the added dpm to one Pd centre and another end to $\mu_{2}-S$ of $\mathrm{Pd}_{2} \mathrm{X}_{2}\left(\mu_{2}-\mathrm{S}\right)(\mu-\mathrm{dpm})_{2}$ as shown in Figure 1.16. ${ }^{5}$

Figure 1.15 Homogeneous catalytic cycle for the recovery of H_{2} from $\mathrm{H}_{2} \mathrm{~S}$.

Figure 1.16 Proposed transition state for the reconversion of $\mathrm{Pd}_{2} \mathrm{X}_{2}(\mu-\mathrm{dpm})_{2}$ from $\operatorname{Pd}_{2} X_{2}\left(\mu_{2}-S\right)(\mu-d p m)_{2}$.

1.3 The Chemistry of Transition Metal Aminophosphine Complexes

Figure $1.17 \quad[o-(N, N$-dimethylamino) phenyl]diphenylphosphine] (P-N).

The reactivity of [0 -(N, N-dimethylamino) phenyl]diphenylphosphine (P-N. Figure 1.17) toward transition metals has been investigated since the ligand was reported in 1965. ${ }^{58}$ The coordination chemistry of this ligand and other aminophosphine ligands to many metal centres including $\mathrm{Ag},{ }^{59,60} \mathrm{Co},{ }^{61,62} \mathrm{Cr}^{63,64} \mathrm{Cu},{ }^{60,65} \mathrm{Ir}^{66-70} \mathrm{Mo},{ }^{63,64} \mathrm{Ni},{ }^{61,71-73} \mathrm{Pd},{ }^{58,61,62,70,73-76} \mathrm{Pt},{ }^{61,62,70,76,77}$ $\operatorname{Re},{ }^{78} \mathrm{Rh}^{61,62,70,79,80}$ and $\mathrm{Ru}^{14,15,61,62,81-83}$ is representative of $\mathrm{P}-\mathrm{N}$ type system. Aminophosphine ligands are appealing for the synthesis of complexes utilized for catalysis (e.g. hydrogen transfer reduction, ${ }^{68,69}$ hydrosilylation, ${ }^{70}$ hydrogenation ${ }^{80}$) and for inorganic medicinal studies (e.g. binding of DNA). ${ }^{84}$ Ligands containing a tertiary phosphine group and an amine group satisfy the following desirable qualities required for effective homogeneous catalysts: (1) strong coordination of the phosphine entity stabilizes low oxidation state metal complexes; (2) the relative ease of dissociation of the metal-amine bond may generate a vacant site for which a substrate may enter the coordination sphere of the metal ion; (3) a high nucleophilicity is conferred on the metal ion through nitrogen coordination (σ-donation). ${ }^{66,79 b}$

The original interest of ruthenium aminophosphine complexes in this department was to evaluate the catalytic activity of $\mathrm{RuCl}_{2}(\mathrm{PPFA})\left(\mathrm{PPh}_{3}\right) \quad(\mathrm{PPFA}=1-[N$, N - α-dimethylaminoethyl]-2-diphenylphosphinoferrocene) ${ }^{81 a}$ with respect to that of the well-known complex $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}{ }^{85}$ The former complex was found to be an efficient catalyst for the hydrogenation of 1-hexene under mild conditions $\left(30-60^{\circ} \mathrm{C}, \leq 1 \mathrm{~atm} \mathrm{H}_{2}\right.$). ${ }^{81 \mathrm{a}}$ To further develop this chemistry, studies were extended to other ruthenium aminophosphine complexes, and this led to the discovery of the very reactive, five-coordinate, square pyramidal complexes $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)(\mathrm{R}=\mathrm{Ph}, p$-tolyl $){ }^{14-16}$ With the availability of a vacant sixth-coordination site, a range of small molecules $\left(\mathrm{L}=\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{EtSH}, \mathrm{H}_{2}, \mathrm{~N}_{2}\right.$,
SO_{2}) were found to coordinate to yield either trans- or cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)(\mathrm{L})$ (Figure $1.18) .{ }^{14-16}$

Figure 1.18 Reaction of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)$ with small molecules L ; *the formation of the SO_{2} complex is not measureably reversible.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR and ${ }^{1} \mathrm{H}$ NMR spectroscopic techniques are invaluable for the characterization of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)(\mathrm{L})$ in solution. The presence of an AX coupling pattern in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra are characteristic of complexes containing two distinctively different phosphorus environments. Upon addition of L to $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$, the positions of the P_{A} and P_{x} doublets shift with respect to those of the precursor if coordination of L takes place. In general, P_{A} is shifted by a greater magnitude for the trans isomer than the cis isomer because of the strong trans influence exerted by L on P_{A}; the positions of P_{X} are relatively unaffected for both isomers because the PR_{3} groups are always trans to a NMe_{2} group. Furthermore, the average ${ }^{2} J_{\mathrm{PP}}$ coupling constants ${ }^{14-16}$ are 36 and 29 Hz for the trans and cis isomers, respectively; both values are consistent with coupling of cis-phosphines. ${ }^{86}$ The NMe groups are equivalent and only one singlet is observed in the ${ }^{1} \mathrm{H}$ NMR spectra; thus, in solution, the five-coordinate structures have C_{8} symmetry. The cis isomers, however, have C_{1} symmetry with nonequivalent NMe groups and two singlets are observed in the ${ }^{1} \mathrm{H}$ NMR spectra. In some cases, the trans and cis structural assignments are supported by X-ray
crystallographic data (e.g. trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)^{16}$ and
cis- $\left.\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)\left(\mathrm{H}_{2} \mathrm{~S}\right)\right)^{14}$

1.4 Overview of Thesis

In this thesis work, the coordination chemistry of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)$ and other ruthenium aminophosphine systems are further investigated. General experimental details are presented in Chapter 2, while the synthesis, characterization and reactivity of ruthenium aminophosphines complexes are discussed in Chapter 3. The solution and solid structural properties of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{L})\left(\mathrm{L}=\mathrm{H}_{2} \mathrm{~S}, \mathrm{RSH}\right)$ and trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{L})$ $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{ROH}\right)$ are presented and compared in Chapters 4 and 5, respectively. In Chapter 6, the binding of various small molecules other than S - or O - containing species (e.g. those have N -donor ligands) to $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ are explored. Finally a summary of results and some recommendations for future work are given in Chapter 7.

1.5 References

1. James, B. R. Pure Appl. Chem. 1997, 69, 2213.
2. Lee, C.-L.; Besenyei, G.; James, B. R.; Nelson, D. A.; Lilga, M. A. J. Chem. Soc., Chem. Commun. 1985, 1175.
3. Besenyei, G.; Lee, C.-L.; Gulinski, J.; James, B. R.; Nelson, D. A.; Lilga, M. A. Inorg. Chem. 1987, 26, 3622.
4. Barnabas, A. F.; Sallin, D.; James, B. R. Can. J. Chem. 1989, 64, 2009.
5. Wong, T. Y. H.; Barnabas, A. F.; Sallin, D.; James, B. R. Inorg. Chem. 1995, 34, 2278.
6. Wong, T. Y. H.; James, B. R.; Wong, P. C.; Mitchell, K. A. R. J. Mol. Catal. A: Chem. 1999, 139, 159.
7. Wong, T. Y. H.; Rettig, S. J.; James, B. R. Inorg. Chem. 1999, 38, 2143.
8. Lee, C.-L.; Chisholm, J.; James, B. R.; Nelson, D. A.; Lilga, M. A. Inorg. Chim. Acta 1986, 121, L7.
9. Jessop, P. G.; Rettig, S. J.; James, B. R. J. Chem. Soc., Chem. Commun. 1991, 773.
10. Jessop, P. G.; Rettig, S. J.; Lee, C.-L.; James, B. R. Inorg. Chem. 1991, 30, 4617.
11. Jessop, P. G.; Lee, C.-L.; Rastar, G.; James, B. R.; Lock, C. J.; Faggiani, R. Inorg. Chem. 1992, 31, 4601.
12. Jessop, P. G.; Rastar, G.; James, B. R. Inorg. Chim. Acta 1996, 250, 351.
13. Jessop, P. G.; James, B. R. Inorg. Chim. Acta 1998, 280, 75.
14. Mudalige, D. C.; Ma, E. S.; Rettig, S. J.; James, B. R.; Cullen, W. R. Inorg.. Chem. 1997, 36, 5426.
15. Mudalige, D. C.; Rettig, S. J.; James, B. R.; Cullen, W. R. J. Chem. Soc., Chem. Commun. 1993, 830.
16. Mudalige, D. C.; Ph.D. Thesis, The University of British Columbia, 1994.
17. Trüper, H. G. In Sulfur - Its Significance for Chemistry, for the Geo-, Bio- and Cosmosphere and Technology; Müller, A.; Krebs, B., Eds.; Elsevier: Amsterdam, 1984, p. 351.
18. Maw, G. A. In Sulfur in Organic and Inorganic Chemistry, Vol. II; Senning, A., Ed.; Marcel Dekker Inc.: New York, 1972, p. 115.
19. Aneja, V. P.; Cooper, W. J. In Biogenic Sulfur in the Environment; Saltzman, E. S.; Cooper, W. J., Eds.; ACS: Washington, D.C., 1989, p. 2.
20. Lipsch, J. M. J. G.; Schuit, G. C. A. J. Catal. 1969, 15, 179.
21. Schuman, S. C.; Shalit, H. Catal. Rev. 1970, 4, 245.
22. Kwart, H.; Schuit, G. C. A.; Gates, B. C. J. Catal. 1980, 61, 128.
23. Angelici, R. J. Acc. Chem. Res. 1988, 21, 387.
24. Gates, B. C. Catalytic Chemistry; John Wiley \& Sons, Inc.: Toronto, 1992, p. 406.
25. Sánchez-Delgado, R. A. J. Mol. Catal. 1994, 86, 287.
26. Genco, J. M. In Kirk-Othmer Encyclopedia of Chemical Technology, $4^{\text {th }}$ Ed., Vol. 20; Kroschwitz, J. I.; Howe-Grant, M., Eds.; John Wiley \& Sons, Inc.: Toronto, 1996, p. 524.
27. (a) Chianelli, R. R. Catal. Rev. 1984, 26, 361.
(b) Bianchini, C.; Meli, A.; Moneti, S.; Oberhauser, W.; Vizza, F.; Herrera, V.; Fuentes, A.; Sánchez-Delgado, R. A. J. Am. Chem. Soc. 1999, 121, 7071.
28. Jones, W. D.; Chin, R. M.; Hoaglin, C. L. Organometallics 1999, I8, 1786.
29. Mingos, D. M. P. Essential Trends in Inorganic Chemistry; Oxford University Press, Inc.: New York, 1998, p. 159.
30. (a) Grancher, P. Hydrocarbon Process. 1978, 57 (July), 155.
(b) Grancher, P. Hydrocarbon Process. 1978, 57 (Sept.), 257.
31. Estep, J. W.; McBride, Jr., G. T.; West, J. R. In Advances in Petroleum Chemsitry and Refining, Vol. VI; McKelta, Jr., J. J., Ed.; Interscience Publishers: New York, 1962, p. 314.
32. Shaver, A.; El-khateeb, M.; Lebuis, A.-M. Angew. Chem. Int. Ed. Engl. 1996, 35, 2362.
33. (a) Weil, E. D.; Sandler, S. R. In Kirk-Othmer Encyclopedia of Chemical Technology, $4^{\text {th }}$ Ed., Vol. 23; Kroschwitz, J. I.; Howe-Grant, M., Eds.; John Wiley \& Sons, Inc.: Toronto, 1996, p. 275 (for $\mathrm{H}_{2} \mathrm{~S}$ data).
(b) Roberts, J. S. In Kirk-Othmer Encyclopedia of Chemical Technology, $4^{\text {th }}$ Ed., Vol. 24; Kroschwitz, J. I.; Howe-Grant, M., Eds.; John Wiley \& Sons, Inc.: Toronto, 1996, p. 19 (for thiol data).
34. (a) Crampton, M. R. In The Chemistry of the Thiol Group, Part I; Patai, S., Ed.; John Wiley \& Sons, Ltd.: Toronto, 1974, p. 379.
(b) Danehy, J. P.; Parameswaran, K. N. J. Chem. Eng. Data 1968, 13, 386.
35. Shaw, R. In The Chemistry of the Thiol Group, Part I; Patai, S., Ed.; John Wiley \& Sons, Ltd.: Toronto, 1974, p. 151.
36. Vahrenkamp, H. In Sulfur - Its Significance for Chemistry, for the Geo-, Bio- and Cosmosphere and Technology; Müller, A.; Krebs, B., Eds.; Elsevier: Amsterdam, 1984, p. 121.
37. Sellmann, D.; Barth, I. Inorg. Chim. Acta 1989, 164, 171.
38. Mueting, A. M.; Boyle, P.; Pignolet, L. H. Inorg. Chem. 1984, 23, 44.
39. (a) Chatt, J.; Lloyd, J. P.; Richards, R. L. J. Chem. Soc., Dalton Trans. 1976, 565.
(b) Povey, D. C.; Richards, R. L.; Shortman, C. Polyhedron 1986, 5, 369.
40. Henderson, R. A.; Hughes, D. L.; Richards, R. L.; Shortman, C. J. Chem. Soc., Dalton Trans. 1987, 1115.
41. de los Ríos, I.; Jiménez-Tenorio, M.; Puerta, M. C.; Salcedo, I.; Valerga, P. J. Chem. Soc., Dalton Trans. 1997, 4619.
42. Di Vaira, M.; Midollini, S.; Sacconi, L. Inorg. Chem. 1977, 16, 1518.
43. Vahrenkamp, H. Angew. Chem., Int. Ed. Engl. 1975, 14, 322.
44. Bianchini, C.; Mealli, C.; Meli, A.; Sabat, M. Inorg. Chem. 1986, 25, 4617.
45. Osakada, K.; Yamaoto, T.; Yamaoto, A. Inorg. Chim. Acta 1985, 105, L9.
46. Mueting, A. M.; Boyle, P. D.; Wagner, R.; Pignolet, L. H. Inorg. Chem. 1988, 27, 271.
47. Green, M. L. H.; Ng, D. K. P. J. Chem. Soc., Dalton Trans. 1993, 11.
48. Nishio, M.; Matsuzaka, H.; Mizobe, Y.; Hidai, M. Inorg. Chim. Acta 1997, 263, 119.
49. Tang, Z.; Normura, Y.; Ishii, Y.; Mizobe, Y.; Hidai, M. Inorg. Chim. Acta 1998, 267, 73.
50. Dance, I. G. J. Am. Chem. Soc. 1979, 101, 6264.
51. Dance, I. G. Polyhedron, 1986, 5, 1037.
52. Barbaro, P.; Cecconi, F.; Ghilardi, C. A.; Midollini, S.; Orlandini, A.; de Biani, F. F.; Laschi, F.; Zanello, P. J. Chem. Soc., Dalton Trans. 1996, 4337.
53. Adamson, G. W.; Shearer, H. M. M. J. Chem. Soc., Chem. Commun. 1969, 897.
54. Mealli, C.; Midollini, S.; Sacconi, L. Inorg. Chem. 1982, 17, 632.
55. Fisher, J. R.; Mills, A. J.; Sumner, S.; Brown, M. P.; Thomson, M. A.; Puddephatt, R. J.; Frew, A. A.; Manojlovic-Muir, L.; Muir, K. Organometallics 1982, I, 1421
56. Antonelli, D. M.; Cowie, M. Inorg. Chem. 1990, 29, 3339.
57. (a) Jennings, M. C.; Payne, N. C.; Puddephatt, R. J. Inorg. Chem. 1987, 26, 3776.
(b) Jennings, M. C.; Puddephatt, R. J. Inorg. Chem. 1988, 27, 4280.
58. Fritz, H. P.; Gordan, I. R.; Schwarzhans, K. E.; Venanzi, L. M. J. Chem. Soc. 1965, 5210.
59. Del Zotto, A.; Di Bernardo, P.; Tolazzi, M.; Zanonato, P. L. J. Chem. Soc., Dalton Trans. 1999, 979.
60. Crociani, L.; Anacardio, R.; Traldi, P.; Corain, B. Inorg. Chim. Acta 1998, 282, 119.
61. Khan, M. M. T.; Reddy, A. P. Polyhedron 1987, 6, 2009.
62. Rauchfuss, T. B.; Patino, F.; Roundhill, D. M. Inorg. Chem. 1975, 14, 652.
63. Knebel, W. J.; Angelici.; Inorg. Chem. 1974, 13, 627.
64. Reddy, V. V. S. Inorg. Chim. Acta 1988, 144, 177.
65. Tisato, F.; Pilloni, G.; Refosco, F.; Bandoli, G.; Corvaja, C.; Corain, B. Inorg. Chim. Acta 1998, 275, 401.
66. Rauchfuss, T. B.; Clements, J. L.; Agnew, S. F.; Roundhill, D. M. Inorg. Chem. 1977, 16, 775.
67. Park, S.; Johnson, M. P.; Roundhill, D. M. Organometallics 1989, 8, 1700.
68. Bianchini, C.; Farnetti, e.; Graziani, M.; Nardin, G.; Vacca, A.; Zanobini, F. J. Am. Chem. Soc. 1990, 112, 9190.
69. (a) Farnetti, E.; Kaspar, J.; Graziani, M. J. Mol. Catal. 1990, 63, 5.
(b) Farnetti, E.; Nardin, G.; Graziani, M. J. Organomet. Chem., 1991, 417, 163.
70. Kinting, A.; Kreuzfeld, H.-J. J. Organomet. Chem., 1989, 370, 343.
71. Yamada, I.; Yamazaki, N.; Yamaguchi, M.; Yamagishi, T. J. Mol. Catal. (A) 1997, 120, L13.
72. (a) Crociani, L.; Refosco, F.; Tisato, F.; Gatto, S.; Corain, B. Inorg. Chim. Acta 1996, 249, 131.
(b) Crociani, L.; Tisato, F.; Refosco, F.; Giuliano, B. Corain, B. Eur. J. Inorg. Chem. 1998, 11, 1689.
73. Kreuzfeld, H.-J.; Döbler, C.; Abicht, H.-P. J. Organomet. Chem., 1987, 336, 287.
74. de Graaf, W.; Harder, S.; Boersma, J. van Koten, G. J. Organomet. Chem., 1988, 358, 545.
75. Crociani, L.; Bandoli, G.; Dolmella, A.; Basato, M.; Corain, B. Eur. J. Inorg. Chem. 1998, 11, 1811.
76. Albinati, A.; Lianza, F.; Berger, H.; Pregosin, P. S.; Rüegger, H.; Kunz, R. W. Inorg. Chem. 1993, 32, 478.
77. Anderson, G. K.; Kumar, R. Inorg. Chem. 1984, 23, 4064.
78. Tisato, F.; Refosco, F.; Bolzati, C.; Cagnolini, A.; Gatto, S.; Bandoli, G. J. Chem. Soc., Dalton Trans. 1997, 1421.
79. (a) Rauchfuss, T.; Roundhill, D. M. J. Organomet. Chem., 1973, 59, C30.
(b) Rauchfuss, T.; Roundhill, D. M. J. Am. Chem. Soc. 1974, 96, 3098.
80. Cullen, W. R.; Einstein, F. W. B.; Huang, C.-H.; Willis, A. C.; Yeh, E.-S. J. Am. Chem. Soc. 1980, 102, 988.
81. (a) Rodgers, G. E.; Cullen, W. R.; James, B. R. Can. J. Chem. 1983, 61, 1314.
(b) Hampton, C.; Cullen, W. R.; James, B. R. J. Am. Chem. Soc. 1988, 110, 6918.
(c) Hampton, C. R. S. M.; Butler, I. R.; Cullen, W. R.; James, B. R.; Charland, J.-P.; Simpson, J. Inorg. Chem. 1992, 31, 5509.
82. Mauthner, K.; Slugovc, C.; Mereiter, K.; Schmid, R.; Kirchner, K. Organometallics 1997, 16, 1956.
83. (a) Shen, J.-Y.; Slugovc, C.; Wiede, P.; Mereiter, K.; Schmid, R.; Kirchner, K. Inorg. Chim. Acta 1998, 268, 69.
(b) Guo, Z.; Habtemariam, A.; Sadler, P. J.; James, B. R. Inorg. Chim. Acta 1998, 273, 1.
84. (a) Habtemariam, A.; Sadler, P. J. J. Chem. Soc., Chem. Commun. 1996, 1785.
(b) Margiotta, N.; Habtemariam, Sadler, P. J. Angew. Chem., Int. Ed. Engl. 1997, 36, 1185.
85. James, B. R. In Comprehensive Organometallic Chemistry, Vol. 8; Wilkinson, G., Stone, F. G. A.; Abel, E. W., Eds.; Pergamon Press: Oxford, 1982, Chapter 51.
86. (a) Krassowski, D. W.; Nelson, J. H.; Brower, K. R.; Hauenstein, D.; Jacobson, R. A. Inorg. Chem. 1988, 27, 4294.
(b) Joshi, A. M.; Thorburn, I. S.; Rettig, S. J.; James, B. R. Inorg. Chim. Acta 1992, 198-200, 283.

Chapter 2

Experimental Procedures

General Procedures

Unless otherwise stated all manipulations were performed under an oxygen-free Ar or N_{2} atmosphere at r.t. using standard Schlenk techniques. All solvents were dried and purged free of oxygen prior to use.

2.1 Materials

2.1.1 Gases

Purified Ar (H.P.), N_{2} (U.S.P.), H_{2} (Research, extra dry) and O_{2} (U.S.P.) were obtained from Union Carbide Canada Ltd., anhydrous $\mathrm{H}_{2} \mathrm{~S}, \mathrm{HCl}$ and NH_{3} from Matheson Gas Co., and $\mathrm{N}_{2} \mathrm{O}$ from Praxiar. All gases except $\mathrm{Ar}, \mathrm{N}_{2}$ and H_{2} were used without further purification. Ar and N_{2} were dried by passing through columns of $\mathrm{CaSO}_{4} . \mathrm{H}_{2}$ was passed through an Engelhard Deoxo catalytic hydrogen purifier to remove traces of O_{2}.

2.1.2 Solvents

All spectral or analytical grade solvents were obtained from Fisher, Eastman, Aldrich, Mallinckrodt Chemical Co., BDH, or MCB, and were refluxed and distilled over appropriate drying agents ${ }^{1}$ under N_{2} prior to use. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was dried over $\mathrm{CaH}_{2} ; \mathrm{C}_{6} \mathrm{H}_{6}$, hexanes, and $\mathrm{Et}_{2} \mathrm{O}$ over $\mathrm{Na} /$ benzophenone; acetone over $\mathrm{K}_{2} \mathrm{CO}_{3} ; \mathrm{MeOH}$ and EtOH over $\mathrm{Mg} / \mathrm{I}_{2}$; isopropanol over CaO ; and THF over K / Na alloy. All solvents used in reactions involving Ru complexes were purged with Ar or N_{2} (for at least 10 min) to remove traces of O_{2} before
being transferred into their reaction flasks via cannula. All deuterated solvents $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $\mathrm{CDCl}_{3}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{C}_{7} \mathrm{D}_{8},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$, DMSO- d_{6} and $\left.\mathrm{D}_{2} \mathrm{O}\right)$ were obtained from Cambridge Isotope Laboratories (CIL), MSD Isotopes, or Isotec Inc., and stored over activated molecular sieves (Fisher, type 4 $\AA, 4-8$ mesh), with the exception of $\mathrm{D}_{2} \mathrm{O}$. For the preparation of O_{2}-sensitive samples, the deuterated solvents were de-oxygenated (via the freeze-pump-thaw method), dried over drying agents $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{CDCl}_{3}\right.$ and $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ using activated molecular sieves; $\mathrm{C}_{6} \mathrm{D}_{6}$ and $\mathrm{C}_{7} \mathrm{D}_{8}$ using $\mathrm{Na} /$ benzophenone), and stored under vacuum or Ar atmosphere.

2.1.3 Compounds

All commerically available compounds were supplied by Aldrich, Anachemia, BDH, Eastman, Fisher, Mallinckrodt or MCB. These materials were used as received unless otherwise specified.

Proton sponge (1,8-bis(dimethylamino)naphthalene), obtained from Aldrich, was purified by passing a solution of the amine in n-pentane through a column of alumina, and evaporating the eluant to yield a white solid. ${ }^{2}$ Anal. Calcd. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2}: \mathrm{C}, 78.46 ; \mathrm{H}, 8.47$; $\mathrm{N}, 13.07$. Found: $\mathrm{C}, 78.48 ; \mathrm{H}, 8.37 ; \mathrm{N}, 12.78 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 6.9-7.4(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $2.80\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$. The NMR data correspond with literature data. ${ }^{3}$

2.2 Instrumentation

2.2.1 Nuclear Magnetic Resonance Spectroscopy

NMR spectra were recorded on a Bruker AC200 (200.1 MHz for ${ }^{1} \mathrm{H}$ and 81.0 MHz for ${ }^{31} \mathrm{P}$), a Varian XL300 (300.0 MHz for ${ }^{1} \mathrm{H}, 121.4 \mathrm{MHz}$ for ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and 75.0 MHz for ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $)$, a Bruker WH400 (400.0 MHz for ${ }^{1} \mathrm{H}$) or a Bruker AMX500 (500.0 MHz for ${ }^{1} \mathrm{H}$ and 202.5 MHz for ${ }^{31} \mathrm{P}$) FT-NMR spectrometer. Residual protonated species in the
deuterated solvents were used as internal references ($\delta 5.32$ for $\mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta 7.15$ for $\mathrm{C}_{6} \mathrm{D}_{6}$, $\delta 7.24$ for CDCl_{3}, and $\delta 2.20$ for $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$; all are reported relative to the external standard of tetramethylsilane (TMS) at $\delta 0.00$) for ${ }^{1} \mathrm{H}$ NMR NMR chemical shifts. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts are reported relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ (external reference) with the downfield shifts taken as positive. For the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra recorded on the Varian XL300, the chemicals shifts reported were externally referenced to trimethylphosphite, $\mathrm{P}(\mathrm{OMe})_{3}$ at $\delta 141.0^{4}$ (relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$). Unless otherwise specified, all variable-temperature NMR spectra were performed on the Varian XL300 or the Bruker AMX500 spectrometers.

Samples were prepared in 5 mm NMR tubes with poly(propylene) caps or rubber septa. For O_{2}-sensitive samples, NMR tubes with poly(tetrafluoroethylene), J. Young valves (Aldrich) were used. Solid samples were initially place in the NMR tubes, which were then evacuated, and deuterated solvents were subsequently vacuum transferred into the tubes maintained at liquid N_{2} temperature. These samples were carefully warmed to room temperature (r.t.) and the tubes placed under 1 atm of Ar or another gas as required by the specific experiment.

2.2.2 Infrared Spectroscopy

An ATLI Mattson Genesis Series FTIR spectrophotometer was used to record all infrared spectra (range: 500 to $4000 \mathrm{~cm}^{-1}$). Samples for analysis were made into KBr pellets; data are reported in cm^{-1}.

2.2.3 Ultraviolet Spectroscopy

UV-Vis spectra were recorded on a Hewlett Packard 8452A diode-array spectrophotometer (range: 190 to 820 nm) equipped with a thermostatted cell compartment
using 1 cm quartz cells. For O_{2}-sensitive compounds or in situ reactions, an anaerobic cell ${ }^{5}$ equipped with a side-arm flask for mixing of solutions was used. Data are reported as $\lambda_{\max }$ in $\mathrm{nm}\left(\varepsilon\right.$ in units of $\left.\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$.

2.2.4 Thermal Analysis

Thermogravimetric analyses (TGA) were performed using a TA Instruments TGA 51 Thermogravimetric Analyzer. Solid samples were weighed accurately ($10-15 \mathrm{mg}$) into an inert Pt pan. The samples were then heated in a N_{2} atmosphere (flow rate $=100 \mathrm{cc} / \mathrm{min}$) at a rate of $10^{\circ} \mathrm{C} / \mathrm{min}$ to a maximum of $500^{\circ} \mathrm{C}$.

Differential Scanning Calorimetery (DSC) data were collected on a TA Instruments 910S Differential Scanning Calorimeter. Solid samples were weighed accurately (2-5 mg) into disposable aluminum pans. The samples were then heated in a N_{2} atmosphere (flow rate $=40 \mathrm{cc} / \mathrm{min}$) at a rate of $5^{\circ} \mathrm{C}$ per min to a maximum of $500^{\circ} \mathrm{C}$.

2.2.5 Microanalysis

Microanalyses (\%C, H, N, and/or Cl, S) were performed by Mr. P. Borda of this department. A Carlo Erba Model 1106 Elemental Analyzer or a Fisons (Erba) Instruments EA 1108 CHN-O Elemental Analyzer was used and the results have an absolute accuracy within ± 0.3 \%.

2.2.6 X-ray Crystallography

All single crystal X-ray, diffraction studies with the exception of data for $c i s-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}-\mathrm{H}_{2}\right) 36(\mathrm{P}-\mathrm{N}=[o-(N, N$-dimethylamino $)$ phenyl $]$ (diphenylphosphine) $)$, were performed by the late Dr. S. J. Rettig of this department on a Rigaku/ADSC CCD area
detector or a Rigaku AFC6S diffractometer (both with graphite monochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation). The single crystal X-ray diffraction study of 36, was performed by Dr. V. G. Young, Jr. of the X-Ray Crystallographic Laboratory at the University of Minnesota, using a Siemens SMART Platform CCD system (with Mo-K α radiation).

2.2.7 Gas Chromatography

Gas chromatographic analyses were performed on a temperature-programmable Hewlett Packard 5890A instrument equipped with a thermal conductivity detector, using He as the carrier gas.

2.2.8 Magnetic Susceptibility Studies

The Johnson-Matthey Magnetic Susceptibility Balance was (Gouy method) used to measure the magnetism of samples. The mass susceptbility per gram of sample, χ_{g}, was calculated according to the equation below. Diamagnetic contributions from $\mathrm{Ru}(\mathrm{III})$ and ligands were obtained and calculated from Pascal's constants. ${ }^{6}$

$$
\chi_{\mathrm{g}}=\frac{\mathrm{C}_{\mathrm{Bal}} \ell\left(\mathrm{R}-\mathrm{R}_{0}\right)}{10^{9} \mathrm{~m}}
$$

where: $\mathrm{C}_{\mathrm{Bal}}=$ balance calibration constant
$\ell=$ sample length (cm)
$R=$ reading for tube plus sample
$\mathrm{R}_{0}=$ reading for empty tube
$\mathrm{m}=$ sample mass (g)

2.2.9 Conductivity Measurements

A Serfass Conductance Bridge Model RCM15B1 (Arthur H. Thomas Co. Ltd.) connected to a 3403 cell from the Yellow Springs Instrument Company was used for conductivity measurements. The cell was thermostatted at $25^{\circ} \mathrm{C}$ in a water-bath. The cell
constant, $\sigma=0.001413 \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}$, was determined by measuring the resistance of a 0.0100 M aqueous solution of KCl . Solutions with concentrations of $\sim 10^{-3} \mathrm{M}$ were used for conductance measurements. All solutions were prepared using dried and O_{2}-free solvents; the most extensive set of data was obtained during studies of some reactions of complexes with NH_{3} (Section 6.2).

2.3 Syntheses of Ligands

The ligands synthesized in this thesis work are shown in Figure 2.1.

P-N (ref. 7)

PAN (ref. 14)

BPN (ref. 7)

(R)-AMPHOS (ref. 12)

TPN (ref. 7)

(S)-ALAPHOS (ref. 15)

PO (ref. 9)

Figure 2.1 Ligands studied in this thesis work.

2.3.1 [\boldsymbol{O}-(\mathbf{N}, N-Dimethylamino)phenyl]diphenylphosphine, $\mathbf{P}-\mathbf{N}^{7}$

2.3.1.1 o-Bromo- N, N-dimethylaniline ${ }^{8}$

The aniline was prepared by the method described by Gilman and Banner. ${ }^{8}$ One equiv. of dimethylsulfate ($14 \mathrm{~mL}, 0.148 \mathrm{~mol}$) was added to a stirring solution of o-bromoaniline $(25 \mathrm{~g}, 0.145 \mathrm{~mol})$ in water $(30 \mathrm{~mL})$, and the mixture was stirred for 1 h to achieve homogeneity. While cooling in an ice-bath, this solution was neutralized with 5.0 M KOH . Addition of dimethylsulfate ($14 \mathrm{~mL}, 0.148 \mathrm{~mol}$) and neutralization with KOH were repeated twice. After the mixture was stirred for 3 h , the organic layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 20 \mathrm{~mL})$. The combined etheral extracts were washed with water ($3 \times 20 \mathrm{~mL}$) and dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$. Product distillation gave a clear, colourless oil (21 g , yield: 72%), bp $96^{\circ} \mathrm{C}$ $(15 \mathrm{~mm} \mathrm{Hg}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 2.80\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right),[6.88(1 \mathrm{H}, \mathrm{t}), 7.12(1 \mathrm{H}, \mathrm{d}), 7.27$ $(1 \mathrm{H}, \mathrm{t}), 7.59(1 \mathrm{H}, \mathrm{d}), \mathrm{Ph}]$. The NMR data were not determined in the original reference. ${ }^{8}$

2.3.1.2 [O-(N, N-Dimethylamino)phenyl]diphenylphosphine, $\mathbf{P}-\mathbf{N}^{7}$

P-N was prepared following the method of Fritz et al. ${ }^{7}$ A solution of o-bromo- N, N-dimethylaniline ($3.5 \mathrm{~g}, 0.0175 \mathrm{~mol}$) in $\mathrm{Et}_{2} \mathrm{O}(7 \mathrm{~mL})$ was added dropwise to a 1.6 M solution of ${ }^{n} \mathrm{BuLi}$ in hexane $(11 \mathrm{~mL}, 0.0175 \mathrm{~mol})$ which had been cooled to $-20^{\circ} \mathrm{C}$. The mixture was warmed to r.t. and stirred for 1 h during which time a white precipitate, $o-\mathrm{Li}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NMe}_{2}$, formed. This mixture was cooled to $-40^{\circ} \mathrm{C}$ and a solution of $\mathrm{Ph}_{2} \mathrm{PCl}$ ($3.2 \mathrm{~mL}, 0.0175 \mathrm{~mol}$) in $\mathrm{Et}_{2} \mathrm{O}(3.5 \mathrm{~mL})$ was added dropwise. Again, the mixture was warm to r.t. and stirred for 1 h , when water (20 mL) was added to the turbid pale-yellow mixture. The product was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 15 \mathrm{~mL})$. The combined ethereal extracts were dried over anhydrous MgSO_{4}. The white residue which remained after removal of the $\mathrm{Et}_{2} \mathrm{O}$ was recrystallized from hot EtOH to give clear, colourless crystals. Yield: $3.2 \mathrm{~g}, 60 \%$.

Mp 122-123 ${ }^{\circ}$ C. Anal. Calcd. $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NP}: \mathrm{C}, 78.67 ; \mathrm{H}, 6.60 ; \mathrm{N}, 4.59$. Found: C, 78.80; H, 6.47; N, 4.59. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta-14.4$ (s). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 6.8-7.3(14 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 2.60\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$. The NMR data agree with the literature data. ${ }^{7,9,10}$

2.3.2 $\operatorname{Bis}\left[0-\left(N, N\right.\right.$-dimethylamino)phenyl]phenylphosphine, BPN ${ }^{7}$

BPN was prepared in the same manner as described for $\mathrm{P}-\mathrm{N}$ but using PhPCl_{2} (1.2 mL , 8.75 mmol). Yield: $3.0 \mathrm{~g}, 50 \%$. Mp $85-86^{\circ} \mathrm{C}$. Anal. Calcd. $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{P}: \mathrm{C}, 75.84 ; \mathrm{H}, 7.23$; N, 8.04. Found: C, 75.84; H, 7.26; N, 7.99. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-22.8(\mathrm{~s}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 6.6-7.3(13 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 2.56\left(12 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$. X-ray quality crystals were recrystallized from EtOH at $0^{\circ} \mathrm{C}$. The ORTEP plot, selected bond lengths and angles of the crystal structure are shown and discussed in Section 3.5, while full experimental parameters and details are presented in Appendix I.

2.3.3 Tris[O-(N, N-dimethylamino)phenyl $]$ phosphine, TPN ${ }^{7}$

TPN was prepared by Dr. P. Meessen of this laboratory in the same manner as described for $\mathrm{P}-\mathrm{N}$ but using $\mathrm{PCl}_{3}(0.5 \mathrm{~mL}, 5.83 \mathrm{mmol})$. X-ray quality crystals were recrystallized from EtOH and the structure was determined. ${ }^{11}$ Yield: $0.9 \mathrm{~g}, 40 \%$. Mp 108- $109^{\circ} \mathrm{C}$. Anal. Calcd. $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{P}: \mathrm{C}, 73.63 ; \mathrm{H}, 7.72 ; \mathrm{N}, 10.73$. Found: C, 73.49; $\mathrm{H}, 7.81 ; \mathrm{N}, 10.53 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-28.9(\mathrm{~s}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.5-7.4(12 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 2.6\left(18 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$. The data given here were determined by Dr. P. Meessen. ${ }^{11}$

2.3.4 (R)-(+)-N,N-Dimethyl-1-[o-(diphenylphosphino)phenyl]ethylamine, AMPHOS ${ }^{12}$

2.3.4.1 (R)-(+)- N, N-Dimethyl-1-phenylethylamine ${ }^{13}$

The title amine was prepared by the method described by Pine and Sanchez. ${ }^{13}$ A flask charged with $(R)-(+)$-l-phenylethylamine $(30 \mathrm{~g}, 0.25 \mathrm{~mol})$ was cooled to $0^{\circ} \mathrm{C}$. Formic acid $(90 \%, 35 \mathrm{~mL}, 0.8 \mathrm{~mol})$ and then formaldehyde $(37 \%, 56 \mathrm{~mL}, 0.75 \mathrm{~mol})$ were added dropwise, and the yellow mixture was refluxed at $80^{\circ} \mathrm{C}$ for 24 h . It was then acidified with $6 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$ while being cooled in an ice-bath. Nonbasic material was extracted from the mixture using $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$ and discarded. The aqueous layer was made basic by adding $50 \% \mathrm{NaOH}$ and then extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$. The combined ethereal extracts were washed with water (20 mL) and dried over anhydrous MgSO_{4}. Removal of the $\mathrm{Et}_{2} \mathrm{O}$ resulted in a yellow liquid, the distillation of which gave a clear, colourless liquid $\left(32^{\circ} \mathrm{C}\right.$, $\sim 1 \mathrm{~mm} \mathrm{Hg}) . \quad$ Yield: $\quad 20 \mathrm{~g}, 54 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.2(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.1(1 \mathrm{H}$, q, $\left.\mathrm{CHCH}_{3}\right), 2.1\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.3\left(3 \mathrm{H}, \mathrm{d}, \mathrm{CHCH}_{3}\right)$. The NMR data were not given in the original reference. ${ }^{13}$

2.3.4.2 $\mathbf{A M P H O S} \cdot \mathrm{HCl} \cdot(\text { acetone })^{12}$

The AMPHOS ligand was prepared by the method described by Payne and Stephan. ${ }^{12}$ An 1.6 M solution of ${ }^{n} \mathrm{BuLi}$ in hexane $(84 \mathrm{~mL}, 0.134 \mathrm{~mol})$ was added dropwise to a solution of (R)-(+)-N, N-dimethyl-1-phenylethylamine $(20 \mathrm{~g}, 0.134 \mathrm{~mol})$ and $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The yellow mixture was stirred for 24 h , and cooled in an ice-bath, before $\mathrm{Ph}_{2} \mathrm{PCl}(24 \mathrm{~mL}$, 0.134 mol) was added slowly. The reaction mixture was stirred for 2 h , and water (100 mL) was then added to the resultant orange solution. The organic layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 50 \mathrm{~mL}$), and the combined organic layers were dried over anhydrous $\mathrm{MgSO}_{4} . \mathrm{HCl}$ gas was passed through the filtered $\mathrm{Et}_{2} \mathrm{O}$ solution for 10 min , before removal of the $\mathrm{Et}_{2} \mathrm{O}$ resulted
in an orange oil. A minimum of acetone was added to dissolve the oil and $\mathrm{Et}_{2} \mathrm{O}$ was slowly added to precipitate a white solid. NMR analysis of this white powder indicate a mixture of starting amine (30%) and AMPHOS•HCl (acetone) (70\%). The NMR data for AMPHOS• HCl (acetone) are: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-17.2(\mathrm{~s}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta 12.4(1 \mathrm{H}, \mathrm{br} \mathrm{s},-\mathrm{NHCl}), 6.9-8.1(14 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.04\left(1 \mathrm{H}, \mathrm{hx}, \mathrm{CH}_{3} \mathrm{CH}\right), 2.89,2.45(6 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), \delta 1.6\left(3 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{3} \mathrm{CH}\right), \delta 2.1(6 \mathrm{H}, \mathrm{s}$, acetone). The NMR data correspond to those in the literature. ${ }^{12}$

2.3.4.3 Purification of AMPHOS ${ }^{12}$

Crude AMPHOS•HCl(acetone) (3.8 g) was recrystallized from hot acetone to obtain a white powder. This was redissolved in hot EtOH and was neutralized to $\mathrm{pH} \sim 8$ with 1 M KOH ethanolic solution. After removal of $\mathrm{EtOH}, \mathrm{Et}_{2} \mathrm{O}$ was added, and the mixture was filtered. An oily residue remained after the removal of the $\mathrm{Et}_{2} \mathrm{O}$ from the filtrate. MeOH was then added to redissolve the residue. At $0^{\circ} \mathrm{C}$, a white precipitate that formed was filtered off and washed with cold $\mathrm{MeOH}(2 \times 10 \mathrm{~mL}$). Clear, colourless crystals formed after recrystallization from hot MeOH once again. Yield: $1.0 \mathrm{~g}, 20 \% . \mathrm{Mp} 80-81^{\circ} \mathrm{C}$. Anal. Calcd. $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NP}: \quad \mathrm{C}, 79.25 ; \mathrm{H}, 7.26 ; \mathrm{N}, 4.20$. Found: C, $79.18 ; \mathrm{H}, 7.33 ; \mathrm{N}, 4.22 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-17.2(\mathrm{~s}) . \quad{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 6.9-7.5(14 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.12(1 \mathrm{H}, \mathrm{qn}$, $\left.\mathrm{CH}_{3} \mathrm{CH}\right), 2.00\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), \delta 1.20\left(3 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{3} \mathrm{CH}\right)$. The above characterization data are consistent with literature data. ${ }^{12}$

2.3.5 1-(N, N-Dimethylamino)-8-(diphenylphosphino)naphthalene, PAN ${ }^{14}$

PAN was prepared by the method described by Horner and Simons with minor modifications. ${ }^{14}$ Tetramethylethylenediamine (TMEDA) was used to assist the lithiation of

1-(dimethylamino)naphthalene with $n-\mathrm{BuLi}$. To a cooled solution $\left(-20^{\circ} \mathrm{C}\right)$ of ${ }^{n} \mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $9.1 \mathrm{~mL}, 0.0146 \mathrm{~mol}$), a solution of 1-(dimethylamino) naphthalene ($2.5 \mathrm{~g}, 0.0146 \mathrm{~mol}$) in hexanes (15 mL) was added dropwise. The yellow mixture was stirred for 10 min , after which TMEDA ($2.2 \mathrm{~mL}, 0.0146 \mathrm{~mol}$) was added. The mixture was slowly warmed to r.t. and stirred for 16 h during which time a white precipitate, 1-(dimethylamino)-8-lithionaphthalene, formed. A solution of $\mathrm{Ph}_{2} \mathrm{PCl}(2.6 \mathrm{~mL}, 0.0146 \mathrm{~mol})$ in $\mathrm{Et}_{2} \mathrm{O}$ was added dropwise to the cooled $\left(-40^{\circ} \mathrm{C}\right)$ reaction mixture. This was then warmed to r.t., stirred for 1 h , and made basic with 6 M KOH . The organic layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$ and the combined ethereal extracts were washed with water (20 mL) and dried over anhydrous MgSO_{4}. Removal of $\mathrm{Et}_{2} \mathrm{O}$ resulted in a yellow-orange residue. Recrystallization of this solid from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ resulted in yellow crystals. Yield: $2.6 \mathrm{~g}, 50 \%$. Mp $170-171^{\circ} \mathrm{C}$. Anal. Calcd. $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NP}: \mathrm{C}, 81.10, \mathrm{H}, 6.24 ; \mathrm{N}, 3.94$. Found: C, 80.83; H, 6.18; N, 3.93. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-2.86(\mathrm{~s}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.8-7.9(16 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 2.57\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$. The physical and spectroscopic data agree with those reported. ${ }^{14}$

2.3.6 [(S)-2-(Dimethylamino)propyl]diphenylphosphine, ALAPHOS ${ }^{15}$

2.3.6.1 (S)-2-(Dimethylamino)propanoic acid ${ }^{16}$

The methylation of (S)-2-aminopropanoic acid (alanine) was carried out according to the method described by Bowman and Stroud. ${ }^{16}$ Formaldehyde ($37 \%, 30 \mathrm{~mL}$) was added to a stirring suspension of (S)-alanine $(15.0 \mathrm{~g}, 0.168 \mathrm{~mol})$ and $\mathrm{Pd} / \mathrm{C}(10 \%, 1.5 \mathrm{~g})$ in water (400 mL , and H_{2} gas was passed through the mixture for 24 h . After removal of the H_{2} source, the mixture was refluxed for 15 min and was immediately filtered into a Buchner funnel containing Celite. Such filtration through Celite was repeated three times to remove any Pd / C. Removal of water resulted in a hygroscopic, white solid. Yield: $17.9 \mathrm{~g}, 90 \%$. ${ }^{1} \mathrm{H}$

NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta 4.77(1 \mathrm{H}, \mathrm{s}, \mathrm{COH}), 3.66\left(1 \mathrm{H}, \mathrm{q},\left(\mathrm{H}_{3} \mathrm{C}\right) \mathrm{CH},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.0 \mathrm{~Hz}\right), 2.79(6 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=20.7 \mathrm{~Hz}\right), 1.42\left(3 \mathrm{H}, \mathrm{d},\left(\mathrm{H}_{3} \mathrm{C}\right) \mathrm{CH},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.0 \mathrm{~Hz}\right)$. The NMR data were not given in the original reference. ${ }^{16}$

2.3.6.2 (S)-2-(Dimethylamino)-1-propanol ${ }^{15}$

The title alcohol was prepared by the method described by Hayashi et al. ${ }^{15}$ (S)-2-(Dimethylamino)propanoic acid $(17.9 \mathrm{~g}, 0.153 \mathrm{~mol})$ in 1 g portions was added over a period of 30 min to a stirring suspension of $\mathrm{LiAlH}_{4}(12.4 \mathrm{~g}, 0.327 \mathrm{~mol})$ in THF $(400 \mathrm{~mL})$. The mixture was refluxed for 4 h , cooled, and stirred under N_{2} for 16 h . The white precipitate that formed after the successive addtion of water (25 mL), $15 \% \mathrm{NaOH}(25 \mathrm{~mL})$ and water (75 mL) was removed by filtration and washed with THF ($2 \times 20 \mathrm{~mL}$). The combined THF filtrates were dried over anhydrous NaSO_{4}. Removal of THF resulted in a yellow oil whose product distillation gave a clear, colourless oil, bp $60^{\circ} \mathrm{C}(15 \mathrm{~mm} \mathrm{Hg})$. Yield: 7 g , $45 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.50\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}_{2} \mathrm{COH}\right), 3.22\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{COH}\right), 2.61(1 \mathrm{H}, \mathrm{m}$, $\left.\left(\mathrm{H}_{3} \mathrm{C}\right) \mathrm{CH}\right), 2.10\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.79\left(3 \mathrm{H}, \mathrm{d},\left(\mathrm{H}_{3} \mathrm{C}\right) \mathrm{CH}\right)$. The NMR data correspond to the literature data. ${ }^{15}$

2.3.6.3 (S)-2-(Dimethylamino)propylchloride hydrochloride ${ }^{\mathbf{1 5}}$

A solution of (S)-2-(dimethylamino)-1-propanol ($7.0 \mathrm{~g}, 0.068 \mathrm{~mol}$) in EtOH (10 mL) was cooled in an ice-bath and acidified with $12 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$. Evaporation of the EtOH gave the HCl salt as a clear colourless oil. $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ was then added to form two immisible layers. This mixture was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{SOCl}_{2}(15 \mathrm{~mL}, 0.206 \mathrm{~mol})$ was added over a period of 30 min . The resultant homogeneous, clear solution was refluxed for 2 h ; removal of the solvent from the cooled solution gave an orange oil. Recrystallization of the oil from EtOH (3 times) gave clear, colourless, hygroscopic crystals. Yield: $6.7 \mathrm{~g}, 62 \% .{ }^{1} \mathrm{H}$

NMR $\left(\mathrm{CDCl}_{3}\right): \delta 12.76\left(1 \mathrm{H}\right.$, br $\left.\mathrm{s}, \mathrm{HN}^{+}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2} \mathrm{CCl}\right), 3.62(1 \mathrm{H}, \mathrm{m}$, $\left.\left(\mathrm{H}_{3} \mathrm{C}\right) \mathrm{CH}\right), 2.83\left(6 \mathrm{H}, \mathrm{s}, \mathrm{HN}^{+}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.50\left(3 \mathrm{H}, \mathrm{d},\left(\mathrm{H}_{3} \mathrm{C}\right) \mathrm{CH}\right)$. The NMR data were not given in the original reference. ${ }^{15}$

2.3.6.4 [(S)-2-(Dimethylamino)propyl]diphenylphosphine, ALAPHOS ${ }^{15}$

To a 3-neck, 200 mL flask charged with t -BuOK ($1.8 \mathrm{~g}, 16.0 \mathrm{mmol}$) and THF $(30 \mathrm{~mL})$ was added $\mathrm{Ph}_{2} \mathrm{PH}(1.10 \mathrm{~mL}, 6.3 \mathrm{mmol})$. A bright orange solution formed immediately. (S)-2-(Dimethylamino)propylchloride hydrochloride ($1.0 \mathrm{~g}, 6.3 \mathrm{mmol}$) was added and the mixture was refluxed for 2 h . The mixture turned colourless and a white precipitate (KCl) formed. The solvent was removed and $3 \mathrm{M} \mathrm{HCl}(150 \mathrm{~mL})$ was added to the residue. This cloudy mixture was extracted with $\mathrm{C}_{6} \mathrm{H}_{6}(50 \mathrm{~mL})$. The aqueous layer was made basic by adding $15 \% \mathrm{NaOH}(50 \mathrm{~mL})$ and extracted with $\mathrm{C}_{6} \mathrm{H}_{6}(2 \times 80 \mathrm{~mL})$. The combined $\mathrm{C}_{6} \mathrm{H}_{6}$ extracts were washed with a saturated NaCl solution (100 mL) and dried over anhydrous NaSO_{4}. A yellow oily residue remained after the removal of $\mathrm{C}_{6} \mathrm{H}_{6}$. $\mathrm{Et}_{2} \mathrm{O}$ was added to dissolve the residue and the solution was passed through a neutral alumina column to remove any phosphine oxide. Evaporation of $\mathrm{Et}_{2} \mathrm{O}$ gave a clear, colourless oil. Yield: $1.25 \mathrm{~g}, 73 \% .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta-19.11(\mathrm{~s}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.2-7.7(10 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 3.07\left(1 \mathrm{H}, \mathrm{m},\left(\mathrm{H}_{3} \mathrm{C}\right) \mathrm{CH}\right), 2.87\left(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{PPh}_{2}\right), 2.56\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.00(1 \mathrm{H}, \mathrm{t}$ of d, $\left.\mathrm{CH}_{2} H_{\mathrm{b}} \mathrm{PPh}_{2}\right), 1.43\left(3 \mathrm{H}, \mathrm{d},\left(\mathrm{H}_{3} \mathrm{C}\right) \mathrm{CH}\right)$. The NMR data agree with the literature data. ${ }^{15}$

2.3.7 o-Diphenylphosphineanisole, $\mathbf{P O}^{9}$

The preparation of o-diphenylphosphineanisole was initiated by a Grignard reaction described by Roundhill and co-workers. ${ }^{9}$ A 3-neck flask, equipped with an addition funnel and a condenser, was charged with Mg turnings ($3.25 \mathrm{mg}, 0.134 \mathrm{~mol}$) and $\mathrm{Et}_{2} \mathrm{O}$ (100 mL) under a flow of N_{2}. o-Bromoanisole ($25 \mathrm{~g}, 0.134 \mathrm{~mol}$) was then slowly added, and the
mixture was allowed to react for 2 h . The grey-green mixture that resulted was cooled in an ice-bath and a solution of $\mathrm{Ph}_{2} \mathrm{PCl}(25 \mathrm{~mL}, 0.139 \mathrm{~mol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added. The mixture was stirred for 20 h at $20^{\circ} \mathrm{C}$ during which time a white precipitate formed. Water $(50 \mathrm{~mL})$ was added and the product was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$. The combined etheral extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$ and dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$. Removal of $\mathrm{Et}_{2} \mathrm{O}$ resulted in a white residue, whose recrystallization from hot EtOH (2 times) gave clear, colourless, crystalline needles. Yield: $15 \mathrm{~g}, 38 \%$. Melting point: $123-124^{\circ} \mathrm{C}$. Anal. Calcd. $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{OP}: \mathrm{C}, 78.07 ; \mathrm{H}, 5.86$. Found: C, 78.11; $\mathrm{H}, 5.76 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-15.34$ (s). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.6-7.8(14 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right)$. The physical and spectroscopic data are consistent with the literature data. ${ }^{9}$

2.4 Syntheses of Ruthenium Precursors

The ruthenium as $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (41.5-43.96\% Ru) was obtained on loan from Johnson Matthey Ltd. and Colonial Metals Inc.

2.4.1 Dichlorotris(triphenylphosphine)ruthenium(II), $\mathbf{R u C l}_{\mathbf{2}}\left(\mathbf{P P h}_{\mathbf{3}}\right)_{\mathbf{3}} \mathbf{(1)}{ }^{\mathbf{1 7}}$

The title complex was prepared following a literature method ${ }^{17}$ with slight modifications. A solution of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(2.11 \mathrm{~g}, 8.5 \mathrm{mmol})$ in $\mathrm{MeOH}(250 \mathrm{~mL})$ was refluxed for 5 min , and then cooled to r.t., when $\mathrm{PPh}_{3}(14.0 \mathrm{~g}, 53.4 \mathrm{mmol})$ was added. The mixture was refluxed for 3 h during which time a dark brown suspension formed. The mixture was filtered while still hot and the brown solid was washed with hot $\mathrm{MeOH}(6 \times 20 \mathrm{~mL}), \mathrm{Et}_{2} \mathrm{O}(2 \times$ 20 mL) and hexanes ($2 \times 20 \mathrm{~mL}$) to remove excess PPh_{3}. Yield: $8.0 \mathrm{~g}, 97 \%$. Anal. Calcd. $\mathrm{C}_{54} \mathrm{H}_{45} \mathrm{Cl}_{2} \mathrm{P}_{3} \mathrm{Ru}: \mathrm{C}, 67.64 ; \mathrm{H}, 4.73$. Found: C, $67.50 ; \mathrm{H}, 4.69$.

2.4.2 Dichlorotris(tri-p-tolylphosphine)ruthenium(II), $\mathbf{R u C l}_{2}\left(\mathbf{P}(p \text {-tolyl })_{3}\right)_{3}(\mathbf{2})^{18}$

The title complex was prepared following a literature method. ${ }^{18}$ A solution of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~g}, 3.8 \mathrm{mmol})$ in $\mathrm{MeOH}(100 \mathrm{~mL})$ was refluxed for 5 min , and then cooled to r.t., when $\mathrm{P}\left(p-\text { tolyl }_{3}\right)_{3}(5.0 \mathrm{~g}, 16.4 \mathrm{mmol})$ was added. The mixture was then refluxed for 24 h to give a dark purple solid which was filtered off and washed with $\mathrm{MeOH}(7 \times 10 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. Yield: $4.15 \mathrm{~g}, 74 \%$. Anal. Calcd. $\mathrm{C}_{63} \mathrm{H}_{63} \mathrm{Cl}_{2} \mathrm{P}_{3} \mathrm{Ru}: \mathrm{C}, 69.74 ; \mathrm{H}, 5.85$. Found: C, 69.66; H, 5.83.

2.4.3 Cis-Dichlorotetrakis(dimethylsulfoxide)ruthenium(II), Cis-RuCl $_{\mathbf{2}}(\mathrm{DMSO})_{4} \mathbf{(3)}^{\mathbf{1 9}}$

A solution of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(1.18 \mathrm{~g}, 4.5 \mathrm{mmol})$ and excess DMSO $(12 \mathrm{~mL})$ was refluxed for 30 min . The volume of the resulting deep red solution was reduced to 2 mL and acetone (5 mL) was added to precipitate a yellow solid, that was filtered off and washed with acetone (5 mL) and $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$. Yield: $1.36 \mathrm{~g}, 62 \%$. Anal. Calcd. $\mathrm{C}_{63} \mathrm{H}_{63} \mathrm{Cl}_{2} \mathrm{P}_{3} \mathrm{Ru}: \mathrm{C}, 19.88$; H, 4.97. Found: C, 20.02; H, 5.11.

2.4.4 Trichlorobis(triarylphosphine)(dimethylacetamide)ruthenium(III)•DMA solvate $\mathbf{R u C l}_{\mathbf{3}}\left(\mathbf{P P h}_{3}\right)_{\mathbf{2}}(\mathrm{DMA}) \cdot(\mathrm{DMA})$ (4a) and $\mathrm{RuCl}_{3}\left(\mathbf{P}(\boldsymbol{p} \text {-tolyl })_{3}\right)_{\mathbf{2}}(\mathbf{D M A}) \cdot(\mathrm{DMA})(4 b)^{\mathbf{2 0}}$

The title complexes were prepared by Dr. D. E. Fogg, previously of this laboratory. Solid $\mathrm{PPh}_{3}(4.34 \mathrm{~g}, 16.6 \mathrm{mmol})$ or $\mathrm{P}(p \text {-tolyl })_{3}(5.05 \mathrm{mg}, 16.6 \mathrm{mmol})$ was added to a dark brown solution of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~g}, 8.3 \mathrm{mmol})$ in DMA (60 mL), and the reaction mixture was stirred at r.t. for 24 h . The resulting green precipitate was filtered off, washed with DMA $(2 \times 5 \mathrm{~mL})$ and hexanes ($3 \times 5 \mathrm{~mL}$), and dried under vacuum. For 4 a : yield: $5.2 \mathrm{~g}, 69 \%$. Anal. Calcd. $\mathrm{C}_{44} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}_{3} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C}, 58.32 ; \mathrm{H}, 5.34 ; \mathrm{N}, 3.09$. Found: C, 58.22; H, 5.23; N , 3.01. For 6b: yield: $5.5 \mathrm{~g}, 67 \%$. Anal. Calcd. $\mathrm{C}_{50} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}_{3} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C}, 60.64 ; \mathrm{H}, 6.11 ; \mathrm{N}$; 2.83. Found: C, $60.32 ; \mathrm{H}, 6.11 ; \mathrm{N}, 2.80$.

2.5 Dichlorobis(o-diphenylphosphinoanisole)ruthenium(II), $\mathbf{R u C l}_{\mathbf{2}}(\mathbf{P O})_{\mathbf{2}}(\mathbf{5})^{\mathbf{9}}$

The title complex was prepared by the method described by Roundhill's group ${ }^{9}$ with modifications. To a suspension of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}(104 \mathrm{mg}, 0.109 \mathrm{mmol})$ in acetone $(5 \mathrm{~mL})$ was added a solution of $\mathrm{PO}(70 \mathrm{mg}, 0.239 \mathrm{mmol})$ in acetone $(5 \mathrm{~mL})$. The mixture was heated at $50^{\circ} \mathrm{C}$ for 3 h during which time a burgundy solid formed. This was filtered off and washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$. Yield: $66 \mathrm{mg}, 80 \%$. Anal. Calcd. $\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C}, 60.32$; H, 4.53. Found: C, 60.12; $\mathrm{H}, 4.34 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 64.20(\mathrm{~s}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta 6.8-7.6(28 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.57\left(6 \mathrm{H}, \mathrm{s}, \mathrm{O}-\mathrm{CH}_{3}\right)$. The NMR data agree with the literature data. ${ }^{9}$

2.6 Syntheses of Ruthenium(II) Aminophosphine Complexes

2.6.1 Dichloro\{[o-(\mathbf{N}, \mathbf{N}-dimethylamino)phenyl](diphenylphosphine) $\}$ (triphenylphosphine)ruthenium(II), $\mathrm{RuCl}_{\mathbf{2}}(\mathbf{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 a)^{\mathbf{2}, 21}$

Method $\mathbf{1}^{\mathbf{2 , 2 1}}$

To a solution of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}(0.30 \mathrm{~g} .0 .31 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added $\mathrm{P}-\mathrm{N}$ $(0.096 \mathrm{~g}, 0.31 \mathrm{mmol})$. The dark brown solution turned dark green immediately and was stirred for 2 h . After the solvent was removed in vacuo, $5 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ was added to redissolve the dark green residue. Hexanes (30 mL) was added to the solution to precipitate a dark green solid. The product was reprecipitated in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes twice more to remove excess PPh_{3} and OPPh_{3}. Yield: $127 \mathrm{mg}, 55 \%$. Anal. Calcd. $\mathrm{C}_{38} \mathrm{H}_{3} \mathrm{NCl}_{2} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C}, 61.71 ; \mathrm{H}, 4.77$; $\mathrm{N}, 1.89$. Found: $\mathrm{C}, 61.51 ; \mathrm{H}, 4.84 ; \mathrm{N}, 1.85 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 83.69(\mathrm{~d}, P-\mathrm{N}), 48.87$ $\left(\mathrm{d}, \mathrm{PPh}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=36.54 \mathrm{~Hz} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.0-7.9(29 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.07\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$. The NMR data correspond to those reported. ${ }^{2,21}$ UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 454$ (1100), 678 (480).

Method 2

A sample of trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right)$ (33a) (Section 2.10.1) was placed in vacuo and heated to $80^{\circ} \mathrm{C}$ for 16 h . With the removal of $\mathrm{H}_{2} \mathrm{O}$, the pink solid turned green (yield: 100%).

2.6.2 Dibromo $\{[o-(N, N$-dimethylamino)phenyl](diphenylphosphine) $\}$ (triphenylphosphine)ruthenium(II), $\mathbf{R u B r}_{\mathbf{2}}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)$ (6b)

A solution of $\mathrm{P}-\mathrm{N}(135.9 \mathrm{mg}, 0.44 \mathrm{mmol})$ in acetone (10 mL) was added to a suspension of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}(420.8 \mathrm{mg}, 0.44 \mathrm{mmol})$ in acetone $(10 \mathrm{~mL})$, and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 30 min . Excess $\mathrm{NaBr}(1.14 \mathrm{~g}, 11.09 \mathrm{mmol})$ was added to the resulting dark green solution. The mixture, containing a suspension of NaBr and NaCl , was stirred at r.t. for 24 h . The salts were filtered off through Celite and the volume of the filtrate was removed in vacuo. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was then added to redissolve the dark green residue and this solution was filtered through Celite once more. The volume of the filtrate was reduced to $\sim 5 \mathrm{~mL}$ before hexanes was added to precipitate a green-brown solid. This was filtered off and washed with hexanes $(2 \times 10 \mathrm{~mL})$. Yield: $185 \mathrm{mg}, 51 \%$. Anal. Calcd. $\mathrm{C}_{38} \mathrm{H}_{3} \mathrm{NBr}_{2} \mathrm{P}_{2} \mathrm{Ru}$: C, 55.09; H, 4.26; N, 1.69. Found: C, 54.57; H, 4.23; N, 1.64. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: $\delta 85.47(\mathrm{~d}, P-\mathrm{N}), 50.08\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=36.30 \mathrm{~Hz} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 6.7-7.8(29 \mathrm{H}, \mathrm{m}$, Ph), 3.17 (6H, s, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 472$ (1170), 706 (615).

2.6.3 Diiodo\{[o-(N, N-dimethylamino)phenyl](diphenylphosphine)\} (triphenylphosphine)ruthenium(II), $\mathbf{R u I}_{\mathbf{2}}(\mathbf{P}-\mathrm{N})\left(\mathbf{P P h}_{3}\right)(6 \mathrm{c})$

The title complex was prepared following the same procedure used the Br analogue (Section 2.6.2) but using excess $\mathrm{NaI}(1.64 \mathrm{~g}, 10.97 \mathrm{mmol})$. A dark red solid was isolated from the acetone solution. Yield: $348 \mathrm{mg}, 86 \%$. Anal. Calcd. $\mathrm{C}_{38} \mathrm{H}_{35} \mathrm{NI}_{2} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C}, 49.47$;

H, 3.82; N, 1.52. Found: C, 49.21; H, 3.78; N, 1.58. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 89.18$ (d, $P-\mathrm{N}), \delta 53.62\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=35.56 \mathrm{~Hz} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.9-7.8(29 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.48$ $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 510(900), 774(510)$.

2.6.4 Dichloro\{[o-(\mathbf{N}, \mathbf{N}-dimethylamino)phenyl](diphenylphosphine) $\}$ (tri-p-tolylphosphine)ruthenium(II), $\mathrm{RuCl}_{\mathbf{2}}(\mathbf{P}-\mathrm{N})\left(\mathbf{P}(p \text {-tolyl })_{3}\right)(7 a)^{2,21}$

The title complex was prepared in the same manner as described for the PPh_{3} analogue (Section 2.6.1), but using $\operatorname{RuCl}_{2}\left(\mathrm{P}(p \text {-tolyl })_{3}\right)_{3} \quad(335 \mathrm{mg}, 0.31 \mathrm{mmol}$, method 1) or $\mathrm{RuCl}_{2}\left(\mathrm{P}(\text { p-tolyl })_{3}\right)_{3}\left(\mathrm{OH}_{2}\right)$ (method 2). The product is a dark green solid which in the solid state is much more sensitive to O_{2} than that of its PPh_{3} analogue. Yield: method $1,130 \mathrm{mg}$, 55%; method 2, 100%. Anal. Calcd. $\mathrm{C}_{41} \mathrm{H}_{41} \mathrm{NCl}_{2} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C}, 63.00 ; \mathrm{H}, 5.29 ; \mathrm{N}, 1.79$. Found: C, 63.03; H, 5.26; N, 1.86. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 81.46(\mathrm{~d}, P-\mathrm{N}), 47.64\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;$ ${ }^{2} \mathrm{~J}_{\mathrm{PP}}=37.15 \mathrm{~Hz} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 6.6-8.0(26 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.11\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.00(9 \mathrm{H}$, s, $\left.p-\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CH}_{3}\right)$. The NMR data are consistent with those reported. ${ }^{2,21}$ UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 452 (1155), 672 (555).

2.6.5 Dibromo $\{[0-(N, N-d i m e t h y l a m i n o) p h e n y I]($ diphenylphosphine $)\}$ (tri-p-tolylphosphine)ruthenium(II), $\mathrm{RuBr}_{2}(\mathbf{P}-\mathrm{N})(\mathbf{P}(p-t o l y l) 3)(7 b)$

The title complex was prepared in the same manner as the PPh_{3} analogue (Section 2.6.2) but using $\operatorname{RuCl}_{2}\left(\mathrm{P}(\text { p-tolyl })_{3}\right)_{3}$ ($\left.476.0 \mathrm{mg}, 0.44 \mathrm{mmol}\right)$. A light orange solid was isolated. Yield: $202 \mathrm{mg}, 53 \%$. Anal. Calcd. $\mathrm{C}_{41} \mathrm{H}_{41} \mathrm{NBr}_{2} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C}, 56.56 ; \mathrm{H}, 4.75 ; \mathrm{N}, 1.61$. Found: C, 57.09; H, 4.86; N, 1.75. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 84.56(\mathrm{~d}, P-\mathrm{N}), 47.48$ (d, $\left.P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=35.51 \mathrm{~Hz} .{ }^{1} \mathrm{H} \quad \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \quad \delta 6.6-8.0(26 \mathrm{H}, \mathrm{m}, \quad \mathrm{Ph}), 3.12(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.30\left(9 \mathrm{H}, \mathrm{s}, p-\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CH}_{3}\right)$. UV-Vis: 474 (1150), 700 (560).

2.6.6 Diiodo\{[o-(N, N-dimethylamino)phenyl](diphenylphosphine)\} (tri-p-tolylphosphine)ruthenium(II), $\mathbf{R u I}_{\mathbf{2}}(\mathbf{P}-\mathrm{N})\left(\mathbf{P}(\boldsymbol{p} \text {-tolyl })_{3}\right.$) (7c)

The title complex was prepared in the same manner as the Br analogue (Section 2.6.5) but using excess NaI (25 equiv). The solid is dark red. Yield: $300 \mathrm{mg}, 72 \%$. Anal. Calcd. $\mathrm{C}_{41} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C}, 51.05 ; \mathrm{H}, 4.28 ; \mathrm{N}, 1.45$. Found: C, $51.05 ; \mathrm{H}, 4.25 ; \mathrm{N}, 1.48 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 89.27(\mathrm{~d}, P-\mathrm{N}), 51.27\left(\mathrm{~d}, \mathrm{PPh}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=35.82 \mathrm{~Hz} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.7-$ $7.8(26 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.46\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.30\left(9 \mathrm{H}, \mathrm{s}, p-\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CH}_{3}\right)$. UV-Vis: 512 (780), 780 (435).

2.6.7 Dichlorobis $\{[0-(N, N$-dimethylamino)phenyl](diphenylphosphine)\}ruthenium(II), $\mathbf{R u C l}_{\mathbf{2}}(\mathbf{P}-\mathrm{N})_{\mathbf{2}}(\mathbf{8})^{9}$

The title complex was prepared using the method described by Shen et al. for the synthesis of $\mathrm{RuCl}_{2}\left[\mathrm{~K}^{2}(P, N)-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right]_{2} .{ }^{22} \mathrm{Zn}$ powder ($66 \mathrm{mg}, 1.00 \mathrm{mmol}$) was added to a THF (15 mL) solution containing $\mathrm{P}-\mathrm{N}\left(360 \mathrm{mg}, 1.18 \mathrm{mmol}\right.$) and $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ ($100 \mathrm{mg}, 0.38 \mathrm{mmol}$). The dark brown suspension was refluxed for 4 h . After the removal of the heat source, the mixture was stirred for 24 h during which time a deep red solution formed. Insoluble materials were filtered off through Celite and the volume of the filtrate was reduced to 5 mL before hexanes was added to precipitate a dark red solid. The product was filtered off and washed with hexanes ($2 \times 10 \mathrm{~mL}$). Yield: $160 \mathrm{mg}, 54 \%$. Anal. Calcd. $\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Ru} \cdot 1 / 2\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: C, 58.95; H, 5.01, $\mathrm{N}, 3.39$. Found: C, 59.19; H, 5.04; N, 3.29. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 58.9(\mathrm{~s}, \mathrm{P}-\mathrm{N}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 6.9-7.8(28 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.32$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3.25\left(12 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$. The NMR data agree with the literature data. ${ }^{9}$

2.6.8 Dichloro[(1-(N, N-dimethylamino)-8-(diphenylphosphino)naphthalene](triphenyl phosphine)ruthenium(II), $\mathbf{R u C l}_{2}(\mathbf{P A N})\left(\mathbf{P P h}_{3}\right)$ (9)

A solution of PAN ($51 \mathrm{mg}, 0.143 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was transferred to a stirring solution of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}(137 \mathrm{mg}, 0.143 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ via a cannula. A dark green solution was formed within 10 min . The solution was stirred for 4 h and its volume was then reduced to 2 mL . Hexanes (15 mL) was added slowly to precipitate a green solid that was filtered off and washed with hexanes ($3 \times 15 \mathrm{~mL}$). Yield: $55 \mathrm{mg}, 50 \%$. Anal. Calcd. $\mathrm{C}_{42} \mathrm{H}_{37} \mathrm{NCl}_{2} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C}, 63.88 ; \mathrm{H}, 4.72 ; \mathrm{N}, 1.77$. Found: C, 64.19; H, 4.84; N, 1.59. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 97.10(\mathrm{~d}, P-\mathrm{N}), 41.39\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=32.05 \mathrm{~Hz} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.6-8.3(31 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right)$. UV-Vis: 450 (1210), 622 (490).

2.6.9 Dichloro[(1-(N, N-dimethylamino)-8-(diphenylphosphino)naphthalene](tri-p-tolyl phosphine)ruthenium(II), $\mathbf{R u C l}_{\mathbf{2}}(\mathbf{P A N})\left(\mathbf{P}(\boldsymbol{p} \text {-tolyl })_{3}\right)(\mathbf{1 0})^{2}$

The title complex, a dark green solid, was prepared in the same manner as described for 9 (Section 2.6.8) but using $\operatorname{RuCl}_{2}\left(\mathrm{P}(p \text {-tolyl })_{3}\right)_{3}(155 \mathrm{mg}, 0.143 \mathrm{mmol})$. Yield: 58 mg , 45%. Anal. Calcd. $\mathrm{C}_{45} \mathrm{H}_{43} \mathrm{NCl}_{2} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C}, 64.98 ; \mathrm{H}, 5.21 ; \mathrm{N}, 1.68$. Found: C, 64.98; H, 5.25; $\mathrm{N}, 1.66 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 97.71(\mathrm{~d}, P-\mathrm{N}), 39.57\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=33.39 \mathrm{~Hz} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 6.4-8.0(28 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.00(9 \mathrm{H}$, s, $\left.p-\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CH}_{3}\right)$. The NMR data agree with those reported. ${ }^{2}$ UV-Vis: $450(1280), 622$ (520).

2.6.10 Dichloro $\{(R)$ - N, N-dimethyl-1-[O-(diphenylphosphino)phenyl]ethylamine $\}$ (triphenylphosphine)ruthenium(II), $\mathbf{R u C l}_{\mathbf{2}}\left(\mathbf{A M P H O S) (\mathbf { P P h } _ { 3 }) (1 1)}{ }^{\mathbf{2}}\right.$

The title complex was prepared in situ by dissolving $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}(12 \mathrm{mg}$, $0.013 \mathrm{mmol})$ and excess AMPHOS $(5.0 \mathrm{mg}, 0.015 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}(0.8 \mathrm{~mL})$. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$

NMR spectrum of the dark green solution indicates 100% formation of 11 with 2 equiv. of PPh_{3} liberated. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 84.56(\mathrm{~d}, P-\mathrm{N}), 40.32\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=37.03 \mathrm{~Hz} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \quad \delta 6.6-8.2(29 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.17\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}\right), 2.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.33$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 1.01\left(3 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{3} \mathrm{CH}\right)$. The NMR data agree with those reported. ${ }^{2}$ UV-Vis (in situ): 460 (1050), 636 (570). Repeated attempts to isolate an analytically pure product were unsuccessful. A solution of AMPHOS ($35 \mathrm{mg}, 0.105 \mathrm{mmol}$; or $70 \mathrm{mg}, 0.210 \mathrm{mmol}$) in acetone (5 mL) was added to a solution of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}(100 \mathrm{mg}, 0.104 \mathrm{mmol})$ in acetone $(15 \mathrm{~mL})$, and the mixture was stirred for 16 h . The volume of the resulting dark green solution was reduced to 5 mL and hexanes was added to precipitate a dark green/brown solid. This was filtered off and washed with hexanes ($2 \times 5 \mathrm{~mL}$). Yield: $45 \mathrm{mg}, 56 \%$. Anal. Calcd. $\mathrm{C}_{40} \mathrm{H}_{39} \mathrm{NP}_{2} \mathrm{Cl}_{2} \mathrm{Ru}: \mathrm{C}, 62.58 ; \mathrm{H}, 5.12 ; \mathrm{N}, 1.82$. Found: C, $59.99 ; \mathrm{H}, 4.70 ; \mathrm{N}, 1.36 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (in CDCl_{3}) indicate the presence of $11, \mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}(\mathrm{br}, \delta 42.5), \mathrm{OPPh}_{3}(\mathrm{~s}$, $\delta 30.5)$ and $\mathrm{PPh}_{3}(\mathrm{~s}, \delta-4.0)$.

2.6.11 Attempts to Prepare Dichlorobis \{[(S)-2-(dimethylamino)propyl] (diphenylphosphine)\}ruthenium(II), $\mathbf{R u C l}_{\mathbf{2}}\left(\right.$ ALAPHOS) $_{\mathbf{2}}$ (12)

2.6.11.1 Reaction of ALAPHOS with $\mathbf{R u C l}_{\mathbf{2}}\left(\mathbf{P P h}_{3}\right)_{3}$

A solution of (S)-Alaphos ($30 \mathrm{mg}, 0.110 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added to a solution of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}(50 \mathrm{mg}, 0.052 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The pink solution which formed immediately was stirred for 16 h . Then the volume of the solvent was reduced to 2 mL , and hexanes (10 mL) was slowly added to precipitate a pink solid (15 mg), that was filtered off and washed with hexanes $(2 \times 10 \mathrm{~mL})$. NMR spectroscopic analysis indicates the presence of at least two Ru complexes. Reprecipitation of this solid using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes gave a similar, impure solid. The ${ }^{1} H$ NMR spectrum is complex and peaks could not be
assigned. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 55.60$ (s) is assigned to trans- $\mathrm{RuCl}_{2}(\mathrm{ALAPHOS})_{2}(\mathrm{cf}$. $\delta 57.4$ (s) is due to trans- $\left.\mathrm{RuCl}_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)_{2}\right) ; 2249.7$ and 43.1 (broad peaks) due to a minor product.

2.6.11.2 Reaction of ALAPHOS with $\boldsymbol{c i s}$ - $\mathrm{RuCl}_{2}(\text { DMSO })_{2}$

A solution of (S)-Alaphos ($30 \mathrm{mg}, 0.110 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added to a solution of cis-RuCl $l_{2}(\mathrm{DMSO})_{2}(26 \mathrm{mg}, 0.053 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The initial yellow suspension, after being stirred for 2 h , slowly turned to a pink, homogeneous solution. After 24 h the solution volume was reduced to $2 \mathrm{~mL} . \mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added to precipitate a pale pink solid that was isolated by filtration and washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. NMR spectroscopic analysis gave similar results to those given in Section 2.6.11.1, indicating a mixture of products.

2.6.12 Dichloro\{bis $[0-(N, N$-dimethylamino)phenyl](phenylphosphine)\} (triphenylphosphine)ruthenium(II), $\mathrm{RuCl}_{\mathbf{2}}(\mathbf{B P N})\left(\mathbf{P P h}_{3}\right)(13)$

A solution of $\operatorname{BPN}(34.8 \mathrm{mg}, 0.100 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added to a solution of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}(80.5 \mathrm{mg}, 0.084 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. A dark orange solution formed after the mixture was stirred for 24 h . The volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was then reduced to $\sim 3 \mathrm{~mL}$ and hexanes (10 mL) was added to precipitate a dark orange solid. The filtered product was reprecipitated using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ hexanes (2 times), washed with hexanes ($2 \times 10 \mathrm{~mL}$) and dried in vacuo at $80^{\circ} \mathrm{C}$. Yield: $25 \mathrm{mg}, 38 \%$. Anal. Calcd. $\mathrm{C}_{43} \mathrm{H}_{66} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C}, 61.38 ; \mathrm{H}, 5.15$; N, 3.58. Found: C, $60.95 ; \mathrm{H}, 4.87 ; \mathrm{N}, 3.39 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 56.00(\mathrm{~d}, \mathrm{BPN}), 33.67$ (d, $\left.P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=32.05 \mathrm{~Hz} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 6.6-7.8(28 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right)$, $3.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right)$.

2.6.13 Dichloro\{bis[\boldsymbol{o}-($\boldsymbol{N}, \mathbf{N}$-dimethylamino)phenyl](phenylphosphine) \} (tri-p-tolylphosphine)ruthenium(II), $\mathrm{RuCl}_{2}(\mathrm{BPN})\left(\mathbf{P}(p \text {-tolyl })_{3}\right)$ (14)

The title complex was prepared using the same method as described for the PPh_{3} analogue 13 (Section 2.6.12), but using $\mathrm{RuCl}_{2}\left(\mathrm{P}(p \text {-tolyl })_{3}\right)_{3}(33.4 \mathrm{mg}, 0.031 \mathrm{mmol})$ and BPN $(12.3 \mathrm{mg}, 0.035 \mathrm{mmol})$ Yield: $11 \mathrm{mg}, 43 \%$. Anal. Calcd. $\mathrm{C}_{43} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C}, 62.62$; H, 5.62; N, 3.40. Found: C, 62.37; H, 5.64; N, 3.15. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 56.05$ (d, $\mathrm{B} P \mathrm{~N}), 31.26\left(\mathrm{~d}, \mathrm{PPh}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=31.44 \mathrm{~Hz} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 6.6-7.8(25 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.64$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 3.1\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.20$ (9H, s, $\left.p-\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CH}_{3}\right)$.

2.7 Syntheses of Ruthenium(III) Aminophosphine Complexes

2.7.1 Trichloro\{[o-(N, N-dimethylamino)phenyl](diphenylphosphine)\} (triphenylphosphine)ruthenium(III), $\mathrm{RuCl}_{3}(\mathbf{P}-\mathrm{N})\left(\mathbf{P P h}_{3}\right)(15 a)^{2}$

A solution of P-N $(67.0 \mathrm{mg}, 0.22 \mathrm{mmol})$ in acetone $(10 \mathrm{~mL})$ was added to a stirring suspension of $\mathrm{RuCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{DMA}) \cdot(\mathrm{DMA})(200.0 \mathrm{mg}, 0.22 \mathrm{mmol})$ in acetone $(10 \mathrm{~mL})$. The homogeneous, orange solution which formed immediately was stirred for 3 h during which time a red solid precipitated. This was collected and washed with acetone ($2 \times 5 \mathrm{~mL}$). Yield: $140 \mathrm{mg}, 82 \%$. Anal. Calcd. $\mathrm{C}_{38} \mathrm{H}_{3} \mathrm{NCl}_{3} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C}, 58.89 ; \mathrm{H}, 4.55 ; \mathrm{N}, 1.81$. Found: C, 58.69; $\mathrm{H}, 4.59 ; \mathrm{N}, 1.81 . \mathrm{UV}-\mathrm{Vis}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 336$, shoulder, (1760), 398 (1875), 508 (1830). $\chi_{\mathrm{g}}=$ $2.32 \times 10^{-6} \mathrm{cgs}, \mu_{\mathrm{eff}}=2.0 \mathrm{BM}$. The X-ray structure of 15 a was previously determined; the UV-Vis and magnetic data were not obtained in the original reference. ${ }^{2}$

2.7.2 Trichloro\{[o-(N, N-dimethylamino)phenyl](diphenylphosphine) $\}$ (tri- p tolylphosphine)ruthenium(III), $\mathrm{RuCl}_{3}(\mathbf{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)(15 b)^{2}$

The title complex was prepared in the same manner as described for the PPh_{3} analogue (Section 2.7.2), but using $\mathrm{RuCl}_{2}\left(\mathrm{P}(\boldsymbol{p} \text {-tolyl })_{3}\right)_{2}$ (DMA)•(DMA) ($220 \mathrm{mg}, 0.22 \mathrm{mmol}$). A bright red solid was isolated. Yield: $150 \mathrm{mg}, 84 \%$. Anal. Calcd. $\mathrm{C}_{41} \mathrm{H}_{41} \mathrm{NCl}_{3} \mathrm{P}_{2} \mathrm{Ru}$: C, 60.26; $\mathrm{H}, 5.06$; $\mathrm{N}, 1.71$. Found: $\mathrm{C}, 60.30 ; \mathrm{H}, 5.11 ; \mathrm{N}, 1.75$. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 334 , shoulder, (1750), 396 (1840), 504 (1800). $\quad \chi_{\mathrm{g}}=2.15 \times 10^{-6} \mathrm{cgs}, \mu_{\mathrm{eff}}=1.9 \mathrm{BM}$. The UV-Vis and magnetic data were not determined in the original reference. ${ }^{2}$

2.7.3 Mer-trichloro\{bis[o-(N, N-dimethylamino)phenyl](phenylphosphine) \} ruthenium(III), Mer- $\mathrm{RuCl}_{3}(\mathrm{BPN})$ (16)

A solution of BPN ($38.0 \mathrm{mg}, 0.11 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added to a solution of $\mathrm{RuCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{DMA}) \cdot(\mathrm{DMA})(100.0 \mathrm{mg}, 0.11 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The reaction mixture was stirred for 2.5 h during which time an orange solution formed. The volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was reduced to 3 mL and hexanes (10 mL) was added to precipitate a dark orange solid that was collected and washed with hexanes $(2 \times 10 \mathrm{~mL})$. Yield: $55 \mathrm{mg}, 90 \%$. Anal. Calcd. $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{Cl}_{3} \mathrm{PRu}: \mathrm{C}, 47.54 ; \mathrm{H}, 4.53 ; \mathrm{N}, 5.04$. Found: $\mathrm{C}, 50.71 ; \mathrm{H}, 4.22 ; \mathrm{N}, 3.47$. Satisfactory elemental analysis of 16 could not be obtained even after repeated (3 times) reprecipitations with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes. $\chi_{\mathrm{g}}=1.23 \times 10^{-6} \mathrm{cgs}, \mu_{\mathrm{eff}}=1.5 \mathrm{BM}$. Orange, platelet crystals of $\mathrm{RuCl}_{3}(\mathrm{BPN}) \cdot\left(\mathrm{CDCl}_{3}\right)$ were obtained by slow evaporation from a CDCl_{3} solution over 2 days in an NMR tube. The ORTEP plot, selected bond lengths and angles of this complex are shown and discussed in Section 3.6, while the full experimental parameters and details are given in Appendix II.

2.7.4 Di- μ-chloro- μ-oxo-bis\{chloro[0-(N, N-dimethylamino)phenyl] (diphenylphosphine)ruthenium(III) $\},(\mu-\mathrm{O})(\mu-\mathrm{Cl})_{2}[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})]_{2}$

The title complex was prepared by stirring a suspension of $\mathrm{RuCl} \mathrm{C}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ ($200 \mathrm{mg}, 0.270 \mathrm{mmol}$) in acetone $(10 \mathrm{~mL})$ under 1 atm of O_{2}. The green precursor dissolved over 1 h to form a dark green solution. The solution was stirred for 16 h during which time a dark green solid precipitated; this was filtered off, washed with hexanes ($2 \times 10 \mathrm{~mL}$) and dried in vacuo at $80^{\circ} \mathrm{C}$. The green solid was insoluble in acetone, CHCl_{3} or $\mathrm{C}_{6} \mathrm{H}_{6}$ and was only slightly soluble in DMSO and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Yield: $85 \mathrm{mg}, 32 \%$. Anal. Calcd. $\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{OCl}_{4} \mathrm{P}_{2} \mathrm{Ru}_{2}: \mathrm{C}, 49.50 ; \mathrm{H}, 4.15 ; \mathrm{N}, 2.89$. Found: C, $49.50 ; \mathrm{H}, 4.16 ; \mathrm{N}, 2.75$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 38.74\left(\mathrm{~d}, P_{A}-\mathrm{N}\right), 35.33\left(\mathrm{~d}, P_{B}-\mathrm{N}\right) ;{ }^{4} \mathrm{~J}_{\mathrm{PP}}=10.44 \mathrm{~Hz} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right):$ $\delta 6.6-8.4(28 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right)$, $2.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right) . \quad \mathrm{UV}-\mathrm{Vis}$ (DMSO): $348(15300), 652(11200) . \chi_{\mathrm{g}}=0 \mathrm{cgs}$, $\mu_{\mathrm{eff}}=0 \mathrm{BM}$. Green, platelet crystals of 17 were obtained from the slow evaporation of an acetone solution of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ exposed to air over 24 h . The ORTEP plot, selected bond lengths and angles are presented and discussed in Section 3.2.1, while the full experimental parameters and details are given in Appendix III.

2.8 Syntheses of Ruthenium(II) Complexes Containing Coordinated $\mathrm{H}_{2} \mathrm{~S}$ or Thiols: Cis-dichloro\{[$o-N, N$-dimethylamino)phenyl](diphenylphosphine)\}(triaryl phosphine)(ligand)ruthenium(II), $\operatorname{Cis}-\mathrm{RuX}_{2}(\mathbf{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)(\mathrm{L})$

The five-coordinate $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)(\mathrm{R}=\mathrm{Ph}, p$-tolyl) was isolated in low yield ($\sim 55 \%$) because many subsequent precipitations were required to remove PR_{3} and OPR_{3} impurities. Unless otherwise specified, $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)$ was prepared in situ from $\mathrm{RuCl}_{2}\left(\mathrm{PR}_{3}\right)_{3}$ for the syntheses of six-coordinate complexes of the type $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)(\mathrm{L})$, where $L=$ a small molecule. The $\mathrm{PR}_{3}(2$ moles per Ru$)$ produced is simply a spectator in the
reactions. With use of the in situ precursor, high yields of the six-coordinate products were obtained.

2.8.1 Cis- $\mathrm{RuCl}_{2}(\mathbf{P}-\mathrm{N})\left(\mathbf{P P h}_{3}\right)\left(\mathbf{S H}_{2}\right) \cdot($ acetone) (18a)

The title complex was prepared using modifications of the method previously reported for synthesis of the non-solvated complex. ${ }^{2,23}$ A solution of P-N ($64 \mathrm{mg}, 0.21 \mathrm{mmol}$) in acetone (3 mL) was added to a suspension of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}(200 \mathrm{mg}, 0.21 \mathrm{mmol})$ in acetone (8 mL), and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 30 min to form the dark green solution of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$. The reaction flask was placed under reduced pressure and 1 atm of $\mathrm{H}_{2} \mathrm{~S}$ was introduced. A yellow solution formed immediately, and this was stirred for at least 8 h during which time a yellow precipitate formed. This was filtered off, but no washings were performed as this causes the loss of $\mathrm{H}_{2} \mathrm{~S}$. The product was dried under vacuum for 1 h at r.t. and subsequent analyses or reactions were carried out immediately. Yield: $140 \mathrm{mg}, 80 \%$. Anal. Calcd. $\mathrm{C}_{38} \mathrm{H}_{37} \mathrm{NCl}_{2} \mathrm{SP}_{2} \mathrm{Ru}$ (acetone): C, 59.20; $\mathrm{H}, 5.21 ; \mathrm{N}, 1.68$. Found: C, 58.94; $\mathrm{H}, 5.32 ; \mathrm{N}, 1.69 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 51.28(\mathrm{~d}, P-\mathrm{N}), 44.53\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=29.50 \mathrm{~Hz}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 6.4-8.4(29 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 1.54$ ($6 \mathrm{H}, \mathrm{s}$, acetone), $1.02\left(2 \mathrm{H}\right.$, br s, $\left.\mathrm{Ru}\left(\mathrm{SH}_{2}\right)\right)$. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, under 1 atm $\left.\mathrm{H}_{2} \mathrm{~S}\right)$: $426(830)$. IR: $v_{\text {s-H }} 2476,2506$ (weak), $v_{\text {co }} 1707$ (acetone, strong). Yellow-brown, prism crystals of 18a were obtained from a saturated acetone solution of the complex left standing for 5 days. The ORTEP plot, selected bond lengths and angles are shown and discussed in Section 4.2.1, while the full experimental parameters and details are given in Appendix IV.

2.8.2 $\operatorname{Cis}-\mathrm{RuBr}_{2}(\mathbf{P}-\mathrm{N})\left(\mathbf{P P h}_{3}\right)\left(\mathbf{S H}_{2}\right) \cdot($ acetone $)(\mathbf{1 8 b})$

The title complex was prepared by stirring a solution of $\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(100 \mathrm{mg}$, 0.121 mmol) in acetone (3 mL) under 1 atm of $\mathrm{H}_{2} \mathrm{~S}$. The yellow solution was stirred for 24 h during which time a yellow precipitate formed. The product was obtained by filtration and drying under vacuum for 1 h . Yield: $80 \mathrm{mg}, 72 \%$. Anal. Calcd. $\mathrm{C}_{38} \mathrm{H}_{37} \mathrm{NBr}_{2} \mathrm{SP}_{2} \mathrm{Ru}$ (acetone): C, 53.49; H, 4.71; N, 1.52. Found: C, 53.28; H, 4.78; N, 1.46. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 53.54(\mathrm{~d}, P-\mathrm{N}), 45.59\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=28.41 \mathrm{~Hz} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 6.4-8.4(29 \mathrm{H}, \mathrm{m}$, Ph), $3.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 1.54(6 \mathrm{H}, \mathrm{s}$, acetone), 1.14 (2H. br s, $\mathrm{Ru}\left(\mathrm{SH}_{2}\right)$). UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, under 1 atm $\mathrm{H}_{2} \mathrm{~S}$): 446 (995). IR: $v_{\mathrm{S}-\mathrm{H}} 2506,2476$ (weak), v_{co} 1707 (acetone, strong). Orange prism crystals of $\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right) \cdot\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ were obtained from a saturated $\mathrm{C}_{6} \mathrm{D}_{6}$ solution of the complex left standing in a sealed NMR tube for 2 days. The ORTEP plot, selected bond lengths and angles are shown and discussed in Section 4.2.2, while the full experimental parameters and details are given in Appendix V.

2.8.3 In situ Preparation of Cis-RuI $\mathbf{2}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)\left(\mathbf{S H}_{\mathbf{2}}\right) \quad$ (18c)

A dark brown solution formed after the addition of 1 atm $\mathrm{H}_{2} \mathrm{~S}$ to a CDCl_{3} solution of $\operatorname{RuI}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were collected within 10 min of adding $\mathrm{H}_{2} \mathrm{~S} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(10 \mathrm{~min}, \mathrm{CDCl}_{3}\right): \delta 56.0(\mathrm{~d}, P-\mathrm{N}), 49.5\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=25.8 \mathrm{~Hz}$. ${ }^{1} \mathrm{H}$ NMR (10 min, $\left.\mathrm{CDCl}_{3}\right)$: $\delta 6.5-8.2(29 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.20(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 0.95\left(\mathrm{Ru}\left(\mathrm{SH}_{2}\right)\right.$, signal is hidden under free $\mathrm{H}_{2} \mathrm{~S}$ signal). The in situ species decomposes to a paramagnetic, presumably $\mathrm{Ru}(\mathrm{III})$ species after $\sim 1 \mathrm{~h}$ as indicated by noisy NMR spectra containing broad lines.

2.8.4 Cis-RuCl $_{2}(\mathbf{P}-\mathrm{N})\left(\mathbf{P}(\text { p-tolyl })_{3}\right)\left(\mathbf{S H}_{2}\right) \cdot($ acetone) (19a)

The title complex was prepared in the same manner as described for the PPh_{3} analogue (Section 2.8.1) but using $\operatorname{RuCl}_{2}\left(\mathrm{P}(p \text {-tolyl })_{3}\right)_{3}(200 \mathrm{mg}, 0.18 \mathrm{mmol})$ and $\mathrm{P}-\mathrm{N}(56.3 \mathrm{mg}$, 0.18 mmol). Yield: $117 \mathrm{mg}, 73 \%$. Anal. Calcd. $\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{NCl}_{2} \mathrm{SP}_{2} \mathrm{Ru}$ (acetone): C, 60.48 ; H, 5.65; N, 1.60. Found: C, 60.23; H, 5.77; N, 1.65. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 51.91$ (d, $P-\mathrm{N}), 42.58\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=30.41 \mathrm{~Hz} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 6.6-8.0(26 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.41$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 3.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.15\left(9 \mathrm{H}, \mathrm{s}, \mathrm{p}-\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CH}_{3}\right), 2.04(6 \mathrm{H}, \mathrm{s}$, acetone), $0.95\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ru}\left(\mathrm{SH}_{2}\right)\right)$. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 435(900)$. IR: $\mathrm{v}_{\mathrm{s}-\mathrm{H}} 2495,2449$ (weak), $v_{\text {co }} 1707$ (acetone, strong).

2.8.5 Cis- $^{-R u B r_{2}}(\mathbf{P}-\mathrm{N})\left(\mathbf{P}(\text { p-tolyl })_{3}\right)\left(\mathbf{S H}_{2}\right) \cdot($ acetone $)(19 b)$

The title complex was prepared in the same manner as described for the PPh_{3} analogue (Section 2.8.2) but using $\operatorname{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}(100 \mathrm{mg}, 0.11 \mathrm{mmol})\right.$. Yield: $86 \mathrm{mg}, 78 \%$. Anal. Calcd. $\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{NBr}_{2} \mathrm{SP}_{2} \mathrm{Ru}$ (acetone): $\mathrm{C}, 54.89 ; \mathrm{H}, 5.13 ; \mathrm{N}, 1.45$. Found: C, 55.11; $\mathrm{H}, 5.23 ; \mathrm{N}, \quad 1.49 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \quad \delta 53.41(\mathrm{~d}, P-\mathrm{N}), 44.58\left(\mathrm{~d}, \quad \mathrm{PPh}_{3}\right) ;$ ${ }^{2} \mathrm{~J}_{\mathrm{PP}}=29.20 \mathrm{~Hz} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 6.6-8.0(26 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.99(3 \mathrm{H}$, s, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.18\left(9 \mathrm{H}, \mathrm{s}, p-\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CH}_{3}\right), 2.04(6 \mathrm{H}, \mathrm{s}$, acetone $), 0.95(2 \mathrm{H}$, br s, $\mathrm{Ru}(\mathrm{SH} 2))$. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 452$ (935). IR: $v_{\text {S- }}$ 2495, 2449 (weak), $v_{\text {Co }} 1707$ (acetone, strong).

2.8.6 In situ Preparation of $\mathbf{C i s}-\mathrm{RuI}_{\mathbf{2}}(\mathrm{P}-\mathrm{N})\left(\mathbf{P}\left(p-\right.\right.$ tolyl $\left._{3}\right) \mathbf{3}\left(\mathbf{S H}_{2}\right) \quad$ (19c)

An orange solution formed after adding $1 \mathrm{~atm} \mathrm{H}_{2} \mathrm{~S}$ to a CDCl_{3} solution of $\mathrm{RuI}_{2}(\mathrm{P}-$ $\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right) . \quad$ Similar to $\mathbf{1 8 c}, \mathbf{1 9 c}$ decomposed after $\sim 1 \mathrm{~h} . \quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (10 min , $\left.\mathrm{CDCl}_{3}\right): \delta 56.2(\mathrm{~d}, P-\mathrm{N}), 47.5\left(\mathrm{~d}, \mathrm{PPh}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=25.8 \mathrm{~Hz} .{ }^{1} \mathrm{H}$ NMR $\left(10 \mathrm{~min}, \mathrm{CDCl}_{3}\right): \delta 6.5-$
$8.2(29 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), \delta 2.22\left(9 \mathrm{H}, \mathrm{s}, \mathrm{p}-\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CH}_{3}\right)$, $0.90\left(\mathrm{Ru}\left(\mathrm{SH}_{2}\right)\right.$, signal is hidden under free $\mathrm{H}_{2} \mathrm{~S}$ signal).

2.8.7 $\mathbf{C i s}-\mathrm{RuCl}_{2}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)(\mathbf{M e S H}) \cdot($ acetone $)(20)$

Methanethiol was obtained from Aldrich as a liquid and stored at $0^{\circ} \mathrm{C}$. A solution of MeSH ($0.5 \mathrm{~mL}, \quad 9.0 \mathrm{mmol}$) in acetone (2 mL) was cooled to $0^{\circ} \mathrm{C}$ and purged with N_{2} for 1 min . This solution was cannula transferred to a stirring acetone solution (5 mL) containing $\operatorname{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}(100.0 \mathrm{mg}, 0.104 \mathrm{mmol})$ and $\mathrm{P}-\mathrm{N}(32.0 \mathrm{mg}, 0.104 \mathrm{mmol})$. A homogeneous yellow solution formed immediately and, after being stirred for 16 h , precipitated a yellow solid. The product was filtered off and dried in vacuo (30 min). Yield: $72 \mathrm{mg}, 80 \%$. Anal. Calcd. $\mathrm{C}_{39} \mathrm{H}_{39} \mathrm{NCl}_{2} \mathrm{SP}_{2} \mathrm{Ru}$ (acetone): C, $59.64 ; \mathrm{H}, 5.36 ; \mathrm{N}, 1.66$. Found: C, $59.46 ; \mathrm{H}, 5.53 ; \mathrm{N}$, 1.65. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 50.37(\mathrm{~d}, P-\mathrm{N}), 41.33\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=30.17 \mathrm{~Hz} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 6.4-7.9(29 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 3.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.10(6 \mathrm{H}, \mathrm{s}$, acetone), $0.70\left(4 \mathrm{H}, \mathrm{m}\right.$, overlap of $\mathrm{Ru}\left(\mathrm{S}_{\left(\mathrm{CH}_{3}\right) H}\right)$ and $\left.\mathrm{Ru}\left(\mathrm{S}\left(\mathrm{CH}_{3}\right) \mathrm{H}\right)\right)$. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, excess MeSH): 424 (835). IR: $v_{\text {S-H }} 2533$ (weak), $v_{\text {Co }} 1707$ (acetone, strong). Yellow-brown, prism crystals of $\mathbf{2 0}$ were obtained from a saturated acetone solution of the complex left standing for 24 h . The ORTEP plot, selected bond lengths and angles are presented in Section 4.3.1, while the full experimental parameters and details are given in Appendix VI.

2.8.8 $\operatorname{Cis}-\mathrm{RuCl}_{2}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)(\mathbf{E t S H}) \cdot(\mathbf{E t S H}) \cdot($ acetone $)(21)$

The title complex was prepared in the same manner as described for $\mathbf{2 0}$ (Section 2.8.7) but using excess EtSH $(1 \mathrm{~mL}, 19.2 \mathrm{mmol})$ at $20^{\circ} \mathrm{C}$. The product was a yellow solid. Yield: $65 \mathrm{mg}, 78 \%$. Anal. Calcd. $\mathrm{C}_{40} \mathrm{H}_{41} \mathrm{NCl}_{2} \mathrm{SP}_{2} \mathrm{Ru} \cdot(\mathrm{EtSH}) \cdot($ acetone): C, 58.62; H, 5.79; N, 1.52. Found: C, 59.08; H, 5.75; N, 1.46. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 52.43$ (d, $\left.P-\mathrm{N}\right), 43.97$ (d,
$\left.P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=30.23 \mathrm{~Hz} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 6.4-8.0(29 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right)$, $3.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.10(6 \mathrm{H}, \mathrm{s}$, acetone $), 2.00\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Ru}\left(\mathrm{S}\left(\mathrm{CH}_{2} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{3}\right) \mathrm{H}\right)\right), 0.78(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{Ru}\left(\mathrm{S}\left(\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{3}\right) \mathrm{H}\right)\right), \quad 0.63\left(1 \mathrm{H}, \quad\right.$ ddd, $\quad \mathrm{Ru}\left(\mathrm{S}_{\left.\left.\left(\mathrm{CH}_{2} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{3}\right) H\right)\right), 0.45 \quad(3 \mathrm{H}, \quad \mathrm{dd},}\right.$ $\mathrm{Ru}\left(\mathrm{S}\left(\mathrm{CH}_{3} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{3}\right) \mathrm{H}\right)$), free EtSH signals at $\delta 2.55\left(2 \mathrm{H}, \mathrm{dq}, \mathrm{HSCH}_{2} \mathrm{CH}_{3}\right), 1.46(1 \mathrm{H}, \mathrm{t}$, $\left.H \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 1.31\left(3 \mathrm{H}, \mathrm{t}, \mathrm{HSCH}_{2} \mathrm{CH}_{3}\right)$. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, excess EtSH): 424 (830). IR: $v_{\mathrm{S}-\mathrm{H}} 2516$ (weak), $v_{\mathrm{co}} 1707$ (acetone, strong). Yellow, prism crystals of $\operatorname{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{EtSH}) \cdot 1.5\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ were obtained from a saturated $\mathrm{C}_{6} \mathrm{D}_{6}$ of the complex solution left standing in a sealed NMR tube for 24 h . The ORTEP plot, selected bond lengths and angles are presented in Section 4.3.2, while the full experimental parameters and details are given in Appendix VII.
2.8.9 In situ Preparation of Cis-RuCl $(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)(\mathbf{R S H}), \mathbf{R}=\boldsymbol{n}-\mathrm{Pr}, \boldsymbol{i}-\mathrm{Pr}, \boldsymbol{n}-\mathrm{Pn}, \boldsymbol{n}-\mathrm{Hx}$,
and $\mathrm{Bz}(\operatorname{Pr}=$ propyl, $\mathrm{Pn}=$ pentyl, $\mathbf{H x}=$ hexyl, $\mathbf{B z}=$ benzyl $)$ and $\mathrm{Bz}(\operatorname{Pr}=$ propyl, $\mathrm{Pn}=$ pentyl, $\mathrm{Hx}=$ hexyl, $\mathrm{Bz}=$ benzyl)

With use of the $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ precursor, the title complexes could not be isolated for purposes of elemental analysis because they decompose during the work-up processes due to the loss of RSH; the species are also very O_{2}-sensitive and could only be observed in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra in O_{2}-free conditions with the presence of excess RSH. ${ }^{1} \mathrm{H}$ NMR spectra were not assigned due to the excess RSH. The CDCl_{3} or $\mathrm{C}_{6} \mathrm{D}_{6}$ solutions of these species are yellow.

2.8.9.1 Cis-RuCl $_{2}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)(\boldsymbol{n}$-PrSH) (22)

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 51.22(\mathrm{~d}, P-\mathrm{N}), 42.46\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=30.05 \mathrm{~Hz}$.

2.8.9.2 Cis-RuCl $_{\mathbf{2}}(\mathbf{P}-\mathrm{N})\left(\mathbf{P P h}_{3}\right)(\boldsymbol{i}-\mathrm{PrSH})(23)$

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: (three sets of doublets, intensities of signals in parenthesis) $\delta 56.76(\mathrm{~d}, P-\mathrm{N}), 46.84\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=36.54 \mathrm{~Hz}$ (strong);

$$
\begin{aligned}
& \delta 49.58(\mathrm{~d}, P-\mathrm{N}), 41.68\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=30.23 \mathrm{~Hz} \text { (medium); } \\
& \delta 51.31(\mathrm{~d}, P-\mathrm{N}), 42.74\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=29.93 \mathrm{~Hz} \text { (weak). }
\end{aligned}
$$

2.8.9.3 Cis-RuCl $\left.\mathbf{2}_{\mathbf{2}} \mathbf{(P - N}\right)\left(\mathbf{P P h}_{3}\right)(\boldsymbol{n}-\mathbf{P n S H})$ (24)

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: (two sets of doublets, intensities of signals in parenthesis)

$$
\delta 51.30(\mathrm{~d}, P-\mathrm{N}), 42.84\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=29.63 \mathrm{~Hz} \text { (strong); }
$$

$$
\delta 49.57(\mathrm{~d}, P-\mathrm{N}), 46.35\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=36.06 \mathrm{~Hz} \text { (weak). }
$$

2.8.9.4 Cis-RuCl $\mathbf{2}_{2}(\mathbf{P}-\mathrm{N})\left(\mathbf{P P h}_{3}\right)(\boldsymbol{n}-\mathrm{HxSH})(25)$

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 51.15(\mathrm{~d}, P-\mathrm{N}), 42.57\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=30.23 \mathrm{~Hz}$.

2.8.9.5 Cis-RuCl $\mathbf{2}_{\mathbf{2}}(\mathbf{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathbf{B z S H})(26)$

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 50.16(\mathrm{~d}, P-\mathrm{N}), 42.03\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=30.41 \mathrm{~Hz}$.

2.9 In Situ Preparation of $\mathrm{Ru}(\mathrm{L}) \mathrm{X}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{L}=\mathrm{SH}, \mathrm{OH}, \mathrm{H})$ and $\mathrm{Ru}(\mathrm{L})_{\mathbf{2}}(\mathbf{P}-\mathrm{N})\left(\mathbf{P P h}_{3}\right)(\mathrm{X}=\mathbf{C l}, \mathrm{Br}, \mathrm{L}=\mathbf{S H}, \mathbf{O H}, \mathrm{H})$

The title species given in this Section were not isolated and were only observed in situ by NMR spectroscopy. The species are O_{2}-sensitive and were prepared in NMR tubes equipped with poly(tetrafluoroethylene) J. Young valves. Discussion concerning their characterization is given in Section 3.3.

2.9.1 $\mathbf{R u}(\mathbf{S H}) \mathbf{C l}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)(27 a)$

The title species was observed in two different reactions:

Reaction 1: To an NMR tube containing $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(10 \mathrm{mg}, 0.014 \mathrm{mmol})$ and $\mathrm{NaSH} \cdot \mathrm{xH}_{2} \mathrm{O}(5 \mathrm{mg}), \mathrm{d}_{6}$-acetone $(0.75 \mathrm{~mL})$ was vacuum transferred with the aid of liquid N_{2}. The resulting orange solution was stored at $-78^{\circ} \mathrm{C}$ (dry ice/acetone), and NMR spectra were
measured at $-78^{\circ} \mathrm{C} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (d_{6}-acetone): $\delta 55.26(\mathrm{~d}, P-\mathrm{N}), 46.33\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right)$; ${ }^{2} \mathrm{~J}_{\mathrm{PP}}=30.88 \mathrm{~Hz} .{ }^{1} \mathrm{H}$ NMR (d_{6}-acetone): $\delta 6.2-8.1(29 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), \delta 3.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right)$, $\delta 3.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), \delta-2.08(1 \mathrm{H}, \mathrm{s}, \mathrm{Ru}-\mathrm{S} H)$. This species was only observed at temperatures below $-30^{\circ} \mathrm{C}$.

Reaction 2: To an NMR tube containing $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(10 \mathrm{mg}, 0.014 \mathrm{mmol})$ and proton sponge ($3 \mathrm{mg}, 0.014 \mathrm{mmol}$), $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.75 \mathrm{~mL})$ was vacuum transferred. The sample was then placed under $1 \mathrm{~atm} \mathrm{H}_{2} \mathrm{~S}$ to form an orange solution. Similar to reaction 1 above, 27a is observed at $-78^{\circ} \mathrm{C} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}\right): \delta 54.52(\mathrm{~d}, P-\mathrm{N}), 46.06\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right)$; ${ }^{2} \mathrm{~J}_{\mathrm{PP}}=30.96 \mathrm{~Hz}$.

2.9.2 $\left.\mathbf{R u}(\mathbf{S H}) \mathbf{B r}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{\mathbf{3}}\right) \mathbf{(2 7 b}\right)$

Species 27b was prepared in situ by the procedure described for reaction 1 in Section 2.9.1, but using $\operatorname{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(10 \mathrm{mg}, 0.012 \mathrm{mmol})$ as precursor. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (d_{6}-acetone, $-78^{\circ} \mathrm{C}$): $\delta 56.62(\mathrm{~d}, P-\mathrm{N}), 46.16\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=30.48 \mathrm{~Hz} . \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{d}_{6}\right.$-acetone, $\left.-78^{\circ} \mathrm{C}\right): \delta 6.2-8.1(29 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), \delta 3.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), \delta 3.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right)$, $\delta-1.63(1 H, s, R u-S H)$.

2.9.3 $\mathrm{Ru}(\mathbf{O H}) \mathrm{Cl}(\mathbf{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathbf{2 8 a})$

The species was observed 2 h after dissolving $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(10 \mathrm{mg}, 0.014 \mathrm{mmol})$ and NaOH (~ 5 equiv) in d_{6}-acetone and heating the solution at $60^{\circ} \mathrm{C}$. The NMR spectra of this orange solution were measured at r.t. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (d_{6}-acetone): $\delta 64.09$ (d, $P-\mathrm{N}), 50.76\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=42.98 \mathrm{~Hz} .{ }^{1} \mathrm{H}$ NMR (d_{6}-acetone) : $\delta 6.6-8.9(29 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.04$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right)$.

2.9.4 $\left.\mathbf{R u}(\mathbf{O H}) \mathrm{Br}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right) \mathbf{(2 8 b}\right)$

Species 28b was prepared in the same manner as described for 28a, Section 2.9.3, except using $\operatorname{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(10 \mathrm{mg}, \quad 0.12 \mathrm{mmol})$ as precursor. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}$ (d d_{6}-acetone): $\delta 65.95(\mathrm{~d}, P-\mathrm{N}), 51.23\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=41.22 \mathrm{~Hz} .{ }^{1} \mathrm{H}$ NMR (d d_{6}-acetone): $\delta 6.4-8.2(29 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right)$.

2.9.5 $\mathbf{R u}(\mathbf{H}) \mathbf{C l}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)(\mathbf{2 9})^{\mathbf{2 , 2 1}}$

To a solution of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(10 \mathrm{mg}, 0.014 \mathrm{mmol})$ and proton sponge (3 mg , 0.014 mmol) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, was added $1 \mathrm{~atm} \mathrm{H}_{2}$. An yellow-orange solution formed instantaneously. This species is stable at r.t. $\left(20^{\circ} \mathrm{C}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 82.74$ (d, $P-\mathrm{N}), 67.39\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=33.20 \mathrm{~Hz} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 6.5-8.1(29 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), \delta 3.49$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), \delta 2.99\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), \delta-27.2(1 \mathrm{H}$, br s, Ru-H). The NMR data correspond to those reported. ${ }^{2,21}$

2.9.6 $\mathbf{R u}(\mathbf{S H})_{\mathbf{2}}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right) \mathbf{(3 0)}$

The dithiolate species 30 was formed at r.t. when $\mathrm{RuX}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ was reacted with excess $\mathrm{NaSH} \mathrm{NH}_{2} \mathrm{O}$ or $\mathrm{H}_{2} \mathrm{~S}$ in the presence of proton sponge (3 equiv) as described for reactions 1 and 2 of Section 2.9.1, respectively. These yellow-brown solutions were unstable at r.t. and decomposed to dark brown solutions after $\sim 10 \mathrm{~min}$. Species 30 was only observed within 10 min of sample preparation at r.t. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (d_{6}-acetone,): $\delta 84.06(\mathrm{~d}, P-\mathrm{N}), 59.53\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=33.75 \mathrm{~Hz} .{ }^{1} \mathrm{H}$ NMR (d d_{6}-acetone): $\delta 6.4-8.1(29 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 3.20\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), \delta 0.80\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Ru}-(\mathrm{SH})_{2}\right)$. The decomposed species were not identified.

2.9.7 $\mathbf{R u}(\mathbf{O H})_{\mathbf{2}}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right) \mathbf{(3 1)}$

The dihydroxo species 31 was observed when solutions of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ (cf. Section 2.9.3) or $\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ (cf. Section 2.9.4) and NaOH (~ 5 equiv) were allowed to react for 5 h or more at $60^{\circ} \mathrm{C}$. During this time, the solutions changed from orange to orange-brown colour. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (d_{6}-acetone): $\delta 79.11$ (d, $P-\mathrm{N}$), 73.44 (d, $P \mathrm{PP}_{3}$); ${ }^{2} \mathrm{~J}_{\mathrm{PP}}=67.38 \mathrm{~Hz} .{ }^{1} \mathrm{H}$ NMR (d_{6}-acetone): $\delta 6.4-8.2(29 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 2.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.28$ (3H, s, $\mathrm{N}\left(\mathrm{CH}_{3}\right)$).

2.9.8 $\quad \mathbf{R u}(\mathbf{H})_{\mathbf{2}}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)(\mathbf{3 2)}$

The title species 32 was observed 15 min after reacting $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ or $\operatorname{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ with $\mathrm{NaH}\left(\sim 5\right.$ equiv.) in d_{6}-acetone at $60^{\circ} \mathrm{C}$. The NMR spectra of this orange solution were measured at r.t. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (d_{6}-acetone): $\delta 61.64(\mathrm{~d}, P-\mathrm{N}), 50.44$ $\left(\mathrm{d}, \mathrm{PPh}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=24.71 \mathrm{~Hz} .{ }^{1} \mathrm{H}$ NMR (d_{6}-acetone): $\delta 6.5-8.1(29 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), \delta 2.51(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), \delta-21.16\left(2 \mathrm{H}, \mathrm{d}\right.$ of d, Ru- $\left.(H)_{2},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=32.70,29.10 \mathrm{~Hz}\right)$.

2.10 Syntheses of Ruthenium(II) Complexes Containing Coordinated $\mathrm{H}_{\mathbf{2}} \mathrm{O}, \mathrm{MeOH}$, or EtOH

2.10.1 Trans- $\left.\mathrm{RuCl}_{2}(\mathbf{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathbf{O H}_{2}\right) \mathbf{(3 3 a}\right)^{\mathbf{2}}$

The title complex was prepared by adding a mixture of $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and acetone $(2 \mathrm{~mL})$ to a stirred solution of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}(200 \mathrm{mg}, 0.209 \mathrm{mmol})$ and $\mathrm{P}-\mathrm{N}(64 \mathrm{mg}$, 0.209 mmol) in acetone (5 mL). The orange-pink solution which formed instantaneously was stirred for 3 h during which time a pink solid precipitated. The product was filtered off, washed with acetone $(2 \times 5 \mathrm{~mL})$, and dried in vacuo for 24 h . Yield: $115 \mathrm{mg}, 73 \%$. Microanalysis indicates the presence of 1 mol acetone solvate. Anal. Calcd.
$\mathrm{C}_{38} \mathrm{H}_{37} \mathrm{NOCl}_{2} \mathrm{P}_{2} \mathrm{Ru}$ (acetone): $\mathrm{C}, 60.37 ; \mathrm{H}, 5.31 ; \mathrm{N}, 1.72$. Found: $\mathrm{C}, 60.37 ; \mathrm{H}, 5.46 ; \mathrm{N}, 1.67$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 73.52(\mathrm{~d}, P-\mathrm{N}), 49.30\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=38.00 \mathrm{~Hz} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right):$ $\delta 7.0-8.4(29 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.05\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.15\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ru}-\mathrm{OH}_{2}\right), 1.55(6 \mathrm{H}, \mathrm{s}$, acetone). UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, with $0.13 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$): 498 (shoulder, 270). IR: Vo-H 3556,3295 , 1605 (weak), $v_{\text {co }} 1707$ (acetone, strong). Two different types of crystals of 33a were isolated from evaporation of a saturated $\mathrm{C}_{6} \mathrm{H}_{6}$ solution of the complex over 24 h . These crystals differ in appearance as well as having different unit cells. The yellow-brown crystals ($33 \mathrm{a} \cdot 1.5 \mathrm{C}_{6} \mathrm{H}_{6}$) have primitive triclinic cell dimensions, while the pink needle crystals $\left(33 \mathrm{a} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}\right)$ have primitive monoclinic cell dimensions. The ORTEP plots, selected bond lengths and angles of $33 \mathrm{a} \cdot 1.5 \mathrm{C}_{6} \mathrm{H}_{6}$ are presented in Section 5.3 , while the full experimental parameters and details of the two structures are given in Appendix VIII.

2.10.2 Trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathbf{P}(\boldsymbol{p} \text {-tolyl })_{3}\right)\left(\mathrm{OH}_{2}\right)(\mathbf{3 3 b})^{\mathbf{2}}$

The title complex was prepared in the same manner as described for 33a (Section 2.10.1) but using $\operatorname{RuCl}_{2}\left(\mathrm{P}(p \text {-tolyl })_{3}\right)_{3}(200 \mathrm{mg}, 0.185 \mathrm{mmol})$. Yield: $122 \mathrm{mg}, 77 \%$. Microanalysis indicates the presence of 1 mol acetone solvate. Anal. Calcd. $\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{NCl}_{2} \mathrm{OP}_{2} \mathrm{Ru}$ (acetone): C, 61.61; H, 5.76; N, 1.63. Found: C, 61.97; H, 5.65; N, 1.77. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 63.63(\mathrm{~d}, P-\mathrm{N}), 45.91\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=38.12 \mathrm{~Hz} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right):$ $\delta 6.8-8.2(26 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.10\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.00\left(3 \mathrm{H}, \mathrm{s}, p-\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CH}_{3}\right), 2.15(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.\mathrm{Ru}-\mathrm{OH}_{2}\right), 1.55\left(6 \mathrm{H}, \mathrm{s}\right.$, acetone). UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 496 (shoulder, 280).

2.10.3 Trans- $\mathrm{RuCl}_{\mathbf{2}}(\mathbf{P}-\mathrm{N})\left(\mathbf{P P h}_{3}\right)(\mathbf{M e O H})$ (34)

A mixture of $\mathrm{MeOH}(2 \mathrm{~mL})$ and acetone (1 mL) was purged with Ar and cannula transferred to a stirred solution of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}(100 \mathrm{mg}, 0.104 \mathrm{mmol})$ and $\mathrm{P}-\mathrm{N}(32 \mathrm{mg}$,
$0.104 \mathrm{mmol})$ in acetone $(5 \mathrm{~mL})$ which had been heated to $50^{\circ} \mathrm{C}$. The orange solution which formed instantaneously was stirred at $20^{\circ} \mathrm{C}$ for 24 h . The volume of the solution was then reduced to $\sim 1 \mathrm{~mL}$ and hexanes (10 mL) was added to precipitate a pink solid. This was filtered off and washed with $\mathrm{MeOH}(2 \times 5 \mathrm{~mL})$. Yield: $45 \mathrm{mg}, 56 \%$. Anal. Calcd. $\mathrm{C}_{39} \mathrm{H}_{39} \mathrm{NOCl}_{2} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C}, 60.70 ; \mathrm{H}, 5.09$; $\mathrm{N}, 1.82$. Found: $\mathrm{C}, 61.01 ; \mathrm{H}, 5.12 ; \mathrm{N}, 1.76 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 77.46(\mathrm{~d}, P-\mathrm{N}), 47.16\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=36.66 \mathrm{~Hz} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $\delta 6.9-7.9(29 H, m, P h), 3.33\left(3 H, d, \operatorname{Ru}\left(O\left(\mathrm{CH}_{3}\right) \mathrm{H}\right)\right), 3.16\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.33(1 \mathrm{H}, \mathrm{q}$, $\mathrm{Ru}-\left(\mathrm{O}\left(\mathrm{CH}_{3}\right) H\right)$.

2.10.4 Trans-RuCl $\mathbf{R}_{2}(\mathbf{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathbf{E t O H})(35)$

Attempts to prepare 35 following the method described for $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{MeOH})$ (Section 2.10.3) were unsucessful. Several different solvent combinations including acetone/hexanes, acetone $/ \mathrm{Et}_{2} \mathrm{O}$ and acetone/ EtOH failed to precipitate any solid. In a further attempt to prepare $35, \mathrm{P}-\mathrm{N}(40.5 \mathrm{mg}, 0.133 \mathrm{mmol})$ in $\mathrm{EtOH}(2 \mathrm{~mL})$ was added to a brown suspension of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}(122.8 \mathrm{mg}, 0.128 \mathrm{mmol})$ in neat $\mathrm{EtOH}(8 \mathrm{~mL})$. The suspension was stirred for 1 week during which time a pink/orange solution containing a small amount of light brown precipitate formed. This brown solid ($\sim 20 \mathrm{mg}$) was collected and washed with $\mathrm{EtOH}(5 \mathrm{~mL})$, but could not be further characterized as it was found to be insoluble in common solvents (acetone, $\mathrm{CDCl}_{3}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$). Also, the EtOH was removed under vacuum from the combined pink filtrates collected earlier and hexanes (10 mL) was added to the oily residue. The solvent was once again removed and EtOH (2 mL) was added to dissolve the residue. This solution was then stirred for 15 min when a pink precipitate formed. Hexanes (10 mL) was added to precipitate more solid, which was collected by filtration and washed with hexanes (5 mL). Yield: $33 \mathrm{mg}, 33 \%$. Anal. Calcd.
$\mathrm{C}_{40} \mathrm{H}_{41} \mathrm{NOCl}_{2} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C}, 61.15 ; \mathrm{H}, 5.26 ; \mathrm{N}, 1.78$. Found: C, $62.22 ; \mathrm{H}, 5.06 ; \mathrm{N}, 1.89 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 79.79(\mathrm{~d}, P-\mathrm{N}), 46.90\left(\mathrm{~d}, \mathrm{PPh}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=36.24 \mathrm{~Hz} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):$ $\delta 6.9-7.9(29 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.61\left(2 \mathrm{H}, \mathrm{d}\right.$ of $\mathrm{q}, \mathrm{Ru}\left(\mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{H}\right)$), $3.18\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.40$ $\left(1 \mathrm{H}, \mathrm{t}, \mathrm{Ru}\left(\mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{H}\right)\right), 1.16\left(3 \mathrm{H}, \mathrm{t}, \mathrm{Ru}\left(\mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{H}\right)\right)$.

2.11 Syntheses of Ruthenium(II) Complexes with Other Coordinated Gases

2.11.1 $\mathrm{Cis}-\mathrm{RuCl}_{2}(\mathbf{P}-\mathrm{N})\left(\mathbf{P P h}_{3}\right)\left(\eta^{2}-\mathbf{H}_{2}\right)(\mathbf{3 6})^{\mathbf{2}, 21}$

The five-coordinate complex, $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ (6a), was prepared in situ by stirring a solution of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}(85.1 \mathrm{mg}, 0.09 \mathrm{mmol})$ and $\mathrm{P}-\mathrm{N}(29.2 \mathrm{mg}, 0.09 \mathrm{mmol})$ in acetone $(10 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$ for $30 \mathrm{~min} . \mathrm{H}_{2}$ gas was then passed through the solution for 2 h during which time the dark green colour changed to orange. The mixture was stirred for another 48 h when a pale yellow precipitate formed. This was quickly collected and stored under Ar. This yellow solid was susceptible to loss of H_{2} with re-formation of the green $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$. Yield: $35 \mathrm{mg}, 52 \%$. Anal. Calcd. $\mathrm{C}_{38} \mathrm{H}_{37} \mathrm{NCl}_{2} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C}, 61.54 ; \mathrm{H}, 5.03$; $\mathrm{N}, 1.89$. Found: $\mathrm{C}, 61.47 ; \mathrm{H}, 4.89 ; \mathrm{N}, 1.75 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 49.30(\mathrm{~d}, P-\mathrm{N}), 45.49$ $\left(\mathrm{d}, \mathrm{PPh}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=26.83 \mathrm{~Hz} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 6.4-8.4(29 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.68(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 3.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right),-10.90\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ru}\left(\eta^{2}-\mathrm{H}_{2}\right)\right)$. Yellow, block crystals of 36 were obtained from a saturated acetone solution of the complex left standing for 2 days. The ORTEP plot, selected bond lengths and angles are presented in Section 6.1, while the full experimental parameters and details are given in Appendix IX.

2.11.2 Reactions with $\mathbf{N H}_{3}$

2.11.2.1 Reaction of $\mathbf{R u C l}_{\mathbf{2}}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)$ with $\mathbf{N H}_{\mathbf{3}}$

2.11.2.1.1 Isolation of $\left[\mathrm{RuCl}(\mathbf{P}-\mathrm{N})\left(\mathbf{P P h}_{3}\right)\left(\mathbf{N H}_{3}\right)_{2} \cdots \mathrm{Cl}\right](\mathbf{3 7 a})$

To a solution of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(50 \mathrm{mg}, 0.068 \mathrm{mmol})$ in $5 \mathrm{~mL} \mathrm{C} \mathrm{C}_{6} \mathrm{H}_{6}, 1$ atm of NH_{3} was introduced, and the dark green solution was stirred for 1 h . Hexanes (5 mL) was added to precipitate a blue-green solid. Yield: $35 \mathrm{mg}, 68 \%$. Anal. Calcd. $\mathrm{C}_{38} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Ru}$: C, $58.99 ; \mathrm{H}, 5.34 ; \mathrm{N}, 5.43$. Found: $\mathrm{C}, 59.14 ; \mathrm{H}, 5.40 ; \mathrm{N}, 5.21$. Due to the loss of NH_{3} when this solid was dissolved in solution $\left(\mathrm{CDCl}_{3}\right)$ (see Section 6.2), three products were observed in the NMR spectra. [37a, $\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right){ }_{2} \cdots \mathrm{Cl}\right],{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}: \quad \delta 57.20$ (d, $P-\mathrm{N}), 53.24\left(\mathrm{~d}, \mathrm{PPh}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=32.05 \mathrm{~Hz} .{ }^{1} \mathrm{H} \mathrm{NMR}: \delta 6.2-8.2(\mathrm{~m}, \mathrm{Ph}), 3.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right)$, $3.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ru}-\mathrm{NH}_{3}\right), 1.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ru}-\mathrm{NH}_{3}\right)$. 38a, trans-RuCl${ }_{2}(\mathrm{P}-$ $\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)$, NMR spectra are identical to those recorded in Section 2.11.2.1.2. 39a,
 ${ }^{2} \mathrm{~J}_{\mathrm{PP}}=32.29 \mathrm{~Hz} .{ }^{1} \mathrm{H}$ NMR: $\quad \delta 6.2-8.2(\mathrm{~m}, \mathrm{Ph}), 3.61\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.94(3 \mathrm{H}, \mathrm{s}$, $\left.\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 0.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ru}-\mathrm{NH}_{3}\right)\right]$. Of note, the integrations of the phenyl protons in the ${ }^{1} \mathrm{H}$ NMR spectrum were not assigned because of overlapping signals of 37a, 38a and 39a in this region. Conductivity in acetone under $1 \mathrm{~atm} \mathrm{NH}_{3}: \Lambda_{M}=\sim 0$.

2.11.2.1.2 Synthesis of trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)$ (38a) from a solid state reaction

Solid $\operatorname{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(20 \mathrm{mg}, 0.027 \mathrm{mmol})$) was stirred under 1 atm of NH_{3} for 3 h . The colour of the starting material changed from green to beige-brown. Yield: 20 mg , 100% Anal. Calcd. $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C}, 60.32 ; \mathrm{H}, 5.06$; N, 3.70. Found: C, 60.26; H, 5.23; N, 3.71. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 53.86(\mathrm{~d}, P-\mathrm{N}), 50.79\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=36.48 \mathrm{~Hz}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 6.2-8.2(\mathrm{~m}, \mathrm{Ph}), 2.72\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ru}-\mathrm{NH}_{3}\right)$.

2.11.2.1.3 In situ reaction in the presence of excess NH_{3}

To a solution of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(10 \mathrm{mg}, 0.014 \mathrm{mmol})$ dissolved in 0.7 mL CDCl 3 in a NMR tube was added 1 atm NH_{3} when a dark green solution formed. NMR analyses indicate the presence of one product, $\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{Cl}\right]$; see NMR data in Section 2.11.2.1.1 for 37a.

2.11.2.2 Reaction of $\mathbf{R u B r}_{2}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)$ with $\mathbf{N H}_{\mathbf{3}}$

Reactions analogous to those for $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ (Section 2.11.2.1) were performed on $\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$.

2.11.2.2.1 NMR data for $\left[\operatorname{RuBr}(\mathbf{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{Br}\right](\mathbf{3 7 b})$ and cis-RuBr $\mathbf{2}_{\mathbf{2}}(\mathbf{P}-\mathrm{N})\left(\mathbf{P P h}_{\mathbf{3}}\right)\left(\mathbf{N H}_{\mathbf{3}}\right) \mathbf{(3 9 b)}$

All samples were prepared in $\mathrm{CDCl}_{3}: \quad\left[\mathrm{RuBr}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{Br}\right](\mathbf{3 7 b}),{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 57.40(\mathrm{~d}, P-N), 56.08\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=31.81 \mathrm{~Hz} .{ }^{1} \mathrm{H}$ NMR: $\delta 6.2-8.2(\mathrm{~m}, \mathrm{Ph}), 3.34$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 3.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ru}-\mathrm{NH}_{3}\right), 1.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ru}-\mathrm{NH}_{3}\right)$. Cis- $\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)$ (39b), ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}: \quad \delta 62.86$ (d, $P-\mathrm{N}$), 51.85 (d, PPh_{3}); ${ }^{2} \mathrm{~J}_{\mathrm{PP}}=31.75 \mathrm{~Hz} .{ }^{1} \mathrm{H}$ NMR: $\delta 6.2-8.2(\mathrm{~m}, \mathrm{Ph}), 3.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right)$, $0.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ru}-\mathrm{NH}_{3}\right)$.

2.11.2.2.2 Synthesis of trans- $\mathrm{RuBr}_{2}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)\left(\mathbf{N H}_{3}\right)(\mathbf{3 8 b})$

The title complex was synthesized with a 100% yield in a solid state reaction similar to that described for 38a (Section 2.11.2.1.2). Anal. Calcd. $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{Br}_{2} \mathrm{P}_{2} \mathrm{Ru}$: C, 53.98; H, 4.53; N, 3.31. Found: C, 53.61; H, 4.46; N, 3.05. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 55.25$ (d, $P-\mathrm{N}), 50.65\left(\mathrm{~d}, \mathrm{PPh}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=36.66 \mathrm{~Hz} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 6.2-8.2(\mathrm{~m}, \mathrm{Ph}) ; 3.01(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ru}-\mathrm{NH}_{3}\right)$.

2.11.2.3 In situ preparation of $\left[\mathrm{Ru}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{3} \cdots \mathrm{Cl}\right]\left[\mathrm{PF}_{6}\right](40 \mathrm{a})$

The title species was observed in situ when $\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{Cl}\right]$ and 1 equiv of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ were stirred under 1 atm of NH_{3} in d_{6}-acetone. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (d_{6}-acetone): $\delta 54.94(\mathrm{~d}, P-\mathrm{N}), 51.47\left(\mathrm{~d}, \mathrm{PPh}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=32.05 \mathrm{~Hz} .{ }^{1} \mathrm{H}$ NMR (d d_{6}-acetone): $\delta 6.2-8.2(29 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 3.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 3.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 3.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ru}-\mathrm{NH} \mathrm{H}_{3}\right), 1.06(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Ru}-\mathrm{NH}_{3}$). Removal of excess NH_{3} resulted in formation of species 41 (Section 2.11.2.5). Conductivity of 40 a after removal of $\mathrm{NH}_{4} \mathrm{Cl}$ in acetone under 1 atm NH_{3} : $\Lambda_{\mathrm{M}}=139 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.

2.11.2.4 In situ preparation of $\left[\mathrm{Ru}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}$ (40b)

The title species was prepared in situ by dissolving $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(10 \mathrm{mg}$, 0.014 mmol) and 2 equiv $\mathrm{NH}_{4} \mathrm{PF}_{6}(2.2 \mathrm{mg}, 0.014 \mathrm{mmol})$ in d_{6}-acetone $(\sim 1 \mathrm{~mL})$ in the presence of 1 atm NH_{3} when the original solution changed from green to yellow. The reaction was allowed to proceed at r.t. for 16 h . The $\mathrm{NH}_{4} \mathrm{Cl}$ was removed by filtration through Celite and the filtrate was subjected to NMR. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (d_{6}-acetone): $\delta 55.26$ $(\mathrm{d}, P-\mathrm{N}), 51.67\left(\mathrm{~d}, \mathrm{PPh}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=32.05 \mathrm{~Hz} .{ }^{1} \mathrm{H}$ NMR (d_{6}-acetone): $\delta 6.2-8.2(29 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 3.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 3.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 3.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ru}-\mathrm{NH}_{3}\right), 1.10(3 \mathrm{H}, \mathrm{s}$, Ru- NH_{3}). Conductivity of $\mathbf{4 0 b}$ after removal of $\mathrm{NH}_{4} \mathrm{Cl}$ in acetone under 1 atm NH_{3} : $\Lambda_{\mathrm{M}}=288 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.

2.11.2.5 $\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ (41)

To a solution of $\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{Cl}\right](100 \mathrm{mg}, 0.0013 \mathrm{mmol})$ in acetone (10 mL), a solution of $\mathrm{NH}_{4} \mathrm{PF}_{6}(22 \mathrm{mg}, 0.0014 \mathrm{mmol})$ in acetone $(5 \mathrm{~mL})$ was added, and the pale yellow-green solution was stirred under 1 atm NH_{3} for 16 h . A dark yellow solution with a suspension of $\mathrm{NH}_{4} \mathrm{Cl}$ was formed. This mixture was filtered through Celite to remove the
insoluble salts. The dark yellow-brown residue which remained after removal of solvent from the filtrate was redissolved in $3 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$. Addition of $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ resulted in the formation of a yellow solid, which was collected and washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$. Yield: $45 \mathrm{mg}, 39 \%$. Anal. Calcd. $\mathrm{C}_{38} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{ClF}_{6} \mathrm{P}_{3} \mathrm{Ru}: \mathrm{C}, 51.68$; $\mathrm{H}, 4.68$; N, 4.76. Found: C, 53.68; H, 6.41; N, 6.68. Several repeated preparations of 41 failed to give satisfactory elemental analysis data. $\quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(\mathrm{d}_{6}\right.$-acetone): $\delta 58.87$ (d, $\left.P-\mathrm{N}\right), 51.70 \quad\left(\mathrm{~d}, \quad \mathrm{PPh}_{3}\right)$; ${ }^{2} \mathrm{~J}_{\mathrm{PP}}=31.40 \mathrm{~Hz} . \quad{ }^{1} \mathrm{H}$ NMR (d_{6}-acetone): $\delta 6.2-8.2(29 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 3.02$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ru}-\mathrm{NH}_{3}\right), 0.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ru}-\mathrm{NH}_{3}\right)$. Conductivity in acetone (with or without the presence of excess NH_{3}): $\Lambda_{\mathrm{M}}=146 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.

2.11.2.6 $\left[\mathbf{R u C l}(\mathbf{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)\right]\left[\mathrm{PF}_{6}\right](42)$

The title complex is a dark green solid and can be prepared by removal of NH_{3} by drying a sample of $\left[\operatorname{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{PF}_{6}$ (41) $(10 \mathrm{mg})$ in vacuo at $80^{\circ} \mathrm{C}$. The complex is O_{2}-sensitive and decomposes in air to a brown solid. Yield: $10 \mathrm{mg}, 100 \%$. Anal. Calcd. $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{ClF}_{6} \mathrm{P}_{3} \mathrm{Ru}: \mathrm{C}, 52.69 ; \mathrm{H}, 4.42 ; \mathrm{N}, 3.23$. The inability to obtain pure 41 also led to unsatifactory analysis for 42 . Found: $\mathrm{C}, 53.84 ; \mathrm{H}, 4.92 ; \mathrm{N}, 3.10 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (d_{6}-acetone): $\delta 48.64(\mathrm{~d}, P-\mathrm{N}), 47.85\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=36 \mathrm{~Hz}$ (broad doublets). ${ }^{1} \mathrm{H}$ NMR signals were not assigned due to many overlapping peaks in the spectrum ($\delta 6.0-8.5(\mathrm{~m}, \mathrm{Ph})$, 0.5-3.5 (br m)).

2.11.3 Cis- $\mathrm{RuCl}_{2}(\mathbf{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\boldsymbol{\eta}^{\mathbf{1}}-\mathbf{N}_{2}\right)$ (43)

The title complex was prepared in situ by the "condensation" of $\sim 6 \mathrm{~atm} \mathrm{~N}_{2}$ into an NMR tube (equipped with a poly(tetrafluoroethylene) valve) containing a solution of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(10 \mathrm{mg})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$. ("Condensation" refers to the vacuum
transfer of $1 \mathrm{~atm} \mathrm{~N}_{2}$ in a 18 mL vessel into a 3 mL NMR tube.) The solution was slowly warmed to r.t. when a colour change from dark green to light green-yellow was apparent. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum indicate 100% formation of the N_{2} adduct. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 47.54(\mathrm{~d}, P-\mathrm{N}), 37.90\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=27.02 \mathrm{~Hz} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 6.6-7.9$ $(29 H, m, \mathrm{Ph}), 3.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 3.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right)$. The NMR data correspond with those previously reported, where a $v_{N_{2}}$ value of $2161 \mathrm{~cm}^{-1}$ was measured. ${ }^{21}$

2.11.4 Cis-RuCl $_{\mathbf{2}}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)\left(\mathbf{N}_{\mathbf{2}} \mathbf{O}\right)(44)$

The $\mathrm{N}_{2} \mathrm{O}$ adduct was prepared in situ using the same method as for the N_{2} complex described in Section 2.11.3 but using $\sim 6 \mathrm{~atm} \mathrm{~N}_{2} \mathrm{O}$. When the sample was warmed to r.t., a light green solution formed, but the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum was very noisy with broad peaks at $\delta 79.93$ and $\delta 47.16$. When this sample was cooled to $-88^{\circ} \mathrm{C}$, three species were observed: the starting five-coordinate complex 6 (18%); the N_{2} adduct 43 (8%); and the assumed $\mathrm{N}_{2} \mathrm{O}$ adduct $43(74 \%) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(-88^{\circ} \mathrm{C}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ for 44: $\delta 49.52(\mathrm{~d}, P-\mathrm{N}), 40.06(\mathrm{~d}$, $\left.P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=27.93 \mathrm{~Hz} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(-88^{\circ} \mathrm{C}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 6.4-8.1(\mathrm{~m}, \mathrm{Ph}), 3.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right)$, 2.85 (3H, s, $\mathrm{N}\left(\mathrm{CH}_{3}\right)$).

2.12 Synthesis and Reactions of Ruthenium(II) Carbene Complexes

The following carbene complexes were prepared employing the method described by Bianchini and co-workers for the corresponding $\mathrm{RuCl}_{2}(\mathrm{PNP})\left(\mathrm{PPh}_{3}\right) \quad(\mathrm{PNP}=$ $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{2}\right)$ derivatives. ${ }^{24}$

2.12.1 $\operatorname{Cis}-\mathrm{RuCl}_{2}(\mathbf{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(=\mathbf{C =}=\mathbf{C H P h})$ (45)

A solution of $\mathrm{PhC} \equiv \mathrm{CH}(0.60 \mathrm{~mL}, 5.46 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added to a solution of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(385.0 \mathrm{mg}, 0.52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The dark yellow solution which formed was then refluxed at $40^{\circ} \mathrm{C}$ for 2 h . The solution was cooled to r.t. and stirred for another 16 h at ambient conditions when a dark red solution formed. The volume of the solvent was reduced to 5 mL and hexanes $(20 \mathrm{~mL})$ was added to precipitate a dark orange solid that was collected and washed with hexanes $(4 \times 5 \mathrm{~mL})$. Yield: $380 \mathrm{mg}, 86 \%$. Anal. Calcd. $\mathrm{C}_{46} \mathrm{H}_{41} \mathrm{NCl}_{2} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C}, 65.64 ; \mathrm{H}, 4.91 ; \mathrm{N}, 1.66$. Found: C, $65.45 ; \mathrm{H}, 4.92 ; \mathrm{N}$, 1.55. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 37.85(\mathrm{~d}, \mathrm{P}-\mathrm{N}), 36.40\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=26.50 \mathrm{~Hz} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.2-8.2(34 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 3.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.43(1 \mathrm{H}, \mathrm{d}$ of d, CCHPh). Red-orange crystals of $\mathbf{4 5}$ grew over 2 days by slow evaporation of CDCl_{3} from an NMR tube sample of the complex. The ORTEP plot, selected bond lengths and angles are shown in Section 6.4.1, while the full experimental parameters and details are given in Appendix X.

Complex 46 was prepared in the same manner as described for the PPh_{3} analogue (Section 2.12.1) but using $\operatorname{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p-\text { tolyl })_{3}\right)(390 \mathrm{mg}, 0.50 \mathrm{mmol})$. The product was a dark orange solid. Yield: $350 \mathrm{mg}, 80 \%$. Anal. Calcd. $\mathrm{C}_{49} \mathrm{H}_{47} \mathrm{NCl}_{2} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C}, 66.59 ; \mathrm{H}, 5.36$; $\mathrm{N}, 1.58$. Found: $\mathrm{C}, 66.43 ; \mathrm{H}, 5.29 ; \mathrm{N}, 1.55 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 35.86(\mathrm{~d}, P-$ $\mathrm{N}), 32.96\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=26.62 \mathrm{~Hz} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.2-7.8(31 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.54(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 3.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.40(1 \mathrm{H}, \mathrm{d}$ of d, CCHPh$), 2.16\left(9 \mathrm{H}, \mathrm{s}, p-\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CH}_{3}\right)$.

2.12.3 Cis- $\mathrm{RuCl}_{2}(\mathbf{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(=\mathbf{C}=\mathbf{C H P h C H} 3)(47)$

The title complex was prepared in the same manner as described for 45 (Section 2.12.1) but using five equiv of 4-ethynyltoluene. The product is a dark yellow solid. Yield: 270 mg. 61 \%. Anal. Calcd. $\mathrm{C}_{47} \mathrm{H}_{44} \mathrm{NCl}_{2} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C}, 65.89 ; \mathrm{H}, 5.18$; N, 1.63. Found: C, 65.75; H, 5.02; N, 1.52. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 38.33(\mathrm{~d}, \quad P-\mathrm{N}), 36.72\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right) ;$ ${ }^{2} \mathrm{~J}_{\mathrm{PP}}=26.10 \mathrm{~Hz} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 6.1-8.1(33 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.59\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 3.08(3 \mathrm{H}$, s, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.43(1 \mathrm{H}, \mathrm{dd}, \mathrm{CCHPhCH} 3), 2.16(3 \mathrm{H}, \mathrm{s}, \mathrm{CCHPhCH} 3)$.

2.12.4 Cis $-\mathrm{RuCl}_{\mathbf{2}}(\mathbf{P}-\mathrm{N})\left(\mathbf{P P h}_{3}\right)\left(\mathbf{S C H C H}_{2} \mathbf{P h}\right)(48)$

Complex 48 was prepared by bubbling $\mathrm{H}_{2} \mathrm{~S}$ through a solution of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(=\mathrm{C}=\mathrm{CHPh})(45)(100 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ under reflux $\left(45^{\circ} \mathrm{C}\right)$ for 5 h , when the original orange solution became brown. The solution was then concentrated to $\sim 5 \mathrm{~mL}$ and hexanes (15 mL) was added to precipitate a brown solid (65 mg) which was collected and washed with hexanes $(2 \times 10 \mathrm{~mL})$. Analytically pure 48 could not be isolated even after several reprecipitations from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ hexanes. NMR analysis, however, indicate that 48 is the major species in the brown solid. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 59.61$ (d, $P-\mathrm{N}), 42.36\left(\mathrm{~d}, \mathrm{PPh}_{3}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=28.22 \mathrm{~Hz} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 6.1-8.7(29 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.04$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 2.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 3.18\left(1 \mathrm{H}, \mathrm{t}, \mathrm{S}=\mathrm{CH},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=15 \mathrm{~Hz}\right), 1.30\left(2 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2}\right.$, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=15 \mathrm{~Hz}$.

2.12.5 Reaction of $\mathrm{Cis}-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(=\mathrm{C}=\mathrm{CHPh})(45)$ with $\mathrm{H}_{2} \mathrm{O}$

To a solution of $\mathbf{4 5}(100 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added. This mixture was refluxed for 5 h during which time the original orange solution became brown. Hexanes (20 mL) was added to precipitate a brown solid which is composed of a
mixture of 49 and $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{CO})(50)$ as indicated by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data. The two species 49 and 50 were not separated for purposes of microanalysis. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: for 49, $\delta 44.57(\mathrm{br}, \mathrm{P}-\mathrm{N}), 38.28\left(\mathrm{br}, \mathrm{PPh}_{3}\right)$; for $50, \delta 50.55(\mathrm{br}, P-\mathrm{N}), 18.74\left(\mathrm{br}, P \mathrm{Ph}_{3}\right)$. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data for 50 agree with those previously reported. ${ }^{2}{ }^{1} \mathrm{H}$ NMR spectra were not assigned because of overlapping signals due to both species ($\delta 6.0-8.5(\mathrm{~m}, \mathrm{Ph}), 1.2-3.5(\mathrm{~m})$). IR: $V_{\mathrm{CO}} 2046$ (49), 1990 (50). 49 is thought to be $\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{Ph}\right)(\mathrm{CO})$ (see Section 6.4.2).

2.13 References

1. Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. Purification of Laboratory Chemicals; $2^{\text {nd }}$ ed.; Pergamon: Oxford, 1980.
2. Mudalige, D. C. Ph.D. Thesis, The University of British Columbia, 1994.
3. Alder, R. W.; Bowman, P. S.; Steele, W. R. S.; Winterman, D. R. J. Chem. Soc., Chem. Commun. 1968, 723.
4. Dixon, K. R. In Multinuclear NMR; Mason, J., Ed.; Plenum: New York, 1987; Chapter 13.
5. MacFarlane, K. W. Ph.D. Thesis, The University of British Columbia, 1995.
6. (a) Selwood, P. W. Magnetochemistry; $2^{\text {nd }}$ ed.; Interscience Publishers, Inc.: New York, 1956, p. 78.
(b)Figgis, B. N.; Lewis, J. In Modern Coordination Chemistry; Lewis, J.; Wilkins, R.
G. Eds.; Interscience Publishers, Inc.: London, 1960, p. 402.
(c) Carlin, R. L. Magnetochemistry; Springer-Verlag: New York, 1986, p. 3.
7. Fritz, H. P.; Gordan, I. R.; Schwarzhans, K. E.; Venanzi, L. M. J. Chem. Soc. 1965, 5210.
8. Gilman, H.; Banner, I. J. Am. Chem. Soc. 1940, 62, 344.
9. Rauchfuss, T. B.; Patino, F. T.; Roundhill, D. M. Inorg. Chem. 1975, 14, 652.
10. Cairns, S. M.; McEwen, W. E. Heteroatom Chem. 1990, I, 9.
11. Meessen, P. H.; Rettig, S. J.; James, B. R. Unpublished data.
12. Payne, N. C.; Stephan, D. W. Inorg. Chem. 1982, 21, 182.
13. Pine, S. H.; Sanchez, B. L. J. Org. Chem. 1971, 36, 829.
14. (a) Horner, L.; Simons, G. Phosphorus and Sulfur 1983, 15, 165.
(b) Dekker, G. P. C. M.; Buijs, A.; Elsevier, C. J.; Vrieze, K.; van Leeuwen, P.. W. N. M.; Smeets, W. J. J.; Spek, A. L.; Wang, Y. F.; Stam, C. H. Organometallics 1992, 11, 1937.
15. Hayashi, T.; Konishi, M.; Fukushima, M.; Kanehira, K.; Hioki, T.; Kumada, M. J. Org. Chem. 1983, 48, 2195.
16. Bowman, R. E.; Stroud, H. H. J. Chem. Soc. 1950, 1342.
17. Hallman, P. S.; Stephenson, T. A.; Wilkinson, G. Inorg. Syn. 1970, 12, 237.
18. Armit, P. W.; Sime, W. J.; Stephenson, T. A.; Scott. L. J. Organomet. Chem. 1978, 161, 391.
19. (a) Evans, I.P.; Spencer, A.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1973, 204. (b) Mercer, A.; Trotter, J. J. Chem. Soc., Dalton Trans. 1975, 2480.
20. (a) Stephenson, T. A.; Wilkinson, G. J. Inorg. Nucl. Chem. 1966, 28, 945.
(b) Dekleva, T. W.; Thorburn, I. S.; James, B. R. Inorg. Chim. Acta 1985, 100, 49.
(c) Fogg, D. E. Ph.D. Thesis, The University of British Columbia, 1994.
21. Mudalige, D. C.; Rettig, S. J.; James, B. R.; Cullen, W. R. J. Chem. Soc., Chem. Commun. 1993, 830.
22. Shen, J.-Y.; Slugovc, C.; Wiede, P.; Mereiter, K.; Schmid, R.; Kirchner, K. Inorg. Chim. Acta 1998, 268, 69.
23. Mudalige, D. C.; Ma, E. S.; Rettig, S. J.; James, B. R.; Cullen, W. R. Inorg. Chem. 1997, 36, 5426.
24. Bianchini, C.; Innocenti, P.; Peruzzini, M.; Romerosa, A.; Zanobini, F. Organometallics 1996, 15, 272.

Chapter 3

Synthesis and Reactivity of Ruthenium Aminophosphine Precursors

3.1 Introduction

Ruthenium(II) aminophosphine (PN) complexes of the type $\mathrm{RuCl}_{2}(\mathrm{PN})\left(\mathrm{PR}_{3}\right)(\mathrm{R}=\mathrm{Ph}$, p-tolyl) have been prepared in this laboratory by phosphine exchange reactions of PN ligands with the well known precursor complexes $\mathrm{RuCl}_{2}\left(\mathrm{PR}_{3}\right)_{3} .^{1-3}$ A similar route involving phosphine exchange has been successful for the synthesis of $\mathrm{Ru}(\mathrm{II})$ tertiary $\left(\mathrm{PR}^{\prime}{ }_{3}\right)$, ditertiaryphosphine (P-P) and 2-pyridylmono- or diphosphine (Ppy) complexes of the types $\left.\mathrm{RuCl}_{2}\left(\mathrm{PR}_{3}\right)_{3}\right)^{4}{ }^{4}$ $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{P})\left(\mathrm{PPh}_{3}\right),{ }^{5,6}$ and $\mathrm{RuCl}_{2}(\mathrm{Ppy})\left(\mathrm{PPh}_{3}\right),{ }^{7}$ respectively. Synthetic methods via other precursors such as $\mathrm{RuCl}_{2}(\mathrm{DMSO}){ }_{4},{ }^{6,8}\left[\mathrm{RuCl}_{2} \text { (benzene) }\right]_{2}{ }^{9}$ and $\left[\mathrm{RuCl}_{2}(\mathrm{COD})\right]_{\mathrm{n}}{ }^{10}$ that are useful in the preparation of $\mathrm{Ru}(\mathrm{P}-\mathrm{P})$ complexes, give complex mixtures of products when PN ligands are used. ${ }^{2}$ In this chapter, both successful and attempted syntheses of $\mathrm{Ru}(\mathrm{II})$ complexes containing PN ligands are described. The reactivities of these complexes are also briefly discussed.

3.2 Preparation of $\mathbf{R u C l}_{\mathbf{2}}(\mathbf{P}-\mathbf{N})\left(\mathbf{P R}_{\mathbf{3}}\right)(\mathbf{R}=\mathbf{P h}(\mathbf{6 a}), \mathbf{R}=\boldsymbol{p}$-tolyl (7a))

Figure 3.1 The preparation of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)(\mathrm{R}=\mathrm{Ph}(6 \mathrm{a}), \mathrm{R}=p$-tolyl (7a)).

The title complexes were prepared by the exchange reaction of two monodentate phosphine ligands in $\mathrm{RuCl}_{2}\left(\mathrm{PR}_{3}\right)_{3}$ with one equivalent of the $\mathrm{P}-\mathrm{N}$ ligand as indicated by

Figure 3.1. ${ }^{2,3}$ Only one P-N ligand is coordinated to the Ru centre regardless of the amounts of $\mathrm{P}-\mathrm{N}$ added. The reactions of $\mathrm{RuCl}_{2}\left(\mathrm{PR}_{3}\right)_{3}$ and $\mathrm{P}-\mathrm{N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{C}_{6} \mathrm{H}_{6}$ or acetone produce deep green solutions containing $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)$, and the liberated PR_{3} species are identified by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy ($\delta-3.98$ for PPh_{3} and $\delta-4.5$ for $\mathrm{P}(p \text {-tolyl })_{3}$ in CDCl_{3}). To obtain products with high purity, as many as four repeated recrystallized steps using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes were required. The yields of the dark green solids $6 \mathbf{a}$ and $7 \mathbf{a}$ were consequently low (55%). Of note, however, use of the aquo complexes trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)\left(\mathrm{OH}_{2}\right)(\mathrm{R}=\mathrm{Ph}(33 a)$, p-tolyl (33b)) provided indirect routes to $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)$ of high purities and yields. Detailed discussion on the properties of 33a and 33b is presented in Chapter 5. The aquo complexes are readily obtained by reactions of $\mathrm{RuCl}_{2}\left(\mathrm{PR}_{3}\right)_{3}$ with $\mathrm{P}-\mathrm{N}$ in solvent mixtures of $\mathrm{H}_{2} \mathrm{O}$ /acetone (1:5 volume) with 73 to 85% yields. Heating 33a and 33b in the solid state in vacuo at $80^{\circ} \mathrm{C}$ leads to complete conversion to $\mathbf{6 a}$ and 7a, respectively.

X-ray quality crystals of 7 a were obtained by Mudalige, previously of this laboratory. ${ }^{2,3}$ The structure (Figure 3.2) reveals a distorted square pyramidal geometry with the Ru atom $0.42 \AA$ above the plane defined by $\mathrm{Cl}(1), \mathrm{Cl}(2), \mathrm{N}(1), \mathrm{P}(2)$. The Cl -atoms are trans to one another, the PPh_{3} ligand is trans to the N arm of the $\mathrm{P}-\mathrm{N}$ ligand, and the P -atom of the P-N ligand resides at the apical position. This structure is analogous to those of $\mathrm{RuCl}_{2}($ isoPFA $)\left(\mathrm{PPh}_{3}\right)$ (isoPFA $=1-\left[\alpha, \alpha\right.$-dimethylethyl]-2-(diisopropylphosphino)ferrocene), ${ }^{1}$ $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3},{ }^{11} \quad \mathrm{RuBr}_{2}\left(\mathrm{PPh}_{3}\right)_{3}{ }^{12}$ and $\mathrm{RuCl}_{2}(\mathrm{dppb})\left(\mathrm{PPh}_{3}\right) \quad\left(\mathrm{dppb}=\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2}\right) .{ }^{12}$ However, in contrast to these other structures, the vacant site trans to the apical \mathbf{P} atom in $\mathbf{7 a}$ is not occupied by an ortho H -atom of the PPh_{3} ligand, and this property may contribute significantly to the highly reactive nature of 7a (and presumably 6a); 6a and 7a have similar
characteristics and reactivities (as described in succeeding chapters), and thus 6a is presumed to have the same structure as that of 7 a .

Figure 3.2 The ORTEP plot of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)(7 a) .{ }^{2,3}$ Thermal ellipsoids for atoms shown are drawn at 33% probabilty.

NMR spectroscopic analyses show that, in solution, 6a and 7a remain monomeric with no phosphine dissociation. For the analogous $\mathrm{RuCl}_{2}\left(\mathrm{PR}_{3}\right)_{3}$ systems $(\mathrm{R}=\mathrm{Ph} \text { and } p \text {-tolyl) })^{13}$ and $\mathrm{RuCl}_{2}(\mathbf{P}-\mathrm{P})\left(\mathrm{PR}_{3}\right)(\mathbf{P}-\mathbf{P}=\mathrm{dppp}, \mathrm{dppb}$, dppn, binap, chiraphos, and bdpp$),{ }^{5,6,12,14}$ the dinuclear complexes $(\mu-\mathrm{Cl})_{2}\left[\mathrm{RuCl}\left(\mathrm{PR}_{3}\right)_{2}\right]_{2}$ and $(\mu-\mathrm{Cl})_{2}\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{P})_{2}\right]_{2}$ are formed, respectively. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (in $\mathrm{C}_{6} \mathrm{D}_{6}$) of $\mathbf{6 a}\left[\delta 83.69(\mathrm{~d}, P-\mathrm{N}), \delta 48.87\left(\mathrm{~d}, P \mathrm{Ph}_{3}\right),{ }^{2} \mathrm{~J}_{\mathrm{PP}}=36.54 \mathrm{~Hz}\right]$ and 7a $\left[\delta 81.46(\mathrm{~d}, P-\mathrm{N}), \delta 47.64\left(\mathrm{~d}, P(p \text {-tolyl })_{3}\right),{ }^{2} \mathrm{~J}_{\mathrm{PP}}=37.15 \mathrm{~Hz}\right]$ depict characteristic AX spin pattern resonances. The coupling constants are consistent with cis P-atom coupling. ${ }^{6,15}$ In the ${ }^{1} \mathrm{H}$ NMR spectra, the equivalent NMe groups of $\mathbf{6 a}$ and 7 a are indicated by singlets at $\delta 3.07$ and 3.13, respectively.

3.2.1 Decomposition of $\mathrm{RuCl}_{2}(\mathbf{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 a)$ to $(\mu-\mathrm{O})(\mu-\mathrm{Cl})_{2}[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})]_{2}(\mathbf{1 7)}$

When $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{C}_{6} \mathrm{H}_{6}$ solutions of 6 a and 7 a are exposed to air, a colour change from green to dark green-blue rapidly occurs. Addition of hexanes led to precipitation of dark green solids that were only sparingly soluble in the common organic solvents $\left(\mathrm{CHCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, $\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{MeOH}$, acetone and DMSO). Dark green crystals of X-ray quality were obtained when a concentrated acetone solution of 6 a was slowly evaporated in air. The ORTEP plot for these crystals is shown in Figure 3.3 and reveals the Ru dinuclear complex $(\mu-\mathrm{O})(\mu-\mathrm{Cl})_{2}[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})]_{2}(17) . \quad$ Selected bond lengths and angles of 17 are given in Tables 3.1 and 3.2, respectively. Each Ru centre is coordinated in a pseudo-octahedral fashion to one $\mathrm{P}-\mathrm{N}$ ligand, one terminal Cl ligand, two bridging Cl ligands and one bridging O ligand.

Figure 3.3 The ORTEP plot of $(\mu-\mathrm{O})(\mu-\mathrm{Cl})_{2}[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})]_{2}(17)$. Thermal ellipsoids for non-hydrogen atoms are drawn at 33% probability (some of the phenyl carbons have been omitted for clarity). Full experimental parameters and details are given in Appendix III.

Table 3.1 Selected bond lengths (\AA) for $(\mu-\mathrm{O})(\mu-\mathrm{Cl})_{2}[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})]_{2}(17)$ with estimated standard deviations in parentheses. ${ }^{\text {a }}$

Bond	Length (\AA)	Bond	Length (\AA)
$\mathrm{Ru}(1)-\mathrm{Cl}(1)$	$2.570(2)$	$\mathrm{Ru}(2)-\mathrm{Cl}(1)$	$2.3921(15)$
$\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$2.396(2)$	$\mathrm{Ru}(2)-\mathrm{Cl}(2)$	$2.604(2)$
$\mathrm{Ru}(1)-\mathrm{Cl}(3)$	$2.411(2)$	$\mathrm{Ru}(2)-\mathrm{Cl}(4)$	$2.390(2)$
$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.224(2)$	$\mathrm{Ru}(2)-\mathrm{P}(2)$	$2.230(2)$
$\mathrm{Ru}(1)-\mathrm{O}(1)$	$1.921(4)$	$\mathrm{Ru}(2)-\mathrm{O}(1)$	$1.926(4)$
$\mathrm{Ru}(1)-\mathrm{N}(1)$	$2.193(5)$	$2.9173(7)$	$\mathrm{N}(2)$
$\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$2.9187(5)$		

${ }^{\text {a }}$ Some of the bond lengths listed here and elsewhere in the thesis are given to the $4{ }^{\text {th }}$ decimal place as provided by the crystallographers; whether such accuracy is justified is open to discussion.

Table 3.2 Selected bond angles $\left({ }^{\circ}\right)$ for $(\mu-\mathrm{O})(\mu-\mathrm{Cl})_{2}[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})]_{2}(17)$ with estimated standard deviations in parentheses.

Bonds	Angle (${ }^{\circ}$)	Bonds	Angle (${ }^{\circ}$)	Bonds	Angle (${ }^{\circ}$)
$\mathrm{Ru}(1)-\mathrm{O}(1)-\mathrm{Ru}(2)$	$98.6(2)$	$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$178.03(15)$	$\mathrm{Cl}(1)-\mathrm{Ru}(2)-\mathrm{N}(2)$	$177.18(14)$
$\mathrm{Ru}(1)-\mathrm{Cl}(1)-\mathrm{Ru}(2)$	$71.92(4)$	$\mathrm{Cl}(3)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$93.74(6)$	$\mathrm{Cl}(2)-\mathrm{Ru}(2)-\mathrm{Cl}(4)$	$92.68(6)$
$\mathrm{Ru}(1)-\mathrm{Cl}(2)-\mathrm{Ru}(2)$	$71.25(5)$	$\mathrm{Cl}(3)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$170.54(12)$	$\mathrm{Cl}(2)-\mathrm{Ru}(2)-\mathrm{P}(2)$	$177.50(6)$
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$85.62(6)$	$\mathrm{Cl}(3)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$88.20(14)$	$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$78.86(12)$
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(3)$	$92.44(5)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$95.46(11)$	$\mathrm{Cl}(2)-\mathrm{Ru}(2)-\mathrm{N}(2)$	$93.34(14)$
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$173.00(6)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$84.48(14)$	$\mathrm{Cl}(4)-\mathrm{Ru}(2)-\mathrm{P}(2)$	$88.80(6)$
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$78.51(11)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$94.9(2)$	$\mathrm{Cl}(4)-\mathrm{Ru}(2)-\mathrm{O}(1)$	$171.33(12)$
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$92.43(14)$	$\mathrm{Cl}(1)-\mathrm{Ru}(2)-\mathrm{Cl}(2)$	$84.94(5)$	$\mathrm{Cl}(4)-\mathrm{Ru}(2)-\mathrm{N}(2)$	$87.99(14)$
$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{Cl}(3)$	$92.11(6)$	$\mathrm{Cl}(1)-\mathrm{Ru}(2)-\mathrm{Cl}(4)$	$94.31(6)$	$\mathrm{P}(2)-\mathrm{Ru}(2)-\mathrm{O}(1)$	$99.72(12)$
$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$97.44(6)$	$\mathrm{Cl}(1)-\mathrm{Ru}(2)-\mathrm{P}(2)$	$96.96(6)$	$\mathrm{P}(2)-\mathrm{Ru}(2)-\mathrm{N}(2)$	$84.70(14)$
$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$84.54(13)$	$\mathrm{Cl}(1)-\mathrm{Ru}(2)-\mathrm{O}(1)$	$83.11(11)$	$\mathrm{O}(1)-\mathrm{Ru}(2)-\mathrm{N}(2)$	$94.4(2)$

The $\mathrm{Ru}-\mathrm{Ru}$ distance of $2.9173 \AA$ is within the range ($2.632-3.034 \AA$) generally found for a $\mathrm{Ru}-\mathrm{Ru}$ single bond, ${ }^{\text {1a,16 }}$ and this leads to an electron count of 18 at each formally $\mathrm{Ru}(\mathrm{III})$ atom. The presence of a $\mathrm{Ru}-\mathrm{Ru}$ bond also results in reduced $\mathrm{Ru}(1)-\mathrm{O}-\mathrm{Ru}(2)\left(98.6^{\circ}\right)$, $\mathrm{Ru}(1)-\mathrm{Cl}(1)-\mathrm{Ru}(2)\left(71.92^{\circ}\right)$ and $\mathrm{Ru}(1)-\mathrm{Cl}(2)-\mathrm{Ru}(2)\left(71.25^{\circ}\right)$ bond angles. Complexes containing longer Ru-Ru bond distances are known to have enlarged angles between the metal atoms and the bridging ligands. For example, the $\mathrm{Ru}-\mathrm{Ru}$ distance of $3.266 \AA$ in $\left[\left\{(1-\mathrm{MeIm})_{3} \mathrm{Ru}\right\}_{2}(\mu-\mathrm{O})\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}$ (1-MeIm $=1$-methylimidazole) is accompanied by the relatively large $\mathrm{Ru}-\mathrm{O}-\mathrm{Ru}$ angle of $122.3^{\circ} .{ }^{17 \mathrm{~d}}$

The $\mathrm{Ru}(1)-\mathrm{O}$ and $\mathrm{Ru}(2)-\mathrm{O}$ bond distances of 1.921 and $1.926 \AA$, respectively, are somewhat longer than those of other reported $\mathrm{Ru}(\mathrm{III}) \mu$-O species $(1.801-1.891 \AA)^{17}$ but are significantly shorter than those of $\mathrm{Ru}($ III $) \mu-\mathrm{OH}(2.093 \AA)^{18}$ or $\mathrm{Ru}($ III $) \mu-\mathrm{OH}_{2}(2.02 \AA$ for $\left.\left[\mathrm{Ru}_{2}\left(\mu-\mathrm{OH}_{2}\right)_{2}\left(\mu-\mathrm{SO}_{4}\right)_{2} \mathrm{py}_{4}\right]\left[\mathrm{O}_{2} \mathrm{CCH}_{3}\right]_{2}\right)^{19}$ complexes.

While the O -atom is centred equally between the Ru atoms, the bridging Cl -atoms are subjected to the trans influence of the P -atom of the $\mathrm{P}-\mathrm{N}$ ligand. The $\mathrm{Ru}(1)-\mathrm{Cl}(1)(2.570 \AA)$ and $\mathrm{Ru}(2)-\mathrm{Cl}(2)(2.604 \AA)$ distances are significantly longer than those of the $\mathrm{Ru}(1)-\mathrm{Cl}(2)$ $(2.396 \AA)$ and $\operatorname{Ru}(2)-\mathrm{Cl}(1)(2.392 \AA)$ bonds because the former bonds are trans to $\mathrm{P}(1)$ and $\mathbf{P (2)}$, respectively. This phenomenon is also observed in $\mathrm{Ru}(\mathrm{II})-\mathrm{Ru}(\mathrm{II})$ dimers such as $\left[(\mathrm{dppb}) \mathrm{ClRu}\left(\mu-\mathrm{D}_{2} \mathrm{O}\right)(\mu-\mathrm{Cl})_{2} \mathrm{RuCl}(\mathrm{dppb})\right]{ }^{16}$ Here, the $\mathrm{Ru}-\mathrm{Cl}_{\text {temminal }}$ bond distances (trans to $\mathrm{O}(1))$ of $2.411(\mathrm{Ru}-\mathrm{Cl}(3))$ and $2.390 \AA(\mathrm{Ru}-\mathrm{Cl}(4))$ are comparable to those of the monomeric $\mathrm{Ru}(\mathrm{III})$ complex $\mathrm{RuCl}_{3}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(15 a)(2.3338-2.4005 \AA){ }^{2} \quad$ The $\mathrm{Ru}-\mathrm{P}$ (2.224 and $2.230 \AA$) and Ru-N (2.193 and $2.187 \AA$) distances in 17 , however, are significantly shorter than the corresponding ones in $15 a$ (2.3606 and $2.338 \AA$, respectively), and this is presumably due to the reduced steric effects in 17 as a result of the absence of PPh_{3} ligands. Comparison
of the augmented bite angles (P-Ru-N) of 17 (84.48 and 84.70°) with that of $15 a\left(79.25^{\circ}\right)$ reinforces this suggestion.

The two $R u(I I I) d^{5}$, one unpaired electron centres in 17 consitute a diamagnetic system as evidenced by a magnetic susceptibility measurement $\left(\chi_{g}=0\right)$. The electron-spin coupling may result from the Ru -Ru interaction but partial antiferromagnetism (superexchange mechanism) through the bridging oxo ligand (Figure 3.4) cannot not be ruled out. ${ }^{17 \mathrm{~b}, 20}$

Figure 3.4 Antiferromagnetic coupling between two Ru centres through an O^{2-} ligand. Orbitals are drawn for a linear Ru-O-Ru bond.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR spectra of 17 show weak signals compared to those of related $\mathrm{Ru}($ II $)$ complexes. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows two doublets ($\delta 38.74$ and $35.33,{ }^{4} \mathrm{~J}_{\mathrm{PP}}=10.44 \mathrm{~Hz}$, in $\mathrm{C}_{6} \mathrm{D}_{6}$) and indicates coupling of the P -atoms of the two $\mathrm{P}-\mathrm{N}$ ligands through four bonds. The ${ }^{1} H$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ reveals four inequivalent NMe groups with singlets at $\delta 3.31,2.89,2.11$ and 2.02 . Of note, the above NMR data were previously assigned to a speculative $\mu-\mathrm{O}_{2}$ complex. ${ }^{2}$

The UV-Vis spectrum of 17 in DMSO $\left(3.91 \times 10^{-5} \mathrm{M}\right)$ is shown in Figure 3.5. Strong ligand to metal charge-transfer bands are found at $\lambda_{1}=348 \mathrm{~nm}\left(\varepsilon_{1}=15300 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ and $\lambda_{2}=$ $652 \mathrm{~nm}\left(\varepsilon_{2}=11200 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$, the positions and magnitudes of the ε values of λ_{1} and λ_{2} being
comparable to those of complexes containing bis(μ-carboxylato or μ-phosphato $)(\mu$-oxo $)$ diruthenium moieties. ${ }^{17 b-c, 20}$ In particular, the low energy band at 652 nm is responsible for the intense blue-green colour of $\mathbf{1 7}$. [Although 17 is less soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ than in DMSO, the UV-Vis spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed identical absorbances (λ_{1} and λ_{2}) as in DMSO.]

Figure 3.5 UV-Vis spectrum of $(\mu-\mathrm{O})(\mu-\mathrm{Cl})_{2}[\operatorname{RuCl}(\mathrm{P}-\mathrm{N})]_{2}(\mathbf{1 7})\left(3.91 \times 10^{-5} \mathrm{M}\right)$ in DMSO at $25^{\circ} \mathrm{C}$.

The source of the oxo ligand is O_{2}. The possibility of $\mathrm{H}_{2} \mathrm{O}$ as the origin seems less likely as $\mathbf{1 7}$ is formed from the reaction of $\mathbf{6 a}$ with O_{2} in a strictly $\mathrm{H}_{2} \mathrm{O}$-free environment. Furthermore, 17 is not formed in the absence of O_{2}. In an in situ reaction between 6a and O_{2} in $\mathrm{C}_{6} \mathrm{D}_{6}$ at r.t., 17 and $\mathrm{O}=\mathrm{PPh}_{3}$ were observed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy. In fact, $\mathbf{6 a}$ catalytically converts any excess PPh_{3} added to $\mathrm{O}=\mathrm{PPh}_{3}$ before any 17 is observed (Figure
3.6). A plausible intermediate is an O_{2} adduct formed prior to oxidation of PPh_{3} to $\mathrm{O}=\mathrm{PPh}_{3}$. However, the possibility of the oxidation occuring via $\mathrm{H}_{2} \mathrm{O}_{2}$ generated within a catalytic $\mathrm{Ru}($ II $) / \mathrm{Ru}(\mathrm{IV})$ system requiring trace protons cannot be ruled out; a $\mathrm{Pt}(0) / \mathrm{Pt}($ II $)$ catalyzed O_{2}-oxidation of PPh_{3} via such a mechanism is well substantiated. ${ }^{21}$

6 a

17

Figure 3.6 The catalytic oxidation of PPh_{3} to $\mathrm{O}=\mathrm{PPh}_{3}$ by 6 a in the presence of O_{2}.

3.3 Metathesis Reactions

It is desirable to prepare bromo and iodo analogues of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ in order to study and compare their reactivities. A logical entry into the preparation of these analogues would be the use of the precursor complexes $\mathrm{RuBr}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ and $\mathrm{RuI}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$. Unfortunately, the bromo and iodo precusor complexes could not be obtained in pure form. Two common synthetic routes to $\mathrm{RuBr}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ have been utilized. ${ }^{12 \mathrm{~b}, 14 \mathrm{a}, 22}$

$$
\begin{gathered}
\mathrm{RuCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}+\mathrm{xs} \mathrm{LiBr}+6 \mathrm{PPh}_{3} \xrightarrow[\text { heat }]{\mathrm{MeOH}} \mathrm{RuBr}_{2}\left(\mathrm{PPh}_{3}\right)_{3} \\
\mathrm{RuBr}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}+6 \mathrm{PPh}_{3} \xrightarrow[\text { heat }]{\mathrm{MeOH}} \mathrm{RuBr}_{2}\left(\mathrm{PPh}_{3}\right)_{3}
\end{gathered}
$$

However, pure product could only be obtained occasionally. For the former reaction, a mixture of the chloro and bromo complexes is often isolated while, for the latter, $\mathrm{RuBr}_{3} \cdot \mathrm{XH}_{2} \mathrm{O}$
is not a good starting material as it has limited solubility in MeOH . In this thesis work, similar difficulties were encountered when $\mathrm{RuBr}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ and $\mathrm{RuI}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ were prepared using the above methods. Thus, alternatives route to $\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathbf{6 b})$ and $\mathrm{RuI}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 \mathrm{c})$ were required.

3.3.1 Synthesis and Characterization of $\mathbf{R u B r}_{2}(\mathbf{P}-\mathbf{N})\left(\mathbf{P R}_{\mathbf{3}}\right)(\mathbf{6 b})$ and $\mathbf{R u I}_{\mathbf{2}}(\mathbf{P}-\mathbf{N})\left(\mathbf{P R}_{\mathbf{3}}\right)$ (6c)

Figure 3.7 Synthesis of $\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 \mathrm{~b})$ and $\mathrm{RuI}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 \mathrm{c})$.

Analytically pure 6b and 6c were obtained from the metathesis reactions of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathbf{6 a})$ with $\mathrm{NaX}(\mathrm{X}=\mathrm{Br}, \mathrm{I})$ as shown in Figure 3.7. For good yields, $\mathbf{6 a}$ is formed in situ by reaction of $\mathbf{1}$ with P-N. Addition of NaX is accompanied by precipitation of NaCl ; acetone was used because it readily dissolves NaI , while NaBr and NaCl are slightly soluble and insoluble, respectively. Complete precipitation of NaCl drives the reactions to completion, and microanalysis and NMR spectroscopy confirm the absence of $\mathbf{6 a}$. In the solid state, $\mathbf{6 b}$ is dark green while $\mathbf{6 c}$ is dark red. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ illustrating the P_{A} and P_{X} chemical shifts for $\mathbf{6 a}, \mathbf{6 b}$ and $\mathbf{6 c}$ are shown in Figure 3.8. The P_{A} and P_{X} resonances shift downfield with $\mathrm{X}=\mathrm{Cl} \rightarrow \mathrm{Br} \rightarrow \mathrm{I}$. In the ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$, singlets due to NMe_{2} are located at $\delta 3.07,3.17$ and 3.33 for $\mathbf{6 a}, \mathbf{6 b}$ and $\mathbf{6 c}$, respectively. The similarities between
the NMR spectra suggest strongly that $\mathbf{6 b}$ and $\mathbf{6 c}$ have the same structure as $\mathbf{6 a}$, square pyramidal about the Ru centre with the halide atoms mutually trans.

Figure $3.8 \quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $\left(81.0 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}\right)$ for (a) $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 \mathrm{a})$, (b) $\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 \mathrm{~b})$, and (c) $\mathrm{RuI}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 \mathrm{c})$.

Both $\mathbf{6 b}$ and $\mathbf{6 c}$ are more stable in the solid state than the chloro analogue $\mathbf{6 a}$ in that they do not react with the $\mathrm{H}_{2} \mathrm{O}$ in air. The formation and characterization of trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right)$ (33a), is described in Chapter 5. In solution, 6b adds $\mathrm{H}_{2} \mathrm{O}$ (observed in situ by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy) in the same way as $\mathbf{6 a}$, and more generally behaves like 6a; in particular the reaction with $\mathrm{H}_{2} \mathrm{~S}$ and the syntheses and X-ray crystal structures of cis-RuX $\mathbf{X}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)(\mathrm{X}=\mathrm{Cl}(\mathbf{1 8 a}), \mathrm{Br}(\mathbf{1 8 b}))$ are described in Chapter 4 (Sections 4.2.1 and 4.2.2). In solution, $\mathbf{6 c}$ is relatively less stable than $\mathbf{6 a}$ and $\mathbf{6 b}$. For example, cis- $\mathrm{RuI}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)(\mathbf{1 8 c})$ is initially formed when $\mathrm{H}_{2} \mathrm{~S}$ is added to a CDCl_{3} solution of 6c; however, the initially dark yellow solution decomposes to a dark brown solution containing unidentifiable species. The formation and decomposition of 18c were monitored by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy (Section 4.2.3).

3.3.2 In situ Formation of $\mathrm{Ru}(\mathbf{O H}) \mathbf{X}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{X}=\mathbf{C l}(\mathbf{2 8 a}), \mathrm{Br}(\mathbf{2 8 b}))$ and $\mathbf{R u}(\mathbf{O H})_{\mathbf{2}}(\mathbf{P}-\mathrm{N})\left(\mathbf{P P h}_{\mathbf{3}}\right)(\mathbf{3 1)}$

Monomeric late transition metal hydroxo complexes are thought to be intermediates in catalytic processes such as Wacker oxidations and the hydration of olefins to alcohols. ${ }^{23}$ Such complexes, however, are unstable and generally difficult to isolate, presumably due to weak metal-oxygen bonds resulting from a mismatch of hard ligands and soft metal centres. ${ }^{24}$ The most common method for their preparation is via metathesis reactions. For example, Wilkinson and co-workers have prepared $\mathrm{RuCl}(\mathrm{OH})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ by reaction of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ with NaOH or KOH in THF, acetone or t-butanol in the presence of $\mathrm{H}_{2} \mathrm{O}^{25}$ In this thesis work, this method was employed in the synthesis of Ru hydroxo complexes.

A bright orange solution is formed when excess NaOH is added to an d_{6}-acetone solution of $\mathbf{6 a}$. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopic analysis of this reaction in situ after 2 h reveals
the presence of three products, 28a (major species), 31 (minor product) and 33a (aquo complex) (Figure 3.9(a)). The presence of 33a is presumably due to the reaction of $6 \mathbf{a}$ with $\mathrm{H}_{2} \mathrm{O}$ from the hygroscopic NaOH . The AX P-spin coupling is retained in 28a and 31 as indicated by two sets of doublets at $\delta 64.09\left(\mathrm{P}_{\mathrm{A}}\right)$ and $50.76\left(\mathrm{P}_{\mathrm{X}}\right)$ with ${ }^{2} \mathrm{~J}_{\mathrm{PP}}=42.98 \mathrm{~Hz}$ and $\delta 79.11\left(\mathrm{P}_{\mathrm{A}}\right)$ and $73.44\left(\mathrm{P}_{\mathrm{X}}\right)$ with ${ }^{2} \mathrm{~J}_{\mathrm{PP}}=67.38 \mathrm{~Hz}$, respectively, and there is no dissociation of either PPh_{3} or $\mathrm{P}-\mathrm{N}$. After $\sim 5 \mathrm{~h}$, the concentration of 31 has increased while that of 28a has diminished, and the conversion of 28a to 31 is complete after $\sim 20 \mathrm{~h}$ (Figure 3.9(b)). The species 28a and $\mathbf{3 1}$ are tentatively identified (see below) as the stepwise substitution products $\mathrm{Ru}(\mathrm{OH}) \mathrm{Cl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ and $\mathrm{Ru}(\mathrm{OH})_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$, respectively (Figure 3.10). Inequivalent NMe singlets for 28a ($\delta 3.04,2.69$) and $31(\delta 2.60,2.28)$ are also assigned in their ${ }^{1} \mathrm{H}$ NMR

Figure 3.9 $\quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (121.4 MHz) for the in situ reaction of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ (6a) with NaOH in d_{6}-acetone after (a) 2 h and (b) 20 h at $25^{\circ} \mathrm{C}$.
spectra. The resonance of a coordinated OH , however, has not been located, although in general, $\mathrm{Ru}(\mathrm{II})-\mathrm{OH}$ chemical shifts are found between $\delta-7.0$ and $0.0 .^{25-27}$ In the present system, complicated ${ }^{1} \mathrm{H}$ NMR spectra are obtained because of the presence of $\mathrm{H}_{2} \mathrm{O}$ and insoluble NaOH . Repeated attempts to isolated these hydroxo complexes were unsuccessful as, during work-up procedures, decomposition occurred giving dark green solutions containing uncharacterizable species. The exact structure of $\mathbf{3 1}$ is uncertain from the presently available data; however, the presence of two inequivalent NMe resonances in the ${ }^{1} \mathrm{H}$ NMR spectrum suggests, an 'unsymmetrical' five-coordinate complex.

In the above reactions $\mathrm{H}_{2} \mathrm{O}$ probably play the role of solubilizing the NaOH . Upon addition of $\sim 10 \% \mathrm{H}_{2} \mathrm{O}$, the rates at which 28 a and 31 are formed increased significantly; in fact, 31 is now completely formed after $5 \mathrm{~h} .{ }^{1} \mathrm{H}$ NMR spectra show no evidence for the coordination of $\mathrm{H}_{2} \mathrm{O}$ to either hydroxo species.

6a

-

28a

31

Figure 3.10 The substitution of Cl^{-}ligands by OH ligands.

Verification for the stepwise displacement of Cl^{-}ligands by OH^{-}was made by study of the analogous reaction of $\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 b)$ with NaOH . The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR spectra for the above reaction indicate initial formation of $\mathrm{Ru}(\mathrm{OH}) \mathrm{Br}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{\mathbf{3}}\right)(\mathbf{2 8 b})$ after $\sim 2 \mathrm{~h}$, with complete conversion to 31 after 20 h . The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR data for 28a, $\mathbf{2 8 b}$ and 31 are shown in Tables 3.3 and 3.4, respectively. Because of the difference in the halide ligands, NMR signals of 28b are shifted slightly downfield from those of 28a and this
trend parallels that observed for $\mathbf{6 a}$ and $\mathbf{6 b}$. The fact that both reactions involving $\mathbf{6 a}$ and $\mathbf{6 b}$ with NaOH give identical species after 20 h demonstrates that the coordination sphere of $\mathbf{3 1}$ does not contain halide ligands.

In situ reactions of 31 with $\mathrm{H}_{2} \mathrm{~S}$ and H_{2} were performed, but the resulting species could not be characterized. Addition of $\mathrm{H}_{2} \mathrm{~S}(1 \mathrm{~atm})$ to a solution of 31 in the presence of excess NaOH resulted in a dark brown solution, that gave no ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signals; this suggests that paramagnetic Ru species are formed. Similar results were observed for the reaction of $\mathbf{3 1}$ with H_{2}.

Table 3.3 $\quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data for the in situ reactions of $\mathrm{RuX}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ with NaOH in d_{6}-acetone.

Reaction	Product	$\delta \mathrm{P}_{\mathrm{A}}$	$\delta \mathrm{P}_{\mathrm{x}}$	${ }^{2} \mathrm{~J}_{\mathrm{PP}}(\mathrm{Hz})$
$\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 a)+\mathrm{NaOH}$, after 2 h	$\mathrm{Ru}(\mathrm{OH}) \mathrm{Cl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ $(\mathbf{2 8 a})$	64.09	50.76	42.98
$\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 b)+\mathrm{NaOH}$, after 2 h	$\mathrm{Ru}(\mathrm{OH}) \mathrm{Br}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ $(\mathbf{2 8 b})$	65.95	51.23	41.22
6a or 6b +NaOH, after 20 h	$\mathrm{Ru}(\mathrm{OH})_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ $(\mathbf{3 1})$	79.11	73.44	67.38

Table 3.4 ${ }^{1} \mathrm{H}$ NMR data for the in situ reactions of $\mathrm{RuX}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ with NaOH in d_{6}-acetone.

Reaction	Product	$\delta \mathrm{NMe}$
$\begin{aligned} & \mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 \mathrm{a})+\mathrm{NaOH}, \\ & \text { after } 2 \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{Ru}(\mathrm{OH}) \mathrm{Cl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right) \\ & (\mathbf{2 8 a}) \end{aligned}$	3.04, 2.69
$\begin{aligned} & \mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 \mathrm{~b})+\mathrm{NaOH}, \\ & \text { after } 2 \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{Ru}(\mathrm{OH}) \mathrm{Br}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right) \\ & (\mathbf{2 8 b}) \end{aligned}$	3.22, 2.72
$\begin{aligned} & \hline \mathbf{6 a} \text { or } \mathbf{6 b}+\mathrm{NaOH}, \\ & \text { after } 20 \mathrm{~h} \\ & \hline \end{aligned}$	$\mathrm{Ru}(\mathrm{OH})_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ (31)	2.60, 2.28

3.3.3 In Situ Reactions of $\mathbf{6 a}$ or $\mathbf{6 b}$ with $\mathrm{NaSH} \cdot \mathbf{x H}_{2} \mathrm{O}$

The reactions of $\mathbf{6 a}$ or $\mathbf{6 b}$ with $\mathrm{NaSH} \cdot \mathrm{xH}_{2} \mathrm{O}$ parallel those with NaOH . The species, $\mathrm{Ru}(\mathrm{SH}) \mathrm{Cl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(27 a)$ or $\mathrm{Ru}(\mathrm{SH}) \mathrm{Br}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(27 b)$, are initially formed when excess
$\mathrm{NaSH} \cdot \mathrm{xH}_{2} \mathrm{O}$ is added to $\mathbf{6 a}$ or $\mathbf{6 b}$ in d_{6}-acetone at $-78^{\circ} \mathrm{C}$. At r.t., both reactions give $\mathrm{Ru}(\mathrm{SH})_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right) 30$ which, unlike dihydroxo complex 31, is thermally unstable and decomposes within 10 min of its initial formation. NMR evidence for the formations of 27a, 27b, and 30 will be presented in Section 4.7.

3.3.4 In Situ Formation of $\mathbf{R u}(\mathbf{H})_{\mathbf{2}}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{\mathbf{3}}\right)(\mathbf{3 2)}$

The metathesis reaction of $6 \mathbf{a}$ with NaH in situ gave exclusively $\mathrm{Ru}(\mathrm{H})_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ (32) as suggested by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR data. Heating a suspension of 6 a and NaH in d_{6}-acetone at $50^{\circ} \mathrm{C}$ leads to the formation of a bright orange solution. The reaction is complete after $\sim 15 \mathrm{~min}$, and a single product 32 is observed in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum. Doublets are found at $\delta 61.64\left(\mathrm{P}_{\mathrm{A}}\right)$ and $50.44\left(\mathrm{P}_{\mathrm{X}}\right)\left({ }^{2} \mathrm{~J}_{\mathrm{PP}}=24.71 \mathrm{~Hz}\right)$ and indicate that $\mathrm{P}-\mathrm{N}$ and PPh_{3} remain coordinated to the Ru centre. The above chemical shifts differ from those of $\mathrm{Ru}(\mathrm{H}) \mathrm{Cl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(29)$ which are found at $\delta 82.74$ and $67.39\left({ }^{2} \mathrm{~J}_{\mathrm{PP}}=33.20 \mathrm{~Hz}\right) .{ }^{2}$ The monohydrido species 29 is prepared from the reaction of $6 \mathbf{a}$ with PS (proton sponge) under $1 \mathrm{~atm} \mathrm{H}_{2}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of 32 at $25^{\circ} \mathrm{C}$ shows a singlet at $\delta 2.51$ due to the NMe_{2} resonance, and a doublet of doublets at $\delta-21.16$ (Figure 3.11) due to the dihydride is observed. The ${ }^{2} \mathrm{~J}_{\mathrm{HP}}$ coupling constants of 29.10 and 32.70 Hz suggest that the two hydride ligands are equivalent and are coupled to P_{A} and P_{X}, although specific assignments of the coupling constants are not obvious. In comparison, the hydride chemical shift of 29 is observed as a broad signal at $\delta-27.6$ at $25^{\circ} \mathrm{C}$, while at $-80^{\circ} \mathrm{C}$, this is resolved into a pseudotriplet $\left({ }^{2} \mathrm{~J}_{\mathrm{HP}}=28 \mathrm{~Hz}\right) .{ }^{2,3}$ Typical cis-hydride-phosphine coupling constants in $\mathrm{Ru}(\mathrm{II})$ complexes range from 24 to $30 \mathrm{~Hz} .{ }^{25,28}$ The proposed structure for 32 is square pyramidal containing mutually trans H -ligands (Figure 3.11).

Figure 3.11 High field ${ }^{1} \mathrm{H}$ NMR spectrum (300 MHz) for the in situ reaction of $\mathbf{6 a}$ with NaH in d_{6}-acetone at $25^{\circ} \mathrm{C}$. Proposed structure of the product 32 is shown in the inset.

As with the reactions of 6 a with NaOH and NaSH , it is reasonable to assume that the mono-hydride species 29 is an intermediate in the formation of 32 . However, attempts to observe 29 were unsuccessful as 32 is formed immediately upon addition of NaH to $\mathbf{6 a}$. Of interest, when the relatively less reactive CaH_{2} was used, 29 was observed to form slowly (over 2 weeks), and indeed no 32 was detected.

3.4 Synthesis of $\mathbf{R u C l}_{\mathbf{2}}(\mathbf{B P N})\left(\mathbf{P R}_{\mathbf{3}}\right)(\mathbf{R}=\mathbf{P h}(13), \boldsymbol{p}$-tolyl (14))

BPN contains one more dimethylamine group than P-N and is a potential tridentate ligand. Platelet crystals of BPN were obtained from saturated EtOH solutions of the compound. As expected, the ORTEP diagram (Figure 3.12) reveals trigonal pyramidal geometry about the P -atom. The average $\mathrm{P}-\mathrm{C}$ bond length ($1.84 \AA$) of BPN is comparable to that of $\mathrm{PPh}_{3}(1.83 \AA)$, while the bond angles for $\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(7)\left(103.5^{\circ}\right), \mathrm{C}(7)-\mathrm{P}(1)-\mathrm{C}(13)$
(101.9 ${ }^{\circ}$) and $\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(13)\left(97.9^{\circ}\right)$ are slightly deviant from the average $\mathrm{C}-\mathrm{P}-\mathrm{C}$ bond angle of 103° of PPh_{3}, the difference being presumably because of the repulsion of the NMe_{2} groups. ${ }^{29}$ The dihedral angles for the $\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(1)$ and $\mathrm{P}(1)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{N}(2)$ planes are $-1.2(7)$ and $3.7(8)^{\circ}$, respectively, indicating that the two amine groups and the lone electron pair of the P -atom point essentially in the same direction.

Figure 3.12 The ORTEP plot of BPN. Thermal ellipsoids for non-hydrogen atoms are drawn at 33%. Full experimental parameters and details are given in Appendix I.

When BPN is reacted with $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ or $\mathrm{RuCl}_{2}\left(\mathrm{P}(\text { p-tolyl })_{3}\right)_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dark orange solids can be isolated from the reaction mixtures. Microanalysis and NMR spectroscopic measurements are consistent with the formulations $\mathrm{RuCl}_{2}(\mathrm{BPN})\left(\mathrm{PPh}_{3}\right)$ (13) and $\operatorname{RuCl}_{2}(\mathrm{BPN})\left(\mathbf{P}(p \text {-tolyl })_{3}\right)(14)$. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonances are given in Table 3.5, and the ${ }^{2} \mathrm{~J}_{\mathrm{PP}}$ coupling constants are consistent with the presence of cis P -atoms. ${ }^{6,15}$ Two possible structures for six-coordinate $\mathbf{1 3}$ or $\mathbf{1 4}$ are shown in Figure 3.13. The presence of four inequivalent NMe groups observed in the ${ }^{1} \mathrm{H}$ NMR spectra (Table 3.6) strongly indicates an unsymmetrical structure such as Figure 3.13(a) for 13 and 14. The possibility of

(a)

(b)

$$
\mathrm{R}=\mathrm{Ph}, p \text {-tolyl }
$$

Figure 3.13 Possible structures of $\mathrm{RuCl}_{2}(\mathrm{BPN})\left(\mathrm{PR}_{3}\right)$.

Table 3.5 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopic data for $\mathrm{RuCl}_{2}(\mathrm{BPN})\left(\mathrm{PR}_{3}\right)$ in CDCl_{3}.

	$\delta \mathrm{P}_{\mathrm{A}}$	$\delta \mathrm{P}_{\mathrm{X}}$	${ }^{2} \mathrm{~J}_{\mathrm{PP}}(\mathrm{Hz})$
$\mathrm{R}=\mathrm{Ph}(13)$	56.00	33.67	32.05
$\mathrm{R}=p$-tolyl (14)	56.05	31.26	31.44

Table 3.6 ${ }^{1} \mathrm{H}$ NMR chemical shifts for $\mathrm{RuCl}_{2}(\mathrm{BPN})\left(\mathrm{PR}_{3}\right)$ in CDCl_{3}; assignments of the phenyl region have been omitted.

	$\delta \mathrm{NMe}$				$\delta p-\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CH}_{3}$
$\mathrm{R}=\operatorname{Ph}(13)$	3.63	3.15	2.60	2.20	-
$\mathrm{R}=p$-tolyl (14)	3.64	3.10	2.57	2.20	2.20

five-coordinate species (with a dangling $-\mathrm{NMe}_{2}$) cannot be ruled out entirely, but the complexes are unreactive in d_{6}-acetone solution when subjected to 1 atm of $\mathrm{H}_{2}, \mathrm{CO}, \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{H}_{2} \mathrm{~S}$ at r. t., implying six-coordinate geometry. Decomposition to paramagnetic species and phosphine oxides was observed when 13 and 14 were exposed to air for 2 days.

3.5 Synthesis of $\operatorname{Mer}-\mathrm{RuCl}_{\mathbf{3}}(\mathrm{BPN})(16)$

Reaction of BPN with $\mathrm{RuCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}$ (DMA)•(DMA) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave species 16, and platelet crystals containing one CHCl_{3} per molecule of complex were obtained from saturated CHCl_{3} solutions of the complex. The ORTEP plot is shown in Figure 3.14, with selected bond lengths and angles given in Tables 3.7 and 3.8, respectively. A pseudo octahedral geometry around the Ru centre with mer Cl -atoms is evident, analogous to that seen in the previously crystallographically characterized $\mathrm{RuCl}_{3}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right) \quad$ (15a) and $\mathrm{RuCl}_{3}(\mathrm{AMPHOS})\left(\mathrm{PPh}_{3}\right)$ complexes. ${ }^{2}$ Two Cl -atoms are weakly hydrogen-bonded $(\mathrm{Cl}(2) \cdots \mathrm{H}(26) 2.65 \AA$ and $\mathrm{Cl}(3) \cdots \mathrm{H}(26) 2.86 \AA)$ to the $\mathrm{H}-$ atom of the solvated CHCl_{3} molecule and, as a result, the $\operatorname{Ru}-\mathrm{Cl}(2)(2.359(2) \AA$) and $\mathrm{Ru}-\mathrm{Cl}(3)(2.482(2) \AA)$ bonds are elongated relative to $\mathrm{Ru}-\mathrm{Cl}(1)(2.316(2) \AA)$. The further lengthening of the $\mathrm{Ru}-\mathrm{Cl}(3)$ bond results from the strong trans influence of the P -atom of the BPN ligand. The $\mathrm{Ru}(1)-\mathrm{P}(1)$ (2.199(2) $\AA), \operatorname{Ru}(1)-\mathrm{N}(1)(2.207(5) \AA)$ and $\mathrm{Ru}(1)-\mathrm{N}(2)(2.209(5) \AA)$ bond lengths are considerably shorter than the Ru-P (average $2.37 \AA$) and Ru-N (average $2.35 \AA$) bonds in 15 a and $\mathrm{RuCl}_{3}(\mathrm{AMPHOS})\left(\mathrm{PPh}_{3}\right)$ probably because BPN is bonded rigidly in a meridional geometry. Furthermore, the $\mathrm{N}(1)-\mathrm{Ru}-\mathrm{N}(2)$ angle is only $160.0(2)^{\circ}$ because of this strain.

Figure 3.14 The ORTEP plot of mer- $\mathrm{RuCl}_{3}(\mathrm{BPN}) \cdot \mathrm{CHCl}_{3}$ (16). Thermal ellipsoids for non-hydrogen atoms are drawn at 33% probability (some of the phenyl carbons have been omitted for clarity). Full experimental parameters and details are given in Appendix II.

Table 3.7 Selected bond lengths (\AA) for mer- $\mathrm{RuCl}_{3}(\mathrm{BPN})(16)$ with estimated standard deviation in parentheses.

Bond	Length (\AA)	Bond	Length (\AA)
$\mathrm{Ru}(1)-\mathrm{Cl}(1)$	$2.316(2)$	$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.199(2)$
$\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$2.359(2)$	$\mathrm{Ru}(1)-\mathrm{N}(1)$	$2.207(5)$
$\mathrm{Ru}(1)-\mathrm{Cl}(3)$	$2.482(2)$	$\mathrm{Ru}(1)-\mathrm{N}(2)$	$2.209(5)$
$\mathrm{Cl}(2) \cdots \mathrm{H}(26)$	2.65	$\mathrm{Cl}(3) \cdots \mathrm{H}(26)$	2.86

Table 3.8 Selected bond angles $\left({ }^{\circ}\right)$ for $m e r-\mathrm{RuCl}_{3}(\mathrm{BPN})(16)$ with estimated standard deviation in parentheses.

Bonds	Angles (${ }^{\circ}$)	Bond	Angles (${ }^{\circ}$)
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$177.65(6)$	$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{N}(2)$	$83.0(1)$
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(3)$	$87.81(7)$	$\mathrm{Cl}(3)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$179.88(6)$
$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{Cl}(3)$	$90.03(6)$	$\mathrm{Cl}(3)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$95.2(2)$
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$92.12(6)$	$\mathrm{Cl}(3)-\mathrm{Ru}(1)-\mathrm{N}(2)$	$98.4(1)$
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$98.6(1)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$84.7(1)$
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{N}(2)$	$96.5(1)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{N}(2)$	$81.7(1)$
$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$90.05(5)$	$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{N}(2)$	$160.0(2)$
$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$82.5(1)$		

The $\mu_{\text {eff }}$ value of 1.5 BM is comparable with the spin only value of 1.73 BM for a low spin, $R u(I I I) d^{5}$ structure.

3.6 The Reactions of TPN with Ru (II) and (III)

Figure 3.15 ORTEP plot of TPN, whose structure was determined by other members of this group. ${ }^{30}$ Thermal ellipsoids for non-hydrogen atoms are drawn at 33% probability.

TPN contains three dimethylamine groups and can potentially function as a tetradentate ligand. Similar to the structure of BPN (Figure 3.12), that of TPN (Figure 3.15) shows that the P -atom and the amine groups point in the same direction as indicated by the small dihedral angles of $-2.4(2),-10.9(2)$ and $4.4(2)^{\circ}$ for the $\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(1)$, $\mathrm{P}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(2)$ and $\mathrm{P}(1)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{N}(3)$ planes, respectively. When TPN was added to solutions of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ or $\mathrm{RuCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{DMA}) \cdot(\mathrm{DMA})$, no reactions were observed. This was surprising because TPN does coordinate to Pt (II) and $\mathrm{Pd}(I I)$ forming
four-coordinate, square planar complexes. ${ }^{31}$ Presumably, the coordination of TPN to form six-coordinate $\mathrm{Ru}(\mathrm{II})$ species is disfavoured due to mutual replusion of the sterically demanding PPh_{3} and TPN ligands.

3.7 Characterization and Reactivity of $\mathbf{R u C l}_{\mathbf{2}}(\mathbf{P A N})\left(\mathbf{P R}_{\mathbf{3}}\right)\left(\mathbf{R}=\mathbf{P h}(9), \boldsymbol{p}\right.$-tolyl $\left.\mathbf{I}^{\mathbf{2}}(\mathbf{1 0})\right)$

Dark green solids, isolated from the reactions of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ or $\mathrm{RuCl}_{2}\left(\mathrm{P}(p \text {-tolyl })_{3}\right)_{3}$ with the bulky and rigid PAN ligand (Sections 2.6.8 and 2.6.9), analyze for the species 9 and 10. These complexes are assumed to have square pyramidal geometries based on their NMR data which are comparable to those of $\mathbf{6 a}$ and 7 a , the $\mathrm{P}-\mathrm{N}$ analogues (Section 3.2). The ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $9\left(\delta 97.10\right.$ and $41.39,{ }^{2} \mathrm{~J}_{\mathrm{PP}}=32.05 \mathrm{~Hz}$ in $\left.\mathrm{CDCl}_{3}\right)$ and $10(\delta 97.71$ and $39.57,{ }^{2} \mathrm{~J}_{\mathrm{PP}}=33.39 \mathrm{~Hz}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$) consist of AX cis P-spin coupling patterns, while the ${ }^{1} \mathrm{H}$ NMR spectra show inequivalent NMe groups with singlets at $\delta 3.68$ and 2.96 for 9 and $\delta 3.50$ and 2.90 for 10. The NMR data do not distinguish between trans- or cis- Cl -atoms (Figure 3.16), but the former would require the presence of a rigid $\mathrm{Ru}(\mathrm{PAN})$ chelate ring.

(a)

(b)

$$
\mathrm{R}=\mathrm{Ph}, p \text {-tolyl }
$$

Figure 3.16 Possible structures for $\mathrm{RuCl}_{2}(\mathrm{PAN})\left(\mathrm{PR}_{3}\right)$.

Mudalige found that 10 did not react with small molecules such as $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$ or $\mathrm{CH}_{3} \mathrm{OH}$ under conditions identical to those used for the reactions with $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right) .{ }^{2}$ In this present thesis work, reactions of 9 and 10 with H_{2} or $\mathrm{H}_{2} \mathrm{~S}$ were re-investigated but, even with the H_{2} and $\mathrm{H}_{2} \mathrm{~S}$ pressures increased from 1 to 3 atm and the mixtures heated to $80^{\circ} \mathrm{C}$ in $\mathrm{C}_{6} \mathrm{H}_{6}$, no reactions were observed. The inability of $\mathrm{RuCl}_{2}(\mathrm{PAN})\left(\mathrm{PR}_{3}\right)$ to coordinate to small molecules is attributed to the steric bulk of the PAN ligand hindering access to the Ru centre.

3.8 Attempted Synthesis and Reactivity of $\mathbf{R u C l}_{\mathbf{2}}(\mathbf{A M P H O S})\left(\mathbf{P P h}_{3}\right)(11)$

The isolation of analytically pure 11 using the preparative method for $\operatorname{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)$ and $\mathrm{RuCl}_{2}(\mathrm{PAN})\left(\mathrm{PR}_{3}\right)$ was not successful. Although $>99 \%$ product formation is observed by NMR when $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ and AMPHOS is reacted in situ in $\mathrm{C}_{6} \mathrm{D}_{6}$, mixtures containing 11, $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}, \mathrm{OPPh}_{3}$ and PPh_{3} are often isolated (Section 2.6.10). Mudalige also found such difficulties but was able to synthesis 11 employing the indirect method shown in Figure 3.17. ${ }^{2} \mathrm{RuCl}_{3}(\mathrm{AMPHOS})\left(\mathrm{PPh}_{3}\right)$, initially prepared from the reaction of $\mathrm{RuCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{DMA}) \cdot(\mathrm{DMA})$ with AMPHOS, is reduced to " $\mathrm{Ru}(\mathrm{H}) \mathrm{Cl}(\mathrm{AMPHOS})\left(\mathrm{PPh}_{3}\right)$ " by H_{2} in the presence of 3 equiv. of PS. Chloride abstraction from CHCl_{3} by the hydrido complex resulted in the production of 11. However, complications also arise because of the extreme O_{2}-sensitivity of " $\mathrm{Ru}(\mathrm{H}) \mathrm{Cl}(\mathrm{AMPHOS})\left(\mathrm{PPh}_{3}\right)$ " and contamination by phosphine oxides. As a result, when this procedure was followed, 11 was isolated in low yield and was not pure.

The structure of $\mathbf{1 1}$ is presumed to be square pyramidal with trans Cl -atoms as in the P-N analogue. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemicals shifts of 11 appear at $\delta 84.56$ and $40.32\left({ }^{2} \mathrm{~J}_{\mathrm{PP}}=\right.$ 37.03 Hz), while the diastereotopic NMe_{2} groups in AMPHOS result in the observation of two singlets at $\delta 2.86$ and 2.33 in the ${ }^{1} \mathrm{H}$ NMR spectrum.

Figure 3.17 Synthesis of $\mathrm{RuCl}_{2}(\mathrm{AMPHOS})\left(\mathrm{PPh}_{3}\right)(11)$. *The actual structure of $\mathrm{Ru}(\mathrm{H}) \mathrm{Cl}(\mathrm{AMPHOS})\left(\mathrm{PPh}_{3}\right)$ is in question as the dimeric formulation $(\mu-\mathrm{Cl})_{2}\left[\mathrm{Ru}(\mathrm{H})(\mathrm{AMPHOS})\left(\mathrm{PPh}_{3}\right)\right]_{2}$ has also been proposed. ${ }^{2}$

The reaction of $\mathrm{H}_{2}(1 \mathrm{~atm})$ with an impure sample of $11(\sim 20 \mathrm{mg})$ was carried out at r. t . in $\mathrm{C}_{7} \mathrm{H}_{8}(\sim 1 \mathrm{~mL})$, when red-brown crystals were isolated from the mixture after 24 h . The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of these crystals in $\mathrm{C}_{7} \mathrm{D}_{8}$ at $20^{\circ} \mathrm{C}$ shows two broad resonances at $\delta 71.4$ and 46.4, identical to those of the previously known $\left[\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{2}-\mathrm{H}_{2}\right) \mathrm{Ru}(\mu-\mathrm{H})(\mu-\mathrm{Cl})_{2} \mathrm{Ru}(\mathrm{H})\left(\mathrm{PPh}_{3}\right)_{2}\right] .{ }^{\text {as,13c,32 }}$ A broad ${ }^{1} \mathrm{H}$ resonance at $\delta-12.9$ is due to unresolved signals from the $\mu-\mathrm{H}, \eta^{2}-\mathrm{H}_{2}$ and the terminal H . The formation of the dimer is presumably due to the presence of PPh_{3}, while AMPHOS is thought to act as a base and form AMPHOS•HCl (Figure 3.18).

Figure 3.18 Synthesis of $\left[\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{2}-\mathrm{H}_{2}\right) \mathrm{Ru}(\mu-\mathrm{H})(\mu-\mathrm{Cl})_{2} \mathrm{Ru}(\mathrm{H})\left(\mathrm{PPh}_{3}\right)_{2}\right]$.

For preparations of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)(\mathrm{L})(\mathrm{L}=$ small molecule, see Sections 2.8, 2.10 and 2.11) generally, L is added to a solution of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)$ which is initially formed in situ from the reaction of $\mathrm{RuCl}_{2}\left(\mathrm{PR}_{3}\right)_{3}$ with $\mathrm{P}-\mathrm{N}$. It was thought that $\mathrm{RuCl}_{2}(\mathrm{AMPHOS})\left(\mathrm{PPh}_{3}\right)(\mathrm{L})$ might also be synthesized without the isolation of $\mathbf{1 1}$. Thus, to a solution of 11, formed in situ from $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}(0.02 \mathrm{mmol})$ and AMPHOS (0.02 mmol) in $\mathrm{CDCl}_{3}(\sim 1 \mathrm{~mL})$ in a NMR tube, was added $1 \mathrm{~atm} \mathrm{H}_{2}$; a dark brown solution formed immediately and dark purple crystals precipitated overnight. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(\delta 59.2\right.$, br) and ${ }^{1} \mathrm{H}$ NMR spectra ($\delta-17.5, \mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=26 \mathrm{~Hz}$) of these crystals in CDCl_{3} show that the compound is $\mathrm{Ru}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)_{3} .{ }^{28}$ The observations clearly indicate that coordination of the amine group of AMPHOS to $\mathrm{Ru}(\mathrm{II})$ is disfavoured, AMPHOS preferentially reacting with H_{2} in the presence of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ to form AMPHOS•HCl (Figure 3.19). The inability to isolate pure 11 precluded studies of its reactivity with small molecules.

Figure 3.19 Synthesis of $\mathrm{Ru}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)_{3}$ using AMPHOS as the base.

3.9 Attempted Preparations of $\mathbf{R u C l}_{\mathbf{2}}(\mathbf{A L A P H O S})_{2}(12)$

When one or two equiv of ALAPHOS was added to a solution of cis - RuCl_{2} (DMSO) ${ }_{4}$ or $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, a bright pink solid was isolated after precipitation with hexanes (Section 2.6.11). The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of this product indicated the presence of several species with the major one characterized by a ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ resonance at $\delta 55.60$ (s) and tentatively identified as 12. The structure (Figure 3.20) is thought to be analogous to that of $\mathrm{RuCl}_{2}\left[\mathrm{~K}^{2}(P, N)-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right]_{2}$, which has been crystallographically characterized and gives a singlet at $\delta 56.5$ in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum; ${ }^{33}$ furthermore, this complex is also pink and was isolated from the reaction of cis - $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ or $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ with 2 equiv of $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2} \cdot{ }^{33,34}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of the pink solid containing 12 and other contaminants is complicated because of overlapping resonances of coordinated chiral ALAPHOS, and ${ }^{1} \mathrm{H}$ assignments were not made. Because 12 could not be obtained pure, further experiments to probe its reactivity were not carried out.

(S)-ALAPHOS

Figure 3.20 Structure of $\mathrm{RuCl}_{2}\left(\mathrm{ALAPHOS}_{2}\right.$ (12) (proposed) and $\mathrm{RuCl}_{2}\left[\mathrm{\kappa}^{2}(P, N)-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right]_{2}$.

3.10 Miscellaneous: Reactivity of Trans- $\mathrm{RuCl}_{\mathbf{2}}(\mathbf{P O})_{2}(5)$ with $\mathbf{H}_{2} \mathrm{~S}$

Complex 5 was prepared by the reaction of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ with 1 or 2 equiv of PO (o-diphenylphosphineanisole) in acetone (Section 2.5). ${ }^{35}$ The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 5 in CDCl_{3} consists of a singlet at $\delta 64.20$ due to equivalent P -atoms, and the ${ }^{1} \mathrm{H}$ NMR spectrum
shows a singlet at $\delta 4.57$ due to equivalent OMe groups. When $1 \mathrm{~atm} \mathrm{H}_{2} \mathrm{~S}$ was added to a CDCl_{3} solution of 5 , no reaction was observed even after 2 weeks at $60^{\circ} \mathrm{C}$. However, when excess PPh_{3} was present, 5 reacted slowly with $\mathrm{H}_{2} \mathrm{~S}$ at 60 to $100^{\circ} \mathrm{C}$, and the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the in situ product mixture showed new resonances corresponding to two products, I and II. AX P-spin patterns were observed: for $\mathbf{I}, \delta 57.38,45.34\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{PP}}=\right.$ 33.81 Hz), and for $\Pi, \delta 67.94,56.79\left(\mathrm{~d}^{2}{ }^{2} \mathrm{~J}_{\mathrm{PP}}=76.60 \mathrm{~Hz}\right)$. In the ${ }^{1} \mathrm{H}$ NMR spectrum, new signals at $\delta 4.69(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$ and $\delta 1.13\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{S} \mathrm{H}_{2}\right)$ were seen. Unfortunately, the above reaction did not go to completion $\left({ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\right.$ NMR data suggest $\sim 10 \%$ conversion), and species I and II could not be isolated. The tentative structures for I and II are shown in Figure 3.21.

Figure 3.21 Possible reactions of $\mathrm{RuCl}_{2}(\mathrm{PO})_{2}(5)$ with $\mathrm{H}_{2} \mathrm{~S}$.

3.11 Summary

The very reactive $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)(\mathrm{R}=\mathrm{Ph}(\mathbf{6 a}), p$-tolyl (7a)) complexes have been prepared and characterized. The coordination of $\mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{~N}_{2} \mathrm{O}$ and other small molecules to 6a and 7a will be discussed in Chapters 4,5 and 6. In solution, these complexes are O_{2}-sensitive and decompose to give the $\mathrm{Ru}($ III $)$ diamagnetic dinuclear $(\mu-\mathrm{O})(\mu-\mathrm{Cl})_{2}[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})]_{2}(17)$. The metathesis reactions of 6 a with $\mathrm{NaX}(\mathrm{X}=\mathrm{Br}, \mathrm{I}, \mathrm{OH}, \mathrm{SH}$
and H) result in the formation (isolated or observed in situ) of $\mathrm{Ru} \mathrm{X}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ species. Other $\mathrm{Ru}(\mathrm{II})$ aminophosphine complexes, such as $\mathrm{RuCl}_{2}(\mathrm{BPN})\left(\mathrm{PR}_{3}\right)$ and $\mathrm{RuCl}_{2}(\mathrm{PAN})\left(\mathrm{PR}_{3}\right)$, have also been isolated but they are unreactive toward the small molecules. The ability of aminophosphine ligands to coordinate to $\mathrm{Ru}(\mathrm{II})$ is dependent upon their steric bulk and electronic nature. For instance, the sterically hindered TPN does not react with $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$, while the reaction of the basic AMPHOS ligand with H_{2} and $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ results in the formation of $\mathrm{Ru}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)_{3}$ and AMPHOS $\cdot \mathrm{HCl}$.

3.12 References

1. (a) Hampton, C. R. S. M.; Ph.D. Thesis, The University of British Columbia, 1989. (b) Hampton, C. R. S. M.; Butler, I. R.; Cullen, W. R.; James, B. R.; Charland, J.-P.; Simpson, J. Inorg. Chem. 1992, 31, 5509.
2. Mudalige, D. C. Ph.D. Thesis, The University of British Columbia, 1994.
3. Mudalige, D. C.; Rettig, S. J.; James, B. R.; Cullen, W. R. J. Chem. Soc., Chem. Commun. 1993, 830.
4. Armit, P. W.; Boyd, A. S. F.; Stephenson, T. A. J. Chem. Soc., Dalton Trans. 1975, 1663.
5. Jung, C. W.; Garrou, P. E.; Hoffman, P. R.; Caulton, K. G. Inorg. Chem. 1984, 23, 726.
6. (a) Joshi, A. M. Ph.D. Thesis, The University of British Columbia, 1990.
(b) Joshi, A. M.; Thorburn, I. S.; Rettig, S. J.; James, B. R. Inorg. Chim. Acta 1992, 198-200, 283.
7. Jones, N. D.; MacFarlane, K. S.; Schutte, R. P.; Smith, M. B.; Rettig, S. J.; James, B. R. Inorg. Chem. 1999, 38, 3956.
8. (a) Evans, I. P.; Spencer, A.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1973, 204.
(b) Carmichael, D.; Floch, P. L.; Ricard, L.; Mathey, F. Inorg. Chim. Acta 1992, 198, 437.
9. (a) Mashima, K.; Kusano, K.; Ohta, T.; Noyori, R.; Takaya, H. J. Chem. Soc., Chem. Commun. 1989, 1208.
(b) Bennett, M. A.; Ennett, J. P. Inorg. Chim. Acta 1992, 198, 583.
(c) Fogg, D. E.; James, B. R.; J. Organomet. Chem., 1993, 462, C21.
10. (a) Bennett, M. A.; Wilkinson, G. Chem. Ind. (London) 1959, 1516.
(b) Ohta, T.; Noyori, R.; Takaya, H. Inorg. Chem. 1988, 27, 566.
(c) Kawano, H.; Ikariya, T.; Ishi, Y.; Saburi, M.; Yoshikawa, S.; Uchida, Y.;

Kumobayashi, H. J. Chem. Soc., Perkin Trans. 1 1989, 1571.
11. LaPlaca, S. J.; Ibers, J. A. Inorg. Chem. 1965, 4, 778.
12. (a) MacFarlane, K. S. Ph.D. Thesis, The University of British Columbia, 1995.
(b) MacFarlane, K. S.; Joshi, A. M.; Rettig, S. J.; James, B. R. Inorg. Chem. 1996, 35, 7304.
13. (a) James, B. R.; Thompson, L. K.; Wang, D. K. W. Inorg. Chim. Acta 1978, 29, L237.
(b) Jardine, F. H. Prog. Inorg. Chem. 1984, 31, 265.
(c) Dekleva, T. W.; Thorburn, I. S.; James, B. R. Inorg. Chim. Acta 1985, 100, 49.
14. (a) Bressan, M.; Rigo, P. Inorg. Chem. 1975, 14, 2286.
(b) James, B. R.; Wang, D. K. W. Inorg. Chim. Acta 1976, 19, L17.
(c) Wang, D. K. W. Ph.D. Thesis, The University of British Columbia, 1978.
(d) Thorburn, I. S. Ph.D. Thesis, The University of British Columbia, 1985.
(e) James, B. R.; Pacheco, A.; Rettig, S. J.; Thorburn, I. S.; Ball, R. G.; Ibers, J. A. J. Mol. Catal. 1987, 41, 147.
15. (a) Pregosin, P. S.; Kunz, R. W. NMR: Basic Princ. Prog. 1979, 16, 28.
(b) Krassowski, D. W.; Nelson, J. H.; Brower, K. R.; Hauenstein, D.; Jacobson, R. A. Inorg. Chem. 1988, 27, 4294.
16. MacFarlane, K. S.; Thorburn, I. S.; Cyr, P. W.; Chau, D. E. K.-Y.; Rettig, S. J.; James, B. R. Inorg. Chim. Acta 1998, 270, 130.
17. (a) Smith, P. M.; Fealey, T.; Earley, J. E.; Silverton, J. V. Inorg. Chem. 1971, 10, 1943.
(b) Llobet, A.; Curry, M. E.; Evans, H. T.; Meyer, T. J. Inorg. Chem. 1988, 28, 3131.
(c) Saski, Y.; Suzuki, M.; Nagasawa, A.; Tokiwa, A.; Ebihara, M.; Yamaguchi, T.;

Kabuto, C.; Ochi, T.; Ito, T. Inorg. Chem. 1991, 30, 4903.
(d) Sudha, C.; Mandal, S. K.; Chakravarty, A. R. Inorg. Chem. 1993, 32, 3801.
18. Orpen, A. G.; Brammer, L.; Allen, F. H.; Kennard, O.; Watson, D. G.; Raylor, R. J. Chem. Soc., Dalton Trans. 1989, S1.
19. Zhilyaev, A. N.; Kuz'menko, I. V.; Fomina, T. A.; Katser, S. B.; Baranovskii, I. B. Russ. J. Inorg. Chem. (Engl. Transl.), 1993, 38, 847.
20. Weaver, T. R.; Meyer, T. J.; Adeyemi, S. A.; Brown, G. M.; Eckberg, R. P.; Hatfield, W. E.; Johnson, E. C.; Murray, R. W.; Untereker, D. J. Am. Chem. Soc. 1975, 97, 3039.
21. Sen, A.; Halpern, J. J. Am. Chem. Soc. 1977, 99, 8337.
22. Dekleva, T. W. Ph.D. Thesis, The University of British Columbia, 1983.
23. Bryndza, H. E.; Tam, W. Chem. Rev. 1988, 88, 1163, and references therein.
24. (a) Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533.
(b) Pearson, R. G. J. Chem. Educ. 1968, 45, 643.
(c) Pearson, R. G. Inorg. Chem. 1988, 27, 734.
25. Chaudret, B. N.; Cole-Hamilton, D. J.; Nohr, R. S.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1977, 1546.
26. Bryndza, H. E.; Fong, L. K.; Paciello, R. A.; Tam, W.; Bercaw, J. E. J. Am. Chem. Soc. 1987, 109, 1444.
27. Kaplan, A. W.; Bergman, R. G. Organometallics 1998, 17, 5072.
28. Hallman, P. S.; McGarvey, B. R.; Wilkinson, G. J. Chem. Soc. (A) 1968, 3143.
29. (a) Daly, J. J. J. Chem. Soc. 1964, 3799.
(b) Dunne, B. J.; Orpen, A. G. Acta Cryst. C 1991, 47, 345.
30. Meessen, P. H.; Rettig, S. J.; James, B. R. unpublished data.
31. Fritz, H. P.; Gordan, I. R.; Schwarzhans, K. E.; Venanzi, L. M. J. Chem. Soc. 1965, 5210.
32. (a) Hampton, C.; Dekleva, T. W.; James, B. R.; Cullen, W. R. Inorg. Chim. Acta 1988, 145, 165.
(b) MacFarlane, K. S.; Joshi, A. M.; Rettig, S. J.; James, B. R. J. Chem. Soc., Chem. Commun. 1997, 1363.
33. Guo, Z.; Habtemariam, A.; Sadler, P. J.; James, B. R. Inorg. Chim. Acta 1998, 273, 1.
34. Shen, J.-Y.; Slugovc, C.; Wiede, P.; Mereiter, K.; Schmid, R.; Kirchner, K. Inorg. Chim. Acta 1998, 268, 69.
35. Rauchfuss, T. B.; Patino, F. T.; Roundhill, D. M. Inorg. Chem. 1975, 14, 652.

Chapter 4

Transition Metal $\mathrm{H}_{2} \mathrm{~S}$ and Thiol Complexes: Synthesis and Characterization of $\operatorname{Cis}-\mathrm{RuX}_{\mathbf{2}}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{\mathbf{3}}\right)(\mathrm{L}) ; \mathrm{L}=\mathbf{H}_{\mathbf{2}} \mathrm{S}$, Thiols

4.1 Introduction

A recent review on the coordination chemistry and catalytic conversions of $\mathrm{H}_{2} \mathrm{~S}$ indicates that such chemistry has received little attention in the literature. ${ }^{1}$ The synthesis and isolation of $\mathrm{H}_{2} \mathrm{~S}$ and thiol transition metal complexes are rare because they are often unstable even in an O_{2}-free atmosphere and at low temperatures. ${ }^{2}$ The instability of these complexes is often due to the acidic nature of $\mathrm{H}_{2} \mathrm{~S}$ and thiols; upon coordination, the acidic protons are often lost and metal thiolate or sulfide-bridged complexes are formed (see Chapter 1). In this Chapter, a brief summary of the $\mathrm{H}_{2} \mathrm{~S}$ and thiol metal complexes synthesized or observed prior to this work is described; and then the preparation and characterization of cis-RuX $\mathbf{X}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{L})\left(\mathrm{X}=\mathrm{Br}, \mathrm{Cl} ; \mathrm{L}=\mathrm{H}_{2} \mathrm{~S}, \mathrm{MeSH}, \mathrm{EtSH}\right)$ are discussed.

4.1.1 Transition Metal $\mathrm{H}_{2} \mathrm{~S}$ Complexes

The first reported crystal structure of a transition metal $\mathrm{H}_{2} \mathrm{~S}$ complex is that of $\left[\mathrm{Ru}\left(\mathrm{SH}_{2}\right)\left(\mathrm{PPh}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right] \cdot \mathrm{THF}\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime 2-}=1,2\right.$-bis[(2-mercaptophenyl)thio $]$ ethane(2-)), obtained by Sellmann and co-workers. ${ }^{3}$ This complex was isolated by the reaction of polymeric $\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right]_{x}$ with liquid $\mathrm{H}_{2} \mathrm{~S}$ at $-70^{\circ} \mathrm{C}$ (Figure 4.1(a)). Careful recrystallization from THF/pentane gave yellow crystals that were stable at $25^{\circ} \mathrm{C}$ under O_{2}-free conditions but slowly lost $\mathrm{H}_{2} \mathrm{~S}$ when stored in vacuo. In the unit cell, enantiomeric units of
$\left[\mathrm{Ru}\left(\mathrm{SH}_{2}\right)\left(\mathrm{PPh}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right]$ are associated via two $\mathrm{S}-\mathrm{H} \cdots \mathrm{S}$ bridges and are bound to THF molecules via S-H $\cdots \mathrm{O}$ bridges (see Figure $4.1(\mathrm{~b})$). The coordinated $\mathrm{H}_{2} \mathrm{~S}$ ligand is stabilized by strong hydrogen bonds with $\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{H} \cdots \mathrm{O}$ distances of 2.58 and $2.16 \AA$, respectively. The two S-H bond lengths are 1.19 and $1.21 \AA$, shorter than those of gaseous $\mathrm{H}_{2} \mathrm{~S}, 1.33 \AA^{4}{ }^{4}$ The $v_{\mathrm{SH} \ldots \mathrm{S}}$ is found at $2290 \mathrm{~cm}^{-1}$ and the $\nu_{\mathrm{SH} \cdots \mathrm{O}}$ at $2410 \mathrm{~cm}^{-1}$. A broad ${ }^{1} \mathrm{H}$ NMR signal at $\delta 1.96$ is attributed to the $\mathrm{H}_{2} \mathrm{~S}$ ligand. Without solvated THF, this complex is highly labile even under an $\mathrm{H}_{2} \mathrm{~S}$ atmosphere. In the presence of O_{2}, both complexes (solvent-free or solvated THF) are oxidized to the bridged disulfide complex $\left[\left(\mu-\mathrm{S}_{2}\right)\left\{\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)^{\prime} \mathrm{S}_{4}{ }^{\prime}\right\}_{2}\right]$ (Figure 4.1(c)).
(a) $\quad\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)^{\prime} \mathrm{S}_{4}{ }^{\prime}\right]+\mathrm{H}_{2} \mathrm{~S} \xrightarrow[5 \text { min }]{-70^{\circ} \mathrm{C}} \quad\left[\mathrm{Ru}\left(\mathrm{SH}_{2}\right)\left(\mathrm{PPh}_{3}\right)^{\prime} \mathrm{S}_{4}{ }^{\prime}\right]$

(c) $\quad 2\left[\mathrm{Ru}\left(\mathrm{SH}_{2}\right)\left(\mathrm{PPH}_{3}\right){ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right] \quad \underset{-2 \mathrm{H}_{2} \mathrm{O}}{+\mathrm{O}_{2}} \quad\left[\left(\mu-\mathrm{S}_{2}\right)\left\{\mathrm{Ru}\left(\mathrm{PPH}_{3}\right){ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right\}_{2}\right]$

Figure 4.1 The (a) preparation, (b) structure and (c) oxidation of $\left[\mathrm{Ru}\left(\mathrm{SH}_{2}\right)\left(\mathrm{PPh}_{3}\right)\left({ }^{\text {' }} \mathrm{S}_{4}{ }^{\prime}\right)\right]$.

The unstable salts, $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{SH}_{2}\right)\right]\left[\mathrm{BF}_{4}\right]_{2}$ and trans- $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{SH}_{2}\right)(\mathrm{isn})\right]\left[\mathrm{BF}_{4}\right]_{2}$ (isn = isonicotinamide), reported by Kuehn and Taube, were prepared by the displacement of $\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{SO}_{4}{ }^{2-}$ ligands by $\mathrm{H}_{2} \mathrm{~S}$ in $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{OH}_{2}\right)\right]\left[\mathrm{BF}_{4}\right]_{2}$ and trans- $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{SO}_{4}\right)(\mathrm{isn})\right] \mathrm{Cl}$,
respectively. ${ }^{2}$ Characterization included microanalysis, UV-Vis spectra and tentative assignment of a ν_{SH} band at $2547 \mathrm{~cm}^{-1}$ from the Raman spectrum of $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{SH}_{2}\right)\right]\left[\mathrm{BF}_{4}\right]_{2}$. Even in the absence of O_{2} and $\mathrm{H}_{2} \mathrm{O},\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{s}\left(\mathrm{SH}_{2}\right)\right]\left[\mathrm{BF}_{4}\right]_{2}$ decomposes to the $\mathrm{Ru}(\mathrm{III})$-SH complex, $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{SH})\right]\left[\mathrm{BF}_{4}\right]_{2}$ and H_{2}, the H_{2} being detected by low resolution mass spectrometry. Trans- $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{SH}_{2}\right)(\mathrm{isn})\right]\left[\mathrm{BF}_{4}\right]_{2}$ appeared to be indefinitely stable when stored in vacuo, and this was attributed to $\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{isn})^{2+}$ being less susceptible to oxidation than $\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}{ }^{2+}$.

The $\operatorname{Pt}(0)$ species $\left[\operatorname{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SH}_{2}\right)\right]$ was detected by Ugo et al. ${ }^{5}$ A broad ${ }^{1} \mathrm{H}$ NMR signal at $\delta 1.9$ indicated the coordinated $\mathrm{H}_{2} \mathrm{~S}$ ligand, but this species is unstable and quickly formed $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{SH})(\mathrm{H})\right]$ via oxidative addition (Figure 4.2). The $\mathrm{Pt}(\mathrm{II})$ product was evidenced by ${ }^{1} \mathrm{H}$ NMR peaks at $\delta-1.4(\mathrm{Pt}-\mathrm{S} H)$ and $-9.2(\mathrm{Pt}-H)$.

Figure 4.2 Formation of $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SH}_{2}\right)\right]$.

The formation of $\mathrm{W}(\mathrm{CO})_{5}\left(\mathrm{SH}_{2}\right)$ can be achieved by the following methods: the photolysis of hexacarbonyltungsten(0) in the presence of $\mathrm{H}_{2} \mathrm{~S}$, ${ }^{6}$ displacement of THF with $\mathrm{H}_{2} \mathrm{~S}$ from $\mathrm{W}(\mathrm{CO})_{5}(\mathrm{THF}),{ }^{6}$ or hydrolysis of $\mathrm{W}(\mathrm{CO})_{5}\left(\mathrm{~S}_{\left.\left(\mathrm{EMe}_{3}\right)_{2}\right)}(\mathrm{E}=\mathrm{Si}, \mathrm{Sn})^{7}\right.$ (Figure 4.3). Complex formation was detected by mass spectrometry (detection of the molecular ion $\left.\left[W(\mathrm{CO})_{5}\left(\mathrm{SH}_{2}\right)\right]^{+}\right)$; IR data $\left(\nu_{\mathrm{SH}}\right.$ at $\left.2560 \mathrm{~cm}^{-1}\right)$; and a ${ }^{1} \mathrm{H}$ NMR singlet at $\delta 0.60$ due to the $\mathrm{H}_{2} \mathrm{~S}$ ligand. The stability of this complex was attributed to the inert carbonyl fragment $\mathrm{W}(\mathrm{CO})_{5}$.

At $90^{\circ} \mathrm{C}$ under N_{2}, or at $20^{\circ} \mathrm{C}$ under vacuum, the green crystals of $\mathrm{W}(\mathrm{CO})_{5}\left(\mathrm{SH}_{2}\right)$ underwent decomposition.

Figure 4.3 Formation of $\mathrm{W}(\mathrm{CO})_{5}\left(\mathrm{SH}_{2}\right)$.

The displacement of $\mathrm{H}_{2} \mathrm{O}$ by $\mathrm{H}_{2} \mathrm{~S}$ in cis- $\left[\mathrm{Mn}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right)\right]\left[\mathrm{BF}_{4}\right]$ is thought to result in the formation of cis- $\left[\mathrm{Mn}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)\right]\left[\mathrm{BF}_{4}\right]$ (Figure $4.4(\mathrm{a})$). ${ }^{8}$ A very weak v_{SH} band is located at $2535 \mathrm{~cm}^{-1}$ and a ${ }^{1} \mathrm{H}$ NMR multiplet is observed at $\delta-0.40$ due to coordinated $\mathrm{H}_{2} \mathrm{~S}$. Exposure of this complex to air or moisture resulted in the reformation of cis- $\left[\mathrm{Mn}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right)\right]\left[\mathrm{BF}_{4}\right]$. Previously, a similar manganese carbonyl complex, $\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{SH}_{2}\right)\right]$, had been reported but was unstable and poorly characterized. ${ }^{9}$ Other reports of metal carbonyl $\mathrm{H}_{2} \mathrm{~S}$ complexes include $\left[\mathrm{Re}(\mathrm{CO})_{5}\left(\mathrm{SH}_{2}\right)\right]\left[\mathrm{BF}_{4}\right]^{10}$ (Figure 4.4(b)) and $\left[\mathrm{M}(\mathrm{CO})_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{SH}_{2}\right)\right] \mathrm{X}\left(\mathrm{M}=\mathrm{Mo}, \mathrm{X}=\mathrm{BF}_{4} ; \mathrm{M}=\mathrm{W}, \mathrm{X}=\mathrm{AsF}_{6}\right.$) (Figure 4.4(c)) ${ }^{11}$. The complexes are unstable at ambient conditions and their formations were supported only by IR $v_{\text {SH }}$ bands at 2510,2590 and $2548 \mathrm{~cm}^{-1}$, respectively.
(a) $\left[\mathrm{Mn}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right)\right]\left[\mathrm{BF}_{4}\right] \quad+\mathrm{H}_{2} \mathrm{~S} \xrightarrow[-\mathrm{H}_{2} \mathrm{O}]{ }\left[\mathrm{Mn}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)\right]\left[\mathrm{BF}_{4}\right]$
(b) $\left[\operatorname{Re}(\mathrm{CO})_{5} \mathrm{FBF}_{3}\right]+\mathrm{H}_{2} \mathrm{~S} \longrightarrow\left[\operatorname{Re}(\mathrm{CO})_{5}\left(\mathrm{SH}_{2}\right)\right]\left[\mathrm{BF}_{4}\right]$
(c) $\mathrm{M}\left(\mathrm{CO}_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{X}+\mathrm{H}_{2} \mathrm{~S} \longrightarrow\left[\mathrm{M}(\mathrm{CO})_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{SH}_{2}\right)\right] \mathrm{X}\right.$ $\mathrm{M}=\mathrm{Mo}, \mathrm{X}=\mathrm{BF}_{4}$;

Figure 4.4 Formation of metal carbonyl $\mathrm{H}_{2} \mathrm{~S}$ salts.
The proposed unstable white product from the solid state reaction of $\left[\operatorname{Ir}(\mathrm{H})_{2}\left(\mathrm{Me}_{2} \mathrm{CO}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]$ with $\mathrm{H}_{2} \mathrm{~S}$ was claimed to be $\left[\operatorname{Ir}(\mathrm{H})_{2}\left(\mathrm{H}_{2} \mathrm{~S}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{BF}_{4}\right],{ }^{12}$ although no evidence of $\mathrm{H}_{2} \mathrm{~S}$ coordination was presented.

Amarasekera and Rauchfuss observed formation of $\left[\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SH}_{2}\right)\right][\mathrm{OTf}]$ upon protonation of $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{SH})$ with HOTf , or treatment of $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{OTf}$ with $\mathrm{H}_{2} \mathrm{~S}$. ${ }^{13}$ The ${ }^{1} \mathrm{H}$ NMR signal of coordinated $\mathrm{H}_{2} \mathrm{~S}$ appeared at $\delta 3.58(\mathrm{t})\left({ }^{3} \mathrm{~J}_{\mathrm{HP}}=7.2 \mathrm{~Hz}\right)$, but isolation of this complex was not possible because of reversion to $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{OTf}$. A similar complex $\left[(\mathrm{ThiCp}) \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SH}_{2}\right)\right][\mathrm{OTf}]$ was observed as the intermediate formed during the protonation of $(\mathrm{ThiCp}) \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{SH})$ with HOTf en route to $\left[(\mathrm{ThiCp}) \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2}\right][\mathrm{OTf}]$; conversion of the SH to $\mathrm{H}_{2} \mathrm{~S}$ provided a liable coordination site for weak ligands such as thiophenes (Figure 4.5). ${ }^{13}$

Figure 4.5 Formation of $\left[(\mathrm{ThiCp}) \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2}\right][\mathrm{OTf}]$.

4.1.2 Transition Metal Thiol Complexes

Although thiol ligands contain one less acidic proton than $\mathrm{H}_{2} \mathrm{~S}$, thiol complexes are also rare, and only a few have been well characterized either spectroscopically or crystallographically.

In the same report describing formation of $\left[\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SH}_{2}\right)\right][\mathrm{OTf}]$ and $\left[(\mathrm{ThiCp}) \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SH}_{2}\right)\right][\mathrm{OTf}]$, the crystal structure of $\left[\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{HSPr}^{\mathrm{n}}\right)\right]\left[\mathrm{BF}_{4}\right]$ was determined. ${ }^{13}$ The crystals were unintentionally obtained from the reaction of $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$, thiophene and AgBF_{4} (Figure 4.6(a)); the $\mathrm{HSPr}^{\mathrm{n}}$ ligand is undoubtedly an impurity in the thiophene solution. The Ru-S and S-H bond distances are 2.377 and $1.25 \AA$, respectively. Other thiol complexes of this type were also prepared directly from the reactions of thiols with $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{OTf}{ }^{14}$ or the alkylation of $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{SH}^{13}$ For example, $\left[\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{SH}\right)\right][\mathrm{OTf}]$ was prepared by treatment of $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{SH}$ with $\mathrm{CH}_{3} \mathrm{OTf}$ (Figure 4.6(b)); ${ }^{13}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum, the $\mathrm{S} H$ proton appears as a multiplet at $\delta 4.22$, and the CH_{3} protons as a doublet at $\delta 2.23$. Draganjac and co-workers have also shown that similar thiol complexes, $\left[\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{RSH})\right]\left[\mathrm{BF}_{4}\right]$ ($\mathrm{R}=$ benzyl and phenethyl), can be obtained by the reaction of $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$ and AgBF_{4} with the appropriate mercaptan (Figure $4.6(\mathrm{c}))^{15}$ For $\left[\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{SH}\right)\right]\left[\mathrm{BF}_{4}\right]$ and $\left[\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SH}\right)\right]\left[\mathrm{BF}_{4}\right]$, the thiol ligands are detected by IR $\left(v_{\mathrm{SH}}=2525\right.$ and $2515 \mathrm{~cm}^{-1}$, respectively) and ${ }^{1} \mathrm{H}$ NMR spectroscopy (triplet at $\delta 4.17$ and quintet at $\delta 3.99$ due the $\mathrm{S} H$ groups, respectively). Furthermore, the crystal structure of the phenethyl complex was solved and the thiol hydrogen was located with the Ru-S and S-H bond distances being $2.36(2)$ and $1.18 \AA$, respectively. The electron rich CpRu moiety could also stabilize sterically bulky thiols as shown by the formation of $\left[\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{NC}\right)\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{SH}\right)\right]\left[\mathrm{PF}_{6}\right]\left(\mathrm{IR}: v_{\mathrm{SH}}=\right.$
$2544 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\mathrm{S} H$ doublet at $\left.\delta 3.03\right)$ and $\left[\mathrm{CpRu}(\mathrm{dppm})\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{SH}\right)\right]\left[\mathrm{PF}_{6}\right]\left({ }^{1} \mathrm{H}\right.$ NMR: $\mathrm{S} H$ triplet at $\delta 2.74) .{ }^{16}$ These complexes were obtained from the reaction of $\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{NC}\right) \mathrm{Cl}$ or $\mathrm{CpRu}(\mathrm{dppm}) \mathrm{Cl}$ with $\mathrm{Bu}^{\mathrm{t}} \mathrm{SH}$ and $\mathrm{NH}_{4} \mathrm{PF}_{6}$ (Figure 4.6(d)). The crystal structure of $\left[\mathrm{CpRu}(\mathrm{dppm})\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{SH}\right)\right]\left[\mathrm{PF}_{6}\right]$ was obtained and the $\mathrm{Ru}-\mathrm{S}$ and $\mathrm{S}-\mathrm{H}$ bond lengths were determined to be $2.371(2)$ and $1.349(77) \AA$, respectively. Although no spectroscopic or crystallographic evidence was provided, the air-sensitive species $\left[\mathrm{CpRu}\left\{\mathrm{PPh}_{2}(\mathrm{OMe})\right\}_{2}\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{SH}\right)\right]\left[\mathrm{PF}_{6}\right]^{17}$ and $\left[\mathrm{CpM}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{2}(\mathrm{PhSH})\right]\left[\mathrm{PF}_{6}\right] \quad(\mathrm{M}=\mathrm{Ru}, \mathrm{Fe})^{18}$ were reported by Treichel et al. (Figure 4.6(f)). Oxidation in air resulted in the formation of the paramagnetic $\mathrm{Ru}(\mathrm{III})$-thiolate complexes, $\left[\mathrm{CpRu}\left\{\mathrm{PPh}_{2}(\mathrm{OMe})\right\}_{2}\left(\mathrm{SBu}^{\mathrm{t}}\right)\right]\left[\mathrm{PF}_{6}\right]$ and $\left[\mathrm{CpM}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{2}(\mathrm{SPh})\right]\left[\mathrm{PF}_{6}\right]$. It was also found that $\left[\mathrm{CpRu}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{2}(\mathrm{PhSH})\right]\left[\mathrm{PF}_{6}\right]$ could be easily deprotonated by LDA to form $\mathrm{CpRu}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{2}(\mathrm{SPh})$.

Figure 4.6 Preparation of thiol complexes containing the electron rich $\mathrm{CpM}(\mathrm{M}=\mathrm{Ru}, \mathrm{Fe})$ moieties.

More recently, Tocher's group has reported the formation of $\left[\mathrm{Ru}\left(\eta^{3}: \eta^{3}-\mathrm{C}_{10} \mathrm{H}_{16}\right) \mathrm{Cl}_{2}(\mathrm{HSR})\right]\left(\mathrm{R}=\mathrm{Me}, \mathrm{Et}, \mathrm{Pr}^{\mathrm{i}}, \mathrm{Bu}^{\mathrm{t}}, \mathrm{Ph}\right)$ from the reaction of the $\mathrm{Ru}(\mathrm{IV})$ chloro-bridged dimer $\left[\left\{\mathrm{Ru}\left(\eta^{3}: \eta^{3}-\mathrm{C}_{10} \mathrm{H}_{16}\right) \mathrm{Cl}(\mu-\mathrm{Cl})\right\}_{2}\right.$ with thiols (Figure 4.7). ${ }^{19}$ Supporting evidence for the coordination of thiols was given by $\mathbb{I R}$ and ${ }^{1} \mathrm{H}$ NMR data. The $v_{S H}$ bands for the above complexes were found at $2424,2423,2471,2458$ and $2460 \mathrm{~cm}^{-1}$, respectively. Sharp ${ }^{1} \mathrm{H}$ NMR $\mathrm{S} H$ resonances ($\left.\delta 3.46(\mathrm{t}), \mathrm{R}=\mathrm{Et} ; \delta 3.51(\mathrm{q}), \mathrm{R}=\mathrm{Me}\right)$ were interpreted as resulting from strong intramolecular hydrogen-bonding of the thiol hydrogen to the chlorine, while broad $\mathrm{S} H$ resonances ($\left.\delta 3.48, \mathrm{R}=\mathrm{Pr}^{\mathrm{i}} ; \delta 3.29, \mathrm{R}=\mathrm{Bu}^{\mathrm{t}} ; \delta 5.56, \mathrm{R}=\mathrm{HSPh}\right)$ indicated that these thiol complexes are in dynamic equilibrium with the starting material.

Figure 4.7 Formation of $\left[\mathrm{Ru}\left(\eta^{3}: \eta^{3}-\mathrm{C}_{10} \mathrm{H}_{16}\right) \mathrm{Cl}_{2}(\mathrm{HSR})\right]$.

Darensbourg et al. have reported a series of $\mathrm{Cr}(0)$ thiol complexes containing carbonyl ligands, $\operatorname{Cr}(\mathrm{CO})_{4}(\mathrm{RSH}) \mathrm{L}\left(\mathrm{L}=\mathrm{CO}, \mathrm{PEt}_{3} ; \mathrm{R}=\mathrm{Bu}^{\mathrm{t}}, \mathrm{Et}, \mathrm{Pr}^{\mathrm{i}}, \mathrm{Ph}\right)$, which were prepared by the reaction of $\mathrm{Cr}(\mathrm{CO})_{5}(\mathrm{THF})$ with RSH or the protonation of $\mathrm{Cr}(\mathrm{CO})_{4}(\mathrm{RS}) \mathrm{L}^{-}$with $\mathrm{HBF}_{4} .^{20}$ These species were characterized by ${ }^{1} \mathrm{H}$ NMR $\mathrm{S} H$ resonances at $\delta \sim 1.0$. The crystal structure of $\mathrm{Cr}(\mathrm{CO})_{5}\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{SH}\right)$ revealed $\mathrm{Cr}-\mathrm{S}$ and $\mathrm{S}-\mathrm{H}$ bond lengths of $2.439(2)$ and $1.2(1) \AA$, respectively.

Treatment of TiCl_{4} with cyclohexane- or cyclopentanethiol afforded the moisture-sensitive, yellow solids, $\left[\mathrm{TiCl}_{4}(\mathrm{RSH})_{2}\right] .{ }^{21}$ In addition to sharp $\mathrm{IR} \nu_{\mathrm{SH}}$ bands found at
$\sim 2500 \mathrm{~cm}^{-1}$, the crystal structure of $\left[\mathrm{TiCl}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{SH}\right)_{2}\right]$ was determined, but the thiol H -atoms were not located.

The X-ray crystal structure of $\operatorname{FeTPP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SH}\right)$ (TPP = tetraphenylporphyrin), was determined by Collman et al. ${ }^{22}$ This complex was used as a dynamic model to study substrate binding in the catalytic cycle of P450 enzymes. Electronic structures based on single-crystal ESR measurements were obtained at low temperatures (77-173 K) for the above complex and the similar ferric complexes: $\mathrm{Fe}\left(\mathrm{NH}_{2} \mathrm{TPP}\right)(\mathrm{SPh})(\mathrm{HSPh}), \mathrm{FeTPP}(\mathrm{S}-m$-tolyl $)(\mathrm{HS}-$ m-tolyl $)$, $\mathrm{FeTPP}\left(\mathrm{SCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{HSCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ and $\operatorname{FeTPP}\left(\mathrm{S}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)\left(\mathrm{HS}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)^{23}$ Both types of structural determination, however, were unsuccessful in locating the thiol H -atoms.

The thiol group can also coordinate to metal centres as part of a bidentate ligand as shown by the structure of $\left[\operatorname{IrH}\left(\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\left(\mathrm{HSCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})\right] \mathrm{Cl}$, formed by the reaction of trans- $\mathrm{Ir}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{Cl}$ with excess $\mathrm{HSCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$ (Figure 4.8) ${ }^{24}$. X-ray structural determination showed an S-H bond distance of 1.354(10) A. Stabilization of the S-H group was attributed to the chelating mixed P-S ligand.

Figure 4.8 Preparation of $\left[\mathrm{IrH}\left(\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\left(\mathrm{HSCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})\right] \mathrm{Cl}$.

Morris and co-workers have prepared a series of metal-thiol complexes obtained by the protonation of metal-thiolate complexes with HBF_{4}. The reaction of $\mathrm{MH}(\mathrm{CO})(\mathrm{N}-\mathrm{S})\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{M}=\mathrm{Ru}, \mathrm{Os} ; \mathrm{N}-\mathrm{S}=$ pyridine-2-thiolate, quinoline-8-thiolate) with
excess HBF_{4} at 193 K gave $\left[\mathrm{MH}(\mathrm{CO})(\mathrm{N}-\mathrm{SH})\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]$ (Figure 4.9), ${ }^{25}$ the intermediate $\left[\mathrm{M}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})(\mathrm{N}-\mathrm{S})\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]$ being observed by NMR spectroscopy at 213 K en route to the formation of the thiol species. Both species, however, decompose at temperatures above $273 \mathrm{~K} .{ }^{1} \mathrm{H}$ NMR spectroscopy located the protons of the coordinated thiol groups as doublet of doublets (coupling to two inequivalent P atoms) at $\delta \sim 4.7$. Similarly, reactions of trans $-\mathrm{M}(\mathrm{H})(\mathrm{SPh})(\mathrm{dppe})_{2}(\mathrm{M}=\mathrm{Ru}, \mathrm{Os} ;$ dppe $=1,2$-bis(diphenylphoshino)ethane $)$ with HBF_{4} resulted in trans- $\left[\mathrm{M}(\mathrm{H})(\mathrm{HSPh})(\mathrm{dppe})_{2}\right]\left[\mathrm{BF}_{4}\right] .{ }^{26}$ Only the more stable Os complex was characterized by ${ }^{1} \mathrm{H}$ NMR where a broad resonance at $\delta 4.4$ was assigned to the coordinated thiol.

Figure 4.9 In situ formation of $\left[\mathrm{MH}(\mathrm{CO})(\mathrm{N}-\mathrm{SH})\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]$.

4.2 Synthesis and Characterization of Cis-RuX $\mathbf{X}_{2}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)\left(\mathbf{S H}_{2}\right), \mathrm{X}=\mathbf{C l}, \mathrm{Br}, \mathrm{I}$

When acetone or $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solutions of $\mathrm{RuX}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ are stirred under 1 atm of $\mathrm{H}_{2} \mathrm{~S}$, the complexes cis- $\mathrm{RuX}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$ are rapidly formed. These complexes are dark yellow, diamagnetic, stable at ambient conditions, and decompose only slowly due to the loss of $\mathrm{H}_{2} \mathrm{~S}$. The cis-RuX $\mathrm{X}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$ species with $\mathrm{X}=\mathrm{Cl}$ and Br were characterized by X-ray crystallography.

4.2.1 $\mathbf{C i s}-\mathrm{RuCl}_{\mathbf{2}}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)\left(\mathbf{S H}_{2}\right)(\mathbf{1 8 a})$

The prismatic crystals of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$ (18a) containing one acetone molecule per molecule of complex formed from a concentrated acetone solution containing $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 \mathbf{a})$ under $1 \mathrm{~atm} \mathrm{H}_{2} \mathrm{~S}$. The X -ray crystal structure of $\mathbf{1 8 a}$ (Figure 4.10) was determined and was found to be isostructural with that of cis-RuCl ${ }_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)\left(\mathrm{SH}_{2}\right)$ (19a), previously determined in this laboratory. ${ }^{27 b} 28$ However, contrary to the case with 19a, where only one H -atom of the $\mathrm{H}_{2} \mathrm{~S}$ was located, both H -atoms bonded to the S -atom were isotropically refined for 18a. Figure 4.10 reveals a pseudo-octahedral geometry around the Ru with cis-chloro ligands and the $\mathrm{H}_{2} \mathrm{~S}$ trans to one chlorine.

Selected bond lengths and angles for 18a and 19a are shown in Tables 4.1 and 4.2, respectively. The chelate bite angle $\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$ in 18a is $83.09(5)^{\circ}$, slightly larger than $81.81(8)$ and $81.3(3)^{\circ}$ of the $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)$ precursor 7 a and 19 a , respectively. For 18a, the average trans-bond angle at Ru is $\sim 172^{\circ}$; with the exception of $103.11(2)^{\circ}$ for $\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$ which can be attributed to the repulsion of the phenyl groups on the P -atoms, the cis-bond angles are approximately 89°. No significant differences were observed for the bond lengths around the Ru between 18a and 19a. The Ru-S bond distances, 2.3503(3) and $2.330(4) \AA$, are comparable to that of $2.399(5) \AA$ in Sellmann's complex, $\left[\mathrm{Ru}\left(\mathrm{SH}_{2}\right)\left(\mathrm{PPh}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right]$, 3 but are significantly shorter than those of terminal Ru-SH complexes $(2.46 \AA) .{ }^{29,30}$ However, in contrast to $\left[\mathrm{Ru}\left(\mathrm{SH}_{2}\right)\left(\mathrm{PPh}_{3}\right)\left({ }^{\prime} \mathrm{S}_{4}{ }^{\prime}\right)\right]$ where the H-S-H angle is 77° due to hydrogen bridges (see Figure 4.1), the $101.7(17)^{\circ}$ angle is much larger in 18a; the H-S-H bond angle is 92.2° for gaseous $\mathrm{H}_{2} \mathrm{~S}^{31}$. While the two $\mathrm{S}-\mathrm{H}$ bond

Figure 4.10 The ORTEP plot of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$ (18a). Thermal ellipsoids for non-hydrogen atoms are drawn at 33% probability (some of the phenyl carbons have been omitted for clarity). Full experimental parameters and details are given in Appendix IV.

Table 4.1 Selected bond lengths (\AA) for cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$ (18a) and cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)\left(\mathrm{SH}_{2}\right)(19 a)$ with estimated standard deviations in parentheses.

Bond	Length (\AA)		Bond	Length (\AA)	
	18a	19a		18a	19a
$\mathrm{Ru}(1)-\mathrm{S}(1)$	2.3503(3)	2.330(4)	$\mathrm{Ru}(1)-\mathrm{Cl}(1)$	2.4238(6)	2.429(3)
$\mathrm{Ru}(1)-\mathrm{P}(1)$	2.2712(6)	2.256(4)	$\mathrm{Ru}(1)-\mathrm{Cl}(2)$	2.4721(5)	2.469(4)
$\mathrm{Ru}(1)-\mathrm{P}(2)$	$2.3110(7)$	2.304(3)	$\mathrm{S}(1)-\mathrm{H}(1)$	1.20(3)	1.25
$\mathrm{Ru}(1)-\mathrm{N}(1)$	2.338(2)	2.37(10)	$\mathrm{S}(1)-\mathrm{H}(2)$	1.30(3)	N/A

Table 4.2 Selected bond angles (${ }^{\circ}$) for cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)(18 a)$ and cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)\left(\mathrm{SH}_{2}\right)(19 a)$ with estimated standard deviations in parentheses.

Bond	Angles (${ }^{\circ}$)		Bond	Angles (${ }^{\circ}$)	
	18a	19a		18a	19a
$\mathrm{H}(1)-\mathrm{S}(1)-\mathrm{H}(2)$	101.7(17)	N/A	$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)$	90.54(2)	93.8(1)
$\mathrm{Ru}(1)-\mathrm{S}(1)-\mathrm{H}(1)$	110.7(12)	124.2	$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	93.76(2)	92.7(1)
$\mathrm{Ru}(1)-\mathrm{S}(1)-\mathrm{H}(2)$	103.3(11)	N/A	$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	89.18(5)	89.8(2)
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{S}(1)$	175.18(2)	174.6(1)	$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{P}(1)$	168.03(2)	170.0(1)
$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{S}(1)$	82.63(2)	83.1(1)	$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{P}(2)$	87.21(2)	88.0(1)
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)$	91.95(2)	88.0(1)	$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	86.97(4)	89.1(3)
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	89.70(2)	91.9(1)	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	103.11(2)	101.7(1)
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	87.03(5)	85.4(2)	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	83.09(5)	81.3(3)
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(2)$	94.19(2)	94.3(1)	$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	173.09(5)	175.9(3)

lengths are nearly identical (1.19 and $1.21 \AA$) in Sellmann's complex, they are slightly different in 18 a with lengths of $1.20(3)$ and $1.30(3) \AA$. Upon coordination of the $\mathrm{H}_{2} \mathrm{~S}$ to Ru , the S-H bonds are shortened with respect to those of gaseous $\mathrm{H}_{2} \mathrm{~S}, 1.33 \AA^{4,31}$. The $\mathrm{S}(1)-\mathrm{H}(1)$ bond length compares with $1.25 \AA$ of 19 a , while the longer $\mathrm{S}(1)-\mathrm{H}(2)$ bond distance of $1.30 \AA$ is attributed to intramolecular hydrogen-bonding between $\mathrm{H}(2)$ and $\mathrm{Cl}(2)$; the $\mathrm{H} \cdots \mathrm{Cl}$ distance is $2.69(3) \AA$, which is less than the van der Waals distance of $3.00 \AA^{32}$ The non-linear S-H $\cdots \mathrm{Cl}$ angle of $100(1)^{\circ}$ indicates that this interaction is quite weak as maximum orbital overlap is not attained. As a result of hydrogen-bonding, the $\mathrm{Cl}(2)-\mathrm{Ru}-\mathrm{S}$ and $\mathrm{Ru}-\mathrm{S}-\mathrm{H}(2)$ planes differ by only 20.85°, while $\mathrm{H}(1)$ is positioned at 60° under the $\mathrm{Cl}(1)-\mathrm{Cl}(2)-\mathrm{S}-\mathrm{P}(1)$ plane. There are no apparent interactions between the coordinated $\mathrm{H}_{2} \mathrm{~S}$ and acetone solvate.

Both H -atoms of the coordinated $\mathrm{H}_{2} \mathrm{~S}$ point toward the planes of phenyl groups of PPh_{3} and $\mathrm{P}-\mathrm{N}$. Osakada et al. suggested that SH / π interactions ($2.69 \AA$ and $2.63 \AA$) exist between bridging mercapto groups and the planes of phenyl groups in the dinuclear complex $\left(\mathrm{PhMe}_{2} \mathrm{P}\right)_{3} \mathrm{Ru}(\mu-\mathrm{SH})_{3} \mathrm{Ru}(\mathrm{SH})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ (Figure 4.11). ${ }^{29}$ In 18a, the closest phenyl/SH distances are $\mathrm{H}(1) \cdots \mathrm{C}(9)$ and $\mathrm{H}(2) \cdots \mathrm{C}(21)$ with values of 2.80 and $2.97 \AA$, respectively. These are slightly less than the sum of $2.99 \AA$ for the van der Waals radii of the two atoms. Therefore, weak SH / π interactions may play a role in stabilizing the $\mathrm{H}_{2} \mathrm{~S}$ in 18a.

Figure 4.11 Bond distances between H -atom and nearest C -atom of phenyl ring to indicate SH / π interactions in $\left(\mathrm{PhMe}_{2} \mathrm{P}\right)_{3} \mathrm{Ru}(\mu-\mathrm{SH})_{3} \mathrm{Ru}(\mathrm{SH})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 8 a}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and under $1 \mathrm{~atm} \mathrm{H}_{2} \mathrm{~S}$ gave an AX pattern at $\delta 49.81$ and $43.30\left({ }^{2} \mathrm{~J}_{\mathrm{PP}}=28.78 \mathrm{~Hz}\right.$) characteristic of cis-P atoms (Figure 4.12(a)). ${ }^{27}$ In the ${ }^{1} \mathrm{H}$ NMR spectrum, the $\mathrm{Ru}-\mathrm{SH}_{2}$ resonances gave a broad peak at $\delta 1.03$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ (Figure 4.13) but this must be obscured by the free $\mathrm{H}_{2} \mathrm{~S}$ peak in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (Figure 4.14(a)). The signals due to the two $-\mathrm{N}\left(\mathrm{CH}_{3}\right)$ groups are seen at $\delta 3.40$ and 3.13 , characteristic of the symmetry imposed by the cis- Cl atoms. These observations are very similar to those previously found by Mudalige et al. ${ }^{27}$

A variable temperature NMR study of 18a was carried out in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. Figure 4.12 shows the P_{X} signal is shifted downfield slightly, while the P_{A} peak is shifted upfield more significantly as the temperature is decreased from 20 to $-90^{\circ} \mathrm{C}$. The changes in chemical shifts are perhaps due to the diminishing rates of $\mathrm{Ru}-\mathrm{SH}_{2}$ bond rotation or sulfur ligand inversion at low temperatures.

Figure 4.13 ${ }^{1} \mathrm{H}$ NMR spectra (121.4 MHz) of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right) \cdot($ acetone $)(18 a)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. Note: 18a is in equilibrium with $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 a)(\delta 3.07$, NMe_{2}) and free $\mathrm{H}_{2} \mathrm{~S}(\delta 0.35)$.

At $-50^{\circ} \mathrm{C}$, the ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 4.14(b)) is the most informative, giving well resolved peaks; these became broader as the temperature approaches the freezing point of $\mathrm{CD}_{2} \mathrm{Cl}_{2}\left(-95^{\circ} \mathrm{C}\right)$. At $-50^{\circ} \mathrm{C}$, the signals due to the two $-\mathrm{N}\left(\mathrm{CH}_{3}\right)$ groups become closer together ($\delta 3.22$ and 3.19) than at $20^{\circ} \mathrm{C}$. The $\mathrm{Ru}-\mathrm{SH}_{2}$ resonances, originally hidden under the free $\mathrm{H}_{2} \mathrm{~S}$ signal at $20^{\circ} \mathrm{C}$, are now resolved into a doublet of doublets at $\delta 1.49\left(\mathrm{H}_{\mathrm{B}}\right)$ and a doublet at $\delta 0.30\left(\mathrm{H}_{\mathrm{A}}\right)$. The doublets show that H_{A} and H_{B} are mutually coupled $\left({ }^{2} \mathrm{~J}_{\mathrm{HH}}=\right.$ 12.3 Hz), while H_{B} must be coupled to a P-atom while H_{A} is not (${ }^{3} \mathrm{~J}_{\mathrm{HP}}=3.50 \mathrm{~Hz}$). The ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ NMR spectrum (Figure 4.15) was also measured at $-50^{\circ} \mathrm{C}$, and the H_{B} multiplet was reduced to a doublet while the H_{A} resonance remains unchanged. From these data, it was not apparent whether H_{B} was coupled to P_{A} or $\mathrm{P}_{\mathrm{X}} .{ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ GARP (Globally optimized Alternating-phase Rectangular Pulses) ${ }^{33}$ NMR experiments were performed to observe
(a) $20^{\circ} \mathrm{C}$

Figure 4.14 VT ${ }^{1} \mathrm{H}$ NMR spectra (500 MHz) of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)(\mathbf{1 8 a})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (under $1 \mathrm{~atm} \mathrm{H}_{2} \mathrm{~S}$) for the region $\delta 0.0$ to $\delta 4.0$. Note: the NMe_{2} peak of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\delta 3.19\right.$ in $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ is no longer seen due to the presence of excess $\mathrm{H}_{2} \mathrm{~S}$.
effects on the H_{B} signal. With the first scanning radiofrequency set at 500.1386730 MHz to observe the ${ }^{1} \mathrm{H}$ region, the second irradiating frequency is centred either on the resonance of P_{A} at $202.4685838 \mathrm{MHz}, \delta 47.0$, or P_{B} at $202.4677665 \mathrm{MHz}, \delta$ 43.0. The decoupler power was then varied by changing the attenuation (dB). With the decoupler set at $\delta 47.0$, the H_{B} resonance became more decoupled to P_{A} as the decoupler power was increased (Figure 4.16). The above experiment was repeated with the decoupler transmitter centred at 202.4677665 MHz . However, variation of the attenuation power at this frequency had no effect on H_{B}. Evidently, H_{B} is coupled to P_{A}.

Figure $4.15{ }^{1} \mathrm{H}$ and ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\} \mathrm{NMR}$ spectra (500 MHz) of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)(\mathbf{1 8 a})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (under $1 \mathrm{~atm} \mathrm{H}_{2} \mathrm{~S}$) at $-50^{\circ} \mathrm{C}$ for the region $\delta 0.2$ to 1.6.
(a) decoupler off; completely coupled

(b) 50 dB ; partially coupled
(c) 30 dB ; partially coupled

(d) 25 dB ; partially decoupled

(e) 16 dB ; completely decoupled

Figure 4.16 ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ signal at $\delta 1.49$ for cis $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)(\mathbf{1 8 a})$ with decoupler transmitter centred at 202.4685838 MHz with increasing ${ }^{31} \mathrm{P}$ decoupler power (decreasing dB). Spectra recorded at $-50^{\circ} \mathrm{C}$ and in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

At $-50^{\circ} \mathrm{C}$, the exchange of the two diastereotopic hydrogens of the coordinated $\mathrm{H}_{2} \mathrm{~S}$ diminishes (Figure 4.14(b)) and the structure of 18a in solution presumably approaches the
solid state structure. With reference to the crystal structure of 18a (Figure 4.10 and Table 4.1), H_{B} is assigned to the $\mathrm{H}(2)$ proton that is hydrogen-bonded to $\mathrm{Cl}(2)$, as this would result in a higher chemical shift due to the deshielding effect of the electron-withdrawing group. The magnitude of the ${ }^{3} \mathrm{~J}_{\mathrm{HP}}$ coupling constant $(3.50 \mathrm{~Hz})$ at $\delta 1.49$ is consistent with those observed for $\mathrm{Ru}(\mathrm{SH})(\mathrm{SR})(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(6.8 \mathrm{~Hz}, \mathrm{R}=\mathrm{H} ; 7.1 \mathrm{~Hz}, \mathrm{R}=p$-tolyl; $7.3 \mathrm{~Hz}, \mathrm{R}$ $\left.=\mathrm{C}_{6} \mathrm{H}_{5}\right)^{34,35}$ and $\left[\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{SH}_{2}\right)\right][\mathrm{OTf}](7.2 \mathrm{~Hz}){ }^{13}$ Two logical questions to ask at this point are (1) why is H_{B} coupled to P_{A} and not P_{X}, and (2) why is H_{A} coupled to neither? Coupling between atoms on vicinal atoms depends primarily on the overlap of the orbitals within the bonding framework, and therefore the dihedral angle ϕ between the planes. In the present case, these are the P-Ru-S and Ru-S-H planes. In organic molecules, the vicinal coupling of protons (${ }^{3} \mathrm{~J}, \mathrm{H}$-C-C- H) is described by the Karplus relationship, ${ }^{36}$ and this correlation may be extended to systems containing P-C-C- $H, P-\mathrm{O}-\mathrm{C}-H, P-\mathrm{N}-\mathrm{C}-H$, and $P-\mathrm{S}-\mathrm{C}-H{ }^{37}$ The Karplus curves for the $H-\mathrm{C}-\mathrm{C}-H, P-\mathrm{C}-\mathrm{C}-H$, and P-O-C- H systems are

Figure 4.17 The vicinal Karplus correlation. Relationship between dihedral angle (ϕ) and ${ }^{3} \mathrm{~J}$.
plotted in Figure 4.17. Coupling is at a maximum when ϕ is 180° when the hydrogens are antiperiplanar and orbitals are overlapping most efficiently; there is no coupling when ϕ is 90°. The magnitude of ${ }^{3} \mathrm{~J}$ is dependent on the types of atoms connected to the three bonds. For 18a, the dihedral angles for P-Ru-S-H can be visualized by an end-on view of the Ru-S bond shown in Figure 4.18. The absolute dihedral angles for non-coupling P and H atoms are $60.79^{\circ}, 42.40^{\circ}$ and 65.84°. These correspond to $\mathrm{P}(1)-\mathrm{H}(1), \mathrm{P}(2)-\mathrm{H}(1)$ and $\mathrm{P}(2)-\mathrm{H}(2)$ interactions where the orbital overlaps are negligible. For the $\mathrm{P}(1)-\mathrm{H}(2)$ coupling pair, the dihedral angle is at 169.03° where coupling is observed $\left({ }^{3} \mathrm{~J}_{\mathrm{HP}}=3.5 \mathrm{~Hz}\right)$. Such a $\mathrm{P}(1)-\mathrm{Ru}-\mathrm{S}-\mathrm{H}(2)$ arrangement is likely the result of interactions of $\mathrm{H}(2)$ with $\mathrm{Cl}(2)$ and a phenyl group of PPh_{3}.

$$
\begin{array}{ll}
\mathrm{P}(1)-\mathrm{Ru}-\mathrm{S}-\mathrm{H}(1) & 60.79 \\
\mathrm{P}(1)-\mathrm{Ru}-\mathrm{S}-\mathrm{H}(2) & 169.03 \\
\mathrm{P}(2)-\mathrm{Ru}-\mathrm{S}-\mathrm{H}(1) & -42.40 \\
\mathrm{P}(2)-\mathrm{Ru}-\mathrm{S}-\mathrm{H}(2) & 65.84
\end{array}
$$

Figure 4.18 End-on schematic view of the solid state structure of 18a, with dihedral angles (${ }^{\circ}$) corresponding to $\mathrm{P}-\mathrm{Ru}-\mathrm{S}$ and $\mathrm{Ru}-\mathrm{S}-\mathrm{H}$ planes.

4.2.2 $\mathbf{C i s}-\mathrm{RuBr}_{2}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)\left(\mathbf{S H}_{2}\right)(\mathbf{1 8 b})$

Orange prismatic crystals of cis- $\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right) \cdot\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)(\mathbf{1 8 b})$ were isolated from a saturated benzene solution of $\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 \mathrm{~b})$ under 1 atm of $\mathrm{H}_{2} \mathrm{~S}$. The X-ray crystal structure is shown in Figure 4.19, with selected bond lengths and angles given in Tables 4.3 and 4.4, respectively. Similar to 18a, a pseudo octahedral geometry around the Ru centre is observed for $\mathbf{1 8 b}$. The two S-H bond lengths (1.25(7)) \AA and $1.34(6) \AA$) in $\mathbf{1 8 b}$ are
inequivalent. However, contrary to 18a where the longer S-H(2) distance (1.30 \AA vs. $1.20 \AA$ for $\mathrm{S}-\mathrm{H}(1)$) is attributed to $\mathrm{H}(2) \cdots \mathrm{Cl}(2)$ bonding, the $\mathrm{H} \cdots \mathrm{Br}$ bonding is observed between $\mathrm{Br}(1)$ and $\mathrm{H}(1)$, which is bonded to S with a shorter distance of $1.25 \AA$. The $\mathrm{H} \cdots \mathrm{Br}$ distance of $2.85(6) \AA$ and the $\mathrm{S}(1)-\mathrm{H}(1) \cdots \mathrm{Br}(1)$ angle of $94(3)^{\circ}$ suggest weak hydrogen-bonding. The above data suggest that hydrogen-bonding has a negligible effect on the $\mathrm{S}-\mathrm{H}$ bond lengths.

The H -atoms of the coordinated $\mathrm{H}_{2} \mathrm{~S}$ are situated under the $\operatorname{Br}(1)-\operatorname{Br}(2)-\mathrm{P}(1)-\mathrm{S}$ plane and are positioned close to the planes of phenyl groups. The larger Br groups force the hydrogens close enough to the phenyl groups for possible SH / π interactions to occur. The distances of $2.52 \AA$ and $2.59 \AA$ found for $\mathrm{H}(1) \cdots \mathrm{C}(20)$ (phenyl from $\mathrm{P}-\mathrm{N}$) and $\mathrm{H}(2) \cdots \mathrm{C}(28)$ (phenyl from PPh_{3}), respectively, are considerably shorter than corresponding ones in 18a. Such phenyl group (from thiophene rings) and mercapto proton interactions are important because they have been implicated in hydrodesulfurization mechanisms. ${ }^{38}$

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 8 b}$ recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ under 1 atm of $\mathrm{H}_{2} \mathrm{~S}$ is very similar to that of 18a, an AX pattern with P_{A} at $\delta 53.41$ and P_{B} at $\delta 44.36\left({ }^{2} \mathrm{~J}_{\mathrm{PP}}=29.20 \mathrm{~Hz}\right)$. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the NMe_{2} resonances are located at $\delta 3.70$ and $\delta 3.02$ while the $\mathrm{Ru}-\mathrm{SH}_{2}$ protons resonate at $\delta 1.03$ and are no longer obscured by the free $\mathrm{H}_{2} \mathrm{~S}$ signal. When the sample was cooled to $-50^{\circ} \mathrm{C}$, signals due to $\mathrm{H}(2)$ and $\mathrm{H}(1)$ (the H -atom bonded to $\mathrm{Br}(1)$) were resolved into a doublet at $\delta 0.48$ and a doublet of doublets at $\delta 1.23$, respectively, with ${ }^{2} \mathrm{~J}_{\mathrm{HH}}$ and ${ }^{3} \mathrm{~J}_{\mathrm{HP}}$ coupling constants of 12.2 and 4.3 Hz . When the ${ }^{31} \mathrm{P}$ decoupler was turned on, the signal at $\delta 1.23$ became a doublet. Therefore, $\mathrm{H}(1)$, bonded to the S -atom at a distance of $1.25 \AA$, is coupled to $\mathrm{P}(1)$ of the $\mathrm{P}-\mathrm{N}$ ligand, as discussed for $\mathbf{1 8 a}$. The absolute dihedral angle between $\mathrm{P}(1)-\mathrm{Ru}-\mathrm{S}$ and $\mathrm{Ru}-\mathrm{S}-\mathrm{H}(1)$ planes is 144.02° (see Figure 4.20).

Figure 4.19 The ORTEP plot of cis- $\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)(18 b)$. Thermal ellipsoids for non-hydrogen atoms are drawn at 33% probability (some of the phenyl carbons have been omitted for clarity). Full experimental parameters and details are given in Appendix V.

Table 4.3 Selected bond lengths (\AA) for $c i s-\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)(\mathbf{1 8 b})$ with estimated standard deviations in parentheses.

Bond	Length (\AA)	Bond	Length (\AA)
$\mathrm{Ru}(1)-\mathrm{S}(1)$	$2.3330(10)$	$\mathrm{Ru}(1)-\mathrm{Br}(1)$	$2.6343(5)$
$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.2617(10)$	$\mathrm{Ru}(1)-\mathrm{Br}(2)$	$2.5540(4)$
$\mathrm{Ru}(1)-\mathrm{P}(2)$	$2.3011(11)$	$\mathrm{S}(1)-\mathrm{H}(1)$	$1.25(7)$
$\mathrm{Ru}(1)-\mathrm{N}(1)$	$2.372(3)$	$\mathrm{S}(1)-\mathrm{H}(2)$	$1.34(6)$

Table 4.4 Selected bond angles $\left(^{\circ}\right)$ for cis- $\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)(\mathbf{1 8 b})$ with estimated standard deviations in parentheses.

Bond	Angles (${ }^{\circ}$)	Aond	Angles (${ }^{\circ}$)
$\mathrm{H}(1)-\mathrm{S}(1)-\mathrm{H}(2)$	$98.0(39)$	$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$93.87(4)$
$\mathrm{Ru}(1)-\mathrm{S}(1)-\mathrm{H}(1)$	$100.9(26)$	$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$93.48(4)$
$\mathrm{Ru}(1)-\mathrm{S}(1)-\mathrm{H}(2)$	$115.2(22)$	$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$89.43(9)$
$\mathrm{Br}(1)-\mathrm{Ru}(1)-\mathrm{S}(1)$	$79.77(3)$	$\mathrm{Br}(2)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$91.57(3)$
$\mathrm{Br}(2)-\mathrm{Ru}(1)-\mathrm{S}(1)$	$172.31(3)$	$\mathrm{Br}(2)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$90.94(3)$
$\mathrm{Br}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$169.09(3)$	$\mathrm{Br}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$86.01(8)$
$\mathrm{Br}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$89.54(3)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$99.76(4)$
$\mathrm{Br}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$89.55(8)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$81.47(8)$
$\mathrm{Br}(1)-\mathrm{Ru}(1)-\mathrm{Br}(2)$	$94.00(2)$	$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$176.75(9)$

$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{S}-\mathrm{H}(1)$	-144.02
$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{S}-\mathrm{H}(2)$	-39.68
$\mathrm{P}(2)-\mathrm{Ru}-\mathrm{S}-\mathrm{H}(1)$	-43.97
$\mathrm{P}(2)-\mathrm{Ru}-\mathrm{S}-\mathrm{H}(2)$	60.36

Figure 4.20 End-on schematic view of the solid state structure of $\mathbf{1 8 b}$, with dihedral angles corresponding to $\mathrm{P}-\mathrm{Ru}-\mathrm{S}$ and $\mathrm{Ru}-\mathrm{S}-\mathrm{H}$ planes.

4.2.3 In situ Preparation of Cis - $\mathrm{RuI}_{2}(\mathbf{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathbf{S H}_{2}\right)$ (18c) and Cis-RuI $\left.\left.\mathbf{2}^{(\mathbf{P}-N)(\mathbf{P}(p-t o l y l}\right)_{3}\right)\left(\mathbf{S H}_{2}\right)(19 c)$

The above title complexes could not be isolated as they are less stable than the Cl^{-}and Br^{-}analogues. However, formation of the $\mathrm{H}_{2} \mathrm{~S}$ adducts is observed by NMR spectroscopy when $\mathrm{RuI}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 \mathrm{c})$ or $\mathrm{RuI}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)(7 \mathrm{c})$ in CDCl_{3} are exposed to 1 atm $\mathrm{H}_{2} \mathrm{~S}$. In the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra, the AX signals for 18 c and 19 c appear at $\delta 56.0,49.5$ $\left({ }^{2} \mathrm{~J}_{\mathrm{PP}}=25.8 \mathrm{~Hz}\right)$ and $\delta 56.2,47.5\left({ }^{2} \mathrm{~J}_{\mathrm{PP}}=25.8 \mathrm{~Hz}\right)$, respectively. The ${ }^{1} \mathrm{H}$ NMR spectra show inequivalent NMe resonances ($\delta 4.16,2.20$ for $18 \mathrm{c} ; \delta 4.15,2.91$ for 19 c) and broad $\mathrm{Ru}\left(\mathrm{SH}_{2}\right)$ resonances ($\delta 0.95$ for $18 \mathrm{c} ; \delta 0.90$ for 19 c). The dark yellow solutions of 18 c and 19 c decompose to unidentifiable brown species within 1 h of sample preparation, even in the absence of air. The instability of the iodo complexes indicates that the larger size of the iodine does not create an optimal cavity size in the five-coordinate complex with respect to $\mathrm{H}_{2} \mathrm{~S}$ coordination. Whether the iodo systems are photosensitive remains to be explored; iodo $\operatorname{Pd}(\mathrm{dpm})$ systems are known to be photosensitive. ${ }^{39}$

4.3 The Synthesis and Characterization of $\mathbf{C i s}-\mathrm{RuCl}_{\mathbf{2}}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)(\mathbf{R S H})$ Species $(\mathbf{R}=$ alkyl)

4.3.1 $\operatorname{Cis}-\mathrm{RuCl}_{\mathbf{2}}(\mathbf{P}-\mathrm{N})\left(\mathbf{P P h}_{3}\right)(\mathbf{M e S H})(\mathbf{2 0})$

Yellow-brown, prismatic crystals of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{MeSH}) \cdot($ acetone $)$ (20) were isolated from a saturated acetone solution containing $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 a)$ and excess MeSH. In the solid state, 20 is stable in air at r.t. for $\sim 24 \mathrm{~h}$ after which time it slowly decomposes to an uncharacterizable brown solid with the loss of MeSH (as evidenced by NMR spectra of solutions of the brown solid, as well as the smell of MeSH). The X-ray structure is shown in Figure 4.21, with selected bond lengths and angles given in Tables 4.5 and 4.6, respectively. The overall geometry, and bond lengths and angles of $\mathbf{2 0}$ are similar to those of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)(\mathbf{1 8 a})$. A search of the Cambridge Structural Database indicates that 20 is the first structure of a coordinated MeSH complex. Furthermore, the bond length of $1.03(4) \AA$ is the shortest S-H distance yet reported for a thiol complex. There is no hydrogen bonding between the H -atom of the coordinated thiol and a Cl -atom. Both the Me and H groups of the coordinated thiol are situated below the $\mathrm{Cl}(1)-\mathrm{Cl}(2)-\mathrm{P}(1)-\mathrm{S}$ plane. The thiol H -atom points towards the planes of phenyls bonded to $\mathrm{P}(1)$ and $\mathrm{P}(2)$; the $\mathrm{H} \cdots \mathrm{C}(15)$ and $\mathrm{H} \cdots \mathrm{C}(22)$ distances of 2.84 and $2.49 \AA$ indicate SH / π (phenyl rings) interactions.

Figure 4.21 The ORTEP plot of $c i s-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{MeSH})(20)$. Thermal ellipsoids for non-hydrogen atoms are drawn at 33% probability (some of the phenyl carbons have been omitted for clarity). Full experimental parameters and details are given in Appendix VI.

Table 4.5 Selected bond lengths (\AA) for $c i s-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{MeSH})(20)$ with estimated standard deviations in parentheses.

Bond	Length (\AA)	Bond	Length (\AA)
$\mathrm{Ru}(1)-\mathrm{S}(1)$	$2.3403(7)$	$\mathrm{Ru}(1)-\mathrm{Cl}(1)$	$2.4241(7)$
$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.2803(7)$	$\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$2.4472(7)$
$\mathrm{Ru}(1)-\mathrm{P}(2)$	$2.3100(7)$	$\mathrm{S}(1)-\mathrm{H}(1)$	$1.03(4)$
$\mathrm{Ru}(1)-\mathrm{N}(1)$	$2.335(2)$	$\mathrm{S}(1)-\mathrm{C}(39)$	$1.805(3)$

Table 4.6 Selected bond angles (${ }^{\circ}$) for cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{MeSH})(20)$ with estimated standard deviations in parentheses.

Bond	Angles (${ }^{\circ}$)	Bond	Angles (${ }^{\circ}$)
$\mathrm{H}(1)-\mathrm{S}(1)-\mathrm{C}(39)$	$100.1(18)$	$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$86.17(3)$
$\mathrm{Ru}(1)-\mathrm{S}(1)-\mathrm{H}(1)$	$101.5(21)$	$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$94.83(3)$
$\mathrm{Ru}(1)-\mathrm{S}(1)-\mathrm{C}(39)$	$116.49(11)$	$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$87.09(6)$
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{S}(1)$	$176.61(3)$	$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$169.27(3)$
$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{S}(1)$	$90.07(3)$	$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$86.67(3)$
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$92.50(3)$	$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$86.51(6)$
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$88.51(3)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$103.65(3)$
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$89.66(6)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$83.26(6)$
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$90.69(3)$	$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$172.92(6)$

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 20 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ shows an AX pattern with P_{A} and P_{X} signals at $\delta 49.77$ and $\delta 41.22\left({ }^{2} \mathrm{~J}_{\mathrm{PP}}=30.17 \mathrm{~Hz}\right)$, respectively. The ${ }^{1} \mathrm{H}$ NMR spectrum at $20^{\circ} \mathrm{C}$ (Figure 4.22(a)), showing two inequivalent NMe groups at $\delta 3.42$ and $\delta 3.17$, is
consistent with the cis orientation of the Cl -atoms. The resonances due to the SMe and SH groups overlap giving a multiplet at $\delta 0.77$, but at $-50^{\circ} \mathrm{C}$ (Figure 4.22 (b)) these signals resolve into a doublet for SMe at $\delta 0.65\left({ }^{2} \mathrm{~J}_{\mathrm{HH}}=6.97 \mathrm{~Hz}\right)$ and a broad multiplet for SH at $\delta 0.60$. The ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ NMR spectrum at $-50^{\circ} \mathrm{C}$ is unchanged, and coupling of the thiol hydrogen to a P-atom is not evident; the Karplus correlation, for the dihedral angle of 73.89° between the $\mathrm{P}(1)-\mathrm{Ru}-\mathrm{S}$ and Ru-S-H planes, predicts only a small coupling constant between $\mathrm{P}(1)$ and H .

Figure $4.22{ }^{1} \mathrm{H}$ NMR spectra of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{MeSH}) \cdot$ (acetone) (20) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (a) $20^{\circ} \mathrm{C}$ and (b) $-50^{\circ} \mathrm{C}$. Note: 20 is in equilibrium with $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ (6a) ($\left.\delta 3.08\left(\mathrm{~d}, 20^{\circ} \mathrm{C}\right), \mathrm{NMe}_{2}\right)$ and free $\mathrm{MeSH}\left(* \delta 1.95(\mathrm{~d}), \mathrm{CH}_{3} \mathrm{SH} ; \delta 1.33\right.$ (q), $\left.\mathrm{CH}_{3} \mathrm{SH}\right) ; \bullet=\delta 2.04\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}\right)$.

4.3.2 Cis-RuCl $\mathbf{L P}_{2} \mathbf{(P)}$)($\mathbf{P P h}_{3}$)(EtSH) (21)

From a saturated $\mathrm{C}_{6} \mathrm{D}_{6}$ solution of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ (6a) in excess EtSH , yellow prismatic crystals of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{EtSH}) \cdot 1.5\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)(21)$ were collected. The X-ray structure of the EtSH complex is shown in Figure 4.23 with selected bond lengths and angles listed in Tables 4.7 and 4.8, respectively. The S-H bond distance is $1.27(2) \AA$, intermediate between the values of $1.25 \AA$ and $1.33 \AA$ obtained for the analogous $\mathrm{H}_{2} \mathrm{~S}$ complex 18 a . No S-H $\cdots \mathrm{Cl}$ interactions were detected for 21. One of the hydrogen atoms, $\mathrm{H}(2)$, bonded to $\mathrm{C}(1)$, the α-carbon of the ethylthiol moiety, is hydrogen-bonded to $\mathrm{Cl}(2)$ with a distance of $2.90 \AA$ and angle of 97.4°. The Et and H groups of the coordinated thiol are situated below the $\mathrm{Cl}(1)-\mathrm{Cl}(2)-\mathrm{P}(1)-\mathrm{S}$ plane with the H -atom pointing toward a phenyl group. SH / π interaction distances of $2.30 \AA$ and $2.83 \AA$ were found for $\mathrm{H}(1) \cdots \mathrm{C}(24)$ (a phenyl group belonging to $P(1)$) and $H(1) \cdots C(11)$ (a phenyl group belonging to $P(2)$), respectively.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 21 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ indicates the presence of the cis-dichloro isomer and approximately 10% of the five-coordinate precursor 6a. The P_{A} and P_{X} doublets of 21 appear at $\delta 52.43$ and $\delta 43.97\left({ }^{2} \mathrm{~J}_{\mathrm{PP}}=30.23 \mathrm{~Hz}\right)$, respectively, and are consistent with the data obtained from the previous in situ work by Mudalige. ${ }^{27 \mathrm{~b}}$ However, contrary to this earlier work, no trans isomer was detected. The species previously assigned as the trans isomer may be due to the use of impure EtSH. The ${ }^{1} \mathrm{H}$ NMR spectrum of 21 (Figure 4.24) reveals that the H_{b} and H_{c} methylene protons are inequivalent as indicated by multiplets at $\delta 2.00$ and $\delta 0.88$, respectively. The S-atom becomes chiral when coordinated to the Ru centre; the H_{b} and H_{c} protons are diastereotopic and therefore anisochronous. ${ }^{40}$

Figure 4.23 The ORTEP plot of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{EtSH})$ (21). Thermal ellipsoids for non-hydrogen atoms are drawn at 33% probability (some of the phenyl carbons have been omitted for clarity). Full experimental parameters and details are given in Appendix VII.

Table 4.7 Selected bond lengths (\AA) for cis-RuCl $2(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{EtSH})(21)$ with estimated standard deviations in parentheses.

Bond	Length (\AA)	Bond	Length (\AA)
$\mathrm{Ru}(1)-\mathrm{S}(1)$	$2.3391(6)$	$\mathrm{Ru}(1)-\mathrm{Cl}(1)$	$2.4204(6)$
$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.2753(5)$	$\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$2.4674(5)$
$\mathrm{Ru}(1)-\mathrm{P}(2)$	$2.3100(6)$	$\mathrm{S}(1)-\mathrm{H}(1)$	$1.27(2)$
$\mathrm{Ru}(1)-\mathrm{N}(1)$	$2.362(2)$	$\mathrm{S}(1)-\mathrm{C}(1)$	$1.825(2)$
		$\mathrm{C}(1)-\mathrm{C}(2)$	$1.502(4)$

Table 4.8 Selected bond angles $\left({ }^{\circ}\right)$ for $c i s-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{EtSH})$ (21) with estimated standard deviations in parentheses.

Bond	Angles (${ }^{\circ}$)	Angles (${ }^{\circ}$)	
$\mathrm{H}(1)-\mathrm{S}(1)-\mathrm{C}(1)$	$96.0(9)$	$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$87.37(2)$
$\mathrm{Ru}(1)-\mathrm{S}(1)-\mathrm{H}(1)$	$104.1(9)$	$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$97.16(2)$
$\mathrm{Ru}(1)-\mathrm{S}(1)-\mathrm{C}(1)$	$115.84(9)$	$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$85.33(5)$
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{S}(1)$	$174.63(2)$	$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$167.88(2)$
$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{S}(1)$	$87.15(2)$	$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$91.78(2)$
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$96.25(2)$	$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$86.18(4)$
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$86.17(2)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$99.63(2)$
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$91.19(5)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$82.61(4)$
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$88.54(2)$	$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$176.71(5)$
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$109.4(2)$		

The coupling constants of the protons of the coordinated EtSH group were obtained from the ${ }^{1} \mathrm{H}$ NMR spectrum of 21 (Figure 4.24) with the help of simulated spectrum (Figure
4.25(a)). The $C\left(H_{d}\right)_{3}$ methyl protons at $\delta 0.46$ are coupled to H_{b} and H_{c} $\left({ }^{3} \mathrm{~J}_{\mathrm{H}_{\mathrm{b}} \mathrm{H}_{\mathrm{d}}}={ }^{3} \mathrm{~J}_{\mathrm{H}_{\mathrm{c}} \mathrm{H}_{\mathrm{d}}}=7.36 \mathrm{~Hz}\right)$ while the H_{b} and H_{c} methylene protons at $\delta 2.00$ and $\delta 0.88$, respectively, are coupled to each other, to the thiol H_{a} proton, and to H_{d}. The downfield shift of H_{b} is a result of hydrogen-bonding to a Cl -atom. The coupling constants are: ${ }^{3} \mathrm{~J}_{\mathrm{H}_{b} \mathrm{H}_{\mathrm{c}}}=13.74 \mathrm{~Hz}, \quad{ }^{3} \mathrm{~J}_{\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}}=10.74 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}_{a} \mathrm{H}_{\mathrm{c}}}=5.83, \quad{ }^{3} \mathrm{~J}_{\mathrm{H}_{b} \mathrm{H}_{\mathrm{d}}}={ }^{3} \mathrm{~J}_{\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{d}}}=7.36 \mathrm{~Hz}$, which were also obtained from the doublet of doublet of doublets assigned to H_{a}. Further confirmation of

Figure $4.24{ }^{1} \mathrm{H}$ NMR spectrum (500 MHz) of 21 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $20^{\circ} \mathrm{C}$. Note: 21 is in equilibrium with ${ }^{\mathrm{x}} \mathbf{6 a}\left(\delta 3.09, \mathrm{NMe}_{2}\right)$ and free ${ }^{*} \mathrm{EtSH}((\delta 2.55(\mathrm{dq})$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{SH} ; \delta 1.46$ (t), $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{SH} ; \delta 1.31$ (t), $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{SH}$); $\bullet=\delta 2.1\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$.
these correlations was performed by a 2D COSY ${ }^{1} \mathrm{H}$ NMR experiment. The further splitting of the H_{a} doublet of doublets at $\delta 0.65$ into doublet of doublet of doublets is due to coupling of H_{a} to a P-atom. As the structure of 21 is similar to that of $\mathbf{1 8 a}$, the $\mathrm{H}_{2} \mathrm{~S}$ analogue, H_{a} is assumed to be coupled to P_{A} with a small coupling constant ${ }^{3} \mathrm{~J}_{\mathrm{H}_{2} \mathrm{P}_{\mathrm{A}}}=1.92 \mathrm{~Hz}$ due to the small dihedral angle of 69.81° between the $\mathrm{P}(1)-\mathrm{Ru}-\mathrm{S}$ and $\mathrm{Ru}-\mathrm{S}-\mathrm{H}(1)$ planes. When a ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\} \mathrm{NMR}$ spectrum was measured (Figure 4.26(b)), H_{a} is partially decoupled to P_{A}.

Figure 4.25 ${ }^{1} \mathrm{H}$ NMR spectra of $21\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$. Spectra only show resonances due to the protons of coordinated EtSH: (a) simulated spectrum; (b) expanded regions from actual spectrum, Figure 4.24.

Figure $4.26 \quad{ }^{1} \mathrm{H}$ NMR resonance of $\mathrm{Ru}-\mathrm{S}-\mathrm{H}_{\mathrm{a}}$ in cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{EtSH})(21):(a){ }^{1} \mathrm{H}$ NMR spectrum; (b) ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ NMR spectrum $\left(500 \mathrm{MHz}, 20^{\circ} \mathrm{C}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$).

4.3.3 In situ $\operatorname{Preparation~of~} \mathrm{Cis}-\mathrm{RuCl}_{2}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)(\mathbf{R S H})$ Species, $\mathbf{R}=\boldsymbol{n}-\mathbf{P r}, \boldsymbol{i}-\mathrm{Pr}, \boldsymbol{n}-\mathbf{P n}$, $n-\mathrm{Hx}, \mathrm{Bz}$

To expand the series of coordinated thiol complexes, longer alkyl chain thiols were reacted with $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ (6a). Addition of excess $\mathrm{RSH}(\mathrm{R}=\boldsymbol{n}-\mathrm{Pr}, \boldsymbol{i}-\mathrm{Pr}, \boldsymbol{n}-\mathrm{Pn}, n-\mathrm{Hx}$, Bz) to a solution of 6 a in CDCl_{3} or $\mathrm{C}_{6} \mathrm{D}_{6}$ yielded yellow solutions. Attempts to isolate products were unsucessful because of the facile loss of RSH, but the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the in situ reactions indicate the formation of the thiol adducts, cis $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{RSH})$ (22-26). The ${ }^{1} \mathrm{H}$ NMR spectra were uninformative because product peaks were obscured by those of added excess thiol required for product formation. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{RSH})$ depend very little on the nature of the thiol as shown in Table 4.9.

Table $4.9 \quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts $(121.4 \mathrm{MHz})$ for cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{RSH})$ in the presence of added RSH (except for data labeled unknown) at $20^{\circ} \mathrm{C}$.

RSH	$\delta \mathrm{P}_{\mathrm{A}}(\mathrm{P}-\mathrm{N})$	$\delta \mathrm{P}_{\mathrm{B}}\left(\mathrm{PPh}_{3}\right)$	${ }^{2} \mathrm{~J}_{\mathrm{PP}}(\mathrm{Hz})$	Solvent
$\mathrm{H}_{2} \mathrm{~S},(18 a)$	51.28	44.53	29.50	$\mathrm{C}_{6} \mathrm{D}_{6}$
MeSH, (20)	51.49	45.58	29.63	$\mathrm{C}_{6} \mathrm{D}_{6}$
EtSH, (21)	51.17	42.75	29.50	$\mathrm{C}_{6} \mathrm{D}_{6}$
n-PrSH, (22)	51.22	42.46	30.05	CDCl_{3}
i-PrSH, (23)	49.58	41.68	30.23	$\mathrm{C}_{6} \mathrm{D}_{6}$
unknown A (trans isomer ?)	56.76	46.84	36.54	$\mathrm{C}_{6} \mathrm{D}_{6}$
unknown B (impurity ?)	51.31	42.74	29.93	$\mathrm{C}_{6} \mathrm{D}_{6}$
n-PnSH, (24)	51.30	42.84	29.63	$\mathrm{C}_{6} \mathrm{D}_{6}$
unknown C (trans isomer ?)	49.57	46.35	36.06	$\mathrm{C}_{6} \mathrm{D}_{6}$
n-HxSH, (25)	51.15	42.57	30.23	CDCl_{3}
BzSH, (26)	50.16	42.03	30.41	CDCl_{3}

With the exception of i - PrSH and n - PnSH , all reactions of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ (6a) with RSH gave single products of the type cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{RSH})$. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ assignments were based by comparison with those for the characterized $\mathrm{H}_{2} \mathrm{~S}, \mathrm{MeSH}$ and EtSH complexes. Figure 4.27 shows the ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra for reactions of $\mathbf{6 a}$ with $i-\mathrm{PrSH}$ and $n-\mathrm{PnSH}$. Unknown A and C are probably the trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{RSH})$ isomers because of the similarity of the larger coupling constants ${ }^{2} \mathrm{~J}_{\mathrm{PP}}(\sim 36 \mathrm{~Hz})$ to those of other trans complexes such as trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{L})\left(\mathrm{L}=\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}\right.$ and EtOH$)$; see also Sections 5.3 and $5.6{ }^{27 b}$ Unknown B perhaps results from impurities in the $i-\mathrm{PrSH}$ used.

Figure $4.27 \quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(300 \mathrm{MHz})$ spectra of in situ reactions of 6 a with (a) i-PrSH and (b) $n-\mathrm{PnSH}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $20^{\circ} \mathrm{C}$.

Clearly, the steric bulk of RSH plays an important role in the coordination of thiols to 6a, as the cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{RSH})$ complexes are not isolable as the R group becomes more bulky. No reactions were observed when excess PhSH or thiophene were added to $\mathbf{6 a}$ in CDCl_{3}. The reaction solutions remained green and the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra showed only the presence of $\mathbf{6 a}$.

4.4 Comparison of Coordinated S-H Vibrational Frequencies for 18a, 18b, 19a, 20 and 21

The vibration modes for a triatomic molecule are shown in Figure 4.28. In the \mathbb{R} spectrum of gaseous $\mathrm{H}_{2} \mathrm{~S}$, absorptions at 2629,2615 and $1180 \mathrm{~cm}^{-1}$ were assigned as the

symmetric

antisymmetric

Figure 4.28 The vibrational modes for $\mathrm{H}_{2} \mathrm{~S}$ (or any bent triatomic molecules).
v_{3}, v_{1} and v_{2} bands, respectively. ${ }^{41}$ The infrared spectra of $\mathbf{1 8 a}, \mathbf{1 8 b}, 19 a, 20$ and 21 were obtained from solid KBr pellets of each sample. The $v_{\mathrm{S}-\mathrm{H}}$ frequencies of each complex and those of the gaseous $\mathrm{H}_{2} \mathrm{~S}$ or thiol are listed in Table 4.10. Upon coordination of $\mathrm{H}_{2} \mathrm{~S}, v_{1}$ and v_{3} can still be observed while v_{2} is obscured by other bands of the spectrum. For gaseous MeSH and EtSH, only one stretching band $\left(\nu_{1}\right)$ is observed for each at 2580 and $2573 \mathrm{~cm}^{-1}$, respectively. ${ }^{31}$ In all cases but one (including literature data from Sections 4.1.1 and 4.1.2), coordination to transition metals results in lower wavenumbers that are consistently in the range of 2423 to $2590 \mathrm{~cm}^{-1}$ for $\mathrm{H}_{2} \mathrm{~S}$ and thiol complexes; the exception is in the much lower frequencies of 2290 and $2410 \mathrm{~cm}^{-1}$ reported for $\left[\mathrm{Ru}\left(\mathrm{SH}_{2}\right)\left(\mathrm{PPh}_{3}\right)^{\prime} \mathrm{S}_{4}{ }^{\prime}\right]$ which were attributed to hydrogen-bonding to O -and S -atoms (Section 4.1.1). ${ }^{3}$

Table 4.10 $\quad v_{\mathrm{s}-\mathrm{H}}\left(\mathrm{cm}^{-1}\right)$ frequencies (v_{1} and v_{3} bands) for $\mathrm{H}_{2} \mathrm{~S}$ and Thiols, in the free gaseous state and upon coordination to Ru

cis-RuX $\mathbf{R}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)(\mathrm{L})$	$v_{\mathrm{S}-\mathrm{H}}$ of Gaseous L $\left(\mathrm{cm}^{-1}\right)$	$v_{\mathrm{S}-\mathrm{H}}$ of Coordinated Complex $\left(\mathrm{cm}^{-1}\right)$
$\mathrm{R}=\mathrm{Ph}, \mathrm{X}=\mathrm{Cl}, \mathrm{L}=\mathrm{H}_{2} \mathrm{~S}(18 \mathrm{a})$	$2615\left(v_{1}\right), 2629\left(v_{3}\right)$	$2506\left(v_{1}\right), 2476\left(v_{3}\right)$
$\mathrm{R}=\mathrm{Ph}, \mathrm{X}=\mathrm{Br}, \mathrm{L}=\mathrm{H}_{2} \mathrm{~S}(\mathbf{1 8 b})$	$2615\left(v_{1}\right), 2629\left(v_{3}\right)$	$2506\left(v_{1}\right), 2476\left(v_{3}\right)$
$\mathrm{R}=p$-tolyl, $\mathrm{X}=\mathrm{Cl}, \mathrm{L}=\mathrm{H}_{2} \mathrm{~S}(19 a)$	$2615\left(v_{1}\right), 2629\left(v_{3}\right)$	$2495\left(v_{1}\right), 2449\left(v_{3}\right)$
$\mathrm{R}=\mathrm{Ph}, \mathrm{X}=\mathrm{Cl}, \mathrm{L}=\mathrm{MeSH}(\mathbf{2 0})$	2580	2533
$\mathrm{R}=\mathrm{Ph}, \mathrm{X}=\mathrm{Cl}, \mathrm{L}=\mathrm{EtSH}(\mathbf{2 1})$	2573	2516

The substitution of Cl by $\mathrm{Br}(\mathbf{1 8 a} \rightarrow \mathbf{1 8 b})$ does not affect v_{1} and v_{3}, but substitution of Ph by p-tolyl (18a \rightarrow 19a) results in significantly lower v_{SH} stretching frequencies, possibly because of increased SH / π interactions between $\mathrm{H}_{2} \mathrm{~S}$ protons and the ring system of the p-tolyl group. Unfortunately, a direct comparison between structures of 18a and 19a can not be made because only one H -atom of the coordinated $\mathrm{H}_{2} \mathrm{~S}$ was located in 19a.

AMPHOS; $\mathbf{R}=\mathbf{P h}$ or p-tolyl) and Cis -RuX $\mathbf{X}_{2}(\mathbf{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{L})\left(\mathrm{L}=\mathbf{H}_{2} \mathrm{~S}, \mathrm{MeSH}\right.$ or EtSH) Species

UV-Vis spectroscopy is a good tool to observe the occurrence of a reaction in this type of chemistry. The five-coordinate, square pyramidal complexes, $\mathrm{RuX}_{2}(\mathrm{PN})\left(\mathrm{PR}_{3}\right)$, studied in this work have characteristic $\lambda_{1}(450$ to 460 nm$)$ and $\lambda_{2}(622$ to 780 nm$)$ bands (Table 4.11). Upon coordination of L to $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right), \lambda_{1}$ shifts to a shorter wavelength and λ_{2} is no longer observed in the 300 to 820 nm region.

Table $4.11 \quad \lambda_{1}$ and λ_{2} UV-Vis bands for $\operatorname{RuX}_{2}(\mathrm{PN})\left(\mathrm{PPh}_{3}\right)(\mathrm{L})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

$\mathrm{RuX}_{2}(\mathrm{PN})\left(\mathrm{PR}_{3}\right)(\mathrm{L})$	$\begin{gathered} \lambda_{1} \\ (\mathrm{~nm}) \end{gathered}$	$\begin{gathered} \varepsilon_{1} \\ \left(\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) \end{gathered}$	$\begin{gathered} \lambda_{2} \\ (\mathrm{~nm}) \end{gathered}$	$\begin{gathered} \varepsilon_{2} \\ \left(\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) \\ \hline \end{gathered}$
$\mathrm{X}=\mathrm{Cl}, \mathrm{PN}=\mathrm{P}-\mathrm{N}, \mathrm{R}=\mathrm{Ph}, \mathrm{L}=$ vacant (6a)	454	1100	678	480
$\mathrm{X}=\mathrm{Br}, \mathrm{PN}=\mathrm{P}-\mathrm{N}, \mathrm{R}=\mathrm{Ph}, \mathrm{L}=$ vacant (6b)	472	1170	706	615
$\mathrm{X}=\mathrm{I}, \mathrm{PN}=\mathrm{P}-\mathrm{N}, \mathrm{R}=\mathrm{Ph}, \mathrm{L}=$ vacant (6c)	510	900	774	510
$\mathrm{X}=\mathrm{Cl}, \mathrm{PN}=\mathrm{P}-\mathrm{N}, \mathrm{R}=p$-tolyl, $\mathrm{L}=\operatorname{vacant}(7 \mathbf{a})$	452	1155	672	555
$\mathrm{X}=\mathrm{Br}, \mathrm{PN}=\mathrm{P}-\mathrm{N}, \mathrm{R}=p$-tolyl, $\mathrm{L}=$ vacant (7b)	474	1150	700	560
$\mathrm{X}=\mathrm{I}, \mathrm{PN}=\mathrm{P}-\mathrm{N}, \mathrm{R}=p$-tolyl, $\mathrm{L}=$ vacant (7c)	512	780	780	435
$\mathrm{X}=\mathrm{Cl}, \mathrm{PN}=\mathrm{PAN}, \mathrm{R}=\mathrm{Ph}, \mathrm{L}=\operatorname{vacant}(\mathbf{9})$	450	1210	622	490
$\mathrm{X}=\mathrm{Cl}, \mathrm{PN}=\mathrm{PAN}, \mathrm{R}=p$-tolyl, $\mathrm{L}=$ vacant (10)	450	1280	622	520
$\begin{aligned} & \mathrm{X}=\mathrm{Cl}, \mathrm{PN}=\mathrm{AMPHOS}, \mathrm{R}=\mathrm{Ph}, \mathrm{~L}=\text { vacant, (12) } \\ & \text { (prepared in situ) } \end{aligned}$	460	1050	636	570
$\mathrm{X}=\mathrm{Cl}, \mathrm{PN}=\mathrm{P}-\mathrm{N}, \mathrm{R}=\mathrm{Ph}, \mathrm{L}=\mathrm{H}_{2} \mathrm{~S}^{\text {a }}$ (18a)	426	830	-	-
$\mathrm{X}=\mathrm{Br}, \mathrm{PN}=\mathrm{P}-\mathrm{N}, \mathrm{R}=\mathrm{Ph}, \mathrm{L}=\mathrm{H}_{2} \mathrm{~S}^{\mathrm{a}}$ (18b)	446	995	-	-
$\mathrm{X}=\mathrm{Cl}, \mathrm{PN}=\mathrm{P}-\mathrm{N}, \mathrm{R}=p$-tolyl, $\mathrm{L}=\mathrm{H}_{2} \mathrm{~S}^{\mathrm{a}}$ (19a)	435	900	-	-
$\mathrm{X}=\mathrm{Br}, \mathrm{PN}=\mathrm{P}-\mathrm{N}, \mathrm{R}=p$-tolyl, $\mathrm{L}=\mathrm{H}_{2} \mathrm{~S}^{\mathrm{a}}$ (19b)	452	935	-	-
$\mathrm{X}=\mathrm{Cl}, \mathrm{PN}=\mathrm{P}-\mathrm{N}, \mathrm{R}=\mathrm{Ph}, \mathrm{L}=\mathrm{MeSH}^{\mathbf{a}}$ (20)	424	835	-	-
$\mathrm{X}=\mathrm{Cl}, \mathrm{PN}=\mathrm{P}-\mathrm{N}, \mathrm{R}=\mathrm{Ph}, \mathrm{L}=\mathrm{EtSH}^{\text {a }}$ (21)	424	830	-	-

${ }^{3}$ Measured in the presence of excess sulfur ligand.
Figure 4.29 shows the absorption spectra before and after the addition of $\mathrm{H}_{2} \mathrm{~S}$ to $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 a)$. The band originally at $\lambda_{1}=454 \mathrm{~nm}\left(\varepsilon=1100 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ shifts to $426 \mathrm{~nm}\left(\varepsilon=830 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ while the absorption at $\lambda_{2}=678 \mathrm{~nm}\left(\varepsilon=480 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ is no longer observed. Although low spin $\mathrm{d}^{6} \mathrm{Ru}(\mathrm{II})$ is a good π donor, the electronic bands observed for all the complexes are mostly likely due to halogen to metal charge transfer
transitions, as the energies decrease in the sequence $\mathrm{Cl}>\mathrm{Br}>\mathrm{I}$ (Table 4.11), in parallel with the ionization energies of the halide ions. Upon coordination of the sulfur ligands, the λ_{2} band may have shifted to lower energy transitions.

Figure 4.29 UV-Vis spectra for $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 a)$ and cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$ (18a) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $20^{\circ} \mathrm{C}$.

The formation of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$ (18a) and its distinctive UV-Vis spectrum were thought to provide an opportunity to study the kinetics and provide information on the binding of $\mathrm{H}_{2} \mathrm{~S}$. However, formation of 18a proved to be too fast for study by UV-Vis spectroscopy because of the 'immediate' completion of the reaction upon the addition of 1 atm $\mathrm{H}_{2} \mathrm{~S}$ to $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 \mathrm{a})$. Repeated attempts to slow the reaction sufficiently at lower temperatures down to $-10^{\circ} \mathrm{C}$ were also unsuccessful for monitoring the rate of formation of 18a. Stopped-flow experiments were also performed by injections of separate, more dilute solutions of $\mathrm{H}_{2} \mathrm{~S}$ and 6 a into the spectrophotometer. However, even with rigorous exclusion of air, the samples tended to decompose and reproducible data could
not be obtained; furthermore, these experiments were not pursued because of the offensive odour and therefore non-containability of the toxic $\mathrm{H}_{2} \mathrm{~S}$.

4.6 Solution Thermodynamics for Reversible Formation of $\mathrm{H}_{2} \mathrm{~S}$ and Thiol complexes

The affinities of $\mathrm{RuX}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)$ for $\mathrm{L}=\mathrm{H}_{2} \mathrm{~S}, \mathrm{MeSH}$ and EtSH can be compared by determining the equilibrium constant, K , for the following equilibrium equation:

$$
\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right) \quad+\quad \mathrm{L} \quad \mathrm{~K} \quad \text { cis- } \mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{L})
$$

Equilibrium concentrations were obtained from ${ }^{1} \mathrm{H}$ NMR integrations of each species, the samples being prepared by dissolving cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{L})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ or $\mathrm{C}_{7} \mathrm{D}_{8}$ and under 1 atm Ar . K values were determined at various temperatures (within the range $10-70^{\circ} \mathrm{C}$) and the corresponding Van't Hoff plots (Van't Hoff equation: $\ln \mathrm{K}=-\frac{\Delta H^{\circ}}{\mathrm{RT}}+\frac{\Delta \mathrm{S}^{\circ}}{\mathrm{R}}$) are given in Figure 4.30. As an example of the determination of K , Figure 4.31 illustrates the ${ }^{1} \mathrm{H}$ NMR spectra showing the region of interest for the cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)(\mathbf{1 8 a})$ system at 20, 36 and $50^{\circ} \mathrm{C}$. As the temperature is raised, the integrations of the signal due to $\mathbf{6 a}(\delta 3.07$, NMe_{2}) and free $\mathrm{H}_{2} \mathrm{~S}(\delta 0.30)$ increase while those of 18a ($\delta 3.67,2.97, \mathrm{NMe}_{2} ; \delta 1.02$, $\mathrm{Ru}-\mathrm{SH}_{2}$) decrease; that is, formation of $\mathbf{1 8 a}$ is exothermic. The equilibrium expression for the formation of 18a is: $\quad K=\frac{[18 a]}{[6 a]\left[\mathrm{H}_{2} \mathrm{~S}\right]_{s}}$. Because $[\mathrm{Ru}]_{\text {total }}$ is known $(=[18 a]+[6 \mathrm{a}])$, and $x=\frac{[18 a]}{[6 a]}=\frac{\alpha / 3}{(\beta-\alpha) / 6}=\frac{\varepsilon / 2}{(\beta-\alpha) / 6}$ and $y=\frac{[6 a]}{\left[\mathrm{H}_{2} \mathrm{~S}\right] s}=\frac{(\beta-\alpha) / 6}{\omega / 2}$ can be calculated, $K=\frac{x y(1+x)}{[R u]_{\text {total }}}$ can be determined $(\alpha, \beta, \varepsilon$ and ω are integrated peak areas of the resonances shown in Figure 4.31). Of note, $[6 \mathrm{a}]=\left[\mathrm{H}_{2} \mathrm{~S}\right]_{\text {uncoordinated }}=\left[\mathrm{H}_{2} \mathrm{~S}\right]_{\mathrm{s}}+\left[\mathrm{H}_{2} \mathrm{~S}\right]_{\mathrm{hs}}$ (s refers to $\mathrm{H}_{2} \mathrm{~S}$ dissolved in solution, while hs refers to $\mathrm{H}_{2} \mathrm{~S}$ in head space of the NMR tube), although

Figure 4.30 Van't Hoff plots for the K equilibria (see p. 42) for (a) 18a, (b) 18b, (c) 19a, (d) 20 and (e) 21 in $\mathrm{C}_{6} \mathrm{D}_{6}$. Bars indicate estimated error based on repeated experiments. Data for each complex were collected from a minimum of three experiments with the average values plotted.

Integrated area:

Figure 4.31 ${ }^{1} \mathrm{H}$ NMR spectra in the region $\delta-0.5$ to $4.5\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ for the equilibrium between $18 \mathrm{a}, 6 \mathrm{a}$ and $\mathrm{H}_{2} \mathrm{~S}$ at (a) $20^{\circ} \mathrm{C}$, (b) $36^{\circ} \mathrm{C}$ and (c) $50^{\circ} \mathrm{C}$.
this relationship is not needed for calculation of the K values. Some raw data for the equilibrium calculations involving 18a, 18b, 19a, 20 and 21 are given in Appendix XI.

Table 4.12 gives $\Delta \mathrm{H}^{\circ}, \Delta \mathrm{S}^{\circ}$ and $\Delta \mathrm{G}^{\circ}$ data for the formation of $\mathbf{1 8 a}, \mathbf{1 8 b}, 19 \mathrm{a}, \mathbf{2 0}$, and 21. Ignoring the effects of the trans to cis halide rearrangement on the thermodynamics, the negative $\Delta \mathrm{S}^{\circ}$ values are consistent with binding of a small molecule to a metal site, while the low value exothermicities imply relatively weak Ru-S bond energies. At $25^{\circ} \mathrm{C}$, the relatively large magnitude of $K=296 \mathrm{M}^{-1}\left(\Delta \mathrm{G}^{\circ}=-14 \mathrm{~kJ} / \mathrm{mol}\right)$ indicate 20 is most thermodynamically favoured. In solution, the tendency for MeSH to dissociate is relatively weak, and this fact is confirmed by qualitative, visual observations and by UV-Vis spectroscopy: when 20 was dissolved in solution, the solution remained yellow, characteristic of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{L})$, while when 18a, 18b, 19a or 21 was dissolved, the solution become green, characteristic of the five-coordinate $\mathrm{RuX}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$.

Table 4.12 Thermodynamic parameters for the formation of cis-RuX ${ }_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)(\mathrm{L})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. Errors for K were estimated from repeated experiments; and errors for $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{S}^{\circ}$ were estimated from maximum and minimum slopes and intercepts of Van't Hoff plots, respectively.

$\mathrm{RuX} \mathbf{X}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)(\mathrm{L})$	$\mathrm{K}\left(25^{\circ} \mathrm{C}\right)$ M^{-1}	$\Delta \mathrm{G}^{\circ}\left(25^{\circ} \mathrm{C}\right)^{\mathrm{a}}$ $\mathrm{kJ} / \mathrm{mol}$	$\Delta \mathrm{H}^{\mathrm{ob}}$ $\mathrm{kJ} / \mathrm{mol}$	$\Delta \mathbf{S}^{\circ \mathrm{c}}$ $\mathrm{J} / \mathrm{mol} \mathrm{K}$
$\mathrm{R}=\mathrm{Ph}, \mathrm{X}=\mathrm{Cl}, \mathrm{L}=\mathrm{H}_{2} \mathrm{~S}$ (18a)	153 ± 5	-12.5 ± 0.1	-46 ± 4	-112 ± 14
$\mathrm{R}=\mathrm{Ph}, \mathrm{X}=\mathrm{Br}, \mathrm{L}=\mathrm{H}_{2} \mathrm{~S}$ (18b)	51 ± 4	-9.7 ± 0.2	-33 ± 4	-77 ± 13
$\mathrm{R}=p$-tolyl, X = Cl, L = H2S (19a)	120 ± 15	-11.9 ± 0.3	-54 ± 9	-140 ± 35
$\mathrm{R}=\mathrm{Ph}, \mathrm{X}=\mathrm{Cl}, \mathrm{L}=\mathrm{MeSH}$ (20)	296 ± 20	-14.1 ± 0.2	-28 ± 3	-48 ± 10
$\mathrm{R}=\mathrm{Ph}, \mathrm{X}=\mathrm{Cl}, \mathrm{L}=\mathrm{EtSH}$ (21)	154 ± 8	-12.5 ± 0.1	-22 ± 4	-32 ± 14

${ }^{a} \Delta G^{\circ}$ values are calculated from the equation $\Delta G^{\circ}=-R T \ln (K) .{ }^{b} \Delta H^{\circ}$ and ${ }^{c} \Delta S^{\circ}$ values are obtained from the slopes and intercepts of the Van't Hoff plots shown in Figure 4.30, respectively.

The choice to use $\mathrm{C}_{6} \mathrm{D}_{6}$ rather than chlorinated solvents such as $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ or CDCl_{3} was governed by the fact that samples in $\mathrm{C}_{6} \mathrm{D}_{6}$ gave better resolution and better separated peaks in the ${ }^{1} \mathrm{H}$ NMR spectra for integration purposes at $0^{\circ} \mathrm{C}$ or higher. Furthermore, the reproducibility of K values in the chlorinated solvents is poor.

4.7 The Ru-S Bond Strengths in the Solid State: DSC Experiments

Differential scanning calorimetry (DSC) measures the difference in temperature between a sample and an inert reference material as a function of temperature. ${ }^{42}$ Quantitative enthalpy changes may be obtained from a DSC cell if the sample and reference temperatures are maintained at the same temperature during heating and extra heat input into the sample (if endothermic) or to the reference (if exothermic) is measured.

When solid samples of $\mathbf{1 8 a}, 20$ or 21 (which exists as acetone solvated species, Section 2.8) are heated in the DSC chamber under N_{2}, the enthalpy change $\left(\Delta H^{\circ}\right)$ for the loss of $\mathrm{H}_{2} \mathrm{~S}, \mathrm{MeSH}$ or EtSH (ignoring loss of the acetone) is measured, respectively. The DSC curves for the thermal reactions are shown in Figure 4.32. The Ru-S bond strengths in 18a ($85 \pm 2 \mathrm{~kJ} / \mathrm{mol}$) and $20(94 \pm 2 \mathrm{~kJ} / \mathrm{mol})$ are comparable, while the bond is weakest in 21 ($64 \pm 3 \mathrm{~kJ} / \mathrm{mol}$), possibly due to the increased size of the EtSH ligand. Of note, the formation of 21 from the five-coordinate precursor in solution also reveals the smallest exothermicity; however, the solid state reactions are thought to be of a somewhat different nature.

The loss of $\mathrm{H}_{2} \mathrm{~S}$ or thiols can also be visually observed when solid samples of 18a, 20 or 21 are placed under vacuum and heated at $50^{\circ} \mathrm{C}$ for 2 h . During this time, the originally yellow solids become green materials which are air-sensitive and instantaneously decompose to uncharacterizable black powders once exposed to O_{2}. When the green solids are dissolved in solution (e.g. CDCl_{3}), only the five-coordinate complex trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathbf{6 a})$ is

Figure 4.32 DSC curves for cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{L})$ complexes. Samples are heated in an N_{2} atmosphere (flow rate $=40 \mathrm{cc} / \mathrm{min}$) at a rate of $5^{\circ} \mathrm{C} / \mathrm{min}$ to $200^{\circ} \mathrm{C}$.
observed by NMR spectroscopy. It is reasonable to assume that the air-sensitive, green solid is cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ and that it rearranges to the trans isomer in solution. A proposed scheme for the chemistry is shown in Figure 4.33. Differences in the $\Delta \mathrm{H}^{\circ}$ values determined by the solution and solid state methods are then attributed to the enthalpy change on converting this cis- to trans-isomer in the solid state. Thus, by comparison of the $\Delta \mathrm{H}^{\circ}$ values obtained from solution (ignoring any solvation effects on the 5-and 6-coordinate species) and those obtained by solid state DSC, $\Delta \mathrm{H}^{\circ}$ for the conversion of the cis to the more thermodynamically stable trans-chloro $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ isomer is in the range -39 to $-66 \mathrm{~kJ} / \mathrm{mol}$. These values are of the same order of magnitude as those for the solid phase
isomerizations of trans- $\mathrm{RuCl}_{2}(\mathrm{CO})(\mathrm{RP})_{3}$ to cis- $\mathrm{RuCl}_{2}(\mathrm{CO})(\mathrm{RP})_{3}\left(\mathrm{R}=\mathrm{Ph}_{2} \mathrm{Me}, \mathrm{PhMe}_{2}, \mathrm{Me}_{3}\right.$; $\Delta \mathrm{H}^{\circ}$ values are $-15,-21$ and $-48 \mathrm{~kJ} / \mathrm{mol}$, respectively)! ${ }^{43}$

Figure 4.33 Proposed reaction scheme for the loss of L from solid cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{L})$.

4.8 The Acidity of $\mathbf{R u C l}_{2}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)\left(\mathbf{H}_{\mathbf{2}} \mathbf{S}\right)$: Proton Abstraction with Proton Sponge

Figure 4.34 Structure of a typical proton sponge.

Proton sponges are strong bases containing a naphthalene structure with amine groups in the $1-$ and 8 - positions (Figure 4.34). Because of their high basicity, non-coordinating behaviour towards metal ions (as a consequence of its steric bulk), and the favourable formation of strong $\mathrm{N} \cdots \mathrm{H} \cdots \mathrm{N}$ hydrogen bonds upon proton transfer, proton sponges abstract protons effectively from acidic moieties. ${ }^{44}$ In fact, reactions via coordination of proton sponges to metal centres have appeared infrequently in the literature. ${ }^{45}$ In this thesis work, 1,8-bis(dimethylamino)naphthalene $\left(\mathrm{pK}_{\mathrm{a}}\right.$ of conjugate acid $=12.3$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$, herein referred to
as PS, was used. No reaction was observed spectroscopically, when PS is added to a solution of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 a)$ in CDCl_{3}. In accord with the reaction of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ and H_{2} in the presence of added base to produce $\mathrm{Ru}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)_{3}$ (Figure $4.35(\mathrm{a})$), ${ }^{46}$ Mudalige et al. have shown that the reaction of $\operatorname{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)$ and H_{2} in the presence of PS affords the hydride $\mathrm{Ru}(\mathrm{H}) \mathrm{Cl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)$ via the $\eta^{2}-\mathrm{H}_{2}$ intermediate (Figure $4.35(\mathrm{~b})$). ${ }^{27}$ The use of external bases to deprotonate dihydrogen complexes has been primarily aimed at studying the thermodynamic acidity or pK_{a} values of such systems. Common bases used in the literature for such experiments include alkoxides ($\mathrm{MeO}^{-}, \mathrm{EtO}^{-},{ }^{t} \mathrm{BuO}^{-}$), phosphines ($\mathrm{P}^{t} \mathrm{Bu}_{3}, \mathrm{P}^{n} \mathrm{Bu}_{3}, \mathrm{PCy}_{3}$), amines $\left(\mathrm{NEt}_{3}\right)$, and metal hydrides $\left(\mathrm{Ru}(\mathrm{H}) \mathrm{Cp}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{Ru}(\mathrm{H}) \mathrm{Cp}(\mathrm{dppm})\right)^{47}$ Analogously, in the present study, it would be beneficial to obtain $\mathrm{Ru}(\mathrm{SH})$ species (Figure 4.35(c)) in order to determine the acidity of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$ and, in turn, evaluate the strength of the $\mathrm{S}-\mathrm{H}$ bonds in the coordinated $\mathrm{H}_{2} \mathrm{~S}$ complex.
(a) $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}+\mathrm{H}_{2}+$ base $\longrightarrow \mathrm{Ru}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)_{3}+$ baseH $^{+} \mathrm{Cl}^{-}$
base $=\mathrm{NMe}_{3}$ or DMA
(b) $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{H}_{2}\right)+\mathrm{PS} \rightleftharpoons \mathrm{Ru}(\mathrm{H}) \mathrm{Cl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)+\mathrm{PSH}^{+} \mathrm{Cl}$
(c) $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)+\mathrm{PS} \stackrel{\mathrm{K}_{\mathrm{eq}}}{\rightleftharpoons} \begin{gathered}\mathrm{Ru}(\mathrm{SH}) \mathrm{Cl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)+\mathrm{PSH}^{+} \mathrm{Cl} \\ \text { or }\end{gathered}$

Figure 4.35 (a), (b) Dihydrogen activation by $\mathrm{Ru}(\mathrm{II})$ complexes in the presence of added base, and (c) abstraction of proton from $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$.

In organic solvents such as $\mathrm{CDCl}_{3}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{C}_{6} \mathrm{D}_{6}$, or d_{6}-acetone, there is no reaction observed between $\mathrm{H}_{2} \mathrm{~S}$ and PS , implying that $\mathrm{H}_{2} \mathrm{~S}\left(\mathrm{pK}_{\mathrm{a}}=7\right.$ (in aqueous media)) is not a strong acid in these solvents. Similarly, PS does not deprotonate $\mathrm{CH}_{3} \mathrm{COOH}\left(\mathrm{pK}_{\mathrm{a}}=4.7\right.$ (in aqueous media)) in CDCl_{3}. Although a direct comparison of acidity cannot be made between values
obtained in organic and aqueous solutions, studies have shown that pK_{a} values are related linearly. ${ }^{48,49}$ For example, the pK_{a} values of hydride complexes are related by the expression $\mathrm{pK}_{\mathrm{a}}\left(\mathrm{H}_{2} \mathrm{O}\right)=\mathrm{pK}_{\mathrm{a}}(\mathrm{MeCN})-7.5 .^{48}$ In the present study, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was chosen as solvent because it dissolves all the species in equlibrium (Figure 4.35(c)) and is noncoordinating. In theory, the pK_{a} value of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$ may be obtained by evaluating the equilbrium constant (Figure $4.35(\mathrm{c})$) and applying the following equation: $\mathrm{pK}_{\mathrm{a}}=\mathrm{pK}_{\mathrm{eq}}+\mathrm{pK}_{\mathrm{PSH}^{+}}{ }^{+}$, where pK_{a} for the $\mathrm{H}_{2} \mathrm{~S}$ complex and $\mathrm{pK}_{\mathrm{PSH}^{+}}{ }^{+}$are on the same acidity scale. ${ }^{47,50}$ For ease of comparison, all values are discussed on the aqueous scale.

At $20^{\circ} \mathrm{C}$, the addition of $1 \mathrm{~atm} \mathrm{H}_{2} \mathrm{~S}$ to $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 \mathrm{a})$ in the presence of 3 equivalents $P S$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ generated in situ a new species observed as an AX pattern at $\delta 82.25$ and $\delta 57.88\left({ }^{2} \mathrm{~J}_{\mathrm{PP}}=34.05 \mathrm{~Hz}\right.$) in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (Figure 4.36 (b)), different from that of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)(18 a)$ (Figure 4.36 (a)). However, this new, yellow species, $\mathbf{3 0}$, is only stable within 10 min of $\mathrm{H}_{2} \mathrm{~S}$ addition; after this time, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signals are no longer observed. 30 decomposed rapidly to a dark brown solution with formation of a white precipitate. The dark brown solid isolated from the filtrate did not give any ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signals, while broad peaks ($\delta 6.5-8.2$, phenyl region and $\delta 1.5-3.8$) in the ${ }^{1} \mathrm{H}$ NMR spectrum are indicative of a paramagnetic $\mathrm{Ru}(\mathrm{III})$ species. This observation perhaps resembles the decomposition of $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{SH}_{2}\right)\right]\left[\mathrm{BF}_{4}\right]_{2}$ to $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{SH})\right]\left[\mathrm{BF}_{4}\right]_{2}$ and H_{2} (Section 4.1.1), ${ }^{2}$ although in the current system no H_{2} was observed. The ${ }^{1} \mathrm{H}$ NMR spectrum of the white precipitate in CDCl_{3} is that of $\mathrm{PSH}^{+} \mathrm{Cl}^{-}$. The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{PS}(\delta 7.35,6.92$ $(6 \mathrm{H}, \mathrm{m}$, phenyl); $\delta 2.80(12 \mathrm{H}, \mathrm{s}, \mathrm{NMe}))$ and $\mathrm{PSH}^{+} \mathrm{Cl}^{-}\left(\delta 12.2\left(1 \mathrm{H}, \mathrm{br}, \mathrm{PS} H^{+}\right) ; \delta 7.95,7.80\right.$, $7.65(6 \mathrm{H}, \mathrm{m}$, phenyl); $\delta 3.38(12 \mathrm{H}, \mathrm{s}, \mathrm{NMe}))$ in CDCl_{3} are shown in Figure 4.37. Evidently, PS does abstract proton from $\mathrm{H}_{2} \mathrm{~S}$ with concomitant decomposition of the Ru complex.

Figure $4.36{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ spectra for various $\mathrm{Ru}(I I)$ complexes containing sulfur ligands: (a) $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$ at $20^{\circ} \mathrm{C}$; $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)+3 \mathrm{PS}+1 \mathrm{~atm} \mathrm{H}_{2} \mathrm{~S}$ at (b) $20^{\circ} \mathrm{C}$, (c) $-25^{\circ} \mathrm{C}$, (d) $-60^{\circ} \mathrm{C}$ and (e) $-70^{\circ} \mathrm{C}$ (There is slow decomposition of 27 a and 30 even at low temperatures). *Broadening of the P_{A} peak of $\mathbf{1 8 a}$ is only observed with the Varian XL300 spectrometer and not with the Bruker AMX500 spectrometer (Figure 4.12).

Figure 4.37 ${ }^{1} \mathrm{H}$ NMR spectra ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.) of (a) PS and (b) $\mathrm{PSH}^{+} \mathrm{Cl}^{-}$.

Attempts to isolate 30 were carried out at $-78^{\circ} \mathrm{C}$. On addition of 1 atm of $\mathrm{H}_{2} \mathrm{~S}$ to a stirring solution of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ (6a) and 1 or 3 equivalents PS in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, a bright yellow solution formed. Addition of hexanes at $-78^{\circ} \mathrm{C}$ resulted in the precipitation of a dark yellow-brown solid. When the suspension was filtered at $\sim-20^{\circ} \mathrm{C}$, the yellow solid thermally decomposed to a dark brown powder. Of note, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the above reaction in situ at $-30^{\circ} \mathrm{C}$ or lower denotes the presence of three species (Figure 4.36 (c)-(e)). The three sets of AX signals indicate the presence of 18a, 30, and an unknown 27a [$\delta 54.52$ $\left.\left(\mathbf{P}_{\mathrm{A}}\right) ; \boldsymbol{\delta} 46.06\left(\mathbf{P}_{\mathbf{X}}\right) ;{ }^{2} \mathrm{~J}_{\mathrm{PP}}=30.96 \mathrm{~Hz}\right]$.

To rationalize the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data, a proposed reaction scheme is shown in Figure 4.38; this suggests the formation of $\mathrm{Ru}(\mathrm{SH}) \mathrm{Cl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(27 \mathbf{a})$ as an intermediate en route

Figure 4.38 (a) Equilibrium for formation of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$ (18a); (b), (c), (d) are subsequent equilibria en route to the formation of $\mathrm{Ru}(\mathrm{SH})_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(30)$ in the presence of added PS. Note: the speculative species 30^{\prime} was not observed by NMR.
to a bis(mercapto) species $\mathrm{Ru}(\mathrm{SH})_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(30)$. This scheme is supported by other in situ NMR data (see below). The presence of excess $\mathrm{H}_{2} \mathrm{~S}$ ensures the complete formation of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)(\mathbf{1 8 a}) . \mathrm{K}_{1}$ has already been discussed in detail in Section 4.6 .

The ${ }^{1} \mathrm{H}$ NMR signals of 27 a in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ or d_{6}-acetone could not be assigned at -70 to $-25^{\circ} \mathrm{C}$ because of overlapping peaks due to $\mathrm{PS}, \mathrm{PSH}^{+} \mathrm{Cl}^{-}$and NMe_{2} protons (from 18a and 30) in the region $\delta 2.5-3.5$. Warming a d_{6}-acetone solution of the low temperature samples to $20^{\circ} \mathrm{C}$ leads to complete formation of $\mathbf{3 0}$ and assignment of its ${ }^{1} \mathrm{H}$ NMR signals. A sharp singlet at $\delta 3.20$ due to the NMe_{2} protons suggests a symmetrical square pyramidal structure similar to that of 6a. The SH signals were not observed even when the temperature was lowered to $-70^{\circ} \mathrm{C}$. Similarly, the reaction of $\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 \mathrm{~b}), \mathrm{PS}$ and $\mathrm{H}_{2} \mathrm{~S}$ gives $\mathrm{Ru}(\mathrm{SH}) \mathrm{Br}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathbf{2 7 b})$ and 30. Further evidence for the formation of $\mathbf{3 0}$ was provided by reaction of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 \mathrm{a})$ or $\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathbf{6 b})$ with excess $\mathrm{NaSH} \cdot \mathrm{xH}_{2} \mathrm{O}$ in d_{6}-acetone at $20^{\circ} \mathrm{C}$. The fact that the same product was formed regardless of the halogen involved is significant; i.e., both halogens from 6a and $\mathbf{6 b}$ are displaced by $\mathbf{S H}$.

The initial formation of $\mathrm{Ru}(\mathrm{SH}) \mathrm{Cl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ (27a) and $\mathrm{Ru}(\mathrm{SH}) \mathrm{Br}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathbf{2 7 b})$ was also evident when $\mathbf{6 a}$ or $\mathbf{6 b}$ was reacted with excess $\mathrm{NaSH} \cdot \mathrm{xH}_{2} \mathrm{O}$ at $-70^{\circ} \mathbf{C}$. The ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts of $\mathbf{2 7 a}$ are shifted marginally downfield from those of $\mathbf{2 7 b}$ (Table 4.13). For these in situ reactions, assignment of ${ }^{1} \mathrm{H}$ NMR signals of $27 \mathrm{a}(\delta 3.27,3.18(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$ and $\delta-2.08(2 \mathrm{H}, \mathrm{s}, \mathrm{Ru}-\mathrm{S} H)$) and 27b $(\delta 3.56,3.17(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$ and $\delta-1.63(2 \mathrm{H}, \mathrm{s}$, Ru-SH)) were possible because of the absences of overlapping peaks due to PS and free $\mathrm{H}_{2} \mathrm{~S}$. Although there is no evidence to indicate the existence of 30^{\prime} as an intermediate, the initial coordination of an $\mathrm{H}_{2} \mathrm{~S}$ molecule to 27 a followed by deprotonation seems a logical route to the formation of 30 . The initial exchange of Cl^{-}for SH^{-}is less likely because there is no
reaction between PS and $\mathrm{H}_{2} \mathrm{~S}$ in the absence of the metal complex. Table 4.13 summarizes the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemicals shifts for 27a, 27b and 30 in d_{6}-acetone; data for 27a and 30 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ are very similar (Figure 4.36). All the NMR experiments using hydrosulfide were carried out in d_{6}-acetone because $\mathrm{NaSH} \cdot \mathrm{xH}_{2} \mathrm{O}$ is slightly soluble in d_{6}-acetone and insoluble in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Table 4.13 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemicals shifts of $\mathrm{Ru}(\mathrm{II})$ mercapto complexes in d_{6}-acetone.

Complex	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$\delta \mathrm{P}_{\mathrm{A}}(\mathrm{P}-\mathrm{N})$	$\delta \mathrm{P}_{\mathrm{B}}\left(\mathrm{PPh}_{3}\right)$	${ }^{2} \mathrm{~J}_{\mathrm{PP}}(\mathrm{Hz})$
$\operatorname{RuCl}(\mathrm{SH})(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(27 a)$	-70	55.70	45.79	31.93
$\operatorname{RuBr}(\mathrm{SH})(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(27 b)$	-70	56.62	46.16	30.48
$\operatorname{Ru}(\mathrm{SH})_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(30)$	20	82.88	59.19	34.11

A variable temperature NMR study indicates that the formation of $\mathbf{2 7 a}$ is reversible while the formation of $\mathbf{3 0}$ is not. The integration ratio $\left({ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\right.$ NMR spectroscopy) of $\mathbf{2 7 a}$ and 18 a decreases when the temperature is raised from $-70^{\circ} \mathrm{C}$ to $-50^{\circ} \mathrm{C}$, but the same ratio re-appears when the temperature returns to $-70^{\circ} \mathrm{C}$. At $20^{\circ} \mathrm{C}, 30$ is fully formed, and lowering the temperature gives no indications of the reversible formation of 18a or 27a. Repeated attempts to measure accurate equilibrium concentrations of 18 a and 27 a en route to calculating the equilibrium constant $\left(\mathrm{K}_{2}\right)$ of formation were unsuccessful. Because 27a and 30 are thermally unstable and only observed in situ, their concentrations can only be measured by integrations in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectra at temperatures between -70 to $-25^{\circ} \mathrm{C}$. However, even at these temperatures, decomposition occurs (see Figure 4.36), resulting in broadened ${ }^{1} \mathrm{H}$ NMR shifts and very 'noisy ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra. Even with long delay acquisition times of 4 s , there are discrepancies between ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR integrations for repeated experiments.

This matter was further complicated by the decrease in solubilities of the species involved at low temperatures. Because of these difficulties, the pK_{a} of cis $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)(18 a)$ could not be ascertained. However, it can be predicted and concluded that the acidity of $\mathrm{H}_{2} \mathrm{~S}$ increases upon coordination to 6. In fact, the Ru complex seems to promote the reaction between $\mathrm{H}_{2} \mathrm{~S}$ and PS ; For example, the in situ reaction of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 \mathrm{a})$ with excess added $\mathrm{H}_{2} \mathrm{~S}$ (100 equivalents) and PS (10 equivalents) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ after 1 h resulted in the formation of $100 \% \mathrm{PSH}^{+}\left({ }^{1} \mathrm{H}\right.$ NMR singlet at $\delta 3.38$ due to NMe groups; no ${ }^{1} \mathrm{H}$ NMR signal at $\delta 2.80$ due to PS was observed) and decomposition of the Ru complex. The counter anion for PSH^{+}is most likely to be Cl^{-}and SH^{-}; there is a maximum of 2 equivs of Cl^{-}available for the 10 equivs PSH^{+}, although no SH^{-}signal was observed in the ${ }^{1} \mathrm{H}$ NMR spectrum.

Other bases such as triethylamine and 2,6-lutidine were used for attempted proton abstraction from 18a. However, the same results as described above were obtained.

No reactions were observed when PS was added to solutions containing cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{MeSH})(20)$ and $c i s-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{EtSH})$ (21). The pK_{a} values of uncoordinated $\mathrm{MeSH}(10.3)^{51}$ and $\mathrm{EtSH}(10.5)^{52}$ in aqueous solutions are larger than that of $\mathrm{H}_{2} \mathrm{~S}(7)^{53}$. It thus appears that the acidities of MeSH and EtSH upon coordination to Ru are not affected to the extent required for reaction with PS. A stronger base than PS is perhaps required to deprotonate 20 and 21 ; the resulting thiolate species are likely to be more stable than the corresponding mercapto species.

4.9 Reaction of $\mathbf{R u C l}_{\mathbf{2}}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)$ with $\mathbf{S O}_{\mathbf{2}}$

Previous work in this laboratory has shown that 6a reacts with SO_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to form cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SO}_{2}\right)$, isolable as a yellow-orange solid. ${ }^{27(\mathrm{a})}$ The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts (in CDCl_{3}) are at $\delta 39.02\left(\mathrm{P}_{\mathrm{A}}\right)$ and $\delta 37.88\left(\mathrm{P}_{\mathrm{X}}\right)\left({ }^{2} \mathrm{~J}_{\mathrm{PP}}=24.77 \mathrm{~Hz}\right.$), while the ${ }^{1} \mathrm{H}$

NMR data show two signals at $\delta 3.50$ and $\delta 3.28$ for the NMe_{2} protons indicating a cis orientation of the Cl ligands. Unlike previous small molecule binding reactions discussed in this Chapter, the SO_{2} reaction is irreversible; this, coupled with IR data for the $v_{\text {so }}$ bands (1287 and $1122 \mathrm{~cm}^{-1}$), suggests a co-planar bonding mode ($\eta^{1}-\mathrm{S}$) for the SO_{2} ligand with the Ru. ${ }^{54}$

4.10 Decompositon of $\mathrm{Cis}-\mathrm{RuCl}_{\mathbf{2}}(\mathbf{P}-\mathrm{N})\left(\mathbf{P P h}_{\mathbf{3}}\right)\left(\mathbf{S H}_{\mathbf{2}}\right)$

The $\mathrm{H}_{2} \mathrm{~S}$ systems are very sensitive to O_{2} in solution. When O_{2} is added to a bright yellow CDCl_{3} solution of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)(18 a)$ under 1 atm $\mathrm{H}_{2} \mathrm{~S}$, a dark green solution results. Precipitation with hexanes resulted in a green-brown solid that gave very 'noisy ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR spectra. From the filtrate, a white solid was isolated by slow evaporation of the solvents; microanalysis was consistent with the formulation $\mathrm{S}=\mathrm{PPh}_{3}$, and the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (in CDCl_{3}) showed a singlet at δ 44.8. $\mathrm{S}=\mathrm{PPh}_{3}$ was also isolated from the reaction of PPh_{3} with $\mathrm{S}_{8}{ }^{55}$ and gave a ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signal, identical to that of the above species. Of interest, when a mixture of O_{2} and $\mathrm{H}_{2} \mathrm{~S}$ ($1: 1$ by volume injection) is added to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution containing 18a and excess PPh_{3}, the Ru complex catalytically converts all the PPh_{3} to $\mathrm{S}=\mathrm{PPh}_{3}$ and then decomposes. The role that O_{2} plays is equivocal at this point, but the following reaction is envisioned:

$$
\mathrm{H}_{2} \mathrm{~S}+\mathrm{PPh}_{3}+1 / 2 \mathrm{O}_{2} \xrightarrow{\mathrm{Ru}} \mathrm{SPPh}_{3}+\mathrm{H}_{2} \mathrm{O} .
$$

4.11 Summary

In this Chapter, it was shown that $\mathrm{Ru}(\mathrm{II}) \mathrm{H}_{2} \mathrm{~S}$ and thiol complexes can be formed and these are stable under ambient conditions. Thermodynamic parameters indicate that Ru-S bonds are weak. Sterically hindered S-ligands do not coordinate to $\operatorname{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$. Although the pK_{a} of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$ was not determined, the acidity of $\mathrm{H}_{2} \mathrm{~S}$ does apparently increase upon coordination as shown by reactions occurring in the presence of proton sponge. Deprotonation of the coordinated thiol groups does not occur.

4.12 References

1. James, B. R. Pure Appl. Chem. 1997, 69, 2213.
2. Kuehn, C. G.; Taube, H. J. Amer. Chem. Soc. 1976, 98, 689.
3. (a) Sellmann, D.; Lechner, P.; Knoch, F. Angew. Chem.Int. Ed. Engl. 1991, 30, 552.
(b) Sellmann, D.; Lechner, P.; Knoch, F.; Moll, M. J. Am. Chem. Soc. 1992, 114, 922.
4. Edwards, T. H.; Moncur, N. K.; Snyder, L. E. J. Chem. Phys. 1967, 46, 2139.
5. Ugo, R.; La Monica, G. Cenini, S.; Segre, A.; Conti, F. J. Chem. Soc. (A) 1971,522.
6. (a) Herberhold, M.; Süss, G. Angew. Chem. Int. Ed. Engl. 1976, 15, 366.
(b) Herberhold, M.; Süss, G. J. Chem. Res. (S), 1977, 246; J. Chem. Res. (M) 1977, 2720.
7. Vahrenkamp, H. In Sulfur - Its Significance for Chemistry, for the Geo-, Bio- and Cosmosphere and Technology; Müller, A.; Krebs, B., Eds.; Elsevier: Amsterdam, 1984, p. 121.
8. Harris, P. J.; Knox, S. A. R.; McKinney, R. J.; Stone, F. G. A. J. Chem. Soc. Dalton Trans. 1978, 1009.
9. Strohmeier, W.; Guttenberger, J. F. Chem. Ber. 1964, 97, 1871.
10. Raab, K.; Beck, W. Chem. Ber. 1985, 118, 3830.
11. Urban, G.; Sünkel, K.; Beck, W. J. Organomet. Chem, 1985, 290, 329.
12. Crabtree, R. H.; Davis, M. W.; Mellea, M. F.; Mihelcic, J. M. Inorg. Chim. Acta 1983, 72, 223.
13. Amarasekera, J.; Rauchfuss, T. B. Inorg. Chem. 1989, 28, 3875.
14. Kroener, R.; Heeg, M. J.; Deutsch, E. Inorg. Chem. 1988, $27,558$.
15. Park, H.; Minick, D.; Draganjac, M.; Cordes, A. W.; Hallford, R. L.; Eggleton, G.; Inorg. Chim. Acta 1993, 204, 195.
16. Conroy-Lewis, F. M.; Simpson, S. J. J. Chem. Soc., Chem. Commun. 1991, 388.
17. Treichel, P. M.; Crane, R. A.; Haller, K. N. J. Organomet. Chem, 1991, 401, 173.
18. Treichel, P. M.; Schmidt, M. S.; Crane, R. A. Inorg. Chem. 1991, 30, 379.
19. Belchem, G.; Steed, J. W.; Tocher, D. A. J. Chem. Soc. Dalton Trans. 1994, 1949.
20. Darensbourg, M. Y.; Longridge, E. M.; Payne, V.; Reibenspies, J.; Riordan, C. G.; Springs, J. J.; Calabrese, J. C. Inorg. Chem. 1990, 29, 2721.
21. Winter, C. H.; Lewkebandara, T. S.; Proscia, J. W.; Rheingold, A. L. Inorg. Chem. 1993, 32, 3807.
22. (a) Collman, J. P.; Sorrell, T. N.; Hoffman, B. M. J. Am. Chem. Soc. 1975, 97, 913.
(b) Collman, J. P.; Sorrell, T. N.; Hodgson, K. O.; Kulshrestha, A. K.; Strouse, C. E. J. Am. Chem. Soc. 1977, 99, 5180.
(c) Collman, J. P.; Sorrell, T. N. In Concepts in Drug Metabolism; Jerina, D. M., Ed.; Am. Chem. Soc. Symp. Series, A. C. S., Washington, D. C., 1977, p. 27.
23. Byrn, M. P.; Katz, B. A.; Keder, N. L.; Levan, K. R.; Magurany, C. J.; Miller, K. M.; Pritt, J. W.; Strouse, C. E. J. Am. Chem. Soc. 1983, 105, 4916.
24. Stephan, D. W. Inorg. Chem. 1984, 23, 2207.
25. (a) Schlaf, M.; Morris, R. H. J. Chem. Soc., Chem. Commun. 1995, 625. (b) Schlaf, M.; Lough, A. J.; Morris, R. H. Organometallics 1996, 15, 4423.
26. Bartucz, T. Y.; Golombek, A.; Lough, A. J.; Maltby, P. A.; Morris, R. H.; Ramachandran, R.; Schlaf, M. Inorg. Chem. 1998, 37, 1555.
27. (a) Mudalige, D. C.; Rettig, S. J.; James, B. R.; Cullen, W. R. J. Chem. Soc., Chem. Commun. 1993, 830.
(b) Mudalige, D. C. Ph.D. Thesis, The University of British Columbia, 1994.
28. Mudalige, D. C.; Ma, E. S.; Rettig, S. J.; James, B. R.; Cullen, W. R. Inorg. Chem. 1997, 36, 5426.
29. Osakada, K.; Yamamoto, T.; Yamamoto, A. Inorg. Chim. Acta 1985, 105, L9.
30. Jessop, P. G.; Lee, C.-L.; Rastar, G.; James, B. R.; Lock, C. J. L.; Faggiani, R. Inorg. Chem. 1992, 31, 4601.
31. Csizmadia, I. G. In The Chemistry of the Thiol Group, Part I; Patai, S., Ed.; John Wiley \& Sons: Toronto, 1974, p. 7.
32. Pauling, L. The Nature of the Chemical Bond; $3^{\text {rd }}$ Ed.; Cornell University Press: Ithaca, N.Y. 1960.
33. Shaka, A. J.; Barker, P. B.; Freeman, R. J. Mag. Res. 1985, 64, 547.
34. Jessop, P. G.; Rettig, S. J.; Lee, C.-L.; James, B. R. Inorg. Chem. 1991, 30, 4617.
35. Jessop, P. G. Ph.D. Thesis, The University of British Columbia, 1991.
36. (a) Karplus, M. J. Chem. Phys. 1959, 30, 11.
(b) Karplus, M. J. Am. Chem. Soc. 1963, 85, 2870.
37. Bentrude, W. G.; Setzer, W. N. In Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis; Verkade, J. G.; Quin, L. D., Eds.; VCH Publishers, Inc.: Florida, 1987, p. 365, and references therein.
38. (a) Lipsch, J. M. J. G.; Schuit, G. C. J. Catal. 1969, 15, 179. (b) Angelici, R. Acc. Chem. Res. 1988, 21, 387.
39. Wong, T. Y. H.; Barnabas, A. F.; Sallin D.; James, B. R. Inorg. Chem. 1995, 34, 2278.
40. James, B. R.; Pacheco, A.; Rettig, S. J.; Ibers, J. A. Inorg. Chem. 1988, 27, 2414, and references therein.
41. (a) Allen, H. C.; Blaine, L. R.; Plyler, E. K. J. Chem. Phys. 1956, 24, 35.
(b) Allen, H. C.; Plyler, E. K. J. Chem. Phys. 1956, 25, 1132.
42. West, A. R. Solid State Chemistry and its Applications; John Wiley \& Sons: New York, 1984, p. 102.
43. (a) Krassowski, D. W.; Nelson, J. H.; Brower, K. R.; Hauenstein, D.; Jacobson, R. A. Inorg. Chem. 1988, 27, 4294.
(b) Krassowski, D. W.; Reimer, K.; LeMay, Jr., H. E.; Nelson, J. H. Inorg. Chem. 1988, 27, 4307.
44. (a) Hibbert, F. J. Chem. Soc. Perkin Trans. II 1974, 857.
(b) Alder, R. W.; Goode, N. C.; Miller, N. J. Chem. Soc., Chem. Commun. 1978, 89.
(c) Hibbert, F.; Hunte, K. P. P. J. Chem. Soc. Perkin Trans. II 1983, 1895.
(d) Benoit, R. L.; Lefebvre, D.; Frechette, M. Can. J. Chem. 1987, 65, 996.
(e) Staab, H. A.; Saupe, T. Angew. Chem.Int. Ed. Engl. 1988, 27, 865.
(f) Brzezinski, B.; Grech, E.; Malarski, Z.; Sobczyk, L. J. Chem. Soc. Perkin Trans. II 1991, 857.
45. (a) Gamage, S. N.; Morris, R. H.; Rettig, S. J.; Thackray, D. C.; Thorburn, I. S.; James, B. R. J. Chem. Soc., Chem. Commun. 1987, 894.
(b) Joshi, A. M. Ph.D. Thesis, The University of British Columbia, 1990.
46. (a) Hallman, P. S.; McGarvey, B. R.; Wilkinson, G. J. Chem. Soc. (A) 1968, 3143.
(b) James, B. R. Adv. Organomet. Chem. 1979, 17, 319.
(c) James, B. R. In Comprehensive Organometallic Chemistry, Vol, 8; Wilkinson, G.; Stone, F. G. A.; Abel, E. W., Eds.; Pergamon Press: Oxford, 1982, Chapter 51.
47. Jessop, P. G.; Morris, R. H. Coord. Chem. Rev. 1992, 121, 155, and references therein.
48. Kristjansdottir, S. S.; Norton, J. R. In Transition Metal Hydrides: Recent Advances in Theory and Experiment, Dedieu, A., Ed.; VCH, New York, 1991, Chapter 10.
49. Streuli, C. A. Anal. Chem. 1960, 32, 985.
50. (a) Guochen, J.; Morris, R. H. Inorg. Chem. 1990, 29, 582.
(b) Guochen, J.; Morris, R. H. J. Am. Chem. Soc. 1991, 113, 875.
(c) Guochen, J.; Lough, A. J.; Morris, R. H. Organometallics 1992, 11, 161.
51. Kreevoy, M. M.; Harper, E. T.; Stary, F. E.; Katz, E. A.; Sellstedt, J. H. J. Org. Chem. 1964, 29, 1641.
52. Danehy, J. P.; Noel, C. J. J. Am. Chem. Soc. 1960, 82, 2511.
53. Subcommittee on Hydrogen Sulfide, Committee on Medical and Biologic Effects of Environmental Pollutants, Division of Medical Services, Assembly of Life Sciences, National Research Council in 'Hydrogen Sulfide,' Univeristy Park Press, Baltimore, 1979.
54. (a) Mingos, D. M. P. Transition Met. Chem. 1978, 3, 1, and references therein.
(b) Kubas, G. J. Inorg. Chem. 1979, 18, 182.
55. (a) Olah, G. A.; Berrier, A.; Ohannesian, L. Nouv. J. Chim. 1986, 10, 253.
(b) Wong, T. Y. H. Ph.D. Thesis, The University of British Columbia, 1996.

Chapter 5

Coordination of $\mathbf{H}_{\mathbf{2}} \mathbf{O}$ and Alcohols to $\mathrm{RuCl}_{\mathbf{2}}(\mathbf{P}-\mathrm{N})\left(\mathrm{PR}_{\mathbf{3}}\right)$

The coordination chemistry of $\mathrm{H}_{2} \mathrm{O}$ has been extensively studied and is ubiquitous compared to that of $\mathrm{H}_{2} \mathrm{~S}$, in part because it is more pleasant and tractable to work with. In addition, the more weakly acidic $\mathrm{H}_{2} \mathrm{O}$ is more stable with respect to the formation of hydroxides and oxides. In homogeneous catalytic systems, weakly coordinating ligands such as $\mathrm{H}_{2} \mathrm{O}$, alcohols and other solvent molecules stabilize the vacant coordination sites of catalytic complexes prior to exchange with desired substrates. ${ }^{1}$ The reaction of $\mathrm{H}_{2} \mathrm{O}$ with $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right) \quad\left(\mathrm{R}=\mathrm{Ph}, \quad p\right.$-tolyl) produces the stable $\mathrm{H}_{2} \mathrm{O}$ adducts, trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)\left(\mathrm{OH}_{2}\right) .{ }^{2}$ From a structural point of view, the major difference between $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)\left(\mathrm{SH}_{2}\right)$ and $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)\left(\mathrm{OH}_{2}\right)$ is that the former contains cis Cl-atoms while the Cl -atoms of the latter are trans. In this Chapter, the aquo complexes are reported, characterized and compared to those of the complexes containing S-ligands discussed in Chapter 4. A probable mechanism for the coordination of $\mathrm{H}_{2} \mathrm{~S}$ to $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)$ is deduced from these comparisons.

5.1 Preparation of Trans- $\mathrm{RuCl}_{\mathbf{2}}(\mathbf{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)\left(\mathbf{O H}_{2}\right)$

The aquo complexes, trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)\left(\mathrm{OH}_{2}\right)(\mathrm{R}=\mathrm{Ph}$ (33a), p-tolyl (33b)), were initially prepared by Mudalige, previously of this laboratory, and she reported the X-ray structure of the $\mathrm{R}=p$-tolyl complex. ${ }^{2}$ Mudalige had formed in situ samples of 33a and 33b in CDCl_{3} solutions of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 a)$ or $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)$ (7a), respectively, and crystals of 33b formed in the NMR tube. ${ }^{2}$ During the course of this present thesis work, it was noted that crystals of 33a and 33b form easily in the presence of minute amounts of
moisture in solutions and the complexes were further investigated. The aquo complexes are most conveniently prepared by stirring $6 \mathbf{a}$ or 7 a in a mixture of acetone $/ \mathrm{H}_{2} \mathrm{O}$ (4:1) under Ar (Sections 2.10.1 and 2.10.2). The precipitated and isolated pink solids analyse for the solvated species $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)\left(\mathrm{OH}_{2}\right) \cdot($ acetone $)$. Heating these solids in vacuo at $80^{\circ} \mathrm{C}$ results in the removal of acetone and $\mathrm{H}_{2} \mathrm{O}$ and formation of the green, unsaturated five-coordinate precursors $6 \mathbf{a}$ and 7 a . The loss of $\mathrm{H}_{2} \mathrm{O}$ is also demonstrated by the thermogravimetric analysis (TGA) of 33 (Figure 5.1). A weight loss of 11% between 80 to $110^{\circ} \mathrm{C}$ prior to thermal decomposition is a good approximation to the theoretical combined 9% weight of acetone and $\mathrm{H}_{2} \mathrm{O}$ present.

Figure 5.1 TGA spectrum of 33a, depicting the loss of acetone and $\mathrm{H}_{2} \mathrm{O}$ between 80° to $110^{\circ} \mathrm{C}$. The sample was heated in a N_{2} atm at a flow rate of $100 \mathrm{cc} / \mathrm{min}$.

The v_{1}, v_{2} and v_{3} vibrational bands for gaseous $\mathrm{H}_{2} \mathrm{O}$ appear at 3657, 1595 and $3756 \mathrm{~cm}^{-1}$, respectively. ${ }^{3}$ Upon coordination of $\mathrm{H}_{2} \mathrm{O}$, these vibrations emerge as sharp and intense bands at 3295,1605 and $3556 \mathrm{~cm}^{-1}$ in the IR spectrum of $33 a$ in the solid state (KBr). [These values differ from those of 3470 and $1739 \mathrm{~cm}^{-1}$ obtained by Mudalige for a CHCl_{3} solution of $\mathbf{3 3 a}(\mathrm{KBr}){ }^{2}$ perhaps she may have not recognized the extreme air-sensitivity of

33a in solution.]

In the solid state, 33a and 33b can be formed reversibly by placing 6a or 7a in a moist atmosphere. However, the rate at which 33b forms is approximately three times faster than that of 33a, although this could well depend on particle size. Nevertheless, when green, powdered samples of 7a and $\mathbf{6 a}$ are placed in air, the pink solid $\mathbf{3 3 b}$ forms in $<3 \mathrm{~min}$ whereas formation of 33a takes $>15 \mathrm{~min}$. The X-ray crystal structure of 7a indicates no agostic interactions between the Ru -atom and any ortho-phenyl hydrogen atoms from the P (p-tolyl $)_{3}$ ligand, and thus the species has an accessible, vacant sixth coordination site. ${ }^{2,4}$ Although many attempts to grow crystals of $\mathbf{6 a}$ were unsuccessful, the observation that 33a takes longer to form in the solid state perhaps infers that the sixth coordination site of $\mathbf{6 a}$ is occupied by an ortho-phenyl hydrogen of the PPh_{3} ligand. This type of agostic interaction has been observed in the very similar square pyramidal complexes $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}{ }^{5}, \mathrm{RuBr}_{2}\left(\mathrm{PPh}_{3}\right)_{3},{ }^{6,7}$ $\mathrm{RuCl}_{2}(\mathrm{dppb})\left(\mathrm{PPh}_{3}\right)^{6,7}$ and $\mathrm{RuCl}_{2}($ (isoPFA $)\left(\mathrm{PPh}_{3}\right){ }^{8}{ }^{8}$

5.2 X-Ray Crystal Structures of Trans-RuCl $\mathbf{2}(\mathbf{P - N})\left(\mathbf{P P h}_{3}\right)\left(\mathbf{O H}_{2}\right)(33 a)$

Pink needle shaped crystals with a monoclinic unit cell, and yellow-brown prism shaped crystals with a triclinic unit cell, were isolated from a solution of 6 a in $\mathrm{C}_{6} \mathrm{H}_{6}$ under Ar . X-ray crystallographic analysis revealed the respective molecular formulas as trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right) \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}$ (I) and trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right) \cdot 1.5 \mathrm{C}_{6} \mathrm{H}_{6}$ (II).

The PLUTO plots for the two structures are shown in Figure 5.2. Both types of crystals yielded very similar structures for the Ru moiety, and both of these are associated with two $\mathrm{C}_{6} \mathrm{H}_{6}$ solvate molecules. The crystals of II were of superior X-ray quality than those of I and both H -atoms on the coordinated $\mathrm{H}_{2} \mathrm{O}$ were isotropically refined in the former. While no interactions between the solvated $\mathrm{C}_{6} \mathrm{H}_{6}$ molecules and the Ru moiety in I were found, a distance of $2.77(3) \AA$ between $\mathrm{H}(2)$ and $\mathrm{C}(40)$ in Π indicates a probable OH / π phenyl ring interaction.

I

II

Figure 5.2 PLUTO plots: orientations of $\mathrm{C}_{6} \mathrm{H}_{6}$ molecules in the structures of 33a (trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right) \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{I})$ and trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right) \cdot 1.5 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{II})$.

The ORTEP plot of $\mathbf{I I}$, which is very similar to that of \mathbf{I}, is shown in Figure 5.3 and reveals a pseudooctahedral geometry around the Ru with trans-chloro ligands and the $\mathrm{H}_{2} \mathrm{O}$

Figure 5.3 The ORTEP plot of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right) \cdot 1.5 \mathrm{C}_{6} \mathrm{H}_{6}(33 \mathrm{a}$ (II)). Thermal ellipsoids for non-hydrogen atoms are drawn at 33% probability (some of the phenyl carbons have been omitted for clarity). Full experimental parameters and details are given in Appendix VIII.
trans to the P-atom of the P-N ligand. Selected bond lengths and angles of I and II are shown and compared with those of trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\left(\mathrm{OH}_{2}\right)(\mathbf{3 3 b})^{2}\right.$ in Tables 5.1 and 5.2, respectively. The $\mathrm{Ru}-\mathrm{O}(1)$ bond of $\mathbf{I I}$ is significantly shorter ($2.187 \AA$) than those of \mathbf{I} ($2.238 \AA$) and 33b $(2.252 \AA)$, but is intermediate between those weakly bound aquo ligand complexes (e.g. trans-[$\left.\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{PEt}_{3}\right)_{2}(\operatorname{trpy})\right]\left[\mathrm{ClO}_{4}\right]_{2}\left(2.218 \AA \text {, trpy }=2,2^{\prime}, 2^{\prime \prime} \text {-terpyridine }\right)^{9}$ and $\left[\mathrm{Ru}\left(\eta^{6}-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{Pr}^{i}-p\right)\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{L})\right]\left[\mathrm{ClO}_{4}\right](2.203 \AA$, $\mathrm{HL}=(\mathrm{S})$ - $(\alpha$-methylbenzyl) salicylaldimine $)^{10}$) and strongly coordinated aquo complexes (e.g. $\left[\mathrm{RuH}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{X}$ $(2.15 \AA),{ }^{11} \quad\left[\mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]\left[\mathrm{SO}_{4}\right] \quad(2.127 \AA),{ }^{12} \quad \mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\eta^{1}(O): \eta^{2}\left(C, C^{\prime}\right)-\right.$ $\left.\mathrm{OCOCH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}\right)_{2} \quad(2.141$ and $2.115 \AA),{ }^{13}\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right][\mathrm{OTs}]_{2} \quad(2.122 \AA, \mathrm{OTs}=$ p-toluenesulfonate), ${ }^{14}$ and $\left.\left[(\operatorname{cod}) R u\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right][\mathrm{OTs}]_{2}(2.158 \text { and } 2.095 \AA)^{15}\right)$. Evidently, the close approach of the solvated benzene rings to the coordinated $\mathrm{H}_{2} \mathrm{O}$ ligand of II results in the contraction of the Ru-O bond. This shorter Ru-O bond of \amalg imposes the following structural consequences: (i) Strong intramolecular hydrogen bonds between the $\mathrm{H}_{2} \mathrm{O}$ ligand and the trans-Cl-atoms are formed. The $\mathrm{H}(1) \cdots \mathrm{Cl}(1)$ and $\mathrm{H}(2) \cdots \mathrm{Cl}(2)$ bonds are $2.43 \AA(2.79 \AA$ for 33b) and $2.76 \AA$ ($2.84 \AA$ for 33 b), respectively. (ii) The coordinated $\mathrm{O}-\mathrm{H}$ bonds are 0.74 and $0.81 \AA$, significantly shorter than those of free $\mathrm{H}_{2} \mathrm{O}(0.956 \AA)$ and the $\mathrm{H}-\mathrm{O}-\mathrm{H}$ angle contracts from $105^{\circ}\left(\right.$ free $\left.\mathrm{H}_{2} \mathrm{O}\right)$ to 97.5°; this is perhaps because of volume restrictions imposed by the close proximity of the Cl -atoms and the solvated benzene rings. (iii) Mutual repulsion of the O and $\mathrm{Cl}(1)$ atoms results in a larger $\mathrm{Cl}(1)$-Ru-O angle of $85.40^{\circ}\left(82.47^{\circ}\right.$ for I and 81.6° for 33b) and a smaller $\mathrm{Cl}(2)$-Ru-O angle of $80.63^{\circ}\left(83.87^{\circ}\right.$ for I and 82.2° for 33 b$)$; as a result, the $\mathrm{Cl}(1)-\mathrm{Ru}-\mathrm{P}(1)$ angle is substantially smaller at 88.02° compared to 104.11° of \mathbf{I} and 104.30° of 33b. Repulsion between $\mathrm{Cl}(2)$ and O also results in a smaller $\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{P}(2)$ angle of $86.97^{\circ}\left(98.88^{\circ}\right.$ for I and 96.26° for $\left.\mathbf{3 3 b}\right)$.

Table 5.1 Selected bond lengths (\AA) for trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right) \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{I})$, trans-$\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right) \cdot 1.5 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{II})$ and trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\left(\mathrm{OH}_{2}\right)\right.$ (33b) with estimated standard deviations in parentheses.

Bond	Length (\AA)		
	33a (I)	33a (II)	33b
$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.238(3)$	$2.187(2)$	$2.252(4)$
$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.2281(11)$	$2.2344(8)$	$2.220(1)$
$\mathrm{Ru}(1)-\mathrm{P}(2)$	$2.3147(12)$	$2.3085(7)$	$2.284(1)$
$\mathrm{Ru}(1)-\mathrm{N}(1)$	$2.308(3)$	$2.311(2)$	$2.326(4)$
$\mathrm{Ru}(1)-\mathrm{Cl}(1)$	$2.3941(11)$	$2.3976(6)$	$2.385(1)$
$\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$2.4173(10)$	$2.4298(6)$	$2.418(1)$
$\mathrm{O}(1)-\mathrm{H}(1)$	N / A	$0.74(2)$	$0.69(6)$
$\mathrm{O}(1)-\mathrm{H}(2)$	N / A	$0.81(3)$	$0.96(6)$
$\mathrm{H}(1) \cdots \mathrm{Cl}(1)$	N / A	$2.43(3)$	$2.79(7)$
$\mathrm{H}(2) \cdots \mathrm{Cl}(2)$	N / A	$2.76(3)$	$2.84(6)$

Table 5.2 Selected bond angles (${ }^{\circ}$) for trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right) \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})$, trans-$\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right) \cdot 1.5 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{II})$ and trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\left(\mathrm{OH}_{2}\right)\right.$ (33b) with estimated standard deviations in parentheses.

Bond	Angle (${ }^{\circ}$)		
	33a (l)	33a (II)	33b
$\mathrm{H}(1)-\mathrm{O}(1)-\mathrm{H}(2)$	N/A	97.5(28)	N/A
$\mathrm{Ru}(1)-\mathrm{O}(1)-\mathrm{H}(1)$	N/A	126.6(23)	N/A
$\mathrm{Ru}(1)-\mathrm{O}(1)-\mathrm{H}(2)$	N/A	116.4(25)	N/A
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)$	82.47(7)	85.40(6)	81.6(1)
$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{O}(1)$	83.87(7)	80.63(6)	82.2(1)
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)$	104.11(4)	88.02(2)	104.30(5)
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	87.05(4)	96.30(2)	89.74(5)
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	91.01(9)	84.09(5)	90.8(1)
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(2)$	165.18(4)	165.58(2)	162.91(4)
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)$	168.33(7)	169.95(6)	168.8(1)
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	90.94(8)	88.57(6)	91.4(1)
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	88.85(11)	90.30(8)	90.3(1)
$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{P}(1)$	88.45(4)	105.32(3)	90.73(4)
$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{P}(2)$	98.88(4)	86.97(2)	96.26(5)
$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	83.01(9)	92.37(5)	83.7(1)
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	98.94(4)	99.70(3)	98.04(5)
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	81.48(9)	81.46(6)	80.20(9)
$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	178.06(9)	178.77(6)	178.24(9)

The notable structural difference between the aquo complexes and the complexes containing sulfur ligands (Chapter 4) is that the Cl -atoms in the former are mutually trans but are cis in the latter. Consequently, the $\mathrm{P}(1)$ (of the $\mathrm{P}-\mathrm{N}$ ligand) is trans to $\mathrm{H}_{2} \mathrm{O}$ ligand in the former and trans to a Cl -atom in the latter (see Chapter 1, Figure 1.18). The observation that the Ru-P(1) bonds in I, II and 33b (2.2281, 2.2344 and $2.220 \AA$) are shorter than those in the complexes containing S ligands ($2.27 \AA$ on average) indicates that the Cl -atom has a stronger trans influence than that of $\mathrm{H}_{2} \mathrm{O}$ toward phosphines. This is in agreement with ab initio calculations, ${ }^{16}$ and ${ }^{1} \mathrm{~J}_{\mathrm{PtP}}$ NMR data obtained for trans-[$\mathrm{Pt}\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{CH}_{3}\right)($ dppe $\left.)\right] \mathrm{BF}_{4}$ and trans- $\left[\mathrm{Pt}(\mathrm{Cl})\left(\mathrm{CH}_{3}\right)(\mathrm{dppe})\right] .{ }^{17}$ The correlation between ${ }^{31} \mathrm{P}$ NMR data and trans influence will be discussed in Section 5.3.

5.3 NMR Spectra of Trans-RuCl $\mathbf{2}(\mathbf{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right)(33 a)$

The ${ }^{31} \mathrm{P}$ NMR spectrum of a sample of isolated 33a shows a characteristic AX coupling pattern. The resolution and chemical shifts of these resonances, however, are dependent on the solvent, temperature and concentration of added $\mathrm{H}_{2} \mathrm{O}$. In solution, 33a is in a rapid equilibrium with 6a (Figure 5.4) and resonances of the individual species are unresolved and indistinguishable on the NMR timescale. While the chemical shifts due to P_{X} (sharp doublets at $\delta \sim 48$) are relatively constant in different temperatures and solvents in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 33 a , the P_{A} signals appear from $\delta 68$ to $\delta 80$ as broad peaks or doublets (e.g. see Figure 5.5). Table 5.3 compares the P_{A} and P_{X} chemical shifts of isolated samples of $\mathbf{3 3 a}$ with those of $\mathbf{6 a}$ in various solvents. Weakly coordinating solvent molecules compete with $\mathrm{H}_{2} \mathrm{O}$ for the vacant sixth site on the Ru . For example, d_{6}-acetone is weakly coordinated to 6a, trans to P_{A}, as indicated by the broad P_{A} signal at $\delta 70.5$ (Figure 5.6(a)). A sharp doublet due to P_{A} emerges as the concentration of $\mathrm{H}_{2} \mathrm{O}$ is increased and equilibrium
favours the formation of 33a (Figure 5.6(b)-(e)). Coordinative competition from acetone is negligible upon addition of >300 equiv of $\mathrm{H}_{2} \mathrm{O}$.

Figure 5.4 Rapid equilibrium between 6a and 33a.

Table 5.3 $\quad \mathrm{P}_{\mathrm{A}}$ and P_{X} chemical shifts for $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ (6a) and trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right)(33 a)$ in various solvents at $20^{\circ} \mathrm{C}$. ${ }^{\text {a }}$

Solvent	$\delta \mathrm{P}_{\mathrm{A}}$		$\delta \mathrm{P}_{\mathrm{X}}$		${ }^{2} \mathrm{~J}_{\mathrm{PP}}(\mathrm{Hz})$	
	$\mathbf{6 a}$	$\mathbf{3 3 a}$	$\mathbf{6 a}$	$\mathbf{3 3 a}$	$\mathbf{6 a}$	33 a
$\mathrm{CD}_{2} \mathrm{Cl}_{2}$	80.51	$80.1(\mathrm{br})^{\mathrm{b}}$	47.00	48.40^{b}	36.54	37.39^{b}
CDCl_{3}	83.23	$68.5(\mathrm{br})^{\mathrm{b}}$	48.41	45.70^{b}	34.82	37.76^{b}
$\mathrm{C}_{6} \mathrm{D}_{6}$	83.69	73.52^{b}	48.87	49.31^{b}	36.54	38.00^{b}
d_{6}-acetone	$70.5(\mathrm{br})$	61.78^{c}	47.27	48.03^{c}	38.36	38.12^{c}

${ }^{2}$ All chemical shifts above are doublets unless otherwise specified by (br) to indicate a broad signal.
${ }^{\mathrm{b}}$ The spectra are for isolated samples of 33a, i.e. in the absence of added $\mathrm{H}_{2} \mathrm{O}$. ${ }^{\text {c }}$ Spectra refer to fully formed 33a in the presence of added $\mathrm{H}_{2} \mathrm{O}$.

Figure 5.5 $\quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (202.47 MHz) of trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right)(33 a)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at various temperatures. A new, unidentified species appeared between -50° and $-80^{\circ} \mathrm{C}$ as indicated by signals at $\delta 49.8$ and $\delta 59.0$.

Figure 5.6 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $\left(121.4 \mathrm{MHz}, 0^{\circ} \mathrm{C}\right)$ of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 \mathrm{a})$ in d_{6}-acetone with various $\mathrm{H}_{2} \mathrm{O}$ concentrations.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of samples of 33 a in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at various temperatures are shown in Figure 5.5. The rapid coordination and dissociation of the aquo ligand trans to the P_{A} atom of the aminophosphine ligands are apparent from the downfield broad signal. This type of NMR coalescence is a consequence of the trans effect of P_{A} on the $\mathrm{H}_{2} \mathrm{O}$ ligand. Examples of this behaviour have been demonstrated by the weakly bonded $\mathrm{H}_{2} \mathrm{O}$ complexes, trans, mer $-\left[\mathrm{MCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}\right]\left[\mathrm{ClO}_{4}\right]\left(\mathrm{M}=\mathrm{Rh}^{19}\right.\right.$ or $\left.\mathrm{Ir}^{20}\right)$. At $25^{\circ} \mathrm{C}$, equilibrium favours 6a as indicated by the P_{A} chemical shift at $\delta 80.1$. As the temperature is lowered to $-50^{\circ} \mathrm{C}$, concentrations of both species become equivalent and the P_{A} resonances coalese into the base line. Finally, at $-80^{\circ} \mathrm{C}$, the P_{A} signal reappears at $\delta 62.3$ due to the dominance of the aquo complex. The ${ }^{1} \mathrm{H}$ NMR spectra of 33 a also agree with the above observation although the distinction between the resonances of $6 \mathbf{a}$ and 33 a is not as obvious. That is, the $-\mathrm{NMe}_{2}$ signals of both complexes overlap as seen in Figure 5.7. Of note, when the temperature is lowered from 25° to $-80^{\circ} \mathrm{C}$, the resonances due to the coordinated $\mathrm{H}_{2} \mathrm{O}$ shift downfield from $\delta 2.18$ to 3.42 while the $-\mathrm{NMe}_{2}$ resonances shift upfield from $\delta 3.20$ to 2.85 .

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR spectra of the $\mathbf{6 a} / 33$ a equilibrium system are in marked contrast to those of the $\mathbf{6 a} / \mathbf{1 8 a}\left(\right.$ cis- $\left.\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)\right)$ system where both species are distinguished. The coalescence of the resonances of $6 \mathbf{a}$ and 33a on the NMR-timescale indicate that the aquo system is much more labile; i.e. the reversible formation of the aquo complex is faster than the $\mathrm{H}_{2} \mathrm{~S}$ species.

Figure 5.7 ${ }^{1} \mathrm{H}$ NMR spectra $(500 \mathrm{MHz})$ of trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right)(33 a)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at various temperatures.

5.4 Trans Influence of Ligands and its Effect on ${ }^{31} P$ NMR Chemical Shifts

The trans effect of the P -atom of the $\mathrm{P}-\mathrm{N}$ ligand on the $\mathrm{H}_{2} \mathrm{O}$ ligand leads to the rapid and reversible coordination of $\mathrm{H}_{2} \mathrm{O}$. Conversely, the trans influence of $\mathrm{H}_{2} \mathrm{O}$ on P-N must weaken the $\mathrm{Ru}-\mathrm{P}_{\mathrm{A}}$ bond relative to its strength in the five-coordinate complex 6a. The trans-influence of the ligand trans to the P_{A} atoms is exemplified by the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)(\mathrm{L})(\mathrm{L}=$ small molecule $)$ complexes. For example, the ligand trans to P_{A} is Cl for cis- $\mathrm{RuCl}_{2}\left(\mathrm{P}_{\mathrm{A}}-\mathrm{N}\right)\left(\mathrm{P}_{\mathrm{X}} \mathrm{R}_{3}\right)\left(\mathrm{H}_{2} \mathrm{~S}\right)$, and $\mathrm{H}_{2} \mathrm{O}$ for trans $-\mathrm{RuCl}_{2}\left(\mathrm{P}_{\mathrm{A}}-\mathrm{N}\right)\left(\mathrm{P}_{\mathrm{X}} \mathrm{R}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)$. In both cases the N -atom of the $\mathrm{P}-\mathrm{N}$ ligand is trans to PPh_{3} and the chemical shift of P_{X} is
relatively insensitive to the incoming ligand L or the orientation of the Cl -atoms (Table 5.4). The negligible cis-influence of ligands on phosphines is also demonstrated by ${ }^{31} \mathrm{P}$ NMR chemical shifts and ${ }^{1} \mathrm{~J}_{\text {Pt-P }}$ coupling constants of platinum(II) phosphine systems. ${ }^{21,22}$ The chemical shifts of P_{A}, however, are dependent on the ligand at the trans position. A more downfield P_{A} signal corresponds to a higher trans influence of the trans ligand because trans influence is determined by the ability of this ligand to deshield $\mathrm{P}_{\mathrm{A}}{ }^{23,24}$ That is, the trans influence is determined by the ligands effectiveness in competing for the metal orbital's s-character. ${ }^{25,26}$ Alternatively, the trans influence is also dependent on the σ-donating ability of the ligands as demonstrated by the ${ }^{1} \mathrm{~J}_{\mathrm{M}-\mathrm{P}}$ NMR data obtained for $\mathrm{M}=\mathrm{Rh}(\mathrm{I})^{25}$ and $\operatorname{Pt}(\mathrm{II})^{23,27}$ systems. A large J value indicates a weak influence by the trans ligand because large NMR coupling constants reflect strong σ-bonds. ${ }^{25,28}$

Table 5.4 Comparison of ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts and Ru-P bond lengths.

Complex (in CDCl_{3})	$\delta \mathrm{P}_{\mathrm{A}}$	$\mathrm{Ru}-\mathrm{P}_{\mathrm{A}}(\AA)$	$\delta \mathrm{P}_{\mathrm{X}}$	$\mathrm{Ru}-\mathrm{P}_{\mathrm{X}}(\AA)$	${ }^{2} \mathrm{~J}_{\mathrm{PP}}(\mathrm{Hz})$
trans $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)(7 \mathrm{a})^{\mathrm{a}}$	81.46	2.170(1)	47.64	2.290(1)	37.15
trans $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)\left(\mathrm{OH}_{2}\right)(33 \mathrm{~b})^{\text {b }}$	71.80	2.220(1)	47.62	2.284(1)	38.12
trans-RuCl ${ }_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right)(33 \mathrm{a}, \mathrm{I}(\mathrm{II}))^{\text {b }}$	68.50	$\begin{aligned} & \hline 2.2281(11) \\ & (2.2344(8)) \end{aligned}$	47.70	$\begin{array}{\|l} \hline 2.3147(12) \\ (2.3085(7)) \end{array}$	37.76
cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p-\text { tolyl })_{3}\right)\left(\mathrm{SH}_{2}\right)(19 \mathrm{a})^{\text {c }}$	51.91	$2.2560(4)$	42.58	2.3040 (3)	30.41
cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPH}_{3}\right)\left(\mathrm{SH}_{2}\right)(\mathbf{1 8 a})^{\text {c }}$	50.60	2.2712(6)	44.48	2.3110(7)	30.23
cis- $\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)(\mathbf{1 8 b})^{\text {c }}$	53.41	2.2617(10)	44.36	$2.5540(4)$	29.20
cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{MeSH})(20)^{\text {c }}$	51.43	2.2803(7)	42.37	2.3100(7)	29.87
cis-RuCl ${ }_{2}(\mathbf{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{EtSH})(21)^{\text {c }}$	50.97	2.2753(5)	42.48	2.3100(6)	30.05
cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{H}_{2}\right)(36)^{\text {d }}$	49.30	2.2884(7)	45.48	2.3098(6)	26.83
cis $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph})(45)^{\text {d }}$	37.85	2.332(2)	36.40	2.346(2)	26.50

Discussions of the above crystal structures are found in: ${ }^{\text {a }}$ Chapter 3 , ${ }^{6}$ current chapter, ${ }^{c}$ Chapter 4 , and ${ }^{\text {d }}$ Chapter 6.

Figure 5.8 The relationship between $\mathrm{Ru}-\mathrm{P}_{\mathrm{A}}$ bond length (\AA) and $\delta \mathrm{P}_{\mathrm{A}}$ (in CDCl_{3}) for the complexes containing the $\mathrm{Ru}(\mathrm{P}-\mathrm{N})$ moiety. (Structures of 7a, 19a, 33b and 45 were measured at $21^{\circ} \mathrm{C}, \mathbf{1 8 a}, \mathbf{1 8 b}, 20,21$ and 33 a were determined at $-93^{\circ} \mathrm{C}$, and 36 was determined at $-100^{\circ} \mathrm{C} ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts of P_{A} for all the complexes were determined at $20^{\circ} \mathrm{C}$.)

Table 5.4 also compares the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts and $\mathrm{Ru}-\mathrm{P}$ bond lengths for $\operatorname{Ru}(\mathrm{P}-\mathrm{N})$ complexes related to this thesis work. With the exception of 45 , the $\delta \mathrm{P}_{\mathrm{X}}$ shifts for the chloro complexes are consistently at $\mathrm{ca} . \delta 45$ and the $\mathrm{Ru}-\mathrm{P}_{\mathrm{x}}$ bond lengths are ca. $2.31 \AA$. The inverse dependence of $\delta \mathrm{P}_{\mathrm{A}}$ on $\mathrm{Ru}-\mathrm{P}_{\mathrm{A}}$ is plotted in Figure 5.8, a trend that has also been observed for $\mathrm{Ru}(\mathrm{II})$ complexes containing $\mathrm{PPh}_{3}^{29,30}$ and DPPB $\left(\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2}\right)^{31,32}$ ligands. In fact, the plot for the P-N system (slope $=-3.2 \times 10^{-3} \AA \mathrm{ppm}^{-1}$, intercept $=2.44 \AA$) is similar to that of the PPh_{3} (slope $=-2.9 . \times 10^{-3} \AA \mathrm{ppm}^{-1}$, intercept $=2.47 \AA$) and DPPB (slope $=$ $-2.9 \times 10^{-3} \AA \mathrm{ppm}^{-1}$, intercept $\left.=2.42 \AA\right)$ systems.

From the plot shown in Figure 5.8, the ligands can be listed in order of decreasing trans influence: $\mathrm{Cl} \sim \mathrm{Br}>\mathrm{H}_{2} \mathrm{O}$. In accord, halides are better σ - and π-donors than $\mathrm{H}_{2} \mathrm{O}$. Of note, ${ }^{2} \mathrm{~J}_{\mathrm{PP}}$ values for the trans complexes $(\sim 37.7 \mathrm{~Hz})$ are larger than those of the cis complexes ($\sim 29.0 \mathrm{~Hz}$). Tables 5.5 and 5.6 list the $\mathrm{Ru}-\mathrm{Cl}$ bond distances when the Cl -atoms are mutally trans and cis, respectively. From the comparisons of the average trans $\mathrm{Ru}-\mathrm{Cl}$ bond distances in Table 5.5 and $\mathrm{Ru}-\mathrm{Cl}_{\mathrm{A}}$ bond distances in Table 5.6, it can be stated that S-ligands have a stronger trans influence than that of Cl . Further, the S -ligands (average $\mathrm{Ru}-\mathrm{Cl}_{\mathrm{A}}=$ $2.42 \AA)$ perhaps have a slightly greater trans influence than that of $\mathrm{H}_{2}\left(\mathrm{Ru}-\mathrm{Cl}_{\mathrm{A}}=2.41\right)$. The P_{A}-atom of the P-N ligand has a greater trans influence than that of Cl as indicated by the relatively long $\mathrm{Ru}-\mathrm{Cl}_{\mathrm{B}}$ bonds in Table 5.6. Greater trans influence of phosphine ligands over Cl has been previously observed for $\mathrm{Pt}(\mathrm{II})^{23}$ and $\mathrm{Rh}(\mathrm{I})^{25}$ complexes. Using the above observations and assuming that the cis effects are negligible, a trans influence order is derived as: $\mathrm{P}_{\mathrm{A}}>\mathrm{SH}_{2} \sim$ thiols $>\mathrm{H}_{2}>\mathrm{Cl} \sim \mathrm{Br}>\mathrm{H}_{2} \mathrm{O}$.

Table 5.5 $\mathrm{Ru}-\mathrm{Cl}$ bond lengths (\AA) for trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)(\mathrm{L})$.

trans $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)(\mathrm{L})$	Bond Lengths (\AA)		
	$\mathrm{Ru}-\mathrm{Cl}_{\mathrm{A}}$	$\mathrm{Ru}-\mathrm{Cl}_{\mathrm{B}}$	
$\mathrm{R}=\mathrm{Ph}, \mathrm{L}=$ vacant (7a)	2.387(1)	2.379(1)	
$\mathrm{R}=\mathrm{Ph}, \mathrm{L}=\mathrm{H}_{2} \mathrm{O}(33 \mathrm{a}, \mathrm{I})$	2.3941(11)	2.4173(10)	
$\mathrm{R}=\mathrm{Ph}, \mathrm{L}=\mathrm{H}_{2} \mathrm{O}(33 \mathrm{a}, \mathrm{II})$	2.3976 (6)	2.4298(6)	
$\mathrm{R}=p$-tolyl, $\mathrm{L}=\mathrm{H}_{2} \mathrm{O}$ (33b)	2.385(1)	2.418(1)	

Table 5.6 $\quad \mathrm{Ru}-\mathrm{Cl}$ bond lengths (\AA) for cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)(\mathrm{L})$.

cis-RuCl $2_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)(\mathrm{L})$	Bond Lengths (\AA)	
	${\mathrm{Ru}-\mathrm{Cl}_{\mathrm{A}}}^{\mathrm{Ru}-\mathrm{Cl}_{\mathrm{B}}}$	
$\mathrm{R}=\mathrm{Ph}, \mathrm{L}=\mathrm{H}_{2} \mathrm{~S}(18 \mathrm{a})$	$2.4238(6)$	$2.4721(5)$
$\mathrm{R}=p$-tolyl, $\mathrm{L}=\mathrm{H}_{2} \mathrm{~S}(19 \mathrm{a})$	$2.429(3)$	$2.469(4)$
$\mathrm{R}=\mathrm{Ph}, \mathrm{L}=\mathrm{MeSH}(20)$	$2.4241(7)$	$2.4472(7)$
$\mathrm{R}=\mathrm{Ph}, \mathrm{L}=\mathrm{EtSH}(21)$	$2.4204(6)$	$2.4674(5)$
$\mathrm{R}=\mathrm{Ph}, \mathrm{L}=\eta^{2}-\mathrm{H}_{2}(36)$	$2.4090(6)$	$2.4543(7)$

Reaction of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ (6a) with $\mathrm{L}=\mathrm{H}_{2} \mathrm{~S}$ and thiols (Chapter 4), H_{2} (Chapter 6), and HCCPh (Chapter 6) results in the exclusive formation of the cis isomers, i.e., having L trans to the apical P_{A} atom is disfavoured. A plausible mechanism for the

$6 \mathbf{a}$

$18 a^{\prime}$

6a'

18a

Figure 5.9 Proposed mechanism for the formation of cis-RuCl $(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)(18 a)$.
formation of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$ and other cis isomers is shown in Figure 5.9, involving an equilibrium between the square pyramidal 6a and minute amounts of trigonal bipyramidal 6a' structures. The approach of the $\mathrm{H}_{2} \mathrm{~S}$ ligand towards $\mathbf{6 a}$ to give the trans species 18a' is perhaps disfavoured because of the mutual trans influences of P_{A} and $H_{2} S$. The approach of $\mathrm{H}_{2} S$ toward $6 a^{\prime}$ at the equatorial position between P_{x} and N, presumably results in the favourable formation of the preferred cis isomer 18a. The rearrangement of square pyramidal structures to trigonal bipyramidal has also been shown to exist when $\mathrm{H}_{2} \mathrm{O}$ dissociates from trans, mer- $\left[\mathrm{MCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]\left[\mathrm{ClO}_{4}\right]\left(\mathrm{M}=\mathrm{Rh}^{19}\right.$ or $\left.\mathrm{Ir}^{33}\right)$. Other routes involving initial dissociation of Cl^{-}cannot be ruled out at this stage.

5.5 UV-Vis Spectral Studies of the $\mathbf{R u C l}_{\mathbf{2}}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{\mathbf{3}}\right) / \mathbf{H}_{\mathbf{2}} \mathrm{O}$ System

The UV-Vis spectra of 6 a with increasing concentrations of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{C}_{6} \mathrm{D}_{6}$, acetone and THF are shown in Figures 11-14, respectively. Three isosbestic points at 414, 498 and $552 \mathrm{~nm}\left(\varepsilon\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{6}\right)=560(600), 395(380)$ and $\left.145(115) \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ are observed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{C}_{6} \mathrm{D}_{6}$ solutions, while only one distinct isosbestic point at 404 nm (ε in acetone (and THF) $=545(655) \mathrm{M}^{-1} \mathrm{~cm}^{-1}$) is observed in solutions of the more coordinating solvents acetone and THF. The differences in spectra changes suggest that coordinating solvents such as acetone and THF compete with $\mathrm{H}_{2} \mathrm{O}$ for the vacant site in the coordination sphere of 6a as shown in Figure 5.10.

Figure 5.10 Species in equilibrium when $6 a$ is dissolved in a coordinating solvent in the presence of $\mathrm{H}_{2} \mathrm{O}$.

Figure 5.11 Spectral changes observed upon addition of $\mathrm{H}_{2} \mathrm{O}$ to $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ (6a) $\left(1.04 \times 10^{-3} \mathrm{M}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$. Added $\left[\mathrm{H}_{2} \mathrm{O}\right]=$ (a) 0.0 , (b) 0.0056 , (c) 0.0111 , (d) 0.0333, (e) 0.0500, (f) 0.0666, (g) 0.0999, (h) 0.1110 M .

Figure 5.12 Spectral changes observed upon addition of $\mathrm{H}_{2} \mathrm{O}$ to $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 a)$ $\left(1.21 \times 10^{-3} \mathrm{M}\right)$ in $\mathrm{C}_{6} \mathrm{H}_{6}$ at $25^{\circ} \mathrm{C}$. Added $\left[\mathrm{H}_{2} \mathrm{O}\right]=$ (a) 0.0 , (b) 0.0056 , (c) 0.0111 , (d) 0.0222 , (e) 0.0333 , (f) 0.0444 , (g) 0.0776 M .

Figure 5.13 Spectral changes observed upon addition of $\mathrm{H}_{2} \mathrm{O}$ to $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 a)$ $\left(1.12 \times 10^{-3} \mathrm{M}\right)$ in acetone at $25^{\circ} \mathrm{C}$. Added $\left[\mathrm{H}_{2} \mathrm{O}\right]=$ (a) 0.0 , (b) 0.0089 , (c) 0.2652 , (d) 0.9171 , (e) 1.9702 , (f) 3.9591 M .

Figure 5.14 Spectral changes observed upon addition of $\mathrm{H}_{2} \mathrm{O}$ to $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 a)$ $\left(1.19 \times 10^{-3} \mathrm{M}\right)$ in THF at $25^{\circ} \mathrm{C}$. Added $\left[\mathrm{H}_{2} \mathrm{O}\right]=$ (a) 0.0 , (b) 0.0444 , (c) 0.1110 , (d) 0.2220 , (e) 0.9992 , (f) 4.330 M .

Figure 5.15 Solving K for the addition of $\mathrm{H}_{2} \mathrm{O}$ to 6 a at $25^{\circ} \mathrm{C}$. The equilibrium concentrations were obtained by monitoring the absorbance at 678 nm (Figure 5.11). Data points at higher $\mathrm{H}_{2} \mathrm{O}$ concentrations have been omitted due to the insolubility of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; solubility of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is 0.128 M at $25^{\circ} \mathrm{C} .{ }^{34}$

From the equation $\log \{[33 \mathrm{a}] /[6 \mathrm{a}]\}=\log \mathrm{K}+\log \left[\mathrm{H}_{2} \mathrm{O}\right]$, the equilibrium constant K for the formation of 33 a in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is obtained by plotting $\log \{[33 \mathrm{a}] /[6 \mathrm{a}]\}$ versus $\log \left[\mathrm{H}_{2} \mathrm{O}\right]$ (Figure 5.15). $\mathrm{K}=37 \pm 2 \mathrm{M}^{-1}$ at $25^{\circ} \mathrm{C}$ is calculated from the intercept of the plot, the estimated error being based on repeat experiments (see Appendix XII. 1 for raw data). The slope of 1.06 is in agreement with the unity dependence on the concentration of $\mathrm{H}_{2} \mathrm{O}$. A value of the same order of magnitude $\left(K=28 \mathrm{M}^{-1}\right.$, see Appendix XII.2) was obtained for the reaction in $\mathrm{C}_{6} \mathrm{H}_{6}$, implying that both these solvents are non-coordinating in the equilibrium system. Of note, $\mathrm{K}=\sim 10 \mathrm{M}^{-1}$ was estimated from the ${ }^{1} \mathrm{H}$ NMR spectra of 33 a in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (at $25^{\circ} \mathrm{C}$). Comparison of $\mathrm{K}=37 \mathrm{M}^{-1}$ with those obtained for $\mathrm{H}_{2} \mathrm{~S}$ and thiols (discussed in Section 4.6) insinuates that equilibrium favours the formation of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{L})$ in the
order $\mathrm{L}=\mathrm{MeSH}>\mathrm{EtSH} \sim \mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions, with K decreasing from 296 to $37 \mathrm{M}^{-1}$.

K values in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were measured from 10 to $38^{\circ} \mathrm{C}$, but reproducible values at the extreme temperatures could not be obtained. $\Delta H^{\circ}, \Delta S^{\circ}$ and ΔG° for the coordination of $\mathrm{H}_{2} \mathrm{O}$ to $\mathbf{6 a}$ are nevertheless estimated to be $-50 \pm 20 \mathrm{~kJ} / \mathrm{mol},-140 \pm 40 \mathrm{~J} / \mathrm{mol} \mathrm{K}$ and -8.9 ± 0.2 $\mathrm{kJ} / \mathrm{mol}$ (at $25^{\circ} \mathrm{C}$, based on $\mathrm{K}=37 \pm 2 \mathrm{M}^{-1}$) (see Appendix XII.1).

Kinetic studies of ligand substitution on 33a were attempted. Thus, $\mathrm{H}_{2} \mathrm{~S}$ or H_{2} at 1 atm total pressure was added to solutions of $33 \mathrm{a}\left(1.0 \times 10^{-3} \mathrm{M}\right)$ in acetone or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing excess $\mathrm{H}_{2} \mathrm{O}\left(>1.0 \mathrm{M}\right.$ in acetone, $>0.13 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to insure complete formation of 33a. However, the substitution reactions were too rapid to be measured by UVVis spectroscopy; for example, upon addition of $1 \mathrm{~atm} \mathrm{H}_{2} \mathrm{~S}$ to 33 a in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the solution 'instantaneously' changed from a pink colour to bright yellow, the UV-Vis spectrum showing complete formation of the $\mathrm{H}_{2} \mathrm{~S}$ adduct.

5.6 The Preparation of Trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{L})(\mathrm{L}=\mathbf{M e O H}$ (34) and EtOH (35))

The preparations of the MeOH and EtOH complexes proved to be difficult as trace moisture led to the formation of the aquo complex 33a. $\operatorname{Trans}-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{MeOH})$ (34) was previously observed in situ by Mudalige from NMR experiments. ${ }^{2}$ In this thesis work, 34 was isolated by stirring $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ and $\mathrm{P}-\mathrm{N}$ in a mixture of vigorously dried MeOH and acetone; addition of hexanes led to the precipitation of a pink solid that analysed for 34 (Section 2.10.3). The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(\right.$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) of an isolated sample of $\mathbf{3 4}$, similar to that of 33a, shows a broad signal at $\delta 77$ due to P_{A} and a resolved doublet due to P_{X} at $\delta 47.14\left({ }^{2} \mathrm{~J}_{\mathrm{PP}}=36.66 \mathrm{~Hz}\right.$); upon addition of 50 equiv of MeOH to the solution, the signal due to P_{A} is resolved into a doublet $\left(\delta 77.46,36.66 \mathrm{~Hz}\right.$). The ${ }^{1} \mathrm{H}$ NMR spectrum of an
isolated sample of $\mathbf{3 4}$ is shown in Figure 5.16. The singlet at $\delta 3.16$ is due to the NMe_{2} resonances, the equivalence of the Me groups implying the trans structure. The doublet at $\delta 3.30\left({ }^{3} \mathrm{~J}_{\mathrm{HH}}=5.3 \mathrm{~Hz}\right)$ is assigned to the CH_{3} group while the quartet at $\delta 1.34\left({ }^{3} \mathrm{~J}_{\mathrm{HH}}=\right.$ 5.3 Hz) is assigned to the OH group of the coordinated MeOH . The small singlet at $\delta 3.19$ happens to be at the position of the resonances for the NMe_{2} group of $\mathbf{6 a}$, which is in equilibrium with 34 , but the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data imply a rapid equilibrium on the NMR-timescale.

Figure 5.16 ${ }^{1} \mathrm{H}$ NMR spectrum (300 MHz) of trans $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{MeOH})(34)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure 5.17 ${ }^{1} \mathrm{H}$ NMR spectrum (300 MHz) of trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{EtOH})(35)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

The preparation of trans $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{EtOH})(35)$ required stirring a suspension of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ and $\mathrm{P}-\mathrm{N}$ in neat EtOH for 1 week (Section 2.10.4), when work-up of this reaction mixture resulted in two products. Firstly, a precipitated brown solid was not characterized because of its insolubility in acetone, $\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{CDCl}_{3}$ or $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. A second work-up of the filtrate resulted in a pink solid characterized as 35 , although an analytically pure sample could not be isolated even after several repeated preparations. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) spectrum of 35 is similar to that of 34 , and consists of a broad P_{A} signal at $\delta 80$ and a doublet at $\delta 46.90\left({ }^{2} \mathrm{~J}_{\mathrm{PP}}=36.24 \mathrm{~Hz}\right)$ due to P_{X}. The P_{A} signal is again resolved into a sharp doublet at $\delta 79.79\left({ }^{2} \mathrm{~J}_{\mathrm{PP}}=36.24 \mathrm{~Hz}\right)$ after the addition of 50 equiv of EtOH to the above solution. The ${ }^{1} \mathrm{H}$ NMR spectrum of isolated 35 is shown in Figure 5.17. In addition to the singlet at $\delta 3.18$ due to the NMe_{2} group, well resolved peaks due to the
coordinated EtOH group are also depicted. The assignments are as follows: $\delta 3.61$ (doublet of quartets) due to $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} ; \delta 1.40$ (triplet) due to $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$; and $\delta 1.16$ (triplet) due to $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$.

The solution properties of $\mathbf{3 4}$ and $\mathbf{3 5}$ are very similar to those of the aquo complex
33a. That is, rapid coordination and dissociation of the alcohol ligands are apparent from the broad P_{A} signals in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 34 and 35 . Furthermore, variable temperature NMR studies also display similar trends which resemble those of 33a.

In conclusion, 34 and 35 are isolated only under absolutely anhydrous conditions. In the solid state, the complexes lose the solvent molecules rapidly even under 1 atm of Ar to regenerate the five-coordinate, green solid 6a. Weakly coordinating solvent molecules play an important role in stabilizing complexes such as $\mathrm{RuCl}_{2}(\mathrm{EtOH})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3},{ }^{35}$ $\left[\mathrm{RuH}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{MeOH})\right]\left[\mathrm{BF}_{4}\right],{ }^{36} \quad\left[\mathrm{Ru}(\mathrm{Y}) \mathrm{Cl}_{2}(\mathrm{MeOH})\left(\mathrm{PPh}_{3}\right)_{2}\right] \quad(\mathrm{Y}=\mathrm{CO} \quad$ or $\quad \mathrm{CS}),{ }^{37}$ $\left[\mathrm{RuH}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{4}(\mathrm{MeOH})\right]\left[\mathrm{PF}_{6}\right]$, and $\left[\mathrm{RuH}(\mathrm{dppe})_{2}(\mathrm{EtOH})\right]\left[\mathrm{PF}_{6}\right] .{ }^{38}$ Dissociation of the solvent molecules can create vacant coordination sites for substrate binding in highly reactive catalysts. For example, $\mathrm{Ru}(\mathrm{BINAP})(\mathrm{acac})(\mathrm{MNAA})(\mathrm{MeOH}) \quad(\mathrm{MNAA}=$ 2-(6'-methoxynaphth-2'-yl) acrylate anion)) plays a role in the homogeneous asymmetric hydrogenation of 2-arylacrylic acids to give high e.e. of chiral 2-arylpropionic acids, which are used as anti-inflammatory drugs. ${ }^{39}$ The high activity of this species is attributed to the dissociation of the highly labile MeOH ligand as an intermediate in the catalytic cycle.

5.7 DSC Data for Complexes Containing O-Donor ligands

The enthalpy values, $\Delta \mathrm{H}^{\circ}$, for the loss of $\mathrm{L}=\mathrm{H}_{2} \mathrm{O}$, MeOH and EtOH from their corresponding complexes, 33a, $\mathbf{3 4}$ and $\mathbf{3 5}$ are obtained from DSC experiments, the data being shown in Figure 5.18. When these endothermic values are compared with those of complexes
containing S-ligands (Section 4.7), the dissociation energy of L decreases in the order MeSH $>\mathrm{MeOH}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{O}>\mathrm{EtSH}>\mathrm{EtOH}$. Thus, in the solid state, the S-ligand containing complexes have a higher dissociation energy than the corresponding O -ligand containing species, which is likely attributed to the higher thermal stability of the cis-chloro S-containing molecules. As previously discussed (Section 5.4), the apical P_{A} atom of the $P-N$ ligand exerts a strong trans influence on the mutually trans ligand $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, \mathrm{EtOH}\right)$. The $\mathrm{H}_{2} \mathrm{~S}, \mathrm{MeSH}$ and EtSH ligands, however, do not experience such a strong trans influence from the Cl -atom. The MeSH and MeOH adducts are noticeably more thermally stable than the other complexes; perhaps the methyl mercaptan and methanol molecules are of the most compatible size and electronic structure to occupy the vacant site of the five-coordinate complex $\mathbf{6 a}$.

Figure 5.18 DSC curves for trans $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{L})$. Samples are heated in a N_{2} atmosphere (flow rate $=40 \mathrm{cc} / \mathrm{min}$) at a rate of $5^{\circ} \mathrm{C} / \mathrm{min}$ to $200^{\circ} \mathrm{C}$. A more accurate $\Delta \mathrm{H}^{\circ}$ for $35(\mathrm{~L}=\mathrm{EtOH})$ could not be determined because of the inability of obtaining an analytically pure sample.

If solution effects are negligible, the magnitude of $\Delta \mathrm{H}^{\circ}$ from solution and solid state studies should be eventually the same, as the chemistry in both cases involves no trans to cis rearrangement of the Cl -atoms. In Section $5.5, \Delta \mathrm{H}^{\circ}=-50 \pm 20 \mathrm{~kJ} / \mathrm{mol}$ was obtained for the coordination of $\mathrm{H}_{2} \mathrm{O}$ to 6 a to give 33a in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, while for the dissociation of $\mathrm{H}_{2} \mathrm{O}$ from 33a in the solid state $\Delta \mathrm{H}^{\circ}=75 \pm 4 \mathrm{~kJ} / \mathrm{mol}$.

DSC is also used to differentiate the Ru-O bond strengths between trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)$ (33a) and trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)$ (33b). From the DSC curves shown in Figure 5.19, $\Delta \mathrm{H}^{\circ}$ values for the loss of $\mathrm{H}_{2} \mathrm{O}$ are 75 ± 4 and $62 \pm 2 \mathrm{~kJ} / \mathrm{mol}$ for 33 a and $\mathbf{3 3 b}$, respectively; i.e., the $\mathrm{Ru}-\mathrm{O}$ bond in 33 a is stronger than that in 33b which is in agreement with the shorter Ru-O bond lengths of 33a (2.238 \AA (I), $2.187 \AA($ II) $)$ versus that of $33 \mathrm{~b}(2.252 \AA)$.

Figure 5.19 DSC curves for trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)(33 \mathrm{a})$ and trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)(33 \mathrm{~b})$. Samples are heated in a N_{2} atmosphere (flow rate $=40 \mathrm{cc} / \mathrm{min}$) at a rate of $5^{\circ} \mathrm{C} / \mathrm{min}$ to $200^{\circ} \mathrm{C}$.

5.8 Summary

In this Chapter, the apical phosphine (P_{A} of $\mathrm{P}-\mathrm{N}$) of the five-coordinate complex $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ is seen to play a significant role in directing incoming monodentate ligands in a position either trans or cis to itself. The trans effect of P_{A} induces trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{L})$ complexes $\left(\mathrm{L}=\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}\right.$ and EtOH$)$ into a rapid equilibrium with $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$. The S-containing ligands $\left(\mathrm{H}_{2} \mathrm{~S}, \mathrm{MeSH}\right.$ and EtSH$)$, on the other hand, appear to have a stronger trans influence (than the O-donors) toward P_{A} and the cis $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{L})$ structures are more favourable.

5.9 References

1. (a) Stang, P. J.; Song, L.; Huang, Y.-H.; Arif, A. M . J. Organomet. Chem., 1991, 405, 403.
(b) Collman, J.P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemsitry; University Science Books: Mill Valley, CA, 1987.
2. Mudalige, D. C. Ph.D. Thesis, The University of British Columbia, 1994.
3. Benedict, W. S.; Gailar, N.; Plyler, E. K. J. Chem. Phys. 1956, 24, 1139.
4. Mudalige, D. C.; Rettig, S. J.; James, B. R.; Cullen, W. R. J. Chem. Soc., Chem. Commun., 1993, 830.
5. LaPlaca, S. J.; Ibers, J. A. Inorg. Chem. 1965, 4, 778.
6. MacFarlane, K. S.; Joshi, A. M.; Rettig, S. J.; James, B. R. Inorg. Chem. 1996, 35, 7304.
7. MacFarlane, K. S. Ph.D. Thesis, The University of British Columbia, 1995.
8. Hampton, C. R. S. M.; Butler, I. R.; Cullen, W. R.; James, B. R.; Charland, J.-P.; Simpson, J. Inorg. Chem. 1992, 31, 5509.
9. Lawson, H. J.; Janik, T. S.; Churchill, M. R.; Takeuchi, K. J. Inorg. Chim. Acta, 1990, 174, 197.
10. Mandal, S. K.; Chakravarty, A. R. Inorg. Chem. 1993, 32, 3851.
11. Boniface, S. M.; Clark, G. R.; Collins, T. J.; Roper, W. R. J. Organomet. Chem., 1981, 206, 109.
12. Röthlisberger, M. S.; Hummel, W., Pittet, P.-A.; Bürgi, H.-B.; Ludi, A.; Merbach, A. E. Inorg. Chem. 1988, 27, 1358.
13. McGrath, D. V.; Grubbs, R. H. J. Am. Chem. Soc. 1991, 113, 3611.
14. Bernhard, P.; Bürgi, H.-B.; Hauser, J.; Lehmann, H.; Ludi, A. Inorg. Chem. 1982, 21, 3936.
15. Kölle, U.; Flunkert, G. Görissen., R. Schmidt, M. U.; Englert, U. Angew. Chem., Int. Ed. Engl. 1992, 31, 440.
16. Basch, H.; Krauss, M.; Stevens, W. J.; Cohen, D. Inorg. Chem. 1985, 24, 3313.
17. Shinoda, S.; Koie, Y. Saito, Y. Bull. Chem. Soc. Jpn. 1986, 59, 2938.
18. Deeming, A. J.; Proud, G. P. Inorg. Chim. Acta 1985, 100, 223.
19. Deeming, A. J.; Proud, G. P.; Dawes, H. M.; Hursthouse, M. B. J. Chem. Soc., Dalton Trans. 1986, 2545.
20. Malito, J.; Alyea, E. C. Transition Met. Chem. 1992, 17, 481.
21. Anderson, G. K.; Kumar, R. J. Chem. Research (S) 1998, 48; J. Chem. Research (M) 1988, 432.
22. Brüggeller, P. Inorg. Chem. 1987, 26, 4125.
23. Grimley, E.; Meek, D. W. Inorg. Chem. 1986, 25, 2049.
24. Gambaro, J. J.; Hohman, W. H.; Meek, D. W. Inorg. Chem. 1989, $28,4154$.
25. Pidcock, A.; Richards, R. E.; Venanzi, L. M. J. Chem. Soc. (A) 1966, 1707.
26. Tau, K. D.; Meek, D. W. Inorg. Chem. 1979, 18, 3574.
27. Keiter, R. L.; Verkade, J. G. Inorg. Chem. 1969, 8, 2115.
28. Jessop, P. G.; Rettig, S. J.; Lee, C.-L.; James, B. R. Inorg. Chem. 1991, 30, 4617.
29. Dekleva, T. W. Ph.D. Thesis, The University of British Columbia, 1983.
30. (a) MacFarlane, K. S. Ph.D. Thesis, The University of British Columbia, 1995.
(b) MacFarlane, K. S.; Joshi, A. M.; Rettig, S. J.; James, B. R. Inorg. Chem. 1996, 35, 7304.
31. Queiroz, S. L.; Batista, A. A.; Oliva, G.; Gambardella, M. T. do P.; Santos, R. H. A.; MacFarlane, K. S.; Rettig, S. J.; James, B. R. Inorg. Chim. Acta 1998, $267,209$.
32. Deeming, A. J. Doherty, S.; Marshall, J. E.; Powell, J. L.; Senior, A. M. J. Chem. Soc., Dalton Trans. 1993, 1093.
33. IUPAC Solubility Data Series, Volume 60, Halogenated Methanes with Water; Horváth, A. L.; Getzen, F. W., Eds.; Oxford University Press: Oxford, 1995, p. 153.
34. Young, R. J.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1976, 719.
35. Chatt, J.; Leigh, G. J.; Paske, R. J. J. Chem. Soc.(A) 1969, 854.
36. Armit, P. W.; Sime, W. J.; Stephenson, T. A. J. Chem. Soc., Dalton Trans. 1976, 2121.
37. Ashworth, T. V.; Singleton, E. J. Chem. Soc., Chem. Commun. 1976, 706.
38. Chen, C.-C.; Huang, T.-T.; Lin, C.-W.; Cao, R.; Chan, A. S. C. Inorg. Chim. Acta 1998, 270, 247.

Chapter 6

Reactions of $\mathbf{R u C l}_{2}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)$ with Dihydrogen, Ammonia, Nitrous Oxide, Alkynes, and Hydrogen Chloride

In this Chapter, the coordination chemistry of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ is extended to small molecules other than $\mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{O}$, thiols and alcohols, leading to greater insight into the reactivity of the compound. The potential of this five-coordinate complex as a catalyst for hydrogenation of imines is also briefly examined.

6.1 The Structure and Reactivity of $\mathrm{Cis}-\mathrm{RuCl}_{\mathbf{2}}(\mathbf{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\boldsymbol{\eta}^{\mathbf{2}}-\mathbf{H}_{\mathbf{2}}\right)(36)$

The formation of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}-\mathrm{H}_{2}\right)(36)$ has been described by Mudalige et al. ${ }^{1,2}$ However, this species was only observed in situ and its formulation established by NMR studies, including experiments to determine T_{1}, the spin-lattice relaxation time of the hydrogen nuclei. The temperature dependence of T_{1} gives a predicted ${ }^{3,4}$ V-shaped plot, and from the minimum T_{1} value of $13.4 \pm 0.2 \mathrm{~ms}$, an intramolecular $\mathrm{H}-\mathrm{H}$ bond distance of 0.87 $\pm 0.03 \AA$ was calculated. ${ }^{1,2}$ In the present thesis work, 36 was isolated (Section 2.11.1) by reacting a suspension of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ and $\mathrm{P}-\mathrm{N}$ in acetone under 1 atm H_{2} gas. The microanalysis of the isolated pale yellow solid is consistent with the formulation of 36. This solid is stable under H_{2} and reasonably so under Ar , but slowly loses H_{2} in air and decomposition occurs. The IR spectrum of 36 in the solid state (KBr plate) shows a band of medium intensity at $2149 \mathrm{~cm}^{-1}$ due to the $\nu_{\mathrm{Ru}-\left(\mathrm{H}_{2}\right)}$ stretching, while $\nu_{\mathrm{H}-\mathrm{H}}$ is not observed. Generally, v_{H-H} bands of $\eta^{2}-\mathrm{H}_{2}$ complexes are very weak and are only rarely located (in the 2400 to $2700 \mathrm{~cm}^{-1}$ range). ${ }^{3,5}$

6.1.1 The Crystal Structure Cis-RuCl $\mathbf{2}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)\left(\eta^{2}-\mathbf{H}_{2}\right)(\mathbf{3 6})$

X-ray quality yellow crystals were crystallized from a saturated acetone solution of 36 under $1 \mathrm{~atm} \mathrm{H}_{2}$. The ORTEP plot of 36, reveals a distorted octahedral structure and is shown in Figure 6.1. The dihydrogen was isotropically refined as a double-occupancy hydrogen atom, and consequently the intramolecular H-H distance was not determined. Selected bond lengths and angles of $\mathbf{3 6}$ are presented in Tables 6.1 and 6.2. The bond distances of Ru to the $\mathrm{P}(1), \mathrm{P}(2), \mathrm{Cl}(1), \mathrm{Cl}(2)$ and $\mathrm{N}(1)$ atoms are normal, and are comparable to those of the complexes discussed in Chapters 4 and 5. Similarly, there are no significant differences between the angles around the Ru atom for 36 and those of the other cis-dichloro complexes containing $\mathrm{H}_{2} \mathrm{~S}$ or thiol ligands. The relatively short $\mathrm{Ru}(1)-\mathrm{H}\left(1^{*}\right)$ distance of $1.60 \AA$ is consistent with reasonable stablility with respect to loss of H_{2} in the solid state. This distance is slightly longer than the $\mathrm{Ru}-\left(\eta^{2}-\mathrm{H}_{2}\right)$ distance (1.50 and $1.47 \AA$ for the two $\mathrm{Ru}-\mathrm{H}$ distances) reported for the dinuclear complex (isoPFA) $\left(\eta^{2}-\mathrm{H}_{2}\right) \mathrm{Ru}(\mu-\mathrm{Cl})_{2}(\mu-\mathrm{H}) \mathrm{RuH}\left(\mathrm{PPh}_{3}\right)_{2},{ }^{6}$ but is much shorter than $1.81 \AA\left(\mathrm{Ru}-\left(\eta^{2}-\mathrm{H}_{2}\right)\right)$ of the labile complex $\operatorname{trans}-\left[\mathrm{RuH}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{dppe})_{2}\right]\left[\mathrm{BPh}_{4}\right] .{ }^{7}$ The observation that the $\mathrm{Ru}-\left(\eta^{2}-\mathrm{H}_{2}\right)$ distance in 36 is comparable to $\mathrm{Ru}-\mathrm{H}$ distances within classical monohydrides such as $\operatorname{RuH}\left(\mathrm{SC}_{6} \mathrm{H}_{4} p \mathrm{CH}_{3}\right)(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2} \quad(1.58 \AA),{ }^{8}$ trans-$\left[\operatorname{RuH}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{dppe})_{2}\right]\left[\mathrm{BPh}_{4}\right](1.64 \AA),{ }^{7} \operatorname{RuH}(\mathrm{Cl})(\operatorname{diop})_{2}(1.65 \AA$; diop $=4,5-\mathrm{bis}(($ diphenyl phosphino)methyl)-2,2-dimethyl-1,3-dioxolane)), ${ }^{9} \quad \operatorname{RuH}(\text { dmpe })_{2}($ naphthyl $) \quad(1.67 \AA),{ }^{10}$ $\mathrm{RuH}\left(\mathrm{PPh}_{3}\right)_{3}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)(1.68 \AA),{ }^{11}$ and $\mathrm{RuH}(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)_{3}(1.70 \AA)^{12}$ is consistent with a Ru-H complex. However, NMR spectroscopic evidence and reversible solution behaviour (see Section 6.1.2) clearly show 36 to be the $\mathrm{Ru}(\mathrm{II})-\left(\eta^{2}-\mathrm{H}_{2}\right)$ adduct.

Figure 6.1 The ORTEP plot of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}-\mathrm{H}_{2}\right)(36)$. Thermal ellipsoids for non-hydrogen atoms are drawn at 33% probability. Full experimental parameters and details are given in Appendix IX.

Table 6.1 Selected bond lengths (\AA) for $c i s-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}-\mathrm{H}_{2}\right)(36)$ with estimated standard deviations in parentheses. The $\mathrm{H}\left(1^{*}\right)$ atomic site represents the double-occupancy hydrogen atom refined isotropically.

Bond	Length (\AA)	Bond	Length (\AA)
$\mathrm{Ru}(1)-\mathrm{H}\left(1^{*}\right)$	$1.60(2)$	$\mathrm{Ru}(1)-\mathrm{N}(1)$	$2.306(2)$
$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.2884(7)$	$\mathrm{Ru}(1)-\mathrm{Cl}(1)$	$2.4543(7)$
$\mathrm{Ru}(1)-\mathrm{P}(2)$	$2.3098(6)$	$\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$2.4090(6)$

Table 6.2 Selected bond angles $\left(^{\circ}\right)$ for cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}-\mathrm{H}_{2}\right)(36)$ with estimated standard deviations in parentheses.

Bonds	Angle (${ }^{\circ}$)	Angle (${ }^{\circ}$)	
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$80.34(6)$	$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$92.20(6)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(1)$	$172.22(2)$	$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$86.78(6)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$88.52(2)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{H}\left(1^{*}\right)$	$93.6(8)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$105.27(3)$	$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{H}\left(1^{*}\right)$	$87.3(8)$
$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$172.78(6)$	$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{H}\left(1^{*}\right)$	$87.8(8)$
$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{Cl}(1)$	$82.34(3)$	$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{H}\left(1^{*}\right)$	$88.3(8)$
$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$97.79(2)$	$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{H}\left(1^{*}\right)$	$173.8(8)$
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$88.86(2)$		

6.1.2 Thermodynamic Studies of $\operatorname{Cis}-\mathrm{RuCl}_{2}(\mathbf{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}-\mathbf{H}_{2}\right)(\mathbf{3 6})$ in Solution and in the Solid State

When 36 is dissolved in solution, the $\eta^{2}-\mathrm{H}_{2}$ moiety quickly dissociates to form some
6a, and the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR spectra clearly show the equilibrium between the two species (Figures 6.2 and 6.3, respectively). The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts of 36 are located at $\delta 47.14\left(\mathrm{P}_{\mathrm{A}}\right)$ and $\delta 45.33\left(\mathrm{P}_{\mathrm{X}}\right),{ }^{2} \mathrm{~J}_{\mathrm{PP}}=26.49 \mathrm{~Hz}$, in accord with similar structures
containing cis Cl -atoms (see Table 4.9, p. 146). In the ${ }^{1} \mathrm{H}$ NMR spectrum, inequivalent NMe chemical shifts for 36 are located at $\delta 3.78$ and 2.79 , and the coordinated H_{2} at $\delta-10.6$. At $25^{\circ} \mathrm{C}$, the equilibrium constant, K , for the formation of 36 is determined to be $261 \pm 20 \mathrm{M}^{-1}$, a value comparable to those of corresponding complexes containing S -ligands ($\mathrm{K}=51$ to $296 \mathrm{M}^{-1}$, Section 4.6). From variable temperature NMR studies, the $\Delta \mathrm{H}^{\circ}, \Delta \mathrm{S}^{\circ}$, and $\Delta \mathrm{G}^{\circ}$ (at $25^{\circ} \mathrm{C}$, calculated from $\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln \mathrm{K}$) values are determined to be $-26 \pm 4 \mathrm{~kJ} / \mathrm{mol}$, $-40 \pm 15 \mathrm{~J} / \mathrm{mol} \mathrm{K}$ and $-13.8 \pm 0.2 \mathrm{~kJ} / \mathrm{mol}$, respectively. The raw data for the calculations of these data are given in Appendix XIII. The $\Delta \mathrm{H}^{\circ}$ value for the binding of $\eta^{2}-\mathrm{H}_{2}$ to $\mathrm{Ru}(\mathrm{II})$ is comparable to those of $\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{dppb})(\mu-\mathrm{Cl})_{3} \mathrm{RuCl}(\mathrm{dppb}) \quad(-60 \mathrm{~kJ} / \mathrm{mol})^{13}$ and $\mathrm{Ru}\left(\mathrm{H}_{2}\right)(\mathrm{H}) \mathrm{Cl}(\mathrm{CO})\left(\mathrm{P}^{\mathrm{i}} \mathrm{Pr}_{3}\right)_{2}(-32 \mathrm{~kJ} / \mathrm{mol}){ }^{14}$ The relatively labile nature of the $\eta^{2}-\mathrm{H}_{2}$ is also apparent in the solid state as shown by DSC experiments. The enthalpy, $\Delta \mathrm{H}^{\circ}$, for the loss of H_{2} in the solid state was found to be $50 \pm 3 \mathrm{~kJ} / \mathrm{mol}$ (Figure 6.4), and thus, $\sim-24 \mathrm{~kJ} / \mathrm{mol}$ is attributed to the enthalpy change for the cis to trans rearrangement of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$; values of -39 to $-66 \mathrm{~kJ} / \mathrm{mol}$ were obtained from similar data for the complexes containing $\mathrm{H}_{2} \mathrm{~S}$ or RSH (see Section 4.7).

Figure $6.2 \quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (81.0 MHz) of $\mathbf{3 6}$ in equilibrium with $\mathbf{6 a}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $20^{\circ} \mathrm{C}$, established by dissolution of a solid sample of 36 ; although the signal due to P_{A} of $\mathbf{6 a}$ is less intense than that of P_{X}, their integrations are the same.

Figure $6.3{ }^{1} \mathrm{H}$ NMR spectrum (200 MHz) of 36 in equilibrium with 6 a in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $20^{\circ} \mathrm{C}$, established by dissolution of a solid sample of 36 ; inset shows the upfield chemical shift due to $\mathrm{Ru}-\left(\eta^{2}-\mathrm{H}_{2}\right)$ at $\delta-10.6$. The signal for free H_{2} (at $\delta 4.44$) is not seen because of the low $\left[\mathrm{H}_{2}\right]$.

Figure 6.4 DSC curve for cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}-\mathrm{H}_{2}\right)(36)$. The sample is heated in a N_{2} atmosphere (flow rate $=40 \mathrm{cc} / \mathrm{min}$) at a rate of $5^{\circ} \mathrm{C} / \mathrm{min}$ to $200^{\circ} \mathrm{C}$.

6.1.3 The pK_{a} of $\mathrm{Cis}-\mathrm{RuCl}_{\mathbf{2}}(\mathbf{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\eta^{\mathbf{2}}-\mathrm{H}_{2}\right)(\mathbf{3 6})$

Determination of the acidity of dihydrogen complexes leads to a better understanding of homolytic or heterolytic cleavage of dihydrogen in catalytic hydrogenation reactions. The nature of the ancillary ligands has a dramatic influence on the reactivity of $\eta^{2}-\mathrm{H}_{2}{ }^{15}$ for example, $\left[\mathrm{RuH}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{dppe})_{2}\right]^{+}$is more electron-rich and therefore less acidic $\left(\mathrm{pK}_{\mathrm{a}}=15.0\right)^{15 \mathrm{~b}}$ than $\left[\mathrm{CpRu}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{dppe})\right]^{+}\left(\mathrm{pK}_{\mathrm{a}}=7.2\right){ }^{16}$ Furthermore, the structure of a complex is also correlated to acidity; for example, within the complexes trans- $\left[\mathrm{RuX}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{dppe})_{2}\right]^{+}(\mathrm{X}=\mathrm{Cl}$, $\mathrm{H}),{ }^{17}$ the chloro complex is more acidic $\left(\mathrm{pK}_{\mathrm{a}}=6.0\right)$ than the hydrido complex $\left(\mathrm{pK}_{\mathrm{a}}=15.0\right)$ because of the $p \pi(\mathrm{Cl})-\mathrm{d} \pi(\mathrm{Ru})$ repulsions which enhance the $d \pi(\mathrm{Ru}) \rightarrow \sigma^{*}\left(\mathrm{H}_{2}\right)$ back-bonding and thus weaken the $\mathrm{H}-\mathrm{H}$ bond.

The reaction of 36 with PS (proton sponge) gives the monohydride complex $\mathrm{Ru}(\mathrm{H}) \mathrm{Cl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(29)$ and $\mathrm{PSH}^{+} \mathrm{Cl}^{-}(\text {Section 4.8) })^{1,2}$

$$
\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}-\mathrm{H}_{2}\right)+\mathrm{PS} \quad \stackrel{\mathrm{~K}_{\mathrm{eq}}}{=} \quad \mathrm{Ru}(\mathrm{H}) \mathrm{Cl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)+\mathrm{PSH}^{+} \mathrm{Cr}
$$

Accordingly, the pK_{a} of $\mathbf{3 6}$ can be determined by measuring the equilibrium concentrations of the above species. As discussed in Section 4.7, the pK_{a} for 36 is obtained by solving the equation $\mathrm{pK}_{\mathrm{a}}=\mathrm{pK}_{\mathrm{eq}}+\mathrm{pK}_{\mathrm{PSH}^{+}}$(where $\mathrm{pK}_{\mathrm{PSH}^{+}}=12.3$). For a typical experiment, a sample of 6a along with 0.75 to 3.0 equiv PS are dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$; the addition of $1 \mathrm{~atm} \mathrm{H}_{2}$ then produces a dark yellow-brown solution. Unlike the reaction of PS with cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$ (18a) where the products, $\mathrm{Ru}(\mathrm{SH}) \mathrm{Cl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ (27a) and $\mathrm{Ru}(\mathrm{SH})_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathbf{3 0})$ are unstable at r. t., the hydride complex $\mathrm{Ru}(\mathrm{H}) \mathrm{Cl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(29)$ is stable indefinitely under inert atmospheres. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR spectra (Figures 6.5 and 6.6, respectively) indicate that three species, $6 \mathbf{a}, 29$, and 36 , are in equilibrium. [The broadness of the P_{A} chemical shift of $\mathbf{6 a}$ is due to minute amounts of $\mathrm{H}_{2} \mathrm{O}$ in the system. (see Section 5.3)]. From the above equilibrium equation, $\mathrm{K}_{\mathrm{eq}}=\frac{[29]\left[\mathrm{PSH}^{+}\right]}{[36][\mathrm{PS}]}$, and the concentrations are readily obtained, for example, from the peak integrations of the ${ }^{1} \mathrm{H}$ NMR (Figure 6.6); the actual concentrations are not required as only the concentration ratios are relevant. The data give $\mathrm{K}_{\mathrm{eq}}=15 \pm 5$ and consequently, the pK_{a} of 36 is determined to be approximately 11 . This value falls within a wide range of pK_{a} values (0 to 16) for complexes of the type $\left[\mathrm{M}\left(\mathrm{H}_{2}\right) \mathrm{Cp}(\mathrm{P}-\mathrm{P})\right]^{+}(\mathrm{M}=\mathrm{Ru}, \mathrm{Os} ; \mathrm{P}-\mathrm{P}=$ diphosphine ligand) previously reported. ${ }^{3,15-19}$ In order to establish a trend in the acidity of $\mathrm{Ru}(\mathrm{P}-\mathrm{N})$-type $\eta^{2}-\mathrm{H}_{2}$ complexes, more studies on species with variations of the phosphines and halogens are required.

Figure 6.5 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(121.4 \mathrm{MHz}, 20^{\circ} \mathrm{C}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ spectrum of the in situ reaction of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 a)$ with 1.5 equiv PS under 1 atm H_{2}.

Figure 6.6 ${ }^{1} \mathrm{H}$ NMR ($121.4 \mathrm{MHz}, 20^{\circ} \mathrm{C}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) spectrum in the region $\delta 2.0$ to 4.0 of the in situ reaction of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 a)$ with 1.5 equiv PS under 1 atm H_{2}.

6.2 Reactions of $\mathrm{RuX}_{2}(\mathbf{P}-\mathrm{N})\left(\mathbf{P P h}_{3}\right)(\mathbf{X}=\mathbf{C l}, \mathrm{Br})$ with $\mathbf{N H}_{3}$

The reactions of NH_{3} with the five-coordinate complexes $\mathrm{RuCl}_{2}(\mathrm{dppb})\left(\mathrm{PPh}_{3}\right)$ and $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ in solution are reported to result in the dissociation of one PPh_{3} molecule and the coordination of two molecules of NH_{3}, with formation of the six-coordinate species, $\mathrm{RuCl}_{2}(\mathrm{dppb})\left(\mathrm{NH}_{3}\right)_{2}{ }^{20,21}$ and $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2},{ }^{22}$ respectively. The reactions of NH_{3} with $\mathrm{RuX}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{X}=\mathrm{Cl}(6 \mathrm{a})$ or $\mathrm{Br}(\mathbf{6 b}))$, however, do not result in the dissociation of PPh_{3} as indicated by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy. With an equimolar concentration of NH_{3}, only one NH_{3} is coordinated to the vacant site of $\mathrm{RuX}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$, with formation of trans-RuX $2(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)$, this then rearranging to the more stable cis isomer. In the presence of $1 \mathrm{~atm} \mathrm{NH}_{3}$, a second NH_{3} displaces an X atom with formation of the complexes $\left[\mathrm{RuX}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{X}\right]$ (see below). All experimental details for the reactions with NH_{3} or with the NH_{3} complexes may be found in Section 2.11.2.

6.2.1 Isolation of $\left[\mathbf{R u X}(\mathbf{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathbf{N H}_{3}\right)_{2} \cdots \mathbf{X}\right](37)$ in the Presence of Excess $\mathbf{N H}_{3}$

When NH_{3} gas is passed through a solution of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 a)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, a dark blue-green solution formed. Microanalysis of the isolated green solid corresponds to the formulation of $\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{Cl}\right](37 \mathrm{a})$, with the suggested structure shown in Figure 6.7; remarkably 37 a is non-conducting in acetone or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions (see Section 6.2.4), implying a "strongly associated ion-pair" formulation, possibly with the X associated via H -bonding to the NH_{3} ligands as shown. In CDCl_{3} solution under 1 atm $\mathrm{NH}_{3}, 37 \mathrm{a}$ is fully formed as indicated by the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR and ${ }^{1} \mathrm{H}$ NMR spectra. The ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 6.8) shows two singlets due to $\mathrm{Ru}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}, \delta 3.19,3.00$ and two singlets due to $\mathrm{Ru}-\left(\mathrm{NH}_{3}\right)_{2}, \delta 3.72,1.70$, data consistent with a cis orientation of the NH_{3} groups. The presence of doublets at $\delta 57.20\left(P_{\mathrm{A}}-\mathrm{N}\right)$ and $\delta 53.24\left(P_{\mathrm{X}} \mathrm{Ph}_{3}\right),{ }^{2} \mathrm{~J}_{\mathrm{PP}}=32.05 \mathrm{~Hz}$, in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$

NMR spectrum reveals an AX coupling pattern (Figure 6.9(a)), meaning the PPh_{3} ligand remains coordinated.

Figure 6.7 Proposed structure of $\left[\mathrm{RuX}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{X}\right]$ (37); the nature of the "associated" X remain uncertain (see text).

Figure $6.8 \quad{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ of $\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right){ }_{2} \cdots \mathrm{Cl}\right](\mathbf{3 7 a})$ under $1 \operatorname{atm} \mathrm{NH}_{3}$ at $20^{\circ} \mathrm{C}$.

Similar observations were found for the reaction of 1 atm NH_{3} with a solution of $\operatorname{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathbf{6 b})$. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum for $\left[\mathrm{RuBr}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{Br}\right]$ (37b) consists of doublets at $\delta 57.40\left(\mathrm{P}_{\mathrm{A}}\right)$ and $\delta 56.08\left(\mathrm{P}_{\mathrm{X}}\right),{ }^{2} \mathrm{~J}_{\mathrm{PP}}=31.81 \mathrm{~Hz}$, while the ${ }^{1} \mathrm{H}$ NMR resonances for NMe_{2} are found at $\delta 3.34$ and 2.78, and for $\left(\mathrm{NH}_{3}\right)_{2}$ at $\delta 3.64$ and 1.75. (Tables 6.3 and 6.4).

6.2.2 The Solution Chemistry of $\left[\mathrm{RuX}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathbf{N H}_{3}\right)_{2} \cdots \mathbf{X}\right](37)$

When solid $\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{Cl}\right](\mathbf{3 7 a})$ is dissolved in CDCl_{3} in the absence of excess NH_{3}, three species are observed in the NMR spectra (Tables 6.3 and 6.4). The starting material, $\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{Cl}\right](37 \mathrm{a})$, is present in a relatively small amount compared to the other two species, identified as trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)$ (38a), and cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)$ (39a). The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum is shown in Figure 6.9(b); the presence of two doublets each for each of 38a and 39a shows that both $\mathrm{P}-\mathrm{N}$ and PPh_{3} ligands remain coordinated; the doublets at $\delta 53.86$ and $50.79\left({ }^{2} \mathrm{~J}_{\mathrm{PP}}=36.48 \mathrm{~Hz}\right)$ are assigned to the trans isomer 38a because of the comparable coupling constant to that of trans- Cl isomers $6 \mathbf{a}$ $(36.54 \mathrm{~Hz})$ and $33 \mathrm{a}(37.76 \mathrm{~Hz})$. The ${ }^{1} \mathrm{H}$ NMR singlets due to the two symmetrical NMe groups and the NH_{3} are found at $\delta 2.72$ and 1.64, respectively. For the cis isomer (39a), the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR peaks are found at $\delta 59.27$ and $51.45\left({ }^{2} \mathrm{~J}_{\mathrm{PP}}=32.29 \mathrm{~Hz}\right)$; inequivalent NMe groups are indicated by singlets at $\delta 3.61$ and 2.94 , while the NH_{3} is detected at $\delta 0.38$ in the ${ }^{1} \mathrm{H}$ NMR spectrum.

Figure 6.9 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectra $\left(121.4 \mathrm{MHz}, 20^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right)$ for $\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right) 2_{2} \cdots \mathrm{Cl}\right]$ (37a): (a) with 1 atm NH_{3} and (b) absence of excess NH_{3}.

Table $6.3 \quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data for $\mathrm{Ru}(\mathrm{II})$ ammonia complexes in CDCl_{3}.

Complex	$\delta \mathbf{P - N}$	$\delta \mathbf{P P h}_{3}$	${ }^{\mathbf{2}} \mathrm{J}_{\mathrm{PP}}(\mathrm{Hz})$
$\begin{aligned} & {\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{Cl}\right] \quad(37 \mathrm{a})} \\ & {\left[\mathrm{RuBr}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{Br}\right] \quad(37 \mathrm{~b})} \end{aligned}$	$\begin{aligned} & 57.20 \\ & 57.40 \end{aligned}$	$\begin{aligned} & 53.24 \\ & 56.08 \end{aligned}$	$\begin{aligned} & 32.05 \\ & 31.81 \end{aligned}$
$\begin{aligned} & \text { trans- } \mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right) \quad \text { (38a) } \\ & \text { trans }-\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right) \end{aligned}$	$\begin{aligned} & 53.86 \\ & 55.25 \end{aligned}$	$\begin{aligned} & 50.79 \\ & 50.65 \end{aligned}$	$\begin{aligned} & 36.48 \\ & 36.66 \end{aligned}$
$\begin{aligned} & c i s-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right) \quad(39 \mathrm{a}) \\ & c i s-\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right) \quad \text { (39b) } \end{aligned}$	$\begin{aligned} & 59.27 \\ & 62.86 \end{aligned}$	51.45 51.85	$\begin{aligned} & 32.29 \\ & 31.75 \end{aligned}$

Table 6.4 ${ }^{1} \mathrm{H}$ NMR data for $\mathrm{Ru}(\mathrm{II})$ ammonia complexes in CDCl_{3}.

Complex	$\delta \mathrm{Ru}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$	$\delta \mathrm{Ru}-\mathrm{NH}_{3}$
$\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{Cl}\right](37 a)$	$3.19,3.00$	$3.72,1.70$
$\left[\mathrm{RuBr}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right) \cdots \mathrm{Br}\right](37 \mathrm{~b})$	$3.34,2.78$	$3.64,1.75$
trans-RuCl $2(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)(38 a)$	2.72	1.64
trans-RuBr$(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)(38 b)$	3.01	1.58
cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)(39 a)$	$3.61,2.94$	0.38
cis-RuBr $2(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)(39 b)$	$3.97,2.74$	0.48

The presence of the three complexes can be explained by the equation shown in Figure 6.10. In the absence of excess NH_{3}, the NH_{3} trans to the coordinated Cl is replaced by the "associated Cl " to form the neutral trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)$ (38a), which then rearranges to the more stable cis isomer 39a. The concentrations of the three species are time-dependent, those of 37a and 38a diminishing significantly within 10 min. After 1 week, [38a] is zero, while there are $10 \% 37 \mathrm{a}$ and 90% 39a; addition of 1 atm of NH_{3} completely regenerates $\mathbf{3 7 a}$.

Figure 6.10 Reversible conversion of $\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{Cl}\right](37 \mathrm{a})$ to cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)(39 a)$.

The solution chemistry of the Br analogue $\mathbf{3 7 b}$ is identical to that of $\mathbf{3 7 a}$. The change of halide is reflected in changes in the chemical shifts in the NMR spectra (Tables 6.3 and

6.4).

6.2.3 The Solid State Reaction of $\mathbf{R u X}_{\mathbf{2}}(\mathbf{P}-\mathbf{N})\left(\mathrm{PPh}_{\mathbf{3}}\right)$ with $\mathbf{N H}_{\mathbf{3}}$

When a solid sample of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 a)$ is exposed to 1 atm NH_{3}, a colour change from green to pink occurs in 5 min , and the microanalysis of the solid product corresponds to $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)$. A green solution formed when this solid was dissolved in CDCl_{3}, and the resulting ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR spectra (within 5 min of dissolution) indicated the presence of 37a, 38a and 39a in similar concentrations (Figures 6.11 and 6.12). After 30 min , the concentrations of $\mathbf{3 7 a}$ and $\mathbf{3 8 a}$ significantly diminish while that of 39a increases. The initial presence of 37 a must be due to a slight excess of NH_{3} present in the solid. The data lead to the conclusion that trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)(38 a)$ is initially formed in the solid state and then, in solution, it rearranges to the more stable cis isomer 39a. The trans to cis rearrangement supports indirectly the formation of trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$ (18a') en route to cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$ (18a) (Figure 5.9); that is, the NH_{3} ligand likely initially dissociates to form the square pyramidal complex that rearranges to a trigonal bipyramidal structure prior to attack by NH_{3} at the position cis to \mathbf{P}_{A}.

The solid state reaction of $\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ (6b) with NH_{3} produced trans- $\left.\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right) \mathbf{(3 8 b}\right)$ which also rearranges to the more stable cis isomer 39b in solution.

Figure 6.11 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (121.4 MHz) of trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)(38 a)$ 5 min after dissolution in CDCl_{3} at $20^{\circ} \mathrm{C}$.

Figure 6.12 ${ }^{1} \mathrm{H}$ NMR spectrum (300 MHz) of trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)(38 \mathrm{a})(5 \mathrm{~min}$ after dissolution in CDCl_{3} at $20^{\circ} \mathrm{C}$) in the region $\delta 0.0$ to 4.0.

6.2.4 The Preparation of $\left[\mathrm{RuCl}(\mathbf{P - N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{PF}_{6}(41)$

Conductivity measurements, performed on acetone or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of $\left[\mathrm{RuX}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{X}\right]$ (37) in the absence or presence of 1 atm NH_{3}, showed surprisingly that the solution species are non-conducting. Thus, these complexes are "close ion pairs" in solution, and Figure 6.7 shows a plausible formulation with H -bonding of the X-atom.

The reaction of $\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{Cl}\right]$ (37a) with $\mathrm{NH}_{4} \mathrm{PF}_{6}$, under 1 atm of NH_{3}, resulted in the displacement of the associated chlorine as Cl^{-}anion, and formation of a yellow solid, formulated as $\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right](41)$; the conductivity of 41 in acetone (with or without the presence of excess NH_{3}) was $140 \pm 5 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$, consistent with a $1: 1$ electrolyte. ${ }^{23}$ In the absence of excess NH_{3}, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (in d_{6}-acetone, Figure $6.13(\mathrm{a})$) shows two doublets at $\delta 58.87$ and $\delta 51.70\left({ }^{2} \mathrm{~J}_{\mathrm{PP}}=31.40 \mathrm{~Hz}\right)$, comparable to those of $\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{Cl}\right]$ (37a) [$\delta 57.87$ and $\delta 52.60$ $\left({ }^{2} \mathrm{~J}_{\mathrm{PP}}=31.93 \mathrm{~Hz}, \mathrm{~d}_{6}\right.$-acetone, Figure $6.13(\mathrm{~b})$)]; some trace signals at $\sim \delta 55.4$ in Figure 6.13(a) were not identified. When the sample containing 41 is placed under $1 \operatorname{atm} \mathrm{NH}_{3}$, the only signals present are at $\delta 54.94$ and $\delta 51.47\left({ }^{2} \mathrm{~J}_{\mathrm{PP}}=32.05 \mathrm{~Hz}\right.$, Figure 6.14), and are attributed to $\left[\mathrm{Ru}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{3} \cdots \mathrm{Cl}\right]\left[\mathrm{PF}_{6}\right]$ (40a), where the coordinated Cl -atom of 41 has been replaced by another NH_{3} ligand. The formation of such a tris-ammine complex was confirmed by reacting $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ (6a) with 2 equiv of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ under 1 atm NH_{3}; the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts at $\delta 55.26$ and $\delta 51.67\left({ }^{2} \mathrm{~J}_{\mathrm{PP}}=32.05 \mathrm{~Hz}\right.$), which are similar to those of 40a, are attributed to in situ formation of $\left[\mathrm{Ru}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}$ (40b). Repeated attempts to isolate 40 b yielded only dark yellow oily residues. The conductivity of $\mathbf{4 0 b}$, prepared in situ in acetone after removal of $\mathrm{NH}_{4} \mathrm{Cl}$, was $288 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$, in the range for a 1:2 electrolyte. ${ }^{23}$ A tentative reaction scheme for the formation of the $\mathrm{PF}_{6}{ }^{-}$salts is shown in Figure 6.15. It is likely that $\mathbf{4 1}$ is formed by the direct reaction of 37 a with $\mathrm{NH}_{4} \mathrm{PF}_{6}$ in the absence of excess NH_{3}; however, this is difficult to demonstrate directly because in the absence of excess $\mathrm{NH}_{3}, 37 \mathrm{a}$ isomerizes to cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)(39 \mathrm{a})$.

Figure 6.13 $\quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (121.4 MHz) of (a) $\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right](41)$ (a septet due to PF_{6} is located at $\delta-143.4$) and (b)
$\left[\operatorname{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{Cl}\right](37 \mathrm{a})$ in d_{6}-acetone at $20^{\circ} \mathrm{C}$.

Figure 6.14 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (121.4 MHz) for the in situ formation of $\left[\mathrm{Ru}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{3} \cdots \mathrm{Cl}\right]\left[\mathrm{PF}_{6}\right]$ (40a) from the reaction of $\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right](41)$ and $1 \mathrm{~atm} \mathrm{NH}_{3}$ in d_{6}-actone at $20^{\circ} \mathrm{C}$ (septet due to PF_{6} is located at $\delta-143.4$).

42
air-sensitive green solid

40a
41
$6 a$

Figure 6.15 Reaction scheme for the preparation of NH_{3} complexes containing $\mathrm{PF}_{6}-$ ions.

Unfortunately, the microanalysis of 41, a yellow solid, is not consistent (especially the high N content, see Section 2.11 .2 .5 , p. 68) with the formulation $\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$, in part because of the presence of unidentified species, which have ${ }^{1} \mathrm{H}$ NMR signals in the region $\delta 0.8$ to 2.4 (Figure 6.16). Drying 41 in vacuo at $80^{\circ} \mathrm{C}$ resulted in a dark green solid with a microanalysis indicating the loss of an NH_{3} molecule, and formation of $\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)\right]\left[\mathrm{PF}_{6}\right]$ (42). This solid in d_{6}-acetone gave new broad doublets in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum at $\delta 48.64$ and $\delta 47.85$. Upon exposure to air, a solid
sample of 42 decomposed into a black powder. The reactive nature of this complex is consistent with the presence of a vacant coordination site. When the isolated yellow solid (41) was dissolved in CDCl_{3}, all three species, 40a, 41, 42, were observed in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (cf. Figure 6.15).

Figure 6.16 ${ }^{1} \mathrm{H}$ NMR spectrum of $(300 \mathrm{MHz})$ of $\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right](41)$ in d_{6}-acetone at $20^{\circ} \mathrm{C}$; *, unidentified, but $\bullet \mathrm{Et}_{2} \mathrm{O}(\delta 3.4,1.2)$ and \downarrow acetone $(\delta 2.0)$ are present.

The conductivities of species $\mathbf{4 0 a}$ and 41 are identical, indicating 1:1 electrolytes in both cases, and implying again that in $\mathbf{4 0 a}$ the Cl -atom is associated strongly with the cationic complex. Perhaps hydrogen-bonding plays a role as in 37 a (Figure 6.7). Several attempts to grow crystals of 37 a and 41 were unsuccessful.

6.3 The Coordination Chemistry of $\mathrm{N}_{2} \mathrm{O}$

6.3.1 $\quad \mathrm{N}_{2} \mathrm{O}$ as a Potential Oxidant

Nitrous oxide, also known as "laughing gas" is a colourless, odourless, non-flammable, and non-toxic gas. At room temperature, it exists as a liquid at pressures of $\geq 50 \mathrm{~atm}$. Commercial manufacture is from the thermal decomposition of ammonium nitrate at $\sim 270^{\circ} \mathrm{C}$:

$$
\mathrm{NH}_{4} \mathrm{NO}_{3} \xrightarrow{\text { heat }} \mathrm{N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}
$$

$\mathrm{N}_{2} \mathrm{O}$ is primarily used as an inhalation anaesthetic in medicine and dentistry, and as a dispersing agent in cream whippers.
$\mathrm{N}_{2} \mathrm{O}$ is a linear molecule as expected by the following resonance forms ${ }^{24}$

At temperatures above $600^{\circ} \mathrm{C}, \mathrm{N}_{2} \mathrm{O}$ is thermodynamically unstable and decomposes into its elements: ${ }^{25}$

$$
2 \mathrm{~N}_{2} \mathrm{O} \longrightarrow 2 \mathrm{~N}_{2}+\mathrm{O}_{2}-163 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Interest in the inorganic chemistry of $\mathrm{N}_{2} \mathrm{O}$ has advanced partly because of its potential use as an oxidant in catalytic systems. $\mathrm{N}_{2} \mathrm{O}$ only reacts slowly with oxidizing and reducing agents and is relatively inert towards metal complexes, but is an attractive oxidant because of the following advantages: (i) Its oxidizing power is comparable to those of hydrogen peroxide and perbromate owing to the large thermodynamic driving force for the loss of N_{2}. (ii) In the absence of activating reagents such as metal complexes or surfaces, $\mathrm{N}_{2} \mathrm{O}$ is kinetically inert toward organic molecules, implying oxidation by $\mathrm{N}_{2} \mathrm{O}$ could have conceivable selectively upon activation by catalysts. (iii) $\mathrm{N}_{2} \mathrm{O}$ is inexpensive and non-toxic. (iv) The by-product of any potential catalytic systems involving $\mathrm{N}_{2} \mathrm{O}$ is N_{2} (Figure 6.17). ${ }^{26-30}$

Figure 6.17 Potential catalytic cycle for the oxidation of organic substrates using $\mathrm{N}_{2} \mathrm{O}$.

Previous to this work, only one coordinated $\mathrm{N}_{2} \mathrm{O}$ complex, $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{~N}_{2} \mathrm{O}\right)\right]^{2+}$, has been reported with definite characterization. ${ }^{31-33}$ The complex was first prepared by Armor and Taube by adding $\mathrm{N}_{2} \mathrm{O}$ to an aqueous solution of $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+31 a}$. Whilst this route did not give a high purity product, an indirect route discovered by Bottomley and co-workers gave good yields of $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{~N}_{2} \mathrm{O}\right)\right]^{2+}:{ }^{33}$

$$
\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{3}(\mathrm{NO})\right]^{3+}+\mathrm{NH}_{2} \mathrm{OH}+\mathrm{OH}^{-} \longrightarrow\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{~N}_{2} \mathrm{O}\right)\right]^{2+}+2 \mathrm{H}_{2} \mathrm{O}
$$

Although numerous studies have been carried out to ascertain the bonding mode of $\mathrm{N}_{2} \mathrm{O}$ in this complex, no definitive evidence has supported either the possible $\mathrm{Ru}-\mathrm{N}-\mathrm{N}-\mathrm{O}^{31 \mathrm{~b}, 33 \mathrm{c}}$ or Ru-O-N-N ${ }^{320, d}$ bonding modes. However, circumstantial evidence such as IR data, force constants, and the similarity of the electronic spectra of $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{~N}_{2} \mathrm{O}\right)\right]^{2+}$ and $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{~N}_{2}\right)\right]^{2+}$, strongly suggests bonding through the N -atom; ${ }^{33 \mathrm{c}}$ theoretical studies by Tuan and Hoffmann also indicate that N -linkage complexes are more stable than the O -linkage complexes. ${ }^{34}$

Interest in the reactivity of $\mathrm{N}_{2} \mathrm{O}$ has also involved oxygen-atom transfer from $\mathrm{N}_{2} \mathrm{O}$ into a transition metal-ligand bond (cf. Figure 6.17). The ligand may range from hydrogen to organic substrates. The catalytic reduction of $\mathrm{N}_{2} \mathrm{O}$ to N_{2} with concomitant oxidation of PPh_{3} to OPPh_{3} by $\mathrm{CoH}\left(\mathrm{N}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{3}$ has been studied by Yamamoto and co-workers, ${ }^{35}$ and of interest because a ligand, rather than the metal centre, was oxidized. Consequently, the $\mathrm{N}_{2} \mathrm{O}$-oxidation of other ligands and substrates coordinated to metal centres is worth investigation.

Hillhouse and co-workers have studied the reactions of group 4 transition-metal (Ti , Zr and Hf) complexes with $\mathrm{N}_{2} \mathrm{O}$ that result in the oxidation of a coordinated ligand. ${ }^{36}$ For example, the reaction with the diphenylacetylene zirconocene complex $\mathrm{Cp}_{2} \mathrm{Zr}^{2}\left(\mathrm{C}_{2} \mathrm{Ph}_{2}\right)$, with subsequent treatment with HCl , leads to the formation of $\mathrm{Cp}^{*}{ }_{2} \mathrm{ZrCl}_{2}$ and deoxybenzoin, $\mathrm{PhCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{Ph}$ (Figure 6.18). ${ }^{36 \mathrm{~b}}$ The high strength of the group $4 \mathrm{M}-\mathrm{O}$ bonds, however, places limitations on the potential applications of the use of such metal systems with $\mathrm{N}_{2} \mathrm{O}$ in catalytic cycles, and it is certainly of interest to study late transition metal systems as they form weaker bonds with heteroatoms ($\mathrm{N}, \mathrm{S}, \mathrm{O}$).

Figure 6.18 Stoichiometric formation of $\mathrm{PhCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{Ph}$ utilizing $\mathrm{N}_{2} \mathrm{O}$.
$\mathrm{N}_{2} \mathrm{O}$ reacts with cyclic and acyclic nickel alkyls to give stable nickel alkoxide complexes, with regiospecific insertion of the O -atom into the $\mathrm{Ni}-\mathrm{C}$ bond (Figure 6.19). ${ }^{28,37}$

Elimination of the organic moieties to form an alcohol, cyclic ether or lactone occurs via addition of $\mathrm{HCl}, \mathrm{I}_{2}$ and CO , respectively. ${ }^{28}$

Figure 6.19 Transfer of the O -atom of $\mathrm{N}_{2} \mathrm{O}$ into a $\mathrm{Ni}-\mathrm{C}$ bond.

Monomeric late transition metal hydroxo complexes are important in catalytic processes such as hydration of olefins to alcohols, nitriles to carboxamides and the Wacker process (see Section 3.3.2, p. 88); however the synthesis and isolation of such complexes may be difficult because elevated temperatures and extended reaction times are often required. ${ }^{27,38-40}$ Kaplan and Bergman have shown recently that $\mathrm{N}_{2} \mathrm{O}$ can be used to insert an O-atom into one or two $\mathrm{Ru}-\mathrm{H}$ bonds of $(\mathrm{dmpe})_{2} \mathrm{Ru}(\mathrm{H})_{2} \quad$ (dmpe $=$ 1,2-bis(dimethylphosphino)ethane) under mild conditions to form (dmpe) $)_{2} \mathrm{Ru}(\mathrm{H})(\mathrm{OH})$ and (dmpe) $)_{2} \mathrm{Ru}(\mathrm{OH})_{2}$ (Figure 6.20). ${ }^{39,40}$

Figure 6.20 Formation of $\mathrm{Ru}-\mathrm{OH}$ complexes by O -atom insertion from $\mathrm{N}_{2} \mathrm{O}$.

For the reactions with $\mathrm{N}_{2} \mathrm{O}$ with the Ni and Ru complexes described above, no intermediates were observed to suggest any mechanistic pathway for O -atom insertion. However, the researchers suggest coordination of $\mathrm{N}_{2} \mathrm{O}$ prior to N_{2} loss and O -atom transfer in both cases. For the former case, a five-coordinate Ni intermediate was insinuated, ${ }^{29}$ while for the Ru hydride complex, initial $\mathrm{N}_{2} \mathrm{O}$ coordination to the Ru either via an O - or N -atom with subsequent rearrangement was suggested (Figure 6.21). ${ }^{40}$ Despite these suggestions, the direct $\mathrm{N}_{2} \mathrm{O}$ insertion pathway as observed for the Zr complex (Figure 6.18) cannot be ruled out.

Figure 6.21 Possible coordination modes of $\mathrm{N}_{2} \mathrm{O}$ to (dmpe) $)_{2} \mathrm{Ru}(\mathrm{H})_{2}$.

6.3.2 The Reaction of $\mathrm{RuCl}_{\mathbf{2}}(\mathbf{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ with $\mathbf{N}_{\mathbf{2}} \mathrm{O}$

When $1 \mathrm{~atm} \mathrm{~N}_{2} \mathrm{O}$ is added to a solution of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathbf{6 a})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $20^{\circ} \mathrm{C}$, no immediate reaction is noted by NMR spectroscopy. After 2 days, decomposition of the $\mathrm{Ru}(\mathrm{II})$ species occurs, with identifiable species in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (Figure 6.22(e)) being the $\mathrm{Ru}(\mathrm{III})$ oxo complex, $(\mu-\mathrm{O})(\mu-\mathrm{Cl})[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})]_{2}(17)\left(\delta 39.35,38.21\right.$ ($\mathrm{d},{ }^{4} \mathrm{~J}_{\mathrm{PP}}=$ $10.08 \mathrm{~Hz})$), $\mathrm{O}=\mathrm{PPh}_{3}(\mathrm{~s}, \delta 27.22)$ and $\mathrm{O}=\mathrm{P}-\mathrm{N}(\mathrm{s}, \delta 25.33$; signal is assigned following the preparation of $\mathrm{O}=\mathrm{P}-\mathrm{N}$ from $\mathrm{P}-\mathrm{N}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$). ${ }^{1}$ Assignment of the chemical shifts in the ${ }^{1} \mathrm{H}$ NMR spectra proved to be difficult because the $\delta 2.0-4.0$ region contains overlapping signals due to NMe resonances of the above species. As discussed in Chapter 3, 17 is formed by the oxidation of 6 a in an O_{2} atmosphere, and evidently there is a slow oxidation reaction between

6a and $\mathrm{N}_{2} \mathrm{O}$. When the $\mathrm{N}_{2} \mathrm{O}$ pressure was increased to 6 atm , the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, measured within 5 min of $\mathrm{N}_{2} \mathrm{O}$ addition, became very noisy and the chemical shifts due to 6 a became broad Figure 6.22(b). This behaviour is characteristic of the presence of a paramagnetic species, and perhaps formation of diamagnetic 17 occurs via a paramagnetic $\mathrm{Ru}(\mathrm{III})$ intermediate.

The reaction of $6 \mathbf{a}$ with $\sim 6 \mathrm{~atm} \mathrm{~N}_{2} \mathrm{O}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ between -90 and $-40^{\circ} \mathrm{C}$ surprisingly produced a bright yellow solution. Two species are identified by two sets of AX doublets at $\delta 49.52\left(\mathrm{P}_{\mathrm{A}}\right)$ and $\delta 40.06\left(\mathrm{P}_{\mathrm{X}}\right),{ }^{2} \mathrm{~J}_{\mathrm{PP}}=27.93 \mathrm{~Hz}$, and at $\delta 47.54\left(\mathrm{P}_{\mathrm{A}}\right)$ and $\delta 37.91\left(\mathrm{P}_{\mathrm{X}}\right),{ }^{2} \mathrm{~J}_{\mathrm{PP}}=$ 27.01 Hz in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (Figure 6.22(c) and (d)). From previous work in this laboratory, the latter species was identified as the dinitrogen complex cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\eta^{1}-\mathrm{N}_{2}\right)(43) .{ }^{1,2}$ As indicated by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data (Figure 6.23(a)), 43 is formed when $6 a$ is placed under $6 \operatorname{atm} N_{2}$. Furthermore, $\mathbf{4 3}$ is in a dynamic equilibrium with $6 a$ and much higher pressures of N_{2} are required for complete product formation. The assignment of a cis structure for 43 is based on the two singlets at $\delta 3.63$ and 3.04 due to NMe_{2} observed in the ${ }^{1} \mathrm{H}$ NMR spectrum. A direct comparison of the reactions of 6 a with $\mathrm{N}_{2} \mathrm{O}$ and N_{2} is shown in Figure 6.23. The new species, 44 is tentatively ascribed as the coordinated $\mathrm{N}_{2} \mathrm{O}$ complex cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{N}_{2} \mathrm{O}\right)$. The assignment of a cis structure for 44 is based on the similar positions of the chemical shifts and coupling constants for 43 and 44 in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra, and the presence of two singlets at $\delta 3.60$ and 2.85 due to the NMe_{2} of 44 in the ${ }^{1} \mathrm{H}$ NMR spectrum (at $-88^{\circ} \mathrm{C}$). The $\mathrm{N}_{2} \mathrm{O}$ complex is only observed and stable at temperatures at or below $-40^{\circ} \mathrm{C}$.

Figure 6.22 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($121.4 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) of (a) $\mathbf{6 a}$, and the reaction of $\mathbf{6 a}$ with $6 \mathrm{~atm} \mathrm{~N}_{2} \mathrm{O}$ at (b) $20^{\circ} \mathrm{C}$, (c) $-40^{\circ} \mathrm{C}$, (d) $-90^{\circ} \mathrm{C}$ and (e) $20^{\circ} \mathrm{C}$ after reaction time of 2 days. The spectra at low temperatures are time-independent; trace $\mathrm{O}=\mathrm{PPh}_{3}$ is formed during transfer of the NMR sample from the cold temperature bath to the spectrometer probe.

Figure $6.23{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra ($121.4 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) for the reaction of $\mathbf{6 a}$ with (a) $6 \mathrm{~atm} \mathrm{~N}_{2}$ at $20^{\circ} \mathrm{C}$ and (b) $6 \mathrm{~atm} \mathrm{~N}_{2} \mathrm{O}$ at $-40^{\circ} \mathrm{C}$.

Although ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data are consistent with formation of a coordinated $\mathrm{N}_{2} \mathrm{O}$ species 44, the coordination mode of $\mathrm{N}_{2} \mathrm{O}$ is not identifiable, although coordination via the N -atom seems most likely because of the formation of the $\eta^{1}-\mathrm{N}_{2}$ adduct. The initial coordination of $\mathrm{N}_{2} \mathrm{O}$, followed by the cleavage of the O atom to form 43 and O_{2}, seems plausible (Figure 6.24). At temperatures below $-40^{\circ} \mathrm{C}$, the species 6 a, 43 and 44 are stable indefinitely, and O_{2} is ineffective in oxidizing the $\mathrm{Ru}(\mathrm{II})$ complexes; trace $\mathrm{O}=\mathrm{PPh}_{3}$ (as seen in Figure 6.22 (c) and (d)) is formed during transfer of the NMR sample from the cold temperature bath to the spectrometer probe. This was verified when a sample of 6a was placed under $1 \operatorname{atm} \mathrm{O}_{2}$ at $-40^{\circ} \mathrm{C}$; no reaction was indicated by the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum. In
both systems involving $\mathrm{N}_{2} \mathrm{O}$ and O_{2}, the formation of 17 and $\mathrm{O}=\mathrm{PPh}_{3}$ is observed when the temperature is slowly raised to room temperature. The mechanistic aspects involving the O_{2}-oxidation, however, has not been ascertained.

$6 a$
$+\mathrm{N}_{2} / /-\mathrm{N}_{2}$

17

Figure 6.24 Proposed reaction scheme for the formation of 17 and $\mathrm{O}=\mathrm{PPh}_{3}$, if $\mathrm{N}_{2} \mathrm{O}$ is initially coordinated to $6 \mathbf{a}$ via the terminal N atom.

If the $\mathrm{N}_{2} \mathrm{O}$ is coordinated to $\mathbf{6 a}$ via the O -atom, the direct migratory insertion of O into the $\mathrm{Ru}-\mathrm{PPh}_{3}$ bond is conceivable. This correlates with one mechanism proposed in Chapter 3 (Section 3.2.1) where the formation of $\mathrm{O}=\mathrm{PPh}_{3}$ and $\mathbf{1 7}$ occurs via the initial coordination of O_{2} to the Ru . Of note, the oxidation of PPh_{3} is catalytic. When an excess of 2 equiv of PPh_{3} is added to the reaction of $\mathbf{6 a}$ with $\mathrm{N}_{2} \mathrm{O}$, all the PPh_{3} is converted to $\mathrm{O}=\mathrm{PPh}_{3}$ (Figure 6.25) and, only when all the PPh_{3} has reacted, is the $\mathrm{Ru}(\mathrm{II})$ species oxidized to 17 .

$6 a$

Figure 6.25 The catalytic oxidation of PPh_{3} by $\mathrm{N}_{2} \mathrm{O}$.

The potential use of $6 a$ as an oxidation catalyst is promising because $\mathrm{N}_{2} \mathrm{O}$ preferentially oxidizes PPh_{3} rather than the Ru centre. However, attempts to oxidize organic substrates such as ethylene, styrene or cyclooctene at ambient conditions were unsuccessful. Even with 3 to 6 atm $\mathrm{N}_{2} \mathrm{O}$ added to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{C}_{6} \mathrm{H}_{6}$ solution containing 6 a and 10 equiv substrates (at -80 to $60^{\circ} \mathrm{C}$), only 17 and $\mathrm{O}=\mathrm{PPh}_{3}$ were observed to form while the organic substrates remained unchanged. Of note, the substrates studied do not coordinate to $\mathbf{6 a}$, while in order for $\mathrm{N}_{2} \mathrm{O}$ to be an effective oxidant, it is likely that the substrate in question must bind to the Ru . Furthermore, insertion of the O -atom into a Ru -substrate bond must be preferred over that of the $\mathrm{Ru}-\mathrm{PPh}_{3}$ bond. Fine tuning of the Ru complex is perhaps required to obtain an effective catalytic cycle using $\mathrm{N}_{2} \mathrm{O}$ as the oxidant. These modifications may include incorporation of an alkyl ligand or the replacement of the PPh_{3} with a more strongly basic phosphine.

6.4 Ruthenium Carbene Complexes: The Synthesis and Reactivity of $\mathbf{C i s}-\mathrm{RuCl}_{\mathbf{2}}(\mathbf{P}-\mathbf{N})\left(\mathbf{P R}_{\mathbf{3}}\right) \mathbf{(= \mathbf { C } = \mathbf { C } (\mathbf { H }) \mathbf { R } ^ { \prime }) (\mathbf { R } , \mathbf { R } ^ { \prime } = \mathbf { P h } , \boldsymbol { p } \text { -tolyl }) ~}$

Carbenes are formed when monohapto, two-electron alkylidene ligands of the type $\mathrm{CH}_{2}, \mathrm{CHR}$ and $\mathrm{CR}_{2}(\mathrm{R}=$ alkyl or aryl group) form $\mathrm{M}=\mathrm{C} d-p$ double bonds within metal complexes. The first carbene complex, $(\mathrm{CO})_{5} \mathrm{~W}=\mathrm{C}(\mathrm{OMe}) \mathrm{Me}$, was reported by Fischer and Maasböl in 19644^{41} Two efficient tools for the characterization of metal carbenes are X-ray crystallography and ${ }^{13} \mathrm{C}$ NMR spectroscopy. A short M-C(carbene) bond distance and a downfield shift of the carbene-carbon resonance is indicative of a $\mathrm{M}=\mathrm{C}$ bond. Metal carbene complexes constitute an important area of research in organometallic and catalytic reactions, ${ }^{42}$ and new organic compounds of well-defined stereochemistry have been accessed from complexes with functionalized carbenes. ${ }^{43}$

6.4.1 Characterization of Cis-RuCl $\mathbf{2}_{\mathbf{2}}(\mathbf{P}-\mathbf{N})\left(\mathbf{P R}_{3}\right)(=\mathbf{C}=\mathbf{C}(\mathbf{H}) \mathbf{R})$

Dark orange solutions were obtained when a mixture of 10 equiv of HCCPh or $\mathrm{HCC}\left(p\right.$-tolyl) and 6 a or 7 a in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was refluxed at $40^{\circ} \mathrm{C}$, and work-up yielded dark orange powders, that were identified as cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph})$ $c i s-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p-\text { tolyl })_{3}\right)(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph})(46)$, and $c i s-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(=\mathrm{C}=\mathrm{C}(\mathrm{H})(p$-tolyl $))$ (47). The formation of the vinylidene moiety is thought to occur via an η^{2} - to η^{1}-alkyne slippage followed by an α, β-hydrogen shift (Figure 6.26); a repulsive 4e interaction between a d_{π} orbital of the $R u d^{6}$ system and the perpendicular filled π orbital of the alkyne destabilizes the metal η^{2}-alkyne bond and, by localization of electron density on the Ru centre, the vinylidene complex is relatively more stable than the η^{2}-alkyne complex. ${ }^{44}$

Figure 6.26 Formation of a vinylidene complex from a 1-alkyne ligand. L_{n} represents the auxiliary ligands of the Ru complex.

X-ray quality, red-orange crystals of $\mathbf{4 5}$ were obtained from the slow evaporation of a CDCl_{3} solution of the complex in an NMR tube. The ORTEP plot, selected bond lengths and bond angles are shown in Figure 6.27, and Tables 6.5 and 6.6 , respectively. The pseudo-octahedral structure contains two cis- Cl -atoms $\left[\mathrm{Cl}(1)-\mathrm{Ru}-\mathrm{Cl}(2) 91.50^{\circ}\right.$], with the P-atom of the $\mathrm{P}-\mathrm{N}$ trans to one Cl -atom, and the vinylidene $(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph})$ trans to the second Cl -atom [$\mathrm{Cl}(2)-\mathrm{Ru}-\mathrm{C}(1) 172.7^{\circ}$]. The bond length of $1.814 \AA$ is indicative of a $\mathrm{Ru}=\mathrm{C}$ double bond, and is comparable to those observed for other Ru vinylidene complexes (1.823 to $1.86 \AA):^{45} \quad$ e.g. $\quad\left[\mathrm{Ru}\{=\mathrm{C}=\mathrm{C}(\mathrm{Me}) \mathrm{R}\}\left(\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{CF}_{3} \mathrm{SO}_{3}\right] \quad(1.838 \AA, \quad \mathrm{R}=$ 1-cyclohexenyl) ${ }^{46}$ and $\left[\mathrm{Ru}\{=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Me}\}\left(\mathrm{PMe}_{3}\right)_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{PF}_{6}\right](1.845 \AA){ }^{47}$ The $\mathrm{C}(1)-\mathrm{C}(2)$ distance of $1.329 \AA$ is in the normal range $(1.25 \text { to } 1.41 \AA)^{45}$ for a $\mathrm{C}=\mathrm{C}$ bond, while the $\mathrm{Ru}-\mathrm{C}(1)-\mathrm{C}(2)$ angle of 176.4° indicates the linearity of the $\mathrm{Ru}=\mathrm{C}=\mathrm{C}$ moiety. All the other bonds with the exception of the $\operatorname{Ru}-\mathrm{P}(1)$ bond are within the range found for the other cis-$\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{L})$ complexes. The distance of $2.332 \AA$ for $\mathrm{Ru}-\mathrm{P}(1)$ is slightly longer than the 2.2617-2.2884 \AA for analogous complexes previously discussed (Sections 4.2, 4.3 and 6.1), and this is attributed to the distribution of more electron density to the d-p bonding of $R u=C$.

Figure 6.27 The ORTEP plot of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph})$ (45). Thermal ellipsoids for non-hydrogen atoms are drawn at 33% probability (some phenyl carbons have been omitted for clarity). Full experimental parameters and details are given in Appendix X.

Table 6.5 Selected bond lengths (\AA) for cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph})(45)$ with estimated standard deviations in parentheses.

Bond	Length (\AA)	Bond	Length (\AA)
$\mathrm{Ru}(1)-\mathrm{Cl}(1)$	$2.434(2)$	$\mathrm{Ru}(1)-\mathrm{N}(1)$	$2.308(7)$
$\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$2.495(2)$	$\mathrm{Ru}(1)-\mathrm{C}(1)$	$1.814(8)$
$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.332(2)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.329(12)$
$\mathrm{Ru}(1)-\mathrm{P}(2)$	$2.346(2)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.455(13)$

Table 6.6 Selected bond angles $\left({ }^{\circ}\right)$ for cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph})(45)$ with estimated standard deviations in parentheses.

Bonds	Angle (${ }^{\circ}$)	Angle (${ }^{\circ}$)	
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$91.50(9)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$106.94(8)$
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$169.56(8)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$82.2(2)$
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$83.15(8)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{C}(1)$	$87.3(3)$
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$87.8(2)$	$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$170.9(2)$
$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{C}(1)$	$95.6(3)$	$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{C}(1)$	$89.9(3)$
$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$85.45(8)$	$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{C}(1)$	$89.9(3)$
$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$92.61(9)$	$\mathrm{Ru}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$176.4(8)$
$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$88.7(2)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$124.3(9)$
$\mathrm{Cl}(2)-\mathrm{Ru}(1)-\mathrm{C}(1)$	$172.7(3)$		

The IR spectrum of 45 depicts a strong band at $1615 \mathrm{~cm}^{-1}$ which is typical of the $v_{\mathrm{C}=\mathrm{C}}$ stretching of vinylidene ligands. ${ }^{45,48}$

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR spectra of 45 are shown in Figures 6.28 and 6.29, respectively. The P_{A} and P_{X} chemical shifts are found at $\delta 37.85$ and $36.40,{ }^{2} \mathrm{~J}_{\mathrm{PP}}=26.50 \mathrm{~Hz}$,
while the inequivalent NMe groups are seen as singlets at $\delta 3.60$ and 3.11 in the ${ }^{1} \mathrm{H}$ NMR spectrum. The C_{β}-proton is coupled to the ortho-protons of the phenyl ring giving a doublet of doublets at $\delta 2.43\left({ }^{4} \mathrm{~J}_{\mathrm{HH}}=6 \mathrm{~Hz}\right)$. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR chemicals shifts for $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph})(46)$ and $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(=\mathrm{C}=\mathrm{C}(\mathrm{H})(p$-tolyl $))(47)$ are nearly identical to those of $\mathbf{4 5}$ with the exception of an additional singlet due to the Me of the p-tolyl group at $\delta 2.16$ in the ${ }^{1} \mathrm{H}$ NMR spectra (see Sections 2.12.2 and 2.12.3). Characteristic ${ }^{13} \mathrm{C}$ NMR data pertaining to the resonances of the four C -atoms of the $\mathrm{RuC}_{\alpha} \mathrm{C}_{\beta}$ and of the $\mathrm{N}\left(\mathrm{C}_{\gamma} \mathrm{H}_{3}\right)_{2}$ units were obtained for 45 : the strongly deshielded C_{α} resonates at $\delta 358.2\left(\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=18.6 \mathrm{~Hz}\right) ; \mathrm{C}_{\beta}$ at $\delta 111.0(\mathrm{~s})$; and inequivalent C_{γ} signals at $\delta 57.26$ and 52.52 (s).

Figure $6.28 \quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(81.0 \mathrm{MHz}, 20^{\circ} \mathrm{C}\right)$ of cis $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph})(45)$ in CDCl_{3}.

Figure 6.29 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(200 \mathrm{MHz}, 20^{\circ} \mathrm{C}\right)$ of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{C}_{\alpha}=\mathrm{C}_{\beta}(\mathrm{H}) \mathrm{Ph}\right)$ (45) in CDCl_{3}.

6.4.2 The Reactivity of $\mathrm{Cis}-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph})($

As a result of localization of electron density in the $\mathrm{Ru}=\mathrm{C}_{\alpha}$ bond and on the C_{β} atom, there is electron deficiency at the C_{α} atom of vinylidene complexes. ${ }^{49}$ Consequently, electrophiles are attracted to both the $\mathrm{Ru}=\mathrm{C}_{\alpha}$ bond and the C_{β} atom, while nucleophiles react at the C_{α} atom.

Bianchini and co-workers reported the reaction of $\mathrm{H}_{2} \mathrm{~S}$ with fac,cis$\left[(\mathrm{PNP}) \mathrm{RuCl}_{2}\{=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph}\}\right] \quad\left(\mathrm{PNP}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{2}\right)$ to give an $\eta^{1}-2-$ phenylethanethial complex, fac,cis-[(PNP) $\left.\mathrm{RuCl}_{2}\left\{\mathrm{~S}=\mathrm{C}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{Ph}\right\}\right]{ }^{50}$ To investigate the reactivity of 45 , an analogous reaction with $\mathrm{H}_{2} \mathrm{~S}$ was carried out in this thesis work. A colour change from orange to brown resulted when $\mathrm{H}_{2} \mathrm{~S}$ was passed through a refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 45 , and a dark brown solid was isolated after work-up with hexanes. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR spectra of this solid in CDCl_{3} are consistent with the formation of a single new
product, cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{S}=\mathrm{C}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{Ph}\right)(48)\left[{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\right.$: doublets at $\delta 59.61\left(\mathrm{P}_{\mathrm{A}}\right)$ and $\delta 42.36\left(\mathrm{P}_{\mathrm{x}}\right){ }^{2} \mathrm{~J}_{\mathrm{PP}}=28.22 \mathrm{~Hz} ;{ }^{1} \mathrm{H}: \quad \delta 3.04,2.52\left(\mathrm{~s}, \mathrm{NMe}_{2}\right), \delta 3.18\left(\mathrm{t},=\mathrm{CH},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=15 \mathrm{~Hz}\right)$, $\left.\delta 1.30\left(\mathrm{~d}, \mathrm{CH}_{2},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=15 \mathrm{~Hz}\right)\right]$. However, an analytically pure solid could not be isolated even after several attempts with varying times $(3-16 \mathrm{~h})$. Figure 6.30 shows the proposed mechanism for the formation of 48. Initially, the nucleophilic C_{β} is protonated by the acidic hydrogen of $\mathrm{H}_{2} \mathrm{~S}$ leading to the formation of a cationic carbyne complex (which can be observed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy [$\delta 62.80\left(\mathrm{P}_{\mathrm{A}}\right), \delta 38.36\left(\mathrm{P}_{\mathrm{X}}\right){ }^{2} \mathrm{~J}_{\mathrm{PP}}=22.82 \mathrm{~Hz}$] in the in situ reaction of 45 with excess $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ in CDCl_{3}; the ${ }^{1} \mathrm{H}$ NMR spectrum could not be assigned because of overlapping peaks due to excess $\mathrm{Et}_{2} \mathrm{O}$). The electrophilic C_{α} is then attacked by the SH , and a $\mathrm{S}, \mathrm{C}_{\alpha}$-hydrogen shift is followed by S -atom insertion into the $\mathrm{Ru}-\mathrm{C}_{\alpha}$ bond.

Figure 6.30 Proposed mechanism for the formation of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{S}=\mathrm{C}(\mathrm{H})-$ $\mathrm{CH}_{2} \mathrm{Ph}$) (48) from 45 and $\mathrm{H}_{2} \mathrm{~S}$.

THF and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of 45 also react with $\mathrm{H}_{2} \mathrm{O}$ under reflux conditions as implicated by changes in NMR spectra. The brown solid isolated from this reaction consists of many products as indicated by ~ 15 peaks in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$, while the ${ }^{1} \mathrm{H}$ NMR spectrum is uninformative because of many overlapping broad peaks in the region $\delta 1.2-3.5$. Repeated attempts to isolate a pure product were unsuccessful. Two major products in a $1: 1$ ratio were identified by two sets of broad peaks at $\delta 44.57,38.28$ (49) and $\delta 50.55,18.74(\mathbf{5 0})$ in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum. By analogy to the reaction of fac, cis$\left[(\mathrm{PNP}) \mathrm{RuCl}_{2}\left\{\mathrm{~S}=\mathrm{C}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{Ph}\right\}\right]$ with $\mathrm{H}_{2} \mathrm{O}$ where fac-(PNP$) \mathrm{RuCl}(\mathrm{CO})\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$ and fac, cis$\left(\mathrm{PNP}^{2} \mathrm{RuCl}_{2}(\mathrm{CO})\right.$ are formed, ${ }^{51} 49$ and 50 are tentatively identified as $\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{Ph}\right)(\mathrm{CO})$ and $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{CO})$, respectively (Figure 6.31). The IR spectrum for a mixture containing 49 and 50 showed two strong bands at 2046 and $1990 \mathrm{~cm}^{-1}$, attributed to $v_{\text {co }}$. Previously in this laboratory, $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{CO})(50)$ has been observed when CO was added to a solid state sample or a solution of $\mathbf{6 a}$ at $\leq-20^{\circ} \mathrm{C}$ (while at higher temperatures, the bis-CO adducts, trans, cis- $\mathrm{RuCl}_{2}(\mathrm{CO})_{2}(\mathrm{P}-\mathrm{N})$ and cis,cis- $\mathrm{RuCl}_{2}(\mathrm{CO})_{2}(\mathrm{P}-\mathrm{N})$ are formed). ${ }^{1}$ The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data ($\delta 51.68$ and $18.56,{ }^{2} \mathrm{~J}_{\mathrm{PP}}=$ 25.74 Hz) for the in situ reaction at $-20^{\circ} \mathrm{C}^{1}$ correspond well with the data assigned ($\delta 50.55$ and 18.74) in the current work to $\mathbf{5 0}$, although the ${ }^{2} \mathrm{~J}_{\mathrm{PP}}$ coupling constants could not be obtained for 49 and 50 because the peaks were broad and the baseline noisy. The vco value obtained by Mudalige was $1962 \mathrm{~cm}^{-1}$ (Nujol mull of the solid sample). Upon addition of 1 atm $\mathbf{H C l}$ to a mixture containing 49 and 50 , the concentration of 49 significantly diminished while that of $\mathbf{5 0}$ increased. This observation implies that $\mathbf{4 9}$ is initially formed with elimination of HCl when $\mathrm{H}_{2} \mathrm{O}$ is reacted with 45 , while the HCl can also react with 49 to form 50 with the
elimination of toluene. The signals due to toluene could not be identified in the ${ }^{1} \mathrm{H}$ NMR spectrum because of the presence of other species.

Figure 6.31 The reaction of cis $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph})(45)$ with $\mathrm{H}_{2} \mathrm{O}$ at $80^{\circ} \mathrm{C}$ in THF.

Of note, the carbene complexes 45-47 are stable indefinitely in air and, at ambient conditions, they do not react with $\mathrm{H}_{2}, \mathrm{HCl}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{O}$ or NEt_{3}.

6.5 The Reaction of $\mathrm{RuCl}_{2}(\mathbf{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 a)$ with $\mathbf{H C l}$

When 1 atm of anhydrous HCl gas was bubbled through a dark green $\mathrm{C}_{6} \mathrm{H}_{6}$ solution of 6a at r.t., a deep red solution formed immediately, and the isolated bright red solid had a microanalysis and UV-Vis spectrum corresponding to those of the paramagnetic $\mathrm{RuCl}_{3}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathbf{1 5 a})$ (see Section 2.7.1). Figure 6.32 suggests the formation of 15 a via a coordinated HCl intermediate. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum observed during the in situ reaction in $\mathrm{C}_{6} \mathrm{D}_{6}$ is dependent on the concentration of HCl added (Figure 6.33) and, similar to the reaction of 6 a with $\mathrm{H}_{2} \mathrm{O}$ (Section 5.3, Figure 5.5), an upfield shift of the P_{A} chemical shift is observed as the concentration of HCl is increased from 1 to 5 equiv; eventually, the P_{A} and \mathbf{P}_{X} signals vanish when more than 10 equiv of HCl are added. The formation of dihydrogen seems rational because no hydride species are observed; however, no ${ }^{1} \mathrm{H}$ NMR signal due to
H_{2} was observed presumably because of the low concentration of H_{2} formed in the reaction. Of note, evidence for HCl complexes of Pt has been reported recently. ${ }^{52}$

Figure 6.32 Reaction of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 a)$ with HCl to form $\mathrm{RuCl}_{3}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathbf{1 5 a})$.
(b)

(a)

Figure 6.33 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $\left(121.4 \mathrm{MHz}, 20^{\circ} \mathrm{C}\right)$ for the reaction of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ (6a) with (a) 1 equiv HCl and (b) 5 equiv HCl in $\mathrm{C}_{6} \mathrm{D}_{6}$; spectra measured within 10 min of addition of HCl .

6.6 The Catalytic Hydrogenation of $\mathbf{P h C}(\mathbf{H})=$ NPh Using Complexes Containing the Ru(P-N) Moiety

The necessity to acquire chiral amines as precursors for the synthesis of pharmaceutical and agrochemical substances has led to accelerated interest in the homogeneous hydrogenation of imines, ${ }^{53,54}$ and much work has concentrated on Rh^{55} and Ir^{56} systems. Recently, Ru complexes containing phosphine ligands have also been found to hydrogenate imines effectively to the corresponding amines. ${ }^{21,53,57,58}$ The catalytic ability of

Ru complexes containing aminophosphine ligands to hydrogenate N-benzylideneaniline to N-benzylaniline was briefly investigated, and is described in this section:

Conditions for each hydrogenation experiment were as follows. While under the flow of Ar , the catalyst and imine, in a 1:200 ratio along with 10 mL MeOH , were placed in a glass liner equipped with a magnetic stirrer. The glass liner and its contents were then quickly placed in a machined-steel autoclave which had been previously evacuated, filled with N_{2}, and equipped with a high-pressure regulator connected to an H_{2} cylinder. The reaction mixture was evacuated and flushed with N_{2} three times before a final evacuation. The autoclave was then pressurized with $400 \mathrm{psi}_{2}$ and evacuated three times before a final pressure of 1000 psi H_{2} was introduced. With the stirrer turned on, the hydrogenation was allowed to proceed for 3 h . Percentage conversion was then analyzed by gas chromatography using an HP-20M (Carbowax 20M) column.

The results for the conversion of $\mathrm{PhC}(\mathrm{H})=\mathrm{NPh}$ to $\mathrm{PhCH}_{2}-\mathrm{N}(\mathrm{H}) \mathrm{Ph}$ by ruthenium aminophosphines are presented in Table 6.7. The specific substrate $\mathrm{PhC}(\mathrm{H})=\mathrm{NPh}$, and the chosen conditions, were used to allow for comparison between \% conversions by the complexes in the present study and those by Ru phosphine complexes previously studied in this laboratory. ${ }^{21,57}$ The \% conversions by complexes 6a, 7a, 15a and 15b are comparable to those for the most effective Ru species found to date: $\mathrm{Ru}_{2} \mathrm{Cl}_{5}(\mathrm{dppb})_{2}(98 \%$ after 1 h$)$ and $\mathrm{Ru}_{2} \mathrm{Cl}_{4}(\mathrm{dppb})_{2}(89 \%$ after 1 h$)(\mathrm{dppb}=1,4 \text {-bis(diphenylphosphino)butane) })^{21,57}$ The $\mathrm{Ru}(\mathrm{II})$ or Ru (III) complexes which contain chlorine ligands, one P-N ligand, and a monodentate phosphine $\left(\mathrm{PPh}_{3}\right.$ or $\left.\mathrm{P}(p \text {-tolyl })_{3}\right)$, are comparable in effectiveness, while the complexes containing the $\mathrm{P}(p \text {-tolyl })_{3}$ ligand are somewhat better catalysts. Contrary to findings for
systems containing dppb, ${ }^{21}$ the chloro-containing complexes in the present study are more effective than the bromo analogue. Not surprisingly, the "less reactive" complexes containing BPN or two P-N ligands gave relatively low conversions.

Table 6.7 Hydrogenation of $\mathrm{PhC}(\mathrm{H})=\mathrm{NPh}$ using ruthenium aminophosphine complexes. Conditions: 1000 psi $\mathrm{H}_{2} ;$ [imine] $=0.153 \mathrm{M}$; [catalyst $]=0.77 \mathrm{mM} ; 20^{\circ} \mathrm{C} ; 3 \mathrm{~h}$; in MeOH .

Catalyst	\% Conversion
$\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 a)$	91
$\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)(7 a)$	96
$\mathrm{RuBr}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(6 \mathrm{~b})$	57
$\mathrm{RuCl}_{3}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathbf{1 5 a})$	82
$\mathrm{RuCl}_{3}(\mathrm{P}-\mathrm{N})\left(\mathrm{P}(p-\text {-tolyl })_{3}\right)(\mathbf{1 5 b})$	100
$\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})_{2}(8)$	25
$\mathrm{RuCl}_{2}(\mathrm{BPN})\left(\mathrm{PPh}_{3}\right)(13)$	56
$\mathrm{RuCl}_{3}(\mathrm{BPN})(16)$	54

In order to evaluate further the complexes in Table 6.7 as useful catalysts, conditions for the hydrogenation such as pressure of H_{2}, temperature, solvent, and reaction time must be optimized. Mechanistic and kinetic studies might be of value.

6.7 Summary

$\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ (6a) forms six-coordinate complexes with $\mathrm{H}_{2}, \mathrm{NH}_{3}, \mathrm{~N}_{2}, \mathrm{~N}_{2} \mathrm{O}$ and alkynes. The $\eta^{2}-\mathrm{H}_{2}$ complex 36 is characterized crystallographically and its pK_{a} of ~ 11 is determined by NMR spectroscopy. Depending on the concentration of NH_{3} and whether $6 \mathbf{a}$ is in solution or the solid state, three products (37,38 and 39) containing NH_{3} ligands are
identified, and salts of these complexes may be obtained by reaction with $\mathrm{NH}_{4} \mathrm{PF}_{6}$. The formation of a coordinated $\mathrm{N}_{2} \mathrm{O}$ complex 44 at low temperatures (below $-40^{\circ} \mathrm{C}$) is especially rare as only one such complex has been reported previous to this work. At higher temperatures, oxidation of 6 a by $\mathrm{N}_{2} \mathrm{O}$ results in the formation of $\mathrm{O}=\mathrm{PPh}_{3}$ and the dinuclear species $(\mu-\mathrm{O})(\mu-\mathrm{Cl})_{2}[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})]_{2}(17)$. Vinylidene complexes, obtained from the reaction of 6a with 1-alkynes, react with $\mathrm{H}_{2} \mathrm{~S}$ and $\mathrm{H}_{2} \mathrm{O}$. Finally, 6a can be oxidized by HCl to form $\mathrm{RuCl}_{3}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(15 a)$. It has been shown in this Chapter that a wide range of small molecules binds and reacts with 6a. Preliminary work (not documented here) has also shown that 6 a reacts with $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{NOBF}_{4}, \mathrm{NO}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{COSH}, \mathrm{NaSEt}, \mathrm{SMe}_{2}$ and $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ without decomposition or oxidation; however because of the many products formed as observed by complex ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra, detailed investigation into these reactions was not pursued. Full characterization of the products formed would lead to even greater insight into the reactivity of $\mathbf{6 a}$.

6.8 References

1. Mudalige, D. C. Ph.D. Thesis, The University of British Columbia, 1994.
2. Mudalige, D. C.; Rettig, S. J.; James, B. R.; Cullen, W. R. J. Chem. Soc., Chem. Commun. 1993, 830.
3. (a) Jessop, P. G.; Morris, R H. Coord. Chem. Rev. 1992, 121, 155.
(b) Heinekey, D. M.; Oldham, W. J., Jr.; Chem. Rev. 1993, 93, 913.
(c) Esteruelas, M. A.; Oro, L. A. Chem. Rev. 1998, 98, 577.
4. Hamilton, D. G.; Crabtree, R. H. J. Am. Chem. Soc. 1988, 110, 4126.
5. (a) Crabtree, R. H.; Hamiltion, D. G. Adv. Organomet. Chem. 1988, 28, 299.
(b) Crabtree, R. H. Acc. Chem. Res. 1990, 23, 95.
6. Hampton, C.; Cullen, W. R.; James, B. R. J. Am. Chem. Soc. 1988, 110, 6918.
7. Albinati, A.; Klooster, W. T.; Koetzle, T. F.; Fortin, J. B.; Ricci, J. S.; Eckert, J.; Fong, T. P.; Lough, A. J.; Morris, R. H.; Golombek, A. P. Inorg. Chim. Acta 1997, 259, 351.
8. Jessop, P. G. Ph.D. Thesis, The University of British Columbia, 1991.
9. Ball, R. G.; Trotter, J. Inorg. Chem. 1981, 20, 261.
10. Gregory, U. A.; Ibekwe, S. D.; Kilbourn, B. T.; Russell, D. R. J. Chem. Soc. (A) 1971, 1118.
11. Skapski, A. C.; Stephens, F. A. J. Chem. Soc., Dalton Trans. 1974, 390.
12. Skapski, A. C.; Troughton, P. G. H. J. Chem. Soc., Chem. Commun. 1968, 1230.
13. Chau, D. E. K.-Y.; James, B. R. Inorg. Chim. Acta 1995, 240, 419.
14. Gusev, D. G.; Vymenits, A. B.; Bakhmutov, V. I. Inorg. Chem. 1992, 31, 1.
15. (a) Morris, R. H. Inorg. Chem. 1992, 31, 1471.
(b) Cappellani, E. P.; Drouin, S. D.; Jia, G.; Maltby, P. A.; Morris, R. H.; Schweitzer, C. T. J. Am. Chem. Soc. 1994, 116, 3375.
16. (a) Jia, G.; Morris, R. H. Inorg. Chem. 1990, 29, 582.
(b) Jia, G.; Morris, R. H. J. Am. Chem. Soc. 1991, 113, 875.
17. Chin, B.; Lough, A. J.; Morris, R. H.; Schweitzer, C. T.; D'Agostino, C. Inorg. Chem. 1994, 33, 6278.
18. (a) Chinn, M. S.; Heinekey, D. M.; Payne, N. G.; Sofield, C. D. Organometallics 1989, 8, 1824.
(b) Chinn, M. S.; Heinekey, D. M. J. Am. Chem. Soc. 1990, 112, 5166.
19. Baker, M. V.; Field, L. D.; Young, D. J. J. Chem. Soc., Chem. Commun. 1988, 546.
20. Queiroz, S. L.; Batista, A. A.; Oliva, G.; Gambardella, M. T. do P.; Santos, R. H. A.; MacFarlane, K. S.; Rettig, S. J.; James, B. R. Inorg. Chim. Acta 1998, 267, 209.
21. MacFarlane, K. S. Ph.D. Thesis, The University of British Columbia, 1995.
22. Cenini, S.; Porta, F.; Pizzotti, M. J. Mol. Catal. 1982, 15, 297.
23. Geary, W. J. Coord. Chem. Rev. 1971, 7, 81.
24. Pauling, L. The Natures of the Chemical Bond, $3^{\text {rd }}$ Ed.; Cornell University Press: Ithaca, N. Y. 1960.
25. Waynne, J. M. In Nitrous Oxide; Eger II, E. I. Ed.; Elsevier: New York, 1985, p. 23.
26. Bottomley, F.; Lin, I. J. B.; Mukaida, M. J. Am. Chem. Soc. 1980, 102, 5238.
27. Bottomley, F.; Sutin, L. Adv. Organomet. Chem. 1988, 28, 339.
28. Matsunaga, P. T.; Mavropoulos, J. C.; Hillhouse, G. L. Polyhedron 1995, 14, 175.
29. Matsunaga, P. T.; Hillhouse, G. L. J. Am. Chem. Soc. 1993, 115, 2075.
30. Groves, J. T.; Bonchio, M.; Carofiglio, T.; Shalyaev, K. J. Am. Chem. Soc. 1996, 118, 8961.
31. (a) Armor, J. N.; Taube, H. J. Am. Chem. Soc. 1969, 91, 6874.
(b) Armor, J. N.; Taube, H. J. Am. Chem. Soc. 1970, 92, 2560.
(c) Armor, J. N.; Taube, H. J. Am. Chem. Soc. 1971, 93, 6476.
32. (a) Diamantis, A. A.; Sparrow, G. J. J. Chem. Soc., Chem. Commun. 1969, 469.
(b) Diamantis, A. A.; Sparrow, G. J. J. Chem. Soc., Chem. Commun. 1970, 819.
(c) Diamantis, A. A.; Sparrow, G. J. J. Colloid Interface Sci. 1974, 47, 455.
(d) Diamantis, A. A.; Sparrow, G. J.; Snow, M. R.; Norman, T. R. Aust. J. Chem. 1975, 28, 1231.
33. (a) Bottomley, F.; Crawford, J. R. J. Chem. Soc., Chem. Commun. 1971, 200.
(b) Bottomley, F.; Crawford, J. R. J. Am. Chem. Soc. 1972, 94, 9092.
(c) Bottomley, F.; Brooks, W. V. F. Inorg. Chem. 1977, 16, 501.
34. Tuan, D. F.-T.; Hoffmann, R. Inorg. Chem. 1985, 24, 871.
35. Yamamoto, A.; Kitazume, S.; Pu, L. S.; Ikeda, S. J. Am. Chem. Soc. 1971, 93, 371.
36. (a) Vaughan, G. A.; Rupert, P. B.; Hillhouse, G. L. J. Am. Chem. Soc. 1987, 109, 5538.
(b) Vaughan, G. A.; Sofield, C. C.; Hillhouse, G. L. J. Am. Chem. Soc. 1989, 111, 5491.
(c) List, A. K.; Koo, K.; Rheingold, A. L.; Hillhouse, G. L.; Inorg. Chim. Acta 1998, 270, 399.
37. Koo, K.; Hillhouse, G. L.; Rheingold, A. L. Organometallics 1995, 14, 456.
38. Bryndza, H. E.; Tam, W. Chem. Rev. 1988, 88, 1163.
39. Kaplan, A. W.; Bergman, R. G. Organometallics 1997, 16, 1106.
40. Kaplan, A. W.; Bergman, R. G. Organometallics 1998, 17, 5072.
41. Fischer, E. O.; Maasböl, A. Angew. Chem., Int.Ed. Engl. 1964, 3, 580.
42. Weiss, K. In Transition Metal Carbene Complexes; Verlag Chemie GmBH: Weinheim, 1983, p. 227.
43. (a) Dötz, K. H. In Transition Metal Carbene Complexes; Verlag Chemie GmBH: Weinheim, 1983, p. 191.
(b) Dötz, K. H. In Advances in Metal Carbene Chemistry; Schubert, U. Ed.; Kluwer Academic Publishers: London, 1989, p. 199.
(c) Herber, U.; Weberndörfer, B.; Werner, H. Angew. Chem. Int. Ed. 1999, 38, 1609.
44. Templeton, J. L.; Winston, P. B.; Ward, B. C. J. Am. Chem. Soc. 1981, 103, 7713.
45. Bruce, M. I. Chem. Rev. 1991, 91, 197.
46. Cadierno, V.; Gamasa, M. P.; Gimeno, J.; Borge, J.; García-Granda, S. Organometallics 1997, 16, 3178.
47. Bruce, M. I.; Wong, F. S.; Skelton, B. W.; White, A. H. J. Chem. Soc., Dalton Trans. 1982, 2203.
48. Bianchini, C.; Innocenti, P. Peruzzini, M.; Romerosa, A.; Zanobini, F.

Organometallics 1996, 15, 272.
49. Kostic, N. M; Fenske, R. F. Organometallics 1982, 1, 974.
50. Bianchini, C.; Glendenning, L.; Peruzzini, M.; Romerosa, A., Zanobini, F. , J. Chem. Soc., Chem. Commun. 1994, 2219.
51. Bianchini, C.; Casares, J. A.; Peruzzini, M.; Romerosa, A.; Zanobini, F. J. Am. Chem. Soc. 1996, 118, 4585.
52. Kuhlman, R.; Rothfuss, H.; Gusev, D.; Streib, W. E.; Caulton, K. G. 209th Am. Chem. Soc. National Meeting, Anaheim, CA, 1995, Abstract INORG 497.
53. James, B. R. Chem. Ind. 1995, 62, 167; Catal. Today 1997, 37, 209.
54. Uematsu, N.; Fujii, A.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 4916.
55. (a) Longley, C. J.; Goodwin, T. J.; Wilkinson, G. Polyhedron 1986, 5, 1625.
(b) Cullen, W. R.; Fryzuk, M. D.; James, B. R.; Kutney, J. P.; Kang, G.-J.; Herb, G.; Thorburn, I. S.; Spogliarich, R. J. Mol. Catal. 1990, 62, 243.
(c) Becalski, A. G.; Cullen, W. R.; Fryzuk, M. D.; James, B. R.; Kang, G.-J.; Rettig, S. J. Inorg. Chem. 1991, 30, 5002.
(d) Bakos, J.; Orosz, A.; Heil, B.; Laghmari, M.; Lhoste, P.; Sinou, D. . J. Chem. Soc., Chem. Commun. 1991, 1684.
(e) Ball, G. E.; Cullen, W. R.; Fryzuk, M. D.; Henderson, W. J.; James, B. R.; MacFarlane, K. S. Inorg. Chem. 1994, 33, 1464.
56. (a) Chan, Y. N. C.; Meyer, D.; Osborn, J. A. J. Chem. Soc., Chem. Commun. 1990, 869.
(b) Chan, Y. N. C.; Osborn, J. A. J. Am. Chem. Soc. 1990, 112, 9400.
(c) Spindler, F.; Pugin, B.; Blaser, H.-U. Angew. Chem., Int. Ed. Engl. 1990, 29, 558.
(d) Bedford, R. B.; Chaloner, P. A.; Claver, C.; Fernandez, E.; Hitchcock, P. B.; Ruiz,
A. Chem. Ind. 1995, 62, 181.
(e) Spindler, F.; Pugin, B.; Jalett, H.-P.; Buser, H.-P. Pittelkow, U.; Blaser, H.-U.; Chem. Ind. (Dekker), 1996, 68, 153.
57. (a) Fogg, D. E. Ph. D. Thesis, The University of British Columbia, 1994.
(b) Fogg, D. E.; James, B. R.; Kilner, M. Inorg. Chim. Acta 1994, 222, 85.
58. Oppolzer, W.; Wills, M.; Starkemann, C.; Bernardinelli, G. Tetrahedron Lett. 1990, 31, 4117.

Chapter 7

General Conclusions and Recommendations for Future Research

This thesis describes for the main part the reactivity of the five-coordinate, square pyramidal complexes $\quad \mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right) \quad(\mathrm{P}-\mathrm{N}=[o-(N, N$-dimethylamino $)$ phenyl $]-$ diphenylphosphine; $\mathbf{R}=\mathbf{P h}$ or p-tolyl) which were successfully synthesized by the reaction of $\operatorname{RuCl}_{2}\left(\mathrm{PR}_{3}\right)_{3}$ with $\mathrm{P}-\mathrm{N}$. The $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)$ complexes are air-stable in the solid state, but in solution in the presence of O_{2} are oxidized to $\mathrm{O}=\mathrm{PPh}_{3}$ and the crystallographically characterized, dinuclear complex $(\mu-\mathrm{O})(\mu-\mathrm{Cl})_{2}\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})_{2}\right]_{2}$. Reactions of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ with L give cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{L}) \quad\left(\mathrm{L}=\mathrm{H}_{2} \mathrm{~S}\right.$, alkanethiols, $\mathrm{H}_{2}, \quad \mathrm{~N}_{2}$ and $\left.\mathrm{N}_{2} \mathrm{O}\right)$, trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{L})\left(\mathrm{L}=\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}\right.$ and EtOH$)$, or both isomers $\left(\mathrm{L}=\mathrm{NH}_{3}\right)$.

The H-atoms bonded to the S-ligands of the cis-RuX $\mathbf{X}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{L})$ type complexes ($\mathrm{X}=\mathrm{Cl}, \mathrm{L}=\mathrm{H}_{2} \mathrm{~S}, \mathrm{MeSH}, \mathrm{EtSH} ; \mathrm{X}=\mathrm{Br}, \mathrm{L}=\mathrm{H}_{2} \mathrm{~S}$) were located isotropically in crystal structures and detected in ${ }^{1} \mathrm{H}$ NMR spectra. In particular, the ${ }^{1} \mathrm{H}$ NMR spectra of cis-RuX $X_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$ at $-50^{\circ} \mathrm{C}$ show that one H -atom of the coordinated $\mathrm{H}_{2} \mathrm{~S}$ is coupled to the P-atom the P-N ligand, this being explained by the Karplus relationship. Solution thermodynamic parameters for the reversible formation of the $\mathrm{H}_{2} \mathrm{~S}$ and thiol complexes were obtained by variable temperature NMR measurements of equilibrated systems, and show that the Ru-S bonds are weak. Heating a solid sample of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right)$ results in the evolution of $\mathrm{H}_{2} \mathrm{~S}$ and suggested formation of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$; further characterization (e.g. by far-infrared spectroscopy) is needed to confirm this.

Trans $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)\left(\mathrm{OH}_{2}\right)$ was formed by the reaction of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PR}_{3}\right)$ in acetone solution or in the solid state with $\mathrm{H}_{2} \mathrm{O}$. The crystal structures of
trans- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right) \cdot\left(2 \mathrm{C}_{6} \mathrm{H}_{6}\right)$ and trans $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right) \cdot\left(1.5 \mathrm{C}_{6} \mathrm{H}_{6}\right)$ revealed that the $\mathrm{Ru}-\mathrm{O}$ distance is shortened when a H -atom of the coordinated $\mathrm{H}_{2} \mathrm{O}$ interacts with the π ring of a benzene solvate molecule. An order for the trans influence of the L ligands is proposed by comparison of the $\mathrm{Ru}-\mathrm{Cl}$ bond lengths in the X -ray crystal structures of trans $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{L})$ and cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathrm{L}): P-\mathrm{N}>\mathrm{H}_{2} \mathrm{~S} \sim$ thiols $>\mathrm{H}_{2}>\mathrm{Cl} \sim \mathrm{Br}$ $>\mathrm{H}_{2} \mathrm{O}$.
$\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ also binds H_{2} reversibly, and the crystal structure of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}-\mathrm{H}_{2}\right)$ was determined. Reaction of the dihydrogen complex with proton sponge resulted in the formation of the five-coordinate, monohydride complex $\mathrm{Ru}(\mathrm{H}) \mathrm{Cl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$, while the pK_{a} of cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}-\mathrm{H}_{2}\right)$ was estimated to be ~ 11 by in situ NMR experiments.

The reaction of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ in the solid state and in solution with excess NH_{3} gave trans $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)$ and $\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{Cl}\right]$, respectively. Both species dissolve in CDCl_{3} solution in the absence of added NH_{3} and equilibrate to the more stable cis-RuCl $2(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)$. The $\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2} \cdots \mathrm{Cl}\right]$ formulation implies a strongly associated chlorine (possibly H-bonded to the ammine ligands), as indicated by non-conductivity of the complex. Reaction of this complex with $\mathrm{NH}_{4} \mathrm{PF}_{6}$ resulted in the expected $\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{PF}_{6}$ which, when subjected to vacuum and heat, subsequently gave an air-sensitive, five-coordinate species tentatively formulated $\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)\right] \mathrm{PF}_{6}$. The formulation of this species requires confirmation, but in any case the species is a good candidate for study of reactions with small molecules.

At temperatures ranging from -90 to $-40^{\circ} \mathrm{C}, \mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ reacts in situ with 6 atm $\mathrm{N}_{2} \mathrm{O}$ to give apparently cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{N}_{2} \mathrm{O}\right)$ which subsequently forms
cis - $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\eta^{1}-\mathrm{N}_{2}\right)$ and O_{2}; at temperatures above $-40^{\circ} \mathrm{C}, \mathrm{O}_{2}$-oxidation processes yield $\mathrm{O}=\mathrm{PPh}_{3}$ and $(\mu-\mathrm{O})(\mu-\mathrm{Cl})_{2}\left[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})_{2}\right]_{2}$. The formulation of the coordinated $\mathrm{N}_{2} \mathrm{O}$ complex is based on the similarity of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signals to those of the previously characterized $\eta^{1}-\mathrm{N}_{2}$ complex. More positive confirmation of $\mathrm{N}_{2} \mathrm{O}$ coordination could be realized if $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)$ is reacted with $\mathrm{N}_{2} \mathrm{O}$ enriched with ${ }^{15} \mathrm{~N}(\mathrm{I}=1 / 2$, natural abundance $=0.365 \%$), and the reaction monitored by ${ }^{15} \mathrm{~N}$ NMR spectroscopy. Further, such data should distinguish between N - or O -atom coordination. The potential to use $\mathrm{N}_{2} \mathrm{O}$ as an O -atom donor to organic substrates should be further investigated.

The synthesis and reactivities of $\mathrm{Ru}(\mathrm{II})$ complexes containing aminophosphines (BPN, TPN, AMPHOS, PAN and ALAPHOS) other than P-N were also examined. While Ru complexes containing BPN, AMPHOS, PAN and ALAPHOS were either formed in situ or isolated, TPN did not coordinate to $\mathrm{Ru}(\mathrm{II})$. The isolated species, $\mathrm{RuCl}_{2}(\mathrm{BPN})\left(\mathrm{PPh}_{3}\right)$ and $\mathrm{RuCl}_{2}(\mathrm{PAN})\left(\mathrm{PPh}_{3}\right)$, are relatively 'robust' and do not react with the small molecules disscussed in this thesis. The electronics of the P-N ligand should be "fine-tuned" by modification of substituents on the N - or P -atom (see Figure 7.1), and/or the aromatic moiety.

(ref. 1)

(ref. 2)

(ref. 2)

Figure 7.1 Examples for the modification of P-N.

7.1 References

1. (a) Cooper, M. K.; Downes, J. M. Inorg. Chem. 1978, 17, 880.
(b) Cooper, M. K.; Downes, J. M.; Duckworth, P. A. Inorg. Synth. 1989, 25, 129.
2. Cooper, M. K.; Downes, J. M.; Duckworth, P. A.; Tiekink, E. R. T. Aust. J. Chem. 1992, 45, 595.

APPENDICES

APPENDIX I

X-Ray Crystallographic Analysis of Bis[o-N,N-dimethylamino)phenyl]phenylphosphine, BPN

Figure I. 1 Stereoview of the molecular structure of BPN.

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula	$\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{P}$
Formula Weight	348.43
Crystal Colour, Habit	colourless, plate
Crystal Dimensions	$0.04 \times 0.25 \times 0.30 \mathrm{~mm}$
Crystal System	monoclinic
Lattice Type	C-centred
No. of Reflections Used for Unit Cell Determination (20 range)	25 (43.7-55.3 ${ }^{\circ}$)
Omega Scan Peak Width at Half-height	0.39°
Lattice Parameters	$\begin{aligned} & a=9.026(1) \AA \\ & b=14.859(2) \AA \end{aligned}$
	$\mathrm{c}=15.677(1) \mathrm{A}$
	$\beta=106.119(7)^{\circ}$
	$\mathrm{V}=2019.9(4) \mathrm{A}^{3}$
Space Group	Cc (\#9)
Z value	4
$\mathrm{D}_{\text {calc }}$	$1.146 \mathrm{~g} / \mathrm{cm}^{3}$
F_{000}	
$\mu(\mathrm{CuK} \alpha)$	$12.33 \mathrm{~cm}^{-1}$

B. Intensity Measurements

Diffractometer	Rigaku AFC6S
Radiation	CuKa $(\lambda=1.54178 \AA$) graphite monochromated
Take-off Angle	6.0°
Detector Aperture	6.0 mm horizontal
Crystal to Detector Distance	6.0 mm vertical
Temperature	285 mm
Scan Type	21.0°
Scan Rate	$\omega-2 \theta$
Scan Width	$16^{\circ} / \mathrm{min}($ in $\omega)($ up to 9 scans)
2 $\theta_{\text {max }}$	$(1.10+0.20 \tan \theta)^{\circ}$
No. of Reflections Measured	155°
Corrections	Total: 2271
	Unique: $2124\left(\mathrm{R}_{\text {irr }}=0.024\right)$
	Lorentzpolarization
	Absption
	(trans. Factors: $0.692-1.000)$
	Secondary Extinction
	(coefficient: $\left.1.3(3) \times 10^{-6}\right)$

C. Structure Solution and Refinement

Structure Solution
Refinement
Function Minimized
Least Squares Weights
p-factor
Anomalous Dispersion
No. Observations (I $>3 \sigma(\mathrm{I})$
No. Variables
Reflection/Parameter Ratio
Residuals: R; Rw
Goodness of Fit Indicator
Max Shifterror in Final Cycle
Maximum peak in Final Diff. Map
Minimum peak in Final Diff. Map

Direct Methods (SIR92)
Full-matrix least-squares
$\sum \omega(|\mathrm{Fo}|-|\mathrm{Fc}|)^{2}$
$\omega=1$
0.0000

All non-hydrogen atoms
1667
225
7.41
0.053; 0.056
1.11
0.003
$0.20 \mathrm{e} / \mathrm{A}^{3}$
$-0.19 \mathrm{e}^{-7} \AA^{3}$

Table I. 1 Atomic coordinates and B_{eq}

Table I. 2 Bond lengths (\AA) with estimated standard deviations

atom	atom	distance	atom	atom	distance
$\mathrm{P}(1)$	C(1)	1.828(6)	$\mathrm{P}(1)$	C(7)	1.849(6)
$\mathrm{P}(1)$	C(13)	1.849(6)	$\mathrm{N}(1)$	C(2)	1.441(8)
$\mathrm{N}(1)$	C(19)	1.48(1)	$\mathrm{N}(1)$	C(20)	1.44(1)
$\mathrm{N}(2)$	C(8)	1.435 (9)	$\mathrm{N}(2)$	C(21)	1.44(1)
$\mathrm{N}(2)$	C (22)	$1.438(10)$	C(1)	C(2)	1.402(8)
C(1)	C(6)	1.393 (8)	C(2)	C(3)	1.347(9)
C(3)	C(4)	1.37(1)	C(4)	C(5)	1.375(10)
C(5)	C(6)	1.387(9)	$\mathrm{C}(7)$	C(8)	1.400 (8)
C(7)	C(12)	1.378(9)	C(8)	C(9)	1.377(9)
$\mathrm{C}(9)$	$\mathrm{C}(10)$	1.37(1)	C(10)	C(11)	1.40(1)
$\mathrm{C}(11)$	C(12)	$1.365(10)$	C(13)	C(14)	1.366 (8)
C(13)	C(18)	$1.387(8)$	C (14)	C(15)	$1.368(10)$
C(15)	C(16)	1.38(1)	C(16)	C(17)	1.37(1)
C(17)	C(18)	$1.386(9)$			

Table I. 3 Bond angles $\left({ }^{\circ}\right)$ with estimated standard deviations

atom	atom	atom	angle	atom	atom	atom	angle
C(1)	$\mathrm{P}(1)$	C(7)	103.5(3)	C(1)	$\mathrm{P}(1)$	C(13)	97.9(3)
C(7)	$\mathrm{P}(1)$	$\mathrm{C}(13)$	101.9(3)	C(2)	$\mathrm{N}(1)$	C(19)	112.6(6)
C(2)	$\mathrm{N}(1)$	$\mathrm{C}(20)$	114.5(7)	$\mathrm{C}(19)$	$\mathrm{N}(1)$	C(20)	113.8(9)
C(8)	N (2)	C(21)	113.7(6)	C(8)	$\mathrm{N}(2)$	C(22)	115.5(6)
C(21)	$\mathrm{N}(2)$	$\mathrm{C}(22)$	111.6(7)	$\mathrm{P}(1)$	C(1)	C(2)	116.6(4)
$\mathrm{P}(1)$	C(1)	C(6)	126.1(4)	C(2)	C(1)	C(6)	$117.2(5)$
$\mathrm{N}(1)$	C(2)	C(1)	114.9(6)	$\mathrm{N}(1)$	C(2)	c(3)	124.5(6)
C(1)	C(2)	C(3)	120.6(6)	C(2)	C(3)	C(4)	122.2(6)
C(3)	C(4)	C(5)	119.1(6)	C(4)	C(5)	C(6)	$119.7(7)$
C(1)	C(6)	C(5)	121.1(6)	$\mathrm{P}(1)$	C(7)	$\mathrm{C}(8)$	117.1(5)
$\mathrm{P}(1)$	C(7)	$\mathrm{C}(12)$	124.6(5)	C(8)	C(7)	C(12)	117.9(6)
$\mathrm{N}(2)$	C(8)	C(7)	118.8(6)	$\mathrm{N}(2)$	C(8)	C(9)	$121.9(6)$
$\mathrm{C}(7)$	C(8)	C(9)	119.3(7)	C(8)	C(9)	C(10)	121.6(7)
C(9)	$\mathrm{C}(10)$	C(11)	119.8(7)	$\mathrm{C}(10)$	C(11)	C(12)	118.2(7)
C(7)	$\mathrm{C}(12)$	C(11)	123.0(7)	$\mathrm{P}(1)$	C(13)	C(14)	118.4(5)
$\mathrm{P}(1)$	C(13)	C(18)	122.9(5)	C(14)	C(13)	C(18)	118.6(6)
C(13)	C(14)	C(15)	121.6(7)	$\mathrm{C}(14)$	C(15)	C(16)	$120.7(7)$
C(15)	C(16)	C(17)	117.8(6)	C(16)	C(17)	C(18)	121.7(7)
C(13)	C(18)	$\mathrm{C}(17)$	119.4(6)				

APPENDIX II

X-Ray Crystallographic Analysis of mer- RuCl_{3} (BPN) (16)

Figure II. 1 Stereoview of the molecular structure of 16

Figure II. 2 Pluto plot of the molecular structure of 16.

EXPERIMENTAL DETALL

A. Crystal Data

Empirical Formula	$\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{PRu}$
Formula Weight	675.23
Crystal Colour, Habit	orange, plate
Crystal Dimensions	$0.03 \times 0.25 \times 0.25 \mathrm{~mm}$
Crystal System	monoclinic
Lattice Type	Primitive
No. of Reflections Used for Unit Cell Determination (20 range)	25 (45.3-72.1 ${ }^{\circ}$)
Omega Scan Peak Width at Half-height	$0.36{ }^{\circ}$
Lattice Parameters	$\mathrm{a}=13.027(3) \AA$
	$\mathrm{b}=14.859(2) \AA$
	$\mathrm{c}=21.221(3) \mathrm{A}$
	$\beta=106.92(1)^{\circ}$
	$\mathrm{V}=2769.1(9) \mathrm{A}^{3}$
Space Group	$\mathrm{P} 2_{1} / \mathrm{n}$ (\#14)
Z value	4
$\mathrm{D}_{\text {calc }}$	$1.620 \mathrm{~g}^{\text {cm }}{ }^{3}$
F_{000}	1356.00
$\mu(\mathrm{CuK} \alpha)$	$105.87 \mathrm{~cm}^{-1}$

B. Intensity Measurements

Diffractometer	Rigaku AFC6S
Radiation	CuK $(\lambda=1.54178$ A) graphite monochromated
Take-off Angle	6.0°
Detector Aperture	6.0 mm horizontal
	6.0 mm vertical
Crystal to Detector Distance	285 mm
Temperature	21.0°
Scan Type	$0-2 \theta$
Scan Rate	$16^{\circ} / \mathrm{min}($ in $\omega)($ up to 9 scans)
Scan Width	$(0.94+0.20 \text { tan } \theta)^{\circ}$
$2 \theta_{\text {max }}$	155.4°
No. of Reflections Measured	Total: 6028
	Unique: $5753\left(R_{\text {int }}=0.033\right)$
Corrections	Lorentz-polarization
	Absorption
	(trans. Factors: $0.2193-1.0000)$

Structure Solution
Refinement
Function Minimized
Least Squares Weights
p-factor
Anomalous Dispersion
No. Observations (I>3.00 $\sigma(\mathrm{I})$)
No. Variables
Reflection/Parameter Ratio
Residuals: R; Rw
Goodness of Fit Indicator
Max Shift/Error in Final Cycle
Maximum peak in Final Diff. Map
Minimum peak in Final Diff. Map

C. Structure Solution and Refinement

Patterson Methods (DIRDIF92 PATTY)
Full-matrix least-squares
$\sum \omega(|\mathrm{Fo}|-|\mathrm{Fc}|)^{2}$
$\omega=\frac{1}{\sigma^{2}(\mathrm{Fo})}=\left[\sigma_{\mathrm{c}}^{2}(\mathrm{Fo})+\frac{\mathrm{p}^{2}}{4} \mathrm{Fo}^{2}\right]^{-1}$
0.0000

All non-hydrogen atoms
3934
310
12.69
0.049; 0.055
2.78
0.00
$0.78 \mathrm{e}^{-/} / \mathrm{A}^{3}$
$-0.63 \mathrm{e}^{-7} / \AA^{3}$

Table II. 1 Atomic coordinates and $\mathrm{B}_{\text {eq }}$

atom	x	y	z	$\mathrm{B}_{\text {eq }}$	atom	1	y	2	$\mathbf{B}_{\text {eq }}$
$\mathrm{Ru}(1)$	0.47670(4)	0.56766 (4)	0.20235(2)	2.585(9)	C(19)	0.2594(6)	0.6858(7)	0.2040(4)	5.2(2)
$\mathrm{Cl}(1)$	0.6126(1)	0.7186(2)	0.22839(9)	4.24(4)	C(20)	0.4112(7)	$0.7855(6)$	0.2800(4)	5.2(2)
$\mathrm{Cl}(2)$	0.3373(1)	0.4158(1)	$0.17122(7)$	3.29(3)	C(21)	0.5261(7)	$0.3975(7)$	0.0964(3)	4.8(2)
$\mathrm{Cl}(3)$	0.4035(2)	0.6788(2)	0.09533(9)	5.08(4)	C(22)	0.6835(5)	0.4507(7)	0.1843(4)	4.1(2)
$\mathrm{Cl}(4 \mathrm{a})$	0.099(2)	0.398(2)	0.0376(10)	8.9(5)	C(23)	0.2047(8)	0.443(1)	0.0057(4)	7.5(3)
$\mathrm{Cl}(4)$	0.1298(5)	0.3205(5)	0.0212(2)	13.6(2)	H(1)	0.2137	0.6541	0.3113	6.4230
$\mathrm{Cl}(5 \mathrm{a})$	0.260(2)	0.442(2)	-0.043(1)	12.6(6)	H(2)	0.2060	0.5359	0.4049	8.2484
$\mathrm{Cl}(5)$	0.2856(5)	0.3493(6)	-0.0337(2)	14.6(2)	H(3)	0.3458	0.3953	0.4573	7.5466
$\mathrm{Cl}(6 \mathrm{a})$	0.098(2)	0.569(2)	-0.017(1)	12.8(7)	H(4)	0.4915	0.3695	0.4154	5.4526
$\mathrm{Cl}(6)$	0.1479(4)	0.5544(4)	-0.0523(2)	10.2(1)	H(5)	0.5730	0.1717	0.1347	5.3062
$\mathrm{P}(1)$	0.5415(1)	0.4696(1)	0.29727(7)	2.58(3)	H(6)	0.5592	-0.0138	0.1952	5.9504
N(1)	0.3663(4)	0.6589(5)	0.2503(3)	3.4(1)	H(7)	0.5504	0.0024	0.3042	5.5698
N(2)	0.5690(4)	0.4175(5)	0.1698(2)	3.1(1)	$\mathrm{H}(8)$	0.5493	0.2040	0.3514	4.5193
C(1)	0.4373(5)	0.4911(6)	0.3367(3)	3.1(1)	H(9)	0.6147	0.6675	0.3941	4.6958
C(2)	0.3564(5)	0.5789(6)	0.3069(3)	3.5(1)	H(10)	0.7735	0.7073	0.4789	5.4268
C(3)	0.2716(7)	0.5944(7)	0.3322(5)	5.4(2)	H(11)	0.9187	0.5641	0.4974	6.5206
C(4)	0.2674(8)	0.5254(9)	0.3875(5)	6.9(3)	H(12)	0.9083	0.3847	0.4272	6.1282
C(5)	0.3487(8)	$0.4426(9)$	0.4180(4)	6.3(3)	H(13)	0.7488	0.3464	0.3417	4.9052
C(6)	0.4329(6)	0.4270(7)	0.3931(3)	4.5(2)	H(14)	0.2135	0.7251	0.2278	6.1805
C(7)	0.5538(5)	0.3077(5)	0.2703(3)	2.8(1)	H(15)	0.2671	0.7442	0.1695	6.1805
C(8)	0.5610(5)	0.2985(5)	0.2059(3)	2.8(1)	H(16)	0.2268	0.6057	0.1838	6.1805
C(9)	0.5655(6)	0.1795(7)	0.1792(4)	4.4(2)	H(17)	0.4809	0.7718	0.3127	6.2375
C(10)	0.5593(6)	0.0705(7)	0.2152(4)	5.0(2)	H(18)	0.4201	0.8422	0.2453	6.2375
C(11)	0.5534(6)	0.0797(6)	0.2787(4)	4.6(2)	H(19)	0.3617	0.8247	0.3014	6.2375
C(12)	0.5519(5)	0.1974(6)	0.3058(3)	3.8(2)	H(20)	0.4498	0.3753	0.0849	5.7151
C(13)	0.6660(5)	0.5001(6)	$0.3614(3)$	2.8(1)	H(21)	0.5349	0.4763	0.0735	5.7151
C(14)	0.6751 (6)	0.6080(7)	0.4014(3)	3.9(2)	H(22)	0.5657	0.3281	0.0830	5.7151
C(15)	0.7680(6)	$0.6315(8)$	0.4510 (3)	$4.5(2)$	H(23)	0.7219	0.3802	0.1708	4.9781
C(16)	0.8533(6)	0.5486(9)	0.4613(4)	5.4(2)	H(24)	0.6908	0.5281	0.1600	4.9781
C(17)	0.8470(6)	$0.4426(8)$	$0.4206(4)$	5.1(2)	H(25)	0.7138	0.4658	0.2316	4.9781
C(18)	0.7533(6)	0.4202(7)	0.3707(3)	4.1(2)	H(26)	0.2486	0.4825	0.0465	9.0503

Table II. 2 Bond lengths (\AA) with estimated standard deviations

atom			
$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	2.316(2)	$\mathrm{Ru}(1)$
$\mathrm{Ru}(1)$	$\mathrm{Cl}(3)$	2.482(2)	$\mathrm{Ru}(1)$
$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	2.207(5)	$\mathrm{Ru}(1)$
$\mathrm{Cl}(4)$	C(23)	1.70(1)	$\mathrm{Cl}(4 \mathrm{a})$
Cl(5)	C(23)	1.81(1)	$\mathrm{Cl}(5 \mathrm{a})$
Cl(6)	C(23)	1.70(1)	$\mathrm{Cl}(6 \mathrm{a})$
$\mathrm{P}(1)$	C(1)	1.804(6)	$\mathrm{P}(1)$
$\mathrm{P}(1)$	C(13)	1.816 (6)	$\mathrm{N}(1)$
N(1)	C(19)	$1.479(9)$	$\mathrm{N}(1)$
N(2)	C(8)	$1.482(7)$	$\mathrm{N}(2)$
$\mathrm{N}(2)$	C(22)	$1.474(8)$	$\mathrm{C}(1)$
C(1)	C(6)	1.388(9)	C(2)
C(3)	C(4)	1.39(1)	C(4)
C(5)	C(6)	1.36(1)	C(7)
C(7)	C(12)	1.383(8)	C(8)
C(9)	C(10)	1.39(1)	$\mathrm{C}(10)$
C(11)	C(12)	1.363(9)	C(13)
C(13)	$\mathrm{C}(18)$	1.378(9)	$\mathrm{C}(14)$
C(15)	C(16)	1.38(1)	C(16)
C(17)	C(18)	1.383(9)	

atom	distance
$\mathrm{Cl}(2)$	$2.359(2)$
$\mathrm{P}(1)$	$2.199(2)$
$\mathrm{N}(2)$	$2.209(5)$
$\mathrm{C}(23)$	$1.77(2)$
$\mathrm{C}(23)$	$1.42(3)$
$\mathrm{C}(23)$	$1.87(3)$
$\mathrm{C}(7)$	$1.811(6)$
$\mathrm{C}(2)$	$1.500(8)$
$\mathrm{C}(20)$	$1.510(8)$
$\mathrm{C}(21)$	$1.508(8)$
$\mathrm{C}(2)$	$1.403(9)$
$\mathrm{C}(3)$	$1.372(9)$
$\mathrm{C}(5)$	$1.38(1)$
$\mathrm{C}(8)$	$1.400(8)$
$\mathrm{C}(9)$	$1.378(8)$
$\mathrm{C}(11)$	$1.37(1)$
$\mathrm{C}(14)$	$1.398(8)$
$\mathrm{C}(15)$	$1.375(9)$
$\mathrm{C}(17)$	$1.39(1)$

Table II. 3 Bond angles (${ }^{\circ}$) with estimated standard deviations

atom	atom	atom	angle	atom	atom	atom	angle
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	177.65(6)	$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(3)$	87.81(7)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	92.12(6)	$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	98.6(1)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{N}(2)$	96.5(1)	$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(3)$	90.03(6)
Cl(2)	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	90.05(5)	$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	82.5(1)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{N}(2)$	83.0(1)	$\mathrm{Cl}(3)$	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	179.88(6)
$\mathrm{Cl}(3)$	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	95.2(2)	Cl(3)	$\mathrm{Ru}(1)$	$\mathrm{N}(2)$	98.4(1)
$\mathrm{P}(1)$	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	84.7(1)	$\mathrm{P}(1)$	$\mathrm{Ru}(1)$	$\mathrm{N}(2)$	81.7(1)
$\mathrm{N}(1)$	$\mathrm{Ru}(1)$	$\mathrm{N}(2)$	160.0(2)	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	C(1)	103.1(2)
$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	C(7)	101.2(2)	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	C(13)	128.7(2)
C(1)	$\mathrm{P}(1)$	C(7)	114.3(3)	C(1)	$\mathrm{P}(1)$	C (13)	105.0(3)
C(7)	$\mathrm{P}(1)$	C(13)	105.0(3)	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	C(2)	110.3(4)
$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	C(19)	112.9(4)	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	C(20)	110.3(4)
C(2)	$\mathrm{N}(1)$	C(19)	110.8(5)	C(2)	$\mathrm{N}(1)$	C(20)	105.6(5)
C(19)	$\mathrm{N}(1)$	C(20)	106.6(5)	$\mathrm{Ru}(1)$	$\mathrm{N}(2)$	C(8)	108.0(3)
$\mathrm{Ru}(1)$	N(2)	$\mathrm{C}(21)$	110.5(4)	$\mathrm{Ru}(1)$	$\mathrm{N}(2)$	C (22)	112.1(4)
C(8)	N(2)	C(21)	110.9(5)	$\mathrm{C}(8)$	$\mathrm{N}(2)$	C(22)	108.1(5)
C(21)	$\mathrm{N}(2)$	C (22)	107.2 (5)	$\mathrm{P}(1)$	C(1)	C (2)	116.2 (5)
P(1)	C(1)	C(6)	124.5(5)	C(2)	C(1)	C(6)	119.4 (6)
$\mathrm{N}(1)$	C(2)	C(1)	119.9(6)	$\mathrm{N}(1)$	C(2)	C(3)	120.9(6)
C(1)	C(2)	C(3)	119.1 (7)	C(2)	C(3)	C(4)	120.1(8)
C(3)	C(4)	C(5)	120.7(8)	C(4)	C(5)	C(6)	119.3(8)
C(1)	C(6)	C(5)	121.38 ($\mathrm{P}(1)$	C(7)	C(8)	114.2(4)
$\mathrm{P}(1)$	$\mathrm{C}(7)$	$\mathrm{C}(12)$	126.3(5)	C (8)	C(7)	C (12)	119.4(6)
N(2)	$\mathrm{C}(8)$	C(7)	118.8(5)	N (2)	C(8)	C(9)	122.0(6)
C(7)	C(8)	C(9)	119.1(6)	C(8)	C(9)	$\mathrm{C}(10)$	120.0(7)
C(9)	$\mathrm{C}(10)$	C(11)	$120.7(7)$	$\mathrm{C}(10)$	C(11)	$\mathrm{C}(12)$	$119.2(7)$
C(7)	$\mathrm{C}(12)$	C(11)	121.4(6)	$\mathrm{P}(1)$	C(13)	C(14)	119.8 (5)
$\mathrm{P}(1)$	C(13)	C(18)	121.4(5)	C(14)	C(13)	C(18)	118.8(6)
C(13)	C(14)	C(15)	120.7(7)	C(14)	C (15)	C(16)	$119.9(7)$
C(15)	$\mathrm{C}(16)$	C(17)	120.3(7)	$\mathrm{C}(16)$	$\mathrm{C}(17)$	C(18)	119.2(7)
C(13)	C(18)	C(17)	121.0(7)	$\mathrm{Cl}(4)$	C(23)	$\mathrm{Cl}(5)$	97.2(7)
$\mathrm{Cl}(4)$	C(23)	$\mathrm{Cl}(6)$	120.3(6)	$\mathrm{Cl}(5)$	C(23)	$\mathrm{Cl}(6)$	103.1(6)
$\mathrm{Cl}(4 \mathrm{a})$	C(23)	$\mathrm{Cl}(5 \mathrm{a})$	153(1)	$\mathrm{Cl}(4 \mathrm{a})$	C(23)	Cl(6a)	71.8(10)
$\mathrm{Cl}(5 \mathrm{a})$	C(23)	Cl(6a)	107(1)				

APPENDIX III

X-Ray Crystallographic Analysis of $(\mu-\mathrm{O})(\mu-\mathrm{Cl})_{2}[\mathrm{RuCl}(\mathrm{P}-\mathrm{N})]_{2}(17)$

Figure III. 1 Stereoview of the molecular structure of 17.

Figure III. 2 Pluto plot of the molecular structure of 17.

EXPERIMENTAL DETALS

A. Crystal Data

Empirical Formula
Formula Weight
Crystal Colour, Habit
Crystal Dimensions
Crystal System
Lattice Type
Lattice Parameters

Space Group
Z value
Dalc
F_{000}
$\mu(\mathrm{MoK} \alpha)$
$\mathrm{C}_{43} \mathrm{H}_{46} \mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Ru}_{2}$
1028.75
green, plate
$0.01 \times 0.30 \times 0.55 \mathrm{~mm}$
monoclinic
Primitive
$\mathrm{a}=18.1176(14) \AA$
$\mathrm{b}=9.5777(11) \AA$
$\mathrm{c}=25.2917(7) \AA$
$\beta=100.1564(7)^{\circ}$
$\mathrm{V}=4320.0(5) \AA^{3}$
$\mathrm{P} 2_{1} / \mathrm{a}(\# 14)$
4
$1.582 \mathrm{~g}^{\circ} / \mathrm{cm}^{3}$
2080.00
$10.59 \mathrm{~cm}^{-1}$

B. Intensity Measurements

Rigaku/ADSC CCD
$\operatorname{MoK} \alpha(\lambda=0.71069 \AA)$ graphite monochromated
$94 \mathrm{~mm} \times 94 \mathrm{~mm}$
$-93^{\circ} \mathrm{C}$
768 exposures of 60.0 seconds
0.0-189.9 ${ }^{\circ}$
-23.0-17.8 ${ }^{\circ}$
39.258(6) mm
-10.0°
60.1°
Total: 39452
Unique: $11225\left(\mathrm{R}_{\text {int }}=0.094\right)$
Lorentz-polarization
Absorption/decay/scaling
(coor. Factors: 0.6295-1.0000)

C. Structure Solution and Refinement

Structure Solution
Refinement
Function Minimized
Least Squares Weights
p-factor
Anomalous Dispersion
No. Observations
No. Variables
Reflection/Parameter Ratio
Residuals (on F^{2}, all data): R; Rw
Goodness of Fit Indicator
No. Observations ($\mathrm{I}>3 \sigma(\mathrm{I})$)
Residuals (on F^{2}, all data): R; Rw Max Shif/Error in Final Cycle
Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map

Patterson Methods (DIRDIF92 PATTY)
Full-matrix least-squares
$\Sigma \omega\left(\left|\mathrm{Fo}^{2}\right|-\left|\mathrm{Fc}^{2}\right|^{2}\right.$
$\omega=\frac{1}{\sigma^{2}\left(\mathrm{Fo}^{2}\right)}$
0.0000

All non-hydrogen atoms
11225
496
22.63
0.153; 0.098
1.35

3859
0.055; 0.040
0.0006
$3.00 \mathrm{e}^{-} / \AA^{3}$ (between $\mathrm{C}(10)$ and $\left.\mathrm{Cl}(3)\right)$
$-3.46 \mathrm{e}^{-} / \mathrm{A}^{3}$

Table III. 1 Atomic coordinates and $\mathrm{B}_{\text {eq }}$

atom	x	y	z	$\mathrm{B}_{\text {eq }}$	atom	x	y	z	$\mathbf{B}_{\text {eq }}$
$\mathrm{Ru}(1)$	0.72083(3)	$0.41704(6)$	0.25277(2)	1.801(12)	C(17)	0.4598(5)	$0.2111(11)$	0.1549(4)	6.1 (3)
$\mathrm{Ru}(2)$	0.64051(3)	0.57839(6)	0.32240 (2)	$1.685(12)$	C(18)	0.4184(5)	0.3212(14)	0.1326 (4)	6.9(4)
$\mathrm{Cl}(1)$	0.76031(8)	0.4739(2)	0.35309 (6)	2.16 (4)	C(19)	0.4540(5)	0.4358(11)	0.1188(3)	$5.8(3)$
$\mathrm{Cl}(2)$	0.69933(9)	0.6629(2)	$0.24119(7)$	2.43(4)	$\mathrm{C}(20)$	0.5327(4)	0.4481(9)	$0.1272(3)$	4.0(2)
$\mathrm{Cl}(3)$	0.84755(8)	0.4379(2)	$0.23658(7)$	2.94(4)	C(21)	0.4945 (3)	$0.5886(7)$	0.3750(2)	1.43(13)
$\mathrm{Cl}(4)$	0.67119(9)	0.7912(2)	$0.37062(7)$	2.42(4)	C(22)	0.4790(3)	0.6651(6)	0.3293(2)	1.64(15)
$\mathrm{P}(1)$	0.67526(9)	0.3530(2)	$0.16885(7)$	2.01(4)	C(23)	$0.4092(3)$	0.7319(7)	0.3158(3)	2.00(15)
$\mathbf{P}(\mathbf{2})$	0.58551 (9)	0.5041(2)	0.38946 (7)	1.78(4)	C(24)	$0.3581(3)$	0.7210(7)	$0.3505(3)$	2.3(2)
O(1)	0.6258(2)	$0.4166(4)$	$0.27649(13)$	1.68(9)	C(25)	$0.3734(4)$	0.6434(7)	0.3972(3)	2.4(2)
O(2)	0.5569(4)	0.2216(10)	-0.0333(4)	13.3(4)	C(26)	$0.4425(3)$	0.5790(7)	0.4095(2)	1.99(14)
N(1)	$0.7412(3)$	$0.1931(5)$	0.2664(2)	2.27(14)	C(27)	$0.4975(3)$	0.5850(8)	0.2421(2)	2.8(2)
$\mathrm{N}(2)$	0.5308(3)	$0.6688(5)$	0.2906(2)	1.66(12)	C(28)	0.5398(4)	0.8156(7)	0.2716 (3)	2.7(2)
C(1)	$0.7092(3)$	$0.1753(7)$	$0.1662(3)$	2.2(2)	C(29)	$0.6327(3)$	$0.5612(7)$	0.4553(2)	1.51(14)
C(2)	$0.7416(3)$	$0.1156(7)$	0.2153(3)	2.3(2)	C(30)	0.7023(4)	0.5020(7)	0.4764(3)	2.3(2)
C(3)	$0.7691(4)$	-0.0200(7)	0.2167(3)	2.9(2)	C(31)	0.7426 (3)	0.5487(7)	0.5242 (3)	2.6 (2)
C(4)	0.7698(4)	-0.0899(8)	$0.1697(3)$	3.3(2)	C(32)	0.7171 (4)	0.6571(8)	$0.5517(3)$	2.9(2)
C(5)	0.7389(4)	-0.0344(8)	$0.1206(3)$	3.5(2)	C(33)	0.6492(4)	0.7187(8)	0.5307(3)	3.5(2)
C(6)	0.7084(4)	0.0988(8)	$0.1191(3)$	2.8(2)	C(34)	$0.6058(4)$	$0.6717(7)$	0.4829(3)	2.6 (2)
C(7)	0.6803(4)	$0.1345(7)$	0.2932(3)	2.6(2)	C(35)	$0.5624(3)$	0.3219(7)	0.3969(2)	1.84(15)
$\mathrm{C}(8)$	0.8156(4)	$0.1698(7)$	0.3038(3)	3.0(2)	C(36)	0.5216 (4)	$0.2524(7)$	$0.3529(3)$	2.6(2)
C(9)	$0.7005(4)$	0.4435(7)	$0.1107(3)$	2.3(2)	C(37)	$0.4954(4)$	0.1202(8)	$0.3561(3)$	3.0(2)
C(10)	0.7573(4)	0.5398(8)	$0.1167(3)$	3.1(2)	C(38)	$0.5088(4)$	$0.0514(7)$	$0.4046(3)$	3.5(2)
C(11)	$0.7793(4)$	$0.6043(8)$	0.0730(3)	$4.2(2)$	C(39)	$0.5497(4)$	$0.1145(7)$	$0.4498(3)$	3.1(2)
C(12)	$0.7443(5)$	0.5710(10)	0.0230(3)	4.93)	C(40)	$0.5759(4)$	$0.2486(8)$	0.4468 (3)	2.8 (2)
C(13)	$0.6867(5)$	0.4748(9)	0.0156(3)	5.03)	C(41)	0.4689 (7)	$0.1501(13)$	-0.1049(5)	11.3(5)
C(14)	$0.6638(4)$	0.4096(8)	0.0592(3)	3.3(2)	$\mathrm{C}(42)$	$0.4920(7)$	$0.1920(12)$	-0.0484(6)	8.2(4)
C(15)	$0.5746(4)$	0.3356(8)	0.1506(3)	2.4(2)	C(43)	0.4366 (7)	0.1869(15)	-0.0121(6)	12.6(5)
C(16)	0.5387(4)	0.2209(9)	0.1646(3)	4.2(2)					

Table III. 2 Bond lengths (\AA) with estimated standard deviations

atom	atom	distance	atom	atom	distance
$\mathrm{Ru}(1)$	$\mathrm{Ru}(2)$	2.9173(7)	$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	$2.570(2)$
$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	2.396(2)	$\mathrm{Ru}(1)$	$\mathrm{Cl}(3)$	$2.411(2)$
$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	2.224(2)	$\mathrm{Ru}(1)$	O(1)	1.921 (4)
$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	2.193(5)	$\mathrm{Ru}(2)$	$\mathrm{Cl}(1)$	2.3921(15)
$\mathrm{Ru}(2)$	$\mathrm{Cl}(2)$	2.604(2)	$\mathrm{Ru}(2)$	$\mathrm{Cl}(4)$	2.390(2)
$\mathrm{Ru}(2)$	P (2)	2.230(2)	$\mathrm{Ru}(2)$	$\mathrm{O}(1)$	1.926(4)
$\mathrm{Ru}(2)$	$\mathrm{N}(2)$	2.187(5)	$\mathrm{P}(1)$	C(1)	1.815(7)
$\mathrm{P}(1)$	$\mathrm{C}(9)$	1.832(6)	$\mathrm{P}(1)$	C(15)	1.807(6)
$\mathrm{P}(2)$	C(21)	1.816(6)	$\mathrm{P}(2)$	C(29)	1.816(6)
$\mathrm{P}(2)$	C(35)	1.812(7)	O(2)	C(42)	1.205(11)
$\mathrm{N}(1)$	C(2)	1.492(7)	$\mathrm{N}(1)$	C(7)	1.504(8)
$\mathrm{N}(1)$	C(8)	1.520(7)	N(2)	C(22)	1.471(7)
$\mathrm{N}(2)$	C(27)	1.500(7)	$\mathrm{N}(2)$	C(28)	1.504(8)
C(1)	C(2)	$1.398(8)$	C(1)	C(6)	1.397(8)
C(2)	C(3)	1.390(9)	C(3)	C(4)	1.367(9)
C(4)	C(5)	1.376(9)	$\mathrm{C}(5)$	C(6)	1.389(9)
C(9)	C(10)	1.371 (8)	C(9)	C(14)	1.392(8)
C(10)	C(11)	1.387(9)	C(11)	C(12)	1.348(9)
C(12)	C(13)	1.379(10)	C(13)	C(14)	1.393(9)
C(15)	C(16)	1.355(10)	C(15)	C(20)	1.390 (9)
C(16)	C(17)	1.410(10)	C(17)	C(18)	1.358(13)
C(18)	C(19)	1.349(13)	C(19)	C(20)	1.410(10)
$\mathrm{C}(21)$	C(22)	$1.355(8)$	C(21)	C(26)	$1.395(7)$
C(22)	C(23)	$1.405(8)$	C(23)	C(24)	$1.386(8)$
C(24)	C(25)	$1.383(8)$	C(25)	C(26)	$1.381(8)$
C(29)	C(30)	1.400(8)	C(29)	C(34)	1.403(8)
C(30)	C(31)	1.372(8)	C(31)	C(32)	$1.375(9)$
C(32)	C(33)	1.384 (9)	C(33)	C(34)	1.394 (9)
C(35)	C(36)	1.393(8)	C(35)	C(40)	1.427(8)
C(36)	C(37)	1.360(9)	C(37)	C(38)	$1.375(9)$
$\mathrm{C}(38)$	C(39)	1.387(9)	C(39)	C(40)	1.375(9)
C(41)	C(42)	1.470(14)	C(42)	C(43)	1.48(2)

Table III. 3 Bond angles (${ }^{\circ}$) with estimated standard deviations

atom	atom	atom	angle	atom	atom	atom	angle
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	85.62(6)	$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(3)$	92.44(5)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	173.00(6)	$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{O}(1)$	78.51(11)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	92.43(14)	$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(3)$	92.11(6)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	97.44(6)	$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{O}(1)$	84.54(13)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	178.03(15)	$\mathrm{Cl}(3)$	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	93.74(6)
$\mathrm{Cl}(3)$	$\mathrm{Ru}(1)$	$\mathrm{O}(1)$	170.54(12)	$\mathrm{Cl}(3)$	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	88.20(14)
$\mathrm{P}(1)$	$\mathrm{Ru}(1)$	$\mathrm{O}(1)$	95.46(11)	$\mathrm{P}(1)$	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	84.48(14)
O(1)	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	94.9(2)	$\mathrm{Cl}(1)$	$\mathrm{Ru}(2)$	$\mathrm{Cl}(2)$	84.94(5)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(2)$	$\mathrm{Cl}(4)$	94.31(6)	$\mathrm{Cl}(1)$	$\mathrm{Ru}(2)$	P (2)	96.96(6)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(2)$	$\mathrm{O}(1)$	83.11(11)	$\mathrm{Cl}(1)$	$\mathrm{Ru}(2)$	N(2)	177.18(14)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(2)$	$\mathrm{Cl}(4)$	92.68(6)	$\mathrm{Cl}(2)$	$\mathrm{Ru}(2)$	$\mathrm{P}(2)$	177.50(6)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(2)$	$\mathrm{O}(1)$	78.86(12)	$\mathrm{Cl}(2)$	$\mathrm{Ru}(2)$	N(2)	93.34(14)
$\mathrm{Cl}(4)$	$\mathrm{Ru}(2)$	$\mathbf{P}(2)$	88.80(6)	$\mathrm{Cl}(4)$	$\mathrm{Ru}(2)$	O(1)	171.33(12)
$\mathrm{Cl}(4)$	$\mathrm{Ru}(2)$	N (2)	87.99(14)	F(2)	$\mathrm{Ru}(2)$	$\mathrm{O}(1)$	99.72(12)
P (2)	$\mathrm{Ru}(2)$	$\mathrm{N}(2)$	84.70(14)	$\mathrm{O}(1)$	$\mathrm{Ru}(2)$	N(2)	94.4 (2)
$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	$\mathrm{Ru}(2)$	71.92(4)	$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	$\mathrm{Ru}(2)$	71.25(5)
$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	C(1)	102.9(2)	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	C(9)	122.2(2)
$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	C(15)	$117.2(2)$	C(1)	$\mathrm{P}(1)$	C(9)	106.3(3)
$\mathrm{C}(1)$	$\mathrm{P}(1)$	C(15)	103.7(3)	C(9)	$\mathrm{P}(1)$	C(15)	102.8(3)
$\mathrm{Ru}(2)$	$\mathrm{P}(2)$	C(21)	102.5(2)	$\mathrm{Ru}(2)$	$\mathrm{P}(2)$	C(29)	113.6(2)
$\mathrm{Ru}(2)$	$\mathrm{P}(2)$	C(35)	121.9(2)	C(21)	$\mathrm{P}(2)$	C(29)	108.3(3)
C (21)	$\mathrm{P}(2)$	C(35)	103.4(3)	C(29)	$\mathrm{P}(2)$	C(35)	105.9(3)
$\mathrm{Ru}(1)$	$\mathrm{O}(1)$	$\mathrm{Ru}(2)$	98.6(2)	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	C (2)	112.2(4)
$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	C(7)	108.6(4)	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	C(8)	110.4(4)
C (2)	$\mathrm{N}(1)$	C(7)	108.8(5)	$\mathrm{C}(2)$	$\mathrm{N}(1)$	C(8)	109.1(5)
C(7)	$\mathrm{N}(1)$	C(8)	107.7(5)	$\mathrm{Ru}(2)$	N(2)	C(22)	113.0(4)
$\mathrm{Ru}(2)$	$\mathrm{N}(2)$	C(27)	107.3(4)	$\mathrm{Ru}(2)$	N(2)	C(28)	110.2(4)
C(22)	$\mathrm{N}(2)$	C(27)	108.6(5)	C(22)	$\mathrm{N}(2)$	C(28)	110.6(5)
C (27)	$\mathrm{N}(2)$	C(28)	106.8(5)	$\mathrm{P}(1)$	C(1)	C(2)	116.3(5)
$\mathrm{P}(1)$	C(1)	C(6)	124.7(5)	C(2)	C(1)	C(6)	118.9 (6)
$\mathrm{N}(1)$	C(2)	C(1)	120.0(6)	N(1)	C(2)	$\mathrm{C}(3)$	$119.9(6)$
C(1)	C(2)	C(3)	119.9(6)	C(2)	C(3)	C(4)	119.5(7)
C(3)	C(4)	C(5)	122.1 (7)	C(4)	C(5)	C(6)	118.4(6)
C(1)	C(6)	C(5)	$120.9(6)$	$\mathrm{P}(1)$	$\mathrm{C}(9)$	C(10)	$121.2(5)$
$\mathrm{P}(1)$	C(9)	C(14)	$119.7(6)$	C(10)	C(9)	C(14)	119.0(7)
C(9)	$\mathrm{C}(10)$	C(11)	121.9(7)	$\mathrm{C}(10)$	C(11)	C(12)	$119.2(8)$
C(11)	C(12)	C(13)	120.4(8)	C(12)	C(13)	C(14)	$121.0(7)$
C(9)	C(14)	C(13)	$118.5(7)$	$\mathrm{P}(1)$	C(15)	C(16)	121.2(6)
$\mathrm{P}(1)$	C(15)	C(20)	119.2(6)	C(16)	C(15)	C(20)	$119.2(7)$
C(15)	C(16)	C(17)	121.8(8)	C(16)	C(17)	C(18)	$119.3(9)$
C(17)	C(18)	C(19)	$119.1(9)$	C (18)	C(19)	C(20)	123.0(9)
C(15)	C(20)	C(19)	117.5 (8)	$\mathrm{P}(2)$	C(21)	C(22)	$117.1(5)$
$\mathrm{P}(2)$	C(21)	C(26)	122.3(5)	C(22)	$\mathrm{C}(21)$	C(26)	120.6(5)
$\mathrm{N}(2)$	C(22)	C (21)	121.4 (5)	N(2)	C (22)	C(23)	$118.7(5)$
C(21)	C(22)	C(23)	119.6 (6)	C(22)	C(23)	C(24)	119.1 (6)
C(23)	C(24)	C(25)	121.7(6)	C(24)	C(25)	C(26)	118.0(6)
$\mathrm{C}(21)$	C(26)	C(25)	121.0(6)	P (2)	C(29)	C(30)	118.3(5)
$\mathrm{P}(2)$	C(29)	C(34)	122.4(5)	C(30)	C(29)	C(34)	119.0 (6)
C(29)	C(30)	C(31)	120.5(6)	C(30)	C(31)	C(32)	$121.3(6)$
C(31)	C(32)	C(33)	118.8(6)	$\mathrm{C}(32)$	C(33)	C(34)	121.6 (7)
C(29)	C(34)	C(33)	118.9(6)	$\mathrm{P}(2)$	C(35)	C(36)	118.5(5)
$\mathrm{P}(2)$	C(35)	C(40)	124.0(5)	C(36)	C(35)	C(40)	117.1(6)
C(35)	C(36)	C(37)	122.6(7)	C(36)	C(37)	C(38)	119.4(7)
C(37)	C(38)	C(39)	120.7(7)	C(38)	C(39)	C(40)	120.1(6)
C(35)	C(40)	C(39)	120.0(6)	$\mathrm{O}(2)$	$\mathrm{C}(42)$	C(41)	117.9(14)
O(2)	C(42)	C(43)	122.9(13)	C(41)	C(42)	C(43)	119.1(12)

APPENDIX IV

X-Ray Crystallographic Analysis of $\mathrm{Cis}-\mathrm{RuCl}_{\mathbf{2}}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)\left(\mathbf{S H}_{2}\right) \cdot($ acetone) (18a)

Figure IV. 1 Stereoview of the molecular structure of 18a.

Figure IV. 2 Pluto plot of the molecular structure of 18a.

EXPERIMENTAL DETAILS

Empirical Formula
Formula Weight
Crystal Colour, Habit
Crystal Dimensions
Crystal System
Lattice Ype
Lattice Parameters

Space Group
Z value
$\mathrm{D}_{\text {calc }}$
F $_{\text {ooo }}$
$\mu(\mathrm{MoK} \alpha)$
Diffractometer
Radiation
Detector Aperture
Temperature
Data Images
ϕ oscillation Range $(\chi=-90)$
ω oscillation Range $(\chi=-90)$
Detector Position
Detector Swing Angle
$2 \theta_{\text {max }}$
No. of Reflections Measured

Corrections

Structure Solution
 Refinement
 Function Minimized
 Least Squares Weights

p-factor
Anomalous Dispersion
No. Observations
No. Variables
Reflection/Parameter Ratio
Residuals (on F^{2}, all data): R; Rw
Goodness of Fit Indicator
No. Observations ($\mathrm{I}>3 \sigma(\mathrm{I})$)
Residuals (on $\mathrm{F}, \mathrm{I}>3 \sigma(\mathrm{I})$): R ; Rw
Max Shif/Error in Final Cycle
Maximum peak in Final Diff. Map
Minimum peak in Final Diff. Map

B. Intensity Measurements

Rigaku/ADSC CCD
MoK $\alpha(\lambda=0.71069 \mathrm{~A})$ graphite monochromated
$94 \mathrm{~mm} \times 94 \mathrm{~mm}$
$-93^{\circ} \mathrm{C}$
462 exposures of 25.0 seconds
$0.0-190.0^{\circ}$
$-23.0-18.0^{\circ}$
$39.12(2) \mathrm{mm}$
-10.0°
60.5°
Total: 33910
Unique: $9547\left(\mathrm{R}_{\text {int }}=0.041\right)$
Lorentz-polarization
Absorption/decay/scaling
(coor. factors: $0.6722-1.0000)$

C. Structure Solution and Refinement

A. Crystal Data

$\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{Cl}_{2} \mathrm{NOP}_{2} \mathrm{RuS}$
831.78
yellow-brown, prism
$0.28 \times 0.30 \times 0.38 \mathrm{~mm}$
monoclinic
Primitive
$\mathrm{a}=14.843(2) \AA$
$\mathrm{b}=16.0292(9) \AA$
$\mathrm{c}=16.0099(8) \AA$
$\beta=95.286(2)^{\circ}$

$\mathrm{V}=3792.8(5) \AA^{3}$
$\mathrm{P} 21 / \mathrm{n}(\# 14)$
4
$1.457 \mathrm{~g}^{\circ} \mathrm{cm}^{3}$
1712.00
$7.27 \mathrm{~cm}^{-1}$
$\mathrm{MoK} \alpha(\lambda=0.71069 \AA$) graphite monochromated
mm x 94 mm
$-93^{\circ} \mathrm{C}$
exposures of 25.0 second
0.0 - 190.0°
23.0-18.0
-10.0°
60.5°
Unique: $9547\left(\mathrm{R}_{\text {int }}=0.041\right)$
Lorentz-polarization
(coor. factors: 0.6722-1.0000)

Patterson Methods (DIRDIF92 PATTY)
Full-matrix least-squares
$\Sigma \omega\left(\left|\mathrm{Fo}^{2}\right|-\left|\mathrm{Fc}^{2}\right|\right)^{2}$
$\omega=\frac{1}{\sigma^{2}\left(\mathrm{Fo}^{2}\right)}$
0.0000

All non-hydrogen atoms
9547
450
21.22
0.057; 0.053
1.33

6176
0.028; 0.025
0.001
$1.23 \mathrm{e}^{-} / \mathrm{A}^{3}$ ($1.3 \AA$ from Ru)
$-1.44 \mathrm{e}^{-} / \mathrm{A}^{3}$

Table IV. 1 Atomic coordinates and $\mathrm{B}_{\text {eq }}$

atom	\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathbf{B}_{\text {eq }}$	$\mathbf{a t o m}$	\mathbf{x}	\mathbf{y}	\mathbf{z}
$\mathrm{Ru}(1)$	$0.554502(13)$	$0.283305(11)$	$0.145131(11)$	$1.080(4)$	$\mathrm{C}(19)$	$0.5709(2)$	$0.2491(2)$	$0.48977(15)$
$\mathrm{Cl}(1)$	$0.58901(4)$	$0.15775(4)$	$0.22620(3)$	$1.798(13)$	$\mathrm{C}(20)$	$0.5824(2)$	$0.26798(15)$	$0.40674(14)$
$\mathrm{Cl}(2)$	$0.56129(4)$	$0.21320(4)$	$0.00832(3)$	$1.816(12)$	$\mathrm{C}(21)$	$0.3357(2)$	$0.30713(13)$	$0.05269(13)$
$\mathrm{S}(1)$	$0.53144(5)$	$0.40235(4)$	$0.06015(4)$	$1.739(14)$	$\mathrm{C}(22)$	$0.3279(2)$	$0.27515(15)$	$-0.02924(13)$
$\mathrm{P}(1)$	$0.57168(4)$	$0.36457(4)$	$0.26173(4)$	$1.294(13)$	$\mathrm{C}(23)$	$0.2852(2)$	$0.3213(2)$	$-0.09406(14)$
$\mathrm{P}(2)$	$0.40269(4)$	$0.24894(4)$	$0.13544(3)$	$1.129(12)$	$\mathrm{C}(24)$	$0.2500(2)$	$0.3995(2)$	$-0.0801(2)$
$\mathrm{O}(1)$	$0.5462(2)$	$0.11557(13)$	$0.64837(15)$	$4.94(6)$	$\mathrm{C}(25)$	$0.2579(2)$	$0.43209(15)$	$0.0000(2)$
$\mathrm{N}(1)$	$0.71069(13)$	$0.30310(11)$	$0.14625(11)$	$1.38(4)$	$\mathrm{C}(26)$	$0.3012(2)$	$0.38647(14)$	$0.06561(14)$
$\mathrm{C}(1)$	$0.6948(2)$	$0.37990(14)$	$0.27835(13)$	$1.50(5)$	$\mathrm{C}(27)$	$0.3390(2)$	$0.26065(13)$	$0.22842(13)$
$\mathrm{C}(2)$	$0.7506(2)$	$0.34595(14)$	$0.22231(13)$	$1.59(5)$	$\mathrm{C}(28)$	$0.3817(2)$	$0.22950(14)$	$0.30367(14)$
$\mathrm{C}(3)$	$0 £ 442(2)$	$0.3553(2)$	$0.23560(15)$	$2.67(6)$	$\mathrm{C}(29)$	$0.3383(2)$	$0.23284(15)$	$0.37661(14)$
$\mathrm{C}(4)$	$0.8820(2)$	$0.3993(2)$	$0.3038(2)$	$3.49(8)$	$\mathrm{C}(30)$	$0.2528(2)$	$0.26722(15)$	$0.37567(15)$
$\mathrm{C}(5)$	$0.8270(2)$	$0.4349(2)$	$0.3602(2)$	$3.09(7)$	$\mathrm{C}(31)$	$0.2092(2)$	$0.29703(14)$	$0.3018(2)$
$\mathrm{C}(6)$	$0.7345(2)$	$0.4247(2)$	$0.34751(14)$	$2.29(6)$	$\mathrm{C}(32)$	$0.2515(2)$	$0.29249(14)$	$0.22761(13)$
$\mathrm{C}(7)$	$0.7560(2)$	$0.2203(2)$	$0.13675(15)$	$2.31(6)$	$\mathrm{C}(33)$	$0.3679(2)$	$0.14043(14)$	$0.10693(13)$
$\mathrm{C}(8)$	$0.7326(2)$	$0.35434(15)$	$0.07325(14)$	$2.01(6)$	$\mathrm{C}(34)$	$0.2751(2)$	$0.12268(15)$	$0.09950(14)$
$\mathrm{C}(9)$	$0.5254(2)$	$0.46976(14)$	$0.24666(13)$	$1.56(5)$	$\mathrm{C}(35)$	$0.2445(2)$	$0.0430(2)$	$0.07878(15)$
$\mathrm{C}(10)$	$0.5786(2)$	$0.5379(2)$	$0.2301(2)$	$2.58(7)$	$\mathrm{C}(36)$	$0.3061(2)$	$-0.01970(15)$	$0.06471(15)$
$\mathrm{C}(11)$	$0.5376(2)$	$0.6154(2)$	$0.2111(2)$	$3.69(8)$	$\mathrm{C}(37)$	$0.3972(2)$	$-0.00304(14)$	$0.07251(14)$
$\mathrm{C}(12)$	$0.4455(2)$	$0.6248(2)$	$0.2091(2)$	$3.82(8)$	$\mathrm{C}(38)$	$0.4294(2)$	$0.07721(14)$	$0.09302(13)$
$\mathrm{C}(13)$	$0.3923(2)$	$0.5579(2)$	$0.2268(2)$	$3.14(7)$	$\mathrm{C}(39)$	$0.5517(2)$	$0.0398(2)$	$0.6511(2)$
$\mathrm{C}(14)$	$0.4314(2)$	$0.48073(15)$	$0.24470(15)$	$2.18(6)$	$\mathrm{C}(40)$	$0.4781(3)$	$-0.0132(2)$	$0.6113(2)$
$\mathrm{C}(15)$	$0.5477(2)$	$0.34172(14)$	$0.37028(13)$	$1.57(5)$	$\mathrm{C}(41)$	$0.6293(2)$	$-0.0034(2)$	$0.6950(2)$
$\mathrm{C}(16)$	$0.5014(2)$	$0.39607(15)$	$0.41948(15)$	$2.38(6)$	$\mathrm{H}(1)$	$0.466(2)$	$0.440(2)$	$0.078(2)$
$\mathrm{C}(17)$	$0.4894(2)$	$0.3761(2)$	$0: 5032(2)$	$3.22(7)$	$\mathrm{H}(2)$	$0.503(2)$	$0.372(2)$	$-0.013(2)$

Table IV. 2 Bond lengths (\AA) with estimated standard deviations

atom	atom	distanc	atom
$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	2.4238(6)	$\mathrm{Ru}(1)$
$\mathrm{Ru}(1)$	S(1)	2.3503(6)	$\mathrm{Ru}(1)$
$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	$2.3110(7)$	$\mathrm{Ru}(1)$
$\mathrm{P}(1)$	C(1)	1.838(3)	$\mathrm{P}(1)$
$\mathrm{P}(1)$	C(15)	1.842(2)	$\mathrm{P}(2)$
$\mathrm{P}(2)$	C(27)	1.845(2)	P (2)
$\mathrm{O}(1)$	C(39)	1.218(3)	$\mathrm{N}(1)$
N(1)	C(7)	1.503(3)	$\mathrm{N}(1)$
C(1)	C(2)	1.388(3)	C(1)
C(2)	C(3)	$1.394(3)$	C(3)
C(4)	C(5)	1.395(4)	C(5)
C(9)	C(10)	$1.388(3)$	C(9)
C(10)	C(11)	1.404(3)	$\mathrm{C}(11)$
C(12)	C(13)	1.377(4)	$\mathrm{C}(13)$
C(15)	C(16)	$1.398(3)$	$\mathrm{C}(15)$
C(16)	C(17)	1.406(3)	$\mathrm{C}(17)$
C(18)	C(19)	1.387(3)	C(19)
C(21)	C(22)	1.403(3)	$\mathrm{C}(21)$
C(22)	C(23)	1.380 (3)	C(23)
C(24)	C(25)	1.380 (3)	C(25)
C(27)	C(28)	$1.401(3)$	$\mathrm{C}(27)$
C(28)	C(29)	1.386(3)	C (29)
C(30)	C(31)	$1.381(3)$	C(31)
C(33)	C(34)	1.402(3)	C(33)
C(34)	C(35)	1.385(3)	C(35)
C(36)	C(37)	$1.374(4)$	C(37)
C(39)	C(40)	1.481(4)	C(39)
S(1)	$\mathrm{H}(1)$	1.20(3)	S(1)

atom	distance
$\mathrm{Cl}(2)$	$2.4721(5)$
$\mathrm{P}(1)$	$2.2712(6)$
$\mathrm{N}(1)$	$2.338(2)$
$\mathrm{C}(9)$	$1.828(2)$
$\mathrm{C}(21)$	$1.836(2)$
$\mathrm{C}(33)$	$1.859(2)$
$\mathrm{C}(2)$	$1.474(3)$
$\mathrm{C}(8)$	$1.489(3)$
$\mathrm{C}(6)$	$1.403(3)$
$\mathrm{C}(4)$	$1.375(3)$
$\mathrm{C}(6)$	$1.380(4)$
$\mathrm{C}(14)$	$1.404(3)$
$\mathrm{C}(12)$	$1.372(4)$
$\mathrm{C}(14)$	$1.386(3)$
$\mathrm{C}(20)$	$1.395(3)$
$\mathrm{C}(18)$	$1.378(4)$
$\mathrm{C}(20)$	$1.389(3)$
$\mathrm{C}(26)$	$1.393(3)$
$\mathrm{C}(24)$	$1.385(4)$
$\mathrm{C}(26)$	$1.388(3)$
$\mathrm{C}(32)$	$1.395(3)$
$\mathrm{C}(30)$	$1.382(3)$
$\mathrm{C}(32)$	$1.396(3)$
$\mathrm{C}(38)$	$1.395(3)$
$\mathrm{C}(36)$	$1.391(4)$
$\mathrm{C}(38)$	$1.401(3)$
$\mathrm{C}(41)$	$1.467(4)$
$\mathrm{H}(2)$	$1.30(3)$

Table IV. 3 Bond angles (${ }^{\circ}$) with estimated standard deviations

Atom	atom	atom	angle	atom	atom	atom	angle
$\mathrm{Cl}(1)$	Ru.(1)	$\mathrm{Cl}(2)$	94.19(2)	$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	S(1)	175.18(2)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	91.95(2)	$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	89.70(2)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	87.03(5)	$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	S(1)	82.63(2)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	168.03(2)	$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	87.21(2)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	86.97(4)	S(1)	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	90.54(2)
S(1)	$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	93.76(2)	S(1)	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	89.18(5)
$\mathrm{P}(1)$	$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	103.11(2)	$P(1)$	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	83.09(5)
$\mathrm{P}(2)$	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	173.09(5)	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	C(1)	103.33(7)
$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	C(9)	114.09(8)	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	C(15)	130.13(8)
C(1)	$\mathrm{P}(1)$	C(9)	104.60(11)	$\mathrm{C}(1)$	$\mathrm{P}(1)$	C(15)	99.52(10)
C(9)	$\mathrm{P}(1)$	C(15)	101.83(10)	$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	C(21)	112.78(7)
$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	C(27)	119.37(8)	$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	C(33)	$119.09(8)$
C(21)	P (2)	C(27)	104.30(10)	C(21)	$\mathrm{P}(2)$	C(33)	100.29(10)
C(27)	P(2)	C(33)	98.17(10)	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	C(2)	113.11(13)
$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	C(7)	109.41(13)	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	C(8)	110.90(14)
C (2)	$\mathrm{N}(1)$	C(7)	110.2(2)	$\mathrm{C}(2)$	$\mathrm{N}(1)$	C(8)	106.9(2)
C(7)	$\mathrm{N}(1)$	$\mathrm{C}(8)$	106.0(2)	$\mathrm{P}(1)$	C(1)	C(2)	119.9(2)
$\mathrm{P}(1)$	C(1)	C(6)	121.5(2)	C(2)	C(1)	C(6)	118.6(2)
$\mathrm{N}(1)$	C(2)	C(1)	119.9(2)	$\mathrm{N}(1)$	C(2)	C(3)	119.7(2)
C(1)	C(2)	C(3)	120.4(2)	C(2)	C(3)	C(4)	120.3(2)
C(3)	C(4)	C(5)	120.3(3)	C(4)	C(5)	C(6)	119.3(2)
C(1)	C(6)	C(5)	121.2(2)	$\mathrm{P}(1)$	C(9)	$\mathrm{C}(10)$	122.6(2)
$\mathrm{P}(1)$	C(9)	C(14)	118.6(2)	$\mathrm{C}(10)$	C(9)	$\mathrm{C}(14)$	118.6(2)
C(9)	$\mathrm{C}(10)$	C(11)	119.7(3)	$\mathrm{C}(10)$	C(11)	C(12)	120.9(3)
C(11)	$\mathrm{C}(12)$	C(13)	$119.9(3)$	C(12)	C(13)	C(14)	120.0(3)
$\mathrm{C}(9)$	C(14)	C(13)	120.9(2)	$\mathrm{P}(1)$	C(15)	C(16)	123.8(2)
$\mathrm{P}(1)$	C(15)	C (20)	117.9(2)	C(16)	C(15)	C(20)	118.3 (2)
C(15)	C(16)	C(17)	120.5(2)	C(16)	$\mathrm{C}(17)$	C(18)	120.3(2)
C(17)	$\mathrm{C}(18)$	C(19)	119.4(2)	C(18)	C(19)	C(20)	120.6(2)
C (15)	C(20)	C(19)	120.8(2)	$\mathrm{P}(2)$	C(21)	C(22)	118.8(2)
$\mathrm{P}(2)$	C(21)	C(26)	122.6 (2)	C(22)	C(21)	C(26)	118.2(2)
C(21)	C(22)	C(23)	120.0(2)	C(22)	C(23)	C(24)	121.2(2)
C(23)	C(24)	C(25)	$119.5(2)$	C(24)	C(25)	C(26)	$119.8(2)$
C (21)	C(26)	C (25)	$121.3(2)$	$\mathrm{P}(2)$	C(27)	C(28)	115.6(2)
$\mathrm{P}(2)$	C(27)	C(32)	125.1(2)	C(25)	C(27)	C(32)	119.1(2)
C(27)	C(28)	C(29)	120.1(2)	C(28)	C(29)	C(30)	120.3(2)
C(29)	C(30)	C(31)	120.4(2)	$\mathrm{C}(30)$	C(31)	C(32)	$119.9(2)$
C(27)	C(32)	C(31)	120.2(2)	$\mathrm{P}(2)$	C(33)	C(34)	117.3(2)
P (2)	C(33)	C(35)	123.2(2)	C(34)	C(33)	C(38)	$119.4(2)$
C(33)	C(34)	C(35)	120.3(2)	C(34)	C(35)	C(36)	120.0(3)
C(35)	C(36)	C(37)	120.1(2)	C(36)	C(37)	C(38)	120.8(2)
C(33)	C(35)	C(37)	119.4(2)	O(1)	C(39)	C(40)	120.8(3)
O(1)	C(39)	C(41)	122.3(3)	C(40)	C(39)	C(41)	116.8(3)
$\mathrm{Ru}(1)$	S(1)	H(1)	110.7(12)	$\mathrm{Ru}(1)$	S(1)	H (2)	103.3(11)
$\mathrm{H}(1)$	S(1)	H(2)	101.7(17)				

APPENDIX V

X-Ray Crystallographic Analysis of Cis- $\mathrm{RuBr}_{2}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)\left(\mathbf{S H}_{2}\right) \cdot($ benzene $)$

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula
Formula Weight
Crystal Colour, Habit
Crystal Dimensions
Crystal System
Lattice Type
Lattice Parameters

Space Group
Z value
$\mathrm{D}_{\text {calc }}$
F_{000}
$\mu(\mathrm{MoK} \alpha)$
$\mathrm{C}_{44} \mathrm{H}_{43} \mathrm{Br}_{2} \mathrm{NOP}_{2} \mathrm{RuS}$
940.72
orange, prism
$0.15 \times 0.20 \times 0.25 \mathrm{~mm}$
monoclinic
Primitive
$\mathrm{a}=9.6668(13) \AA$
$\mathrm{b}=18.976(2) \AA$
$\mathrm{c}=11.6270(4) \AA$
$\beta=110.3292(7)^{\circ}$

$\mathrm{V}=2000.0(3) \AA^{3}$
$\mathrm{P} 2_{1}(\# 4)$
2
$1.562 \mathrm{~g}^{\circ} / \mathrm{cm}^{3}$
948.00
$25.61 \mathrm{~cm}^{-1}$
B. Intensity Measurements

Rigaku/ADSC CCD
$\operatorname{MoK} \alpha(\lambda=0.71069 \AA)$ graphite monochromated
$94 \mathrm{~mm} \times 94 \mathrm{~mm}$
$-93^{\circ} \mathrm{C}$
460 exposures of 90.0 seconds
-22.0-18.0 0°
0.0-190.0 ${ }^{\circ}$
$39.214(8) \mathrm{mm}$
-10°
60.2°
Total: 18513
Unique: $5234\left(\mathrm{R}_{\text {int }}=0.031\right)$
Lorentz-polarization
Absorption/scaling
(trans. factors: $0.7689-1.0119$)
C. Structure Solution and Refinement

Structure Solution
Refinement
Function Minimized
Least Squares Weights
p-factor
Anomalous Dispersion
No. Observations
No. Variables
Reflection/Parameter Ratio
Residuals: R; Rw
Goodness of Fit Indicator
No. Observations ($\mathrm{I}>3 \sigma(\mathrm{I})$)

Max Shiff/Error in Final Cycle

Maximum peak in Final Diff. Map
Minimum peak in Final Diff. Map

Patterson Methods (DIRDIF92 PATTY)
Full-matrix least-squares
$\Sigma \omega\left(\left|\mathrm{Fo}^{2}\right|-\left|\mathrm{Fc}^{2}\right|\right)^{2}$
$\omega=\frac{1}{\sigma^{2}\left(\mathrm{Fo}^{2}\right)}=\left[\sigma_{\mathrm{c}}^{2}\left(\mathrm{Fo}^{2}\right)+\mathrm{p}^{2} \mathrm{Fo}^{2}\right]^{-1}$
0.0200

All non-hydrogen atoms
8318
467
17.81
0.059; 0.074
1.32

8318
0.01
$1.10 \mathrm{e}^{-} / \AA^{3}$ (near Ru)
$-1.45 \mathrm{e}^{-} / \mathrm{A}^{3}$

Table V. 1 Atomic coordinates and B_{eq}

atom	\pm	y	z	$\mathbf{B}_{\text {eq }}$	atom	\pm	y	z	$\mathbf{B}_{\text {eq }}$
$\mathrm{Ru}(1)$	0.69024(3)	0.49960	0.48061 (3)	0.974(6)	$\mathrm{C}(21)$	0.3513(4)	0.5885(2)	0.3319(4)	1.13(8)
$\mathrm{Br}(1)$	0.84461 (5)	0.46441 (3)	$0.34204(4)$	1.971 (9)	C(22)	0.3884(5)	0.6572(2)	0.3755(4)	1.58(9)
$\mathrm{Br}(2)$	$0.79833(5)$	0.62373(2)	0.52259(4)	$1.685(9)$	C(23)	0.2828(5)	0.7021(2)	0.3901(5)	2.12(10)
S(1)	0.62276 (12)	$0.38149(5)$	0.44294(11)	1.66 (2)	C(24)	$0.1386(5)$	0.6797(2)	$0.3637(5)$	2.41(11)
$\mathrm{P}(1)$	0.57993(11)	$0.51236(5)$	0.62198(9)	1.07 (2)	C(25)	0.1003(5)	0.6113(2)	0.3214 (5)	2.26 (10)
$\mathrm{P}(2)$	0.50310(11)	0.53847 (5)	$0.30884(10)$	1.04(2)	C(26)	$0.2067(5)$	0.5663(2)	0.3042(4)	1.72(9)
$\mathrm{N}(1)$	0.8909(4)	0.4653(2)	0.6569(3)	1.41(7)	C(27)	0.4155(4)	0.4690(2)	0.1949(4)	1.46(8)
C(1)	0.7313(4)	0.5070(2)	0.7691 (4)	1.50(8)	$\mathrm{C}(28)$	0.3113(5)	0.4211(2)	0.2077(5)	2.03(10)
C(2)	0.8685(5)	0.4873(2)	0.7721(4)	1.74(9)	C(29)	0.2507(5)	0.3689(2)	0.1211(5)	2.62(11)
C(3)	0.9851(5)	0.4842(2)	0.8832(5)	2.68(11)	C(30)	0.2949(6)	0.3630(3)	0.0202(5)	3.19(12)
C(4)	0.9620(6)	0.5003(3)	0.9910(4)	3.20(11)	$\mathrm{C}(31)$	0.4023(7)	0.4079(3)	0.0083(5)	3.22(13)
C(5)	0.8245(6)	0.5192(3)	0.9896 (4)	2.72(11)	C(32)	0.4617(6)	0.4608(3)	0.0949(5)	2.41(10)
C(6)	0.7089(5)	0.5234(2)	0.8793(4)	2.01 (10)	C(33)	0.5422(5)	0.6023(2)	0.2036(4)	1.37(8)
C(7)	0.9140(5)	0.3871(2)	0.6642(5)	2.22(10)	C(34)	0.4218(5)	0.6270(2)	0.1060(4)	1.93(9)
C(8)	1.0309(5)	0.4969(3)	0.6534(5)	2.43(10)	C(35)	0.4414(6)	0.6713(2)	0.0189(5)	2.56(11)
C(9)	0.4826(5)	0.5901(2)	0.6489(4)	1.35(8)	C(36)	0.5825(6)	0.6921(2)	0.0293(5)	2.55 (11)
C(10)	0.5638(5)	0.6523(2)	0.6835(4)	1.63 (9)	C(37)	0.7017(6)	0.6698(2)	0.1269(5)	2.16(10)
C(11)	0.4970(5)	0.7129(2)	0.7091 (4)	1.89(10)	C(38)	0.6842(5)	0.6239(2)	0.2145(4)	1.58(9)
C(12)	0.3512(5)	0.7116(2)	0.7016(5)	2.11(10)	C(39)	0.8763(9)	0.2664(5)	0.9539(7)	5.5(2)
C(13)	0.2718(5)	0.6500(2)	0.6693(5)	$2.35(11)$	C(40)	0.9556(9)	0.2086(4)	1.0012(9)	5.2(2)
C(14)	0.3371(5)	0.5893(2)	0.6427(5)	1.92(10)	C(41)	$1.0087(7)$	0.1966 (3)	1.1218(8)	4.4(2)
C(15)	0.4616(5)	0.4370(2)	0.6272(4)	1.40(9)	C(42)	0.9868(8)	0.2433(4)	1.2002(6)	4.5(2)
C(16)	0.5166(5)	0.3825(2)	$0.7115(4)$	1.72(9)	C(43)	0.9073(7)	0.3033(3)	1.1567(8)	4.5(2)
C(17)	0.4344(6)	0.3211(2)	0.7047(5)	2.58(12)	C(44)	0.8511	0.3161(3)	1.0317(9)	$5.6(2)$
C(18)	0.2979(6)	0.3135(2)	0.6141 (5)	2.66(12)	H(1)	0.599(8)	0.378(3)	0.331(7)	5.6(12)
C(19)	0.2418(5)	0.3675(2)	0.5300(5)	2.06 (10)	$\mathrm{H}(2)$	$0.686(7)$	$0.366(3)$	0.440(5)	4.1(11)

Table V. 2 Bond lengths (\AA) with estimated standard deviations

atom	atom	distance	atom
$\mathrm{Ru}(1)$	$\operatorname{Br}(1)$	2.6343(5)	$\mathrm{Ru}(1)$
$\mathrm{Ru}(1)$	S(1)	2.3330(10)	$\mathrm{Ru}(1)$
$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	2.3011(11)	$\mathrm{Ru}(1)$
$\mathrm{P}(1)$	C(1)	1.827(4)	$\mathrm{P}(1)$
$\mathrm{P}(1)$	C(15)	1.845(4)	P (2)
$\mathrm{P}(2)$	C(27)	1.852(4)	$\mathrm{P}(2)$
$\mathrm{N}(1)$	C(2)	1.488(6)	$\mathrm{N}(1)$
N(1)	C(8)	1.494(5)	C(1)
C(1)	C(6)	1.407(6)	C(2)
C(3)	C(4)	1.382(8)	C(4)
C(5)	C(6)	1.379(7)	C(9)
C(9)	C(14)	1.383(6)	C(10)
C(11)	C(12)	1.383(7)	C(12)
C(13)	C(14)	1.399(6)	C(15)
C(15)	C(20)	1.387(6)	C(16)
$\mathrm{C}(17)$	C(18)	1.380(8)	C(18)
C(19)	C(20)	1.387(6)	C(21)
C(21)	C(26)	1.386(6)	C(22)
C(23)	C(24)	$1.386(7)$	C(24)
C(25)	C(26)	1.405(6)	C(27)
C(27)	C(32)	$1.391(6)$	C(28)
C(29)	C(30)	$1.385(8)$	C(30)
C(31)	C(32)	$1.396(7)$	C(33)
C(33)	C(38)	$1.396(6)$	C(34)
C(35)	C(36)	1.384(7)	C(36)
C(37)	C(38)	1.394(6)	C(39)
C(39)	C(44)	1.385(12)	C(40)
C(41)	C(42)	1.339(10)	C(42)
C(43)	C(44)	$1.384(11)$	S(1)
S(1)	$\mathrm{H}(2)$	1.34(6)	

atom	distance
$\mathrm{Br}(2)$	$2.5540(4)$
$\mathrm{P}(1)$	$2.2617(10)$
$\mathrm{N}(1)$	$2.372(3)$
$\mathrm{C}(9)$	$1.834(4)$
$\mathrm{C}(21)$	$1.845(4)$
$\mathrm{C}(33)$	$1.851(4)$
$\mathrm{C}(7)$	$1.499(6)$
$\mathrm{C}(2)$	$1.367(6)$
$\mathrm{C}(3)$	$1.390(7)$
$\mathrm{C}(5)$	$1.371(8)$
$\mathrm{C}(10)$	$1.397(6)$
$\mathrm{C}(11)$	$1.400(6)$
$\mathrm{C}(13)$	$1.377(7)$
$\mathrm{C}(16)$	$1.398(6)$
$\mathrm{C}(17)$	$1.395(6)$
$\mathrm{C}(19)$	$1.390(7)$
$\mathrm{C}(22)$	$1.399(6)$
$\mathrm{C}(23)$	$1.385(6)$
$\mathrm{C}(25)$	$1.391(7)$
$\mathrm{C}(28)$	$1.403(6)$
$\mathrm{C}(29)$	$1.389(6)$
$\mathrm{C}(31)$	$1.387(9)$
$\mathrm{C}(34)$	$1.395(6)$
$\mathrm{C}(35)$	$1.379(6)$
$\mathrm{C}(37)$	$1.374(7)$
$\mathrm{C}(40)$	$1.341(11)$
$\mathrm{C}(41)$	$1.335(12)$
$\mathrm{C}(43)$	$1.369(0)$
$\mathrm{H}(1)$	$1.25(7)$

Table V. 3 Bond angles (${ }^{\circ}$) with estimated standard deviations

atom	atom	atom	angle	atom	atom	atom	angle
$\mathrm{Br}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Br}(2)$	94.00(2)	$\mathrm{Br}(1)$	$\mathrm{Ru}(1)$	S(1)	79.77(3)
$\mathrm{Br}(1)$	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	169.09(3)	$\operatorname{Br}(1)$	$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	89.54(3)
$\mathrm{Br}(1)$	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	89.55(8)	$\operatorname{Br}(2)$	$\mathrm{Ru}(1)$	S(1)	172.31(3)
$\operatorname{Br}(2)$	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	91.57(3)	$\mathrm{Br}(2)$	$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	90.94(3)
$\mathrm{Br}(2)$	$\mathrm{Ru}(1)$	N(1)	86.01(8)	S(1)	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	93.87(4)
S(1)	$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	93.48(4)	S(1)	$\mathrm{Ru}(1)$	N(1)	89.43(9)
$\mathrm{P}(1)$	Ru(1)	$\mathrm{P}(2)$	99.76(4)	$\mathrm{P}(1)$	$\mathrm{Ru}(1)$	N(1)	81.47(8)
$\mathrm{P}(2)$	$\mathrm{Ru}(1)$	N(1)	176.75(9)	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	C(1)	104.35(13)
$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	C(9)	127.55(13)	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	C(15)	113.28(13)
C(1)	P(1)	C(9)	100.2(2)	C(1)	$\mathrm{P}(1)$	C(15)	103.3(2)
C (9)	$\mathrm{P}(1)$	C(15)	104.9(2)	$\mathrm{Ru}(1)$	P (2)	C(21)	117.65(13)
$\mathrm{Ru}(1)$	$\mathbf{P}(2)$	C(27)	114.75(13)	$\mathrm{Ru}(1)$	P (2)	C(33)	120.25(14)
C(21)	$\mathbf{P}(2)$	C(27)	106.4(2)	C(21)	P (2)	C(33)	96.6(2)
C(27)	$\mathbf{P}(2)$	C(33)	98.1(2)	$\mathrm{Ru}(1)$	N(1)	C(2)	111.7(2)
$\mathrm{Ru}(1)$	N(1)	C(7)	112.4(3)	$\mathrm{Ru}(1)$	N(1)	C(8)	110.1(3)
$\mathrm{C}(2)$	N(1)	C(7)	107.0(3)	C(2)	N(1)	C(8)	109.2(3)
C(7)	N(1)	C(8)	106.3(3)	$\mathrm{P}(1)$	C(1)	C(2)	119.6(3)
$\mathrm{P}(1)$	C(1)	C(6)	120.9(3)	C(2)	C(1)	C(6)	119.5(4)
N(1)	C(2)	C(1)	119.8(4)	$\mathrm{N}(1)$	C(2)	C(3)	120.0(4)
C(1)	C(2)	C(3)	120.1(4)	C(2)	C(3)	C(4)	119.9(4)
C(3)	C(4)	C(5)	120.6(4)	C(4)	C(5)	C(6)	119.7(5)
C(1)	C(6)	C(5)	120.2(4)	$\mathrm{P}(1)$	C(9)	C(10)	117.3(3)
$\mathrm{P}(1)$	C(9)	C(14)	123.7(3)	C(10)	C(9)	C(14)	118.9(4)
C(9)	C(10)	C(11)	120.1(4)	C(10)	C(11)	C(12)	120.4(4)
C(11)	C(12)	C(13)	119.5(4)	C(12)	C(13)	C(14)	120.5(4)
C(9)	C(14)	C(13)	120.5(4)	$\mathrm{P}(1)$	C(15)	C(16)	120.5(3)
$\mathrm{P}(1)$	C(15)	C(20)	120.7(3)	C(16)	C(15)	C(20)	118.2(4)
C(15)	C(16)	C(17)	120.5(4)	C(16)	C(17)	C(18)	120.4(4)
C(17)	C(18)	C(19)	119.7(4)	C(18)	C(19)	C(20)	119.7(4)
C(15)	C(20)	C(19)	121.6(4)	$\mathrm{P}(2)$	C(21)	C(22)	114.5(3)
$\mathrm{P}(2)$	C(21)	C(26)	126.7(3)	C(22)	C(21)	C(26)	118.6(4)
C(21)	C(22)	C(23)	120.7(4)	C(22)	C(23)	C(24)	120.8(4)
C(23)	C(24)	C(25)	119.2(4)	C (24)	C(25)	C(26)	120.0(4)
C(21)	C(26)	C(25)	120.7(4)	P (2)	C(27)	C(28)	$123.5(3)$
P (2)	C(27)	C(32)	118.5(3)	C(28)	C(27)	C(32)	117.9(4)
C(27)	C(28)	C(29)	121.5(5)	C(28)	C(29)	$\mathrm{C}(30)$	119.7(5)
C(29)	C(30)	C(31)	119.8(4)	C(30)	C(31)	C(32)	120.3(5)
C(27)	C(32)	C(31)	120.8(5)	$\mathrm{P}(2)$	C(33)	C(34)	117.0(3)
$\mathrm{P}(2)$	C(33)	C(38)	123.6(3)	C(34)	C(33)	C(38)	$119.4(4)$
C(33)	C(34)	C(35)	121.0(4)	C(34)	C(3S)	C(36)	119.5(5)
C(35)	C(36)	C(37)	120.2(4)	C(36)	C(37)	C(38)	121.1(4)
C(33)	C(38)	C(37)	118.9(4)	C(40)	C(39)	C(44)	119.6(7)
C(39)	C(40)	C(41)	121.8(7)	C(40)	C(41)	C(42)	120.5(6)
C(41)	C(42)	C(43)	120.0(6)	C(42)	C(43)	C(44)	119.9(6)
C(39)	C(44)	C(43)	118.2(6)	$\mathrm{Ru}(1)$	S(1)	H(1)	100.9(26)
$\mathrm{Ru}(1)$	S(1)	$\mathrm{H}(2)$	115.2(22)	H(1)	S(1)	H(2)	98.0(39)

APPENDIX VI

Figure VI. 1 Stereoview of the molecular structure of 20.

Figure VI. 2 Pluto plot of the molecular structure of 20.

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula
Formula Weight
Crystal Colour, Habit
Crystal Dimensions
Crystal System
Lattice Type
Lattice Parameters

Space Group
Z value
$\mathrm{D}_{\text {calc }}$
F_{000}
$\mu(\operatorname{MoK} \alpha)$
$\mathrm{C}_{42} \mathrm{H}_{45} \mathrm{Cl}_{2} \mathrm{NOP}_{2} \mathrm{RuS}$
845.81
yellow-brown, prism
0.13 X 0.25 X 0.35 mm
monoclinic
Primitive
$\mathrm{a}=14.2074(12) \AA$
$\mathrm{b}=16.275(2) \AA$
$\mathrm{c}=16.7122(3) \AA$
$\beta=92.6672(5)^{\circ}$

$\mathrm{V}=3860.1(4) \AA^{3}$
$\mathrm{P} 21 / \mathrm{n}(\# 4)$
4
$1.455 \mathrm{~g} / \mathrm{cm}^{3}$
1744.00
$7.16 \mathrm{~cm}^{-1}$
B. Intensity Measurements

Rigaku/ADSC CCD
$\operatorname{MoK} \alpha(\lambda=0.71069 \AA)$ graphite monochromated
$94 \mathrm{~mm} \times 94 \mathrm{~mm}$
$-93^{\circ} \mathrm{C}$
462 exposures of 90.0 seconds
0.0-190.0 ${ }^{\circ}$
$-23.0-18.0^{\circ}$
$39.202(6) \mathrm{mm}$
-10°
60.1°
Total: 36449
Unique: $9917\left(\mathrm{R}_{\mathrm{irt}}=0.062\right)$
Lorentz-polarization
Absorption/scaling
(trans. factors: 0.7658 - 1.0060)

C. Structure Solution and Refinement

Structure Solution
Refinement
Function Minimized
Least Squares Weights

p-factor
Anomalous Dispersion
No. Observations
No. Variables
Reflection/Parameter Ratio
Residuals (on F^{2}, all data): R; Rw
Goodness of Fit Indicator
No. Observations (I>3 (I))
Residuals (on F, I>3o(I)): R; Rw
Max Shift/Error in Final Cycle
Maximum peak in Final Diff. Map
Minimum peak in Final Diff. Map

Patterson Methods (DIRDIF92 PATTY)
Full-matrix least-squares
$\Sigma \omega\left(\left|\mathrm{Fo}^{2}\right|-\left|\mathrm{Fc}^{2}\right|\right)^{2}$
$\omega=\frac{1}{\sigma^{2}\left(\mathrm{FO}^{2}\right)}$
0.0000

All non-hydrogen atoms
9917
455
21.80
0.071; 0.116
1.09

7067
0.039; 0.0525
0.001
$1.60 \mathrm{e}^{-} / \mathrm{A}^{3}$ (near Ru)
$-3.08 \mathrm{e}^{-} / \AA^{3}$ (near Ru)

Table V. 1 Atomic coordinates and B_{eq}

Atom	x	y	z	$\mathrm{B}_{\text {eq }}$	Atom	x	y	z	$\mathrm{B}_{\text {eq }}$
$\mathrm{Ru}(1)$	$0.563404(14)$	0.272801(13)	$0.156709(12)$	0.911 (5)	C(19)	0.5254(3)	0.6026(2)	0.2305(2)	2.96(8)
$\mathrm{Cl}(1)$	0.58012(5)	0.14832(4)	0.23574(4)	1.84(2)	C(20)	0.5710(2)	0.5274(2)	0.2424(2)	2.14(7)
$\mathrm{Cl}(2)$	0.58406(5)	0.19478(5)	0.03359(4)	1.83(2)	C(21)	0.3484(2)	0.3022(2)	0.0551(2)	1.26(6)
S(1)	0.55643(6)	0.39499(5)	0.08285(4)	1.72(2)	C(22)	0.3189(2)	0.3829(2)	0.0627(2)	1.72(6)
$\mathrm{P}(1)$	0.57184(5)	0.35445(5)	0.26770(4)	1.099(14)	C(23)	0.2831(2)	0.4273(2)	-0.0030(2)	2.41(7)
$\mathrm{P}(2)$	0.40451 (5)	0.24444(4)	0.13879(4)	0.983(14)	C(24)	0.2779(2)	0.3902(2)	-0.0781(2)	2.82(8)
O(1)	0.4602(2)	-0.1088(2)	0.3703(2)	4.24(7)	C(25)	0.3077(2)	0.3110(2)	-0.0865(2)	2.56 (8)
N(1)	0.7269(2)	0.2886(2)	0.16336(13)	1.46 (5)	C(26)	0.3428(2)	0.2663(2)	-0.0214(2)	1.84(7)
C(1)	0.6987(2)	0.3746(2)	0.2826(2)	1.56(6)	C(27)	0.3280(2)	0.2622(2)	0.2229(2)	1.40(6)
C(2)	0.7607(2)	0.3402(2)	0.2315(2)	1.69(6)	C(28)	0.3627(2)	0.2345(2)	0.2978(2)	1.86(7)
C(3)	0.8571(2)	0.3553(3)	0.2429(2)	2.91(8)	C(29)	0.3093(3)	0.2439(2)	0.3645 (2)	2.60 (8)
C(4)	0.8905(2)	0.4047(3)	0.3055(2)	3.63(9)	C(30)	0.2218(3)	0.2808(2)	0.3582(2)	2.84(8)
C(5)	0.8288(2)	0.4382(3)	0.3577(2)	3.61(9)	C(31)	0.1867(2)	0.3075(2)	0.2841 (2)	2.61(8)
C(6)	0.7334(2)	0.4225(2)	0.3471(2)	2.40(7)	C(32)	0.2385(2)	0.2970(2)	0.2161(2)	1.80(6)
C(7)	0.7609(2)	0.3252(2)	0.0872(2)	2.32(7)	C(33)	0.3648(2)	0.1390(2)	0.1112(2)	1.40(6)
C(8)	0.7711(2)	0.2057(2)	0.1698(2)	2.43(7)	C(34)	0.4244(2)	0.0732(2)	0.1004(2)	1.76 (6)
C(9)	0.5441(2)	0.3309(2)	0.3727(2)	1.39(6)	C(35)	0.3880(3)	-0.0029(2)	0.0754(2)	2.49(7)
C(10)	0.5808(2)	0.2589(2)	0.4067(2)	1.80(7)	C(36)	0.2912(3)	-0.0134(2)	$0.0616(2)$	2.60(8)
C(11)	0.5686(2)	0.2407(2)	0.4866(2)	2.48(8)	C(37)	0.2313(2)	0.0518(2)	0.0721(2)	2.62(8)
C(12)	0.5192(3)	0.2940(3)	0.5336(2)	2.84(8)	C(38)	0.2672(2)	0.1278(2)	0.0970(2)	2.09(7)
C(13)	0.4836(3)	$0.3656(2)$	0.5014(2)	3.01 (8)	C(39)	0.5506(2)	0.3847(2)	-0.0248(2)	2.16(7)
C(14)	0.4965(2)	0.3847(2)	0.4212(2)	2.25(7)	C(40)	$0.4625(3)$	-0.0350(3)	0.3664(2)	3.12(9)
C(15)	0.5186(2)	0.4568(2)	0.2558(2)	1.47(6)	C(41)	0.3850(3)	0.0114(3)	0.3244(3)	5.18(12)
C(16)	0.4213(2)	0.4630(2)	0.2568(2)	2.01(7)	C(42)	0.5446(4)	0.0127(3)	0.3996(3)	5.67(13)
C(17)	0.3765(2)	$0.5384(2)$	$0.2456(2)$	2.74(8)	H(1)	0.488(3)	0.414(2)	0.092(2)	4.2(8)

Table VI. 2 Bond lengths (\AA) with estimated standard deviations

atom	atom	distance	atom	atom	distance
$\mathrm{Ru}(1)$	C1(1)	2.4241(7)	$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	2.4472(7)
$\mathrm{Ru}(1)$	S(1)	2.3403(7)	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	2.2803(7)
$\mathrm{Ru}(1)$	P (2)	$2.3100(7)$	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	2.335 (2)
S(1)	C(39)	1.805(3)	$\mathrm{P}(1)$	$\mathrm{C}(1)$	1.838(3)
$\mathrm{P}(1)$	C(9)	1.856(3)	$\mathrm{P}(1)$	C(15)	1.837(3)
$\mathrm{P}(2)$	C(21)	1.835(3)	$\mathrm{P}(2)$	C(27)	1.840(3)
$\mathrm{P}(2)$	C(33)	1.858(3)	$\mathrm{O}(1)$	C(40)	1.203(5)
$\mathrm{N}(1)$	C(2)	1.476(4)	$\mathrm{N}(1)$	C(7)	1.505(4)
N(1)	C(8)	1.489(4)	C(1)	C(2)	1.374(4)
$\mathrm{C}(1)$	C(6)	1.401(4)	C(2)	C(3)	$1.396(4)$
C(3)	C(4)	1.387(5)	C(4)	C(5)	1.378 (5)
C(5)	C(6)	1.382(4)	C(9)	C(10)	$1.394(4)$
C(9)	C(14)	1.390(4)	$\mathrm{C}(10)$	C(11)	1.385(4)
C(11)	$\mathrm{C}(12)$	1.383(5)	C(12)	C(13)	1.371 (5)
C(13)	C(14)	$1.396(4)$	C(15)	C(16)	$1.386(4)$
C(15)	C(20)	1.393(4)	C(16)	C(17)	$1.391(4)$
C(17)	C(18)	1.378(5)	C(18)	C(19)	$1.368(5)$
C(19)	C(20)	1.394(5)	C(21)	C(22)	$1.387(4)$
C(21)	C(26)	$1.405(4)$	C(22)	C(23)	1.390 (4)
C(23)	C(24)	1.392(5)	C(24)	C(25)	1.366(5)
C(25)	C(26)	1.382(4)	C(27)	C(28)	$1.399(4)$
C(27)	C(32)	1.391(4)	C(28)	C(29)	$1.385(4)$
C(29)	C(30)	1.381(5)	C(30)	C(31)	1.383(5)
C(31)	C(32)	$1.393(4)$	C(33)	C(34)	1.383(4)
C(33)	C(38)	$1.408(4)$	C(34)	C(35)	$1.398(4)$
C(35)	C(36)	1.393(5)	C(36)	C(37)	1.376 (5)
C(37)	C(38)	1.394(4)	C(40)	C(41)	1.484(5)
C(40)	C(42)	1.487(5)	S(1)	$\mathrm{H}(1)$	1.03(4)

Table VI. 3 Bond angles (${ }^{\circ}$) with estimated standard deviations

Atom	atom	atom	angle	atom	atom	atom	angle
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	90.69(3)	$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	S(1)	176.61(3)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	92.50(3)	$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	P (2)	88.51(3)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	89.66(6)	$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	S(1)	90.07(3)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	169.27 (3)	$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	86.67(3)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	N(1)	86.51(6)	S(1)	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	86.17(3)
S(1)	$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	94.83(3)	S(1)	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	87.09(6)
$\mathrm{P}(1)$	$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	103.65(3)	$\mathrm{P}(1)$	$\mathrm{Ru}(1)$	N(1)	83.26(6)
$\mathrm{P}(2)$	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	172.92(6)	$\mathrm{Ru}(1)$	S(1)	C(39)	116.49(11)
$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	C(1)	103.19(10)	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	C(9)	130.05(10)
$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	C(15)	115.75(8)	C(1)	$\mathrm{P}(1)$	C(9)	99.13(12)
C(1)	$\mathrm{P}(1)$	C(15)	104.45(14)	C(9)	$\mathrm{P}(1)$	C(15)	100.67(13)
$\mathrm{Ru}(1)$	P (2)	C(21)	112.57(9)	$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	C(27)	118.57(10)
$\mathrm{Ru}(1)$	P (2)	C(33)	120.03(9)	C(21)	$\mathrm{P}(2)$	C(27)	104.52(13)
C(21)	P (2)	C(33)	99.64(12)	C(27)	P (2)	C(33)	98.69(12)
$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	C(2)	112.7(2)	$\mathrm{Ru}(1)$	N(1)	C(7)	111.2(2)
$\mathrm{Ru}(1)$	N(1)	C(8)	108.6(2)	C(2)	$\mathrm{N}(1)$	C(7)	108.7(2)
C(2)	$\mathrm{N}(1)$	C(8)	109.8(2)	C(7)	$\mathrm{N}(1)$	C(8)	105.6(2)
$\mathrm{P}(1)$	C(1)	C(2)	$119.7(2)$	$P(1)$	C(1)	C(6)	120.8(2)
C(2)	C(1)	C(6)	119.5(3)	N(1)	C(2)	C(1)	121.1(2)
$\mathrm{N}(1)$	C(2)	C(3)	119.2 (3)	C(1)	C(2)	C(3)	119.7 (3)
C(2)	C(3)	C(4)	120.4(3)	C(3)	C(4)	C(5)	120.1(3)
C(4)	C(5)	C(6)	119.6(3)	C(1)	C(6)	C(5)	120.7(3)
$\mathrm{P}(1)$	C(9)	C (10)	117.8(2)	$\mathrm{P}(1)$	C(9)	$\mathrm{C}(14)$	123.5(2)
C(10)	C(9)	$\mathrm{C}(14)$	118.3(3)	C(9)	$\mathrm{C}(10)$	C(11)	$120.7(3)$
$\mathrm{C}(10)$	C(11)	C (12)	120.2(3)	$\mathrm{C}(11)$	C(12)	C(13)	119.9 (3)
C(12)	C(13)	C(14)	120.2(3)	C(9)	C(14)	C(13)	120.6 (3)
$\mathrm{P}(1)$	C (15)	C(16)	118.0(2)	$P(1)$	C(15)	C(20)	123.0(2)
C(16)	C(15)	C (20)	118.9(3)	C(15)	C(16)	$\mathrm{C}(17)$	120.8(3)
C(16)	C(17)	C (18)	119.6 (3)	$\mathrm{C}(17)$	C(18)	C(19)	120.4(3)
$\mathrm{C}(18)$	$\mathrm{C}(19)$	C(20)	120.4 (3)	C (15)	C (20)	C(19)	$119.9(3)$
$\mathrm{P}(2)$	C(21)	C(22)	122.5 (2)	$\mathrm{P}(2)$	C(21)	C(26)	119.0(2)
C(22)	C(21)	C(26)	118.2 (3)	C(21)	C (22)	C(23)	121.4(3)
C(22)	C(23)	C(24)	119.3 (3)	C(23)	C(24)	C(25)	119.9 (3)
C(24)	C(25)	C(26)	121.2 (3)	C(21)	C(26)	C(25)	120.1 (3)
P (2)	$\mathrm{C}(27)$	C(28)	115.9(2)	$\mathrm{P}(2)$	C(27)	C(32)	124.8(2)
C(28)	C(27)	C(32)	119.2 (3)	C(27)	C(28)	C(29)	120.0(3)
C(28)	C(29)	C(30)	120.8(3)	C(29)	C(30)	C(31)	119.4(3)
C(30)	C(31)	C(32)	120.6 (3)	C (27)	C(32)	C(31)	119.9 (3)
$\mathrm{P}(2)$	C(33)	C(34)	124.6(2)	$\mathrm{P}(2)$	C(33)	C(38)	116.6(2)
C(34)	C(33)	C(38)	$118.8(3)$	C(33)	C(34)	C(35)	$120.3(3)$
C(34)	C(35)	C(36)	$120.5(3)$	C(35)	$\mathrm{C}(36)$	C(37)	119.73)
C(36)	C(37)	C(38)	$120.1(3)$	C(33)	C(38)	C(37)	$120.6(3)$
O(1)	C(40)	C(41)	120.8(4)	$\mathrm{O}(1)$	C(40)	C(42)	$121.5(4)$
C(41)	C(40)	$\mathrm{C}(42)$	117.6(4)	$\mathrm{Ru}(1)$	$\mathbf{S}(1)$	H(1)	101.5(21)
C(39)	S(1)	H(1)	100.1(18)				

APPENDIX VII

X-Ray Crystallographic Analysis of $\mathrm{Cis}^{-} \mathrm{RuCl}_{\mathbf{2}}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{\mathbf{3}}\right)(\mathbf{E t S H}) \cdot\left(\mathbf{1 . 5 \mathrm { C } _ { 6 } \mathbf { D } _ { 6 }) (2 1)}\right.$

EXPERIMENTAL DETAILS

Empirical Formula
Formula Weight
Crystal Colour, Habit
Crystal Dimensions
Crystal System
Lattice Type
Lattice Parameters

Space Group
Z value
$\mathrm{D}_{\text {calc }}$
F_{000}
$\mu(\mathrm{MoK} \alpha)$
A. Crystal Data
$\mathrm{C}_{49} \mathrm{H}_{50} \mathrm{Cl}_{2} \mathrm{NOP}_{2} \mathrm{RuS}$
918.92
yellow, prism
$0.30 \times 0.30 \times 0.20 \mathrm{~mm}$
monoclinic
Primitive
$\mathrm{a}=16.6933(8) \AA$
$\mathrm{b}=12.4262(12) \AA$
$\mathrm{c}=21.8288(6) \AA$
$\beta=106.3313(8)^{\circ}$

$\mathrm{V}=4345.3(4) \AA^{3}$
$\mathrm{P} 2_{1} / \mathrm{n}(\# 14)$
4
$1.405 \mathrm{~g} / \mathrm{cm}^{3}$
1900.00
$6.41 \mathrm{~cm}^{-1}$
B. Intensity Measurements

Rigaku/ADSC CCD
$\operatorname{MoK} \alpha(\lambda=0.71069 \AA)$ graphite monochromated
$94 \mathrm{~mm} \times 94 \mathrm{~mm}$
$-93^{\circ} \mathrm{C}$
462 exposures of 70.0 seconds
0.0-190.0 ${ }^{\circ}$
-23.0-18.0 ${ }^{\circ}$
39.23(2) mm
-10.0°
60.1°
Total: 39270
Unique: $11495\left(\mathrm{R}_{\text {int }}=0.031\right)$
Lorentz-polarization
Absorption/scaling
(trans. factors: 0.7251 - 1.0060)
C. Structure Solution and Refinement

Structure Solution

Refinement

Function Minimized
Least Squares Weights

p-factor

Anomalous Dispersion
No. Observations
No. Variables
Reflection/Parameter Ratio
Residuals (on F^{2}, all data): R ; Rw
Goodness of Fit Indicator
No. Observations ($1>3 \sigma(\mathrm{I})$)
Residuals (on $\mathrm{F}, \mathrm{I}>3 \sigma(\mathrm{I})$): R ; Rw
Max Shift/Error in Final Cycle
Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map

Patterson Methods (DIRDIF92 PATTY)
Full-matrix least-squares
$\sum \omega\left(\left|F_{0}^{2}\right|-\left|F^{2}\right|\right)^{2}$
$\omega=\frac{1}{\sigma^{2}\left(\mathrm{Fo}^{2}\right)}$
0.0000

All non-hydrogen atoms
11495
509
22.58
0.056; 0.058
1.96

7749
0.033; 0.027
0.003
$1.01 \mathrm{e}^{-} / \mathrm{A}^{3}$
$-0.93 \mathrm{e}^{-} / \AA^{3}$

Table VII. 1 Atomic coordinates and $B_{\text {eq }}$

atom	x	y	z	$\mathbf{B}_{\text {eq }}$	atom	r	y	z	$\mathbf{B}_{\text {eq }}$
$\mathrm{Ru}(1)$	0.418466(10)	$0.570955(14)$	0.208292(9)	1.617(4)	C(23)	0.46229(13)	0.3100(2)	0.26619(11)	1.72(5)
$\mathrm{Cl}(1)$	0.37043(3)	0.58327(5)	0.09307(3)	2.601(13)	C(24)	0.53731(13)	0.3180(2)	0.31406(11)	1.85(5)
$\mathrm{Cl}(2)$	0.27352(3)	$0.53219(5)$	0.20834(3)	2.664(13)	C(25)	0.54974(14)	0.2641(2)	0.37205(12)	2.56(6)
S(1)	0.45307(3)	0.56662(5)	0.31981(3)	2.001(12)	C(26)	0.4856(2)	0.2017(2)	0.38268(13)	2.92(6)
$\mathrm{P}(1)$	0.54808(3)	0.63933 (4)	0.21880(3)	1.628(12)	C(27)	$0.41101(15)$	0.1924(2)	0.33560(13)	2.92(6)
$\mathrm{P}(2)$	0.44387(3)	$0.39156(4)$	0.19320(3)	1.637(12)	C(28)	0.39846(13)	0.2459(2)	0.27738(12)	2.25(5)
N(1)	0.38559(10)	0.75368(14)	0.21865(10)	2.23(4)	C(29)	0.53372(12)	0.3589(2)	$0.16258(11)$	1.71(5)
C(1)	0.37686(15)	0.5025(2)	0.35372(13)	2.96(6)	C(30)	0.53938(13)	0.4141(2)	$0.10888(11)$	2.17(5)
C(2)	$0.4146(2)$	0.4868(2)	0.42421(15)	4.25(8)	C(31)	060449(15)	0.3941(2)	0.08185(12)	2.76(6)
C(3)	0.53772(13)	0.7826(2)	0.23543(11)	1.96(5)	C(32)	0.66430 (14)	0.3189(2)	$0.10925(13)$	2.87(6)
C(4)	$0.45912(13)$	0.8249(2)	0.23178(12)	2.26 (5)	C(33)	$0.65814(14)$	0.2609(2)	$0.16161(12)$	2.46 (6)
C(5)	0.45044(14)	0.9361(2)	0.23961 (14)	3.31(6)	C(34)	0.59347(13)	0.2800(2)	0.18855(11)	2.10 (5)
C(6)	0.5190(2)	1.0021(2)	0.2518(2)	4.30(8)	C(35)	0.36373(13)	0.3085(2)	$0.13691(11)$	2.07(5)
C(7)	0.5975(2)	0.9604(2)	0.25654(15)	3.86(7)	C(36)	0.28266(14)	$0.3435(2)$.	0.10819(12)	$2.65(6)$
C(8)	0.60632(14)	0.8517(2)	0.24811(13)	2.81(6)	C(37)	$0.22415(14)$	0.2740(2)	$0.06924(13)$	3.22(6)
C(9)	0.34489(15)	0.7699(2)	0.27102(14)	3.09(6)	C(38)	0.2455(2)	0.1712(2)	0.05829(13)	3.43(7)
C(10)	0.32383(15)	0.7897(2)	$0.15837(14)$	3.48(6)	C(39)	0.3260(2)	0.1356(2)	$0.08558(14)$	3.70(7)
C(11)	$0.63106(12)$	0.5926(2)	0.28861(11)	1.86(5)	C(40)	0.38463(15)	0.2035(2)	$0.12465(13)$	3.05(6)
C(12)	$0.64354(14)$	$0.6398(2)$.	0.34871(12)	2.57(6)	C(41)	0.4097(3)	0.2249(3)	0.5167(2)	6.98(13)
C(13)	0.69956(15)	0.5943(2)	0.40198(12)	3.41(7)	C(42)	0.4784(2)	$0.1826(3)$	0.5610(2)	$5.11(9)$
C(14)	0.74447(15)	0.5036 (2)	0.39619(14)	3.63(7)	C(43)	0.4715(3)	0.0864(3)	0.5852(3)	11.27(15)
C(15)	$0.73424(14)$	0.4578(2)	0.33736(15)	3.10(6)	C(44)	0.3948 (3)	$0.0346(4)$	0.5678(3)	13.0(2)
C(16)	0.67789(13)	0.5009(2)	0.28361(12)	2.29(5)	C(45)	0.3318(2)	0.0694(3)	0.5223(3)	8.62(13)
C(17)	0.60383(13)	0.6527(2)	0.15717(11)	1.89(5)	C(46)	0.3373(2)	$0.1666(4)$	0.4959(2)	7.25(13)
C(18)	$0.55905(14)$	0.6784(2)	0.09574(13)	2.83(6)	C(47)	0.5458(2)	0.0922(3)	$0.0024(2)$	5.69(10)
C(19)	0.5985(2)	0.6926(2)	0.04784(13)	3.66(7)	C(48)	0.5394(2)	0.0452(3)	0.0584(2)	5.58(10)
C(20)	0.6839(2)	0.6798(2)	0.06154(15)	3.93(8)	C(49)	0.4943(2)	-0.0467(3)	0.0559(2)	5.66(10)
C(21)	0.73024(15)	0.6572(2)	$0.12359(15)$	3.42(7)	H(1)	0.5074(12)	0.493(2)	0.3353(10)	2.7(5)

Table VII. 2 Bond lengths (\AA) with estimated standard deviations

atom	atom	distance	atom	atom	distance
$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	2.4204(6)	$\mathrm{Ru}(1)$	C1(2)	2.4674(5)
$\mathrm{Ru}(1)$	S(1)	2.3391(6)	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	2.2753(5)
$\mathrm{Ru}(1)$	P (2)	2.3100 (6)	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	2.362(2)
S(1)	C(1)	1.825(2)	$\mathrm{P}(1)$	C(3)	$1.835(2)$
$\mathrm{P}(1)$	C(11)	1.841(2)	$\mathrm{P}(1)$	C(17)	1.846 (2)
$\mathrm{P}(2)$	C(23)	1.840(2)	$\mathrm{P}(2)$	C(29)	1.851(2)
P (2)	C(35)	1.855(2)	$\mathrm{N}(1)$	C(4)	1.474(3)
$\mathrm{N}(1)$	C(9)	1.498(3)	N(1)	$\mathrm{C}(10)$	$1.494(3)$
C(1)	C(2)	1.502(4)	C(3)	C(4)	$1.395(3)$
C(3)	C(8)	1.396 (3)	C(4)	C(5)	$1.405(3)$
C(5)	C(6)	1.372(3)	C(6)	C(7)	$1.386(3)$
C(7)	C (8)	1.376 (3)	C(11)	C(12)	$1.398(3)$
C(11)	C(16)	1.404(3)	C(12)	C(13)	$1.391(3)$
C(13)	C(14)	$1.379(4)$	$\mathrm{C}(14)$	C(15)	1.371 (4)
C(15)	C(16)	1.388(3)	C(17)	C(18)	$1.377(3)$
$\mathrm{C}(17)$	C(22)	$1.403(3)$	C(18)	C(19)	$1.394(3)$
C(19)	C(20)	$1.383(4)$	C(20)	C(21)	$1.386(4)$
C(21)	C(22)	$1.391(3)$	C(23)	C(24)	1.391 (3)
C(23)	C(28)	$1.405(3)$	C(24)	C(25)	$1.395(3)$
C(25)	C(26)	$1.394(3)$	C(26)	C(27)	$1.378(4)$
C(27)	C(28)	1.397(3)	C(29)	C(30)	$1.384(3)$
C(29)	C(34)	1.399(3)	C(30)	C(31)	1.397 (3)
C(31)	C(32)	$1.375(3)$	C(32)	C(33)	1:379(3)
C(33)	C(34)	1.388(3)	C(35)	C(36)	$1.391(3)$
C(35)	C(40)	$1.396(3)$	C(36)	C(37)	$1.398(3)$
C(37)	C(38)	1.365(4)	C(38)	C(39)	$1.382(4)$
C(39)	C(40)	1.388(3)	C(41)	C(42)	1.380(5)
C(41)	C(46)	1.372(5)	C(42)	C(43)	$1.324(5)$
C(43)	C(44)	1.388 (5)	C(44)	C(45)	1.300 (5)
C(45)	C(46)	1.353(5)	$\mathrm{C}(47)$	C(48)	1.385(5)
C(47)	C(49)*	1.382(5)	C(48)	C(49)	1.361(4)

[^0]Table VII. 3 Bond angles (${ }^{\circ}$) with estimated standard deviations

atom	atom	atom	angle	atom	atom	atom	angle
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	88.54(2)	$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	S(1)	174.63(2)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	P(1)	96.25(2)	$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathbf{P}(2)$	86.17(2)
Cl(1)	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	91.19(5)	$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	S(1)	87.15(2)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	167.88(2)	$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathbf{P}(2)$	91.78(2)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	86.18(4)	S(1)	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	87.37(2)
S(1)	$\mathrm{Ru}(1)$	P (2)	97.16(2)	S(1)	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	85.33(5)
$\mathrm{P}(1)$	$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	99.63(2)	$\mathrm{P}(1)$	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	82.61(4)
$\mathrm{P}(2)$	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	176.71(5)	$\mathrm{Ru}(1)$	S(1)	C(1)	115.84(9)
$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	C(3)	104.02(7)	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	C(11)	116.00(6)
$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	$\mathrm{C}(17)$	128.33(8)	C(3)	$\mathrm{P}(1)$	C(11)	103.46(10)
C(3)	$\mathrm{P}(1)$	C(17)	98.72(9)	$\mathrm{C}(11)$	$\mathrm{P}(1)$	C(17)	102.45(10)
$\mathrm{Ru}(1)$	\mathbf{P} (2)	C(23)	113.63(7)	$\mathrm{Ru}(1)$	P (2)	C(29)	117.58(7)
$\mathrm{Ru}(1)$	$\mathbf{P}(2)$	C(35)	120.28(8)	C(23)	$\mathrm{P}(2)$	C(29)	103.70(10)
C (23)	$\mathbf{P}(2)$	C(35)	100.42(10)	C(29)	$\mathrm{P}(2)$	C(35)	98.37(10)
$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	C(4)	113.09(12)	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	C(9)	111.69(13)
$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	$\mathrm{C}(10)$	108.99(14)	$\mathrm{C}(4)$	$\mathrm{N}(1)$	C(9)	107.6(2)
C(4)	$\mathrm{N}(1)$	C(10)	108.8(2)	C(9)	$\mathrm{N}(1)$	C(10)	106.5(2)
S(1)	C(1)	C(2)	109.4(2)	$\mathrm{P}(1)$	C(3)	C(4)	119.6(2)
$\mathrm{P}(1)$	C(3)	C(8)	121.2(2)	C(4)	C(3)	C(8)	119.1(2)
$\mathrm{N}(1)$	C(4)	C(3)	120.2(2)	$\mathrm{N}(1)$	C(4)	C(5)	120.3(2)
C(3)	C(4)	C(5)	119.4(2)	C(4)	C(5)	C(6)	120.2(2)
C(5)	C(6)	C(7)	120.7(2)	C(6)	C(7)	C(8)	119.4(2)
C(3)	C(8)	C(7)	121.2(2)	$\mathrm{P}(1)$	C(11)	C(12)	121.6(2)
$\mathrm{P}(1)$	C(11)	C(16)	119.8(2)	C(12)	C(11)	C(16)	118.3(2)
C(11)	C(12)	C(13)	120.1(2)	$\mathrm{C}(12)$	C(13)	C(14)	120.7(3)
C(13)	$\mathrm{C}(14)$	C(15)	119.8(2)	$\mathrm{C}(14)$	$\mathrm{C}(15)$	C(16)	120.5(2)
C(11)	$\mathrm{C}(16)$	C(15)	120.5(2)	$\mathrm{P}(1)$	$\mathrm{C}(17)$	C(18)	118.9(2)
$\mathrm{P}(1)$	$\mathrm{C}(17)$	C (22)	122.3(2)	$\mathrm{C}(18)$	$\mathrm{C}(17)$	C(22)	118.6(2)
C(17)	C(18)	C(19)	121.2(2)	C(18)	C(19)	C(20)	119.9(3)
C(19)	C(20)	C(21)	$119.5(2)$	C(20)	C(21)	$\mathrm{C}(22)$	120.4(2)
$\mathrm{C}(17)$	C(22)	C(21)	120.2(2)	$\mathbf{P}(2)$	C(23)	C(24)	120.5(2)
$\mathrm{P}(2)$	C(23)	C(28)	120.8(2)	$\mathrm{C}(24)$	C(23)	C(28)	118.5(2)
C(23)	C(24)	C(25)	121.3(2)	C(24)	C(25)	C(26)	119.6(2)
C(25)	C(26)	C (27)	119.8(2)	C(26)	C(27)	C(28)	120.8(2)
C(23)	C(28)	C(27)	120.1(2)	P (2)	C(29)	C(30)	116.9(2)
P (2)	C(29)	C(34)	124.4(2)	$\mathrm{C}(30)$	C(29)	C(34)	118.6(2)
C(29)	$\mathrm{C}(30)$	C(31)	121.1(2)	C(30)	C(31)	C(32)	119.6(2)
C(31)	$\mathrm{C}(32)$	C(33)	120.1(2)	C(32)	C(33)	C(34)	120.7(2)
C(29)	C(34)	C(33)	119.9(2)	P (2)	C(35)	C(36)	123.6(2)
$\mathrm{P}(2)$	C(35)	C(40)	118.3(2)	C(36)	C(35)	C(40)	118.0(2)
C(35)	C(36)	C(37)	120.4(2)	C(36)	C(37)	C(38)	120.8(2)
C(37)	C(38)	C(39)	119.6(2)	C(38)	C(39)	C(40)	120.1(3)
C(35)	C(40)	C(39)	121.0(2)	C(42)	C(41)	C(46)	120.7(3)
C(41)	C(42)	C(43)	118.4(3)	C(42)	C(43)	C(44)	119.1(4)
C(43)	$\mathrm{C}(44)$	C(45)	122.7(5)	C(44)	C(45)	C(46)	119.0(4)
$\mathrm{C}(41)$	C(46)	C(45)	119.4(4)	C(48)	C(47)	C(49)*	120.2(3)
C(47)	$\mathrm{C}(48)$	C(49)	119.9(3)	C(47)*	C(49)	C(48)	$119.9(3)$
$\mathrm{Ru}(1)$	S(1)	H(1)	104.1(9)	C(1)	S(1)	H(1)	96.0(9)

APPENDIX VIII

(Part I)
X-Ray Crystallographic Analysis of Trans- $\mathrm{RuCl}_{\mathbf{2}}(\mathbf{P}-\mathrm{N})\left(\mathbf{P P h}_{3}\right)\left(\mathbf{O H}_{2}\right) \cdot\left(2 \mathrm{C}_{6} \mathbf{H}_{6}\right)(33 \mathrm{a}, \mathrm{I})$

Figure VIII. 1 Stereoview of the molecular structure of 33a, I.

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula
Formula Weight
Crystal Colour, Habit
Crystal Dimensions
Crystal System
Lattice Type
Lattice Parameters

Space Group
Z value
$\mathrm{D}_{\text {calc }}$
F000
$\mu(\mathrm{MoK} \alpha)$

Diffractometer
Radiation
Detector Aperture
Temperature
Data Images
ϕ oscillation Range ($\chi=-90$)
ω oscillation Range ($\chi=-90$)
Detector Position
Detector Swing Angle
$20_{\text {max }}$
No. of Reflections Measured
Corrections
$\mathrm{C}_{50} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{NOP}_{2} \mathrm{Ru}$
913.87
pink, prism
$0.08 \times 0.12 \times 0.30 \mathrm{~mm}$
monoclinic
Primitive
$\mathrm{a}=10.5773(6) \AA$
$\mathrm{b}=16.979(2) \mathrm{A}$
$\mathrm{c}=24.2616(6) \AA$
$\beta=90.7065(5)^{\circ}$
$\mathrm{V}=4356.9(4) \AA^{3}$
$\mathrm{P}_{1} / \mathrm{n}$ (\#14)
4
$1.393 \mathrm{~g} / \mathrm{cm}^{3}$
1888.00
$5.94 \mathrm{~cm}^{-1}$
B. Intensity Measurements

Rigaku/ADSC CCD
$\operatorname{MoK} \alpha(\lambda=0.71069 \AA$) graphite monochromated
$94 \mathrm{~mm} \times 94 \mathrm{~mm}$
$-93^{\circ} \mathrm{C}$
769 exposures of 50.0 seconds
$0.0-190.2^{\circ}$
$-23.0-17.8^{\circ}$
$39.216(5) \mathrm{mm}$
-10.0°
60.1°
Total: 38827
Unique: 10693 ($\mathrm{R}_{\text {int }}=0.054$)
Lorentz-polarization
Absorption/decay/scaling
(coor. factors: $0.6090-1.0000$)
C. Structure Solution and Refinement

Structure Solution
Refinement
Function Minimized
Least Squares Weights

p-factor

Anomalous Dispersion
No. Observations
No. Variables
Reflection/Parameter Ratio
Residuals (on F^{2}, all data): R; Rw
Goodness of Fit Indicator
No. Observations ($1>3 \sigma(\mathrm{I})$)
Residuals (on $\mathrm{F}, \mathrm{I}>3 \sigma(\mathrm{I})$): R; Rw
Max Shift/Error in Final Cycle
Maximum peak in Final Diff. Map
Minimum peak in Final Diff. Map

Patterson Methods (DIRDIF92 PATTY)
Full-matrix least-squares
$\Sigma \omega\left(\left|\mathrm{Fo}^{2}\right|-\left|\mathrm{Fc}^{2}\right|\right)^{2}$
$\omega=\frac{1}{\sigma^{2}\left(\mathrm{Fo}^{2}\right)}$
0.0000

All non-hydrogen atoms
10693
514
20.80
0.117; 0.082
1.81

4878
0.056; 0.035
0.01
$1.98 \mathrm{e}^{-} / \mathrm{A}^{3}$ (near $\mathrm{C}(45-50)$ benzene)
$-2.61 \mathrm{e}^{-/} \AA^{3}$ (near Ru)

Table VIII. 1 Atomic coordinates and B_{eq}

atom	x	y	z	$\mathrm{B}_{\text {eq }}$	atom	\mathbf{x}	y	z	$\mathbf{B}_{\text {eq }}$
$\mathrm{Ru}(1)$	0.43571(3)	0.53463(2)	0.370059(15)	1.856(8)	C(23)	0.5213(4)	0.2267(3)	0.3686(2)	3.64(14)
$\mathrm{Cl}(1)$	0.27219(8)	0.61626(7)	$0.33187(5)$	2.39(3)	C(24)	0.4757(4)	0.1773(3)	0.3293(2)	3.65(14)
$\mathrm{Cl}(2)$	0.58439(8)	0.46816(7)	0.43054(4)	2.14(2)	C(25)	0.3817(4)	0.2000(3)	0.2931(2)	3.32(13)
$\mathrm{P}(1)$	$0.57846(8)$	0.52747(8)	0.30347(5)	1.85(3)	C(26)	0.3338(4)	0.2759(3)	0.2965(2)	2.67(12)
$\mathrm{P}(2)$	0.31168(9)	0.42776(7)	0.34521(5)	1.95 (3)	C(27)	$0.1829(3)$	0.4090(3)	0.3952(2)	2.17(11)
O(1)	0.3252(2)	0.5512(2)	0.44726 (11)	2.33(7)	C(28)	0.1727(4)	$0.3401(3)$	0.4259(2)	2.69(12)
N(1)	0.5543(3)	0.6440(2)	0.39354(15)	1.97(9)	C(29)	0.0703(4)	0.3288(3)	0.4605(2)	3.51(13)
C(1)	0.7103(3)	0.5847(3)	0.3314(2)	2.13(10)	C(30)	-0.0228(4)	$0.3866(3)$	0.4646(2)	3.40(13)
C(2)	0.6869(3)	0.6319(3)	0.3769(2)	2.07(10)	C(31)	-0.0135(3)	0.4554(3)	$0.4344(2)$	2.96 (12)
C(3)	0.7860(4)	0.6726(3)	0.4033(2)	3.12(12)	C(32)	0.0896(3)	0.4668 (3)	0.4002(2)	2.38(10)
C(4)	0.9070(4)	0.6657(3)	0.3829(2)	3.56(14)	C(33)	0.2142(3)	0.4375 (3)	0.2820(2)	2.11(10)
C(5)	0.9303(4)	0.6220(3)	$0.3361(2)$	3.25(13)	C(34)	0.0964(4)	0.4039(3)	0.2753(2)	2.83(12)
C(6)	0.8325(4)	0.5809(3)	0.3106(2)	2.76 (12)	C(35)	0.0289(4)	0.4117(3)	0.2271(2)	3.64(14)
C(7)	0.5438(4)	0.6607(3)	0.4532(2)	2.83(12)	C(36)	0.0782(4)	$0.4536(3)$	0.1834(2)	3.82(14)
C(8)	0.5106(4)	0.7169(3)	0.3636(2)	2.64(12)	C(37)	0.1963(4)	0.4866 (3)	0.1889(2)	3.56(13)
C(9)	0.5665(4)	0.5707(3)	0.2343(2)	2.28(11)	C(38)	0.2638(4)	0.4780(3)	$0.2376(2)$	2.84(12)
C(10)	0.4758(4)	0.6282(3)	$0.2211(2)$	2.32(11)	C(39)	0.2650(12)	$0.1276(5)$	0.4665(4)	10.2(4)
C(11)	0.4721(4)	0.6632(3)	0.1705(2)	2.92(12)	C(40)	0.3849 (8)	$0.1096(5)$	0.4851 (4)	7.7(3)
C(12)	0.5567(5)	0.6443(3)	0.1300(2)	3.56(13)	C(41)	0.4118(6)	0.0953(4)	$0.5395(3)$	7.1(2)
C(13)	0.6481(4)	0.5885(3)	0.1413(2)	3.95 (14)	C(42)	0.3157(7)	0.0953(4)	0.5770(3)	6.6(2)
C(14)	0.6532(4)	0.5509(3)	0.1926(2)	3.11(12)	C(43)	0.1960(7)	0.1096(4)	0.5586(4)	7.7(3)
C(15)	0.6498(4)	$0.4310(3)$	0.2898(2)	2.35(11)	C(44)	0.1723(9)	0.1238(5)	0.5046(5)	9.3(3)
C(16)	0.6021(4)	$0.3837(3)$	0.2467(2)	3.07(12)	C(45)	0.7622(9)	0.1993 (10)	0.5105(5)	12.7(5)
C(17)	0.6514(5)	0.3085(3)	0.2380(2)	4.08(15)	C(46)	0.7873(7)	0.2350(5)	0.5587(5)	7.1(3)
C(18)	0.7472(5)	0.2797(3)	0.2718(3)	4.18(15)	C(47)	0.8332(8)	$0.1906(7)$	0.5978(4)	7.5(3)
C(19)	0.7924(4)	0.3251(3)	0.3141(2)	3.46(14)	C(48)	0.8574(12)	0.1131(9)	0.5931(8)	16.3(6)
C(20)	0.7445(4)	0.4003(3)	0.3235(2)	2.67(12)	C(49)	0.834(2)	$0.0844(10)$	0.5421 (10)	19.3(9)
C(21)	0.3777(3)	0.3281(3)	0.3371(2)	2.23(11)	C(50)	0.772(2)	0.120(2)	0.5011(8)	23.3(10)
C(22)	0.4724(4)	0.3026(3)	0.3730(2)	2.87(12)					

Table VIII. 2 Bond lengths (\AA) with estimated standard deviations

atom	atom	distance	atom	atom	distance
$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	2.3941 (11)	$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	$2.4173(10)$
$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	2.2281(11)	$\mathrm{Ru}(1)$	P (2)	2.3147(12)
$\mathrm{Ru}(1)$	$\mathrm{O}(1)$	2.238(3)	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	$2.308(3)$
$\mathrm{P}(1)$	C(1)	1.823(4)	$\mathrm{P}(1)$	C(9)	$1.835(5)$
$\mathrm{P}(1)$	C(15)	1.835(4)	P (2)	C(21)	1.842(4)
$\mathrm{P}(\mathbf{2})$	C(27)	1.861(4)	P (2)	C(33)	1.844(4)
$\mathrm{N}(1)$	C(2)	1.479(4)	$\mathrm{N}(1)$	C(7)	1.481(5)
$\mathrm{N}(1)$	$\mathrm{C}(8)$	$1.505(5)$	C(1)	C(2)	1.388(6)
C(1)	C(6)	$1.395(5)$	C(2)	C(3)	1.403(5)
C(3)	C(4)	1.382(6)	C(4)	C(5)	1.380(7)
C(5)	C(6)	1.389(6)	C(9)	$\mathrm{C}(10)$	1.404(5)
C(9)	C(14)	1.414(5)	C(10)	C(11)	1.363(6)
C(11)	C(12)	1.375(6)	C(12)	C(13)	1.378(6)
C(13)	C(14)	1.400(6)	C(15)	C(16)	1.408(6)
C(15)	C(20)	1.388(6)	C(16)	C(17)	1.397(6)
C(17)	C(18)	$1.385(7)$	C(18)	C(19)	$1.365(7)$
C(19)	C(20)	$1.394(6)$	C(21)	C(22)	1.389(6)
C(21)	C(26)	1.400(6)	C(22)	C(23)	1.394(6)
C(23)	C(24)	1.355(7)	C(24)	C(25)	1.374(6)
C(25)	C(26)	1.388(6)	C(27)	C(28)	1.393(6)
C(27)	C(32)	1.399(5)	C(28)	C(29)	$1.392(6)$
C(29)	C(30)	$1.395(6)$	C(30)	C(31)	1.383(6)
c(31)	C(32)	1.391 (5)	C(33)	C(34)	1.379(5)
C(33)	C(38)	1.387(6)	C(34)	C(35)	1.369(6)
c(35)	C(36)	1.384(6)	C(36)	C(37)	1.375(6)
c (37)	C(38)	$1.381(6)$	C(39)	C(40)	1.375 (10)
C (39)	C(44)	1.357(12)	C(40)	C(41)	1.368(9)
C(41)	$\mathrm{C}(42)$	1.373(8)	C(42)	C(43)	$1.359(8)$
C(43)	C(44)	1.352(11)	C(45)	C(46)	1.343(12)
C(45)	$\mathrm{C}(50)$	1.37(3)	C(46)	C(47)	1.301(10)
C(47)	C(48)	$1.346(13)$	C(48)	C(49)	1.35(2)
C(49)	C(50)	1.33(4)			

Table VIII. 3 Bond angles (${ }^{\circ}$) with estimated standard deviations

atom	atom	atom	angle	atom	atom	atom	angle
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	165.18(4)	$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	P(1)	104.11(4)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	P (2)	87.05(4)	$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	O(1)	82.47(7)
C1(1)	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	91.01(9)	$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	88.45(4)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	98.88(4)	$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	O(1)	83.87(7)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	83.01(9)	$\mathrm{P}(1)$	$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	98.94(4)
$\mathrm{P}(1)$	$\mathrm{Ru}(1)$	$\mathrm{O}(1)$	168.33(7)	$\mathrm{P}(1)$	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	81.48(9)
$\mathbf{P}(2)$	$\mathrm{Ru}(1)$	$\mathrm{O}(1)$	90.94(8)	$\mathrm{P}(2)$	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	178.06(9)
O(1)	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	88.85(11)	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	C(1)	102.95(14)
$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	C(9)	127.00(13)	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	C(15)	117.63(14)
C(1)	$\mathrm{P}(1)$	C(9)	99.8(2)	C(1)	$\mathrm{P}(1)$	C(15)	103.2(2)
C(9)	$\mathrm{P}(1)$	C(15)	102.4(2)	$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	C(21)	122.25(13)
$\mathrm{Ru}(1)$	P (2)	C(27)	112.44(14)	$\mathrm{Ru}(1)$	P (2)	C(33)	117.09(14)
C(21)	$\mathrm{P}(2)$	C(27)	101.2(2)	C(21)	$\mathrm{P}(2)$	C(33)	101.7(2)
C(27)	P (2)	C(33)	98.6(2)	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	C(2)	109.6(3)
$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	C(7)	110.4(2)	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	C(8)	112.3(2)
C(2)	$\mathrm{N}(1)$	C(7)	112.1(3)	C(2)	$\mathrm{N}(1)$	C(8)	105.6(3)
C(7)	$\mathrm{N}(1)$	C(8)	106.8(3)	$\mathrm{P}(1)$	C(1)	C(2)	117.3(3)
$\mathrm{P}(1)$	C(1)	C(6)	123.3(4)	C(2)	C(1)	C(6)	119.3(4)
$\mathrm{N}(1)$	C(2)	c(1)	118.5(4)	$\mathrm{N}(1)$	C(2)	C(3)	120.8(4)
C(1)	C(2)	C(3)	120.5(4)	C(2)	C(3)	C(4)	119.0(5)
C(3)	C(4)	C(5)	121.0(4)	C(4)	C(5)	C(6)	119.9(4)
C(1)	C(6)	C(5)	120.2(5)	$\mathrm{P}(1)$	C(9)	C(10)	121.8(3)
$\mathrm{P}(1)$	C(9)	C(14)	121.4(3)	C(10)	C(9)	C(14)	116.7(4)
C(9)	$\mathrm{C}(10)$	C(11)	121.4(4)	C(10)	C(11)	C(12)	121.9(4)
C(11)	C(12)	C(13)	118.7(5)	C(12)	C(13)	C(14)	120.7(4)
C(9)	C(14)	C(13)	120.6(4)	$\mathrm{P}(1)$	C(15)	C(16)	120.0(4)
$\mathrm{P}(1)$	C(15)	C(20)	121.6(4)	C(16)	C(15)	C(20)	118.2(4)
C(15)	$\mathrm{C}(16)$	C(17)	120.2(5)	$\mathrm{C}(16)$	C(17)	C(18)	120.3(5)
C(17)	C(18)	$\mathrm{C}(19)$	119.6(5)	$\mathrm{C}(18)$	C(19)	C (20)	121.1(5)
$\mathrm{C}(15)$	C(20)	C(19)	120.6(5)	$\mathrm{P}(2)$	C (21)	C(22)	119.4(4)
$\mathrm{P}(2)$	C(21)	C(26)	122.3(3)	C(22)	C(21)	C(26)	118.3(4)
C(21)	C(22)	C(23)	120.4(4)	C(22)	C(23)	C(24)	119.8(5)
C(23)	C(24)	C(25)	121.7(5)	C(24)	C(25)	C(26)	119.0(5)
C(21)	C(26)	C(25)	120.8(4)	$\mathrm{P}(2)$	C(27)	C(28)	$123.7(3)$
$\mathrm{P}(2)$	C(27)	C(32)	117.4(3)	C(28)	C(27)	C(32)	118.9(4)
C(27)	C(28)	C(29)	120.3(4)	C(28)	C(29)	C(30)	120.1(5)
C(29)	C(30)	$\mathrm{C}(31)$	120.1(4)	C(30)	C(31)	C(32)	119.7(4)
C(27)	C(32)	C(31)	120.9(4)	$\mathrm{P}(2)$	C(33)	C(34)	123.8(3)
$\mathrm{P}(2)$	C(33)	C(38)	118.5(3)	C(34)	C(33)	C(38)	117.6(4)
C(33)	C(34)	C(35)	121.4(4)	C(34)	C(35)	C(36)	120.5(4)
C(35)	C(36)	C(37)	119.0(4)	C(36)	C(37)	C(38)	120.0(4)
C(33)	C(38)	C(37)	121.4(4)	C(40)	C(39)	C(44)	115.9(9)
C(39)	C(40)	$\mathrm{C}(41)$	122.4(8)	C(40)	C(41)	C(42)	119.5(7)
C(41)	C(42)	C(43)	118.5(7)	C(42)	C(43)	C(44)	120.8(8)
C(39)	C(44)	C(43)	122.7(9)	C(46)	C(45)	C(50)	125.1(16)
C(45)	C(46)	C(47)	116.1(11)	C(46)	C(47)	C(48)	125.2(12)
C(47)	C(48)	C(49)	113.4(17)	C(48)	C(49)	C(50)	127.2(21)
C(45)	C(50)	C(49)	111.2(14)				

(Part II)
X-Ray Crystallographic Analysis of Trans-RuCl $\mathbf{2}_{\mathbf{2}}(\mathbf{P}-\mathrm{N})\left(\mathbf{P P h}_{3}\right)\left(\mathbf{O H}_{\mathbf{2}}\right) \cdot\left(\mathbf{1 . 5 \mathrm { C } _ { 6 }} \mathrm{H}_{\mathbf{6}}\right)(\mathbf{3 3 a}, \mathrm{II})$

Figure VIII. 2 Stereoview of the molecular structure of 33a, II.

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula
Formula Weight
Crystal Colour, Habit
Crystal Dimensions
Crystal System
Lattice Type
Lattice Parameters

Space Group
Z value
$\mathrm{D}_{\text {calc }}$
F_{000}
$\mu(\mathrm{MoK} \alpha)$

Diffractometer
Radiation
Detector Aperture
Temperature
Data Images
ϕ oscillation Range ($\chi=-90$)
ω oscillation Range ($\chi=-90$)
Detector Position
Detector Swing Angle
$2 \theta_{\text {max }}$
No. of Reflections Measured

Corrections
$\mathrm{C}_{47} \mathrm{H}_{46} \mathrm{Cl}_{2} \mathrm{NOP}_{2} \mathrm{Ru}$
874.81
yellow-brown, prism
$0.10 \mathrm{X} 0.15 \times 0.25 \mathrm{~mm}$
triclinic
Primitive
$\mathrm{a}=11.9020(8) \AA$
$\mathrm{b}=12.7647(13) \AA$
$\mathrm{c}=15.590(2) \AA$
$\alpha=106.371(5)^{\circ}$
$\beta=94.400(3)^{\circ}$
$\gamma=113.7903(10)^{\circ}$
$\mathrm{V}=2029.9(4) \AA^{3}$
-
$\mathrm{P} 1(\# 2)$
2
$1.431 \mathrm{~g} / \mathrm{cm}^{3}$
902.00
$6.34 \mathrm{~cm}^{-1}$
B. Intensity Measurements

Rigaku/ADSC CCD
$\operatorname{MoK} \alpha(\lambda=0.71069 \AA)$ graphite monochromated
$94 \mathrm{~mm} \times 94 \mathrm{~mm}$
$-93^{\circ} \mathrm{C}$
462 exposures of 60.0 seconds
0.0-190.0 ${ }^{\circ}$
$-23.0-18.0^{\circ}$
39.229(9) mm
-10.0°
60.0°
Total: 18577
Unique: $9139\left(\mathrm{R}_{\text {irt }}=0.039\right)$
Lorentz-polarization
Absorption/decay/scaling
(coor. factors: $0.6605-1.0000$)
C. Structure Solution and Refinement

Patterson Methods (DIRDIF92 PATTY)
Full-matrix least-squares
$\Sigma \omega\left(\left|F o^{2}\right|-\left|F^{2}\right|\right)^{2}$
$\omega=\frac{1}{\sigma^{2}\left(\mathrm{Fo}^{2}\right)}$
0.0000

All non-hydrogen atoms
9139
495
18.46
0.060; 0.055
1.20

5971
0.032; 0.025
0.004
$1.18 \mathrm{e}^{-/} / \mathrm{A}^{3}$ (near Ru)
$-1.02 \mathrm{e}^{-} / \AA^{3}$ (near Ru)

Table VIII. 4 Atomic coordinates and $\mathrm{B}_{\text {eq }}$

atom	x	y	z	Beq	atom	x	y	z	Beq
$\mathrm{Ru}(1)$	0.20221(2)	0.21923(2)	0.174034(15)	1.018(5)	C(22)	0.3039(2)	0.4193(3)	0.4204(2)	1.45(6)
C1(1)	0.02663(5)	$0.17778(6)$	$0.06146(4)$	1.477(14)	C(23)	0.3621 (2)	0.5273(3)	0.4929(2)	1.82(6)
$\mathrm{Cl}(2)$	0.36596(6)	0.20758(6)	0.26845(4)	1.633(15)	C(24)	0.2925(3)	0.5696(3)	0.5479(2)	$2.10(7)$
$\mathrm{P}(1)$	$0.27389(6)$	0.41616(6)	$0.19006(5)$	1.067(15)	C(25)	0.1623(3)	0.4999(3)	0.5293(2)	2.05(7)
$\mathrm{P}(2)$	0.09942(6)	0.21503(6)	0.29362(5)	1.087(15)	C(26)	0.1040(2)	0.3920(3)	0.4567(2)	1.65(6)
O(1)	0.1283(2)	0.0212(2)	0.13264(15)	1.70(5)	C(27)	-0.0658(2)	0.1927(3)	0.2804(2)	1.38(6)
N(1)	0.3051(2)	0.2195(2)	0.05420(14)	1.23(5)	C(28)	-0.1043(2)	0.2539(3)	0.2333(2)	1.52(6)
C(1)	0.2977(2)	0.4152(3)	0.0750(2)	1.35(6)	C(29)	-0.2256(2)	0.2462(3)	$0.2287(2)$	2.27(7)
C(2)	0.3057(2)	$0.3146(3)$	0.0174(2)	1.41(6)	C(30)	-0.3087(2)	0.1777(3)	0.2703(2)	2.26(7)
C(3)	0.3216(3)	0.3080(3)	-0.0709(2)	$2.36(7)$	C(31)	-0.2701(2)	$0.1188(3)$	0.3193(2)	2.67(7)
C(4)	0.3282(3)	0.4010(3)	-0.1015(2)	2.89(8)	C(32)	-0.1498(2)	0.1254(3)	0.3247(2)	2.06(7)
C(5)	0.3190(3)	0.5011(3)	-0.0458(2)	2.33(7)	C(33)	0.0834(2)	0.0876(3)	$0.3324(2)$	$1.39(6)$
C(6)	0.3056(2)	0.5089(3)	0.0429(2)	1.83(6)	C(34)	0.1527(2)	0.1048(3)	$0.4156(2)$	$1.95(7)$
C(7)	0.4405(2)	0.2494(3)	0.0856(2)	2.21(7)	C(35)	0.1348(3)	0.0054(3)	0.4427(2)	2.70 (8)
C(8)	0.2462(2)	0.0974(3)	-0.0181(2)	2.16 (7)	C(36)	0.0487(3)	-0.1117(3)	0.3869(2)	2.73(8)
C(9)	0.4258(2)	0.5418(3)	0.2584(2)	1.35(6)	C(37)	-0.0192(3)	-0.1288(3)	0.3035(2)	2.41(7)
C(10)	0.5203(2)	0.5183(3)	0.2964(2)	1.60(6)	C(38)	-0.0013(2)	-0.0303(3)	0.2773(2)	1.76(6)
C(11)	0.6393(2)	0.6133(3)	0.3402(2)	2.01(7)	C(39)	0.2545(3)	-0.1825(3)	0.1794(2)	3.18(8)
C(12)	0.6663(2)	0.7318(3)	0.3474(2)	2.24(7)	C(40)	$0.1786(3)$	-0.2298(3)	0.0923(2)	2.90 (8)
C(13)	0.5734(3)	0.7560(3)	0.3107(2)	2.57(7)	C(41)	0.2299(3)	-0.2079(3)	0.0200(2)	2.73(8)
C(14)	$0.4547(2)$	$0.6625(3)$	$0.2676(2)$	1.99(7)	C(42)	0.3575(3)	-0.1374(3)	0.0326(2)	2.76 (8)
C(15)	0.1675(2)	0.4879(2)	0.2114(2)	1.30 (6)	C(43)	0.4334(3)	-0.0909(3)	0.1182(2)	2.98 (8)
C(16)	0.0749(2)	0.4702(3)	0.1405 (2)	1.69 (6)	C(44)	0.3824(3)	-0.1122(3)	0.1912(2)	3.44(9)
C(17)	-0.0136(2)	0.5135(3)	0.1594(2)	2.43(7)	C(45)	0.5558(4)	0.1214(4)	0.5085(3)	4.57(11)
C(18)	-0.0132(3)	0.5720(3)	$0.2485(2)$	2.61(8)	C(46)	$0.6107(3)$	$0.0788(5)$	0.5604(3)	4.73(11)
C(19)	0.0791(3)	0.5921(3)	0.3197(2)	2.39(7)	C(47)	0.5564(4)	-0.0421(5)	0.5530(3)	4.50(12)
C(20)	0.1696(2)	0.5504(3)	0.3006(2)	1.74(6)	$\mathrm{H}(1)$	0.096(2)	-0.023(3)	0.086(2)	0.7(6)
C(21)	0.1733(2)	0.3498(2)	0.3990(2)	1.27(6)	$\mathrm{H}(2)$	0.178(3)	-0.004(3)	0.143(2)	4.2(8)

Table VIII. 5 Bond lengths (\AA) with estimated standard deviations

Atom	atom	distance	atom	atom	distance
$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	2.3976(6)	$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	2.4298(6)
$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	$2.2344(8)$	$\mathrm{Ru}(1)$	P (2)	$2.3085(7)$
$\mathrm{Ru}(1)$	$\mathrm{O}(1)$	2.187(2)	$\mathrm{Ru}(1)$	N(1)	$2.311(2)$
$\mathrm{P}(1)$	C(1)	1.834(3)	$\mathrm{P}(1)$	C(9)	1.838(3)
$\mathrm{P}(1)$	$\mathrm{C}(15)$	1.839(2)	$\mathrm{P}(2)$	C(21)	1.843(3)
$\mathbf{P}(\mathbf{2})$	$\mathrm{C}(27)$	1.856(2)	P (2)	C(33)	$1.836(3)$
$\mathrm{N}(1)$	C(2)	1.479(3)	$\mathrm{N}(1)$	C(7)	1.503(3)
$\mathrm{N}(1)$	C(8)	1.482(3)	C(1)	C(2)	$1.388(4)$
C(1)	C(6)	$1.395(4)$	C(2)	C(3)	$1.387(4)$
C(3)	C(4)	1.376(5)	C(4)	C(5)	1.378(4)
C(5)	C(6)	$1.385(4)$	C(9)	$\mathrm{C}(10)$	$1.406(3)$
C(9)	$\mathrm{C}(14)$	1.398(4)	$\mathrm{C}(10)$	C(11)	1.393(4)
C(11)	$\mathrm{C}(12)$	1.383(4)	C(12)	C(13)	1.387(4)
C(13)	C(14)	1.383(4)	C(15)	C(16)	1.400 (3)
C(15)	C(20)	1.387(3)	C(16)	C(17)	1.388(3)
C(17)	$\mathrm{C}(18)$	1.378(4)	C(18)	C(19)	1.390(4)
$\mathrm{C}(19)$	C(20)	1.398(3)	C(21)	C(22)	$1.398(3)$
C(21)	C(26)	1.406(3)	C(22)	C(23)	1.375 (4)
C(23)	C(24)	1.386(3)	C(24)	C(25)	1.396(4)
C(25)	C(26)	1.374(4)	C(27)	C(28)	$1.386(4)$
C(27)	C(32)	$1.399(4)$	C(28)	C(29)	$1.402(3)$
C(29)	$\mathrm{C}(30)$	$1.372(4)$	C(30)	C(31)	1.380(4)
C(31)	C(32)	$1.395(3)$	C(33)	C(34)	1.393(4)
C(33)	C(38)	$1.390(4)$	C(34)	C(35)	$1.389(4)$
C(35)	C(36)	$1.391(4)$	C(36)	C(37)	$1.388(4)$
$\mathrm{C}(37)$	C(38)	1.372(4)	C(39)	C(40)	1.390 (4)
C(39)	C(44)	$1.385(4)$	C(40)	C(41)	1.367(4)
C(41)	C(42)	1.380(4)	C(42)	C(43)	1.372(4)
C(43)	C(44)	1.373(4)	C(45)	C(46)	1.353(5)
C(45)	C(47)*	1.376(5)	C(46)	C(47)	$1.378(6)$
O(1)	H(1)	0.74(2)	$\mathrm{O}(1)$	H(2)	0.81(3)

*symmetry operation: 1-x, -y, 1-z

Table VIII. 6 Bond angles (${ }^{\circ}$) with estimated standard deviations

Atom	atom	atom	angle	atom	atom	atom	angle
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	165.58(2)	$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	P(1)	88.02(2)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	P (2)	96.30(2)	$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	O(1)	85.40(6)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	N(1)	84.09(5)	$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	105.32(3)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	86.97(2)	$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	O(1)	80.63(6)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	92.37(5)	$\mathrm{P}(1)$	$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	99.70(3)
$\mathrm{P}(1)$	$\mathrm{Ru}(1)$	O(1)	169.95(6)	$\mathrm{P}(1)$	$\mathrm{Ru}(1)$	N(1)	81.46(6)
$\mathrm{P}(2)$	$\mathrm{Ru}(1)$	$\mathrm{O}(1)$	88.57(6)	$\mathrm{P}(2)$	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	178.77(6)
O(1)	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	90.30(8)	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	C(1)	102.15(9)
$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	C(9)	127.19(9)	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	C(15)	118.76(9)
C(1)	$\mathrm{P}(1)$	C(9)	99.45(11)	C(1)	$\mathrm{P}(1)$	C(15)	103.65(11)
C(9)	$P(1)$	C(15)	101.64(11)	$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	C(21)	116.73(8)
$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	C(27)	121.90(9)	$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	C(33)	112.03(8)
C (21)	$\mathrm{P}(2)$	C(27)	100.05(11)	C (21)	$\mathrm{P}(2)$	C(33)	104.02(12)
C(27)	$\mathrm{P}(2)$	C(33)	99.38(12)	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	C(2)	110.19(14)
$\mathrm{Ru}(\mathrm{l})$	$\mathrm{N}(1)$	$\mathrm{C}(7)$	111.16(15)	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	C(8)	110.46(15)
C(2)	$\mathrm{N}(1)$	C(7)	106.5(2)	C(2)	$\mathrm{N}(1)$	C(8)	111.4(2)
C(7)	$\mathrm{N}(1)$	C(8)	107.0(2)	$\mathrm{P}(1)$	C(1)	C(2)	$117.7(2)$
$\mathrm{P}(1)$	C(1)	C(6)	123.2(2)	C(2)	C(1)	C(6)	119.1(2)
$\mathrm{N}(\mathrm{l})$	C(2)	C(1)	118.6(2)	$\mathrm{N}(1)$	C(2)	C(3)	121.2(2)
C(1)	C(2)	C(3)	120.1(3)	C(2)	C(3)	C(4)	$119.8(3)$
C(3)	C(4)	C(5)	121.0(3)	C(4)	C(5)	C(6)	$119.2(3)$
C(1)	C(6)	C(5)	120.6(3)	$\mathrm{P}(1)$	C(9)	C(10)	120.8(2)
P(1)	C(9)	C(14)	121.0(2)	C(10)	C(9)	C(14)	118.0(2)
C(9)	$\mathrm{C}(10)$	C(11)	120.2(3)	C(10)	C(11)	C(12)	120.8(3)
C(11)	C(12)	C(13)	119.4(3)	C(12)	C(13)	C(14)	120.4(3)
C(9)	C(14)	C(13)	121.3(3)	$\mathrm{P}(1)$	C(15)	C(16)	121.4(2)
$\mathrm{P}(1)$	C(15)	C (20)	119.6(2)	C(16)	C(15)	C(20)	118.7(2)
C(15)	$\mathrm{C}(16)$	$\mathrm{C}(17)$	$120.5(3)$	C(16)	$\mathrm{C}(17)$	C(18)	120.3(3)
C(17)	C(18)	C(19)	120.0(2)	C(18)	C(19)	$\mathrm{C}(20)$	119.7(3)
C(15)	C(20)	C(19)	120.7(2)	P (2)	C(21)	C(22)	119.1(2)
$\mathrm{P}(2)$	C(21)	C(26)	123.2(2)	C(22)	C(21)	C(26)	117.5(2)
C(21)	C(22)	C(23)	121.3(2)	C(22)	C(23)	C(24)	120.6(2)
C(23)	C(24)	C(25)	118.9(3)	C(24)	C(25)	C(26)	120.5(2)
$\mathrm{C}(21)$	C(26)	C(25)	121.1(2)	$\mathrm{P}(2)$	C(27)	C(28)	119.5(2)
$\mathrm{P}(2)$	C(27)	C(32)	121.7(2)	C(28)	C(27)	C(32)	118.5(2)
C (27)	C(28)	C(29)	120.5(3)	C(28)	C(29)	C(30)	120.8(3)
C(29)	C(30)	C(31)	119.1(2)	C(30)	C(31)	C(32)	120.9(3)
C(27)	C(32)	C(31)	120.2(3)	P (2)	C(33)	C(34)	122.3(2)
$\mathrm{P}(2)$	C(33)	C(38)	119.1(2)	C(34)	C(33)	C(38)	118.7(3)
C(33)	C(34)	C(35)	120.0(3)	C(34)	C(35)	C(36)	$120.5(3)$
C(35)	C(36)	C(37)	119.4(3)	C(36)	C(37)	C(38)	119.8(3)
C(33)	C(38)	C(37)	121.6 (3)	C(40)	C(39)	C(44)	118.6(3)
C(39)	$\mathrm{C}(4 \mathrm{C})$	C(41)	120.4(3)	C(40)	C(41)	C(42)	120.4(3)
C(41)	C(42)	C(43)	119.6(3)	C(42)	C(43)	C(44)	120.2(3)
C(39)	C(44)	C(43)	120.6(3)	C(46)	C(45)	C(47)*	119.3(4)
C(45)	C(46)	C(47)	121.3(4)	C(45)*	C(47)	C(46)	119.4(4)
$\mathrm{Ru}(1)$	$\mathrm{O}(1)$	$\mathrm{H}(1)$	126.6(23)	$\mathrm{Ru}(1)$	$\mathrm{O}(1)$	H(2)	116.4(25)
H(1)	O(1)	H(2)	97.5(28)				

APPENDIX IX

X-Ray Crystallographic Analysis of Cis-RuCl $\mathbf{2}_{\mathbf{2}}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)\left(\eta^{\mathbf{2}}-\mathbf{H}_{\mathbf{2}}\right)(\mathbf{3 6})$

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula
Formula Weight
Crystal Colour, Habit
Crystal Dimensions
Crystal System
Lattice Type
Lattice Parameters

Space Group
Z value
D calc
Fooo $^{\text {Absorption coefficient }}$
$\mathrm{C}_{38} \mathrm{H}_{37} \mathrm{Cl}_{2} \mathrm{NP}_{2} \mathrm{Ru}$
741.64
yeilow, block
$0.30 \times 0.16 \mathrm{X} 0.07 \mathrm{~mm}$
monoclinic
Primitive
$\mathrm{a}=8.8084(1) \AA$
$\mathrm{b}=17.2509(3) \AA$
$\mathrm{c}=11.5902(2) \AA$
$\beta=105.709(1)^{\circ}$
$\mathrm{V}=1695.38(5) \mathrm{A}^{3}$
$\mathrm{P2}_{1}(\# 4)$
2
$1.453 \mathrm{~g}^{\circ} / \mathrm{cm}^{3}$
760
$0.743 \mathrm{~mm}^{-1}$
B. Intensity Measurements
Diffractometer
Wavelength
Temperature
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Siemens SMART Platform CCD
$0.71073 \AA$
$-100^{\circ} \mathrm{C}$
1.83 to 25.01°
$-10 \leq h \leq 10,-19 \leq k \leq 20,0 \leq \ell \leq 13$
8555
$4935\left(\mathrm{R}_{\text {int }}=0.0167\right)$
C. Structure Solution and Refinement

Structure Solution
Refinement
Function Minimized
Weighting scheme
Absorption correction
Max. and min. transmission
Absolute structure parameter Data/restraints/parameters
Residuals (on F^{2}, all data): R ; Rw
Residuals (on $\mathrm{F}, \mathrm{I}>2 \sigma(\mathrm{I})=4816$): R; Rw
Goodness of Fit on F^{2}
Maximum peak in Final Diff. Map
Minimum peak in Final Diff. Map

Direct methods (SHELXTL-V5.0)
Full-matrix least-squares on \mathbf{F}^{2}
$\Sigma \omega\left(\left|\mathrm{Fo}^{2}\right|-\left|\mathrm{Fc}^{2}\right|\right)^{2}$
$\omega=\left[\sigma^{2}\left(\mathrm{Fo}^{2}\right)+(\mathrm{AP})^{2}+(\mathrm{BP})\right]^{-1}$, where
$\mathrm{P}=\left(\mathrm{Fo}^{2}+2 \mathrm{Fc}^{2}\right) / 3, \mathrm{~A}=0.0350$, and $\mathrm{B}=0.0860$
SADABS (Sheldrick, 1996)
1.000 and 0.837
$0.01(2)$
4935/1/403
$0.0 .217 ; 0.0537$
0.0208; 0.0532
1.026
$0.379 \mathrm{e}^{\mathrm{e}} / \AA^{3}$
$-0.320 \mathrm{e}^{-} / \AA^{3}$

Table IX. 1 Atomic coordinates $\left(\times 10^{4}\right)$ and U_{eq} (defined as one third of the trance of the orthogonalized U_{ij} tensor.)

atom	x	y	z	U(eq)	atom	x	y	z	U(eq)
$\mathrm{Ru}(1)$	7078(1)	6753(1)	2103(1)	17(1)	C (19)	3392(3)	6918(2)	1287(3)	33(1)
$\mathrm{Cl}(1)$	6936(1)	5463(1)	2961(1)	28(1)	$\mathrm{C}(20)$	4274(4)	5770(2)	S07(3)	38(1)
$\mathrm{Cl}(2)$	8165(1)	6164(1)	619(1)	26(1)	$\mathrm{P}(2)$	9381(1)	6824(1)	3636(1)	18(1)
$\mathrm{P}(1)$	6939(1)	7900(1)	1089(1)	18(1)	C (21)	10439(3)	7746(2)	3893(2)	24(1)
C(1)	8476(3)	8368(2)	520(2)	23(1)	$\mathrm{C}(22)$	10600(4)	8214(2)	4899(3)	32(1)
$\mathrm{C}(2)$	9286(4)	7938(2)	-141(3)	31(1)	C(23)	11453(4)	8909(2)	5011(3)	43(1)
C(3)	10366(4)	8291(2)	-653(3)	39(1)	C(24)	12169(4)	9125(2)	4149(4)	48(1)
C(4)	10645(4)	9086(2)	-512(3)	33(1)	C (25)	12026(4)	8664(2)	3140(3)	42(1)
C(5)	9843(4)	9512(2)	142(3)	35(1)	C(26)	11156(4)	7986(2)	3008(3)	31(1)
C(6)	8771(4)	9162(2)	649(3)	29(1)	C(27)	9008(3)	6636(2)	5106(2)	25(1)
C (7)	6169(3)	8725(2)	1753(2)	21(1)	C (28)	7943(4)	7098(2)	5494(3)	37(1)
C(8)	7017(4)	8975(2)	2886(3)	31(1)	C(29)	7669(4)	6966(2)	6612(3)	47(1)
C(9)	6557(4)	9622(2)	3406(3)	34(1)	C(30)	8436(5)	6369(2)	7340(3)	46(1)
C(10)	5221(4)	10023(2)	2808(3)	33(1)	$\mathrm{C}(31)$	9465(5)	5908(2)	6954(3)	43(1)
C(11)	4350(4)	9777(2)	1687(3)	32(1)	C(32)	9759(4)	6038(2)	5846(3)	32(1)
C(12)	4820(3)	9136(2)	1159(3)	26(1)	C(33)	11022(3)	6160(2)	3634(2)	22(1)
C(13)	5446(3)	7703(2)	-316(2)	23 (1)	C(34)	10762(4)	5450(2)	3052(3)	27(1)
C(14)	5254(3)	8170(2)	-1332(2)	30(1)	C(35)	12009(4)	4950(2)	3090(3)	33(1)
C (15)	4129(4)	7979(2)	-2398(3)	38(1)	C(36)	13541(3)	5157(2)	3692(3)	31(1)
$\mathrm{C}(16)$	3244(4)	7315(2)	-2442(3)	39(1)	C(37)	13819(3)	S864(2)	4266(3)	29(1)
C(17)	3422(3)	6849(2)	-1441(2)	33(1)	C(38)	12585(3)	6364(2)	4257(2)	25(1)
$\mathrm{C}(18)$	4504(3)	7046(2)	-363(2)	24(1)	H(1*)	6189(28)	7090(13)	3026(20)	81(7)
$\mathrm{N}(1)$	4641(2)	6609(1)	746(2)	23(1)					
H(1*)	ouble-oc	ancy hy	gen ato	$\eta^{2}-{ }^{2}$	ically				

Table IX. 2 Bond lengths (\AA) with estimated standard deviations

Atom	atom	distance	atom	atom	distance
$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	$2.2884(7)$	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	2.306(2)
$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	2.3098(6)	$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	2.4090 (6)
$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	2.4543(7)	$\mathrm{P}(1)$	C(7)	1.832(3)
$\mathrm{P}(1)$	C(13)	1.827(3)	C(1)	C(2)	1.394(4)
$\mathrm{P}(1)$	C(1)	$1.844(3)$	C(2)	C(3)	1.391(4)
$\mathrm{C}(1)$	C(6)	$1.395(4)$	C(3)	C(4)	1.394(5)
C(7)	C(8)	1.392(4)	C(4)	C(5)	$1.380(5)$
C(8)	C(9)	1.381(4)	C(5)	C(6)	$1.378(4)$
C(9)	C(10)	$1.379(4)$	C(7)	C(12)	1.396(4)
$\mathrm{C}(10)$	C(11)	$1.385(4)$	C(13)	C(18)	$1.397(4)$
C(11)	C(12)	1.380 (4)	C(14)	C(15)	$1.398(4)$
$\mathrm{C}(13)$	C(14)	$1.399(4)$	C(15)	C(16)	1.377(5)
$\mathrm{N}(1)$	C(20)	1.492(4)	C(16)	C(17)	$1.386(5)$
P (2)	C(21)	1.827(3)	C(17)	C(18)	1.392(4)
$\mathrm{P}(2)$	C(27)	1.848(3)	C(21)	C(22)	1.394(4)
C(18)	$\mathrm{N}(1)$	$1.466(3)$	$\mathrm{C}(22)$	C(23)	1.401(5)
$\mathrm{N}(1)$	$\mathrm{C}(19)$	1.503(3)	C(23)	C(24)	1.370(6)
$\mathrm{P}(2)$	C(33)	1.845(3)	C(24)	C(25)	1.393 (6)
C(21)	C(26)	$1.404(4)$	C(25)	C (26)	$1.383(5)$
C(27)	C(32)	$1.388(4)$	C(27)	C(28)	$1.395(4)$
C(28)	C(29)	$1.400(4)$	C(33)	C(34)	$1.387(4)$
C(29)	C(30)	1.386(5)	C(34)	C(35)	1.388(4)
C(30)	C(31)	$1.369(5)$	C(35)	C(36)	1.388 (5)
C(31)	C(32)	$1.396(4)$	C(36)	C(37)	$1.379(4)$
C(33)	C(38)	$1.415(4)$	C(37)	C(38)	$1.385(4)$

Table IX. 3 Bond angles $\left({ }^{\circ}\right)$ with estimated standard deviations

Atom	atom	atom	angle	atom	atom	atom	angle
$\mathrm{P}(1)$	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	80.34(6)	$\mathrm{P}(1)$	$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	105.27(3)
$\mathrm{N}(1)$	$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	172.78(6)	$\mathrm{P}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	88.52(2)
$\mathrm{N}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	86.78(6)	P (2)	$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	97.79(2)
$\mathbf{P}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	172.22(2)	$\mathrm{N}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	92.20(6)
$\mathrm{P}(2)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	82.34(3)	$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	88.86(2)
$\mathrm{P}(1)$	$\mathrm{Ru}(1)$	$\mathrm{H}\left(1^{*}\right)$	93.6(8)	$\mathrm{N}(1)$	$\mathrm{Ru}(1)$	H(1*)	87.8(8)
$\mathrm{P}(2)$	$\mathrm{Ru}(1)$	$\mathrm{H}\left(1^{*}\right)$	87.3(8)	$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	H(1*)	173.8(8)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{H}\left(1^{*}\right)$	88.3(8)	C (13)	$\mathrm{P}(1)$	C(7)	105.10(13)
C(13)	$\mathrm{P}(1)$	C(1)	100.61(12)	C(7)	$\mathrm{P}(1)$	$\mathrm{C}(1)$	101.61(13)
C(13)	$\mathrm{P}(1)$	$\mathrm{Ru}(1)$	102.84(9)	C(7)	$\mathrm{P}(1)$	$\mathrm{Ru}(1)$	115.43(8)
C(1)	$\mathrm{P}(1)$	$\mathrm{Ru}(1)$	128.31(9)	C(2)	C(1)	C (6)	118.3(3)
C(2)	C(1)	$\mathrm{P}(1)$	119.8(2)	C(6)	C(1)	$\mathrm{P}(1)$	121.7(2)
C(3)	C(2)	C(1)	120.8(3)	C(2)	C(3)	C(4)	120.0(3)
C(5)	C(4)	C(3)	119.2(3)	C(6)	c(5)	C(4)	120.8(3)
C(5)	C(6)	C(1)	120.9(3)	C(8)	C(7)	$\mathrm{C}(12)$	118.4(3)
C(8)	C(7)	$\mathrm{P}(1)$	118.2(2)	$\mathrm{C}(12)$	C(7)	P(1)	123.4(2)
C(9)	C(8)	C(7)	121.1(3)	C(10)	C(9)	C(8)	119.8(3)
C(9)	C(10)	C(11)	119.9(3)	$\mathrm{C}(12)$	C(11)	C(10)	120.4(3)
C(11)	C(12)	C(7)	120.4(3)	C(18)	C(13)	$\mathrm{C}(14)$	120.0(2)
C(18)	C(13)	$\mathrm{P}(1)$	117.6(2)	C(14)	C(13)	$\mathrm{P}(1)$	122.5(2)
C(15)	C(14)	C(13)	120.2(3)	$\mathrm{C}(16)$	C(15)	C(14)	119.2(3)
C(15)	C(16)	C(17)	121.1(3)	$\mathrm{C}(16)$	C(17)	C(18)	120.3(3)
C(17)	C(18)	C(13)	119.2(3)	$\mathrm{C}(17)$	$\mathrm{C}(18)$	N(1)	122.3 (3)
C(13)	$\mathrm{C}(18)$	N(1)	118.4(2)	$\mathrm{C}(18)$	N(1)	C(20)	111.9(2)
C(18)	$\mathrm{N}(1)$	C (19)	106.7(2)	C(20)	$\mathrm{N}(1)$	C(19)	105.9(2)
C(18)	N(1)	$\mathrm{Ru}(1)$	112.5(2)	C(20)	$\mathrm{N}(1)$	$\mathrm{Ru}(1)$	110.2(2)
C(23)	C (24)	C (25)	120.1(3)	$\mathrm{C}(21)$	$\mathrm{P}(2)$	C(33)	100.10(14)
C(25)	C(26)	C(21)	121.0(3)	C(33)	$\mathrm{P}(2)$	C (27)	103.11(12)
C(32)	C(27)	$\mathrm{P}(2)$	121.7(2)	$\mathrm{C}(33)$	$\mathrm{P}(2)$	$\mathrm{Ru}(1)$	119.45(9)
C(27)	C(28)	C(29)	120.4(3)	C(22)	C(21)	C (26)	118.4(3)
C(31)	C(30)	C(29)	119.4(3)	C(26)	C(21)	P (2)	116.7(2)
C(34)	C(33)	P (2)	121.5(2)	C(24)	C(23)	C (22)	120.5(3)
C(37)	C(38)	C(33)	120.1(3)	C(26)	C(25)	C(24)	119.8(3)
C(34)	C(33)	C(38)	118.5(3)	C(32)	C(27)	C (28)	118.3(3)
C(38)	C(33)	$\mathrm{P}(2)$	120.0(2)	C(28)	C(27)	P (2)	120.0(2)
C(34)	C(35)	C(36)	120.6(3)	$\mathrm{C}(30)$	C(29)	C(28)	120.4(3)
C(36)	C(37)	C(38)	120.7(3)	C(30)	C(31)	C(32)	120.7(3)

APPENDIX X

X-Ray Crystallographic Analysis of $\operatorname{Cis}-\mathrm{RuCl}_{2}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)(=\mathbf{C}=\mathbf{C H P h})(45)$

Figure X. 1 Pluto plot of the molecular structure of 45.

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula
Formula Weight
Crystal Colour, Habit
Crystal Dimensions
Crystal System
Lattice Type
No. of Reflections Used for Unit Cell Determination (20 range)
Omega Scan Peak Width at Half-height
Lattice Parameters
Space Group
Z value
$\mathrm{D}_{\text {calc }}$
F_{000}
$\mu(\mathrm{CuK} \alpha)$
$\mathrm{C}_{46} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{NP}_{2} \mathrm{Ru}$
841.76
red-orange, irregular
0.20 X 0.30 X 0.40 mm
monoclinic
C-centred
$25\left(53.0-73.0^{\circ}\right)$
0.38°
$\mathrm{a}=10.1402(12) \AA$
$\mathrm{b}=21.718(2) \AA$
$\mathrm{c}=18.187(2) \AA$
$\beta=100.329(11)^{\circ}$
$\mathrm{V}=3940.3(7) \AA^{3}$
$\mathrm{Cc}(\# 9)$
4
$1.419 \mathrm{~g} / \mathrm{cm}^{3}$
1728
$54.94 \mathrm{~cm}^{-1}$
B. Intensity Measurements

Diffractometer
Radiation
Take-off Angle
Detector Aperture
Crystal to Detector Distance
Voltage, Current
Temperature
Scan Type
Scan Rate
Scan Width
$2 \theta_{\text {max }}$
No. of Reflections Measured

Corrections

Rigaku AFC6S
$\operatorname{CuK} \alpha(\lambda=1.54178 \AA)$ graphite monochromated
6.0°
6.0 mm horizontal
6.0 mm vertical

285 mm
$45 \mathrm{kV}, 25 \mathrm{~mA}$
21.0°
$\omega-2 \theta$
16% min (in ω) (up to 9 scans)
$(1.05+0.20 \tan \theta)^{\circ}$
155.0°
Total: 4271
Unique: $4137\left(\mathrm{R}_{\text {irt }}=0.066\right)$
Lorentz-polarization
Absorption
(trans. Factors: $0.624-1.000$)
C. Structure Solution and Refinement

Structure Solution
Refinement
Function Minimized
Least Squares Weights
p-factor
Anomalous Dispersion
No. Observations ($\mathrm{I}>3.00 \sigma(\mathrm{I})$)
No. Variables
Patterson Methods (DIRDIF92 PATTY)
Full-matrix least-squares
$\sum \omega(|\mathrm{Fo}|-|\mathrm{Fc}|)^{2}$
$\omega=1$
0.0000

All non-hydrogen atoms
3677
467
Reflection/Parameter Ratio
Residuals: R; Rw
Goodness of Fit Indicator Max Shift/Error in Final Cycle
Maximum peak in Final Diff. Map
Minimum peak in Final Diff. Map
7.87
$0.043 ; 0.048$
1.04
0.0001
$0.90 \mathrm{e}^{-7} \AA^{3}$
$-0.84 e^{-/} / \AA^{3}$

Table II. 1 Atomic coordinates and $\mathrm{B}_{\text {eq }}$

atom	\pm	y	\mathbf{z}	$\mathrm{B}_{\text {eq }}$	atom	x	\mathbf{y}	z	$\mathrm{B}_{\text {eq }}$
$\mathrm{Ru}(1)$	0.49780	0.50642(2)	0.49750	3.056(10)	C(21)	0.2864(12)	0.3342(6)	0.2766(6)	6.4(3)
$\mathrm{Cl}(1)$	0.4707(3)	$0.61174(10)$	0.53810(14)	4.50 (5)	C(22)	0.3252(10)	0.3476(5)	0.3518(6)	$5.1(3)$
C1(2)	0.6498(3)	0.48129(12)	$0.61744(14)$	4.76(6)	C(23)	0.6327(9)	0.3469(4)	0.5066(5)	3.7(2)
$\mathrm{P}(1)$	0.4989(2)	$0.40084(10)$	0.47436(12)	3.27(4)	C(24)	0.6974(10)	$0.3114(5)$	0.4600(6)	4.4(2)
P(2)	0.6725(2)	0.54955(10)	0.44573(14)	3.43(5)	C(25)	0.7934(11)	0.2690(5)	0.4863(8)	5.6(3)
N(1)	0.3178(7)	0.4800(3)	0.5528(5)	4.0(2)	C(26)	0.8309(10)	0.2604 (5)	0.5621(9)	5.8(3)
C(1)	0.3860(8)	0.5142(4)	0.4082(5)	3.4(2)	C(27)	$0.7670(11)$	0.2925 (5)	0.6107(7)	5.5(3)
C(2)	0.3014(10)	0.5163(4)	0.3434(5)	4.3(2)	C(28)	$0.6716(11)$	0.3356(5)	0.5842(6)	4.8(2)
C(3)	0.2039(8)	0.5651(5)	0.3218(5)	4.2(2)	C(29)	$0.6120(9)$	0.6090(4)	0.3760(5)	3:9(2)
C(4)	0.2167(11)	0.6229(5)	0.3542(7)	5.8(3)	C(30)	0.5427(11)	0.5936(5)	$0.3037(6)$	4.8(2)
C(5)	0.122(2)	0.6674(7)	0.3332(8)	8.4(4)	C(31)	0.493(2)	0.6391(6)	0.2551(8)	5.7(3)
C(6)	0.0132(15)	0.6558(8)	0.2778(8)	7.9(4)	C(32)	0.4999(15)	0.6985(6)	0.2747(7)	7.0(4)
C(7)	-0.0005(14)	0.6011(7)	0.2443(8)	6.6(3)	C(33)	0.5651(13)	0.7150(5)	0.3477(7)	6.1(3)
C(8)	0.0954(9)	0.5547(6)	0.2644(6)	5.1(2)	C(34)	$0.6162(10)$	0.6700(4)	0.3960(6)	4.6(2)
C(9)	0.3707(8)	0.3718(4)	0.5228(5)	3.7(2)	C(35)	0.7749(8)	0.4969(4)	0.4023(6)	4.1(2)
C(10)	0.2925(8)	0.4128(4)	0.5536(5)	3.7(2)	C(36)	0.8417(10)	0.4519(5)	0.4474(6)	4.6(2)
C(11)	0.1919(10)	0.3901(5)	0.5902(6)	5.2(3)	C(37)	0.9252(10)	0.4089(5)	0.4212(8)	5.8(3)
C(12)	0.1702(11)	0.3289(5)	0.5953(6)	5.4(3)	C(38)	0.9334(11)	0.4091(6)	0.3460(8)	6.2(3)
C(13)	0.2464(11)	0.2874(5)	0.5636(7)	5.3(3)	C(39)	0.8676(12)	0.4534(6)	0.3001(7)	6.1(3)
C(14)	$0.3481(10)$	0.3093(5)	0.5273(6)	4.3(2)	C(40)	0.7885(10)	0.4984(5)	0.3270(6)	5.2(2)
C(15)	0.3390(12)	0.5037(5)	0.6302(6)	5.7(3)	C(41)	0.8057(9)	0.5927(4)	0.5065(6)	4.2(2)
C(16)	0.1952(10)	0.5107(5)	0.5118(7)	5.6(3)	C(42)	0.8048(10)	0.6060(5)	0.5812(6)	4.8(2)
C(17)	0.4427(9)	0.3778(4)	$0.3766(5)$	3.6(2)	C(43)	0.9096(13)	0.6399(5)	$0.6215(7)$	6.2(3)
C(18)	0.5226(9)	0.3942(5)	0.3254(5)	4.4(2)	C(44)	1.0134(11)	0.6608(5)	0.5906(8)	6.1(3)
C(19)	0.4869(14)	0.3802(5)	$0.2495(8)$	4.9(2)	C(45)	$1.0140(11)$	0.6479(5)	0.5153(8)	5.7(3)
C(20)	0.3648(12)	0.3499(5)	0.2266(6)	5.3(3)	C(46)	0.9135(9)	0.6137(5)	0.4757(6)	4.9(2)

Table X. 2 Bond lengths (\AA) with estimated standard deviations

atom	atom	distance	atom	atom	distance
$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	2.434(2)	$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	$2.495(2)$
Ru(1)	$\mathrm{P}(1)$	2.332(2)	$\mathrm{Ru}(1)$	P (2)	$2.346(2)$
$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	$2.308(7)$	$\mathrm{Ru}(1)$	C(1)	$1.814(8)$
$\mathrm{P}(1)$	C(9)	1.809(9)	$\mathrm{P}(1)$	C(17)	1.837(9)
$\mathrm{P}(1)$	C(23)	1.808(9)	$\mathrm{P}(2)$	C(29)	1.836(9)
$\mathrm{P}(2)$	C(35)	1.818(9)	$\mathrm{P}(2)$	C(41)	1.841(9)
$\mathrm{N}(1)$	C(10)	1.480(11)	$\mathrm{N}(1)$	$\mathrm{C}(15)$	1.478(12)
N(1)	$\mathrm{C}(16)$	1.488(13)	C(1)	C(2)	1.329(12)
C(2)	C(3)	$1.455(13)$	C(3)	C(4)	1.382(15)
C(3)	C(8)	1.393(12)	C(4)	C(5)	1.37(2)
C(5)	C(6)	1.38(2)	C(6)	C(7)	1.33(2)
C(7)	C(8)	1.40(2)	C(9)	C(10)	1.377(12)
C(9)	C(14)	1.383(13)	$\mathrm{C}(10)$	C(11)	1.404(13)
C(11)	C(12)	1.352(15)	C(12)	C(13)	1.380(15)
C(13)	C(14)	1.404(13)	C(17)	C(18)	1.387(12)
$\mathrm{C}(17)$	C(22)	1.364(12)	C(18)	C(19)	1.40(2)
$\mathrm{C}(19)$	C(20)	1.40(2)	C(20)	C(21)	1.354(15)
C(21)	C(22)	$1.384(14)$	C(23)	C(24)	1.393(13)
C(23)	C(28)	1.418(13)	C(24)	C(25)	1.363(14)
C(25)	C(26)	1.37(2)	C(26)	C(27)	1.38 (2)
C(27)	C(28)	1.370(14)	C(29)	C(30)	1.415(13)
C(29)	C(34)	1.373(13)	C(30)	C(31)	1.361(15)
C(31)	C(32)	1.34 (2)	C(32)	C(33)	1.42 (2)
C(33)	C(34)	1.353 (14)	C(35)	C(36)	1.373 (13)
C(35)	C(40)	1.401(13)	C(36)	C(37)	1.401(14)
C(37)	C(38)	1.39(2)	C(38)	C(39)	1.37(2)
C(39)	C(40)	1.408(14)	C(41)	C(42)	1.390(14)
C(41)	C(46)	1.391(13)	C(42)	C(43)	$1.389(14)$
C(43)	C(44)	1.36(2)	C(44)	C(45)	1.40(2)

Table IV. 3 Bond angles (${ }^{\circ}$) with estimated standard deviations

atom	atom	atom	angle	atom	atom	atom	angle
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	91.50(9)	$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	169.56(8)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	P (2)	83.15(8)	$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	87.8(2)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	C(1)	95.6(3)	$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	85.45(8)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	92.61(9)	$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	N(1)	88.7(2)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	C(1)	172.7(3)	$\mathrm{P}(1)$	$\mathrm{Ru}(1)$	P (2)	106.94(8)
$\mathrm{P}(1)$	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	82.2(2)	$\mathrm{P}(1)$	$\mathrm{Ru}(1)$	C(1)	87.3(3)
$\mathbf{P}(2)$	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	170.9(2)	$\mathrm{P}(2)$	$\mathrm{Ru}(1)$	C(1)	89.9(3)
$\mathrm{N}(1)$	$\mathrm{Ru}(1)$	C(1)	89.9(3)	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	C(9)	103.1(3)
$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	C(17)	115.6(3)	$\mathrm{Ru}(1)$	$\mathrm{P}(1)$	C(23)	127.3(3)
C(9)	$\mathrm{P}(1)$	C(17)	104.5(4)	C(9)	$\mathrm{P}(1)$	C(23)	100.3(4)
C(17)	$\mathrm{P}(1)$	C(23)	102.8(4)	$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	C(29)	112.0 (3)
$\mathrm{Ru}(1)$	$\mathrm{P}(2)$	C(35)	117.0(3)	$\mathrm{Ru}(1)$	$\mathbf{P}(2)$	C(41)	119.2(3)
C(29)	P (2)	C(35)	106.8(4)	C(29)	P (2)	C(41)	100.1(4)
C(35)	$\mathrm{P}(2)$	C(41)	99.6(4)	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	C(10)	113.6 (5)
$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	C(15)	109.7(6)	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	C(16)	109.0(6)
C(10)	N(1)	C(15)	109.3(8)	C(10)	$\mathrm{N}(1)$	C(16)	108.4(7)
C(15)	$\mathrm{N}(1)$	C(16)	106.6(8)	$\mathrm{Ru}(1)$	C(1)	C(2)	176.4(8)
C(1)	C(2)	C(3)	124.3(9)	C(2)	C(3)	C(4)	122.6 (9)
C(2)	C(3)	C(8)	119.4(10)	C(4)	C(3)	C(8)	117.9(9)
C(3)	C(4)	C(5)	120.9(11)	C(4)	C(5)	C(6)	120.3(14)
C(5)	C(6)	C(7)	120.2(13)	C(6)	C(7)	C(8)	120.8(13)
C(3)	C(8)	C(7)	119.7(11)	$\mathrm{P}(1)$	C(9)	C(10)	119.3 (7)
$\mathrm{P}(1)$	C(9)	C(14)	120.8(7)	C(10)	C(9)	C(14)	$119.9(8)$
N(1)	C(10)	C(9)	121.3(8)	$\mathrm{N}(1)$	C(10)	C(11)	$119.5(8)$
C(9)	C(10)	C(11)	119.1(9)	$\mathrm{C}(10)$	C(11)	C(12)	121.3(10)
C(11)	C(12)	C(13)	120.3(9)	C(12)	C(13)	C(14)	119.2(9)
C(9)	$\mathrm{C}(14)$	C(13)	120.3(9)	$\mathrm{P}(1)$	C(17)	C(18)	117.6(7)
$\mathrm{P}(1)$	C(17)	C(22)	123.6(7)	C(18)	C(17)	C(22)	118.8(9)
$\mathrm{C}(17)$	C(18)	C(19)	121.9(9)	C(18)	C(19)	C(20)	117.1(11)
C(19)	C (20)	C(21)	120.9(10)	C (20)	C(21)	C(22)	120.9(10)
$\mathrm{C}(17)$	C(22)	C(21)	120.3(9)	$\mathrm{P}(1)$	C(23)	C(24)	124.7(8)
$\mathrm{P}(1)$	C(23)	C(28)	119.6(7)	C(24)	C(23)	C(28)	115.6(9)
C(23)	C(24)	C(25)	123.1(11)	C(24)	C(25)	C(26)	119.7(11)
C(25)	C(26)	C(27)	119.9(10)	C(26)	C(27)	C(28)	120.3(11)
C(23)	C(28)	C(27)	121.4(10)	$\mathrm{P}(2)$	C(29)	C(30)	121.6(7)
$\mathrm{P}(2)$	C(29)	C(34)	120.3(7)	C(30)	C(29)	C(34)	$117.4(9)$
C(29)	C(30)	C(31)	119.7(10)	C(30)	C(31)	C(32)	122.2(13)
C(31)	C(32)	C(33)	119.1(11)	C(32)	C(33)	C(34)	119.1(10)
C(29)	C(34)	C(33)	122.3(10)	$\mathrm{P}(2)$	C(35)	C(36)	116.5(8)
$\mathrm{P}(2)$	C(35)	C(40)	125.0(8)	C(36)	C(35)	C(40)	118.5(9)
C(35)	C(36)	C(37)	122.3(10)	C(36)	C(37)	C(38)	118.7(10)
C(37)	C(38)	C(39)	119.8(10)	C(38)	C(39)	C(40)	121.5(11)
C(35)	C(40)	C(39)	119.1(11)	$\mathrm{P}(2)$	C(41)	C(42)	124.1(7)
$\mathrm{P}(2)$	C(41)	C(46)	118.0(8)	C(42)	C(4)	C(46)	117.9(9)
C(41)	C(42)	C(43)	119.2(10)	C(42)	C(43)	C(44)	122.4(12)
C(43)	C(44)	C(45)	118.6(10)	C(44)	C(45)	C(46)	119.6(11)
C(41)	C(46)	C(45)	122.3(11)				

APPENDIX XI

Thermodynamic Calculations and Data for the Reversible Formation of
Cis-RuX $\mathbf{2}_{\mathbf{2}}(\mathbf{P}-\mathrm{N})\left(\mathbf{P R}_{\mathbf{3}}\right)(\mathrm{L})\left(\mathbf{X}=\mathbf{C l}, \mathrm{Br} ; \mathbf{R}=\mathbf{P h}, p\right.$-tolyl; $\left.\mathbf{L}=\mathbf{H}_{\mathbf{2}} \mathrm{S}, \mathbf{M e S H}, \mathrm{EtSH}\right)$

For the equilibrium:

$$
\begin{equation*}
K=\frac{[\mathbf{B}]}{[\mathbf{A}][\mathbf{L}]} \tag{2}
\end{equation*}
$$

A complete calculation of equilbrium concentrations for the cis- $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{SH}_{2}\right) \mathbf{1 8 a}$ system is given in Section XI.1; sets of raw data for corresponding systems involving 18b, 19a, 20, and 21 are given similarly in Sections XI.2-XI.5.

XI. 1 Calculations for the $\mathrm{Cis}-\mathrm{RuCl}_{\mathbf{2}}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)\left(\mathbf{S H}_{2}\right)(\mathbf{1 8 a})$ Equilibrium System in $\mathrm{C}_{6} \mathrm{D}_{6}$

Table XI.1.1 Integrations Used for Equilibrium Calculations (see Figure 4.30)

Value of Integation	Signal(s), ppm	Reasonance(s)	Number of Protons
α	3.67	NMe of 18a	3
β	$3.06,2.97$	NMe of 6a, NMe of 18a	6,3
ε	1.02	$\mathrm{Ru}\left(\mathrm{SH} \mathrm{H}_{2}\right)$ of 18a	2
ω	0.30	free $\mathrm{H}_{2} \mathrm{~S}$ (in solution)	2

The calculation of equilibrium concentrations at any temperature is as follows:
$[\mathrm{Ru}]_{\text {total }}$ is calculated from the amount of 18a dissolved in a known volume of solvent; this volume of solvent in the NMR tube is measured with a ruler (cm) and converted to (mL) using the calibration plot shown in Figure XI. 1.

Figure XI. 1 Calibration plot for measured height (cm) of solvent vs. volume (mL) in 5 mm NMR tubes (type 507-PP from Wilmad Glass Co., Inc.).

$$
\begin{gather*}
x=\frac{[18 a]}{[6 a]}=\frac{\alpha / 3}{(\beta-\alpha) / 6}=\frac{\varepsilon / 2}{(\beta-\alpha) / 6} \tag{3}\\
y=\frac{[6 \mathbf{a}]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}=\frac{(\beta-\alpha) / 6}{\omega / 2} \tag{4}\\
{[\mathbf{6 a}]=\frac{[\mathrm{Ru}]_{\text {total }}}{1+x}} \tag{5}\\
{[\mathbf{1 8 a}]=[\mathrm{Ru}]_{\text {otal }}-[6 \mathbf{a}]} \tag{6}\\
{\left[\mathrm{H}_{2} \mathrm{~S}\right]_{\mathrm{s}}=\frac{[6 \mathbf{6 a}]}{y}} \tag{7}\\
\mathrm{~K}=\frac{[\mathbf{1 8 a}]}{[\mathbf{6 a}]\left[\mathrm{H}_{2} \mathrm{~S}\right]_{\mathrm{s}}} \tag{8}
\end{gather*}
$$

Note: $\left[\mathrm{H}_{2} \mathrm{~S}\right]_{\mathrm{s}}$ (solution) $=\left[\mathrm{H}_{2} \mathrm{~S}\right]_{\text {uncoordinated }}-\left[\mathrm{H}_{2} \mathrm{~S}\right]_{\text {headspace }}$

Table XI.1.2 Integration Values and Equilibrium Concentration Ratios ($\alpha, \beta, \varepsilon$ and ω)

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	α	β	ε	ω	x	y
13.5	5.62	13.85	3.60	1.12	1.37	2.45
18.5^{a}	3.35	10.18	2.05	0.92	0.98	2.47
19.0^{b}	4.36	12.03	2.80	1.00	1.14	2.56
19.2	5.33	14.62	3.45	1.40	1.15	2.21
19.2^{c}	2.91	8.12	1.70	0.78	1.12	2.23
21.5	4.72	16.09	3.32	1.80	0.83	2.11
35.4	1.91	7.29	1.40	1.20	0.71	1.49
50.3	0.90	4.90	0.62	1.00	0.45	1.33

${ }^{1} \mathrm{H}$ NMR spectrum (of the same sample) measured ${ }^{a} 2 \mathrm{~h},{ }^{\mathrm{b}} 2 \mathrm{~d}$ and ${ }^{\mathrm{c}} 1$ week after sample preparation.

Table XI.1.3 Equilibrium Concentrations and $\mathrm{K}\left([\mathrm{Ru}]_{\text {total }}=0.0231 \mathrm{M}\right)$

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$1 / \mathrm{T}(\mathrm{K})$	$[6 \mathrm{a}](\mathrm{M})$	$[18 \mathrm{a}](\mathrm{M})$	$\left[\mathrm{H}_{2} \mathrm{~S}\right]_{\mathrm{s}}(\mathrm{M})$	$\mathrm{K}\left(\mathrm{M}^{-1}\right)$	$\ln \mathrm{K}$
13.5	0.003489	0.0098	0.0133	0.0040	343	5.84
18.5^{a}	0.003429	0.0117	0.0114	0.0047	208	5.34
19.0^{b}	0.003423	0.0108	0.0123	0.0042	269	5.59
19.2	0.003421	0.0108	0.0123	0.0049	236	5.46
19.2^{c}	0.003421	0.0109	0.0122	0.0049	228	5.43
21.5	0.003394	0.0126	0.0105	0.0060	139	4.93
35.4	0.003241	0.0135	0.0096	0.0090	79	4.36
50.3	0.003092	0.0159	0.0072	0.0119	38	3.63

${ }^{1} \mathrm{H}$ NMR spectrum (of the same sample) measured ${ }^{\mathrm{a}} 2 \mathrm{~h},{ }^{\mathrm{b}} 2 \mathrm{~d}$ and ${ }^{\mathrm{c}} 1$ week after sample preparation.

XI. 2 Calculations for the Cis- $\mathrm{RuBr}_{2}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)\left(\mathbf{S H}_{2}\right)(\mathbf{1 8 b})$ Equilibrium System in $\mathrm{C}_{6} \mathrm{D}_{6}$ (under $1 \mathrm{~atm} \mathrm{H}_{2} \mathrm{~S}$)

Table XI.2.1 Integrations Used for Equilibrium Calculations

Value of Integation	Signal(s), ppm	Reasonance(s)	Number of Protons
α	3.93	NMe of $\mathbf{1 8 b}$	3
β	$3.17,2.87$	NMe of $\mathbf{6 b}, \mathbf{N M e}$ of $\mathbf{1 8 b}$	6,3
ε	1.14	$\mathrm{Ru}\left(\mathrm{S} \mathrm{H}_{2}\right)$ of $\mathbf{1 8 b}$	2
ω	0.30	free $\mathrm{H}_{2} \mathrm{~S}$ (in solution)	2

Table XI.2.2 Integration Values and Equilibrium Concentration Ratios ($\alpha, \beta, \varepsilon$ and ω)

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	α	β	ε	ω	\mathbf{x}	y
20.6	9.12	16.78	5.84	17.01	2.38	0.15
22.5	9.10	15.49	5.10	19.03	2.85	0.11
35.5	8.53	19.85	5.33	24.03	1.51	0.16
45.0	6.85	19.51	4.25	20.10	1.08	0.21
60.2	4.63	17.00	2.84	21.22	0.75	0.19

Table XI.2.3 Equilibrium Concentrations and $\mathrm{K}\left([\mathrm{Ru}]_{\text {total }}=0.0203 \mathrm{M}\right.$; under $\left.1 \mathrm{~atm} \mathrm{H}_{2} \mathrm{~S}\right)$

$\mathbf{T}\left({ }^{\circ} \mathbf{C}\right)$	$1 / \mathrm{T}(\mathrm{K})$	$[\mathbf{6 b}](\mathrm{M})$	$[\mathbf{1 8 b}](\mathbf{M})$	$\left[\mathrm{H}_{2} \mathbf{S}\right]_{\mathrm{s}}(\mathrm{M})$	$\mathrm{K}\left(\mathbf{M}^{-1}\right)$	$\ln \mathrm{K}$
20.6	0.003404	0.0060	0.0143	0.0400	60	4.09
22.5	0.003382	0.0053	0.0150	0.0471	60	4.10
35.5	0.003240	0.0081	0.0122	0.0516	29	3.38
45.0	0.003143	0.0097	0.0106	0.0464	23	3.15
60.2	0.003000	0.0116	0.0087	0.0597	13	2.53

XI. 3 Calculations for the Cis - $\mathrm{RuCl}_{2}(\mathbf{P}-\mathrm{N})\left(\mathrm{P}(p \text {-tolyl })_{3}\right)\left(\mathbf{S H}_{2}\right)$ (19a) Equilibrium System in $\mathbf{C}_{6} \mathbf{D}_{6}$

Table XI.3.1 Integrations Used for Equilibrium Calculations

Value of Integation	Signal(s), ppm	Reasonance(s)	Number of Protons
α	3.76	NMe of 19a	3
β	$3.10,2.92$	NMe of 7a, NMe of 19a	6,3
ε	1.15	$\operatorname{Ru}\left(\mathrm{SH}_{2}\right)$ of 19a	2
ω	0.30	free $\mathrm{H}_{2} \mathrm{~S}$ (in solution)	2

Table XI.3.2 Integration Values and Equilibrium Concentration Ratios ($\alpha, \beta, \varepsilon$ and ω)

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	α	β	ε	ω	x	y
19.0	1.94	9.14	1.31	1.20	0.54	2.00
19.3	1.00	5.10	0.55	0.52	0.49	2.63
22.4	0.79	6.43	0.45	0.7	0.28	2.69
35.4	1.37	10.62	1.00	1.45	0.30	2.13
43.4	0.30	7.13	0.25	0.85	0.09	2.68
50.5	0.24	7.60	0.20	0.91	0.07	2.70

Table XI.3.3 Equilibrium Concentrations and $\mathrm{K}\left([\mathrm{Ru}]_{\text {total }}=0.00808 \mathrm{M}\right)$

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$1 / \mathrm{T}(\mathrm{K})$	$[7 \mathrm{a}](\mathrm{M})$	$[19 \mathrm{a}](\mathrm{M})$	$\left[\mathrm{H}_{2} \mathrm{~S}\right]_{\mathrm{s}}(\mathrm{M})$	$\mathrm{K}\left(\mathrm{M}^{-1}\right)$	$\ln \mathrm{K}$
19.0	0.003423	0.0053	0.0028	0.0026	205	5.32
19.3	0.003419	0.0054	0.0026	0.0021	236	5.46
22.4	0.003384	0.0063	0.0018	0.0024	119	4.78
35.4	0.003241	0.0062	0.0018	0.0029	101	4.62
43.4	0.003159	0.0074	0.0007	0.0028	32	3.46
50.5	0.003090	0.0076	0.0005	0.0028	23	3.14

XI. 4 Calculations for the $\mathrm{Cis}-\mathrm{RuCl}_{2}(\mathbf{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)(\mathbf{M e S H})$ (20) Equilibrium System in $\mathrm{C}_{6} \mathrm{D}_{6}$

Table XI.4.1 Integrations Used for Equilibrium Calculations

Value of Integation	Signal(s), ppm	Reasonance(s)	Number of Protons
α	3.63	NMe of 20	3
β	$3.04(\mathrm{br})$	NMe of $\mathbf{6 a}, \mathrm{NMe}$ of 20	6,3
ε	0.78	$\mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{SH}\right)$ of 20	3
ω	1.59	free $\mathrm{CH}_{3} \mathrm{SH}$ (in solution)	3

Table XI.4.2 Integration Values and Equilibrium Concentration Ratios ($\alpha, \beta, \varepsilon$ and ω)

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	α	β	ε	ω	x	y
20.0	0.76	1.80	0.80	0.45	1.46	1.16
35.5	0.85	2.30	0.85	0.80	1.17	0.91
40.4	0.70	2.05	0.72	0.75	1.04	0.90
60.3	0.52	1.95	0.49	0.90	0.73	0.79
75.2	0.39	1.80	0.35	0.92	0.55	0.77

Table XI.4.3 Equilibrium Concentrations and $\mathrm{K}\left([\mathrm{Ru}]_{\text {total }}=0.0115 \mathrm{M}\right)$

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$1 / \mathrm{T}(\mathrm{K})$	$[\mathbf{6 a}](\mathrm{M})$	$[\mathbf{2 0}](\mathrm{M})$	$[\mathrm{MeSH}]_{s}(\mathrm{M})$	$\mathrm{K}\left(\mathbf{M}^{-1}\right)$	$\ln \mathrm{K}$
20.0	0.003411	0.0047	0.0068	0.0040	362	5.89
35.5	0.003240	0.0053	0.0062	0.0058	201	5.30
40.4	0.003189	0.0056	0.0059	0.0063	165	5.11
60.3	0.002999	0.0067	0.0048	0.0084	87	4.46
75.2	0.002871	0.0074	0.0041	0.0097	57	4.05

Note: in this case, $x=\frac{[20]}{[6 a]}=\frac{\alpha / 3}{(\beta-\alpha) / 6}=\frac{\varepsilon / 3}{(\beta-\alpha) / 6}$ and $y=\frac{[6 a]}{[\mathbf{M e S H}]}=\frac{(\beta-\alpha) / 6}{\omega / 3}$.

XI. 5 Calculations for the $\mathrm{Cis}^{-\mathrm{RuCl}_{2}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)(\mathbf{E t S H}) \text { (21) Equilibrium System in }}$ $\mathrm{C}_{6} \mathrm{D}_{6}$

Table XI.5.1 Integrations Used for Equilibrium Calculations

Value of Integation	Signal(s), ppm	Reasonance(s)	Number of Protons
α	3.73	NMe of 21	3
β	$3.17,3.05$	NMe of $\mathbf{6 a}, \mathrm{NMe}$ of 21	6,3
ε	0.35	$\mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{SH}\right)$ of 21	3
ω	1.59	free $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{SH}$	2

Table XI.5.2 Integration Values and Equilibrium Concentration Ratios $(\alpha, \beta, \varepsilon$ and ω); $\left([\mathrm{Ru}]_{\text {total }}={ }^{\dagger} 0.0171,{ }^{\ddagger} 0.0194 \mathrm{M}\right)$)

$\mathbf{T}^{\circ}\left({ }^{\circ} \mathrm{C}\right)$	α	β	ε	ω	\mathbf{x}	\mathbf{y}
${ }^{\dagger} 19.0$	3.29	5.18	2.80	3.17	3.48	0.20
${ }^{\dagger} 24.5$	4.28	7.08	3.46	4.16	3.06	0.22
${ }^{\dagger} 40.5$	2.30	4.57	1.85	2.51	2.03	0.30
${ }^{\dagger}{ }^{\dagger} 60.5$	2.38	5.73	1.71	3.15	1.42	0.35
${ }^{\dagger} 70.5$	1.14	2.89	0.94	1.61	1.30	0.36
${ }^{\ddagger} 19.2$	3.98	6.42	3.69	3.18	3.26	0.26
${ }^{\dagger} 30.5$	2.89	5.24	2.45	2.90	2.46	0.27
${ }^{\ddagger} 50.5$	1.49	3.34	1.25	1.70	1.61	0.36
${ }^{\ddagger} 65.5$	1.19	2.96	0.95	1.64	1.34	0.36
${ }^{\ddagger} 75.5$	1.17	3.77	0.98	2.00	0.90	0.43

Table XI.5.3 Equilibrium Concentrations and $\mathrm{K}\left([\mathrm{Ru}]_{\text {total }}={ }^{\dagger} 0.0171,{ }^{\ddagger} 0.0194 \mathrm{M}\right)$

${ }^{\mathrm{T}}\left({ }^{\circ} \mathrm{C}\right)$	$1 / \mathrm{T}(\mathrm{K})$	$[6 \mathrm{a}](\mathrm{M})$	$[\mathbf{2 1}](\mathrm{M})$	$[\mathrm{EtSH}]_{\mathrm{s}}(\mathrm{M})$	$\mathrm{K}\left(\mathbf{M}^{-1}\right)$	$\ln \mathrm{K}$
${ }^{\dagger} 19.0$	0.003423	0.0038	0.0133	0.0192	181	5.20
${ }^{\dagger}{ }^{\dagger} 24.5$	0.003360	0.0042	0.0129	0.0188	163	5.09
${ }^{\dagger} 40.5$	0.003188	0.0057	0.0114	0.0187	108	4.68
${ }^{\dagger} 60.5$	0.002997	0.0071	0.0100	0.0199	71	4.27
${ }^{\dagger}{ }^{\dagger} 70.5$	0.002910	0.0074	0.0097	0.0205	64	4.15
${ }^{\ddagger} 19.2$	0.003421	0.0046	0.0148	0.0178	183	5.21
${ }^{\ddagger} 30.5$	0.003293	0.0056	0.0138	0.0208	118	4.77
${ }^{\ddagger} 50.5$	0.003090	0.0074	0.0120	0.0205	79	4.36
${ }^{\ddagger}{ }^{\ddagger} 65.5$	0.002953	0.0083	0.0111	0.0230	58	4.07
${ }^{\ddagger} 75.5$	0.002868	0.0102	0.0092	0.0236	38	3.64

Note: in this case, $x=\frac{[21]}{[6 a]}=\frac{\alpha / 3}{(\beta-\alpha) / 6}=\frac{\varepsilon / 3}{(\beta-\alpha) / 6}$ and $y=\frac{[6 a]}{[\mathbf{E t S H}]}=\frac{(\beta-\alpha) / 6}{\omega / 2}$.

APPENDIX XII

Thermodynamic Calculations and Data for the Reversible Formation of

Trans-RuCl $\mathbf{2}(\mathbf{P}-\mathbf{N})\left(\mathbf{P P h}_{3}\right)\left(\mathbf{O H}_{2}\right)(33 a)$ (UV-Vis Spectroscopic Data)

For the equilibrium:

$$
\begin{gather*}
\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)+\underset{\mathbf{6 a}}{\mathrm{H}_{2} \mathrm{O}} \stackrel{\mathrm{~K}}{\text { 33a }} \text { cis- } \mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right) \tag{1}\\
\mathrm{K}=\frac{[33 \mathrm{a}]}{[\mathbf{6 a}]\left[\mathrm{H}_{2} \mathrm{O}\right]} \\
\log \left(\frac{[33 \mathrm{a}]}{[\mathbf{6 a}]}\right)=\operatorname{logK}+\mathrm{nlog}\left[\mathrm{H}_{2} \mathrm{O}\right] \tag{2}\\
\text { where } \mathrm{n}=1(\text { slope }) \tag{3}\\
\text { plot of } \log \left(\frac{[\mathbf{3 3 a}]}{[\mathbf{6 a}]}\right) \text { versus } \log \left[\mathrm{H}_{2} \mathrm{O}\right] \text { gives intercept }=\operatorname{log~K}
\end{gather*}
$$

$$
\begin{equation*}
\mathrm{A}=\varepsilon \mathrm{c} \ell \tag{4}
\end{equation*}
$$

where $\mathrm{A}=$ absorbance
$\varepsilon=$ molar absortivity $\left(\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$
$\mathrm{c}=$ concentration (M)
$\ell=$ pathlength $=1 \mathrm{~cm}$

$$
\begin{equation*}
A=A_{6 \mathrm{a}}+\mathrm{A}_{33 \mathrm{a}}=\varepsilon_{6 \mathrm{a}}[6 \mathrm{a}]+\varepsilon_{33 \mathrm{a}}[33 \mathrm{a}] \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
[\mathrm{Ru}]_{\text {total }}=[6 \mathrm{a}]+[33 \mathrm{a}] \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\varepsilon_{6 \mathrm{a}}=\frac{\mathrm{A}_{0}}{[\mathrm{Ru}]_{\text {total }}} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\varepsilon_{33 \mathrm{a}}=\frac{\mathrm{A}_{\infty}}{[\mathrm{Ru}]_{\text {otalal }}} \tag{8}
\end{equation*}
$$

Solve for [6a] and [33a] by substitution of equations (6) and (7) into (5), and equations (6) and (8) into (5), respectively:

$$
\begin{equation*}
\left|\frac{[33 a]}{[6 a]}\right|=\left|\frac{A-A_{0}}{A-A_{\infty}}\right| \tag{9}
\end{equation*}
$$

XII. 1 Calculations in $\mathbf{C H}_{2} \mathbf{C l}_{\mathbf{2}}$

Trial 1 at $25^{\circ} \mathrm{C}$
Table XII.1.1 Calculation of K at $\mathrm{T}=25^{\circ} \mathrm{C}$; $5.2 \times 10^{-6} \mathrm{~mol} \mathbf{6 a}$ dissolved in $5.0 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ $\left([\mathrm{Ru}]_{\text {total }}=1.04 \times 10^{-3} \mathrm{M}\right) ;$ absorbances monitored at $\lambda_{\max }=678 \mathrm{~nm} ; \mathrm{A}_{0}=0.52$, $\mathrm{A}_{\infty}=0.078$ (estimated from a flat baseline between $\lambda=550$ to 820 nm).

$\mathrm{H}_{2} \mathrm{O}$ added $(\mu \mathrm{L})$	$\left[\mathrm{H}_{2} \mathrm{O}\right]$ (M)	$\log \left[\mathrm{H}_{2} \mathrm{O}\right]$	A at $\lambda_{\max }=$ 678 nm	$\left\|\frac{[\text { 33a }]}{[6 \mathrm{a}]}\right\|$	$\log \left\|\frac{[33 \mathrm{a}]}{[6 \mathrm{a}]}\right\|$
0.0	0.0000	-	0.52	-0.00052	-
0.5	0.0056	-2.26	0.47	0.11119	-0.95
1.0	0.0111	-1.95	0.41	0.33838	-0.47
2.5	0.0278	-1.56	0.33	0.78687	-0.10
4.0	0.0444	-1.35	0.27	1.34657	0.13
6.0	0.0666	-1.18	0.23	1.87686	0.27
9.0	0.0999	-1.00	0.18	3.21073	0.51
10.0	0.1110	-0.95	0.16	4.17443	0.62
17.0	0.1887	-0.72	0.15	5.22535	0.72

Plot of plot of $\log \left(\frac{[33 \mathrm{a}]}{[6 \mathrm{a}]}\right)$ versus $\log \left[\mathrm{H}_{2} \mathrm{O}\right]$ (see Figure 5.15) gives $\mathrm{y}=1.06 \mathrm{x}+1.57$; $\mathrm{K}=37 \mathrm{M}^{-1}$.

Trial 2 at $25^{\circ} \mathrm{C}$
Table XII.1.2 Calculation of K at $\mathrm{T}=25^{\circ} \mathrm{C} ; 3.0 \times 10^{-6} \mathrm{~mol} \mathbf{6 a}$ dissolved in $5.0 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ $\left([\mathrm{Ru}]_{\text {total }}=6.0 \times 10^{-4} \mathrm{M}\right) ;$ absorbances monitored at $\lambda_{\text {max }}=678 \mathrm{~nm} ; \mathrm{A}_{0}=0.30$, $\mathrm{A}_{\infty}=0.045$ (estimated from a flat baseline between $\lambda=550$ to 820 nm).

$\mathrm{H}_{2} \mathrm{O}$ added $(\mu \mathrm{L})$	$\left[\mathrm{H}_{2} \mathrm{O}\right]$ (M)	$\log \left[\mathrm{H}_{2} \mathrm{O}\right]$	A at $\lambda_{\max }=$ 678 nm	$\left\|\frac{[33 \mathrm{a}]}{[6 \mathrm{a}]}\right\|$	$\log \left\|\frac{[33 \mathrm{a}]}{[6 \mathrm{a}]}\right\|$
0.0	0.0000	-	0.30	0.00252	-2.60
0.1	0.0006	-3.26	0.25	0.26758	-0.57
1.0	0.0111	-1.95	0.20	0.69199	-0.16
1.5	0.0167	-1.78	0.15	1.46377	0.17
3.5	0.0389	-1.41	0.12	2.40864	0.38
6.5	0.0722	-1.14	0.10	3.54626	0.55
8.5	0.0944	-1.03	0.09	5.07432	0.71
12.0	0.1332	-0.88	0.08	6.55556	0.82
17.0	0.1887	-0.72	0.08	6.92910	0.84

Plot of plot of $\log \left(\frac{[33 a]}{[6 a]}\right)$ versus $\log \left[\mathrm{H}_{2} \mathrm{O}\right]$ gives $y=0.83 x+1.54 ; K=35 \mathrm{M}^{-1}$.

Trial 1 at $10^{\circ} \mathrm{C}$
Table XII.1.3 Calculation of K at $\mathrm{T}=10^{\circ} \mathrm{C} ; 4.0 \times 10^{-6} \mathrm{~mol} \mathbf{6 a}$ dissolved in $5.0 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ $\left([\mathrm{Ru}]_{\text {total }}=8.1 \times 10^{-4} \mathrm{M}\right)$; absorbances monitored at $\lambda_{\max }=678 \mathrm{~nm} ; \mathrm{A}_{0}=0.39$, $\mathrm{A}_{\infty}=0.07$ (estimated from a flat baseline between $\lambda=550$ to 820 nm).

$\mathrm{H}_{2} \mathrm{O}$ added $(\mu \mathrm{L})$	$\left[\mathrm{H}_{2} \mathrm{O}\right]$ (M)	$\log \left[\mathrm{H}_{2} \mathrm{O}\right]$	A at $\lambda_{\max }=$ 678 nm	$\left\|\frac{[\text { 33a }]}{[6 \mathrm{a}]}\right\|$	$\log \left\|\frac{[\text { 33a }]}{[6 \mathrm{ab}]}\right\|$
0.0	0.0000	-	0.39	0.00000	-
0.5	0.0056	-2.26	0.35	0.14286	-0.85
1.0	0.0111	-1.95	0.31	0.33333	-0.48
1.5	0.0167	-1.78	0.27	0.60000	-0.22
2.0	0.0222	-1.65	0.25	0.77778	-0.11
3.0	0.0333	-1.48	0.21	1.28571	0.11
4.0	0.0444	-1.35	0.20	1.46154	0.16
6.0	0.0666	-1.18	0.18	1.90909	0.28

Plot of plot of $\log \left(\frac{[33 \mathrm{a}]}{[\mathbf{6 a}]}\right)$ versus $\log \left[\mathrm{H}_{2} \mathrm{O}\right]$ gives $y=1.07 x+1.62 ; K=42 \mathrm{M}^{-1}$.

Trial 2 at $10^{\circ} \mathrm{C}$
Table XII.1.4 Calculation of K at $\mathrm{T}=10^{\circ} \mathrm{C}$; $4.1 \times 10^{-6} \mathrm{~mol} 6 \mathrm{a}$ dissolved in $5.0 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ $\left([\mathrm{Ru}]_{\text {total }}=8.2 \times 10^{-4} \mathrm{M}\right) ;$ absorbances monitored at $\lambda_{\max }=678 \mathrm{~nm} ; \mathrm{A}_{0}=0.40$, $\mathrm{A}_{\infty}=0.07$ (estimated from a flat baseline between $\lambda=550$ to 820 nm).

$\mathrm{H}_{2} \mathrm{O}$ added $(\mu \mathrm{L})$	$\left[\mathrm{H}_{2} \mathrm{O}\right]$ (M)	$\log \left[\mathrm{H}_{2} \mathrm{O}\right]$	A at $\lambda_{\max }=$ 678 nm	$\left\|\frac{[33 \mathrm{a}]}{[6 \mathrm{a}]}\right\|$	$\log \left\|\frac{[33 \mathrm{a}]}{[6 \mathrm{a}]}\right\|$
0.0	0.0000	-	0.40	0.00000	-
0.5	0.0056	-2.26	0.34	0.22222	-0.65
1.0	0.0111	-1.95	0.30	0.43478	-0.36
1.5	0.0167	-1.78	0.25	0.83333	-0.08
2.0	0.0222	-1.65	0.22	1.20000	0.08
3.0	0.0333	-1.48	0.19	1.75000	0.24
4.0	0.0444	-1.35	0.16	2.66667	0.43
6.0	0.0666	-1.18	0.12	5.60000	0.75

Plot of plot of $\log \left(\frac{[33 a]}{[6 a]}\right)$ versus $\log \left[\mathrm{H}_{2} \mathrm{O}\right]$ gives $y=1.28 x+2.18 ; \mathrm{K}=151 \mathrm{M}^{-1}$.

Trial 1 at $35^{\circ} \mathrm{C}$
Table XII.1.5 Calculation of K at $\mathrm{T}=35^{\circ} \mathrm{C} ; 4.5 \times 10^{-6} \mathrm{~mol} \mathbf{6 a}$ dissolved in $5.0 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left([R u]_{\text {total }}=9.0 \times 10^{-4} \mathrm{M}\right.$); absorbances monitored at $\lambda_{\max }=678 \mathrm{~nm} ; \mathrm{A}_{0}=0.43$, $\mathrm{A}_{\infty}=0.08$ (estimated from a flat baseline between $\lambda=550$ to 820 nm).

$\mathrm{H}_{2} \mathrm{O}$ added $(\mu \mathrm{L})$	$\left[\mathrm{H}_{2} \mathrm{O}\right]$ (M)	$\log \left[\mathrm{H}_{2} \mathrm{O}\right]$	A at $\lambda_{\text {max }}=$ 678 nm	$\left[\left.\frac{[33 \mathrm{az}]}{[6 \mathrm{a}]} \right\rvert\,\right.$	$\log \left\|\frac{[33 \mathrm{a}]}{[6 \mathrm{a}]}\right\|$
0.0	0.0000	-	0.42	0.02609	-
1.0	0.0111	-1.95	0.34	0.32180	-0.49
2.0	0.0222	-1.65	0.30	0.60860	-0.22
3.0	0.0333	-1.48	0.25	1.08694	0.04
4.0	0.0444	-1.35	0.23	1.37176	0.14
6.0	0.0666	-1.18	0.21	1.60359	0.21
9.0	0.0999	-1.00	0.20	1.91569	0.28
12.0	0.1332	-0.88	0.19	2.14861	0.33

Plot of plot of $\log \left(\frac{[33 a]}{[6 a]}\right)$ versus $\log \left[\mathrm{H}_{2} \mathrm{O}\right]$ gives $y=0.84 x+1.20 ; K=16 \mathrm{M}^{-1}$.

Trial 2 at $35^{\circ} \mathrm{C}$
Table XII.1.6 Calculation of K at $\mathrm{T}=35^{\circ} \mathrm{C}$; $4.8 \times 10^{-6} \mathrm{~mol} \mathbf{6 a}$ dissolved in $5.0 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ $\left([R u]_{\text {total }}=9.7 \times 10^{-4} \mathrm{M}\right) ; \quad$ absorbances monitored at $\lambda_{\max }=678 \mathrm{~nm} ; \mathrm{A}_{0}=0.43$, $\mathrm{A}_{\infty}=0.075$ (estimated from a flat baseline between $\lambda=550$ to 820 nm).

$\mathrm{H}_{2} \mathrm{O}$ added $(\mu \mathrm{L})$	$\left[\mathrm{H}_{2} \mathrm{O}\right]$ (M)	$\log \left[\mathrm{H}_{2} \mathrm{O}\right]$	A at $\lambda_{\text {max }}=$ 678 nm	$\left[\left.\frac{[33 \mathrm{az}]}{[6 \mathrm{a}]} \right\rvert\,\right.$	$\log \left\|\frac{[33 \mathrm{a}]}{[6 \mathrm{a}]}\right\|$
0.0	0.0000	-	0.43	-0.00591	-
1.0	0.0111	-1.95	0.37	0.20433	-0.69
2.0	0.0222	-1.65	0.32	0.43649	-0.36
3.0	0.0333	-1.48	0.28	0.70044	-0.15
4.0	0.0444	-1.35	0.26	0.94755	-0.02
6.0	0.0666	-1.18	0.23	1.36100	0.13
9.0	0.0999	-1.00	0.20	1.89962	0.28
12.0	0.1332	-0.88	0.19	2.12886	0.33

Plot of plot of $\log \left(\frac{[33 \mathrm{a}]}{[6 \mathrm{a}]}\right)$ versus $\log \left[\mathrm{H}_{2} \mathrm{O}\right]$ gives $y=1.03 x+1.34 ; K=22 \mathrm{M}^{-1}$.

Trial 1 at $38^{\circ} \mathrm{C}$
Table XII.1.7 Calculation of K at $\mathrm{T}=38^{\circ} \mathrm{C} ; 5.4 \times 10^{-6} \mathrm{~mol} \mathbf{6 a}$ dissolved in $5.0 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left([\mathrm{Ru}]_{\text {total }}=1.08 \times 10^{-3} \mathrm{M}\right) ;$ absorbances monitored at $\lambda_{\max }=678 \mathrm{~nm} ; \mathrm{A}_{0}=0.48$, $\mathrm{A}_{\infty}=0.08$ (estimated from a flat baseline between $\lambda=550$ to 820 nm).

$\mathrm{H}_{2} \mathrm{O}$ added $(\mu \mathrm{L})$	$\left[\mathrm{H}_{2} \mathrm{O}\right]$ (M)	$\log \left[\mathrm{H}_{2} \mathrm{O}\right]$	A at $\lambda_{\text {max }}=$ 678 nm	$\left\|\frac{[\text { 33a }]}{[6 \mathrm{a}]}\right\|$	$\log \left\|\frac{[\text { [33a }]}{[6 \mathrm{aa}]}\right\|$
0.0	0.0000	-	0.48	0.00000	-
1.0	0.0111	-1.95	0.37	0.37931	-0.42
2.0	0.0222	-1.65	0.34	0.53846	-0.27
3.0	0.0333	-1.48	0.27	1.10526	0.04
5.0	0.0555	-1.26	0.25	1.35294	0.13
7.0	0.0777	-1.11	0.22	1.85714	0.27
10.0	0.1110	-0.95	0.18	3.00000	0.48
12.0	0.1332	-0.88	0.15	4.71429	0.67

Plot of plot of $\log \left(\frac{[33 a]}{[6 a]}\right)$ versus $\log \left[\mathrm{H}_{2} \mathrm{O}\right]$ gives $y=0.89 x+1.29 ; K=20 \mathrm{M}^{-1}$.

Trial 2 at $38^{\circ} \mathrm{C}$
Table XII.1.8 Calculation of K at $\mathrm{T}=38^{\circ} \mathrm{C} ; 6.2 \times 10^{-6} \mathrm{~mol} \mathbf{6 a}$ dissolved in $5.0 \mathrm{~mL} \mathrm{CH} \mathrm{CH}_{2}$ $\left([\mathrm{Ru}]_{\text {total }}=1.25 \times 10^{-3} \mathrm{M}\right) ;$ absorbances monitored at $\lambda_{\max }=678 \mathrm{~nm} ; \mathrm{A}_{0}=0.60$, $\mathrm{A}_{\infty}=0.085$ (estimated from a flat baseline between $\lambda=550$ to 820 nm).

$\mathrm{H}_{2} \mathrm{O}$ added $(\mu \mathrm{L})$	$\left[\mathrm{H}_{2} \mathrm{O}\right]$ (M)	$\log \left[\mathrm{H}_{2} \mathrm{O}\right]$	A at $\lambda_{\text {max }}=$ 678 nm	$\left\|\frac{[33 \mathrm{a}]}{[6 \mathrm{a}]}\right\|$	$\log \left\|\frac{[33 \mathrm{a}]}{[6 \mathrm{a}]}\right\|$
0.0	0.0000	-	0.60	0.00000	-
1.0	0.0111	-1.95	0.55	0.10753	-0.97
2.0	0.0222	-1.65	0.47	0.33766	-0.47
3.0	0.0333	-1.48	0.44	0.45070	-0.35
5.0	0.0555	-1.26	0.39	0.68852	-0.16
7.0	0.0777	-1.11	0.38	0.74576	-0.13
10.0	0.1110	-0.95	0.37	0.80702	-0.09
12.0	0.1332	-0.88	0.36	0.87273	-0.06

Plot of plot of $\log \left(\frac{[33 a]}{[6 a]}\right)$ versus $\log \left[\mathrm{H}_{2} \mathrm{O}\right]$ gives $y=0.78 x+0.70 ; K=5 \mathrm{M}^{-1}$.

Table XII.1.9 Equilibrium constants for the reversible formation of 33a at various temperatures (K obtained from Tables XII.1.1 - XII.1.9).

Temp $\left({ }^{\circ} \mathrm{C}\right)$	$1 / \mathrm{T}(\mathrm{K})$	K	$\ln \mathrm{K}$
10	0.003532	42	3.74
10	0.003532	151	5.02
25	0.003354	37	3.61
25	0.003354	35	3.56
35	0.003245	16	2.77
35	0.003245	22	3.09
38	0.003214	20	3.00
38	0.003214	5	1.61

Figure XII. 1 Van't Hoff plot for the reversible formation of $\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OH}_{2}\right) \mathbf{3 3 a}$.

Estimated thermodyanmic parameters from the above plot are:
$\Delta \mathrm{H}^{\circ}=-50 \pm 20 \mathrm{~kJ} / \mathrm{mol} ; \Delta \mathrm{S}^{\circ}=-140 \pm 40 \mathrm{~J} / \mathrm{mol} \mathrm{K} ; \Delta \mathrm{G}^{\circ}=-8.9 \pm 0.2 \mathrm{~kJ} / \mathrm{mol}\left(25^{\circ} \mathrm{C}\right.$, based on $\mathrm{K}=37 \pm 2 \mathrm{M}^{-1}$.

XII. 2 Calculations in $\mathrm{C}_{6} \mathrm{H}_{6}$

Table XII.2.1 Calculation of K at $\mathrm{T}=25^{\circ} \mathrm{C} ; 6.0 \times 10^{-6} \mathrm{~mol} \mathbf{6 a}$ dissolved in $5.0 \mathrm{~mL} \mathrm{C}_{6} \mathrm{H}_{6}$ $\left([\mathrm{Ru}]_{\text {total }}=1.20 \times 10^{-3} \mathrm{M}\right)$; absorbances monitored at $\lambda_{\max }=682 \mathrm{~nm} ; \mathrm{A}_{0}=0.50$, $\mathrm{A}_{\infty}=0.090$ (estimated from a flat baseline between $\lambda=550$ to 820 nm).

$\mathrm{H}_{2} \mathrm{O}$ added $(\mu \mathrm{L})$	$\left[\mathrm{H}_{2} \mathrm{O}\right]$ (M)	$\log \left[\mathrm{H}_{2} \mathrm{O}\right]$	A at $\lambda_{\text {max }}=$ 682 nm	$\left\|\frac{[33 \mathrm{a}]}{[6 \mathrm{a}]}\right\|$	$\log \left\|\frac{[33 \mathrm{a}]}{[6 \mathrm{a}]}\right\|$
0.0	0.0	-	0.50	0.00001	-5.00
0.5	0.0056	-2.26	0.35	0.50333	-0.30
1.0	0.0111	-1.95	0.30	0.88328	-0.05
2.0	0.0222	-1.65	0.25	1.37334	0.14
3.0	0.0333	-1.48	0.21	2.08413	0.32
4.0	0.0444	-1.35	0.18	3.04990	0.48
7.0	0.0776	-1.11	0.17	3.4629	0.54

Plot of plot of $\log \left(\frac{[33 \mathrm{a}]}{[6 \mathrm{a}]}\right)$ versus $\log \left[\mathrm{H}_{2} \mathrm{O}\right]$ gives $\mathrm{y}=0.77 \mathrm{x}+1.45 ; \mathrm{K}=28 \mathrm{M}^{-1}$.*
*Determination of K in $\mathrm{C}_{6} \mathrm{H}_{6}$ is more difficult and less accurate than in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ because water has a lower solubility in $\mathrm{C}_{6} \mathrm{H}_{6}\left(0.0356 \mathrm{M} .25^{\circ} \mathrm{C}\right)^{1}$ than in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.128 \mathrm{M}, 25^{\circ} \mathrm{C}\right) .{ }^{2}$
XII. 3 Calculations in Acetone (Assuming acetone is not involved in the aquo equilibrium system)

Table XII.3.1 Calculation of K at $\mathrm{T}=25^{\circ} \mathrm{C} ; 5.6 \times 10^{-6} \mathrm{~mol} \mathbf{6 a}$ dissolved in 5.0 mL acetone $\left([\mathrm{Ru}]_{\text {total }}=1.12 \times 10^{-3} \mathrm{M}\right) ;$ absorbances monitored at $\lambda_{\max }=684 \mathrm{~nm} ; \mathrm{A}_{0}=0.16$, $\mathrm{A}_{\infty}=0.067$ (from fully formed 33a).

$\mathrm{H}_{2} \mathrm{O}$ added $(\mu \mathrm{L})$	$\left[\mathrm{H}_{2} \mathrm{O}\right]$ (M)	$\log \left[\mathrm{H}_{2} \mathrm{O}\right]$	A at $\lambda_{\max }=$ 684 nm	$\left[\left.\frac{[33 \mathrm{a}]}{[6 \mathrm{a}]} \right\rvert\,\right.$	$\log \left\|\frac{[33 \mathrm{a}]}{[6 \mathrm{a}]}\right\|$
0.0	0.0	-	0.16	0.02119	-1.67
2.0	0.0222	-1.65	0.15	0.12414	-0.91
8.0	0.0888	-1.05	0.13	0.40271	-0.40
14.0	0.1554	-0.81	0.12	0.68784	-0.16
24.0	0.2664	-0.57	0.11	1.32908	0.12
34.0	0.3775	-0.42	0.10	1.80882	0.26
54.0	0.5995	-0.22	0.09	3.34376	0.52
84.0	0.9326	-0.03	0.07	13.32974	1.12
124.0	1.3766	0.14	0.07	83.54545	1.92

Plot of plot of $\log \left(\frac{[33 a]}{[6 a]}\right)$ versus $\log \left[\mathrm{H}_{2} \mathrm{O}\right]$ gives $y=0.99 x+0.69 ; K=5 \mathrm{M}^{-1}$.

1. IUPAC Solubility Data Series, Volume 37, Hydrocarbons with Water and Seawater Part I: Hydrocarbons C C_{5} to C_{7}; Kertes, A. S., Ed. Pergamon Press: Toronto, 1989, p. 95.
2. IUPAC Solubility Data Series, Volume 60, Halogentated Methanes with Water; Horváth, A. L.; Getzen, F. W., Eds.; Oxford University Press: Oxford, 1995, p. 153.
XII. 4 Calculations in THF (Assuming THF is not involved in the aquo equilibrium system)

Table XII.4.1 Calculation of K at $\mathrm{T}=25^{\circ} \mathrm{C} ; 5.9 \times 10^{-6} \mathrm{~mol} \mathbf{6 a}$ dissolved in 5.0 mL THF $\left([\mathrm{Ru}]_{\text {total }}=1.19 \times 10^{-3} \mathrm{M}\right) ;$ absorbances monitored at $\lambda_{\max }=674 \mathrm{~nm} ; \mathrm{A}_{0}=0.12$,
$\mathrm{A}_{\infty}=0.032$ (from fully formed 33a).

$\mathrm{H}_{2} \mathrm{O}$ added $(\mu \mathrm{L})$	$\left[\mathrm{H}_{2} \mathrm{O}\right]$ (M)	$\log \left[\mathrm{H}_{2} \mathrm{O}\right]$	A at $\lambda_{\text {max }}=$ 674 nm	$\left\|\frac{[33 \mathrm{a}]}{[6 \mathrm{a}]}\right\|$	$\log \left\|\frac{[33 \mathrm{a}]}{[6 \mathrm{a}]}\right\|$
0.0	0.0	\vdots	$\ddots-$	0.119	0.00952
2.0	0.0222	-1.65	0.083	0.70940	-2.02
4.0	0.0444	-1.35	0.074	1.10577	0.04
10.0	0.1110	-0.95	0.060	2.16775	0.34
20.0	0.2220	-0.65	0.051	3.62185	0.56
40.0	0.4441	-0.35	0.046	5.36758	0.73
90.0	0.9992	0.00	0.040	10.01377	1.00
190.0	2.1094	0.32	0.040	10.01377	1.00
390.0	4.3297	0.64	0.035	24.73099	1.39
590.0	6.5501	0.82	0.036	22.91304	1.36
890.0	9.8807	0.99	0.033	96.77778	1.99
1190.0	13.2112	1.12	0.033	134.38462	2.13

Plot of plot of $\log \left(\frac{[33 a]}{[6 a]}\right)$ versus $\log \left[\mathrm{H}_{2} \mathrm{O}\right]$ gives $y=0.64 x+0.94 ; K=9 \mathrm{M}^{-1}$.

APPENDIX XIII

Thermodynamic Calculations and Data for the Reversible Formation of

$$
C i s-R^{2} X_{2}(\mathbf{P}-N)\left(\mathbf{P R}_{3}\right)\left(\eta^{2}-\mathbf{H}_{2}\right) \text { in } \mathrm{C}_{6} \mathbf{D}_{6}
$$

For the equilibrium:

$$
\begin{gather*}
\underset{\mathbf{6 a}}{\mathrm{RuX}_{2}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)}+\underset{\mathbf{H}}{\stackrel{\mathrm{H}}{2}} \underset{\mathbf{3 6}}{\rightleftharpoons} \text { cis-RuCl}(\mathrm{P}-\mathrm{N})\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}-\mathrm{H}_{2}\right) \tag{1}\\
\mathrm{K}=\frac{[36]}{[\mathbf{6 a}]\left[\mathrm{H}_{2}\right]} \tag{2}
\end{gather*}
$$

Table XIII. 1 Integrations Used for Equilibrium Calculations

Value of Integation	Signal(s), ppm	Reasonance(s)	Number of Protons
α	3.78	NMe of $\mathbf{3 6}^{3}$	3
β	3.07	NMe $_{2}$ of $\mathbf{6 a}$	6
ω	4.44	uncoordinated H_{2}	2

Sample preparation for analysis was as follows: $\mathrm{C}_{6} \mathrm{D}_{6}$ was vacuum transferred into an NMR tube containing a solid sample of $6 \mathbf{a}(0.0163 \mathrm{M})$. The sample is warmed to r.t., and $1 \mathrm{~atm} \mathrm{H}_{2}$ is added; then the sample is shaken for $\sim 2 \mathrm{~min}$ to take up H_{2}, when the sample is again placed under $1 \mathrm{~atm} \mathrm{H}_{2}$.

$$
\begin{align*}
& x=\frac{[36]}{[6 a]}=\frac{\alpha / 3}{\beta / 6} \tag{3}\\
& y=\frac{[36]}{\left[\mathrm{H}_{2}\right]}=\frac{\alpha / 3}{\omega / 2} \tag{4}\\
& {[6 \mathrm{a}]=\frac{[\mathrm{Ru}]_{\text {total }}}{1+\mathrm{x}}} \tag{5}\\
& {[36]=[\mathrm{Ru}]_{\text {total }}-[6 \mathrm{a}]} \tag{6}
\end{align*}
$$

$$
\begin{equation*}
\left[\mathrm{H}_{2}\right]=\frac{[36]}{\mathrm{y}} \tag{7}
\end{equation*}
$$

Table XIII. 2 Integration Values and Equilibrium Concentration Ratios (α, β and ω)

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$\mathbf{1 / T}(\mathrm{K})$	α	β	ω	x	y	$[\mathbf{6 a}]$	$[\mathbf{3 6}]$	$\left[\mathrm{H}_{2}\right]$	K	$\ln \mathrm{K}$
20.9	0.00340	2.30	8.05	0.49	0.57	3.13	0.0104	0.0059	0.0019	302	5.71
24.6	0.00336	2.20	8.00	0.59	0.55	2.49	0.0105	0.0058	0.0023	236	5.47
30.6	0.00329	1.81	7.35	0.47	0.49	2.57	0.0109	0.0054	0.0021	235	5.46
40.6	0.00319	1.51	7.15	0.50	0.42	2.01	0.0115	0.0048	0.0024	176	5.17
50.6	0.00309	1.10	7.06	0.52	0.31	1.41	0.0124	0.0039	0.0027	113	4.73
60.6	0.00300	1.07	7.40	0.69	0.29	1.03	0.0126	0.0037	0.0035	82	4.40

Figure XIII. 1 Van't Hoff plot for the equilibrium $\left(6 a+\mathrm{H}_{2} \rightleftharpoons 36\right)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

[^0]: *symmetry operation: $1-x,-y, z$

