HIGH RESOLUTION SPECTROSCOPY OF THE VANADIUM OXIDE $B^{4} \Pi-X^{4} \Sigma^{-}(0,0)$ BAND
 By

 BOB BERNO

 BOB BERNO
 B. Sc. (Chemistry) University of Waterloo, 1989

a thesis submitted in partial fulfillment of the requirements for the degree of Master of Science
in
the Faculty of Graduate Studies
Department of Chemistry

We accept this thesis as conforming to the required standard

The University of British Columbia
December 1992
(c) BOB BERNO, 1992

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.
(Signature)

Department of Chemistry
The University of British Columbia Vancouver, Canada

Date December i8, 1992

Abstract

The $B^{4} \Pi-X^{4} \Sigma^{-}(0,0)$ band of VO has been recorded at sub-Doppler resolution by intermodulated fluorescence spectroscopy. Spectral linewidths of 60 MHz were typical; which enabled the hyperfine structure due to the ${ }^{51} \mathrm{~V}$ nucleus ($I=\frac{7}{2}$) to be resolved for most of the observed branches. The hyperfine structure of the $B^{4} \Pi$ state is narrow except where it is heavily perturbed by the $v=2$ level of the $a^{2} \Sigma^{+}$state. The electron configuration of the $a^{2} \Sigma^{+}$state was determined to be $(4 s \sigma)^{1}(3 d \delta)^{2}$ because of the large Fermi contact interaction which arose from an unpaired electron having primarily metal 4 s atomic orbital character.

The transition frequencies were fit to a model which included the rotational, fine and hyperfine structure of the $B^{4} \Pi, X^{4} \Sigma^{-}$and $a^{2} \Sigma^{+}$states. The $B^{4} \Pi / a^{2} \Sigma^{+}$interaction required the inclusion of an effective higher order spin-orbit parameter as well as a new hyperfine parameter, denoted by parameter e. The new hyperfine parameter is required to describe the hyperfine interactions between ${ }^{4} \Pi$ and ${ }^{2} \Sigma^{+}$states.

The fit included 3211 data points and gave an r.m.s. error of $0.00038 \mathrm{~cm}^{-1}$.

Table of Contents

Abstract ii
List of Tables vi
List of Figures vii
Acknowledgements ix
Dedication x
1 Introduction 1
2 Experimental 6
2.1 Introduction 6
2.2 The Calibration System 10
2.3 Saturation Spectroscopy 12
2.4 Lamb Dips and Intermodulated Fluorescence 16
2.5 Wavelength Resolved Fluorescence Spectroscopy 20
3 Energy Expressions and the Hamiltonian 24
3.1 Introduction 24
3.2 Perturbations 25
3.3 Hund's Coupling Cases 28
3.3.1 Case (a_{β}) 28
3.3.2 Case $\left(\mathrm{b}_{\beta J}\right)$ 30
3.4 Hamiltonian Matrix Elements for the $X^{4} \Sigma^{-}$state 31
3.4.1 Rotational Structure 33
3.4.2 Fine Structure 33
3.4.3 Magnetic Hyperfine Hamiltonian 37
3.4.4 The Electric Quadrupole Interaction 38
3.5 The Hamiltonian for the ${ }^{4} \Pi$ upper state 39
3.5.1 Rotational and Fine Structure 39
3.5.2 $\quad \Lambda$-type Doubling 40
3.5.3 Magnetic Hyperfine Interactions 41
3.5.4 Electric Quadrupole Interaction 43
3.6 The Hamiltonian for the $a^{2} \Sigma^{+}$State 43
3.7 The ${ }^{2} \Sigma^{+}-{ }^{4} \Pi$ Matrix Elements 44
4 Analysis of the Spectra 47
4.1 Introduction 47
4.2 The Ground State of VO 50
4.2.1 The Spin-spin and Spin-rotation Interactions 50
4.2.2 The Hyperfine Splitting in the Ground State 52
4.3 The B^{4} II State 58
4.3.1 The Spin-orbit Splitting of the $B^{4} \Pi$ State 58
4.3.2 The Λ-type Doubling in the $B^{4} \Pi$ State 60
4.4 The Interaction Between the $B^{4} \Pi$ and $a^{2} \Sigma^{+}$States 60
5 Results 67
6 Discussion 70
6.1 Rotational Structure 70
6.2 Electron Configurations 71
6.3 The Molecular Spin-Orbit Parameters 73
6.4 The $B^{4} \Pi / a^{2} \Sigma^{+}$Perturbation 77
7 Conclusions 80
Bibliography 82
A The Line Assignments of the VO $B^{4} I I-X^{4} \Sigma^{-}(0,0)$ Band. 85

List of Tables

5.1 The constants for the $X^{4} \Sigma^{-}(v=0)$ state of VO. 67
5.2 The constants for the $a^{2} \Sigma^{+}(v=2)$ state of VO. 68
5.3 The constants for the $B^{4} \Pi(v=0)$ state of VO. 69
6.1 The rotational constants and average bond lengths of the states of the VO $B^{4} \Pi-X^{4} \Sigma^{-}$transition. 71
6.2 Table of the equilibrium rotational constants from the $B^{4} \Pi-X^{4} \Sigma^{-}$ transition. 72
6.3 Table of the four sub-band origins of the $B^{4} \Pi$ state. 74
6.4 The band origin and higher spin-orbit parameters of the $B^{4} \Pi$ state. 75
6.5 Calculations of the anharmonic oscillator overlap integrals. 79

List of Figures

1.1 The molecular orbital diagram for VO. 2
1.2 Selected electronic states of VO. 4
2.1 Schematic diagram of the experimental apparatus for IMF spectroscopy. 7
2.2 A schematic diagram of the calibration system. 10
2.3 Plots of the velocity distributions of the $E_{2}(\mathrm{a})$; and E_{1} (b) levels when an intense laser beam with vector \vec{k} and frequency ω passes through the sample cell 14
2.4 Plots of the saturated $\left(\alpha_{s}(\omega)\right)$ and unsaturated $\left(\alpha_{0}(\omega)\right)$ absorption coeffi- cients as a function of excitation frequency (ω) 15
2.5 a) Illustration of the effects of a saturating standing wave on the velocity distribution of molecules in the sample cell; b) the corresponding absorp- tion coefficient for the sample. 17
2.6 Plot of the absorption coefficient for two closely spaced transitions. The unresolved line is shown in a), and the two Lamb dips representing the two line positions are shown in b). 19
2.7 An example of possible relaxations in a simple system after excitation of a Q-branch line a), and a P-branch line b). 22
3.1 Illustration of an avoided crossing between two states. 26
3.2 Hund's case (a_{β}) coupling scheme. 29
3.3 Hund's case ($\mathrm{b}_{\beta J}$) coupling scheme. 32
3.4 The hyperfine Hamiltonian Matrix for ${ }^{4} \Pi$ states interacting with ${ }^{2} \Sigma^{+}$states. 46
4.1 The head of the ${ }^{s} Q_{31}$ branch; illustrating the density of the $B^{4} \Pi-X^{4} \Sigma^{-}(0,0)$band structure.48
4.2 Fortrat diagrams showing transitions involving (a) the e-parity compo- nents, and (b) the f-parity components of the F_{1} upper spin state. 49
4.3 The energies of the four electron spin components of the $X^{4} \Sigma^{-}$state of VO. 51 51
4.4 The hyperfine energy level splittings for the F_{2} and F_{3} spin states of the $X^{4} \Sigma^{-}$state of VO. 53
4.5 (a) The ${ }^{S} Q_{31}(9)$ and (b) the $R_{4}(7)$ lines showing how the hyperfine struc- tures are mirrored. 55
4.6 Plot of the ${ }^{S} R_{32}$ (14) line including induced lines from the internal hyperfine perturbation. 57
4.7 The upper state electronic term energies as a function of $\left(J+\frac{1}{2}\right)^{2}$. 59
4.8 Plot of the Λ-type splittings of the four spin states of $B^{4} \Pi$ 61
4.9 The hyperfine energy levels of the $B^{4} \Pi_{-\frac{1}{2} f}$ and $a^{2} \Sigma_{f}^{+}$states. 63
4.10 The hyperfine energy levels of the $B^{4} \Pi_{-\frac{1}{2} e}$ and $a^{2} \Sigma_{e}^{+}$states. 64
4.11 The hyperfine widths of (a) the Q_{1} branch, and (b) the ${ }^{\circ} P_{12}$ branch. 65

Acknowledgements

As I put the finishing touches on my masters thesis, I am reminded of the many people who were involved with this work. These people are too numerous to be mentioned here, however I wish to express genuine gratitude to those who made appreciable contributions. Most notable of these was Dr Anthony Merer, whose tremendous enthusiasm was inspirational and his quantum mechanical expertise and superior spectroscopic insight were invaluable.

I would also like to thank: Allan Adam, Bob Bower, and Photos G. Hajigeorgiou, who all at one time or another helped me collect the spectra which appear in this thesis; Mark Barnes, who helped program the matrix elements, despite suffering from 8 am dyslexia; Chris Chan, whose electronics wizardry and fantastic efficiency keeps the lab running; and the members of the Gourmet Club, for smoothing over those occasional rough periods when things in the lab were not working as planned.

To the rest of the people who helped make my stay at UBC highly rewarding and enjoyable, I have not forgotten you. I thank you all and look forward to seeing you and working with you all again.

I would like to dedicate this to my parents. They continue to love me and support me, despite not understanding what I have been doing these past several years.

Chapter 1

Introduction

The nuclei in the neighbourhood of iron in the periodic table are the most stable of all; therefore the elements of the 3d transition series, which surround iron, have very high nuclear stabilities, and are among the most abundant elements in the Universe, not counting hydrogen and helium. The processes that synthesize these elements take place when a comparatively heavy star runs out of its hydrogen "fuel", and explodes as a supernova. Heavy stars of this type live short but brilliant lives, and in their violent death throes generate immense quantities of the transition elements, which are blown out into space. Later generations of stars can condense from interstellar gas clouds that contain such "recycled" material, and are described as "metal-rich" in the jargon of the astrophysicists. Our Sun is a star in this class, as are many of the stars in its immediate vicinity.

The optical spectra of the cooler stars containing recycled supernova material are dominated by band systems of the 3 d transition metal monoxides, for various reasons. First, oxygen is also one of the more abundant elements and, second, the 3 d oxides have particularly high dissociation energies, so that they can survive in the relatively high temperature environments of the stellar atmospheres [1]; most importantly, the oxides have prominent electronic band systems throughout the visible and near infra-red regions of the spectrum.

Much of the astrophysics of cool stars is merely high-temperature laboratory chemistry applied to astronomical objects [1], so that the spectroscopy of the 3 d monoxides is

Figure 1.1: The molecular orbital diagram for VO.
an important topic in this field. Of very considerable importance is VO which, after TiO , is the second most abundant molecule found in the spectra of the cool M-type stars [2]. Bands in the near infra-red region, near 1.06μ, were in fact attributed to VO by Kuiper et al [3], some time before laboratory work by Lagerqvist et al [4] was able to confirm the assignment. These observations have generated a strong interest in the VO molecule which continues to the present day.

The first reasonably detailed theoretical calculations on VO [5] predicted that the ground state is ${ }^{4} \Sigma^{-}$, from the valence electron configuration $(9 \sigma)(1 \delta)^{2}$, with the ${ }^{2} \Delta$ state from the configuration $(9 \sigma)^{2}(1 \delta)$ lying only a very small amount above (see Figure 1.1). The ${ }^{4} \Sigma^{-}$nature of the ground state was later confirmed experimentally from electron spin resonance spectra of VO isolated in an argon matrix [6].

In their early gas-phase studies of the electronic spectrum of VO, Richards and Barrow [7] observed large hyperfine splittings in the ground state. Further investigations of the hyperfine structure led to their discovery of "internal hyperfine perturbations" in the ground state [8]. Internal hyperfine perturbations also occur in the $C^{4} \Sigma^{-}$excited state [9]: Cheung and coworkers [10] obtained sub-Doppler resolution spectra of the $C-X$ transition using the saturation technique known as intermodulated fluorescence spectroscopy, and were able to characterize the perturbations in the $C^{4} \Sigma^{-}$and $X^{4} \Sigma^{-}$ states in detail. More recently the $C^{4} \Sigma^{-}$state has been used as the intermediate in a pulsed field ionization study of VO that led to an accurate determination of its ionization potential [11].

Another strong system of absorption bands is observed in the spectra of cool Mtype stars in the $0.74-0.83 \mu$ region. Although this system had been tentatively assigned to VO [2], it was not conclusively identified as belonging to VO until Keenan and Schroeder [12] were able to obtain emission spectra (from an electric arc containing $\mathrm{V}_{2} \mathrm{O}_{5}$ powder) which matched the astronomical data. This band system is now recognized as being the $B^{4} \Pi-X^{4} \Sigma^{-}$electronic transition of VO.

The present thesis is concerned with the rotational and hyperfine structure of the $(0,0)$ band of the $B^{4} \Pi-X^{4} \Sigma^{-}$transition of VO. The system had been recorded previously in emission at Doppler-limited resolution by Cheung and coworkers [13], and shown to contain many intense branches with varying hyperfine line widths. This variation in the line widths results mostly from the huge hyperfine effects in the ground state, since the upper state turns out to have comparatively narrow hyperfine structure. Rotational assignments could be made for the branches where the hyperfine widths in the upper and lower states happen to cancel and produce comparatively sharp rotational lines, but many of the branches are hyperfine-broadened to the extent that they are not identifiable in the emission spectra. A further complication is that the $B^{4} \Pi$ upper state suffers large

Figure 1.2: Selected electronic states of VO.
rotational perturbations caused by spin-orbit interaction with the ${ }^{2} \Sigma^{+}$state that comes from the same electron configuration as the ground state. Although some of the details of the perturbations could be worked out from the Doppler-limited spectra [13], a full account has required that spectra of the transition be obtained at sub-Doppler resolution. It has not been possible to obtain such spectra until quite recently, because of the lack of a suitably intense tunable laser source in the 0.8μ region. With the development, in the past three years, of commercial continuous-wave Ti:sapphire ring lasers, the 0.8μ region has become more easily accessible for high resolution studies. This thesis reports a full sub-Doppler analysis of the $(0,0)$ band of the $B^{4} \Pi-X^{4} \Sigma^{-}$system of VO near 0.8μ, including a detailed treatment of the hyperfine effects, and a very complete account of the rotational perturbations caused by the $a^{2} \Sigma^{+}$state.

Chapter 2

Experimental

2.1 Introduction

Although VO has been found to be quite stable in the atmospheres of the cooler M-type stars[2], it is not found as a stable diatomic molecule in normal terrestrial environments. Therefore, to carry out a high resolution spectroscopic study, VO had to be produced under non-equilibrium conditions from a stable precursor.

To that end, VO was produced in an electrodeless microwave discharge operating at 2450 MHz through a flowing mixture of VOCl_{3} and an appropriate carrier gas. Argon was mostly used as the carrier gas, at a total pressure of approximately one torr. Later, when increased sensitivity was needed to record the high J lines at longer wavelengths (800 nm), a higher pressure of carrier gas was necessary to increase the populations of the higher rotational levels. However, the argon emission lines in the region being detected became much more intense at this higher pressure, thus increasing the background noise. As a result there was no improvement in the signal-to-noise ratio. Consequently, the argon was replaced by helium, since there are almost no emission lines of helium in this region. The shorter wavelength helium emission lines from the discharge could be filtered out before reaching the photo-multiplier tube (PMT), so even though the experiment was run at higher pressure than the argon experiments, the background noise was reduced. This improvement in sensitivity came at the cost of reduced resolution because of pressure broadening.

(1) Ar ION PUMP LASER
(2) Ti:SAPPHIRE LASER
(3) $\mathrm{He}-\mathrm{Ne}$ LASER
(4) 50:50 BEAMSPLITTER
(5) MECHANICAL CHOPPER
(6) PHOTODIODE
(7) VACUUM CHAMBER
(8) Photomultiplier tube
(9) LOCK-IN AMPLIFIER
(10) U HOLLOW CATHODE LAMP
(11) CHART RECORDER
(12) μ-VAX COMPUTER

Figure 2.1: Schematic diagram of the experimental apparatus for IMF spectroscopy.

The Doppler linewidth for room temperature VO at around $12500 \mathrm{~cm}^{-1}$ is approximately $600 \mathrm{MHz}\left(0.02 \mathrm{~cm}^{-1}\right)$. The hyperfine splittings arising from the ${ }^{51} \mathrm{~V}$ nucleus (nuclear spin, $I=\frac{7}{2}$) and the complexities of the rotational structure lead to considerable blending around the bandheads and at the perturbations, which causes much of the detail to be lost because of blending at Doppler-limited resolution. Consequently, sub-Doppler spectra of VO had to be recorded. These sub-Doppler spectra were recorded using the technique of intermodulated fluorescence (IMF) spectroscopy[15].

A schematic illustration of the experimental set-up is shown in Figure 2.1. A Coherent Inc. Model I-20 continuous wave argon ion laser was used to pump a tunable Ti:sapphire laser (Coherent Inc. Model 899-21) in the region from $12390 \mathrm{~cm}^{-1}$ to $12740 \mathrm{~cm}^{-1}$.

A portion of the beam from the Ti:sapphire laser was split off by a beamsplitter, and was sent to the calibration system which determined the absolute frequency of the light. The calibration system will be discussed in greater detail in the next Section.

The remaining laser light was passed through a $50 / 50$ beamsplitter, producing two equal intensity coherent beams. These beams were oriented so that they passed through the sample cell exactly antiparallel to each other as shown in Figure 2.1. To stop the laser beams from feeding back into the Ti :sapphire laser, an optical diode was inserted just prior to the $50 / 50$ beamsplitter.

Before reaching the sample cell, these two portions of the laser beam passed through a mechanical chopper with three rings of holes punched in it. One ring consisted of 28 holes, the second ring consisted of 36 holes and the third of 64 holes. When one portion of the laser beam $\left(I_{1}\right)$ passes through the first ring of holes, it will be chopped twenty-eight times for every revolution of the chopper. The frequency that the first laser is chopped at is thus:

$$
F_{1}=28 F_{\text {chop }}
$$

where $F_{\text {chop }}$ is the frequency of the chopper in revolutions per second. Similarly, the chopping frequency for the second arm, when passed through the second ring of holes, is

$$
F_{2}=36 F_{\text {chop }}
$$

A HeNe laser beam is passed through the third ring of holes, and is thus chopped at:

$$
\begin{aligned}
F_{\text {ref }} & =64 F_{\text {chop }} \\
& =F_{1}+F_{2}
\end{aligned}
$$

$F_{\text {chop }}$ was typically between 20 to 25 revolutions per second. The laser power in each arm was of the order of 100 mW , dropping to $50 \mathrm{~mW} / \mathrm{arm}$ at longer wavelengths. Ultimately, the drop in laser power at these longer wavelengths coupled with the sharp drop in the quantum efficiency of the photo-multiplier tube (Hamamatsu Model R928) did not permit spectra in the region from $12390 \mathrm{~cm}^{-1}$ to $12450 \mathrm{~cm}^{-1}$ to be recorded using the IMF technique. This spectral region was covered at Doppler limited resolution only. The linewidths of most of the IMF spectra were found to be better than 60 MHz . However, when the increased pressure of helium was needed to improve sensitivity, pressure broadening from the helium carrier gas caused the line width to increase to 100 MHz .

The perturbation of the $B^{4} \Pi$ state by the $a^{2} \Sigma^{+}$state produced extremely complicated spectra at the avoided crossings. Not only are the positions of the lines shifted, but the intensities of the already weak lines are further reduced since some of the intensity is transfered to extra lines arising from the $a^{2} \Sigma^{+}$state. Assignments of these lines near the avoided crossings were made using the technique of wavelength resolved fluorescence (WRF) spectroscopy. This will be described in further detail in Section 2.5.

Figure 2.2: A schematic diagram of the calibration system.

2.2 The Calibration System

In the past, laser excitation data were calibrated against a reference fluorescence spectrum of I_{2} or $\mathrm{Te}_{2}[16]$. With the advent of high resolution techniques such as laser induced fluorescence (LIF) molecular beam experiments and IMF spectroscopy, more accurate methods of calibration became necessary because the characteristic uncertainties in the iodine line positions were larger than the uncertainty in the spectra being calibrated. The spectra of the $B^{4} \Pi-X^{4} \Sigma^{-}(0,0)$ band of VO were calibrated using the system illustrated schematically in Figure 2.2. The key component in this system is the evacuated, temperature and pressure stabilized Fabry-Perot étalon. The cavity length of the étalon is accurately fixed by a piezoelectric driver servolocked to one particular interference fringe of a polarization-stabilized HeNe laser line, so that the relative frequencies of the interference fringes (also referred to as markers) are well known.

The piezoelectric driver mentioned earlier carries one of the confocal mirrors of the 750 MHz étalon. A modulating voltage is applied to the piezo in such a way that when the 632.8 nm line from a stabilized HeNe laser enters the interference cavity, the position of the mirror is locked so that the frequency of the HeNe line is at the maximum of one particular fringe. The free spectral range (FSR) of the cavity is thus invariant to changes in room temperature or atmospheric pressure. When the absolute frequency of one fringe is known, and the order number of the other fringes with respect to that one fringe is known, then the frequency of any marker can be calculated using the expression[16]

$$
\begin{equation*}
\omega=\frac{n \omega_{0}}{n_{0}} \tag{2.1}
\end{equation*}
$$

where n_{0} and ω_{0} refer to the order number and frequency of the marker whose frequency is known, while n and ω are the known order number and unknown frequency of the other marker.

Since the frequency of the HeNe line used to lock the étalon is well known, it is possible to use its frequency as the standard. In practice, this poses a problem in regions far from the 632.8 nm HeNe line because the reflectivity of the étalon mirrors, and hence the fringe spacing, shows a slight wavelength dependence. Therefore, a Burleigh model WA-20VIS wavemeter was used to identify the markers by giving their frequencies to $\pm 0.02 \mathrm{~cm}^{-1}$. To obtain highly accurate frequency determinations, opto-galvanic spectra from a uranium:neon hollow cathode lamp were recorded along with the VO spectra. The uranium line positions were taken from the uranium emission atlas[17], and the frequencies of the 750 MHz étalon fringes could thus be determined by a least sqares fit. In the 800 nm region of the spectrum, the FSR of the stabilized étalon was found to be $0.025046 \mathrm{~cm}^{-1}(750.859 \mathrm{MHz})$.

2.3 Saturation Spectroscopy

Freshman chemistry textbooks teach students that the absorption of radiation by the sample molecules follows the Beer-Lambert Law:

$$
\begin{equation*}
I_{f}=I_{i} e^{-\varepsilon C l} \tag{2.2}
\end{equation*}
$$

where I_{f} and I_{i} are the final and initial light intensities, ε is the extinction coefficient ${ }^{1}$, C is the sample concentration in moles per litre and l is the path length in centimeters through the sample cell for the radiation. ε is a constant of the system, and thus the concentration of the sample molecules in the cell can be calculated from the ratio of the initial and final radiation intensities I_{i} and I_{f} respectively as:

$$
C=-\frac{\ln I_{f} / I_{i}}{\varepsilon l}
$$

The extinction coeficient (ε) has a wavelength dependence defined by the transition energy between the states in question. In accurate spectroscopic studies, ε is replaced by the absorption coefficient (α_{0}), which for a sample experiencing a weak oscillating electric field of frequency ω and direction \vec{k}, such that \vec{k} is parallel to the z axis, can be expressed as[19]

$$
\begin{equation*}
\alpha_{0}(\omega)=\frac{\gamma^{2} \sigma_{0} \Delta N_{0}}{4 \sqrt{\pi} v_{p}} \int_{-\infty}^{\infty} \frac{e^{-\left(v_{2} / v_{p}\right)^{2}} d v_{z}}{\left(\omega-\omega_{0}-k \cdot v_{z}\right)^{2}-(\gamma / 2)^{2}} \tag{2.3}
\end{equation*}
$$

In this equation $v_{p}=\sqrt{2 k_{B} T / m}, \sigma_{0}$ is the absorption cross-section, γ is the sum of the radiative and nonradiative decay constants, ΔN_{0} is the difference in number density between the upper state (N_{2}) and the lower state (N_{1}) (i. e. $\Delta N_{0}=N_{2}-N_{1}$), and k is the magnitude of \vec{k} in the z direction.
: The Beer-Lambert Law works well when the population density of the upper state $\left(N_{2}\right)$ is considerably less the the population density in the lower state $\left(N_{1}\right)$. However,

[^0]if the incident electric field intensity is increased to the point where the lower state is depopulated at an appreciably faster rate than the rate of relaxation from the upper state, then the Beer-Lambert Law breaks down, and the transition is said to be saturated. Under these conditions, α_{0} becomes dependent on the incident electric field intensity.

Saturation is commonly observed when lasers are used as excitation light sources because of the high light intensities typically generated. To illustrate the effects of saturation, consider a sample cell containing molecules with a thermal velocity distribution. When monochromatic laser light with frequency ω and vector \vec{k} passes through the cell, there will be a depletion of the population density of molecules in the absorbing state at energy E_{1} if their velocity components are defined by:

$$
\begin{equation*}
\omega-\vec{k} \cdot(\vec{v} \pm \Delta \vec{v})=\omega_{12} \pm \delta \omega \tag{2.4}
\end{equation*}
$$

where $\omega_{12}=\left(E_{2}-E_{1}\right) / \hbar$ and $\delta \omega$ is the linewidth of the laser. If \vec{k} is once again chosen to be parallel to the z direction, then Equation 2.4 becomes:

$$
\begin{equation*}
\omega-k \cdot\left(v_{z} \pm \Delta v_{z}\right)=\omega_{12} \pm \delta \omega \tag{2.5}
\end{equation*}
$$

The velocity distributions of molecules in the E_{1} and E_{2} levels resulting from this intense laser light are shown in Figure 2.3. The dip in the $n_{1}\left(v_{z}\right)$ population distribution is known as a Bennett Hole[18]. The spectral width γ_{s} of the Bennett hole is related to γ (the sum of the radiative and nonradiative decay constants) by

$$
\gamma_{s}=\gamma \sqrt{1+S_{0}}
$$

where S_{0} is the value of the saturation parameter at the transition frequency $\omega_{0}[19]$. At optical wavelengths, γ_{s} is much narrower than the Doppler profile. However, this subDoppler depletion in the population distribution of the E_{1} state cannot be observed by simply passing a single saturating laser through the sample cell. Tuning the frequency of

Figure 2.3: Plots of the velocity distributions of the $E_{2}(\mathrm{a})$; and E_{1} (b) levels when an intense laser beam with vector \vec{k} and frequency ω passes through the sample cell

Figure 2.4: Plots of the saturated $\left(\alpha_{s}(\omega)\right)$ and unsaturated $\left(\alpha_{0}(\omega)\right)$ absorption coefficients as a function of excitation frequency (ω)
the monochromatic laser will simply move the Bennett hole to another part of the velocity distribution such that the observed spectral line would follow the dotted line shown in Figure 2.4. The expression for the absorption coefficient for molecules experiencing a saturating radiation field is given by[19]:

$$
\begin{equation*}
\alpha_{s}(\omega)=\frac{\gamma^{2} \sigma_{0} \triangle N_{0}}{4 \sqrt{\pi} v_{p}} \int_{-\infty}^{\infty} \frac{e^{-\left(v_{z} / v_{p}\right)^{2}} d v_{z}}{\left(\omega-\omega_{0}-k \cdot v_{z}\right)^{2}-\left(\gamma_{s} / 2\right)^{2}} \tag{2.6}
\end{equation*}
$$

This expression closely resembles the expression in the weak field approximation (Equation 2.3). Evaluation of the integral, with the assumption that γ_{s} is much less than the Doppler width gives

$$
\begin{equation*}
\alpha_{s}(\omega)=\alpha_{0}(\omega)\left(1+S_{0}\right)^{-1 / 2} \tag{2.7}
\end{equation*}
$$

Clearly, if the saturation parameter is small, then the absorption coefficient approaches
the value obtained in the weak field approximation.

2.4 Lamb Dips and Intermodulated Fluorescence

In order to probe the Bennett hole in the velocity distribution profile, a second radiation source is required. One way to introduce a second radiation source would be simply to reflect the laser beam back through the sample cell antiparallel to the incident laser beam. Under these conditions the total electric field experienced by the molecules in the cell can be expressed as the sum of two oscillating electric fields:

$$
\begin{align*}
\vec{E} & =\vec{E}_{1}+\vec{E}_{2} \\
& =E_{0} e^{-i(\omega t+k z)}+E_{0} e^{-i(\omega t-k z)} \\
& =E_{0} \cos (\omega t+k z)+E_{0} \cos (\omega t-k z) \\
& =2 E_{0} \cos \omega t \cos k z \tag{2.8}
\end{align*}
$$

The result of having two \mathbf{E} fields interacting with the ensemble of molecules in the cell is the production of two holes at $v_{z}= \pm\left(\omega_{0}-\omega\right) / k$. When $\omega=\omega_{0}$ the two holes converge to one hole in the population distribution of twice the depth. The change in population due to the saturating standing wave radiation can be expressed as[19]:

$$
\begin{equation*}
\Delta n_{s}\left(v_{z}\right)=\Delta n_{0}\left(v_{z}\right)\left[1-\frac{(\gamma / 2)^{2} S_{0}}{\left(\omega_{0}-\omega-k v_{z}\right)^{2}+\left(\gamma_{S} / 2\right)^{2}}-\frac{(\gamma / 2)^{2} S_{0}}{\left(\omega_{0}-\omega+k v_{z}\right)^{2}+\left(\gamma_{S} / 2\right)^{2}}\right] \tag{2.9}
\end{equation*}
$$

When $\omega=\omega_{0}$ this expression reduces to

$$
\begin{equation*}
\Delta n_{s}\left(v_{z}\right)=\Delta n_{0}\left(v_{z}\right)\left[1-2 S_{0}\left(\frac{\gamma}{\gamma_{s}}\right)^{2}\right] \tag{2.10}
\end{equation*}
$$

The effect of a saturating standing wave on the change in population of the lower state $\left(\Delta n\left(v_{z}\right)\right)$ is illustrated in Figure 2.5(a), where the dotted line represents the case where $\omega=\omega_{0}$ and the solid line represents $\omega>\omega_{0}+\gamma$.

Figure 2.5: a) Illustration of the effects of a saturating standing wave on the velocity distribution of molecules in the sample cell; b) the corresponding absorption coefficient for the sample.

The expression for the absorption coefficient for this standing wave experiment,

$$
\begin{equation*}
\alpha_{s}(\omega)=\alpha_{0}\left[1-\frac{S_{0}}{2}\left(1+\frac{\left(\gamma_{s} / 2\right)^{2}}{\left(\omega-\omega_{0}\right)^{2}+\left(\gamma_{s} / 2\right)^{2}}\right)\right] \tag{2.11}
\end{equation*}
$$

shows that, when the laser is tuned off resonance, $\alpha(\omega) \approx \alpha_{0}\left(\omega_{0}\right)\left(1-\frac{S_{0}}{2}\right)$, but, when the laser is tuned to $\omega=\omega_{0}, \alpha(\omega)=\alpha_{0}\left(\omega_{0}\right)\left(1-S_{0}\right)$. Hence, setting up a standing wave in the sample cell produces a dip in the absorption curve of spectral width γ_{s} at the transition frequency ω_{0}. At optical wavelengths, γ_{s} is usually much less than the Doppler width and thus the line position of the transition, seen as a Lamb dip, can now be measured with much higher precision.

In addition to improved precision, this technique also affords the ability to resolve lines that were blended at Doppler limited resolution. This capability is illustrated in Figure 2.6, which represents two transitions so close to each other that their Doppler broadened line profiles would be completely blended. The two tiny dips on either side of the Doppler profile represent the two line positions.

Lamb dip spectroscopy has limited usefulness when the spectra become very dense. Under these conditions the Lamb dips can become lost in the mass of Doppler limited line profiles.

One way to avoid this problem is through the use of intermodulated fluorescence spectroscopy (IMF)(see Section 2.1). IMF is a very sensitive saturation technique for eliminating the residual Doppler profile. Like the Lamb dip set-up for absorption experiments, an IMF experiment requires two counter-propagating beams of radiation through the sample cell. However, IMF differs in that instead of simply reflecting the radiation back through the sample cell (thus setting up a standing wave), the incident wave is first split into two equal intensity components, I_{1} and I_{2}. The two beams are chopped at two different frequencies, F_{1} and F_{2} respectively, so the intensities of the laser beams entering

Figure 2.6: Plot of the absorption coefficient for two closely spaced transitions. The unresolved line is shown in a), and the two Lamb dips representing the two line positions are shown in b).
the sample cell are given by:

$$
I_{1}=\frac{I_{0}}{2}\left(1+\cos 2 \pi F_{1} t\right)
$$

and

$$
I_{2}=\frac{I_{0}}{2}\left(1+\cos 2 \pi F_{2} t\right)
$$

neglecting higher order terms. The intensity of the fluorescence emitted by the molecules experiencing these two counter-propagating laser beams is found to be[19]:

$$
I_{F l} \propto n_{s}\left(I_{1}+I_{2}\right)
$$

which reduces to

$$
I_{F l} \propto n_{0}\left(I_{1}+I_{2}\right)-\frac{B_{12}}{c \pi \gamma R}\left(I_{1}+I_{2}\right)^{2}
$$

when $\omega=\omega_{0} . B_{12}$ is the Einstein coefficient for stimulated emission and R is the sum of all relaxation processes. The linear terms give fluorescence modulated at F_{1} and F_{2}, while the quadratic terms are responsible for fluorescence modulated at $\left(F_{1}+F_{2}\right)$ and ($F_{1}-F_{2}$). Sorem and Schawlow[15] demonstrated that by detecting fluorescence at the sum frequency, $\left(F_{1}+F_{2}\right)$, it is possible to record sub-Doppler spectra of the transitions while the background is greatly suppressed. Thus IMF is a good technique when subDoppler resolution of weak fluorescence transitions is desired.

2.5 Wavelength Resolved Fluorescence Spectroscopy

When a molecule is excited to a higher electronic state as a result of absorption of a photon, there may exist more than one relaxation path back down to the lower state. An example of such a process is illustrated in Figure 2.7. This example shows a case where three lines are emitted as a result of excitation. Simply measuring the total fluorescence emitted by the molecules reveals only that a transition has occurred, and
gives no information about the assignment. On the other hand, the assignment can be obtained from wavelength-resolved fluorescence (WRF) spectra. For instance, in the first example the WRF spectrum consists of a strong line between two weaker lines. The greater intensity of the centre line is due to unavoidable scattered laser light from the excitation laser, not because the relaxation will preferentially follow that path. This pattern in the WRF spectrum confirms the assignment to a Q-branch transition.

In the second example, however, the intense line is the lowest frequency line of the three because, in this case, a P-branch line has been excited. Similarly, for an R-branch transition, the most intense of the three lines would be the one at highest frequency. Hence, the observed patterns of these WRF spectra serve to confirm the branch assignment of the particular excitation.

Not only can branch assignments be made from WRF data, but if the lower state is already well known, then the J-assignments follow from ground state combination differences. For example, if the transition shown in Figure 2.7(a) was excited, then the fluorescence line positions can be predicted to be at:

$$
\begin{aligned}
& P(3)=\omega+E_{i}(2)-E_{i}(3) \\
& Q(2)=\omega+E_{i}(2)-E_{i}(2) \\
& R(1)=\omega+E_{i}(2)-E_{i}(1)
\end{aligned}
$$

WRF spectra can be obtained by two different but related methods. In both cases the fluorescence signal is focussed onto the entrance slit of a spectrometer. In the first method, the wavelength passing through the exit slit is scanned by rotating the grating; the signal is detected by a PMT, and the dispersed spectrum is recorded sequentially.

In a more efficient approach, the whole spectrum is recorded simultaneously. Early methods of simultaneous detection involved replacing the exit slit of the spectrometer

Figure 2.7: An example of possible relaxations in a simple system after excitation of a Q-branch line a), and a P -branch line b).
with a photographic plate. The modern version of the photographic plate is the diode array detector (DAD). The advantages of the DAD over the photographic plate are that the spectra can be analysed immediately and the intensity information stored digitally, which means it can be easily transferred to a computer.

A SPEX model 1702 spectrometer was used in this study, with the exit slit replaced by an EG\&G model 1421-1024-G DAD. The detector was cooled to $-20^{\circ} \mathrm{C}$ and an EG\&G model 1461 detector interface was used so that the experiment could be controlled by a computer. The width of the entrance slit was varied between $35 \mu \mathrm{~m}$ and $60 \mu \mathrm{~m}$, and the exposure times varied from less than one second for the strongest fluorescence signals to as long as two minutes for very weak signals.

Chapter 3

Energy Expressions and the Hamiltonian

3.1 Introduction

Before the Hamiltonian matrix elements for the states of the $B^{4} \Pi-X^{4} \Sigma^{-}$transition of VO are described in detail, some basic principles of quantum mechanics will be reviewed.

The time-independent Schrödinger equation is the fundamental expression giving the stationary state energies for a system,

$$
\begin{equation*}
\mathcal{H} \psi=E \psi \tag{3.1}
\end{equation*}
$$

In this equation \mathcal{H} is the total Hamiltonian operator, ψ represents the eigenfunction describing the particular state of interest, and E is the eigenvalue or energy of the state.

Despite the simple appearance of the Schrödinger equation, it usually cannot be solved analytically. Instead, a convenient set of basis functions ϕ_{i} is chosen such that

$$
\begin{equation*}
\psi=\sum_{i} c_{i} \phi_{i} \tag{3.2}
\end{equation*}
$$

When the eigenfunction ψ of the time-independent Schrödinger equation is replaced by a linear combination of orthogonal basis functions ϕ_{i}, the problem of solving Equation 3.1 becomes that of calculating the roots of the secular determinant

$$
\begin{equation*}
\left|\mathcal{H}_{i j}-\mathbf{E} \delta_{i j}\right|=0, \tag{3.3}
\end{equation*}
$$

where the matrix elements $\mathcal{H}_{i j}$ are defined as

$$
\begin{equation*}
\mathcal{H}_{i j}=\int \phi_{i}^{*} \mathcal{H} \phi_{j} d \tau \tag{3.4}
\end{equation*}
$$

and $\delta_{i j}$ is the Kronecker delta (i.e. zero if $i \neq j$ and 1 if $i=j$).
Any complete set of wavefunctions ϕ_{i} would be sufficient, but in practice a basis set is chosen such that the Hamiltonian matrix is most nearly diagonal. Two different bases were used to model the angular momentum couplings in the $B^{4} \Pi-X^{4} \Sigma^{-}$transition of VO. The ground state was best described by a case $\left(\mathrm{b}_{\beta J}\right)$ basis while case (a_{β}) coupling applied in the upper state.

3.2 Perturbations

Since both the $X^{4} \Sigma^{-}$and the $B^{4} \Pi$ states show rotational perturbations in the observed band structure, the theory will be briefly reviewed.

A state is said to be perturbed if the observed branch structure deviates from that predicted by simple theory. Rotational perturbations arise from terms neglected in the Born-Oppenheimer separation of electronic and nuclear motions, or from relativistic effects such as spin-orbit interaction. The Hamiltonian must be written as

$$
\begin{equation*}
\mathcal{H}=\mathcal{H}^{(0)}+\mathcal{H}^{\prime} \tag{3.5}
\end{equation*}
$$

where $\mathcal{H}^{(0)}$ is the "zero order" rotational Hamiltonian, and \mathcal{H}^{\prime} is responsible for the irregularity.

Consider a perturbation between two states whose zero order wavefunctions or "basis functions", are ϕ_{1} and ϕ_{2}; there will be interaction matrix elements of the type $\left\langle\phi_{1}\right| \mathcal{H}^{\prime}\left|\phi_{2}\right\rangle$ which are responsible for the rotational perturbation. The Hamiltonian matrix elements are given by

$$
\begin{gather*}
\left\langle\phi_{1}\right| \mathcal{H}^{(0)}\left|\phi_{1}\right\rangle=H_{11}=E_{1}, \tag{3.6}\\
\left\langle\phi_{2}\right| \mathcal{H}^{(0)}\left|\phi_{2}\right\rangle=H_{22}=E_{2}, \tag{3.7}\\
\left\langle\phi_{1}\right| \mathcal{H}^{\prime}\left|\phi_{2}\right\rangle=H_{12}, \tag{3.8}
\end{gather*}
$$

Figure 3.1: Illustration of an avoided crossing between two states.
and

$$
\begin{equation*}
\left\langle\psi_{2}\right| \mathcal{H}^{\prime}\left|\psi_{1}\right\rangle=H_{21}, \tag{3.9}
\end{equation*}
$$

which can be written as:

$$
\left[\begin{array}{ll}
H_{11} & H_{12} \\
H_{21} & H_{22}
\end{array}\right]
$$

The 2×2 Hamiltonian matrix is assumed to be Hermitian, such that $H_{12}=H_{21}$. The eigenvalues,

$$
\begin{equation*}
E_{A}=\frac{\left(E_{1}+E_{2}\right)}{2}+\frac{1}{2} \sqrt{\left(E_{1}-E_{2}\right)^{2}+4 H_{12}^{2}} \tag{3.10}
\end{equation*}
$$

$$
\begin{equation*}
E_{B}=\frac{\left(E_{1}+E_{2}\right)}{2}-\frac{1}{2} \sqrt{\left(E_{1}-E_{2}\right)^{2}+4 H_{12}^{2}} \tag{3.11}
\end{equation*}
$$

represent the energies of the two perturbed states. The eigenfunctions, ψ_{A} and ψ_{B}, are given by

$$
\left[\begin{array}{c}
\psi_{A} \tag{3.12}\\
\psi_{B}
\end{array}\right]=\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]\left[\begin{array}{l}
\phi_{1} \\
\phi_{2}
\end{array}\right]
$$

where $c=\sqrt{\frac{k+d}{2 k}}, s=\sqrt{\frac{k-d}{2 k}}, d=H_{11}-H_{22}$, and $k=\sqrt{d^{2}+4 H_{12}^{2}}$.
This is illustrated in Figure 3.1. The dotted lines represent the unperturbed states, which have energies E_{1} and E_{2}; these are functions of J, and are assumed to cross at some value of $J(J+1)$. The solid lines represent the observed energies E_{A} and E_{B}, as given by Equations (3.10) and (3.11). Where E_{1} and E_{2} cross, the levels E_{A} and E_{B} show an "avoided crossing", and are separated by twice the perturbation matrix element H_{12}.

The relative intensities of transitions to the perturbed levels can be calculated given the appropriate transition moments. Consider the transition moments μ_{1} and μ_{2}, to the basis states ϕ_{1} and ϕ_{2} respectively. From Equation (3.12), the transitions to the perturbed eigenstates are given by

$$
\begin{aligned}
\left\langle\psi_{A}\right| \hat{\mu}|X\rangle & =c\left\langle\phi_{1}\right| \hat{\mu}|X\rangle+s\left\langle\phi_{2}\right| \hat{\mu}|X\rangle \\
& =c \mu_{1}+s \mu_{2} \\
\left\langle\psi_{B}\right| \hat{\mu}|X\rangle & =-s\left\langle\phi_{1}\right| \hat{\mu}|X\rangle+c\left\langle\phi_{2}\right| \hat{\mu}|X\rangle \\
& =-s \mu_{1}+c \mu_{2}
\end{aligned}
$$

The intensity is proportional to the square of the transition moment; thus $I_{A \leftarrow X} \propto$ $\left(c \mu_{1}+s \mu_{2}\right)^{2}$; and $I_{B \leftarrow X} \propto\left(-s \mu_{1}+c \mu_{2}\right)^{2}$. In the case where $\mu_{2}=0$, the above relations simplify to $I_{A \leftarrow X} \propto c^{2} \mu_{1}^{2}$; and $I_{B \leftarrow X} \propto s^{2} \mu_{1}^{2}$. Consequently, as the avoided crossing is approached, the relative intensity of the observed transition to one of the perturbed
levels will decrease. This diminished intensity will show up as increased intensity for the transition to the other perturbed level. The total intensity is unchanged since $c^{2}+s^{2}=1$.

3.3 Hund's Coupling Cases

To model the rotational structure of the $B^{4} \Pi-X^{4} \Sigma^{-}$transition properly, it is necessary to choose functions that describe the electron orbital angular momentum, \mathbf{L}, the electron spin angular momentum, \mathbf{S}, the angular momentum of the nuclear rotation, \mathbf{R}, and the angular momentum arising from the non-zero nuclear spin of the ${ }^{51} \mathrm{~V}$ nucleus, \mathbf{I}. These angular momentum vectors can be coupled together in many different ways. Hund considered five possible arrangements in which \mathbf{L}, \mathbf{S} and \mathbf{R} can be coupled in linear molecules, which have become known as Hund's cases (a), (b), (c), (d), and (e)[20]. Later, nuclear spin angular momentum effects have had to be included, to produce subsets of Hund's five coupling cases. Only the two cases needed for this transition, namely case (a_{β}) and case $\left(\mathrm{b}_{\beta J}\right)$ (following the naming convention described by Townes and Schawlow [21]), will be discussed here. The others may be found elsewhere [21][22][23].

3.3.1 Case $\left(\mathrm{a}_{\beta}\right)$

Hund's case (a) describes a system where both \mathbf{L} and \mathbf{S} are coupled to the internuclear axis. In a non-spherical system, such as a molecule rather than an atom, \mathbf{L} is not a "good" quantum number, though it doẹs have a well-defined projection, Λ, on the internuclear axis. Likewise, Σ represents the well-defined projection of \mathbf{S} on the internuclear axis. The total angular momentum \mathbf{J} is obtained by adding the rotational angular momentum \mathbf{R} to \mathbf{L} and \mathbf{S}, such that

$$
\mathbf{R}+\mathbf{L}+\mathbf{S}=\mathbf{J}
$$

Figure 3.2: Hund's case (a_{β}) coupling scheme.

Since the projection of \mathbf{R} along the internuclear axis is zero, the component of the total angular momentum along the internuclear axis, Ω^{1}, is

$$
\Omega=|\Lambda+\Sigma| .
$$

One result of this coupling scheme is that the quantum number J, associated with the operator for \mathbf{J}, will be integral or half-integral, depending on whether Ω (or more precisely Σ) is integral or half-integral. Of course J can never be less than Ω.

In case $\left(a_{\beta}\right)$ the nuclear spin angular momentum I is coupled to J, the total of the rotational and electronic angular momentum, according to

$$
\mathbf{J}+\mathbf{I}=\mathbf{F}
$$

This is illustrated vectorially in Figure 3.2. Naturally, the quantum number F cannot be less than zero. The values for F are given by the rules of vector coupling as

$$
F=|J+I|,|J+I-1|, \ldots,|J-I|
$$

For the ${ }^{51} \mathrm{~V}$ nucleus, with nuclear spin $\frac{7}{2}$, there will be eight hyperfine components for each rotational level, provided $J \geq 3 \frac{1}{2}$. (There are two isotopes of vanadium found in nature. Both have non-zero nuclear spins, though the radioactive ${ }^{50} \mathrm{~V}$, with nuclear spin $I=6$, is only found in 0.2% abundance. The dominant stable isotope is ${ }^{51} \mathrm{~V}$, which has nuclear spin $I=\frac{7}{2}$.)

3.3.2 Case ($\mathrm{b}_{\beta J}$)

The electron spin angular momentum \mathbf{S} is not coupled directly to the internuclear axis by the electrostatic field in the molecule. Instead it is only the internal magnetic field induced

[^1]along the axis by the orbital motion of the electrons that can couple \mathbf{S} to the internuclear axis. If $\Lambda=0$, then the magnitude of this internal magnetic field is identically zero and hence the electron spin angular momentum is not coupled to the internuclear axis. This situation is described as case (b), and occurs in most Σ states $(\Lambda=0)$ and all states with $\Lambda>0$ but $B J \gg A$. Even in states with non-zero orbital angular momentum, the electron spin becomes increasingly uncoupled from the internuclear axis by the magnetic field generated by increasing molecular rotation; in such states there is no well defined projection of \mathbf{S} on the internuclear axis.

In case (b) coupling, as with case (a), the projection of \mathbf{L} along the internuclear axis (Λ) is a "good" quantum number. \mathbf{L} is coupled with \mathbf{R} to give \mathbf{N}, the total angular momentum excluding electron and nuclear spins; \mathbf{N} then couples with \mathbf{S} to give \mathbf{J}.

There are several possible coupling schemes for the nuclear spin angular momentum \mathbf{I}. The most common situation, called case ($\mathrm{b}_{\beta J}$), is where \mathbf{J} is coupled to \mathbf{I} to give \mathbf{F}. This is illustrated in Figure 3.3.2. The overall coupling scheme for case $\left(\mathrm{b}_{\beta J}\right)$ can therefore be described as:

$$
\begin{aligned}
& \mathbf{R}+\mathbf{L}=\mathbf{N} \\
& \mathbf{N}+\mathbf{S}=\mathbf{J} \\
& \mathbf{J}+\mathbf{I}=\mathbf{F}
\end{aligned}
$$

Once again,

$$
F=|J+I|,|J+I-1|, \ldots,|J-I|
$$

where F cannot be less than zero.

3.4 Hamiltonian Matrix Elements for the $X^{4} \Sigma^{-}$state

Several of the interactions that occur in the $X^{4} \Sigma^{-}$state occur also in the $B^{4} \Pi$ state of VO. However, since the ground state is best described by case ($\mathrm{b}_{\beta J}$) coupling while

Figure 3.3: Hund's case $\left(\mathrm{b}_{\beta J}\right)$ coupling scheme.
case (a_{β}) coupling applies to the $B^{4} \Pi$ state, the forms of the individual matrix elements will differ. The $X^{4} \Sigma^{-}$matrix elements are discussed below, while the matrix elements for the upper state are given in Section 3.5.

3.4.1 Rotational Structure

The general form of the rotational Hamiltonian is given by:

$$
\begin{equation*}
\mathcal{H}_{r o t}=B \mathbf{R}^{2}-D \mathbf{R}^{4} \tag{3.13}
\end{equation*}
$$

where $\mathbf{R}=\mathbf{J}-\mathbf{L}-\mathbf{S}$. In a Σ state, where \mathbf{L} can be omitted in first order, \mathbf{R} becomes $\mathbf{J}-\mathbf{S}$, which is called \mathbf{N}. The rotational Hamiltonian and its matrix elements for the $X^{4} \Sigma^{-}$state are thus:

$$
\begin{gather*}
\mathcal{H}_{r o t}=B \mathbf{N}^{2}-D \mathbf{N}^{4} \tag{3.14}\\
\langle N S J| \mathcal{H}_{r o t}|N S J\rangle=B N(N+1)-D N^{2}(N+1)^{2} \tag{3.15}
\end{gather*}
$$

3.4.2 Fine Structure

Fine structure describes the interactions of unpaired electrons, carrying spin and orbital angular momenta, with the molecular rotation and, through dipole-dipole interactions, with each other. The fine structure Hamiltonian can thus be partitioned into spin-orbit, spin-rotation and spin-spin operators. However, higher order terms, as well as cross terms between these different interactions, make evaluation and interpretation of the matrix elements complicated.

For example, the first order spin-orbit Hamiltonian,

$$
\begin{equation*}
\mathcal{H}_{s o}^{(1)}=A \mathbf{L} \cdot \mathbf{S} \tag{3.16}
\end{equation*}
$$

gives zero in an electronic Σ state, since $\left\langle L_{z}\right\rangle=0$, and the effects of L_{+}and L_{-}are not contained within the Σ state. However, in second order, the effects of L_{+}and L_{-}are
equivalent to a tensor operator (\mathbf{S}, \mathbf{S}) acting within the Σ state, i.e.

$$
(\mathbf{S} \cdot \mathbf{L})(\mathbf{L} \cdot \mathbf{S}) \equiv(\mathbf{S}, \mathbf{S})(\mathbf{L}, \mathbf{L})
$$

which turns out to be identical in form to the spin-spin interaction operator. The Hamiltonian for the dipolar spin-spin interaction is given in terms of a parameter λ by [24]

$$
\begin{equation*}
\mathcal{H}_{s s}=\frac{2}{3} \lambda\left(3 S_{z}^{2}-\mathbf{S}^{2}\right) \tag{3.17}
\end{equation*}
$$

however, the contribution to λ from the second order spin-orbit coupling is indistinguishable from the dipolar spin-spin interaction, so that

$$
\lambda_{e f f}=\lambda_{s s}+\lambda_{s o}^{(2)}
$$

Therefore, the λ parameter determined from the fit of the $X^{4} \Sigma^{-}$state of VO is an effective parameter representing the sum of the two effects.

In spherical tensor formalism, Equation 3.17 has the form

$$
\begin{equation*}
\mathcal{H}_{s s}=\frac{2}{3} \sqrt{6} \lambda T_{0}^{2}(\mathbf{S}, \mathbf{S}) \tag{3.18}
\end{equation*}
$$

which gives as the matrix elements in case (b) coupling [24]

$$
\begin{align*}
& \left\langle N^{\prime} S J I F\right| \mathcal{H}_{\text {spin-spin }}|N S J I F\rangle \\
& \quad=\frac{2}{3} \lambda(-1)^{N+S+J}\left\{\begin{array}{ccc}
J & S & N^{\prime} \\
2 & N & S
\end{array}\right\}[S(S+1)(2 S+1)(2 S-1)(2 S+3)]^{1 / 2} \\
& \quad \times(-1)^{N^{\prime}}\left(\begin{array}{ccc}
N^{\prime} & 2 & N \\
0 & 0 & 0
\end{array}\right)\left[(2 N+1)\left(2 N^{\prime}+1\right)\right]^{1 / 2} \tag{3.19}
\end{align*}
$$

The spin-rotation Hamiltonian gives the energy of the interaction between the electron spins and the magnetic field due to nuclear motion. The general form of the spin-rotation

Hamiltonian is given by [25]:

$$
\begin{align*}
\mathcal{H}_{s r} & =\gamma \mathbf{R} \cdot \mathbf{S} \tag{3.20}\\
& =\gamma(\mathbf{J}-\mathbf{L}-\mathbf{S}) \cdot \mathbf{S} \\
& =\gamma \mathbf{N} \cdot \mathbf{S}, \text { for } \Sigma \text { states. } \tag{3.21}
\end{align*}
$$

In a case (b) basis, the spin-rotation Hamiltonian has only diagonal matrix elements, which are given by:

$$
\begin{equation*}
\langle N S J| \mathcal{H}_{s r}|N S J\rangle=-\frac{1}{2} \gamma[N(N+1)+S(S+1)-J(J+1)] \tag{3.22}
\end{equation*}
$$

The third order contribution to the spin-rotation interaction arises in third order perturbation theory when the matrix elements of the spin-orbit operator are taken twice and those of the spin-uncoupling term, $-2 B\left(J_{x} S_{x}+J_{y} S_{y}\right)$, are taken once. The Hamiltonian for this third order spin-rotation interaction is quite complicated to evaluate, but Brown and Milton [26] successfully simplified the case (a) matrix elements to

$$
\begin{align*}
& \langle S \Sigma, J \Omega| \mathcal{H}_{s r}^{(3)}|S \Sigma \pm 1, J \Omega \pm 1\rangle= \\
& \quad-\frac{1}{2} \gamma_{s}[S(S+1)-5 \Sigma(\Sigma \pm 1)-2][J(J+1)-\Omega(\Omega \pm 1)]^{\frac{1}{2}} \\
& \quad \times[S(S+1)-\Sigma(\Sigma \pm 1)]^{\frac{1}{2}} \tag{3.23}
\end{align*}
$$

The case (b) forms of the third order spin-rotation matrix elements do not simplify similarly ${ }^{2}$. As required for the least squares fit of the VO $B^{4} \Pi-X^{4} \Sigma^{-}$transition it is [28]:

$$
\begin{aligned}
& \left\langle N^{\prime} S J I F\right| \mathcal{H}_{s r}^{(3)}|N S J I F\rangle \\
& \quad=\frac{1}{2}\left[(2 N+1)\left(2 N^{\prime}+1\right) J(J+1)(2 J+1)\right]^{1 / 2}
\end{aligned}
$$

[^2]\[

$$
\begin{align*}
& \times[2(2 S-2)(2 S-1) 2 S(2 S+1)(2 S+2)(2 S+3)(2 S+4) / 3]^{1 / 2} \gamma_{s} \\
& \times \sum_{x=2,4}(2 x+1)\left(\begin{array}{ccc}
3 & x & 1 \\
-1 & 0 & 1
\end{array}\right)(-1)^{N^{\prime}}\left(\begin{array}{ccc}
N^{\prime} & x & N \\
0 & 0 & 0
\end{array}\right)\left\{\begin{array}{ccc}
N^{\prime} & N & x \\
S & S & 3 \\
J & J & 1
\end{array}\right\} \tag{3.24}
\end{align*}
$$
\]

The centrifugal distortion corrections to the fine structure are straight-forward for case (b) coupling, and the Hamiltonian has the form:

$$
\begin{equation*}
\mathcal{H}_{*, c d}=\gamma_{D}(\mathbf{N} \cdot \mathbf{S}) \mathbf{N}^{2}+\frac{1}{3} \lambda_{D}\left[\left(3 S_{z}^{2}-\mathbf{S}^{2}\right), \mathbf{N}^{2}\right]_{+} \tag{3.25}
\end{equation*}
$$

In Equation (3.25), the symbol $[x, y]_{+}$stands for the anti-commutator $x y+y x$, which is needed to preserve Hermitian form for the matrices. The diagonal matrix elements for the centrifugal distortion to the spin-rotation and spin-spin interactions respectively are given as [28]

$$
\begin{align*}
\langle N S J| \mathcal{H}_{s r, c d}|N S J\rangle & =-\frac{1}{2} \gamma_{D} N(N+1)[N(N+1)+S(S+1)-J(J+1)] \\
& =\frac{1}{2} \gamma_{D} N(N+1) R(J S N) \tag{3.26}
\end{align*}
$$

and

$$
\begin{equation*}
\langle N S J| \mathcal{H}_{s s, c d}|N S J\rangle=-\frac{1}{3} \lambda_{D} N(N+1) \frac{3 R(J S N)[R(J S N)+1]-4 S(S+1) N(N+1)}{(2 N-1)(2 N+3)} \tag{3.27}
\end{equation*}
$$

where

$$
R(a b c)=a(a+1)-b(b+1)-c(c+1)
$$

The off-diagonal matrix elements are given by

$$
\begin{align*}
\langle N-2, S J| \mathcal{H}_{s, c d}|N S J\rangle= & \frac{1}{2} \lambda_{D} \frac{[N(N+1)-(2 N-1)]}{(2 N-1)[(2 N+1)(2 N-3)]^{\frac{1}{2}}} \\
& \times Y(J S N) Y(J S, N-1) \tag{3.28}
\end{align*}
$$

where

$$
Y(a b c)=[(a+b+c+1)(b+c-a)(a+c-b)(a+b-c+1)]^{\frac{1}{2}}
$$

3.4.3 Magnetic Hyperfine Hamiltonian

When one or more of the nuclei of the molecule being studied has non-zero nuclear spin and an appreciable magnetic moment, then magnetic hyperfine interactions will make significant contributions to the spectrum. The $X^{4} \Sigma^{-}$state of VO required three magnetic hyperfine parameters to describe the observed features accurately.

The Hamiltonian operators for the direct interactions between the nuclear magnetic dipole moment and an electron spin moment in a Σ electronic state are given by[21]

$$
\begin{equation*}
\mathcal{H}_{m a g h f}=b \mathbf{I} \cdot \mathbf{S}+c I_{z} S_{z} \tag{3.29}
\end{equation*}
$$

where c represents the dipole-dipole interaction and b incorporates part of this dipoledipole interaction as well as the Fermi contact interaction, b_{F}, in the relation $b=b_{F}+\frac{1}{3} c$. The matrix elements are thus

$$
\begin{align*}
&\left\langle N^{\prime} S J^{\prime} I F\right| \mathcal{H}_{\text {maghf }}|N S J I F\rangle \\
&=(-1)^{J+I+F}\left\{\begin{array}{ccc}
F & I & J^{\prime} \\
1 & J & I
\end{array}\right\}\left[(2 J+1)\left(2 J^{\prime}+1\right) I(I+1)(2 I+1)\right]^{1 / 2} \\
& \times[S(S+1)(2 S+1)]^{1 / 2}\left[(-1)^{N+S+J^{\prime}}\left\{\begin{array}{ccc}
S & J^{\prime} & N \\
J & S & 1
\end{array}\right\} b_{F}\right. \\
&\left.-\frac{1}{3} c\left[30(2 N+1)\left(2 N^{\prime}+1\right)\right]^{1 / 2}\left\{\begin{array}{ccc}
N^{\prime} & N & 2 \\
S & S & 1 \\
J^{\prime} & J & 1
\end{array}\right\}(-1)^{N^{\prime}}\left(\begin{array}{ccc}
N^{\prime} & 2 & N \\
0 & 0 & 0
\end{array}\right)\right] \tag{3.30}
\end{align*}
$$

The third magnetic hyperfine parameter needed to describe the $X^{4} \Sigma^{-}$state of VO arises from the third order isotropic hyperfine Hamiltonian, $\mathcal{H}_{i s o}^{(3)}$. This energy operator is analogous to the third order spin-rotation Hamiltonian, whose matrix elements are given as Equations (3.23) and (3.24), except that the isotropic hyperfine operator $\sum_{i} b_{i} \mathbf{I} \cdot \mathbf{s}_{i}$
replaces the spin-uncoupling operator. The third order isotropic hyperfine Hamiltonian is [10][27]

$$
\begin{equation*}
\mathcal{H}_{i s o}^{(3)}=\frac{(5 \sqrt{14} / 3) b_{S}}{\langle\Lambda| T_{0}^{2}(\mathbf{L})|\Lambda\rangle} T^{1}(\mathbf{I}) \cdot T^{1}\left[T^{2}\left(\mathbf{L}^{2}\right), T^{3}\left(\mathbf{S}^{3}\right)\right] \tag{3.31}
\end{equation*}
$$

and its matrix elements in case ($\mathrm{b}_{\beta J}$) coupling are [10][27]

$$
\begin{align*}
&\left\langle N^{\prime} S J^{\prime} I F\right| \mathcal{H}_{i s o}^{(3)}|N S J I F\rangle \\
&= \frac{1}{4}(-1)^{J+I+F}\left\{\begin{array}{ccc}
F & I & J^{\prime} \\
1 & J & I
\end{array}\right\}\left[(2 J+1)\left(2 J^{\prime}+1\right) I(I+1)(2 I+1)\right]^{1 / 2} \\
& \times(-1)^{N^{\prime}}\left(\begin{array}{ccc}
N^{\prime} & 2 & N \\
0 & 0 & 0
\end{array}\right)\left[(2 N+1)\left(2 N^{\prime}+1\right)\right]^{1 / 2}\left\{\begin{array}{ccc}
N^{\prime} & N & 2 \\
S & S & 3 \\
J^{\prime} & J^{\prime} & 1
\end{array}\right\} \\
& \times[35(2 S-2)(2 S-1) 2 S(2 S+1)(2 S+2)(2 S+3)(2 S+4) / 3]^{1 / 2} b_{S} \tag{3.32}
\end{align*}
$$

3.4.4 The Electric Quadrupole Interaction

In addition to its nuclear magnetic dipole moment, the electric quadrupole moment of the V nucleus also contributes to the hyperfine structure of the $X^{4} \Sigma^{-}$state of VO. The Hamiltonian operator for the electric quadrupole interaction is given by[10][21]

$$
\begin{equation*}
\mathcal{H}_{q u a d}^{(0)}=\frac{e^{2} Q q_{0}\left(3 I_{z}^{2}-\mathbf{I}^{2}\right)}{4 I(2 I-1)} \tag{3.33}
\end{equation*}
$$

resulting in matrix elements

$$
\begin{aligned}
& \left\langle N^{\prime} S J^{\prime} I F\right| \mathcal{H}_{q u a d}^{(0)}|N S J I F\rangle \\
& =\frac{1}{4} e^{2} Q q_{0}\left(\begin{array}{ccc}
I & 2 & I \\
-I & 0 & I
\end{array}\right)^{-1}(-1)^{J+I+F}\left\{\begin{array}{ccc}
F & I & J^{\prime} \\
2 & J & I
\end{array}\right\} \\
& \quad \times(-1)^{N^{\prime+S+J}}\left[(2 J+1)\left(2 J^{\prime}+1\right)(2 N+1)\left(2 N^{\prime}+1\right)\right]^{1 / 2}\left\{\begin{array}{ccc}
S & N^{\prime} & J^{\prime} \\
2 & J & N
\end{array}\right\}
\end{aligned}
$$

$$
\times(-1)^{N^{\prime}}\left(\begin{array}{ccc}
N^{\prime} & 2 & N \tag{3.34}\\
0 & 0 & 0
\end{array}\right)
$$

3.5 The Hamiltonian for the ${ }^{4} \Pi$ upper state

A particular complication in the ${ }^{4} \Pi$ upper state arises from the $a^{2} \Sigma^{+}$state which perturbs it heavily. The Hamiltonian for the $B^{4} \Pi$ state, excluding the effects of the $a^{2} \Sigma^{+}$state, is described in this Section. Since the matrix elements of the $B^{4} \Pi$ Hamiltonian were evaluated using a case $\left(a_{\beta}\right)$ basis, it was necessary to do likewise for the $a^{2} \Sigma^{+}$state so that the interaction matrix elements could be evaluated most simply. The $a^{2} \Sigma^{+}$Hamiltonian is described in Section 3.6 and the perturbation matrix elements are given in Section 3.7.

3.5.1 Rotational and Fine Structure

The rotational Hamiltonian operator has already been given as Equation 3.24, but is repeated here for convenience:

$$
\begin{equation*}
\mathcal{H}_{r o t}=B \mathbf{R}^{2}-D \mathbf{R}^{4} \tag{3.35}
\end{equation*}
$$

In contrast to the $X^{4} \Sigma^{-}$state, where $\Lambda=0$, the first and third order spin-orbit interactions are non-zero. The full spin-orbit Hamiltonian to third order is given by[29]:

$$
\begin{equation*}
\mathcal{H}_{s o}=A L_{z} S_{z}+\frac{2}{3} \lambda\left(3 S_{z}^{2}-\mathbf{S}^{2}\right)+\eta L_{z} S_{z}\left[S_{z}^{2}-\frac{3 \mathbf{S}^{2}-1}{5}\right] \tag{3.36}
\end{equation*}
$$

The spin-orbit matrix elements in a case (a) basis are thus

$$
\begin{align*}
\left\langle\Lambda^{\prime} ; S \Sigma^{\prime} ; J \Omega\right| \mathcal{H}_{s o}|\Lambda ; S \Sigma ; J \Omega\rangle= & A \Lambda \Sigma+\frac{2}{3} \lambda\left[3 \Sigma^{2}-S(S+1)\right] \\
& +\eta \Lambda \Sigma\left[\Sigma^{2}-\frac{3}{5} S(S+1)+\frac{1}{5}\right] \tag{3.37}
\end{align*}
$$

The spin-rotation Hamiltonian, as expressed in Equation 3.23, is given by

$$
\begin{equation*}
\mathcal{H}_{s r}=\gamma \mathbf{R} \cdot \mathbf{S} \tag{3.38}
\end{equation*}
$$

which in a case (a) basis has diagonal elements of the form

$$
\begin{equation*}
\langle\Lambda ; S \Sigma ; J \Omega| \mathcal{H}_{s r}|\Lambda ; S \Sigma ; J \Omega\rangle=\gamma\left[\Sigma^{2}-S(S+1)\right] \tag{3.39}
\end{equation*}
$$

Since each of the sub-band origins is well defined in a state where case (a) coupling applies, it is convenient to fit the data to a number of separate sub-band origins instead of a single band origin with various spin-orbit and spin rotation contributions. The general expression for the sub-band origins is

$$
\begin{equation*}
T_{\Omega}=T_{0}+A \Lambda \Sigma+\frac{2}{3} \lambda\left[3 \Sigma^{2}-S(S+1)\right]+\gamma\left[\Sigma^{2}-S(S+1)\right]+\eta \Lambda \Sigma\left[\Sigma^{2}-\frac{3 S(S+1)+1}{5}\right] \tag{3.40}
\end{equation*}
$$

The spin-rotation parameter γ appears in off-diagonal matrix elements (see Figure 3.4) and can therefore still be fitted independently of the sub-band origins. The off-diagonal γ term has the effect of linking the effective rotational constants of adjacent spin-states.

As mentioned in sub-section 3.4.2, the spin-spin Hamiltonian is identical in form to the second order spin-orbit Hamiltonian,

$$
\begin{equation*}
\mathcal{H}_{s s}=\frac{2}{3} \lambda\left(3 S_{z}^{2}-\mathbf{S}^{2}\right) \tag{3.41}
\end{equation*}
$$

so that its matrix elements are indistinguishable from those of $\mathcal{H}_{s o}^{(2)}$.

3.5.2 $\quad \Lambda$-type Doubling

The interaction between Σ states $(\Lambda=0)$ and Π states $(\Lambda=1)$ lifts the degeneracy of the $\pm \Lambda$ levels in the Π state [22][30]. The matrix elements for molecules in ${ }^{1} \Pi$ and ${ }^{2} \Pi$ states have long been known [30], but different conventions have been used to describe the parameters for states of higher multiplicity. This work uses the effective Λ-type doubling Hamiltonian defined by Brown and Merer [31],

$$
\begin{equation*}
\mathcal{H}_{L D}=\frac{1}{2}(o+p+q)\left(S_{+}^{2}+S_{-}^{2}\right)-\frac{1}{2}(p+2 q)\left(J_{+} S_{+}+J_{-} S_{-}\right)+\frac{1}{2} q\left(J_{+}^{2}+J_{-}^{2}\right) \tag{3.42}
\end{equation*}
$$

This form of the Hamiltonian was chosen because it refers to a Hund's case (a) coupling scheme; it gives matrix elements of the form [31]

$$
\begin{align*}
& \langle\mp 1, \Sigma \pm 2, J, \Omega| \mathcal{H}_{L D}| \pm 1, \Sigma J \Omega\rangle \\
& \quad=\frac{1}{2}(o+p+q)[S(S+1)-\Sigma(\Sigma \pm 1)]^{\frac{1}{2}}[S(S+1)-(\Sigma \pm 1)(\Sigma \pm 2)]^{\frac{1}{2}} \tag{3.43}\\
& \langle\mp 1, \Sigma \pm 1, J, \Omega \mp 1| \mathcal{H}_{L D}| \pm 1, \Sigma J \Omega\rangle \\
& \quad=-\frac{1}{2}(p+2 q)[S(S+1)-\Sigma(\Sigma \pm 1)]^{1 / 2}[J(J+1)-\Omega(\Omega \mp 1)]^{1 / 2} \tag{3.44}\\
& \langle\mp 1, \Sigma, J, \Omega \mp 2| \mathcal{H}_{L D}| \pm 1, \Sigma J \Omega\rangle \\
& =\frac{1}{2} q[J(J+1)-\Omega(\Omega \mp 1)]^{1 / 2}[J(J+1)-(\Omega \mp 1)(\Omega \mp 2)]^{1 / 2} \tag{3.45}
\end{align*}
$$

There exists a contribution to the Λ-type doubling from hyperfine interactions, but this will be discussed in the next sub-section.

3.5.3 Magnetic Hyperfine Interactions

The Hamiltonian operator for the interaction between the nuclear magnetic dipole moment and the electron spin magnetic dipole moment in a Σ state has been given in subsection 3.4.3 as

$$
\begin{equation*}
\mathcal{H}_{I \cdot S h f}=b \mathbf{I} \cdot \mathbf{S}+c I_{z} S_{z} \tag{3.46}
\end{equation*}
$$

In orbitally degenerate states there is an additional interaction between the nuclear spin angular momentum and the orbital angular momentum of the electrons. This interaction is described by the Hamiltonian[32]:

$$
\begin{equation*}
\mathcal{H}_{I \cdot L}=a I_{z} L_{z} \tag{3.47}
\end{equation*}
$$

The three hyperfine parameters mentioned so far describe the magnetic hyperfine effects in the two parity components of Π states equally. However, Frosch and Foley[32] showed that hyperfine contributions to the Λ-type doubling are possible because part of
the dipole-dipole interaction has matrix elements that connect electronic states differing by two units in the orbital angular momentum Λ. The Λ-type doubling-hyperfine Hamiltonian is given by[32]

$$
\begin{equation*}
\mathcal{H}_{\Lambda D h f}=\frac{1}{2} d\left(e^{2 i \phi} I_{-} S_{-}+e^{-2 i \phi} I_{+} S_{+}\right) \tag{3.48}
\end{equation*}
$$

where ϕ is the angle giving the direction of the unpaired electron relative to an arbitrary reference plane. Translating into tensorial form, the dipolar Hamiltonian can be described by the general expression [28]:

$$
\begin{equation*}
\mathcal{H}_{m a g h f}=-\sqrt{10} g \mu_{B} g_{N} \mu_{N} r^{-3} T^{1}(\mathbf{I}) \cdot T^{1}\left(\mathbf{S}, C^{2}\right) \tag{3.49}
\end{equation*}
$$

where

$$
T_{q}^{1}\left(\mathbf{S}, C^{2}\right)=-\sum_{q_{1}, q_{2}}(-1)^{q} \sqrt{3}\left(\begin{array}{ccc}
1 & 2 & 1 \tag{3.50}\\
q_{1} & q_{2} & -q
\end{array}\right) T_{q_{1}}^{1}(\mathbf{S}) T_{q_{2}}^{2}(C)
$$

and,

$$
\begin{equation*}
r^{-3} T_{q_{2}}^{2}(C)=\sqrt{\frac{4 \pi}{5}} Y_{2, q_{2}}(\theta, \phi) r^{-3} \tag{3.51}
\end{equation*}
$$

This form is the most convenient for the calculation of the matrix elements. Omitting the complexities of the tensor algebra, the diagonal matrix elements of Equations (3.46)(3.48) are

$$
\begin{equation*}
\langle J \Omega I F| \mathcal{H}_{\text {maghf }}|J \Omega I F\rangle=\frac{\Omega[a \Lambda+(b+c) \Sigma] R(F I J)}{2 J(J+1)} \tag{3.52}
\end{equation*}
$$

where $R(F I J)=F(F+1)-I(I+1)-J(J+1)$. The matrix elements diagonal in J, but off-diagonal in Ω, are:

$$
\begin{align*}
& \langle S \Sigma, J \Omega I F| \mathcal{H}_{\text {mag } h f}|S \Sigma \pm 1, J \Omega \pm 1, I F\rangle \\
& =b[J(J+1)-\Omega(\Omega \pm 1)]^{1 / 2}[S(S+1)-\Sigma(\Sigma \pm 1)]^{1 / 2} \\
& \quad \times \frac{R(F I J)}{4 J(J+1)} \tag{3.53}
\end{align*}
$$

while the matrix elements off-diagonal in J are

$$
\begin{equation*}
\langle J \Omega I F| \mathcal{H}_{\text {maghf }}|J-1, \Omega I F\rangle=-\frac{[a \Lambda+(b+c) \Sigma]\left(J^{2}-\Omega^{2}\right)^{1 / 2} V(F, I, J)}{2 J[(2 J+1)(2 J-1)]^{1 / 2}} \tag{3.54}
\end{equation*}
$$

and

$$
\begin{align*}
& \langle S \Sigma, J \Omega I F| \mathcal{H}_{\operatorname{magh} f}|S \Sigma \pm 1, J-1, \Omega \pm 1, I F\rangle \\
& = \\
& \mp b[(J \mp \Omega)(J \mp \Omega-1)]^{1 / 2}[S(S+1)-\Sigma(\Sigma \pm 1)]^{1 / 2} \tag{3.55}\\
& \quad \times \frac{V(F I J)}{4 J[(2 J+1)(2 J-1)]},
\end{align*}
$$

where

$$
V(F I J)=[(J+I+F+1)(F+J-I)(J+I-F)(F+I-J+1)]^{1 / 2} .
$$

3.5.4 Electric Quadrupole Interaction

The Hamiltonian for the electric quadrupole interaction given in sub-section 3.4.4 for Σ states (3.33) also applies for Π states. However, while Π states will have the same zero order term as in Σ electronic states, there is also a $e_{2} Q q_{2}$ term which will have non-zero elements only in Π states. Like the d parameter for magnetic hyperfine effects, there exists an electric quadrupole interaction which links states differing in Λ by ± 2. The complete electric quadrupole Hamiltonian for Π states is given by[33][34]

$$
\begin{equation*}
\mathcal{H}_{q u a d}=\frac{e^{2} Q q_{0}\left(3 I_{z}^{2}-\mathbf{I}^{2}\right)}{4 I(2 I-1)}+\frac{e^{2} Q q_{2}\left(I_{+}^{2}+I_{-}^{2}\right)}{8 I(2 I-1)} . \tag{3.56}
\end{equation*}
$$

3.6 The Hamiltonian for the $a^{2} \Sigma^{+}$State

Although Σ states are generally best described by a Hund's case (b) coupling scheme, the matrix elements for the perturbing $a^{2} \Sigma^{+}$state of VO were evaluated using a case (a) basis in order to be consistent with those for the $B^{4} \Pi$ state and so that the interaction matrix could be written most simply.

Using the Hamiltonian operators described in Section 3.4, the rotational matrix elements for the ${ }^{2} \Sigma^{+}$state are given by

$$
\begin{equation*}
\left.\left.\left\langle{ }^{2} \Sigma^{+}\right| \mathcal{H}\right|^{2} \Sigma^{+}{ }_{e}^{f}\right\rangle=B(x)(x \pm 1)-D(x)^{2}(x \pm 1)^{2}-\frac{1}{2} \gamma(1 \pm x) \tag{3.57}
\end{equation*}
$$

where $x=J+\frac{1}{2}$.
The sole hyperfine parameter that can be determined for the $a^{2} \Sigma^{+}$state that needs to be considered arises from the isotropic Hamiltonian

$$
\begin{equation*}
\mathcal{H}_{h f}=b \mathbf{I} \cdot \mathbf{S} \tag{3.58}
\end{equation*}
$$

Written in an f / ϵ parity basis, its diagonal matrix elements have the form

$$
\begin{equation*}
\left\langle{ }^{2} \Sigma^{+}\right| \mathcal{H}_{h f}\left|{ }^{2} \Sigma^{+}{ }_{e}^{f}\right\rangle=\mp b \frac{R(F, I, J)}{4\left(x \pm \frac{1}{2}\right)}, \tag{3.59}
\end{equation*}
$$

while the $J \rightarrow J-1$ matrix elements are

$$
\begin{equation*}
\left\langle{ }^{2} \Sigma^{+}, J_{e}^{f}\right| \mathcal{H}_{h f}\left|{ }^{2} \Sigma^{+}, J-1{ }_{f}^{e}\right\rangle=-b \frac{V(F, I, J)}{8 J}(1 \mp 1) \tag{3.60}
\end{equation*}
$$

Those parameters which pertain to the $a^{2} \Sigma^{+}$state are designated by a prime (eg. $B^{\prime}, D^{\prime}, \gamma^{\prime}$, and b^{\prime}) in Figure 3.4 to distinguish them from the $B^{4} \Pi$ parameters.

3.7 The ${ }^{2} \Sigma^{+}-{ }^{4} \Pi$ Matrix Elements

There exist no direct spin-orbit interactions between the $\delta^{2} \sigma a^{2} \Sigma^{+}$and $\delta^{2} \pi B^{4} \Pi$ states of VO within the single configuration approximation, but higher order mechanisms must exist. The relative sizes of the matrix elements of these higher order spin-orbit interactions can be evaluated using the Wigner-Eckart theorem,

$$
\left\langle S^{\prime} \Sigma^{\prime} \Lambda^{\prime} \Omega^{\prime}\right| \mathcal{H}_{s o}|S \Sigma \Lambda \Omega\rangle=(-1)^{S^{\prime-\Sigma}}\left(\begin{array}{ccc}
S^{\prime} & 1 & S \tag{3.61}\\
-\Sigma^{\prime} & q & \Sigma
\end{array}\right)\left\langle S^{\prime} \Lambda^{\prime}\left\|\mathcal{H}_{s o}\right\| S \Lambda\right\rangle \delta_{\Omega \Omega^{\prime}}
$$

which gives four non-zero matrix elements in a signed basis. Similarly, the hyperfine interactions between ${ }^{2} \Sigma^{+}$and ${ }^{4} \Pi$ states require inclusion of an interaction parameter denoted by the parameter e, which has four equivalent non-zero matrix elements. After transformation to an e / f parity basis the matrix elements are given in the form ${ }^{3}$:

$$
\begin{equation*}
\left.\left.\left\langle{ }^{4} \Pi_{\frac{1}{2}}\right| \mathcal{H}\right|^{2} \Sigma^{+}{ }_{f}^{e}\right\rangle=-\frac{1}{\sqrt{12}}\left\langle{ }^{4} \Pi\left\|\mathcal{H}_{s o}\right\|^{2} \Sigma^{+}\right\rangle+e \frac{R(F, I, J)}{8 J(J+1)} \tag{3.62}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle{ }^{4} \Pi_{-\frac{1}{2}}\right| \mathcal{H}\left|{ }^{2} \Sigma^{+}{ }_{f}^{e}\right\rangle=\mp \frac{1}{2}\left\langle{ }^{4} \Pi\left\|\mathcal{H}_{s o}\right\|^{2} \Sigma^{+}\right\rangle \mp e \sqrt{3} \frac{R(F, I, J)}{8 J(J+1)} \tag{3.63}
\end{equation*}
$$

[^3]| | $\left\|\Pi_{5 / 2} \%\right\rangle$ | $\left\|{ }^{4} \Pi_{3 / 2} \%\right\rangle$ | $\left\|\Pi_{1 / 2} 1 / \varphi\right\rangle$ | $\left\|4 \Pi_{-1 / 2} 1 /\right\rangle$ | $\left\|{ }^{2} \Sigma^{+1} \%\right\rangle$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left\langle{ }^{4} \Pi_{3 / 2}\right.$ \| | | $\begin{aligned} & -\sqrt{3(1-4)}\left(8-\frac{1}{2} \gamma+A_{0}\right. \\ & \left.-\frac{2}{10} \eta_{0}-20(2-2)-\frac{\pi}{4}\left(\frac{4}{4}+1\right)\right] \end{aligned}$ | $\begin{aligned} & -\sqrt{3(2-1)(2-4)}(20 \\ & \left. \pm \frac{1}{2} 0_{0}\left(1+\frac{1}{2}\right)\right] \end{aligned}$ | $\pm \sqrt{(2-1)(2-4)} / \frac{1}{2} 9$
 $+\frac{3}{2} 0_{\mu 24}+\frac{1}{2}(z-2) D_{4}$ $\left.+\tilde{6}^{(2)}\right]$ | |
| $\left\langle\Pi_{3 / 2}\right\|$ | | | | | |
| $\left\langle{ }^{4} \Pi_{1 / 2}\right.$ \| | | | | | $-\frac{1}{2 \sqrt{5}}{ }^{\pi}+6 \frac{1}{4}{ }^{\left.\frac{1}{4}+1\right)}$ |
| $\left\langle{ }^{4} \Pi_{-1 / 2}\right\|$ | | | | | |
| ${ }^{2} \Sigma$ | | | | | |

$2=(J+1 / 2)^{2}$
$R=F(F+1)-1(1+1)-J(J+1)$
$G(f, 1, N)=\frac{3(P)+1)-(1+1)(J+1)}{(2-1) /(j+1)(2 L-1)(2+3)}$
$O_{2 \pi}=e^{2} 0_{9 \alpha}\left[3 n^{2}-J(j+i)\right] G(F, 1, J)$
$\tilde{o}^{(\omega)}=e^{2} O_{Q_{2}} G(F, \ldots) / 2$

Figure 3.4: The hyperfine Hamiltonian Matrix for ${ }^{4} \Pi$ states interacting with ${ }^{2} \Sigma^{+}$states.

Chapter 4

Analysis of the Spectra

4.1 Introduction

This study describes the analysis of the $B^{4} \Pi-X^{4} \Sigma^{-}$transition of VO at sufficiently high resolution that the rotational and hyperfine structure could be well characterized. Even at low resolution, the spectrum of the $B^{4} \Pi-X^{4} \Sigma^{-}(0,0)$ band of VO is fascinating in its complexity. Basically it consists of four red degraded sub-bands resulting from the four electron spin components of the case (a) ${ }^{4} \Pi$ upper state. The branches of the four sub-bands overlap considerably, and the spectrum becomes very confused in those regions where the high- J lines of one spin state run into the low- J lines of the sub-band to the red, as shown in Figure 4.1.

The effects of the smaller splittings of the spin components of the ground state are more subtle, but are clearly discernible. This is illustrated in Figure 4.2, which shows the Fortrat diagram of the branches involving the F_{1} upper state. The Figure illustrates the relatively large separation between the Q_{1} and ${ }^{Q} R_{12}$ branches which arises primarily from the spin-spin interaction, represented in the Hamiltonian by the term in λ. By contrast, the ${ }^{\circ} P_{12}$ and ${ }^{\circ} Q_{13}$ branches are nearly degenerate, whilst the ${ }^{\circ} R_{14}$ branch lies approximately 2λ away. The magnitude of the spin-spin interaction, and that of the spin-rotation interaction, will be discussed further in the Discussion (Chapter 6).

The $X^{4} \Sigma^{-}$ground state was fairly straight-forward to analyse because there are no low lying electronic states close enough to cause perturbations; it could therefore be treated as

Figure 4.1: The head of the ${ }^{S} Q_{31}$ branch; illustrating the density of the $B^{4} \Pi-X^{4} \Sigma^{-}(0,0)$ band structure.

Figure 4.2: Fortrat diagrams showing transitions involving (a) the e-parity components, and (b) the f-parity components of the F_{1} upper spin state.
a single isolated state. An interesting internal hyperfine perturbation occurs near $\mathrm{N}=15$ between the F_{2} and F_{3} electron spin components of the ground state. This perturbation has been well characterized previously $[1][7][8][10][14][35]$, so that it did not pose a great problem. Details of the analysis of this perturbation are given in Section 4.2.2.

The $B^{4} \Pi-X^{4} \Sigma^{-}$transition is further complicated by sizeable spin-orbit perturbations between the $B^{4} \Pi$ state and the otherwise unseen ${ }^{2} \Sigma^{+}$state (denoted a) which lies close to it. The effect of this perturbation is nicely illustrated in the Fortrat diagram shown in Figure 4.2, where it is seen that the $a^{2} \Sigma^{+}$state causes the rotational spacing of each branch to collapse before emerging from the other side of the avoided crossing region. Because of this perturbation, the $B^{4} \Pi$ and the $a^{2} \Sigma^{+}$upper states could not be treated separately, but had to be considered simultaneously, with the appropriate interaction terms included in the combined rotational and hyperfine Hamiltonian. In particular the hyperfine structure of the upper state behaves anomalously: the characteristic narrow hyperfine splittings of the $B^{4} \Pi$ state widen as the rotational levels of the $B^{4} \Pi$ and $a^{2} \Sigma^{+}$states approach with increasing J, and then diminish again after each local avoided crossing.

4.2 The Ground State of VO

4.2.1 The Spin-spin and Spin-rotation Interactions

The $X^{4} \Sigma^{-}$state is best described by case $\left(\mathrm{b}_{\beta J}\right)$ coupling because the electron spinspin interaction (λ) is much larger than the hyperfine interactions. As mentioned in the Introduction to this Chapter, the effect of the λ parameter is clearly seen in the separation of the $\mathrm{F}_{1}^{\prime \prime}$ and $\mathrm{F}_{4}^{\prime \prime}$ lines from the $\mathrm{F}_{2}^{\prime \prime}$ and $\mathrm{F}_{3}^{\prime \prime}$ lines. The four spin components of a ${ }^{4} \Sigma$ state in pure case (b) coupling follow the exact expression[10]

$$
\begin{equation*}
4 \lambda-2 \gamma=F_{2}(N)+F_{3}(N)-F_{1}(N)-F_{4}(N) \tag{4.1}
\end{equation*}
$$

Figure 4.3: The energies of the four electron spin components of the $\mathrm{X}^{4} \Sigma^{-}$state of VO.

Also, because the splitting between adjacent components varies as γN, the values of λ and γ can be estimated from pairs of ground state combinations differences of the type $\mathrm{F}_{2}(N)-\mathrm{F}_{1}(N)$ and $\mathrm{F}_{3}(N)-\mathrm{F}_{4}(N)$, or $\mathrm{F}_{2}(N)-\mathrm{F}_{4}(N)$ and $\mathrm{F}_{3}(N)-\mathrm{F}_{1}(N)$.

The separations of the four spin components of the ground state as a function of N are shown in Figure 4.3. If lines are drawn along the means of the F_{2} and F_{3} components and the F_{1} and F_{4} components, the distance between these two lines is almost exactly $2 \lambda-\gamma$.

The effect of γ on the ground state spin components is to give a clear N dependence,
as shown in Figure 4.3. The separation between the F_{2} and F_{3} spin components is approximately equal to γN at high values of N, while the F_{1} and F_{4} components show a separation of approximately $3 \gamma N$ at high N.

The spin-spin and spin-rotation matrix elements were given explicitly in Chapter 3.

4.2.2 The Hyperfine Splitting in the Ground State

Since the $\mathrm{C}^{4} \Sigma^{-}$state also has small hyperfine splittings, Cheung et al. determined that the $\mathrm{F}_{1}: \mathrm{F}_{2}: \mathrm{F}_{3}: \mathrm{F}_{4}$ hyperfine widths of the $\mathrm{C}^{4} \Sigma^{-}-X^{4} \Sigma^{-}$system are in the ratio -3 : $-1: 1: 3$ which means that Hund's case ($\mathrm{b}_{\beta J}$) applies to the $X^{4} \Sigma^{-}$state. Consequently, the $\mathrm{F}_{1}^{\prime \prime}$ and $\mathrm{F}_{4}^{\prime \prime}$ lines are the easiest to analyse in the $B^{4} \Pi-X^{4} \Sigma^{-}$system because they show the widest splittings. The $\mathrm{F}_{1}^{\prime \prime}$ lines could be easily distinguished from the $\mathrm{F}_{4}^{\prime \prime}$ lines because in the former, the position of the high- F component (seen as the component with greatest intensity) is at low frequency. Conversely, in the $\mathrm{F}_{4}^{\prime \prime}$ lines, the position of the high $-F$ component is at high frequency.

For the $B^{4} \Pi-X^{4} \Sigma^{-}$transition of VO, the contribution from the upper state to the hyperfine line width is generally much smaller than the ground state contribution. Therefore the observed hyperfine widths are dominated by the ground state hyperfine splittings. The electron configuration of the $X^{4} \Sigma^{-}$state is $\sigma \delta^{2}$, where the σ-orbital is derived from the V 4 s atomic orbital. Thus, the large hyperfine splitting of the ground state is primarily due to the Fermi contact interaction of the unpaired $4 s \sigma$ electron, which is not present in the $B^{4} \Pi$ state where the configuration is $\delta^{2} \pi$.

The spacing between adjacent hyperfine components of a particular ro-vibrational transition decreases with decreasing F. Thus, barring any perturbations or any severe blending, the assignments of the individual ro-vibrational lines to the appropriate spin components $\mathrm{F}_{1}^{\prime \prime}$ or $\mathrm{F}_{4}^{\prime \prime}$, as well as the F-numbering, were straight-forward, as shown in Figure 4.5. The total splitting observed for the $\mathrm{F}_{1}^{\prime \prime}$ and $\mathrm{F}_{4}^{\prime \prime}$ spin components is typically

Figure 4.4: The hyperfine energy level splittings for the F_{2} and F_{3} spin states of the $\mathrm{X}^{4} \Sigma^{-}$state of VO.
of the order of $0.3 \mathrm{~cm}^{-1}$.
The F-assignments of the $\mathrm{F}_{2}^{\prime \prime}$ and $\mathrm{F}_{3}^{\prime \prime}$ lines are much more difficult to make than those of the $\mathrm{F}_{1}^{\prime \prime}$ and $\mathrm{F}_{4}^{\prime \prime}$ lines. In 1968, Richards and Barrow [7][8] discovered that transitions involving the $\mathrm{F}_{2}\left(N=J+\frac{1}{2}\right)$ and $\mathrm{F}_{3}\left(N=J-\frac{1}{2}\right)$ electron spin components in the $X^{4} \Sigma^{-}$state of VO are doubled near $\mathrm{N}=15$. Although they could not resolve the hyperfine structure, Richards and Barrow concluded that this unusual doubling occurs because the electron spin contributions to the total energy in those two spin states are accidentally equal at $N=15$ (see Figure 4.3).

In the case of the F_{2} and F_{3} spin components, the matrix elements responsible for the perturbation have $\Delta J= \pm 1$ and $\Delta N=0$. Although the electron spin contributions to $\mathrm{F}_{1}\left(N=J+\frac{3}{2}\right)$ and $\mathrm{F}_{4}\left(N=J-\frac{3}{2}\right)$ are nearly equal at $N=9$, no internal hyperfine perturbation is observed. This is because there are no matrix elements having $\Delta J= \pm 3$ and $\Delta N=0$, which would be required for a direct interaction between these spin states.

Even at sub-Doppler resolution, the analysis of this internal hyperfine perturbation is quite complicated. The extra lines that are induced by this perturbation contribute to the complexity of these spectra. In instances where transitions involving both the F_{2} and F_{3} spin states of the ground state are allowed by selection rules, the extra lines induced by the F_{2} spin state are almost exactly blended with the main lines of the F_{3} spin state and vice versa.

If only one of the spin states, for example F_{2}, has a transition allowed by the selection rules, then the problem of blending with the main lines of the F_{3} spin state will be eliminated since the F_{3} transitions will not be observed. However, the total intensity of this ro-vibronic transition will be shared between the two eigenstates. An example of this effect is seen in the ${ }^{s} R_{32}$ branch. Figure 4.6 shows how the intensity from seven of the eight hyperfine components of the $N=14$ line appears nominally as the $S_{3}(14)$ line. Those lines having greater than fifty percent $\mathrm{F}_{2}^{\prime \prime}$ character are marked by dashed lines
(a)

(b)

Figure 4.5: (a) The ${ }^{s} Q_{31}(9)$ and (b) the $R_{4}(7)$ lines showing how the hyperfine structures are mirrored.
while the induced lines (those with greater than fifty percent $\mathrm{F}_{3}^{\prime \prime}$ character) are indicated by dotted lines. The full complement of eight hyperfine components for the ${ }^{S} R_{32}(14)$ line is shown, but there are only seven induced lines because there is no $F=18$ hyperfine component in $\mathrm{F}_{3}^{\prime \prime}$ spin state for $N=14$. The $F=18$ hyperfine line of ${ }^{s} R_{32}(14)$ is thus unperturbed and appears as a sharp line at $12653.3064 \mathrm{~cm}^{-1}$.

The hyperfine energy levels for the $\mathrm{F}_{2}^{\prime \prime}$ and $\mathrm{F}_{3}^{\prime \prime}$ spin states are shown in Figure 4.4. This illustration clearly shows the avoided crossing of seven of the eight hyperfine components for both spin states near $N=15$. The $F=N+4$ and the $F=N-4$ hyperfine components of the F_{2} and F_{3} spin states respectively are free from this internal hyperfine perturbation. Lines resulting from transitions involving these unperturbed levels near $N=15$ will generally appear as intense sharp lines between the broader features of the perturbation.

The precise assignment of the spin indices for the individual hyperfine components involving the $\mathrm{F}_{2}^{\prime \prime}$ and $\mathrm{F}_{3}^{\prime \prime}$ states becomes ambiguous near the perturbation. This is evident in the assignments of the ${ }^{s} R_{32}(14)$ features shown in Figure 4.6. The feature which on first inspection appears to be the $F=17$ hyperfine component of the ${ }^{S} R_{32}$ (14) main line (at $12653.4043 \mathrm{~cm}^{-1}$) turns out to have predominantly $\mathrm{F}_{3}^{\prime \prime}$ character, ${ }^{1}$ and is in fact the induced $F=17$ line from the $S_{3}(14)$ branch. This line is normally forbidden according to the usual spectroscopic selection rules. The main line hyperfine component appears at $12653.2593 \mathrm{~cm}^{-1}$.

[^4]

Figure 4.6: Plot of the ${ }^{S} R_{32}(14)$ line including induced lines from the internal hyperfine perturbation.

4.3 The $B^{4} \Pi$ State

The $B^{4} \Pi$ state of VO is very strongly perturbed, so that it cannot be described without at the same time considering the $a^{2} \Sigma^{+}$perturbing state. This is particularly true of the Λ-type splitting and the hyperfine structure of the F_{1} and F_{2} spin components, which are the ones most severely affected by the $a^{2} \Sigma^{+}$state.

However, the interaction with the $a^{2} \Sigma^{+}$state does not completely mask all the information which can be obtained about the $B^{4} \Pi$ state from the $B^{4} \Pi-X^{4} \Sigma^{-}(0,0)$ band. The sub-band origins are essentially unperturbed, and the F_{3} and F_{4} electron spin components are completely free from the first order perturbation effects of the $a^{2} \Sigma^{+}$state.

4.3.1 The Spin-orbit Splitting of the $B^{4} \Pi$ State

Since the four electron spin components of the $B^{4} \Pi$ state of VO lie some distance apart, it is convenient to determine the origins, T_{Ω}, for each sub-state separately. The spacing of the spin components, which mostly reflects the first order spin-orbit parameter A, is evident in Figure 4.7 ; it is seen that A is approximately $65 \mathrm{~cm}^{-1}$. Closer inspection of the sub-band origins shows that the separations are not exactly equal, with

$$
\begin{aligned}
T_{\frac{5}{2}}-T_{\frac{3}{2}} & =74.7440 \mathrm{~cm}^{-1} \\
T_{\frac{3}{2}}-T_{\frac{1}{2}} & =65.4295 \mathrm{~cm}^{-1} \\
T_{\frac{1}{2}}-T_{-\frac{1}{2}} & =53.3464 \mathrm{~cm}^{-1}
\end{aligned}
$$

Further insight into the $B^{4} \Pi$ state provided by these spin-orbit parameters is found in the Discussion (Chapter 6).

Figure 4.7: The upper state electronic term energies as a function of $\left(J+\frac{1}{2}\right)^{2}$.

4.3.2 The Λ-type Doubling in the $B^{4} \Pi$ State

All states with $\Lambda>0$ are doubly degenerate because the projection of \mathbf{L} along the internuclear axis, Λ, is a signed quantity, and in the absence of other effects, the energies of the two components, with positive and negative values of Λ, are the same. The degeneracy is lifted by interactions with Σ states $(\Lambda=0)$ which have no such degeneracy. The resulting separation of the otherwise degenerate levels is known as Λ-type doubling. The Λ-type doubling in the $B^{4} \Pi$ state becomes confused at the avoided crossings with the $a^{2} \Sigma^{+}$state. This fact is evident in Figure 4.8, where the avoided crossings cause discontinuities in the Λ-type doubling plots. The smallest Λ-type doubling occurs in the F_{4} spin component with that in the F_{3} sub-state being the next smallest. Despite the confusion caused by the $a^{2} \Sigma^{+}$perturbation, this observed decrease in Λ-type splitting as Ω increases agrees with the predicted trend [22][23].

4.4 The Interaction Between the $B^{4} \Pi$ and $a^{2} \Sigma^{+}$States

Avoided crossings occur at each place where the $B^{4} \Pi$ and $a^{2} \Sigma^{+}$levels with the same J-value happen to lie at approximately equal energy. There are three avoided crossings in the accessible range of J-values in the $B^{4} \Pi-X^{4} \Sigma^{-}(0,0)$ band. The best characterised crossing affects the ${ }^{4} \Pi_{-\frac{1}{2} f}$ levels at $J \sim 36.5$. It takes the form of a $12 \mathrm{~cm}^{-1}$ gap in the branches having the ${ }^{4} \Pi_{-\frac{1}{2} f}$ levels as upper state. The most intense branch of this type is the Q_{1}. Unfortunately the most severely affected lines of the Q_{1} branch lie under the heads formed by the ${ }^{4} \Pi_{-\frac{1}{2} e}$ branches so that it is not easy to follow the course of the branch at the most critical places. The pattern of the levels can also be seen in the ${ }^{\circ} Q_{13}$ and ${ }^{O} P_{12}$ branches, but these lines are not strong enough to be seen in the sub-Doppler spectra. In fact, the level structure is quite confused near these avoided crossings, and the rotational assignments had to be made with extensive wavelength resolved fluorescence

Figure 4.8: Plot of the Λ-type splittings of the four spin states of $B^{4} \Pi$
measurements.
Two other avoided crossings between the $a^{2} \Sigma^{+}$and the $B^{4} \Pi$ states were similarly characterized at Doppler-limited resolution. An avoided crossing pattern in the ${ }^{P} Q_{12}$ branch with a width of about $22.5 \mathrm{~cm}^{-1}$ gave the magnitude of the interaction between the ${ }^{4} \Pi_{-\frac{1}{2} e}$ levels and the $a^{2} \Sigma^{+}$state, while a similar pattern in the ${ }^{P} Q_{23}$ branch, with a width of $18.8 \mathrm{~cm}^{-1}$, gives the details of the ${ }^{4} \Pi_{\frac{1}{2} f} / a^{2} \Sigma^{+}$interaction.

No direct information describing the interaction between the $a^{2} \Sigma^{+}$and the ${ }^{4} \Pi_{\frac{1}{2} e}$ component could be obtained because the avoided crossing is predicted to occur near $\mathrm{J}=70.5$. The VO molecules are produced in the reaction cell at temperatures that are too low for these levels to be appreciably populated, and thus no ro-vibrational transitions involving the ${ }^{4} \Pi_{\frac{1}{2} e^{-}}-^{2} \Sigma_{e}^{+}$interaction were observed.

Even though the $a^{2} \Sigma^{+}$state cannot interact directly with the F_{3} and F_{4} spin components of the $B^{4} \Pi$ state, these sub-states are nevertheless perturbed in second order through spin-uncoupling interactions. The perturbation manifests itself in the Λ-type doubling of the F_{3} and F_{4} sub-states (Figure 4.8). The observed effect of the perturbation on the Λ-type splitting of the F_{3} spin component is significant, and in fact an avoided crossing is predicted for $J=77.5$. The effect on the ${ }^{4} \Pi_{\frac{5}{2}}$ sub-state is much smaller, and it appears essentially unperturbed.

The $a^{2} \Sigma^{+}$state has the same electron configuration as the $X^{4} \Sigma^{-}$state, namely $\sigma \delta^{2}$. Like the ground state, the $a^{2} \Sigma^{+}$state has wide hyperfine splittings because of the large Fermi contact parameter arising from the unpaired $4 s \sigma$ electron. Evidence of the $a^{2} \Sigma^{+}$perturbation as it affects the hyperfine structure of the upper state is shown in Figure 4.11. Both of the branches shown involve the same upper spin-state, namely $B^{4} \Pi_{-\frac{1}{2} f}$. Near $J=37.5$, this spin state has approximately fifty percent $a^{2} \Sigma_{f}^{+}$character, so the hyperfine structure of this sub-state reflects the $a^{2} \Sigma_{f}^{+}$contribution. Consequently, the hyperfine widths of the Q_{1} and ${ }^{\circ} P_{12}$ branches become larger near the avoided crossing

Figure 4.9: The hyperfine energy levels of the $B^{4} \Pi_{-\frac{1}{2} f}$ and $a^{2} \Sigma_{f}^{+}$states.

Figure 4.10: The hyperfine energy levels of the $B^{4} \Pi_{-\frac{1}{2} e}$ and $a^{2} \Sigma_{e}^{+}$states.

Figure 4.11: The hyperfine widths of (a) the Q_{1} branch, and (b) the ${ }^{o} P_{12}$ branch.
because of this increased $a^{2} \Sigma^{+}$character. Once past the avoided crossing, the hyperfine widths return to normal. The predicted hyperfine widths of the nominally-forbidden $a^{2} \Sigma^{+}-X^{4} \Sigma^{-}$branches are shown by dashed lines. It should be noted that the three extra lines of the ${ }^{\circ} P_{12}$ branch, whose hyperfine widths were measured, fit the calculated widths very well.

Chapter 5

Results

The parameters needed to describe the states of the $B^{4} \Pi-X^{4} \Sigma^{-}(0,0)$ band of VO were determined in three stages. First, preliminary assignments of the IMF spectra enabled ground state combination differences to be calculated. These combination differences, along with three microwave lines measured by Suenram et al.[36] using FT-microwave spectroscopy, were then used in a fit of the ground state only. This fit served to confirm that the spectral lines had been correctly assigned, and permitted the assignment of many previously unassigned features in the IMF spectra.

Parameter	Value $\left(\mathrm{cm}^{-1}\right)$	
T_{0}	0.0	-fixed-
B	0.5453713	± 0.0000017
$10^{6} \mathrm{D}$	0.6491	± 0.0009
γ	0.022426	± 0.000004
λ	2.03090	± 0.00004
b	0.027435	± 0.000002
c	-0.00450	± 0.00005
$\mathrm{e}^{2} \mathrm{Qq}$	0.00134	± 0.00048
$10^{5} \gamma_{D}$	0.0060	± 0.0005
$10^{5} \lambda_{D}$	0.038	± 0.007
$10^{5} \gamma_{s}$	0.810	± 0.095
$10^{5} \mathrm{~b}_{s}$	-1.58	± 0.37

Table 5.1: The constants for the $X^{4} \Sigma^{-}(\mathrm{v}=0)$ state of VO

The second stage involved a rotational fit of the $B^{4} \Pi-X^{4} \Sigma^{-}$transition. The hyperfine structure of each rotational line was averaged to estimate the rotational transition

Parameter	Value $\left(\mathrm{cm}^{-1}\right)$	
T_{0}	12432.9406	± 0.0476
B	0.54304	± 0.00003
$10^{6} \mathrm{D}$	0.65	-fixed-
γ	-0.0396	± 0.0019
b	0.0930	± 0.0008
$\left.\left.\left\langle{ }^{4} \Pi_{\frac{1}{2}}\right\| \mathcal{H}_{s o}\right\|^{2} \Sigma^{+}\right\rangle$	20.430	± 0.076
$\left.\left.\left\langle{ }^{4} \Pi_{-\frac{1}{2}}\right\| \mathcal{H}_{s o}\right\|^{2} \Sigma_{f}^{+}\right\rangle$	20.404	± 0.021
$\left.\left.\left\langle{ }^{4} \Pi_{-\frac{1}{2} e}\right\| \mathcal{H}_{s o}\right\|^{2} \Sigma_{e}^{+}\right\rangle$	20.417	± 0.020
e	0.0	-fixed-

Table 5.2: The constants for the $a^{2} \Sigma^{+}(\mathrm{v}=2)$ state of VO.
energy. Also included in the rotational fit were some high-J emission lines recorded photographically some years ago in this laboratory, and recorded also by Fourier transform methods at Kitt Peak National Observatory. This fit gave an estimate of the rotational and electron-spin parameters of the upper state, and a good measure of the spin-orbit interaction between the $B^{4} \Pi$ and $a^{2} \Sigma^{+}$states.

The third and final stage involved the full hyperfine fit of the $B^{4} \Pi-X^{4} \Sigma^{-}$transition. In all, 3211 lines were used in the fit including the three microwave lines. The final fit gave an rms error of $0.00038 \mathrm{~cm}^{-1}$, and the values of the parameters for the $X^{4} \Sigma^{-}$, $a^{2} \Sigma^{+}$, and $B^{4} \Pi$ states are given in Tables $5.1,5.2$, and 5.3 respectively. The reported errors represent three standard deviations.

The combination difference and rotational fits were run on a DEC-MICROVAX II minicomputer while the full hyperfine fit was run on an IBM RISC-6000 computer.

Parameter	Value $\left(\mathrm{cm}^{-1}\right)$	
$\mathrm{T}_{\frac{s}{2}}$	12711.8260	± 0.0001
$\mathrm{~T}_{\frac{3}{2}}$	12637.1180	± 0.0001
$\mathrm{~T}_{\frac{1}{2}}$	12571.6885	± 0.0019
$\mathrm{~T}_{-\frac{1}{2}}^{2}$	12518.3421	± 0.0024
$\mathrm{~B}^{2}$	0.5126525	± 0.0000018
$10^{6} \mathrm{D}$	0.6634	± 0.0009
$10^{4} \mathrm{~A}_{D}$	-0.69	± 0.04
$10^{5} \lambda_{D}$	-0.28	± 0.05
$\eta{ }_{D}$	0.0	- -fixed-
γ	0.0336	± 0.0000
$\mathrm{o}+\mathrm{p}+\mathrm{q}$	1.131	± 0.001
p 2 q	0.03609	± 0.00002
q	0.0001733	± 0.0000011
$10^{5} \mathrm{D}_{o+p+q}$	0.16	± 0.05
$10^{5} \mathrm{D}_{p+2 q}$	-0.0041	± 0.0014
$10^{5} \mathrm{D}_{q}$	-0.00037	± 0.00009
$\mathrm{e}^{2} \mathrm{Qq}$	0.00157	± 0.00055
a	0.0109	± 0.0002
b	-0.00898	± 0.00003
c	-0.00508	± 0.00015
d	-0.00359	± 0.00003
$\mathrm{e}^{2} \mathrm{Qq} q_{2}$	0.0	- fixed-

Table 5.3: The constants for the $B^{4} \Pi$ ($\mathrm{v}=0$) state of VO

Chapter 6

Discussion

6.1 Rotational Structure

The spectrum of the VO $B^{4} \Pi-X^{4} \Sigma^{-}(0,0)$ band shows red-degraded branch structure, indicating that the effective rotational constant of the $X^{4} \Sigma^{-}$state is larger than that of the $B^{4} \Pi$ state. The rotational constant B (in cm^{-1}) is defined by

$$
\begin{equation*}
B=\frac{h}{8 \pi^{2} I c} \tag{6.1}
\end{equation*}
$$

where h is the Planck constant, c is the speed of light and I is the moment of inertia of the molecule, given by

$$
\begin{equation*}
I=\mu r^{2} \tag{6.2}
\end{equation*}
$$

In this equation μ is the reduced mass of the molecule and r is the bond length. The reduced mass of ${ }^{51} \mathrm{~V}^{16} \mathrm{O}$ is 12.1729611_{9} amu [38], which enables the bond length in a particular vibrational level of any electronic state to be calculated from Equations (2.1) and (2.2). The bond lengths in the observed vibrational levels of the $a^{2} \Sigma^{+}, B^{4} \Pi$, and $X^{4} \Sigma^{-}$states are shown in Table 6.1. This Table also includes results from the fit of the $(1,0)$ band, obtained by Huang et al.[37], and the $(0,1)$ band of the $A^{4} \Pi$ $X^{4} \Sigma^{-}$transition[35].

In the rigid rotator approximation it is expected that r, and therefore B, would be invariant to the vibrational level. The results listed in Table 6.1 show that there is an interaction between rotation and vibration. This interaction is described by the

State	$B_{v}\left(\mathrm{~cm}^{-1}\right)$		$r(\AA)$
$X^{4} \Sigma^{-}(\mathrm{v}=0)$	0.5463713	± 0.0000017	1.5920
$X^{4} \Sigma^{-}(\mathrm{v}=1)^{a}$	0.542864	± 0.000013	1.5972
$B^{4} \Pi(\mathrm{v}=0)$	0.5126525	± 0.0000018	1.6436
$B^{4} \Pi(\mathrm{v}=1)^{b}$	0.5094926	± 0.0000264	1.6487
$a^{2} \Sigma^{+}(\mathrm{v}=2)$	0.5430436	± 0.0000292	1.5969
$a^{2} \Sigma^{+}(\mathrm{v}=3)^{b}$	0.54044	± 0.00013	1.6007

Table 6.1: The rotational constants and average bond lengths of the states of the VO $B^{4} \Pi-X^{4} \Sigma^{-}$transition.

[^5]rotation-vibration coupling constant α_{e} [22],
\[

$$
\begin{equation*}
B_{v}=B_{e}-\alpha_{e}\left(v+\frac{1}{2}\right)+\cdots \tag{6.3}
\end{equation*}
$$

\]

where B_{e} represents the equilibrium rotational constant. Given the value of B_{e}, the equilibrium bond length can be determined. The equilibrium bond lengths are given, along with the values for the rotation-vibration coupling constants and the equilibrium rotational constants, for the $B^{4} \Pi$ and $X^{4} \Sigma^{-}$states in Table 6.2.

6.2 Electron Configurations

The ground state valence electron configuration of VO was predicted to be $\sigma \delta^{2}$ by Carlson and Moser[5]. The nearly equal bond lengths of the $a^{2} \Sigma^{+}$and $X^{4} \Sigma^{-}$states are evidence that the two states have the same electron configuration in the single configuration approximation. The very slight difference between the two arises from the interelectron repulsion in the higher multiplicity state and from configuration mixing of the two states with states of other configurations.

State	$B_{e}\left(\mathrm{~cm}^{-1}\right)$	$\alpha_{e}\left(\mathrm{~cm}^{-1}\right)$	$r_{e}(\AA)$
$X^{4} \Sigma^{-}$	0.5481_{25}	0.0030_{7}	1.583_{7}
$B^{4} \Pi$	0.5142_{3}	0.0031_{6}	1.635_{1}
$a^{2} \Sigma^{+}$	0.549_{5}	0.002_{6}	1.58_{2}

Table 6.2: Table of the equilibrium rotational constants from the $B^{4} \Pi-X^{4} \Sigma^{-}$transition.

In the single configuration approximation, the $B^{4} \Pi$ state is described by the configuration $\delta^{2} \pi[14]$. The longer equilibrium bond length in the $B^{4} \Pi$ state compared to the $a^{2} \Sigma^{+}$and $X^{4} \Sigma^{-}$states suggests that the 4π molecular orbital of the $\delta^{2} \pi$ configuration is slightly more anti-bonding in character than the 9σ molecular orbital occupied in the ground state (see Figure 1.1).

Strong evidence that one of the electrons in the ground state configuration is in an orbital derived from the vanadium $4 s$ atomic orbital comes from the hyperfine splitting. The Fermi contact interaction is the largest contribution to the hyperfine structure of the $X^{4} \Sigma^{-}$state. The magnitude of the contact parameter is proportional to the probability that an electron is to be found inside the nucleus. Since only s atomic orbitals have wavefunctions which are non-vanishing at the nucleus, the large Fermi contact interaction indicates the presence of an unpaired electron that has appreciable atomic s character. The Fermi contact parameter, b_{F}, is related to the experimentally determinable magnetic hyperfine parameters, b and c, by

$$
\begin{equation*}
b_{F}=b+\frac{1}{3} c \tag{6.4}
\end{equation*}
$$

and is equal to $0.02593_{5} \mathrm{~cm}^{-1}$ for the $X^{4} \Sigma^{-}$state.
In a study of the $3 d^{4} 4 s$ configuration of atomic ${ }^{51} \mathrm{~V}$, Childs et al.[43] determined the value of the contact parameter of the $4 s$ electron to be $0.1036 \mathrm{~cm}^{-1}$. Allowing for the difference in spin multiplicity, which introduces a factor of 3 , the Fermi contact
parameter of the $X^{4} \Sigma^{-}$state is 75.1% of the atomic contact parameter, which proves that the electron configuration of the $X^{4} \Sigma^{-}$state indeed has an unpaired electron with primarily $4 s$ atomic ${ }^{51} \mathrm{~V}$ character. In single configuration approximation, this electron must therefore occupy the ($4 s \sigma$) molecular orbital.

Similarly, the $a^{2} \Sigma^{+}$state also exhibits large hyperfine splittings; the contact interaction is even larger than in the $X^{4} \Sigma^{-}$state, and amounts to 89.8% of the value for $\mathrm{V}(4 s)$. As in the $X^{4} \Sigma^{-}$state, there must be an unpaired electron occupying the ($4 s \sigma$) MO. Thus, the $a^{2} \Sigma^{+}$state has the same configuration as the $X^{4} \Sigma^{-}$state, namely $(4 s \sigma)^{1}(3 d \delta)^{2}$. The difference between the values of the two parameters can be attributed to the degree of configuration interaction in the two states.

6.3 The Molecular Spin-Orbit Parameters

The four components of the $B^{4} \Pi$ state were fitted to a model that used four sub-band origins T_{Ω}, rather than spin parameters of high order. The two models are related, through the diagonal elements of the spin-rotation and spin-orbit interactions, by

$$
\begin{align*}
T_{\Omega}= & T_{0}+A \Lambda \Sigma+\frac{2}{3} \lambda\left[3 \Sigma^{2}-S(S+1)\right]+\gamma\left[\Sigma^{2}-S(S+1)\right] \\
& +\eta \Lambda\left[\Sigma^{3}-\left(3 S^{2}+3 S+1\right) \Sigma / 5\right] \tag{6.5}
\end{align*}
$$

Since the spin-rotation parameter γ has been determined independently of the subband origins, there are four sub-band origins T_{Ω} which can be used to give the four parameters $\mathrm{T}_{0}, A, \lambda$, and η. The values obtained for the four sub-band origins and γ for the $B^{4} \Pi(\mathrm{v}=0)$ state of VO are given in Table 6.3; the reported error limits are three standard deviations. The band origin and the three spin-orbit parameters were determined with the help of Equation (6.5); they are listed in Table 6.4.

Parameter	Value $\left(\mathrm{cm}^{-1}\right)$
$\mathrm{T}_{\frac{5}{2}}$	12711.8260 ± 0.0001
$\mathrm{~T}_{\frac{3}{2}}$	12637.1180 ± 0.0001
$\mathrm{~T}_{\frac{1}{2}}$	12571.6885 ± 0.0019
$\mathrm{~T}_{-\frac{1}{2}}$	12518.3421 ± 0.0024
γ^{2}	0.0336 ± 0.0002

Table 6.3: Table of the four sub-band origins of the $B^{4} \Pi$ state.

As expected, the estimate of $65 \mathrm{~cm}^{-1}$ for the first order spin-orbit splitting was close to the calculated value. The next largest spin-orbit contribution is, not surprisingly, the second order parameter λ. The λ term comes mostly from the interaction between the $B^{4} \Pi$ state and other states from the same configuration. Since the spin-orbit operator has matrix elements diagonal in $\Omega,{ }^{2} \Pi$ states, which have $\Omega=\frac{3}{2}$ and $\frac{1}{2}$ spin components only, will interact with the $\Omega=\frac{3}{2}$ and $\frac{1}{2}$ sub-states of the $B^{4} \Pi$ state, but not with the $\Omega=\frac{5}{2}$ and $-\frac{1}{2}$ sub-states. Hence, the ${ }^{4} \Pi_{\frac{3}{2}}$ and the ${ }^{4} \Pi_{\frac{1}{2}}$ spin states will be shifted relative to the others; the specific form of the operator is such that this shift is 4λ. The sign of λ suggests that the ${ }^{2} \Pi$ states lie above the $B^{4} \Pi$ state, since the two spin states involved in the interaction are pushed down in energy. However, there are two ${ }^{2} \Pi$ states given by the valence electron configuration $\delta^{2} \pi$. Since there is only one parameter λ that can be determined, there is not enough information to deduce where they both lie.

The Slater determinant form for the $B^{4} \Pi$ wavefunction, omitting the electron spin factors, is given by

$$
\begin{equation*}
\psi_{s p a t i a l}=\left|\delta^{2+} \delta^{2-} \pi\right| \tag{6.6}
\end{equation*}
$$

The orbital angular momenta of the δ-electrons cancel, so that the spin-orbit coupling

Parameter	Value $\left(\mathrm{cm}^{-1}\right)$
T_{0}	12609.8367 ± 0.0017
A	64.5989 ± 0.0008
λ	2.6580 ± 0.0002
η	-0.4614 ± 0.0005

Table 6.4: The band origin and higher spin-orbit parameters of the $B^{4} \Pi$ state.
constant of the $B^{4} \Pi$ state comes from the π-electron. The microscopic spin-orbit parameter for this π-electron is given by[24]

$$
\begin{equation*}
a_{\pi}=3 A \Lambda=3 \times 64.5989 \mathrm{~cm}^{-1}=193.797 \mathrm{~cm}^{-1} \tag{6.7}
\end{equation*}
$$

This value for a_{π} is consistent with the values obtained from the $A^{4} \Phi, A^{4} \Pi$ and $1^{2} \Pi$ states which have configurations $\sigma \delta \pi, \sigma \delta \pi$ and $\sigma^{2} \pi$ respectively[14], thus providing further confirmation that the configuration of the $B^{4} \Pi$ state is indeed $\delta^{2} \pi$.

The $X^{4} \Sigma^{-}$state can have no first order spin-orbit effects since $\Lambda=0$. There are, however, second order spin-orbit interactions between the $X^{4} \Sigma^{-}$state and other states from the same electron configuration[24]. Perversely, the second order spin-orbit Hamiltonian has the same operator form as the first order electron spin-spin dipolar Hamiltonian. Consequently, the experimentally determined parameter λ for the $X^{4} \Sigma^{-}$state is an effective parameter, given by

$$
\lambda=\lambda_{s o}+\lambda_{s s}
$$

where $\lambda_{s o}$ is the second order spin-orbit interaction parameter and $\lambda_{s s}$ is the electron spin-spin interaction parameter. There is no way of estimating $\lambda_{s s}$ except from ab initio calculations, and in any case it is likely to be small campared to $\lambda_{s o}$; it will not be considered further.

The most likely contribution to $\lambda_{s o}$ is from the interaction between the ${ }^{4} \Sigma_{\frac{1}{2}}^{-}$spin component of the ground state and the ${ }^{2} \Sigma_{\frac{1}{2}}^{+}$spin component of the $a^{2} \Sigma^{+}$state. The Slater determinants for these sub-states are given by

$$
\begin{align*}
& \left|{ }^{4} \Sigma_{\frac{1}{2}}^{-}\right\rangle=\frac{1}{\sqrt{3}}\left[\left|\delta^{+} \alpha \delta^{-} \beta \sigma \alpha\right|+\left|\delta^{+} \beta \delta^{-} \alpha \sigma \alpha\right|+\left|\delta^{+} \alpha \delta^{-} \alpha \sigma \beta\right|\right] \tag{6.8}\\
& \left|{ }^{2} \Sigma_{\frac{1}{2}}^{+}\right\rangle=\frac{1}{\sqrt{2}}\left[\left|\delta^{+} \alpha \delta^{-} \beta \sigma \alpha\right|-\left|\delta^{+} \beta \delta^{-} \alpha \sigma \alpha\right|\right] \tag{6.9}
\end{align*}
$$

Since both states have $\Lambda=0$, only those terms in the spin-orbit Hamiltonian of the form $\Delta \Lambda=\Delta \Sigma=0$ need be considered. Hence, the microscopic spin-orbit Hamiltonian given in Chapter 3 can be simplified as

$$
\begin{equation*}
\mathcal{H}_{s o}=\sum_{i} a_{i} l_{z i} s_{z i} \tag{6.10}
\end{equation*}
$$

The spin-orbit matrix element between the ${ }^{4} \Sigma_{\frac{1}{2}}^{-}$and ${ }^{2} \Sigma_{\frac{1}{2}}^{+}$spin components is easily shown to be

$$
\begin{equation*}
\left.\left.\left\langle{ }^{4} \Sigma_{\frac{1}{2}}^{-}\right| \mathcal{H}_{s o}\right|^{2} \Sigma_{\frac{1}{2}}^{+}\right\rangle=\frac{4 a_{\delta}}{\sqrt{6}} \tag{6.11}
\end{equation*}
$$

where a_{δ} is the microscopic first order spin-orbit parameter for a $3 d \delta$ electron. The value of a_{δ} can be obtained from the $\sigma \delta \sigma^{*}{ }^{4} \Delta$ state of VO, and is approximately 150 $\mathrm{cm}^{-1}[14]$; this gives the matrix element (6.11) as roughly $245 \mathrm{~cm}^{-1}$. Since the separation $\mathrm{E}\left({ }^{4} \Sigma_{\frac{1}{2}}^{-}\right)-\mathrm{E}\left({ }^{4} \Sigma_{\frac{3}{2}}^{-}\right)$is $4 \lambda, \lambda_{s o}$ is given by

$$
\begin{equation*}
\lambda_{s o}=\frac{1}{4} \frac{\left.\left|\left\langle{ }^{4} \Sigma_{\frac{1}{2}}^{-}\right| \mathcal{H}_{s o}\right|{ }^{2} \Sigma_{\frac{1}{2}}^{+}\right\rangle\left.\right|^{2}}{\mathrm{E}\left({ }^{2} \Sigma_{\frac{1}{2}}^{+}\right)-\mathrm{E}\left({ }^{4} \Sigma_{\frac{1}{2}}^{-}\right)} \simeq \frac{1}{4} \frac{(245)^{2}}{10412} \simeq 1.44 \mathrm{~cm}^{-1} \tag{6.12}
\end{equation*}
$$

The experimental value of the effective λ parameter is $2.03090 \mathrm{~cm}^{-1}$. Therefore, the spin-orbit contribution from the $a^{2} \Sigma^{+}$state represents 71.0% of the total effective λ parameter of the $X^{4} \Sigma^{-}$state of VO.

6.4 The $B^{4} \Pi / a^{2} \Sigma^{+}$Perturbation

The Slater determinant function for the ${ }^{4} \Pi_{\frac{1}{2}}$ sub-state is

$$
\begin{equation*}
\left|{ }^{4} \Pi_{\frac{1}{2}}\right\rangle=\frac{1}{\sqrt{3}}\left[\left|\delta^{+} \beta \delta^{-} \beta \pi \alpha\right|+\left|\delta^{+} \beta \delta^{-} \alpha \pi \beta\right|+\left|\delta^{+} \alpha \delta^{-} \beta \pi \beta\right|\right] \tag{6.13}
\end{equation*}
$$

The spin-orbit interaction matrix element between $B^{4} \Pi_{\frac{1}{2}}$ and $a^{2} \Sigma_{\frac{1}{2}}^{+}$can be shown to be zero. The only non-vanishing contributions come from the interactions between:

$$
\left.\langle | \delta^{+} \beta \delta^{-} \alpha \pi \beta \mid \text { and }-\left|\delta^{+} \beta \delta^{-} \alpha \sigma \alpha\right|\right\rangle, \text { which gives }-\frac{1}{2} a_{3}[l(l+1)]^{\frac{1}{2}}
$$

and between $\langle | \delta^{+} \alpha \delta^{-} \beta \pi \beta \mid$ and $\left.-\left|\delta^{+} \alpha \delta^{-} \beta \sigma \alpha\right|\right\rangle$, which gives $\frac{1}{2} a_{3}[l(l+1)]^{\frac{1}{2}}$.
These two terms cancel, indicating that the ${ }^{4} \Pi /^{2} \Sigma^{+}$perturbation cannot occur by a first order spin-orbit interaction mechanism.

Furthermore, the σ-electron is $4 s \sigma$ and the π-electron is $3 d \pi$. Consequently, the l_{+} operator is being required to ladder a $4 s \sigma$ electron into a $3 d \pi$ orbital, that is with $\Delta l=2$. Similarly, l_{-}is required to give $\Delta l=-2$ matrix elements. Neither is possible.

However, the $B^{4} \Pi$ state is indeed perturbed by the $a^{2} \Sigma^{+}$state. Therefore, a higher order mechanism must exist that links the two states. The relative magnitudes of the various matrix elements can be calculated by the Wigner-Eckart theorem:

$$
\left\langle S^{\prime} \Sigma^{\prime} \Lambda^{\prime}\right| \mathcal{H}_{s o}|S \Sigma \Lambda\rangle=(-1)^{S^{\prime-\Sigma \prime}}\left(\begin{array}{ccc}
S^{\prime} & 1 & S \tag{6.14}\\
-\Sigma^{\prime} & q & \Sigma
\end{array}\right)\left\langle S^{\prime} \Lambda^{\prime}\left\|\mathcal{H}_{s o}\right\| S \Lambda\right\rangle \delta_{\Omega \Omega^{\prime}}
$$

This gives four non-zero elements. In a parity basis, the elements are

$$
\begin{equation*}
\left\langle{ }^{4} \Pi_{\frac{1}{2}}{ }_{f}^{e}\right| \mathcal{H}_{s o}\left|{ }^{2} \Sigma^{+}{ }_{, F_{2}}^{F_{1}}\right\rangle=\frac{1}{2 \sqrt{3}}\left\langle{ }^{4} \Pi\left\|\mathcal{H}_{s o}\right\|^{2} \Sigma^{+}\right\rangle \tag{6.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle{ }^{4} \Pi_{-\frac{1}{2}},{ }_{f}^{e}\right| \mathcal{H}_{s o}\left|{ }^{2} \Sigma^{+}, F_{F_{2}}\right\rangle= \pm \frac{1}{2}\left\langle{ }^{4} \Pi\left\|\mathcal{H}_{s o}\right\|^{2} \Sigma^{+}\right\rangle \tag{6.16}
\end{equation*}
$$

where the reduced matrix element $\left\langle{ }^{4} \Pi\left\|\mathcal{H}_{\text {so }}\right\|^{2} \Sigma^{+}\right\rangle$has been defined in Chapter 3 as \tilde{A}.
The matrix elements of the ${ }^{4} \Pi /{ }^{2} \Sigma^{+}$spin-orbit perturbation have been given by other authors [40][41] as

$$
\begin{equation*}
\left\langle{ }^{4} \Pi_{\frac{1}{2}}\right| \mathcal{H}_{s o}\left|{ }^{2} \Sigma^{+}{ }_{F_{2}} F_{1}\right\rangle=\frac{\sqrt{2}}{3} \xi \tag{6.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\left\langle{ }^{4} \Pi_{-\frac{1}{2}}\right| \mathcal{H}_{s o}| |^{2} \Sigma^{+}, F_{F_{2}}\right\rangle=\mp \sqrt{\frac{2}{3}} \xi . \tag{6.18}
\end{equation*}
$$

Equations (6.15) and (6.16) can be made to resemble the above expressions if the reduced matrix element is multiplied by a factor $\sqrt{\frac{8}{3}}$. However, the relative signs of the ${ }^{4} \Pi_{-\frac{1}{2}}$ interactions differ. This is an interesting result, but there is no doubt that the correct relative signs are as in Equations (6.15) and (6.16) because it is not possible to get a converged least squares fit if they are reversed. The conclusion is confirmed by a study of the $B^{4} \Pi-X^{4} \Sigma^{-}(1,0)$ band done by Huang and co-workers[42].

The values of the perturbation matrix elements for the $B^{4} \Pi v=0$ and $v=1$ levels can be used to determine the vibrational numbering of the $a^{2} \Sigma^{+}$state. This determination requires that the Born-Oppenheimer approximation holds, so that the perturbation matrix element can be factorized:

$$
\begin{equation*}
\left.\left\langle{ }^{4} \Pi, v\right| \mathcal{H}\left|\left.\right|^{2} \Sigma^{+}, v^{\prime}\right\rangle=\left.\left\langle{ }^{4} \Pi\right| \mathcal{H}_{\text {electronic }}\right|^{2} \Sigma^{+}\right\rangle\left\langle v \mid v^{\prime}\right\rangle \tag{6.19}
\end{equation*}
$$

The overlap integral, $\left\langle v \mid v^{\prime}\right\rangle$ was calculated using numerical integration over the eigenfunctions of modified Morse potentials given by

$$
\begin{equation*}
U(r)=D_{e}\left[1-\exp ^{-\beta(r)\left(r-r_{e}\right)}\right]^{2} \tag{6.20}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta(r)=\beta_{0}+\beta_{1}\left(r-r_{e}\right)+\beta_{2}\left(r-r_{e}\right)^{2} \tag{6.21}
\end{equation*}
$$

Overlap integrals were calculated for several likely assignments for the vibrational numbering of the $a^{2} \Sigma^{+}$state. The results of these calculations are found in Table 6.5.

x	$\langle 1 \mid x+1\rangle$	$\langle 0 \mid x\rangle$	$\frac{\langle 1 \mid x+1\rangle}{\langle 0 \mid x\rangle}$
0	0.5144	0.8296	0.620
1	0.6052	0.5384	1.124
2	0.4051	0.2729	1.484
3	0.2200	0.1235	1.781

Table 6.5: Calculations of the anharmonic oscillator overlap integrals.

The values of the perturbation matrix elements of the $v=1$ level of the $B^{4} \Pi$ state determined by Huang at al.[42] and of the $v=0$ level determined in this work are

$$
\begin{align*}
\left.\left.\left\langle{ }^{4} \Pi, v=1\right| \mathcal{H}\right|^{2} \Sigma^{+}, v^{\prime}=x+1\right\rangle & =28.7 \mathrm{~cm}^{-1} \tag{6.22}\\
\left.\left.\left\langle{ }^{4} \Pi, v=0\right| \mathcal{H}\right|^{2} \Sigma^{+}, v^{\prime}=x\right\rangle & =20.42 \mathrm{~cm}^{-1} \tag{6.23}
\end{align*}
$$

respectively. In the approximation that the perturbation matrix element is separable, the ratio of these two matrix elements represents the ratio of the two corresponding overlap integrals, i.e.

$$
\begin{equation*}
\frac{\left.\left.\left\langle{ }^{4} \Pi, v=1\right| \mathcal{H}\right|^{2} \Sigma^{+}, v^{\prime}=x+1\right\rangle}{\left.\left.\left\langle{ }^{4} \Pi, v=0\right| \mathcal{H}\right|^{2} \Sigma^{+}, v^{\prime}=x\right\rangle}=\frac{\langle 1 \mid x+1\rangle}{\langle 0 \mid x\rangle}=1.41 \tag{6.24}
\end{equation*}
$$

When this is compared to the values listed in Table 6.5, then the obvious conclusion is that $x=2$. Therefore, if $\omega_{e} x_{e}$ is assumed to equal the value for the ground state, then the vibrational constants for the perturbing $a^{2} \Sigma^{+}$state are

$$
\begin{align*}
\omega_{e} & =1024.24 \mathrm{~cm}^{-1} \tag{6.25}\\
B_{e} & =0.5508 \mathrm{~cm}^{-1} \tag{6.26}\\
T_{0}(v=0) & =10412 . \mathrm{cm}^{-1} \tag{6.27}
\end{align*}
$$

Chapter 7

Conclusions

The $B^{4} \Pi-X^{4} \Sigma^{-}(0,0)$ band of vanadium monoxide has been well characterized and the constants have been determined by a least squares fit to spectra recorded at subDoppler and Doppler limited resolution. The fit of 3211 data points resulted in the determination of 39 constants with an r.m.s. error of $0.00038 \mathrm{~cm}^{\mathbf{- 1}}$. Not only have these highly precise data provided an improved determination of the parameters of the $X^{4} \Sigma^{-}$state as compared to the values that had been determined previously from subDoppler spectra of the $C^{4} \Sigma^{+}-X^{4} \Sigma^{-}$transition [10], but they have also afforded the first complete analysis of the $B^{4} \Pi$ state.

Earlier studies of the $B^{4} \Pi$ state had only been done at Doppler-limited resolution. These studies had focussed mostly on regions where the hyperfine widths of the upper state fortuitously cancelled the widths of the ground state, thus producing sharp rotational lines; branches that were substantially hyperfine-broadened remained largely unassigned. This was particularly true near the regions where the $B^{4} \Pi$ state was heavily perturbed by the $a^{2} \Sigma^{+}$state.

However, the use of the technique known as intermodulated fluorescence spectroscopy has enabled the assignments of many of these branches. The information obtained in this work from the regions where the $a^{2} \Sigma^{+} / B^{4} \Pi$ interaction is greatest provide details of the perturbing state. These details confirm $\sigma \delta^{2}$ as the correct assignment for the valence electron configuration for the $a^{2} \Sigma^{+}$state, the same configuration as for the $X^{4} \Sigma^{-}$state. By comparison, the configuration of the $B^{4} \Pi$ state is $\delta^{2} \pi$.

The vibrational numbering for the $a^{2} \Sigma^{+}$state has been determined using data from the (1,0) band of the $B^{4} \Pi-X^{4} \Sigma^{-}$transition [37]. The $v=0$ and $v=1$ levels of the $B^{4} \Pi$ state are perturbed by the $v=2$ and $v=3$ levels of the $a^{2} \Sigma^{+}$state respectively. This information has resulted in significant change for the value for the band origin of the $v=0$ level of the $a^{2} \Sigma^{+}$state. When it had been believed that the $v=0$ level of the $a^{2} \Sigma^{+}$state was perturbing the $v=0$ level of the $B^{4} \Pi$ state, the band origin had been placed at $12430 \mathrm{~cm}^{-1}$ [14], whereas the new vibrational assignment has shifted this value to $10412 \mathrm{~cm}^{-1}$.

The eight hyperfine components arising from the ${ }^{51} \mathrm{~V}$ nucleus ($\mathrm{I}=\frac{7}{2}$) were generally well resolved. This enabled the determination of magnetic hyperfine parameters for the $a^{2} \Sigma^{+}, X^{4} \Sigma^{-}$and $B^{4} \Pi$ states. The Fermi contact interactions in the $X^{4} \Sigma^{-}$and $a^{2} \Sigma^{+}$states produced by far the largest effects; this provides evidence that these states arise from a configuration with appreciable $\mathrm{V} 4 s$ atomic orbital character, and thus a non-zero probability that the electron can be found inside the nucleus.

This work has shed considerable light on the $B^{4} \Pi-X^{4} \Sigma^{-}(0,0)$ band of VO. Further work could be done on the higher vibrational bands of this transition, which would lead to the characterization of the higher levels of the $B^{4} \Pi$ and $a^{2} \Sigma^{+}$states. Studies of these other bands would provide further proof of the vibrational numbering, and would give information on the contours of the potential wells of the $B^{4} \Pi$ and $a^{2} \Sigma^{+}$states.

Bibliography

[1] A. J. Merer, Ann. Rev. Phys. Chem., 40, 407-438 (1989).
[2] H. Spinrad, R. F. Wing, Ann. Rev. Aston. Astrophys., 7, 249-302 (1969).
[3] G. P. Kuiper, W. Wilson, R. J. Cashman, Astrophys. J. 106, 243, (1947).
[4] A. Lagerqvist, L.-E. Selin, Ark. Fys. 11, 429-430 (1957); A. Lagerqvist, L.-E. Selin, Ark. Fys. 12, 553-568 (1957).
[5] K. D. Carlson, C. Moser, J. Chem. Phys., 44(9), 3259-3265 (1966).
[6] P. H. Kasai, J. Chem. Phys., 49(11), 4979-4984 (1968).
[7] D. Richards, R. F. Barrow, Nature, 217, 842 (1968).
[8] D. Richards, R. F. Barrow, Nature, 219, 1244-1245 (1968).
[9] W. H. Hocking, A. J. Merer, D. J. Milton, Can. J. Phys., 59, 266-270 (1981); A. S-C. Cheung, R. C. Hansen, A. M. Lyyra, A. J. Merer, J. Mol. Spec., 86, 526-533 (1981).
[10] A. S-C. Cheung, R. C. Hansen, A. J. Merer, J. Mol. Spec., 91, 165-208 (1982).
[11] J. Harrington, J. C. Weisshaar, J. Chem. Phys., 97(4), 2809-2812 (1992).
[12] P. C. Keenan, L. W. Schroeder, Astrophys. J. 115, 82-88 (1952).
[13] A. S-C. Cheung, W. H. Hocking, A. J. Merer, unpublished results.
[14] A. J. Merer, G. Huang, A. S-C. Cheung, A. W. Taylor, J. Mol. Spec., 125, 465-503 (1987).
[15] M. S. Sorem, A. L. Schawlow, Opt. Commun., 5(3), 148-151 (1972).
[16] A. G. Adam, A. J. Merer, D. M. Steunenberg, M. C. L. Gerry, I. Ozier, Rev. Sci. Instrum., 60(6), 1003-1007 (1989).
[17] B. A. Palmer, R. A. Keller, R. Engleman Jr., "An Atlas of Uranium Emission Intensities in a Hollow Cathode Discharge," Los Alamos Scientific Report LA-8251MS (1980).
[18] W. R. Bennett Jr., Phys. Rev., 126(2), 580-593 (1962).
[19] W. Demtröder, "Laser Spectroscopy: Basic Concepts and Instrumentation," 2nd Ed., Spinger-Verlag, New York (1982).
[20] F. Hund, Handbook of Physics, 24, 561 (1933).
[21] C. H. Townes, A. L. Schawlow, "Microwave Spectroscopy," McGraw-Hill Book Company, INC, New York (1955).
[22] G. Herzberg, "Spectra of Diatomic Molecules," 2nd ed., Van Nostrand Reinhold Ltd, New York (1950).
[23] J. M. Hollas, "High Resolution Spectroscopy," Butterworths, London (1982).
[24] H. Lefebvre-Brion, R. W. Field, "Perturbations in the Spectra of Diatomic Molecules," Academic Press, Inc., London (1986).
[25] J. M. Brown, J. K. G. Watson, J. Mol. Spec., 65, 65-74 (1977).
[26] J. M. Brown, D. J. Milton, Mol. Phys., 31(2), 409-422 (1976).
[27] A. S-C. Cheung, A. J. Merer, Mol. Phys., 46(1), 111-128 (1982).
[28] A. J. Merer, personal notes.
[29] J. M. Brown, D. J. Milton, J. K. G. Watson, R. N. Zare, D. L. Albritton, M. Horani, J. Rostas, J. Mol. Spec., 90, 139-151 (1981).
[30] R. S. Mulliken, A. Christy, Phys. Rev., 38, 87-119 (1931).
[31] J. M. Brown, A. J. Merer, J. Mol. Spec., 74, 488-494 (1979).
[32] R. A. Frosch, H. M. Foley, Phys. Rev., 88(6), 1337-1349 (1952).
[33] E. Hirota, "High Resolution Spectroscopy of Transient Molecules," Springer-Verlag, New York (1985).
[34] T. D. Varberg, R. W. Field, A. J. Merer, J. Chem. Phys., 95(3), 1563-1576 (1991).
[35] A. S-C. Cheung, A. W. Taylor, A. J. Merer, J. Mol. Spec., 92, 391-409 (1982).
[36] R. D. Suenram, G. T. Fraser, F. J. Lovas, G. W. Gillies, J. Mol. Spec., 148, 114-122 (1991).
[37] D. J. Clouthier, G. Huang, A. J. Merer, J. Mol. Spec., 153, 32-40 (1992).
[38] K. P. Huber, G. Herzberg, "Constants of Diatomic Molecules," Von Nostrand Reinhold Company, Toronto, 1979.
[39] F. Hund, Z. Physik, 63, 719 (1930).
[40] I. Kovács, Can. J. Phys., 36, 329-351 (1958); I. Kovács, "Rotational Structure in the Spectra of Diatomic Molecules," Adam Hilger Ltd, London (1969).
[41] H. Ito, Y Ozaki, K. Suzuki, T. Kondow, K. Kuchitsu, J. Chem. Phys., 96(6), 4195-4204 (1992).
[42] G. Huang, S. Huang, D. Clouthier, A. J. Merer, unpublished results.
[43] W. J. Childs, O. Poulsen, L. S. Goodman, H. Crosswhite, Phys. Rev. A, 19(1), 168-176 (1979).

Appendix A

The Line Assignments of the VO $B^{4} \Pi-X^{4} \Sigma^{-}(0,0)$ Band.
table of assigned lines of the vo b-X (0,0) band

	ASSIGN	J'	$F=J \cdot 7 / 2$	$F=J-5 / 2$	$f=J \cdot 3 / 2$	$F=J-1 / 2$	$F=J+1 / 2$	$F=J+3 / 2$	$F=J+5 / 2$	$F=\sqrt{ }+7 / 2$
$N=0$	$\begin{aligned} & \text { SR21 } \\ & \text { TR31 } \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$					12581.2817	$\begin{aligned} & 12581.2225 \\ & 12645.1538 \end{aligned}$	$\begin{aligned} & 12581.1414 \\ & 12645.0772 \end{aligned}$	$\begin{aligned} & 12581.0383 \\ & 12644.9794 \end{aligned}$
$N=9$	0 O21	2.5							12577.1988*	12577.1187*
	SR21	2.5				12583.6604	12583.6193	12583.5639	12583.4936	12583.4088
	R3	0.5							12642.8454*	12642.6776*
	TR42	1.5					12707.7612*	12707.7447	12707.7200	12707.6865*
	-									
$N=2$	OP21	3.5			12577.6867	12577.6562	12577.6151	12577.5630	12577.4999*	12577.4263
	SR21	3.5		12586.0496*	12586.0279	12585.9966	12585.9542*	12585.9007	12585.8361	12585.7600**
	02	2.5				12574.3546		12574.3390	12574.3289	12574.3170
	0024	0.5								12575.0443
	SR43	9.5					12708.0869	12708.0418	12707.9908	12707.9286
	SR43	1.5					12708.0869	12708.0501	12708.0022	
	TR42	2.5			12713.6184*	12713.6131*	12713.6022	12713.5880	12713.5626	12713.5408
	TR42	2.5						12713.5880	12713.5711	12713.5512*
$N=3$	QP21	4.5			12577.9512	12577.9178	12577.8754	12577.8246	12577.7646	12577.6948
	SR21	4.5		12588.3567	12588.3316	12588.2979*	12588.2542*	12588.2018	12588.1410	12588.0701
	0024	1.5								12574.5205*
	TR31	4.5	12652.2395*	12652.2235	12652.2003*	12652.1680	12652.1283	12652.0799	12652.0229**	12651.9576*
	TR42	3.5		12714.7036	12714.6976*	12714.6870**	12714.6685	12714.6487	12714.6248	12714.5957
	TR42	3.5				12714.6870*	12714.6727*	12714.6537*	12714.6307*	12714.6026*
	R4	1.5					12712.7205		12712.7123	12712.7123
$N=4$	QP21	5.5				12578.1296*	12578.0873	12578.0360	12577.9776	12577.9119
	SR21	5.5	12590.6336		12590.5836*	12590.5472	12590.5035	12590.4520	12590.3944	12590.3273
	TR31	5.5		12654.4918	12654.4650	12654.4316	12654.3914	12654.3439*	12654.2897	12654.2280
	TR42	4.5	12715.8731	12745.8678*	12715.8573	12715.8443	12715.8278	12715.8070	12715.7815	12715.7501
	TR42	4.5		12715.8678*	12715.8599*	12715.8467*	12715.8311**	12715.8103*	12715.7854*	12715.7547*
	R4	2.5					12707.6237*	12707.6362	12707.6601*	12707.6785*
$N=5$	P012	5.5								12519.7837*
	QP21	6.5	12578.3728*	12578.3503*	12578.3199	12578.2827*	12578.2389*	12578.1896*	12578.1324*	12578.0693
	SR21	6.5	12592.8316*	12592.8068**	12592.7753*	12592.7387*	12592.6948	12592.6445	12592.5874	12592.5235
	TR31	6.5		12656.7161	12656.6871	12656.6527	12656.6127	12656.5663*	12656.5134	12656.4542*
	OP12	5.5								12514.7981
	RO21	6.5	12583.9408	12583.9198	12583.8929	12583.8611	12583.8236	12583.7804		12583.6757
	R4	3.5		12707.1893	12707.2005	12707.2154	12707.2366	12707.2629	12707.2939	12707.3295
$N=6$	P1	7.5		12523.4910*	12523.4581	12523.4193	12523.3734	12523.3222	12523.2650	12523.2005
	P012	6.5		12519.7056	12519.6943	12519.6800	12519.6623	12519.6390	12519.6109	12519.5753
	OP21	7.5	12578.4697*	12578.4431	12578.4113*	12578.3728*	12578.3292*	12578.2794	12578.2243	12578.1631*
	TR31	7.5	12658.9177*	12658.8920	12658.8621*	12658.8266	12658.7866*	12658.7406	12658.6895	12658.6324
	OP12	6.5	12513.8208*	12513.8116**	12513.8016	12513.7868		12513.7441	12513.7151	12513.6783
	RQ21	7.5	12584.9089	12584.8853	12584.8569	12584.8242	12584.7867	12584.7431	12584.6947	12584.6413
	R4	4.5	12706.5973	12706.6087	12706.6258	12706.6477	12706.6750	12706.7076	12706.7452	12706.7880**
$N=7$	P1	8.5			12523.1984	12523.1586	12523.1137	12523.0621	12523.0060	12522.9441
	P012	7.5	12519.4418	12519.4332	12519.4218	12519.4077	12519.3892	12519.3666	12519.3374	12519.3009
	QP21	8.5	12578.4985	12578.4687*	12578.4358	12578.3967	12578.3531*****	12578.3039	12578.2494	12578.1897*
	TR31	8.5	12661.0451	12661.0184	12660.9876	12660.9521	12660.9106	12660.8661	12660.8164	12660.7604
	OP12	7.5	12512.6348**	12512.6263**		12512.5998	12512.5800	12512.5568	12512.5268	12512.4895
	R021	8.5	12585.8133	12585.7886	12585.7396	12585.7259	12585.6878	12585.6447	12585.5975	12585.5451
	5031	8.5	12651.1737		12651.1163**	12651.0805*	12651.0403*	12650.9950	12650.9451	12650.8903
	R4	5.5	12705.9000	12705.9159	12705.9373	12705.9634	12705.9946	12706.0309	12706.0720	12706.1175

[^6]Appendix A. The Line Assignments of the VO $B^{4} \Pi-X^{4} \Sigma^{-}(0,0)$ Band.

	ASSIGN	- J"	$F=J \cdot 7 / 2$	$F=\sqrt{-5 / 2}$	$F=J-3 / 2$	$F=J-1 / 2$	$F=\mathrm{J}+1 / 2$	$F=3+3 / 2$	$F=J+5 / 2$	$F=J+7 / 2$
$N=8$	P1	9.5	12522.9212*	12522.8888	12522.8536	12522.8138*	12522.7674	12522.7174	12522.6617	12522.6019
	PQ12	8.5	12519.0952	12519.0865	12519.0754	12519.0615	12519.0434	12519.0206	12518.9911	12518.9517
	N014	6.5	12506.5908	12506.6089						12518.9517
	0 O21	9.5		12578.4278	12578.3924	12578.3531	12578.3089	12578.2601	12578.2064	12578.1478*
	01	9.5	12533.2621*	12533.2318	12533.1949	12533.1539**	12533.1075*	12533.0574	12533.0008	12532.9405
	OP12	8.5	12511.3694	12511.3603	12511.3491	12511.3345	12511.3160	12511.2930	12511.2625	12511.2230
	R021	9.5	12586.6554**	12586.6306*	12586.6002*	12586.5644*	12586.5257	12586.4831*	12586.4370	12586.3857
	S031	9.5	12652.2020*	12652.1739	12652.1420	12652.1063	12652.0659	12652.0211*	12651.9720	12651.9184
	R4	6.5	12705.1182*	12705.1379*	12705.1624*	12705.1913	12705.2253	12705.2633	12705.3061	12705.3530
$N=9$	91	10.5	12522.4908	12522.4583	12522.4222	12522.3805	12522.3350	12522.2846	12522.2310	12522.1716
	P012	9.5	12518.6684	12518.6614	12518.6504	12518.6370	12518.6198	12518.5956		12518.5241
	N014	7.5	12504.3079	12504.3301	12504.3538	12504.3838	12504.4163	12504.4535	12504.4943	12504.5386
	OP21	10.5	12578.3459	12578.3145	12578.2794*	12578.2389*	12578.1942*	12578.1460*	12578.0935*	12578.0360*
	01	10.5	12533.9086	12533.8755	12533.8385*	12533.7969	12533.7510	12533.7002	12533.6446*	$12533.5857 *$
	OP12	9.5				12509.9889	12509.9707	12509.9477	12509.9170	
	RQ21	10.5	12587.4328*	12587.4056	12587.3743	12587.3396	12587.3007	12587.2583	12587.2120	12587.1616
	5031	10.5	12653.1741	12653.1450	12653.1130	12653.0764	12653.0360	12652.9918	12652.9437	12652.8912
	R4	7.5	12704.2647*	12704.2886*	12704.3158	12704.3468	12704.3826	12704.4221	12704.4659	12704.5136
$N=10$	P1	11.5	12521.9737	12521.9406	12521.9035	12521.8616	12521.8161	12521.7663	12521.7134	12521.6547
	P012	10.5	12518.1610	12518.1534	12518.1440	12518.1306	12518.1141	12518.0916	12518.0609	12518.0141
	NO14	8.5						12502.0710*	12502.1125*	12502.1557
	OP21	11.5	12578.1631*	12578.1296*	12578.0935*	12578.0535	12578.0095	12577.9614	12577.9088	12577.8523
	R032	10.5				12638.4305	12638.4179	12638.4009	12638.3761	12638.3362
	01	11.5	12534.4628	12534.4294	12534.3912*	12534.3493*	12534.3027	12534.2529	12534.1978	12534.1395
	0812	10.5		12508.5808				12508.5187	12508.4868	12508.4395
	RQ21	11.5	12588.1453*	12588.1167*	12588.0852	12588.0502	12588.0107	12587.9686*	12587.9228	12587.8733
	5031	11.5		12654.0601	12654.0269	12653.9903	12653.9500*	12653.9066*	12653.8587	12653.8076
	R4	8.5	12703.3515	12703.3767	12703.4052	12703.4382	12703.4750	12703.5158	12703.5600	12703.6078
$N=11$	P1	12.5	12521.3705	12521.3357	12521.2979	12521.2563	12521.2104	12521.1607	12521.1071	12521.0496
	PQ12	11.5	12517.5698	12517.5647	12517.5561	12517.5442	12517.5280	12517.5062	12517.4746	12517.4211
	N014	9.5	12499.4310	12499.4558	12499.4832	12499.5144	12499.5490	12499.5871	12499.6275	12499.6709
	QP29	12.5	12577.9088*	12577.874**	12577.8366	12577.7961	12577.7520*	12577.7041	12577.6522	12577.5964
	QR23	10.5							12573.7889*	12573.8071
	RP31	12.5	12642.1043		12642.0394	12642.0018	12641.9614*	12641.9176	12641.8705	12641.8199
	R032	11.5				12638.2908*	12638.2804*	12638.2637**	12638.2378	12638.1910
	01	12.5		12534.8915	12534.8525	12534.8102	12534.7641	12534.7138	12534.6596	12534.6019
	OP12	11.5						12507.0028*	12506.9705*	12534.6019
	R021	12.5	12588.7927	12588.7631	12588.7308	12588.6950	12588.6561	12588.6137	12588.5687	12588.5193
	S031	12.5	12654.9472	12654.9171	12654.8835	12654.8467	12654.8068	12654.7635	12654.7162	12654.6659
	SR32	11.5	12651.1473*	12651.1458*	12651.1414**	12651.1351	12651.1245	12651.1087	12651.0834*	12651.0373*
	T041	12.5		12727.4463	12727.4112	12727.3736	12727.3323		12727.2391	12727.1867
	7041	12.5				12727.3736	12727.3323	12727.2874*	12727.239	
$N=12$	P1	13.5	12520.6793	12520.6438	12520.6046	12520.5632	12520.5174	12520.4680	12520.4151	12520.3582
	P012	12.5	12516.8954	12516.8907	12516.8841	12516.8738	12516.8594	12516.8386	12516.8074	12516.7425
	NP13	11.5	12492.7091*							
	N014	10.5	12496.8455	12496.8715	12496.8999	12496.9325*	12496.9670*	12497.0043	12497.0449	
	OP21	13.5	12577.5785*	12577.5441	12577.5068	12577.4661	12577.4216	12577.3737	12577.3223**	12577.2676
	QR23	11.5							12573.5231**	12573.5475
	RP31	13.5		12641.8609*	12641.8269	12641.7899	12641.7487	12641.7053	12641.6583	12641.6081
	R032	12.5			12638.1060*	12638.1005*	12638.0913	12638.0762	12638.0505	12637.9927
	SR43	11.5					12638.0913	12638.0762	12638.0505	12710.3068*
	01	13.5	12535.2984	12535.2624	12535.2235	12535.1803*	12535.1340*	12535.0835*	12535.0305	12534.9729
	R021	13.5	12589.3738	12589.3439	12589.3106	12589.2748	12589.2357	12589.1937	12589.1481	12589.1000
	S031	13.5	12655.7471	12655.7162	12655.6820	12655.6453	12655.6053	12655.5622	12655.5155*	12655.4660
	SR32	12.5					12651.9478*	12651.9329	12651.9079	12651.8510
	T041	13.5	12728.4271	12728.3949		12728.3224	12728.2817	12728.2375	12728.1904	12728.1390

Appendix A. The Line Assignments of the VO $B^{4} \Pi-X^{4} \Sigma^{-}(0,0)$ Band.

Appendix A. The Line Assignments of the VO $B^{4} \Pi-X^{4} \Sigma^{-}(0,0)$ Band.

	ASSIGN	J"	$F=J-7 / 2$	$F=J-5 / 2$	$F=J=3 / 2$	$F=\sqrt{-1 / 2}$	$\mathrm{F}=\mathrm{J}+1 / 2$	$f=\sqrt{ }+3 / 2$	$F=J+5 / 2$	$F=J+7 / 2$
$N=17$	P1	18.5		12515.8868	12515.8451	12515.8009	12515.7544	12515.7055	12515.6532	12515.5981
	P012	17.5	12512.2691	12512.1216	12512.1015*					12512.0700
	QP21	18.5	12574.8179	12574.7812	12574.7417	12574.7002	12574.6558	12574.6090	12574.5593	12574.5071*
	02	17.5		12571.0148**	12570.9959**	12570.9818*	12570.9729*			
	OR23	16.5	12571.0911							
	RP31	18.5	12639.9973	12639.9637			12639.8499	12639.8072	12639.7620	12639.7139
	R032	17.5	12636.3427	12636.1996	12636.1864*	12636.1747*	12636.1696*	12636.1696*	12636.1747*	12636.1864*
	R3	16.5		12636.2226	12636.3628	12636.3762				
	5042	17.5	12709.4960**							
	SR43	16.5	12709.4232	12709.3760	12709.5166	12709.5306	12709.5413*	12709.5449**	12709.5449**	12709.5413*
	01	18.5	12535.7919*	12535.7524*	12535.7109	12535.6667	12535.6195*	12535.5700	12535.5173	12535.4615
	OP12	17.5	12496.0916	12495.9445	12495.9239	12495.9071	12495.8959	12495.8877*	12495.8877	12495.8921
	0013	16.5	12496.0211	12495.9685						
	R021	18.5	12591.2865*	12591.2537	12591.2181	12591.1816*	12591.1416	12591.0994	12591.0548	12591.0078*
	5031	18.5	12658.8546*	12658.8214**	12658.7866	12658.7492*	12658.7099	12658.6680	12658.6238	12658.5770
	SR32	17.5	12655.2001*	12655.0575*	12655.0428*	12655.0354*	12655.0296*	12655.0296*	12655.0354**	12655.0488*
	OP34	15.5	12589.1728	12589.2081	12589.2446	12589.2838**	12589.3254*	12589.3692*	12589.4154	12589.4637
	1041	18.5		12732.4292*		12732.3576	12732.3178	12732.2759*	12732.2314	12732.1843
	P4	15.5	12662.0149	12662.0480	12662.0850	12662.1230				
$N=18$	P1	19.5	12514.7151	12514.6759	12514.6345	12514.5909	12514.5448	12514.4952	12514.4436	
	P012	18.5	12510.9771	12510.9476	12510.9248	12510.9078	12510.8945	12510.8850*	12510.8803*	12510.8803
	OP21	19.5	12574.0398	12574.0029	12573.9634	12573.9213	12573.8771	12573.8301	12573.7795*	12573.7286*
	02	18.5	12570.2987*	12570.2710**	12570.2506*					
	OR23	17.5	12570.3715	12570.4240	12570.4433*					
	RP31	19.5	12639.4483	12639.4145	12639.3796	12639.3412	12639.3008	12639.2581	12639.2134	12639.1659
	R032	18.5	12635.7099	12635.6857	12635.6692					12635.6576*
	R3	17.5		12635.8354	12635.8574	12635.8729				
	S042	18.5	12709.0344******)	12709.0107	12708.9940	12708.9827*	12708.9768*	12708.9725*	12708.9768	12708.9850*
	SR43	17.5	12709.1035	12709.1594	12709.1829	12709.1983	12709.2099*	12709.2178*	12709.2197*	12709.2197*
	01	19.5	12535.6195	12535.5796	12535.5387	12535.4935	12535.4461	12535.3968	12535.3440	12535.2888
	OP12	18.5	12493.8355*	12493.8071	12493.7843	12493.7668		12493.7436	12493.7383	
	0013	17.5	12493.9076							
	R021	19.5	12591.4687*	12591.4359**	12591.3989*	12591.3625	12591.3229	12591.2811	12591.2367	12591.1896
	S031	19.5	12659.2950	12659.2623	12659.2274	12659.1900	12659.1505	12659.1091	12659.0647	12659.0196
	SR32	18.5	12655.5567	12655.5327		12655.5064*	12655.5012*	12655.4986*	12655.5012*	12655.5103*
	0934	16.5	12585.5815	12585.6162	12585.6533	12585.6929	12585.7346	12585.7785	12585.8247	12585.8729
	1041	19.5	12733.1240	12733.0912		12733.0186*				
	TR42	18.5	12729.3856	12729.3618	12729.3462	12729.3352*	12729.3298*			12729.3395
	P4	16.5	12658.5960	12658.6324*		12658.7059*	12658.7491*		12658.8356*	12658.8834
$N=19$	P1	20.5	12513.4216			12513.2972	12513.2502			
	P012	19.5	12509.7147	12509.6846	12509.6608	12509.6423	12509.6273	12509.6164*	$12509.6091 *$	12509.6067
	PR13	18.5	12509.8106							
	QP21	20.5	12573.1854*	12573.1485	12573.1089	12573.0670	12573.0226	12572.9757	12572.9268*	12572.8751
	OP23	18.5	12530.7290	12530.7703	12530.7902	12530.8026				
	0024	17.5	12535.0733	12535.1045	12535.1385	12535.1733	12535.2109	12535.2504		12535.3342
	RP31	20.5	12638.8428	12638.8089	12638.7730	12638.7348	12638.6948	12638.6525	12638.6074*	12638.5609*
	R032	19.5	12635.1352	12635.1104	12635.0928	12635.0803*	12635.0725*			
	R3	18.5		12635.2760	12635.2988*	12635.3151*	12635.3271*			
	SO42	19.5	12708.6387*	12708.6142	12708.5976	12708.5861*	12708.5769*	12708.5755*	12708.5755*	12708.5798*
	SR43	18.5	12708.7339	12708.7798	12708.8035	12708.8207	12708.8336	12708.8424	12708.8481*	12708.8495*
	01	20.5	12535.3585	12535.3180	12535.2761	12535.2314	12535.1832*	12535.1340*	12535.0814*********	12535.0266
	OP12	19.5	12491.6056	12491.5750	12491.5520	12491.5328	12491.5178	12491.5057	12491.4988	12491.4962
	QR12	19.5	12531.6505*	12531.6189	12531.5955*	12531.5772	12531.5610	12531.5490	12531.5419	12531.5386
	0013	18.5	12491.7028	12491.7417						
	R021	20.5	12591.5849*	12591.5511	12591.5152	12591.4774*	12591.4370*	12591.3957*	12591.3518*	12591.3046
	5031	20.5	12659.6750	12659.6419	12659.6068	12659.5699	12659.5301	12659.4887	12659.4448	12659.3993
	SR32	19.5	12655.9675	12655.9430*	12655.9267*	12655.9147*	12655.9076*	12655.9049*	12655.9049*	12655.9112*
	0 O34	17.5	12581.9279	12581.9633	12582.0007	12582.0407	12582.0826	12582.1267	12582.1725	12582.2210
	T049	20.5	12733.7366			12733.6325**			12733.5084**	12733.4628**
	TR42	19.5	12730.0289	12730.0053	12729.9887	12729.9770*				12729.9738*
	P4	17.5	12655.1281	12655.1627*	12655.2001	12655.2397*	12655.2819	12655.3250	12655.3705	12655.4185

Appendix A. The Line Assignments of the VO $B^{4} \Pi-X^{4} \Sigma^{-}(0,0)$ Band.

	ASSIGN	N"	$F=\mathrm{J}-7 / 2$	$F=J-5 / 2$	$F=J-3 / 2$	F=J-1/2	$F=J+1 / 2$	$F=1+3 / 2$	Fxa $+5 / 2$	$F=\sqrt{ }+7 / 2$
$N=20$	P1	21.5	12512.0449		12511.9627	12511.9178	12511.8718	12511.8225	12511.7696	12511.7161
	Pa12	20.5	12508.3644	12508.3345	12508.3106	12508.2916	12508.2751	12508.2626	12508.2535	12508.2485
	OP21	21.5	12572.2561	12572.2183	12572.1782	12572.1361	12572.0922	12572.0455*	12571.9966	12571.9452
	OP23	19.5	12527.8280	12527.8626			12527.9038			
	0024	18.5	12532.1985	12532.2305	12532.2640	12532.3002	12532.3378	12532.3766	12532.4176	12532.4599
	S042	20.5	12708.1900	12708.1672*	12708.1504*	12708.1379**	12708.1275*	12708.1249**	12708.1249*	12708.1257*
	$5 R 43$	19.5	12708.3147	12708.3536	12708.3777	12708.3954	12708.4091	12708.4195	12708.4267	12708.4306
	01	21.5	12535.0084	12534.9681	12534.9257	12534.8805	12534.8332	12534.7834	12534.7308	12534.6757
	OR12	20.5	12531.3282	12531.2973	12531.2736	12531.2526	12531.2365	12531.2238	12531.2138	12531.2079
	R021	21.5	12591.6335	12591.5996	12591.5636	12591.5255*	12591.4854	12591.4432	12591.3989*	12591.3519*
	S031	21.5	12659.9935	12659.9608	12659.9252	12659.8877	12659.8483	12659.8076	12659.7643	12659.7186
	SR32	20.5	12656.3134		12656.2750*	12656.2610^{*}	12656.2526*	12656.2477*	12656.2477*	12656.2512*
	DP34	18.5	12578.2130	12578.2494*	12578.2870*	12578.3273*	12578.3695	12578.4134*	12578.4594**	12578.5072
	TR42	20.5	12730.6192	12730.5957	12730.5791	12730.5676*	12730.5598	12730.5559**	12730.5559*	12730.5584*
	P4	18.5	12651.6106	12651.6468	12651.6846	12651.7242	12651.7663	12651.8101	12651.8562	12651.9038
$N=21$	P1	22.5	12510.5840	12510.5438	12510.5015	12510.4562	12510.4098	12510.3598	12510.3079	12510.2535
	P012	21.5	12506.9272	12506.8982	12506.8740	12506.8539	12506.8368	12506.8234	12506.8123**	12506.8059
	OP21	22.5	12571.2499	12571.2120	12571.1718	12571.1296	12571.0855	12571.0391	12570.9903	12570.9392
	OP23	20.5		12524.8811	12524.9000	12524.9133	12524.9220			
	0024	19.5	12529.2467	12529.2797	12529.3134	12529.3492	12529.3866	12529.4258	12529.4666	12529.5092
	S042	21.5	12707.6904		12707.6515*	12707.6397*	12707.6292	12707.6257*	12707.6237**	12707.6257*
	SR43	20.5	12707.8454	12707.8799	12707.9034	12707.9213*	12707.9362	12707.9475	12707.9561	12707.9615
	01	22.5	12534.5716	12534.5309	12534.4882	12534.4428	12534.3953	12534.3453	12534.2927	12534.2379
	OR12	21.5	12530.9162	12530.8864**	12530.8614	12530.8416	12530.8243	12530.8098**	12530.7982*	12530.7905
	R021	22.5	12591.6151	12591.5812	12591.5447	12591.5061	12591.4658*	$12591.4235{ }^{\text {. }}$	12591.3793*	12591.3329
	NP24	19.5			12506.9436	12506.9842			12507.1159*	12507.1633
	5031	22.5	12660.2510*	12660.2180*	12660.1823	12660.1451	12660.1060	12660.0653	12660.0218	12659.9767
	SR32	21.5	12656.5956	12656.5733	12656.5561	12656.5438*	12656.5347*	12656.5295*	12656.5276*	12656.5295*
	OP34	19.5	12574.4373	12574.4739	12574.5124*	12574.5529	12574.5951*	12574.6390	12574.6849	12574.7329
	TR42	21.5	12731.1575	12731.1347	12731.1182	12731.1064	12731.0981*			
$N=22$	P1	23.5	12509.0390	12508.9985	12508.9559	12508.9105	12508.8633	12508.8144	12508.7622	
	QP21	23.5	12570.1671	12570.1288	12570.0891	12570.0469	12570.0029	12569.9566	12569.9078	12569.8572
	0923	21.5	12521.7978	12521.8247	12521.8428	12521.8557	12521.8652	12521.8717	12521.8754*	
	0024	20.5	12526.2185	12526.2511	12526.2855	12526.3218	12526.3593	12526.3981	12526.4392	12526.4815
	RP31	23.5	12636.6812		12636.6097*	12636.5719	12636.5319	12636.4896	12636.4451	
	P034	20.5	12592.1420	12592.1782	12592.2160	12592.2562	12592.2978	12592.3411	12592.3860 *	12592.4332*
	SQ42	22.5	12707.1406	12707.1194	12707.1022	12707.0899	12707.0809*	12707.0751*	12707.0743*	12707.0743*
	0943	21.5	12661.4109	12661.4414	12661.4649	12661.4828	12661.4972	12661.5088	12661.5182	12661.5248
	SR43	21.5	12707.3260*	12707.3572	12707.3806	12707.3989	12707.4141	12707.4265	12707.4361	12707.4430
	01	23.5	12534.0486	12534.0068	12533.9634	12533.9177	12533.8703	12533.8199	12533.7676	12533.7128
	QR12	22.5	12530.4170	12530.3875	12530.3623	12530.3414	12530.3235	12530.3080	12530.2960	12530.2869
	RO21	23.5	12591.5293	12591.4954	12591.4583	12591.4195	12591.3793*	12591.3371	12591.2930	12591.2465
	NP24	20.5	12502.7749	12502.8108	12502.8497	12502.8899	12502.9318	12502.9758	12503.0222**	12503.0686*
	S031	23.5	12660.4462	12660.4131	12660.3781*******	12660.3419*	12660.3016	12660.2611	12660.2180**	12660.1729
	SR32	22.5	12656.8156	12656.7937	12656.7770**	12656.7646	12656.7552*	12656.7511******	12656.7469*	12656.7469*
	OP34	20.5	12570.6006	12570.6375	12570.6763	12570.7168	12570.7595	12570.8039	12570.8499	12570.8975
	TR42	22.5	12731.6442	12731.6227	12731.6067	12731.5946	12731.5856	12570.8039	12570.849	12570.8975
	P4	20.5	12644.4292	12644.4661	12644.5051	12644.5459	12644.5884	12644.6327	12644.6788	12644.7267
$N=23$	P1	24.5	12507.4115	12507.3707	12507.3278	12507.2829	12507.2354	12507.1857		12507.0796
	P012	23.5	12503.8036				12507.2354	12507.1857		12507.0796
	PR13	22.5	12504.0196	12504.0414	12504.0560					
	0024	21.5	12523.1137	12523.1463	12523.1815	12523.2175	12523.2551	12523.2941	12523.3349	
	RP31	24.5	12635.8442	12635.8107**	12635.7732	12635.7348	12635.6939		12635.6084	12635.5623
	S042	23.5	12706.5401	12706.5195	12706.5034	12706.4910	12706.4820	12706.4759*	12706.4733*	12706.4733*
	QP43	22.5	12658.7626	12658.7911	12658.8143	12658.8322*	12658.8473*	12658.8602	12658.8706	12658.8779
	SR43	22.5	12706.7558	12706.7855*	12706.8082	12706.8269	12706.8423	12706.8552	12706.8660	12706.8743
	01	24.5	12533.4392	12533.3975	12533.3537	12533.3079	12533.2597	12533.2100	12533.1574	12533.1028
	QR12	23.5	12529.8315*	12529.8025	12529.7779	12529.7563	12529.7374	12529.7218	12529.7082	12529.6979
	R021	24.5		12591.3421*	12591.3046*	12591.2658	12591.2256	12591.1829**	12591.1393*	12591.0921
	NP24	21.5	12498.6132	12498.6498	12498.6887	12498.7288	12498.7704	12498.8146*		12498.9068*
	S031	24.5	12660.5799	12660.5462*	12660.5114**	12660.4742*	12660.4345*	12660.3947*	12660.3524	12660.3074
	SR32	23.5	12656.9725*	12656.9513*	12656.9354*	12656.9224**	12656.9126*	12656.9064*	12656.9029*	12656.9029**
	TR42	23.5	12732.0797	12732.0579	12732.0424	12732.0313	12732.0227	12732.0167	12656.9029	12656.9029
	P4	21.5	12640.7644	12640.8022	12640.8413	12640.8824	12640.9249*	12640.9701	12641.0160**	12641.0646*

Appendix A. The Line Assignments of the VO $B^{4} \Pi-X^{4} \Sigma^{-}(0,0)$ Band.

	ASSIGN	J"	$F=J \cdot 7 / 2$	$F=J-5 / 2$	$F=J-3 / 2$	$F=J-1 / 2$	$f=\mathrm{J}+1 / 2$	$f=\mathrm{J}+3 / 2$	$F=\sqrt{ }+5 / 2$	$F=J+7 / 2$
$N=20$	P1	21.5	12512.0449		12511.9627	12511.9178	12511.8718	12511.8225	12511.7696	12511.7161
	pal2	20.5	12508.3644	12508.3345	12508.3106	12508.2916	12508.2751	12508.2626	12508.2535	12508.2485
	QP21	21.5	12572.2561	12572.2183	12572.1782	12572.1361	12572.0922	12572.0455*	12571.9966	12571.9452
	OP23	19.5	12527.8280	12527.8626			12527.9038			
	0024	18.5	12532.1985	12532.2305	12532.2640	12532.3002	12532.3378	12532.3766	12532.4176	12532.4599
	S042	20.5	12708.1900	12708.1672*	12708.1504*	12708.1379*	12708.1275*	12708.1249**	12708.1249*	12708.1257**
	SR43	19.5	12708.3147	12708.3536	12708.3777	12708.3954	12708.4091	12708.4195	12708.4267	12708.4306
	01	21.5	12535.0084	12534.9681	12534.9257	12534.8805	12534.8332	12534.7834	12534.7308	12534.6757
	0 R 12	20.5	12531.3282	12531.2973	12531.2736	12531.2526	12531.2365	12531.2238	12531.2138	12531.2079
	RQ21	21.5	12591.6335	12591.5996	12591.5636	12591.5255*	12591.4854	12591.4432	12591.3989**	12591.3519**
	S031	21.5	12659.9935	12659.9608	12659.9252	12659.8877	12659.8483	12659.8076	12659.7643	12659.7186
	SR32	20.5	12656.3134		12656.2750*	12656.2610*	12656.2526*	12656.2477*	12656.2477*	12656.2512*
	OP34	18.5	12578.2130	12578.2494*	12578.2870*	12578.3273*	12578.3695	12578.4134*	12578.4594*	12578.5072
	TR42	20.5	12730.6192	12730.5957	12730.5791	12730.5676*	12730.5598	12730.5559*	12730.5559**	12730.5584*
	P4	18.5	12651.6106	12651.6468	12651.6846	12651.7242	12651.7663	12651.8101	12651.8562	12651.9038
$N=21$	P1	22.5	12510.5840	12510.5438	12510.5015	12510.4562	12510.4098	12510.3598	12510.3079	12510.2535
	P012	21.5	12506.9272	12506.8982	12506.8740	12506.8539	12506.8368	12506.8234	12506.8123*	12506.8059
	QP21	22.5	12571.2499	12571.2120	12571.1718	12571.1296	12571.0855	12571.0391	12570.9903	12570.9392
	OP23	20.5		12524.8811	12524.9000	12524.9133	12524.9220			
	0024	19.5	12529.2467	12529.2797	12529.3134	12529.3492	12529.3866	12529.4258	12529.4666	12529.5092
	S042	21.5	12707.6904		12707.6515*	12707.6397*	12707.6292	12707.6257*	12707.6237**	12707.6257*
	SR43	20.5	12707.8454	12707.8799	12707.9034	12707.9213*	12707.9362	12707.9475	12707.9561	12707.9615
	01	22.5	12534.5716	12534.5309	12534.4882	12534.4428	12534.3953	12534.3453	12534.2927	12534.2379
	QR12	21.5	12530.9162	12530.8864*	12530.8614	12530.8416	12530.8243	12530.8098**	12530.7982*	12530.7905
	RO21	22.5	12591.6151	12591.5812	12591.5447	12591.5061	12591.4658*	12591.4235	12591.3793*	12591.3329
	NP24	19.5			12506.9436	12506.9842			12507.1159*	12507.1633
	S031	22.5	12660.2510*	12660.2180*	12660.1823	12660.1451	12660.1060	12660.0653	12660.0218	12659.9767
	SR32	21.5	12656.5956	12656.5733	12656.5561	12656.5438*	12656.5347*	12656.5295*	12656.5276*	12656.5295*
	OP34	19.5	12574.4373	12574.4739	12574.5124*	12574.5529	12574.5951*	12574.6390	12574.6849	12574.7329
	TR42	21.5	12731.1575	12731.1347	12731.1182	12731.1064	12731.0981*			
$N=22$	P1	23.5	12509.0390	12508.9985	12508.9559		12508.8633		12508.7622	12508.7082
	OP21	23.5	12570.1671	12570.1288	12570.0891	12570.0469	12570.0029	12569.9566	12569.9078	12569.8572
	OP23	21.5	12521.7978	12521.8247	12521.8428	12521.8557	12521.8652	12521.8717	12521.8754*	
	0024	20.5	12526.2185	12526.2511	12526.2855	12526.3218	12526.3593	12526.3981	12526.4392	12526.4815
	RP31	23.5	12636.6812		12636.6097*	12636.5719	12636.5319	12636.4896	12636.4451	
	P034	20.5	12592.1420	12592.1782	12592.2160	12592.2562	12592.2978	12592.3411	12592.3860*	12592.4332*
	S042	22.5	12707.1406	12707.1194	12707.1022	12707.0899	12707.0809*	12707.0751*	12707.0743*	12707.0743*
	QP43	21.5	12661.4109	12661.4414	12661.4649	12661.4828	12661.4972	12661.5088	12661.5182	12661.5248
	SR43	21.5	12707.3260*	12707.3572	12707.3806	12707.3989	12707.4141	12707.4265	12707.4361	12707.4430
	01	23.5	12534.0486	12534.0068	12533.9634	12533.9177	12533.8703	12533.8199	12533.7676	12533.7128
	QR12	22.5	12530.4170	12530.3875	12530.3623	12530.3414	12530.3235	12530.3080	12530.2960	12530.2869
	RQ29	23.5	12591.5293	12591.4954	12591.4583	12591.4195	12591.3793*	12591.3371	12591.2930	12591.2465
	NP24	20.5	12502.7749	12502.8108	12502.8497	12502.8899	12502.9318	12502.9758	12503.0222*	12503.0686*
	5031	23.5	12660.4462	12660.4131	12660.3781*	12660.3411*	12660.3016	12860.2611	12660.2180*	12660.1729
	SR32	22.5	12656.8156	12656.7937	12656.7770*	12656.7646	12656.7552*	12656.7591*	12656.7469*	12656.7469*
	OP34	20.5	12570.6006	12570.6375	12570.6763	12570.7168	12570.7595	12570.8039	12570.8499	12570.8975
	TR42	22.5	12731.6442	12731.6227	12731.6067	12731.5946	12731.5856			
	P4	20.5	12644.4292	12644.4661	12644.5051	12644.5459	12644.5884	12644.6327	12644.6788	12644.7267
$N=23$	P1	24.5	12507.4115	12507.3707	12507.3278	12507.2829	12507.2354	12507.1857		12507.0796
	PQ12	23.5	12503.8036							
	PR13	22.5	12504.0196	12504.0414	12504.0560					
	0024	21.5	12523.1137	12523.1463	12523.1815	12523.2175	12523.2551	12523.2941		
	RP31	24.5	12635.8442	12635.8107**	12635.7732	12635.7348	12635.6939		12635.6084	12635.5623
	SO42	23.5	12706.5401	12706.5195	12706.5034	12706.4910	12706.4820	12706.4759*	12706.4733*	12706.4733*
	QP43	22.5	12658.7626	12658.7911	12658.8143	12658.8322*	12658.8473*	12658.8602	12658.8706	12658.8779
	SR43	22.5	12706.7558	12706.7855*	12706.8082	12706.8269	12706.8423	12706.8552	12706.8660	12706.8743
	01	24.5	12533.4392	12533.3975	12533.3537	12533.3079	12533.2597	12533.2100	12533.1574	12533.1028
	OR12	23.5	12529.8315**	12529.8025	12529.7779	12529.7563	12529.7374	12529.7218	12529.7082	12529.6979
	R021	24.5		12591.3421*	12591.3046*	12591.2658	12591.2256	12591.1829**	12591.1393*	12591.0921
	NP24	21.5	12498.6132	12498.6498	12498.6887	12498.7288	12498.7704	12498.8146*		12498.9068*
	S031	24.5	12660.5799	12660.5462*	12660.5114**	12660.4742*	12660.4345*	12660.3947	12660.3524	12660.3074
	SR32	23.5	12656.9725*	12656.9513*	12656.9354*	12656.9224*	12656.9126*	12656.9064**	12656.9029*	12656.9029*
	TR42	23.5	12732.0797	12732.0579	12732.0424	12732.0313	12732.0227	12732.0167		
	P4	21.5	12640.7644	12640.8022	12640.8413	12640.8824	12640.9249*	12640.9701	12641.0160*	12641.0646*

Appendix A. The Line Assignments of the VO $B^{4} \Pi-X^{4} \Sigma^{-}(0,0)$ Band.

	ASSIGN	N"	$F=\mathrm{J} \cdot 7 / 2$	$F=J-5 / 2$	$F=\sqrt{-3 / 2}$	Ff.J-1/2	$F=\sqrt{ }+1 / 2$	$F=J+3 / 2$	$F=J+5 / 2$	$F=\mathrm{J}+7 / 2$
$N=24$	P1	25.5	12505.7014		12505.6175	12505.5724	12505.5248	12505.4752	12505.4236	12505.3696
	P012	24.5	12502.1172	12502.0896						
	PR13	23.5	12502.3637	12502.3834	12502.3972					
	OP23	23.5	12515.4614	12515.4837	12515.5013	12515.5140	12515.5241	12515.5315*	12515.5362*	
	0024	22.5	12519.9318	12519.9655	12520.0006	12520.0364	12520.0744	12520.1134	12520.1540	12520.1957
	P034	22.5	12586.4447*	12586.4814*	12586.5199**	12586.5599*	12586.6002*	12586.6454	12586.6903	12586.7368
	5042	24.5	12705.8897	12705.8699	12705.8542	12705.8421	12705.8328	12705.8267	12705.8231*	12705.8231*
	QP43	23.5	12656.0655	12656.0926	12656.1152	12656.1330	12656.1487	12656.1619	12656.1727	12656.1815
	SR43	23.5	12706.1358	12706.1635	12706.1858	12706.2045	12706.2206	12706.2343	12706.2456	12706.2548
	04	22.5	12660.5351	12660.5740	12660.6134	12660.6548	12660.6982	12660.7428	12660.7899	12660.8383
	01	25.5	12532.7461	12532.7044	12532.6602	12532.6143	12532.5661	12532.5157	12532.4632	12532.4085
	QR12	24.5	12529.1615	12529.1333*	12529.1082	12529.0869*	12529.0670	12529.0506*	12529.0368*	12529.0252*
	RQ21	25.5	12591.1561	12591.1206	12591.0838	12591.0450	12591.0045*	12590.9617	12590.9170	12590.8707
	P023	23.5	12536.8237	12536.8499	12536.8699	12536.8868	12536.9007	12536.9122	12536.9212**	12536.9277
	S031	25.5	12660.6518*	12680.6181	12660.5829*	12660.5462*	12660.5074	12660.4670*	12660.4239*	12660.3801
	SR32	24.5			12657.0300*	12657.0183*	12657.0084**	12657.0012*	12656.9975*	12656.9972*
	TR42	24.5	12732.4642	12732.4449	12732.4292	12732.4172				
	P4	22.5	12637.0505*	12637.0886	12637.1285*	12637.1699**	12637.2127*	12637.2574	12637.3040	12637.3518*
$N=25$	P1	26.5	12503.9113	12503.8697	12503.8265		12503.7343	12503.6841	12503.6328	12503.5786
	P012	25.5	12500.3496	12500.3218		12500.2770	12500.2580	12500.2416	12500.2282	12500.2168
	PR13	24.5	12500.6258	12500.6439	12500.6570	12500.6670				
	OP23	24.5	12512.1787	12512.2002	12512.2167	12512.2296	12512.2399	12512.2480		
	0024	23.5	12516.6734	12516.7073	12516.7425	12516.7789	12516.8157	12516.8561*	12516.8954*	12516.9382
	P034	23.5	12583.5088	12583.5461	12583.5852*	12583.6254	12583.6669*	12583.7102	12583.7551	12583.8016
	SO42	25.5	12705.1891*	12705.1701*	12705.1549	12705.1426	12705.1334**	12705.1271		12705.1230**
	0 P 43	24.5	12653.3186	12653.3445	12653.3664	12653.3848	12653.4009**	12653.4146*	12653.4258*	12653.4356*
	SR43	24.5	12705.4647	12705.4914	12705.5136	12705.5324	12705.5486	12705.5628	12705.5750	12705.5851
	04	23.5	12657.8127*	12657.8510*	12657.8913	12657.9333	12657.9771	12658.0220	12658.0690	12658.1173
	01	26.5	12531.9707*	12531.9293*	12531.8847	12531.8385	12531.7900*	12531.7396	12531.6871	12531.6323
	QR12	25.5	12528.4092	12528.3811	12528.3564	12528.3345	12528.3146	12528.2972	12528.2826	12528.2703
	RQ21	26.5	12590.8681*	12590.8326	12590.7955	12590.7565**	12590.7154**	12590.6724	12590.6280	12590.5819*
	PQ23	24.5	12534.5477	12534.5716*	12534.5922	12534.6082	12534.6219********	12534.6334	12534.6430	12534.6499
	MP24	23.5		12490.1268*	12490.1659**	12490.2066*	12490.2458*	12490.2906**	12490.3353	12490.3817
	S031	26.5	12660.6613	12660.6275	12660.5922	12660.5554	12660.5167*	12660.4765*	12660.4345*	12660.3898*
	SR32	25.5	12657.0996*	12657.0798		12657.0508*	12657.0412*	12657.0343	12657.0298*	12657.0280*
	TR42	25.5	12732.7972	12732.7781	12732.7635	12732.7517				
$N=26$	P1	27.5				12501.9109*	12501.8617			12501.7065
	PQ12	26.5	12498.5012	12498.4743	12498.4503	12498.4288	12498.4097	12498.3927		
	PR13	25.5	12498.8066	12498.8240	12498.8364		12498.8526			
	OP23	25.5	12508.8201	12508.8417	12508.8571	12508.8699	12508.8802	12508.8881	12508.8942	12508.8977
	0024	24.5			12513.4078	12513.4444	12513.4823	12513.5210	12513.5619	12513.6034
	P034	24.5	12580.5147	12580.5520	12580.5911	12580.6314	12580.6736	12580.7167	12580.7615	12580.8080
	SQ42	26.5	12704.4378	12704.4194*	12704.4045	12704.3925	12704.3827*******	12704.3769*	12704.3727*	12704.3727*
	SR43	25.5	12704.7428	12704.7686	12704.7904	12704.8095	12704.8262**	12704.8405*	12704.8534**	12704.8643**
	04	24.5	12655.0400	12655.0789	12655.1200	12655.1627*	12655.2061	12655.2513	12655.2983	12655.3466
	01	27.5	12531.1156	12531.0729	12531.0284	12530.9824	12530.9336	12530.8834	12530.8309	12530.7739
	QR12	26.5	12527.5768	12527.5488	12527.5239	12527.5015	12527.4816	12527.4639	12527.4479	12527.4350
	R021	27.5	12590.5125	12590.4767	12590.4395*	12590.3998	12590.3587	12590.3157	12590.2722*	12590.2251
	PO23	25.5	12532.2039	12532.2268	12532.2460	12532.2640*	12532.2764	12532.2878	12532.2973	12532.3046
	PR24	24.5	12536.7217	12536.7585	'12536.7975	12536.8376	12536.8784	12536.9212*	12536.9655	12537.0110
	5031	27.5	12660.6083	12660.5740*	12660.5394	12660.5021	12660.4640	12660.4239**	12660.3813*	12660.3382*
	SR32	26.5		12657.0508*	12657.0343*	12657.0220**	12657.0120*	12657.0046*	12657.0012*	12656.9973*
	TR42	26.5	12733.0782	12733.0603	12733.0459	12733.0338				

	ASSIGN	N J'	$F=J \cdot 7 / 2$	$F=J-5 / 2$	$F=J \cdot 3 / 2$	F=J-1/2	$F=J+1 / 2$	$F=3+3 / 2$	$F=\mathrm{J}+5 / 2$	$F=1+7 / 2$
$N=27$	P1	28.5		12500.0481	12500.0036	12499.9575		12499.8606	12499.8089	12499.7546
	PQ12	27.5	12496.5730	12496.5456	12496.5223	12496.5010	12496.4815	12496.4644	12496.4489	12496.4362
	PR13	26.5	12496.9068	12496.9224*	12496.9356	12496.9447		12496.9569		
	0024	25.5	12509.9273	12509.9619	12509.9968	12510.0334	12510.0722	12510.1109	12510.1512	12510.1930
	PQ34	25.5	12577.4619**	12577.4997*	12577.5382*	12577.5795*	12577.6208*	12577.6642	12577.7091******	12577.7549*
	SR43	26.5	12703.9698	12703.9948	12704.0167	12704.0357	12704.0524	12704.0676	12704.0808	12704.0923
	04	25.5	12652.2176	12652.2572	12652.2982	12652.3406	12652.3846	12652.4301	12652.4774	12652.5257
	01	28.5	12530.1834	12530.1401	12530.0952**	12530.0483*	12529.9995	12529.9487	12529.8960*	12529.8611*
	0 R 12	27.5	12526.6672*	12526.6385	12526.6129	12526.5910**	12526.5710	12526.5525	12526.5368	12526.5223
	RO21	28.5	12590.0895	12590.0533*	12590.0151*	12589.9759	12589.9345	12589.8917*	12589.8473	12589.8009
	P023	26.5	12529.7927	12529.8150	12529.8335*	12529.8495	12529.8632	12529.8751	12529.8853	12529.8928*
	PR24	25.5	12534.3354			12534.4504	12534.4917	12534.5337	12534.5781	12534.6219**
	5031	28.5	12660.4925	12660.4592	12660.4239*	12660.3870*	12660.3488	12660.3074**	12660.2667	12660.2232
	SR32	27.5	12656.9754*	12656.9569	12656.9418*		12656.9195	12656.9126	12656.9064********)	12656.9033**
	TR42	27.5	12733.3078	12733.2900	12733.2757	12733.2645				
$N=28$	P1	29.5	12498.0601	12498.0176	12497.9735		12497.8788	12497.8302	12497.7786	12497.7251
	P012	28.5	12494.5657	12494.5392	12494.5158	12494.4930	12494.4743	12494.4573	12494.4409	12494.4278
	PR13	27.5	12494.9283	12494.9433	12494.9561	12494.9644	12494.9714	12494.9762	12494.9789*	12494.9796*
	OP23	27.5	12501.8746*	12501.8935*						
	0024	26.5	12506.4412	12506.4752	12506.5106	12506.5477	12506.5856	12506.6250	12506.6647	12506.7060
	P034	26.5	12574.3502*	12574.3881*	12574.4266	12574.4679	12574.5098*	12574.5529*	12574.5975*	12574.6435*
	OP43	27.5	12644.7789	12644.8031	12644.8244	12644.8435	12644.8599	12644.8748	12644.8885	12644.9002
	SR43	27.5	12703.1450	12703.1701	12703.1914	12703.2105	12703.2278	12703.2428	12703.2572	12703.2693
	01	29.5	12529.1765	12529.1333	12529.0869*	12529.0407	12528.9913	12528.9404	12528.8870	12528.8324
	OR12	28.5	12525.6821	12525.6543	12525.6291*	12525.6065	12525.5858	12525.5672	12525.5500	12525.5351
	RQ21	29.5	12589.5988	12589.5619	12589.5234*	12589.4841	12589.4431	12589.4000*	12589.3555**	12589.3090**
	P023	27.5	12527.3147	12527.3359	12527.3540	12527.3697	12527.3834	12527.3949	12527.4049	12527.4135
	PR24	26.5								12532.1678*
	S031	29.5	12660.3145*	12660.2805	12660.2452	12660.2085	12660.1702*	12660.1304	12660.0884	12660.0450
	SR32	28.5		12656.8018	12656.7876	12656.7744	12656.7646*	12656.7552*	12656.7512*	12656.7488*
	TR42	28.5	12733.4850	12733.4684	12733.4544	12733.4427				
$N=29$	P1	30.5	12495.9518		12495.8658	12495.8200	12495.7726*	12495.7229*	12495.6705	12495.6167
	P012	29.5	12492.4797		12492.4304	12492.4087	12492.3891	12492.3713	12492.3554	12492.3411
	PR13	28.5	12492.8708	12492.8868*						
	OP23	28.5	12498.2875	12498.3059	12498.3209	12498.3336	12498.3440	12498.3531		
	0024	27.5	12502.8778	12502.9117	12502.9475	12502.9847	12503.0222	12503.0620	12503. 1024	12503.1435
	P034	27.5	12571.1786*	12571.2171	12571.2568	12571.2973	12571.3393	12571.3825	12571.4272	12571.4733
	QP43	28.5	12641.8325*	12641.8562*	12641.8786*	12644.8961*	12641.9128*	12641.9286*	12641.9424**	12641.9548*
	01	30.5	12528.1004	12528.0564	12528.0108	12527.9629	12527.9133*	12527.8626	12527.8091	12527.7540
	QR12	29.5	12524.6283	12524.6003	12524.5755*	12524.5523	12524.5308	12524.5113	12524.4947*	12524.4787
	RO21	30.5	12589.0400	12589.0030	12588.9645	12588.9245	12588.8832	12588.8406	12588.7955**	12588.7489
	P023	28.5	12524.7694	12524.7897	12524.8074	12524.8231	12524.8365	12524.8484	12524.8582**	12524.8666
	PR24	27.5	12529.3603*	12529.3958		12529.4745	12529.5148	12529.5570	12529.6007	12529.6453
	5031	30.5	12660.0732	12660.0392	12660.0040	12659.9676	12659.9291*	12659.8877*	12659.8483**	12659.8048
	SR32	29.5	12656.6009	12656.5833	12656.5687	12656.5561		12656.5383*	12656.5330*	12656.5295*
	TR42	29.5	12733.6097	12733.5937	12733.5799	12733.5685				
$N=30$	P1	31.5	12493.7668	12493.7246	12493.6796	12493.6335	12493.5854	12493.5358	12493.4840	12493.4307
	P012 30	30.5	12490.3167	12490.2906	12490.2672	12490.2458	12490.2253	12490.2066	12490.1914	12490.1768
	PR13	29.5	12490.7356	12490.7504	12490.7613	12490.7700	12490.7767	12490.7818		
	0 P 23	29.5	12494.6253	12494.6424	12494.6585	12494.6708	12494.6806	12494.6896	12494.6964	12494.7019
	0024	28.5	12499.2383	12499.2727	12499.3089	12499.3455	12499.3840	12499.4237	12499.4634	12499.5050
	OP43	29.5	12638.8355	12638.8590	12638.8797	12638.8993	12638.9166	12638.9319	12638.9461	12638.9587
	04	28.5	12643.4486	12643.4896	12643.5312	12643.5749	12643.6193	12643.6654	12643.7127	12643.7617
	01	31.5	12526.9613	12526.9168	12526.8709	12526.8226	12526.7724	12526.7210	12526.6672*	12526.6109*
	OR12	30.5	12523.5110**	12523.4851**	12523.4581**	12523.4351	12523.4131	12523.3929	12523.3745*	12523.3582
	RO21	31.5	12588.4135	12588.3763*	12588.3385	12588.2979*	12588.2563	12588.2124	12588.1679	12588.1211*
	P023	29.5	12522.1567	12522.1767	12522.1943	12522.2089	12522.2224	12522.2341	12522.2446	12522.2527
	PR24	28.5					12526.9261	12526.9680	12527.0117	12527.0555
	5031	31.5	12659.7689*	12659.7346	12659.6995	12659.6632	12659.6252	12659.5850	12659.5437	12659.5019
	SR32	30.5	12656.3191	12656.3023	12656.2872*					
	TR42 3	30.5	12733.6814	12733.6659	12733.6526	12733.6414				

	ASSIGN	N J"	$F=\mathrm{J}-7 / 2$	FxJ-5/2	F=J-3/2	$F=J-1 / 2$	$F=3+1 / 2$	$F=3+3 / 2$	$F=J+5 / 2$	$F \pm \sqrt{ }+7 / 2$
$N=31$	P1	32.5	12491.5057	12491.4627	12491.4187	12491.3716	12491.3236	12491.2738	12491.2223	12491.1694
	OP23	30.5	12490.8856*	12490.9027*	12490.9179	12490.9304	12490.9406	12490.9504	12490.9577	12490.9641
	0024	29.5	12495.5232	12495.5585	12495.5940	12495.6310	12495.6705	12495.7085	12495.7490	12495.7898
	ap43	30.5	12635.7876	12635.8107*	12635.8320	12635.8509	12635.8688	12635.8845*	12635.8989*	12635.9125
	04	29.5	12640.4247	12640.4656	12640.5079	12640.5517*	12640.5969	12640.6428	12640.6899*	12640.7388
	01	32.5	12525.7686	12525.7235	12525.6766	12525.6286	12525.5779	12525.5256	12525.4716	12525.4152
	QR 12	31.5	12522.3403	12522.3134	12522.2868*	12522.2635	12522.2408	12522.2199*	12522.2013	12522.1839**
	RO21	32.5	12587.7195	12587.6822	12587.6435	12587.6030**	12587.5604*	12587.5176	12587.4728	12587.4259
	P023	30.5	12519.4768	12519.4962	12519.5132*	12519.5280	12519.5414	12519.5531	12519.5631*	12519.5718*
	PR24	29.5	12524.1136*	12524.1522	12524.1891*	12524.2291*	12524.2694	12524.3111	12524.3545	12524.3982
	5031	32.5		12659.3671	12659.3317	12659.2950*	12659.2573*	12659.2179	12659.1767	12659.1340
	SR32	31.5	12655.9737	12655.9573	12655.9430**			12655.9112*	12655.9074*	
	OP34	29.5	12533.3270	12533.3679	12533.4084	12533.4508	12533.4950	12533.5395	12533.5857*	12533.6332*
	TR42	31.5	12733.7005	12733.6850	12733.6720	12733.6611				
$N=32$	0024	30.5	12491.7320*		12491.8035	12491.8405	12491.8792	12491.9188	12491.9591	12492.0000
	04	30.5						12637.5681*	12637.6163*	12637.6655*
	01	33.5	12524.5366*	12524.4899*	12524.4429	12524.3931	12524.3424	12524.2894	12524.2345	12524.1779
	OR 12	32.5	12521.1312	12521.1031	12521.0763	12521.0513*	12521.0281	12521.0068	12520.9869	12520.9685
	RQ21	33.5	12586.9576	12586.9202	12586.8812	12586.8411	12586.7989	12586.7554		12586.6629*
	P023	31.5				12516.7789*	12516.7931*	12516.8051*	12516.8157*	12516.8236
	PR24	30.5	12521.3910*	12521.4273	12521.4663	12521.5051	12521.5456	12521.5878	12521.6307	12521.6737*
	5031	33.5	12658.9703	12658.9358	12658.9009		12658.8266*	12658.7866**	12658.7467*	
	QP32	32.5	12587.6103	12587.5939	12587.5798	12587.5675	12587.5579**	12587.5474**	12587.5433*	12587.5389*
	OP34	30.5	12528.8801	12528.9198	12528.9615	12529.0041	12529.0481*	12529.0927	12529.1395	
	QR34	30.5	12592.7458	12592.7862	12592.8274	12592.8701	12592.9143	12592.9597	12593.0060	12593.0536
	TR42	32.5	12733.6659	12733.6526*	12733.6374	12733.6270				
$N=33$	01	34.5	12523.2869	12523.2403	12523.1906*	12523.1410	12523.0889	12523.0347	12522.9791	12522.9212*
	QR12	33.5		12519.8764**	12519.8472*	12519.8218*	12519.7974	12519.7751*	12519.7535	12519.7336*
	RQ21	34.5	12586.1288	12586.0908	12586.0515*	12586.0106	12585.9690	12585.9253	12585.8800*	12585.8333*
	P023	32.5	12593.9158	12513.9339	12513.9504	12513.9653	12513.9785*			
	PR24	31.5								12518:8830**
	5031	34.5	12658.4759	12658.4416	12658.4067	12658.3702	12658.3320	12658.2929	12658.2519**	12658.2088*
	QP32	33.5	12585.0965	12585.0804	12585.0660	12585.0540	12585.0426	12585.0355	12585.0282*	12585.0252*
	SR32	33.5	12655.0929	12655.0789*	12655.0628		12655.0400	12655.0340	12655.0269	
	OP34	31.5	12524.3714	12524.4114	12524.4531	12524.4956*	12524.5401*	12524.5850**	12524.6316**	12524.6788
	QR34	31.5	12590.2813*	12590.3221*	12590.3641	12590.4070	12590.4520**	12590.4969*	12590.5430*	12590.5906*
	TR42	33.5	12733.5774	12733.5629	12733.5510**	12733.5398	12733.5318	12733.5250	12733.5206*	12733.5180**
$N=34$		35.5	12522.0567	12522.0078	12521.9578	12521.9061	12521.8523	12521.7978*	12521.7397	12521.6804
	QR12	34.5			12518.6370	12518.6100		12518.5603*	12518.5365*	12518.5150
	RQ21	35.5	12585.2334	12585.1949	12585.1557**	12585.1144	12585.0719	12585.0292*	12584.9826*	12584.9363*
	5031	35.5	12657.9178	12657.8838		12657.8127**	12657.7741	12657.7353	12657.6947	12657.6524*
	OP32	34.5	12582.5195	12582.5032	12582.4896	12582.4776	12582.4673	12582.4593	12582.4527	12582.4482
	Op34	32.5			12519.8835*	12519.9264*	12519.9712	12520.0161*	12520.0620	12520.1101*
	QR34	32.5	12587.7549	12587.7957	12587.8379	12587.8812**		12587.9703*	12588.0177	12588.0650
	TR42	34.5	12733.4340*	12733.4216	12733.4089	12733.3981	12733.3897	12733.3837*	12733.3793*	12733.3773*
N=35	01	36.5	12520.9046	12520.8541	12520.8023	12520.7481	12520.6921	12520.6351	12520.5745	12520.5133
	OP12	35.5		12444.6630*	12444.6346*	12444.6108*		12444.5634*	12444.5398*	12520.5133
	OR12	35.5					12517.4454*		12517.3932	12517.3692
	0013	34.5				12445.2668*				12517.3692
	R021	36.5	12584.2699	12584.2315*		12584.1501	12584.1077	12584.0642*	12584.0183	12583.9718*
	P023	34.5	12508.0876	12508. 1055	12508.1209	12508.1346	12508.1473	12508.1587	12508.1682	12508.1781
	s031	36.5	12657.2960	12657.2622	12657.2271	12657.1908				12657.0298*
	OP34	33.5	12515.1684**	12515.2091			12515.3381	12515.3835	12515.4301	12515.4777
	QR34	33.5	12585.1684	12585.2069	12585.2496*	12585.2927	12585.3373	12585.3828	12585.4296	12585.4767
	TR42	35.5	12733.2376				12733.1934	12733.1873	12733.1834*	12733.1806*
	P4	33.5	12592.8949	12592.9382*	12592.9802	12593.0238**		12593.1170	12593.1650	12593.2141

Appendix A. The Line Assignments of the VO $B^{4} \Pi-X^{4} \Sigma^{-}(0,0)$ Band.

	ASSIGN	N J"	$f=J-7 / 2$	$F=J-5 / 2$	$F=J-3 / 2$	$F=J \cdot 1 / 2$	$F=J+1 / 2$	$F=\sqrt{ }+3 / 2$	$F=J+5 / 2$	$f=\mathrm{J}+7 / 2$
$N=36$	OP12 0013	$\begin{aligned} & 36.5 \\ & 35.5 \end{aligned}$	12441.3164*	12441.2874*	12441.2589*	$\begin{aligned} & 12441.2321^{*} \\ & 12441.9197 \end{aligned}$	12441.2032*	12441.1823*	12441.1576*	12441.1380*
	P023	35.5	12505.0750	12505.0915	12505.1079*	12505.1209	12505.1334	12505.1452	12505.1547	
	OP32	36.5	12577.1780*	12577.1627	12577.1490*	12577.1372	12577.1274	12577.1187*	12577.1134**	
	OP34	34.5	12510.4762	12510.5165	12510.5587	12510.6019	12510.6464	12510.6918	12510.7380	12510.7857
	QR34	34.5	12582.5144	12582.5552	12582.5977	12582.6410	12582.6858	12582.7310	12582.7781	12582.8260*
	TR42	36.5					12732.9436*	12732.9384*	12732.9330**	12732.9306*
	R4	34.5	12661.3906	12661.4327*	12661.4771	12661.5223*	12661.5679*	12661.6158		12661.7131*
$N=37$							12438.6366*			
	SR32	37.5	12652.5681	12652.5535	12652.5396	12652.5257*				
	OP34	35.5	12505.7207	12505.7616	12505.8039	12505.8476	12505.8921	12505.9373	12505.9843	12506.0318
	QR34	35.5		12579.8400	12579.8830	12579.9264	12579.9714	12580.0170	12580.0631	12580.1109
	TR42	37.5						12732.6311*	12732.6273*	12732.6247*
	R4	35.5	12659.0784	12659.1212	12659.1657	12659.2108	12659.2573*	12659.3043*		
$N=38$	NPO2	38.5		12421.3408*	12421.2906*	12421.2381*			12421.0997*	12421.0576*
	N003	37.5							12421.9083*	
	OPI2	38.5	12434.9090*	12434.8740*			12434.7783*	12434.7473*	12434.7156*	12434.6879*
	0013	37.5					12435.5394*			
	PQ23	37.5			12498.8807	12498.8946	12498.9068*	12498.9175	12498.9274	12498.9358
	OP34	36.5	12500.9047	12500.9460	12500.9886	12501.0320	12501.0764	12501.1220	12501.1683	12501.2157
$N=39$	P034	37.5	12536.1839	12536.2228	12536.2636	12536.3048		12536.3901	12536.4345	12536.4799
	NP02	39.5	12432.1228*	12432.0829*	12432.0423*	12432.0023*		12431.9318*	12431.8976*	12431.8648^{*}
	01	40.5	12506.5042*	12506.4506	12506.3950	12506.3380	12506.2786	12506.2181	12506.1555	12506.0917
	OP12	39.5		12419.8280*	12419.7827*	12419.7373*	12419.6944*	12419.6529*	12419.6131*	12419.5738*
	PQ23	38.5	12495.6402*	12485.6555	12495.6705*	12495.6843*	12495.6954	12495.7067*		
	OP34	37.5				12496.1549		12496.2437	12496.2900	12496.3371
	TR42	39.5								12731.8474
$N=40$	NP02	40.5								12429.5138*
	01	41.5				12505.2216			12505.0520	12504.9919
	OP12	40.5					12417.6282*	12417.5937*	12617.5602*	12417.5262*
	0013	39.5			12418.4598*					
	OP34	38.5	12491.0864	12491.1289	12491.1694*	12491.2152	12491.2597	12491.3048	12491.3514	12491.3998
$N=41$	$\begin{gathered} 01 \\ 0 P 12 \end{gathered}$	$\begin{aligned} & 42.5 \\ & 41.5 \end{aligned}$	12415.064**	12415.0277*	12414.9973*	12414.9632*	$\begin{aligned} & 12503.6444 \\ & 12414.9332^{*} \end{aligned}$	$\begin{aligned} & 12503.5904 \\ & 12414.9025 * \end{aligned}$	12414.8714**	$\begin{aligned} & 12503.4772 \\ & 12414.8459^{*} \end{aligned}$
$N=42$	$\begin{gathered} 01 \\ 0 p 12 \end{gathered}$	$\begin{aligned} & 43.5 \\ & 42.5 \end{aligned}$	12411.8015*				12501.8304		12501.7240	$\begin{aligned} & 12501.6684 \\ & 12411.6109 * \end{aligned}$
$N=43$	$\begin{gathered} 01 \\ 0 p 12 \end{gathered}$	$\begin{aligned} & 44.5 \\ & 43.5 \end{aligned}$	$\begin{aligned} & 12499.9964 \\ & 12408.1331 * \end{aligned}$			12499.8548	12499.8038	12499.7510*	12499.6987	$\begin{aligned} & 12499.6444 \\ & 12407.9589 \end{aligned}$
$N=44$	01	45.5	12497.8033*	12497.7564	12497.7113*	12497.6612	12497.6109*	12497.5609	12497.5070	12497.4537
$N=45$	01	46.5	12495.4723	12495.4261	12495.3788		12495.2820	12495.2320	12495.1791	12495.1251
$N=46$	01	47.5	12493.0225*		12492.9316*	12492.8802*	12492.8339*			
$N=47$	'01	48.5	12490.4657	12490.4197			12490.2772*			12490.1217*

[^0]: ${ }^{1}$ Some textbooks use α for the extinction coeficient instead of ε.

[^1]: ${ }^{1}$ It should be noted here that the post-subscripts used on the term symbols of individual spin components are in fact $\Lambda+\Sigma$, not $|\Lambda+\Sigma|$. For example, the electron spin components for the ${ }^{4} \Pi$ state $(\Lambda=1$, $\left.S=\frac{3}{2}, \Sigma=\frac{3}{2}, \frac{1}{2},-\frac{1}{2},-\frac{3}{2}\right)$ are ${ }^{4} \Pi_{\frac{3}{2}},{ }^{4} \Pi_{\frac{3}{2}},{ }^{4} \Pi_{\frac{1}{2}}$, and ${ }^{4} \Pi_{-\frac{1}{2}}$, while the values for $|\Omega|$ are $\frac{5}{2}, \frac{3}{2}, \frac{1}{2}$, and $\frac{1}{2}$ respectively.

[^2]: ${ }^{2}$ Brown et al [26] have recently expressed the third order spin-orbit Hamiltonian in a slightly different, but equivalent manner. However, since the subroutine for the ground state matrix elements had already been written using the previous convention, it was not changed.

[^3]: ${ }^{3}$ Special acknowledgement to Dr John Brown (Oxford University) for clarifying the matrix elements of the hyperfine interaction between the ${ }^{2} \Sigma^{+}$and ${ }^{4} \Pi$ states.

[^4]: ${ }^{1}$ A spectral feature is assigned to a particular eigenstate provided that it meets the criterion that the largest contribution to the total wavefunction comes from the eigenvectors of that eigenstate.

[^5]: ${ }^{a}$ Data taken from $A^{4} \Pi-X^{4} \Sigma^{-}(0,1)$ band, reference 35
 ${ }^{b}$ Data taken from $B^{4} \Pi-X^{4} \Sigma^{-}(1,0)$ band, reference 37

[^6]: * indicates blended lines

