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Abstract 

The procedure for calculating core-electron binding energies ( C E B E s ) , 

based on the unrestricted generalized transition state (uGTS) model com

bined wi th density functional theory ( D F T ) employing Becke's 1988 exchange 

(B88) and Perdew's 1986 correlation (P86) functionals, which has proven to 

yield highly accurate results for C, N , O, and F cases, was extended to boron-

containing molecules and to Si , P, S, CI, and A r cases. 

B o t h unsealed and scaled basis sets were used in the studies of boron-

containing molecules. The scaled-pVTZ basis set was as highly efficient for 

boron as it had been found to be for C , N , O, and F cases; the average 

absolute deviation ( A A D ) of the calculated C E B E s from experiment was 

0.24 eV, compared to 0.23 eV for the much larger cc-pV5Z basis set. A 

generalization of the exponent-scaling methodology was proposed and tested 

on boron-containing molecules, and was found not to improve the original 

results to a significant extent. 

The preliminary calculations of Si , P, S, CI, and A r C E B E s indicated 

that, in order to achieve the accuracy obtained for second-period elements, 

refinement of the basis sets and inclusion of relativistic effects are necessary. 

A s an additional application of the D F T / u G T S / s c a l e d - p V T Z approach, 

the C E B E s of four isomers of C 3 H 5 N O were calculated. The distinctive na

ture of the core-ionization spectra of the isomers was depicted by the results, 

thus il lustrating the potential uti l ization of accurate theoretical predictions 

i i 



as a complement to electron spectroscopy for chemical analysis. 

The model error in u G T S calculations and the errors in the functionals 

employed were calculated. It was observed that the high accuracy of the 

B 8 8 / P 8 6 combination was due to a fortuitous cancellation of the functional 

and model errors. In view of this finding, a Kohn-Sham total-energy differ

ence approach, which eliminates the model error, was investigated. 

Ten functional combinations and several basis sets (including unsealed, 

scaled, and core-valence correlated functions) were tested using a database 

of reliable observed C E B E s . The functionals designed by Perdew and Wang 

(1986 exchange and 1991 correlation) were found to give the best performance 

wi th an A A D from experiment of 0.15 eV. The scaled basis sets did not 

perform as well as they did in the u G T S calculations, but it was found 

that the core-valence correlated c c - p C V T Z basis functions were an excellent 

alternative to the cc-pV5Z set as they provided equally accurate results and 

could be applied to larger molecules. 
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Chapter 1 

Introduction 

The roots of Density Functional Theory (DFT) date back to the days when 

quantum mechanics was in its early stages of development [1]. It was, how

ever, the work of Hohenberg, Kohn, and Sham [2, 3] in the 1960s that 

rigorously established density functional theory as a legitimate method of 

describing the electronic structure of matter. 

Applications of D F T to electronic structure calculations concentrated ini

tially on solid-state systems and on problems which were of interest especially 

to physicists. The impact that D F T has had on theoretical and computa

tional solid-state physics has been extremely significant as summarized by 

the remarks of Fulde [4] — " (DFT) has given (electronic structure) calcu

lations a sounder theoretical basis than they had previously " — and Kohn 

[5] — " (DFT) vitalized first researches in the electronic structure of simple 

crystals and subsequently those on more complex systems (such as) defects, 

1 



Introduction 2 

alloys, surfaces, superconductivity, magnetism ". 

Although the incorporation of density functional methods into the field 

of quantum chemistry (and computational molecular science in general) did 

not occur as rapidly as it had in the case of solid-state physics, over the 

past two decades there have been ever-increasing numbers of applications 

to chemical systems, applications which have been supported by continuing 

advances in both theoretical methodology and computational implementa

tion [6-15]. Density functional calculations have become a highly effective 

method for studying the structure, properties, and dynamics of a wealth of 

molecular systems, and have been developed to a level where they challenge 

the accuracy of the conventional (more "sophisticated") quantum chemical 

techniques, which they already surpass in terms of computational efficiency 

and applicability to relatively large systems [16]. Density functional theory 

is also highly appealing, from a conceptual point of view, in that several 

important universal concepts of molecular structure and reactivity — such 

as chemical potential, electronegativity, hardness and softness, reactivity in

dices — are naturally involved in the density functional language [1, 9, 11, 

15]. 

In an article entitled " The reachable dream: some steps toward the re

alization of quantum mechanics by computer " [17], Schaefer pointed out 

that "the dream" was in part " to make computational quantum chemistry 

sufficiently efficient and indispensable that experimental chemists would em

ploy it routinely, much as they use NMR spectroscopy ". Density functional 

theory is playing and will continue to play a leading role in the realization 

of Schaefer's dream; the principal reason has been clearly stated by Ziegler 
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[7], " ... popularity of approximate D F T stems in large measure from its 

computational expedience which makes it amenable to large-size or real-life 

molecules ... " . 

The determination of core-electron binding energies ( C E B E s ) is one of 

the molecular problems which recently has been successfully addressed by 

density functional calculations [18-29]. The purpose of this work is to extend 

the applications of D F T to the calculation of molecular C E B E s by studying 

some additional systems with the already established methodology and by 

exploring new computational approaches. 

1.1 Core-Electron Binding Energies 

The binding energy (EB) of an electron in a core level is the difference be

tween the total energies of the ini t ia l (E-*) and final (Ej?~l) states of the 

system, the former being the neutral molecule and the latter being a singly 

ionized cation (created by removal of the inner-shell electron) [30, 31], 

where N is the total number of electrons. Binding energies of core electrons 

are determined experimentally by X-ray Photoelectron Spectroscopy ( X P S ) 

[30-32] according to the relation [33] 

iTi rpN-l rpl (1.1) 

KE = hu — EB (1.2) 
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where KE is the kinetic energy of an electron that has been ejected by an 

X-ray photon of energy hv. 

Core-ionization energies have been widely used for analytical purposes. 

The technique is known as Electron Spectroscopy for Chemical Analysis 

(ESCA) and utilizes data for electron binding energies as a means of de

termining elemental composition and of providing structural information via 

the so-called chemical shifts [30-33]. ESCA has proven useful for solid-state 

and surface science studies [30, 34-36] because the small escape depth for 

electrons renders it particularly suited to probing the outermost atomic lay

ers of a solid-state material and also the adsorption of atoms or molecules on 

a surface. 

In addition to the practical uses of C E B E data, much attention has been 

focused on the chemical shifts for more fundamental reasons. A chemical shift 

is defined as a change in the C E B E of an atom due to a modification of its 

chemical environment [30-33]. In this sense, the analysis and understanding 

of chemical shifts constitute a valuable means of gaining insight into prop

erties of significant chemical interest (such as the nature of chemical bonds 

in a molecule or solid). Some examples of investigations that have pursued 

this direction are the combination of core and valence ionization potential 

data to quantify the bonding or antibonding character of molecular orbitals 

[37-40], exploration of the connections between CEBEs and the concept of 

resonance [41] and of the correlation of CEBEs with activation energies for 

addition reactions to alkenes [42], and studies of electronic substituent effects 

in iron complexes of aromatic molecules [43]. 
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1.1.1 Calculations of Core-Ionization Energies 

Core-electron spectroscopy has been recognized as a " field of research for 

which the interplay between theory and experiments has been of particular 

importance " [44]. Calculations of the binding energies of core electrons 

and of their chemical-environment-dependent shifts have proven useful in 

assisting the interpretation and understanding of various aspects of core-level 

ionization phenomena [26-28, 44-52]. 

A rigorous theoretical approach to determining C E B E s involves perform

ing separate total-energy calculations for both the in i t ia l ground-state and 

the final core-hole state of equation (1.1). This total-energy difference proce

dure was introduced by Bagus [53] and has been applied [46, 48, 49, 54-57] 

mainly at the Hartree-Fock level of theory (Chapter 2), but also consider

ably more sophisticated (and computationally expensive) quantum chemical 

calculations have been reported, including configuration interaction [46, 58], 

multiconfiguration [49], and second-order perturbation theory [49] investiga

tions. Some calculations have employed the equivalent-core approximation 

— first introduced by Shirley [59] — in which the exact calculation of the 

core-hole state is replaced by a ground-state calculation o f the equivalent 

system obtained by increasing the nuclear charge on the atom being ionized 

by one unit. 

The Hartree-Fock total-energy difference procedure — most frequently re

ferred to as the ASCF method — has not been particularly good at estimat

ing absolute C E B E s , but has been remarkably good at predicting accurate 

values for the chemical shifts [48, 49]. Because the computational demands 

of high-quality quantum chemistry render the application of the total-energy 
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difference method to even moderately-sized molecules and clusters (which 

are widely used as models for surfaces) impractical, and because most of 

the interest has focused on the chemical shifts (rather than the absolute 

CEBEs), several alternative models and methods have been devised [44, 54, 

60, 61]. Some are specifically designed to avoid performing the core-ionized 

cation calculations, and have been employed extensively, often yielding good 

quantitative results [61]. 

Approaches that take advantage of Slater's transition state concept [62] 

— and thus rely on the use of fractional orbital occupation numbers to cal

culate absolute CEBEs — have also been proposed as an alternative to the 

procedures that require calculations on fully ionized final states. Follow

ing this line, Chong and coworkers [63-65] applied a transition-operator-

moment/perturbation-theory approach with encouraging success (average 

deviation from experiment was 0.4 eV for eight cases involving small molecules 

[65]) but the computational effort was still too expensive for the method to 

be extended to larger systems. 

With the evolution of density functional theory into an accurate and 

reliable quantum chemical technique, applications of DFT-based methods 

to core-ionization phenomena have been actively pursued. Approaches that 

make use of the transition state model [47, 66], the total-energy difference 

procedure [67], and of combinations of calculations with observed data [68] 

have been employed, and they have been successfully applied to both discrete 

[47] and extended [66-68] systems. 

Chong [18, 19] has recently introduced methodology based on a combi

nation of D F T with the generalized transition state model [69] — an exten-
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sion of Slater's original transition state idea — and has extensively tested 

[18-29] it on a wide variety of systems, including both closed-shell and open-

shell small molecules, transition metal complexes, and also model systems for 

polymers and adsorbate-surface interactions. High quantitative accuracy has 

been accomplished (average deviations from experiment of 0.2 eV or lower 

have been routinely achieved [19, 20, 24, 27, 28, 29]) and the procedure has 

also proven useful from a qualitative point of view. For example, investiga

tions of the C E B E s of isomers of C 2 H 4 0 , C 3 H 3 N O , and C 6 H 6 [20, 29] have 

provided results which support the possible use of electron spectroscopy for 

chemical analysis. Also, surface-science-oriented studies have shown that em

ploying C E B E s for the interpretation of X P S spectra on a molecular scale 

constitutes a useful method for tracing the interactions of molecules wi th a 

surface [26], and is of valuable assistance in the interpretation of X P S spec

t ra of compounds for which there is no gas-phase reference spectrum [27]. 

These examples support and confirm the significance of the role played by 

computational techniques in the aforementioned theory-experiment interplay 

in core-electron spectroscopy. 

1.2 Scope and Organization of this Thesis 

This thesis consists of seven chapters, which fall into two groups: background 

and reference material (Chapters 1, 2, and 3), and presentation and discus

sion of results (Chapters 4, 5, 6, and 7). 

Chapter 2 contains material of a theoretical nature which is intended to 

serve as introductory-level background to density functional theory and how 
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it relates to and differs from more conventional ab initio quantum chemical 

methods. Chapter 3 will present a description of the computational approach, 

including the mathematical formalism, and some details of the calculation 

code and the basis sets employed. 

The density functional investigations of Chong and coworkers have ad

dressed a large number of cases of core-electron binding energies of the 

second-period elements carbon, nitrogen, oxygen, and fluorine. All the stud

ies have employed the unrestricted Generalized Transition State (uGTS) 

model [18]. Part of the work reported in this thesis was devoted to extending 

the applications of the u G T S / D F T approach to the calculation of molecular 

CEBEs. Thus, Chapter 4 will present the results of a study of core-ionization 

energies of boron-containing molecules, and of the third-period elements sil

icon, phosphorus, sulphur, chlorine, and argon. Also in Chapter 4, an inves

tigation of the CEBEs of isomers of C 3 H 5 N O , which explores the analytical 

applications of core-electron spectroscopy, will be reported. 

Chapters 5 and 6 contain the results of a different approach to the de

termination of CEBEs which is based on a density functional total-energy 

difference (AE) procedure. An error-based comparison between the uGTS 

and the A E methods, and a test of functionals for use within the latter ap

proach will be presented in Chapter 5, whereas the results of tests of various 

basis sets will be the subject of Chapter 6. 

All the calculated core-electron binding energies reported in this thesis are 

vertical ionization potentials in the sense that the calculations were carried 

out at the equilibrium geometries of the neutral molecules for both the initial 

state (neutral species) and the final state (ionized species) [48]. The results 
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obtained wi l l be almost exclusively discussed and analyzed in terms of com

parisons of calculation with experiment, and the extent of their agreement 

wi th the observed values wi l l be the major factor in assessing the performance 

of the computational procedures. 



Chapter 2 

Density Functional Theory in Quantum Chemistry 

" A primary objective of molecular quantum mechanics is the solution of 

the non-relativistic, time-independent Schrodinger equation, and in partic

ular the calculation of the electronic structures of atoms and molecules " 

[70]. In order to achieve the goal of calculating molecular electronic struc

ture, two main approaches are widely employed. Semiempirical methods [70-

72] introduce a number of significant approximations in the solution of the 

Schrodinger equation, and rely upon adjustable parameters obtained from 

experimental information; their use is limited to the chemical systems for 

which they were parameterized. Methods which do not resort to empiri

cal data (except for the use of values of fundamental constants and nuclear 

atomic numbers) are in principle applicable to any molecular system, and 

are generally divided into traditional ab initio [73] and density functional [1, 

74] approaches. In the former, the wavefunction is central to the description 

10 
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of electronic structure, whereas in the latter the electron density plays the 

major role. 

In this chapter, a description of the principal concepts of density func

tional theory and quantum chemistry wi l l be presented, and some of the 

similarities and differences between D F T and traditional quantum chemistry 

wi l l be discussed. 

2 . 1 Traditional Ab Initio Quantum Chemistry 

The study of the behaviour and properties of electrons in molecules requires 

the solution of the time-independent Schrodinger equation which has the 

general eigenvalue-problem form [70, 73] 

H$ = E$ (2.1) 

where $ is the wavefunction, E is the total energy, and H is the (non-

relativistic) Hamil tonian operator, given by 

H — Tnuc + Tei + Unuc + Vext + Uee (2-2) 

The terms on the right-hand side of equation (2.2) have the following physi

cal interpretations and mathematical expressions (in atomic units [73]): 

TnUc — — J2A 2m~^a ^ s ^ n e nuclear kinetic energy operator, 
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Tei = — J2i \ Vf is the electronic kinetic energy operator, 

Unuc = EB>/1  ZRAB 1S t n e P ° * e n t i a l energy operator for nuclear repul

sions, 

Kx* — YIA is the potential energy operator for electron-nucleus 

attractions, 

Uee = S i Sj>i ^: is the potential energy operator for electron-electron re

pulsions. 

In the above expressions, MA is the ratio of the mass of nucleus A to the 

mass of an electron, ZA is the atomic number of nucleus A, V2

A and Vf 

are Laplacian operators [75] for nucleus A and electron i respectively, and 

Tij = |rj — Tj\, riA — |rj — R ^ | , RAB — | R A — RB|> where r and R are 

electronic and nuclear position vectors, respectively. 

Solving the Schrodinger equation is a formidable task even for the sim

plest molecular systems, so a number of approximations must be introduced 

to make calculations feasible. The vast majority of quantum chemical cal

culations are carried out within the Born-Oppenheimer approximation [76], 

which is based on the fact that electrons, being much lighter than nuclei, 

move considerably faster than nuclei do. Hence, it is reasonable to assume 

that electrons in molecules move in the field generated by fixed nuclei. This 

separation of the motion of electrons and nuclei leads to the "electronic" 

Schrodinger equation 
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Ha^a = (fel + Vext + Uee)^ei = Eel<S>el (2-3) 

where \I/ e; is the wavefunction describing the behaviour of the electrons. B o t h 

and the electronic energy Ee\ depend parametrically on nuclear positions. 

A common quantum chemical solution to equation (2.3) utilizes the varia

tional principle [73]. Given a t r ia l (almost always approximate) wavefunction 

^ for a particular molecular system, the expectation value of the energy (E) 

wi l l be greater than or equal to the true ground-state energy (E0), E > E0, 

or equivalently, 

where Dirac notation [73] has been used. The equality holds only when \1> is 

equivalent to the correct ground-state wavefunction ^o-

2.1.1 The Hartree-Fock Method 

The Hartree-Fock (HF) approximation is a mean-field method applied to 

the many-body electronic problem [16, 73, 77]. The central idea of the H F 

approach is the assumption that electrons move independently of one another 

and that a given electron interacts with an average field produced by the 

rest of the electrons. Therefore, an explicit treatment of the instantaneous 

pairwise interaction, the so-called electron correlation, is lacking. 

For an N-electron system, an antisymmetrized product of N spin-orbitals 

(V'i), known as a Slater determinant, represents the simplest t r ia l wavefunc-

(2.4) 
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t ion which is physically acceptable. This determinant satisfies the Pau l i 

Principle [73], a necessary condition, and is given by 

HF (jV!)i/2 

^ i ( x i ) ^ 2 ( x i ) 

^ l ( x 2 ) •02(X2) 

•07V (Xl) 

^ i v ( x 2 ) 
(2.5) 

The spin-orbitals in equation (2.5) are each a product of a spatial orbital 

Pi(r) and a spin function o(s) wi th <r(s) being either a(s) for "spin-up" or 

P(s) for "spin-down", and x indicating both space (r) and spin (s) coordi

nates. They are generally orthonormal, that is 

< ipi\ipj >= Si:j (2.6) 

so that the wavefunction is also normalized 

< ^HF^HF >= 1 (2.7) 

The H F ground-state energy Egp is obtained by a variational minimiza

t ion of the expectation value of the electronic Hamil tonian of equation (2.3) 

wi th the wavefunction of equation (2.5) [73]. This procedure involves opti

mizat ion of the spin-orbitals that comprise the Slater determinant and yields 

the Hartree-Fock equations 

flpi = €i1pi (2.8) 
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where ej is the orbital energy and / is an effective one-electron operator 

known as the Fock operator, given by 

f = h + v HF (2.9) 

The operator h is defined as 

(2.10) 

and the effective one-electron HF potential operator vHF is given by a sum 

of Coulomb (J) and exchange (K) contributions, that is 

vBF
 = £ ( J - k) (2.11) 

The definitions of the Coulomb and exchange operators are 

Jjipi I ^ • ( x 2 ) ^ ( x 2 ) — d x 2 4>i ( x i ) (2.12) 

Kjipi 1 • 0 * ( x 2 ) ^ ( x 2 ) — d x 2 ^ • ( x i ) (2.13) 

Kj is a non-local operator in the sense that the result of operating with it on 

an orbital ipii^i) depends on the value of tpi throughout all space, not just at 

Xi [73]. There are an infinite number of spin-orbitals which solve equation 

(2.8), so the N-electron HF ground-state wavefunction is formed from the N 

orbitals with the lowest energies, which are called the occupied spin-orbitals. 
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The H F ground-state energy is then given by 

EHF = < *HF\Hei\*HF > = £ # i + \ £ ( < ^ ~ (2-14) 

where 

Hi =< iPi\h\ipi > (2.15) 

Jij =< il>i\J\if>j > (2.16) 

Kij = < V i l ^ i > (2-17) 

If the spin functions are integrated out in equations (2.16) and (2.17), then 

Jij and can be expressed as functions of the spatial orbitals ifi [73]. 

The resulting "spatial" contributions may be thought of as originating 

from the classical Coulomb repulsion between two charge clouds. However, 

no simple classical interpretation can be associated with the exchange 

contributions. 

The energy of an individual spin-orbital is given by 

ei = H + X)(J^ - K^) (2.18) 
3 

so the H F energy can be also expressed as 
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EHF — (2.19) 

which shows that the individual orbital energies do not add up to the total 

electronic energy of the system. Instead, a physical interpretation can be 

given to by means of Koopmans ' theorem [73], which states that the ion

ization potential (IP) for removal of an electron from a spin-orbital ipi in an 

N-electron H F wavefunction is the negative of the energy of the spin-orbital, 

that is 

Due to the approximate nature of the Hartree-Fock model, ionization po

tentials determined according to (2.20) are only of a qualitative or semi

quantitative value [54]. 

2.1.2 Electron Correlation 

The Hartree-Fock method is the simplest of the wavefunction-based ap

proaches to molecular electronic structure, but it fails to provide a complete 

physical description of the many-electron problem because it disregards elec

tron correlation. 

The correlation energy is defined in conventional quantum chemistry 

as the difference between the exact non-relativistic ground-state energy E0 

(within the Born-Oppenheimer approximation) and the H F energy, that is 

IP = ~€i (2.20) 
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Ecorr — E0 — EHF (2.21) 

A n exact procedure exists for representing any state of an N-electron sys

tem, called Configuration Interaction (CI) [73]. The infinite number of spin-

orbitals that are obtained as solutions to the H F equations can be viewed as 

two distinct sets of orbitals: the N lowest-energy occupied orbitals and the 

remaining higher-energy unoccupied or vir tual orbitals. The former group 

is used to construct the ground-state wavefunction wi thin the H F approxi

mation while the latter group provides a means of generating excited con

figurations by promoting electrons from occupied to vir tual orbitals. A n 

exact N-electron wavefunction can be expressed as a linear combination of 

an infinite number of N-electron configurations (each represented by a Slater 

determinant), that is 

* e * a r f = co*o + c r

a £ ^ + C 6 X + (2-22) 
ra a<b,r<s 

where \Po is the H F ground-state wavefunction, tyr

a is a singly-excited con

figuration, ^r

al is a doubly-excited configuration, and so on. The c's are 

expansion coefficients, the indices a and b label occupied orbitals, and the 

indices r and s label vir tual orbitals. 

In practice, it is impossible to handle infinite numbers of spin-orbitals and 

configurations, yet due consideration of electron correlation is necessary to 

improve upon the H F description. Therefore, a number of methods [4, 16, 73, 

77] which employ different approximate approaches to the treatment of corre

lation effects have been developed. They include several approximate versions 
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of the CI method, the Multiconfigurational Self-consistent Field (MCSCF) 

method, the Coupled-Cluster (CC) method, and many-body perturbation 

techniques such as the M0ller-Plesset Perturbation (MPPT) method. 

2.2 Density Functional Theory 

The fundamental variable of density functional theory is the electron den

sity, p [1]. For a given state of an electronic system, the electron density is 

defined as the number of electrons per unit volume, and is mathematically 

represented in terms of the N-electron wavefunction \& by 

p(ri)=Nj2 J \V(r1,r2,---,rN)\2dr2---drN (2.23) 
spin 

The electron density is thus a simple non-negative function of three variables 

(compared with 3N variables in the case of the N-electron wavefunction) 

which integrates to the total number of electrons N, that is 

J p(r) dr = TV (2.24) 

A non-negative, continuous electron density that satisfies equation (2.24) is 

said to be N-representable [1]. 

A definitive proof that the electron density could play the central role in 

the description of the electronic structure of matter was given by Hohenberg 

and Kohn [2] in the form of two theorems. 

The first theorem considers a system of N interacting electrons in a non-

degenerate ground-state under the influence of an external potential v(r) 
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(which is not restricted to Coulomb potentials) and states that the ground-

state density p(r) uniquely determines v(r), to within an additive constant. 

The number of electrons N is also determined by p(r) via equation (2.24). 

Therefore, the electron density completely determines the Hamiltonian and, 

consequently, all properties of the system. 

For a given external potential, the energy functional is 

E[p] = V[p] + FHK[p] (2.25) 

where 

V[p] = J p{r)v{v)dv (2.26) 

and 

FHK[p] = Tel[p] + Uee[p] (2.27) 

From equations (2.26) and (2.27) it follows that FHK is a universal functional 

of the electron density, its form not being affected by the nature of the system. 

The second Hohenberg-Kohn theorem makes it possible to find the ground-

state density by means of a variational minimization search. It states that 

given an N-representable trial density ptriai, 

E[ptrial]>E0 (2.28) 

The true ground-state energy E0 is obtained only if the true ground-state 
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density is used as the trial density. 

The search for p(r) must be conducted subject to the constraint imposed 

by equation (2.24), that is 

8^E[p]-p jp{r)dv- N J =0 (2.29) 

The multiplier \i is the chemical potential, and is defined by [1] 

SE[p] SFHK[p] 
P = -=-f-r = V(T) + (2.30) 

Provided the exact FHK[p] is known, equation (2.29) yields the exact 

ground-state electron density. As stated by Hohenberg and Kohn in their 

original paper [2]: " if F[p) were a known and sufficiently simple functional 

of p, the problem of determining the ground-state energy and density in a 

given external potential would be rather easy since it requires merely the 

minimization of a functional of the three-dimensional density function. The 

major part of the complexities of the many-electron problems are associated 

with the determination of the universal functional F[p] ". 

2.2.1 The Kohn-Sham Formulation 

The Kohn-Sham (KS) formulation [3] is of central importance to the appli

cation of density functional theory to quantum chemical problems [13]. The 

Kohn-Sham treatment of the complex many-electron problem posed by real 

systems is based on a simpler one-electron approach which is introduced by 

means of a reference system of non-interacting electrons which move under 
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the influence of a local external potential vref(x). 

The Hamiltonian for this reference system is a sum of one-electron Hamil-

tonians (due to the absence of electron-electron repulsion), 

Href = J2kref(i) = }Z + Vref{*i) (2.31) 

and the wavefunction is correctly represented by a Slater determinant. The 

fundamental connection between the non-interacting reference system and 

the real system of interacting electrons lies in the fact that both systems 

possess the same ground-state electron density, that is, 

Pre} = 2^2 |0i| 2 = Pexact (2.32) 
i 

where the Kohn-Sham orbitals </>j are the solutions to the one-electron equa

tions associated with the reference system 

Keffa = U<l>i (2.33) 

From equations (2.25) and (2.27), the energy functional has the general 

form 

E[p]=Tel[p} + V[p} + Uee[p] (2.34) 

With the introduction of the reference system, equation (2.34) for the real 

interacting system can be recast as 
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E[p] = Tref[p] + V[p] + J[p] + Exc[p] (2.35) 

where Tref[p] is the kinetic energy of the reference system 

(2.36) 

V[p] is the external potential energy for the interacting system, J[p] is the 

classical Coulomb potential energy, and Exc[p] is the exchange-correlation 

energy, given by 

Exc[p] = T[p] - Tref[p] + Uee[p] - J[p) (2.37) 

The Kohn-Sham equations for the real system are 

heff{i)(t>i = ;V +v, eff <t>i - U $i (2.38) 

where the Kohn-Sham effective potential veff is 

SJ[p] 5Exc[p] 
(2.39) 

and 

vXc(r) = 
5Exc[p] 

Sp(v) (2.40) 

defines the exchange-correlation potential. 
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The total energy is given by equation (2.35) but it can also be expressed 

in terms of the Kohn-Sham orbital energies as [1] 

E[p] = Y,H-\I l r _ r ?
 dv dT' + - J u-(r )p(r) dr (2.41) 

where 

5 > = Tref[p] + [ vefS{r)p{v) dv (2.42) 
i J 

Equations (2.41) and (2.42) show that the total electronic energy is not given 

by the sum of the orbital energies, just as in the Hartree-Fock method. 

The significance of the Kohn-Sham approach has been clearly stated by 

Kohn, Becke, and Parr [11]: " . . . in spite of the appearance of simple, single 

particle orbitals, the KS equations are in principle exact provided that the 

exact Exc is used . . . the only error in the theory is due to approximations of 

E " 
•LJxc 

2.2.2 Density Functionals 

The fact that density functional theory is exact but the exact form of the 

energy functional is not known implies that approximate formulations of 

Exc have to be employed in order for density functional calculations to be 

practicable. The development and testing of functionals is thus a central 

issue and a major challenge in modern D F T [9]. 

The solid foundations of density functional theory were established by the 
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Hohenberg and Kohn theorems, but long before this work, Thomas, Fermi, 

and Dirac had already developed models that focused on the electron density 

as the central variable in the description of electronic structure and behaviour 

where the first term on the right-hand side represents the kinetic energy 

functional, taken from the theory of a non-interacting uniform electron gas [1, 

4, 78], J[p] replaces Uee[p] of equation (2.34) — thus, non-classical electron-

electron interactions are neglected —, and CF — 2.8712 [1]. 

The Thomas-Fermi-Dirac (TFD) energy functional extends the T F model 

by including the exchange-energy functional of a uniform electron gas 

where Cx = 0.7386 [1]. 

The T F method is a rather crude model. In fact, its accuracy for atoms 

is rather limited, and its application to molecules has been completely un

successful since it fails to predict bonding [1]. Nevertheless, the T F model 

does contain " all the important ingredients of a density functional theory 

" [4] and is the first example of application of " one of the most important 

ideas in modern density functional theory, the local density approximation " 

The Thomas-Fermi (TF) energy functional is 

ETF[P] =CF J p(r) 5/ 3 dv + J P(T)V(T) dv + J[p] (2.43) 

(2.44) 
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The Local Density Approximation (LDA) [3] is the simplest expression 

for the energy functional of D F T . The exchange-correlation energy is given 

in the L D A by 

•E£A{p)= J P(r) exc(p) dv (2.45) 

where exc(p) is the exchange-correlation energy per particle of a uniform 

electron gas of density p [1, 4, 78]. Thus, the L D A applies locally the relations 

and results for a uniform electronic system to the description of systems 

which have inhomogeneous electron distributions, such as atoms, molecules, 
i 

and solids. Although there is no formal justification for this procedure, many 

successful applications support the use of LDA in chemistry [7]. 

Separation of the exchange and correlation contributions is usual in D F T , 

so exc(p) may be expressed as 

exc{p) = ex(p) + ec(p) . (2.46) 

where the exchange contribution is from Dirac's exchange functional of equa

tion (2.44) 

ex(P) = -l(l)1/3p(v)^ (2.47) 

Analytic forms for ec(p) have been derived [79-81] from the results of Monte 

Carlo calculations on the electron gas [82]. 

Ignoring the correlation contribution in equation (2.45) leads to Slater's 

Xa method [83] which was developed before the work of Hohenberg, Kohn, 
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and Sham. A simplification of the Hartree-Fock method is achieved by re

placing the complicated non-local Fock operator by a simpler local operator, 

named the Xa local potential and defined by 

1/3 

(2.48) 

In atomic and molecular electronic structure calculations, a has been used as 

an adjustable parameter, the best results having been obtained wi th a ~ 0.75 

[I]'-

A generalization of the L D A to treat a-spin and /3-spin densities sepa

rately is the Loca l Spin Density (LSD) approximation [1, 84] in which 

p(r)=p a (r)-r-p"(r) (2.49) 

and the exchange energy becomes 

ELSD = 2l/3Cx J[pa(r)4/3 + ^ ( r ) 4 / 3 ] ( 2.50) 

The corresponding separation of correlation contributions is not possible be

cause correlation effects, unlike exchange, involve both like-spin and unlike-

spin interactions. 

The L S D is needed for correctly describing systems under the influence 

of an external magnetic field, but it is also necessary (in the absence of a 

magnetic field) for the treatment of spin-polarized systems and relativistic 

effects. Furthermore, there is a more fundamental reason that favours L S D 

over L D A . Were the exact form of functionals known, L S D and L D A should 

vxa(r) = ~ 2 a 

7T 
-AT) 
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produce the same results where no net magnetic effects are present. However, 

for calculations on real systems approximate functional expressions must be 

introduced, and it turns out that the performance of approximate LSD func

tionals usually surpasses that of approximate L D A functionals [1, 84]. 

A systematic extension [78] of the LDA is obtained by means of gradient 

expansions of the form 

Ex[p] = AXJ p(r) 4/ 3 dv + Bx J dv + • • • (2.51) 

where Ax and Bx are constants. Although Gradient Expansion Approxima

tions (GEA) may appear to be the natural step for improving upon the L D A 

description, it has been found that they fail to yield quantitatively significant 

results [78]. 

The failure of the G E A led to the development of methods based on a dif

ferent type of gradient-based corrections, the so-called Generalized Gradient 

Approximation (GGA) [11, 15, 78, 85]. In the G G A , the exchange-correlation 

energy is given by 

EgGA = / f(P

a, / , V p Q , V / ) dv (2.52) 

where / represents a function of the density and density gradients. Among 

the most popular G G A functionals are those developed by Perdew [87], Becke 

[88], Perdew and Wang [78, 86], and Lee, Yang, and Parr [89]. 

The L D A and LSD have been described as "remarkably useful structural, 

though not thermochemical, tools" [11]. With the development of the GGAs, 

D F T has also become a good approach to chemical energetics. However, the 
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G G A has not been clearly superior in applications of D F T to the study of 

properties of solid state systems [90]. 

The G G A functionals have certainly broadened the spectrum of chem

ical problems to which D F T can be reliably applied, but they still have 

deficiencies [11]. Extensive effort has been devoted to improving the G G A 

by incorporating some exactly computed exchange [91-94]. The resulting 

scheme (usually called hybrid methods) has proven remarkably successful in 

a wide variety of chemical applications [95, 96]. 

Approaches to the exchange-energy functional that go beyond the G G A 

are also being explored. Becke [97] has recently introduced second-order 

gradient corrections through a new inhomogeneity parameter q°'. The new 

functional takes the general form 

where qa and q@ depend on the density p and the first-order and second-order 

gradients, Vp and V 2 p [97]. 

For some particular systems, highly accurate conventional quantum chem

ical results are available. Therefore, there is interest in using these accu

rate electron densities to find highly accurate expressions for the exchange-

correlation potential. High-quality information on a specific system can shed 

light on how to systematically upgrade the existing approximate functionals, 

and may eventually lead to the exact treatment of exchange and correlation 

(2.53) 

[9, 13]. 
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2.3 A Comparison between D F T and Traditional Methods 

The fundamental conceptual difference between D F T and tradit ional quan

tum chemistry has been stated in the introduction to this chapter and some 

of the details have been discussed in the preceding sections. 

B o t h the Hartree-Fock method and the Kohn-Sham method constitute 

one-electron approaches to the many-body electronic problem. Their basic 

formalism is indeed very similar, as revealed by inspection of the Hartree-Fock 

equations, (2.8) and (2.9), and of the Kohn-Sham equations, (2.38). However, 

the H F effective potential, equation (2.11), contains a (complicated) non-local 

exchange operator, equation (2.13), and lacks electron correlation effects. O n 

the other hand, the exchange-correlation potential, equation (2.40), in the K S 

effective potential, equation (2.39), is a (simple) local operator that explici t ly 

includes the effects of both electron exchange and correlation. 

In tradit ional quantum chemistry, the H F approximation can be used as a 

starting point, and it can be improved upon by systematically incorporating 

increasingly accurate treatments of electron correlation effects v ia configu

ration interaction, many-body perturbation, or coupled-cluster techniques. 

Achieving high accuracy is, however, very costly since the computational 

dependence of post-HF methods on the molecular size M is of the order of 

M 5 - M1 [16]. Accuracy in D F T lies in the expression for the exchange-

correlation functional. The closer to the exact Exc, the more accurate the 

results but there is no clear, systematic procedure that can be followed to 

bring approximate functionals closer to the exact Exc. A major advantage of 

D F T is the fact that it can yield results that are as accurate as (and some

times more accurate than) those obtained from more conventional ab ini t io 
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techniques, wi th considerably reduced computational demands [95]. In fact, 

density functional methods that depend linearly on the molecular size have 

already been developed [9]. 

A physical interpretation can be easily associated with the Hartree-Fock 

single-orbital energies by recourse to Koopmans' theorem (Section 2.1.1). O n 

the other hand, the physical interpretation of the Kohn-Sham orbitals has 

been a rather controversial subject. It is clear that the energy of the highest 

occupied K S orbital is equal to the exact first ionization energy of the system, 

enoMO = —IP e x a c t [13], but opinions have been varied regarding the general 

significance of the K S orbitals. Some examples are 

Levine [98]: " The Kohn-Sham orbitals have no physical significance other 

than in allowing the exact p to be calculated . . . the Kohn-Sham orbital 

energies should not be confused with molecular-orbital energies. " 

Parr and Yang [1]: " Given the auxiliary nature of the K S orbitals — just N 

orbitals the sum of squares of which add up to the true total electron density 

— one should expect no simple physical meaning for the Kohn-Sham orbital 

energies. There is none. " 

K o h n , Becke, Parr [11]: " The individual eigenfunctions and eigenvalues, 4>j 

and €j, of the K S equations have no strict physical significance . . . A t the 

same time, al l €j and (f)j are of great semiquantitative value, much like the 

Hartree-Fock energies and wavefunctions, often more so, because they reflect 

also correlation effects, and are consistent wi th the exact physical density " 

Baerends, Gritsenko, van Leeuwen [99]: " The theoretical status of the K o h n -

Sham model has received comparatively litt le attention, as may be evident 
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from the frequently voiced opinion that the Kohn-Sham orbitals are just a 

means to generate electron densities but do not have any physical meaning 

themselves. However, this is a far too restricted view on the Kohn-Sham 

model . . . The Kohn-Sham orbitals represent electrons that move in a poten

t ia l that is certainly as realistic as the Hartree-Fock 'potential ' and indeed 

has some advantages. There is no reason to believe that the Kohn-Sham 

orbitals are any less 'physical ' or useful than the Hartree-Fock orbitals ". 

2.4 Computational Aspects of Quantum Chemical Methods 

Pract ical strategies are essential to make the computation of electronic struc

ture feasible. Numerical methods are common for atomic systems, but the 

majority of molecular calculations are performed using basis-set expansion 

methodology [4, 70, 73]. 

A finite set of appropriate basis functions {p;} is introduced and the 

spatial function of the molecular spin-orbitals is expressed as a linear combi

nations of these basis functions, that is 

<Pk = J29iCik (2.54) 
i 

where the Cik are expansion coefficients determined in the calculation pro

cess. The introduction of the basis set transforms the problem of solving the 

molecular electronic structure equations into a matrix eigenvalue problem 

[73, 100]. In the Hartree-Fock method, this matrix eigenvalue problem takes 

the form [73] 
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F C = SCe (2.55) 

The equivalent expression in the Kohn-Sham method is [100] 

HKSC = SCe (2.56) 

In equations (2.55) and (2.56), C is the matrix of the coefficients dk, 

the orbital energies 6{ are the elements of the matrix e, and the elements 

of the matrix S are the overlap integrals (the basis functions are usually 

non-orthogonal) 

Sij = J gi9jdr (2.57) 

The Fock matrix elements are given by 

Fij = J 9if9jdv (2.58) 

and the corresponding Kohn-Sham matrix elements are 

H%s = J g i h e f f g j d T (2.59) 

Both the HF and the KS equations depend on the orbitals which are the 

solutions to the equations. This apparent dilemma is solved by means of 

a self-consistent field (SCF) approach. The calculations are started with a 

reasonable guess for the orbitals and the equations are solved in an iterative 
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fashion. The computational procedure is stopped when a given convergence 

criterion is met (for example, the total energy difference between two consec

utive cycles has to remain smaller than a specified value for a certain number 

of iterations), at which point the solutions are said to be self-consistent. 

2.4.1 Basis Sets 

The most widely used basis functions for molecular electronic structure cal

culations are Slater-type orbitals (STO) and Gaussian-type orbitals (GTO) 

[4, 70, 73]. The general form of an STO is 

9STO(T) = CNrn-le~^ Ylm(9, <f>) (2.60) 

Cartesian GTOs are defined by 

gGTo(r) = CNxaybzce-^2 (2.61) 

In equations (2.60) and (2.61) GV is a normalization constant, Ylm(9,(f)) is 

a spherical harmonic [70], and £ is a positive exponent. The sum of the 

non-negative integers a, b, and c defines the type of Cartesian Gaussian: an 

s-type Gaussian has a + b + c = 0, a p-type Gaussian has a + b + c = 1, a 

d-type Gaussian has a + b + c = 2, and so on. Spherical Gaussians — which 

include spherical harmonics — can also be used. 

STOs provide a better representation of the electronic wavefunctions near 

the nucleus of an atom, but they render the evaluation of electron integrals 

complicated. On the other hand, the mathematical form of a G T O is con-
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venient for computational purposes. GTOs are then usually preferred, espe

cially for calculations on relatively large systems. 

There is however a disadvantage in using GTOs in that they are functions 

of inferior quality when compared with STOs. Therefore, a larger number of 

GTOs are necessary to obtain results of the same accuracy as that achieved 

by STO basis sets. A practical solution to this problem which permits to take 

advantage of the computational convenience of GTOs is the use of basis sets 

consisting of contracted Gaussians. A contracted Gaussian function is a fixed 

linear combination of primitive Gaussian functions, and can be constructed 

through a least-square fit of primitive Gaussians to STOs which have been 

already optimized in an atomic calculation [70, 73]. 

In molecular calculations the choice of basis sets is a compromise between 

accuracy (which demands large basis sets) and computational requirements 

(which favour smaller basis sets). A minimal basis set is the simplest form 

as only one basis function is used to represent each orbital, but it is seldom 

capable of yielding accurate results. In order to improve upon the minimal 

basis set performance, the set is extended by including twice, three times, 

four times, five times, and so on, as many functions as there are orbitals thus 

generating the so-called double-zeta, triple-zeta, quadruple-zeta, quintuple-

zeta, and so on, basis sets. Incorporation of functions of higher angular 

momentum quantum number [70] than that of the valence electrons is also 

important. These functions are called polarization functions because they 

are required for the description of the polarization of an atom in a molecular 

field. 



Chapter 3 

Computational Approach 

In this chapter, the general methodology involved in the calculation of the 

core-electron binding energies reported in Chapters 4, 5, and 6 wi l l be de

scribed. The formalism associated wi th the unrestricted generalized transi

tion state (uGTS) model and the A E - K S approach wi l l be presented first, 

followed by a description of some of the details of the density functional 

program and the basis sets employed for the computation of the C E B E s . 

3.1 The u G T S and A E - K S Approaches 

The energetics of an electron removal process, such as the ionization from a 

core level, can be generically represented as the difference in the total energy 

of the in i t ia l and final states of the electronic system 

36 
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AE — Efinai — Einiuai (3.1) 

The total energy can be expressed as an analytic function of the occupation 

numbers of a set of one-electron molecular orbitals 4>i [62], that is 

E = £ ( n i , n 2 , n 3 , . . . ,nN) (3.2) 

and the electron density of the electronic system is defined by 

p = Y , n M (3-3) * 
i 

Equat ion (3.3) is a generalization of (2.32) and allows for fractional occu

pation of the molecular orbitals [1]. From (3.1) and (3.2), a core-ionization 

energy is given by 

A £ = £ ( 0 , l , l , . . . , l ) - £ ( 1 , 1 , 1 , . . . , 1 ) (3.4) 

The calculation of core-electron binding energies according to equation (3.4) 

using Kohn-Sham D F T constitutes the A E - K S approach. The results of the 

application of this method to the determination of molecular C E B E s wi l l be 

presented in Chapters 5 and 6. 

Slater's transition state (TS) [62] model and its generalization by Wi l l i ams , 

deGroot, and Sommers [69] are approximations to equation (3.4). If the total 

energy is represented as a function of a continuous variable A (which can be 

related to orbital occupation) by the series expansion [18] 
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E(X) = E0 + XEi + X2E2 + X3E3 + A 4 £ 4 + X5E5 + • • • (3.5) 

then equation (3.4) becomes 

AE = E(l) - E(0) = E1 + E2 + E3 + Ei + E5 + --- (3.6) 

where -E'(O) and E(l) give the energies of the initial and final states, respec

tively. In D F T , according to Janak's theorem [101], the first derivative of the 

total energy with respect to the occupation number of an orbital is equal to 

the energy of that orbital, that is 

£ r « <3-7> 

For the ionization of an electron from the ith molecular orbital fa, X repre

sents the fraction of an electron removed. Therefore, application of Janak's 

theorem leads to 

From equation (3.5), the first derivative is given by 

BE 
— = F(X) = E1 + 2XE2'+ 3X2E3 + AX3E4 + 5 A 4 £ 5 + • • • (3.9) 

Slater's TS model uses A = | to approximate AE as 
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F = El + E2 + -AEZ + L-E, + ^ E 5 + • • • (3.10) 

Therefore, the error of the TS model is 

STS = - \ E 3 - L-E± - ^E5 + • • • (3.11) 

In the generalized transition state (GTS) model, AE is calculated by 

AE= \F(0) + \ F Q (3.12) 

Thus, AE is approximated as 

Q OA 
AE = E1 + E2 + E, + -Ei + —E5 + • • • (3.13) 

9 ol 

with an error 

SGTS = ~ E 4 - - ^ E 5 + --- (3.14) 

Calculations using the TS and GTS models can be performed in a re

stricted or an unrestricted fashion. In the former, \ spin-a electron and 

\ spin-/? electron (TS) or | spin-a electron and | spin-/? electron (GTS) 

are removed, whereas in the latter | spin-a//? electron (TS) or | spin-a//? 

electron (GTS) are removed. A study by Chong [18] showed that the uGTS 

approach gives the best results in density functional determinations pf molec

ular CEBEs. Chapter 4 of this thesis contains the results of a number of 

applications of the uGTS model. 
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3.2 The Density Functional Program deMon 

All the density functional calculations reported in this thesis were performed 

with the program deMon [102-104], which makes use of Gaussian-based den

sity functional methodology in the form of Gaussian orbital and auxiliary 

basis sets. 

The molecular orbitals are expanded in the orbital basis set as in equation 

(2.54), whereas both the density and the exchange-correlation potential are 

expanded in the auxiliary basis sets, that is 

P = J2ai9i (3-15) 
i 

Vxc = Y,bi9iC (3-16) 
i 

where p and Vxc are fits to p and Vxc, respectively. 

The density fitting coefficients a; are obtained analytically via a least 

squares fitting procedure by requiring that the error in the Coulomb energy 

[ f [p(r0 - p(n)] —[p(r2) - p(r2)] dvx dr2 (3.17) 

be minimized and the fitted density p be normalized to the total number of 

electrons. 

The potential fitting coefficients b{ are determined by performing a least 

squares fit over a set of grid points centered about each atom. This procedure 

minimizes the error in the fitted potentials over the sum of the grid points. 
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B y representing the density and the exchange-correlation potential as l in 

ear combinations of Gaussian functions, the integrals in which p and Vxc are 

involved are given a simpler mathematical form and the computational de

mands are alleviated. In fact, if no is the number of orbital basis functions 

and riA is the number of auxiliary basis functions, the computational effort 

in GTO-based D F T scales formally as (no)2 nA, compared wi th (no)4 for 

Hartree-Fock methods and at least (no)5 for conventional correlated meth

ods. 

3.2.1 Basis Sets 

In deMon, the Gaussian functions used are s-, p-, and d-type G T O s (orbitals 

of higher angular momentum quantum number such as / - type functions can

not be included). 

The auxiliary basis sets are described by the general notation (j, k; m, n), 

where j and k are, respectively, the number of s-type G T O s and the number 

of sets of s-, p-, and d-type G T O s for the density fit, and m and n are the 

corresponding number of basis functions and number of sets for the exchange-

correlation potential fit. 

The auxiliary fitting functions denoted by (3,1;3,1) for hydrogen, (4,4;4,4) 

for boron, carbon, nitrogen, oxygen, and fluorine, (5,4;5,4) for silicon, phos

phorus, sulphur, chlorine, and argon, and (5,5;5,5) for chromium, vanadium, 

germanium, bromine, and iodine were employed in the calculations. 

The orbital basis sets used were the s, p, d parts of the correlation-

consistent polarized valence basis set given by Dunning and coworkers [105, 
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106]. These sets are described by the general notation cc-pVnZ, where n in

dicates the quality of the basis functions: T for triple-zeta, Q for quadruple-

zeta, and 5 for quintuple-zeta. The cc-pVnZ basis sets were used for hydro

gen, the second-period elements boron through fluorine, and the third-period 

elements silicon through argon. The basis sets of double-zeta quality denoted 

by D Z V P or D Z V P 2 [107] — which are included in deMon — were employed 

for chromium, vanadium, germanium, bromine, and iodine. 

For hydrogen, cc-pVnZ basis sets consisted of n sets of s-type functions 

and p-type functions were used as polarization functions. For second- and 

third-period elements, the composition of the basis sets was as given in Table 

3-1. The d-type basis functions consisted of six cartesian components. 

Table 3-1. Composition of cc-pVnZ basis sets. 

basis set number of functions 

s-type p-type d-type 

second-period elements 

4 3 2 

5 4 3 

6 5 4 

third-period elements 

cc-pVTZ 5 4 2 

cc-pVQZ 6 5 3 

cc-pV5Z 7 6 4 

cc-pVTZ 

cc-pVQZ 

cc-pV5Z 
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The initial investigations carried out by Chong [18, 19] showed that 

u G T S / D F T calculations of CEBEs using the cc-pV5Z basis set were in ex

cellent agreement with experimental results. Nevertheless, application of 

this approach to relatively large molecules — and eventually to species large 

enough to be realistic models for extended systems — becomes prohibitively 

expensive as far as computational demands are concerned. A viable alter

native is to use smaller basis sets modified to improve the description of the 

core-hole state involved in C E B E calculations. Chong and coworkers [20] 

proposed a modification of the cc-pVTZ basis set based on an exponent scal

ing factor designed to provide a more efficient representation of the shielding 

effects associated with the partially ionized state. The scaled basis sets were 

thoroughly tested on a variety of molecules [20, 24, 25, 29] — including rela

tively large transition metal carbonyls and nitrosyls [22] — with remarkably 

good results. In fact, the performance of the scaled-pVTZ basis set was 

almost as good as that of the much larger cc-pV5Z set. 

For G T O basis functions, the scaling factor for the exponent is the square 

of the ratio of the effective nuclear charge 

where Z is the nuclear charge of the atom considered, o and o' are the scree

ning constants of the neutral molecule and the (partially) core-ionized cation, 

respectively. The screening constants were determined using the formulas 

provided by Clementi and Raimondi [108]. For boron through neon, they are 

given by 

(3.18) 
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o(ls) = 0.3 + 0 . 0 0 7 2 ( Z - 2) (3.19) 

CT(2S) = 1.7208 + 0.3601(Z - 3) (3.20) 

o(2p) = 2.5787 + 0.3326(Z - 5) (3.21) 

In the u G T S approach, the modified screening constants (due to the re

moval of two thirds of an electron from a core Is orbital) were calculated 

via 

In equation (3.24) the screening factor 2.5787 was arbitrarily partitioned 

into 1.8585 and 0.7202 in order to consider l s electron and 2s electron effects 

separately. A n equivalent parti t ion into 1.7208 ( ls) and 0.8579 (2s) had 

negligible effects [20]. The scaling factors determined from equation (3.18) 

[20] are shown in Table 3-2. Results of calculations performed wi th scaled-

p V T Z and scaled-pVQZ basis sets wi l l be presented in Chapter 4. 

(3.22) 

(3.23) 

1.8585 + 0.7202 + 0.3326(Z - 5) (3.24) 
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Table 3-2. Scaling factors (uGTS) for second-period atoms. 

45 

a t o m Is 2s 2p 

B 1.0873268 1.4985434 1.5771700 

C 1.0717755 1.3907759 1.4413679 

N 1.0609247 1.3211702 1.3570659 

0 1.0529234 1.2725484 1.2997082 

F 1.0467796 1.2366817 1.2581833 

Scaled basis sets were also employed within the A E - K S approach. In this 

case, screening constants for a fully ionized cation are needed. For Is and 2s 

orbitals, they were calculated by 

o'(ls) = 0.0072(Z - 2) (3.25) 

a'(2s) = 1.7208 + 0 . 3 6 0 1 ( 2 - 3 ) (3.26) 

Three different 2p scaling factors were obtained and tested. The screening 

constants were determined using different partition schemes as follows 

a J(2p) = 1.8585 + 0.7202 + 0.3326(Z - 5) (3.27) 
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o'n(2p)=(^j 1.7208 + 0.8579 + 0 . 3 3 2 6 ( 2 - 5 ) (3.28) 

o'HI(2p) = 2.5787 + 0.3326(zT - 5) (3.29) 

The corresponding scaling factors from equation (3.18) are given in Table 

3-3. 

Table 3-3. Scaling factors (AE-KS) for second-period atoms. 

atom ls 2s 2p(I) 2p(II). 2p(III) 

B 1.1323609 1.7854975 1.9147939 1.8369636 1.6034193 

C 1.1085960 1.6102784 1.6922230 1.6347254 1.4610248 

N 1.0920626 1.4985005 1.5560007 1.5106066 1.3727422 

0 1.0798969 1.4211246 1.4642723 1.4268460 1.3127300 

F 1.0705703 1.3644409 1.3983809 1.3665784 1.2693126 

Another type of basis set, labeled as c c - p C V T Z [109], was also tested in 

A E - K S calculations. It represents an extension of the c c - p V T Z set developed 

to treat core and core-valence correlation effects more efficiently. The new 

basis set of triple-zeta quality adds two s-type, two p-type, and one d-type 

functions to the original set. Therefore, the number of basis functions grows 
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from [4s3p2d] (Table 3-1) for cc-pVTZ to [6s5p3d] for cc-pCVTZ, but the 

latter is still smaller than a cc-pV5Z set, and it is a legitimate option for 

the treatment of fairly large systems. The results of the A E - K S calculations 

with scaled-pVTZ and cc-pCVTZ sets will be discussed in Chapter 6. 



Chapter 4 

Applications of the uGTS Model 

The results of calculations of core-electron binding energies using the un

restricted generalized transition state approach described in Section 3.1 are 

contained in this chapter. Extensive calculations by Chong and coworkers 

[18-25] have already demonstrated that the u G T S / D F T approach yields C , 

N , O, and F C E B E s in very good agreement with experiment. Thus, the in

vestigations reported in this chapter represent an extension of this approach 

to boron-containing molecules, to some additional isomer cases, and to the 

third-period elements Si , P, S, CI, and A r . 

A l l calculations were performed using experimental geometries [110] of the 

neutral parent molecules and the functional labeled B88 /P86 , which consists 

of Becke's 1988 exchange functional [88] and Perdew's 1986 correlation func

tional [87]. The B 8 8 / P 8 6 combination and some other functional choices 

available in deMon were tested by Chong [18]. The results obtained showed 

48 
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that the B 8 8 / P 8 6 functional delivers the best performance in uGTS-based 

calculations of C E B E s . 

Relativist ic effects must be taken into account when calculating large 

binding energies such as those of core-level electrons because the velocity of 

an electron in an atom's inner shell is not negligible compared to the velocity 

of light [33]. The results of the calculations for second-period elements were 

modified wi th approximate relativistic corrections, based on the studies by 

Pekeris [111] for two-electron ions. The corrections were estimated wi th the 

following empirically derived equation [19] 

Crel = A I* a (4.1) 

where Crei is the relativistic correction, Inrei is the non-relativistic C E B E 

in eV, A = 2.198 • 1(T 7 , and B = 2.178. A and B are two fitting pa

rameters of the relation between the relativistic correction and the non-

relativistic C E B E s for Pekeris' two-electron ions. Relativist ic corrections 

for core-ionization energies of third-period elements were not available. 

4.1 B o r o n - C o n t a i n i n g M o l e c u l e s 

The results for boron C E B E s are summarized in Tables 4-1 and 4-2. The 

range of experimental C E B E s [40, 112] is almost 10 eV, from 192.9 eV for 

B H 3 P ( C H 3 ) 3 to 202.8 eV for B F 3 . The C E B E s of C , N , O, and F were also 

calculated and are shown in Tables 4-3 and 4-4. 
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Table 4-1. Basis set convergence in the calculation of B ls energies (in eV) with 

unsealed basis sets. Calculated CEBEs include relativistic corrections from equa

tion (4.1). 

molecule c c - p V T Z c c - p V Q Z c c - p V 5 Z exper iment 

B F 3 
202.44 202.21 202.17 202.80 

BC1 3 199.83 199.50 199.45 199.80 

B B r 3 199.19 198.84 198.80 199.00 

B I 3 198.25 197.86 197.80 197.80 

B 196.84 196.59 196.56 196.50 

B H 3 C O 195.59 195.34 195.31 195.15 

B H 3 P F 3 195.16 194.84 194.79 194.69 

B H 3 N H 3 194.46 194.17 194.14 193.73 

B H 3 C N C H 3 194.07 193.82 193.78 193.60 

B F 3 P H 3 199.54 199.31 199.28 

Average absolute deviations ( A A D ) and maximum deviations ( M D ) of 

the calculated C E B E s from the experimental values and from the estimated 

complete basis set (CBS) limits are given in Table 4-5. The estimated C B S 

limits for 19 of the test cases were determined from the results of the cor

responding c c - p V T Z , cc -pVQZ, and cc-pV5Z calculations, according to the 

empirically derived equation [113] 

A(x) = A(oo) + B e " (4.2) 
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where x is the cardinal number of the basis set (3, 4, 5 for T Z , Q Z , 5Z, 

respectively) and A(o6) is the estimated C B S l imit for the property. 

Table 4-2. Calculations of B core-electron binding energies (in eV) with scaled 

basis sets. Calculated CEBEs include relativistic corrections from equation (4.1). 

molecule scaled-pVTZ scaled-pVQZ experirru 

B F 3 202.23 202.19 202.80 

B C 1 3 199.54 199.50 199.80 

BBr 3 198.86 198.83 199.00 

BI 3 197.89 197.84 197.80 

B H 3 C O 195.37 195.33 195.15 

B H 3 P F 3 194.90 194.83 194.69 

B H3NH3 194.20 194.16 193.73 

B H 3 C N C H 3 193.85 193.81 193.60 

BH 3 N(CH 3 ) 3 
193.57 193.37 

BH 3 P(CH 3 )3 193.00 192.93 

B 196.63 196.58 196.50 

B 5H9 — base 196.27 196.10 

B 5H9 — apex 194.26 194.20 

1,5- B 3 C 2 H 5 196.28 196.00 

1,6 — B 4C2H6 195.67 195.40 

B(OCH 3) 3 
197.52 197.80 

B(CH 3 ) 3 
195.91 196.40 

B F 3 P H 3 199.30 199.28 

B 3N3H6 196.08 
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Table 4-3. Basis set convergence in the calculation of C, N, O, and F Is energies 

(in eV) with unsealed basis sets. Calculated CEBEs include relativistic corrections 

from equation (4.1). 

molecule c c - p V T Z c c - p V Q Z c c - p V 5 Z exper iment 

B H 3 C O 296.03 295.74 295.70 296.18 

B H 3 C N C H 3 294.21 293.91 293.87 294.06 

B H 3 C N C H 3 293.36 293.12 293.07 293.43 

B H 3 N H 3 408.64 408.25 408.20 408.41 

B H 3 C N C H 3 407.43 407.08 407.03 407.13 

B H 3 C O 542.29 541.87 541.80 542.05 

B F 3 
695.24 694.72 694.65 694.80 

B H 3 P F 3 695.41 694.89 694.82 694.30 

B F 3 P H 3 692.58 692.10 692.03 

For the 9 cases studied with the cc-pVQZ and cc-pV5Z basis sets and the 

17 cases investigated with the cc-pVTZ basis set, the A A D from experiment 

for the boron CEBEs was smallest for cc-pV5Z, and the cc-pVQZ perfor

mance was almost as good as that of cc-pV5Z. It is also observed that with 

exponent scaling the results from the triple-zeta basis set (scaled-pVTZ) sig

nificantly improved upon those from the corresponding unsealed basis set 

(cc-pVTZ), and they were brought much closer to the results obtained from 

cc-pV5Z calculations. Exponent scaling did not have an appreciable effect on 

the performance of the pVQZ basis set as far as agreement with experimental 
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Table 4-4. Calculations of C, N , O, and F core-electron binding energies (in 

eV) with scaled basis sets. Calculated C E B E s include relativistic corrections from 

equation (4.1). 

molecule s c a l e d - p V T Z s c a l e d - p V Q Z exper iment 

B H 3 C O 295.74 295.72 296.18 

B H 3 C N C H 3 293.93 293.90 294.06 

B H 3 C N C H 3 293.12 293.10 293.43 

B ( O C H 3 ) 3 
292.36 292.20 

B H 3 N ( C H 3 ) 3 
292.27 291.97 

1,6 — B4 C 291.59 291.30 

B H 3 P ( C H 3 ) 3 ; 291.28 290.96 

1 , 5 - B 3 C 2 H 5 290.52 290.20 

B H 3 N H 3 408.28 408.23 408.41 

B H 3 C N C H 3 407.08 407.05 407.13 

B H 3 N ( C H 3 ) 3 407.23 406.68 

B H 3 C O 541.86 541.83 542.05 

B ( O C H 3 ) 3 538.49 538.30 

B F 3 694.71 694.69 694.80 

B H 3 P F 3 694.88 694.85 694.30 

B F 3 P H 3 692.03 692.06 

B 3 N 3 H6 405.01 

results is concerned. However, comparisons wi th the estimated C B S limits 

are more meaningful i f the aim is to design an efficient basis set applicable 
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Table 4-5. Average Absolute Deviation (in eV) and Maximum Deviation (in eV) 

of calculated core-electron binding energies from experiment and from CBS. The 

number of test cases is given in parentheses. 

basis set deviations from experiment deviations from CBS 

A A D M D A A D M D 

boron test cases 

cc-pVTZ 0.36 (17) + 0.73 0.34 (10) 0.46 

cc-pVQZ 0.24 ( 9) - 0.59 0.05 (10) 0.07 

cc-pV5Z 0.23 ( 9) - 0.63 0.01 (10) 0.01 

scaled-pVTZ 0.24 (17) - 0.57 0.07 (10) 0.10 

scaled-pVQZ 0.24 ( 9) - 0.64 0.03 (10) 0.06 

CBS 0.23 ( 9) - 0.64 

all test cases 

cc-pVTZ 0.41 (32) + 1.11 0.38 (19) 0.60 

cc-pVQZ 0.25 (17) ± 0.59 0.06 (19) 0.08 

cc-pV5Z 0.26 (17) - 0.63 0.01 (19) 0.01 

scaled-pVTZ 0.26 (32) + 0.58 0.07 (19) 0.10 

scaled-pVQZ 0.24 (17) - 0.61 0.04 (19) 0.06 

CBS 0.26 (17) - 0.64 

to large molecules. Also, experimental observations are affected by exper

imental error whereas the C B S l imi t gives a fixed value. Table 4-5 shows 

that the cc-pV5Z basis set approximated the C B S l imi t very well and that 
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the scaled-pVTZ basis set also performed satisfactorily. In the case of the 

scaled-pVQZ basis set, results do show some improvement upon those from 

cc-pVQZ calculations when compared with the CBS limit. 

The effect of relativistic corrections is either very small or negligible for 

boron CEBEs. This was expected from the fact that the relativistic correc

tion calculated via equation (4.1) was found to be only 0.02 eV for the boron 

ls energies. 

The results for the CEBEs of all five second-period elements investigated 

— 32 cases with pVTZ and 17 cases with pVQZ and pV5Z — gave an A A D 

from experiment of 0.26 eV for both the cc-pV5Z and scaled-pVTZ basis 

sets. This compares well with a previous study [24] of 66 CEBEs of small 

closed-shell molecules, in which the A A D was found to be 0.22 eV. 

In the calculations with scaled basis sets, only the atom with the core hole 

is treated differently by making use of exponent scaling. Equations (3.19) 

through (3.21) can be rewritten as 

CT(1S) = 0.3 + 0.0072(n2s + n2p) (4.3) 

o{2s) = 1.7208 + 0.3601(n2s + n2p - 1) (4.4) 

o{2p) = 2.5787 + 0.3326(n2p - 1) (4.5) 

where n2s and n2p can be obtained from population analysis [73], and a 

general-scaled basis set can be constructed by calculating new screening con

stants from equations (4.3) through (4.5) and the corresponding scaling fac-
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tors from equation (3.18), for each of the atoms in a given molecule. The 

resulting basis set was labeled gs-pVTZ when obtained from the cc-pVTZ 

set, and was tested in calculations of CEBEs for 12 of the test cases reported 

in this section. The results are given in Table 4-6, where they are compared 

with those from scaled-pVTZ basis sets. Table 4-7 presents an AAD-based 

analysis of the performance of the gs-pVTZ basis set. 

Table 4-6. Calculations of core-electron binding energies (in eV) with the gs-

p V T Z basis set. C E B E s include relativistic corrections from equation (4.1). 

molecule s c a l e d - p V T Z g s - p V T Z 

B F 3 202.23 202.22 

B 196.63 196.60 

B H 3 C O 195.37 195.33 

B H3NH3 194.20 194.15 

B H 3 C N C H 3 193.85 193.81 

B H 3 C O 295.74 295.74 

B H 3 C N C H 3 293.93 293.92 

B H 3 C N C H 3 293.12 293.11 

B H 3 N H 3 408.28 408.25 

B H 3 C N C H 3 407.08 407.07 

B H 3 C O 541.86 541.84 

B H 3 P F 3 694.71 694.67 
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Table 4-7. Deviation analysis (in eV) of the gs-pVTZ basis set performance for 

the 12 cases reported in Table 4-6. 

basis set deviations from experiment deviations from CBS 

A A D A A D 

scaled-pVTZ 0.25 0.07 

g s - p V T Z 0.25 0.04 

cc-pV5Z 0.27 0.01 

Although the use of generalized scaling helped to improve upon the per

formance of the single-atom scaling approach for the 12 cases investigated 

(this is reflected by the A A D from CBS), the gain is relatively small and 

is not justified by the large amount of additional effort that is required for 

obtaining the scaling factors and gs-pVTZ basis sets for all the atoms. 

4.2 I somers o f C 3 H 5 N O 

The total energies, relative energies with respect to the most stable isomer 

(ethyl isocyanate), and dipole moments of four isomers of C 3 H 5 N O are sum

marized in Table 4-8. Figure 4-1 shows the structures and atom numbering 

schemes for the isomers. For the three species with lowest energies (ethyl 

isocyanate, 2-azetidinone, 3-hydroxypropanenitrile) it is observed that the 

calculated dipole moments compare very well with the corresponding expe

rimental values [114]. 
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Table 4-8. Total energies (in eV), relative energies (in eV) with respect to ethyl 

isocyanate, and dipole moments (in D) for the isomers of C3H5NO. 

isomer E A E p c a ; pobs

 a 

ethyl isocyanate -6732.0304 (0.0) 2.848 2.81±0.02 

2- azetidinone -6731.5353 0.4951 3.783 3.828 

3- hydroxypropanenitrile -6731.2750 0.7554 3.122 3.166 

lactonitrile B -6731.2302 0.8002 3.139 

lactonitrile A -6731.1962 0.8342 2.982 

a reference 114 

Two conformers have been reported [115] for the fourth isomer, lactoni

trile. They were labeled A and B by the authors. Their microwave spec

troscopic measurements indicated that conformer A was more stable than 

conformer B. D F T calculations were performed for both conformers using 

the experimental geometries reported by the authors, but the results did 

not agree with those from the microwave experiment, the total energy of 

conformer B having been found to be lower than that of conformer A. In 

addition, geometry optimizations were carried out (with the semiempirical 

method Austin Model 1, or A M I , [116] available in the software package 

called WinMOPAC Version 2 [117]) with both conformer A and B structures 

as starting geometries, and in both cases the calculations converged to the 

geometry of conformer B. 
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A : 2-azetidinone 

B : e thy l isocyanate 

F i g u r e 4-1. Numbering scheme for the isomers of C3H5NO. Hydrogen atoms are 

not shown. 

Table 4-9 summarizes the C E B E s of the C 3 H 5 N O isomers. They are also 

shown schematically in Figure 4-2. Only the C E B E s of 2-azetidinone have 

been determined experimentally [41], and in this case the agreement between 
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Table 4-9. Core-electron binding energies (in eV) for the isomers of C3H5NO. 

Calculated CEBEs include relativistic corrections from equation (4.1) 

i somer a t o m C E B E exper iment dev i a t i on 

2-azetidinone 0 537.35 537.32 +0.03 

N 405.95 405.76 +0.19 

C I 293.77 

C2 292.43 

C3 291.41 

ethyl isocyanate 0 539.44 

N 405.96 

C I 294.60 

C2 292.59 

C3 291.28 

3-hydroxypropanenitrile 0 539.41 

N 405.71 

C3 293.11 

C I 292.85 

C2 292.70 

lactonitrile B 0 539.57 

N 405.67 

C2 294.09 

C I 292.70 

C3 291.67 

lactonitrile A 0 539.60 

N 405.65 

C2 294.05 

C I 292.67 

C3 291.65 
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A 1 I | Carbon 

B 1 1 1 
C 1 1 1 
D 

i i i i 
291 293 295 
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i 1 
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Nitrogen 
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Oxygen 

B 1 
C 1 
D 
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537 539 541 

Core-Electron Binding Energy /eV 

Figure 4-2. Calculated (solid lines) and available experimental (dashed lines) CEBEs for 

the isomers of C3H5NO. 
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calculated and observed energies is very good. All isomers possess a distinc

tive core-ionization spectrum, a demonstration of the analytical potential of 

ESCA. For 2-azetidinone, ethyl isocyanate, and lactonitrile, three clearly dis

tinct C Is energies are observed. In the case of 3-hydroxypropanenitrile, the 

C Is energies are still different but much closer to one another. The N Is 

energies are all similar, as are the O Is energies, except for the C E B E value 

of 2-azetidinone which is considerably lower — about 2 eV — than those of 

the other three species. It should be noted that, with the increasing avail

ability of high resolution synchrotron radiation facilities, the experimental 

observation of very close C E B E values has become possible, as evidenced by 

the results of a recent investigation of the photoelectron spectra of propene 

and 2-methylpropene [51]. For the two reported conformers of lactonitrile, 

only a very small difference between their corresponding CEBEs was found. 

E S C A is, however, not capable of detecting small conformational changes 

[32], since they do not represent a substantial modification of the chemical 

environment. 

4.3 Core-Electron Binding Energies of Si, P, S, CI, and A r 

The results of the calculations of CEBEs of Si, P, S, CI, and Ar are sum

marized in Tables 4-10 through 4-13. All the values reported correspond 

to ionization from 2p orbitals, which is the most common experimentally 

studied transition in the case of third-period elements. Most experimental 

data [40, 112] are for 2p 3/ 2 energies — 3/2 is the value of the total angular 

momentum quantum number j, in the case of a 2p orbital j (= l±s) is either 
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Table 4-10. Basis set convergence in the calculation of Si 2p energies (in eV). 

Experimental results are for 2p transitions. 

molecule c c - p V T Z c c - p V Q Z c c - p V 5 Z exper iment 

S i F 4 112.72 113.03 111.86 111.75 

S i H C l 3 110.37 110.88 109.79 109.44 

S i H 3 C l 108.95 109.70 108.65 108.11 

S i H 3 B r 108.91 109.51 108.45 108.08 

S i H 2 F C H 3 109.01 109.58 108.51 108.01 

S i 2 H 6 0 108.83 109.41 108.36 107.81 

S i 2 H 6 S 108.39 109.00 107.96 107.45 

S i H 4 108.13 108.76 107.71 107.30 

S i H 3 C H 3 107.68 108.30 107.25 106.89 

3/2 or 1/2 (1 = 1, s = 1/2) — except for Si cases and some of the P, S, and 

CI cases where weighted averages — these are referred to as 2p energies — 

of spin-orbit doublets have been reported [112]. 

Irregularities associated wi th the convergence of the cc -pVnZ basis sets 

are observed especially in the case of Si C E B E s but also in most P cases. 

It should also be noticed that although S and CI C E B E s show the expected 

trend (TZ > Q Z > 5Z), the convergence is considerably slower than it is in the 

case of calculations for second-period elements (Section 4.1). The existence of 

irregularities has been confirmed by Dunning [118], who has pointed out that 

some of the problems are due to deficiencies in the d-set, and has suggested 

augmenting the cc -pVnZ sets via addition of high-exponent d-functions. A 
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Table 4-11. Basis set convergence in the calculation of P 2p energies (in eV). 

Experimental results are for 2p 3 / 2 transitions unless otherwise indicated. 

molecule cc-pVTZ cc-pVQZ cc-pV5Z experiment 

P F 5 145.39 145.35 144.25 144.65 <2p) 

P O F 3 144.20 144.18 143.10 143.25 ^ 

143.00 

P S F 3 143.41 143.43 142.38 142.68 ^ 

P F 3 142.78 142.87 141.93 142.05 ^ 

141.78 

P F 3 B H 3 143.46 143.53 142.53 141.79 

P O C l 3 142.04 142.09 141.05 141.35 t 2^ 

141.02 

P C 1 3 140.83 140.96 140.05 140.15 (2p> 

139.75 

P CI2CH3 139.79 139.95 139.04 138.88 ^ 

P H 3 138.21 138.44 137.57 137.33 ^ ) 

137.05 

P H 2 C H 3 137.83 137.98 137.10 136.55 

P 4 137.68 137.88 13.6.98 136.20 

set of augmenting (^-functions for sulphur (provided by Dunning [118]) was 

incorporated into the original cc -pVnZ basis sets (Section 3.2.1, Table 3-1) 

and was found to yield more accurate results. Therefore, al l S C E B E s were 
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calculated wi th the augmented cc-pVnZ basis sets which differ from those 

described in Section 3.2.1 by the inclusion of one more d-function. 

Table 4-12. Basis set convergence in the calculation of S 2p energies (in eV). 

Experimental results are for 2p$/2 transitions unless otherwise indicated. 

molecule cc-pVTZ cc-pVQZ cc-pV5Z experiment 

S F 6 180.69 180.52 179.90 181.00 <2p> 

180.29 

SF5C1 179.93 179.77 179.15 179.27 

S F 4 178.32 178.22 177.63 178.20 (2p> 

S 0 2 F 2 178.52 178.39 177.78 177.67 

N S F 3 177.79 177.67 177.07 176.97 

S 0 3 177.55 177.43 176.84 176.67 

SOF 2 177.01 176.90 176.31 176.20 

S0 2C1 2 176.91 176.71 176.13 176.05 

s o 2 175.83 175.63 175.06 174.82 

SOCl 2 175.47 175.33 174.72 174.53 

(CH3)2 S 0 173.01 172.94 172.35 171.91 

s 2C12 172.63 172.48 171.88 171.57 

o c s 172.35 172.22 171.63 170.69 

H 2 S 171.81 171.70 171.11 170.32 

P S F 3 171.35 171.20 170.61 170.30 <2p) 

C S 2 171.54 171.42 170.82 169.92 

C H 3 S H 171.10 170.98 170.39 169.40 

(CH 3) 2S 170.55 170.44 169.85 169.06 

(SiH3)2 S 170.36 170.22 169.64 168.60 
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Table 4-13. Basis set convergence in the calculation of Ar and CI 2p energies 

eV). Experimental results are for 2p 3 / 2 transitions unless otherwise indicated. 

molecule cc-pVTZ cc-pVQZ cc-pV5Z experiment 

Ar 249.91 249.48 249.18 248.62 

C I F O 3 217.96 217.33 216.39 216.27 

C I F 3 214.19 213.87 213.35 213.02 

C 1 F 211.16 210.84 210.39 209.19 

C I 2 
209.51 209.15 208.71 207.82 

S 0 2 C 1 2 208.84 208.50 208.07 207.49 

S F 5 C I 208.84 208.48 208.04 207.44 

P O C I 3 208.67 208.32 207.89 207.40 <2p) 

207.32 

H C 1 209.11 208.78 208.34 207.39 

C C I 4 208.38 208.07 207.62 207.02 

B C I 3 208.36 208.06 207.62 207.00 

S i C I 4 208.18 207.85 207.42 206.92 

C H C I 3 208.34 208.04 207.60 206.83 

I C I 208.22 207.85 207.40 206.68 

C H 2 C I 2 
208.21 207.89 207.45 206.66 

G e C l 4 
207.97 207.62 207.19 206.65 

P C I 3 207.83 207.44 206.99 206.60 ( 2 p ) 

206.42 

S O C l a 207.88 207.52 207.08 206.55 

C H 3 C I 208.00 207.67 207.22 206.25 

S i H 3 C I 207.88 207.53 207.10 206.22 

S2 C I 2 207.48 207.12 206.67 . 206.21 

CrC-2 C I 2 
207.87 207.47 207.04 206.18 

V O C I 3 207.61 207.23 206.79 206.10 

G e H 3 C I 207.31 206.98 206.56 205.67 
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Average absolute deviations from experimental results are given in Tables 

4-14 and 4-15. The AADs for Si and P CEBEs and the AADs from 2p energies 

(the vast majority of which are Si and P cases) clearly show the convergence 

irregularities in the basis sets. Calculations are in better agreement with 

experimental 2p energies than they are with 2p 3/ 2 energies. This is related 

to the fact that the relativistic spin-orbit coupling effects which cause the 

splitting of the 2p transition into a doublet cannot be explicitly incorporated 

or treated in deMon calculations. 

Table 4-14. Average Absolute Deviation (in eV) of calculated core-electron bind

ing energies from experiment sorted by element. The number of test cases is given 

in parentheses. 

basis set S i P S CI 

AAD from 2p energies 

0.91 (9) 0.79 (8) 

1.48 (9) 0.87 (8) 

0.41 (9) 0.22 (8) 

AAD from 2p3/2 energies 

cc-pVTZ 1.24 (8) 1.12 (17) 

cc-pVQZ 1.35 (8) 0.99 (17) 

cc-pV5Z 0.40 (8) 0.45 (17) 

cc-pVTZ 

cc-pVQZ 

cc-pV5Z 

1.50 (23) 

1.14 (23) 

0.68 (23) 
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Table 4-15. Average Absolute Deviation (in eV) of calculated core-electron bind

ing energies from experiment for all test cases. The number of test cases is given 

in parentheses. 

basis set A A D from 2p energies A A D from 2p 3/ 2 energies 

cc-pVTZ 0.84 (22) 1.32 (49) 

cc-pVQZ 1.06 (22) 1.12 (49) 

cc-pV5Z 0.38 (22) 0.55 (49) 

In general, the results obtained with the cc-pV5Z basis sets are reasonably 

good, especially if the comparison is made with experimental 2p energies. In 

fact, the A A D (from 2p energies) for P cases (0.22 eV) is almost as good 

as the A A D obtained in calculations of CEBEs of second-period elements 

[18, 19, 20, 24], in which a larger number of cases were explored. However, 

the strongest (and, as reflected by the number of cases in Table 4-15, most 

frequently reported) transition is usually the ionization from the 2p 3/ 2 level, 

with which calculated CEBEs do not agree so well, particularly for the CI 

cases. 

It is expected that the performance of the uGTS approach to the CEBEs 

of third-period elements will improve once the deficiencies in the basis set 

have been corrected and relativistic effects can be calculated or be available 

to be included as corrections to the calculated CEBEs. 



Chapter 5 

The A E - K S Approach: Test of Functionals 

The unrestricted generalized transition state model, combined wi th density 

functional theory, has been shown to be an excellent approach to the calcula

t ion of core-electron binding energies of second-period elements (Chapter 4). 

Nevertheless, as discussed in Chapter 3, the u G T S model is an approximation 

to the exact core-ionization energies. This and the next chapter w i l l explore 

the application of D F T to the determination of molecular C E B E s using the 

A E - K S method, in which no model error is introduced because calculations 

are performed for a fully ionized final state rather than for a transition state 

(as in the u G T S ) . 

A set of seventeen cases, representing a reliable database of observed 

C E B E s , was selected to perform all the calculations reported in this chapter. 

The purpose of using this small database was to reduce experimental error. 

Each of the observed C E B E s has been measured (or recalibrated) at least 

69 
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four times, and the value that is used for comparison wi th calculations was 

obtained by taking a weighted average of the corresponding experimental 

results, based on the reported (or estimated) uncertainties. Complete details 

about the C E B E database are given in the Appendix. A l l calculations were 

carried out at the experimental geometries [110]. 

Ten functional combinations — all available in deMon-KS [119] — were 

studied using the A E - K S procedure. The functional compositions are given 

in Table 5-1. 

Table 5-1. Composition of exchange-correlation functionals. 

functional exchange correlation 

P86/P91 Perdew-Wang (1986) Perdew-Wang (1991) 

P86/P86 Perdew-Wang (1986) Perdew (1986) 

B88/P86 Becke (1988) Perdew (1986) 

P91/P86 Perdew-Wang (1991) Perdew (1986) 

B88/P91 Becke (1988) Perdew-Wang (1991) 

P91/P91 Perdew-Wang (1991) Perdew-Wang (1991) 

B 8 8 / L A P Becke (1988) Laplacian 

P 9 1 / L A P Perdew-Wang (1991) Laplacian 

P 8 6 / L A P Perdew-Wang (1986) Laplacian 

LSD LSD Vosko-Wilk-Nusair 



The AE-KS Approach: Test of Functionals 71 

The functionals developed by Becke (B88 [88]), Perdew (correlation P86 

[87]), and Perdew and Wang (exchange P86 [86], P91 [78]) are of the G G A 

type (discussed in Chapter 2, Section 2.2.2). The Laplacian functional [120] 

is a non-local generalization of a gradient-free correlation functional [121] 

designed to involve the kinetic energy density and hence the Laplacian of the 

electron density. The L S D functional tested employs the Vosko-Wilk-Nusair 

parametrization [80] for the correlation energy. 

5.1 M o d e l Error and Functional Error 

In the u G T S / D F T method, the deviation of the calculated C E B E s from the 

observed values can be represented as follows 

deviation = EE + ME + RCE + BSE + FE (5.1) 

where the terms on the right-hand side are the experimental error ( E E ) , the 

model error ( M E ) , the relativistic correction error ( R C E ) , the basis set error 

(BSE) , and the functional error ( F E ) , respectively. M E is obtained as the 

difference between the u G T S result and the A E - K S result. R C E is assumed 

to be negligible, and so are E E and B S E . The justification for neglecting the 

experimental and basis set errors is that the calculations were l imited to the 

aforementioned database of reliable observed C E B E s , and were carried out 

wi th the cc-pV5Z basis sets (which have been shown to perform almost as 

efficiently as a complete basis set [20, 24]). F E is calculated from equation 

(5.1) after the deviation and the model error have been determined from the 
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results of the D F T calculations. 
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Table 5-2. Error analysis (in eV) for uGTS calculations with the B88/P86 func

tional. 

molecule devia t ion mode l error funct ional error 

C O +0.17 0.49 -0.32 

C 0 2 
-0.35 0.53 -0.88 

C H 4 +0.12 0.65 -0.53 

C F 4 -0.59 0.62 -1.21 

C C I 4 +0.01 0.74 -0.73 

C +0.12 0.57 -0.45 

N 2 
+0.09 0.49 -0.40 

N N O -0.08 0.58 -0.66 

N N O -0.04 0.53 -0.57 

C H 3 C N 0.00 0.67 -0.67 

C O +0.17 0.66 -0.49 

co 2 +0.10 0.66 -0.56 

H 2 o +0.14 0.67 -0.53 

H C O O H -0.08 0.70 -0.78 

H C O O H +0.19 0.70 -0.51 

C H 3 O H +0.08 0.80 -0.72 

C F 4 
-0.42 0.77 -1.19 
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Table 5-3. Error analysis (in eV) for uGTS calculations with the P86/P86 func

tional. 

molecule deviation model error functional error 

C O 0.85 0.57 +0.28 

co2 
0.35 0.51 -0.16 

C H 4 0.87 0.66 +0.21 

C F 4 0.11 0.58 -0.47 

C C 1 4 0.69 0.75 -0.06 

C 0.85 0.60 +0.25 

N 2 0.93 0.65 +0.28 

N N O 0.79 0.63 +0.16 

N N O 0.79 0.64 +0.15 

C H 3 C N 0.88 0.67 +0.21 

C O 1.10 0.66 +0.44 

co2 
0.87 0.51 +0.36 

H 2 0 1.10 0.76 +0.34 

H C O O H 0.88 0.71 +0.17 

H C O O H 1.12 0.71 +0.41 

C H 3 O H 1.01 0.77 +0.24 

C F 4 0.63 0.74 -0.11 

In the original study conducted by Chong [18], three of the functionals 

given in Table 5-1 were tested: B88 /P86 , P86 /P86 , and L S D . A n error anal-
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ysis based on equation (5.1) was carried out for each of them and the results 

are shown in Tables 5-2, 5-3, and 5-4. 

Table 5-4. Error analysis (in eV) for uGTS calculations with the LSD functional. 

molecule devia t ion mode l error funct ional error 

C O -3.05 0.44 -3.49 

co 2 -3.65 0.48 -4.13 

C H 4 -3.45 0.53 -3.98 

C F 4 -3.93 0.46 -4.39 

C C 1 4 -3.31 0.43 -3.74 

C 2 H6 -3.40 0.51 -3.91 

N 2 
-3.87 0.49 -4.36 

N N O -4.03 0.49 -4.52 

N N O -4.02 0.49 -4.51 

C H 3 C N -4.02 0.54 -4.56 

C O -4.44 0.55 -4.99 

co 2 -4.55 0.55 -5.10 

H 2 0 -4.72 0.61 -5.33 

H C O O H -4.73 0.55 -5.28 

H C O O H -4.52 0.57 -5.09 

C H 3 O H -4.67 0.62 -5.29 

C F 4 -5.68 0.60 -6.28 
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The reason the B88 /P86 functional performs so well in u G T S calculations 

of C E B E s is clear from examination of Table 5-2. The model error is always 

a positive quantity whereas the functional error is always negative. This 

results in a fortuitous partial cancellation of errors which helps to produce 

calculated energies in impressive agreement with observed values. For the 17 

cases in the database, the A A D from experiment is only 0.17 eV. 

The functional error of the P86 /P86 combination is smaller than that of 

the B 8 8 / P 8 6 functional but it is a positive quantity for most of the cases 

investigated (Table 5-3). Therefore, the functional error adds to the model 

error and causes the performance of P86 /P86 to be considerably inferior — 

the A A D from experiment is 0.82 eV — to that of B88 /P86 . 

The L S D had been found to be incapable of yielding C E B E s wi th accept

able accuracy [18]. Table 5-4 shows that this is due to a large error associated 

wi th the functional itself, which leads to a notable underestimation of the 

core-ionization energies. 

5.2 Functional Performance in A E - K S Calculations 

The results of the study of the ten functional combinations using the A E - K S 

procedure are presented in this Section. Table 5-5 shows their performance 

analyzed on the basis of the deviations of the calculated C E B E s from the 

corresponding experimental values. 

The combination of the Perdew-Wang functionals (P86/P91) yielded the 

best results with an A A D from experiment of 0.15 eV, and surpassed the 

performance of B88 /P86 in the u G T S approach whose A A D was 0.17 eV 
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Table 5-5. Average Absolute Deviation (in eV) and Maximum Deviation (in eV) 

of the core-electron binding energies (calculated with the functionals in Table 5-1) 

from experiment. A l l results include data from the 17 cases in the database, ex

cept for the P91/P86 and P 9 1 / L A P results which include 15 cases (calculations 

for C C U and C2H6 failed to converge). 

funct ional A A D M D 

P86/P91 0.15 -0.66 

P86/P86 0.26 -0.47 

B88/P86 0.65 -1.21 

P91/P86 0.66 -1.11 

B88/P91 0.81 -1.44 

P91/P91 0.87 -1.40 

B 8 8 / L A P 0.88 +1.14 

P 9 1 / L A P 0.91 +1.16 

P 8 6 / L A P 1.67 +2.05 

LSD 4.64 -6.27 

(Section 5.1). This is a particularly important result because the model 

error had already been eliminated (by employing the A E - K S method) and a 

functional has been found that leads to a sufficiently small error to provide 

highly accurate C E B E s . The core-ionization energies for each of the database 

cases (obtained wi th the P86 /P91 functional) are shown in Table 5-6. Except 

for the carbon cases in C 0 2 and C F 4 , and the fluorine case, al l the C E B E s 
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deviate from the observed values by 0.20 eV at most. In fact, i f these three 

"problem" cases were ignored, the A A D would drop to 0.08 eV. 

Table 5-6. Core-electron binding energies (in eV) calculated with the P86/P91 

functional. Calculated CEBEs include relativistic corrections from equation (4.1). 

molecule C E B E exper iment 

C O 296.25 296.21 

co 2 297.28 297.69 

C H 4 290.87 290.84 

C F 4 301.23 301.89 

CC1 4 296.35 296.36 

C 2H6 290.75 290.72 

N 2 410.01 409.98 

N N O 412.52 412.59 

N N O 408.59 408.71 

C H 3 C N 405.53 405.64 

C O 542.73 542.55 

co 2 541.36 541.28 

H 2 0 539.98 539.90 

H C O O H 538.86 538.97 

H C O O H 540.83 540.63 

C H 3 O H 539.09 539.11 

C F 4 695.14 695.56 
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The performance of the Perdew-Wang-Perdew (P86/P86) combination is 

also good and represents a remarkable improvement upon the u G T S results 

obtained wi th this functional ( A A D of 0.26 eV for A E - K S compared wi th 

A A D of 0.82 eV for u G T S ) . O n the other hand, the performance of the 

B 8 8 / P 8 6 degraded considerably (from an A A D of 0.17 eV for u G T S to an 

A A D of 0.65 eV for A E - K S ) . Both results are consistent with the observations 

made in the previous section. 



Chapter 6 

The A E - K S Approach: Test of Basis Sets 

The results presented in Chapter 5 have shown that the P86 /P91 functional 

combination is the best option for D F T calculations of C E B E s wi th in the 

A E - K S approach. The tests were carried out wi th a highly efficient though 

large (computationally demanding) basis set. It was pointed out in Chapter 

3 that the use of smaller basis sets is essential to extend calculations to 

increasingly large systems as the ultimate goal is to be able to treat systems 

which can serve as realistic models for extended structures such as polymers 

and surfaces, on which most current experimental investigations are being 

focused. 

A number of possible alternatives to the cc-pV5Z set (which was the only 

basis used in the in i t ia l tests) were considered in Section 3.2.1, and their 

performances wi l l be presented and discussed in this chapter. 

A l l calculations reported in this chapter were performed wi th the P86 /P91 
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functional at the experimental geometries of the neutral parent molecules 

[110]. The database introduced in Chapter 5 was employed as well as some 

additional fluorine cases (there is only one case in the database) and some 

boron cases (not represented in the database). Only for H F was it possible 

to obtain a weighted average (details are given in the Appendix) . 

6.1 Scaled Basis Sets 

A convergence study was carried out for the cc-pVnZ basis sets and the 

results are shown in Table 6-1. The estimated complete basis set l imits were 

calculated using equation (4.2). It is observed that the cc-pV5Z set is indeed 

highly efficient as evidenced by the fact that except for the O case in C O (with 

a deviation of only 0.01 eV) all the C E B E s are equal to the corresponding 

C B S l imits . 

Table 6-2 summarizes the results of calculations carried out wi th the 

scaled basis sets constructed by means of the three different scaling proce

dures described by equations (3.25) through (3.29), and compares their per

formances with the C B S limits (from Table 6-1) and with the experimental 

energies. A more general analysis, based on deviations from both experiment 

and C B S , of al l six basis sets studied is given in Table 6-3. 

The average absolute deviations indicate that exponent scaling is not an 

effective means of describing the core-hole state in the A E - K S method, in 

contrast to the results obtained in u G T S calculations (Section 4.1). In fact, 

only one of the scaled basis sets (III-pVTZ) has consistently improved upon 

the A A D s of the original c c - p V T Z sets, but the extent of improvement is 
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T a b l e 6 - 1 . Basis set convergence in AE-KS/P86-P91 calculations of core-electron 

binding energies (in eV). Calculated CEBEs include relativistic corrections from 

equation (4.1). 

molecu le c c - p V T Z c c - p V Q Z c c - p V 5 Z C B S exper imen t 

C O 296.55 296.28 296.25 296.25 296.21 

C 0 2 297.54 297.31 297.28 297.28 297.69 

C H 4 291.19 290.90 290.87 290.87 290.84 

C F 4 301.46 301.24 301.23 301.23 301.89 

C C 1 4 296.77 296.39 296.35 296.35 296.36 

C 291.08 291.78 290.75 290.75 290.72 

N 2 
410.34 410.04 410.01 410.01 409.98 

N N O 412.83 412.54 412.52 412.52 412.59 

N N O 408.90 408.61 408.59 408.59 408.71 

C H 3 C N 405.88 405.56 405.53 405.53 405.64 

C O 543.17 542.78 542.73 542.72 542.55 

co2 
541.77 541.40 541.36 541.36 541.28 

H 2 0 540.29 539.98 539.98 539.98 539.90 

H C O O H 539.24 538.88 538.86 538.86 538.97 

H C O O H 541.23 540.86 540.83 540.83 540.63 

C H 3 O H 539.47 539.11 539.09 539.09 539.11 

C F 4 695.60 695.18 695.14 695.14 695.56 

H F 694.62 694.27 694.26 694.26 694.23 

C I F 694.80 694.36 694.32 694.32 694.36 

B F 3 695.10 694.65 694.60 694.59 694.80 

F 2 
696.98 696.56 696.52 696.52 696.69 

B F 3 202.36 202.13 202.10 202.10 202.80 

B 2H6 196.67 196.42 196.40 196.40 196.50 

B H 3 C O 195.40 195.16 195.14 195.14 195.10 

B H 3 N H 3 194.25 193.97 193.94 193.94 193.73 



The AE-KS Approach: Test of Basis Sets 82 

Table 6-2. AE-KS/P86-P91 calculations of core-electron binding energies (in 

eV) with scaled basis sets. Calculated C E B E s include relativistic corrections from 

equation (4.1). 

molecule I - p V T Z I I - p V T Z I I I - p V T Z CBS exper iment 

C O 296.68 296.67 296.65 296.25 296.21 

C 0 2 297.55 297.55 297.54 297.28 297.69 

C H 4 291.03 291.02 291.01 290.87 290.84 

C F 4 301.35 301.35 301.35 301.23 301.89 

CC1 4 296.45 296.44 296.43 296.35 296.36 

C 290.87 290.86 290.86 290.75 290.72 

N 2 410.42 410.40 410.33 410.01 409.98 

N N O 412.73 412.72 412.71 412.52 412.59 

NNO 408.88 408.84 408.76 408.59 408.71 

C H 3 C N 405.79 405.76 405.71 405.53 405.64 

CO 543.20 543.17 543.12 542.72 542.55 

co 2 541.79 541.77 541.70 541.36 541.28 

H 2 0 540.39 540.35 540.28 539.98 539.90 

HCOOH 539.27 539.23 539.16 538.86 538.97 

HCOOH 541.22 541.19 541.12 540.83 540.63 

C H 3 O H 539.50 539.47 539.39 539.09 539.11 

C F 4 695.68 695.64 695.54 695.14 695.56 

HF 694.78 694.73 694.63 694.26 694.23 

C1F 694.96 694.92 694.82 694.32 694.36 

B F 3 695.15 695.11 695.01 694.59 694.80 

F 2 697.19 697.14 697.04 696.52 696.69 

B F 3 202.44 202.44 202.42 202.10 202.80 

B 2H6 196.67 196.67 196.67 196.40 • 196.50 

B H 3 C O 195.39 195.39 195.39 195.14 195.10 

B H 3 N H 3 194.25 194.21 194.21 193.94 193.73 
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Table 6-3. Average Absolute Deviation (in eV) of calculated core-electron bind

ing energies from experiment and from CBS. The number of test cases is given in 

parentheses. 

basis set A A D from experiment A A D from CBS 

database cases (17) 
cc-pVTZ 0.30 0.33 

cc-pVQZ 0.16 0.03 

cc-pV5Z 0.15 0.00 

I -pVTZ 0.33 0.32 

II-pVTZ 0.30 0.30 

III-pVTZ 0.26 0.25 

CBS 0.15 

all test cases (25) 

cc-pVTZ 0.35 0.34 

cc-pVQZ 0.16 0.03 

cc-pV5Z 0.16 0.00 

I -pVTZ 0.35 0.36 

II-pVTZ 0.33 0.34 

III-pVTZ 0.29 0.29 

CBS 0.16 

st i l l not significant (especially if compared with u G T S results). Examinat ion 

of the individual molecules reveals that, in general, B , O, and F C E B E s are 

difficult cases for the scaled basis sets. The I - p V T Z and I I - p V T Z sets do 
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not perform satisfactorily at a l l , and the performance of the I I I - p V T Z set 

is acceptable only for some of the cases. Results are reasonably good for 

"sp 3 " C cases and for most N cases (the N 2 C E B E is the only definitely poor 

result among the four cases studied), but C atoms involved in multiple bonds 

appear to be problematic (the C O molecule in particular). 

The difference between the I/II sets and the III sets lies in that I and 

II separate the effects of l s - and 2s-electrons on the screening factor for the 

2p functions whereas no such partition is included in III. The fact that the 

performance of the I I I - p V T Z basis set is better than that of the I / I I - p V T Z 

sets suggests that, as far as shielding effects on 2p-electrons are concerned, 

treating l s - and 2s-electrons as a whole may be a more efficient way of 

describing the core-hole state in the A E - K S method. 

6.2 Core-Valence Correlated Basis Sets 

It was mentioned in Chapter 3 that the core-valence correlated basis functions 

labeled as c c - p C V T Z [109] were another possible alternative to the use of the 

large cc-pV5Z set. Therefore, they were also tested in A E - K S calculations of 

core-electron binding energies. A summary of the results obtained is given in 

Table 6-4 and a comparison with c c - p V T Z and cc-pV5Z results is presented 

in Table 6-5. 

A significant improvement upon the c c - p V T Z results was achieved when 

the calculations were carried out using c c - p C V T Z basis functions (the A A D 

decreased more than half for a l l test cases in Table 6-4). It should be noted 

that although the c c - p C V T Z basis set is an augmented version of the original 
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Table 6-4. AE-KS/P86-P91 calculations of core-electron binding energies (in eV) 

with cc-pCVTZ basis sets. Calculated C E B E s include relativistic corrections from 

equation (4.1). 

molecule cc-pCVTZ experiment 

C O 296.27 296.21 

c o 2 297.28 297.69 

C H 4 290.93 290.84 

C F 4 301.17 301.89 

c c i 4 296.45 296.36 

C 290.80 290.72 

N 2 410.05 409.98 

NNO 412.55 412.59 

NNO 408.62 408.71 

C H 3 C N 405.60 405.64 

CO 542.84 542.55 

c o 2 541.44 541.28 

H 2 0 539.95 539.90 

HCOOH 538.90 538.97 

HCOOH 540.88 540.63 

C H 3 O H 539.12 539.11 

C F 4 695.23 695.56 

HF 694.26 694.23 

C 1 F 694.43 694.36 

B F 3 694.74 694.80 

F 2 696.61 696.69 

B F 3 202.12 202.80 

B 2H6 196.43 196.50 

B H 3 C O 195.17 195.10 

B H 3 N H 3 193.98 193.73 
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Table 6-5. Average Absolute Deviation (in eV) of calculated core-electron bind

ing energies from experiment. The number of test cases is given in parentheses. 

basis set A A D from experiment 

database cases (17) 

cc-pVTZ 0.30 

c c - p C V T Z 0.17 

cc-pV5Z 0.15 

all test cases (25) 

cc-pVTZ 0.35 

c c - p C V T Z 0.17 

cc-pV5Z 0.16 

c c - p V T Z set (Section 3.2.1) the results are st i l l remarkable in that they al

most reproduce the A A D s of the cc-pV5Z set which is considerably more de

manding in computational terms. Moreover, for the database cases, the A A D 

of the c c - p C V T Z results is equal to the A A D obtained in the u G T S / B 8 8 - P 8 6 

calculations with the cc-pV5Z basis sets (Chapter 5). 

The results of additional calculations performed with c c - p V T Z and cc-

p C V T Z basis set are reported in Table 6-6. Seven molecules — all of which 

are larger than the species that comprise the test cases of the previous section 

— were studied, and the results obtained were highly accurate wi th an A A D 

from experiment of 0.07 eV and of 0.19 eV for c c - p C V T Z and c c - p V T Z , 

respectively. 
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If a l l 32 cases studied wi th the c c - p C V T Z basis set are considered, then 

the A A D from experiment is 0.15 eV, exactly the same as the A A D obtained 

for the 17 database cases with the cc-pV5Z basis set. 

Table 6-6. Calculations of core-electron binding energies (in eV) of larger molecu

les. Calculated CEBEs include relativistic corrections from equation (4.1). The 

experimental data for the aromatic compounds are a weighted average of the ob

served CEBEs (details are given in the Appendix). 

molecules c c - p V T Z c c - p C V T Z exper iment 

B 5 H 9 — apex 194.27 194.11 194.20 

B 5 H 9 — base 196.30 196.11 196.10 

290.58 290.33 290.39 

C 6 H 5 N H 2 291.51 291.25 291.37 

C 6H5F 292.91 292.66 292.75 

C 6 H 5 N H 2 405.72 405.42 405.40 

C6H5 F 693.15 692.79 692.92 

Further insight into the performance of basis sets can be gained by means 

of completeness profiles [122, 123]. The completeness profile of a basis set 

is defined as the sum of the squares of the overlap of a test normalized 

Gaussian function with an orthonormalized basis [122]. If the test Gaussian 

is represented as G(a) — where a is a variable exponent — and {ipk} is a 



Figure 6-1. Completeness profiles of cc-pVnZ and cc-pCVTZ basis sets; s-func-

tions: solid, p-functions: dash, d-functions: dot-dash. 
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log (a) 

F i g u r e 6-2. Comparison of completeness profiles for the s-, p-, and d-type func

tions of cc-pVTZ (dot-dash), cc-pV5Z (solid), and cc-pCVTZ (dash) basis sets. 

generic set of orthonormalized basis functions, then the completeness profile 

is a plot of Y(o) as a function of x = log(a), wi th Y(a) given by 
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} » = £ < G ( a ) | ^ > < ^ f c | G ( a ) > (6.1) 

Completeness profiles for the cc-pVroZ and c c - p C V T Z basis sets are shown 

in Figure 6-1. A comparison of the profiles for the s-, p-, and d-type functions 

is presented in Figure 6-2. The profiles have been calculated only for the 

carbon atom, but they are expected to be qualitatively similar for the other 

second-period elements [123]. 

The closer the value of Y(a) is to 1.0, the more completely is the space 

spanned by the basis. The tight region is represented by high x values 

whereas low x values are associated with the diffuse (bonding) region. It is 

observed that at high x = log (a) the c c - p C V T Z set shows appreciably higher 

completeness than does the c c - p V T Z set — this tends to lead to better en

ergies [123] — and also provides more adequate coverage than the cc-pV5Z 

set. Thus, the behaviour of the basis sets, as displayed by the complete

ness profiles, is in accord with the AAD-based results and supports the fact 

that the c c - p C V T Z basis set is an appropriate choice for density functional 

calculations of C E B E s . 

A l imited number of tests were carried out with a core-valence correlated 

basis set of double-zeta quality. This c c - p C V D Z set [109] is similar in com

position to the c c - p V T Z set — [4s3pld] compared to [4s3p2d] — so it was 

thought to be perhaps capable of providing good C E B E s at reduced com

putational effort. However, the results for seven of the database cases were 

rather unsatisfactory, the deviations from experiment ranging from 0.68 eV 

to 1.65 eV. 



Chapter 7 

Conclusion 

This thesis has extended the computational approach to the determination 

of molecular core-electron binding energies introduced by Chong, the un

restricted generalized transition state model combined wi th density func

tional theory, by applying it to the calculation of C E B E s of boron-containing 

molecules, of isomers of C3H5NO, and of the third-period elements silicon, 

phosphorus, sulphur, chlorine, and argon. 

The results obtained for boron were in very good agreement wi th ex

perimental observations, for calculations performed both wi th large basis 

sets (cc-pV5Z) and with smaller but efficient basis sets (scaled-pVTZ). The 

scaled-pVTZ calculations for boron l s energies gave an average absolute de

viat ion of 0.07 eV from the estimated complete basis set l imi t , confirming 

that exponent-scaling is a highly effective method for improving basis-set 

performance in the treatment of partial core-hole states. 

91 
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The extension of the original scaling methodology, in which the use of 

scaled basis functions is restricted to the atom with the core hole, to a 

generalized-scaling method, requiring scaled basis sets for every atom, was 

found not to be advantageous. The effort involved in calculating scaling fac

tors for a l l the atomic centers in a molecule is too intensive to justify the 

l imited improvement attained. 

The calculated core-ionization energies of the isomers of C3H5NO clearly 

revealed the distinctive nature of the core-electron spectrum of the indiv id

ual species. This and previous results, in conjunction wi th the fact that 

synchrotron-radiation instrumentation has already achieved sufficiently high 

resolution to distinguish atoms in remarkably similar environments, continue 

to support the traditional application of combined experimental and theo

retical approaches to core-electron spectroscopy for the purpose of chemical 

and structural analysis. 

The results for C E B E s of the third-period elements were in most cases of 

acceptable accuracy for calculations performed with the cc-pV5Z basis sets, 

but the deviations from observed values were found to be, in general, more 

than twice as large as those obtained for the second-period elements. A num

ber of factors were recognized as (partially) responsible for the deficiencies 

detected, notably irregularities associated with the basis sets employed, and 

also absence of a (at least approximate) relativistic treatment. 

This thesis has also tested a total-energy difference approach, wi th in 

Kohn-Sham density functional theory, to calculating core-ionization ener

gies. It was found that the remarkable success of u G T S / D F T calculations 

employing Becke's 1988 exchange functional and Perdew's 1986 correlation 
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functional was due to a fortuitous cancellation of the errors associated wi th 

the model (uGTS) and the functional. For the A E - K S method, the combina

tion of Perdew and Wang's 1986 exchange and 1991 correlation functionals 

proved the most accurate among the ten functional options tested. 

Exponent scaling was found not to be an adequate procedure for im

proving the performance of basis sets in A E - K S calculations. Therefore, a 

core-valence correlated basis set ( cc -pCVTZ) was tested and found to be 

highly efficient wi th an average absolute deviation from experiment of 0.15 

eV. The c c - p C V T Z basis set is smaller than the cc-pV5Z basis set, thus 

enabling calculations on relatively larger molecules. 

The investigations reported in this thesis involving the use of the A E - K S 

approach should be considered to be in their preliminary stages. The most 

significant aspect is that the elimination of the model error and the small error 

of the Perdew-Wang functionals have made it possible to (slightly) surpass 

the already remarkable accuracy achieved with the u G T S method. Many 

applications remain to be explored, such as the extension to model systems 

for polymers and surfaces, the testing of the recently proposed second-order 

gradient functionals, and the analysis of the vibrational fine structure of 

core-electron spectra. 
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Appendix 

It was pointed out in Chapter 5 that calculations using the A E - K S approach 

were ini t ia l ly l imited to a database of reliable observed C E B E s which was 

selected in order to reduce as much as possible the effect of experimental 

errors on the assessment of functional performance. 

The database consisted of seventeen cases, for each of which at least four 

experimental C E B E s have been documented. The experimental uncertainty 

6 was sometimes reported along wi th each observed value. Where 8 was not 

given, a reasonable estimate was assumed. 

Table A - l summarizes the data for the seventeen cases which were studied 

in Chapter 5. Addi t iona l cases were considered for the basis-set tests reported 

in Chapter 6, and where experimental results were available, weighted aver

ages were obtained, the corresponding data being given in Tables A - 2 and 

A-3. 

108 
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Table A - l . Observed Is energies (in eV) for the molecules in the seventeen-case 

database. 

molecu le year C E B E 6 average weighted average reference 

C O 1969 295.9 0.2 ° 133 

1970 296.2 0.1 a 134 

1973 296.1 b 0.1 a 133, 135 

1974 296.2 0.1 ° 127 

1976 296.24 0.03 136 

1984 296.19 0.05 a 137 

296.14 296.21 

C 0 2 1969 297.5 0.2 ° 133 

1972 297.5 0.1 133, 141 

1973 297.69 0.14 135 

1974 297.69 0.14 ° 142 

1974 297.75 0.07 127, 143 

1974 297.71 0.05 127 

297.64 297.69 

C H 4 1969 290.7 0.2 a 133 

1970 290.8 0.1 124 

1974 290.73 0.2 a 131 

1974 290.91 0.05 127 

1976 290.83 0.02 132 

1984 290.90 c 0.05 a 112, 131 

290.81 290.84 
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Table A-l continued 
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molecu le year C E B E S average weighted average reference 

C F 4 1969 301.8 0.2 a 133 

1970 301.8 0.1 a 138 

1974 301.68 0.2 Q 131 

1974 301.9 0.2 127, 144 

1974 301.96 0.05 a 127 

1984 301.85 c 0.05 112, 131 

301.83 301.89 

138 

131 

139 

140 

112, 131 

296.32 296.36 

124 

131 

126,127 

132 

112, 131 

290.68 290.72 

1969 409.9 0,2 a 133 

1973 409.93 0.10 135 

1974 409.95 0.20 127, 

1974 409.93 0.20 142 

1974 409.93 0.05 127 

1980 410.0 0.03 150 

C C 1 4 1970 296.3 0.1 a 

1974 296.22 0.2 a 

1974 296.38 0.05 a 

1976 296.3 0.1 a 

1984 296.39 c 0.05 a 

C 2 I 1 6 1970 290.6 0.1 a 

1974 290.57 0.3 a 

1974 290.76 0.05 

1976 290.71 0.02 

1984 290.74 c 0.05 

409.94 409.98 
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Table A-l continued 
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molecu le year C E B E 5 average weighted average reference 

N N O 1969 412.5 0.2 a 133 

1974 412.62 0.21 127, 143 

1974 412.5 0.1 a 127, 149 

1974 412.62 0.05 a 126, 127 

412.56 412.59 

133 

127, 143 

127, 149 

126, 127 

408.65 408.71 

145 

146 

147 

148 

405.71 405.64 

1969 542.1 0.5 a 133 

1970 542.3 0.1 a 134 

1973 542.6 6 0.1 a 133, 135 

1974 542.82 0.12 a 127, 143 

1976 542.40 0.11 a 155 

1976 542.57 0.03 136 

1984 542.51 c 0.05 Q 112, 155 

N N O 1969 408.5 0.2 a 

1974 408.75 0.22 

1974 408.6 0.1 a 

1974 408.75 0.05 ° 

C H 3 C N 1972 405.9 0.3 

1976 405.6 0.2 a 

1982 405.74 0.03 

1984 405.60 0.02 

542.47 542.55 
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Table A-l continued 
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molecu le year C E B E S average weighted average reference 

C 0 2 1969 540.8 0.5 ° 133 

1972 541.1 0.1 141 

1973 541.28 0.12 135 

1974 541.28 0.12 142 

1974 541.32 0.05 127 

1974 541.32 0.09 127, 143 

541.18 541.28 

H 2 O 1969 539.7 0.2 ° 133 

1974 539.88 0.07 127 

1974 539.93 0.05 a 142 

1976 539.67 0.2 a 133, 152 

539.80 539.90 

HC O OH 1974 538.93 0.09 127, 143 

1975 538.92 0.05 a 153 

1976 538.75 0.2 ° 133, 152 

1978 539.00 0.03 153 

538.90 538.97 

HCOOH 1974 540.55 0.09 127 ,143 

1975 540.60 0.1 a 151 

1976 540.45 0.2 ° 133 ,152 

1978 540.65 0.03 153 

540.56 540.63 

C H 3 O H 1969 538.9 0.2 ° 133 

1974 539.08 0.12 127, 143 

1976 539.09 0.08 127, 152 

1984 539.2 0.1 a 154 

539.07 539.11 
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Table A-l continued 
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molecule year C E B E S average weighted average reference 

C F 4 1969 695.2 0.2 a 133 

1970 695.0 0.1 a 138 

1973 695.52 0.14 135 

1974 695.60 0.2 ° 131 

1974 695.52 0.14 142 

1974 695.52 0.05 a 139 

1974 695.57 0.05 127 

1984 695.77 c 0.05 a 112,131 

695.46 695.56 

a assumed 
b recalibrated, based on the improved measurement on C O 2 [135] 
c correction applied according to reference 112 
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Table A - 2 . O b s e r v e d I s energies ( i n e V ) for t h e a r o m a t i c c o m p o u n d s i n T a b l e 6-6. 

molecu le year C E B E S average weighted average reference 

C 1970 290.4 0.1 a 124 

1971 290.2 0.1 125 

1974 290.42 0.05 a 126, 127 

1975 290.3 0.2 128 

1975 290.38 0.07 129 

1975 290.42 0 .05° 

290.35 290.39 

130 

C 6 H 5 N H 2 1975 291.38 0.05 Q 130 

1975 291.2 0.2 

291.38 291.37 

128 

C 6 H 5 F 1975 292.85 0.05 a 130, 144 

1975 292.70 0.05 a 130 

1975 292.9 0.2 128 

1978 292.5 0.1 

292.74 292.75 

156 

C 6 H 5 N H 2 1969 405.5 0.1 a 133 

1975 405.32 0.05 a 130 

1975 405.3 0.2 128 

(?) 405.31 0.05 a 112 

1980 405.45 0.03 

405.38 405.40 

150 

C 6 H 5 F 1974 692.88 0.05 a 139, 144 

1975 692.93 0.05 a 130 

1975 693.3 0.2 128 

693.04 692.92 

a assumed 
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Table A - 3 . Observed Is energies (in eV) for hydrogen fluoride. 
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molecu le year C E B E S average weighted average reference 

H F 1974 694.22 0.05 ° 127 

1976 694.0 0.2 157 

1984 694.31 0.1 ° 112, 158 

694.18 694.23 

a assumed 

A. 


