THIOETHER AND SULFOXIDE COMPLEXES OF RUTHENIUM; PRELIMINARY IN VITRO STUDIES OF WATER-SOLUBLE SPECIES

By
ELIZABETH LAI SHUEN CHEU
B. Sc., University of British Columbia, 1991
A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OFDOCTOR OF PHLLOSOPHYInTHE FACULTY OF GRADUATE STUDIES(Department of Chemistry)
We accept this thesis as conforming
to the required standardTHE UNIVERSITY OF BRITÍSH COLUMBIA
January 2000

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, 1 agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Chemistry
The University of British Columbia Vancouver, Canada

Abstract

Water-soluble ruthenium chemotherapeutic agents require further investigation. One approach is to study the coordination chemistry of a series of Ru-disulfoxide complexes, and preliminary in vitro surveys of the effects of these complexes in CHO (Chinese hamster ovary) cells are included. Other approaches, including the metallation of some free-base porphyrins, were investigated as well.

Dithioethers and disulfoxides were synthesized using the well established chemistry outlined below: ${ }^{\dagger}$ $$
\begin{aligned} & \mathrm{RSH} \xrightarrow{\mathrm{NaOH} / \mathrm{MeOH}} \mathrm{RS}^{-}+\mathrm{Na}^{+} \\ & \left.\mathrm{Br}\left(\mathrm{CH}_{2}\right)\right)_{n \mathrm{Br}}+2 \mathrm{Na}^{+} \mathrm{RS}^{-} \longrightarrow \mathrm{RS}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{SR}+2 \mathrm{Na}^{+} \mathrm{Br}^{-} \end{aligned}
$$

The disulfoxide and dithioethers were reacted with Ru precursors to yield complexes characterized generally by a combination of elemental analyses, NMR, IR and UV-Visible spectroscopies, as well as conductivity, magnetic measurements and thermal

^[${ }^{\dagger}$ Ten new disulfoxides (and the corresponding new dithioethers) have been made with: (a) $n=2: \mathrm{R}$ = butyl, 1,2-bis(butylsulfinyl)ethane, BBSE; $\mathrm{R}=$ pentyl, 1,2-bis(pentylsulfinyl)ethane, $\mathrm{BPeSE} ; \mathrm{R}=$ hexyl, 1,2bis(hexylsulfinyl)ethane, BHSE; $\mathrm{R}=$ cyclohexyl, 1,2-bis(cyclohexylsulfinyl)ethane, BCySE , and (b) $n=3: \mathrm{R}=$ ethyl, 1,3-bis(ethylsulfinyl)propane, BESP; $\mathrm{R}=$ propyl, 1,3-bis(propylsulfinyl)propane, $\mathrm{BPSP} ; \mathrm{R}={ }^{i}$ propyl, 1,3bis('ipropylsulfinyl)propane, $\mathrm{B}^{i} \mathrm{PSP} ; \mathrm{R}=$ butyl, 1,3-bis(butylsulfinyl)propane, $\mathrm{BBSP} ; \mathrm{R}=$ pentyl, $1,3-$ bis(pentylsulfinyl)propane, BPeSP and $\mathrm{R}=$ phenyl, 1,3-bis(phenylsulfinyl)propane, BPhSP. All alkyl groups are the normal isomer, unless otherwise indicated.]

gravimetric analyses; fifteen Ru complexes were also characterized by X-ray crystallography. The Ru-sulfoxide complexes contained only S-bonded sulfoxides (except $m e r-\mathrm{RuCl}_{3}(\mathrm{DPS} \underline{\mathrm{O}})_{2}(\mathrm{DPSO})$ where $\underline{\mathrm{O}}$ and $\underline{\mathrm{S}}$ represent O - and S-bonded diphenylsulfoxide, respectively). The following new, mononuclear, non-water-soluble, disulfoxide complexes were synthesized and characterized: trans-RuCl $L_{2}(\mathrm{BESE})_{2} \quad(\mathrm{BESE}=1,2-$ bis(ethylsulfinyl)ethane), cis- $\mathrm{RuCl}_{2}(\mathrm{BBSE})_{2}, \quad c i s-\mathrm{RuCl}_{2}(\mathrm{BPeSE})_{2}, \quad c i s-\mathrm{RuCl}_{2}(\mathrm{BCySE})_{2}$ and cis- $\mathrm{RuCl}_{2}(\mathrm{BESP})_{2} . \quad \mathrm{RuCl}_{2}(\mathrm{DMSO})(\mathrm{L})$ (where $\mathrm{L}=3,6,9,14$-tetrathiabicyclo[9.2.1]tetradeca11,13 -diene), and the water-soluble $\left[\mathrm{Ru}(12-\mathrm{S}-4)(\mathrm{DMSO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}$ (where $12-\mathrm{S}-4=$ 1,4,7,10-tetrathiacyclododecane and $\mathrm{OTf}=\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{\circ}$), were synthesized to determine how the macrocyclic ligand might affect the in vitro properties of the Ru-sulfoxide moiety.

Novel, water-soluble, dinuclear $^{\dagger} \quad \mathrm{Ru}$ (II)-disulfoxide complexes $\left[\operatorname{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}, \quad\left[\mathrm{RuCl}(\mathrm{BPSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2} \quad(\mathrm{BPSE} \quad=\quad 1,2-$ bis(propylsulfinyl)ethane) and $\left[\operatorname{RuCl}(\mathrm{BBSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ were characterized, and a new type of water-soluble, dinuclear, mixed-valence $\mathrm{Ru}(\mathrm{II}) / \mathrm{Ru}$ (III)-disulfoxide complex, $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$, was characterized and its aqueous chemistry studied.

Two mononuclear, dithioether complexes (trans- $\mathrm{RuCl}_{2}(\mathrm{BPhTE})_{2}$ and $-\mathrm{RuCl}_{2}(\mathrm{BCyTE})_{2}$, where $\mathrm{BPhTE}=1,2$-bis(phenylthio)ethane and $\mathrm{BCyTE}=1,2-$ bis(cyclohexylthio)ethane), and four dinuclear, $\mathrm{Ru}(\mathrm{III}) / \mathrm{Ru}$ (III) dithioether complexes $\left(\left[\mathrm{RuCl}_{2}(\mathrm{BETP})\right]_{2}(\mu-\mathrm{Cl})_{2}, \quad\left[\mathrm{RuCl}_{2}(\mathrm{BPTP})\right]_{2}(\mu-\mathrm{Cl})_{2}, \quad\left[\mathrm{RuCl}_{2}(\mathrm{BBTP})\right]_{2}(\mu-\mathrm{Cl})_{2} \quad\right.$ and $\left[\operatorname{RuCl}_{2}(\mathrm{BPeTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$, where $\quad \mathrm{BETP}=1,3$-bis(ethylthio)propane, $\quad \mathrm{BPTP}=1,3-$

[^1]bis(propylthio)propane, $\operatorname{BBTP}=$ 1,3-bis(butylthio)propane and $\mathrm{BPeTP}=1,3-$ bis(pentylthio)propane) were also synthesized. The purpose of their synthesis was to determine whether the ligand set would retain its geometry at the Ru after oxidation of the coordinated S -atom to $\mathrm{S}=\mathrm{O}$, but such an oxidation was not affected.

A procedure involving the metallation of the water-soluble, free-base porphyrin TSPhP (the dianion of 5,10,15,20-tetrakis(4-sulfonato)phenylporphyrin), using $\left[\mathrm{Ru}(\mathrm{DMF})_{6}\right][\mathrm{OTf}]_{3}$ as the precursor, to give $\mathrm{Na}_{4}[\mathrm{Ru}(\mathrm{TSPhP})(\mathrm{CO})] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ was also shown to be effective for metallation of several non-water-soluble, free-base porphyrins with formation of $\mathrm{Ru}(\mathrm{CO})$ (Porp) species, where Porp $=\mathrm{TPhP}$ (the dianion of $5,10,15,20$ tetraphenylporphyrin), BPhP (dianion of 5,15-bis(phenyl)porphyrin), TrPhPyNO (dianion of 5,10,15-triphenyl-20-(4-pyridyl- N-oxide)porphyrin), and OEP (dianion of $2,3,7,8,12,13,17,18$-octaethylporphyrin).

The water-soluble $\left[\mathrm{RuCl}(\mathrm{S}-\mathrm{S})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}(\mathrm{~S}-\mathrm{S}=\mathrm{BESE}, \mathrm{BPSE}$ or BBSE$)$, $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ and $\left[\mathrm{Ru}(12-\mathrm{S}-4)(\mathrm{DMSO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}$ complexes were examined in vitro using Chinese hamster ovary (CHO) cells. Toxicity, cell accumulation and DNAbinding assays were used to examine the ability of these complexes to traverse the cell membrane and bind to DNA. The biological data indicate that all five complexes are nontoxic but accumulate in CHO cells, with no difference in hypoxia. Of major interest $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ and $\left[\operatorname{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ bind to DNA to a greater degree than cis- or trans- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$, both of which are known to exhibit anti-cancer activity. The preliminary biological data strongly encourage further investigations into the use of water-soluble, dinuclear Ru-disulfoxide complexes as DNA-binding agents.

Table of Contents

Abstract. ii
Table of Contents v.
List of Tables. xiii.
List of Figures xviii.
List of Abbreviations xxv.
Acknowledgements. xxviii.
Chapter 1 Introduction
1.1 Preamble 1.
1.2 Development of Platinum Chemotherapeutic Agents 2.
1.3 Ruthenium Chemotherapeutic Agents. 5.
1.3.1 Dinuclear $\mathrm{Ru}(\mathrm{II}) / \mathrm{Ru}(\mathrm{III})$ Complexes 8.
1.3.2 Metallated Porphyrins. 9.
1.4 Development of Ruthenium Dimethylsulfoxide Complexes 10.
1.4.1 $\mathrm{Ru}(\mathrm{II})$-Dimethylsulfoxide Complexes: Cis- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{3}(\mathrm{DMSO})$ and Trans- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$. 10.
1.4.1.1 Chemical Behaviour of Cis-RuCl $\mathbf{2}_{2}(\mathrm{DMS})_{3}(\mathrm{DMSO})$ and Trans- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ in Aqueous Solutions. 11.
1.4.1.2 Binding of $\mathrm{Cis}-\mathrm{RuCl}_{2}(\mathrm{DMSO})_{3}(\mathrm{DMSO})$ and $\operatorname{Trans}-\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ to DNA.. 13.
1.4.2 Ru(III)-Dimethylsulfoxide Complexes: trans- $\left[(\mathrm{DMSO})_{2} \mathrm{H}\right]^{+}\left[\mathrm{RuCl}_{4}(\mathrm{DMSO})_{2}\right]^{-}$and $\mathrm{Mer}-\mathrm{RuCl}_{3}(\mathrm{DMSO})_{2}(\mathrm{DMSO})$ 14.
1.4.3 Nitroimidazole Derivatives of $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ 17.
1.4.4 Ru Bis-chelating Sulfoxide Complexes. 19.
1.5 Goals of This Thesis 21.
1.5.1 Synthesis of the Geometrical Isomers of the Known Bis-chelating Disulfoxide Complexes of Ru 21.
1.5.2 Synthesis of Water-soluble Sulfoxide Complexes of Ru 21.
1.5.3 Synthesis and Characterization of Novel Chelating Disulfoxide Complexes of Ru 22.
1.5.4 Synthesis of Chelating Dithioether Complexes of Ru. 22
1.5.5 Preliminary Biological Studies In Vitro of Sulfoxide Complexes of Ru. 22.
1.5.6 Metallation of Water-Soluble Porphyrins 23.
1.6 References for Chapter 1 24.
Chapter 2 General Experimental and Synthesis of Ligands (Dithioethers and
Disulfoxides) and Ruthenium Precursors and Sulfoxide Complexes
2.1 Chemicals and Reagents 32.
2.2 Physical Techniques and Instrumentation. 32.
2.2.1 FT-NMR Instruments 32.
2.2.2 Infrared and UV-Vis Spectrophotometry, Thermal Gravimetric Analysis, Photochemistry and Conductivity and Melting Point Measurements 33.
2.2.3 Magnetic Susceptibility 34.
2.2.3.1 Calculation of χ_{g}, Magnetic Susceptibility of the Dissolved Paramagnetic Species and Magnetic Susceptibility per Gram of Sample 34.
2.2.3.2 Calculation of χ_{M}, the Molar Magnetic Susceptibility 35.
2.2.3.3 Calculation of $\mu_{\text {eff, }}$ the Effective Magnetic Moment 35.
2.2.3.4 Calculation of n, the Number of Unpaired Electrons 35.
2.2.4 Elemental Analyses, Mass Spectral Analyses and X-ray Crystallography 36.
2.3 Synthesis of Dithioethers 36.
2.3.1 3,7-Dithianonane 36.
2.3.2 4,8-Dithiaunadecane. 37.
2.3.3 2,8-Dimethyl-3,7-dithianonane 37.
2.3.4 5,9-Dithiatridecane. 38.
2.3.5 6,10-Dithiapentadecane 38.
2.3.6 1,3-Bis(phenylthio)propane 38.
2.3.7 5,8-Dithiadodecane 39.
2.3.8 6,9-Dithiatetradecane 39.
2.3.9 7,10-Dithiahexadecane 40.
2.3.10 1,2-Bis(phenylthio)ethane 40.
2.3.11 1,2-Bis(cyclohexylthio)ethane 40.
2.4 Oxidation of Dithioethers to Disulfoxides 41.
2.4.1 1,3-Bis(ethylsulfinyl)propane (BESP) 41.
2.4.2 1,3-Bis(propylsulfinyl)propane (BPSP) 42
2.4.3 1,3-Bis(i-propylsulfinyl)propane (B ${ }^{i} \mathrm{PSP}$) 42.
2.4.4 1,3-Bis(butylsulfinyl)propane (BBSP) 42.
2.4.5 1,3-Bis(pentylsulfinyl)propane (BPeSP) 43.
2.4.6 1,3-Bis(phenylsulfinyl)propane (BPhSP) 43.
2.4.7 1,2-Bis(ethylsulfinyl)ethane (BESE) 44.
2.4.8 1,2-Bis(propylsulfinyl)ethane (BPSE) 44.
2.4.9 1,2-Bis(butylsulfinyl)ethane (BBSE) 45.
2.4.10 1,2-Bis(pentylsulfinyl)ethane (BPeSE) 45.
2.4.11 1,2-Bis(hexylsulfinyl)ethane (BHSE) 45.
2.4.12 1,2-Bis(cyclohexylsulfinyl)ethane (BCySE) 46.
2.4.13 1,2-Bis(phenylsulfinyl)ethane (BPhSE) 46.
2.5 Synthesis of Ru (III) Precursor Complexes 47.
2.5.1 [Ru(DMF) 6$][\mathrm{OTf}]_{3}$ 47.
2.5.2 $\mathrm{K}_{3}\left[\mathrm{RuCl}_{6}\right]$ 48.
2.6 Synthesis of Monodentate Sulfoxide Complexes of Ruthenium 48.
2.6.1 Cis- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ 48
2.6.2 Trans- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ 49.
2.6.3 Mer-cis-[$\left.\mathrm{RuCl}_{3}(\mathrm{DPSO})_{2}(\mathrm{DPSO})\right]$ 49.
2.6.4 $\operatorname{Cis}\left[\mathrm{Ru}(12 \mathrm{~S}-4)(\mathrm{DMSO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2} \cdot \mathrm{CH}_{3} \mathrm{OH}$ 50.
2.6.5 $\mathrm{RuCl}_{2}(\mathrm{DMSO})(\mathrm{L})$ 50.
2.7 Synthesis of Mononuclear $\mathrm{Ru}(\mathrm{II})$.Disulfoxide Complexes 51.
2.7.1 Cis $^{2} \mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ 51.
2.7.2 Trans- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ 51.
2.7.3 Trans- $\mathrm{RuCl}_{2}(\mathrm{BPSE})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ 52.
2.7.4 Cis- $\mathrm{RuCl}_{2}(\mathrm{BBSE})_{2}$ 52.
2.7.5 Cis- $\mathrm{RuCl}_{2}(\mathrm{BPeSE})_{2}$ 53.
2.7.6 Cis- $\mathrm{RuCl}_{2}(\mathrm{BCySE})_{2}$ 53.
2.7.7 Cis $-\mathrm{RuCl}_{2}(\mathrm{BESP})_{2}$ 54.
2.8 Synthesis of Dinuclear $\mathrm{Ru}(\mathrm{II}) / \mathrm{Ru}(\mathrm{II})$ Disulfoxide Complexes 55.
2.8.1 $\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ 55.
2.8.2 $\left[\mathrm{RuCl}(\mathrm{BPSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu \text { - } \mathrm{Cl})_{2}$ 55.
2.8.3 $\left[\mathrm{RuCl}(\mathrm{BBSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ 56.
2.9 Synthesis of a Dinuclear $\mathrm{Ru}(\mathrm{II}) / \mathrm{Ru}($ III $)$ Disulfoxide Complex 56.
2.9.1 $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ 56.
2.10 Synthesis of Mononuclear $\mathrm{Ru}(\mathrm{II})$ Dithioether Complexes 57.
2.10.1 Trans- $\mathrm{RuCl}_{2}(\mathrm{BCyTE})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ 57.
2.10.2 Trans- $\mathrm{RuCl}_{2}\left(\mathrm{BPhTE}_{2}\right.$ 58.
2.11 Synthesis of Dinuclear $\mathrm{Ru}($ III $) / \mathrm{Ru}$ (III) Dithioether Complexes. 59.
2.11.1 $\left[\mathrm{RuCl}_{2}(\mathrm{BETP})\right]_{2}(\mu-\mathrm{Cl})_{2}$ 59.
2.11.2 $\left[\mathrm{RuCl}_{2}(\mathrm{BPTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$ 59.
2.11.3 $\left[\mathrm{RuCl}_{2}(\mathrm{BBTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$ 59.
2.11.4 $\left[\mathrm{RuCl}_{2}(\mathrm{BPeTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$ 60.
2.12 References for Chapter 2 61.
Chapter 3 Structural Properties of Sulfoxide and Thioether Complexes of Ruthenium
3.1 General Introduction. 63.
3.2 Structural Properties of the S-O Moiety in Sulfoxides 64.
3.3 Metal-Sulfoxide Bonding 65.
3.3.1 Sulfur-Bonded Metal-Sulfoxide Complexes 67.
3.3.2 Oxygen-Bonded Metal-Sulfoxide Complexes 69.
3.3.3 Bridging Metal-DMSO Complexes. 70.
3.4 NMR and IR Spectroscopic Methods for the Determination of Sulfur- or
Oxygen-Bonding in Metal Complexes 71.
3.4.1 ${ }^{1} H$ NMR Spectroscopy 71.
3.4.2 IR Spectroscopy 72
3.5 Disulfoxides and Their Metal Complexes 73
3.5.1 Disulfoxide Complexes 76.
3.6 Mononuclear, Bidentate Disulfoxide Complexes of Ruthenium(II) 80.
3.6.1 Cis $-\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ and Trans- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ 84.
3.6.2 Trans-RuCl $2(\mathrm{BPSE})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ 88.
3.6.3 Cis- $\mathrm{RuCl}_{2}(\mathrm{BBSE})_{2}$ 89.
3.6.4 Cis- $\mathrm{RuCl}_{2}(\mathrm{BPeSE})_{2}$ 92
3.6.5 Cis-RuCl $\mathbf{R C D}_{2}(\mathrm{BCySE})_{2}$ 92.
3.6.6 Cis-RuCl $\mathbf{R}_{2}(\mathrm{BESP})_{2}$ 95.
3.7 Dinuclear $\mathrm{Ru}(\mathrm{II}) / \mathrm{Ru}(\mathrm{II})$ Chelating Disulfoxide Complexes 99.
3.7.1 Characterization of $\quad\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$, $\quad[\mathrm{RuCl}(\mathrm{BPSE})-$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ and $\left[\mathrm{RuCl}(\mathrm{BBSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ 100.
3.8 A Mixed-Valence $\mathrm{Ru}(\mathrm{II}) / \mathrm{Ru}$ (III) Chelating Disulfoxide Complex 105.
3.8.1 Introduction 105.
3.8.2 $\quad[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ 109.
3.8.3 Chemical Behaviour of $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ in Aqueous Solutions 116.
3.9 Dithioether Complexes of Ru 126.
3.9.1 Literature Data 127.
3.9.2 The Mononuclear $\mathrm{Ru}(\mathrm{II})$ Dithioether Complexes: Trans- $\mathrm{RuCl}_{2}(\mathrm{BCyTE})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and Trans $-\mathrm{RuCl}_{2}\left(\mathrm{BPhTE}_{2}\right.$ 129.
3.9.3 Dinuclear $\mathrm{Ru}(\mathrm{III}) / \mathrm{Ru}(\mathrm{III})$ Dithioether Complexes: $\left[\mathrm{RuCl}_{2}(\mathrm{BETP})\right]_{2}(\mu-\mathrm{Cl})_{2}$, $\left[\mathrm{RuCl}_{2}(\mathrm{BPTP})\right]_{2}(\mu-\mathrm{Cl})_{2},\left[\mathrm{RuCl}_{2}(\mathrm{BBTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$ and $\left[\mathrm{RuCl}_{2}(\mathrm{BPeTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$ 136.
3.10 $\mathrm{Mer}^{-} \mathrm{RuCl}_{3}(\mathrm{DPSO})_{2}(\mathrm{DPS} \mathrm{O})$ 140.
3.10.1 Characterization of Mer -Cis- $-\mathrm{RuCl}_{3}(\mathrm{DPSO})_{2}(\mathrm{DPP} \underline{\mathrm{S}})$ 141.
3.11 Macrocyclic Thioether, DMSO Complexes of Ruthenium 145.
3.11.1 3,6,9,14-Tetrathiabicyclo[9.2.1]tetradeca-11,13-diene [L] 145.
3.11.2 $\mathrm{RuCl}_{2}(\mathrm{DMSO})(\mathrm{L})$ 146.
3.11.3 1,4,7,10-Tetrathiacyclododecane (12-S-4) 151.
3.11.4 $\left[\mathrm{Ru}(12-\mathrm{S}-4)(\mathrm{DMSO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}$ 151.
3.12 References for Chapter 3 155.
Chapter 4 Preliminary In Vitro Examination of Water-soluble Ru Sulfoxide Complexes
4.1 Introduction 163.
4.2 Tumour Hypoxia, Radiotherapy and Progression 164.
4.3 Experimental 166.
4.3.1 Media 166.
4.3.2 Phosphate Buffer Saline Solution 167.
4.3.3 Methylene Blue Solution 167.
4.3.4 Tris-EDTA (TE) Solutions 168.
4.3.5 TNE Solutions 168.
4.3.6 TNE-Equilibrated Phenol 168.
4.3.7 Cell Preparation 168.
4.3.8 Atomic Absorption Spectroscopy 169.
4.3.9 Cell Incubation Procedures. 170.
4.3.10 Cell Toxicity Assays Under Oxic and Hypoxic Conditions. 171.
4.3.11 Cell Accumulation Assays. 172.
4.3.12 DNA-Binding Assays 173.
4.4 In Vitro Studies of Five Ru Sulfoxides: Preliminary Results in CHO Cells 174.
4.4.1 Toxicity of Ru Sulfoxides in CHO Cells under Oxic and Hypoxic Conditions. 174.
4.4.2 Ruthenium Accumulation Under Oxic and Hypoxic Conditions 175.
4.4.3 DNA-binding Under Oxic and Hypoxic Conditions 178.
4.5 Conclusions 181.
4.6 References for Chapter 4 182.
Chapter 5 Metallation of Free-base Porphyrins
5.1 Introduction 184.
5.1.1 Metalloporphyrins as Hypoxic Radiosensitizers 184.
5.2 Ruthenium Porphyrins 185.
5.3 A New Route for the Insertion of Ruthenium into Selected Free-base Porphyrins 186.
5.4 Experimental 188
5.4.1 Physical Techniques 188
5.4.2 Synthesis of Precursors 188.
5.4.2.1 $\mathrm{Na}_{4}\left[\mathrm{H}_{2} \mathrm{TSPhP}\right] \cdot 15 \mathrm{H}_{2} \mathrm{O}$ 188
5.4.2.2 $\left[\mathrm{Ru}(\mathrm{DMF})_{6}\right][\mathrm{OTf}]_{3}$ 189.
5.5 Synthesis of Ru (Porp)(CO) Complexes 189.
5.5.1 $\mathrm{Na}_{4}[\mathrm{Ru}(\mathrm{TSPhP})(\mathrm{CO})] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ 189.
5.5.2 $\mathrm{Ru}(\mathrm{OEP})(\mathrm{CO})(\mathrm{THF})$ 190.
5.5.3 $\mathrm{Ru}(\mathrm{TPhP})(\mathrm{CO})\left(\mathrm{H}_{2} \mathrm{O}\right)$ 190.
5.5.4 $\mathrm{Ru}(\mathrm{BPhP})(\mathrm{CO})$ 191
5.5.5 $\mathrm{Ru}(\mathrm{TrPhPyNO})(\mathrm{CO})$ 191.
5.6 Results and Discussion 192.
5.6.1 $\mathrm{Na}_{4}[\mathrm{Ru}(\mathrm{TSPhP})(\mathrm{CO})] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ 193.
5.6.2 $\mathrm{Ru}(\mathrm{OEP})(\mathrm{CO})(\mathrm{THF})$ 195.
5.6.3 $\mathrm{Ru}(\mathrm{TPhP})(\mathrm{CO})(\mathrm{py})$ 199.
5.6.4 $\mathrm{Ru}(\mathrm{BPhP})(\mathrm{CO})$ 201.
5.6.5 $\mathrm{Ru}(\mathrm{TrPhPyNO})(\mathrm{CO})$ 201.
5.7 Fluorescent Properties of Porphyrins 201.
5.7.1 Fluorescence Spectra of Selected Ru Porphyrins 202.
5.8 Attempted Metallations 203.
5.9 Conclusions 206.
5.10 References for Chapter 5 207.
Chapter 6 Conclusions and Recommendations for Future Work
6.1 General Remarks 211.
6.2 Sulfoxide and Thioether Complexes of Ruthenium 211.
6.3 Metallation of Selected Free-base Porphyrins 216.
6.4 Preliminary In Vitro Examination Of Water-soluble Ru Sulfoxide Complexes 217.
6.5 References for Chapter 6 219.
Appendices
Appendix 1. Crystallographic Data A. 221 .
Appendix 1.1 Crystallographic Data for trans- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ A. 221 .
Appendix 1.2 Crystallographic Data for cis- $\mathrm{RuCl}_{2}(\mathrm{BBSE})_{2} \cdot \mathrm{EtOH}$ A. 223 .
Appendix 1.3 Crystallographic Data for $c i s-\mathrm{RuCl}_{2}(\mathrm{BCySE})_{2} \cdot \mathrm{EtOH} \cdot 1 / 3 \mathrm{MeOH}$. A. 227 .
Appendix 1.4 Crystallographic Data for cis- $\mathrm{RuCl}_{2}(\mathrm{BESP})_{2} \cdot \mathrm{EtOH} \cdot \mathrm{H}_{2} \mathrm{O}$ A. 231 .
Appendix 1.5 Crystallographic Data for $\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ A. 233 .
Appendix 1.6 Crystallographic Data for $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot 2.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$. A. 238 .
Appendix 1.7 Crystallographic Data for trans- $\mathrm{RuCl}_{2}(\mathrm{BCyTE})_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ A. 245 .
Appendix 1.8 Crystallographic Data for trans $-\mathrm{RuCl}_{2}(\mathrm{BPhTE})_{2}$ A. 249 .
Appendix 1.9 Crystallographic Data for $\left[\mathrm{RuCl}_{2}(\mathrm{BETP})\right]_{2}(\mu \text { - } \mathrm{Cl})_{2}$ A. 253 .
Appendix 1.10 Crystallographic Data for $\left[\mathrm{RuCl}_{2}(\mathrm{BPTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$ A. 255 .
Appendix 1.11 Crystallographic Data for Mer -Cis- $\mathrm{RuCl}_{3}(\mathrm{DPSO})_{2}(\mathrm{DPSO})$ A. 257 .
Appendix 1.12 Crystallographic Data for $\mathrm{RuCl}_{2}(\mathrm{DMSO})(\mathrm{L})$ A. 260 .
Appendix 1.13 Crystallographic Data for $\left[\mathrm{Ru}(12-\mathrm{S}-4)(\mathrm{DMSO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}$ A. 263.
Appendix 1.14 Crystallographic Data for $\mathrm{Ru}(\mathrm{OEP})(\mathrm{CO})(\mathrm{THF})$. A. 266 .
Appendix 1.15 Crystallographic Data for $\mathrm{Ru}(\mathrm{TPhP})(\mathrm{CO})(\mathrm{py})$. A. 272 .
Appendix 2. Experimental for the Kinetic Studies of $[\operatorname{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ A. 276 .
Appendix 3. Thermal Gravimetric Analyses Plots. A. 277 .
Appendix 4. Accumulation Data of Ru in CHO Cells. A. 280 .
Appendix 5. DNA-binding Data of Ru in CHO Cells A. 281 .

List of Tables

Table 3.1. Selected Bond Lengths and Bond Angles for DMSO in the Gaseous and Solid States 65.
Table 3.2. Selected Structural Data for Selected Transition Metal-DMSO Complexes. 68.
Table 3.3. The Sulfur-oxygen Stretching Frequencies of S-bonded, O-bonded and Bridging DMSO Ru Complexes 73.
Table 3.4. The Melting Points and $v_{s o}\left(\mathrm{~cm}^{-1}\right)$ for Disulfoxides 75.
Table 3.5. IR Data (KBr) for $v_{\mathrm{so}}\left(\mathrm{cm}^{-1}\right)$ Free and $v_{\mathrm{so}}\left(\mathrm{cm}^{-1}\right)$ Bound, in Chelating Disulfoxide Complexes of Ru 83.
Table 3.6. Selected Bond Lengths (\AA) and Bond Angles (${ }^{\circ}$) for Some trans- $\mathrm{RuCl}_{2}(\mathrm{~S}-\mathrm{S})_{2}$ Complexes 85.
Table 3.7. Selected Bond Lengths (\AA) and Bond Angles (${ }^{\circ}$) for $\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2} \cdot \mathrm{H}_{2} \mathrm{O}, \quad$ trans $-\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ and cis- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ 86.
Table 3.8. The Relative Configurations of the S-atoms in Chelating Disulfoxide 88.
Complexes of Ru.
Table 3.9. Selected Bond Lengths (\AA) and Bond Angles (${ }^{\circ}$) of cis- $\mathrm{RuCl}_{2}(\mathrm{BBSE})_{2} \cdot \mathrm{EtOH}$ and cis- $\mathrm{RuCl}_{2}(\mathrm{BCySE})_{2} \cdot \mathrm{EtOH} \cdot 1 / 3 \mathrm{MeOH}$ 90.
Table 3.10. Selected Bond Lengths (\AA) and Bond Angles (${ }^{\circ}$) of cis- $\mathrm{RuCl}_{2}(\mathrm{BESP})_{2} \cdot \mathrm{EtOH} \cdot \mathrm{H}_{2} \mathrm{O}$ and cis- $\mathrm{RuCl}_{2}(\mathrm{BMSP})_{2}$ 98.
Table 3.11. Titration data for $\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ using NaOH 101.
Table 3.12. Classes of Mixed-valence Complexes 106.
Table 3.13. Selected Bond Lengths for the Two Asymmetric Units of [RuCl- $(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ 115.
Table 3.14. Selected Bond Angles for the Two Asymmetric Units of $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ 115.
Table 3.15. Titration data for $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ using NaOH 118.
Table 3.16. Kinetic Data for the Hydration Reaction of $[\operatorname{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ in$\mathrm{H}_{2} \mathrm{O}$125.
Table 3.17. Selected Bond Lengths (\AA) and Angles (${ }^{\circ}$) for trans- $\mathrm{RuCl}_{2}(\mathrm{BCyTE})_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and trans $-\mathrm{RuCl}_{2}(\mathrm{BPhTE})_{2}$ 133.
Table 3.18. Selected Bond Lengths (\AA) and Bond Angles (${ }^{\circ}$) for $\left[\mathrm{RuCl}_{2}(\mathrm{BETP})\right]_{2}(\mu-\mathrm{Cl})_{2}$ and $\left[\mathrm{RuCl}_{2}(\mathrm{BPTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$ 137.
Table 3.19. Selected Bond Lengths (\AA) and Bond Angles (${ }^{\circ}$) for mer-cis- $\left[\mathrm{RuCl}_{3}(\mathrm{DPSO})_{2}(\mathrm{DPSO})\right]$ and $m e r-\left[\mathrm{RuCl}_{3}(\mathrm{DPS} \underline{O})(\mathrm{DPSO})(\mathrm{MeOH})\right]$ 144.
Table 3.20. Comparison of Selected Bond Angles (${ }^{\circ}$) of L and RuCl_{2} (DMSO)(L). 149.
Table 3.21. Comparison of Selected Bond Lengths (\AA) of L and RuCl_{2} (DMSO)(L) 150.
Table 3.22. Comparison of Selected Bond Angles (${ }^{\circ}$) of $12-\mathrm{S}-4$ and $[\mathrm{Ru}(12-\mathrm{S}-$ 4)(DMSO) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}$ 152.
Table 3.23. Comparison of Selected Bond Lengths (\AA)) of $12-\mathrm{S}-4$ and $[\mathrm{Ru}(12-\mathrm{S}-$ 4)(DMSO) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}$ 154.
Table 4.1. Water-soluble Ru sulfoxide complexes studied in vitro 164.
Table 4.2. Furnace parameters used in AAS for Ru, at $\lambda 265.9 \mathrm{~nm}$ 170.
Table 5.1. $\mathrm{Ru}($ Porp $)(\mathrm{CO})$ species 187.
Table 5.2. Selected Bond Angles and Lengths for Ru(OEP)(CO)(THF) 197.
Table 5.3. Comparison of Selected Bond Lengths for $\mathrm{Ru}(\mathrm{TPhP})(\mathrm{CO})(\mathrm{py})$ 199.
Table 5.4. Fluorescence wavelengths for selected Ru porphyrins 203.
Table 5.5. Free-Base Porphyrins. 5,10,15,20-tetrapyridylporphyrin (TPyP), 5,10-bis(phenyl)-15,20-bis(4-pyridyl-N-oxide)porphyrin (BPhBPyNOP), 5,10,15,20-tetramesitylporphyrin (TMP), 5,10,15,20- tetra(pentafluorophenyl)-porphyrin (TPFPhP), 5,15-dibromo-10,20- bisphenylporphyrin (DBrBPhP), and protoporphyrin(IX)dimethylester (PPIXDME) 205.
Table A.1.1. Experimental Details for X-ray Crystal Structure of trans- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ A. 221 .
Table A.1.2. Bond Angles (${ }^{\circ}$) for trans- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ A. 222 .
Table A.1 3. Bond Lengths $(\AA \AA)$ for trans- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ A. 222 .
Table A. 1 4. Atomic Coordinates for trans- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ A. 222 .
Table A.1 5. Experimental Details for X-ray Crystal Structure of cis-
$\mathrm{RuCl}_{2}(\mathrm{BBSE})_{2} \cdot \mathrm{EtOH}$A. 223 .
Table A. 1 6. Bond Angles $\left({ }^{\circ}\right)$ for cis- $\mathrm{RuCl}_{2}(\mathrm{BBSE})_{2} \cdot \mathrm{EtOH}$. A. 224 .
Table A.1 7. Bond Lengths (\AA) for $c i s-\mathrm{RuCl}_{2}(\mathrm{BBSE})_{2} \cdot \mathrm{EtOH}$. A. 224.
Table A. 1 8. Atomic Coordinates for cis- $\mathrm{RuCl}_{2}(\mathrm{BBSE})_{2} \cdot \mathrm{EtOH}$ A. 225 .
Table A.1 9. Hydrogen bond parameters for A-H...B interactions. A. 225 .
Table A. 1 10. Experimental Details for X-ray Crystal Structure of cis- $\mathrm{RuCl}_{2}(\mathrm{BCySE})_{2} \cdot \mathrm{EtOH} \cdot 1 / 3 \mathrm{MeOH}$. A. 227 .
Table A. 1 11. Bond Angles $\left({ }^{\circ}\right)$ for cis- $\mathrm{RuCl}_{2}(\mathrm{BCySE})_{2} \cdot \mathrm{EtOH} \cdot 1 / 3 \mathrm{MeOH}$ A. 228 .
Table A.1 12. Bond Lengths (\AA) for $c i s-\mathrm{RuCl}_{2}(\mathrm{BCySE})_{2} \cdot \mathrm{EtOH} \cdot 1 / 3 \mathrm{MeOH}$ A. 228 .
Table A. 1 13. Atomic Coordinates for cis- $\mathrm{RuCl}_{2}(\mathrm{BCySE})_{2} \cdot \mathrm{EtOH} \cdot 1 / 3 \mathrm{MeOH}$. A. 229 .
Table A. 1 14. Hydrogen bond structural parameters for A-H...B interactions A. 229 .
Table A. 1 15. Experimental Details for X-ray Crystal Structure of cis- $\mathrm{RuCl}_{2}(\mathrm{BESP})_{2} \cdot \mathrm{EtOH} \cdot \mathrm{H}_{2} \mathrm{O}$ A. 231 .
Table A. 1 16. Bond Angles $\left({ }^{\circ}\right)$ for $c i s-\mathrm{RuCl}_{2}(\mathrm{BESP})_{2} \cdot \mathrm{EtOH} \cdot \mathrm{H}_{2} \mathrm{O}$. A. 232 .
Table A.1 17. Bond Lengths (\AA) for $c i s-\mathrm{RuCl}_{2}(\mathrm{BESP})_{2} \cdot \mathrm{EtOH} \cdot \mathrm{H}_{2} \mathrm{O}$ A. 232 .
Table A. 1 18. Atomic Coordinates for $c i s-\mathrm{RuCl}_{2}(\mathrm{BESP})_{2} \cdot \mathrm{EtOH} \cdot \mathrm{H}_{2} \mathrm{O}$ A. 233 .
Table A.1 19. Hydrogen bond structural parameters for A-H...B interactions A. 233 .
Table A. 1 20. Experimental Details for X-ray Crystal Structure of
$\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ A. 233 .
Table A. 1 21. Bond Angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ A. 234 .
Table A. 1 22. Bond Lengths (\AA) for $\left[\operatorname{RuCl}(\operatorname{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ A. 235 .
Table A. 1 23. Atomic Coordinates for $\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ A. 236 .
Table A. 1 24. Hydrogen bond parameters for A-H...B interactions A. 236 .
Table A. 1 25. Experimental Details for X-ray Crystal Structure of $\left[\mathrm{Ru}(\mathrm{BPSP}) \mathrm{Cl}_{2}(\mu-\mathrm{Cl})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot 2.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$. A. 238 .
Table A. 1 26. Bond Angles (${ }^{\circ}$) for $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot 2.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ A. 239 .
Table A. 1 27. Bond Lengths (\AA) for $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl}) 3 \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot 2.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ A. 240 .
Table A. 1 28. Atomic Coordinates for $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot 2.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$. A. 241 .
Table A. 1 29. Hydrogen bonds and $\mathrm{C}-\mathrm{H} \ldots \mathrm{Cl} / \mathrm{O}$ interactions. A. 242 .
Table A. 1 30. Experimental Details for X-ray Crystal Structure of trans- $\mathrm{RuCl}_{2}(\mathrm{BCyTE})_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ A. 245 .
Table A. 1 31. Bond Angles $\left({ }^{\circ}\right)$ for trans- $\mathrm{RuCl}_{2}(\mathrm{BCyTE})_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ A. 246 .
Table A. 1 32. Bond Lengths (\AA) for trans $-\mathrm{RuCl}_{2}(\mathrm{BCyTE})_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ A. 246 .
Table A. 1 33. Atomic Coordinates for trans- $\mathrm{RuCl}_{2}(\mathrm{BCyTE})_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ A. 246 .
Table A. 1 34. Hydrogen bond parameters for A-H...B interactions A. 247 .
Table A. 1 35. Experimental Details for X-ray Crystal Structure of trans- $\mathrm{RuCl}_{2}(\mathrm{BPhTE})_{2}$ A. 249 .
Table A.1 36. Bond Angles $\left(^{\circ}\right)$ for trans- $\mathrm{RuCl}_{2}(\mathrm{BPhTE})_{2}$ A. 250 .
Table A.1 37. Bond Lengths (\AA) for trans- $\mathrm{RuCl}_{2}(\mathrm{BPhTE})_{2}$ A. 250 .
Table A.1 38. Atomic Coordinates for trans- $\mathrm{RuCl}_{2}(\mathrm{BPhTE})_{2}$ A. 251 .
Table A. 1 39. Experimental Details for X-ray Crystal Structure of $\left[\mathrm{RuCl}_{2}(\mathrm{BETP})\right]_{2}(\mu-\mathrm{Cl})_{2}$ A. 253 .
Table A. 1 40. Bond Angles $\left(^{\circ}\right)$ for $\left[\mathrm{RuCl}_{2}(\mathrm{BETP})\right]_{2}(\mu-\mathrm{Cl})_{2}$. A. 254 .
Table A. 1 41. Bond Lengths (\AA) for $\left[\operatorname{RuCl}_{2}(\mathrm{BETP})\right]_{2}(\mu-\mathrm{Cl})_{2}$ A. 254 .
Table A. 1 42. Atomic Coordinates for $\left[\mathrm{RuCl}_{2}(\mathrm{BETP})\right]_{2}(\mu-\mathrm{Cl})_{2}$ A. 254 .
Table A. 1 43. Experimental Details for X-ray Crystal Structure of $\left[\mathrm{RuCl}_{2}(\mathrm{BPTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$ A. 255 .
Table A. 1 44. Bond Angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{RuCl}_{2}(\mathrm{BPTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$ A. 256 .
Table A. 1 45. Bond Lengths (\AA) for $\left[\operatorname{RuCl}_{2}(\mathrm{BPTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$ A. 256 .
Table A.1 46. Atomic Coordinates for $\left[\mathrm{RuCl}_{2}(\mathrm{BPTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$ A. 256 .
Table A. 1 47. Experimental Details for X-ray Crystal Structure of Mer-Cis- $\mathrm{RuCl}_{3}(\mathrm{DPSO})_{2}(\mathrm{DPSO})$ A. 257 .
Table A. 1 48. Bond Angles $\left({ }^{\circ}\right)$ for $\mathrm{Mer}-\mathrm{Cis}-\mathrm{RuCl}_{3}(\mathrm{DPSO})_{2}(\mathrm{DPSO})$ A. 258 .
Table A.1 49. Bond Lengths (\AA) for $\mathrm{Mer}-\mathrm{Cis}-\mathrm{RuCl}_{3}(\mathrm{DPSO})_{2}$ (DPSO). A. 259 .
Table A. 1 50. Atomic Coordinates for Mer - Cis - RuCl_{3} (DPSO$)_{2}$ (DPSO) A. 260 .
Table A. 1 51. Experimental Details for X-ray Crystal Structure of
RuCl_{2} (DMSO)(L) A. 260 .
Table A. 1 52. Bond Angles $\left({ }^{\circ}\right)$ for RuCl_{2} (DMSO)(L). A. 261 .
Table A.1 53. Bond Lengths (\AA) for $\mathrm{RuCl}_{2}(\mathrm{DMSO})(\mathrm{L})$ A. 262 .
Table A. 1 54. Atomic Coordinates for $\mathrm{RuCl}_{2}(\mathrm{DMSO})(\mathrm{L})$ A. 262 .
Table A. 1 55. Experimental Details for X-ray Crystal Structure of [Ru(12-S- 4)(DMSO) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}$ A. 263 .
Table A. 1 56. Bond Angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Ru}(12-\mathrm{S}-4)(\mathrm{DMSO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}$ A. 264 .
Table A.1 57. Bond Lengths (\AA) for $\left[\mathrm{Ru}(12-\mathrm{S}-4)(\mathrm{DMSO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}$ A. 264 .
Table A. 1 58. Atomic Coordinates for $\left[\mathrm{Ru}(12-\mathrm{S}-4)(\mathrm{DMSO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}$ A. 265 .
Table A. 1 59. Hydrogen bonds and $\mathrm{C}-\mathrm{H} . . . \mathrm{O} / \mathrm{F}$ interactions. A. 266 .
Table A. 1 60. Experimental Details for X-ray Crystal Structure of $\mathrm{Ru}(\mathrm{OEP})$ (CO)(THF) A. 266 .
Table A. 1 61. Bond Angles $\left(^{\circ}\right)$ for $\mathrm{Ru}(\mathrm{OEP})(\mathrm{CO})(\mathrm{THF})$. A. 267 .
Table A. 1 62. Bond Lengths (\AA) for $\mathrm{Ru}(\mathrm{OEP})(\mathrm{CO})(\mathrm{THF})$ A. 269 .
Table A. 1 63. Atomic Coordinates for $\mathrm{Ru}(\mathrm{OEP})(\mathrm{CO})(\mathrm{THF})$ A. 270 .
Table A. 1 64. Experimental Details for X-ray Crystal Structure of $\mathrm{Ru}(\mathrm{TPhP})(\mathrm{CO})(\mathrm{py})$ A. 272.
Table A. 1 65. Bond Angles $\left({ }^{\circ}\right)$ for $\operatorname{Ru}(\mathrm{TPhP})(\mathrm{CO})(p y)$. A. 272 .
Table A. 1 66. Bond Lengths (\AA) for $\operatorname{Ru}(\mathrm{TPhP})(\mathrm{CO})(\mathrm{py})$ A. 274 .
Table A. 1 67. Atomic Coordinates for $\mathrm{Ru}(\mathrm{TPhP})(\mathrm{CO})(\mathrm{py})$ A. 275 .

List of Figures

Figure 1.1. $1=$ Cis-diamminedichloroPt(II) (Cisplatin), $\mathbf{2}=$
Diammine(cyclobutane-1-1-dicarboxylato)Pt(II) (Carboplatin), $3=$ Bis(acetato)amminedichloro-(cyclohexylamine) $\operatorname{Pt}(\mathrm{IV})$ (JM 216), $4=$ Amminedichloro(2-methylpyridine) $\mathrm{Pt}(\mathrm{II})$ (AMD 473).4.

Figure 1.2. Structures of deoxyguanosine (1) and deoxyadenosine (2)............... 7.
Figure 1.3. Central structure of a Ru porphyrin... 9.
Figure 1.4. Abbreviated structures of cis- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{3}(\mathrm{DMSO})$ and trans$\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$, respectively. $(\mathrm{S}=\mathrm{S}$-bound DMSO and $\mathrm{O}=0$-bound DMSO)
Figure 1.5. Dissolution behaviour of (1) cis- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ and (2) trans$\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ in aqueous solutions. $(\mathrm{S}=\mathrm{S}$-bound DMSO; $\mathrm{O}=\mathrm{O}$-bound DMSO)

Figure 1.6. Structures of reaction products of cis- and trans- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ with 2^{\prime}-deoxyguanosine. ($\mathrm{S}=\mathrm{S}$-bound DMSO and $2^{\prime}-\mathrm{dG}=$ deoxyguanosine) \ldots.
Figure 1.7. Dissolution behaviour of (1) mer- $\mathrm{RuCl}_{3}(\mathrm{DMSO})_{2}(\mathrm{DMSO})$ and (2) trans- $\left[(\mathrm{DMSO})_{2} \mathrm{H}\right]^{+}\left[\mathrm{RuCl}_{4}(\mathrm{DMSO})_{2}\right]^{-}$in aqueous solutions. ($\mathrm{S}=\mathrm{S}$-bound DMSO and $\mathrm{O}=\mathrm{O}$-bound DMSO)
Figure 1.8. Abbreviated structures of mer $-\mathrm{RuCl}_{3}(\mathrm{DMSO})_{2} \mathrm{Im}$ and $\mathrm{Na}[$ trans$\left.\mathrm{RuCl}_{4}(\mathrm{DMSO})(\mathrm{Im})\right]$. $(\mathrm{S}=\mathrm{S}$-bound $\mathrm{DMSO}, \mathrm{O}=\mathrm{O}$-bound DMSO and $\mathrm{Im}=$ imidazole).
Figure 1.9. Structures of 2-nitroimidazole ($\mathrm{R}=\mathrm{CH}_{2} \mathrm{CHOHCH}_{2} \mathrm{OCH}_{3}=$ misonidazole, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{OH}=$ etanidazole), 4nitroimidazole $(\mathrm{R}=\mathrm{H})$ and 5-nitroimidazole $\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}=\right.$ metronidazole)

Figure 1.10. Structure of disulfoxides. $((n=2) \mathrm{BMSE}, \mathrm{R}=\mathrm{Me} ; \mathrm{BESE}, \mathrm{R}=\mathrm{Et}$; BPSE, $\mathbf{R}=\mathrm{Pr} ; \mathrm{BBSE}, \mathrm{R}=\mathrm{Bu} ; \mathrm{BPeSe}, \mathrm{R}=\mathrm{Pe} ; \mathrm{BHSE}, \mathrm{R}=\mathrm{He} ; \mathrm{BCySE}, \mathrm{R}$ $=\mathrm{Cy} ; \mathrm{BPhSE}, \mathrm{R}=\mathrm{Ph}$ and $(n=3) \mathrm{BMSP}, \mathrm{R}=\mathrm{Me} ;$ BESP, $\mathrm{R}=\operatorname{Pr} ; \mathrm{BPSP}, \mathrm{R}$ $=\operatorname{Pr} ; \mathrm{B}^{i} \mathrm{PSP}, \mathrm{R}={ }^{i} \mathrm{Pr} ; \mathrm{BBSP}, \mathrm{R}=\mathrm{Bu} ; \mathrm{BPeSP}, \mathrm{R}=\mathrm{Pe} ; \mathrm{BPhSP}, \mathrm{R}=\mathrm{Ph}$)

Figure 2.1. Diagram showing the labelling of the H -atoms of 1,2bis(cyclohexylthio)ethane.

Figure 3.1. Structure (1) and resonance forms (2) of a sulfoxide. 64.

Figure 3.2. Structures of catena-poly[cis- Cl_{2}-trans $\left.-\mathrm{CH}_{3} \mathrm{Sn}(\mathrm{IV})\right]\left(\mu-O, O^{\prime}\right.$-mesoBPSE) (1) and [$\left.\mathrm{SnCl}-\mathrm{cis}-\mathrm{Ph}_{3}\right]_{2}\left(\mu-O, O^{\prime}-r a c-1,2-\operatorname{bis}(n-\right.$ propylsulfinyl)ethylene) (2).
Figure 3.3. Structures containing μ-BPhSE.
Figure 3.4. (1) $\mathrm{R}=\mathrm{H}$, (SS)-bis(p-tolylsulfinyl)methane; and $\mathrm{R}=\mathrm{CH} 3$, (SS)-2,2-bis-p-tolylsulfinylpropane. (2) (SS)-1,2-bis(p-tolylsulfinyl)benzene
Figure 3.5. Structures of dios ((2R3R)-2,3-O-isopropylidene-2,3-dihydroxy-1,4bis(methylsulfinyl) butane monohydrate) (1), bdios ((2R3R)-2,3-O-isopropylidene-2,3,dihydroxy-1,4-bis(benzylsulfinyl) butane monohydrate (2), and ddios ((2R3R)-2,3-dihydroxy-1,4-bis(methylsulfinyl) butane (3)..

Figure 3.6 General structure for (1) cis- $\mathrm{RuCl}_{2}(\mathrm{BMSP})_{2}$ and cis- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ and (2) trans- $\mathrm{RuCl}_{2}(\mathrm{BMSE})_{2}$ and trans- $\mathrm{RuCl}_{2}(\mathrm{BPSE})_{2} ; \quad \mathrm{S}^{\wedge} \mathrm{S}=$ chelating disulfoxide
Figure 3.7. An ORTEP drawing of trans- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ with 50% probability thermal ellipsoids shown (crystal data given in Appendix 1.1). For the data of Table 3.8, $S(4)$ and $S(3)$ are taken as trans to $S(2)$ and $S(1)$, respectively.

Figure 3.8. An ORTEP drawing of the Δ configuration of cis$\mathrm{RuCl}_{2}(\mathrm{BBSE})_{2} \cdot \mathrm{EtOH}$ with 50% probability thermal ellipsoids shown; $\mathrm{H}-$ atoms (except for that of EtOH) are omitted for clarity
Figure 3.9. An ORTEP drawing of the Λ configuration of cis$\mathrm{RuCl}_{2}(\mathrm{BCySE})_{2} \cdot \mathrm{EtOH} \cdot 1 / 3 \mathrm{MeOH}$ with 50% probability thermal ellipsoids shown; H-atoms are omitted for clarity (crystal data given in Appendix 1.3)
Figure 3.10. An ORTEP drawing of the Δ configuration of cis$\mathrm{RuCl}_{2}(\mathrm{BESP})_{2} \cdot \mathrm{EtOH} \cdot \mathrm{H}_{2} \mathrm{O}$ with 50% probability thermal ellipsoids shown; H -atoms are omitted for clarity (crystal data given in Appendix 1.4)........

Figure 3.11. The unit cell of cis - $\mathrm{RuCl}_{2}(\mathrm{BESP})_{2} \cdot \mathrm{EtOH} \cdot \mathrm{H}_{2} \mathrm{O}$ showing the EtOH and $\mathrm{H}_{2} \mathrm{O}$ solvate molecules (crystal data given in Appendix 1.4)

Figure 3.12. An ORTEP drawing of $\left[\operatorname{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ with 50% probability thermal ellipsoids (crystal data given in Appendix 1.5)

Figure 3.13. Diagram of $\left[\operatorname{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ showing the $\mathrm{H}_{2} \mathrm{O}$ solvate (crystal data given in Appendix 1.5)

Figure 3.14. Structures of $S S$-chiraphos and $R R$-diop.................................... 107.
Figure 3.15. Structures of a-pyridone (1), 1-methylthymine (2) and creatinine (3).. 109.

Figure 3.16. Structures of $\left[\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Pt}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NO}\right)_{2}\right]_{2}\left(\mathrm{NO}_{3}\right)_{5} \cdot \mathrm{H}_{2} \mathrm{O}(1)$, $\left[\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2} \mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}(2)$, $\left[\mathrm{Pt}_{2}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}(3)$, and $\left[\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Pt}\left(\mathrm{CH}_{3} \mathrm{CONH}\right)_{2} \mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}\right]_{4}-$ $\left(\mathrm{NO}_{3}\right)_{10} \cdot 4 \mathrm{H}_{2} \mathrm{O}(4)$.

Figure 3.17. The ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum showing the paramagnetic shift caused by $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}\left(8.8 \times 10^{-2} \mathrm{M}\right)$ of the residual CHCl_{3} relative to that of the reference CHCl_{3}. ($\mathbf{A}=$ residual CHCl_{3} in CDCl_{3}, and $\mathbf{B}=$ residual CHCl_{3} peak shifted by $\left.[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}\right)$

Figure 3.18. An ORTEP drawing of one of the $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ units with 50% probability thermal ellipsoids shown; H -atoms are omitted for clarity (crystal data given in Appendix 1.6)

Figure 3.19. A diagram of $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ showing short H -bonds connecting two asymmetric units via four $\mathrm{H}_{2} \mathrm{O}$ molecules (the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ atoms are not shown) (crystal data given in Appendix 1.6)
Figure 3.20. Proposed mechanism for the behaviour of $[\operatorname{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ in aqueous solution; the two $\mathrm{Ru}(\mathrm{II}) / \mathrm{Ru}(\mathrm{III})$ centres are not distinguished crystallographically, and loss of the chlorides is assumed to be from the terminal positions (the propyl groups of BPSP are omitted for clarity)
Figure 3.21. ${ }^{1} \mathrm{H}$ NMR spectra of equilibrated $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ in $\mathrm{D}_{2} \mathrm{O}$ (after $2 \mathrm{~h})(\mathrm{A})$ and immediate spectrum of $[\operatorname{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}\left(2.02 \times 10^{-3} \mathrm{M}\right)$ after addition of two or three equivalents of AgNO_{3} in $\mathrm{D}_{2} \mathrm{O}(\mathrm{B})$

Figure 3.22. A representative spectrum of the UV-Vis spectral changes (200-600 nm region, 1 cm cell) of $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}\left(2.96 \times 10^{-4} \mathrm{M}\right)$ in an aqueous solution at $27^{\circ} \mathrm{C}$ as a function of time (half life $\mathrm{t}_{1 / 2}=120 \mathrm{~s}$, for the pseudo-first order process); isosbestic points are observed at the noted wavelengths

Figure 3.23. Absorption spectral changes at $\lambda=362 \mathrm{~nm}$ as a function of time for the reaction of $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ in $\mathrm{H}_{2} \mathrm{O}(55.6 \mathrm{M})$ at $27^{\circ} \mathrm{C}$

Figure 3.24. A representative rate-plot analyzed for a first-order dependence on $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3} ; \mathrm{A}_{\mathrm{t}}$ and A_{∞} represent the absorption at 362 nm at times t and ∞, respectively, at $27^{\circ} \mathrm{C}$

Figure 3.25. The dependence of the pseudo-first-order rate constant, $\mathrm{k}_{\mathrm{obs}}$, on [$\mathrm{H}_{2} \mathrm{O}$] at $27{ }^{\circ} \mathrm{C}$; including the $\mathrm{k}_{\text {obs }}$ values obtained from reactions run in 0.25 M aqueous NaCl and 0.1 M aqueous toluene-4-sulfonic acid (in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ solutions)
Figure 3.26. The dependence of the second-order rate constant k_{1} on $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}\left[(\mu-\mathrm{Cl})_{3}\right]$ in $\mathrm{H}_{2} \mathrm{O}(22.2 \mathrm{M})$ at $27^{\circ} \mathrm{C} . \quad(\mathrm{Ru}=$ $\left.[\operatorname{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}\right)$

Figure 3.27. Erying plot for the temperature dependence of the rate constant k_{1} for the reaction of $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}\left(2.96 \times 10^{-4} \mathrm{M}\right)$ with $\mathrm{H}_{2} \mathrm{O}(22.2$ M)

Figure 3.28. An ORTEP drawing of trans- $\mathrm{RuCl}_{2}(\mathrm{BCyTE})_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ with 50% probability shown; H -atoms are omitted for clarity (the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecules are not shown) (crystal data are given in Appendix 1.7)
Figure 3.29. The unit cell of trans- $\mathrm{RuCl}_{2}(\mathrm{BCyTE})_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showing the 2 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvate molecules (crystal data given in Appendix 1.7)

Figure 3.30. Resonance structures of a phenyl ring with a thioether
Figure 3.31. An ORTEP drawing of trans $-\mathrm{RuCl}_{2}(\mathrm{BPhTE})_{2}$ with 50% probability thermal ellipsoids shown; H -atoms are omitted for clarity (crystal data are given in Appendix 1.8).

Figure 3.32. An ORTEP drawing of $\left[\operatorname{RuCl}_{2}(\operatorname{BETP})\right]_{2}(\mu-\mathrm{Cl})_{2}$ with 50% probability thermal ellipsoids shown; H -atoms are omitted for clarity (crystal data are given in Appendix 1.9).
Figure 3.33. An ORTEP drawing of $\left[\mathrm{RuCl}_{2}(\mathrm{BPTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$ with 50% probability thermal ellipsoids shown. The H-atoms are omitted for clarity (crystal data are given in Appendix 1.10)
Figure 3.34. Structure of $m e r-\left[\mathrm{RuCl}_{3}(\mathrm{DPSO})(\mathrm{DPSO})(\mathrm{MeOH})\right] ; \mathrm{O}$ and S are O and S-bonded DPSO, respectively

Figure 3.35. An ORTEP diagram of mer-cis-[$\left[\mathrm{RuCl}_{3}(\mathrm{DPSO})_{2}\right.$ (DPSO) $]$ showing 50% thermal ellipsoids; the H -atoms are omitted for clarity (crystal data are given in Appendix 1.11)

Figure 3.36. 3,6,9,14-Tetrathiabicyclo[9.2.1]tetradeca-11,13-diene (L), and 1,4,7,10-tetrathiacyclododecane (12-S-4); H-atoms omitted.146.

Figure 3.37. An ORTEP diagram of RuCl_{2} (DMSO)(L) showing 50% thermal ellipsoids; the H -atoms are omitted for clarity (crystal data are given in Appendix 1.12)
Figure 3.38. An ORTEP diagram of $\left[\mathrm{Ru}(12-\mathrm{S}-4)(\mathrm{DMSO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}$ showing 50% thermal ellipsoids; the H -atoms are omitted for clarity (crystal data are give in Appendix 1.13)
Figure 4.1. The absence of toxicity of $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ in CHO cells.174.

Figure 4.2. Accumulation of $\mathrm{Ru}(\mathbf{A})$ and Ru-DNA-binding (B) in CHO cells after 2 h incubation with $\left[\mathrm{Ru}(12-\mathrm{S}-4)(\mathrm{DMSO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}(1)$, $[\operatorname{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}(2),\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}(3)$, $\left[\operatorname{RuCl}(\operatorname{BPSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}(4),\left[\operatorname{RuCl}(\mathrm{BBSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}(5)$

Figure 4.3. Accumulation (A) and DNA-binding (B) with $0.5 \mathrm{mM} \mathrm{Ru} . \quad \mathbf{1}=$ cis$\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}, 2=$ trans $-\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}, 3=$ cis $-\mathrm{RuCl}_{2}(\mathrm{TMSO})_{4}, 4=$ trans $-\mathrm{RuCl}_{2}(\mathrm{BMSE})_{2}, \mathbf{5}=$ cis $-\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}, \mathbf{6}=$ trans $-\mathrm{RuCl}_{2}(\mathrm{BPSE})_{2}, 7$ $=$ cis $-\mathrm{RuCl}_{2}(\mathrm{BMSP})_{2}, 8=\left[\mathrm{Ru}(12-\mathrm{S}-4)(\mathrm{DMSO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}, 9=$ $[\operatorname{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}, 10=\left[\operatorname{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}, 11=$ $\left[\mathrm{RuCl}(\mathrm{BPSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}, 12=\left[\mathrm{RuCl}(\mathrm{BBSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2} \ldots$ 179.

Figure 5.1. $\mathrm{Ru}(\mathrm{II})($ Porp $)(\mathrm{CO})$ species, showing the numbering system. 187.
Figure 5.2. An ORTEP diagram of $\mathrm{Ru}(\mathrm{OEP})(\mathrm{CO})(\mathrm{THF})$ showing 50% thermal
ellipsoids; the H -atoms are omitted for clarity (crystal data are given in
Appendix 1.14) 196.

Figure 5.3. Structures of $(1)=$ TEMPO $=2,2,6,6$-tetramethylpiperidine-1-oxyl, (2) $=$ DAPO $=$ trans 3,4,-diamino-2,2,6,6-tetramethyl piperidine-1-oxyl, (3) $=$ TEMPICOL-2 $=4$-hydroxy-4-(2-picolyl)-2,2,6,6-tetramethylpiperidine-1-oxyl. 198.
Figure 5.4. An ORTEP diagram of $\mathrm{Ru}(\mathrm{TPhP})(\mathrm{CO})(\mathrm{py})$ showing 50% thermal ellipsoids; the H -atoms have been omitted for clarity (crystal data are given in Appendix 1.15) 200.
Figure 5.5. Fluorescence spectrum of $\mathrm{Na}_{4}[\mathrm{Ru}(\mathrm{TSPhP})(\mathrm{CO})] \cdot 4 \mathrm{H}_{2} \mathrm{O}$. The excit- ation wavelength was 414 nm and emission was measured at 641 and 704 nm 202.
Figure 6.1. Structural diagram of cis- $\mathrm{RuCl}_{2}(\mathrm{BPhSP})(1-($ phenylthio $)$-3- (phenylsulfinyl)propane) 214.
Figure 6.2. A potentially water-soluble disulfoxide 215.
Figure A.1.1. Stereoview of cis- $\mathrm{RuCl}_{2}\left(\mathrm{BBSE}_{2} \cdot \mathrm{EtOH}\right.$ A. 226 .
Figure A.1.2. Stereoview of cis - $\mathrm{RuCl}_{2}(\mathrm{BCySE})_{2} \cdot \mathrm{EtOH} \cdot 1 / 3 \mathrm{MeOH}$. A. 230 .
Figure A.1.3. Stereoview of $\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ A. 237 .
Figure A.1.4. Stereoview of $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot 2.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ A. 244 .
Figure A.1.5. Stereoview of trans- $\mathrm{RuCl}_{2}(\mathrm{BCyTE})_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ A. 248 .
Figure A.1.6. Stereoview of trans- $\mathrm{RuCl}_{2}(\mathrm{BPhTE})_{2}$ A. 252 .
Figure A.1.7. Stereoview of $\mathrm{Ru}(\mathrm{OEP})(\mathrm{CO})(\mathrm{THF})$ A. 271 .
Figure A.3.1. TGA of $\left[\operatorname{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ A. 277 .
Figure A.3.2. TGA of $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ A. 278 .
Figure A.3.3. TGA of $\mathrm{Na}_{4}\left(\mathrm{H}_{2} \mathrm{TSPhP}\right) \cdot 15 \mathrm{H}_{2} \mathrm{O}$ A. 279 .
Figure A.3.4. TGA of $\mathrm{Na}_{4}[\mathrm{Ru}(\mathrm{TSPhP})(\mathrm{CO})] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ A. 279 .
Figure A.4.1. Accumulation of Ru in CHO cells after a 2 h incubation with$\left[\mathrm{Ru}(12-\mathrm{S}-4)(\mathrm{DMSO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}(1),[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}(2)$,$\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}(3),\left[\mathrm{RuCl}(\mathrm{BPSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}(4)$,$\left[\mathrm{RuCl}(\mathrm{BBSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}(5)$.A. 280 .
Figure A.5.1. Ru-DNA-binding after incubation with $[\mathrm{Ru}(12-\mathrm{S}-$ 4)(DMSO) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}(1),[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}(2)$, $\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}(3),\left[\mathrm{RuCl}(\mathrm{BPSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}(4)$, $\left[\mathrm{RuCl}(\mathrm{BBSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}(5)$

List of Abbreviations

Abbreviation	Meaning
AAS	atomic absorption spectroscopy
AMP	adenine monophosphate
APT	attached proton test
aq.	aqueous
BMSB	1,4-bis(methylsulfinyl)butane
BMSP	1,3-bis(methylsulfinyl)propane
BESP	1,3-bis(ethylsulfinyl)propane
BPSP	1,3-bis(propylsulfinyl)propane (all alkyl groups are n unless otherwise indicated)
$\mathbf{B}^{\boldsymbol{i}} \mathbf{}$ PSP	1,3-bis(i-propylsulfinyl)propane
BBSP	1,3-bis(butylsulfinyl)propane
BPeSP	1,3-bis(pentylsulfinyl)propane
BPhSP	1,3-bis(phenylsulfinyl)propane
BMSE	1,2-bis(methylsulfinyl)ethane
BESE	1,2-bis(ethylsulfinyl)ethane
BPSE	1,2-bis(propylsulfinyl)ethane
BBSE	1,2-bis(butylsulfinyl)ethane
BPeSE	1,2-bis(pentylsulfinyl)ethane
BHSE	1,2-bis(hexylsulfinyl)ethane
BCySE	1,2-bis(cyclohexylsulfinyl)ethane
BPhSE	1,2-bis(phenylsulfinyl)ethane
BPhTE	1,2-bis(phenylthio)ethane
BCyTE	1,2-bis(cyclohexylthio)ethane
BETP	1,3-bis(ethylthio)propane
BPTP	1,3-bis(propylthio)propane
BBTP	1,3-bis(butylthio)propane
BPeTP	1,3-bis(pentylthio)propane
br	broad (NMR and IR)

B. M.
b. p.

BPP
CHO
COSY
GMP
2D
DMSO
DMSO
DPSO
EI
e.s.d.

FAB
HEPES
HETCOR
m. p.

MALDI
O
OD
OEP
ORTEP
OTf
PBS
PE
Porp
r. t .
r. p. m.

S
SDS

Bohr magneton

boiling point
dianion of 5,15-bis(phenyl)porphyrin
Chinese hamster ovary (a cell line)
correlated spectroscopy
guanine monophosphate
2-dimensional (NMR)
dimethylsulfoxide coordinated via the S -atom
dimethylsulfoxide coordinated via the O -atom
diphenylsulfoxide
electron impact ionization
estimated standard deviation
fast atom bombardment
N -2-hydroxylethylpiperazine- N^{\prime}-2-ethane sulfonic acid
heteroatom correlation spectroscopy
melting point
matrix assisted laser desorption ionization
O-bonded
optical density
dianion of $2,3,7,8,12,13,17,18$-octaethylporphyrin
Oakridge Thermal Ellipsoid Program
triflate $\left(\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}\right)$
phosphate buffered saline
plating efficiency
porphyrin dianion
room temperature
revolutions per minute
S-bonded
sodium dodecylsulfate

TE

TGA
TMSO
TNE
TPhP
TSPhP

TrPhPyNO

Λ_{M}
μ_{eff}
tris(hydroxymethyl)aminomethane+ethylenediaminetetraacetic acid
thermal gravimetric analysis
tetramethylene sulfoxide
$\mathrm{TE}+150 \mathrm{mM} \mathrm{NaCl}$
dianion of 5,10,15,20-tetraphenylporphyrin
dianion of 5,10,15,20-tetrakis(4-sulfonato)phenylporphyrin
dianion of 5,10,15-triphenyl-20-(4-pyridyl- N -oxide)porphyrin molar conductivity
magnetic moment

Acknowledgements

I would very much like to thank my supervisors Brian James and Kirsten Skov for their encouragement, guidance, patience and support over the years and for providing myself the opportunity to work with them.

Many thanks to the departmental services, especially Marietta Austria, Peter Borda, Lianne Diarge, Steve Rak and the late Steve Rettig and from the BC Cancer Research Centre Hans Adomat, Jennifer Dekker, Manuel Gierth and Haibo Zhou. I would also like to thank Joanne Crocker, Lionel Harrison, Peter Wassell and Dana Zendrowski.

I thank all past and present members of the James Gang.
Special thanks go to Bianca Kuipers, Heather Dobson, Annie Schnyder, Krystyna Skupinska and Gay and Ipi Yuyitung for the hiking, kayaking and skiing trips and of course, the coffee breaks. I would also like to thank Janet Gamelin, Hoa Ly, Matt Netherton, Dave Vocadlo, Alex Wong, James Yee, Eliza Jang, Asa Sophia Timms Maglio, Trish Mah, Debbie Sangra and Lesia Zorniak.

Most importantly I must thank my father, mother, Lillian and Rod for all their love and support over the years.

Thanks for the many "Hello, how are you today?" -Larry Weiler.

I dedicate this thesis to the memory of Steve Rettig.

Chapter 1

Introduction

1.1 Preamble

Prior studies in this laboratory on sulfoxides, particularly chiral sulfoxides, were mainly focussed on the potential of complexes of ruthenium(II) as catalysts for homogeneous hydrogenations. ${ }^{1}$ Recently, the Trieste group reported that cis- and trans- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ possess mutagenic properties, exhibit anti-cancer activity and interact with nucleobases of DNA (see Section 1.4). Previous studies from our laboratories had utilized such complexes as precursors for the synthesis of $\mathrm{Ru}(\mathrm{II})$-sulfoxide-nitroimidazole complexes as potential radiosensitizers (see Section 1.4.3).

Cancer is a progressive disease in which malignant tissue can be distinguished from normal tissue by its property of abnormal, uncontrolled and invasive growth. ${ }^{2}$ Early stages of cancer may be treated by a combination of surgery and radiotherapy, but more advanced stages require chemotherapy. ${ }^{2}$ Cancer occurs in many forms depending on the part of the body and the type of cells involved. For example, most tumours occur as a localized grouping of cancerous cells, while in others such as leukemia, the malignant cells are widely dispersed in the blood stream. ${ }^{3}$ Chemotherapy involves directing toxic agents towards the malignant cells. Chemotherapy for lung, breast and colorectal cancers, which account for approximately 50% of all cancer deaths in the industrialized Western world, usually results only in prolonged survival. ${ }^{2}$ One of the major problems of chemotherapy is that chemotherapeutic agents do not exhibit selective toxicity for cancer cells over normal cells. Understanding the mechanisms of tumour biology, cellular processes involving tumour cells, and the interaction of
chemotherapeutic agents with cancer cells will greatly improve treatment modalities of this disease.

Chemotherapeutic agents are primarily organic compounds or natural products including alkylating agents, antibiotics and alkaloids. ${ }^{4}$ Inorganic compounds were not extensively studied as anti-cancer agents until the discovery of cisplatin (Figure 1.1). ${ }^{5}$ Since this discovery, there has been substantial interest in the development of inorganic complexes as potential anti-tumour agents but progress has been slow.

1.2 Development of Platinum Chemotherapeutic Agents

Cisplatin has a proven efficacy against a wide variety of malignancies and is used in the treatment of solid tumours such as ovarian and testicular cancer, as well as head and neck, lung and cervical carcinomas. ${ }^{6}$ Breast cancer is also recognized as a potential target for cisplatin therapy. ${ }^{6}$ Furthermore, it is also used in combination chemotherapy for a variety of other malignancies. ${ }^{6}$ Extraordinarily good results were attained in the treatment of testicular cancer. ${ }^{6}$ Moreover, in ovarian cancer, remission rates of up to 50% have been documented. ${ }^{6}$ However, because of the compound's toxicity (e.g. nausea, ear damage, vomiting, loss of sensation in hands and kidney toxicity), ${ }^{7}$ research has been on-going to develop analogues which are less toxic.

Sherman and Lippard have reported evidence that DNA is the cellular target of Pt drugs from studies of their incubation with DNA and interaction with lysogenic strains of E. coli, ${ }^{8}$ while Bloemink and Reedijk have presented reviews of the mechanism of cisplatin action and DNA-binding. ${ }^{7,9}$ The key elements of the mechanism appear to be: (1) controlled hydrolysis, transport and binding of cisplatin to DNA; (2) a specific binding at neighbouring
guanine bases, specifically at the N7 atoms; and (3) a specific distortion of DNA, altering interactions with proteins. Whitehead and Lippard have reported on the role of structurespecific proteins that mediate cisplatin cytotoxicity. ${ }^{10}$ Oldenberg and Los reviewed studies showing that cellular damage produced by cisplatin provokes a programmed response that results in the activation of some genes, the inactivation of others, major shifts in cellular metabolism, and cell cycle progression, eventually triggering apoptosis. ${ }^{6}$ They also summarize studies which show that proliferating cells are much more sensitive to the toxicity of the drug, indicating that cell-cycle associated events are involved in cisplatin cytotoxicity. ${ }^{6}$

A second generation analogue of cisplatin, carboplatin ${ }^{11}$ (Figure 1.1), offers 1 reduced toxicity together with therapeutic activity similar to that of cisplatin.

The complex bis(acetato)amminedichloro(cyclohexylamine) $\operatorname{Pt}(\mathrm{IV})(\mathrm{JM} \mathrm{216})^{12}$ is the first orally bioavailable Pt complex and is currently in Phase II clinical trials (Figure 1.1). This novel $\operatorname{Pt}(\mathrm{IV})$ complex has demonstrated promising oral activity against a variety of murine and human tumour models, and in vitro cytotoxic effects against a tumour line that exhibits intrinsic resistance to cisplatin. ${ }^{12}$ This complex was designed primarily to improve quality of life during Pt-based chemotherapy.

1

2

3

4

Figure 1.1. $\mathbf{1}=$ Cis-diamminedichloroPt(II) (Cisplatin), $2=$ Diammine(cyclobutane-1-1-dicarboxylato) $\mathrm{Pt}(\mathrm{II})$ (Carboplatin), $3=\operatorname{Bis}$ (acetato)amminedichloro(cyclohexylamine) $\operatorname{Pt}(\mathrm{IV})$ (JM 216), ${ }^{12} 4=$ Amminedichloro(2-methylpyridine) $\operatorname{Pt}(\mathrm{II})$ (AMD 473). ${ }^{13}$

Recently, the complex amminedichloro(2-methylpyridine)Pt(II) (AMD 473) ${ }^{13}$ (Figure 1.1) has been developed as a third generation Pt complex designed to circumvent cellular resistance in vitro and enhance in vivo activity. In recognition of an increasing awareness of the mechanisms by which tumours might become resistant to cisplatin (e.g. cytoplasmic detoxification by cellular thiols or increased DNA repair/tolerance of Pt-DNA adducts) in the clinic, AMD 473 was designed primarily to prevent thiol-mediated drug resistance by sterically hindering its reaction with glutathione by introduction of steric bulk (2-methylpyridine) at the Pt centre. ${ }^{13}$ This complex reached Phase I clinical trials.

Day and Sadler et al. have reported that iodo complexes of $\mathrm{Pt}(\mathrm{IV})$ show promise in the design of oxygen-independent photoactivated metallodrugs. ${ }^{14}$ Photoactive analogues of cisplatin, particularly trans, cis- $\left[\mathrm{Pt}\left(\mathrm{OCOCH}_{3}\right)_{2} \mathrm{I}_{2}\left({ }^{15} \mathrm{~N}\right.\right.$-en $\left.)\right]$ was shown to react with guanosine 5^{\prime}-monophosphate upon exposure to visible light to give $\left[\operatorname{Pt}\left(5^{\prime}-\mathrm{GMP}-N 7\right)_{2}(\mathrm{en})\right]^{2+} .{ }^{14 \mathrm{~b}}$

Development of new generation Pt complexes has taken into consideration these characteristics: charge, lipophilicity, stability in the gastric environment, oral bioavailablity, a
cis arrangement of labile ligands (this permits binding and intrastrand cross-linking of DNA) and a limited toxicity to the host organism. ${ }^{15}$ An exception, work by Farrell et al., has shown that certain trans and di- and tri-nuclear Pt complexes show anti-tumour activity with a mechanism of action that is different from that of cisplatin. One of these, a tri-nuclear Pt complex is in Phase I trials. ${ }^{16}$

1.3 Ruthenium Chemotherapeutic Agents

The potential of ruthenium complexes as anti-cancer agents has been extensively explored along with fundamental studies on their interactions with molecules of biological interest (e.g. nucleic acids). ${ }^{17,18}$ One difference between Pt-based and Ru-based anti-tumour agents is that Ru complexes are usually octahedral, six-coordinate as opposed to the squareplanar, four-coordinate geometry of $\mathrm{Pt}(\mathrm{II})$ complexes. The two additional coordination sites for Ru complexes may allow new modes of binding to nucleic acids and, with some ligands, provide for chirality in the complexes and so in their interactions with the DNA helix. ${ }^{19}$ Of note, Milkevitch et al. have reported on mixed-metal $\mathrm{Ru}(\mathrm{II}) / \mathrm{Pt}(\mathrm{II})$ complexes as DNA-binding agents. ${ }^{20}$

The sequence of events that Ru complexes undergo following injection into a living body have been elucidated: ${ }^{21}$

1. Ru binds to transferrin and is selectively distributed to transferrin-rich receptor tissues (of note, high amounts of transferrin receptors are found on tumour cells ${ }^{22}$).
2. Ru exhibits a low capacity of exchange reactions but binds to molecules of biological interest (e.g. nucleic acids).
3. Ru exhibits a high DNA binding affinity.

Ru complexes have been studied in comparison to cisplatin in order to improve the efficacy of these metal-containing drugs by reducing toxicity and increasing potency. ${ }^{18}$ Several studies show that a number of Ru complexes serve as bacterial mutagens, and so indicate that some Ru complexes are capable of damaging genetic material. ${ }^{18}$ As well, studies have shown that ammine complexes of both Ru (II) and Ru (III) bind to DNA in a fashion analogous to that of cisplatin. ${ }^{23}$ Keppler et al. have studied the anti-tumour activities of a series of imidazole complexes of Ru including $[\operatorname{ImH}]_{2}\left[\mathrm{RuImCl}_{5}\right],{ }^{24}[\operatorname{ImH}]\left[\mathrm{RuIm}_{2} \mathrm{Cl}_{4}\right]^{22,25}$ and other $[\mathrm{HL}]\left[\mathrm{RuL}_{2} \mathrm{Cl}_{4}\right]$ species $(\mathrm{L}=e . g$. imidazole derivatives such as 1-butyl, pyrazole and derivatives such as 3,5-diethyl, and indazole and derivatives such as 1-methyl), with clinical trials planned for $[\operatorname{IndH}]\left[\operatorname{RuInd}{ }_{2} \mathrm{Cl}_{4}\right] .{ }^{26}$ This compound is active against transplantable tumours and tumours induced by intrarectal application of a carcinogen and shows higher antitumour activity than that of $[\operatorname{ImH}]\left[\mathrm{RuIm}_{2} \mathrm{Cl}_{4}\right] .{ }^{27}$ Of note, Mestroni et al. have synthesized and characterized the Rh analogue $[\operatorname{ImH}]\left[\mathrm{RhIm}_{2} \mathrm{Cl}_{4}\right]$, but there was no relevant anti-tumour activity. ${ }^{28}$

The dominant mode of pentaammineruthenium coordination to purine nucleosides with a keto group at the 6-position is at the N 7 position on the imidazole ring (Figure $1.2(1)) .{ }^{18}$ Attachment at the $N(7)$ of deoxyguanosine, which is thought to be the initial point of attack of the Pt pharmaceuticals on DNA, has been shown to occur for ammineruthenium(II and III) ions. ${ }^{29}$ Clarke and Stubbs have reviewed the interactions of "metallopharmaceuticals", including Ru species, with DNA. ${ }^{30}$

Figure 1.2. Structures of deoxyguanosine (1) and deoxyadenosine (2).

Advantage can be taken of the ready availability of both the Ru (II) and Ru (III) oxidation states under physiological conditions and the general inertness of these ions toward substitution, when coordinated to N -ligands. ${ }^{18}$ The chemical properties of $\mathrm{Ru}(\mathrm{II}) v s . \mathrm{Ru}(\mathrm{III})$ suggest that ammine $\mathrm{Ru}(\mathrm{III})$ ions should be far less active toward binding nitrogen ligands (e.g. nucleic acids) than analogous $\mathrm{Ru}(\mathrm{II})$ complexes. ${ }^{18}$ Thus, a relatively inactive and ideally non-toxic $\mathrm{Ru}($ III) complex might be activated toward binding to nitrogen heterocycles by in vivo reduction. ${ }^{21}$ For example, a complex such as cis- $\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}$ readily substitutes its water molecules to bind nitrogen ligands in solution whereas analogous $\mathrm{Ru}(\mathrm{III})$ complexes are more substitution inert. ${ }^{18}$ Thus a complex such as cis- $\mathrm{RuCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}{ }^{+}$, when introduced into an organism, might remain largely intact and so fairly innocuous until reduced to yield the "active" $\mathrm{Ru}(\mathrm{II})$ form, cis- $\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}$ which could then bind to critical cellular components and induce toxicity. ${ }^{18}$ This leads to the important proposal that some $\mathrm{Ru}(\mathrm{III})$ complexes could be administered as prodrugs which should be relatively non-toxic until activated by reduction, ${ }^{21}$ and indeed higher cytotoxicity and DNA-binding of [$\operatorname{ImH}]\left[\mathrm{RuIm} \mathrm{m}_{2} \mathrm{Cl}_{4}\right]$ and cis- $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$ were observed in human cervical cancer cells (HeLa) at low oxygen levels. ${ }^{31}$ This observation is consistent with the "activation-byreduction" hypothesis where the $\mathrm{Ru}(\mathrm{II})$ should be more prevalent inside hypoxic tumours. ${ }^{31}$

1.3.I Dinuclear Ru(II)/Ru(III) Complexes

The discovery of cisplatin as an effective anti-tumour agent was made after the observation that cisplatin induced filamentous growth in E. coli. ${ }^{5}$ The mechanism of cisplatin anti-tumour activity is based on cisplatin binding to DNA, modification of the DNA template and selective inhibition of DNA replication. ${ }^{6-10}$ One indication of DNA damage or error-prone repair in bacteria is filamentous growth. Thus the testing of filamentation in bacteria provides a useful indication of possible mutagenicity or toxicity of the complex.

Durig et al. extended the studies of filamentous growth of E. coli by Pt complexes to include Ru and Pd complexes. ${ }^{32}$ These studies showed that $\mathrm{fac}-\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}$ induced an amount of filamentous growth at concentrations comparable to that of cisplatin ($6 \mu \mathrm{~g} / \mathrm{mL}$), while significantly higher concentrations of $\mathrm{K}_{2}\left[\mathrm{RuCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ were needed to induce the same amount of growth. The Pd complexes, however, induced only minimum filamentous growth compared to that of the Ru complexes and cisplatin, and as well were toxic at relatively high concentrations.

Gibson et al. studied a series of dinuclear, mixed-valence complexes of Ru of the general formula $\mathrm{Ru}_{2}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{X}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$ (where $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, or I) for their ability to induce filamentation in E. coli, ${ }^{33}$ again for comparison with cisplatin data. The chloro (10^{-4} to $10^{-5} \mathrm{M}$) and bromo ($10^{-5} \mathrm{M}$) complexes were at least as effective as cisplatin in inducing filamentation in E. coli. The bromo analogue was more effective than the chloro analogue and cisplatin, while the iodo analogue (10^{-3} to $10^{-4} \mathrm{M}$) was the least effective in inducing filamentous growth. This effect of filamentation is reversible on prolonged incubation and the presence of 0.43 M DMSO was effective in inhibiting filamentous
growth. ${ }^{33}$ Ion-exchange studies suggested that the chloro complex is doubly charged with three bridging chlorides, $\left[\mathrm{Ru}_{2}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}_{3}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O} .{ }^{34}$ Hughes et al. have structurally characterized $\left[\mathrm{Ru}_{2}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}_{3}\right]\left[\mathrm{BPh}_{4}\right]_{2}$ which has electronic spectra and magnetic properties identical to those of the chloride. ${ }^{35}$

1.3.2 Metallated Porphyrins

Porphyrins have been reported to accumulate in tumours. ${ }^{36}$ O'Hara et al. found certain metalloporphyrins to be effective hypoxic radiosensitizers ${ }^{37}$ and previous work in this laboratory has involved the synthesis of water-soluble metalloporphyrins, including $\mathrm{Ru}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{II})$ species, as potential hypoxia selective agents. ${ }^{38} \mathrm{Ru}$ complexes have been shown to bind to DNA and have potential as anti-tumour agents (Section 1.3), and thus ideally, watersoluble Ru porphyrins (Figure 1.3) could result in a complex that is both a hypoxic radiosensitizer as well as an anti-tumour agent. Of note, Hartmann et al. have reported on the synthesis of water-soluble Ru porphyrins as potential "DNA cleavers and potential cytotoxic agents" ${ }^{39}$

Figure 1.3. Central structure of a Ru porphyrin.

1.4 Development of Ruthenium Dimethylsulfoxide Complexes

DMSO increases the water-solubility of its complexes (thus facilitating membrane transport and penetration) and the good lability of an O-bonded DMSO, is linked to the nature of interactions with purine and pyrimidine bases. ${ }^{21}$ The characteristics of the DMSO ligand combined with those of Ru complexes have provided a new class of possible chemotherapeutic agents.
1.4.1 Ru(II)-Dimethylsulfoxide Complexes: $\mathrm{Cis}^{-\mathrm{RuCl}_{2}(\mathrm{DMSO})_{3}(\mathrm{DMSO}) \text { and Trans- }}$ $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ (see Figure 1.4).

Figure 1.4. Abbreviated structures of cis- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{3}(\mathrm{DMS} \underline{\mathrm{O}})$ and trans$\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$, respectively. ($\mathrm{S}=\mathrm{S}$-bound DMSO and $\mathrm{O}=\mathrm{O}$-bound DMSO).

In preliminary studies, cis- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ exhibited interesting biological properties, in comparison to those of cisplatin, in Ehrlich ascites carcinoma and in L1210 lymphoid leukemia. ${ }^{40}$ Cis- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ at relatively high doses $(100-800 \mathrm{mg} / \mathrm{kg} /$ day $)$ exhibits marginal anti-tumour activity, but inhibits nucleic acid synthesis, and exerts a pattern of cell damage and mutagenicity similar to that of cisplatin at only $(0.5-4 \mathrm{mg} / \mathrm{kg} /$ day $){ }^{40}$ The anti-neoplastic activity of cis- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ was studied using three mouse tumour models: Lewis lung carcinoma, $B 16$ melanoma and MCa mammary carcinoma. ${ }^{41}$ The complex (610 $\mathrm{mg} / \mathrm{kg}$) reduced primary tumour growth in all the tumours tested and, as well, these effects
were obtained with reduced host toxicity compared to equally effective dosages of cisplatin $(0.52 \mathrm{mg} / \mathrm{kg}){ }^{41}$

The anti-tumour effects of cis- and trans- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ tested on mice bearing the solid tumour, Lewis lung carcinoma, were then compared to those of cisplatin. ${ }^{42}$ The trans complex ($76 \mu \mathrm{~mol} / \mathrm{kg} /$ day) exhibited a greater antimetastatic effect compared to that of an equimolar concentration of the cis complex, particularly in the inhibition of primary tumour growth compared to metastatic growth. ${ }^{21,42}$ The toxicity of trans- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ was 10 -fold higher than that of the cis isomer. ${ }^{21,42}$ Sava et al. reported that the anti-tumour activities of these two complexes were qualitatively comparable, with the trans isomer being more effective, by preferentially inhibiting the weight rather than the number of artificial metastases. ${ }^{42}$ As well, both cis- and trans- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ significantly prolonged the survival time of leukaemic mice, again with the effect of trans- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}(48 \mathrm{mg} / \mathrm{kg})$ being more pronounced than that of the cis isomer $(800 \mathrm{mg} / \mathrm{kg}) .{ }^{43}$ This prolongation of survival time of the mice suggests that these complexes can control the dissemination of tumour cells to the brain by a non-cytotoxic mechanism. ${ }^{43}$
1.4.1.1 Chemical Behaviour of $\mathrm{Cis}-\mathrm{RuCl}_{2}(\mathrm{DM} \underline{\mathrm{SO}})_{3}(\mathrm{DMSO})$ and Trans-RuCl $\mathrm{TMM}_{2}(\mathrm{SO})_{4}$ in Aqueous Solutions

The difference in activities between cis- and trans- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ has been attributed to the different chemical behaviours of the species in aqueous solutions. ${ }^{44}$ On dissolution, the cis isomer releases the single O-bonded DMSO immediately and then slow dissociation of Cl^{-}gives the mono-cationic species (Figure 1.5). ${ }^{44,45}$ The trans isomer, once
dissolved in water, releases two DMSO ligands, this step being followed by the slow release of the Cl^{-}ion (Figure 1.5). ${ }^{44}$

Figure 1.5. Dissolution behaviour of (1) cis- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ and (2) trans- RuCl_{2} (DMSO) $)_{4}$ in aqueous solutions. ($\mathrm{S}=\mathrm{S}$-bound $\mathrm{DMSO} ; \mathrm{O}=\mathrm{O}$-bound DMSO). Adapted from Ref. 44.

With the assumption that the coordinated water molecules are labile, the cis isomer under physiological conditions immediately generates a species with a single potential coordination site, while the trans isomer generates a species with two potential sites cis to one another. The neutral species should be able to cross the cell membrane. Once inside the cell, due to the low Cl^{-}concentration, both species should slowly lose a Cl^{-}and generate an additional coordination site. Accordingly, a higher reactivity in aqueous solution is expected for the trans isomer, under both extra- and intracellular conditions. ${ }^{44}$ The relevant equilibria are affected by the presence of free Cl^{-}, and two Cl^{-}concentrations were tested, namely 3 mM and 150 mM , which represent conditions inside and outside the cell, respectively. In 3 mM aqueous NaCl solution the loss of Cl^{-}is observed, whereas in a 150 mM solution this process is inhibited (see Figure 1.5). ${ }^{44}$

1.4.1.2 Binding of $\mathrm{Cis}^{-\mathrm{RuCl}_{2}(\mathrm{DMSO})_{3}(\mathrm{DMSO}) \text { and }{\mathrm{Trans}-\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}}^{4} \text { to } \mathrm{DNA}}$

Khan and Mehmood report that reactions between cis- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ and adenine or cytosine lead to the isolation of $\mathrm{Ru}_{2}(\text { adenine })_{3}(\mathrm{DMSO})_{3} \mathrm{Cl}_{4}$ or Ru_{2} (cytosine $)_{4}(\mathrm{DMSO})_{2} \mathrm{Cl}_{4}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{4}$, respectively. ${ }^{46}$ Cauci et al. reported that cisRuCl_{2} (DMSO) $)_{4}$ reacts in aqueous solution with double-stranded DNA to form $\mathrm{Ru}(\mathrm{II})$-DNA complexes, ${ }^{47}$ while a study of the interaction between trans $-\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ and guanine by Alessio et al. indicated that the N 7 and the α-phosphate group of guanine form a chelate with the composition $\left[\mathrm{Ru}(\mathrm{II}) \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{DMSO})_{2}\left(5^{\prime}-\mathrm{d}(\mathrm{GMP})\right)\right]^{-48}$

NMR structural characterization and molecular modeling studies by Esposito et al. show that the reaction between trans $-\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ and $\mathrm{d}(\mathrm{GpG})$ results in formation of a 1,2 -intrastrand crosslink, ${ }^{49}$ the final reaction product exhibiting structural features which are similar to those of the corresponding cisplatin complex with $\mathrm{d}(\mathrm{GpG}){ }^{8}$ Studies by Tian et al. have provided further evidence for the binding modes of cis- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ with $5^{\prime}-\mathrm{GMP}$ and 5'-AMP in aqueous solution under physiological conditions. ${ }^{50} 5^{\prime}$-GMP can coordinate to the achiral cis- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ to form two isomers which have opposite chirality at the Ru centre, with coordination of the nucleotide being via the N7 and a phosphate oxygen. This report also demonstrated that 5^{\prime}-AMP can coordinate to $c i s-\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ through the phosphate group, but binding through N7 was not observed.

A recent study by Davey et al. using electrospray ionization mass spectrometry and ${ }^{1} \mathrm{H}$ NMR spectroscopy examined the reactions of cis- and trans-RuCl $\mathrm{Cl}_{2}(\mathrm{DMSO})_{4}$ with deoxynucleosides. ${ }^{51}$ Both complexes react with 2'-deoxyguanosine to give identical products, two diastereomers containing a single nucleoside coordinated to Ru , and a bis(nucleoside)
adduct (Figure 1.6). Coordination of the nucleoside is via the N 7 atom of guanine in each complex (Figure 1.2(1)). Trans- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ reacts with 2'-deoxyadenosine (Figure $1.2(2)$, p. 6) to give a pair of diastereomers in which the nucleosides are coordinated via the N1 atom. Cis- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ reacts with 2'-deoxyadenosine to a lesser extent than trans$\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ resulting in a complex mixture of products, but did include the product containing a single 2'-deoxyadenosine ligand coordinated via the N1 atom. Trans $-\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ reacts only to a small extent with 2^{2}-deoxycytidine under conditions similar to those used for the other nucleosides, and does not react with thymidine. This suggests that $\mathrm{Ru}(\mathrm{II})$ complexes may react with adjacent guanine bases in DNA to form intrastrand crosslinks in a fashion analogous to that of cisplatin. ${ }^{51}$

Figure 1.6. Structures of reaction products of cis- and trans- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ with 2'deoxyguanosine. ($\mathrm{S}=\mathrm{S}$-bound DMSO and $2^{\prime}-\mathrm{dG}=$ deoxyguanosine). Adapted from Ref. 51.
1.4.2 Ru(III)-Dimethylsulfoxide Complexes: trans-[(DMSO) ${ }_{2} \mathrm{H}^{+}\left[\mathrm{RuCl}_{4}(\mathrm{DMSO})_{2}\right]$ and Mer$\mathrm{RuCl}_{3}(\mathrm{DM} \underline{\mathrm{SO}})_{2}(\mathrm{DMSO})$

Two $\mathrm{Ru}($ III $)$-dimethylsulfoxide complexes, trans- $\left[(\mathrm{DMSO})_{2} \mathrm{H}\right]^{+}\left[\mathrm{RuCl}_{4}(\mathrm{DMSO})_{2}\right]^{-52}$ and $m e r-\mathrm{RuCl}_{3}(\mathrm{DMS})_{2}(\mathrm{DMSO})^{52}$, have been synthesized and characterized, and their antitumour activity assessed. ${ }^{53}$ The main feature of both complexes is the facile dissociation in aqueous solution of one of the two trans-S-bonded DMSO ligands (Figure 1.7). ${ }^{53}$ Preliminary
results suggest that mer- $\mathrm{RuCl}_{3}(\mathrm{DMSO})_{3}$ is as effective as cisplatin at inhibiting subcutaneous primary tumour growth and more potent than cisplatin for the prolongation of host survival time at the concentrations tested $(4 \mathrm{mg} / \mathrm{kg} /$ day and $100 \mathrm{mg} / \mathrm{kg} /$ day, respectively $) .{ }^{54}$ The authors reported that these Ru (III) complexes preferentially concentrate in intestinal mucosa, lung epithelia and tumour tissues. ${ }^{54}$

Figure 1.7. Dissolution behaviour of (1) mer- $\mathrm{RuCl}_{3}(\mathrm{DMSO})_{2}(\mathrm{DMSO})$ and (2) trans$\left[(\mathrm{DMSO})_{2} \mathrm{H}\right]^{+}\left[\mathrm{RuCl}_{4}(\mathrm{DMSO})_{2}\right]^{-}$in aqueous solutions. ($\mathrm{S}=\mathrm{S}$-bound DMSO and $\mathrm{O}=\mathrm{O}$ bound DMSO). Adapted from Ref. 53.

The complex $\mathrm{Na}\left[\right.$ trans- $\left.\mathrm{RuCl}_{4}(\mathrm{DMSO})_{2}\right]$ is a useful precursor for synthesis of a class of mixed DMSO-nitrogen ligand derivatives, ${ }^{55}$ and the effects of two such complexes, $m e r-\mathrm{RuCl}_{3}(\mathrm{DMSO})(\mathrm{DMS} \underline{\mathrm{O}}) \mathrm{Im}$ and $\mathrm{Na}\left[\right.$ trans- $\left.\mathrm{RuCl}_{4}(\mathrm{DM} \underline{\mathrm{S}})(\mathrm{Im})\right]$ (Figure 1.8), were investigated. Endpoints were primary tumour growth and survival time using three solid, mouse tumours: Lewis lung carcinoma, $B 16$ melanoma and MCa mammary carcinoma. ${ }^{56}$

Figure 1.8. Abbreviated structures of mer- $\mathrm{RuCl}_{3}(\mathrm{DMSO})_{2} \mathrm{Im}$ and $\mathrm{Na}[$ trans$\left.\mathrm{RuCl}_{4}(\mathrm{DMSO})(\mathrm{Im})\right] . \quad(\mathrm{S}=\mathrm{S}$-bound $\mathrm{DMSO}, \mathrm{O}=\mathrm{O}$-bound DMSO and $\mathrm{Im}=$ imidazole $)$. Adapted from Ref. 56.
$\mathrm{Na}\left[\right.$ trans $\left.-\mathrm{RuCl}_{4}(\mathrm{DMSO})(\mathrm{Im})\right]$ exhibited a higher activity against the tumour lines tested, this being attributed to the water-solubility of the complex. The presence of small amounts of DMSO (used as a vehicle of administration) reduced the activity of both complexes. ${ }^{56}$ Sava et al. demonstrated that $\mathrm{Na}\left[\right.$ trans- $\left.\mathrm{RuCl}_{4}(\mathrm{DMSO})(\mathrm{Im})\right]$, in combination with surgical removal of the primary tumour, prevented new metastasis formation and inhibited the growth of existing lung metastases in mice bearing a mammary carcinoma. ${ }^{57}$ This anti-metastatic action is comparable to that of $[\mathrm{ImH}]^{+}\left[\mathrm{RuCl}_{4} \mathrm{Im}_{2}\right]^{-25 b}$ but the species exhibited lower activity than that of cisplatin on several Pt-sensitive lines. ${ }^{58} \mathrm{Na}\left[\right.$ trans- $\left.\mathrm{RuCl}_{4}(\mathrm{DMSO})(\mathrm{Im})\right]$ also prolonged the survival time of mice bearing MCa mammary carcinoma, ${ }^{59}$ while showing minimal toxicity for normal tissues such as lung and kidney epithelia, muscle and liver cells, splenocytes and bone marrow. ${ }^{60}$ Although the complex exhibits no cytotoxicity in tumour cells, it does interact with nucleic acids and results in a reduction of nucleic acid activity (a reduction in polyploidy DNA). ${ }^{61}$ A recent study of the effects of $\mathrm{Na}\left[\right.$ trans- $\left.\mathrm{RuCl}_{4}(\mathrm{DMSO})(\mathrm{Im})\right]$ on cell cycle modifications, tested in TLX5 lymphoma cells, strongly suggests the lack of direct cytotoxic effects in the anti-metastatic action of this complex. ${ }^{62}$ Bergamo et al. ${ }^{63}$ suggest that this lack of direct cytotoxicity ${ }^{60-62}$ may be explained by three observations. Firstly, lung metastasis
formation can be reduced when no contact occurs between tumour cells and $\mathrm{Na}[$ trans$\left.\mathrm{RuCl}_{4}(\mathrm{DMSO})(\mathrm{Im})\right]$; secondly, a low amount of Ru (10% of the administered dose) reaches tumour cells after treatment; and thirdly, the complex exhibits rapid clearance from the blood stream. ${ }^{63}$

Several $\mathrm{Ru}(\mathrm{III})$ complexes of the type $\mathrm{Na}\left[\right.$ trans $\left.-\mathrm{RuCl}_{4}(\mathrm{DMSO})(\mathrm{L})\right](\mathrm{L}=$ imidazole, N -methylimidazole, isonicotinic acid, indazole, isoquinoline, oxazole, pyridine, methylpyridine and ethylpyridine) were tested in TLX5 lymphoma and MCa carcinoma to determine the degree of cytotoxicity and antimetastatic activity; ${ }^{64} \mathrm{Na}\left[\right.$ trans- RuCl_{4} (DMSO)(Im)] was the most selective anti-metastatic compound, and in vitro cytotoxicity was present only at concentrations $>10^{-4} \mathrm{M}$, this being dependent upon lipophilicity. The comparison of the effects on in vitro cytotoxicity with in vivo anti-tumour and anti-metastatic action indicates that these compounds reduce metastasis formation by a mechanism independent of that for direct tumour cell cytotoxicity. ${ }^{64} \operatorname{ImH}\left[\right.$ trans $\left.-\mathrm{RuCl}_{4}(\mathrm{DMSO})(\mathrm{Im})\right]$, in which the cation is now ImH^{+}was tested for anti-metastatic effects in models of solid metastasizing tumours of the mouse, and was found to behave similarly to $\mathrm{Na}\left[\right.$ trans $-\mathrm{RuCl}_{4}$ (DMSO)(Im)], implying that the anion was responsible for all the biological actions. ${ }^{65}$

1.4.3 Nitroimidazole Derivatives of $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$

Cis- RuCl_{2} (DMSO$)_{4}$ has been used as a precursor for the synthesis of $\mathrm{Ru}(\mathrm{II})$ nitroimidazole complexes as hypoxic radiosensitizers. ${ }^{66}$ Many tumours contain cells which are low in oxygen content and consequently relatively resistant to radiation treatment (see Section 4.2). ${ }^{67}$ To compensate the relative radioresistance of hypoxic cells, compounds which mimic the effect of oxygen, i.e. hypoxic radiosensitizers, have been studied. ${ }^{68} \mathrm{RuCl}_{2}(\mathrm{DMSO})_{2}(4-$
$\left.\mathrm{NO}_{2} \mathrm{Im}\right)_{2}$ was shown to be a more effective radiosensitizer and exhibited lower toxicity in Chinese hamster ovary cells (CHO) than the free 4-nitroimidazole. ${ }^{66}$ This complex was also studied for clastogenic activity (chromosome damaging) and exhibited activity greater than that of cis- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ and $4-\mathrm{NO}_{2} \operatorname{Im}$ (Figure 1.9), but less than that of cisplatin. ${ }^{69}$ $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{2} \mathrm{~L}_{n}(\mathrm{~L}=2 \text {-, 4- or } 5 \text {-nitroimidazole and } n=1 \text { or } 2)^{70,71}$ (Figure 1.9) and several Ru -(substituted-4-nitroimidazole) ${ }^{72}$ complexes were synthesized, characterized and their radiosensitizing abilities, toxicity toward CHO cells, and DNA-binding properties examined. The Ru-(substituted-4-nitroimidazole) species were less effective sensitizers than $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{2}\left(4-\mathrm{NO}_{2} \mathrm{Im}\right)_{2}$ and did not bind to plasmid DNA. ${ }^{72}$ The complex with misonidazole (a 2-nitroimidazole) (Figure 1.9) was unstable in aqueous solution and was no better a radiosensitizer than the free nitroimidazole. ${ }^{70}$ The complex with metronidazole (a 5-nitroimidazole) (Figure 1.9) was also found to dissociate in aqueous solution. ${ }^{70}$ $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{2}\left(\mathrm{NMe}-4-\mathrm{NO}_{2} \mathrm{Im}\right)$ exhibited increased sensitization and lower toxicity in CHO cells in vitro compared to those of the free imidazole. ${ }^{71}$

Figure 1.9. Structures of 2-nitroimidazole ($\mathrm{R}=\mathrm{CH}_{2} \mathrm{CHOHCH}_{2} \mathrm{OCH}_{3}=$ misonidazole, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{OH}=$ etanidazole $)$, 4-nitroimidazole $(\mathrm{R}=\mathrm{H})$ and 5-nitroimidazole ($\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}=$ metronidazole).

The effects (e.g. toward sensitization, toxicity toward CHO cells and DNA-binding) of substitution of chloride by bromide, and DMSO by TMSO
(TMSO = tetramethylenesulfoxide), as well as varying the nitroimidazole, were studied for comparison with data for $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{2}\left(4-\mathrm{NO}_{2} \mathrm{Im}\right)_{2}{ }^{73}$ Replacement of chloride by bromide reduced the radiosensitizing ability of the $4-\mathrm{NO}_{2} \mathrm{Im}$ complexes, whereas replacement of DMSO by TMSO did not. ${ }^{73}$ The TMSO complexes did not bind to DNA and TMSO/2nitroimidazole complexes were stable in aqueous media (unlike the DMSO analogues). ${ }^{73}$ $\mathrm{RuCl}_{2}(\mathrm{TMSO})_{2}\left(4-\mathrm{NO}_{2} \mathrm{Im}\right)_{2}$ and $\mathrm{RuCl}_{2}(\mathrm{TMSO})_{2}$ (etanidazole) (Figure 1.9) both exhibit promising sensitizing enhancement ratios compared to those of $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{2}\left(4-\mathrm{NO}_{2} \mathrm{Im}\right)_{2} .{ }^{73}$ These Ru-nitroimidazole complexes did not show much toxicity compared to those of analogous Pt complexes. ${ }^{74}$

1.4.4 Ru Bis-chelating Sulfoxide Complexes

There is potential for using Ru sulfoxide complexes as chemotherapeutic agents as can be seen from the studies on cis- and trans- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ (Section 1.3). Our group has extended the series of sulfoxide complexes of Ru to include disulfoxides of the type $\mathrm{RS}(\mathrm{O})\left(\mathrm{CH}_{2}\right)_{n} \mathrm{~S}(\mathrm{O}) \mathrm{R}(n=2$ with $\mathrm{R}=\mathrm{Me}$, Et and Pr ; and $n=3$ with $\mathrm{R}=\mathrm{Me}) .{ }^{75}$ The precursor dithioethers were synthesized in air following the procedure of Morgan and Ledbury, ${ }^{76}$ and were then oxidized in air by acid-catalyzed, DMSO oxidation following the procedure reported by Hull and Bargar. ${ }^{77}$ The disulfoxides were prepared as mixtures of diastereomers (the $R R / S S$ pair and the meso $R S / S R$) and repeat recrystallizations were used to isolate the diastereomers. ${ }^{75,77}$ The goals of the chelating disulfoxide studies were to reduce the number of possible isomers in the preparation of nitroimidazole complexes ${ }^{66,69-73}$ and to extend the database for the in vitro activity of Ru-sulfoxide complexes. ${ }^{78}$

Four complexes, trans- $\mathrm{RuCl}_{2}(\mathrm{BMSE})_{2}$, trans $-\mathrm{RuCl}_{2}(\mathrm{BPSE})_{2}$, cis- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ and cis- $\mathrm{RuCl}_{2}(\mathrm{BMSP})_{2}$ were synthesized, characterized (including crystallographic data) and studied $[\mathrm{BMSE}=1,2-\mathrm{bis}($ methylsulfinyl)ethane, $\mathrm{BESE}=1,2-\operatorname{bis}($ ethylsulfinyl $)$ ethane, $\mathrm{BPSE}=$ 1,2-bis(propylsulfinyl)ethane, and BMSP = 1,3-bis(methylsulfinyl)propane; Figure 1.10]. ${ }^{75,78}$

Figure 1.10. Structure of disulfoxides. ($(n=2) \mathrm{BMSE}, \mathrm{R}=\mathrm{Me}$; BESE, $\mathrm{R}=\mathrm{Et}$; BPSE, $\mathrm{R}=\mathrm{Pr} ; \mathrm{BBSE}, \mathrm{R}=\mathrm{Bu} ; \mathrm{BPeSe}, \mathrm{R}=\mathrm{Pe} ; \mathrm{BHSE}, \mathrm{R}=\mathrm{He} ; \mathrm{BCySE}, \mathrm{R}=\mathrm{Cy} ; \mathrm{BPhSE}, \mathrm{R}=\mathrm{Ph}$ and $(n=3) \mathrm{BMSP}, \mathrm{R}=\mathrm{Me} ; \mathrm{BESP}, \mathrm{R}=\operatorname{Pr} ; \mathrm{BPSP}, \mathrm{R}=\operatorname{Pr} ; \mathrm{B}^{i} \mathrm{PSP}, \mathrm{R}={ }^{i} \operatorname{Pr} ; \mathrm{BBSP}, \mathrm{R}=\mathrm{Bu}$; $\mathrm{BPeSP}, \mathrm{R}=\mathrm{Pe} ; \mathrm{BPhSP}, \mathrm{R}=\mathrm{Ph})$.

The chelating ligands in all four structures have opposite chiralities at the two chiral S-atoms. The trans complexes are centrosymmetric with mutually trans S-atoms having opposite configurations and are non-chiral. The two cis complexes have C_{2} symmetry with the pair of mutually trans S -atoms having the same chirality. The cis complexes are chiral, but in both cases the crystal structures showed that the samples contain an equal number of the two enantiomers. ${ }^{75,78}$ Some preliminary in vitro experiments implied that the trans complexes accumulate in cells and bind to DNA to a greater degree than the cis complexes. ${ }^{75,78}$

1.5 Goals of This Thesis

1.5.1 Synthesis of the Geometrical Isomers of the Known Bis-chelating Disulfoxide Complexes of Ru

As discussed in Section 1.4.1 the complexes cis- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ and trans$\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ exhibit different efficacies in their anti-tumour properties. Previous work (Section 1.4.4) in this laboratory involved the synthesis, characterization and in vitro studies of a series of bis-chelating disulfoxide complexes of Ru . Only one geometrical isomer (of 2 possible) was isolated, dependent upon the disulfoxide used. ${ }^{75,78}$ The initial goal of this project was to use the precursors cis- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ and trans $-\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ as starting materials to synthesize the other corresponding geometrical isomer of the various bis-chelating disulfoxide Ru complexes (Section 1.4.4), and then to investigate the effect of the geometrical and optical isomerism and chirality on biological properties.

1.5.2 Synthesis of Water-soluble Sulfoxide Complexes of Ru

The complexes cis- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ and trans- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ are water-soluble, which facilitates in vitro examination. Of the previously synthesized bis-chelating disulfoxides complexes of Ru (Section 1.4.4), the only complex appreciably soluble in aqueous solutions was $c i s-\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$. One further aim was to synthesize sulfoxide complexes that readily dissolved in aqueous solutions.

1.5.3 Synthesis and Characterization of Novel Chelating Disulfoxide Complexes of Ru

For the bis-chelating disulfoxide complexes of Ru that were synthesized (Section 1.4.4) the disulfoxides used were $\operatorname{RS}(\mathrm{O})\left(\mathrm{CH}_{2}\right)_{n} \mathrm{~S}(\mathrm{O}) \mathrm{R}$ ($n=2$ or 3 and $\mathrm{R}=\mathrm{Me}$, Et or Pr ; Figure 1.10). One goal was to extend the number of disulfoxides (e.g. $\mathrm{R}={ }^{i} \mathrm{Pr}, \mathrm{Bu}, \mathrm{Pent}$, Hexyl, Ph and Cy , Figure 1.10), to react these disulfoxides with various Ru precursor species and to characterize the resultant products, particularly the geometry of the ligand set at the Ru centre.

1.5.4 Synthesis of Chelating Dithioether Complexes of Ru

A further goal was to synthesize bis-chelating dithioether complexes of Ru in order to determine the geometry of the ligands at Ru , and then to oxidize the coordinated dithioethers to the corresponding disulfoxides. This was to determine whether the ligand set would retain its geometry at the Ru centre after oxidation of the coordinated S -atoms to $\mathrm{S}=\mathrm{O}$.

1.5.5 Preliminary Biological Studies in Vitro of Sulfoxide Complexes of Ru

Following reports on the anti-tumour and DNA-binding properties of cis$\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ and trans- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ (see Sections 1.4.1 and 1.4.1.2, respectively), studies had been undertaken previously in this group to increase the number of sulfoxide complexes of Ru (Section 1.4.4) and study the cytotoxicity and the DNA-binding properties of these complexes. ${ }^{75,78}$ A present goal was to extend such studies (cytotoxicity, accumulation and DNA-binding in Chinese hamster ovary (CHO) cells) to include Ru complexes of novel disulfoxides.

1.5.6 Metallation of Water-soluble Porphyrins

Previous work in this group, initiated by Ware, ${ }^{79}$ involved the insertion of Ru into water-soluble porphyrins using Ru precursors other than the traditional $\mathrm{Ru}_{3}(\mathrm{CO})_{12} .{ }^{80}$ $\left[\mathrm{Ru}(\mathrm{DMF})_{6}\right][\mathrm{OTf}]_{3}{ }^{81}\left(\mathrm{DMF}=\right.$ dimethylformamide and $\left.\mathrm{OTf}=\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}\right)$was found to be a useful precursor which enabled the metallation of several free-base porphyrins including the water-soluble $\quad \mathrm{Na}_{4}\left[\mathrm{H}_{2} \mathrm{TSPhP}\right] \cdot 15 \mathrm{H}_{2} \mathrm{O} \quad(\mathrm{TSPhP} \quad=\quad$ 5,10,15,20-tetrakis(4sulfonatophenyl)porphyrin) which yielded $\mathrm{Na}_{4}[\mathrm{Ru}(\mathrm{TSPhP})(\mathrm{CO})(\mathrm{DMF})]$ solvate (solvate $=$ 2DMF- $2 \mathrm{H}_{2} \mathrm{O}$ or $6 \mathrm{H}_{2} \mathrm{O}$). ${ }^{79}$ The goal was to assess the general applicability of such metallation.

1.6 References for Chapter 1

1 (a) Davies, A. R.; Einstein, F. W. B.; Farrell, N. P.; James, B. R.; McMillan, R. S. Inorg. Chem. 1978, 17, 1965;
(b) James, B. R.; McMillan, R. S. Can. J. Chem. 1977, 55, 3927;
(c) James, B. R.; McMillan, R. S.; Reimer, K. J. J. Mol. Catal. 1976, 1, 439.

Whitehead, J. P.; Lippard, S. J. Proteins that Bind to and Mediate the Biological Activity of Platinum Anti-cancer Drug-DNA Adducts, in Metal Ions in Biological Systems (eds. A. Sigel and H. Sigel), Marcel Dekker Inc., New York, 1996, 32, p. 687.

11 Heim, M. E. Platinum and Non-Platinum Complexes in Clinical Trials. Current Status and New Developments, in Metal Complexes in Cancer Chemotherapy (ed. B. K. Keppler), VCH, Weinheim, 1993, p. 9.

Giandomenico, C. M.; Abrams, M. J.; Murrer, B. A.; Vollano, J. F.; Rheinheimer, M. I.; Wyer, S. B.; Bossard, G. E.; Higgins III, J. D. Inorg. Chem. 1995, 34, 1015.

Holford, J.; Sharp, S. Y.; Murrer, B. A.; Abrams, M.; Kelland L. R. Br. J. Cancer 1998, 77, 366.
(a) Day, M. New Scientist 1999, 162, 11;
(b) Kratochwil, N. A.; Parkinson, J. A.; Bednarski, P. J.; Sadler, P. J. Angew. Chem. Int. Ed. 1999, 38, 1460;
(c) Guo, Z.; Sadler, P. J. Angew. Chem. Int. Ed. 1999, 38, 1512.

Kelland, L. R. Platinum Anti-cancer Drugs, in Metal Compounds in Cancer Therapy (ed. S Fricker), Chapman and Hall, London, 1994, p. 41.
(a) Farrell, N.; Qu, Y.; Bierbach, U.; Valsecci, M.; Menta, E. Structure-Activity Relationships within Di- and Trinuclear Platinum Phase-I Clinical Anti-cancer Agents, in Cisplatin Chemistry and Biochemistry of a Leading Anti-cancer Drug (ed. B. Lippert), Wiley-VCH, Weinheim, 1999, p. 479;
(b) Kašpárková, J.; Nováková, O.; Vrána, O.; Farrell, N.; Brabec, V. Biochemistry 1999, 38, 10997;
(c) Perego, P.; Caserini, C.; Gatti, L.; Carenini, N.; Romanelli, S.; Supino, R.; Colangelo, D.; Viano, I.; Leone, R.; Spinelli, S.; Pezzoni, G.; Manzotti, C.; Farrell, N.; Zunino, F. Molecular Pharmacology 1999, 55, 528;
(d) Brabec, V.; Kašpárková, J.; Vrána, O.; Nováková, O.; Cox, J. W.; Qu, Y.; Farrell, N. Biochemistry 1999, 38, 6781;
(e) Skov, K. A.; Adomat, H.; Farrell, N.; Matthews, J. B. Anti-cancer Drug Des. 1998, 13, 207;
(f) Kharatishvili, M.; Mathieson, M.; Farrell, N. Inorg. Chim. Acta 1997, 255, 1;
(g) Žaludová, R.; Žákovksá, A.; Kašpárková, J.; Balcarová, Z.; Kleinwächter, V.; Vrána, Farrell, N.; Brabec, V. Eur. J. Biochem. 1997, 246, 508;
(h) Mellish, K. J.; Qu, Y.; Scarsdale, N.; Farrell, N. Nucleic Acids Res. 1997, 25, 1265;
(i) Farrell, N. Current Status of Structure-Activity Relationships of Platinum Anticancer Drugs: Activation of the Trans Geometry, in Metal Ions in Biological Systems (eds. A. Sigel and H. Sigel), Marcel Dekker Inc., New York, 1996, 32, p. 603;
(j) Qu, Y.; Farrell, N. Inorg. Chim. Acta 1996, 245, 265;
(k) Kašpárková, J.; Mellish, K. J.; Qu, Y.; Brabec, V.; Farrell, N. Biochemistry 1996, 35, 16705;
(1) Farrell, N.; Appleton, T. G.; Qu, Y.; Roberts, J. D.; Soares Fontes, A. P.; Skov, K. A.; Wu, P.; Zou, Y. Biochemistry 1995, 34, 15480;
(m) Wu, P. K.; Qu, Y.; Van Houten, B.; Farrell, N. J. Inorg. Biochem. 1994, 54, 207;
(n) Van Houten, B.; Illenye, S.; Qu, Y.; Farrell, N. Biochemistry 1993, 32, 11794;
(o) Zou, Y.; Van Houten, B.; Farrell, N. Biochemistry 1993, 32, 9632;
(p) Landi, J.; Hacker, M. P.; Farrell, N. Inorg. Chim. Acta 1992, 202, 79;
(q) Kraker, A. J.; Hoeschele, J. D.; Elliot, W. L.; Hollis Showalter, H. D.; Sercel, A. D.; Farrell, N. P. J. Med. Chem. 1992, 35, 4526;
(r) Qu, Y.; de Almeida, S. G.; Farrell, N. Inorg. Chim. Acta 1992, 201, 123;
(s) de Almeida, S. G.; Hubbard, J. L.; Farrell, N. Inorg. Chim. Acta 1992, 193, 149;
(t) Johnson, A.; Qu, Y.; Van Houten, B.; Farrell, N. Nucleic Acids Res. 1992, 20, 1697;
(u) Farrell, N.; Roberts, J. D.; Hacker, M. P. J. Inorg. Biochem. 1991, 42, 237;
(v) Qu, Y.; Farrell, N. J. Inorg. Biochem. 1990, 40, 255;
(w) Hoeschele, J. D.; Farrell, N.; Turner, W. R.; Rithner, C. D. Inorg. Chem. 1988, 27, 4106.
17 Farrell, N. Transition Metal Complexes as Drugs and Chemotherapeutic Agents (eds. R. Ugo and B. R. James), Kluwer Academic Publishers, Dordrecht, 1989, p. 147.

18 Clarke, M. J. Oncological Implications of the Chemistry of Ruthenium, in Metal Ions in Biological Systems (ed. H. Sigel), Marcel Dekker, New York, 1980, 11, p. 231.

19 Clarke, M. J. Ruthenium Complexes: Potential Roles in Anti-cancer Pharmaceuticals, in Metal Complexes in Cancer Chemotherapy (ed. B. K. Keppler), VCH, Weinheim, 1993, p. 129.

Milkevitch, M.; Storrie, H.; Brauns, E.; Brewer, K. J.; Shirley, B. W. Inorg. Chem. 1997, 36, 4534.
Sava G. Ruthenium Compounds in Cancer Therapy, in Metal Compounds in Cancer Therapy (ed. S. Fricker), Chapman and Hall, London, 1994, p. 65.
Kratz, F.; Keppler, B. K.; Messori, L.; Smith, L.; Baker, E. N. Metal-Based Drugs 1994, 1,169 and references therein.
(a) Clarke, M. J. Inorg. Chem. 1980, 19, 1103.
(b) Clarke, M. J.; Bitler, S.; Rennert, D.; Buchbinder, M.; Kelman, A. D. J. Inorg. Biochem. 1980, 2, 79.
Keppler, B. K.; Wehe, D.; Endres, H.; Rupp, W. Inorg. Chem. 1987, 26, 844.
(a) Garzon, F. T.; Berger, M. R.; Keppler, B. K.; Schmähl, D. Cancer Chemother. Pharmacol. 1987, 19, 347;
(b) Keppler, B. K.; Rupp, W.; Juhl, U. M.; Endres, H.; Niebl, R.; Balzer, W. Inorg. Chem. 1987, 26, 4366;
(c) Ni Dhubhghaill, O. M.; Hagen, W. R.; Keppler, B. K.; Lipponer, K-G.; Sadler, P. J. J. Chem. Soc. Dalton Trans. 1994, 3305;
(d) Chatlas, J.; van Eldik, R.; Keppler, B. K. Inorg. Chim. Acta 1995, 233, 59;
(e) Pieper, T.; Keppler, B. K. Analusis Magazine 1998, 26, 84;
(f) Keppler, B. K. New J. Chem. 1990, 14, 389;
(g) Kersten, L.; Bräunlich, H.; Keppler, B. K.; Gliesing, C.; Wendelin, M.; Westphal, J. J. Appl. Toxicol. 1998, 18, 93.
(a) Keppler, B. K.; Lipponer, K-G.; Stenzel, B.; Kratz, F. New Tumour-Inhibiting Ruthenium Complexes, in Metal Complexes in Cancer Chemotherapy (ed. B. K. Keppler), VCH, Weinheim, 1993, p. 187.
(b) Keppler, B. K.; Henn, M.; Juhl, U. M.; Berger, M. R.; Niebel, R.; Wagner, F. E. New Ruthenium Complexes for the Treatment of Cancer, in Progress in Clinical Biochemistry and Medicine (eds. E. Baulieu; D. T. Forman; M. IngelmanSundberg; L. Jaenicke; J. A. Kellen; Y. Nagai; G. F. Springer; L. Träger; L. WillShahab; J. L. Wittliff), Springer-Verlag, Berlin, 1989, 10, p. 41.
Lipponer, K-G.; Vogel, E.; Keppler, B. K. Metal-Based Drugs 1996, 3, 243.

Mestroni, G.; Alessio, E.; o Santi, A. S.; Geremia, S.; Bergamo, A.; Sava, G.; Boccarelli, A.; Schettino, A.; Coluccia, M. Inorg. Chim. Acta 1998, 273, 62.
Clarke, M. J. The Potential of Ruthenium in Anti-cancer Pharmaceuticals, in ACS Symposium Series (ed. A. E. Martell), American Chemical Society, Washington, 1980, 140, p. 157.
Clarke, M. J.; Stubbs, M. Interactions of Metallopharmaceuticals with DNA, in Metal Ions in Biological Systems (eds. A. Sigel and H. Sigel), Marcel Dekker Inc., New York, 1996, 32, p. 727.
Frasca, D.; Ciampa, J.; Emerson, J.; Umans, R. S.; Clarke, M. J. Metal-Based Drugs 1996, 3, 197.
Durig, J. R.; Danneman, J.; Behnke, W. D.; Mercer, E. E. Chem. Biol. Interact. 1976, 13, 287.
Gibson, J. F.; Poole, R. K.; Hughes, M. N.; Rees, J. F. Arch. Microbiol. 1984, 139, 265.
Mercer, E. E.; Gray, L. W. J. Am. Chem. Soc. 1972, 94, 6426.
Hughes, M. N.; O'Reardon, D.; Poole, R. K.; Hursthouse, M. B.; Thornton-Pett, M. Polyhedron 1987, 6, 1711.
(a) Kessel, D.; Thompson, P.; Saatio, K.; Nantwi, K. D. Photochem. Photobiol. 1987, 45, 787;
(b) Fiel, R. J.; Mark, E.; Button, T.; Gilani, S.; Musser, D. Cancer Lett. 1988, 40, 23;
(c) Dougherty, T. J. Photochem. Photobiol. 1987, 45, 879;
(d) Miura, M.; Micca, P. L.; Heinrichs, J. C.; Gabel, D.; Fairchild, R. G.; Slatkin, D. N. Biochem. Pharmacol. 1992, 43, 467.

O'Hara, J. A.; Douple, E. B.; Abrams, M. J.; Picker, D. J.; Giandomenico, C. M.; Vollano, J. F. Int. J. Radiat. Oncol. Biol. Phys. 1989, 16, 1049.
James, B. R.; Meng, G. G.; Posakony, J. J.; Ravensbergen, J. A.; Ware, C. J.; Skov, K. A. Metal-Based Drugs 1996, 3, 85.
Hartmann, M.; Robert, A.; Duarte, V.; Keppler, B. K.; Meunier, B. J. Biol. Inorg. Chem. 1997, 2, 427.

50 Tian, Y-N.; Yang, P.; Li, Q-S.; Guo, M-L.; Zhao, M-G. Polyhedron 1997, 16, 1993.

51 Davey, J. M.; Moerman, K. L.; Ralph, S. F.; Kanitz, R.; Sheil, M. M. Inorg. Chim. Acta 1998, 281, 10.
52 Jaswal, J. S.; Rettig, S. J.; James, B. R. Can. J. Chem. 1990, 68, 1808.
53 Alessio, E.; Balducci, G.; Calligaris, M.; Costa, G.; Attia, W. H.; Mestroni, G. Inorg. Chem. 1991, 30, 609.
54
Giraldi, T.; Sava, G.; Bertoli, G.; Mestroni, G.; Zassinovich, G. Cancer Res. 1977, 37, 2662.
Sava, G.; Zoret, S.; Giraldi, T.; Mestroni, G.; Zassinovich, G. Eur. J. Cancer Clin. Oncol. 1984, 20, 841.
Sava, G.; Pacor, S.; Zorzet, S.; Alessio, E.; Mestroni, G. Pharmacol. Res. 1989, 21, 617.
Coluccia, M.; Sava, G.; Loseto, F.; Nassi, A.; Boccarelli, A.; Giordano, D.; Alessio, E.; Mestroni, G. Eur. J. Cancer 1993, 29, 1873.
Alessio, E.; Mestroni, G.; Nardin, G.; Attia, W. M.; Calligaris, M.; Sava, G.; Zorzet, S. Inorg. Chem. 1988, 27, 4099.
(a) Evans, I. P.; Spencer, A.; Wilkinson, G. J. Chem. Soc. Dalton Trans. 1973, 204;
(b) McMillan, R. S.; Mercer; A.; James, B. R.; Trotter, J. J. Chem. Soc. Dalton Trans. 1975, 1006.
Khan, B. T.; Mehmood, A. J. Inorg. Nucl. Chem. 1978, 40, 1938. Cauci, S.; Alessio, E.; Mestroni, G.; Quadrifoglio, F. Inorg. Chim. Acta 1987, 137, 19.

Alessio, E.; Xu, Y.; Cauci, S.; Mestroni, G.; Quadrifoglio, F.; Viglino, P.; Marzilli, L. G. J. Am. Chem. Soc. 1989, 111, 7068.

Esposito, G.; Cauci, S.; Fogolari, F.; Alessio, E.; Scocchi, M.; Quadrifoglio, F.; Viglino, P. Biochem. 1992, 31, 7094.

67 Thomlinson, R. H.; Gray, L. H. Br. J. Cancer 1955, 9, 539.
68 Adams, G. E. Radiat. Res. 1992, 132, 129.
Alessio, E.; Balducci, G.; Lutman, A.; Mestroni, G.; Calligaris, M., Attia, W. M. Inorg. Chim. Acta 1993, 203, 205.
Sava, G.; Pacor, S.; Mestroni, G.; Alessio, E. Anti-Cancer Drugs 1992, 3, 25.
Sava, G.; Pacor, S.; Coluccia, M.; Mariggio, M.; Cochietto, M.; Alessio, E.; Mestroni, G. Drug Invest. 1994, 8, 150.
Mestroni, G. The Development of Tumour-Inhibiting Ruthenium Dimethylsulfoxide Complexes, in Metal Complexes in Cancer Chemotherapy (ed. B. K. Keppler), VCH, Weinheim, 1993, p. 157.

Sava, G.; Pacor, S.; Mestroni, G.; Alessio, E. Clin. Exp. Metastasis 1992, 10, 273. Gagliardi, R.; Sava, G.; Pacor, S.; Mestroni, G.; Alessio, E. Clin. Exp. Metastasis 1994, 12, 93.
Sava, G.; Capozzi, I.; Bergamo, A.; Gagliardi, R.; Cocchietto, M.; Masiero, L.; Onisto, M.; Alessio, E.; Mestroni, G.; Garbisa, S. Int. J. Cancer 1996, 68, 60.
Capozzi, I.; Clerici, K.; Cocchietto, M.; Salerno, G.; Bergamo, A.; Sava, G. Chem. Biol. Interact. 1998, 113, 51.
Bergamo, A.; Cocchietto, M.; Capozzi, I.; Mestroni, G.; Alessio, E.; Sava, G. Anti-Cancer Drugs 1996, 7, 697.
Sava, G.; Pacor, S.; Bergamo, A.; Cocchietto, M.; Mestroni, G.; Alessio, E. Chem. Biol. Interact. 1995, 95, 109.
Sava, G.; Capozzi, I.; Clerici, K; Gagliardi, G.; Alessio, E.; Mestroni, G. Clin. Exp. Metastasis 1998, 16, 371.
66 Chan, P. K.; Skov, K. A.; James, B. R.; Farrell, N. P. Int. J. Radiat. Oncol. Biol. Phys. 1986, 12, 1059.

Chan, P. K. L.; Skov, K. A.; James, B. R.; Farrell, N. P. Chem. Biol. Interact. 1986, 59, 247.
70 Chan, P. K. L.; Skov, K. A.; James, B. R.; Farrell, N. P. Studies on Ruthenium Nitroimidazole Complexes as Radiosensitizers, in Platinum and Other Metal

Coordination Compounds in Cancer Chemotherapy (ed. M. Nicolini), Martinus Nijhoff Publishing, Boston, 1987, p. 638.

Chan, P. K. L.; Chan, P. K. H.; Frost, D. C.; James, B. R.; Skov, K. A. Can. J. Chem. 1988, 66, 117.
Chan, P. K. L.; Skov, K. A.; James, B. R. Int. J. Radiat. Biol. 1987, 52, 49. Chan, P. K. L.; James, B. R.; Frost, D. C.; Chan, P. K. H.; Hu, H-L; Skov, K. A. Can. J. Chem. 1989, 67, 508.
Farrell, N. Metal Complexes as Radiosensitizers, in Progress in Clinical Biochemistry and Medicine (eds. E. Baulieu; D. T. Forman; M. IngelmanSundberg; L Jaenicke; J. A. Kellen; Y. Nagai; G. F. Springer; L. Träger; L. WillShahab; J. L. Wittliff), Springer-Verlag, Berlin, 1989, 10, p. 89 and references therein.
Yapp, D. T. T.; Rettig, S. J.; James, B. R.; Skov, K. A. Inorg. Chem. 1997, 36, 5635.

Morgan, S. T.; Ledbury, W. J. Chem. Soc. 1922, 121, 2882.
Hull, M.; Bargar, T. W. J. Org. Chem. 1975, 40, 3152.
Yapp, D. T. T. Ph. D. Dissertation, University of British Columbia, Vancouver, 1993.

Ware, C. J. M. Sc. Dissertation, University of British Columbia, Vancouver, 1994.
(a) Fleischer, E. B.; Thorp, R.; Venerable, D. J. Chem. Soc., Chem. Commun. 1969, 475;
(b) Chow, B.; Cohen, I. Bioinorg. Chem. 1971, 1, 57;
(c) Eaton, G. R.; Eaton, S: S. J. Am. Chem. Soc., 1975, 97, 235.

Judd, R. J.; Cao, R.; Biner, M.; Armbruster, T.; Bürgi, H-B.; Merbach, A. E.; Ludi, A. Inorg. Chem. 1995, 34, 5080.

Chapter 2

General Experimental and Synthesis of Ligands (Dithioethers and Disulfoxides) and Ruthenium Precursors and Sulfoxide Complexes

2.1 Chemicals and Reagents

3,6-Dithiaoctane and 4,7-dithiadecane were purchased from K \& K Laboratories. Dimethylsulfoxide (DMSO) and 1,2-dibromoethane, were purchased from Fisher Scientific. 1,3-Dibromopropane was purchased from MCB, while ethane-, propane-, butane-, pentane-, hexane- and cyclohexyl-thiols, and 1,4,7,10-tetrathiacyclododecane and 3,6,9,14-tetrathiabicyclo[9.2.1]tetradeca-11,13-diene were obtained from Aldrich. Benzenethiol and phenylsulfoxide were Eastman products. The chemicals were used as provided. $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ was obtained on loan from Johnson-Matthey Ltd. and Colonial Metals Inc. All common solvents used were at least of reagent grade. Deuterated solvents used for NMR studies $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{D}_{2} \mathrm{O}, \mathrm{CDCl}_{3}, \mathrm{DMSO}-d_{6}\right.$ and MeOD) were purchased from MSD ISOTOPES or ISOTEC Inc. Alumina (neutral, Brockman activity I) was purchased from Fisher chemicals. All samples (products and solvents) were stored in air, and all syntheses and measurements were done in air unless otherwise stated.

2.2 Physical Techniques and Instrumentation

2.2.1 FT-NMR Instruments

Solution NMR spectra were obtained using a Bruker AC-200E (200 MHz), a Varian XL-300 (300 MHz) or Bruker WH-400 (400 MHz) instrument operating in the

Fourier Transform mode. Proton chemical shifts are given as δ in ppm with reference to the residual solvent peak as the internal standard, relative to $\mathrm{TMS}\left[\mathrm{C}_{6} \mathrm{H}_{6}\right.$ in $\mathrm{C}_{6} \mathrm{D}_{6} \delta 7.15, \mathrm{CHCl}_{3}$ in $\mathrm{CDCl}_{3} \delta 7.24, \mathrm{HDO}$ in $\mathrm{D}_{2} \mathrm{O} \delta 4.63, \mathrm{DMSO}$ in $d_{6}-\mathrm{DMSO} \delta 2.49$ and MeOH in $\mathrm{CD}_{3} \mathrm{OD} \delta 3.30$, 4.78]. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ chemical shifts are reported as indicated by $\mathrm{s}=$ singlet; $\mathrm{d}=$ doublet; $\mathrm{t}=$ triplet; $\mathrm{q}=$ quartet; $\mathrm{m}=$ multiplet.

2.2.2 Infrared and UV-Vis Spectrophotometry, Thermal Gravimetric Analysis,

 Photochemistry and Conductivity and Melting Point MeasurementsInfrared spectra were obtained using an ATI Mattson Genesis Series FTIR instrument. The samples were prepared by evenly mixing a solid compound with KBr and then compressing the resulting mixture into a pellet. Bands are reported in cm^{-1}.

UV-visible spectroscopic data were obtained using a Hewlett-Packard HP 8452A Diode-Array Spectrophotometer. Wavelength maxima, $\lambda_{\text {max }}$, are given in nm , and extinction coefficients are given as $\log \varepsilon$ following the reported wavelengths.

Thermal gravimetric measurements were obtained using a TA Instruments TGA 51 Thermogravimetric Analyzer fitted with a quartz furnace tube with a temperature range from ambient to $1200^{\circ} \mathrm{C}$.

Photochemical experiments were carried out at r.t. using an Ace-Hanovia 450 Watt high pressure Hg vapour lamp (cat. \#7825-34, Ace Glass Inc.).

Conductivity measurements were obtained at r.t. at $\sim 10^{-3} \mathrm{M}$ concentrations using a Thomas Serfass conductivity bridge, and a cell from Yellow Springs Instrument Company.

Values are given in $o \mathrm{om}^{-1} \mathrm{~mol}^{-1} \mathrm{~cm}^{2}$. The value of the cell constant was determined to be 1.016.

Melting point measurements were obtained using a Fisher-Johns melting point apparatus and were uncorrected.

2.2.3 Magnetic Susceptibility

Solution magnetic moments were measured at r.t. using the Evans method. ${ }^{1,2}$ A solution of the complex dissolved in $\mathrm{MeOD} / \mathrm{CDCl}_{3}$ was placed in a sealed capillary tube. This was placed inside an NMR tube, with CDCl_{3} as the reference, and held in place with a Teflon spacer. ${ }^{2}$ The paramagnetic shift of the residual CHCl_{3} in CDCl_{3} in the capillary sample was measured and compared to that of the corresponding peak in the CDCl_{3} reference.

Solid-state magnetic measurements were obtained using a Johnson-Matthey magnetic susceptibility balance.
2.2.3.1 Calculation of χ_{g}, Magnetic Susceptibility of the Dissolved Paramagnetic Species and Magnetic Susceptibility per Gram of Sample
$\chi_{g}\left(10^{-6} \mathrm{~cm}^{3} \mathrm{~g}^{-1}\right)$ can be calculated according to $\chi_{g}=\chi_{0}+3 \Delta v / 4 \pi \nu_{o} \mathrm{c}$
where $\chi_{0}=$ magnetic susceptibility of the pure solvent $\left(10^{-6} \mathrm{~cm}^{3} \mathrm{~g}^{-1}\right)$,
$\Delta v=$ paramagnetic shift $(\mathrm{Hz}), v_{0}=$ operating frequency of the spectrometer (Hz), and $\mathrm{c}=$ concentration $(\mathrm{g} / \mathrm{mL}) .{ }^{2}$

For the solid state measurement, $\chi_{g}\left(10^{-6} \mathrm{~cm}^{3} \mathrm{~g}^{-1}\right)$ can be calculated according to the equation
$\chi_{\mathrm{g}}=\mathrm{C}_{\mathrm{bal}}(\mathrm{l})\left(\mathrm{R}-\mathrm{R}_{\mathrm{o}}\right) / 10^{9} \mathrm{~m}$
where $\mathrm{l}=$ sample length $(\mathrm{cm}), \mathrm{m}=$ sample mass $(\mathrm{g}), \mathrm{R}=$ reading for tube and sample, $\mathrm{R}_{\mathrm{o}}=$ reading for the empty tube, and $\mathrm{C}_{\text {bal }}=$ balance calibration constant, 1.158.

2.2.3.2 Calculation of χ_{M}, the Molar Magnetic Susceptibility

$\chi_{M}\left(10^{-6} \mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right)$ can be calculated according to the equation $\chi_{M}=\chi_{\mathrm{g}} M$
where $M=$ molecular weight of the paramagnetic species ($\mathrm{g} / \mathrm{mole}$).
χ_{M} of a complex consists of the summation of χ_{M} values for the central ion(s), the coordinated ligands, other species present, and the metal.

Thus $\chi_{M \text { complex }}=\chi_{M_{(\text {metal ion })}^{\prime}}^{\prime}+\chi_{M(\text { ligands })}^{\prime}+\chi_{M_{(\text {(other specics })}^{\prime}}^{\prime}+\chi_{M(\text { metal })}^{\prime}$
where $\chi_{M}{ }^{\prime}$ for the ligands, solvent and metal can be determined from Pascal's constants. ${ }^{3}$

2.2.3.3 Calculation of $\mu_{e f f}$, the Effective Magnetic Moment

$\chi_{\mathrm{M}(\text { metal ion })}$ is related to μ_{cff} (B. M.) according to the equation
$\mu_{\text {eff }}=2.828\left(\chi_{M(\text { metal ion })}^{\prime} \cdot T\right)^{1 / 2}$
where $\mathrm{T}=$ absolute temperature (K)

2.2.3.4 Calculation of n, the Number of Unpaired Electrons

For the spin-only value, $\mu_{\text {eff }}$ is related to n and can be calculated according to the following equation

$$
\mu_{\mathrm{eff}}=(\mathrm{n}(\mathrm{n}+2))^{1 / 2}
$$

2.2.4 Elemental Analyses, Mass Spectral Analyses and X-ray Crystallography

Elemental analyses were obtained by Mr. P. Borda. Mass spectral analyses were obtained in a facility headed by Dr. G. Eigendorf. Both EI and LSIMS (on thioglycerol and 3nitrobenzylalcohol matrices) methods of ionization were used. X-ray crystallographic structures were obtained by the late Dr. S. J. Rettig with a Siemens SMART CCD diffractometer or a Rigaku AFC6S diffractometer (both with graphite monochromated Mo$\mathrm{K} \alpha$ radiation), or a Rigaku/ADSC CCD area detector with graphite monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ or $\mathrm{Cu}-\mathrm{K} \alpha$ radiation; and by Dr. Victor G. Young, Jr. at the University of Minnesota on a Siemens SMART Platform CCD area detector (graphite monochromator, Mo-K α radiation).

2.3 Synthesis of Dithioethers

The dithioethers, 3,6-dithiaoctane and 4,7-dithiadecane were commercially available. The other dithioethers were synthesized in air following the procedure of Morgan and Ledbury. ${ }^{4}$ The dithioethers synthesized are new compounds unless otherwise indicated (by a superscript in the heading). The materials (except in the case of 1,2bis(phenyl)dithiaethane) are oils and are hygroscopic in nature, and the determined elemental analyses values were not always satisfactory.

2.3.1 3,7-Dithianonane ($M W=164.32 \mathrm{~g} / \mathrm{mol}$)

Ethanethiol ($30 \mathrm{~mL}, 400 \mathrm{mmol}$) was added dropwise to a saturated solution (50 mL) of NaOH in MeOH cooled in a dry-ice/acetone bath. The solution was allowed to warm
to r.t. and then stirred at $70^{\circ} \mathrm{C}$ for 1 h . The solution was then cooled again with a dryice/acetone bath, and 1,3-dibromopropane ($20.6 \mathrm{~mL}, 200 \mathrm{mmol}$) was added dropwise with constant stirring. The resulting mixture was then warmed to $70^{\circ} \mathrm{C}$ and left for 1 h . This solution was then poured into $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$, when the oily, immiscible dithioether layer was collected. The aqueous layer was extracted three times with $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ portions; the organic residues were combined, the $\mathrm{Et}_{2} \mathrm{O}$ was removed by rotary evaporation, and the oily product was dried over MgSO_{4}. Yield $21 \mathrm{~g}(64 \%)$. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{~S}_{2}: \mathrm{C}, 51.17 ; \mathrm{H}$, 9.81. Found: C, $50.97 ; \mathrm{H}, 9.77 \% .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 2.60\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SCH}_{2}\right)$, $1.85\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.25\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$. Mass spectrum [LSIMS, m/z] $164[\mathrm{M}]^{+}, 135$ $\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{5}\right]^{+}$.

2.3.2 4,8-Dithiaunadecane ($M W=192.37 \mathrm{~g} / \mathrm{mol}$)

4,8-Dithiaunadecane was prepared according to the procedure described in Section 2.3.1, but using propanethiol ($30 \mathrm{~mL}, 330 \mathrm{mmol}$) and 1,3-dibromopropane ($16.8 \mathrm{~mL}, 165$ mmol). Yield $28 \mathrm{~g}(88 \%)$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{~S}_{2}: \mathrm{C}, 56.19 ; \mathrm{H}, 10.48$. Found: C, 57.69; $\mathrm{H}, 10.77 \% .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 2.60\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.50(\mathrm{t}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.85\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.60\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.02\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$. Mass spectrum [LSIMS, m/z] $192[\mathrm{M}]^{+}, 149\left[\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right]^{+}$.

2.3.3 2,8-Dimethyl-3,7-dithianonane $(M W=192.37 \mathrm{~g} / \mathrm{mol})$

The title dithioether was prepared according to the procedure given in Section 2.3.1, but using 2-propanethiol ($40 \mathrm{~mL}, 430 \mathrm{mmol}$) and 1,3-dibromopropane ($21.9 \mathrm{~mL}, 210$ mmol). Yield $32 \mathrm{~g}(80 \%)$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{~S}_{2}$: C, 56.19; H, 10.48. Found: C, 55.32;
$\mathrm{H}, 10.39 \% .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 2.90\left(\mathrm{~m}, 2 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHS}\right), 2.60(\mathrm{t}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.85\left(\mathrm{qt}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.30\left(\mathrm{~d}, 12 \mathrm{H}, \mathrm{SCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$. Mass spectrum [LSIMS, m/z] 193 [M] ${ }^{+}$.
2.3.4 5,9-Dithiatridecane $(M W=220.42 \mathrm{~g} / \mathrm{mol})$

5,9-Dithiatridecane was prepared according to the procedure given in Section 2.3.1, but using butanethiol ($40 \mathrm{~mL}, 370 \mathrm{mmol}$) and 1,3-dibromopropane ($18.9 \mathrm{~mL}, 187$ mmol). Yield $36 \mathrm{~g}(87 \%)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{~S}_{2}: \mathrm{C}, 59.94 ; \mathrm{H}, 10.97$. Found: C, 59.57; $\mathrm{H}, 11.10 \% .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 2.60\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SCH}_{2}\right), 1.85(\mathrm{q}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.56\left(\mathrm{q}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.42\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.92\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$. Mass spectrum [LSIMS, m/z] $220[\mathrm{M}]^{+}, 163\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right]^{+}$.

2.3.5 6, 10-Dithiapentadecane $(M W=248.47 \mathrm{~g} / \mathrm{mol})$

6,10-Dithiapentadecane was prepared according to the procedure described in Section 2.3.1, but using pentanethiol ($23.8 \mathrm{~mL}, 192 \mathrm{mmol}$) and 1,3-dibromopropane (9.7 mL , $96 \mathrm{mmol})$. Yield $21 \mathrm{~g}(88 \%)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{~S}_{2}: \mathrm{C}, 62.84 ; \mathrm{H}, 11.36$. Found: C, $60.58 ; \mathrm{H}, 11.08 \% .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 2.56\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SCH}_{2}\right), 1.85(\mathrm{q}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.56\left(\mathrm{q}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.35\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.92\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$. Mass spectrum [LSIMS, m/z] $248[\mathrm{M}]^{+}, 177\left[\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{11}\right]^{+}$.
2.3.6 1,3-Bis(phenylthio)propane $(M W=260.41 \mathrm{~g} / \mathrm{mol})^{5}$

The dithioether was prepared according to the procedure given in Section 2.3.1, but using benzenethiol ($50 \mathrm{~mL}, 487 \mathrm{mmol}$) and 1,3-dibromopropane ($24.7 \mathrm{~mL}, 244 \mathrm{mmol}$).

Yield $47 \mathrm{~g}(74 \%)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~S}_{2}: \mathrm{C}, 69.18 ; \mathrm{H}, 6.19$. Found: C, 68.28; H, 6.27%. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.55\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 2.93\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $2.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$. Mass spectrum [LSIMS, m/z] $260[\mathrm{M}]^{+}$. The ${ }^{1} \mathrm{H}$ NMR data compare well with literature values. ${ }^{5}$
2.3.7 5,8-Dithiadodecane $(M W=206.39 \mathrm{~g} / \mathrm{mol})$

5,8-Dithiadodecane was prepared according to the procedure given in Section 2.3.1, but using butanethiol ($13 \mathrm{~mL}, 120 \mathrm{mmol}$) and 1,2-dibromoethane ($5.3 \mathrm{~mL}, 61 \mathrm{mmol}$). Yield $14.5 \mathrm{~g}(58 \%)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{~S}_{2}$: C, $58.19 ; \mathrm{H}, 10.74$. Found: C, $58.38 ; \mathrm{H}$, $10.76 \% .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 2.73\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 2.55\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}\right), 1.45$ (m, 8H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $0.90\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{3}\right.$). Mass spectrum [LSIMS, m/z] $206[\mathrm{M}]^{+}, 149$ [M$\left.\mathrm{C}_{4} \mathrm{H}_{9}\right]^{+}$.

2.3.8 6,9-Dithiatetradecane ($M W=234.44 \mathrm{~g} / \mathrm{mol}$)

The dithioether was prepared according to the procedure given in Section 2.3.1, but using pentanethiol ($9.8 \mathrm{~mL}, 80 \mathrm{mmol}$) and 1,2-dibromoethane ($3.4 \mathrm{~mL}, 40 \mathrm{mmol}$). Yield $6.1 \mathrm{~g}(65 \%)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{~S}_{2}: \mathrm{C}, 61.48 ; \mathrm{H}, 11.18$. Found: C, $61.09 ; \mathrm{H}, 10.99 \%$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 2.75\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 2.55\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}\right), 1.60(\mathrm{q}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.35\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.92\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$. Mass spectrum [LSIMS, $\mathrm{m} / \mathrm{z}] 234[\mathrm{M}]^{+}$.
2.3.9 7,10-Dithiahexadecane $(M W=262.49 \mathrm{~g} / \mathrm{mol})$

7,10-Dithiahexadecane was prepared according to the procedure given in Section 2.3.1, but using hexanethiol ($40 \mathrm{~mL}, 280 \mathrm{mmol}$) and 1,2-dibromoethane ($12.2 \mathrm{~mL}, 142$ mmol). Yield $25 \mathrm{~g}(67 \%)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{~S}_{2}: \mathrm{C}, 64.06 ; \mathrm{H}, 11.52$. Found: C, 63.88; $\mathrm{H}, 11.39 \% .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 2.75\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 2.55\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}\right)$, $1.55\left(\mathrm{q}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.30\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.95\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$. Mass spectrum [LSIMS, m/z] 262 [M] ${ }^{+}$.

2.3.10 1,2-Bis(phenylthio)ethane $(M W=246.38 \mathrm{~g} / \mathrm{mol})^{5,6}$

1,2-Bis(phenylthio)ethane was prepared generally according to the procedure given in Section 2.3.1, but using benzenethiol ($50 \mathrm{~mL}, 480 \mathrm{mmol}$) and 1,2-dibromoethane (21 mL , 240 mmol), while the aqueous layer was extracted three times with $\mathrm{CHCl}_{3}(40 \mathrm{~mL})$ portions; the organic residues were combined and the CHCl_{3} was removed by rotary evaporation. The white solid obtained after removal of CHCl_{3} was recrystallized using $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}$ (100 mL). Yield $39 \mathrm{~g}(65 \%)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~S}_{2}: \mathrm{C}, 68.25 ; \mathrm{H}, 5.73$. Found: C, 68.18; $\mathrm{H}, 5.71 \% .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.15\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.10\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$. The ${ }^{1} \mathrm{H}$ NMR data compare well with literature values. ${ }^{5}$

2.3.11 1,2-Bis(cyclohexylthio)ethane ($M W=258.47 \mathrm{~g} / \mathrm{mol}$)

The dithioether was prepared according to the procedure given in Section 2.3.1, but using cyclohexylthiol ($50 \mathrm{~mL} ; 400 \mathrm{mmol}$) and 1,2-dibromoethane ($17.6 \mathrm{~mL}, 204 \mathrm{mmol}$). Yield $23.7 \mathrm{~g}(45 \%)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{~S}_{2}$: $\mathrm{C}, 65.06$; H, 10.14. Found: C, 64.91; H, $10.03 \% .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.70\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.95,1.75\left(\mathrm{~m} 4 \mathrm{H}\right.$ each, $\left.\mathrm{H}_{2}\right)$,
$1.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{1}\right), 1.29\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{H}_{3,4}\right)$. Mass spectrum [LSIMS, m/z] $258[\mathrm{M}]^{+}$. The labelled H -atoms are associated with the corresponding C -atoms as shown in Figure 2.1.

Figure 2.1. Diagram showing the labelling of the H -atoms of 1,2-bis(cyclohexylthio)ethane.

2.4 Oxidation of Dithioethers to Disulfoxides

The dialkylsulfoxides were synthesized by acid-catalyzed, DMSO oxidation of the corresponding dithioethers following the procedure reported by Hull and Bargar. ${ }^{7}$ The diarylsulfoxides were synthesized by $\mathrm{H}_{2} \mathrm{O}_{2}$ oxidation of the corresponding diarylsulfide following the procedure reported by Bennett et al. ${ }^{8}$ The disulfoxides synthesized are new unless otherwise indicated (by a superscript in the heading).

2.4.1 1,3-Bis(ethylsulfinyl)propane (BESP) (MW $=196.32 \mathrm{~g} / \mathrm{mol})$

A solution consisting of 3,7-dithianonane ($10 \mathrm{~mL}, 60 \mathrm{mmol}$), DMSO $(9.5 \mathrm{~mL}, 120$ mmol) and conc. $\mathrm{HCl}(200 \mu \mathrm{~L})$ was heated for 8 h at $85^{\circ} \mathrm{C}$ with constant stirring. The sulfoxide precipitated as thin, white crystals when the reaction mixture was cooled to $0^{\circ} \mathrm{C}$. The crude product was collected and washed with acetone to remove excess DMSO and DMS. The filtrate was heated again for a further 4 h , and more product was obtained. The crude sulfoxide was recrystallized from EtOH (50 mL) three times. Yield $7.8 \mathrm{~g}(65 \%)$. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}_{2}: \mathrm{C}, 42.83 ; \mathrm{H}, 8.21$. Found: $\mathrm{C}, 43.14 ; \mathrm{H}, 8.19 \%$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200\right.$
$\mathrm{MHz}) \delta 2.90\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{2}\right), 2.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.35\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$. IR v_{so} : 1016, 1047. M. p. ${ }^{\circ}$ C: $127-130$.

2.4.2 1,3-Bis(propylsulfinyl)propane $(B P S P)(M W=224.37 \mathrm{~g} / \mathrm{mol})$

BPSP was prepared according to the procedure given in Section 2.4.1, but using 4,8-dithiaunadecane ($10 \mathrm{~mL}, 52 \mathrm{mmol}$), DMSO ($8 \mathrm{~mL}, 100 \mathrm{mmol}$) and conc. $\mathrm{HCl}(200 \mu \mathrm{~L})$. Yield $8.9 \mathrm{~g}(77 \%)$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}_{2}: \mathrm{C}, 48.18 ; \mathrm{H}, 8.98$. Found: $\mathrm{C}, 48.09$; H , $9.09 \% .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 3.00\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.90\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2} \mathrm{~S}(\mathrm{O})\right)$, $2.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.80\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.07\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}\right.$). IR $v_{\mathrm{so}}: 1021$, 1075. M. p. ${ }^{\circ} \mathrm{C}$: $140-143$.
2.4.3 1,3-Bis(i-propylsulfinyl)propane (BiPSP) $(M W=224.37 \mathrm{~g} / \mathrm{mol})$
B^{i} PSP was prepared generally according to the procedure given in Section 2.4.1, but using 2,8-dimethyl-3,7-dithianonane ($10 \mathrm{~mL}, 52 \mathrm{mmol}$), DMSO ($8 \mathrm{~mL}, 100 \mathrm{mmol}$) and conc. $\mathrm{HCl}(200 \mu \mathrm{~L})$. The sulfoxide precipitated as small white crystals when the reaction mixture was cooled to $0^{\circ} \mathrm{C}$, after the sides of the flask were scratched and $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added. Yield $2.3 \mathrm{~g}(20 \%)$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 48.18; H, 8.98. Found: C, 48.32; $\mathrm{H}, 9.06 \% .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 2.75\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CHS}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{CH}\right), 2.35$ (m, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.35\left(\mathrm{~d}, 12 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2}\right)$. IR $v_{\mathrm{so}}: 1016$.
2.4.4 1,3-Bis(butylsulfinyl)propane (BBSP) $(M W=252.42 \mathrm{~g} / \mathrm{mol})$

BBSP was prepared according to the procedure given in Section 2.4.1, but using 5,9-dithiatridecane ($10 \mathrm{~mL}, 45 \mathrm{mmol}$), DMSO ($7 \mathrm{~mL}, 90 \mathrm{mmol}$) and conc. $\mathrm{HCl}(200 \mu \mathrm{~L})$.

Yield $9.9 \mathrm{~g}(87 \%)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, $52.34 ; \mathrm{H}, 9.58$. Found: C, 52.36; H, $9.56 \% . \quad{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 2.80\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{2}\right), 2.40(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.75\left(\mathrm{q}, 4 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.50\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 0.95\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$. IR v_{so} : 1021. M. p. ${ }^{\circ}$ C: $146-148$.
2.4.5 1.3-Bis(pentylsulfinyl)propane (BPeSP) $(M W=280.47 \mathrm{~g} / \mathrm{mol})$

BPeSP was prepared according to the procedure described in Section 2.4.1, but using 6,10-dithiapentadecane ($10 \mathrm{~mL}, 40 \mathrm{mmol}$), DMSO ($6 \mathrm{~mL}, 80 \mathrm{mmol}$) and conc. HCl $(200 \mu \mathrm{~L})$. Yield $3.3 \mathrm{~g}(29 \%)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~S}_{2}: \mathrm{C}, 55.67 ; \mathrm{H}, 10.06$. Found: C, $55.48 ; \mathrm{H}, 10.12 \% .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 2.70\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{2}\right), 2.25(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.68\left(\mathrm{q}, 4 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.28\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.85\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$. IR $v_{\text {so }}$: 1026. M. p. ${ }^{\circ} \mathrm{C}: 125-129$.

2.4.6 1,3-Bis(phenylsulfinyl)propane (BPhSP) $(M W=292.41 \mathrm{~g} / \mathrm{mol})$

1,3-Bis(phenylthio) propane ($10 \mathrm{~g}, 38 \mathrm{mmol}$) was added to 200 mL of glacial acetic acid, and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. 9 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(76 \mathrm{mmol})$ was added dropwise at $0^{\circ} \mathrm{C}$. The resulting solution, after being stirred for 24 h at r.t., was then extracted three times with CHCl_{3} (50 mL portions). The CHCl_{3} was neutralized with a saturated NaHCO_{3} solution. This CHCl_{3} layer was then washed with $\mathrm{H}_{2} \mathrm{O}$ and then dried over MgSO_{4}. The MgSO_{4} was removed and the CHCl_{3} was removed by rotary evaporation before the product was collected as a white solid. The crude product was recrystallized with a minimal of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. Yield $2.1 \mathrm{~g}(19 \%)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}_{2}$: C , 61.61; H, 5.51. Found: C, 61.42; H, 5.42 \%. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.50(\mathrm{~m}, 10 \mathrm{H}$,
$\mathrm{C}_{6} \mathrm{H}_{5}$), $2.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.15\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$. IR v_{so} : $1021,1040,1084$.
M. p. ${ }^{\circ} \mathrm{C}$: 137-140. Of note, an attempt to oxidize 1,3-bis(phenylthio)propane using air/DMSO oxidation led to an oily product, which by TLC, ${ }^{1} \mathrm{H}$ NMR spectroscopy and $v_{\text {so }}$ data appeared to be the disulfoxide. However, reaction of this oil with $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, using the procedure described in Section 2.7.4, led to the isolation of red crystals which were submitted for X-ray analysis. The structural diagram (see Chapter 6) shows one coordinated disulfoxide and one 'half-oxidized' dithioether.
2.4.7 1,2-Bis(ethylsulfinyl)ethane (BESE) $(M W=182.29 \mathrm{~g} / \mathrm{mol})^{9,10}$

BESE was prepared according to the procedure given in Section 2.4.1, but using 3,6-dithiaoctane ($10 \mathrm{~mL}, 66 \mathrm{mmol}$) in DMSO ($11 \mathrm{~mL}, 150 \mathrm{mmol}$) and conc. $\mathrm{HCl}(200 \mu \mathrm{~L})$. Yield $7.8 \mathrm{~g}(65 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 200 \mathrm{MHz}\right) \delta 3.30\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.92(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.23\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) . \quad$ M. p. ${ }^{\circ} \mathrm{C}: 148-149 . \quad$ The ${ }^{1} \mathrm{H}$ NMR data compare well with reported values. ${ }^{9,10}$
2.4.8 1,2-Bis(propylsulfinyl)ethane (BPSE) $(M W=210.34 \mathrm{~g} / \mathrm{mol})^{9,10}$

BPSE was prepared according to the procedure given in Section 2.4.1, but using 4,7-dithiadecane ($10 \mathrm{~mL}, 56 \mathrm{mmol}$) in DMSO ($8.7 \mathrm{~mL}, 110 \mathrm{mmol}$) and conc. $\mathrm{HCl}(200 \mu \mathrm{~L})$. Yield $8.2 \mathrm{~g}(70 \%) . \quad{ }^{\mathrm{l}} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 3.20,3.00(\mathrm{~m}, 2 \mathrm{H}$ each, $\left.\mathrm{S}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}(\mathrm{O})\right), 2.77\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}(\mathrm{O})\right), 1.92\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.10\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$. M. p. ${ }^{\circ} \mathrm{C}$: 162-164. The ${ }^{1} \mathrm{H}$ NMR data compare well with reported values. ${ }^{9,10}$

2.4.9 1,2-Bis(butylsulfinyl)ethane (BBSE) (MW $=238.34 \mathrm{~g} / \mathrm{mol})$

BBSE was prepared according to the procedure described in Section 2.4.1, but using 5,8-dithiadodecane ($10 \mathrm{~mL}, 48 \mathrm{mmol}$) in DMSO ($8 \mathrm{~mL}, 97 \mathrm{mmol}$) and conc. $\mathrm{HCl}(200$ $\mu \mathrm{L}$). Yield $2.3 \mathrm{~g}(20 \%)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 50.37; H, 9.30. Found: C, 50.29; $\mathrm{H}, 9.43 \% .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 3.20,3.00\left(\mathrm{~m}, 2 \mathrm{H}\right.$ each, $\left.\mathrm{S}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}(\mathrm{O})\right), 2.75$ (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}(\mathrm{O})$), $1.72\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.45\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 0.95\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$. IR $v_{\text {so }}$: 1014. M. p. ${ }^{\circ} \mathrm{C}: 172-173$.

2.4.10 1,2-Bis(pentylsulfinyl)ethane (BPeSE) $(M W=266.39 \mathrm{~g} / \mathrm{mol})$

BPeSE was prepared according to the procedure given in Section 2.4.1, but using 6,9-dithiatetradecane ($10 \mathrm{~mL}, 40 \mathrm{mmol}$) in DMSO ($7 \mathrm{~mL}, 80 \mathrm{mmol}$) and conc. $\mathrm{HCl}(200 \mu \mathrm{~L})$. Yield $3.9 \mathrm{~g}(34 \%)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 54.09 ; H, 9.83. Found: C, $54.11 ; \mathrm{H}$, $10.10 \% .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 3.20,3.10\left(\mathrm{~m}, 2 \mathrm{H}\right.$ each, $\left.\mathrm{S}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}(\mathrm{O})\right), 2.80$ (m, 4H, CH2 S(O)), $1.80\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.40\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.93(\mathrm{t}, 6 \mathrm{H}$, CH_{3}). IR $v_{\text {so }}: 1014,1073,1100$. M. p. ${ }^{\circ} \mathrm{C}: 134-135$.
2.4.11 1,2-Bis(hexylsulfinyl)ethane (BHSE) (MW $=294.44 \mathrm{~g} / \mathrm{mol})$

BHSE was prepared according to the procedure given in Section 2.4.1, but using 7,10-dithiahexadecane ($10 \mathrm{~mL}, 38 \mathrm{mmol}$) in DMSO ($6 \mathrm{~mL}, 76 \mathrm{mmol}$) and conc. $\mathrm{HCl}(200$ $\mu \mathrm{L})$. Yield $6.2 \mathrm{~g}(55 \%)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{~S}_{2}: \mathrm{C}, 57.09 ; \mathrm{H}, 10.27$. Found: C, 57.00; $\mathrm{H}, 10.19 \% .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 3.20,3.10\left(\mathrm{~m}, 2 \mathrm{H}\right.$ each, $\left.\mathrm{S}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}(\mathrm{O})\right)$,
$2.80\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}(\mathrm{O})\right), 1.80\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.40\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $0.93\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$. IR $\nu_{\mathrm{so}}: 1016,1114$. M. p. ${ }^{\circ} \mathrm{C}: 176.5-177.5$.
2.4.12 1,2-Bis(cyclohexylsulfinyl)ethane (BCySE) ($M W=290.47 \mathrm{~g} / \mathrm{mol}$)

BCySE was prepared according to the procedure given in Section 2.4.1, but using 1,2-bis(cyclohexylthio)ethane ($10 \mathrm{~mL}, 40 \mathrm{mmol}$) in DMSO ($6 \mathrm{~mL}, 77 \mathrm{mmol}$) and conc. HCl ($200 \mu \mathrm{~L}$). Yield $9.1 \mathrm{~g}(80 \%)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}_{2}: \mathrm{C}, 57.89 ; \mathrm{H}, 9.02$. Found: C, 58.13; H, $9.13 \% .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.60\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.56,2.15(\mathrm{~m}, 2 \mathrm{H}$ each, H_{2}), $1.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{1}\right), 1.35\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{H}_{3,4}\right)$. IR $v_{\mathrm{so}}: 1018$. M. p. ${ }^{\circ} \mathrm{C}: 172-174$. (See Section 2.3.11 for the labelling of the H -atoms).
2.4.13 1,2-Bis(phenylsulfinyl)ethane (BPhSE) $(M W=278.38 \mathrm{~g} / \mathrm{mol})^{6}$

BPhSE was prepared according to the procedure given in Section 2.4.6, but using 1,2-bis(phenylthio)ethane ($10 \mathrm{~g}, 40 \mathrm{mmol}$) and 9 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(80 \mathrm{mmol})$. Yield 7.4 g (65%). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}_{2}: \mathrm{C}, 60.40 ; \mathrm{H}, 5.07$. Found: $\mathrm{C}, 60.52 ; \mathrm{H}, 5.06 \%$. ${ }^{1} \mathrm{H}-$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 7.45\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.35,2.70\left(\mathrm{~m}, 2 \mathrm{H}\right.$ each, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$. IR v_{so} : 1035,1089 . M. p. ${ }^{\circ}$ C: $165-170$. The spectroscopic data compare well with the literature data. ${ }^{6}$

2.5 Synthesis of Ru(III) Precursor Complexes

The precursors listed below were synthesized according to literature reports.
2.5.1 $\left[\mathrm{Ru}(\mathrm{DMF})_{6}\right]\left[\mathrm{OTf}_{3}(M W=986.85 \mathrm{~g} / \mathrm{mol})^{11}\right.$

The $\left[\mathrm{Ru}(\mathrm{DMF})_{6}\right][\mathrm{OTf}]_{3}$ was synthesized by a modified literature procedure by Judd et al. ${ }^{11}$ A solution of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(2.00 \mathrm{~g}, 10 \mathrm{mmol})$ in DMF $(120 \mathrm{~mL})$ with Sn granules (7.0 $\mathrm{g}, 59 \mathrm{mmol}$) was vigorously stirred at r.t. under N_{2}. The suspension turned from dark-brown, through red-brown, green, to blue. $\mathrm{Pb}(\mathrm{OTf})_{2}(6.50 \mathrm{~g}, 13 \mathrm{mmol})$ was then added. The mixture was stirred at $50^{\circ} \mathrm{C}$ for 2 h , during which time the colour changed to deep brown-red. The mixture was then filtered to remove unreacted Sn and was concentrated on a rotary evaporator to $20 \mathrm{~mL} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ was added, and the resulting suspension was then stirred in air at r.t. overnight. The mixture was filtered through Celite and the PbCl_{2} was collected and discarded. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was then removed. To the residue at r.t. was added 1,2$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(40 \mathrm{~mL})$, after which the solution was cooled to $4^{\circ} \mathrm{C}$ to give a yellow precipitate. This was collected, redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the solution filtered. The filtrate was evaporated to dryness, 5 mL of n-pentanol were added and the resulting yellow precipitate was collected, washed with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$, and dried in vacuo. The product was stored in the absence of light. Yield $2.3 \mathrm{~g}(31 \%)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{O}_{15} \mathrm{~S}_{3} \mathrm{~F}_{9} \mathrm{Ru}: \mathrm{C}, 25.56$; $\mathrm{H}, 4.29$; N, 8.52. Found: C, 25.43; H, 4.30; N, 8.54%.
$2.5 .2 K_{3}\left[\mathrm{RuCl}_{6}\right](M W=431.08 \mathrm{~g} / \mathrm{mol})^{12}$
$\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(1.00 \mathrm{~g} ., 4 \mathrm{mmol})$ was dissolved in 50 mL of MeOH . The solution was refluxed under H_{2}, when the yellow-brown solution began to turn green after about 5 h . At this stage, $\mathrm{KCl}(0.90 \mathrm{~g}, 12 \mathrm{mmol})$ was added and the mixture refluxed in air. The KCl slowly dissolved with concomitant formation of a brown precipitate; this was filtered off from the colourless supernatant and washed with MeOH . The crude product was recrystallized from 12 M HCl , washed with MeOH and vacuum-dried. Yield $1.1 \mathrm{~g}(67 \%)$. UV-Vis (12 M $\mathrm{HCl}) 348$ (3.45), 312 (3.33), 228 (4.38). The UV-Vis data compare well with the literature data. ${ }^{12}$

2.6 Synthesis of Monodentate Sulfoxide Complexes of Ruthenium

2.6.1 $\mathrm{Cis}^{-R u C l} \mathrm{Cl}_{2}(\mathrm{DMSO})_{4}(M W=484.50 \mathrm{~g} / \mathrm{mol})^{13}$
$\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(2.00 \mathrm{~g}, 7.6 \mathrm{mmol})$ was dissolved in DMSO ($8 \mathrm{~mL}, 110 \mathrm{mmol}$), and the reaction mixture was refluxed for 20 min . The complex precipitated as a fine, yellow, crystalline powder when the reaction mixture was cooled to r.t. Acetone (30 mL) was added and more complex precipitated. The yellow precipitate was collected in air and dried in vacuo at $70^{\circ} \mathrm{C}$. Yield $3.1 \mathrm{~g}(85 \%) .{ }^{\mathrm{l}} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 3.55,3.52,3.46,3.45$ (DMSO), 2.75 (DMSO), 2.62 (free DMSO). The ${ }^{1} \mathrm{H}$ NMR data and yield compare well with the literature data. ${ }^{13}$
2.6.2 $\mathrm{Trans}^{-R u C l} \mathrm{R}_{2}(\mathrm{DMSO})_{4}(\mathrm{MW}=484.50 \mathrm{~g} / \mathrm{mol})^{14}$

Cis- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}(2.5 \mathrm{~g}, 5.2 \mathrm{mmol})$ was dissolved in DMSO ($40 \mathrm{~mL}, 560$ mmol), and this resulting solution was transferred to a glass photolysis tube (450 W Hg lamp , see Appendix 2, Figure A.2.1) outfitted with a water-cooled condenser and a septum that allowed for a constant flow of Ar through the solution. The solution was photolysed for 4 h after which a yellow/orange microcrystalline solid formed from the solution. The solid was collected in air and dried at $70^{\circ} \mathrm{C}$ in vacuo. Yield $1.8 \mathrm{~g}(72 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 200 \mathrm{MHz}\right) \delta$ 3.30 (s, DMSO), 2.63 (free DMSO). The spectroscopic data agree well with those previously reported. ${ }^{15}$

2.6.3 Mer-cis-[$\left.\mathrm{RuCl}_{3}(\mathrm{DPSO})_{2}(D P \mathrm{SO})\right](M W=814.24 \mathrm{~g} / \mathrm{mol})$

Conc. $\mathrm{HCl}(250 \mu \mathrm{~L})$ was added to a solution of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(250 \mathrm{mg}, 1 \mathrm{mmol})$ in EtOH (15 mL), and the mixture was heated at $85^{\circ} \mathrm{C}$ for 5 h until the solution turned green. DPSO ($1.4 \mathrm{~g}, 7 \mathrm{mmol}$) was added and the mixture was refluxed for a further 6 h . The volume of the resulting dark-orange solution was then reduced until the reaction solution became oily. Ether was added and the resulting orange solution was set aside for 5-7 days at r.t. Crystals suitable for X-ray analysis formed on the side of the flask and were collected by filtration. Yield $360 \mathrm{mg}(46 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 8.80$ (broad peak), 7.70 and 7.45 (free DPSO). Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{Cl}_{3} \mathrm{O}_{3} \mathrm{RuS}_{3}: \mathrm{C}, 53.10 ; \mathrm{H}, 3.71 ; \mathrm{S}, 11.81$. Found: C, 53.02; H , 3.72; S, 11.77%. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 448$ (3.14), 388 (3.39), 240 (4.46). IR $v_{\mathrm{so}}: 922,1063$, 1129. $\mu_{\mathrm{eff}}($ Evans $)=2.3 \pm 0.1 \mathrm{~B} . \mathrm{M}$. During this thesis work, the Trieste group reported on the synthesis and structural characterization of this same DPSO complex. ${ }^{16}$
2.6.4 $\mathrm{Cis}-\left[\mathrm{Ru}(12-\mathrm{S}-4)(\mathrm{DMS} \mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left[\mathrm{OTf}_{2} \cdot \mathrm{CH}_{3} \mathrm{OH}(\mathrm{MW}=767.84 \mathrm{~g} / \mathrm{mol})\right.$

Cis $-\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4} \quad(100 \mathrm{mg}, \quad 0.2 \mathrm{mmol})$ was added to $1,4,7,10-$ tetrathiacyclododecane ($50 \mathrm{mg}, 0.2 \mathrm{mmol}$) dissolved in $\mathrm{CHCl}_{3}(25 \mathrm{~mL})$ to give a yellow solution that was then refluxed for 3 h . The reaction solution was then cooled to r.t. when AgOTf ($104 \mathrm{mg}, 0.4 \mathrm{mmol}$) dissolved in acetone (10 mL) was added dropwise. The AgCl was filtered off through Celite, and to the filtrate was added $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$. Yellow crystals suitable for X-ray analysis formed upon slow evaporation of the CHCl_{3}. Yield $66 \mathrm{mg}(45 \%)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~F}_{6} \mathrm{O}_{8} \mathrm{RuS}_{7} \cdot \mathrm{CH}_{3} \mathrm{OH}$: C, 20.33; H, 3.67. Found: C, 20.55; H, 3.49%. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{MeOD}, 400 \mathrm{MHz}\right.$) shows a multiplet centred at $\delta 3.1$. IR $v_{\mathrm{SO}}: 1027,1082,1158$. UV-Vis $\left(\mathrm{H}_{2} \mathrm{O}\right) 398$ (3.19), 350 (3.05), 264 (4.01), 236 (3.99). $\Lambda_{M}\left(\mathrm{H}_{2} \mathrm{O}\right) 139$.

2.6.5 $\mathrm{RuCl}_{2}(\mathrm{DMS} \mathrm{O})(\mathrm{L})(M W=512.44 \mathrm{~g} / \mathrm{mol})$

Cis $-\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}(50 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added to a solution of $3,6,9,14-$ tetrathiabicyclo[9.2.1]tetradeca-11,13-diene ($27 \mathrm{mg}, 0.1 \mathrm{mmol}$) dissolved in $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ to give a yellow solution that was then refluxed for 3 h . The resulting red solution was cooled to r.t. and then evaporated to dryness. Hexanes (20 mL) was added to give an orange/red precipitate that was then dissolved in DMSO (1 mL). Crystals suitable for X-ray analysis were formed by vapour diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into the DMSO solution. Yield $22 \mathrm{mg}(42 \%)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{ORuS}_{5}$: C, 28.12; H, 3.93. Found: C, 28.46; H, $4.22 \% .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{DMSO} d_{6}, 400 \mathrm{MHz}\right) \delta 7.1(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH})$ and a complex pattern between 2.7-4.5 $\left(\mathrm{CH}_{2}\right.$ protons of the macrocycle and methyls of DMSO). IR $v_{\mathrm{so}}: 1015,1083,1105$. UV-Vis (DMSO) 416 (2.47), 272 (3.91).

2.7 Synthesis of Mononuclear Ru(II) Disulfoxide Complexes

2.7.1 $\mathrm{Cis}^{2} \mathrm{RuCl}_{2}(\mathrm{BESE})_{2}(M W=536.57 \mathrm{~g} / \mathrm{mol})$

To a solution of $\mathrm{K}_{3}\left[\mathrm{RuCl}_{6}\right](250 \mathrm{mg}, 0.6 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added a solution of BESE ($210 \mathrm{mg}, 1.2 \mathrm{mmol}$) in $\mathrm{MeOH}(5 \mathrm{~mL})$, and the mixture was heated to $50^{\circ} \mathrm{C}$ for 5 h . The colour changed from light brown to yellow, and a yellow precipitate formed. Yield $112 \mathrm{mg}(36 \%)$. Anal Calcd for $\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{RuS}_{4}: \mathrm{C}, 26.86 ; \mathrm{H}, 5.26$. Found: C, 26.72; H, $5.22 \% .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 200 \mathrm{MHz}\right) \delta 3.95-2.95\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{2}\right), 1.45,1.30(\mathrm{t}, 6 \mathrm{H}$ each, CH_{3}). IR $v_{\mathrm{so}}: 1092,1122$. The spectroscopic data agree well with those previously reported. ${ }^{9,10}$

Other methods using $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and trans- RuCl_{2} (DMSO) $)_{4}$ as precursors for the attempted synthesis of trans- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ led to the isolation of cis- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$. Unsuccessful attempts were made to utilize photolysis (see Section 2.6.2) to effect the isomerization of cis $-\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ to trans $-\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$, following a report by Alessio et al. in which the cis to trans isomerization of cis $-\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ to trans $-\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ was achieved using photolysis. ${ }^{14}$

2.7.2 Trans- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(M W=554.56 \mathrm{~g} / \mathrm{mol})$

To a solution of $\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}(25 \mathrm{mg}, 0.035 \mathrm{mmol}$; see Section 2.8.1) in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added $\operatorname{BESE}(12.2 \mathrm{mg}, 0.07 \mathrm{mmol})$, and the resulting yellow solution was refluxed for 4 h before being reduced in volume; the product formed as a crystalline powder. Crystals suitable for X-ray analysis were formed by slow evaporation of an aqueous solution of the complex. Yield 12 mg (33\%). Anal. Calcd for
$\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{RuS}_{4} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 25.98 ; \mathrm{H}, 5.45$. Found: C, 26.10; H, 5.18%. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 200\right.$
$\mathrm{MHz}) \delta 3.70\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{2}\right), 1.45\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{3}\right)$. IR $v_{\mathrm{so}}: 1093,1119$. UV-Vis $\left(\mathrm{H}_{2} \mathrm{O}\right) 374$ (2.78), 310 (3.19).

2.7.3 Trans-RuCl $\mathbf{C B P S}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(M W=610.48 \mathrm{~g} / \mathrm{mol})$

To a solution of cis $-\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}(172 \mathrm{mg}, 0.36 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added a solution of BPSE ($150 \mathrm{mg}, 0.70 \mathrm{mmol}$) in $\mathrm{MeOH}(5 \mathrm{~mL})$. This yellow solution was refluxed for 3 h when a yellow precipitate formed. Yield $99 \mathrm{mg}(47 \%)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{RuS}_{4} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 31.47 ; \mathrm{H}, 6.27$. Found: C, $31.62 ; \mathrm{H}, 5.92 \%$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $200 \mathrm{MHz}) \delta 3.75,3.35\left(\mathrm{~m}, 8 \mathrm{H}\right.$ each, $\mathrm{CH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{2}$), 2.30, 2.85 (m, 4H each, $\mathrm{CH}_{3} \mathrm{CH}_{2}$), 1.10 $\left(\mathrm{t}, 12 \mathrm{H}, \mathrm{CH}_{3}\right)$. IR v_{so} : 1094. The spectroscopic data agree well with those previously reported. ${ }^{9,10}$

Other methods using $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{K}_{3}\left[\mathrm{RuCl}_{6}\right]$ as precursors for the attempted synthesis of cis- $\mathrm{RuCl}_{2}(\mathrm{BPSE})_{2}$ led to the isolation of trans- $\mathrm{RuCl}_{2}(\mathrm{BPSE})_{2}$. Again, attempts were made to utilize photolysis to effect the isomerization of trans $-\mathrm{RuCl}_{2}(\mathrm{BPSE})_{2}$ to cis $\mathrm{RuCl}_{2}(\mathrm{BPSE})_{2}$ (see Section 2.6.2), but these were unsuccessful.

2.7.4 $\mathrm{Cis}-\mathrm{RuCl}_{2}(\mathrm{BBSE})_{2}(\mathrm{MW}=648.78 \mathrm{~g} / \mathrm{mol})$

Conc. $\mathrm{HCl}(100 \mu \mathrm{~L})$ was added to a solution of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(100 \mathrm{mg}, 0.4 \mathrm{mmol})$ in $\mathrm{EtOH}(30 \mathrm{~mL})$, and the mixture was refluxed for 5 h . BBSE ($182 \mathrm{mg}, 0.8 \mathrm{mmol}$) was added and the mixture was refluxed for a further 6 h . The resulting yellow solution was then reduced in volume until a fine yellow precipitate formed, and this was collected. Yield 52 mg (21 \%). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{44} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{RuS}_{4}: \mathrm{C}, 37.03 ; \mathrm{H}, 6.83$. Found: C, 36.95; H, 6.80%.

Crystals of an EtOH solvate suitable for X-ray analysis were formed by slow evaporation of an $\mathrm{EtOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the complex. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 3.60(\mathrm{~m}, 16 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{2}\right), 1.55\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.98\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{3}\right)$. IR $v_{\mathrm{so}}: 1081,1126 . \mathrm{UV}-$ Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 236(4.38)$.

2.7.5 $\mathrm{Cis}-\mathrm{RuCl}_{2}(\mathrm{BPeSE})_{2}(\mathrm{MW}=704.87 \mathrm{~g} / \mathrm{mol})$

The procedure used was as given in Section 2.7.4, but using BPeSE (204 mg, 0.8 mmol). The yellow product was purified by column chromatography using neutral alumina with $5 \% \mathrm{EtOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Crystals, obtained by slow evaporation of an $\mathrm{EtOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the complex, were subjected to X-ray analysis but excessive thermal motion due to the long pentyl groups prevented an accurate determination of the structure; however, cis-geometry was established. Yield $24 \mathrm{mg}(9 \%)$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{52} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{RuS}_{4}$: C, 40.89; H, 7.43. Found: C, 41.01; H, 7.58%. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 3.70\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{2}\right)$, 2.30, 1.85 (m, 4H each, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}(\mathrm{O})$), $1.45\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.90\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH} \mathrm{C}_{3}\right)$. IR $v_{\text {so }}: 1081,1128$. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 240$ (4.17).

2.7.6 Cis-RuCl $2(B C y S E)_{2}(M W=752.92 \mathrm{~g} / \mathrm{mol})$

The procedure used was given in Section 2.7.4, but BCySE ($222 \mathrm{mg}, 0.8 \mathrm{mmol}$) was used. An orange-yellow precipitate formed and was collected. Yield $86 \mathrm{mg}(30 \%)$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{52} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{RuS}_{4}$: C, 44.67; H, 6.96. Found: C, $44.34 ; \mathrm{H}, 7.04 \%$. Crystals suitable for X-ray analysis were formed by slow evaporation of the reaction solution, and were found to contain one EtOH and $1 / 3 \mathrm{MeOH}$ solvates per molecule. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the title complex is a complicated pattern of overlapping multiplets in the $\delta 1.0-4.4$ region.

Attempts to assign the spectrum using ${ }^{13} \mathrm{C}$, HETCOR, ATP and ${ }^{1} \mathrm{H}$ decoupling experiments were unsuccessful. IR v_{so} : 1046, 1100. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 428$ (2.81), 338 (3.01).
2.7.7 $\mathrm{Cis}^{2} \mathrm{RuCl} \mathrm{Cl}_{2}(\mathrm{BESP})_{2}(M W=564.60 \mathrm{~g} / \mathrm{mol})$

The procedure used was described in Section 2.7.4, but BESP ($150 \mathrm{mg}, 0.8 \mathrm{mmol}$) was used, and the resulting yellow solution was evaporated to near dryness. The complex was purified by column chromatography as described in Section 2.7.5. Yield 77 mg (36%). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{RuS}_{4}$: C, 29.78; H, 5.71. Found: C, 29.57; H, 5.80%. Crystals (containing one EtOH and one $\mathrm{H}_{2} \mathrm{O}$ solvate molecules) suitable for X -ray analysis were formed by vapour diffusion of EtOH into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the complex. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 3.45\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{2}\right), 2.75,2.10\left(\mathrm{~m}, 2 \mathrm{H}\right.$ each, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $1.45\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{3}\right) . \operatorname{IR} v_{\mathrm{so}}: 1042,1088$. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 348$ (2.62), 262 (4.04), 246 (4.01).

Reactions of BPhSE, BHSE, B^{i} PSP, BBSP, BPeSP, BPhSP and BMSB with $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, utilizing the procedure in Section 2.7.4, led to yellow, uncharacterized products which by column chromatography yielded several bands or, in the case of BMSB, the isolated product was insoluble in common solvents. Elemental analyses for the products obtained from the major chromatography bands and the insoluble products were variable from repeat reactions.

2.8 Synthesis of Dinuclear Ru(II)/Ru(II) Disulfoxide Complexes

2.8.1 $\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}(M W=744.59 \mathrm{~g} / \mathrm{mol})$

The procedure used was as given in Section 2.7.4, but using BESE ($70 \mathrm{mg}, 0.4$ mmol). A yellow precipitate was formed, and was collected. Yield $87 \mathrm{mg}(60 \%)$. Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{3} \mathrm{RuS}_{2}$: C, 19.35; H, 4.33; S, 17.22. Found: C, 19.63; H, 4.38; S, $17.44 \% .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 200 \mathrm{MHz}\right) \delta 3.60\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{2}\right), 1.50\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{3}\right)$. UV-Vis $\left(\mathrm{H}_{2} \mathrm{O}\right) 424$ (2.63), 326 3.16), 278 (3.42), 238 (3.47). IR $v_{\mathrm{so}}: 1042,1071,1118$. Crystals suitable for X-ray analysis were formed by slow evaporation of $\mathrm{H}_{2} \mathrm{O}$ solution of the complex and were found to contain one $\mathrm{H}_{2} \mathrm{O}$ solvate per molecule. TGA (crystals): Calcd loss of $3 \mathrm{H}_{2} \mathrm{O}: 7.1 \%$ and 2BESE: 51.5%. Found: 6.8% (from $\sim 20^{\circ} \mathrm{C}$ to $\sim 220^{\circ} \mathrm{C}$) and 46.0% (from $\sim 220^{\circ} \mathrm{C}$ to $\sim 370^{\circ} \mathrm{C}$), respectively (Appendix 4, Figure A.4.1). $\Lambda_{M}\left(\mathrm{H}_{2} \mathrm{O}\right.$, increasing to a maximum, steady value at $\geq 20 \mathrm{~min}) 358$.

Initial attempts to synthesize imidazole complexes using $\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-$ $\mathrm{Cl})_{2}$ as a precursor, with 2-nitroimidazole, 2-methyl-5-nitroimidzole and imidazole led to the isolation of water-soluble, red complexes that could not be purified by column chromatography and did not analyze well for C or H content. These reactions will be discussed in more detail in Chapter 6.

2.8.2 $\left[\mathrm{RuCl}(\mathrm{BPSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}(M W=800.61 \mathrm{~g} / \mathrm{mol})$

The procedure used was as given in Section 2.7.4, but using BPSE ($84 \mathrm{mg}, 0.4$ mmol). The yellow precipitate was collected. Yield $70 \mathrm{mg}(46 \%)$. Anal. Calcd for
$\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{3} \mathrm{RuS}_{2}: \mathrm{C}, 24.00 ; \mathrm{H}, 5.03$. Found: C, 23.64; H, $4.82 \% .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}\right)$ $\delta 3.70\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{2}\right), 2.00\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.05\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{3}\right)$. IR $v_{\mathrm{so}}: 1048$, 1083 and 1119. UV-Vis $\left(\mathrm{H}_{2} \mathrm{O}\right) 268(4.60) . \Lambda_{M}\left(\mathrm{H}_{2} \mathrm{O}\right.$, increasing to a maximum, steady value at $\geq 30 \mathrm{~min}) 282$.

2.8.3 $\left[\mathrm{RuCl}(\mathrm{BBSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}(M W=856.75 \mathrm{~g} / \mathrm{mol})$

The procedure used was as given in Section 2.7.4, but using BBSE ($95 \mathrm{mg}, 0.4$ mmol). The yield of the yellow precipitate was 100 mg (61\%). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{O}_{3} \mathrm{RuS}_{2}: \mathrm{C}, 28.04 ; \mathrm{H}, 5.43$. Found: C, $28.51 ; \mathrm{H}, 5.43 \%$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 400\right.$ $\mathrm{MHz}) \delta 3.65\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{2}\right), 2.00\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.49\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $0.95\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{3}\right)$. IR $\mathrm{v}_{\mathrm{so}}: 1046,1098$ and 1116. UV-Vis $\left(\mathrm{H}_{2} \mathrm{O}\right) 424$ (2.92), 268 (4.39). $\Lambda_{M}\left(\mathrm{H}_{2} \mathrm{O}\right.$, increasing to a maximum, steady value at $\left.\geq 30 \mathrm{~min}\right) 497$.

2.9 Synthesis of a Dinuclear Ru(II)/Ru(III) Disulfoxide Complex

2.9.1 $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}(M W=828.16 \mathrm{~g} / \mathrm{mol})$

The procedure used was as described in Section 2.7.4, but with use of BPSP (172 $\mathrm{mg}, 0.8 \mathrm{mmol})$. The final orange solution was evaporated to near dryness, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added, and crystals suitable for X-ray analysis were formed by slow evaporation of the solution. Elemental analysis was performed on a crystal sample that was crushed and dried in vacuo at $70{ }^{\circ} \mathrm{C}$ overnight. Yield $24 \mathrm{mg}(15 \%)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{40} \mathrm{Cl}_{5} \mathrm{O}_{4} \mathrm{Ru}_{2} \mathrm{~S}_{4}$: C, 26.11; H, 4.87. Found: C, 26.05 ; H, $5.09 \% .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 2.18$ (broad peak), $1.10($ broad peak $) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 200 \mathrm{MHz}\right) \delta 3.95\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{S}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}(\mathrm{O})\right), 3.40$
(m, 4H, CH2 $\mathrm{S}(\mathrm{O})$), 2.62 (m, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.90 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.10 (m, 6 H , CH_{3}). IR v_{so} : 1053 , 1084. UV-Vis (immediately upon dissolution in $\mathrm{CH}_{3} \mathrm{CN}$) 424 (2.52), 324 (2.94), 286 (3.32). UV-Vis (after 20 min in $\mathrm{H}_{2} \mathrm{O}$) 450 (3.78), 318 (4.42), 282 (4.78). No conductivity was observed in $\mathrm{CH}_{3} \mathrm{CN} . \Lambda_{M}\left(\mathrm{CHCl}_{3}\right.$, time independent) 2. $\Lambda_{M}\left(\mathrm{H}_{2} \mathrm{O}\right.$, increasing to a maximum, steady value at $\geq 20 \mathrm{~min}) 234$. The colour of the solutions used for UV-Vis and conductivity did not change over the period of the experiments. The crystal structure revealed the presence of $2 \mathrm{H}_{2} \mathrm{O}$ and $2.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$. TGA (crystals; complex formulated as. $2 \mathrm{H}_{2} \mathrm{O}$ or $\cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot 2.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$; the two formulations are used as the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvates are readily lost at ambient conditions): Calcd loss of $2 \mathrm{H}_{2} \mathrm{O}: 4.2$ or 3.3% and for loss of 2BPSP: 54.2%. Found: 6.1% (from $\sim 20^{\circ} \mathrm{C}$ to $\sim 200^{\circ} \mathrm{C}$) and 51.9% (from $\sim 200^{\circ} \mathrm{C}$ to $\sim 300^{\circ} \mathrm{C}$), respectively (Appendix 4, Figure A.4.2). $\mu_{\text {eff }}($ Evans $)=1.7 \pm 0.1$ B. M.

2.10 Synthesis of Mononuclear Ru(II) Dithioether Complexes

2.10.1 Trans- $\mathrm{RuCl}_{2}(\mathrm{BCyTE})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(M W=724.59 \mathrm{~g} / \mathrm{mol})$

Conc. $\mathrm{HCl}(100 \mu \mathrm{~L})$ was added to a solution of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(100 \mathrm{mg}, 0.4 \mathrm{mmol})$ in $\mathrm{EtOH}(30 \mathrm{~mL})$, and the mixture was refluxed for $5 \mathrm{~h} .1,2-\mathrm{Bis}$ (cyclohexylthio)ethane (BCyTE, $198 \mathrm{mg}, .0 .8 \mathrm{mmol}$) was added and the mixture was refluxed for a further 6 h . The resulting red precipitate was collected by filtration and dried in vacuo. Elemental analysis was performed on the isolated precipitate. Yield 223 mg (81%). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{52} \mathrm{Cl}_{2} \mathrm{~S}_{4} \mathrm{Ru} \cdot 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 46.39 ; \mathrm{H}, 7.78$. Found: C, $46.82 ; \mathrm{H}, 7.43 \%$. Crystals suitable for X-ray analysis were grown by recrystallization of the complex from $\mathrm{DMF} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mu \mathrm{~L} / 2$ mL) and were found to contain $2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvates per molecule. The ${ }^{1} \mathrm{H}$-NMR spectrum of
the title complex is a complicated pattern of broad peaks in the range of $\delta 1.20-3.35$. Attempts to assign the ${ }^{1} \mathrm{H}$ NMR spectrum using ${ }^{13} \mathrm{C}, 2 \mathrm{D}-\mathrm{COSY}$ and ${ }^{1} \mathrm{H}$ decoupling experiments were unsuccessful. The broad nature of the proton signals presumably results from the rotation of each of the cyclohexyl rings. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 438$ (3.55), 400 (3.53), 280 (3.74), 236 (4.31).

2.10.2 $\operatorname{Trans}-R u \mathrm{Cl}_{2}(\mathrm{BPhTE})_{2}(M W=664.75 \mathrm{~g} / \mathrm{mol})^{17}$

The synthesis of the red complex was as described above in Section 2.10.1, but using 1,2-bis(phenylthio)ethane (BPhTE, $188 \mathrm{mg}, 0.8 \mathrm{mmol}$). The product was then dissolved in minimum $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and was purified by column chromatography using neutral alumina with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluant. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed by rotary evaporation. Yield 184 mg (73 \%). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{RuS}_{4}$: C, $50.59 ; \mathrm{H}, 4.24$. Found: C, $50.82 ; \mathrm{H}, 4.11 \%$. Crystals suitable for X-ray analysis were formed by slow evaporation of a DMF solution of the complex. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.65\left(\mathrm{br} \mathrm{s}, 8 \mathrm{H}, o-\mathrm{C}_{6} H_{5}\right), 7.28\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, p-\mathrm{C}_{6} H_{5}\right)$, 7.12 (br s, $8 \mathrm{H}, m-\mathrm{C}_{6} \mathrm{H}_{5}$), 3.07 (br s, $8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$). UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 410$ (3.50), 298 (4.55), 268 (4.54).

A preliminary experiment to attempt oxidation of the coordinated BPhSE by in situ generation of dimethyldioxirane was unsuccessful as no $v_{\text {so }}$ was detected in the crude reaction product, and no colour change of the reaction solution was observed (the details will be discussed in Chapter 6).

2.11 Synthesis of Dinuclear $\mathbf{R u}$ (III)/Ru(III) Dithioether Complexes

2.11.1 $\left[\mathrm{RuCl}_{2}(\mathrm{BETP})\right]_{2}(\mu-\mathrm{Cl})_{2}(M W=743.50 \mathrm{~g} / \mathrm{mol})$

Conc. $\mathrm{HCl}(500 \mu \mathrm{~L})$ was added to a solution of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(500 \mathrm{mg}, 2 \mathrm{mmol})$ in EtOH (30 mL), and the mixture was refluxed for 5 h . 3,7-Dithianonane (BETP, (1,3bis(ethylthio)propane), $600 \mathrm{mg}, 4 \mathrm{mmol}$) was added and the mixture was refluxed for a further 6 h . The volume of the resulting dark-brown solution was reduced until the solution became oily. Acetone (25 mL) was added and a purple-brown precipitate formed. Crystals suitable for X-ray analysis were formed by slow evaporation of a solution of the complex in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Yield 178 mg (24 \%). Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{Cl}_{3} \mathrm{RuS}_{2}: \mathrm{C}, 22.62 ; \mathrm{H}, 4.34$. Found: C, 22.38; $\mathrm{H}, 4.30 \% . \quad$ UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 454$ (3.42), 376 (3.49), 268 (4.53). $\mu_{\text {eff }}$ (Gouy) $=3.8 \pm 0.1$ B. M.
$2.11 .2\left[\mathrm{RuCl}_{2}(\mathrm{BPTP})\right]_{2}(\mu-\mathrm{Cl})_{2}(M W=799.61 \mathrm{~g} / \mathrm{mol})$

The procedure used for the production of X-ray quality crystals was as described in Section 2.11.1, but using $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(100 \mathrm{mg}, 0.4 \mathrm{mmol})$ and 4,8 -dithiaunadecane (BPTP, (1,3-bis(propylthio)propane), $147 \mathrm{mg}, 0.8 \mathrm{mmol}$) and only 15 mL of acetone was added. Yield $83 \mathrm{mg}(52 \%)$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{Cl}_{3} \mathrm{RuS}_{2}$: C, 27.04; H, 5.04. Found: C, 27.51; H, 5.08% UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 448(2.62), 374(2.61), 252(3.44) . \mu_{\mathrm{eff}}($ Gouy $)=3.0 \pm 0.1$ B. M.
$2.11 .3\left[\mathrm{RuCl}_{2}(\mathrm{BBTP})\right]_{2}(\mu-\mathrm{Cl})_{2}(M W=855.72 \mathrm{~g} / \mathrm{mol})$

The procedure used was identical to that described in Section 2.11.1, but using $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (100 mg, 0.4 mmol) and 5,9-dithiatridecane (BBTP, (1,3-bis(butylthio)propane),
$160 \mathrm{mg}, 0.8 \mathrm{mmol})$, and only 15 mL of acetone was added. Yield $43 \mathrm{mg}(25 \%)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{Cl}_{3} \mathrm{RuS}_{2}: \mathrm{C}, 30.88 ; \mathrm{H}, 5.65$. Found: C, $30.70 ; \mathrm{H}, 5.52 \%$. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 454$ (3.51), 376 (3.57), 268 (4.68). $\mu_{\mathrm{eff}}($ Gouy $)=3.2 \pm 0.1 \mathrm{~B} . \mathrm{M}$.
$2.11 .4\left[\mathrm{RuCl}_{2}(\mathrm{BPeTP})\right]_{2}(\mu-\mathrm{Cl})_{2}(M W=911.82 \mathrm{~g} / \mathrm{mol})$

The method described above for the other $\mathrm{Ru}(\mathrm{III}) / \mathrm{Ru}(\mathrm{III})$ complexes was used with $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O} \quad(100 \mathrm{mg}, \quad 0.4 \mathrm{mmol})$, 6,10-dithiapentadecane (BPeTP, (1,3bis(pentylthio)propane), $190 \mathrm{mg}, 0.8 \mathrm{mmol}$) and a final addition of acetone $(15 \mathrm{~mL})$. Yield $100 \mathrm{mg}(55 \%)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{Cl}_{3} \mathrm{RuS}_{2}: \mathrm{C}, 34.25 ; \mathrm{H}, 6.19$. Found: C, $34.34 ; \mathrm{H}$, 6.25%. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 434$ (3.41), 396 (3.45), 266 (4.86), $216(4.83) . \mu_{\mathrm{eff}}($ Gouy $)=3.4$ ± 0.1 B. M.

2.12 References for Chapter 2

1 Evans, D.F. J. Chem. Soc. 1959, 2003.
2 Sur, S. K. J. Mag. Reson. 1989, 82, 169.
3
(a) Carlin, R. L. Magnetochemistry Springer-Verlag, Berlin, 1986, p. 3;
(b) Selwood, P. W. Magnetochemistry (2nd ed.), Interscience Publishers, Inc., New York, 1956, p. 78;
(c) CRC Handbook of Chemistry and Physics (66th ed.), (eds. R. C. Weast, M. J. Astle and W. H. Beyer), CRC Press, Inc., Boca Raton, 1985-1986, p. E-121.

4 Morgan, S. T.; Ledbury, W. J. Chem. Soc. 1922, 121, 2882.
5 Hartley, F. R.; Murray, S. G.; Levason, W.; Soutter, H. E.; McAuliffe, C. A. Inorg. Chim. Acta 1979, 35, 265.

6 Cattalini, L.; Michelon, G.; Marangoni, G.; Pelizzi, G. J. Chem. Soc. Dalton Trans. 1979, 96.

7 Hull, M.; Bargar, T. W. J. Org. Chem. 1975, 40, 3152.
8 (a) Bell, E. V.; Bennett, G. M. J. Chem. Soc. 1927, 1798;
(b) Bennett, G. M.; Statham, F. S. J. Chem. Soc. 1931, 1684.

9 Yapp, D. T. T. Ph. D. Dissertation, University of British Columbia, Vancouver, B. C., 1993.

10 Yapp, D. T. T.; Rettig, S. J.; James, B. R.; Skov, K. A. Inorg. Chem. 1997, 36, 5635.

11 Judd, R. J.; Cao, R.; Biner, M.; Armbruster, T.; Bürgi, H-B.; Merbach, A. E.; Ludi, A. Inorg. Chem. 1995, 34, 5080.

12 James, B. R.; McMillan, R. S. Inorg. Nucl. Chem. Lett., 1975, 11, 837.
13 (a) Evans, I. P.; Spencer, A.; Wilkinson, G. J. Chem. Soc. Dalton Trans. 1973, 204;
(b) McMillan, R. S.; Mercer, A.; James, B. R.; Trotter, J. J. Chem. Soc. Dalton Trans. 1975, 1006.

14 Alessio, E.; Mestroni, G; Nardin, G.; Attia, W. M.; Calligaris, M.; Sava, G.; Zorzet, S. Inorg. Chem. 1988, 27, 4099.

15 (a) Jaswal, J.; Rettig, S. J.; James, B. R. Can. J. Chem. 1990, 68, 1808; (b) Alessio, E.; Balducci, G.; Lutman, A.; Mestroni, G.; Calligaris, M.; Attia, W. M. Inorg. Chim. Acta 1992, 203, 205.

16 Calligaris, M.; Faleschini, P.; Todone, F.; Alessio, E.; Geremia, S. J. Chem. Soc. Dalton Trans. 1995, 1653.

17 Chatt, J.; Leigh, G. J.; Storace, A. P. J. Chem. Soc. (A) 1971, 1380.

Chapter 3

Structural Properties of Sulfoxide and Thioether Complexes of Ruthenium

3.1 General Introduction

Early work by Cotton and Francis in sulfoxide chemistry was initiated partly by trade literature, commercial availability, favourable solvent properties of DMSO, and the resemblance of sulfoxides to phosphine oxides as the latter were used as extracting agents. ${ }^{1}$ Davies' interest in the coordination chemistry of sulfoxides originated mainly because of the excellent solvation properties of DMSO. ${ }^{2}$ DMSO (b. p. $189^{\circ} \mathrm{C}$) is a convenient solvent in laboratory and industrial use because of its resistance to hydrolysis and thermal decomposition. Reactions involving alkylation, cyclization, condensation and ether formation are more selective and provide higher yields when using DMSO as the solvent. ${ }^{3}$ The coordination chemistry of sulfoxides has been studied since the early 1960s (and sulfoxides are capable of acting as Lewis bases), when sulfoxides were recognized as being potential ambidentate ligands, coordinating to specific metals via either oxygen or sulfur. ${ }^{2}$ The sulfuroxygen bond in sulfoxides is very polar making sulfoxides good acceptors for hydrogen bonding. ${ }^{4}$ Transition-metal complexes of sulfoxides are useful as reactive intermediates in preparative coordination chemistry and homogeneous catalysis. ${ }^{5}$ The bioinorganic chemistry of Ru sulfoxide complexes as chemotherapeutic agents has also been investigated (Chapter 1).

3.2 Structural Properties of the S-O Moiety in Sulfoxides

Sulfoxides $R_{1}-S(O)-R_{2}$ have an S-atom in an oxidation state (4) intermediate to that found in sulfides $R_{1}-S-R_{2}$ (2) and sulfones $R_{1}-S(O)_{2}-R_{2}$ (6), while the geometry about the S -atom is distorted trigonal pyramid with the S -atom sp^{3} hybridized (Figure 3.1(1)).

(1)

(2)

Figure 3.1. Structure (1) and resonance forms (2) of a sulfoxide.

The sulfoxide moiety is non-fluctional around room temperature, allowing for the isolation of chiral sulfoxides, ${ }^{6}$ while their racemization is possible by thermal treatment or by photochemical methods. ${ }^{7}$

The bond angles within free DMSO (Table 3.1) illustrate the trigonal pyramid geometry of the molecule, with the average C-S-O (107°) and C-S-C $\left(98^{\circ}\right)$ angles deviating from 109° because of the lone electron pair on the S-atom and the double bond character present in the sulfur-oxygen bond. ${ }^{8}$ The C-S-C bond angle is invariably smaller than the O-SC bond angles in metal-sulfoxide complexes regardless of the type of side-groups, this being attributed to the repulsion between the bulkier sulfur-oxygen bonding double pair, the S lonepair and the S-C bonding pair electrons. ${ }^{14}$ The sulfur-oxygen bond length is in the range 1.47 to $1.531 \AA$ (Table 3.1), ${ }^{9-11}$ while a bond length of $1.51 \AA$ (estimated from S-N bond lengths) is considered consistent with a bond order of ~ 2.0. ${ }^{12}$

A valence-bond description can be used to illustrate the bonding nature of sulfoxides. The sulfoxide structure is considered to be a hybrid of three resonance forms with form II the normal representation (Figure 3.1(2)). ${ }^{2}$

X-ray emission spectroscopic studies on sulfoxides indicate that the sulfur-oxygen bond is polarized with the S -atom having net positive charge. ${ }^{13}$ Calligaris and Carugo stated that the average value of the S-O bond length, $1.492 \AA$ ($c f$. the estimated bond length of 1.51 \AA^{12}), is consistent with double bond character in the S-O bond and is shorter than the $1.66 \AA$ expected for a single bond. ${ }^{14}$

Table 3.1. Selected Bond Lengths and Bond Angles for DMSO in the Gaseous and Solid States.

	Bond Lengths (\AA)		Bond Angles ($\left.{ }^{\circ}\right)$		
State	S-O	C-S	C-S-C	C-S-O	Ref.
Gaseous	1.47^{a}	1.82^{a}	$100(5)$	$107(5)$	10
Solid at $5^{\circ} \mathrm{C}^{a}$	1.531	$1.775-1.821$	97.4	$106.7-106.8$	9
Solid at $-60^{\circ} \mathrm{C}$	$1.471(8)$	$1.801(96)-$	$97.86(54)$	$107.04(57)-$	11
		$1.812(14)$		$107.43(56)$	

${ }^{a}$ E.s.d. not given.

3.3 Metal-Sulfoxide Bonding

Sulfoxides are ambidentate and can coordinate either through the S - or O -atom.
Initial observations suggested that DMSO coordinated to "harder" metals via oxygen and to "softer" metals via the sulfur. ${ }^{15}$ However, the "hardness" or "softness" of a metal ion can be
affected by the nature of the coordinated ligands, and steric effects can force O -bonding even in softer metal ions. ${ }^{14}$ In addition, the introduction of highly electronegative substituents with ancillary ligands lowers the electron charge density on the metal, this also favouring O-bonding. ${ }^{14}$

In mixed-ligand complexes the preferred coordinating atom of sulfoxides is determined in part by the ability of other ligands at the metal centre to compete for electron density. ${ }^{16}$ The presence of strong π-electron acceptors withdraws electron density from the metal, and causes "softer" metals to become "harder". This reduction in electron density at the metal may be accompanied by a change in coordination of the ligand from a "soft" to a "hard" donor atom to optimize orbital overlap. ${ }^{16}$ The "hardness" or "softness" of a metal is a qualitative indication of the degree of diffuseness and size of its atomic orbitals, the more diffuse and the larger the orbital, the "softer" the metal is. ${ }^{15}$ Metal-ligand orbital overlap with "hard" acids is more favourable with the less diffuse (i.e. "hard") donor orbitals of oxygen, while "soft" acids have better orbital overlap with the more diffuse donor orbitals of sulfur. ${ }^{2,15}$

Steric constraints may cause coordination of sulfoxides through the O-atom to "softer" metals in some metal-sulfoxide systems, as coordination through the O -atom is less sterically demanding than through the sulfur. ${ }^{17,25}$. For example, electronic and steric factors have been used to rationalize the existence of the following two complexes in which sulfoxide coordinates to "softer" metals via oxygen; cis- $\left[\operatorname{Pd}(\mathrm{DMS} \underline{\mathrm{O}})_{2}(\mathrm{DMSO})_{2}\right]^{2+}$ and $\operatorname{Pd}\left(\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}\right)_{2}(\mathrm{DMSO})^{2+}{ }^{27,18}$

Valence bond rationalizations utilizing the different resonance forms of the free sulfoxides are satisfactory in explaining much of the structural data determined for metal-

DMSO complexes (e.g. Table 3.2), while steric constraints also play roles in determining whether sulfoxides coordinate through the S - or O -atom. Rationalizations of this type also encompass the initial empirical observation that coordination of sulfoxides occurred in "softer" metals via sulfur, and via oxygen in "harder" metals. ${ }^{14}$

A value of $1.531 \AA$ for the sulfur-oxygen bond length for non-coordinated DMSO was obtained after correction for thermal motion whereas most of the sulfur-oxygen bond lengths reported for metal complexes refer to uncorrected values. ${ }^{14}$ For comparison of sulfuroxygen bond lengths, Calligaris and Carugo have used the average value of 1.492(1) \AA for a wide range of non-coordinated sulfoxides (excluding low temperature and gas phase values, and data for H -bonded sulfoxides) ${ }^{14}$ The sulfur-oxygen bond length of $1.492(1) \AA$ will be used for further comparisons.

3.3.1 Sulfur-Bonded Metal-Sulfoxide Complexes

According to the hard-soft-acid-base theory, in soft metal-ion complexes, diffuse orbitals of acceptor atoms interact favourably with diffuse orbitals on the S -atoms, thus favouring S-bonding. ${ }^{15}$ However, certain soft metal ions $\left(\mathrm{Ag}^{+}, \mathrm{Cd}^{2+}\right.$ and $\left.\mathrm{Hg}^{2+}\right)$ exhibit O-bonding even in the absence of sterically hindering or π acceptor ligands, suggesting that a particular electronic structure is necessary that favours S-bonding over O-bonding, probably involving π back-bonding from the metal orbitals to the S-atom orbitals . ${ }^{14}$ Davies suggests that for Ru (II)-DMSO complexes, the Ru-S bond has a partial double bond character because of the $d \pi-d \pi$ back donation from the metal to the sulfur. ${ }^{2}$ Selected structural data for some metal-DMSO complexes are listed in Table 3.2 and show that the geometries of the sulfoxide

Table 3.2. Selected Structural Data for Selected Transition Metal-DMSO Complexes.

Complex	S-O Bond (\AA)	C-S-O Angle (${ }^{\circ}$)	Ref.
trans $-\mathrm{FeCl}_{2}(\mathrm{DMSO})_{4}{ }^{+}$	1.541(6)	103.5(4)-103.7(4)	19,20
trans $-\mathrm{CuCl}_{2}(\mathrm{DMSO})_{2}$	1.531(4)	103.9(3)-104.7(3)	21
cis $-\mathrm{Pt}_{2}(\mathrm{DMSO})_{2}$	1.454(9)-1.469(6)	107.6(5)-110.3(5)	22
cis- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{3}(\mathrm{DMS} \underline{O})$	1.557(4); ${ }^{\text {a }}$	101.6(3)-	23
	1.483(5),1.485(5) ${ }^{b}$	104.2(3): ${ }^{\text {a }}$	
		$\begin{aligned} & 106.0(4)- \\ & 107.7(4)^{b} \end{aligned}$	
$e r-\mathrm{Rh}(\mathrm{py})_{2} \mathrm{Cl}_{3}(\mathrm{DMSO})$	1.48(1)	108.0(8)-110.6(8)	24
	$1.545(4)^{\text {a }}$		
SS		(2),	25
	$1.484(4)^{\text {b }}$		
	1.484(4)	$\begin{aligned} & 107.5(2)- \\ & 109.3(2)^{b} \end{aligned}$	
$\left[\mathrm{Ru}_{2}(\mu-\mathrm{Cl})(\mu-\mathrm{H})(\mu-\mathrm{DMSO}) \mathrm{Cl}_{2}(\mathrm{DMSO})_{4}\right]$.	1.442(5)-	d	26
$2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$1.486(4){ }^{b}$		
	$1.532(4)^{c}$		
$\left[\mathrm{Ru}_{2} \mathrm{Cl}(\mathrm{DMS} \mathrm{S})_{5}\right](\mu-\mathrm{Cl})_{3}$	1.467(3)-1.479(3)	105.7(2)-107.2(2)	27
$\left[\mathrm{Ru}_{2}(\mu-\mathrm{Cl})(\mu-\mathrm{DMSO}) \mathrm{Cl}_{3}(\mathrm{DMSO})_{3}(\mathrm{CO})_{2}\right]$	$\begin{aligned} & 1.455(7)-1.480(5) \\ & 1.508(5)^{c} \end{aligned}$	d	28
$\left[\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}(\mathrm{DMSO})_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}$	1.517(5),1.523(6)	105.5(5)-108.0(4)	29
cis-[CrCl(en) $\left.{ }_{2}(\mathrm{DMSO})\right] \mathrm{ZnCl}_{4}{ }^{\text {e }}$	$1.537(5)$	101.6(4)-103.9(3)	30
cis-[$\left.\mathrm{OsCl}_{2}(\mathrm{DMSO})_{4}\right]$	1.467(4)-1.483(3)	105.3(2)-107.1(2)	31

${ }^{a}$ O-bonded. ${ }^{b}$ S-bonded. ${ }^{c}$ Bridging. ${ }^{d}$ Data not given. ${ }^{e}$ en $=$ ethylenediamine.
remain essentially unchanged from that of the free ligand. However, effects of coordination are most evident in the sulfur-oxygen bond length (in DMSO) as this is lengthened to 1.517(5)-1.557(4) \AA (see Tables 3.1 and 3.2).

Valence bond arguments imply that donation from resonance form III could account for S-bonding (Figure 3.1(2)), but structural data on the coordinated sulfoxides indicate that the S -atom upon coordination becomes more positive than in the free ligand (it has been shown that an increase in the degree of oxidation of sulfur, accompanied by an
increase in effective positive charge, leads to a displacement of the K absorption edge in the X-ray spectrum towards higher energies). ${ }^{13 d}$

Donation from form II, however, leaves a positive charge on the S-atom and is more consistent with X-ray spectral data, ${ }^{13}$ with the sulfur-oxygen bond order closer to two than three. ${ }^{2}$ The sulfur-oxygen bond environment is directly affected by coordination through the S-atom, as an sp^{3} orbital of sulfur is directly involved in the sulfur-metal bond. Donation of electron density from oxygen to sulfur through $\mathrm{p} \pi-\mathrm{d} \pi$ overlap compensates for the depletion of electron density at the sulfur. The coordination of the sulfoxide, via the S-atom, to the metal results in an increase in the sulfur-oxygen bond order, and a decrease in the sulfur-oxygen bond length, for example, as in the S-bonded complexes listed in Table 3.2. ${ }^{2}$

3.3.2 Oxygen-Bonded Metal-Sulfoxide Complexes

Generally, O-bonding is observed in metal complexes having "hard" metal ions and/or strong π accepting ancillary ligands, or in order to avoid a trans arrangement of Sbonded sulfoxides (in softer metals). ${ }^{14}$ The structural data for O-bonded DMSO ligands within the complexes listed in Table 3.2 indicate that the geometry of the sulfoxide changes little upon coordination. The average C-S-O bond angle (103°) is slightly smaller than that of $\sim 107^{\circ}$ found in free DMSO (Table 3.1), which indicates that the ligand retains its "trigonal pyramid" geometry upon coordination to a metal centre. The sulfur-oxygen bond lengths in O-bonded sulfoxide complexes (1.517(5)-1.557(4) \AA, Table 3.2) are longer than that found in free DMSO (1.492(1) \AA). Davies had concluded earlier that the sulfur-oxygen bond length changes little on such coordination. ${ }^{2}$

Calligaris and Carugo suggest that a hybrid of resonance forms I and II predominates, with structure I accounting for coordination of sulfoxides through the O -atom (Figure 3.1(2)). ${ }^{14}$ Transfer of electron density from the negative oxygen to the metal is not expected to affect the positive charge on the sulfur. ${ }^{2}$ The O -atom within the $\mathrm{S}^{+}-\mathrm{O}^{-}$resonance form can be considered to be sp^{2} hybridized; then overlap of one oxygen sp^{2} orbital with the sp^{3} hybridized S -atom results in a single sulfur-oxygen σ-bond, leaving the two sp^{2} lone pairs on the oxygen for coordination to the metal. ${ }^{2,5}$ The interaction between the remaining lonepair p -orbital of the O -atom and the vacant d -orbitals of the S -atom ($\mathrm{p} \pi-\mathrm{d} \pi$) is not affected directly by the coordination environment of the oxygen. Coordination to a weak Lewis acid should have a small effect on the π overlap, while coordination to a strong Lewis acid should decrease the overlap and result in a decrease in the S-O bond order.

Experimental data support this reasoning with S-O bond lengths for O-bonded DMSO in $\mathrm{Ru}, \mathrm{Fe}, \mathrm{Cu}$, and Cr complexes in the range $1.517(5)-1.557 \AA$ (Table 3.2) which are longer than the bond length in free DMSO (1.492(1) \AA).

3.3.3 Bridging DMSO Metal Complexes

The structural data for bridging DMSO ligand complexes (Table 3.2) indicate again that the sulfoxide geometry does not change much upon coordination. Bridging S-O bond lengths are $1.532(4) \AA^{26}$ and $1.508(5) \AA^{28}$ (Table 3.2) and are longer compared to the bond length of free DMSO $1.492(1) \AA$. Of note, the bridged S-O bond lengths are intermediate between those of S - and O -bound $\mathrm{Ru}(\mathrm{II})$-sulfoxide complexes. ${ }^{28}$

3.4 NMR and IR Spectroscopic Methods for the Determination of Sulfur- or Oxygen-Bonding in Metal Complexes

The presence of sulfur-and/or oxygen-bonded sulfoxides in metal-sulfoxide complexes can often be detected using two standard spectroscopic methods.

3.4.1 ${ }^{1} H$ NMR Spectroscopy

${ }^{1} \mathrm{H}$ NMR shifts of the α-protons of free sulfoxide change upon coordination of the sulfoxide and can indicate the presence of either S- or O-bonding, the peaks generally shifting downfield. The magnitude of the shift depends upon the coordination mode, with larger effects being observed upon coordination via the S -atom than the O -atom. Free DMSO in CDCl_{3} has a single ${ }^{1} \mathrm{H}$ resonance at $\delta 2.62$ for the equivalent methyl groups. ${ }^{32}$ In cis$\mathrm{RuCl}_{2}(\mathrm{DMSO})_{3}(\mathrm{DMSO})$, the methyl resonance of the O-bonded DMSO is shifted downfield to $\delta 2.75$, while the methyl resonances of the S-bonded DMSO are shifted further and fall in the range $\delta 3.00-3.52 .{ }^{32}$

Generally, O-bonding of sulfoxides results in small chemical shifts of the α-protons ($\leq \delta 0.5$) while larger shifts $\delta \sim 1$ are seen for coordination through the S-atom, and this trend is observed for the β - and γ-protons although the extent of these effects decreases as the protons become further removed from the S-atom. ${ }^{2}$

Using the bonding model shown in Figure 3.1(2), coordination of the sulfoxide via the O -atom occurs through the sp^{2} orbitals of oxygen, and hence the electron density in the carbon-sulfur bond, which involves sp^{3} orbitals from the S -atom, is affected only to a small degree. The α-protons are consequently only deshielded to a small degree, which is reflected in the small downfield shift observed in the ${ }^{1} \mathrm{H}$ NMR spectrum. In contrast, coordination
through the sulfur involves the sp^{3} orbitals of the S -atom, which results in direct withdrawal of electron density from the C-S bond and a greater deshielding effect.

The inequivalence of diastereomeric $\alpha-\mathrm{CH}_{2}$ protons of a coordinated sulfoxide such as diethylsulfoxide ${ }^{33}$ is observed in the ${ }^{1} H$ NMR spectrum as a complicated pattern of peaks. This pattern is only observed for S-bonded sulfoxides and not for O-bonded sulfoxides. ${ }^{33}$ The ${ }^{1} \mathrm{H}$ signal observed for the α-protons of O -bonded diethylsulfoxide is simpler than that observed for the α-protons of S-bonded diethylsulfoxide. ${ }^{34}$ However, in the case of coordinated TMSO, a greater inequivalence is observed for the β - than the $\alpha-\mathrm{CH}_{2}$ protons in the ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{35}$

3.4.2 IR Spectroscopy

Upon coordination of sulfoxide, a greater shift is observed in v_{SO}, the sulfur-oxygen IR stretching frequency, in O-bonded than in S-bonded sulfoxides; a shift to a higher $v_{\text {so }}$ is observed for S-bonded sulfoxides, and a lower v_{sO} for O -bonded. These changes are useful indications of the bonding mode. Examples of complexes with S- and/or O-bonded sulfoxides (with their respective $v_{\text {so }}$ assignments) are tabulated in Table 3.3. Coordination via the S atom results in both a shorter sulfur-oxygen bond and higher $v_{\text {so }}$ due to donation of electron density from the O -atom to compensate for the withdrawal of electron density from the S-atom by the metal (Figure 3.1(2)). In the case of O-bonded sulfoxides, donation of electron density occurs through one sp^{2} orbital of the oxygen (Figure $3.1(2)$), and this results in changes in the sulfur-oxygen bond and $v_{\text {so }}$. A bridging sulfoxide, with coordination via both S- and O-atoms, ${ }^{26,28}$ has the characteristics of both S - and O-bonding; $\boldsymbol{v}_{\mathrm{SO}}$ of μ-DMSO shows
a coordination shift of $45 \mathrm{~cm}^{-1}$ (Table 3.3), reflecting relatively minor changes in the sulfuroxygen bond, consistent with structural data (see Section 3.3.3).

Table 3.3. The Sulfur-oxygen Stretching Frequencies of S-bonded, O-bonded and Bridging DMSO Ru Complexes. ${ }^{a, b}$

Complex	$\mathrm{v}_{\mathrm{SO}}\left(\mathrm{cm}^{-1}\right)$			Ref.
	S-bonded	O-bonded	Bridging	
cis-RuCl $\left.\mathbf{2}^{(\mathrm{DMSO}}\right)_{3}\left(\mathrm{DMS} \underline{)^{\prime}}\right.$	1115	960		32
$c i s-\mathrm{RuBr}_{2}(\mathrm{DMSO})_{3}(\mathrm{DMSO})$	1111.5	924		36
trans-RuCl ${ }_{2}(\mathrm{DMSO})_{4}$	1086			36,37
trans $-\mathrm{RuBr}_{2}(\mathrm{DMSO})_{4}{ }^{\text {d }}$	1082			38
$m e r-\mathrm{RuCl}_{3}(\mathrm{DMSO})_{2}(\mathrm{DMSO})$	1127,1107	912		25
$\left[\mathrm{Ru}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}(\mathrm{DMSO})_{2}\right]\left(\mathrm{PF}_{6}\right)$		1006		29
$\left[\mathrm{Ru}_{2}(\mu-\mathrm{Cl})(\mu-\mathrm{DMSO})(\mathrm{DMSO})_{3} \mathrm{Cl}_{3}(\mathrm{CO})_{2}\right]$	1141,1107		1010	28

[^2]
3.5 Disulfoxides and Their Metal Complexes

In this thesis work, several disulfoxides were synthesized by oxidation of the corresponding dithioethers by the methods of Hull and Bargar ${ }^{39}$ and Bennett et al., ${ }^{40}$ and were characterized by elemental analysis, melting point, and IR and ${ }^{1} \mathrm{H}$ NMR spectroscopies (Section 2.4 and Table 3.4). Of note, a comprehensive review by Madesclaire includes several methods for oxidizing sulfides to the corresponding sulfoxides, ${ }^{41}$ and recently Rakivumar et
al. reported a selective conversion of sulfides to sulfoxides using $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{CF}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CF}_{3} .{ }^{42}$ The disulfoxides used in this thesis work were synthesized as mixtures of diastereomers (the $R R / S S$ pair, and the meso $R S / S R$) but use of several recrystallizations yielded one diastereomer (Section 2.4). ${ }^{39}$ As reported, repeat recrystallizations can be used to separate the diastereomers, ${ }^{43,44}$ while separation of the enantiomeric forms of 1,2 bis(phenylsulfinyl)ethane has been achieved by column chromatography on lactose. ${ }^{45,46}$ Zipp and Madan stated that "previous studies have indicated that the sole product obtained from the DMSO oxidation is the higher melting isomer, now identified as the racemic mixture of the $R R$ and $S S$ forms"; ${ }^{47}$ however, X-ray crystal structural analyses of $\mathrm{RS}(\mathrm{O})\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~S}(\mathrm{O}) \mathrm{R} ; \mathrm{R}=$ methyl (BMSE), ${ }^{43}$ propyl (BPSE) and phenyl (BPhSE) $)^{44}$ suggest that generally the higher melting isomer is that of the meso form ($v s$. the rac form) (Table 3.4). ${ }^{48}$

Attempts, during this thesis work, to crystallize the disulfoxides to obtain X-ray structural analyses were not successful; attempts included variation of solvent combinations and temperatures, and sublimation methods. For example, some "crystals" of BPSP were found not to be single crystals and were apparently characteristic of "soft thread"; attempts by Calligaris to crystallize BPSP have also been unsuccessful. ${ }^{49}$ Svinning et al. have reported that crystals of the β form (the lower melting isomer) of rac-BMSE were "clusters of interpenetrating needles that were easily shattered or deformed". ${ }^{43}$

Table 3.4. The Melting Points and $v_{\mathrm{so}}\left(\mathrm{cm}^{-1}\right)$ for Disulfoxides. ${ }^{a}$

Compound	M. p. $\left({ }^{\circ} \mathrm{C}\right)$	Ref.	$\mathrm{v}_{\mathrm{sO}}\left(\mathrm{cm}^{-1}\right)(\mathrm{KBr})$
BMSE ($R S$)	$\begin{aligned} & 158-162^{b} \text { and } 165-166^{c} ; 163-164 ;^{c} 169-170^{c} \\ & 174-175^{d} \end{aligned}$	50; 40a; 39; 43	1018 (ref. 39) ${ }^{\text {e }}$
BMSE(rac)	117-119 ${ }^{b}$ and 118-120; $128-130 ;{ }^{c} 132-133^{d}$	50; 40a; 43	1018 (ref. 39) ${ }^{\text {e }}$
BESE	142-145; ${ }^{\text {g }} 149-149.5 ;{ }^{c} 148-149 ; 150^{h}$	47; 39; tw; 40b	$\begin{aligned} & 1019 \text { (ref. 39); } \\ & 1015 \text { (tw) } \end{aligned}$
BPSE	161-162.5; ${ }^{i}$ 162-164	39; tw	$\begin{aligned} & 1012 \text { (ref. 39); } \\ & 1010(\mathrm{tw}) \end{aligned}$
BBSE	172-173	tw	1014
BPeSE	134-135	tw	1014,1073,1100
BCySE	172-174	tw	1018
BHSE	176.5-177.5	tw	1016,1114
BPhSE(RS)	166-167 ${ }^{\text {j,k }}$	48; 44	1033 (ref. 44)
BPhSE(SS)	$120-122,{ }^{j} 122-123^{k}$	48; 44	1037 (ref. 44)
BPhSE	165-170	tw	1035,1089
BMSP	$117-118^{l}$	39	1050
BESP	127-130	tw	1016,1047
BPSP	140-143	tw	1021,1075
BBSP	146-148	tw	1021
BPeSP	125-129	tw	1026
BPhSP	137-140	tw	1021,1040,1084

${ }^{a} \mathrm{tw}$, this work. The superscripts ${ }^{b-d}$ and ${ }^{g-l}$ indicate the recrystallization solvents that were used in each case. ${ }^{b} \mathrm{EtOH} /$ ethyl acetate. ${ }^{c} \mathrm{EtOH}$. ${ }^{d}$ Acetone/ethyl acetate. ${ }^{e}$ The value 1018 cm^{-1} is assumed to be quoted for a crude product (m. p. 125-164 ${ }^{\circ} \mathrm{C}$). ${ }^{f}$ Recrystallized from the mother liquor using ethyl acetate and toluene. ${ }^{g}$ Benzene. ${ }^{h}$ Ethyl acetate. Benzene/hexane 3:2. ${ }^{j}$ Chloroform and petroleum ether. ${ }^{k} \mathrm{CHCl}_{3} /$ light petroleum and ethanol. ${ }^{1}$ THF .

3.5.1 Disulfoxide Complexes

For the higher melting diastereomer of meso-BMSE (see Section 3.5), the range of the sulfur-oxygen bond lengths was $1.501(2)-1.515(2) \AA^{43}$

Madan et al. synthesized a series of complexes with formulations $\left[\mathrm{M}(\mathrm{L})_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ $\left(\mathrm{M}=\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}\right.$ and $\left.\mathrm{Cd}^{2+}\right), \mathrm{M}(\mathrm{L}) \mathrm{Cl}_{2}\left(\mathrm{M}=\mathrm{Pt}^{2+}\right.$ and $\left.\mathrm{Pd}^{2+}\right)(\mathrm{L}=2,5-$ dithiahexane 2,5-dioxide, i.e. BMSE$)$, and $\left[\mathrm{ML}_{n}\right]\left(\mathrm{ClO}_{4}\right)_{2}\left(n=3, \mathrm{M}=\mathrm{Mn}^{2+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}\right.$ and $\mathrm{Zn}^{2+} ; \boldsymbol{n}=2, \mathrm{M}=\mathrm{Cu}^{2+} ;$ and $\mathrm{L}=\mathrm{BMSP}, \mathrm{BMSB}$ (1,4-bis(methylsulfinyl)butane) and BESE), as characterized by elemental analyses, IR and magnetic measurements. ${ }^{47,51}$ IR spectroscopy suggested that the disulfoxides were generally O -bonded, except for the Pt^{2+} and Pd^{2+} complexes.

Previous work in this laboratory by Yapp et al. led to the isolation of the cis complexes $\mathrm{RuCl}_{2}(\mathrm{BMSP})_{2}$ and $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$, and the trans complexes $\mathrm{RuCl}_{2}(\mathrm{BMSE})_{2}$ and $\mathrm{RuCl}_{2}(\mathrm{BPSE})_{2}$, shown by X-ray crystallography to contain solely S-bonded disulfoxide. ${ }^{52,53}$ The sulfur-oxygen bond length of coordinated BMSE had shortened to an average of $1.47 \AA$ (Table 3.6, see p. 85).

(1)

(2)

Figure 3.2. Structures of catena-poly[cis- Cl_{2}-trans- $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Sn}(\mathrm{IV})\right]\left(\mu-O, O^{\prime}\right.$-meso-BPSE) (1) and $\left[\mathrm{SnCl}-\text { cis }-\mathrm{Ph}_{3}\right]_{2}\left(\mu-O, O^{\prime}\right.$-rac-1,2-bis(n-propylsulfinyl)ethylene) (2).

De Azevedo Jr. et al. have structurally characterized cis $-\mathrm{PtCl}_{2}$ (BPSE) with S bonded disulfoxide, and a sulfur-oxygen bond length of $1.45(2)-1.46(1) ~ \AA{ }^{54}$ while Carvalho et al. have structurally characterized catena-poly $\left[\right.$ cis- Cl_{2}-trans- $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Sn}\right]\left(\mu-O, O^{\prime}\right.$-meso-BPSE $)$ with a sulfur-oxygen bond length of $1.520(3) \AA$ (Figure $3.2(1)$); the increase in S-O bond length is consistent with O-bonded sulfoxides (Section 3.3.2) compared to the shorter S-O bond lengths observed for S-bonded sulfoxides (Section 3.3.1). ${ }^{55}$ Filgueiras et al. have structurally characterized the complex $\left[\mathrm{SnCl}^{2} \text { cis }-\mathrm{Ph}_{3}\right]_{2}(\mu-O, O$ '-rac-1,2-bis $(n$ propylsulfinyl)ethylene) with a sulfur-oxygen bond length of $1.488(6) \AA$ (Figure 3.2(2)). ${ }^{56}$

Musgrave and Kent synthesized a series of complexes with formulations $\left[\mathrm{M}(\mathrm{L})_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2} \quad\left(\mathrm{M}=\mathrm{Co}^{2+}, \quad \mathrm{Ni}^{2+} \quad\right.$ and $\mathrm{Cu}^{2+} ; \quad \mathrm{L}=\mathrm{O}$-bonded meso- and racbis(phenylsulfinyl)methane (BPhSM), and meso- and rac-1,2-bis(phenylsulfinyl)ethane (BPhSE$)$) and $\mathrm{M}(\mathrm{L}) \mathrm{Cl}_{2}\left(\mathrm{M}=\mathrm{Pt}^{2+} ; \mathrm{L}=\mathrm{S}\right.$-bonded meso- and rac-BPhSE) as characterized by elemental analyses, IR spectroscopy, while the ligands were characterized by NMR
spectroscopy ${ }^{57}$ The authors assigned (perhaps incorrectly) the α-BPhSM (m. p. $196{ }^{\circ} \mathrm{C}$) as the racemic mixture and β - BPhSM (m. p. $104{ }^{\circ} \mathrm{C}$) as the meso compound by NMR spectroscopy. They incorrectly quoted a report by Taddei ${ }^{-45}$ and, therefore, incorrectly assigned the α - BPhSE (higher melting isomer) and β - BPhSE (lower melting isomer) as the racemic mixture and meso isomer, respectively. ${ }^{57}$ Taddei's findings ${ }^{45}$ were later confirmed by Cattalini et al. ${ }^{44}$ by X-ray structural analyses for meso- and rac-(BPhSE). The range of the sulfur-oxygen bond lengths determined for BPhSE ($R S$ and $S S$) is 1.487(2)-1.494(6) \AA^{44} and in the S -bound complexes cis $-\mathrm{PtCl}_{2}$ (meso- BPhSE) and cis $-\mathrm{PtCl}_{2}($ rac -BPhSE$)$ these were shortened to $1.461(8)-1.470(8) \AA$ and $1.40(2)-1.46(1) \AA$, respectively. ${ }^{44}$ In the complex $\left[\mathrm{SnClPh}_{3}\right]_{2}$ (meso- BPhSE), in which BPhSE acts as a bridge between the two tin centres, the sulfur-oxygen bond length is $1.525(4) \AA$ (Figure 3.3(1)) $)^{48}$ Within $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\right]_{2}(\mu-S, S$-mesoBPhSE), where BPhSE bridges two Pt centres via the S-atoms, the sulfur-oxygen bond length is $1.475(9) \AA$ (Figure 3.3(2)). ${ }^{58}$

(1)

(2)

Figure 3.3. Structures containing μ - BPhSE .

A corresponding distance of $1.46 \AA$ has been reported for the S -bound complex cis- PtCl_{2} (rac-cis-1,2-bis(phenylsulfinyl)ethylene). ${ }^{59}$

Khiar et al. have synthesized Fe (III) complexes containing O -bound (SS)-bis(ptolylsulfinyl)methane and (SS)-2,2-bis(p-tolylsulfinyl)propane ligands, respectively (Figure 3.4(1)), although no characterization data were presented. ${ }^{60}$

(1)

(2)

Figure 3.4. (1) $\mathrm{R}=\mathrm{H}$, (SS)-bis(p-tolylsulfinyl)methane; and $\mathrm{R}=\mathrm{CH}_{3}$, (SS)-2,2-bis- p tolylsulfinylpropane. (2) (SS)-1,2-bis(p-tolylsulfinyl)benzene.

Tokunoh et al. synthesized (SS)-1,2-bis(p-tolylsulfinyl)benzene (BTSB, Figure 3.4(2)), and the corresponding $[\mathrm{Rh}(\mathrm{BTSB})(\operatorname{cod})]\left(\mathrm{ClO}_{4}\right)$, trans- $\mathrm{RuCl}_{2}(\mathrm{BTSB})_{2}$ and cisPdCl_{2} (BTSB) complexes, containing S -bound sulfoxide. The $\mathrm{Pd}(\mathrm{II})$ complex was characterized by X-ray crystallography; the crystal structure is centrosymmetric thus implying the presence of both enantiomers. ${ }^{61}$ The sulfur-oxygen bond lengths of the $\mathrm{Pd}(\mathrm{II})$ complex are $1.461(12) \AA$ compared to that of $1.481(1) \AA$ for the free disulfoxide. The authors suggest that the relatively small change in the S-O bond length (complexed vs. free BTSB) was because the electron deficiency of the S-atom may be compensated for by π-back donation from the aryl groups of BTSB rather than by the O-atom. ${ }^{61}$

Previous work in this laboratory has included the synthesis and characterization of chiral sulfoxides, for example, R-methyl p-tolyl sulfoxide (MPTSO), and chiral disulfoxides, for example, dios, bdios and ddios (see Figure 3.5), and their Rh (O-bonded) ${ }^{62}$ and Ru (mainly

S-bonded) complexes which were studied as catalysts for asymmetric hydrogenation of prochiral olefins. ${ }^{63}$

(1)

(2)

(3)

Figure 3.5. Structures of dios ((2R3R)-2,3-O-isopropylidene-2,3-dihydroxy-1,4bis(methylsulfinyl) butane monohydrate) (1), bdios ((2R3R)-2,3-O-isopropylidene-2,3,dihydroxy-1,4-bis(benzylsulfinyl) butane monohydrate (2), and ddios ((2R3R)-2,3-dihydroxy-1,4-bis(methylsulfinyl) butane (3). Adapted from ref. 63b.

Various methods have been utilized to maximize the optical purities of chiral sulfoxides, including electrochemical asymmetric oxidation of unsymmetric sulfides to the corresponding chiral sulfoxides using poly(amino-acid)-coated electrodes, ${ }^{64}$ and chloroperoxidase catalyzed oxidations in t-butyl alcohol/water mixtures. ${ }^{65}$ Of note, a review by Allin includes thirty-seven references for the synthesis of chiral sulfoxides via nucleophilic displacement at the S-atom. ${ }^{66}$

3.6 Mononuclear, Bidentate Disulfoxide Complexes of Ruthenium(II)

Previous workers in this laboratory have used cis- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ and cis$\mathrm{RuCl}_{2}(\mathrm{TMSO})_{4}$ as precursors for the synthesis of RuCl_{2} (sulfoxide) ${ }_{2}$ (nitroimidazole) ${ }_{2}$ complexes, but their configurations were not easily resolved because of the number of possible isomers that could be formed. ${ }^{67}$ The range of sulfoxides was then extended to include disulfoxides in order to reduce the number of possible isomers formed in these exchange
reactions, and the four complexes cis- $\mathrm{RuCl}_{2}(\mathrm{BMSP})_{2}$, cis- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$, trans$\mathrm{RuCl}_{2}(\mathrm{BMSE})_{2}$ and trans- $\mathrm{RuCl}_{2}(\mathrm{BPSE})_{2}$ were synthesized (via "Ru-blue" solutions, Section 3.8.1, p.104) and structurally characterized. ${ }^{52,53}$

One of the first goals for this thesis work was to extend the range of the Ru disulfoxide complexes to include the geometrical isomers of the previously characterized complexes, especially as the trans Ru-disulfoxide complexes exhibited greater in vitro biological activity than the cis complexes. ${ }^{52}$ A logical step to attempt to synthesize such isomers was to use the precursors cis- and trans- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ in sulfoxide-exchange reactions to give cis- $\mathrm{RuCl}_{2}(\mathrm{BMSE})_{2}$ and cis- $\mathrm{RuCl}_{2}(\mathrm{BPSE})_{2}$, and trans- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ and trans- $\mathrm{RuCl}_{2}(\mathrm{BMSP})_{2}$, respectively, and then study their in vitro biological activity. However, a reaction of cis- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ with BPSE gave trans- $\mathrm{RuCl}_{2}(\mathrm{BPSE})_{2}$ (Section 2.7.3), and reactions of trans- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ and $\mathrm{K}_{3}\left[\mathrm{RuCl}_{6}\right]$ with BESE both gave cis- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ (Section 2.7.1) as characterized by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

During this thesis work, the Trieste group published a molecular mechanics investigation of the stereochemistry of Ru-bis-chelating disulfoxide complexes, ${ }^{68}$ and concluded that trans- $\mathrm{RuCl}_{2}(\mathrm{BMSE})_{2}, \quad$ cis- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ and trans- $\mathrm{RuCl}_{2}(\mathrm{BPSE})_{2}$ corresponded to the lowest strain diastereomers (Figure 3.6). The minimum energy structure found a cis-isomer (Figure 3.6(1)) for the diastereomer containing meso-BESE ligands (i.e. cis- $\left.\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}\right)$ and this required trans S -atoms with the same R or S chirality. ${ }^{68}$

(1a)

(1b)

(2)

Figure 3.6 General structure for (1a) cis- $\mathrm{RuCl}_{2}(\mathrm{BMSP})_{2}$ and (1b) cis- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ and (2) trans- $\mathrm{RuCl}_{2}\left(\mathrm{BMSE}_{2}\right.$ and trans- $\mathrm{RuCl}_{2}(\mathrm{BPSE})_{2} ; \mathrm{S}^{\wedge} \mathrm{S}=$ chelating disulfoxide.

The lowest energy form of trans-systems (2) is with mutually trans S-atoms of opposite chirality. Analogous stereomers have been observed in the crystal structures of both trans$\mathrm{RuCl}_{2}(\mathrm{BMSE})_{2}$ and trans- $\mathrm{RuCl}_{2}(\mathrm{BPSE})_{2}$, where again only S -bonding was found. ${ }^{53,68}$

During the course of the present work, the water-soluble complex $\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ was synthesized and structurally characterized, and its reaction with two equivalents of BESE gave the complex trans- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$.

The mononuclear, bis-chelating Ru disulfoxide complexes isolated during this present work have the general formula cis- RuCl_{2} (disulfoxide) ${ }_{2}$ (with the exception of the complex trans- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$), and they all contain only S -bonded disulfoxides as indicated by $\nu_{\text {so }}$ data (Table 3.5, p. 83) and confirmed by X-ray crystallography in all but one case (cis$\left.\mathrm{RuCl}_{2}(\mathrm{BPeSE})_{2}\right)$. No conductivity was observed for any of these complexes in chlorinated solvents. As well, a $\mathrm{Ru}(\mathrm{II}) / \mathrm{Ru}(\mathrm{III})$, mixed-valence complex $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ and a series of $\mathrm{Ru}(\mathrm{II}) / \mathrm{Ru}(\mathrm{II})$ chelating disulfoxide complexes (with $\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu \text { - } \mathrm{Cl})_{2}$ structurally characterized) were isolated during the present work (Sections 3.7 and 3.8). Again, all these complexes contain only S-bonded sulfoxides.

Of note, the in situ reduction of both the $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ "green solutions" and the $\mathrm{Ru}\left(\right.$ III) precursor $\left[\mathrm{RuCl}_{6}\right]^{3-}$ to the $\mathrm{Ru}(\mathrm{II})$ product was possibly due to the disulfoxide acting as a reductant, which is correspondingly oxidized to the sulfone; this might account for the relatively low isolated yield ($\sim 25 \%$), as only a $2: 1$ sulfoxide:Ru ratio was used. Higher yields might result by using increased sulfoxide concentration. Evidence for this redox process will be discussed in Section 3.9, p. 126.

Table 3.5. IR Data (KBr) for $v_{\mathrm{SO}}\left(\mathrm{cm}^{-1}\right)$ Free and $v_{\mathrm{SO}}\left(\mathrm{cm}^{-1}\right)$ Bound, in Chelating Disulfoxide Complexes of Ru.

Complex	IR $v_{\text {so }}\left(\mathrm{cm}^{-1}\right)$ free	IR $\mathrm{v}_{\mathrm{sO}}\left(\mathrm{cm}^{-1}\right)$ bound
trans $-\mathrm{RuCl}_{2}(\mathrm{BMSE})_{2}{ }^{\text {a }}$	1018 (ref. 39)	$1109{ }^{a}$
cis- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}{ }^{a}$	1019 (ref. 39); 1015	1128; ${ }^{\text {a }} 1092,1122$
trans- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2} \cdot \mathrm{H}_{2} \mathrm{O}^{b}$	1019 (ref. 39); 1015	1093, 1119
trans- $\mathrm{RuCl}_{2}(\mathrm{BPSE})_{2}{ }^{a}$	1012 (ref. 39); 1010	1128; ${ }^{\text {a }} 1094^{\text {c }}$
cis- $\mathrm{RuCl}_{2}(\mathrm{BBSE})_{2}{ }^{\text {b }}$	1014	1081, 1126
cis- $\mathrm{RuCl}_{2}(\mathrm{BPeSE})_{2}$	1014, 1073, 1100	1081, 1128
cis- $\mathrm{RuCl}_{2}(\mathrm{BCySE})_{2}{ }^{\text {b }}$	1018	1046, 1100
cis- $\mathrm{RuCl}_{2}(\mathrm{BMSP})_{2}{ }^{a}$	1050	$1085{ }^{\text {a }}$
cis- $\mathrm{RuCl}_{2}(\mathrm{BESP})_{2}{ }^{\text {b }}$	1016, 1047	1042, 1088
$\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}{ }^{\text {b }}$	1019	1042, 1071, 1118
$\left[\mathrm{RuCl}(\mathrm{BPSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$	1012	1048, 1083, 1119
$\left[\mathrm{RuCl}(\mathrm{BBSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$	1014	1046, 1098, 1116
$[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}{ }^{\text {b }}$	1021, 1075	1053, 1084

[^3]
3.6.1 $\mathrm{Cis}^{-R u C l} 2_{2}(\mathrm{BESE})_{2}$ and Trans- $\mathrm{RuCl}_{2}\left(\mathrm{BESE}_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right.$

The reaction of BESE with $\mathrm{K}_{3}\left[\mathrm{RuCl}_{6}\right]$ gave the yellow cis complex in 36% yield. The ${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} corresponds well to that reported, ${ }^{52,53}$ with two distinctive triplets at $\delta 1.45$ and 1.30 of equal integration for the methyls. Attempts to photolyze cis$\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ to the trans isomer, following a report on photo-induced isomerization of cisto trans- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4},{ }^{36}$ were unsuccessful (Section 2.7.1).

The reaction of $\left[\operatorname{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ with 2 equivalents of BESE gave the trans complex in 33% yield. The ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{D}_{2} \mathrm{O}\right)$ of the free ligand consists of multiplets at $\delta 3.30\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.92\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, and a triplet at $1.23\left(\mathrm{CH}_{3}\right)$, which in this complex are shifted downfield to a coalesced peak at $\delta 3.70$ (for the CH_{2} protons) and a multiplet at $\delta 1.45\left(\mathrm{CH}_{3}\right)$, respectively; the ${ }^{1} \mathrm{H}$ solution spectrum $\left(\mathrm{D}_{2} \mathrm{O}\right)$, which does not change over 3 weeks, shows equivalent methyl groups (cf. data for the cis complex), consistent with the trans geometry determined crystallographically. Crystals of a non-solvated species were grown by slow evaporation of an $\mathrm{H}_{2} \mathrm{O}$ solution of the complex. This complex crystallizes in a centrosymmetric space group with the Ru-atom on a centre of symmetry, and is thus achiral; the ORTEP diagram is shown in Figure 3.7. The structural data are similar to those of trans- $\mathrm{RuCl}_{2}(\mathrm{BMSE})_{2}$ and trans- $\mathrm{RuCl}_{2}(\mathrm{BPSE})_{2}$ (Table 3.6). The key bond lengths and angles are essentially the same as those for the other Ru (II) bis-chelating disulfoxide complexes. The molecule has a slightly distorted octahedral geometry at the Ru with trans angles of 180.0° and cis angles that range from 85.42(3)-90.88(3) ${ }^{\circ}$ (Table 3.7). The sulfuroxygen bond lengths for cis- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$, trans- $-\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ and
$\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ average about $1.48 \AA$ and show that there is not much of a change in the sulfur-oxygen bond distance in the three complexes (see Table 3.7).

Table 3.6. Selected Bond Lengths (\AA) and Bond Angles (${ }^{\circ}$) for Some trans- $\mathrm{RuCl}_{2}(\mathrm{~S}-\mathrm{S})_{2}$ Complexes. ${ }^{a}$

Bond or Angle	trans $-\mathrm{RuCl}_{2}(\mathrm{BMSE})_{2}$	trans-RuCl ${ }_{2}(\mathrm{BPSE})_{2}$
$\mathrm{Ru}-\mathrm{Cl}$	2.402(2), 2.405(2)	2.4077(8)
Ru-S	2.305(2)-2.319(2)	2.300(4), $2.319(3)$
S-O	1.453(6)-1.495(7)	1.44(1), 1.47(1)
C-S	1.717(7)-1.855(7)	1.74(1)-1.911(6)
Ru-S-O	118.4(3)-120.4(3)	118.1(5),120.6(5)
O-S-C	103.9(3)-110.8(4)	99.5(6)-114.8(6)
C-S-C	98.1(3)-106.3(3)	89.3(6),112.1(6)
S-C-C ${ }^{\text {b }}$	107.1(4)-112-5(4)	108.3(3)-109.0(4)
S-C-C ${ }^{\text {c }}$		109(1)-116.2(9)
Ru-S-C ${ }^{\text {b }}$	102.7((3)-105.6(3)	100.4(2)-106.5(2)
Ru-S-C ${ }^{\text {c }}$	113.9(2)-115.7(3)	114.5(6)-117.8(4)

${ }^{a}$ Data taken from refs. 52 and 53. ${ }^{b}$ Bonds involving backbone carbons. ${ }^{c}$ The C -atom of an alkyl substituent.

Table 3.7. Selected Bond Lengths (\AA) and Bond Angles $\left({ }^{\circ}\right)$ for $\left[\operatorname{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu$ $\mathrm{Cl})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, trans $-\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ and cis- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$.

Bond or Angle	$\begin{aligned} & {\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-} \\ & \mathrm{Cl})_{2} \cdot \mathrm{H}_{2} \mathrm{O} \end{aligned}$	Trans $-\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$	Cis- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}{ }^{a}$
$\mathrm{Ru}-\mathrm{Cl}^{\text {b }}$	$2.4098(10){ }^{c}{ }^{c} 2.4636(10)^{d}$		
$\mathrm{Ru}-\mathrm{Cl}^{e}$	$2.4006(10)^{\text {c }}$	2.4018(7)	2.4217(8)-
			$2.4486(8){ }^{\text {d }}$
Ru-S	$2.1985(10){ }^{\text {c }}$ 2.1958(10) ${ }^{\prime}$	2.3212(9), 2.3288(7)	2.2712(8)-
			$2.2738(8){ }^{c}$
			$2.2973(8)-$
			$2.3076(8)^{\text {d }}$
Ru-O	2.140(3) ${ }^{\text {d }}$		
S-O	1.475(3), 1.496(2)	1.479(2)-1.480(2)	1.470(2)-1.479(2)
C-S	1.803(4)-1.805(4)	1.797(3)-1.809(3)	1.796(3)-1.814(3)
cis angles	82.11(3)-95.11(4)	85.42(3)-90.88(3)	87.19(3)-92.08(3)
trans angles	171.77(4)-178.01(8)	180.0	176.92(3)-
			178.54(3)
Ru-Cl-Ru	96.83(3), 97.89(3)		
C-S-C	99.3(2)-102.9(2)	99.1(2)-101.3(2)	100.0(1)-102.8(1)
O-S-C	104.9(2)-107.4(2)	106.6(1)-108.1(2)	106.3(1)-109.3(1)
Ru-S-O	118.52(13)-119.24(13)	119.31(9)-119.44(9)	116.28(8)-
			120.43(8)
S-C-C ${ }^{8}$	106.3(3)-108.6(3)	106.8(2)-110.9(2)	106.5(2)-111.0(2)
S-C-C ${ }^{\text {h }}$	111.6(3)-114.1(4)	111.1(2)-112.2(2)	111.3(2)-112.0(2)
Ru-S-C ${ }^{\text {g }}$	105.56(12)-107.43(13)	103.5(1)-104.9(1)	103.0(1)-104.8(1)
Ru-S-C ${ }^{\text {h }}$	115.47	115.7(1)-116.6(1)	113.4(1)-117.3(1)

${ }^{a}$ Data taken from refs. 52 and 53. ${ }^{b}$ Bridging. ${ }^{c}$ Trans to $\mathrm{Cl} .{ }^{d}$ Trans to S. ${ }^{e}$ Terminal.
${ }^{f}$ Trans to O. ${ }^{g}$ Backbone. ${ }^{h}$ End substituents.

Figure 3.7. An ORTEP drawing of trans- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ with 50% probability thermal ellipsoids shown (crystal data given in Appendix 1.1). For the data of Table 3.8, $\mathrm{S}(4)$ and $S(3)$ are taken as trans to $S(2)$ and $S(1)$, respectively.

Table 3.8. The Relative Configurations of the S-atoms in Chelating Disulfoxide Complexes of Ru in Refs. 52 and 53 and those depicted in Figures 3.7-3.10, 3.12 and 3.18.

Complex	S(1)	S(2)	S(3)	S(4)
trans $-\mathrm{RuCl}_{2}(\mathrm{BMSE})_{2}{ }^{a}$	R	S	S	R
cis- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}{ }^{\text {a,b }}$	R^{c}	$\mathrm{S}^{\text {d }}$	R^{c}	$\mathrm{S}^{\text {d }}$
trans- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}{ }^{\text {b }}$	S	R	R	S
trans- $\mathrm{RuCl}_{2}(\mathrm{BPSE})_{2}{ }^{\text {a,b }}$	S	R	R	S
cis- $\mathrm{RuCl}_{2}(\mathrm{BBSE})_{2} \cdot \mathrm{EtOH}^{\text {b }}$	\mathbf{R}^{c}	$\mathrm{R}^{\text {d }}$	S^{c}	$\mathrm{R}^{\text {d }}$
cis- $\mathrm{RuCl}_{2}(\mathrm{BCySE})_{2} \cdot \mathrm{EtOH} \cdot 1 / 3 \mathrm{MeOH}{ }^{\text {b }}$	\mathbf{R}^{c}	$\mathrm{S}^{\text {d }}$	R^{c}	S^{d}
cis- $\mathrm{RuCl}_{2}(\mathrm{BMSP})_{2}{ }^{\text {a,b }}$	R^{c}	$\mathrm{S}^{\text {d }}$	\mathbf{R}^{c}	S^{d}
$c i s-\mathrm{RuCl}_{2}(\mathrm{BESP})_{2} \cdot \mathrm{EtOH} \cdot \mathrm{H}_{2} \mathrm{O}^{\text {b }}$	$S^{\text {c }}$	$\mathrm{R}^{\text {d }}$	S^{c}	$\mathrm{R}^{\text {d }}$
$\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2} \cdot \mathrm{H}_{2} \mathrm{O}^{\text {b }}$	S^{c}	$\mathrm{R}^{\text {e }}$		
$[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot 2.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{\text {b }}$	S^{c}	\mathbf{R}^{c}	$\mathrm{R}^{\text {c }}$	S^{c}

${ }^{a}$ Data taken from refs. 52 and 53; otherwise data are from this thesis work. ${ }^{b}$ Unit cell contains both enantiomers. ${ }^{6}$ Trans to $\mathrm{Cl} .{ }^{d}$ Trans to $\mathrm{S} .{ }^{e}$ Trans to O.

3.6.2 Trans-RuCl $\left(\mathrm{BPSE}_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right.$

The reaction of BPSE with cis- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ gave the yellow title complex in 47% yield. The ${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} compare well with data reported in the literature for the structurally characterized trans complex with one signal at $\delta 1.10$ assigned to the methyls. ${ }^{52,53}$ Attempts to photolyze trans $-\mathrm{RuCl}_{2}(\mathrm{BPSE})_{2}$ to the cis isomer (refer to Section 3.6.1) were not successful as monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

3.6.3 $\mathrm{Cis}^{2}-\mathrm{RuCl}_{2}(\mathrm{BBSE})_{2}$

The title compound was synthesized from $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and precipitated in an analytically pure form with 21% yield. ${ }^{1} \mathrm{H}$ NMR data are consistent with S-bonded sulfoxides with the cis geometry shown crystallographically. The ${ }^{1} \mathrm{H}$ NMR spectrum of the free ligand in CDCl_{3} consists of multiplets at $\delta 3.20$ and $3.00\left(\mathrm{~S}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}(\mathrm{O}), 2.75\left(\mathrm{CH}_{2} \mathrm{~S}(\mathrm{O})\right), 1.72\right.$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.45\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, and a triplet at $\delta 0.95\left(\mathrm{CH}_{3}\right)$, all of which in the complex are shifted downfield (multiplets) to $\delta 3.60\left(\mathrm{CH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{2}\right), 1.55\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ and $0.98\left(\mathrm{CH}_{3}\right)$; no free disulfoxide was observed. The crystal structure (Figure 3.8) is comparable to that of cis- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}{ }^{52,53}$ in having slightly distorted octahedral geometry at the Ru centre with trans angles that range from $173.01(3)$ to $177.46(3)^{\circ}$, and cis angles that range from $85.79(3)$ to $96.22(3)^{\circ}$ (Table 3.9). Selected bond lengths and bond angles are tabulated in Table 3.9 and are comparable to those of cis $-\mathrm{RuCl}_{2}(\mathrm{BCySE})_{2} \cdot \mathrm{EtOH} \cdot 1 / 3 \mathrm{MeOH}$, cis $-\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ (Table 3.7), and cis- $\mathrm{RuCl}_{2}(\mathrm{BESP})_{2}$ and $-\mathrm{RuCl}_{2}(\mathrm{BMSP})_{2}$ (Table 3.10); the key bond lengths and angles are basically similar in all these cis complexes. Within cis- $\mathrm{RuCl}_{2}(\mathrm{BBSE})_{2} \cdot \mathrm{EtOH}$ three S-atoms have the relative R configuration and one S -atom has the S configuration (Table 3.8); this is the only complex with $S(1)$ and $S(2)$ showing the same relative configuration. The synthesis of this complex could be plausible by starting with a mixture of the meso and rac ligands but the sharp melting point (Table 3.4) implies only one diastereomer of the ligand was present. This complex is chiral, with approximate C_{2} symmetry, but the crystal structure is centrosymmetric and contains an equal number of the two enantiomers. Figure 3.8 depicts the Δ isomer in which the trans S -atoms ($\mathrm{S}(2)$ and $\mathrm{S}(4)$) both have the R configuration. The unit cell contains the EtOH molecule H -bonded to both an O -atom and a Cl -atom of the
complex. The $\mathrm{H}-\mathrm{O}$, and the $\mathrm{H}-\mathrm{Cl}$ distances are 2.12 and $2.71 \AA$, respectively, which are 0.58 and $0.19 \AA$ shorter than the sum of the van der Waals radii of an O - and an H -atom ($2.70 \AA$), and a Cl- and an H -atom $(2.90 \AA)$, respectively. ${ }^{70}$ The interactions appear to be strong.

Table 3.9. Selected Bond Lengths (\AA) and Bond Angles $\left({ }^{\circ}\right)$ of cis- $\mathrm{RuCl}_{2}(\mathrm{BBSE})_{2} \cdot \mathrm{EtOH}$ and cis- $\mathrm{RuCl}_{2}(\mathrm{BCySE})_{2} \cdot \mathrm{EtOH} \cdot 1 / 3 \mathrm{MeOH}$.

Bond or Angle	cis- $\mathrm{RuCl}_{2}(\mathrm{BBSE})_{2} \cdot \mathrm{EtOH}$	cis- $\begin{aligned} & \mathrm{RuCl}_{2}(\mathrm{BCySE})_{2} \cdot \mathrm{EtOH} \cdot 1 \\ & / 3 \mathrm{MeOH} \end{aligned}$
$\mathrm{Ru}-\mathrm{Cl}$	2.4159(8), 2.4288(7) ${ }^{\text {a }}$	2.4201(13), 2.4344(13) ${ }^{\text {a }}$
Ru-S	$\begin{aligned} & 2.32892(9), 2.3035(9){ }^{a} 2.2674(7) \\ & 2.2906(8)^{b} \end{aligned}$	$\begin{aligned} & 2.3364(13), 2.3484(13) ;{ }^{a} 2 \\ & .2719(13), 2.2988(13)^{b} \end{aligned}$
S-O	$\begin{aligned} & 1.477(2), 1.482(2){ }^{a}{ }^{a} 1.468(2) \\ & 1.480(2)^{b} \end{aligned}$	1.444(4), 1.464(4); ${ }^{a} 1.469$ (3), $1.470(3)^{b}$
C-S	1.794(3)-1.838(4)	1.782(5)-1.842(5)
cis angles	85.79(3)-96.22(3)	86.27(5)-96.50(5)
trans angles	173.01(3)-177.46(3)	176.38(5)-178.01(5)
Ru-S-O	116.88(9)-118.59(8)	117.5(2)-119.8(2)
O-S-C	105.91(13)-109.23(15)	106.5(2)-107.9(2)
C-S-C	101.28(4)-102.8(2)	100.0(2)-104.5(2)
S-C-C ${ }^{\text {c }}$	106.3(2)-112.2(2)	106.7(4)-109.6(3)
S-C-C ${ }^{\text {d }}$	111.5(2)-113.2(2)	106.3(3)-113.4(4)
Ru-S-C ${ }^{\text {c }}$	102.72(12)-105.92(10)	101.5(2)-104.3(2)
Ru-S-C ${ }^{\text {d }}$	113.85(10)-119.29(10)	116.0(2)-118.2(2)

[^4]

Figure 3.8. An ORTEP drawing of the Δ configuration of cis- $\mathrm{RuCl}_{2}(\mathrm{BBSE})_{2} \cdot \mathrm{EtOH}$ with 50% probability thermal ellipsoids shown; H-atoms (except for that of EtOH) are omitted for clarity (crystal data given in Appendix 1.2).

3.6.4 $\mathrm{Cis}^{2}-\mathrm{RuCl}_{2}(\mathrm{BPeSE})_{2}$

The title compound was synthesized from $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, purified using column chromatography, and obtained in only 9% yield; $v_{\text {so }}$ data (Table 3.5) imply S-bonded sulfoxides. The ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ of the free ligand consists of multiplets at $\delta 3.20$ and $3.10\left(\mathrm{~S}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}(\mathrm{O})\right), 2.80\left(\mathrm{CH}_{2} \mathrm{~S}(\mathrm{O})\right), 1.80\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.40\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, and a triplet at $0.93\left(\mathrm{CH}_{3}\right)$, these being shifted to $\delta 3.70\left(\mathrm{CH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{2}\right), 2.30$ and 1.85 $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}(\mathrm{O})\right), 1.45\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ and $0.90\left(\mathrm{CH}_{3}\right)$ (all multiplets), respectively, in the coordinated ligand, and no free disulfoxide was observed. The signal for the methyls was observed as one multiplet (presumably 2 overlapping triplets), compared to the two triplet signals observed for cis- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ (Section 2.7.1). Crystals were obtained by slow evaporation of an $\mathrm{EtOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the complex and were subjected to X-ray analysis, but excessive thermal motion exhibited by the long pentyl side chains prevented an accurate determination of the structure; however, cis geometry was established. ${ }^{69}$

3.6.5 $\mathrm{Cis}^{-R u C l} \mathrm{Cl}_{2}(\mathrm{BCySE})_{2}$

The reaction of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and BCySE gave the title complex in 30% yield, with no purification steps being required. The ${ }^{1} \mathrm{H}$ NMR spectrum of the free ligand consists of peaks at $\delta 3.60\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.56,2.15\left(\mathrm{H}_{2}\right), 1.69\left(\mathrm{H}_{1}\right), 1.35\left(\mathrm{H}_{3,4}\right)$ (see Figure 2.1, in Section 2.3.11, for the proton labelling), while the ${ }^{1} \mathrm{H}$ spectrum of the title complex is a complicated pattern of overlapping multiplets between $\delta 1.0-4.4$ (see Section 2.7.6, Chapter 2). The complicated spectrum is due to the inequivalence of the cyclohexyl rings oriented in the cis geometry. Crystals of the complex with one EtOH and one third MeOH solvate molecules
were grown by slow evaporation of the preparative reaction solution. This complex is chiral, has approximate C_{2} symmetry with the pair of mutually trans S-atoms ($S(2)$ and $S(4)$) having the same chirality. The complex crystallizes in a centrosymmetric space group which contains equal numbers of the two enantiomers. An ORTEP diagram shown in Figure 3.9 depicts the Λ isomer in which the trans S-atoms both have the S configuration. The molecule has a slightly distorted octahedral geometry at the Ru with trans angles ranging from 176.38(5) to $178.01(5)^{\circ}$ and cis angles from $86.27(5)$ to $96.50(5)^{\circ}$ (Table 3.9). Selected bond lengths and bond angles (Table 3.9) are comparable to those of $c i s-\mathrm{RuCl}_{2}(\mathrm{BBSE})_{2} \cdot \mathrm{EtOH}$ (Table 3.9) and cis- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ (Table 3.7). The key bond lengths and angles are again similar to those found in the other cis $\mathrm{Ru}(\mathrm{II})$ bis-chelating disulfoxide complexes. Each disulfoxide has opposite chiralities at the two chiral S -atoms (Table 3.8). The unit cell of cis$\mathrm{RuCl}_{2}(\mathrm{BCySE})_{2} \cdot \mathrm{EtOH} \cdot 1 / 3 \mathrm{MeOH}$ contains a MeOH molecule on a three-fold axis and one poorly resolved EtOH molecule in a general position. The thermal motion of the cyclohexyl rings was generally large, even at the low temperature used in the structural determination (crystal data are given in Appendix 1.3).

Figure 3.9. An ORTEP drawing of the Λ configuration of cis$\mathrm{RuCl}_{2}(\mathrm{BCySE})_{2} \cdot \mathrm{EtOH} \cdot 1 / 3 \mathrm{MeOH}$ with 50% probability thermal ellipsoids shown; H-atoms are omitted for clarity (crystal data given in Appendix 1.3).

3.6.6 $\mathrm{Cis}^{2} \mathrm{RuCl}_{2}(\mathrm{BESP})_{2}$

The reaction of BESP with $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ gave a yellow product in 36% yield after purification by column chromatography. The ${ }^{1} \mathrm{H} N M \mathrm{R}$ spectrum in CDCl_{3} of the free ligand consists of multiplets at $\delta 2.90\left(\mathrm{CH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{2}\right), 2.45\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ and a triplet at 1.35 $\left(\mathrm{CH}_{3}\right)$, which in the complex are shifted downfield to $\delta 3.45,2.75,2.10$ and 1.45 (multiplets), respectively (the multiplet at $\delta 2.45$ splits into the two multiplets at $\delta 2.75$ and 2.10). The ${ }^{1} \mathrm{H}$ NMR data are consistent with the structurally determined cis configuration. No free disulfoxide was observed in CDCl_{3} solution in the ${ }^{1} \mathrm{H}$ NMR spectrum. The crystal structure of the $c i s-\mathrm{RuCl}_{2}(\mathrm{BESP})_{2} \cdot \mathrm{EtOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (Figure 3.10) is similar to that of $c i s-\mathrm{RuCl}_{2}(\mathrm{BMSP})_{2}{ }^{52,53}$ Selected bond lengths and angles are tabulated in Table 3.10 and are given together with those of cis- $\mathrm{RuCl}_{2}(\mathrm{BMSP})_{2}$. The key bond lengths and angles are basically similar to those found in the other cis $\mathrm{Ru}(\mathrm{II})$ bis-chelating disulfoxide complexes. The molecule has a slightly distorted octahedral geometry at Ru with trans angles that range from $171.64(4)$ to $176.35(4)^{\circ}$ and cis angles that range from $84.96(3)$ to $97.57(4)^{\circ}$. The complex crystallizes in a centrosymmetric space group and contains an equal number of the two enantiomers. Figure 3.10 depicts the Δ isomer in which the trans \mathbf{S}-atoms ($\mathbf{S}(2)$ and $\mathbf{S}(4)$) both have the R configuration. The unit cell contains a water molecule H -bonded to an O -atom of the sulfur-oxygen moiety of the disulfoxide ligand and to the EtOH solvate (Figure 3.11). The average $\mathrm{H}-\mathrm{O}$ distance is 1.89 \AA, which is $0.81 \AA$ shorter than the sum of the van der Waals radii of an H - and an O -atom (2.70 \AA), suggesting a strong interaction between the water molecule, the complex and the EtOH solvate. ${ }^{70}$

Figure 3.10. An ORTEP drawing of the Δ configuration of cis- $\mathrm{RuCl}_{2}(\mathrm{BESP})_{2} \cdot \mathrm{EtOH} \cdot \mathrm{H}_{2} \mathrm{O}$ with 50% probability thermal ellipsoids shown; H -atoms are omitted for clarity (crystal data given in Appendix 1.4).

Figure 3.11. The unit cell of cis- $\mathrm{RuCl}_{2}(\mathrm{BESP})_{2} \cdot \mathrm{EtOH} \cdot \mathrm{H}_{2} \mathrm{O}$ showing the EtOH and $\mathrm{H}_{2} \mathrm{O}$ solvate molecules (crystal data given in Appendix 1.4).

Table 3.10. Selected Bond Lengths (\AA) and Bond Angles (${ }^{\circ}$) of cis$\mathrm{RuCl}_{2}(\mathrm{BESP})_{2} \cdot \mathrm{EtOH} \cdot \mathrm{H}_{2} \mathrm{O}$ and cis- $\mathrm{RuCl}_{2}(\mathrm{BMSP})_{2}$.

Bond or Angle	cis- $\mathrm{RuCl}_{2}(\mathrm{BESP})_{2} \cdot \mathrm{EtOH} \cdot \mathrm{H}_{2} \mathrm{O}$	${ }_{\text {cis }-\mathrm{RuCl}_{2}(\mathrm{BMSP})_{2}{ }^{a}}$
$\mathrm{Ru}-\mathrm{Cl}$	2.4167(8), $2.4310(10)^{b}$	2.4354(7), 2.4395(7) ${ }^{\text {b }}$
Ru-S	2.3311(10), 2.3528(10); ${ }^{\text {b }} 2.2766(8)$,	2.3518(7), 2.3569(7); ${ }^{\text {b }}$
	$2.2905(10)^{c}$	2.2682(6), 2.2710(6) ${ }^{\text {c }}$
S-O	1.489(2), 1.490(3) ${ }^{\text {b }} 1.479(2), 1.481(3)^{c}$	$\begin{aligned} & 1.473(2), 1.480(2){ }^{b} 1.476(2), \\ & 1.480(2)^{c} \end{aligned}$
C-S	1.791(4)-1.820(3)	1.773(3)-1.801(3)
cis angles	84.96(3)-97.57(4)	83.42(2)-97.55(2)
trans angles	171.64(4)-176.35(4)	174.21(2)-178.42(2)
Ru-S-O	113.38(10)-117.94(11)	113.91(8)-116.51(9)
C-S-O	106.3(2)-107.8(2)	104.9(1)-107.1(1)
C-S-C	98.4(2)-102.5(2)	98.9(2)-100.6(1)
S-C-C ${ }^{\text {d }}$	112.2(3)-116.5(3)	114.4(2)-115.6(2)
S-C-C ${ }^{\text {e }}$	111.9(3)-112.8(3)	
C-C-C	111.7(3)-117.1(3)	113.1(3), 113.4(2)
Ru-S-C ${ }^{\text {d }}$	109.03(13)-115.79(13)	115.3(1)-115.80(9)
Ru-S-C ${ }^{e}$	112.45(14)-115.12(12)	111.2(1)-113.6(1)

[^5]
3.7 Dinuclear Ru(II)/Ru(II) Chelating Disulfoxide Complexes

Previous work in this laboratory involved the synthesis of cis- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2},{ }^{52,53}$ while one initial goal of this thesis was to synthesize the corresponding trans isomer by utilizing trans- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ as a precursor or photolysis of cis- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$. These attempts, however, led to the isolation of cis- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ (Section 3.6.1).

During the course of this work, Geremia et al. reported the topological analysis of bis-chelate disulfoxide metal complexes and the results of molecular mechanical calculations on $\mathrm{RuCl}_{2}(\mathrm{BMSE})_{2}$. They implied that cis- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ was the lowest strain energy diastereomer of a series of possible isomeric forms, ${ }^{68}$ thus suggesting that attempts to synthesize the corresponding trans isomer would likely lead to the isolation of cis$\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$, at least as the thermodynamic product.

The reported procedure for the synthesis of cis- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ involved the reaction of two equivalents of BESE with one equivalent of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O} .{ }^{52,53}$ However, in the present studies, on reduction of the amount of ligand to one equivalent, the interesting watersoluble, dinuclear complex $\left[\operatorname{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ was obtained. Then the reaction of one equivalent of $\left[\operatorname{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ with two equivalents of BESE led to the isolation of trans- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ as shown by ${ }^{1} \mathrm{H}$ NMR spectroscopy and X-ray crystallographic analysis (Section 3.6.1).
3.7.1 Characterization of $\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}, \quad\left[\mathrm{RuCl}(\mathrm{BPSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ and $\left[\mathrm{RuCl}(\mathrm{BBSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$

Reaction of one equivalent of BESE, BPSE and BBSE with $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ resulted in the isolation of $\left[\operatorname{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}, \quad\left[\operatorname{RuCl}(\mathrm{BPSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2} \quad$ and $\left[\mathrm{RuCl}(\mathrm{BBSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ in 60,46 and 61% yield, respectively. The v_{so} data are consistent with S-bonded sulfoxides (Section 3.4.2, Table 3.5), later confirmed for $\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ by X-ray crystallography. The solution ${ }^{1} \mathrm{H}$ NMR spectra of all three complexes in $\mathrm{D}_{2} \mathrm{O}$ generally reveal small downfield shifts from the resonances of the free ligand protons, again consistent with S-bonding (Section 3.4.1). The values of "equilibrium" conductivity for these complexes in water ($\sim 10^{-4} \mathrm{M}, \Lambda_{\mathrm{M}} 358,282$ and 497, respectively) correspond to those of a $2: 1-3: 1,2: 1$ and $3: 1$ electrolyte, respectively, when these conductivity values are compared to the equivalent conductances of salts. ${ }^{71}$

A titration of $\left[\operatorname{RuCl}(\operatorname{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ with NaOH in water showed that two equivalents of a standardized NaOH solution were required to titrate 1 equivalent of $\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ (see Table 3.11), suggesting the loss of 2 equivalents of H^{+}from $\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$. Of note, the measured equivalent conductance of $10^{-3} \mathrm{M} \mathrm{HCl}$ was ~ 430 (literature data at $25^{\circ} \mathrm{C}$ give $\sim 420^{72}$) and this value was reduced to ~ 350 upon addition of $10^{-3} \mathrm{M}$ cis- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ (the molar conductance of an equilibrated $10^{-3} \mathrm{M}$ aqueous solution of cis- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ is $\sim 33.9^{53}$). The conductivity data are thus consistent with the loss of 2 equivalents of H^{+}and 2 equivalents of Cl^{-}per $\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ (see p.101).

Table 3.11. Titration data for $\left[\operatorname{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ using NaOH .

$[\mathrm{NaOH}](\mathrm{mM})$	Volume used $(\mathrm{mL}, \mathrm{mmol})$	$\left[\operatorname{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}(\mathrm{mg}, \mathrm{mmol})$
$5.80(\pm 0.09)$	$1.96(\pm 0.15), 1.13(\pm 0.08) \times 10^{-2}$	$4.22(\pm 0.05), 5.67(\pm 0.06) \times 10^{-3}$

${ }^{1} \mathrm{H}$ NMR data on $\left[\operatorname{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ in aqueous solution suggest that this complex loses $2 \mathrm{Cl}^{-}$per complex. The equilibrium ${ }^{1} \mathrm{H}$ NMR spectrum of the complex in $\mathrm{D}_{2} \mathrm{O}$ (under air) does not change upon addition of up to three equivalents of AgNO_{3}. Upon addition of two equivalents of AgNO_{3}, added dropwise, to a solution of $\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ in $\mathrm{D}_{2} \mathrm{O}$, a precipitate formed immediately, but the resulting ${ }^{1} \mathrm{H}$ NMR spectrum of the solution (i.e. the solution obtained from the filtered heterogeneous mixture) was the same as that of the equilibrium spectrum of $\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ in $\mathrm{D}_{2} \mathrm{O}$. One more equivalent of AgNO_{3} was added dropwise to the filtrate. No further precipitate was observed, and the resulting ${ }^{1} \mathrm{H}$ NMR was identical to that of the equilibrium ${ }^{1} \mathrm{H}$ NMR of $\left[\operatorname{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$.

These water-soluble, complexes were tested in vitro for cytotoxicity, accumulation and DNA-binding properties in Chinese hamster ovary cells with the results presented in Chapter 4.

Crystals of the BESE complex containing one $\mathrm{H}_{2} \mathrm{O}$ solvate molecule were grown by slow evaporation of a saturated aqueous solution of $\left[\operatorname{RuCl}(\operatorname{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$. The structure is shown in Figure 3.12, and selected bond lengths and angles, together with those of cis- and trans $-\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$, are given in Table 3.7.

The complex crystallizes in a centrosymmetric space group with a centre of symmetry and is thus achiral. The asymmetric unit consists of two independent half-molecules and a water molecule (Figure 3.13). The $\mathrm{H}(33)-\mathrm{O}(4)$ and $\mathrm{H}(34)-\mathrm{Cl}(2)$ distances are 1.81 and $2.28 \AA$, respectively, which are 0.89 and $0.62 \AA$ less than the sum of the van der Waals radii of an H - and an O -atom $(2.70 \AA)$, and that of an H -atom and a Cl -atom $(2.90 \AA$), respectively, an indication of strong H-bond interactions between the $\mathrm{H}_{2} \mathrm{O}$ and the complex. The complex has $\mathrm{Ru}-\mathrm{Cl}-\mathrm{Ru}$ bridging angles of $96.83(3)$ and $97.89(3)^{\circ}$. Thus the Ru atoms are further apart than expected for an ideal cofacial bioctahedron (for which $\mathrm{M}-\mathrm{X}_{\text {teminal }}=\mathrm{M}-\mathrm{X}_{\text {bridging }}, \mathrm{X}$ -$\mathrm{M}-\mathrm{X}$ angles $=90^{\circ}$ and the $\mathrm{M}-\mathrm{X}_{\text {bridging }}-\mathrm{M}$ angles $=70.53^{\circ}\left(\text { given by } \cos \theta / 2=(2 / 3)^{1 / 2}\right)^{73} ; \mathrm{M}=$ metal and $\mathrm{X}=$ ligand $)^{74}$ and no $\mathrm{Ru}-\mathrm{Ru}$ interaction was detected out to $3.90 \AA$; there is no metal-metal bond. The usual range found for a Ru-Ru bond is $\sim 2.28-3.04 \AA$ as exemplified by: $2.281 \AA$ for $\mathrm{Ru}_{2}\left(\mathrm{O}_{2} \mathrm{CC}_{3} \mathrm{H}_{7}\right)_{4} \mathrm{Cl},{ }^{75} 2.540 \AA$ for $\left[\mathrm{Ru}_{2}(\mu-\mathrm{H})_{3}\left(\mathrm{PMe}_{3}\right)_{6}\right]\left[\mathrm{BF}_{4}\right],{ }^{76} 2.728 \AA$ for $\left[\mathrm{Ru}\left(\mu-\mathrm{OOCCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)(\mathrm{CO})_{2}\left(\mathrm{P}\left({ }^{t} \mathrm{Bu}\right)_{3}\right)_{3}\right]_{2},{ }^{77} 2.743 \AA$ for $\left[\mathrm{Ru}_{2}\left(\mathrm{Et}_{2} \mathrm{dtc}\right)_{5}\right]\left[\mathrm{BF}_{4}\right]\left(\mathrm{Et}_{2} \mathrm{dtc}=\mathrm{N}, \mathrm{N}-\right.$ diethyldithiocarbamato, $\left.\left.\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)^{-}\right)^{78} 2.80 \AA$ for $\left[\mathrm{Ru}(\mathrm{H})_{2} \mathrm{Cl}\left(\mathrm{Ptol}_{3}\right)_{2}\right]_{2} \quad\left(\mathrm{Ptol}_{3}=p\right.$ tris(tolylphosphine), ${ }^{79} 2.811 \AA \mathrm{Ru}_{2} \mathrm{H}_{4}\left(\mathrm{PMe}_{3}\right)_{6}{ }^{76}$ and 2.827-3.034 \AA for $\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{17 .}{ }^{80}$ The cis angles at the Ru range from $82.11(3)^{\circ}$ to $95.11(4)^{\circ}$ and the trans angles range from $171.77(4)^{\circ}$ to $178.01(8)^{\circ}$.

The BPSE and BBSE complexes presumably have the corresponding dinuclear, dichloro-bridged structures.

Figure 3.12. An ORTEP drawing of $\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ with 50% probability thermal ellipsoids (crystal data given in Appendix 1.5).

Figure 3.13. Diagram of $\left[\operatorname{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ showing the $\mathrm{H}_{2} \mathrm{O}$ solvate (crystal data given in Appendix 1.5).

3.8 A Mixed-Valence $\mathbf{R u}($ II) $/ \mathbf{R u}$ (III) Chelating Disulfoxide Complex

Previous synthetic reactions using 2 equivalents of disulfoxide and $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ gave mononuclear $\mathrm{Ru}($ II $)$ bis-disulfoxide complexes (Section 3.6). However, reaction of 2 equivalents of BPSP with $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ led to the isolation of the first known type of a mixedvalence $\mathrm{Ru}(\mathrm{II}) / \mathrm{Ru}(\mathrm{III})$, chelating disulfoxide complex, $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$, which contains three bridging chlorides. Of major interest, the species was readily soluble in water. This complex was tested in vitro for cytotoxicity, accumulation and DNA-binding properties in Chinese hamster ovary cells with the results presented in Chapter 4.

3.8.1 Introduction

Diruthenium complexes form the largest group of any mixed-valence systems, ${ }^{81}$ and Ru has been the transition metal of choice to study electron transfer or exchange reactions because it is relatively inexpensive and forms stable $\mathrm{Ru}(\mathrm{II})$ and Ru (III) coordination complexes. ${ }^{81}$

Allen and Hush have described the physical properties of mixed-valence compounds, ${ }^{82}$ which contain an element in two different oxidation states and often exhibit unusually intense colouration unrelated to the colours of either of the individual metal ions. Homonuclear intervalence transfer absorption is a result of light absorption causing the transfer of an electron from a lower to a higher oxidation state of the same element, ${ }^{82}$ the probability being smaller the larger the internuclear distance. These electron transfer absorptions may occur in the UV, visible or near-IR regions. ${ }^{82}$ Mixed-valence complexes have been classified into three types (Table 3.12). ${ }^{81-85}$

Table 3.12. Classes of Mixed-valence Complexes. ${ }^{a}$

Class I	Class II	Class III
metal ions in ligand fields of very different symmetry and/or strength (i.e. tetrahedral vs. octahedral)	metal ions in ligand fields of nearly identical symmetry	III-A: metal ions indistinguishable but grouped into polynuclear clusters III-B: metal ions indistinguishable
no mixed-valence transitions in the visible region	one or more mixed-valence transitions in the visible region or near IR	III-A: one or more mixed- valence transitions in the visible region III-B: absorption edge in the
no coupling between metal ions (completely valence trapped)	weak coupling between metal ions (valence trapped)	IR, opaque with metallic reflectivity in the visible region
exhibits properties observable strong coupling between metal ions (delocalized valency)		
M and M^{+}complexes (M metal centre, $\mathrm{M}^{+}=$one electron oxidation product)	exhibits slightly perturbed M and M^{+}characteristics, and may also manifest properties not associated with isolated units	properties of the (M-M) unit are discerned

${ }^{a}$ Based on data in refs. 81-85.

Examples of Ru mixed-valence complexes include Ru red, $\left[\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Ru}-\mathrm{O}-\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4}{ }^{-}\right.$ $\left.\mathrm{O}-\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right]^{6+8}$, "Ru blues", ${ }^{87-91}$ and the now classic Creutz-Taube ion, $\left[\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Ru}-(\mu\right.$-pyr $)-$ $\left.\operatorname{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right]^{5+}(\mathrm{pyr}=\sqrt{\mathrm{O}})^{81,85,92}$. "Ru blue" solutions, well known as synthetic precursors to many Ru (II) and $\mathrm{Ru}(\mathrm{III})$ complexes, ${ }^{88}$ appear to contain several species. Mercer and Dumas have identified three of these as being dinuclear $\mathrm{Ru}(\mathrm{II}) / \mathrm{Ru}(\mathrm{III})$ species of the type $\mathrm{Ru}_{2} \mathrm{Cl}_{3+n}^{(2-n)+}$, where $n=0,1$ or $2 .^{87}$ Rose and Wilkinson isolated green salts from the blue solutions and have proposed that such solutions may contain the anion $\mathrm{RuCl}_{3}{ }^{\circ}$ and the cluster $\left[\mathrm{Ru}_{4} \mathrm{Cl}_{12}\right]^{4-89}$ while Bino and Cotton later structurally characterized a green, mixed-valent
complex $\left[\mathrm{Ru}_{3} \mathrm{Cl}_{12}\right]^{4-}$ containing a linear arrangement of $\mathrm{Ru}(\mathrm{III})-\mathrm{Ru}(\mathrm{II})-\mathrm{Ru}($ III $){ }^{90}$ Bottomley and Tong suggested that the species responsible for one " Ru blue" solution was the mixedvalence dimer $\left[\mathrm{Ru}_{2}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl}$, formed either by reduction of chloroamminecomplexes of $\mathrm{Ru}\left(\right.$ III) or by reaction of ammine complexes of Ru (II) with acids. ${ }^{91}$

Gibson et al. reported that mixed-valence chloroammine complexes of Ru , like cisplatin, induced filamentation in E. coli $\left(\right.$ Section 1.3.1). ${ }^{93}\left[\mathrm{Ru}_{2}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}_{3}\right]\left(\mathrm{BPh}_{4}\right)_{2}^{94}$ has been structurally characterized as a trichloro-bridged bioctahedral dimer, with a Ru-Ru distance of $2.753 \AA$ and an average $\mathrm{Ru}-\mathrm{Cl}-\mathrm{Ru}$ angle of 70.2°; the related complex $\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{RuBr}_{3} \mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{3}\right]\left(\mathrm{ZnBr}_{4}\right)^{95}$ has a $\mathrm{Ru}-\mathrm{Ru}$ distance of $2.852 \AA$ and an average $\mathrm{Ru}-\mathrm{Br}-\mathrm{Ru}$ angle of 68.5°. Other characterized trichloro-bridged $\mathrm{Ru}(\mathrm{II}) / \mathrm{Ru}(\mathrm{III})$ complexes include $\mathrm{Ru}_{2} \mathrm{Cl}_{5}\left(\mathrm{P}^{n} \mathrm{Bu}_{3}\right)_{4}{ }^{74}$ and the series $\quad[\mathrm{RuCl}(\mathrm{P}-\mathrm{P})]_{2}(\mu-\mathrm{Cl})_{3} \quad(\mathrm{P}-\mathrm{P}=$ chiraphos, diop or $\mathrm{PPh}_{2}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{PPh}_{2}, n=3$ or 4 ; Figure 3.14$)^{96}$. A Ru-Ru distance of $3.25 \AA$ (i.e. no $\mathrm{Ru}-\mathrm{Ru}$ bond) and an average $\mathrm{Ru}-\mathrm{Cl}-\mathrm{Ru}$ angle of 83.4° were determined for $[\mathrm{RuCl}(\text { chiraphos })]_{2}(\mu-\mathrm{Cl})_{3} .{ }^{96}$ Thorburn et al. stated that the X-ray data do not distinguish between a weakly interacting system and a completely delocalized system, but did suggest that $[\mathrm{RuCl}(\text { chiraphos })]_{2}(\mu-\mathrm{Cl})_{3}$ would be best formulated as a valence-delocalized, class III A system (Table 3.12). ${ }^{96}$

Figure 3.14. Structures of $S S$-chiraphos and $R R$-diop.

Yapp in this laboratory reported the mixed-valence sulfoxide complexes $\mathrm{Ru}_{2} \mathrm{Cl}_{5}\left(\mathrm{Et}_{2} \mathrm{SO}\right)_{4}, \quad \mathrm{Ru}_{2} \mathrm{Cl}_{5}\left(\mathrm{Pr}_{2} \mathrm{SO}\right)_{5}$ and $\mathrm{Ru}_{2} \mathrm{Cl}_{5}\left(\mathrm{Bu}_{2} \mathrm{SO}\right)_{5} .{ }^{52} \quad$ Based on IR and ${ }^{1} \mathrm{H}$ NMR spectroscopies, $\mathrm{Ru}_{2} \mathrm{Cl}_{5}\left(\mathrm{Et}_{2} \mathrm{SO}\right)_{4}$ was proposed to be a trichloro-bridged dimer with all terminal S-bonded sulfoxides arranged symmetrically around the Ru centres, whereas $\mathrm{Ru}_{2} \mathrm{Cl}_{5}\left(\mathrm{Pr}_{2} \mathrm{SO}\right)_{5}$ and $\mathrm{Ru}_{2} \mathrm{Cl}_{5}\left(\mathrm{Bu}_{2} \mathrm{SO}\right)_{5}$ were tentatively assigned with four S - and one O -bonded sulfoxides to be dichloro-bridged (e.g. $\left.\mathrm{Cl}\left(\mathrm{Pr}_{2} \mathrm{SO}\right)_{3} \mathrm{Ru}(\mathrm{II})(\mu-\mathrm{Cl})_{2} \mathrm{Ru}(\mathrm{III}) \mathrm{Cl}_{2}\left(\mathrm{Pr}_{2} \mathrm{SO}\right)_{2}\right) .{ }^{52}$

Of interest, mixed-valent Pt complexes, the so-called "Pt blues", have been studied as a potentially useful class of anti-cancer drugs. These complexes, which may be obtained by reaction of cisplatin ${ }^{97}$ with pyrimidine bases, ${ }^{99,100}$ are characterized by high solubility in aqueous solutions, low toxicity, minimal kidney toxicity and high anti-tumour activity as compared to cisplatin. ${ }^{98}$ Insights into Pt blue chemistry were the structural determinations and detailed characterizations of the dimeric cis-diammineplatinum α-pyridone blue (average oxidation state 2.25) and cis-diammineplatinum(II)methylthymine (see Figures 3.15 and 3.16 for the structures of α-pyridone and methylthymine, and $\left[\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Pt}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NO}\right)_{2}\right]_{2}\left(\mathrm{NO}_{3}\right)_{5} \cdot \mathrm{H}_{2} \mathrm{O}^{99}$ and $\left[\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2} \mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O},{ }^{100}$ respectively). Related $\mathrm{Pt}($ II $)$ creatinine blues (see Figures 3.15 and 3.16$)^{101}$ and a mixed-valence octanuclear Pt blue complex (average oxidation state 2.25) with bridging acetamido or 2-fluoroacetamido ligands (see Figure 3.16$)^{102}$ are also known.

(1)

(2)

(3)

Figure 3.15. Structures of α-pyridone (1), 1-methylthymine (2) and creatinine (3).

(1)

(2)

(3)

Figure 3.16. Structures of $\left[\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Pt}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\right]_{2}\left(\mathrm{NO}_{3}\right)_{5} \cdot \mathrm{H}_{2} \mathrm{O}$ (1), $\left[\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2} \mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O} \quad$ (2), $\quad\left[\mathrm{Pt}_{2}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}$ (3), and $\left[\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Pt}\left(\mathrm{CH}_{3} \mathrm{CONH}\right)_{2} \mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}\right]_{4}\left(\mathrm{NO}_{3}\right)_{10} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (4) adapted from refs. 99-102.

3.8.2 $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$

Reaction of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ with two equivalents of BPSP in EtOH led to the isolation in 15% yield of the unexpected dinuclear, mixed-valence complex $[\operatorname{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$
containing three bridging chloride ligands. A possible explanation for the low yield could be that some of the "green solution" containing Ru (II) (formed from $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ with concomitant oxidation of EtOH to acetaldehyde) was oxidized in situ to Ru (III) with reduction of disulfoxide to dithioether; a distinctive thioether odour was detected during the workup of the reaction solution (see Section 3.9, p. 126 for discussion of this redox chemistry). $V_{\text {so }}$ data for the title complex indicated S-bonded sulfoxides (see Section 3.4.2, Table 3.5) and this was later confirmed by X-ray crystallography (Figure 3.18). The ${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} of the free ligand consists of multiplets at $\delta 3.00\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.90$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.20\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.70\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ and a triplet at $1.07\left(\mathrm{CH}_{3}\right)$, while for the complex (an equilibrated solution in $\mathrm{D}_{2} \mathrm{O}$) these appear more downfield (with the exception of the methyl multiplet at 0.90) as broad signals at $\delta 3.72,3.20,2.44,1.72$ and 0.90 , respectively (see Figure 3.21, p. 118); the ${ }^{1} \mathrm{H}$ spectrum in CDCl_{3} consists of two broad peaks at $\delta 2.18$ and 1.10. These data suggest that the $\mathrm{Ru}(\mathrm{II}) / \mathrm{Ru}(\mathrm{III})$ centres are delocalized, as broad resonances were observed in the ${ }^{1} \mathrm{H}$ NMR spectrum. No transitions were observed in the near- \mathbb{R} region (800-2000 nm). The complex exhibited no conductivity in CHCl_{3}, but in $\mathrm{H}_{2} \mathrm{O}$ the molar conductivity (per mole of dimer) increased to a steady value of 234 after 20 min , the value corresponding to that of a 2:1 electrolyte (based on the equivalent conductance of salts (see Section 3.7.1); however, evidence suggests the solution contains $2 \mathrm{H}^{+}$and $2 \mathrm{Cl}^{-}$produced from each mole of dimer (Section 3.8.3), although the equivalent conductance of $10^{-3} \mathrm{M} \mathrm{HCl}$ at $25^{\circ} \mathrm{C}$ is $\sim 420^{72}$ and is much greater than that observed for $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ (but see p. 100 that shows that the conductivity of the HCl solution is decreased considerably in the presence of a 'neutral' Ru disulfoxide complex). The solution $\mu_{\text {eff }}$ value, determined by a
modified Evans' method (see Figure 3.17, and Section 2.2.3), was 1.7 ± 0.1 B. M. consistent with one unpaired electron per molecule.

Figure 3.17. The ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum showing the paramagnetic shift caused by $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}\left(8.8 \times 10^{-2} \mathrm{M}\right)$ of the residual CHCl_{3} relative to that of the reference CHCl_{3}. ($\mathbf{A}=$ residual CHCl_{3} in CDCl_{3}, and $\mathbf{B}=$ residual CHCl_{3} peak shifted by $\left.[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}\right)$.

An X-ray diffraction study of a single crystal of $[\operatorname{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$, obtained from a saturated solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, showed the dinuclear, triply chloro-bridged geometry (Figures 3.18 and 3.19). The complex crystallizes in an acentric space group containing a glide plane and thus enantiomers are present in the crystal structure. Figure 3.18 depicts one of the enantiomers. Selected bond lengths and bond angles for the observed two asymmetric units are given in Tables 3.13 and 3.14, respectively; crystallographically the two Ru-atoms are indistinguishable, consistent with the description as a delocalized $\mathrm{Ru}(\mathrm{II}) / \mathrm{Ru}(\mathrm{III})$ system.

The bond lengths are in fact comparable to those found in $\left[\operatorname{RuCl}(\operatorname{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ where, for example, $\mathrm{Ru}-\mathrm{Cl}$ is $2.4636(10) \AA$ (bridging, trans to S) and $\mathrm{Ru}-\mathrm{S}$ is $2.1985(10) \AA$.

The coordination geometry about each Ru is irregular octahedral with cis angles that range from $79.21(5)-97.46(6)^{\circ}$ and trans angles that range from $168.66(6)-174.70(6)^{\circ}$ (Table 3.14). The bridging chloride $\mathrm{Cl}(1)$ trans to terminal chlorides has a shorter $\mathrm{Ru}-\mathrm{Cl}$ distance (2.3877(14)-2.4081(15) \AA) compared to those of the bridging chloro ligands trans to sulfur (2.444(2)-2.4882(15) \AA) (Table 3.13). This results from a weaker trans influence of the chloro ligands and produces a wider $\mathrm{Ru}-\mathrm{Cl}(1)-\mathrm{Ru}$ angle (84.69(5) and $\left.85.01(5)^{\circ}\right)$ compared to the other two $\mathrm{Ru}-\mathrm{Cl}-\mathrm{Ru}\left(81.25(5)-82.61(5)^{\circ}\right)$. The range of the bridging angles and the $\mathrm{Ru}-\mathrm{Ru}$ distance (3.2300(6) and $3.2321(6) \AA$) are outside those observed for a $\mathrm{Ru}-\mathrm{Ru}$ bonded system (Section 3.7.1).

The crystallographic and ${ }^{1} \mathrm{H}$ NMR spectral data taken together suggest that $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ is best formulated as a valence-delocalized class III system.

Figure 3.18. An ORTEP drawing of one of the $[\operatorname{RuCl}(\operatorname{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ units with 50% probability thermal ellipsoids shown; H-atoms are omitted for clarity (crystal data given in Appendix 1.6).

Figure 3.19. A diagram of $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ showing short H -bonds connecting two asymmetric units via four $\mathrm{H}_{2} \mathrm{O}$ molecules (the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ atoms are not shown) (crystal data given in Appendix 1.6).

Table 3.13. Selected Bond Lengths for the Two Asymmetric Units of $[\operatorname{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$.

Bond	Length (\AA)
$\mathrm{Ru}-\mathrm{Cl}^{a}$	$2.3877(14)-2.4081(15)^{b}{ }^{b} 2.444(2)-2.4882(15)^{c}$
${\mathrm{Ru}-\mathrm{Cl}^{d}}^{\text {Ru-S }}$	$2.377(2)-2.3903(15)$
$\mathrm{S}-\mathrm{O}$	$2.204(2)-2.2093(15)$
$\mathrm{C}-\mathrm{S}$	$1.474(5)-1.501(4)$

${ }^{a}$ Bridging. ${ }^{b}$ Trans to $\mathrm{Cl} .{ }^{c}$ Trans to $\mathrm{S} .{ }^{d}$ Terminal.

Table 3.14. Selected Bond Angles for the Two Asymmetric Units of $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$.

Bond angle	Angle $\left(^{\circ}\right.$)	Bond angle	Angle (${ }^{\circ}$)
cis angles	$79.21(5)-97.46(6)$	Ru-S-O	$117.1(2)-119.7(2)$
trans angles	$168.66(6)-174.70(6)$	S-C-C a	$109.5(4)-112.8(5)$
Ru-Cl-Ru	$81.25(5)-82.61(5)^{c}$	S-C-C b	$110.7(4)-117.6(5)$
	$84.69(5)$ and		
C-S-C	$85.01(5)^{d}$		$110.6(2)-112.7(2)$
O-S-C	$100.3(3)-102.3(3)$	Ru-S-C a	$111.3(2)-115.8(2)$

${ }^{a}$ Backbone. ${ }^{b}$ End substituents. ${ }^{c}$ Trans to sulfur. ${ }^{d}$ Trans to chloride.
Crystals of the complex were found to contain $2 \mathrm{H}_{2} \mathrm{O}$ and $2.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvate molecules per molecule. The range of the $\mathrm{H}-\mathrm{O}$ distances (H -atoms of the water molecules and the O-atoms of the sulfoxides) is $1.61-1.76 \AA$, which is $0.94-1.09 \AA$ shorter than the sum
of the van der Waals radii of an H - and an O -atom $(2.70 \AA)\left(\right.$ Figure 3.19).70 This suggests a strong interaction between the solvate water molecules and the two asymmetric units. The range of the $\mathrm{H}-\mathrm{Cl}$ distances (H -atoms of the sulfoxides and the Cl -atoms of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) is 2.77$2.93 \AA$ (not illustrated), the average being shorter than the sum of the van der Waals radii of an H - and a Cl -atom $(2.90 \AA),{ }^{70}$ thus implying relatively weak interactions between the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvates and the complex. The chiralities at the S -atoms on each of the BPSP ligands are R and S, respectively (Table 3.8).

Of interest, during the preparation of this thesis, Geremia et al. reported a structure consisting of parallel layers of $\left[\mathrm{Cu}(\mathrm{BPSP})_{2}\left(\mathrm{ClO}_{4}\right)\right]_{n}{ }^{n+}$ cations intercalated by $n\left[\mathrm{ClO}_{4}\right]^{-}$anions with the O -atoms of BPSP acting as a bridge linking the Cu atoms. ${ }^{103}$

3.8.3 Chemical Behaviour of $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu \text {-Cl) })_{3}$ in Aqueous Solutions

In view of the potential biological interest of the water-soluble $\operatorname{Ru}(I I) / R u(I I I)$ complex $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$, its chemical behaviour in aqueous solutions was studied. The proposed mechanism for the chemical behaviour in aqueous solution is summarized in Figure 3.20, with supporting data being given subsequently (the experimental details are given in Appendix 2).

Figure 3.20. Proposed mechanism for the behaviour of $[\operatorname{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ in aqueous solution; the two $\mathrm{Ru}(\mathrm{II}) / \mathrm{Ru}(\mathrm{III})$ centres are not distinguished crystallographically, and loss of the chlorides is assumed to be from the terminal positions (the propyl groups of BPSP are omitted for clarity).

The equilibrium ${ }^{1} \mathrm{H}$ NMR spectrum of the complex in $\mathrm{D}_{2} \mathrm{O}$ (under air) does not change upon addition of up to three equivalents of AgNO_{3}. Upon addition of two equivalents of AgNO_{3}, added dropwise, to a solution of $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ in $\mathrm{D}_{2} \mathrm{O}$, a precipitate formed immediately, but the resulting ${ }^{1} \mathrm{H}$ NMR spectrum of the heterogeneous mixture was the same as that of the equilibrium spectrum of $[\operatorname{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ in $\mathrm{D}_{2} \mathrm{O}$ (Figure 3.21), suggesting that the two terminal chlorides dissociate in $\mathrm{D}_{2} \mathrm{O}$. The $\mathrm{D}_{2} \mathrm{O}$ solution containing the AgCl precipitate was then filtered and one more equivalent of AgNO_{3} was added dropwise to
the filtrate. No further precipitate was observed, and the resulting ${ }^{1} \mathrm{H}$ NMR (Figure 3.21B) was identical to that in Figure 3.21A.

Figure 3.21. ${ }^{1} \mathrm{H}$ NMR spectra of equilibrated $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ in $\mathrm{D}_{2} \mathrm{O}$ (after 2 h) (A) and immediate spectrum of $[\operatorname{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}\left(2.02 \times 10^{-3} \mathrm{M}\right)$ after addition of two or three equivalents of AgNO_{3} in $\mathrm{D}_{2} \mathrm{O}(\mathbf{B})$.

A titration of $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ with NaOH in water showed that two equivalents of a standardized NaOH solution were required to titrate 1 equivalent of $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ (see Table 3.15), suggesting the loss of 2 equivalents of H^{+}from $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$.

Table 3.15. Titration data for $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ using NaOH .

$[\mathrm{NaOH}](\mathrm{mM})$	Volume used $(\mathrm{mL}, \mathrm{mmol})$	$[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}(\mathrm{mg}, \mathrm{mmole})$
$2.23(\pm 0.09)$	$3.32(\pm 0.13), 7.5(\pm 0.3) \times 10^{-3}$	$3.10(\pm 0.05), 3.74(\pm 0.06) \times 10^{-3}$

${ }^{1} \mathrm{H}$ NMR studies and pH measurements in $\mathrm{H}_{2} \mathrm{O}$ are consistent with the loss of two H^{+}and two Cl^{-}ions on dissolution of $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ in $\mathrm{H}_{2} \mathrm{O}$ while conductivity measurements are somewhat inconclusive (p. 110).
$[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ is yellow-orange in solution; in $\mathrm{CH}_{3} \mathrm{CN}$ no conductivity was observed and the spectrum was time invariant, with absorption maxima at 286, 324 and 424 nm , while dissolution in $\mathrm{H}_{2} \mathrm{O}$ leads to a final product ($\geq 20 \mathrm{~min}$) with absorption maxima at 282, 318 and 450 nm , the colour then remaining yellow-orange and invariant with time. An example of the spectral changes observed for $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ in aqueous solution is shown in Figure 3.22 (the initial spectrum was recorded 30 s after dissolution of the sample). The aqueous solution system was well-behaved in that isosbestic points at $\lambda 268,336$ and 396 nm were observed as the UV-Vis spectrum changed with time (Figure 3.22). Absorbance changes were then monitored as a function of time at $\lambda=362 \mathrm{~nm}$ (Figure 3.23). An example of a pseudo-first-order rate plot is shown in Figure 3.24 and the pseudo-first-order rateconstants, $\mathrm{k}_{\mathrm{obs}}$, obtained were found to be directly dependent on the concentration of $\mathrm{H}_{2} \mathrm{O}$ from 22.2-55.6 M (in mixtures of $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$, Table 3.16, Figure 3.25). For reactions run in 0.25 M aqueous $\mathrm{NaCl}, 0.1 \mathrm{M}$ aqueous toluene-4-sulfonic acid, and under N_{2}, the measured $\mathrm{k}_{\text {obs }}$ values were $5.34 \times 10^{-3}, 5.22 \times 10^{-3} \mathrm{~s}^{-1}$ and 5.33×10^{-3} respectively (Table 3.16 and Figure 3.25); the data reveal an independence of the reaction on added $\left[\mathrm{Cl}^{-}\right],\left[\mathrm{H}^{+}\right]$and show that the solutions are not air-sensitive.

Figure 3.22. A representative spectrum of the UV-Vis spectral changes ($200-600 \mathrm{~nm}$ region, 1 cm cell) of $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}\left(2.96 \times 10^{-4} \mathrm{M}\right)$ in an aqueous solution at $27^{\circ} \mathrm{C}$ as a function of time (half life $\mathrm{t}_{1 / 2}=120 \mathrm{~s}$, for the pseudo-first order process, see Figure 3.24); isosbestic points are observed at the noted wavelengths.

Figure 3.23. Absorption spectral changes at $\lambda=362 \mathrm{~nm}$ as a function of time for the reaction of $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ in $\mathrm{H}_{2} \mathrm{O}(55.6 \mathrm{M})$ at $27^{\circ} \mathrm{C}$.

Figure 3.24. A representative rate-plot analyzed for a first-order dependence on $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3} ; \mathrm{A}_{\mathrm{t}}$ and A_{∞} represent the absorption at 362 nm at times t and ∞, respectively, at $27^{\circ} \mathrm{C}$.

Figure 3.25. The dependence of the pseudo-first-order rate constant, $\mathrm{k}_{\text {obs, }}$, on $\left[\mathrm{H}_{2} \mathrm{O}\right]$ at $27^{\circ} \mathrm{C}$; including the $\mathrm{k}_{\text {obs }}$ values obtained from reactions run in 0.25 M aqueous NaCl and 0.1 M aqueous toluene-4-sulfonic acid (in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ solutions, see Table 3.16).

As the reaction rate is independent of added chloride and added protons, the ratelaw for the stepwise process outlined in Figure 3.20 (p. 117) becomes simply $\mathrm{k}_{1}[\mathrm{~A}]\left[\mathrm{H}_{2} \mathrm{O}\right]$: the independence on $\left[\mathrm{Cl}^{-}\right]$implies k_{-1} is negligible, while the independence on $\left[\mathrm{H}^{+}\right]$implies that K_{1} and K_{2} are sufficiently large that variation of the $\left[\mathrm{H}^{+}\right]$during any single kinetic run does not change the concentration of any kinetically significant species, in this case \mathbf{C} and \mathbf{D}. Of note, $\left[\mathrm{Cl}^{-}\right]$and $\left[\mathrm{H}^{+}\right]$production should also be governed kinetically by k_{1}.

Under pseudo first-order conditions, with excess $\mathrm{H}_{2} \mathrm{O}$, the rate $=\mathrm{k}_{\mathrm{obs}}[\mathrm{A}]$ where $\mathrm{k}_{\text {obs }}=\mathrm{k}_{1}\left[\mathrm{H}_{2} \mathrm{O}\right]$; the second-order rate-constant k_{1} was determined from Figure 3.25 to be 9.82 x $10^{-5} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ at $27^{\circ} \mathrm{C}$, and was essentially independent of the concentration of $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ from (1.48-14.8) $\times 10^{-4} \mathrm{M}$ (Figure 3.26).

Figure 3.26. The dependence of the second-order rate constant k_{1} on $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}\left[(\mu-\mathrm{Cl})_{3}\right]$ in $\mathrm{H}_{2} \mathrm{O}(22.2 \mathrm{M})$ at $27^{\circ} \mathrm{C} .\left(\mathrm{Ru}=[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}\right)$.

Figure 3.27. Erying plot for the temperature dependence of the rate constant k_{1} for the reaction of $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}\left(2.96 \times 10^{-4} \mathrm{M}\right)$ with $\mathrm{H}_{2} \mathrm{O}(22.2 \mathrm{M})$.

The temperature dependence data for k_{1} were obtained at a single concentration of $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}, 2.96 \times 10^{-4} \mathrm{M}$, with $22.2 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$ in acetonitrile (3:2 V/V). An Erying plot (Figure 3.27) of the data from $15-35^{\circ} \mathrm{C}$ (Table 3.16) gave a straight line from which the activation parameters $\Delta \mathrm{H}^{\neq}=65 \pm 7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta \mathrm{S}^{\neq}=-105 \pm 21 \mathrm{~J} \mathrm{~mol}{ }^{-1} \mathrm{~K}^{-1}$ were determined. These data, taken together with the second-order rate-law, are consistent with an associative process for the k_{1} step.

Of note, Alessio et al. have studied the chemical behaviour of $\mathrm{Na}[$ trans$\mathrm{RuCl}_{4}(\mathrm{DMSO})_{2}$ and $m e r-\mathrm{RuCl}_{3}(\mathrm{DMSO})_{2}(\mathrm{DMSO})$ in aqueous solution (Section 1.4.2). ${ }^{25}$ These two complexes turned greenish grey in a few hours at $25^{\circ} \mathrm{C}$ and the authors attributed this, and a noted pH drop of the solutions, to the formation of polymeric $\mathrm{Ru}(\mathrm{III})$ species probably with hydroxo or μ-oxo bridges. ${ }^{25,104}$ Chloride concentrations up to 0.3 M did not significantly influence the rates of these processes in solution, but a strong acid dependence was observed down to $\mathrm{pH}<3 .{ }^{25}$ At this stage, such polymer formation from the mixedvalence $\mathrm{Ru}(\mathrm{II}) / \mathrm{Ru}(\mathrm{III})$ system seem unlikely. Attempts to isolate the product from an aqueous solution were unsuccessful; only an oily residue was obtained.

Table 3.16. Kinetic Data for the Hydration Reaction of $[\operatorname{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ in $\mathrm{H}_{2} \mathrm{O}^{\prime}{ }^{a}$

$\left[[\operatorname{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}\right](\mathrm{M})$	[$\left.\mathrm{H}_{2} \mathrm{O}\right](\mathrm{M})$	T (${ }^{\circ} \mathrm{C}$)	$\mathrm{k}_{\text {obs }}\left(\mathrm{s}^{-1}\right)$	$\mathrm{k}_{1}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$
2.96×10^{-4}	55.6	27	5.82×10^{-3}	1.05×10^{-4}
2.96×10^{-4}	44.4	27	4.54×10^{-3}	1.02×10^{-4}
2.96×10^{-4}	33.3	27	3.46×10^{-3}	1.04×10^{-4}
2.96×10^{-4}	2.8	27	2.94×10^{-4}	1.05×10^{-4}
2.96×10^{-4}	22.2	27	2.30×10^{-3}	1.04×10^{-4}
2.96×10^{-4}	22.2	35	4.78×10^{-3}	2.15×10^{-4}
2.96×10^{-4}	22.2	27	2.22×10^{-3}	1.00×10^{-4}
2.96×10^{-4}	22.2	20	1.37×10^{-3}	6.17×10^{-5}
2.96×10^{-4}	22.2	15	7.20×10^{-4}	3.24×10^{-5}
5.92×10^{-4}	22.2	27	2.75×10^{-3}	1.24×10^{-4}
1.48×10^{-4}	22.2	27	2.51×10^{-3}	1.13×10^{-4}
1.48×10^{-3}	22.2	27	2.62×10^{-3}	1.18×10^{-4}
2.96×10^{-4}	55.6	27	5.34-5.62 x	0.96-1.01 x
	[$0.05-0.25 \mathrm{M} \mathrm{Cl}^{-}$]		10^{-3}	10^{-4}
2.96×10^{-4}	$55.6\left[0.1 \mathrm{M} \mathrm{H}^{+}\right]$	27	5.22×10^{-3}	9.39×10^{-5}
2.96×10^{-4}	55.6 (under N_{2})	27	5.33×10^{-3}	9.59×10^{-5}

${ }^{a}$ In mixtures of $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$.

3.9 Dithioether Complexes of $\mathbf{R u}$

Previous workers in this laboratory have isolated $\mathrm{RuX}_{3}(\text { thioether })_{3}$ complexes (thioether $=$ DMS or TMS; $\mathrm{X}=\mathrm{Cl}$ or Br) from reactions of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ with acidified DMSO or TMSO. ${ }^{35 a, 37}$ The reported synthetic procedures for these complexes were similar to those which gave the anionic complexes ${ }^{25,37,105}$ with protonated DMSO and TMSO as associated cations, trans- $\left[(\mathrm{DMSO})_{2} \mathrm{H}\right]^{+}\left[\mathrm{RuCl}_{4}(\mathrm{DMSO})_{2}\right]^{-}$and trans $-[(\mathrm{TMSO}) \mathrm{H}]^{+}\left[\mathrm{RuCl}_{4}(\mathrm{TMSO})_{2}\right]^{-}$, respectively, except that a higher reaction temperature was used ($130-140 v s .70-80^{\circ} \mathrm{C}$); formation of the thioether was attributed to redox processes involving $\mathrm{Ru}(\mathrm{III})$ and the sulfoxide. ${ }^{35 \mathrm{a}, 37}$ Commercially available $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ analyzes well for such a composition, but actually consists of a mixture of $\mathrm{Ru}(\mathrm{III})$ and $\mathrm{Ru}(\mathrm{IV})$ species of which the latter is thought to be a hydroxo species. ${ }^{106,107}$ Of note, Lipponer et al. have recently described three methods of purifying $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ to yield solutions of pure $\mathrm{Ru}(\mathrm{III}) .{ }^{108}$ The exact mechanistic steps leading to the reduction of the sulfoxide are not known, but there is some evidence to indicate that the following reactions may play a role:

$$
\begin{aligned}
& 2 \mathrm{Ru}(\mathrm{III})+\mathrm{DMSO}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Ru}(\mathrm{II})+\mathrm{DMS}(\mathrm{O})_{2}+2 \mathrm{H}^{+} \\
& 2 \mathrm{Ru}(\mathrm{II})+\mathrm{R}_{2} \mathrm{SO}+2 \mathrm{H}^{+} \rightleftharpoons 2 \mathrm{Ru}(\mathrm{III})+\mathrm{R}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

The reduction of Ru (III) to Ru (II) with accompanying oxidation of DMSO to the sulfone was initially suggested by Ledlie et al., ${ }^{109}$ and the Trieste group subsequently detected the presence of dimethyl sulfone (in a stoichiometric amount) in the reduction of $m e r-\mathrm{RuCl}_{3}$ (DMSO) ${ }_{3}$ (in DMSO under Ar) to trans- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}{ }^{25}$ Evidence for the second equilibrium ($\mathrm{R}=\mathrm{Bu}$) was reported by Ledlie et al. and under highly acidic conditions the reaction is likely pushed to
the right-hand side generating the Ru (III)-thioether. ${ }^{109}$ The ligand sets on Ru during this process, however, remain undefined, and more studies are required before the mechanistic steps in this new route to thioether complexes are more fully understood.

3.9.1 Literature Data

As discussed in Section 3.6, reactions of disulfoxides with Ru precursors gave mainly RuCl_{2} (disulfoxide) $)_{2}$ complexes of a preferred cis- or trans-geometry regardless of the nature of the precursor. The goal of synthesizing RuCl_{2} (dithioether) $)_{2}$ complexes was to determine the cis- or trans-geometry, and then oxidize the coordinated dithioethers to the disulfoxides to determine if the geometry was retained.

Chatt et al. reported that $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ reacted with mono-(S), di-(SS), or triorganic sulfides (SSS) to give complexes with the formulations mer- $\left[\mathrm{RuCl}_{3} \mathrm{~S}_{3}\right]$, $\left[\left\{\operatorname{RuCl}_{3}(\mathrm{SS})_{1.5}\right\}_{n}\right]$ and trans-[$\left.\mathrm{RuX}_{2}(\mathrm{SS})_{2}\right](\mathrm{X}=\mathrm{Cl}$ or Br$)$, or $\left[\mathrm{RuCl}_{3}(\mathrm{SSS})\right]$, respectively. ${ }^{110}$ The authors state that in the series of $\left[\left\{\mathrm{RuCl}_{3}\left(\mathrm{RSCH}_{2} \mathrm{CH}_{2} \mathrm{SR}\right)_{1.5}\right\}_{n}\right]$ complexes $(\mathrm{R}=\mathrm{Me}, \mathrm{Et}$, Pr or Ph); 'these complexes are at least dinuclear although they are too insoluble for molecular weight determination' and it is 'likely that one sulfide molecule is chelating and one bridging' ${ }^{110}$ The authors also reported the isolation of $\mathrm{RuCl}_{2}\left(\mathrm{RSCH}_{2} \mathrm{CH}_{2} \mathrm{SR}\right)_{2}$ species $(\mathrm{R}=\mathrm{Ph})$ during attempts to isolate $\mathrm{Ru}(\mathrm{III})$ complexes and suggested that $\mathrm{RSCH}_{2} \mathrm{CH}_{2} \mathrm{SR}(\mathrm{R}=$ Ph) is more strongly reducing than the thioethers with $\mathrm{R}=\mathrm{Me}, \mathrm{Et}$ or Pr ; trans geometry was suggested based on IR data. ${ }^{110}$

Within related complexes, Lucas et al. have reported on the Pt or Pd complexes $\mathrm{MX}_{2} \cdot \operatorname{BBTE}(\mathrm{M}=\mathrm{Pd}$ and $\mathrm{X}=\mathrm{Cl}$ or I , and $\mathrm{M}=\mathrm{Pt}$ and $\mathrm{X}=\mathrm{Cl}$ with $\mathrm{BBTE}=1,2-$ bis(benzylthio)ethane). ${ }^{111}$ Hartley et al. have reported on the Pd or Pt complexes cis-[MLX ${ }_{2}$] and $\left[\mathrm{ML}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}\right.$ or $\mathrm{I} ; \mathrm{L}=(\mathrm{a}) \mathrm{RS}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{SR}, \mathrm{R}=\mathrm{Me}$ or Ph , and $n=2$ or 3; (b) cis - $\mathrm{RSCH}=\mathrm{CHSR}, \mathrm{R}=\mathrm{Me}$, Ph or $o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{SR}^{\prime}\right)_{2}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right.$ or Ph$)$. With $\mathrm{L}=\mathrm{PhS}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{SPh}, n$ $=6$ or 8 , polymeric $\left[\mathrm{PdLX}_{2}\right]_{n}$ species were obtained, while with $n=12$ trans $-\mathrm{PdLX}_{2}(\mathrm{X}=\mathrm{Cl}$ or Br$)$ and trans- PtLCl_{2} were formed. ${ }^{112}$ The complexes $\left[\mathrm{M}\left(\mathrm{MeSCH}_{2} \mathrm{SMe}\right) \mathrm{X}_{2}\right](\mathrm{M}=\mathrm{Pd}$ or $\mathrm{Pt} ; \quad \mathrm{X}=\mathrm{Cl}, \quad \mathrm{Br}$ or I$), \quad\left[\mathrm{Rh}\left(\mathrm{PhSCH}_{2} \mathrm{SPh}_{3} \mathrm{Cl}_{3}\right], \quad\left[\mathrm{Ir}\left(\mathrm{PhSCH}_{2} \mathrm{SPh}_{3}\right)_{3} \mathrm{Cl}_{3}\right] \quad\right.$ and $\mathrm{Ru}\left(\mathrm{PhSCH}_{2} \mathrm{SPh}\right)_{2} \mathrm{Cl}_{3} \cdot \mathrm{EtOH}$ have also been reported. ${ }^{113}$ None of the above was characterized structurally. Song et al. have structurally characterized the complex $\mathrm{Rh}_{2} \mathrm{Cl}_{2}(\mathrm{CO})_{2}$ (bis(ethylthio)methane) ${ }_{2}{ }^{114}$ and Shao et al. have reported the use of $\mathrm{RSCH}_{2} \mathrm{CH}_{2} \mathrm{SR}\left(\mathrm{R}=n-\mathrm{C}_{3} \mathrm{H}_{7}, n-\mathrm{C}_{5} \mathrm{H}_{11}, n-\mathrm{C}_{8} \mathrm{H}_{17}\right.$ and Ph$)$ as reagents used in the extraction of Ag. ${ }^{115}$

This thesis work reveals that reactions of BPhTE and BCyTE with $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ gave mononuclear trans-Ru(II) complexes (Section 3.9.2), whereas the longer chain dithioethers 3,7-dithianonane, 4,8-dithiaunadecane, 5,9-dithiatridecane, and 6,10-dithiapentadecane gave the dinuclear $\mathrm{Ru}_{2}(\mathrm{III})$ complexes $\left[\mathrm{RuCl}_{2}(\mathrm{BETP})\right]_{2}(\mu-\mathrm{Cl})_{2}$, $\left[\mathrm{RuCl}_{2}(\mathrm{BPTP})\right]_{2}(\mu-\mathrm{Cl})_{2},\left[\mathrm{RuCl}_{2}(\mathrm{BBTP})\right]_{2}\left(\mu-\mathrm{Cl}_{2}\right.$ and $\left[\mathrm{RuCl}_{2}(\mathrm{BPeTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$ (Section 3.9.3), respectively.

Schenk et al. have reported that Ru-thioether complexes can be directly converted with dimethyldioxirane to the corresponding sulfoxide complexes; for example, $\left[\mathrm{RuCp}\right.$ (chiraphos)(SR/R')]PF ${ }_{6}$ gave $[\mathrm{RuCp}$ (chiraphos)(SOR/R') $] \mathrm{PF}_{6}(\mathrm{Cp}=$ cyclopentadienyl; $\mathrm{R} / \mathrm{R}^{\prime}=\mathrm{Me} / \mathrm{Ph}, \mathrm{Me} / /^{\prime} \mathrm{Pr}, \mathrm{Me} / \mathrm{Bz}, \mathrm{Et} / \mathrm{Bz}$ or $\left.\mathrm{Me} / \mathrm{Cy}\right),{ }^{116}$ and this led to the idea of such an alternative oxidation route to different geometrical isomers of the known disulfoxide Ru complexes. However, an initial attempt to oxidize trans- $\mathrm{RuCl}_{2}(\mathrm{BPhTE})_{2}$ using dimethyldioxirane was unsuccessful; no $v_{s o}$ was detected in an isolated crude product (Section 2.10.2). Of note, Schenk et al. noted that "conversions of the thioether to the sulfoxide drop sharply when both substituents at sulfur are sterically more demanding" (e.g. $\mathrm{SR} / \mathrm{R}^{\prime}=\mathrm{Et} / \mathrm{Bz}$) and "using a large excess of dimethyldioxirane in this case leads to increased decomposition". ${ }^{116}$
3.9.2 The Mononuclear Ru(II) Dithioether Complexes: Trans-RuCl $2_{2}\left(\mathrm{BCyTE}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right.$ and Trans-RuCl ${ }_{2}\left(\right.$ BPhTE $_{2}$

Reaction of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ with BCyTE gave the complex trans $-\mathrm{RuCl}_{2}(\mathrm{BCyTE})_{2}$. Its
${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} is a complicated pattern of broad peaks between $\delta 1.20-3.35$ that could not be assigned by using ${ }^{13} \mathrm{C}, 2 \mathrm{D}$-COSY and ${ }^{1} \mathrm{H}$ NMR decoupling experiments; the broad signals presumably result from the rotation of the cyclohexyl rings. An ORTEP of the complex is shown in Figure 3.28, and the unit cell showing $2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvate molecules is shown in Figure 3.29. Selected bond lengths and angles are given in Table 3.17. No significant H -bonding interactions are evident with the solvate molecules. The $\mathrm{Ru}-\mathrm{Cl}$ bond length in the centrosymmetric structure is $2.4262(6) \AA$, while the $\mathrm{Ru}-\mathrm{Cl}$ bond lengths (trans to
S) for the disulfoxide complex cis- $\mathrm{RuCl}_{2}(\mathrm{BCySE})_{2}$ are $2.4201(13)$ and $2.4344(13) \AA$, indicating that the trans influence of the sulfoxide moiety is similar to that of Cl^{-}. The Ru-S bond lengths of $2.3629(9)$ and $2.3646(9) \AA$ for the dithioether complex and are longer than those for $\mathrm{cis}-\mathrm{RuCl}_{2}(\mathrm{BCySE})_{2}(2.3364(13)$ and $2.3484(13) \AA)$.

The isolation of trans- $\mathrm{RuCl}_{2}(\mathrm{BCyTE})_{2}$ implies that the suggestion by Chatt et al. that $\mathrm{PhSCH}_{2} \mathrm{CH}_{2} \mathrm{SPh}$ is a more strongly reducing thioether is not valid in a general sense (Section 3.9.1).

Figure 3.28. An ORTEP drawing of trans $-\mathrm{RuCl}_{2}(\mathrm{BCyTE})_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ with 50% probability shown; H -atoms are omitted for clarity (the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecules are not shown) (crystal data are given in Appendix 1.7).

Figure 3.29. The unit cell of trans- $\mathrm{RuCl}_{2}(\mathrm{BCyTE})_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showing the $2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvate molecules (crystal data given in Appendix 1.7).

Table 3.17. Selected Bond Lengths (\AA) and Angles $\left({ }^{\circ}\right)$ for trans- $\mathrm{RuCl}_{2}\left(\mathrm{BCyTE}_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ and trans- $\mathrm{RuCl}_{2}(\mathrm{BPhTE})_{2}$.

Bond or angle	trans- $\mathrm{RuCl}_{2}(\mathrm{BCyTE})_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	trans- $\mathrm{RuCl}_{2}(\mathrm{BPhTE})_{2}$
$\mathrm{Ru}-\mathrm{Cl}$	$2.4262(6)$	$2.4244(8), 2.4266(8)$
Ru-S	$2.3629(6), 2.3646(7)$	$2.3424(7), 2.3594(8)$
$\mathrm{C}-\mathrm{S}$	$1.813(3)-1.840(3)$	$1.815(4)-1.836(4),{ }^{a} 1.777(3)-1.799(3)^{b}$
cis angles	$84.14(2)-95.86(2)$	$83.65(3)-98.09(3)$
trans angles	180.0	$167.66(3)-178.13(4)$
C-S-C	$97.89(11), 104.30(11)$	$98.52(15)-102.22(15)$
S-C-C ${ }^{a}$	$110.4(2), 112.3(2)$	$106.8(2)-108.9(2)$
S-C-C c	$105.5(2)-112.6(2)$	$118.2(3)-124.3(3)$
Ru-S-C ${ }^{a}$	$101.76(9), 104.13(9)$	$102.61(11)-104.14(10)$
Ru-S-C c	$110.98(9), 117.26(9)$	$117.01(10)-120.96(11)$

${ }^{a}$ Backbone C-atoms. ${ }^{b}$ Phenyl rings. ${ }^{c}$ End substituents.

Reaction of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and BPhTE gave the complex trans- $\mathrm{RuCl}_{2}(\mathrm{BPhTE})_{2}$ (confirming the geometry of the complex previously suggested by Chatt et al., Section 3.9.1). The ${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} of the free ligand consists of a singlet at $\delta 3.10$ assigned to the $\mathrm{CH}_{2} \mathrm{CH}_{2}$ backbone and a multiplet centred at $\delta 7.15$ due to the phenyl protons; the ${ }^{1} \mathrm{H}$ signals for the aromatic protons of the coordinated dithioether are split into three signals at δ $7.65,7.28$ and 7.12 assigned to the $o-, p$ - and m-protons, respectively. The assignments are based on the resonance structures of the phenyl ring with a thioether (Figure 3.30). These
resonance structures show that the S -atom removes electron density from the o - and p positions and results in downfield shifts of these signals, while the protons at the m - positions are not affected directly.

Figure 3.30. Resonance structures of a phenyl ring with a thioether.

The structure of the complex is shown in Figure 3.31, and selected bond lengths and angles are given in Table 3.17. The $\mathrm{Ru}-\mathrm{Cl}$ bond lengths are 2.4244(8) and 2.4266(8) \AA for this bis-chelating dithioether complex (Table 3.17).

No conductivity was observed for these trans-bis(dithioether) complexes in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution.

Figure 3.31. An ORTEP drawing of trans- $\mathrm{RuCl}_{2}(\mathrm{BPhTE})_{2}$ with 50% probability thermal ellipsoids shown; H -atoms are omitted for clarity (crystal data are given in Appendix 1.8).
3.9.3 Dinuclear $R u(I I I) / R u(I I I) \quad$ Dithioether Complexes: $\quad\left[\mathrm{RuCl}_{2}\left(\mathrm{BETP}^{2}\right]_{2}(\mu \text {-Cl) })_{2}\right.$, $\left[R u C l_{2}(B P T P)\right]_{2}\left(\mu-\mathrm{Cl}_{2},\left[R u \mathrm{Cl}_{2}(\mathrm{BBTP})\right]_{2}(\mu-\mathrm{Cl})_{2}\right.$ and $\left[\mathrm{RuCl}_{2}(\mathrm{BPeTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$

Reactions of 3,7-dithianonane, 4,8-dithiaunadecane, 5,9-dithiatridecane, and 6,10-dithiapentadecane with $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ gave the dark purple-brown, dinuclear Ru_{2} (III) complexes $\quad\left[\mathrm{RuCl}_{2}(\mathrm{BETP})\right]_{2}\left(\mu-\mathrm{Cl}_{2}, \quad\left[\mathrm{RuCl}_{2}(\mathrm{BPTP})\right]_{2}(\mu-\mathrm{Cl})_{2}, \quad\left[\mathrm{RuCl}_{2}(\mathrm{BBTP})\right]_{2}(\mu-\mathrm{Cl})_{2}\right.$ and $\left[\mathrm{RuCl}_{2}(\mathrm{BPeTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$, respectively, while crystals of $\left[\mathrm{RuCl}_{2}(\mathrm{BETP})\right]_{2}(\mu-\mathrm{Cl})_{2}$ and $\left[\mathrm{RuCl}_{2}(\mathrm{BPTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$ suitable for X-ray analysis were obtained by slow evaporation of a solution of the respective complex in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Both complexes (Figures 3.32 and 3.33) have two bridging Cl -atoms, each $\mathrm{Ru}(\mathrm{III})$ centre also having two terminal Cl -atoms. The $\mathrm{Ru}-\mathrm{Cl}$ bond lengths for the terminal Cl -atoms for $\left[\mathrm{RuCl}_{2}(\mathrm{BETP})\right]_{2}(\mu-\mathrm{Cl})_{2}$ and $\left[\mathrm{RuCl}_{2}(\mathrm{BPTP})\right]_{2}(\mu-$ $\mathrm{Cl})_{2}$ are $2.3258(7) \AA$ and $2.3213(9) \AA($ trans to Cl$)$ and $2.3501(8) \AA$ and $2.3579(10) \AA$ (trans to S), respectively, (Table 3.18), suggesting a small trans influence of $\mathrm{S}(v s . \mathrm{Cl})$. The $\mathrm{Ru}-\mathrm{Cl}$ bond lengths for the bridging Cl -atoms are $2.3915(7) \AA$ and $2.4617(7) \AA$ for $\left[\mathrm{RuCl}_{2}(\mathrm{BETP})\right]_{2}(\mu-\mathrm{Cl})_{2}$, and 2.3833(9) \AA and $2.4605(9) \AA$ for $\left[\mathrm{RuCl}_{2}(\mathrm{BPTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$. The two $\mathrm{Ru}-\mathrm{S}$ bond lengths are $2.3201(8)$ and $2.3677(8) \AA$ for $\left[\mathrm{RuCl}_{2}(\mathrm{BETP})\right]_{2}(\mu-\mathrm{Cl})_{2}$, and $2.3311(10)$ and $2.3564(11) \AA$ for $\left[\mathrm{RuCl}_{2}(\mathrm{BPTP})\right]_{2}\left(\mu-\mathrm{Cl}_{2} . \quad\left[\mathrm{RuCl}_{2}(\mathrm{BETP})\right]_{2}\left(\mu-\mathrm{Cl}_{2}\right)_{2}\right.$ and $\left[\mathrm{RuCl}_{2}(\mathrm{BPTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$ have bridging angles of $95.86(3)^{\circ}$ and $97.02(3)^{\circ}$, respectively, and there are no Ru-Ru bonds (usually considered in the range 2.28-3.034 \AA, see Section 3.7.1).

Elemental analyses of $\left[\mathrm{RuCl}_{2}(\mathrm{BBTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$ and $\left[\mathrm{RuCl}_{2}(\mathrm{BPeTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$ show a formulation consistent with the structurally characterized dinuclear, dichloro-bridged Ru_{2} (III) species described above. The solid-state magnetic susceptibilities of $\left[\mathrm{RuCl}_{2}(\mathrm{BETP})\right]_{2}(\mu-\mathrm{Cl})_{2}$,
$\left[\mathrm{RuCl}_{2}(\mathrm{BPTP})\right]_{2}(\mu-\mathrm{Cl})_{2},\left[\mathrm{RuCl}_{2}(\mathrm{BBTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$ and $\left[\mathrm{RuCl}_{2}(\mathrm{BPeTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$ were $\mu_{\mathrm{cff}}=3.8$, 3.1, 3.2 and 3.4 ± 0.1 B. M., respectively, showing in 1 unpaired electron $/ \mathrm{Ru}$ (III) center in each case, and are consistent with no interaction between the metal centres.

No conductivity was observed for these dimeric $\mathrm{Ru}($ III $) / \mathrm{Ru}($ III $)$ complexes in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. The complexes are insoluble in water.

Table 3.18. Selected Bond Lengths (\AA) and Bond Angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{RuCl}_{2}(\mathrm{BETP})\right]_{2}(\mu \text { - } \mathrm{Cl})_{2}$ and $\left[\mathrm{RuCl}_{2}(\mathrm{BPTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$.

Bond or Angle	$\left[\mathrm{RuCl}_{2}(\mathrm{BETP})\right]_{2}(\mu-\mathrm{Cl})_{2}$	$\left[\mathrm{RuCl}_{2}(\mathrm{BPTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$
$\mathrm{Ru}-\mathrm{Cl}^{a}$	$2.3258(7){ }^{\text {b }} 2.3501(8)^{c}$	2.3213(9), ${ }^{\text {b }} 2.3579(10)^{c}$
$\mathrm{Ru}-\mathrm{Cl}^{\text {d }}$	2.3915(7), 2.4617(7)	2.3833(9), 2.4605(9)
Ru-S	2.3201(8), 2.3677(8)	2.3311(10), 2.3564(11)
C-S	1.808(3)-1.823(3)	1.806(4)-1.821(4)
cis angles	84.14(3)-96.74(3)	82.98(3)-97.50(3)
trans angles	172.05(3)-175.81(3)	173.32(4)-175.93(4)
C-S-C	99.78(15), 100.54(15)	99.0(2), 100.6(2)
S-C-C ${ }^{\text {e }}$	112.9(2), 117.3(2)	112.0(3), 117.5(3)
S-C-C ${ }^{\text {d }}$	110.7(2), 112.5(3)	111.3(3), 112.8(3)
Ru-S-C ${ }^{e}$	110.16(11), 111.62(11)	110.27(14), 112.80(14)
Ru-S-C ${ }^{\text {f }}$	107.85(11), 110.65(10)	109.73(13), 110.74(13)
$\mathrm{Ru}-\mathrm{Cl}-\mathrm{Ru}$	95.86(3)	97.02(3)

[^6]

Figure 3.32. An ORTEP drawing of $\left[\mathrm{RuCl}_{2}(\mathrm{BETP})\right]_{2}(\mu-\mathrm{Cl})_{2}$ with 50% probability thermal ellipsoids shown; H -atoms are omitted for clarity (crystal data are given in Appendix 1.9).

Figure 3.33. An ORTEP drawing of $\left[\mathrm{RuCl}_{2}(\mathrm{BPTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$ with 50% probability thermal ellipsoids shown. The H -atoms are omitted for clarity (crystal data are given in Appendix 1.10).

3.10 $\operatorname{Mer}-\mathrm{RuCl}_{3}(\mathrm{DPSO})_{2}(\mathbf{D P S O})$

According to literature data, mer-[MCl ${ }_{3}$ (sulfoxide- $\left.\underline{S}_{2}\right)_{2}$ (sulfoxide- $\left.\left.\underline{\mathrm{O}}\right)\right](\mathrm{M}=\mathrm{Ru}(\mathrm{III})$ or $\mathrm{Rh}(\mathrm{IIII})$) have been isolated with the sulfoxides $=\mathrm{DMSO}, \mathrm{TMSO}, \mathrm{Me}(\mathrm{Ph}) \mathrm{SO}$ and ${ }^{n} \mathrm{Pr}_{2} \mathrm{SO}$. ${ }^{105,117}$ Previous work in this group has included the synthesis and structural characterization of two complexes with $\mathrm{Ph}_{2} \mathrm{SO}$ (DPSO): mer$\left[\mathrm{RhCl}_{3}(\mathrm{DPSO})(\mathrm{DPS} \underline{O})\left({ }^{i} \mathrm{PrOH}\right)\right]^{117}$ and mer- $\left[\mathrm{RuCl}_{3}(\mathrm{DPSO})(\mathrm{DPS} \underline{O})(\mathrm{MeOH})\right]^{52}$ (see Figure 3.34).

Figure 3.34. Structure of $m e r-\left[\mathrm{RuCl}_{3}(\mathrm{DPSO})(\mathrm{DPSO})(\mathrm{MeOH})\right] ; \mathrm{O}$ and S are O - and S bonded DPSO, respectively.

These results perhaps suggest that coordination of three DPSO ligands may be prevented sterically as the electronic properties of the S-O moiety of DPSO have been considered to be "similar to those of the other sulfoxides". ${ }^{118}$ The crystal structure of DPSO^{119} reveals approximate pyramidal geometry at each S -atom with a sulfur-oxygen bond length of $1.47 \AA$ indicating some double bond character in this bond. The coordination of a third DPSO is not, in fact, restricted as shown here by reaction of excess DPSO with $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ to generate mer $-\mathrm{RuCl}_{3}(\mathrm{DPSO})_{2}(\mathrm{DPSO})$; the Trieste group independently synthesized and characterized this complex during the course of this present thesis work. ${ }^{118}$

3.10.1 Characterization of Mer-Cis-RuCl $\mathbf{3}_{(}(\mathrm{DPSO})_{2}(\mathrm{DPSO})$

As noted above, the title complex was synthesized by reacting excess DPSO with $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, and crystals were obtained following the addition of ether to a reduced-involume reaction solution. Strong. $\mathrm{IR} \nu_{\text {So }}$ bands were observed in the solid state at $922 \mathrm{~cm}^{-1}$ attributed to O-bonded DPSO, and at 1063 and $1129 \mathrm{~cm}^{-1}$ attributed to S-bonded DPSO (the Trieste group report $v_{\mathrm{sO}}(\mathrm{DPSO})$ at $919 \mathrm{~cm}^{-1}$ and (DPSO) at $\left.1128 \mathrm{~cm}^{-1}\right) .{ }^{118}{ }^{1} \mathrm{H}$ NMR spectral data (Section 2.6.3) consisted of a broad peak centred at $\delta 8.80$, and sharp peaks that correspond to those of free DPSO. Very similar ${ }^{1} \mathrm{H}$ NMR data have been observed for mer$\left[\mathrm{RuCl}_{3}(\mathrm{DPSO})(\mathrm{DPSO})(\mathrm{MeOH})\right] .{ }^{52}$ The solution magnetic susceptibility of the complex $\mu_{\mathrm{eff}}=$ 2.33 B. M. corresponds to one unpaired electron.

The X-ray analysis revealed the presence of two O-bonded and one S-bonded DPSO ligands in a mer-geometry (Figure 3.35); the S-bonded sulfoxide is trans to an Obonded one. This is the first example of a Ru complex showing more O - than S -bonded sulfoxides (cf. mer-trans-[$\left.\left.\mathrm{RuCl}_{3}(\mathrm{DMSO})_{2}(\mathrm{DMSO})\right]\right)^{25} .{ }^{118}$

Table 3.19 summarizes geometrical data for the complex, and the related mer$\left[\mathrm{RuCl}_{3}(\mathrm{DPSO})(\mathrm{DPS} \underline{\mathrm{O}})(\mathrm{MeOH})\right]^{52}$. The $\mathrm{Ru}-\mathrm{Cl}$ bond distance trans to oxygen is $2.305(1) \AA$ which is shorter than the mutually trans Cl -atoms, $2.338(1)$ and $2.324(1) \AA$; in mer$\left[\mathrm{RuCl}_{3}(\mathrm{DPSO})(\mathrm{DPS} \underline{O})(\mathrm{MeOH})\right]$ (Figure 3.34) the $\mathrm{Ru}-\mathrm{Cl}$ bond distance trans to the O -atom of MeOH is $2.301(1) ~ \AA$ and the mutually trans $\mathrm{Ru}-\mathrm{Cl}$ bonds are $2.3165(9)$ and $2.339(1) ~ \AA .^{52}$ These data suggest that DPSO and MeOH (trans to Cl) have a similar trans influence, which is somewhat less than that of Cl . As expected, the $\mathrm{Ru}(\mathrm{III})-\mathrm{Cl}$ bond lengths are shorter than those found in $\mathrm{Ru}(\mathrm{II}) / \mathrm{Cl} /$ sulfoxide complexes (typically 2.39-2.45 \AA, Section 3.6), because of
the electrostatic effect of the greater charge on $\mathrm{Ru}(\mathrm{III}){ }^{120}$ In both DPSO complexes, the RuO distance trans to S is 0.02 to $0.03 \AA$ longer than the Ru-O bond trans to Cl , because of the greater trans influence of $\mathrm{S} v s . \mathrm{Cl}$. The Ru-S bond lengths (trans to an O -atom) in the trisand $\operatorname{bis}($ DPSO) complexes are 2.251(1) and 2.2391(9) \AA, respectively. These Ru-S bonds are shorter than those found for example, in trans-[(TMSO)H $]^{+}\left[\mathrm{RuCl}_{4}(\mathrm{TMSO})_{2}\right]^{-}(2.3219(8)$ \AA). ${ }^{105}$ A similar situation is found within $\mathrm{Ru}(\mathrm{II}) / \mathrm{DMSO}$ systems where the shorter $\mathrm{Ru}-\mathrm{S}$ bonds are those in which the S -atoms are trans to O (e.g. $2.248 \AA$ in cis- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$) while those trans to Cl or S are longer (e.g. $2.277 \AA$ in cis $-\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ and $2.353 \AA$ in trans- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4} .^{23,36,37}$ The sulfur-oxygen bond lengths of the O-bonded DPSO are $1.524(3)$ (trans to Cl) and $1.544(3) \AA$ (trans to S) in the tris DPSO complex, slightly longer than that found in mer-[$\left.\mathrm{RuCl}_{3}(\mathrm{DPSO})(\mathrm{DPSO})(\mathrm{MeOH})\right] 1.529(2) \AA$ (trans to S$)^{52}$. The sulfuroxygen bond distance in the S-bonded DPSO is $1.472(3) \AA$, the same as that of free DPSO; ${ }^{119}$ however, the sulfur-oxygen bond length found for the S-bonded DPSO in mer$\left[\mathrm{RuCl}_{3}(\mathrm{DPSO})(\mathrm{DPSO})(\mathrm{MeOH})\right]$ is just longer at $1.486(2) \AA^{52}$ and the increase was considered to be due to the interaction between the oxygen of the S-bonded DPSO and the hydroxyl proton of the bound $\mathrm{MeOH} .{ }^{52}$

Figure 3.35. An ORTEP diagram of mer-cis- $\left[\mathrm{RuCl}_{3}(\mathrm{DPS} \underline{\mathrm{O}})_{2}\right.$ (DPSO) $]$ showing 50% thermal ellipsoids; the H -atoms are omitted for clarity (crystal data are given in Appendix 1.11).

Table 3.19. Selected Bond Lengths (\AA) and Bond Angles (${ }^{\circ}$) for mer-cis$\left[\mathrm{RuCl}_{3}(\mathrm{DPSO})_{2}(\mathrm{DPSO})\right]$ and mer $-\left[\mathrm{RuCl}_{3}(\mathrm{DPSO})(\mathrm{DPSO})(\mathrm{MeOH})\right]$.

	mer-cis-[$\left.\mathrm{RuCl}_{3}(\mathrm{DPSO})_{2}(\mathrm{DPS} \mathrm{O})\right]$		$\begin{aligned} & \text { mer- } \\ & {\left[\mathrm{RuCl}_{3}(\mathrm{DPSO})(\mathrm{DPS} \underline{O})\right.} \\ & (\mathrm{MeOH})](\mathrm{ref} .52) \end{aligned}$
Bond or Angle	this work	Ref. 118	
$\mathrm{Ru}-\mathrm{Cl}$	$2.338(1), 2.324(1){ }^{\text {a }}$ 2.305(1)	$\begin{aligned} & 2.307(2), 2.337(2) ;^{a} \\ & 2.307(2)^{b} \end{aligned}$	$\begin{aligned} & 2.3165(9), 2.339(1)^{a} \\ & 2.301(1)^{b} \end{aligned}$
Ru-S	$2.251(1)^{\text {b }}$	$2.251(2)^{\text {b }}$	2.2391(9) ${ }^{\text {b }}$
Ru-O	2.090(3), ${ }^{a} 2.111(3)^{\text {c }}$	2.091(6), ${ }^{a} 2.114(5)^{c}$	2.094(3), ${ }^{a} 2.122(2)^{\text {c }}$
S-O	$1.524(3),{ }^{a} 1.472(3),{ }^{\text {b }}$ $1.544(3)^{c}$	$\begin{aligned} & 1.522(6),{ }^{a} \\ & 1.463(7),{ }^{b} 1.546(6)^{c} \end{aligned}$	1.486(2), ${ }^{\text {b }} 1.529(2){ }^{\text {c }}$
$\mathrm{Cl}-\mathrm{Ru}-\mathrm{Cl}$	172.63(5)	172.54(9)	172.03(4)
trans			
$\mathrm{Cl}-\mathrm{Ru}-\mathrm{O}$	173.70(9)	174.0(2)	175.02(8)
trans			
S-Ru-O trans	173.65(9)	173.5(2)	171.84(7)
$\mathrm{Cl}-\mathrm{Ru}-\mathrm{O}$ cis	86.82(9)-89.57(9)	86.3(1)-89.7(1)	85.93(9)-86.82(9)
$\mathrm{Cl}-\mathrm{Ru}-\mathrm{Cl}$ cis	93.02(4)-93.22(5)	93.17(8)-93.19(8)	92.11(4)-94.84(4)
Cl-Ru-S cis	91.18(5)-98.86(4)	91.19(7)-98.88(8)	90.31(3)-99.06(4)
O-Ru-S cis	87.42(9)	87.1(2)	85.61(8)
O-Ru-O cis	86.5(1)	86.6(2)	86.8(1)

[^7]
3.11 Macrocyclic Thioether, DMSO Complexes of Ruthenium

Interest in the coordination chemistry of macrocyclic thioethers has stemmed from the observation that these can bind to a range of transition metal ions to form stable complexes. ${ }^{121}$ In this present work, the goal was to synthesize and characterize Ru /sulfoxide/macrocyclic thioether complexes and study how the macrocycle might affect the in vitro properties of the Ru sulfoxide moiety, particularly the cytotoxicity, accumulation and DNA-binding properties with respect to Chinese hamster ovary cells (Chapter 4).

3.11.1 3,6,9,14-Tetrathiabicyclo[9.2.1]tetradeca-11,13-diene [L]

This structurally characterized macrocyclic thioether ligand ${ }^{122}$ (Figure 3.36) was used as purchased from Aldrich; the structure shows the thiophene moiety to be placed 60° relative to the plane of the three S -atoms of the macrocycle, all the S -atoms lying in exocyclic positions with respect to the macrocyclic cavity. Inclusion of the thiophene sub-unit imposes limitations on the possible orientations of the S -atom electron pairs and on the size and shape of the cavity. Several metal complexes of this macrocyclic thioether are known, for example, with $\mathrm{Cu}(\mathrm{I}),{ }^{123} \mathrm{Cu}(\mathrm{II}){ }^{123}$ and $\mathrm{Pd}($ II) $){ }^{124}$

Figure 3.36. 3,6,9,14-Tetrathiabicyclo[9.2.1]tetradeca-11,13-diene (L), and 1,4,7,10tetrathiacyclododecane (12-S-4); H-atoms omitted. Adapted from refs. 122 and 125, respectively.

3.11.2 $\mathrm{RuCl}_{2}(\mathrm{DMS} \mathrm{O})(\mathrm{L})$

A $\mathrm{Ru}(\mathrm{II})$ complex containing ligand $\mathrm{L}, \mathrm{RuCl}_{2}(\mathrm{DMSO})(\mathrm{L})$, was synthesized by sulfoxide displacement from cis- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ and structurally characterized (Figure 3.37, Tables 3.20 and 3.21).

Three S -atoms of the ligand coordinate in a fac-arrangement. Two five-membered rings are formed, one involving the S-atom of the thiophene and $S(2)$ of the macrocycle, and the other involving the $S(2)$ - and $S(3)$-atoms. One eight-membered ring is formed between the S -atom of the thiophene, the Ru and $\mathrm{S}(3)$-atom of the macrocycle. The S-bound DMSO is trans to $\mathrm{S}(3)$ of the macrocycle, $\mathrm{Cl}(2)$ is trans to $\mathrm{S}(2)$, and $\mathrm{Cl}(1)$ is trans to the thiophene S . The complex has slightly distorted octahedral geometry at the $\mathrm{Ru}(\mathrm{II})$ centre with trans angles ranging from $171.63(8)-175.80(9)^{\circ}$, and cis angles ranging from $82.27(8)-100.25(8)^{\circ}$ (Table 3.20). The Ru-S bond lengths (macrocycle) are 2.320(2) and 2.300(2) \AA trans to Cl , and 2.375(2) Å trans to S (Table 3.21). The eight-membered chelate ring of $\mathrm{S}(1)-\mathrm{Ru}-\mathrm{S}(3)$ spans an angle of $100.25(8)^{\circ}$, and the five-membered chelate rings span angles of 85.64(9) and $88.42(7)^{\circ}$. The sulfur-oxygen bond length is $1.479(8) \AA$, and the Ru-S(DMSO) bond (trans
to S) is $2.290(2) \AA$. The two $\mathrm{Ru}-\mathrm{Cl}$ bond lengths are $2.400(2)$ and $2.430(2) \AA$. The crystallographic data show that the macrocycle changes remarkably little upon coordination.

The solid state \mathbb{R} spectrum of the complex exhibits a strong v_{so} at $1083 \mathrm{~cm}^{-1}$ of the S-bonded DMSO (free DMSO $v_{\text {so }} 1055 \mathrm{~cm}^{-1}$). The ${ }^{1} \mathrm{H}$ NMR spectrum (DMSO- d_{6}) exhibits a multiplet centred at $\delta 7.1$ assigned to the olefinic protons, and a complex pattern centred between δ 2.7-4.5 presumably because of the overlap of the resonances of the H -atoms of the macrocycle with those of the S-bound DMSO.

Figure 3.37. An ORTEP diagram of RuCl_{2} (DMSO)(L) showing 50% thermal ellipsoids; the H -atoms are omitted for clarity (crystal data are given in Appendix 1.12).

Table 3.20. Comparison of Selected Bond Angles $\left({ }^{\circ}\right)$ of L and $\mathrm{RuCl}_{2}(\mathrm{DMSO})(\mathrm{L})$.

Bond angle	L(ref. 122)	RuCl $_{2}(\mathrm{DMSO}$)(L)
$\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{C}(8)$	$91.7(3)$	$92.3(5)$
$\mathrm{C}(2)-\mathrm{S}(2)-\mathrm{C}(3)$	$101.7(3)$	$97.3(5)$
$\mathrm{C}(4)-\mathrm{S}(3)-\mathrm{C}(5)$	$101.2(3)$	$101.9(4)$
$\mathrm{C}(6)-\mathrm{S}(4)-\mathrm{C}(7)$	$102.4(3)$	$100.7(4)$
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(10)$	$109.8(4)$	$111.0(7)$
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$120.6(5)$	$115.4(7)$
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)$	$129.5(5)$	$133.0(9)$
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	$115.2(5)$	$112.8(9)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$111.6(5)$	$115.2(10)$
$\mathrm{S}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$111.6(4)$	$108.1(8)$
$\mathrm{S}(1)-\mathrm{C}(8)-\mathrm{C}(7)$	$119.2(4)$	$122.4(7)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	$128.8(5)$	$129.4(9)$
$\mathrm{S}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	$115.3(5)$	$110.3(7)$
$\mathrm{S}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$112.2(4)$	$109.6(6)$
$\mathrm{S}(3)-\mathrm{C}(4)-\mathrm{C}(3)$	$111.8(4)$	$111.7(6)$
$\mathrm{S}(3)-\mathrm{C}(5)-\mathrm{C}(6)$	$114.2(5)$	$106.6(6)$
$\mathrm{S}(4)-\mathrm{C}(6)-\mathrm{C}(5)$	$114.7(5)$	$113.9(6)$
$\mathrm{S}(4)-\mathrm{C}(7)-\mathrm{C}(8)$	$112.8(4)$	$114.2(7)$
cis angles		$82.27(8)-100.25(8)$
trans angles		$171.63(8)-175.80(9)$
$\mathrm{S}(1)-\mathrm{Ru}-\mathrm{S}(3)$		$100.25(8)$
$\mathrm{S}(2)-\mathrm{Ru}-\mathrm{S}(3)$		$85.42(7)$
$\mathrm{S}(1)-\mathrm{Ru}-\mathrm{S}(2)$		

Table 3.21. Comparison of Selected Bond Lengths (\AA) of L and $\mathrm{RuCl}_{2}(\mathrm{DMSO})(\mathrm{L})$.

Bond	L (ref. 122)	$\mathrm{RuCl}_{2}(\mathrm{DMSO})(\mathrm{L})$
S(1)-C(1)	1.737(5)	1.764(9)
$\mathrm{S}(1)-\mathrm{C}(8)$	1.721(5)	1.749(5)
$\mathrm{S}(2)$-C(2)	1.805(8)	1.82(1)
S(2)-C(3)	1.816(7)	1.846(10)
S(3)-C(4)	1.814(6)	1.822(9)
S(3)-C(5)	1.800(7)	1.808(9)
S(4)-C(6)	1.800(8)	1.784(10)
S(4)-C(7)	1.840(8)	1.81(1)
$\mathrm{C}(1)-\mathrm{C}(10)$	1.344(9)	1.32(1)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.485(8)	1.48(1)
C(10)-C(9)	1.406(9)	1.44(2)
C(9)-C(8)	1.363(8)	1.36(1)
C(8)-C(7)	1.505(8)	1.50(1)
C(3)-C(4)	1.529(9)	1.49(1)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.53(1)	1.57(1)
$\mathrm{Ru}-\mathrm{Cl}(1)$		$2.400(2)$
$\mathrm{Ru}-\mathrm{Cl}(2)$		2.430(2)
Ru-S(1)		2.320(2)
Ru-S(2)		2.300(2)
Ru-S(3)		2.375(2)
Ru-S(5)		2.290(2)
S-O		1.479(8)

3.11.3 1,4,7,10-Tetrathiacyclododecane (12-S-4)

This macrocyclic thioether ligand ${ }^{125,126}$ (Figure 3.36) was used as purchased from Aldrich. In the solid state, 12-S-4 adopts a square conformation with the S -atoms at the corners, giving a structure with the terminal S-atoms forming two "bracket" units, and all eight C-S bonds assume mutually gauche placements in order to minimize $S \cdots S$ repulsions by incorporating an exo formation where the S-atoms point out of the macrocyclic ring. ${ }^{125,127}$ These observations explain the tendency for tetrathia-macrocycles to bind to metal ions in an exo manner. ${ }^{125}$ Complexes with $\mathrm{Ni}(\mathrm{II}),{ }^{126} \mathrm{Cu}(\mathrm{I}){ }^{128} \mathrm{Cu}(\mathrm{II}){ }^{128}$ and $\mathrm{Pt}(\mathrm{II}){ }^{129}$ are known.

3.11.4 [Ru(12-S-4)(DMSOO) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right][O T f]_{2}$

The $\mathrm{Ru}(\mathrm{II})$ complex of $12-\mathrm{S}-4$ was synthesized by sulfoxide displacement from cisRuCl_{2} (DMSO) $)_{4}$, followed by Cl^{-}abstraction by utilization of AgOTf. The six-coordinate complex has a slightly distorted octahedral geometry (Figure 3.38, Tables 3.22 and 3.23) with trans angles that range from $166.83(2)-178.17(5)^{\circ}$ and cis angles that range from $84.29(2)-$ $100.72(2)^{\circ}$ (Table 3.22). The Ru-S(macrocycle) bond lengths range from 2.2903(6)$2.3907(6) \AA$. The S-bound DMSO ligand is trans to $S(2)$ and has a Ru-S bond length of $2.3011(6) \AA$; the sulfur-oxygen bond length is $1.494(2) \AA$. The Ru-O bond length is $2.193(2)$ \AA which is comparable to others found within $\mathrm{Ru}(\mathrm{II})$-aqua complexes (e.g. values for $\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2} \quad$ (Table $\left.\quad 3.7\right), \quad \mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)(\mathrm{P}-\mathrm{N})\left(\mathrm{H}_{2} \mathrm{O}\right) \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6},{ }^{130}$ $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)(\mathrm{P}-\mathrm{N})\left(\mathrm{H}_{2} \mathrm{O}\right) \cdot 1.5 \mathrm{C}_{6} \mathrm{H}_{6},{ }^{130}$ and $\mathrm{RuCl}_{2}\left(\mathrm{P}(p-\text { tolyl })_{3}\right)(\mathrm{P}-\mathrm{N})\left(\mathrm{H}_{2} \mathrm{O}\right){ }^{130}(\mathrm{P}-\mathrm{N}=[o-(\mathrm{N}, \mathrm{N}-$ dimethylamino)phenyl]diphenylphosphine) are $2.140(3), 2.238(3), 2.187(2)$ and $2.252(4) \AA$, respectively). The coordinated $\mathrm{H}_{2} \mathrm{O}$ is H -bonded to the O -atoms of the two triflate anions.

The average $\mathrm{H} . \ldots \mathrm{O}$ distance is $1.905 \AA$ is $0.795 \AA$ shorter than the sum of the van der Waals radii of an H - and an O -atom $(2.70 \AA)^{70}$ and indicates a strong interaction between the bound $\mathrm{H}_{2} \mathrm{O}$ molecule and the two triflate anions. Tables 3.22 and 3.23 compare selected bond angles and bond lengths, respectively, of free 12-S-4 with those of the complex $[\mathrm{Ru}(12-\mathrm{S}-$ 4)(DMSO) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}$. The crystallographic data show that the macrocycle does not change much upon coordination.

A strong $v_{\text {so }}$ band was observed in the solid state \mathbb{R} spectrum of the complex at $1082 \mathrm{~cm}^{-1}$ attributed to the S-bonded DMSO. The ${ }^{1} \mathrm{H}$ NMR spectrum (MeOD) shows a complex pattern for the protons of the complex centred at $\delta 3.1$ presumably because of the presence of the diastereomeric H -atoms of the macrocycle and the methyl groups of the S bound DMSO. This complex was tested in vitro for cytotoxicity, accumulation and DNAbinding properties in Chinese hamster ovary cells with the results presented in Chapter 4.

Table 3.22. Comparison of Selected Bond Angles (${ }^{\circ}$) of $12-\mathrm{S}-4$ and $[\mathrm{Ru}(12-\mathrm{S}-$ 4)(DMSO) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}$.

Bond angle	12-S-4 (ref.125)	$\left[\mathrm{Ru}(12-\mathrm{S}-4)(\mathrm{DMSO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}$
$\mathrm{C}(8)-\mathrm{S}(1)-\mathrm{C}(1)$	$101.3(2)$	$101.5(1)$
$\mathrm{C}(3)-\mathrm{S}(2)-\mathrm{C}(2)$	$102.2(3)$	$106.1(1)$
$\mathrm{C}(4)-\mathrm{S}(3)-\mathrm{C}(5)$	$100.7(3)$	$100.6(1)$
$\mathrm{C}(7)-\mathrm{S}(4)-\mathrm{C}(6)$	$100.8(2)$	$106.4(1)$
cis angles		$84.29(2)-100.72(2)$
trans angles		$166.83(2)-178.17(5)$

Figure 3.38. An ORTEP diagram of $\left[\mathrm{Ru}(12-\mathrm{S}-4)(\mathrm{DMSO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}$ showing 50% thermal ellipsoids; the H -atoms are omitted for clarity (crystal data are give in Appendix 1.13).

Table 3.23. Comparison of Selected Bond Lengths (\AA) of $12-\mathrm{S}-4$ and $[\mathrm{Ru}(12-\mathrm{S}-$ 4)(DMSO) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}$.

Bond	$12-\mathrm{S}-4$ (ref. 125)	$\left[\mathrm{Ru}(12-\mathrm{S}-4)(\mathrm{DMSO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}$
$\mathrm{~S}(1)-\mathrm{C}(1)$	$1.826(5)$	$1.864(3)$
$\mathrm{S}(1)-\mathrm{C}(8)$	$1.806(5)$	$1.860(3)$
$\mathrm{S}(2)-\mathrm{C}(3)$	$1.801(6)$	$1.823(3)$
$\mathrm{S}(2)-\mathrm{C}(2)$	$1.808(6)$	$1.822(3)$
$\mathrm{S}(3)-\mathrm{C}(4)$	$1.815(6)$	$1.872(3)$
$\mathrm{S}(3)-\mathrm{C}(5)$	$1.820(5)$	$1.851(3)$
$\mathrm{S}(4)-\mathrm{C}(6)$	$1.825(5)$	$1.837(3)$
$\mathrm{S}(4)-\mathrm{C}(7)$	$1.817(5)$	$1.528(4)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.505(8)$	$1.525(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.528(8)$	$1.526(4)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.504(8)$	$1.533(4)$.
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.508(8)$	$2.3852(6)$
$\mathrm{Ru}-\mathrm{S}(1)$		$2.3708(6)$
$\mathrm{Ru}(2)$		$2.3907(6)$
$\mathrm{Ru}-\mathrm{S}(3)$		$2.2903(6)$
$\mathrm{Ru}(4)$		$2.3011(6)$
$\mathrm{Ru}(\mathrm{S}(5)$		$2.193(2)$
Ru (O		$1.494(2)$
$\mathrm{S}-\mathrm{O}$		

3.12 References for Chapter 3

Cotton, F. A.; Francis, R. J. Am. Chem. Soc. 1960, 82, 2986.
Davies, J. A. Adv. Inorg. Chem. Radiochem. 1981, 24,115.
Sze, K. H.; Brion, C. E.; Tronc, M.; Bodeur, S.; Hitchcock, A. P. Chem. Phys. 1988, 121, 279.

Kagan, H. B.; Ronan, B. Rev. Heteroatom. Chem. 1992, 7, 92.
Reynolds, W. L. Prog. Inorg. Chem. 1970, 12, 1.
Rayner, D. R.; Miller, E. G.; Bickart, P.; Gordon, A. J.; Mislow, K. J. Am. Chem. Soc. 1966, 88, 3138.
Jacobus, J.; Mislow, K. J. Am. Chem. Soc. 1967, 89, 5228.
Bhandary, K. K.; Manohar, H.; Venkatesan, K. Indian J. Pure Appl. Phys. 1976, 14, 771.

Thomas, R.; Shoemaker, C. B.; Eriks, K. Acta Cryst. 1966, 21, 12.
Bastiansen, O.; Viervoll, H. Acta Chem. Scand. 1948, 2, 702.
Viswamitra, M. A.; Kannan, K. K. Nature 1966, 209, 1016.
Bennett, M. J.; Cotton, F. A.; Weaver, D. L.; Williams, R. J.; Watson, W. H. Acta Cryst. 1967, 23, 788.
(a) Coulson, C. A.; Zauli, C. Mol. Phys. 1963, 6, 525;
(b) Sato, T.; Takahashi, Y.; Yabe, K. Bull. Chem. Soc. Jap. 1967, 40, 298;
(c) Takahashi, Y.; Yabe, K.; Sato, T. Bull. Chem. Soc. Jap. 1970, 42, 2707;
(d) Nikolaev, A. V.; Torgov, V. G.; Andrievskii, V. N.; Gal'tsova, E. A.; Gil'bert, E. N.; Kotlyarovskii, I. L.; Mazalov, L. N.; Mikhailov, V. A.; Cheremisina, I. M. Russ. J. Inorg. Chem. 1970, 15, 685 and references therein.
Calligaris, M.; Carugo, O. Coord. Chem. Rev. 1996, 153, 83.
(a) Pearson, R. G. . J. Am. Chem. Soc. 1963, 85, 3533;
(b) Pearson, R. G. J. Chem. Educ. 1987, 64, 561;
(c) Pearson, R. G. Coord. Chem. Rev. 1990, 100, 403;
(d) Pearson, R. G. Chemical Hardness - An Historical Introduction, in Structure and Bonding (ed. K. D. Sen), Springer-Verlag, Berlin, 1993, 80, p. 1.

Burmeister, J. L., Basolo, F. Inorganic Linkage Isomerism of the Thiocyanate Ion, in Hard and Soft Acids and Bases (ed. R. G. Pearson), Dowden, Hutchinson and Ross Inc., Stroudsburg, Pennsylvania, 1973, p. 300.
Davies, J. A. Hartley, F. R.; Murray, S. G. J. Chem. Soc. Dalton Trans. 1979, 1705.

Wayland, B. B.; Schramm, R. F. Inorg. Chem. 1969, 8, 971.
Bennett, M. J.; Cotton, F. A.; Weaver, D. L. Nature 1966, 212, 286.
Bennett, M. J.; Cotton, F. A.; Weaver, D. L. Acta Cryst. 1967, 23, 581.
Willet, R. D.; Chang, K. Inorg. Chim. Acta 1970, 4, 447.
Melanson, R.; Rochon, F. D. Can. J. Chem. 1975, 53, 2371.
Mercer, A.; Trotter, J. J. Chem. Soc. Dalton Trans. 1975, 2480.
Colamarino, P.; Orioli, P. J. Chem. Soc. Dalton Trans. 1976, 845.
Alessio, E.; Balducci, G.; Calligaris, M.; Costa, G.; Attia, W. M.; Mestroni, G. Inorg. Chem. 1991, 30, 609.
Tanase, T.; Aiko, T.; Yamamoto, Y. J. Chem. Soc. Dalton Trans. 1996, 2341.
(a) Calligaris, M.; Faleschini, P.; Alessio, E. Acta Cryst. 1993, C49, 663;
(b) Ghosh, P.; Pramanik, A. Acta Cryst. 1995, C5I, 824.

Geremia, S.; Mestroni, S.; Calligaris, M.; Alessio, E. J. Chem. Soc. Dalton Trans. 1998, 2447.
Drysdale, K. D.; Beck, E. J.; Cameron, T. S.; Robertson, K. N.; Aquino, M. A. S. Inorg. Chim. Acta 1997, 256, 243.
House, D. A.; Steel, P. J. Inorg. Chim. Acta 1998, 269, 229.
McDonagh, A. M.; Humphrey, M. G.; Hockless, D. C. R. Aust. J. Chem. 1998, 51, 807.
(a) Evans, I. P.; Spencer, A., Wilkinson J. Chem. Soc. Dalton Trans. 1973, 204;
(b) McMillan, R. S.; Mercer, A.; James, B. R.; Trotter, J. J. Chem. Soc. Dalton Trans. 1975, 1006.
Kitching, W.; Moore, C. J.; Doddrell, D. Aust. J. Chem. 1969, 22, 1149.
Kitching, W.; Moore, C. J.; Doddrell, D. Inorg. Chem. 1970, 9, 541.
(a) Yapp, D. T. T.; Jaswal, J. S.; Rettig, S. J.; James, B. R.; Skov, K. A. Inorg. Chim. Acta 1990, 177, 199;
(b) Jaswal, J. S.; Yapp, D. T. T.; Rettig, S. J.; James, B. R.; Skov, K. A. J. Chem. Soc., Chem. Commun. 1992, 1528.

Alessio, E.; Mestroni, G.; Nardin, G.; Attia, W. M.; Calligaris, M.; Sava, G.; Zorzet, S. Inorg. Chem. 1988, 27, 4099.

Jaswal, J. S.; Rettig, S. J.; James, B. R. Can. J. Chem. 1990, 68, 1808.
Oliver, J. D.; Riley, D. P. Inorg. Chem. 1984, 23, 156.
Hull, M.; Bargar, T. W. J. Org. Chem. 1975, 40, 3152.
(a) Bell, E. V.; Bennett, G. M. J. Chem. Soc. 1927, 1798;
(b) Bennett, G. M.; Statham, F. S. J. Chem. Soc. 1931, 1684.

Madesclaire, M. Tetrahedron 1986, 42, 5459.
Ravikumar, K. S.; Bégué J-P.; Bonnet-Delpon, D. Tetrahedron Lett. 1998, 39, 3141.

Svinning, T.; Mo, F.; Bruun, T. Acta Cryst. 1976, B32, 759.
Cattalini, L.; Michelon, G.; Marangoni, G.; Pelizzi, G. J. Chem. Soc. Dalton Trans. 1979, 96.

Taddei, F. Boll. Sci. Fac. Chim. Ind. Bologna 1968, 26, 107.
Personal communication from S. Colonna.
Zipp, A. P.; Madan, S. K. Inorg. Chim. Acta 1977, 22, 49, and references therein.
Zhu, F. C.; Shao, P. X.; Yao, X. K. Wang, R. J.; Wang, H. G. Inorg. Chim. Acta 1990, 171, 85.

Calligaris, M. Personal communication to B. R. James.
Nieuwenhuyse, H.; Louw, R. J. Chem. Soc., Perkins I 1973, 839.
Madan, S. K.; Hull, C. M.; Herman, L. J. Inorg. Chem. 1968, 7, 491.
Yapp, D. T. T. Ph. D. Dissertation, University of British Columbia, Vancouver, 1993.

Yapp, D. T. T.; Rettig, S. J.; James, B. R.; Skov, K. A. Inorg. Chem. 1997, 36, 5635.

De Azevedo Jr., W. F.; Mascarenhas, Y. P.; De Sousa, G. F.; Filgueiras, C. A. L. Acta Cryst. 1995, C5I, 619.

Carvalho, C. C.; Francisco, R. H. P.; Gambardella, M. T. do P.; de Sousa, G. F.; Filgueiras, C. A. L. Acta Cryst. 1996, C52, 1627.

Filgueiras, C. A. L.; Holland, P. R.; Johnson, B. F. G.; Raithby, P. R. Acta Cryst. 1982, B38, 2684.

Musgrave, T. R.; Kent, G. D. J. Coord. Chem. 1972, 2, 23.
Francisco, R. H. P.; Gambardella, M. T. P.; Rodrigues, A. M. G. D.; de Souza, G. F.; Filgueiras, C. A. L. Acta Cryst. 1995, C51, 604.

Filgueiras, C. A. L.; Holland, P. R.; Johnson, B. F. G.; Raithby, P. R. Acta Cryst. 1982, B38, 954.
Khiar, N.; Fernández, I.; Alcudia, F. Tetrahedron Lett. 1993, 34, 123.
Tokunoh, R.; Sodeoka, M.; Aoe, K.; Shibasaki, M. Tetrahedron Lett. 1995, 36, 8035.

James, B. R.; Morris, R. H.; Reimer, K. J. Can. J. Chem. 1977, 55, 2353.
(a) McMillan, R. S. Ph. D. Dissertation, University of British Columbia, Vancouver, 1976;
(b) James, B .R.; McMillan, R. S. Can. J. Chem. 1977, 55, 3927;
(c) James, B. R.; McMillan, R. S.; Morris, R. H.; Wang, D. K. W. Ruthenium and Rhodium Hydrides Containing Chiral Phosphine or Chiral Sulfoxide Ligands, and Catalytic Asymmetric Hydrogenation in Advances in Chemistry Series, No. 167 Transition Metal Hydrides (ed. R. Bau), American Chemical Society, Washington, 1978, p. 122.
Komori, T.; Nonaka, T. J. Am. Chem. Soc. 1984, 106, 2656.
van Deurzen, M. P. J.; Remkes, I. J.; van Rantwijk, F.; Sheldon, R. A. J. Mol. Cat. A: Chemical 1997, 117, 329.

Allin, S. M. Organosulfur Chem. 1998, 2, 41.
(a) Chan, P. K. L.; Chan, P. K. H.; Frost, D. C.; James, B. R.; Skov, K. A. Can. J. Chem. 1988, 66, 117;
(b) Chan, P. K. L.; James, B. R.; Frost, D. C.; Chan, P. K. H.; Hu, H-L.; Skov, K. A. Can. J. Chem. 1989, 67, 508;

Geremia, S.; Vicentini, L.; Calligaris, M. Inorg. Chem. 1998, 37, 4094.
Rettig, S. J. Private communication.
Huheey, J. E. Inorganic Chemistry (3rd ed.), Harper \& Row, New York, 1983, p. 269.
(a) Huheey, J. E. Inorganic Chemistry (3rd ed.), Harper \& Row, New York, 1983, p. 362 ;
(b) Geary, W. J. Coord. Chem. Rev. 1971, 7, 110.

Glasstone, S. Textbook of Physical Chemistry (2nd ed.), MacMillan and Co.
Limited, London, 1951, p. 892.
Chioccola, G.; Daly, J. J. J. Chem. Soc. (A) 1968, 1981.
Cotton, F. A.; Ucko, D. A. Inorg. Chim. Acta 1972, 6, 161.
(a) Bennett, M. J.; Caulton, K. G.; Cotton, F. A. Inorg. Chem. 1969, 8, 1;
(b) Cotton, F. A. Chem. Soc. Rev. 1975, 4, 27.

Jones, R. A.; Wilkinson, G.; Colquohoun, I. J.; McFarlane, W.; Galas, A. M. R.; Hursthouse, M. B. J. Chem. Soc. Dalton Trans. 1980, 2480.

Schumann, H.; Opitz, J.; Pichardt, J. J. Organomet. Chem. 1977, 128, 253.
Mattson, B. M.; Heiman, J. R.; Pignolet, L. H. Inorg. Chem. 1976, 15, 564.
Dekleva T. W.; Thorburn, I. S.; James, B. R., Inorg. Chim. Acta 1985, 100, 49.
Sirigu, A.; Bianchi, M.; Benedetti, E. J. Chem. Soc., Chem. Commun. (D) 1969, 596.

Crutchley, R. J. Adv. Inorg. Chem. 1994, 41, 273.
Allen, G. C.; Hush, N. S. Prog. Inorg. Chem. 1967, 8, 357.
Robin, M. B.; Day, P. Adv. Inorg. Chem. Radiochem. 1967, 10, 247.
Shriver, D. E.; Atkins, P. W.; Langford, C. H. Inorganic Chemistry, W. H. Freeman and Company, New York, 1990, p. 461.
Creutz, C. Prog. Inorg. Chem. 1983, 30, 1.
Clausen III, C. A.; Prados, R. A.; Good, M. L. Inorg. Nucl. Chem. Lett. 1971, 7, 485.

Mercer, E. E.; Dumas, P. E. Inorg. Chem. 1971, 10, 2755.
(a) Gilbert, J. D.; Rose, D., Wilkinson, G. J. Chem. Soc. (A) 1970, 2765;
(b) Seddon, E. A.; Seddon, K. R. The Chemistry of Ruthenium, Elsevier, Amsterdam, 1984, p. 310.

Rose, D.; Wilkinson, G. J. Chem. Soc. (A) 1970, 1791.
Bino, A.; Cotton, F. A. J. Am. Chem. Soc. 1980, 102, 608.
Bottomley, F.; Tong, S. B. Can. J. Chem. 1971, 49, 3739.
Creutz, C.; Taube, H. J. Am. Chem. Soc. 1969, 91, 3988.
Gibson, J. F.; Poole, R. K.; Hughes, M. N.; Rees, J. F. Arch. Microbiol. 1984, 139, 265.

Hughes, M. N.; O'Reardon, D.; Poole, R. K.; Hursthouse, M. B.; Thornton-Pett, M. Polyhedron 1987, 6, 1711.

Beattie, J. K.; Del Favero, P.; Hambley, T. W.; Hush, N. S. Inorg. Chem. 1988, 27, 2000.

Thorburn, I. S.; Rettig, S. J.; James, B. R. Inorg. Chem. 1986, 25, 234.
Rosenberg, B.; Van Camp, L.; Krigas, T. Nature 1969, 205, 698.
Rosenberg, B. Cancer Chemother. Rep. 1975, 59, 589.
Barton, J. K.; Szalda, D. J.; Rabinowitz, H. N.; Waszczak, J. V.; Lippard, S. J. J. Am. Chem. Soc. 1979, 101, 1434.
Lock, C. J. L.; Persie, H. J.; Rosenberg, B.; Turner, G. J. Am. Chem. Soc. 1978, 100, 3371.

Geraldes, C. F. G. C.; Aragon-Salgado, M.; Martin-Gil, J. Polyhedron, 1991, 10, 799.

Matsumoto, K.; Sakai, K.; Nishio, K.; Tokisue, Y.; Ito, R.; Nishide, T.; Shichi, Y. J. Am. Chem. Soc. 1992, 114, 8110.

Geremia, S.; Calligaris, M.; Mestroni, S. Inorg. Chim. Acta 1999, 292, 144.
Taqui Khan, M. M.; Ramachandraiah, G.; Prakash Rao, A. Inorg. Chem. 1986, 25, 665.

Alessio, E.; Milani, B.; Mestroni, G.; Calligaris, M.; Faleschini, P.; Attia, W. M. Inorg. Chim. Acta 1990, 177, 255.

Halpern, J.; James, B. R. Can. J. Chem. 1966, 44, 495.
Hui, B. C.; James, B. R. Can. J. Chem. 1974, 52, 348.
Lipponer, K-G.; Vogel, E.; Keppler, B. K. Metal-Based Drugs 1996, 3, 243.
Ledlie, M. A.; Allum, K. G.; Howell, I. V.; Pitkethley, C. R. J. Chem. Soc. Perkin I 1976, 1734.

Chatt, J.; Leigh, G. J.; Storace, A. P. J. Chem. Soc. (A) 1971, 1380.
Lucas, C. R.; Liu, S.; Newlands, M. J.; Gabe, E. J. Can. J. Chem. 1990, 68, 1357.
Hartley, F. R.; Murray, S. G.; Levason, W.; Soutter, H. E.; McAuliffe, C. A: Inorg. Chim. Acta 1979, 35, 265.

Murray, S. G.; Levason, W.; Tuttlebee, H. E. Inorg. Chim. Acta 1981, 51, 185.
Song, H.; Haltiwanger, R. C.; Rakowski-DuBois, M. Organometallics 1987, 6, 2021.

Shao, P.; Yao, X.; Wang, H.; Wang, W.; Liu, B.; Li, M.; Luo, L.; Xu, D. Gaodeng Xuexiao Huaxue Xuebao 1991, 12, 143 (from Chem. Abstr. 1998, 115, 190904).

Schenk, W. A.; Frisch, J.; Dürr, M.; Burzlaff, N.; Stalke, D.; Fleischer, R.; Adam, W.; Prechtl, F.; Smerz, A. K. Inorg. Chem. 1997, 36, 2372.

James, B. R.; Morris, R. H. Can. J. Chem. 1980, 58, 399.
Calligaris, M.; Faleschini, P.; Todone, F.; Alessio, E.; Geremia, S. J. Chem. Soc. Dalton Trans. 1995, 1653.

Abrahams, S. C. Acta Cryst. 1957, 10, 417.
Stynes, H. C.; Ibers, J. A. Inorg. Chem. 1971, 10, 2304.
(a) DeSimone, R. E.; Glick, M. D. Inorg. Chem. 1978, 17, 3574;
(b) Schröder, M. Pure Appl. Chem. 1988, 60, 517.

Lucas, C. R.; Shuang, L.; Newlands, M. J.; Charland, J-P.; Gabe, E. J. Can. J. Chem. 1988, 66, 1506.
(a) Lucas, C. R.; Liu, S.; Newlands, M. J.; Charland, J-P.; Gabe, E. J. Can. J. Chem. 1989, 67, 639;
(b) Lucas, C. R.; Liu, S.; Thompson, L. K. Inorg. Chem. 1990, 29, 85;
(c) Lucas, R. C.; Shuang, L.; Newlands, M. J.; Charland, J-P.; Gabe, E. J. Can. J. Chem. 1988, 66, 1506.

124 Liu, S.; Lucas, C. R.; Newlands, M. J.; Charland, J-P. Inorg. Chem. 1990, 29, 4380.

Wolf Jr., R. E.; Hartman, J. R.; Storey, J. M. E.; Foxman, B. M.; Cooper, S. R. J. Am. Chem. Soc. 1987, 109, 4328.
(a) Rosen, W.; Busch, D. H. J. Am. Chem. Soc. 1969, 91, 4694;
(b) Rosen, W.; Busch, D. H. Inorg. Chem. 1970, 9, 262.

Robinson, G. H.; Sangokoya, S. A. J. Am. Chem. Soc. 1988, 110, 1494.
Gorewit, B. V.; Musker, W. K. J. Coord. Chem. 1976, 5, 67.
Blake, A. J.; Holder, A. J.; Reid, G.; Schröder, M. J. Chem. Soc. Dalton Trans. 1994, 627.

Ma, E. S. F. Ph. D. Dissertation, University of British Columbia, Vancouver, 1999.

Chapter 4

Preliminary In Vitro Examination of Water-soluble Ru Sulfoxide Complexes

4.1 Introduction

As outlined in Chapter 1, preliminary investigation into the in vitro activity of water-soluble ruthenium bis-chelating sulfoxide complexes was suggested by reports of the anti-tumour activity of cis- and trans- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4},{ }^{1}$ and other Ru-DMSO complexes. ${ }^{2,3}$ These reports show that Ru-sulfoxide complexes exhibit anti-leukaemic, ${ }^{4}$ anti-metastatic ${ }^{5}$ and anti-neoplastic ${ }^{6}$ activity without appreciable toxicities to the murine host. In addition, the complex $\mathrm{Na}\left[\right.$ trans- $\left.\mathrm{RuCl}_{4}(\mathrm{DMSO})(\mathrm{Im})\right]$ exhibits no cytotoxicity in tumour cells; however, it does reduce lung metastasis formation to less than 10% of that seen in controls. ${ }^{7}$ Studies of reactions between cis- and trans- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ and DNA have shown that these complexes accumulate in cells ${ }^{8}$ and bind to bases, ${ }^{9}$ nucleosides, ${ }^{10,11}$ and nucleotides. ${ }^{12-14}$ Durig et al. ${ }^{15}$ and Gibson et al. ${ }^{16}$ have studied the ability of Ru complexes to induce filamentous growth in E. coli, which is an indication of possible DNA damage, suggesting interaction between the complex and DNA (Section 1.3.1). Previous work in this laboratory has suggested that transRuCl_{2} (disulfoxide) $)^{8,17}$ complexes accumulate in cells and bind to DNA to a greater degree than cis- RuCl_{2} (disulfoxide) ${ }_{2}$ complexes (chelating disulfoxide $=$ BMSE, BESE, BPSE and BMSP, see Chapter 1). The ability of these complexes to traverse the cell membrane and to bind to DNA are two important considerations, as DNA is considered to be a main target for anti-tumour activity. For example, $\mathrm{Na}\left[\right.$ trans $\left.-\mathrm{RuCl}_{4}(\mathrm{DMSO})(\mathrm{Im})\right]$ interacts with nucleic acids which results in a reduction of nucleic acid activity (Chapter 1). ${ }^{7}$ Complexes which accumulate in the cell and bind to DNA may also exhibit toxicity which is relevant.

The toxicities, accumulation and DNA-binding characteristics in Chinese hamster ovary (CHO) cells (under oxic and hypoxic conditions) of selected Ru -sulfoxides are presented in this chapter. The five complexes, discussed in Chapter 3 and listed in Table 4.1 were selected for in vitro studies because of solubility in aqueous solutions.

Table 4.1. Water-soluble Ru sulfoxide complexes studied in vitro. ${ }^{a}$

Complex	Conc. $(\mathrm{mM})^{b}$
$\left[\mathrm{Ru}(12-\mathrm{S}-4)(\mathrm{DMSO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}$	$1.5,3.0$ and 5.0
$[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$	$0.1,0.5,1.2$ and 1.4
$\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$	$0.1,0.5,0.64$ and 1.4
$\left[\mathrm{RuCl}(\mathrm{BPSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$	0.25 and 0.42
$\left[\mathrm{RuCl}(\mathrm{BBSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$	$0.16,0.5$ and 0.89

${ }^{a}$ See Chapter 3, Sections 3.7, 3.8 and 3.11.4 for formulations of the complexes. ${ }^{b}$ Concentrations of the complex used in buffered aqueous solutions, chosen in relation to the amount of complex available for repeat experiments (at least two experiments, same concentrations) and in a range for possible toxicity.

4.2 Tumour Hypoxia, Radiotherapy and Progression

One characteristic of many solid tumour masses is a poor blood supply which results in inadequate levels of both oxygen and nutrients in regions of the tumour. ${ }^{18}$ The degree of hypoxia within tumours varies according to the proximity of blood vessels in a rapidly growing tumour in which development of vasculature does not keep up with cell proliferation and where rapid replication of cancer cells deplete $\mathrm{O}_{2}{ }^{19,20}$ If the cells are too far from the capillaries for effective delivery of nutrients and oxygen and for elimination for
wastes, necrotic regions can result. Hypoxia can also be the result of periodic suspension of blood flow because of irregularities and occlusions in the tumour vasculature and the high interstitial pressure of tumours with poorly developed lymphatic systems. ${ }^{19, \mathrm{~b}}$ Normal or malignant tissue that is poorly supplied with oxygen at the time of conventional radiotherapy (e.g. ionizing radiation such as X-rays) is much less damaged by a given dose of radiation than the same well-oxygenated tissue. Thus hypoxic mammalian tissue may only be one-half to one-third as sensitive to radiation compared to well-oxygenated tissue. ${ }^{21}$ Radiotherapy may remove the oxygenated areas of a tumour while the hypoxic areas, being radioresistant and not having received as much radiation damage, become reoxygenated, and recommence growth and regenerate the tumour. ${ }^{19}$

Hypoxia also has an effect on malignant progression and the responsiveness to therapy of advanced cervical tumours. ${ }^{22}$ Höckel et al. have studied the effect of hypoxia on metastasis and survival probabilities of patients. Those with hypoxic tumours exhibited relatively inferior survival probability compared with those with non-hypoxic cervical cancers. The authors suggest that tumour oxygenation acts as a prognostic indicator of malignant progression in terms of tumour metastasis (as well as radioresistance) in advanced cervical cancers. ${ }^{22}$

Radiotherapy is effective against localized neoplasms but is not effective toward a widely disseminated disease (e.g. leukemia), mainly because a curative dose will cause too much damage to the surrounding healthy tissue. ${ }^{19}$ There are certain clinical situations in which the use of radiotherapy is limited by a radioresistant neoplasm or by a tumour that has invaded radiosensitive normal tissue. Again, a curative dose of radiation may cause excessive damage to normal tissue.

Hypoxic cells of solid neoplasms may be unresponsive to conventional chemotherapy. ${ }^{19}$ The proliferation patterns of hypoxic tumour cells probably differ from those of the oxic cells, in that many hypoxic cells are non-cycling or are cycling with prolonged and abnormal cell cycle times. Such cells would have reduced sensitivities to cycle-active chemotherapeutic agents. ${ }^{19}$ As well, hypoxic cells are found in regions of vascular deficiency and may not be exposed to the chemotherapeutic agents which are mainly distributed through the vascular system.

4.3 Experimental

All media, buffer solutions and drug solutions were sterilized by filtration through a $0.22 \mu \mathrm{~m}$ filter (Nalgene) before cell suspensions were added. All flasks and humidifiers were sterilized in a BBMC Century 21 Laboratory Sterilizer.

4.3.1 Media

An alpha-modification of Eagle's minimum essential medium (Gibco) was used in all procedures involving the maintenance or incubation of CHO cells. Three different forms of the medium were used, $\alpha-/-, \alpha+/-$ and $\alpha+/+$ depending on the requirements of the procedure.

To make $\alpha-/$ medium, one packet of α-medium powder and 10,000 units of penicillin/streptomycin antibiotic (Gibco) were added to 10 L of doubly distilled water and the solution was stirred for 2 h at r.t. and pH adjusted to 7.3. Preparation of $\alpha+/+$ medium involved the addition of fetal bovine serum (Gibco) to a final concentration of 10% and $\mathrm{NaHCO}_{3}(20 \mathrm{~g} / 10 \mathrm{~L})$ was added to the solution before filtration; then the pH was adjusted to 7.3 with 4 M aq. NaOH . Preparation of $\alpha+/$ - medium involved the addition of $10 \%(\mathrm{v} / \mathrm{v})$ of fetal bovine serum to $\alpha-/-$ medium buffered with 10 mM HEPES. All media were stored at $4^{\circ} \mathrm{C}$.

4.3.2 Phosphate Buffer Saline Solution

To prepare the phosphate buffer saline solution (PBS), $\mathrm{NaCl}(160 \mathrm{~g}), \mathrm{KCl}(4 \mathrm{~g})$, $\mathrm{Na}_{2} \mathrm{HPO}_{4}(23 \mathrm{~g})$ and $\mathrm{KH}_{2} \mathrm{PO}_{4}(4 \mathrm{~g})$ were dissolved in distilled water (20 L); the solution was stored at r.t. and cooled to $4^{\circ} \mathrm{C}$ before use.

4.3.3 Methylene Blue Solution

Methylene blue (2 g , Sigma) was dissolved in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~L})$ and the solution allowed to stand for 1 h prior to filtration. This solution was used for fixing and staining colonies after incubation to assess colony forming ability. The methylene blue solution was filtered after use in toxicity experiments and re-used several times before being discarded.

4.3.4 Tris-EDTA (TE) Solutions

Stock solutions of TE (0.5 M Tris-HCl, Sigma and 50 mM EDTA, Sigma) were prepared, and the pH of the solutions adjusted to 8.0 with 4 M NaOH . The stock solutions were then diluted to the final concentration of $10 \mu \mathrm{M}$ Tris- HCl and $1 \mu \mathrm{M}$ EDTA.

4.3.5 TNE Solutions

TNE was prepared from stock solutions and had a final composition of 10 mM Tris- HCl (Sigma), 150 mM NaCl and 10 mMEDTA (Sigma), with the final pH of the solution being adjusted to 8.0 .

4.3.6 TNE-Equilibrated Phenol

Pure phenol ($250 \mathrm{~mL}, 99 \%$, Aldrich) was liquefied by heating in a water-bath $\left(60^{\circ} \mathrm{C}\right)$ and saturated with an equal volume of 0.5 M Tris- $\mathrm{HCl}(250 \mathrm{~mL}$, pH 8.00 , Sigma), the two phases then being allowed to separate. The aqueous layer was discarded and the process repeated with fresh Tris- HCl solutions until the pH of the aqueous layer was about 7.0. The final wash consisted of equal volumes of TNE and phenol. The TNE-equilibrated phenol was then transferred into 50 mL polypropylene tubes and stored at $-20^{\circ} \mathrm{C}$ in darkness. The frozen stock was thawed to r.t. just prior to use in the DNA-extraction experiments.

4.3.7 Cell Preparation

The cells used for in vitro experiments were obtained from a Chinese hamster ovary (CHO) cell line, chosen for its rapid growth cycle and high plating efficiency. The cells (1.3 x 10^{5} cells $/ \mathrm{mL}$) were routinely grown in $\alpha+/+$ medium ($\sim 60 \mathrm{~mL}$) (Section 4.3.1), and the cell
suspensions were maintained in spinner culture flasks at $37^{\circ} \mathrm{C}$ in an Associated Biomedic Systems "Incu-cover" incubator under an atmosphere of 95% air $/ 5 \% \mathrm{CO}_{2}$ (Canadian Liquid Air Co. Ltd.). Spinner flasks were diluted twice a week, and 1×10^{5} cells were plated in T-75 flasks (Falcon) once a week as backups in the event that the spinner culture was contaminated. The cell cultures were diluted daily to a cell count of about 1×10^{5} cells $/ \mathrm{mL}$ to maintain an exponential growth phase cell population (doubling time was about 13-14 h); higher cell suspensions were prepared if a larger number of cells was required the following day. The cell suspension (cells $/ \mathrm{mL}$) was determined using a Coulter Cell Counter from Coulter Electronics Inc., Hialeah, Florida.

4.3.8 Atomic Absorption Spectroscopy

A Varian "SpectrAA 300" atomic absorption spectrometer, controlled by a Compaq Deskpro 386s computer, was used to analyze for the Ru atoms. A Ru hollow cathode lamp, $\lambda 265.9 \mathrm{~nm}$ (Varian), was used as the source. The samples were dried, ashed and atomized in graphite tube furnaces (Varian). Corrections for background absorption were done using a technique, developed by Varian, based on the Zeeman effect. Calibration of the spectrometer was completed by using Ru standards (Sigma). A reslope was performed after every fifth sample to ensure that buildup on the pyrolytic graphite surface did not cause significant variations in the calibration. The furnace parameters used in the drying, ashing, and atomization stages of the analysis are tabulated below in Table 4.2.

Table 4.2. Furnace parameters used in AAS for Ru, at $\lambda 265.9 \mathrm{~nm}$.

Step No.	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Time (s)	Gas Flow	Gas Type	Read Command
1	90	20.0	3.0	Ar	No
3	100	5.0	3.0	Ar	No
4	120	15.0	3.0	Ar	No
5	1100	500	15.0	3.0	Ar
7	1100	10.0	3.0	Ar	No
7	1100	0.5	0.0	Ar	No
8	2800	0.9	0.0	Ar	No
9	2800	2.0	0.0	Ar	Yes
10	2800	2.0	3.0	Ar	No

4.3.9 Cell Incubation Procedures

The required number of cells was harvested from the culture solution using a centrifuge (Sorvall $\mathrm{RC}-3,600 \mathrm{rpm}, 80 \mathrm{~g}$ at $4^{\circ} \mathrm{C}$ for 7 min , where $\mathrm{g}=$ gravity $=$ relative centrifugal factor $=28.38(\mathrm{R})(\mathrm{N} / 1000)^{2}, \mathrm{R}=23.11 \mathrm{~cm}$ and $\left.\mathrm{N}=\mathrm{rpm}\right)$. The cells were then resuspended in $\alpha+/$ medium and added to solutions of the complexes previously made up in the same media. The incubation conditions and sampling frequencies were varied depending on the experiment being performed. The cells were incubated with solutions of the complexes $(10 \mathrm{~mL})$ at a cell suspension of about $3.0-3.7 \times 10^{5}$ cells $/ \mathrm{mL}$ in standard Erlenmeyer flasks
fitted with a modified rubber stopper to introduce a flow of gas (through a syringe needle) and made for easy sampling (through a stoppered glass tube). The solutions were maintained at $37^{\circ} \mathrm{C}$ in a Labline Instruments "Orbit Shaker Bath" which is a modified water-bath designed to rotate the flasks continuously but gently. For assessment under hypoxic conditions, N_{2} was passed over the flasks for 1 h before introduction of the cells into the flasks, which contained solutions of the complexes, and this was maintained during the experiment (oxygen-free N_{2} (Linde Specialty Gas, Union Carbide)). For aerobic experiments, air (filtered through a cotton plug) was passed over the suspensions and this prevented build up of CO_{2} due to cellular respiration. Both gases were humidified in a glass bubbler filled with sterile water maintained at $37^{\circ} \mathrm{C}$.

4.3.10 Cell Toxicity Assays Under Oxic and Hypoxic Conditions

The toxicities of the complexes in CHO cells under air and under N_{2} were measured by comparing the plating efficiency of cells as a function of concentration (2 h) with those incubated in control solutions. CHO cell suspensions (approximately 3.5×10^{5} cells $/ \mathrm{mL}$ in $\alpha+/-)$ with the appropriate complex were incubated for a period of 2 h at $37^{\circ} \mathrm{C}$. Thereafter, samples (1 mL) were taken from each flask, diluted immediately in fresh $\alpha-/-$ media (10 mL , $0^{\circ} \mathrm{C}$), and pelleted. The supernatant was decanted and the cells resuspended in fresh $\alpha-/-$ medium ($10 \mathrm{~mL}, 0^{\circ} \mathrm{C}$). An aliquot (2 mL) of this cell suspension was then diluted in PBS $\left(10 \mathrm{~mL}, 0^{\circ} \mathrm{C}\right)$, and the cell suspension determined using the Coulter Counter.

Aliquots of this cell solution (typically 10,100 , and $1000 \mu \mathrm{~L}$) were then plated onto Petri dishes (Falcon), prepared previously by filling with $\alpha+/+$ medium (5 mL) and left to
equilibrate in a tray incubator (National Inc.) maintained at $37{ }^{\circ} \mathrm{C}$ with a 95% air $/ 5 \% \mathrm{CO}_{2}$ gas flow. The dishes were then incubated in the tray incubator for 7 days for the cells to form colonies. The $\alpha+/+$ medium was then discarded, and the colonies stained with methylene blue solution for $\sim 7 \mathrm{~min}$; the stain was then decanted, and the dishes rinsed with cold water. The number of colonies per dish was counted, and the plating efficiency ($\mathrm{PE}=$ number of colonies/number of cells plated) was calculated.

4.3.11 Cell Accumulation Assays

The remaining 9 mL cell solution from the cell toxicity studies ($2 \mathrm{~h}, 37^{\circ} \mathrm{C}$, Section 4.3.10) were pelleted by centrifugation and the supernatant discarded (2 h). The cells were then washed twice with PBS $\left(10 \mathrm{~mL}, 0^{\circ} \mathrm{C}\right)$ to remove unbound complex, and then resuspended in PBS $\left(7.5 \mathrm{~mL}, 0^{\circ} \mathrm{C}\right)$. At this point the samples were vortexed and then separated into three portions into polypropylene tubes: a 3 mL fraction was used for cell accumulation, 4 mL for the DNA-binding assay (Section 4.3.12) and the remaining 0.5 mL to determine the population of cells ($200 \mu \mathrm{~L}$ of the cell suspension being added to 20 mL of PBS).

The cells for the accumulation assay were pelleted, the supernatant decanted, and the cell pellet air-dried overnight at $37{ }^{\circ} \mathrm{C}$. Concentrated $\mathrm{HNO}_{3}(50 \mu \mathrm{~L})$ was then added to the cell pellet, and the acid mixture vortexed vigorously and left at $37^{\circ} \mathrm{C}$ overnight to enhance digestion of the cell pellet. TE buffer ($250 \mu \mathrm{~L}, \mathrm{pH} 8.0$) was then added to the digested cell solutions, and the mixtures analyzed for Ru content using atomic absorption. The analytical
results were first calculated as $\mathrm{ng} \mathrm{Ru} / \mathrm{mL}$ and then expressed as $\mathrm{ng}(\mathrm{Ru}) / 10^{6}$ cells (using the cell counts).

4.3.12 DNA-Binding Assays

The 4 mL sample obtained from the toxicity assay (Section 4.3.10) was pelleted, the supernatant decanted, and 1 mL of a solution made up of 10 mL TNE, $0: 2 \mathrm{~mL}$ RNase ($10 \mathrm{mg} / \mathrm{mL}$, Sigma), $0.2 \mathrm{~mL} 10 \%$ S.D.S (sodium dodecyl sulfate, Sigma) and 0.2 mL Proteinase $\mathrm{K}(10 \mathrm{mg} / \mathrm{mL}$, Sigma) was then added while the pellet was vortexed. The samples were stored at $37^{\circ} \mathrm{C}$ overnight to ensure the cells were fully digested. The following day, each sample was sonicated for $\sim 8 \mathrm{~s}$ and then extracted with washes ($2 \times 1 \mathrm{~mL}$) of TNEequilibrated phenol. The samples were centrifuged (5 min at $1000 \mathrm{rpm}, 200 \mathrm{~g}$) to ensure that the separation between the aqueous and organic layer was well defined. The samples were then washed ($2 \times 1 \mathrm{~mL}$) with CHCl_{3} containing 4% iso-amyl alcohol. The DNA was precipitated by adding $99.5 \% \mathrm{EtOH}(2 \mathrm{~mL})$, vortexing and cooling the solution to $-20^{\circ} \mathrm{C}$ for at least 2 h . The precipitated DNA was pelleted by centrifugation (30 min at 3000 rpm , $2300 \mathrm{~g}, 4^{\circ} \mathrm{C}$), the supernatant decanted and the pelleted DNA air-dried. The dried DNA was then re-hydrated in $200 \mu \mathrm{~L}$ of TE and analyzed for Ru content using atomic absorption; the amount of Ru bound was normalized to the amount of DNA present which was determined by measuring the optical density (OD) of the re-hydrated DNA solutions using a dilution of $20 \mu \mathrm{~L}$ with $980 \mu \mathrm{~L}$ TE at 260 nm . The analytical results were first calculated as $\mathrm{ng}(\mathrm{Ru}) / \mathrm{mL}$ and then expressed as ng (Ru)/mg (DNA).

4.4 In Vitro Studies of Five Ru Sulfoxides (Table 4.1): Preliminary Results in CHO

Cells

4.4.1 Toxicity of Ru Sulfoxides in CHO Cells under Oxic and Hypoxic Conditions

A study was undertaken to determine whether the presence of oxygen might affect the toxicity of the Ru sulfoxide complexes. The toxicity of the complexes in CHO cells was measured as PE, after an incubation time of 2 h in the solutions of the complexes (Section 4.3.10). The toxicity is expressed in terms of the PE as a function of concentration. None of the complexes listed in Table 4.1 exhibited significant toxicity in CHO cells, after an incubation time of 2 h at the concentrations tested under oxic or hypoxic conditions (see Figure 4.1 for an example).

Figure 4.1. The absence of toxicity of $[\mathrm{RuCl}(\mathrm{BPSP}))_{2}(\mu-\mathrm{Cl})_{3}$ in CHO cells.
Similar results were obtained by Yapp et al. in that no significant toxicity was observed for Ru sulfoxide complexes of the type cis- and trans- RuCl_{2} (sulfoxide) ${ }_{4}$ and
RuCl_{2} (disulfoxide) $)_{2}$ (sulfoxide $=\mathrm{DMSO}$ and $\mathrm{TMSO}, 1.0 \mathrm{mM}$; disulfoxide $=\operatorname{BMSE}(1.0 \mathrm{mM})$, $\operatorname{BESE}(0.5 \mathrm{mM})$, $\operatorname{BPSE}(0.5 \mathrm{mM})$ and BMSP $(1.0 \mathrm{mM})$) toward CHO cells in vitro. ${ }^{8,17}$

4.4.2 Ruthenium Accumulation Under Oxic and Hypoxic Conditions

Simultaneously, the effect of oxic or hypoxic conditions on the accumulation of the Ru sulfoxide complexes was examined. The results indicate the gross amount of Ru present (up to 2 h) in the whole cell (expressed at $\mathrm{ng}(\mathrm{Ru}) / 10^{6}$ cells), and are presented as a plot of $\mathrm{ng}(\mathrm{Ru}) / 10^{6}$ cells v s. concentration (mM) (Figure 4.2(A); the accumulation (of Ru) plots of the individual complexes are presented in Appendix 4). The errors were calculated using the average of repeat experiments (a minimum of 2) performed (e.g. control $\pm 20 \%$). The results indicate that Ru does accumulate in CHO cells but there is no difference for these complexes between accumulation under oxic or hypoxic conditions. Yapp et al. observed linear profiles for the accumulation of selected Ru-sulfoxide complexes in CHO cells for periods up to 6 $h,{ }^{8,17}$ implying that the accumulation had not yet reached equilibrium or that the complex was being bound irreversibly to some cellular component.

The accumulation of $\mathrm{Ru}\left(\mathrm{ng}(\mathrm{Ru}) / 10^{6}\right.$ cells) was estimated for 0.5 mM concentration for each of the complexes studied and was compared to those of the Rusulfoxides previously studied by Yapp et al. ${ }^{8,17}$ For a comparison, these values were estimated assuming a linear response for accumulation over the concentration range up to 1.0 mM to facilitate this preliminary comparison (Figure 4.3(A)).

Figure 4.2. Accumulation of $\mathrm{Ru}(\mathbf{A})$ and Ru -DNA-binding (B) in CHO cells after 2 h incubation with $\quad\left[\mathrm{Ru}(12-\mathrm{S}-4)(\mathrm{DMSO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2} \quad$ (1), $\quad[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3} \quad$ (2), $\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}(3),\left[\operatorname{RuCl}(\mathrm{BPSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}(4),\left[\operatorname{RuCl}(\mathrm{BBSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-$ $\mathrm{Cl})_{2}(5)$.

Comparison of accumulation of Ru in CHO cells shows that the mononuclear Ru bis-disulfoxide complexes ${ }^{8,17}$ generally accumulate to a lesser degree relative to the corresponding dinuclear Ru sulfoxides (9-12), with the exception of trans $-\mathrm{RuCl}_{2}(\mathrm{BPSE})_{2}(6)$ which exhibits a higher accumulation than $\left[\operatorname{RuCl}(\operatorname{BPSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}(11) . \quad[\mathrm{Ru}(12-\mathrm{S}-$ 4)(DMSO$\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}(\mathbf{8}),[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}(9)$ and $\left[\mathrm{RuCl}(\mathrm{BPSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}(\mathbf{1 1})$ accumulate in CHO cells to a similar extent under both oxic and hypoxic conditions. $\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}(\mathbf{1 0})$ also accumulates in CHO cells to a similar extent under both oxic and hypoxic conditions; however, relatively less than that of $\mathbf{8}, \mathbf{9}, \mathbf{1 1}$ or $\mathbf{1 2}$. $\left[\operatorname{RuCl}(\operatorname{BBSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}(\mathbf{1 2)}$ exhibits the greatest degree of accumulation under hypoxic conditions. Although (10) exhibits only moderate cellular accumulation, however, it is ~ 10 times greater than the accumulation of the corresponding mononuclear complex, cis$\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}(\mathbf{5})$.

4.4.3 DNA-binding Under Oxic and Hypoxic Conditions

The extent of Ru binding to DNA, and the possible enhancement in hypoxic conditions, were examined. The results are presented as the gross amount of Ru bound to the extracted DNA (expressed at $\mathrm{ng}(\mathrm{Ru}) / \mathrm{mg}$ (DNA)) vs. concentration (mM) (Figure 4.2(B); the Ru-DNA-binding plots of the individual complexes are presented in Appendix 5). Again, the errors were calculated using the average of repeat experiments (a minimum of 2) performed (e.g. control $\pm 20 \%$). Ru appears to bind to DNA without significant difference between DNA-binding under oxic or hypoxic conditions. The DNA-binding of Ru studied for complexes $[\operatorname{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ and $\left[\operatorname{RuCl}(\mathrm{BPSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ decreased at high concentrations possibly because of incomplete extraction of the DNA using the protocol described in Section 4.3.12.

As with the cell accumulation, the binding of Ru to DNA ($\mathrm{ng}(\mathrm{Ru}) / \mathrm{mg}$ DNA) was estimated for 0.5 mM concentration (see Section 4.4.2) for a period of 2 h for each of the complexes studied. The findings are compared to complexes 1-7 of Yapp et al. ${ }^{8,17}$ (Figure 4.3(B) (studied only under oxic conditions after an incubation period of 4 h).

Figure $4.3(\mathbf{B})$ shows that the complexes $\mathbf{9 - 1 2}$ from this present study exhibit greater binding of Ru to DNA than the previously studied Ru-sulfoxide complexes. ${ }^{8,17}$

Figure 4.3. Accumulation (A) and DNA-binding (B) with 0.5 mM of Ru complex. $\mathbf{1}=$ cis$\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}, \quad 2=$ trans $-\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}, \quad 3=$ cis $-\mathrm{RuCl}_{2}(\mathrm{TMSO})_{4}, \quad 4=$ trans $\mathrm{RuCl}_{2}(\mathrm{BMSE})_{2}, 5=c i s-\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}, \mathbf{6}=$ trans $-\mathrm{RuCl}_{2}(\mathrm{BPSE})_{2}, 7=c i s-\mathrm{RuCl}_{2}(\mathrm{BMSP})_{2}, \mathbf{8}=$ $\left[\mathrm{Ru}(12-\mathrm{S}-4)(\mathrm{DMSO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}, 9=[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}, 10=\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-$ $\mathrm{Cl})_{2}, 11=\left[\operatorname{RuCl}(\mathrm{BPSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}, 12=\left[\operatorname{RuCl}(\mathrm{BBSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$. (Data for 1-7 taken from refs. 8 and 17; for 1-7 (B) a 4 h incubation period was used and a 2 h incubation period was used for 8-12 (B)).

Although $\left[\mathrm{Ru}(12-\mathrm{S}-4)(\mathrm{DMSO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}(8)$ and $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ (9) show similar whole cell accumulation at 0.5 mM (Section 4.4.2), DNA-binding of $\mathbf{8}$ is much less than that of 9. It is interesting to note that greater uptake is not necessarily reflected in greater DNA-binding. This suggests that $\mathbf{8}$ accumulates elsewhere in the cell while 9 shows some binding to DNA.

While $\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}(\mathbf{1 0})$ exhibits somewhat less accumulation than 9 (Section 4.4.2), the DNA-binding of the two complexes is similar with $\mathbf{1 0}$ binding somewhat to a greater extent than 9 at 0.5 mM . Complex 10 exhibits greater accumulation than cis- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}(5)$ in the whole cell by a factor of ~ 10 (Section 4.4.2) and the DNAbinding of $\mathbf{1 0}$ is ~ 100 times greater than for 5 (under oxic conditions). The DNA-binding of 10 is the highest (hypoxic conditions) of all the complexes studied.

While $\left[\mathrm{RuCl}(\mathrm{BPSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ (11) exhibited moderate accumulation and $\left[\operatorname{RuCl}(\mathrm{BBSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}(12)$ exhibited the highest accumulation (Section 4.4.2), the DNA-binding of these two complexes is relatively small. The data suggest that these complexes accumulate in the cell, but not by extensive binding to DNA. Of note, 11 exhibits DNA-binding that is ~ 10 times greater than that of the corresponding mononuclear complex, trans- $\mathrm{RuCl}_{2}(\mathrm{BPSE})_{2}(6)$, yet the latter exhibits greater accumulation (Section 4.4.2). This suggests that 6 accumulates in the whole cell but exhibits less DNA binding.

4.5 Conclusions

The biological assays present a preliminary survey of the biological activity of these five complexes. The complexes do enter CHO cells, bind to DNA, but are non-toxic at the concentrations tested. Furthermore, no hypoxic selectivity was observed in CHO cells with respect to the toxicity, cell accumulation and DNA-binding assays. A high degree of DNAbinding (e.g. with $[\operatorname{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ and $\left.\left[\operatorname{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}\right)$ does not necessarily depend on an equally high degree of accumulation in whole cells. While there are insufficient data to rationalize the in vitro behaviour of the complexes, the results do suggest future studies.

Yapp et al. ${ }^{8,17}$ have shown previously that trans Ru bis-chelating disulfoxide and DMSO complexes exhibit more accumulation and DNA-binding than cis complexes. The new data show that the dinuclear Ru sulfoxides generally accumulate to a greater degree than the trans complexes (with the exception of trans- $\mathrm{RuCl}_{2}(\mathrm{BPSE})_{2}$) and cis- or trans$\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$, both of which have shown anti-tumour effects and binding to DNA without appreciable toxicity to the murine host (Chapter 1). The new complexes bind to DNA up to 270 times more than the complexes studied by Yapp et al., ${ }^{8,17}$ and ~ 16 and ~ 23 times more than cis- and trans- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$, respectively.

The in vitro results suggest that these water-soluble, Ru sulfoxide complexes, which are non-toxic toward CHO cells but yet show binding to DNA, may possess antitumour activity similar to that of complexes studied by Sava et al., ${ }^{1}$ Alessio et al., ${ }^{2}$ and Mestroni ${ }^{3}$.

4.6 References for Chapter 4

Sava, G. Ruthenium Compounds in Cancer Therapy, in Metal Compounds in Cancer Therapy (ed. S Fricker), Chapman and Hall, London, 1994, p. 80.

Alessio, E.; Balducci, G.; Calligaris, M.; Costa, G.; Attia, W. H.; Mestroni, G. Inorg. Chem. 1991, 30, 609.
Mestroni, G. The Development of Tumour-Inhibiting Ruthenium Dimethylsulfoxide Complexes, in Metal Complexes in Cancer Chemotherapy (ed. B. K. Keppler), VCH, Weinheim, 1993, p. 157.

Coluccia, M.; Sava, G.; Loseto, F.; Nassi, A.; Boccarelli, A.; Giordano, D.; Alessio, E.; Mestroni, G. Eur. J. Cancer 1993, 29, 1873.
(a) Sava, G.; Pacor, S.; Mestroni, G.; Alessio, E. Clin. Exp. Metastasis 1992, 10, 273;
(b) Gagliardi, R.; Sava, G.; Pacor, S.; Mestroni, G.; Alessio, E. Clin. Exp. Metastasis 1994, 12, 93;
(c) Sava, G.; Capozzi, I.; Clerici, K.; Gagliardi, G.; Alessio, E.; Mestroni, G. Clin. Exp. Metastasis 1998, 16, 371.
(a) Sava, G.; Zoret, S.; Giraldi, T.; Mestroni, G.; Zassinovich, G. Eur. J. Cancer Clin. Oncol. 1984, 20, 841;
(b) Pacor, S.; Sava, G.; Ceschia, V.; Bregant, F.; Mestroni, G.; Alessio, E. Chem. Biol. Interactions 1991, 78, 223.
Sava, G.; Capozzi, I.; Bergamo, A.; Gagliardi, R.; Cocchietto, M.; Masiero, L.; Onisto, M.; Alessio, E.; Mestroni, G.; Garbisa, S. Int. J. Cancer 1996, 68, 60.
Yapp, D. T. T. Ph. D. Dissertation, University of British Columbia, Vancouver, 1993.
Khan, B. T.; Mehmood, A. J. Inorg. Nucl. Chem. 1978, 40, 1938.
Alessio, E.; Xu, Y.; Cauci, S.; Mestroni, G.; Quadrifoglio, F.; Viglino, P.; Marzilli, L. G. J. Am. Chem. Soc. 1989, 111, 7068.

11 Davey, J. M.; Moerman, K. L.; Ralph, S. F.; Kanitz, R.; Sheil, M. M. Inorg. Chim. Acta 1998, 281, 10.

Sherman, S. E.; Lippard, S. J. Chem. Rev. 1987, 87, 1153.

13 Esposito, G.; Cauci, S.; Fogolari, F.; Alessio, E.; Scocchi, M.; Quadrifoglio, F.; Viglino, P. Biochem. 1992, 31, 7094.

14 Tian, Y-N.; Yang, P.; Li, Q-S.; Guo, M-L.; Zhao, M-G. Polyhedron 1997, 16, 1993.
15 Durig, J. R.; Danneman, J.; Behnke, W. D.; Mercer, E. E. Chem. Biol. Interact. 1976, 13, 287.

16 Gibson, J. F.; Poole, R. K.; Hughes, M. N.; Rees, J. F. Arch. Microbiol. 1984, 139, 265.

17 Yapp, D. T. T.; Rettig, S. J.; James, B. R.; Skov, K. A. Inorg. Chem. 1997, 36, 5635.
18 (a) Vaupel, P.; Fortmeyer, H. P.; Runkel, S.; Kallinowski, F. Cancer Res. 1987, 47, 3496;
(b) Vaupel, P.; Kallinowski, F.; Okunieff, P. Cancer Res. 1989, 49, 6449.

19 (a) Denny, W. A.; Wilson, W. R. J. Med. Chem. 1986, 29, 879;
(b) Chaplin, D. J. Int. J. Radiat. Oncol. Biol. Phys. 1992, 22, 685;
(c) Brown, J. M.; Giaccia, A. J. Int. J. Radiat. Biol. 1994, 65, 95.

20 Kennedy, K. A.; Teicher, B. A.; Rockwell, S.; Sartoelli, A. C. Biochem. Pharmacol. 1980, 29, 1.

21 Gray, L. H.; Conger, A. D.; Ebert, M.; Hornsey, S.; Scott, O. C. A. Br. J. Radiol. 1953, 26, 638.

22 Höckel, M.; Schlenger, K.; Aral, B.; Mitze, M.; Schäffer, U.; Vaupel, P. Cancer Res. 1996, 56, 4509.

Chapter 5

Metallation of Free-base Porphyrins

5.1 Introduction

Water-soluble porphyrins have potential to interact with biological systems and can be involved, for example, in double-stranded cleavage of DNA, photochemical oxidations, photodynamic therapy, and photoinduced intramolecular electron- and energy transfer. ${ }^{1}$ The radiosensitizing properties of metalloporphyrins ${ }^{2,3}$ and the anti-tumour activity of certain ruthenium complexes (see Sections 1.3 and 1.4 and ref. 4) have been reported. Porphyrins have been shown to accumulate at tumours, ${ }^{5}$ and ruthenium(II) complexes have been shown to bind to DNA (see Sections 1.3 and 1.4). Combining the accumulating properties of porphyrins at a tumour and the binding properties of a ruthenium(II) centre to DNA provides an approach to Ru (porphyrin) systems that offer potential for both radiosensitizing and chemotherapeutic activity (see Section 1.3.2).

5.1.1 Metalloporphyrins as Hypoxic Radiosensitizers

Water-soluble porphyrins have been reported to accumulate at tumour tissue ${ }^{5}$ (although this remains controversial), and compounds containing methylpyridinium, sulfonato or carboxylato substituents, and their metal complexes, have been reported to be moderate radiosensitizers. ${ }^{2}$ Synthetic, water-soluble porphyrins and their metalloporphyrin derivatives with $\mathrm{Co}(\mathrm{III}), \mathrm{Cu}(\mathrm{II}), \mathrm{Ru}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{II})$ have been synthesized and evaluated as hypoxic agents, especially as cytotoxins and radiosensitizers. ${ }^{3}$ Of the porphyrins studied, the Co (III) complexes exhibited some selective toxicity and radiosensitizing activity toward CHO cells. ${ }^{3}$
$\mathrm{Ru}(\mathrm{II})$ porphyrins were included in the study ${ }^{3}$ as complexes of Ru have been recognized for their anti-tumour activity. ${ }^{67}$

5.2 Ruthenium Porphyrins

Fleischer et al. synthesized the first Ru porphyrin in 1969 (reported as $\left.[\mathrm{Ru}(\mathrm{TPhP}) \mathrm{Cl}(\mathrm{CO})]^{\dagger}\right)$ by bubbling CO through an EtOH solution of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ for 3 h , then adding a glacial acetic acid solution of $\mathrm{H}_{2} \mathrm{TPhP}$ and refluxing the solution for $21 \mathrm{~h} ;{ }^{8}$ however, in 1971 Chow and Cohen reformulated the material correctly as $\mathrm{Ru}(\mathrm{TPhP})(\mathrm{CO})$, after a synthesis using either $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ or $\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{3}\right]_{2}$ as the precursor with $\mathrm{H}_{2} \mathrm{TPhP}$ in refluxing acetic acid or propionic acid under N_{2} for $24 \mathrm{~h} .{ }^{9}$

Synthetic methods for the insertion of Ru into porphyrins remain largely based on modifications of the original procedures. ${ }^{8-10}$ These all produce stable $\mathrm{Ru}(\mathrm{II})$ carbonyl species, which are formed by the interaction of the free base porphyrin, H_{2} (Porp), with the ruthenium precursors $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ or $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, either in the presence or absence of a CO atmosphere. The thermolysis of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ in the presence of $\mathrm{H}_{2}(\operatorname{Porp})$ remains the most common method of synthesis. ${ }^{11}$

Massoudipour and Pandey have synthesized $\mathrm{Ru}(\mathrm{TPhP})(\mathrm{CO})(\mathrm{EtOH})$ utilizing $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ as the metallation agent by refluxing a solution of $50: 50 \%$ vol. ethyl glycol/formaldehyde under N_{2} until the colour of the solution changed to pale yellow. This solution was reduced in volume and added dropwise to a solution of $\mathrm{H}_{2} \mathrm{TPhP}$ over a period of 1 h ., with the reaction complete in $30 \mathrm{~h} .{ }^{12}$
\dagger TPP and TSPP are normally used as the standard abbreviations for the dianion of $5,10,15,20$-tetraphenylporphyrin and -tetrakis(4-sulfonato)phenylporphyrin, respectively, although a more consistent abbreviation for them would be TPhP and TSPhP , as used here.

The only published route to $\mathrm{Ru}(\mathrm{II})$ water-soluble porphyrins, e.g. the synthesis of $[\mathrm{Ru}(\mathrm{II})(\mathrm{TSPhP})(\mathrm{CO})]^{4-}$ requires refluxing a DMF solution of the free-base, water-soluble porphyrin $\left[\mathrm{H}_{2}(\mathrm{TSPhP})\right]^{4-}$ and $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ under Ar for a period of 1-3 weeks, ${ }^{13}$ and by adding 2,4,6-collidine, the reaction time was reduced to $24 \mathrm{~h} .{ }^{14}$ In addition to the long reaction times, the preparation of the $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ precursor requires the stirring of a solution of RuCl_{3} under a steady stream of CO for several hours. ${ }^{15}$

5.3 A New Route for the Insertion of Ruthenium into Selected Free-base Porphyrins

Work from this group has led to a new, more convenient route to ruthenium(II) water-soluble porphyrin complexes. ${ }^{3,16}$ The reaction time is decreased from 1-3 weeks (see above) to just 24 h and the method does not require an atmosphere of CO at any stage of the preparation, in which the $\mathrm{Ru}(\mathrm{III})$ precursor $\left[\mathrm{Ru}(\mathrm{IIII})(\mathrm{DMF})_{6}\right][\mathrm{OTf}]_{3}{ }^{17}$ is used. The refluxing of this precursor in DMF in the presence of the free-base, water-soluble porphyrin yields, for example, $\mathrm{Na}_{4}[\mathrm{Ru}(\mathrm{II})(\mathrm{TSPhP})(\mathrm{CO})] \cdot 4 \mathrm{H}_{2} \mathrm{O}$. The process involves in situ reduction of $\left[\mathrm{Ru}(\mathrm{DMF})_{6}\right]^{3+}$, but the nature of this reduction remains unclear. ${ }^{16}$ The following non-watersoluble $\mathrm{Ru}(\mathrm{II})(\mathrm{CO})$ porphyrin complexes were then synthesized, using $\left[\mathrm{Ru}(\mathrm{III})(\mathrm{DMF})_{6}\right][\mathrm{OTf}]_{3}$, in this current thesis work: $\mathrm{Ru}(\mathrm{II})(\mathrm{TPhP})(\mathrm{CO}), \mathrm{Ru}(\mathrm{II})(\mathrm{BPhP})(\mathrm{CO}), \mathrm{Ru}(\mathrm{II})(\mathrm{TrPhPyNO})(\mathrm{CO})$ and $\mathrm{Ru}(\mathrm{II})(\mathrm{OEP})(\mathrm{CO})(\mathrm{BPhP}=$ dianion of 5,15-bis(phenyl)porphyrin, $\mathrm{Tr} \mathrm{PhPyNO}=$ dianion of 5,10,15-triphenyl-20-(4-pyridyl- N-oxide)porphyrin, and OEP $=$ dianion of $2,3,7,8,12,13,17,18$-octaethylporphyrin) (Figure 5.1 and Table 5.1).

Figure 5.1. $\mathrm{Ru}(\mathrm{II})(\operatorname{Porp})(\mathrm{CO})$ species, showing the numbering system.

Table 5.1. $\mathrm{Ru}($ Porp $)(\mathrm{CO})$ species.

5.4 Experimental

The free-base porphyrin $\mathrm{Na}_{4}\left[\mathrm{H}_{2} \mathrm{TSPhP}\right] \cdot 15 \mathrm{H}_{2} \mathrm{O}$ was prepared according to a literature procedure. ${ }^{18} \mathrm{H}_{2}(\mathrm{OEP})$ and $\mathrm{H}_{2}(\mathrm{TPhP})$ were kindly donated by Dr. C. Alexander; $\mathrm{H}_{2}(\mathrm{BPhP}), \mathrm{H}_{2}(\mathrm{TrPhPyNO}), \mathrm{H}_{2}(\mathrm{TPyP}), \mathrm{H}_{2}(\mathrm{BPhBPyNOP}), \mathrm{H}_{2}(\mathrm{DBrBPhP})$ and H_{2} (PPIXDME) were kindly donated by Dr. J. Posakony; and $\mathrm{H}_{2}(\mathrm{TMP})$ and H_{2} (TPFPhP) were kindly donated by Dr. S. Cheng (see Table 5.5 on p. 205 for porphyrin abbreviations). Water was distilled and deionized before use: Silica gel (grade 60, 230-400 mesh) was purchased from BDH. Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ was purchased from Fisher. All other chemicals and reagents used are described in Chapter 2, Section 2.1.

5.4.1 Physical Techniques

The general spectroscopic methods and instrumentation used are described in Chapter 2, Section 2.2. In addition MALDI-TOF was also used as a method of mass spectral analysis. Fluorescence spectroscopic data were obtained using an SLM Aminco 8100 Spectrofluorometer; wavelength maxima, $\lambda_{\text {max }}$, are given in nm .

5.4.2 Synthesis of Precursors

5.4.2.1 $\mathrm{Na}_{4}\left[\mathrm{H}_{2} \mathrm{TSPhP}\right] \cdot 15 \mathrm{H}_{2} \mathrm{O}(\mathrm{MW}=1292.88 \mathrm{~g} / \mathrm{mol})$
$\mathrm{Na}_{4}\left[\mathrm{H}_{2} \mathrm{TSPhP}\right] \cdot 15 \mathrm{H}_{2} \mathrm{O}$, the free-base porphyrin was synthesized from $\mathrm{H}_{2} \mathrm{TPhP}$ and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ according to the procedure reported by Meng et al. ${ }^{18}$ The purity of the product was determined by UV-Vis and ${ }^{1} \mathrm{H}$ NMR spectroscopies and TGA. The spectroscopic data are in good agreement with those previously reported. ${ }^{18}{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- $d_{6}, 200 \mathrm{MHz}$) δ
$8.85(\mathrm{~s}, 8 \mathrm{H}$, pyrrole $H), 8.20\left(\mathrm{~d}, 8 \mathrm{H}, m-\mathrm{C}_{6} H_{4} \mathrm{SO}_{3}^{-}\right), 8.03\left(\mathrm{~d}, 8 \mathrm{H}, o-\mathrm{C}_{6} H_{4} \mathrm{SO}_{3}{ }^{-}\right),-3.00(\mathrm{~s}, 2 \mathrm{H}$, NH). UV-Vis ($\left.\mathrm{H}_{2} \mathrm{O}\right) 636$ (3.24), 578 (3.79), 550 (3.78), 516 (3.90), 414 (5.03). TGA: Calcd loss of $15 \mathrm{H}_{2} \mathrm{O}: 20.9$. Found: 19.6% (from ~ 25 to $\sim 155^{\circ} \mathrm{C}$) (TGA plot is given in Appendix 4, Figure A.4.3).
5.4.2.2 $\left[\mathrm{Ru}(\mathrm{DMF})_{6}\right][\mathrm{OTf}]_{3}$

The synthesis of $\left[\mathrm{Ru}(\mathrm{DMF})_{6}\right][\mathrm{OTf}]_{3}$ was described in Chapter 2, Section 2.5.1.

5.5 Synthesis of $\mathbf{R u}(\operatorname{Porp})(C O)$ Complexes

5.5.1 $\mathrm{Na}_{4}[\mathrm{Ru}(T S P h P)(\mathrm{CO})] \cdot 4 \mathrm{H}_{2} \mathrm{O}(M W=1221.95 \mathrm{~g} / \mathrm{mol})$

$\mathrm{Na}_{4}\left[\mathrm{H}_{2}(\mathrm{TSPhP})\right] \cdot 15 \mathrm{H}_{2} \mathrm{O}(210 \mathrm{mg}, 0.205 \mathrm{mmol})$ was dissolved in DMF $(80 \mathrm{~mL})$ and the solution heated to $50^{\circ} \mathrm{C}$ under N_{2}. $\left[\mathrm{Ru}(\mathrm{DMF})_{6}\right][\mathrm{OTf}]_{3}(614 \mathrm{mg}, 0.622 \mathrm{mmol})$ was then added and the dark purple solution was heated to reflux under N_{2}, in the absence of light for 24 h . The resulting dark red solution was concentrated to a minimal volume by rotary evaporation. The product was purified as a purple-red band by column chromatography using silica gel and MeOH as the eluant. The solvent was removed by rotary evaporation, and the purple product was collected and dried in vacuo for 1 week. Yield: $133 \mathrm{mg}(53 \%)$. Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{17} \mathrm{~S}_{4} \mathrm{Na}_{4} \mathrm{Ru}: \mathrm{C}, 44.23 ; \mathrm{H}, 2.64 ; \mathrm{N}, 4.58 ; \mathrm{S}, 10.49$. Found: C, 44.36; H, 2.70; N, 4.55; S, 10.68\%. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{MeOD}-d_{4}, 200 \mathrm{MHz}\right) \delta 8.65,8.60$ (s, 4H each, pyrrole $H), 8.25\left(\mathrm{~m}, 16 \mathrm{H}, m-\mathrm{C}_{6} H_{4} \mathrm{SO}_{3}{ }^{-}\right.$and $\left.o-\mathrm{C}_{6} H_{4} \mathrm{SO}_{3}{ }^{-}\right)$. IR $v_{\mathrm{CO}}: 1923, v_{\mathrm{OH}}: 3460$. UV-Vis $\left(\mathrm{H}_{2} \mathrm{O}\right)$ 528 (4.21), 410 (5.43). TGA: Calcd loss of $4 \mathrm{H}_{2} \mathrm{O}: 5.9 \%$. Found: 5.1% (from ~ 37 to $\sim 60^{\circ} \mathrm{C}$) (TGA plot is given in Appendix 4, Figure A.4.4). The ${ }^{1} \mathrm{H}-\mathrm{NMR}, \mathrm{v}_{\mathrm{co}}$, and UV -Vis
spectroscopic data are consistent with those previously reported for the $\mathrm{Ru}(\mathrm{II})(\mathrm{TSPhP})(\mathrm{CO})^{4-}$ moiety. ${ }^{13,14,16,19}$ Attempts to analyze this product by mass spectroscopic methods (EI and LSIMS) did not show the parent peak or any other peaks related to the title compound.

5.5.2 $\mathrm{Ru}(O E P)(C O)(T H F)(M W=733.96 \mathrm{~g} / \mathrm{mol})$

The procedure used was as given in Section 5.5.1, but using $\mathrm{H}_{2}(\mathrm{OEP})(60 \mathrm{mg}, 0.11$ $\mathrm{mmol}),\left[\mathrm{Ru}(\mathrm{DMF})_{6}\right][\mathrm{OTf}]_{3}(312 \mathrm{mg}, 0.316 \mathrm{mmol})$ and $\mathrm{DMF}(30 \mathrm{~mL})$, with the reaction time being reduced to 6 h . The product was purified by column chromatography using neutral alumina with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluant for unreacted $\mathrm{H}_{2}(\mathrm{OEP})$, and with $10 \% \mathrm{THF} / \mathrm{MeOH}$ as eluant for the product. Red crystals suitable for X-ray analysis were obtained from slow evaporation of a saturated solution of the complex in 10% THF/toluene. Yield: $45 \mathrm{mg}(56 \%)$. Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{2}$ Ru: C, $67.09 ; \mathrm{H}, 7.14 ; \mathrm{N}, 7.63$. Found: C, $66.51 ; \mathrm{H}, 7.17 ; \mathrm{N}, 8.40 \%$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of a sample left under vacuo for $24 \mathrm{~h}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 9.90(\mathrm{~s}, 4 \mathrm{H}$, meso- H$)$, 4.03 (q, 16H, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.90\left(\mathrm{t}, 24 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$). IR v_{co} : 1925. UV-Vis (DMF) 548 (4.76), 518 (4.49), 396 (5.63). Mass spectrum [LSIMS, m/z] 662 [M-(THF)] ${ }^{+}$and 634 [M-(THF)(CO) $]^{+}$. The ${ }^{1} \mathrm{H}-\mathrm{NMR}, v_{\mathrm{CO}}$, and UV-Vis spectroscopic data are consistent with those previously reported for the $\mathrm{Ru}(\mathrm{II})(\mathrm{OEP})(\mathrm{CO})$ moiety. ${ }^{10,20-22}$

5.5.3 Ru(TPhP)(CO) $\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{MW}=759.78 \mathrm{~g} / \mathrm{mol})$

The procedure used was as given in Section 5.5.1, but using H_{2} (TPhP) (25 mg , $0.042 \mathrm{mmol}),\left[\mathrm{Ru}(\mathrm{DMF})_{6}\right][\mathrm{OTf}]_{3}(125 \mathrm{mg}, 0.126 \mathrm{mmol})$ and $\mathrm{DMF}(30 \mathrm{~mL})$. Benzene was used as eluant for unreacted $\mathrm{H}_{2}(\mathrm{TPhP})$, and $5 \% \mathrm{THF} /$ benzene was used as eluant for the product. Yield: $18 \mathrm{mg}(51 \%)$. Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{ORu} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 71.14 ; \mathrm{H}, 3.98 ; \mathrm{N}$,
7.37. Found: C, $70.65 ; \mathrm{H}, 4.31 ; \mathrm{N}, 7.10 \% .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 8.60(\mathrm{~s}, 8 \mathrm{H}, \beta-$ pyrrole- H), 8.18 and $8.02\left(\mathrm{~m}, 8 \mathrm{H}, o-\mathrm{C}_{6} H_{5}\right), 7.65\left(\mathrm{~m}, 12 \mathrm{H}, m-\mathrm{C}_{6} H_{5}\right.$ and $\left.p-\mathrm{C}_{6} H_{5}\right)$. IR v_{CO} : 1946, $\nu_{\text {он: }}$ 3412. UV-Vis (DMF) 532 (4.72), 412 (5.60). Mass spectrum [LSIMS, m/z] 742 $\left[\mathrm{M}-\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$and $714\left[\mathrm{M}-\left(\mathrm{H}_{2} \mathrm{O}\right)-(\mathrm{CO})\right]^{+}$. The ${ }^{1} \mathrm{H}$ NMR, v_{CO}, and UV-Vis data are consistent with those previously reported for a complex containing the $\mathrm{Ru}(\mathrm{II})(\mathrm{TPhP})(\mathrm{CO})$ moiety. ${ }^{9,23-26}$ Red crystals of the complex $\mathrm{Ru}(\mathrm{TPhP})(\mathrm{CO})(\mathrm{py})$ containing a coordinated pyridine suitable for X-ray analysis were obtained by slow evaporation of a saturated solution of the aquo complex in 5% pyridine/benzene.

5.5.4 Ru(BPhP)(CO)

The procedure used was as given in Section 5.5.1, but using $\mathrm{H}_{2}(\mathrm{BPhP})(4.67 \mathrm{mg}$, $0.01 \mathrm{mmol}),\left[\mathrm{Ru}(\mathrm{DMF})_{6}\right][\mathrm{OTf}]_{3}(30 \mathrm{mg}, 0.03 \mathrm{mmol})$ and $\mathrm{DMF}(3 \mathrm{~mL}) . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was used as eluant for unreacted $\mathrm{H}_{2}(\mathrm{BPhP})$, and $2 \% \mathrm{THF} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was used as eluant for the product. Yield $<2 \mathrm{mg}$ (not determined). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 10.00(\mathrm{~s}, 2 \mathrm{H}$, meso- H), 9.13, $8.85\left(\mathrm{~s}, 4 \mathrm{H}\right.$ each, β-pyrrole- H), 8.25 and $8.02\left(\mathrm{~m}, 2 \mathrm{H}\right.$ each, $\left.o-\mathrm{C}_{6} H_{5}\right), 7.95\left(\mathrm{~m}, 6 \mathrm{H}, m-\mathrm{C}_{6} H_{5}\right.$ and $p-\mathrm{C}_{6} H_{5}$). IR $v_{\mathrm{CO}}: 1930$. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 520,402$. Mass spectrum [LSIMS, m/z] 590 $[\mathrm{M}]^{+}, 562[\mathrm{M}-(\mathrm{CO})]^{+}$.

5.5.5 Ru(TrPhPyNO)(CO)

The procedure used was as given in Section 5.5.1, but using $\mathrm{H}_{2}(\mathrm{TrPhPyNO})$ (6.4 $\mathrm{mg}, 0.01 \mathrm{mmol}),\left[\mathrm{Ru}(\mathrm{DMF})_{6}\right][\mathrm{OTf}]_{3}(30 \mathrm{mg}, 0.03 \mathrm{mmol})$ and $\mathrm{DMF}(3 \mathrm{~mL}) . \mathrm{CHCl}_{3}$ was used as eluant for unreacted $\mathrm{H}_{2}(\mathrm{TrPhPyNO})$ and 2% pyridine $/ \mathrm{CHCl}_{3}$ was used as eluant for the
product. Yield $<2 \mathrm{mg}$ (not determined). IR $v_{\mathrm{CO}}: 1935, v_{\mathrm{NO}}: 1251$. UV-Vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 532$, 414. Mass spectrum $[$ LSIMS, $\mathrm{m} / \mathrm{z}] 743[\mathrm{M}-(\mathrm{O})]^{+}, 715[\mathrm{M}-(\mathrm{O})-(\mathrm{CO})]^{+}$.

5.6 Results and Discussion

Previous work has shown that metallation failed to occur using a 3:1 molar ratio of $\left[\mathrm{Ru}(\mathrm{DMF})_{6}\right][\mathrm{OTf}]_{3}$ and $\mathrm{H}_{2}(\mathrm{TSPhP})^{4-}$ in DMF under 1 atm of $\mathrm{H}_{2}{ }^{16}$ The present work demonstrates that an inert atmosphere and neat DMF are both necessary in order for metallation to occur. Of note, attempts to metallate the free-base porphyrins using DMSO, or DMSO/DMF as the solvent, under N_{2} or air did not result in the insertion of Ru .

The metallation reaction involves an in situ reduction of $\mathrm{Ru}(\mathrm{III})$ to Ru (II). The mechanism of this reduction is unclear; ${ }^{16}$ however, CO has been proposed to be the reductant which derives from the decarbonylation of DMF. Such decarbonylation of DMF by Ruporphyrins to generate carbonyl derivatives has been reported, ${ }^{27}$ and the mechanisms of reactions in which CO acts as a reductant are well established. ${ }^{28}$

Baird et al., from this laboratory, have reported the synthesis of $\left[\mathrm{Ru}(\mathrm{L})_{6}\right][\mathrm{OTf}]_{2}$ complexes $(\mathrm{L}=$ an imidazole $)$ utilizing $\left[\mathrm{Ru}(\mathrm{DMF})_{6}\right][\mathrm{OTf}]_{3}$ as the precursor. ${ }^{29}$ These reactions carried out in MeOH involve ligand exchange of the DMF ligands of $\left[\mathrm{Ru}(\mathrm{DMF})_{6}\right][\mathrm{OTf}]_{3}$ with imidazole as well as the in situ reduction of $\mathrm{Ru}(\mathrm{III})$ to Ru (II). The authors suggest that MeOH and/or imidazoles may be acting as the reducing agent; both these reagents can act as reductants. ${ }^{30,31}$

5.6.1 $\left.\mathrm{Na}_{4} / \mathrm{Ru}(\mathrm{TSPhP})(\mathrm{CO})\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$

Pawlik et al. reported the first water-soluble $\mathrm{Ru}(\mathrm{II})$ porphyrin as $\mathrm{Na}_{4}[\mathrm{Ru}(\mathrm{TSPhP})(\mathrm{CO})]$ formed by reaction of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ with $\mathrm{Na}_{4}(\mathrm{TSPhP}) \cdot 12 \mathrm{H}_{2} \mathrm{O}$ in refluxing DMF under Ar for a period of 1-3 weeks. However, the authors noted that the sodium salt is contaminated by other sodium salts, but addition of a saturated solution of CaCl_{2} gave $\mathrm{Ca}_{2}[\mathrm{Ru}(\mathrm{TSPhP})(\mathrm{CO})] \cdot 12 \mathrm{H}_{2} \mathrm{O},{ }^{13}$ while Yong-Wu and Xing-Min reported the isolation of $\mathrm{Na}_{4}[\mathrm{Ru}(\mathrm{TSPhP})(\mathrm{CO})] \cdot 12 \mathrm{H}_{2} \mathrm{O}$ from the reaction of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ and the sodium salt quoted as $\mathrm{Na}_{4}(\mathrm{TSPhP}) \cdot 9 \mathrm{H}_{2} \mathrm{O} .{ }^{19}$ Recently, Hartmann et al. reported the characterization of $\mathrm{Na}_{4}[\mathrm{Ru}(\mathrm{TSPhP})(\mathrm{CO})(\mathrm{EtOH})]{ }^{14}$ Ware in this laboratory reported the isolation of the complex $\mathrm{Na}_{4}[\mathrm{Ru}(\mathrm{TSPhP})(\mathrm{CO})(\mathrm{DMF})] \cdot$ solvate ${ }^{16}$ (solvate $=2 \mathrm{DMF} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ or $6 \mathrm{H}_{2} \mathrm{O}$) by the method described in Section 5.5.1.

During the present work, $\mathrm{Na}_{4}[\mathrm{Ru}(\mathrm{TSPhP})(\mathrm{CO})] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ was isolated from the reaction between $\mathrm{Na}_{4}\left[\mathrm{H}_{2} \mathrm{TSPhP}\right] \cdot 15 \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Ru}(\mathrm{DMF})_{6}\right][\mathrm{OTf}]_{3}$ (Section 5.5.1). The complex was formulated with four solvate $\mathrm{H}_{2} \mathrm{O}$ molecules as elemental and thermal gravimetric analyses provide support for this formulation. The calculated elemental analyses agree well with the determined analyses, while thermal gravimetric analyses of the complex (Section 5.5.1) showed a weight loss corresponding to $3.5 \mathrm{H}_{2} \mathrm{O}$ molecules from the formulated $\mathrm{Na}_{4}[\mathrm{Ru}(\mathrm{TSPhP})(\mathrm{CO})] \cdot 4 \mathrm{H}_{2} \mathrm{O}$. Of note, Buchler et al. reported the use of gel electrophoresis as an efficient method for the separation and analysis of several free-base and metallated water-soluble porphyrins, and the authors report that "results of elemental analyses are not definitive because the substances are strongly hygroscopic". ${ }^{32}$ The v_{co} stretch for the CO ligand was observed at $1923 \mathrm{~cm}^{-1}(\mathrm{KBr})$ which compares with the reported values of 1925
cm^{-1} for $\operatorname{Ru}(\mathrm{TSPhP})(\mathrm{CO}) \cdot 12 \mathrm{H}_{2} \mathrm{O} \quad$ (medium not given), ${ }^{19} 1940 \quad \mathrm{~cm}^{-1}$ for $\mathrm{Ca}_{2}[\mathrm{Ru}(\mathrm{TSPhP})(\mathrm{CO})] \cdot 12 \mathrm{H}_{2} \mathrm{O}$ (medium not given), ${ }^{13} 2042$ and $1936 \mathrm{~cm}^{-1}$ for $\mathrm{Na}_{4}[\mathrm{Ru}(\mathrm{TSPhP})(\mathrm{CO})(\mathrm{EtOH})] \quad(\mathrm{KBr}),{ }^{14} \quad 2035, \quad 1959$ and $1924 \mathrm{~cm}^{-1}$ for $\mathrm{Na}_{4}[\mathrm{Ru}(\mathrm{TSPhP})(\mathrm{CO})(\mathrm{DMF})] \cdot 2 \mathrm{DMF} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{KBr})^{16}$ and 2027, 1971 and $1929 \mathrm{~cm}^{-1}$ for $\mathrm{Na}_{4}[\mathrm{Ru}(\mathrm{TSPhP})(\mathrm{CO})(\mathrm{DMF})] \cdot 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{KBr}) .{ }^{16}$ Ware noted that "the solid state IR spectrum of $\mathrm{Na}_{4}[\mathrm{Ru}(\mathrm{TSPhP})(\mathrm{CO})(\mathrm{DMF})] \cdot$ solvate $\left(\right.$ solvate $=6 \mathrm{H}_{2} \mathrm{O}$ or $\left.2 \mathrm{DMF} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ shows three v_{CO} stretches which could indicate the presence of more than one mono-CO complex (e.g. with $\mathrm{H}_{2} \mathrm{O}$ as the axial ligand), a trace of some Ru-CO impurity or solid state effects". ${ }^{16}$

Hartmann et al. tested a series of water-soluble Ru porphyrins $\left(\left[\mathrm{Ru}(\mathrm{II})(\mathrm{TMPyP})(\mathrm{CO})\left(\mathrm{CH}_{3} \mathrm{OH}\right)\right](\mathrm{OAc}) 4, \quad \mathrm{Na}_{4}[\mathrm{Ru}(\mathrm{II})(\mathrm{TSPhP})(\mathrm{CO})(\mathrm{EtOH})]\right.$ and $[\mathrm{Ru}(\mathrm{II})(p-$ COOH-PP) $(\mathrm{CO})(\mathrm{MeOH})] \quad(\mathrm{TMPyP} \quad=$ dianion of meso-tetrakis $(4-\mathrm{N}$ methylpyridinium)porphyrin and p-COOH-PP $=$ dianion of meso-tetrakis(4carboxylphenyl)porphyrin)) and their Mn and Fe analogues for possible in vivo anti-tumour activity using mice bearing P388 leukemia cells, and these results were compared to those for cisplatin. ${ }^{14}$ Of the complexes studied, only $\mathrm{Na}_{4}[\mathrm{Ru}(\mathrm{TSPhP})(\mathrm{CO})(\mathrm{EtOH})]$ exhibited "borderline" anti-tumour activity ($0.047 \mathrm{mmol} / \mathrm{kg}$) compared to that of cisplatin (0.013 $\mathrm{mmol} / \mathrm{kg}) .{ }^{14}$ Previous biological results, in this laboratory, reported by Ware ${ }^{16}$ indicate that $\mathrm{Na}_{4}[\mathrm{Ru}(\mathrm{TSPhP})(\mathrm{CO})(\mathrm{DMF})]$ does not accumulate in CHO cells as well as, for example, trans- $\mathrm{RuCl}_{2}(\mathrm{BPSE})_{2}$ (up to $8.81 \times 10^{-6} \mathrm{ng}(\mathrm{Ru}) /$ cell at $50-200 \mu \mathrm{M}$ after $1 \mathrm{~h}^{16} \nu$ s. 175×10^{-6} $\mathrm{ng}(\mathrm{Ru}) /$ cell at $500 \mu \mathrm{M}$ for 4 h$).{ }^{33} \mathrm{Na}_{4}[\mathrm{Ru}(\mathrm{TSPhP})(\mathrm{CO})(\mathrm{DMF})]$ was shown to be non-toxic toward CHO cells in air at the concentrations tested (50-200 $\mu \mathrm{M}$) which parallels other reports from this laboratory showing that various Co, Cu and Pt porphyrin complexes are also
non-toxic to oxic cells. ${ }^{3,34}$ The complex $\mathrm{Na}_{4}\left[\mathrm{Ru}(\mathrm{TSPhP})(\mathrm{DMSO})_{2}\right]$, derived from $\mathrm{Na}_{4}[\mathrm{Ru}(\mathrm{TSPhP})(\mathrm{CO})(\mathrm{DMF})]$, was found to show no radiosensitizing ability toward CHO cells under oxic or hypoxic conditions, and indeed seemed to be weakly radioprotecting. ${ }^{3,16}$

5.6.2 Ru(OEP)(CO)(THF)

The reaction of $\mathrm{H}_{2}(\mathrm{OEP})$ with $\left[\mathrm{Ru}(\mathrm{DMF})_{6}\right][\mathrm{OTf}]_{3}$ led to the isolation of the title complex (Section 5.5 .2), which has been made previously via the $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ precursor; ${ }^{10} v_{\mathrm{CO}}$ observed at $1925 \mathrm{~cm}^{-1}(\mathrm{KBr})$ compares with the reported values of $1950 \mathrm{~cm}^{-1}$ for $\mathrm{Ru}(\mathrm{OEP})(\mathrm{CO})(\mathrm{THF})$ (medium not given), ${ }^{10} 1952 \mathrm{~cm}^{-1}$ for $\mathrm{Ru}(\mathrm{OEP})(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)$ (medium not given), ${ }^{20 a} 1917 \mathrm{~cm}^{-1}$ for $\mathrm{Ru}(\mathrm{OEP})(\mathrm{CO})$ (in $0.1 \mathrm{M}\left[{ }^{n} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), ${ }^{21}$ and 1945 and $1928 \mathrm{~cm}^{-1}$ for $\mathrm{Ru}(\mathrm{OEP})(\mathrm{CO})(\mathrm{MeOH})(\mathrm{KBr}) .{ }^{22}$ Crystals of $\mathrm{Ru}(\mathrm{OEP})(\mathrm{CO})(\mathrm{THF})$ (Section 5.5.2) were grown by slow evaporation of a $10 \% \mathrm{THF} /$ toluene solution of the complex. It was not possible to obtain good elemental analysis or definitive NMR data for the complex because the THF was removed during attempts to remove associated solvent by pumping. Eaton and Eaton have reported ${ }^{1} \mathrm{H}$ NMR multiplets at $\delta-1.23$ and -0.45 peaks for bound THF in $\mathrm{Ru}(\mathrm{OEP})(\mathrm{CO})(\mathrm{THF}) .{ }^{10}$

Structural data (Figure 5.2 and Table 5.2) show that the molecule has a slightly distorted octahedral geometry at the Ru with trans angles that range from 172.66(12) to 177.23(12) ${ }^{\circ}$, cis $\mathrm{N}-\mathrm{Ru}-\mathrm{N}$ angles from $89.53(10)-89.97(10)^{\circ}$, cis $\mathrm{C}-\mathrm{Ru}-\mathrm{N}$ angles from 89.92(13)-97.41(13) ${ }^{\circ}$, and cis O-Ru-N angles from $85.31(10)-87.35(10)^{\circ}$. The complex possesses a linear binding mode for the CO ligand with a $\mathrm{Ru}-\mathrm{C}-\mathrm{O}$ angle of $176.6(3)^{\circ}$, a Ru-C bond length of $1.805(4) \AA$ and a C-O bond length of 1.144(4) \AA. The Ru-O(2) distance is 2.241 (3) \AA which is somewhat longer than those reported (2.019(3) \AA (av.) for the Ru-O
bond in $\mathrm{Ru}(\mathrm{TPhP})(\mathrm{OEt})(\mathrm{EtOH}) \cdot 2 \mathrm{EtOH},{ }^{22}$ and $2.21(2) \AA$ for $\left.\mathrm{Ru}(\mathrm{TPhP})(\mathrm{CO})(\mathrm{EtOH})^{25}\right)$ and suggests a weak ligation of THF in the solid state.

Figure 5.2. An ORTEP diagram of $\mathrm{Ru}(\mathrm{OEP})(\mathrm{CO})(\mathrm{THF})$ showing 50% thermal ellipsoids; the H -atoms are omitted for clarity (crystal data are given in Appendix 1.14).

Table 5.2. Selected Bond Angles and Lengths for Ru(OEP)(CO)(THF).

Bond	Distance (\AA)	Bond angles	Angle (${ }^{\circ}$)
Ru-C	$1.805(4)$	trans angles	$172.66(12)-177.23(12)$
Ru-N(porp)	$2.052(2)-2.059(2)$	cis-N-Ru-N	$89.53(10)-89.97(10)$
Ru-O	$2.241(3)$	cis-C-Ru-N	$89.92(13)-97.41(13)$
$\mathrm{C}-\mathrm{O}$	$1.144(4)$	cis-O-Ru-N	$85.31(10)-87.35(10)$
		Ru-C-O	$176.6(3)$

Seyler et al. have reported on the reaction of TEMPO (Figure 5.3) with $\mathrm{Ru}(\mathrm{OEP})\left(\mathrm{CH}_{3}\right)$ to give $\mathrm{Ru}(\mathrm{OEP})(\mathrm{CO})(\mathrm{TEMPO})$, the first reported transformation of a CH_{3} to a CO within a metal complex. ${ }^{35}$ The CO ligand is linearly bound with a $\mathrm{Ru}-\mathrm{C}-\mathrm{O}$ angle of 178.6°, a Ru-C bond distance of $1.798(5) \AA$ and a C-O bond distance of $1.150(5) \AA$. The reported $\mathrm{Ru}-\mathrm{O}$ distance of $2.348(3) \AA$ is larger than those noted above and suggests a weak ligation of the TEMPO ligand. The ${ }^{1} \mathrm{H}$ NMR solution spectrum of $\mathrm{Ru}(\mathrm{OEP})(\mathrm{CO})(\mathrm{TEMPO})$ revealed no evidence for TEMPO ligation with the $\mathrm{Ru}(\mathrm{OEP})(\mathrm{CO})$ moiety in solution. ${ }^{35}$ Other $\mathrm{Ru}(\mathrm{OEP})$ complexes characterized by X-ray crystallography include $\mathrm{Ru}(\mathrm{OEP})\left(\mathrm{R}_{2} \mathrm{~S}\right)_{2}\left(\mathrm{R}_{2}=n-\right.$ decylmethyl and $\left.\quad \mathrm{Ph}_{2}\right),{ }^{36} \quad\left[\mathrm{Ru}(\mathrm{OEP})\left(\mathrm{R}_{2} \mathrm{~S}\right)_{2}\right]\left[\mathrm{BF}_{4}\right] \quad\left(\mathrm{R}_{2} \quad=\quad n\right.$-decylmethyl $){ }^{37}$ and $\mathrm{Ru}(\mathrm{OEP})(\mathrm{CO})(\mathrm{py}) .{ }^{38}$ Funatsu et al. have reported the structure of the 'diporphyrin species' $\mathrm{Ru}(\mathrm{OEP})(\mathrm{CO})\left(\mathrm{H}_{2} \mathrm{PyP}_{3} \mathrm{P}\right)\left(\mathrm{H}_{2} \mathrm{PyP}_{3} \mathrm{P}=\right.$ 5-pyridyl-10,15,20-triphenylporphyrin $)$, in which the carbonyl ligand is again linearly coordinated to Ru with the $\mathrm{Ru}-\mathrm{C}-\mathrm{O}$ angle of $179.7(6)^{\circ}$, a RuC bond distance of $1.801 \AA$ and a C-O bond distance of 1.165(7) \AA^{39}
[Of interest, TEMPO has been utilized previously in this group to study bond homolysis within $\mathrm{Ru}(\mathrm{IV})$-diaryl/dialkyl porphyrin complexes. ${ }^{40}$ Hanada et al. have reported the structure and magnetic properties of a bis(nitroxide)diruthenium (II,III) cation within the mixed cation complex $\left[\mathrm{Ru}_{2}\left(\mathrm{O}_{2} \mathrm{CCMe}_{3}\right)_{4}(\mathrm{TEMPO})_{2}\right]\left[\mathrm{Ru}_{2}\left(\mathrm{O}_{2} \mathrm{CCMe}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2} .{ }^{41}$

(1)

(2)

(3)

Figure 5.3. Structures of (1) $=$ TEMPO $=2,2,6,6$-tetramethylpiperidine-1-oxyl, ${ }^{35}(\mathbf{2})=$ DAPO $=$ trans 3,4,-diamino-2,2,6,6-tetramethyl piperidine-1-oxyl, ${ }^{42}(3)=$ TEMPICOL-2 $=4$ -hydroxy-4-(2-picolyl)-2,2,6,6-tetramethylpiperidine-1-oxyl. ${ }^{43}$

More generally, derivatives of TEMPO and associated metal complexes have been studied as novel classes of antioxidants and anticancer agents. Sen' et al. have reported the synthesis and anti-tumour activity of the $\mathrm{Pt}(\mathrm{II})$ complexes $\mathrm{Pt}(\mathrm{DAPO}) \mathrm{X}_{2}$ (see Figure 5.3). ${ }^{42}$ The toxicity of the Pt complexes was dependent on the nature of X , and in terms of LD_{50} varied between $11 \mathrm{mg} / \mathrm{kg}\left(\mathrm{X}=\mathrm{NO}_{3}\right)$ and $400 \mathrm{mg} / \mathrm{kg}\left(\mathrm{X}_{2}=1,1\right.$-cyclobutanedicarboxylate $)$ compared to that of cisplatin, $12 \mathrm{mg} / \mathrm{kg}$. The complex with $\mathrm{X}=\mathrm{Cl}$ (at $4.75 \mathrm{mg} / \mathrm{kg}$) appeared to more efficient than cisplatin ($1.88 \mathrm{mg} / \mathrm{kg}$) in suppressing tumour growth (evaluated as an inhibition of growth of tumour diameter) against subcutaneously transplanted adenocarcinoma 755 in mice. Metodiewa et al. have reported studies of TEMPICOL-2 (see Figure 5.3) as an anticancer agent, in which administration of the nitroxide to rats bearing 3 day-old Yoshida Sarcoma led to growth inhibition. ${ }^{43}$]

5.6.3 Ru(TPhP)(CO)(py)

The title complex was synthesized 'inadvertently' by reaction of $\left[\mathrm{Ru}(\mathrm{DMF})_{6}\right]^{3+}$ and $\mathbf{H}_{2}(\mathrm{TPhP})$, followed by crystallization from a pyridine/benzene solution (Section 5.5.3). Structural determination revealed that the molecule was identical to that reported by Little and Ibers in $1973 .^{38}$ The v_{CO} value compares with those reported in the literature: $1945 \mathrm{~cm}^{-1}$ for $\mathrm{Ru}(\mathrm{TPhP})(\mathrm{CO})$ in KBr^{9} or $\mathrm{NaCl}^{23}, 1945 \mathrm{~cm}^{-1}$ for $\mathrm{Ru}(\mathrm{TPhP})(\mathrm{CO})$ (imidazole) in $\mathrm{CHCl}_{3}{ }^{24} 1934$ and $1939 \mathrm{~cm}^{-1}$ for $\mathrm{Ru}(\mathrm{TPhP})(\mathrm{CO})$ and $\mathrm{Ru}(\mathrm{TPhP})(\mathrm{CO})(\mathrm{py})$, respectively in tetrachloroethane ${ }^{25}$ and $1922 \mathrm{~cm}^{-1}$ for $\mathrm{Ru}(\mathrm{TPhP})(\mathrm{CO})$ in DMSO^{26}. (Table 5.3 shows a comparison of selected bond lengths for the two determined structures of $\mathrm{Ru}(\mathrm{TPhP})(\mathrm{CO})(\mathrm{py}))$.

Table 5.3. Comparison of Selected Bond Lengths for $\mathrm{Ru}(\mathrm{TPhP})(\mathrm{CO})(\mathrm{py})$ (Figure 5.4).

Bond	This Work	Ref. 38
Ru-C	$1.837(3) \AA$	$1.838(9) \AA$
Ru-N(porp)	$2.057(2)-2.062(2) \AA$	$2.055(6)-2.058(5) \AA$
Ru-N(py)	$2.207(2) \AA$	$2.193(4) \AA$
C-O	$1.151(3) \AA$	$1.141(10) \AA$

Figure 5.4. An ORTEP diagram of $\mathrm{Ru}(\mathrm{TPhP})(\mathrm{CO})(\mathrm{py})$ showing 50% thermal ellipsoids; the H -atoms have been omitted for clarity (crystal data are given in Appendix 1.15).

5.6.4 Ru(BPhP)(CO)

The title complex was synthesized by reaction of $\left[\mathrm{Ru}(\mathrm{DMF})_{6}\right]^{3+}$ and $\mathrm{H}_{2}(\mathrm{BPhP})$ (Section 5.5 .4), and has been partially characterized: v_{CO} is observed at $1930 \mathrm{~cm}^{-1}$, the mass spectrum shows peaks for $\mathrm{Ru}(\mathrm{BPhP})(\mathrm{CO})$ and $\mathrm{Ru}(\mathrm{BPhP})$, and the ${ }^{1} \mathrm{H}$ NMR data are consistent with the formulation.

5.6.5 Ru(TrPhPyNO)(CO)

The title complex ($v_{\mathrm{cO}} 1935, v_{\mathrm{NO}} 1251 \mathrm{~cm}^{-1}$) was synthesized by reaction of $\left[\mathrm{Ru}(\mathrm{DMF})_{6}\right]^{3+}$ and $\mathrm{H}_{2}(\mathrm{TrPhPyNO})$ (Section 5.5 .5$)$. The mass spectrum shows peaks for $\operatorname{Ru}(\operatorname{TrPhPyN})(\mathrm{CO})$ and $\operatorname{Ru}(\operatorname{TrPhPyN})$; the oxidopyridyl groups were deoxygenated using the ionization techniques (EI, LSIMS and MALDI-TOF) and no molecular ion peak was observed. Of note, the free-base porphyrins, 5,15-bis(1-oxido-4-pyridyl)-10-20diphenylporphyrin and 5,10-bis(1-oxido-4-pyridyl)-15-20-diphenylporphyrin, were deoxygenated under conditions of EI or LSIMS, but were analyzed by MALDI-TOF mass spectrometry which led to less deoxygenation of these porphyrin-N-oxides. ${ }^{44}$

5.7 Fluorescent Properties of Porphyrins

The accumulation of non-metallated (free-base) porphyrins in cells has been previously studied using fluorescence microscopy, ${ }^{5 a, 45}$ including the water-soluble sodium salt of 5-(1-oxido-4-pyridyl)-10, 15, 20-tris(4-sulfonatophenyl) porphyrin. ${ }^{44}$ Fluorescence from porphyrin chromophores localized in cells was observed when the cells were irradiated with

UV light (330-380 nm, with emission measured at $>420 \mathrm{~nm}$) and in the green region (510560 nm , with emission measured at $>590 \mathrm{~nm}$. ${ }^{44}$

5.7.1 Fluorescence Spectra of Selected Ru Porphyrins

A qualitative measure of fluorescence was determined for some Ru (Porp)(CO) species. The excitation wavelengths chosen are the absorbance maxima in the UV-Vis spectrum. Fluorescence was observed from the porphyrin chromophores when the samples were irradiated with UV light ($300-380 \mathrm{~nm}$, with emission measured at $\geq 570 \mathrm{~nm}$) and with visible light in the violet region (389-421 nm, with emission measured at $\geq 429 \mathrm{~nm}$). The fluorescence data are summarized in Table 5.4. The fluorescence spectrum of $\mathrm{Na}_{4}[\mathrm{Ru}(\mathrm{TSPhP})(\mathrm{CO})] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ is shown in Figure 5.5 as an example.

Figure 5.5. Fluorescence spectrum of $\mathrm{Na}_{4}[\mathrm{Ru}(\mathrm{TSPhP})(\mathrm{CO})] \cdot 4 \mathrm{H}_{2} \mathrm{O}$. The excitation wavelength was 414 nm and emission was measured at 641 and 704 nm .

Table 5.4. Fluorescence wavelengths for selected Ru porphyrins.

Porphyrin Excitation $(\lambda) \mathrm{nm}$ Emission $(\lambda) \mathrm{nm}$ $\mathrm{Na}_{4}[\mathrm{Ru}(\mathrm{TSPhP})(\mathrm{CO})] \cdot 4 \mathrm{H}_{2} \mathrm{O}^{a}$ 414 641 and 704 $\mathrm{Ru}(\mathrm{OEP})(\mathrm{CO})(\mathrm{THF})^{b}$ 389 429 $\mathrm{Ru}(\mathrm{BPhP})(\mathrm{CO})^{c}$ 315 570 and 633 406 698 $\mathrm{Ru}(\mathrm{TrPhPyNO})(\mathrm{CO})^{c}$ 421 650
$\mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O} .{ }^{b} \mathrm{THF} /$ toluene/acetone. ${ }^{c} \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ acetone.

5.8 Attempted Metallations

As described in Section 5.6 the metallation, using $\left[\mathrm{Ru}(\mathrm{DMF})_{6}\right][\mathrm{OTf}]_{3}$, of selected porphyrins has proven to be quite useful and convenient. Several attempts to metallate other porphyrins were unsuccessful. These reactions were monitored by: (a) TLC for the disappearance of H_{2} (Porp), (b) UV-Vis spectroscopy by shifts in the spectra, and (c) by IR for the appearance of $v_{c o}$. Porphyrins that were not metallated using the $\left[\mathrm{Ru}(\mathrm{DMF})_{6}\right]^{3+}$ precursor are shown in Table 5.5 (for the numbering scheme of the free-base porphyrins refer to Figure 5.1, p. 187).

Ware reported that the metallation of $\mathrm{H}_{2}(\mathrm{TPyP})$ with $\left[\mathrm{Ru}(\mathrm{DMF})_{6}\right][\mathrm{OTf}]_{3}$ led to the isolation of an insoluble, red product " $\mathrm{Ru}(\mathrm{TPyP})$ " that is likely of a polymeric nature. ${ }^{16}$ Shi and Anson exposed graphite electrodes coated with $\operatorname{Co}(\mathrm{TPyP})$ to solutions of fac$\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{OH}_{2}\right)_{3}\right]^{2+}$ and postulated the formation of a polymeric substance containing bridging Ru atoms linked to $\mathrm{Co}(\mathrm{TPyP})$ via the nitrogen of the pyridyl group. ${ }^{46}$ During this
present work, the reaction of $\mathrm{H}_{2}(\mathrm{TPyP})$ and $\left[\mathrm{Ru}(\mathrm{DMF})_{6}\right][\mathrm{OTf}]_{3}$ (following the methodology described in Section 5.5) resulted in the isolation of an insoluble microcrystalline purple compound that did not analyze well for either " $\mathrm{Ru}(\mathrm{TPyP})(\mathrm{CO})$ " or a polymeric $" \mathrm{Ru}(\mathrm{TPyP})$ " material.

Alessio et al. have reported the design of a "pentamer of vertically linked porphyrins" $(\mathrm{MTPyP})[\mathrm{Ru}(\mathrm{TPhP})(\mathrm{CO})]_{4}\left(\mathrm{M}=2 \mathrm{H}^{+}\right.$or $\left.\mathrm{Zn}^{2+}\right)$ formed by treating (MTPyP) with $[\mathrm{Ru}(\mathrm{TPhP})(\mathrm{CO})(\mathrm{EtOH})] .{ }^{47}$ Of note, the "pentamer" $\left(\mathrm{H}_{2} \mathrm{TPyP}\right)[\mathrm{Ru}(\mathrm{TPhP})(\mathrm{CO})]_{4}$ was considerably more soluble than $\mathrm{H}_{2}(\mathrm{TPyP})$ in CHCl_{3}. The authors have also observed that $(\mathrm{ZnTPyP})[\mathrm{Ru}(\mathrm{TPhP})(\mathrm{CO})]_{4}$ can interact with the O-atom of DMSO (both free and S-bonded to a metal centre) to form adducts containing the "rare bridging DMSO" ${ }^{47}$ Funatsu et al. have synthesized a series of cyclic Ru porphyrin tetramers including $[\mathrm{Ru}(\mathrm{TrPhPyP})(\mathrm{CO})]_{4},{ }^{48}$ which represent a class of molecules capable of supramolecular self-assembly. More generally, porphyrin oligomers have assisted in elucidation of important electronic and photochemical consequences for bacteriochlorophyll molecules in photosynthetic reaction centres. ${ }^{49}$ For example, Stibrany et al. have reported on a structural and spectroscopic comparison between $\mathrm{Zn}(\mathrm{II})$ porphyrin dimers and bacterial photosynthetic reaction centres in bacteriochlorophyll molecules, ${ }^{49 \mathrm{a}}$ while Kobuke and Miyaji reported the synthesis of porphyrin dimers and oligomers as models of photosynthetic reaction centres, ${ }^{49 b}$ and Nagata et al. reported the synthesis and spectroscopic properties of trimeric and pentameric porphyrin arrays as models toward the development of synthetic catalysts for photosynthetic charge separation. ${ }^{49 \mathrm{c}}$

Table 5.5. Free-Base Porphyrins. 5,10,15,20-tetrapyridylporphyrin (TPyP), 5,10-bis(phenyl)-15,20-bis(4-pyridyl- N-oxide)porphyrin (BPhBPyNOP),
5,10,15,20-tetramesitylporphyrin (TMP), 5,10,15,20-tetra(pentafluorophenyl)porphyrin (TPFPhP), 5,15-dibromo-10,20-bisphenylporphyrin (DBrBPhP), and protoporphyrin(IX)dimethylester (PPIXDME).
Substituent
${ }^{a}$ DME $=\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{2}$.

5.9 Conclusions

Ware in this laboratory has shown that $\left[\mathrm{Ru}(\mathrm{III})(\mathrm{DMF})_{6}\right][\mathrm{OTf}]_{3}$ is an effective precursor for the metallation of the water-soluble porphyrin, $\mathrm{H}_{2}(\mathrm{TSPhP})^{4}$. ${ }^{16}$ The present work has shown that this metallation method is not limited to the water-soluble porphyrin $\mathrm{H}_{2}(\mathrm{TSPhP})^{4}$ but applies also to several non-water-soluble porphyrins to give $\mathrm{Ru}(\mathrm{II})(\mathrm{Porp})(\mathrm{CO})$ complexes. This method is both convenient and efficient, in that an atmosphere of CO is not required and the reaction times are reduced from 1-3 weeks (using $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ as precursor) to a period of $3-24 \mathrm{~h}$.

The in situ reduction of the $\mathrm{Ru}(\mathrm{III})$ to $\mathrm{Ru}(\mathrm{II})$ in this metallation process may involve CO (derived from the DMF) as the reductant (Section 5.6). As well, metallation does not occur in air, implying that Ru (III) is first reduced to Ru (II) and then inserted into the porphyrin to yield $\mathrm{Ru}(\mathrm{II})(\mathrm{Porp})(\mathrm{CO})$. Further work is required to determine the mechanism of this metallation process involving the in situ reduction of $\mathrm{Ru}(\mathrm{III})$ to $\mathrm{Ru}(\mathrm{II})$.

5.10 References for Chapter 5

1 Märkel, G.; Reiss, M.; Kreitmeier, P.; Nöth, H. Angew. Chem. Int. Ed. Engl. 1995, 34, 2230 and references therein.

2 O’Hara, J. A.; Douple, E. B.; Abrams, M. J.; Picker, D. J.; Giandomenico, C. M.; Vollano, J. F. Int. J. Radiat. Oncol. Biol. Phys. 1989, 16, 1049.

James, B. R.; Meng, G. G.; Posakony, J. J.; Ravensbergen, J. A.; Ware, C. J.; Skov, K. A. Metal-Based Drugs 1996, 3, 85.

4 Jaswal, J. S.; Yapp, D. T. T.; Rettig, S. J.; James, B. R.; Skov, K.;A. J. Chem. Soc., Chem. Commun. 1992, 1528 and references therein.
(a) Kessel, D.; Thompson, P.; Saatio, K.; Nantwi, K. D. Photochem. Photobiol. 1987, 45, 787;
(b) Fiel, R. J.; Mark, E.; Button, T.; Gilani, S.; Musser, D. Cancer Lett. 1988, 40, 23;
(c) Dougherty, T. J. Photochem. Photobiol. 1987, 45, 879;
(d) Miura, M.; Micca, P. L.; Heinrichs, J. C.; Gabel, D.; Fairchild, R. G.; Slatkin, D. N. Biochem. Pharmacol. 1992, 43, 467.

6 Farrell, N. P. Transition Metal Complexes as Drugs and Chemotherapeutic Agents, Kluwer Academic Publishers, Dordecht, 1989.

7 Sava G. Ruthenium Compounds in Cancer Therapy, in Metal Compounds in Cancer Therapy (ed. S Fricker), Chapman and Hall, London, 1994, p. 65.

10 Eaton, G. R.; Eaton, S. S. J. Am. Chem. Soc. 1975, 97, 235.Academic Publishers, Dordrecht, 1994, 17, p. 121.

12 Massoudipour, M.; Pandey, K. K. Inorg. Chim. Acta 1989, 160, 115.
13 Pawlik, M.; Hoq, M. F.; Shepherd, R. E. J. Chem. Soc., Chem. Commun. 1983, 1467.

Hartmann, M.; Robert, A.; Duarte, V.; Keppler, B. K.; Meunier, B. J. Biol. Inorg. Chem. 1997, 2, 427.

Dawes, J. L.; Holmes, J. D. Inorg. Nucl. Chem. Lett. 1971, 7, 847.
Ware, C. J. M. Sc. Dissertation, University of British Columbia, Vancouver, 1994. Judd, R. J.; Cao, R.; Biner, M.; Armbruster, T.; Bürgi, H-B.; Merbach, A. E.; Ludi, A. Inorg. Chem. 1995, 34, 5080.
Meng, G. G.; James, B. R.; Skov, K. A.; Korbelik, M. Can. J. Chem. 1994, 72, 2447. Yong-Wu, L.; Xing-Min, A. Acta Chim. Sin. 1986, 44, 964.
(a) Barley, M.; Becker, G.; Domazetis, G.; Dolphin, D.; James, B. R. Can. J. Chem. 1983, 61, 2389;
(b) Antipas, A.; Buchler, J. W.; Gouterman, M.; Smith, P. D. J. Am. Chem. Soc. 1978, 100, 3015.
Brown, G. M.; Hopf, F. R.; Ferguson, J. A.; Meyer, T. J.; Whitten, D. G. J. Am. Chem. Soc. 1973, 95, 5939.
Collman, J. P.; Barnes, C. E.; Brothers, P. J.; Collins, T. J.; Ozawa, T.; Gallucci, J. C.; Ibers, J. A. J. Am. Chem. Soc. 1984, 106, 5151.
Tsutsui, M.; Ostfeld, D.; Francis, J. N.; Hoffman, L. M. J. Coord. Chem. 1971, 1, 115. Tsutsui, M.; Ostfeld, D.; Hoffman, L. M. J. Am. Chem. Soc. 1971, 93, 1820.
Bonnet, J. J.; Eaton, S. S.; Eaton, G. R.; Holm, R. H.; Ibers, J. A. J. Am. Chem. Soc. 1973, 95, 2141.
Rillema, D. P.; Nagle, J. K.; Barringer Jr., L. F.; Meyer, T. J. J. Am. Chem. Soc. 1981, 103, 56.

Belani, R. M.; James, B. R.; Dolphin, D.; Rettig, S. J. Can. J. Chem. 1988, 66, 2072. Sheldon, R. Chemicals from Synthesis Gas, Reidel Publishing Co., Dordrecht, 1983, p. 33.

Baird, I. R.; Rettig, S. J.; James, B. R.; Skov, K. A. Can. J. Chem. 1998, 76, 1379.
Hallman, P. S.; Stephenson, T. A.; Wilkinson, G. Inorg. Synth. 1970, 12, 237.
(a) Collman, J. P.; Gagne, R. R.; Halbert, T. R.; Marchon, J-C.; Reed, C. A. J. Am. Chem. Soc. 1973, 95, 7868;
(b) Chin, D-H.; Balch, A. L.; La Mar, G. N. J. Am. Chem. Soc. 1980, 102, 1446;
(c) Anderson, C.; Beauchamp, A. L. Inorg. Chem. 1995, 34, 6065.

Buchler, J. W.; Künzel, F. M.; Mayer, U.; Nawra, M. Fresenius J. Anal. Chem. 1994, 348, 371.
(a) Yapp, D. T. T. Ph. D. Dissertation, University of British Columbia, Vancouver, 1993;
(b) Yapp, D. T. T.; Rettig, S. J.; James, B. R.; Skov, K. A. Inorg. Chem. 1997, 36, 5635.
(a) Meng, G. G. Ph.D. Dissertation, University of British Columbia, Vancouver, 1993;
(b) Ravensbergen, J. A. M. M. Sc. Dissertation, University of British Columbia, Vancouver, 1993.

Seyler, J. W.; Fanwick, P. E.; Leidner, C. R. Inorg. Chem. 1992, 31, 3699.
James, B. R.; Pacheco, A.; Rettig, S. J.; Ibers, J. A. Inorg. Chem. 1988, 27, 2414.
Pacheco, A.; James, B. R.; Rettig, S. J. Inorg. Chem. 1995. 34, 3477.
Little, R. G.; Ibers, J. A. J. Am. Chem. Soc. 1973, 95, 8583.
Funatsu, K.; Kimura, A.; Imamura, T.; Ichimura, A.; Sasaki, Y. Inorg. Chem. 1997, 36, 1625.

Ke, M.; Rettig, S. J.; James, B. R.; Dolphin, D. J. Chem. Soc., Chem. Commun. 1987, 1110.

1 Hanada, M.; Sayama, Y.; Mikuriya, M.; Nukada, R.; Hiromitsu, I.; Kasuga, K. Bull. Chem. Soc. Jpn. 1995, 68, 1647.
Sen', V. D.; Golubev, V. A.; Volkova, L. M.; Konovalova, N. P. J. Inorg. Biochem. 1996, 64, 69.

Metodiewa, D.; Skolimowski, J.; Kochman, A.; Gwozdsinski, K.; Glebeska, J. Anticancer Res. 1998, 18, 369.
(a) Posakony, J. J. Ph.D. Dissertation, University of British Columbia, Vancouver, 1998, p. 94;
(b) Posakony, J. J.; Pratt, R. C.; Rettig, S. J.; James, B. R.; Skov, K. A. Can. J. Chem. 1999, 77, 182.
(a) Berg, K.; Western, A.; Bommer, J. C.; Moan, J. Photochem. Photobiol. 1990, 52, 481;
(b) Woodburn, K. W.; Vardaxis, N. J.; Hill, J. S.; Kaye, A. H.; Phillips, D. R. Photochem. Photobiol. 1991, 54, 725;
(c) Berg, K.; Madslien, K.; Bommer, J. C.; Oftebro, R.; Winkelman, J. W.; Moan, J. Photochem. Photobiol. 1991, 53, 203;
(d) Karagianis, G.; Hill, J. S.; Stylli, S. S.; Kaye, A. H.; Varadaxis, N. J.; Reiss, J. A.; Phillips, D. R. Br. J. Cancer 1996, 73, 514.
Shi, C.; Anson, F. C. Inorg. Chim. Acta 1994, 225, 215.
Alessio, E.; Macchi, M.; Heath, S.; Marzilli, L. G. J. Chem. Soc., Chem. Commun. 1996, 1411.
Funatsu, K.; Imamura, T.; Ichimura, A.; Sasaki, Y. Inorg. Chem. 1998, 37, 1798.
(a) Stibrany, R. T.; Vasudevan, J.; Knapp, S.; Potenza, J. A.; Emge, T.; Schugar, H. I. J. Am. Chem. Soc. 1996, 118, 3980;
(b) Kokube, Y.; Miyaji, H. J. Am. Chem. Soc. 1994, 116, 4111;
(c) Nagata, T.; Osuka, A.; Maruyama, K. J. Am. Chem. Soc. 1990, I12, 3054.

Chapter 6

Conclusions and Recommendations for Future Work

6.1 General Remarks

This chapter highlights the most significant results obtained from the projects described, specifically the characterizations of water-soluble, dinuclear, Ru-disulfoxide complexes. Suggestions for future investigations are made. Less successful experiments are also considered, including suggestions on how syntheses might be improved. Finally, some comments are made regarding the potential use of water-soluble Ru complexes as chemotherapeutic agents.

6.2 Sulfoxide and Thioether Complexes of Ruthenium

The initial focus of this work was to synthesize geometrical isomers of the cis and trans forms of some existing Ru bis-chelating, disulfoxide complexes (Chapter 1). However, because of the unsuccessful early attempts of utilizing various Ru precursors (Chapter 2), it was decided to extend the series of disulfoxides (Chapter 2), and to synthesize their corresponding Ru complexes. The successful reactions are discussed in Chapter 3. Reactions of 2 equivalents of disulfoxide with $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ generally give the mononuclear cis- RuCl_{2} (disulfoxide) ${ }_{2}$ complexes, which contain solely S -bonded sulfoxides as indicated by IR data and established by X-ray crystallography for cis- $\mathrm{RuCl}_{2}(\mathrm{BBSE})_{2} \cdot \mathrm{EtOH}$, cis$\mathrm{RuCl}_{2}(\mathrm{BCySE})_{2} \cdot \mathrm{EtOH} \cdot 1 / 3 \mathrm{MeOH}$ and cis $-\mathrm{RuCl}_{2}(\mathrm{BESP})_{2} \cdot \mathrm{EtOH} \cdot \mathrm{H}_{2} \mathrm{O}$. With the exception of cis- $\mathrm{RuCl}_{2}(\mathrm{BBSE})_{2} \cdot \mathrm{EtOH}$, which contains one $R R$ and one meso form of BBSE , the coordinated disulfoxides are all the meso diastereomers. Of major interest are the water-
soluble, dinuclear, disulfoxide complex $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$, which represents a new type of mixed-valence species, and a series of $\left[\mathrm{RuCl}(\text { disulfoxide })\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ complexes (disulfoxide $=$ BESE, BPSE or BBSE). The aqueous solution chemistry of $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ was studied and the data suggest the formation of a dihydroxy species. However, attempts to isolate this complex were unsuccessful, possibly due to its hygroscopic nature. Such aqueous solution chemistry needs further study.

Reaction of the dinuclear complex $\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ with 2 equivalents of BESE gave the mononuclear trans- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ containing again just S-bonded sulfoxides. The cis isomer was described by the Trieste group as the lowest energy diastereomer (Chapter 3, p. 99), ${ }^{1}$ implying that the cis isomer would likely be isolated in attempts to synthesize the trans form, and early attempts to synthesize the trans complex via the trans $-\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}$ precursor or and photolyzing cis- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ yielded only the cis isomer. It is not clear why trans $-\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$ is isolated by utilizing the dinuclear complex as precursor. The generality of this method to synthesize the unknown geometrical isomers cis- $\mathrm{RuCl}_{2}(\mathrm{BPSE})_{2}$ and trans $-\mathrm{RuCl}_{2}(\mathrm{BBSE})_{2}$ from $\left[\mathrm{RuCl}(\mathrm{BPSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$ and $\left[\mathrm{RuCl}(\mathrm{BBSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$, respectively, should be examined.

Reactions of BPhSE, BHSE, $\mathrm{B}^{i} \mathrm{PSP}, \mathrm{BBSP}, \mathrm{BPeSP}, \mathrm{BPhSP}$ and BMSB with $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, utilizing procedures described in Chapter 2, led to yellow, uncharacterized products which by column chromatography yielded several bands or, in the case of BMSB, a product insoluble in common solvents. Elemental analyses for the products obtained from the major chromatography bands and the insoluble products were variable from repeat
reactions. Further investigations into the reactions of the disulfoxides containing $\left(\mathrm{CH}_{2}\right)_{2}$ and $\left(\mathrm{CH}_{2}\right)_{3}$ backbones with Ru precursors should be pursued.

An attempt to oxidize 1,3-bis(phenylthio)propane using air/DMSO oxidation led to an oily product, which by TLC, ${ }^{1} \mathrm{H}$ NMR spectroscopy and $v_{\text {so }}$ data appeared to be the disulfoxide. Reaction of this oil and $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, again utilizing the procedure described in Chapter 2, led to the isolation of red crystals which were submitted for X-ray analysis. The structural diagram shows one coordinated disulfoxide and one 'half-oxidized' dithioether. Large thermal motion prevented an accurate determination of the structure; however, cis geometry was established (Figure 6.1). The coordination chemistry of 'half-oxidized' dithioether Ru complexes is intriguing. The oxidation of dithioethers using only one-half of the required oxidizing agent should be examined. Thus a novel series of mixed thioether/sulfoxide Ru complexes could presumably be synthesized and characterized.

Figure 6.1. Structural diagram of $\mathrm{cis}-\mathrm{RuCl}_{2}(\mathrm{BPhSP})(1-($ phenylthio $)-3-$ (phenylsulfinyl)propane).

Most of the disulfoxides synthesized in this work are water-soluble; however, the mononuclear, bis-chelating disulfoxide Ru complexes are all non-water-soluble. Synthesis of disulfoxide ligands incorporating moieties that would render the complexes water-soluble (for example, that shown in Figure 6.2) would seem a worthwhile endeavour.

Figure 6.2. A potentially water-soluble disulfoxide.

The disulfoxides in this work were synthesized as mixtures of diastereomers (Chapter 3), thus preventing the determination of the absolute configurations of the S -atoms. Stereospecific syntheses of disulfoxides should be undertaken (Chapter 3, Section 3.5.1), and subsequent reactions with Ru precursors investigated. Such syntheses should result in isolation of complexes with known stereochemistry as opposed to mixtures of diastereomers.

Reactions of dithioethers with $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ resulted in isolation of the mononuclear $\mathrm{Ru}(\mathrm{II})$ species trans- $\mathrm{RuCl}_{2}(\mathrm{BCyTE})_{2}$ and $-\mathrm{RuCl}_{2}(\mathrm{BPhTE})_{2}$ and the dinuclear $\mathrm{Ru}($ III $)$ complexes $\left[\operatorname{RuCl}_{2}(\mathrm{BETP})\right]_{2}\left(\mu-\mathrm{Cl}_{2},\left[\mathrm{RuCl}_{2}(\mathrm{BPTP})\right]_{2}(\mu-\mathrm{Cl})_{2},\left[\mathrm{RuCl}_{2}(\mathrm{BBTP})\right]_{2}(\mu-\mathrm{Cl})_{2}\right.$ and $\left[\mathrm{RuCl}_{2}(\mathrm{BPeTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$. The redox chemistry of these requires study, as complexes of both $\mathrm{Ru}(\mathrm{II})$ and $\mathrm{Ru}(\mathrm{III})$ were isolated using dialkyldithioethers. Chatt et al. ${ }^{2}$ suggested that diphenyldithioether may be a stronger reductant than dialkyldithioethers in reactions with $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, as it gives trans- $\mathrm{RuCl}_{2}(\mathrm{BPhTE})_{2}$; however, the isolation of trans$\mathrm{RuCl}_{2}(\mathrm{BCyTE})_{2}$ implies that such a conclusion is not valid in a general sense.

The redox chemistry of the disulfoxide and dithioether systems is of interest and needs study, particularly for the dinuclear $\mathrm{Ru}(\mathrm{II}) / \mathrm{Ru}(\mathrm{II})$ and $\mathrm{Ru}(\mathrm{II}) / \mathrm{Ru}(\mathrm{III})$ disulfoxides, and
the $\mathrm{Ru}(\mathrm{III}) / \mathrm{Ru}(\mathrm{III})$ dithioethers. It should be possible to isolate entire ranges of $\mathrm{Ru}(\mathrm{II}) / \mathrm{Ru}(\mathrm{II}), \mathrm{Ru}(\mathrm{II}) / \mathrm{Ru}(\mathrm{III})$ and $\mathrm{Ru}(\mathrm{III}) / \mathrm{Ru}(\mathrm{III})$ complexes for each disulfoxide and dithioether. One possible route to $\mathrm{Ru}(\mathrm{III}) / \mathrm{Ru}$ (III) disulfoxides is via oxidation of coordinated dithioethers (for example, $\left[\mathrm{RuCl}_{2}(\mathrm{BPTP})\right]_{2}\left(\mu-\mathrm{Cl}_{2}\right.$ to give $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ or $\left.\left[\mathrm{RuCl}_{2}(\mathrm{BPSP})\right]_{2}(\mu-\mathrm{Cl})_{2}\right)$. Oxidation of $\mathrm{Ru}(\mathrm{II})$-thioethers to $\mathrm{Ru}(\mathrm{II})$-sulfoxides has been reported by Schenk et al. ${ }^{3}$ Initial attempts to oxidize trans- $\mathrm{RuCl}_{2}(\mathrm{BPhTE})_{2}$ using in situ dimethyldioxirane were unsuccessful in that no $v_{\text {so }}$ band was detected in the isolated product (Chapter 3); perhaps the bulky substituents at the sulfur prevent its oxidation. This oxidation should be attempted using complexes with thioethers containing less bulky substituents.

6.3 Metallation of Selected Free-base Porphyrins

$\left[\mathrm{Ru}(\mathrm{III})(\mathrm{DMF})_{6}\right][\mathrm{OTf}]_{3}$ is an effective precursor for the metallation of the watersoluble porphyrin, $\mathrm{H}_{2}(\mathrm{TSPhP})^{4-4}$. The present work has shown that this metallation method is not limited to the water-soluble porphyrin $\mathrm{H}_{2}(\mathrm{TSPhP})^{4-}$ but applies also to several non-water-soluble porphyrins to give $\mathrm{Ru}(\mathrm{II})(\mathrm{Porp})(\mathrm{CO})$ complexes.

Earlier work from this laboratory has shown that $\mathrm{Na}_{4}\left[\mathrm{Ru}(\mathrm{TSPhP})(\mathrm{DMSO})_{2}\right]$ has no radiosensitization activity in CHO cells and that $\mathrm{Na}_{4}[\mathrm{Ru}(\mathrm{TSPhP})(\mathrm{CO})(\mathrm{DMF})]$ is non-toxic and does not accumulate in CHO cells. ${ }^{4,5}$ The radiosensitizing capability of Ru porphyrins may be improved in principle by the attachment of a nitroimidazole group either to Ru or to the porphyrin ring. ${ }^{6}$ Photochemical studies with nitroimidazoles, misonidazole and metronidazole (see Chapter 1, Section 1.4.3), using photosensitizers such as hematoporphyrin, uroporphyrin, $\left(\mathrm{H}_{2} \mathrm{TSPhP}\right)^{4-}$ and its Zn complex, and mono-L-aspartyl chlorin e_{6}, have given evidence for Type I photoprocesses, ${ }^{7}$ these yielding the radical cation
of the photosensitizer and radical anion of metronidazole. ${ }^{8}$ The accumulation properties of Ru porphyrins in CHO cells may be improved by the attachment of cationic groups to the porphyrin ring, as James et al. have shown enhanced accumulation profiles for cationic porphyrins. ${ }^{5,9} \quad \mathrm{H}_{2}$ TMPyP \quad (TMPyP $=$ dianion of meso-tetrakis(4-Nmethylpyridinium)porphyrin) has been shown to interact with DNA, and a Mn derivative activated by a water-soluble oxygen-atom donor (potassium monopersulfate, KHSO_{5}) has been shown to be an efficient DNA-cleaving system. ${ }^{10}$ During this present thesis work, the anticancer properties of TEMPO derivatives have been reported. ${ }^{11}$ The reported isolation of $\mathrm{Ru}(\mathrm{OEP})(\mathrm{CO})(\mathrm{TEMPO})$ encourages a study to coordinate TEMPO (or a related nitroxide derivative) to a cationic, Ru porphyrin.

6.4 Preliminary In Vitro Examination Of Water-soluble Ru Sulfoxide Complexes

A preliminary survey of the biological activity of five complexes was presented in Chapter 4. The 5 selected complexes do accumulate in CHO cells, bind to DNA, but are non-toxic at the concentrations tested. Furthermore, no hypoxic selectivity was observed in CHO cells with respect to toxicity, cell accumulation and DNA-binding. A relatively high degree of DNA-binding occurs with these water-soluble complexes, particularly $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ and $\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$.

The DNA-binding assays imply that Ru-disulfoxide-DNA adducts are formed, and thus more extensive in vitro studies should be undertaken to understand the nature of these interactions. In vivo assays should also be undertaken to determine whether these complexes resemble the Ru-DMSO complexes in murine experiments.

Some metal complexes have potential as "carriers" to target radiosensitizers to DNA. ${ }^{12}$ The non-toxic, cell accumulating and DNA-binding properties of these complexes might be retained with the addition of a nitroimidazole ligand that would act as the radiosensitizer (see Chapter 1, Section 1.4.3). ${ }^{12}$

For example, Chan et al. have shown that the radiosensitizing activities of selected 2- and 4-nitroimidazoles are improved upon coordination using cis- $\mathrm{RuCl}_{2}(\mathrm{DMSO})_{4}{ }^{13}$ and cis$\mathrm{RuCl}_{2}(\mathrm{TMSO})_{4}{ }^{14}$ as precursors. The geometric formulations of some resulting RuCl_{2} (sulfoxide) $)_{2}(\mathrm{~L})_{2}$ complexes (sulfoxide $=\mathrm{DMSO}$ or TMSO , and $\mathrm{L}=$ a nitroimidazole) were not definitely resolved because no crystal structures were determined, and there are several possible isomers within such complexes. The advantage of using chelating disulfoxide ligands would be to reduce the number of possible isomers in the preparation of nitroimidazole complexes. Preliminary attempts to synthesize (in air/ $/ \mathrm{H}_{2} \mathrm{O}$) such complexes using $\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}$, as a precursor, with 2-nitroimidazole, 2-methyl-5nitroimidzole and imidazole led to water-soluble, red complexes that could not be purified by column chromatography and did not analyze well for C or H content. Of note, Yapp previously isolated red mixtures, from reactions of RuCl_{2} (disulfoxide) $)_{2}$ and nitroimidazoles, that could not be purified. ${ }^{12 a}$ Follow-up of this chemistry might prove useful for targeting applications.

6.5 References for Chapter 6

1 Geremia, S.; Vicentini, L.; Calligaris, M. Inorg. Chem. 1998, 37, 4094.
2 Chatt, J.; Leigh, G. J.; Storace, A. P. J. Chem. Soc. (A) 1971, 1380.
Schenk, W. A.; Frisch, J.; Dürr, M.; Burzlaff, N.; Stalke, D.; Fleischer, R.; Adam, W.; Prechtl, F.; Smerz, A. K. Inorg. Chem. 1997, 36, 2372.

Ware, C. J. M. Sc. Dissertation, University of British Columbia, Vancouver, 1994.

James, B. R.; Meng, G. G.; Posakony, J. J.; Ravensbergen, J. A.; Ware, C. J.; Skov, K. A: Metal-Based Drugs 1996, 3, 85.
(a) Posakony, J. J. Ph.D. Dissertation, University of British Columbia, Vancouver, 1998, p. 94;
(b) Posakony, J. J.; Pratt, R. C.; Rettig, S. J.; James, B. R.; Skov, K. A. Can. J. Chem. 1999, 77, 182.
(a) Oschner, M. Photochem. Photobiol. B: Biol. 1997, 39, 1;
(b) Dolphin, D. Can. J. Chem. 1994, 72, 1005.
(a) Bazin, M.; Patterson, L. K.; Ronfard-Haret, J. C.; Santus, R. Photochem. Photobiol. 1988, 48, 177;
(b) Bazin, M.; Santus, R. Photochem. Photobiol. 1986, 43, 235.

Meng, G. G. Ph.D. Dissertation, University of British Columbia, Vancouver, 1993.

10 (a) Pitié, M.; Bernadou, J.; Meunier, B. J. Am. Chem. Soc. 1995, 117, 2935 and references therein;
(b) Bigey, P.; Pratviel, G.; Meunier, B. J. Chem. Soc., Chem. Commun. 1995, 181.

11 (a) Sen', V. D.; Golubev, V. A.; Volkova, L. M.; Konovalova, N. P. J. Inorg. Biochem. 1996, 64, 69;
(b) Metodiewa, D.; Skolimowski, J.; Kochman, A.; Gwozdsinski, K.; Glebeska, J. Anticancer Res. 1998, 18, 369.
(a) Yapp, D. T. T. Ph. D. Dissertation, University of British Columbia, Vancouver, 1993;
(b) Yapp, D. T. T.; Rettig, S. J.; James, B. R.; Skov, K. A. Inorg. Chem. 1997, 36, 5635.

13 (a) Chan, P. K. L.; Skov, K. A.; James, B. R. Int. J. Radiat. Biol. 1987, 52, 49;
(b) Chan, P. K. L.; Chan, P. K. H.; Frost, D. C.; James, B. R.; Skov, K. A. Can. J. Chem. 1988, 66, 117.

14 Chan, P. K. L.; James, B. R.; Frost, D. C.; Chan, P. K. H.; Hu, H-L.; Skov, K. A. Can. J. Chem. 1989, 67, 508.

Appendix 1. Crystallographic Data

Appendix 1.1 Crystallographic Data for trans- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$
Table A. 1 1. Experimental Details for X-ray Crystal Structure of trans-RuCl $\mathbf{L}_{2}(\mathrm{BESE})_{2}$
A. Crystal Data

Empirical Formula	$\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{RuS}_{4}$
Formula Weight	536.57
Crystal Colour, Habit	yellow, plate
Crystal Dimensions	$0.05 \times 0.25 \times 0.35 \mathrm{~mm}$
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	$\mathrm{a}=10.309(2) \AA$
	$\mathrm{b}=7.6799(9) \AA$
	$\mathrm{c}=12.9465(7) \AA$
	$\beta=104.721(1){ }^{\circ}$
	$\mathrm{V}=991.4(2) \AA^{3}$
Space Group	$\mathrm{P} 2_{1} / \mathrm{n}(\# 14)$
Z Value	2
$\mathrm{D}_{\text {calc }}$	$1.797 \mathrm{~g} / \mathrm{cm}^{3}$
$\mathrm{~F}_{\text {ooo }}$	548.00
$\mu(\mathrm{MoK} \alpha)$	$14.94 \mathrm{~cm}^{-1}$

B. Intensity Measurements

Diffractometer
Radiation
Detector Aperature
Data Images
ϕ oscillation Range $(\chi=-90)$
ω oscillation Range $(\alpha=-90)$
Detector Position
Detector Swing Angle
$2 \theta_{\max }$
Scan Width
$2 \theta_{\max }$
No. of Reflections Measured
Corrections
C. Structure Solution and Refinement
Structure Solution

Structure Solution	Direct Methods (SIR92)
Refinement	Full-matrix least-squares
Function Minimized	$\Sigma \omega\left(\left\|F o^{2}\right\|-\left\|F c^{2}\right\|\right)^{2}$
Least Squares Weights	$\omega=1 / \sigma^{2}\left(F o^{2}\right)$
p-factor	0.0100
Anomalous Dispersion	All non-hydrogen atoms
No.. Observations $(\mathrm{I}>0.00 \sigma(\mathrm{I})$)	2344
No. Variables	162
Reflection/Parameter Ratio	14.47
Residuals (on F^{2}, all data): R; Rw	$0.063 ; 0.075$

Goodness of Fit Indicator	2.57
No. Observations ($\mathrm{I}>3 \sigma(\mathrm{I})$)	1928
Residuals (on $\mathrm{F}, \mathrm{l}>36(\mathrm{I})$): R1; R1w	0.033; 0.037
Max Shift/Error in Final Cycle	0.0006
Maximum peak in Final Diff. Map	0.38 eld ${ }^{3}$
Minimum peak in Final Diff. Map	$-0.84 e^{-} / A^{3}$

Table A. 1 2. Bond Angles (${ }^{\circ}$) for trans- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$

atom	atom	atom	angle	atom	atom	atom	angle
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	180.00	$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$\mathrm{C}(1)$	$104.9(1)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$89.12(3)$	$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$\mathrm{C}(3)$	$116.6(1)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$90.88(3)$	$\mathrm{O}(1)$	$\mathrm{S}(1)$	$\mathrm{C}(1)$	$107.6(1)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$92.27(3)$	$\mathrm{O}(1)$	$\mathrm{S}(1)$	$\mathrm{C}(3)$	$107.1(2)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$87.73(3)$	$\mathrm{C}(1)$	$\mathrm{S}(1)$	$\mathrm{C}(3)$	$99.1(2)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$90.88(3)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$\mathrm{O}(2)$	$119.44(9)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$89.12(3)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$\mathrm{C}(2)$	$103.5(1)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$87.73(3)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$\mathrm{C}(5)$	$115.7(1)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$92.27(3)$	$\mathrm{O}(2)$	$\mathrm{S}(2)$	$\mathrm{C}(2)$	$106.6(1)$
$\mathrm{S}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	180.00	$\mathrm{O}(2)$	$\mathrm{S}(2)$	$\mathrm{C}(5)$	$108.1(2)$
$\mathrm{S}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$85.42(3)$	$\mathrm{C}(2)$	$\mathrm{S}(2)$	$\mathrm{C}(5)$	$101.3(2)$
$\mathrm{S}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$94.58(3)$	$\mathrm{S}(1)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	$110.9(2)$
$\mathrm{S}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$94.58(3)$	$\mathrm{S}(2)$	$\mathrm{C}(2)$	$\mathrm{C}(1)$	$106.8(2)$
$\mathrm{S}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$85.42(3)$	$\mathrm{S}(1)$	$\mathrm{C}(3)$	$\mathrm{C}(4)$	$111.1(2)$
$\mathrm{S}(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	180.00	$\mathrm{~S}(2)$	$\mathrm{C}(5)$	$\mathrm{C}(6)$	$112.2(2)$
$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$\mathrm{O}(1)$	$119.31(9)$				

Angles are in degrees. Estimated standard deviations in the least significant figure are given in parentheses.
Table A. 1 3. Bond Lengths (\AA) for trans- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$

atom	atom	distance		atom	atom	distance
$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	$2.4018(7)$		$\mathrm{S}(1)$	$\mathrm{C}(3)$	$1.802(3)$
$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	$2.4018(7)$		$\mathrm{S}(2)$	$\mathrm{O}(2)$	$1.480(2)$
$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$2.3288(7)$		$\mathrm{S}(2)$	$\mathrm{C}(2)$	$1.809(3)$
$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$2.3288(7)$		$\mathrm{S}(2)$	$\mathrm{C}(5)$	$1.797(3)$
$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$2.3212(9)$		$\mathrm{C}(1)$	$\mathrm{C}(2)$	$1.512(5)$
$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$2.3212(9)$		$\mathrm{C}(3)$	$\mathrm{C}(4)$	$1.518(5)$
$\mathrm{S}(1)$	$\mathrm{O}(1)$	$1.479(2)$		$\mathrm{C}(5)$	$\mathrm{C}(6)$	$1.518(5)$
$\mathrm{S}(1)$	$\mathrm{C}(1)$	$1.804(3)$				

Distances are in angstroms. Estimated standard deviations in the least significant figure are given in parentheses.
Table A. 1 4. Atomic Coordinates for trans- $\mathrm{RuCl}_{2}(\mathrm{BESE})_{2}$

atom	x	y	z
$\mathrm{Ru}(1)$	0.50000	0.50000	0.50000
$\mathrm{Cl}(1)$	$0.55954(8)$	$0.78088(9)$	$0.57951(6)$
$\mathrm{S}(1)$	$0.49825(8)$	$0.39123(9)$	$0.66755(6)$
$\mathrm{S}(2)$	$0.72217(8)$	$0.40991(9)$	$0.54113(6)$
$\mathrm{O}(1)$	$0.4587(2)$	$0.5070(3)$	$0.7456(2)$
$\mathrm{O}(2)$	$0.8297(2)$	$0.5363(3)$	$0.5870(2)$
$\mathrm{C}(1)$	$0.6684(3)$	$0.3216(4)$	$0.7255(3)$
$\mathrm{C}(2)$	$0.7293(3)$	$0.2437(4)$	$0.6414(3)$
$\mathrm{C}(3)$	$0.4137(3)$	$0.1865(4)$	$0.6700(3)$
$\mathrm{C}(4)$	$0.2626(4)$	$0.2098(5)$	$0.6371(3)$

$\mathrm{C}(5)$	$0.7718(3)$	$0.2886(4)$	$0.4388(3)$
$\mathrm{C}(6)$	$0.9153(4)$	$0.2238(5)$	$0.4752(3)$

Appendix 1.2 Crystallographic Data for cis- $\mathrm{RuCl}_{2}(\mathrm{BBSE})_{2} \cdot \mathrm{EtOH}$
Table A.1 5. Experimental Details for X -ray Crystal Structure of cis- $\mathrm{RuCl}_{2}(\mathrm{BBSE})_{2} \cdot \mathrm{EtOH}$
A. Crystal Data

Empirical Formula	$\mathrm{C}_{22} \mathrm{H}_{50} \mathrm{Cl}_{2} \mathrm{O}_{5} \mathrm{RuS}$
4	
Formula Weight	694.85
Crystal Colour, Habit	yellow, prism
Crystal Dimensions	$0.50 \times 0.35 \times 0.20 \mathrm{~mm}$
Crystal System	orthorhombic
Lattice Type	Primitive
Lattice Parameters	$\mathrm{a}=16.1309(3) \AA$
	$\mathrm{b}=15.7775(7) \AA$
	$\mathrm{c}=24.9852(4) \AA$
	$\mathrm{V}=6358.9(5) \AA^{3}$
Space Group	$\mathrm{Pbca}(\# 61)$
Z Value	8
$\mathrm{D}_{\text {calc }}$	$1.452 \mathrm{~g} / \mathrm{cm}^{3}$
$\mathrm{~F}_{000}$	2912.00
$\mu(\mathrm{MoK} \alpha)$	$9.52 \mathrm{~cm}^{-1}$

B. Intensity Measurements

Diffractometer	Rigaku/ADSC CCD
Radiation	MoK α ($\lambda=0.71069$ A) graphite monochromated
Detector Aperature	94 mm x 94 mm
Data Images	769 exposures of 25.0 seconds
ϕ oscillation Range ($\chi=-90$)	0.0-190.2 ${ }^{\circ}$
ω. oscillation Range ($\chi=-90$)	-23.0-17.8 ${ }^{\circ}$
Detector Position	39.21 (2) mm
Detector Swing Angle	-10°
$2 \theta_{\text {max }}$	$60.1{ }^{\circ}$
No. of Reflections Measured	Total: 58797
	Unique: $8641\left(\mathrm{R}_{\text {int }}=0.036\right)$
Corrections	Lorentz-polarization
	Absorption/scaling (trans. factors: 0.6880-1.0000)
C. Structure Solution and Refinement	
Structure Solution	Patterson Methods (DIRDIF92 PATTY)
Refinement	Full-matrix least-squares
Function Minimized	$\Sigma \omega\left(\left\|F o^{2}\right\|-\left\|F c^{2}\right\|\right)^{2}$
Least Squares Weights	$\omega=1 / \sigma^{2}\left(F o^{2}\right)$
p-factor	0.0000
Anomalous Dispersion	All non-hydrogen atoms
No. Observations	8641
No. Variables	2317
Reflection/Parameter Ratio	27.26
Residuals (on F^{2}, all data): R ; Rw	0.067; 0.062
Goodness of Fit Indicator	1.75
No. Observations ($\mathrm{I}>3 \sigma(\mathrm{I})$)	4889

Residuals (on F, I>3б(I)): R; Rw	$0.040 ; 0.028$
Max Shift/Error in Final Cycle	0.008
Maximum peak in Final Diff. Map	$1.62 e^{-1 / A^{3}(\text { near Ru) }}$
Minimum peak in Final Diff. Map	$-2.30 e^{-/ / A^{3}(\text { near Ru })}$

Table A.1 6. Bond Angles $\left({ }^{\circ}\right)$ for cis- $\mathrm{RuCl}_{2}(\mathrm{BBSE})_{2} \cdot \mathrm{EtOH}$

atom	atom	atom	angle		atom	atom	atom	angle
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	86.16(3)		$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	S(1)	173.01(3)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	S(2)	90.21(3)		$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	S(3)	89.94(3)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	S(4)	89.11(3)		$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	S(1)	87.71(3)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	S(2)	88.99(3)		$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	S(3)	176.04(3)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	S(4)	93.41(3)		S(1)	$\mathrm{Ru}(1)$	S(2)	86.32(3)
S(1)	$\mathrm{Ru}(1)$	S(3)	96.22(3)		S(1)	$\mathrm{Ru}(1)$	S(4)	94.62(3)
S(2)	$\mathrm{Ru}(1)$	S(3)	91.76(3)		S(2)	$\mathrm{Ru}(1)$	S(4)	177.46(3)
S(3)	$\mathrm{Ru}(1)$	S(4)	85.79(3)		$\mathrm{Ru}(1)$	S(1)	O(1)	116.88(9)
$\mathrm{Ru}(1)$	S(1)	C(1)	104.36(11)		$\mathrm{Ru}(1)$	S(1)	C(3)	119.29(10)
$\mathrm{O}(1)$	S(1)	C(1)	107.40(13)		O(1)	S(1)	C(3)	105.91(13)
C(1)	S(1)	C(3)	101.28(14)		$\mathrm{Ru}(1)$	S(2)	O(2)	117.32(9)
$\mathrm{Ru}(1)$	S(2)	C(2)	103.74(11)		$\mathrm{Ru}(1)$	S(2)	C(7)	115.81(12)
O(2)	S(2)	C(2)	108.17(13)		O(2)	S(2)	C(7)	107.82(15)
C(2)	S(2)	C(7)	102.59(14)		$\mathrm{Ru}(1)$	S(3)	$\mathrm{O}(3)$	118.59(8)
$\mathrm{Ru}(1)$	S(3)	C(11)	105.92(10)		$\mathrm{Ru}(1)$	S(3)	C(13)	123.85(10)
$\mathrm{O}(3)$	S(3)	C(11)	107.06(15)		O (3)	S(3)	C(13)	108.12(14)
$\mathrm{C}(11)$	S(3)	C(13)	101.69(15)		$\mathrm{Ru}(1)$	S(4)	O(4)	118.37(10)
$\mathrm{Ru}(1)$	S(4)	C(12)	102.72(12)		$\mathrm{Ru}(1)$	S(4)	C(17)	114.25(12)
O(4)	S(4)	C(12)	107.84(14)		$\mathrm{O}(4)$	S(4)	C(17)	109.23(15)
C(12)	S(4)	C(17)	102.8(2)		S(1)	C(1)	C(2)	110.0(2)
S(2)	C(2)	C(1)	107.5(2)		S(1)	C(3)	C(4)	$111.6(2)$
C(3)	C(4)	C(5)	112.4(3)		C(4)	C(5)	C(6)	112.1(3)
S(2)	C(7)	C(8)	111.5(2)		C(7)	C(8)	C(9)	113.3(3)
C(8)	C(9)	C(10)	113.0(4)		S(3)	C(11)	C(12)	112.2(3)
S(4)	C(12)	C(11)	106.3(2)		S(3)	C(13)	C(14)	113.2(2)
C(13)	C(14)	C(15)	111.3(3)		C(14)	C(15)	C(16)	117.7(5)
C(14)	C(15)	C(16a)	125.2(6)		S(4)	C(17)	C(18)	113.5(2)
C(17)	C(18)	C(19)	111.0(3)		C(18)	C(19)	C(20)	113.5(3)
$\mathrm{O}(5)$	C(21)	C(22)	108.4(4)					

Angles are in degrees. Estimated standard deviations in the least significant figure are given in parentheses.
Table A. 1 7. Bond Lengths (\AA) for cis- $\mathrm{RuCl}_{2}(\mathrm{BBSE})_{2} \cdot \mathrm{EtOH}$

atom	atom	distance		atom	atom	distance
$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	$2.4159(8)$		$\mathrm{O}(5)$	$\mathrm{C}(21)$	$1.402(4)$
$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	$2.4288(7)$		$\mathrm{C}(1)$	$\mathrm{C}(1)$	$1.503(4)$
$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$2.2906(8)$		$\mathrm{C}(3)$	$\mathrm{C}(4)$	$1.516(4)$
$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$2.3035(9)$		$\mathrm{C}(4)$	$\mathrm{C}(5)$	$1.521(4)$
$\mathrm{Ru}(1)$	$\mathrm{S}(3)$	$2.2674(7)$		$\mathrm{C}(5)$	$\mathrm{C}(6)$	$1.522(5)$
$\mathrm{Ru}(1)$	$\mathrm{S}(4)$	$2.2892(9)$		$\mathrm{C}(7)$	$\mathrm{C}(8)$	$1.515(5)$
$\mathrm{S}(1)$	$\mathrm{O}(1)$	$1.480(2)$		$\mathrm{C}(8)$	$\mathrm{C}(9)$	$1.504(5)$
$\mathrm{S}(1)$	$\mathrm{C}(1)$	$1.802(3)$		$\mathrm{C}(9)$	$\mathrm{C}(10)$	$1.514(5)$
$\mathrm{S}(1)$	$\mathrm{C}(3)$	$1.804(3)$		$\mathrm{C}(11)$	$\mathrm{C}(12)$	$1.501(5)$
$\mathrm{S}(2)$	$\mathrm{O}(2)$	$1.482(2)$		$\mathrm{C}(13)$	$\mathrm{C}(14)$	$1.521(4)$
$\mathrm{S}(2)$	$\mathrm{C}(2)$	$1.797(3)$		$\mathrm{C}(14)$	$\mathrm{C}(15)$	$1.511(5)$
$\mathrm{S}(2)$	$\mathrm{C}(7)$	$1.791(3)$			$\mathrm{C}(15)$	$\mathrm{C}(16 a)$
$\mathrm{S})$			$1.35(1)$			

$\mathrm{S}(3)$	$\mathrm{O}(3)$	$1.468(2)$		$\mathrm{C}(15)$	$\mathrm{C}(16)$	$1.341(8)$
$\mathrm{S}(3)$	$\mathrm{C}(11)$	$1.838(4)$		$\mathrm{C}(16 \mathrm{a})$	$\mathrm{C}(16)$	$1.71(1)$
$\mathrm{S}(3)$	$\mathrm{C}(13)$	$1.794(3)$		$\mathrm{C}(17)$	$\mathrm{C}(18)$	$1.521(4)$
$\mathrm{S}(4)$	$\mathrm{O}(4)$	$1.477(2)$		$\mathrm{C}(18)$	$\mathrm{C}(19)$	$1.503(4)$
$\mathrm{S}(4)$	$\mathrm{C}(12)$	$1.820(3)$		$\mathrm{C}(19)$	$\mathrm{C}(20)$	$1.511(5)$
$\mathrm{S}(4)$	$\mathrm{C}(17)$	$1.793(3)$		$\mathrm{C}(21)$	$\mathrm{C}(22)$	$1.420(6)$

Distances are in angstroms. Estimated standard deviations in the least significant figure are given in parentheses.

Table A.1 8. Atomic Coordinates for cis - $\mathrm{RuCl}_{2}(\mathrm{BBSE})_{2} \cdot \mathrm{EtOH}$

atom	x	y	z	atom	x	y	z
$\mathrm{S}(1)$	$0.51156(5)$	$0.15392(4)$	$0.43542(3)$	$\mathrm{C}(7)$	$0.6035(2)$	$0.1196(2)$	$0.60824(14)$
$\mathrm{S}(2)$	$0.55568(5)$	$0.18151(5)$	$0.55669(3)$	$\mathrm{C}(8)$	$0.5624(2)$	$0.1341(2)$	$0.6619(2)$
$\mathrm{S}(3)$	$0.60476(5)$	$0.33631(4)$	$0.47490(4)$	$\mathrm{C}(9)$	$0.6048(3)$	$0.0887(2)$	$0.7073(2)$
$\mathrm{S}(4)$	$0.70447(5)$	$0.21496(5)$	$0.40146(4)$	$\mathrm{C}(10)$	$0.5726(3)$	$0.149(3)$	$0.7617(2)$
$\mathrm{O}(1)$	$0.51180(12)$	$0.0685(1)$	$0.410649)$	$\mathrm{C}(11)$	$0.6678(2)$	$0.3771(2)$	$0.41934(14)$
$\mathrm{O}(2)$	$0.52370(14)$	$0.26026(12)$	$0.58154(9)$	$\mathrm{C}(12)$	$0.7425(2)$	$0.3229(2)$	$0.40877(14)$
$\mathrm{O}(3)$	$0.51937(13)$	$0.36492(11)$	$0.46570(10)$	$\mathrm{C}(13)$	$0.6458(2)$	$0.3944(2)$	$0.53062(14)$
$\mathrm{O}(4)$	$0.66035(13)$	$0.20936(13)$	$0.34979(9)$	$\mathrm{C}(14)$	$0.6193(2)$	$0.4869(2)$	$0.5312(2)$
$\mathrm{O}(5)$	$0.6514(2)$	$-0.02427(14)$	$0.36083(10)$	$\mathrm{C}(15)$	$0.6423(4)$	$0.5293(2)$	$0.5833(2)$
$\mathrm{C}(1)$	$0.4335(2)$	$0.1536(2)$	$0.48702(13)$	$\mathrm{C}(16 a)$	$0.7059(7)$	$0.5060(6)$	$0.6154(5)$
$\mathrm{C}(2)$	$0.4686(2)$	$0.1172(2)$	$0.53776(13)$	$\mathrm{C}(16)$	$0.6014(5)$	$0.5053(4)$	$0.6276(3)$
$\mathrm{C}(3)$	$0.4653(2)$	$0.2239(2)$	$0.38669(13)$	$\mathrm{C}(17)$	$0.7982(2)$	$0.1541(2)$	$0.39778(14)$
$\mathrm{C}(4)$	$0.3857(2)$	$0.18739(2)$	$0.36417(13)$	$\mathrm{C}(18)$	$0.8506(2)$	$0.1741(2)$	$0.34878(15)$
$\mathrm{C}(5)$	$0.3452(2)$	$0.2459(2)$	$0.32350(15)$	$\mathrm{C}(19)$	$0.9172(2)$	$0.1085(2)$	$0.3410(2)$
$\mathrm{C}(6)$	$0.2636(3)$	$0.2104(3)$	$0.3027(2)$	$\mathrm{C}(20)$	$0.9698(3)$	$0.1236(2)$	$0.2919(2)$
				$\mathrm{C}(21)$	$0.6377(3)$	$0.0040(2)$	$0.3084(2)$
				$\mathrm{C}(22)$	$0.6884(4)$	$-0.0444(5)$	$0.2733(2)$

Table A.19. Hydrogen bond parameters for A-H...B interactions.

A^{1}	H	B	$\mathrm{A} \ldots . \mathrm{B}$	$\mathrm{A}-\mathrm{H}$	$\mathrm{H} \ldots . \mathrm{B}$	$\mathrm{A}-\mathrm{H} \ldots . \mathrm{B}$
$\mathrm{O}(5)$	$\mathrm{H}(45)$	$\mathrm{O}(1)$	$2.963(3)$	0.90	2.12	155.7
$\mathrm{O}(5)$	$\mathrm{H}(45)$	$\mathrm{Cl}(2)$	$3.301(3)$	0.90	2.71	124.1
$\mathrm{C}(12)$	$\mathrm{H}(26)$	$\mathrm{O}(5)$	$3.189(4)$	0.98	2.50	127.5
$\mathrm{C}(21)$	$\mathrm{H}(47)$	$\mathrm{O}(4)$	$3.421(4)$	0.98	2.55	148.5

Figure A.1.1. Stereoview of cis- $\mathrm{RuCl}_{2}(\mathrm{BBSE})_{2} \cdot \mathrm{EtOH}$.

Appendix 1.3 Crystallographic Data for cis- $\mathrm{RuCl}_{2}(\mathrm{BCySE})_{2} \cdot \mathrm{EtOH} \cdot 1 / 3 \mathrm{MeOH}$
Table A. 1 10. Experimental Details for X-ray Crystal Structure of cis$\mathrm{RuCl}_{2}(\mathrm{BCySE})_{2} \cdot \mathrm{EtOH} \cdot 1 / 3 \mathrm{MeOH}$
A. Crystal Data

Empirical Formula	$\mathrm{C}_{30.333} \mathrm{H}_{59.333} \mathrm{Cl}_{2} \mathrm{O}_{5.333} \mathrm{RuS}_{4}$
Formula Weight	809.68
Crystal Colour, Habit	yellow, hexagonal prism
Crystal Dimensions	$0.15 \times 0.50 \times 0.50 \mathrm{~mm}$
Crystal System	trigonal
Lattice Type	Primitive
Lattice Parameters	$\begin{aligned} & \mathrm{a}=23.2038(7) \AA \\ & \mathrm{c}=12.1481(2) \AA \end{aligned}$
	$\mathrm{V}=5664.4(2) \AA^{3}$
Space Group	$\mathrm{P} \overline{3} \quad$ (\# 147)
Z Value	6
$\mathrm{D}_{\text {calc }}$	$1.424 \mathrm{~g} / \mathrm{cm}^{3}$
F_{000}	2556.00
$\mu(\mathrm{MoK} \alpha)$	$8.14 \mathrm{~cm}^{-1}$

B. Intensity Measurements

Diffractometer	Rigaku/ADSC CCD
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71069 ~ A)$ graphite monochromated
Detector Aperature	94 mm x 94 mm
Data Images	768 exposures of 12.0 seconds
ϕ oscillation Range ($\chi=-90$)	0.0-189.9 ${ }^{\circ}$
ω oscillation Range ($\chi=-90$)	-23.0-17.8 ${ }^{\circ}$
Detector Position	39.23 (3) mm
Detector Swing Angle	$-10.0{ }^{\circ}$
$2 \theta_{\text {max }}$	60.1°
No. of Reflections Measured	Total: 51678
	Unique: $10114\left(\mathrm{R}_{\text {int }}=0.050\right)$
Corrections	Lorentz-polarization
	Absorption/scaling
	(trans. factors: 0.7224-1.0000)
C. Structure Solution and Refinemen	
Structure Solution	Patterson Methods (DIRDIF92 PATTY)
Refinement	Full-matrix least-squares
Function Minimized	$\Sigma \omega\left(\left\|F o^{2}\right\|-\left\|F c^{2}\right\|\right)^{2}$
Least Squares Weights	$\omega=1 / \sigma^{2}\left(F O^{2}\right)$
p-factor	0.0000
Anomalous Dispersion	All non-hydrogen atoms
No. Observations	10114
No. Variables	370
R'eflection/Parameter Ratio	27.34
Residuals (on F^{2}, all data): $\mathrm{R} ; \mathrm{Rw}$	0.096; 0.090
Goodness of Fit Indicator	1.11
No. Observations ($\mathrm{I}>3 \sigma(\mathrm{I})$)	3492
Residuals (on F, $\mathrm{I} \times 3 \sigma(\mathrm{I})$): R ; Rw	0.045; 0.041
Max Shif/Error in Final Cycle	0.0007
Maximum peak in Final Diff. Map	$2.08 e^{-1 / A^{3}}$ (at origin)

Table A. 1 11. Bond Angles $\left(^{\circ}\right)$ for cis- $\mathrm{RuCl}_{2}(\mathrm{BCySE})_{2} \cdot \mathrm{EtOH} \cdot 1 / 3 \mathrm{MeOH}$

atom	atom	atom	angle	atom	atom	atom	angle
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	88.25(4)	S(2)	C(2)	C(1)	106.7(4)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	S(1)	178.01(5)	S(1)	C(3)	C(4)	113.4(4)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	S(2)	92.03(5)	S(1)	C(3)	$\mathrm{C}(8)$	109.0(3)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	S(3)	92.96(5)	C(4)	C(3)	C(8)	109.9(4)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	S(4)	87.61(5)	C(3)	C(4)	C(5)	108.5(5)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	S(1)	90.08(5)	C(4)	C(5)	C(6)	110.1(5)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	S(2)	86.27(5)	C(5)	C(6)	C(7)	109.4(5)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	S(3)	176.38(5)	C(6)	C(7)	C (8)	$111.7(5)$
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	S(4)	96.50(5)	C(3)	C(8)	C(7)	112.0(5)
S(1)	$\mathrm{Ru}(1)$	S(2)	86.78(5)	S(2)	C(9)	C(10)	106.3(3)
S(1)	$\mathrm{Ru}(1)$	S(3)	88.65(5)	S(2)	C (9)	C (14)	$112.3(4)$
S(1)	$\mathrm{Ru}(1)$	S(4)	93.65(5)	C (10)	C(9)	C(14)	111.7(4)
S(2)	$\mathrm{Ru}(1)$	S(3)	90.28(5)	C(9)	C(10)	C(11)	109.9(4)
S(2)	$\mathrm{Ru}(1)$	S(4)	177.19(5)	C (10)	$\mathrm{C}(11)$	$\mathrm{C}(12)$	112.7(6)
S(3)	$\mathrm{Ru}(1)$	S(4)	86.96(5)	$\mathrm{C}(11)$	$\mathrm{C}(12)$	C (13)	110.4(5)
$\mathrm{Ru}(1)$	S(1)	O(1)	119.2(1)	$\mathrm{C}(12)$	C(13)	C (14)	$113.3(5)$
$\mathrm{Ru}(1)$	S(1)	C(1)	102.8(2)	C(9)	C (14)	C (13)	110.5(5)
$\mathrm{Ru}(1)$	S(1)	C(3)	118.2(2)	S(3)	C(15)	C(16)	109.6(3)
O(1)	S(1)	C(1)	107.8(2)	S(4)	C(16)	C(15)	108.8(4)
$\mathrm{O}(1)$	S(1)	C (3)	106.5(2)	S(3)	$\mathrm{C}(17)$	C (18)	112.0(4)
C(1)	S(1)	C(3)	100.0(2)	S(3)	$\mathrm{C}(17)$	C (22)	108.4(4)
$\mathrm{Ru}(1)$	S(2)	O(2)	118.2(2)	C(18)	$\mathrm{C}(17)$	C (22)	$108.5(5)$
$\mathrm{Ru}(1)$	S(2)	C(2)	101.5(2)	$\mathrm{C}(17)$	$\mathrm{C}(18)$	C(19)	$110.1(6)$
$\mathrm{Ru}(1)$	S(2)	C(9)	116.0(2)	C (18)	C(19)	C(20)	107.3(7)
O (2)	S(2)	C (2)	107.6(3)	C(19)	C (20)	C(21)	107.7(7)
$\mathrm{O}(2)$	S(2)	$\mathrm{C}(9)$	107.6(2)	C (20)	C (21)	C(22)	106.2(7)
C(2)	S(2)	$\mathrm{C}(9)$	104.5(2)	C(17)	C(22)	C (21)	107.1(5)
$\mathrm{Ru}(1)$	S(3)	$\mathrm{O}(3)$	117.5(2)	S(4)	C(23)	C(24)	108.7(4)
$\mathrm{Ru}(1)$	S(3)	C(15)	104.3(2)	S(4)	C(23)	C(28)	112.1 (4)
$\mathrm{Ru}(1)$	S(3)	C(17)	117.8(2)	C(24)	C (23)	C (28)	$111.5(5)$
$\mathrm{O}(3)$	S(3)	C(15)	106.8(2)	C(23)	C(24)	C(25)	109.6(6)
O(3)	S(3)	C(17)	106.7(2)	C(24)	C(25)	C(26)	109.5(6)
C(15)	S(3)	C(17)	102.1(2)	C(25)	C(26)	C(27)	110.5(6)
$\mathrm{Ru}(1)$	S(4)	$\mathrm{O}(4)$	119.8(2)	C(26)	C (27)	C(28)	110.6(7)
$\mathrm{Ru}(1)$	S(4)	C(16)	102.6(2)	C(23)	C (28)	C (27)	110.5(5)
$\mathrm{Ru}(1)$	S(4)	C(23)	116.4(2)	$\mathrm{O}(5)$	C(29)	C(30)	124(2)
O(4)	S(4)	C(16)	106.5(2)				
O(4)	S(4)	C(23)	107.9(2)				
C(16)	S(4)	C(23)	101.3(3)				
S(1)	C(1)	C(2)	109.5(3)				

Angles are in degrees. Estimated standard deviations in the least significant figure are given in parentheses.
Table A. 1 12. Bond Lengths (\AA) for cis- $\mathrm{RuCl}_{2}(\mathrm{BCySE})_{2} \cdot \mathrm{EtOH} \cdot 1 / 3 \mathrm{MeOH}$

atom	atom	distance		atom	atom	distance
$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	$2.420(1)$		$\mathrm{C}(5)$	$\mathrm{C}(6)$	$1.555(8)$
$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	$2.434(1)$		$\mathrm{C}(6)$	$\mathrm{C}(7)$	$1.506(8)$
$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$2.299(1)$		$\mathrm{C}(7)$	$\mathrm{C}(8)$	$1.532(7)$
$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$2.336(1)$		$\mathrm{C}(9)$	$\mathrm{C}(10)$	$1.547(6)$
$\mathrm{Ru}(1)$	$\mathrm{S}(3)$	$2.272(1)$		$\mathrm{C}(9)$	$\mathrm{C}(14)$	$1.530(7)$

$\mathrm{Ru}(1)$	S(4)	2.348(1)	$\mathrm{C}(10)$	C(11)	1.528(7)
S(1)	O(1)	1.470(3)	C(11)	C (12)	1.503(8)
S(1)	C(1)	1.815(5)	C (12)	C(13)	$1.486(8)$
S(1)	C(3)	$1.835(5)$	C(13)	$\mathrm{C}(14)$	1.526 (7)
S(2)	O (2)	1.444(4)	C(15)	C(16)	1.494(7)
S(2)	C(2)	1.782(5)	C(17)	C(18)	1.497(7)
S(2)	C(9)	1.842(5)	$\mathrm{C}(17)$	C(22)	$1.530(7)$
S(3)	O (3)	1.470(3)	C (18)	C(19)	1.585(8)
S(3)	C(15)	1.814(5)	C(19)	C(20)	1.55(1)
S(3)	C(17)	1.837(5)	C(20)	C(21)	1.454(9)
S(4)	$\mathrm{O}(4)$	1.464(4)	C(21)	C(22)	1.662(9)
S(4)	C(16)	1.821(5)	C(23)	C (24)	1.523 (7)
S(4)	C(23)	1.812(5)	C(23)	C(28)	$1.496(7)$
O(5)	C(29)	1.39(2)	C(24)	C(25)	1.569(9)
O(6)	C(31)	1.57(2)	C(25)	C(26)	1.527(9)
$\mathrm{C}(1)$	$\mathrm{C}(2)$	1.508(7)	C(26)	C(27)	1.496(9)
C(3)	$\mathrm{C}(4)$	1.497(7)	C(27)	C(28)	1.560(9)
C(3)	C(8)	1.531(6)	C(29)	C(30)	1.24(2)
C(4)	$\mathrm{C}(5)$	1.549(7)			

Distances are in angstroms. Estimated standard deviations in the least significant figure are given in parentheses.
Table A. 1 13. Atomic Coordinates for cis - $\mathrm{RuCl}_{2}(\mathrm{BCySE})_{2} \cdot \mathrm{EtOH} \cdot 1 / 3 \mathrm{MeOH}$

atom	x	y	z		atom	x	y
$\mathrm{Ru}(1)$	$0.23894(2)$	$0.40975(2)$	$0.49281(3)$	$\mathrm{C}(10)$	$0.3571(3)$	$0.4190(3)$	$0.7646(4)$
$\mathrm{Cl}(1)$	$0.21241(7)$	$0.31625(6)$	$0.61228(10)$	$\mathrm{C}(11)$	$0.4029(3)$	$0.3959(4)$	$0.8134(5)$
$\mathrm{Cl}(2)$	$0.31782(6)$	$0.38685(6)$	$0.39821(9)$	$\mathrm{C}(12)$	$0.4741(4)$	$0.4511(4)$	$0.8205(5)$
$\mathrm{S}(1)$	$0.26788(6)$	$0.49927(6)$	$0.37892(10)$	$\mathrm{C}(13)$	$0.4987(3)$	$0.4810(3)$	$0.7102(6)$
$\mathrm{S}(2)$	$0.32838(6)$	$0.48219(6)$	$0.60370(10)$	$\mathrm{C}(14)$	$0.4564(3)$	$0.5066(3)$	$0.6565(5)$
$\mathrm{S}(3)$	$0.17089(6)$	$0.43702(7)$	$0.58553(11)$	$\mathrm{C}(15)$	$0.0964(2)$	$0.4035(3)$	$0.5014(4)$
$\mathrm{S}(4)$	$0.14555(7)$	$0.33764(7)$	$0.38722(11)$	$\mathrm{C}(16)$	$0.0771(2)$	$0.3346(3)$	$0.4654(4)$
$\mathrm{O}(1)$	$0.2173(2)$	$0.5169(2)$	$0.3487(3)$	$\mathrm{C}(17)$	$0.1375(3)$	$0.3963(3)$	$0.7186(4)$
$\mathrm{O}(2)$	$0.3151(2)$	$0.5122(2)$	$0.6972(4)$	$\mathrm{C}(18)$	$0.1914(3)$	$0.4139(3)$	$0.8019(6)$
$\mathrm{O}(3)$	$0.1940(2)$	$0.5081(2)$	$0.6011(3)$	$\mathrm{C}(19)$	$0.1603(4)$	$0.3771(5)$	$0.9147(5)$
$\mathrm{O}(4)$	$0.1390(2)$	$0.3560(2)$	$0.2745(3)$	$\mathrm{C}(20)$	$0.1134(5)$	$0.4019(5)$	$0.9561(6)$
$\mathrm{O}(5)$	$-0.0396(9)$	$0.1081(9)$	$0.0229(12)$	$\mathrm{C}(21)$	$0.0582(4)$	$0.3786(5)$	$0.8790(6)$
$\mathrm{O}(6)$	0.3333	0.6667	$-0.3194(14)$	$\mathrm{C}(22)$	$0.0903(4)$	$0.4192(4)$	$0.7620(5)$
$\mathrm{C}(1)$	$0.3323(3)$	$0.5682(2)$	$0.4568(4)$	$\mathrm{C}(23)$	$0.1229(3)$	$0.2507(3)$	$0.3868(4)$
$\mathrm{C}(2)$	$0.3778(3)$	$0.5470(2)$	$0.5090(4)$	$\mathrm{C}(24)$	$0.1713(3)$	$0.2424(3)$	$0.3130(6)$
$\mathrm{C}(3)$	$0.3140(2)$	$0.5057(2)$	$0.2525(4)$	$\mathrm{C}(25)$	$0.1537(4)$	$0.1677(4)$	$0.3138(7)$
$\mathrm{C}(4)$	$0.2770(3)$	$0.4482(3)$	$0.1758(4)$	$\mathrm{C}(26)$	$0.0818(4)$	$0.1235(3)$	$0.2762(6)$
$\mathrm{C}(5)$	$0.3223(4)$	$0.4576(3)$	$0.0757(5)$	$\mathrm{C}(27)$	$0.0352(4)$	$0.1322(4)$	$0.3504(7)$
$\mathrm{C}(6)$	$0.3385(4)$	$0.5223(3)$	$0.0125(5)$	$\mathrm{C}(28)$	$0.0523(3)$	$0.2063(3)$	$0.3517(6)$
$\mathrm{C}(7)$	$0.3724(3)$	$0.5810(3)$	$0.0893(5)$	$\mathrm{C}(29)$	-	$0.1469(12)$	$0.0605(15)$
						$0.0655(10)$	
$\mathrm{C}(8)$	$0.3313(3)$	$0.5708(3)$	$0.1938(4)$	$\mathrm{C}(30)$	$-0.0334(7)$	$0.2087(8)$	$0.0633(10)$
$\mathrm{C}(9)$	$0.3836(2)$	$0.4513(3)$	$0.6507(4)$	$\mathrm{C}(31)$	0.3333	0.6667	$-0.190(2)$

Table A.1 14. Hydrogen bond structural parameters for A-H...B interactions.

A	H	B	$\mathrm{A} \ldots \mathrm{B}$	$\mathrm{A}-\mathrm{H}$	$\mathrm{H} \ldots . \mathrm{B}$	$\mathrm{A}-\mathrm{H} \ldots . \mathrm{B}$
$\mathrm{O}(5)$	$\mathrm{H}(58)$	$\mathrm{O}(5)$	$3.12(2)$	0.95	2.23	156.6

Figure A.1.2. Stereoview of cis- $\mathrm{RuCl}_{2}(\mathrm{BCySE})_{2} \cdot \mathrm{EtOH} \cdot 1 / 3 \mathrm{MeOH}$.

Appendix 1.4 Crystallographic Data for cis - $\mathrm{RuCl}_{2}(\mathrm{BESP})_{2} \cdot \mathrm{EtOH} \cdot \mathrm{H}_{2} \mathrm{O}$
Table A. 1 15. Experimental Details for X-ray Crystal Structure of cis$\mathrm{RuCl}_{2}(\mathrm{BESP})_{2} \cdot \mathrm{EtOH} \cdot \mathrm{H}_{2} \mathrm{O}$
A. Crystal Data

Empirical Formula	$\mathrm{C}_{16} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{RuS}_{4}$
Formula Weight	628.70
Crystal Colour, Habit	yellow, plate
Crystal Dimensions	$0.05 \mathrm{x} 0.20 \times 0.35 \mathrm{~mm}$
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	$\mathrm{a}=10.1443(7) \AA$
	$\mathrm{b}=21.287(3) \AA$
	$\mathrm{c}=11.9548(4) \AA$
	$\beta=98.8216(9){ }^{\circ}$
	$\mathrm{V}=2551.0(3) \AA^{3}$
Space Group	$\mathrm{P} 1_{1} / \mathrm{a}(\# 14)$
Z Value	4
$\mathrm{D}_{\text {calc }}$	$1.637 \mathrm{~g} / \mathrm{cm}^{3}$
$\mathrm{~F}_{\text {ooo }}$	1304.00
$\mu(\mathrm{MoK} \alpha)$	$11.80 \mathrm{~cm}^{-1}$

B. Intensity Measurements

Diffractometer	Rigaku/ADSC CCD
Radiation	MoK α ($\lambda=0.71069$ A) graphite monochromated
Detector Aperature	94 mm x 94 mm
Data Images	462 exposures of 70.0 seconds
ϕ oscillation Range ($\chi=-90$)	0.0-190.0 ${ }^{\circ}$
ω oscillation Range ($\chi=-90$)	-23.0-18.0 ${ }^{\circ}$
Detector Position	39.21 (3) mm
Detector Swing Angle	-10°
$2 \theta_{\text {max }}$	60.1°
No. of Reflections Measured	Total: 21407
	Unique: $6125\left(\mathrm{R}_{\text {int }}=0.037\right)$
Corrections	Lorentz-polarization
	Absorption/scaling (trans. factors: 0.7749-1.0000)
C. Structure Solution and Refinem	
Structure Solution	Patterson Methods (DIRDIF92 PATTY)
Refinement	Full-matrix least-squares
Function Minimized	$\Sigma \omega\left(\left\|F o^{2}\right\|-\left\|F c^{2}\right\|\right)^{2}$
Least Squares Weights	$\omega=1 / \sigma^{2}\left(F o^{2}\right)$
p-factor	0.0000
Anomalous Dispersion	All non-hydrogen atoms
No. Observations	6125
No. Variables	262
Reflection/Parameter Ratio	23.38
Residuals (on F^{2}, all data): R ; Rw	0.072; 0.065
Goodness of Fit Indicator	1.77
No. Observations ($\mathrm{I} \times 3 \sigma(\mathrm{I})$)	4104
Residuals (on F, I>36(1)): R; Rw	0.038; 0.031

Max Shift/Error in Final Cycle	0.002
Maximum peak in Final Diff. Map	$1.56 e^{-l / A^{3}}$
Minimum peak in Final Diff. Map	$-1.46 e^{-l /} / A^{3}$

Table A. 1 16. Bond Angles (${ }^{\circ}$) for $\mathrm{cis}-\mathrm{RuCl}_{2}(\mathrm{BESP})_{2} \cdot \mathrm{EtOH}^{2} \cdot \mathrm{H}_{2} \mathrm{O}$

atom	atom	atom	angle		atom	atom	atom
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	$89.53(3)$		$\mathrm{O}(2)$	$\mathrm{S}(2)$	$\mathrm{C}(6)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$176.35(4)$	$\mathrm{C}(3)$	$\mathrm{S}(2)$	$\mathrm{C}(6)$	$107.7(2)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$91.89(3)$	$\mathrm{Ru}(1)$	$\mathrm{S}(3)$	$\mathrm{O}(3)$	$116.3(1)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(3)$	$86.89(3)$	$\mathrm{Ru}(1)$	$\mathrm{S}(3)$	$\mathrm{C}(8)$	$112.7(1)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(4)$	$88.90(3)$	$\mathrm{Ru}(1)$	$\mathrm{S}(3)$	$\mathrm{C}(11)$	$113.8(1)$
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$92.94(3)$	$\mathrm{O}(3)$	$\mathrm{S}(3)$	$\mathrm{C}(8)$	$107.3(2)$
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$86.72(4)$		$\mathrm{O}(3)$	$\mathrm{S}(3)$	$\mathrm{C}(11)$
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(3)$	$175.56(3)$		$\mathrm{C}(8)$	$\mathrm{S}(3)$	$\mathrm{C}(11)$
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(4)$	$84.96(3)$	$\mathrm{Ru}(1)$	$\mathrm{S}(4)$	$\mathrm{O}(4)$	$113.4(2)$
$\mathrm{S}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$90.94(3)$	$\mathrm{Ru}(1)$	$\mathrm{S}(4)$	$\mathrm{C}(10)$	$115.8(1)$
$\mathrm{S}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(3)$	$90.76(3)$	$\mathrm{Ru}(1)$	$\mathrm{S}(4)$	$\mathrm{C}(13)$	$112.2(1)$
$\mathrm{S}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(4)$	$88.63(3)$	$\mathrm{O}(4)$	$\mathrm{S}(4)$	$\mathrm{C}(10)$	$107.2(2)$
$\mathrm{S}(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(3)$	$90.78(4)$	$\mathrm{O}(4)$	$\mathrm{S}(4)$	$\mathrm{C}(13)$	$107.8(2)$
$\mathrm{S}(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(4)$	$171.64(4)$	$\mathrm{C}(10)$	$\mathrm{S}(4)$	$\mathrm{C}(13)$	$99.4(2)$
$\mathrm{S}(3)$	$\mathrm{Ru}(1)$	$\mathrm{S}(4)$	$97.57(4)$	$\mathrm{S}(1)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	$116.5(3)$
$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$\mathrm{O}(1)$	$115.8(1)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(3)$	$117.1(3)$
$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$\mathrm{C}(1)$	$109.5(1)$	$\mathrm{S}(2)$	$\mathrm{C}(3)$	$\mathrm{C}(2)$	$112.9(3)$
$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$\mathrm{C}(4)$	$115.1(1)$	$\mathrm{S}(1)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$111.9(3)$
$\mathrm{O}(1)$	$\mathrm{S}(1)$	$\mathrm{C}(1)$	$106.3(2)$	$\mathrm{S}(2)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$112.8(3)$
$\mathrm{O}(1)$	$\mathrm{S}(1)$	$\mathrm{C}(4)$	$106.4(2)$	$\mathrm{S}(3)$	$\mathrm{C}(8)$	$\mathrm{C}(9)$	$112.4(2)$
$\mathrm{C}(1)$	$\mathrm{S}(1)$	$\mathrm{C}(4)$	$102.5(2)$	$\mathrm{C}(8)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$111.7(3)$
$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$\mathrm{O}(2)$	$117.9(1)$	$\mathrm{S}(4)$	$\mathrm{C}(10)$	$\mathrm{C}(9)$	$113.3(3)$
$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$\mathrm{C}(3)$	$109.0(1)$	$\mathrm{S}(3)$	$\mathrm{C}(11)$	$\mathrm{C}(12)$	$112.2(3)$
$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$\mathrm{C}(6)$	$112.5(1)$	$\mathrm{S}(4)$	$\mathrm{C}(13)$	$\mathrm{C}(14)$	$112.7(3)$
$\mathrm{O}(2)$	$\mathrm{S}(2)$	$\mathrm{C}(3)$	$107.4(2)$	$\mathrm{O}(5)$	$\mathrm{C}(15)$	$\mathrm{C}(16)$	$111.8(5)$

Angles are in degrees. Estimated standard deviations in the least significant figure are given in parentheses.
Table A. 1 17. Bond Lengths (\AA) for cis- $\mathrm{RuCl}_{2}(\mathrm{BESP})_{2} \cdot \mathrm{EtOH} \cdot \mathrm{H}_{2} \mathrm{O}$

atom	atom	distance		atom	atom	distance
$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	$2.4167(8)$		$\mathrm{S}(3)$	$\mathrm{C}(11)$	$1.820(3)$
$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	$2.431(1)$		$\mathrm{S}(4)$	$\mathrm{O}(4)$	$1.489(2)$
$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$2.2766(8)$		$\mathrm{S}(4)$	$\mathrm{C}(10)$	$1.806(4)$
$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$2.331(1)$		$\mathrm{S}(4)$	$\mathrm{C}(13)$	$1.792(4)$
$\mathrm{Ru}(1)$	$\mathrm{S}(3)$	$2.291(1)$		$\mathrm{O}(5)$	$\mathrm{C}(15)$	$1.376(7)$
$\mathrm{Ru}(1)$	$\mathrm{S}(4)$	$2.353(1)$		$\mathrm{C}(1)$	$\mathrm{C}(2)$	$1.547(5)$
$\mathrm{S}(1)$	$\mathrm{O}(1)$	$1.481(3)$		$\mathrm{C}(2)$	$\mathrm{C}(3)$	$1.536(5)$
$\mathrm{S}(1)$	$\mathrm{C}(1)$	$1.799(4)$		$\mathrm{C}(4)$	$\mathrm{C}(5)$	$1.529(5)$
$\mathrm{S}(1)$	$\mathrm{C}(4)$	$1.791(4)$		$\mathrm{C}(6)$	$\mathrm{C}(7)$	$1.500(5)$
$\mathrm{S}(2)$	$\mathrm{O}(2)$	$1.490(3)$		$\mathrm{C}(8)$	$\mathrm{C}(9)$	$1.524(5)$
$\mathrm{S}(2)$	$\mathrm{C}(3)$	$1.789(4)$		$\mathrm{C}(9)$	$\mathrm{C}(10)$	$1.513(5)$
$\mathrm{S}(2)$	$\mathrm{C}(6)$	$1.808(4)$		$\mathrm{C}(11)$	$\mathrm{C}(12)$	$1.484(6)$
$\mathrm{S}(3)$	$\mathrm{O}(3)$	$1.479(2)$		$\mathrm{C}(13)$	$\mathrm{C}(14)$	$1.527(5)$
$\mathrm{S}(3)$	$\mathrm{C}(8)$	$1.802(4)$		$\mathrm{C}(15)$	$\mathrm{C}(16)$	$1.533(9)$

Distances are in angstroms. Estimated standard deviations in the least significant figure are given in parentheses.

Table A. 1 18. Atomic Coordinates for cis- $\mathrm{RuCl}_{2}(\mathrm{BESP})_{2} \cdot \mathrm{EtOH} \cdot \mathrm{H}_{2} \mathrm{O}$

atom	x	y	z
$\mathrm{Ru}(1)$	$0.71815(2)$	$0.402560(14)$	$0.29850(3)$
$\mathrm{Cl}(1)$	$0.95155(7)$	$0.38026(4)$	$0.36032(8)$
$\mathrm{Cl}(2)$	$0.69663(8)$	$0.43432(5)$	$0.49019(8)$
$\mathrm{S}(1)$	$0.49722(8)$	$0.41752(4)$	$0.23460(8)$
$\mathrm{S}(2)$	$0.76308(8)$	$0.50771(4)$	$0.26506(8)$
$\mathrm{S}(3)$	$0.75461(8)$	$0.37600(5)$	$0.12011(8)$
$\mathrm{S}(4)$	$0.66649(8)$	$0.30141(4)$	$0.35820(8)$
$\mathrm{O}(1)$	$0.4294(2)$	$0.36644(12)$	$0.1637(2)$
$\mathrm{O}(2)$	$0.7842(2)$	$0.52583(12)$	$0.1487(2)$
$\mathrm{O}(3)$	$0.6513(2)$	$0.39595(12)$	$0.0257(2)$
$\mathrm{O}(4)$	$0.5257(2)$	$0.29492(12)$	$0.3781(2)$
$\mathrm{O}(5)$	$0.6262(4)$	$0.7273(3)$	$0.1793(4)$
$\mathrm{C}(1)$	$0.4757(3)$	$0.4876(2)$	$0.1497(4)$
$\mathrm{C}(2)$	$0.5028(3)$	$0.5507(2)$	$0.2133(4)$
$\mathrm{C}(3)$	$0.6301(3)$	$0.5551(2)$	$0.3009(3)$
$\mathrm{C}(4)$	$0.3968(3)$	$0.4333(2)$	$0.3422(3)$
$\mathrm{C}(5)$	$0.2504(3)$	$0.4437(2)$	$0.2923(4)$
$\mathrm{C}(6)$	$0.9023(3)$	$0.5377(2)$	$0.3631(4)$
$\mathrm{C}(7)$	$0.9526(3)$	$0.5995(2)$	$0.3264(3)$
$\mathrm{C}(8)$	$0.7799(3)$	$0.2929(2)$	$0.1044(4)$
$\mathrm{C}(9)$	$0.6688(3)$	$0.2538(2)$	$0.1422(4)$
$\mathrm{C}(10)$	$0.6991(3)$	$0.2376(2)$	$0.2667(3)$
$\mathrm{C}(11)$	$0.9138(3)$	$0.4035(2)$	$0.0863(3)$
$\mathrm{C}(12)$	$0.9155(4)$	$0.4056(3)$	$-0.0375(4)$
$\mathrm{C}(13)$	$0.7726(3)$	$0.2781(2)$	$0.4853(3)$
$\mathrm{C}(14)$	$0.7393(4)$	$0.2127(2)$	$0.5254(4)$
$\mathrm{C}(15)$	$0.4890(7)$	$0.7293(3)$	$0.1638(6)$
$\mathrm{C}(16)$	$0.4339(5)$	$0.7166(3)$	$0.2741(6)$

Table A.1 19. Hydrogen bond structural parameters for A-H...B interactions.

A	H	B	A...B	A-H	H....B	A-H....B
$\mathrm{C}(16)$	$\mathrm{H}(36)$	$\mathrm{O}(5)$	$3.374(7)$	0.98	2.47	152.9
$\mathrm{O}(5)$	$\mathrm{H}(38)$	$\mathrm{O}(6)$	$2.755(6)$	0.95	1.83	165.2
$\mathrm{O}(6)$	$\mathrm{H}(39)$	$\mathrm{O}(2)$	$2.814(4)$	0.95	1.95	150.3
$\mathrm{O}(6)$	$\mathrm{H}(40)$	$\mathrm{O}(1)$	$2.752(4)$	0.95	1.83	165.2

Appendix 1.5 Crystallographic Data for $\left[\operatorname{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
Table A. 1 20. Experimental Details for X-ray Crystal Structure of $\left[\operatorname{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu$ $\mathrm{Cl})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

A: Crystal Data

Empirical Formula	$\mathrm{C}_{12} \mathrm{H}_{34} \mathrm{Cl}_{4} \mathrm{O}_{7} \mathrm{Ru}_{2} \mathrm{~S}_{4}$
Formula Weight	762.59
Crystal Colour, Habit	orange, prism
Crystal Dimensions	$0.25 \times 0.20 \times 0.10 \mathrm{~mm}$
Crystal System	triclinic
Lattice Type	Primitive
Lattice Parameters	$\mathrm{a}=10.2101(6) \AA$

	$\mathrm{b}=10.8016(10) \AA$
$\mathrm{c}=13.391(2) \AA$	
	$\alpha=93.968(3)^{\circ}$
	$\beta=97.099(2)^{\circ}$
	$\gamma=117.5490(9)^{\circ}$
	$\mathrm{V}=1285.9(2) \AA^{3}$
Space Group	$\mathrm{Pl} \quad(\# 2)$
Z Value	2
$\mathrm{D}_{\text {calc }}$	$1.969 \mathrm{~g}^{\circ} / \mathrm{cm}^{3}$
$\mathrm{~F}_{\text {o00 }}$	764.00
$\mu(\mathrm{MoK} \alpha)$	$19.45 \mathrm{~cm}^{-1}$

B. Intensity Measurements

Diffractometer	Rigaku/ADSC CCD
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71069 A)$ graphite monochromated
Detector Aperature	$94 \mathrm{~mm} \times 94 \mathrm{~mm}$
Data Images	462 exposures of 16.0 seconds
ϕ oscillation Range $(\chi=-90)$	$0.0-190.0^{\circ}$
ω oscillation Range $(\chi=-90)$	$-23.0-18.0^{\circ}$
Detector Position	$38.845(7) \mathrm{mm}$
Detector Swing Angle	-10.0°
$2 \theta_{\text {max }}$	61.1°
No. of Reflections Measured	Total: 11840
	Unique: $5905\left(\mathrm{R}_{\text {int }}=0.035\right)$
Corrections	Lorentz-polarization
	Absorption/scaling
	(trans. factors: $0.8181-1.0000)$

C. Structure Solution and Refinement

Structure Solution	Direct Methods (SIR97)
Refinement	Full-matrix least-squares
Function Minimized	$\Sigma \omega\left(F o^{2}-F c^{2}\right)^{2}$
Least Squares Weights	$\omega=1 / \sigma^{2}(F o)$
p-factor	0.0000
Anomalous Dispersion	All non-hydrogen atoms
No. Observations	5905
No. Variables	262
Reflection/Parameter Ratio	22.54
Residuals (on F^{2}, all data): R; Rw	$0.056 ; 0.064$
Goodness of Fit Indicator	1.10
No. Observations (I>3 (I))	4055
Residuals (on F, I>3 $3(\mathrm{I})$): R; Rw	$0.029 ; 0.031$
Max Shift/Error in Final Cycle	0.0016
Maximum peak in Final Diff. Map	$1.33 e^{-1} / \AA^{3}(1.8 \AA$ from O(7))
Minimum peak in Final Diff. Map	$-1.33 e^{-/ / A^{3}}$

Table A. 1 21. Bond Angles $\left({ }^{\circ}\right)$ for $\left[\operatorname{RuCl}(\operatorname{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

atom	atom	atom	angle		atom	atom	atom	angle
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	$82.11(3)$		$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$\mathrm{O}(1)$	$118.5(1)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	$171.77(4)$		$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$\mathrm{C}(1)$	$105.6(1)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$92.56(4)$		$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$\mathrm{C}(3)$	$114.3(1)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$93.31(4)$		$\mathrm{O}(1)$	$\mathrm{S}(1)$	$\mathrm{C}(1)$	$106.8(2)$

$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	O(3)	86.53(8)	$\mathrm{O}(1)$	S(1)	C(3)	107.4(2)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	91.93(3)	C (1)	S(1)	C(3)	102.9(2)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	S(1)	174.31(4)	$\mathrm{Ru}(1)$	S(2)	O (2)	119.2(1)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	S(2)	95.11(3)	$\mathrm{Ru}(1)$	S(2)	C(2)	107.4(1)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	O(3)	86.83(8)	$\mathrm{Ru}(1)$	S(2)	C(5)	116.7(1)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	S(1)	93.17(4)	O(2)	S(2)	C(2)	107.2(2)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	S(2)	92.87(4)	O(2)	S(2)	C(5)	104.9(2)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{O}(3)$	87.48(8)	C(2)	S(2)	C(5)	99.3(2)
S(1)	$\mathrm{Ru}(1)$	S(2)	87.15(4)	$\mathrm{Ru}(2)$	S(3)	O(4)	117.3(1)
S(1)	$\mathrm{Ru}(1)$	O(3)	90.88(8)	$\mathrm{Ru}(2)$	S(3)	C(7)	105.3(2)
S(2)	$\mathrm{Ru}(1)$	O(3)	178.01(8)	$\mathrm{Ru}(2)$	S(3)	C (9)	115.5(2)
$\mathrm{Cl}(3)$	$\mathrm{Ru}(2)$	$\mathrm{Cl}(3)$	83.17(3)	O(4)	S(3)	C(7)	106.6(2)
$\mathrm{Cl}(3)$	$\mathrm{Ru}(2)$	$\mathrm{Cl}(4)$	171.20(4)	O(4)	S(3)	C (9)	107.2(2)
$\mathrm{Cl}(3)$	$\mathrm{Ru}(2)$	S(3)	92.98(4)	C(7)	S(3)	C(9)	103.7(2)
$\mathrm{Cl}(3)$	$\mathrm{Ru}(2)$	S(4)	94.74(4)	$\mathrm{Ru}(2)$	S(4)	O(5)	120.8(1)
$\mathrm{Cl}(3)$	$\mathrm{Ru}(2)$	O(6)	87.33(7)	$\mathrm{Ru}(2)$	S(4)	C(8)	106.7(2)
$\mathrm{Cl}(3)$	$\mathrm{Ru}(2)$	$\mathrm{Cl}(4)$	92.49(3)	$\mathrm{Ru}(2)$	S(4)	C(11)	116.4(2)
$\mathrm{Cl}(3)$	$\mathrm{Ru}(2)$	S(3)	176.04(3)	O(5)	S(4)	$\mathrm{C}(8)$	106.8(2)
$\mathrm{Cl}(3)$	$\mathrm{Ru}(2)$	S(4)	94.09(4)	O(5)	S(4)	$\mathrm{C}(11)$	104.7(2)
Cl(3)	$\mathrm{Ru}(2)$	O(6)	86.26(8)	C(8)	S(4)	$\mathrm{C}(11)$	98.8(2)
$\mathrm{Cl}(4)$	$\mathrm{Ru}(2)$	S(3)	91.21(4)	S(1)	C(1)	C (2)	$106.3(3)$
$\mathrm{Cl}(4)$	$\mathrm{Ru}(2)$	S(4)	93.19(4)	S(2)	C(2)	C(1)	108.6(3)
$\mathrm{Cl}(4)$	$\mathrm{Ru}(2)$	O(6)	84.74(7)	S(1)	C(3)	C(4)	111.6(3)
S(3)	$\mathrm{Ru}(2)$	S(4)	87.10(4)	S(2)	C(5)	C(6)	110.9(3)
S(3)	$\mathrm{Ru}(2)$	$\mathrm{O}(6)$	92.68(8)	S(3)	C(7)	$\mathrm{C}(8)$	106.1(3)
S(4)	$\mathrm{Ru}(2)$	O (6)	177.92(8)	S(4)	C(8)	C(7)	109.3(3)
$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	97.89(3)	S(3)	C(9)	$\mathrm{C}(10)$	114.1(4)
$\mathrm{Ru}(2)$	$\mathrm{Cl}(3)$	$\mathrm{Ru}(2)$	96.83(3)	S(4)	$\mathrm{C}(11)$	C (12)	$111.6(3)$

Angles are in degrees. Estimated standard deviations in the least significant figure are given in parentheses.
Table A. 1 22. Bond Lengths (\AA) for $\left[\operatorname{RuCl}(\operatorname{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

atom	atom	distance		atom	atom	distance
$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	$2.410(1)$		$\mathrm{S}(2)$	$\mathrm{O}(2)$	$1.496(2)$
$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	$2.464(1)$		$\mathrm{S}(2)$	$\mathrm{C}(2)$	$1.805(4)$
$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	$2.401(1)$		$\mathrm{S}(2)$	$\mathrm{C}(5)$	$1.805(4)$
$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$2.199(1)$		$\mathrm{S}(3)$	$\mathrm{O}(4)$	$1.482(3)$
$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$2.196(1)$		$\mathrm{S}(3)$	$\mathrm{C}(7)$	$1.800(5)$
$\mathrm{Ru}(1)$	$\mathrm{O}(3)$	$2.140(3)$		$\mathrm{S}(3)$	$\mathrm{C}(9)$	$1.776(5)$
$\mathrm{Ru}(2)$	$\mathrm{Cl}(3)$	$2.426(1)$		$\mathrm{S}(4)$	$\mathrm{O}(5)$	$1.483(3)$
$\mathrm{Ru}(2)$	$\mathrm{Cl}(3)$	$2.468(1)$		$\mathrm{S}(4)$	$\mathrm{C}(8)$	$1.813(4)$
$\mathrm{Ru}(2)$	$\mathrm{Cl}(4)$	$2.3748(9)$		$\mathrm{S}(4)$	$\mathrm{C}(11)$	$1.807(4)$
$\mathrm{Ru}(2)$	$\mathrm{S}(3)$	$2.198(1)$		$\mathrm{C}(1)$	$\mathrm{C}(2)$	$1.531(5)$
$\mathrm{Ru}(2)$	$\mathrm{S}(4)$	$2.193(1)$		$\mathrm{C}(3)$	$\mathrm{C}(4)$	$1.518(6)$
$\mathrm{Ru}(2)$	$\mathrm{O}(6)$	$2.155(3)$		$\mathrm{C}(5)$	$\mathrm{C}(6)$	$1.514(6)$
$\mathrm{S}(1)$	$\mathrm{O}(1)$	$1.475(3)$		$\mathrm{C}(8)$	$1.505(7)$	
$\mathrm{S}(1)$	$\mathrm{C}(1)$	$1.803(5)$		$\mathrm{C}(9)$	$\mathrm{C}(10)$	$1.512(6)$
$\mathrm{S}(1)$	$\mathrm{C}(3)$	$1.803(4)$			$\mathrm{C}(11)$	$\mathrm{C}(12)$

Distances are in angstroms. Estimated standard deviations in the least significant figure are given in parentheses.

Table A. 1 23. Atomic Coordinates for $\left[\operatorname{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

atom	x	y	z
$\mathrm{Ru}(1)$	$0.05846(3)$	$0.86283(4)$	$0.49128(2)$
$\mathrm{Ru}(2)$	$0.36391(3)$	$0.32199(4)$	$0.01720(2)$
$\mathrm{Cl}(1)$	$0.11786(10)$	$1.08352(11)$	$0.42905(7)$
$\mathrm{Cl}(2)$	$0.00001(10)$	$0.65984(11)$	$0.57629(8)$
$\mathrm{Cl}(3)$	$0.63194(10)$	$0.47823(11)$	$0.06388(7)$
$\mathrm{Cl}(4)$	$0.10770(10)$	$0.17152(12)$	$-0.05468(8)$
$\mathrm{S}(1)$	$0.22818(10)$	$0.83737(11)$	$0.41901(8)$
$\mathrm{S}(2)$	$-0.10391(10)$	$0.73688(11)$	$0.35331(7)$
$\mathrm{S}(3)$	$0.37718(10)$	$0.15122(12)$	$0.09048(8)$
$\mathrm{S}(4)$	$0.31050(11)$	$0.38575(12)$	$0.15921(8)$
$\mathrm{O}(1)$	$0.3270(3)$	$0.9524(3)$	$0.3673(2)$
$\mathrm{O}(2)$	$-0.1954(3)$	$0.7945(3)$	$0.2980(2)$
$\mathrm{O}(3)$	$0.2228(3)$	$0.9857(3)$	$0.6232(2)$
$\mathrm{O}(4)$	$0.5277(3)$	$0.1770(4)$	$0.1391(3)$
$\mathrm{O}(5)$	$0.4005(3)$	$0.5318(3)$	$0.2135(2)$
$\mathrm{O}(6)$	$0.4079(3)$	$0.2538(3)$	$-0.1240(2)$
$\mathrm{O}(7)$	$0.7793(4)$	$0.1666(4)$	$0.2242(3)$
$\mathrm{C}(1)$	$0.1245(4)$	$0.6835(5)$	$0.3239(3)$
$\mathrm{C}(2)$	$-0.0018(4)$	$0.7019(5)$	$0.2643(3)$
$\mathrm{C}(3)$	$0.3461(4)$	$0.7893(5)$	$0.5009(3)$
$\mathrm{C}(4)$	$0.4531(5)$	$0.7634(5)$	$0.4443(4)$
$\mathrm{C}(5)$	$-0.2370(4)$	$0.5578(5)$	$0.3635(3)$
$\mathrm{C}(6)$	$-0.3482(4)$	$0.5549(5)$	$0.4295(3)$
$\mathrm{C}(7)$	$0.2677(4)$	$0.1252(5)$	$0.1901(3)$
$\mathrm{C}(8)$	$0.3206(5)$	$0.2694(5)$	$0.2476(3)$
$\mathrm{C}(9)$	$0.2894(5)$	$-0.0166(5)$	$0.0138(4)$
$\mathrm{C}(10)$	$0.2983(6)$	$-0.1321(6)$	$0.0672(4)$
$\mathrm{C}(11)$	$0.1177(5)$	$0.3463(6)$	$0.1570(4)$
$\mathrm{C}(12)$	$0.0762(6)$	$0.4368(6)$	$0.0919(4)$

Table A. 1 24. Hydrogen bond parameters for A-H...B interactions.

A	H	B	A....B	A-H	H....B	A-H.... B
$\mathrm{O}(7)$	$\mathrm{H}(33)$	$\mathrm{O}(4)$	$2.733(4)$	0.92	1.81	179.6
$\mathrm{O}(7)$	$\mathrm{H}(34)$	$\mathrm{Cl}(2)$	$3.105(4)$	0.89	2.28	152.8

Figure A.1.3. Stereoview of $\left[\operatorname{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$.

Appendix 1.6 Crystallographic Data for $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot 2.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Table A.1 25. Experimental Details for X-ray Crystal Structure of $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot 2.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
A. Crystal Data

Empirical Formula	$\mathrm{C}_{20.50} \mathrm{H}_{49} \mathrm{Cl}_{10} \mathrm{O}_{6} \mathrm{Ru}_{2} \mathrm{~S}_{4}$
Formula Weight	1076.52
Crystal Colour, Habit	orange, plate
Crystal Dimensions	$0.10 \mathrm{x} 0.20 \times 0.40 \mathrm{~mm}$
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	$\mathrm{a}=10.5354(4) \AA$
	$\mathrm{b}=15.8739(11) \AA$
	$\mathrm{c}=24.6983(4) \AA$
	$\beta=96.6438(6)^{\circ}$
	$\mathrm{V}=4102.8(3) \AA^{3}$
Space Group	$\mathrm{Pn}(\# 7)$
Z Value	4
$\mathrm{D}_{\text {calc }}$	$1.743 \mathrm{~g} / \mathrm{cm}^{3}$
$\mathrm{~F}_{\text {ol }}$	2168.00
$\mu(\mathrm{MoK} \alpha)$	$16.22 \mathrm{~cm}^{-1}$

B. Intensity Measurements

Diffractometer	Rigaku/ADSC CCD
Radiation	MoKo ($\lambda=0.71069 \AA$) graphite monochromated
Detector Aperature	94 mm x 94 mm
Data Images	766 exposures of 70.0 seconds
ϕ oscillation Range ($\chi=-90$)	-22.0-17.9 ${ }^{\circ}$
ω oscillation Range ($\chi=-90$)	0.0-190.2 ${ }^{\circ}$
Detector Position	$39.18(1) \mathrm{mm}$
Detector Swing Angle	-10°
$2 \theta_{\text {max }}$	$60.1{ }^{\circ}$
No. of Reflections Measured	Total: 37619
	Unique: $10572\left(\mathrm{R}_{\text {int }}=0.045\right)$
Corrections	Lorentz-polarization
	Absorption/scaling
$1 \cdot 1$	(trans. factors: 0.7434-1.0016)
C. 'Structure Solution and Refinement	
Structure Solution	Patterson Methods (DIRDIF92 PATTY)
Refinement	Full-matrix least-squares
Function Minimized	$\Sigma \omega\left(\left\|F o^{2}\right\|-\left\|F c^{2}\right\|\right)^{2}$
Least Squares Weights	$\omega=1 / \sigma^{2}\left(F o^{2}\right)=\left[\sigma^{2}\left(F o^{2}\right)+p^{2}\left(F o^{2}\right)\right]^{-1}$
p-factor	0.0000
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (Including Friedel pairs)	16879
No. Variables	785
Reflection/Parameter Ratio	21.50
Residuals (on F^{2}, all data): R ; Rw	0.077; 0.088
Goodness of Fit Indicator	1.75
No. Observations ($\mathrm{I}>3 \sigma(\mathrm{I})$)	13319
Residuals (on F, $\mathrm{l} \times 3 \sigma(\mathrm{I})$) : R1; R1w	0.040; 0.042
Max ShiftError in Final Cycle	0.02

Maximum peak in Final Diff. Map	$1.65 e^{-1 / A^{3}}($ near Ru $)$
Minimum peak in Final Diff. Map	$-2.96 e^{-1 / A^{3}}($ near Ru $)$

Table A. 1 26. Bond Angles $\left({ }^{\circ}\right)$ for $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot 2.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$

atom	atom	atom	angle	atom	atom	atom	angle
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	81.46(5)	$\mathrm{Cl}(5)$	$\mathrm{Ru}(2)$	S(4)	91.93(6)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(3)$	82.63 (5)	S(3)	$\mathrm{Ru}(2)$	S(4)	88.48(6)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(4)$	170.87(5)	$\mathrm{Cl}(6)$	$\mathrm{Ru}(3)$	$\mathrm{Cl}(7)$	82.65(5)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	S(1)	92.33(5)	$\mathrm{Cl}(6)$	$\mathrm{Ru}(3)$	$\mathrm{Cl}(8)$	80.76(5)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	S(2)	94.19(6)	$\mathrm{Cl}(6)$	$\mathrm{Ru}(3)$	$\mathrm{Cl}(9)$	168.66(6)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(3)$	79.33(5)	$\mathrm{Cl}(6)$	$\mathrm{Ru}(3)$	S(5)	97.29(5)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(4)$	91.09(5)	$\mathrm{Cl}(6)$	$\mathrm{Ru}(3)$	S(6)	92.47(5)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	S(1)	172.11(6)	$\mathrm{Cl}(7)$	$\mathrm{Ru}(3)$	$\mathrm{Cl}(8)$	79.74(5)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	S(2)	95.78(6)	$\mathrm{Cl}(7)$	$\mathrm{Ru}(3)$	Cl(9)	87.63 (6)
$\mathrm{Cl}(3)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(4)$	90.83(5)	$\mathrm{Cl}(7)$	$\mathrm{Ru}(3)$	S(5)	174.70(6)
$\mathrm{Cl}(3)$	$\mathrm{Ru}(1)$	S(1)	95.11(6)	$\mathrm{Cl}(7)$	$\mathrm{Ru}(3)$	S (6)	96.05(6)
$\mathrm{Cl}(3)$	$\mathrm{Ru}(1)$	S(2)	174.50(6)	$\mathrm{Cl}(8)$	$\mathrm{Ru}(3)$	$\mathrm{Cl}(9)$	91.80(5)
$\mathrm{Cl}(4)$	$\mathrm{Ru}(1)$	S(1)	94.61(5)	$\mathrm{Cl}(8)$	$\mathrm{Ru}(3)$	S(5)	95.00(6)
$\mathrm{Cl}(4)$	$\mathrm{Ru}(1)$	S(2)	91.80(6)	$\mathrm{Cl}(8)$	$\mathrm{Ru}(3)$	S(6)	172.40(6)
S(1)	$\mathrm{Ru}(1)$	S(2)	89.49(6)	$\mathrm{Cl}(9)$	$\mathrm{Ru}(3)$	S(5)	91.86(6)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(2)$	$\mathrm{Cl}(2)$	81.70(5)	$\mathrm{Cl}(9)$	$\mathrm{Ru}(3)$	S(6)	94.36(6)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(2)$	$\mathrm{Cl}(3)$	82.46(5)	S(5)	$\mathrm{Ru}(3)$	S(6)	89.25(6)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(2)$	$\mathrm{Cl}(5)$	169.83(6)	$\mathrm{Cl}(6)$	$\mathrm{Ru}(4)$	$\mathrm{Cl}(7)$	82.08(5)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(2)$	S(3)	94.70 (5)	$\mathrm{Cl}(6)$	$\mathrm{Ru}(4)$	$\mathrm{Cl}(8)$	80.66(5)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(2)$	S(4)	92.71(6)	$\mathrm{Cl}(6)$	$\mathrm{Ru}(4)$	$\mathrm{Cl}(10)$	170.20(5)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(2)$	$\mathrm{Cl}(3)$	79.21(5)	$\mathrm{Cl}(6)$	$\mathrm{Ru}(4)$	S(7)	92.63(5)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(2)$	$\mathrm{Cl}(5)$	88.73(6)	$\mathrm{Cl}(6)$	$\mathrm{Ru}(4)$	$\mathrm{S}(8)$	96.27(6)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(2)$	S(3)	173.16(5)	$\mathrm{Cl}(7)$	$\mathrm{Ru}(4)$	$\mathrm{Cl}(8)$	79.79(5)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(2)$	S(4)	97.46(6)	$\mathrm{Cl}(7)$	$\mathrm{Ru}(4)$	$\mathrm{Cl}(10)$	90.10(5)
$\mathrm{Cl}(3)$	$\mathrm{Ru}(2)$	$\mathrm{Cl}(5)$	92.42(5)	$\mathrm{Cl}(7)$	$\mathrm{Ru}(4)$	S(7)	173.01(6)
$\mathrm{Cl}(3)$	$\mathrm{Ru}(2)$	S(3)	94.59(6)	$\mathrm{Cl}(7)$	$\mathrm{Ru}(4)$	S(8)	93.86(6)
$\mathrm{Cl}(3)$	$\mathrm{Ru}(2)$	S(4)	174.46(6)	$\mathrm{Cl}(8)$	$\mathrm{Ru}(4)$	$\mathrm{Cl}(10)$	92.19(6)
$\mathrm{Cl}(5)$	$\mathrm{Ru}(2)$	S(3)	94.47(6)	$\mathrm{Cl}(8)$	$\mathrm{Ru}(4)$	S(7)	94.89(6)
$\mathrm{Cl}(8)$	$\mathrm{Ru}(4)$	S(8)	173.25(6)	$\mathrm{Ru}(3)$	S(6)	C (25)	113.9(2)
$\mathrm{Cl}(10)$	$\mathrm{Ru}(4)$	S(7)	94.66(6)	$\mathrm{O}(6)$	S(6)	C(21)	104.3(3)
$\mathrm{Cl}(10)$	$\mathrm{Ru}(4)$	S(8)	90.12(6)	O(6)	S(6)	C(25)	106.2(3)
S(7)	$\mathrm{Ru}(4)$	S(8)	91.24(6)	C(21)	S(6)	C(25)	102.0(3)
$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	$\mathrm{Ru}(2)$	85.01(5)	$\mathrm{Ru}(4)$	S(7)	O(7)	117.4(2)
$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	$\mathrm{Ru}(2)$	81.26(5)	$\mathrm{Ru}(4)$	S(7)	C (28)	112.4(2)
$\mathrm{Ru}(1)$	$\mathrm{Cl}(3)$	$\mathrm{Ru}(2)$	81.45(5)	$\mathrm{Ru}(4)$	S(7)	C(31)	115.8(2)
$\mathrm{Ru}(3)$	$\mathrm{Cl}(6)$	$\mathrm{Ru}(4)$	84.69(5)	O(7)	S(7)	C(28)	104.5(3)
$\mathrm{Ru}(3)$	$\mathrm{Cl}(7)$	$\mathrm{Ru}(4)$	82.61(5)	O(7)	S(7)	C(31)	104.3(3)
$\mathrm{Ru}(3)$	$\mathrm{Cl}(8)$	$\mathrm{Ru}(4)$	81.25(5)	C(28)	S(7)	C(31)	100.5(3)
$\mathrm{Cl}(17 \mathrm{a}$	$\mathrm{Cl}(17)$	C(40)	73.1(8)	$\mathrm{Ru}(4)$	S(8)	O(8)	118.4(2)
$\mathrm{Cl}(17)$	Cl 17 a	$\mathrm{C}(40)$	70.8(8)	$\mathrm{Ru}(4)$	S(8)	C(30)	112.7(2)
$\mathrm{Cl}(18)$	Cl 18 a	$\mathrm{C}(40)$	86(1)	$\mathrm{Ru}(4)$	S(8)	C(34)	111.4(2)
$\mathrm{Cl}(18 \mathrm{a}$	$\mathrm{Cl}(18)$	$\mathrm{C}(40)$	47.5(7)	O(8)	S(8)	C(30)	105.7(3)
$\mathrm{Cl}(19)$	Cl 19 a	$\mathrm{Cl}(20)$	129.5(7)	O(8)	S(8)	C(34)	107.0(3)
$\mathrm{Cl}(19)$	Cl 19 a	C(41)	81.4(7)	$\mathrm{C}(30)$	S(8)	C (34)	99.9 (3)
$\mathrm{Cl}(20)$	Cl 19 a	$\mathrm{C}(41)$	53.1(4)	S(1)	C(1)	C (2)	109.5(4)
$\mathrm{Cl}(19 \mathrm{a}$	$\mathrm{Cl}(19)$	$\mathrm{C}(41)$	64.6(6)	C(1)	$\mathrm{C}(2)$	C(3)	115.0(5)
$\mathrm{Cl}(20)$	$\mathrm{Cl}(20 \mathrm{a}$	$\mathrm{C}(41)$	50.0(4)	S(2)	$\mathrm{C}(3)$	C(2)	111.3(4)

Cl 19 a	$\mathrm{Cl}(20)$	Cl(20a	85.7(4)	S(1)	C(4)	C(5)	117.6(5)
Cl 19 a	$\mathrm{Cl}(20)$	C(41)	50.7(4)	C(4)	C(5)	C(6)	110.2(7)
$\mathrm{Cl}(20 \mathrm{a}$	$\mathrm{Cl}(20)$	C(41)	58.8(4)	S(2)	C(7)	C(8)	113.9(5)
$\mathrm{Ru}(1)$	S(1)	$\mathrm{O}(1)$	117.1(2)	C(7)	C(8)	C(9)	112.9(6)
$\mathrm{Ru}(1)$	S(1)	C(1)	112.3(2)	S(3)	C(10)	C(11)	109.8(4)
$\mathrm{Ru}(1)$	S(1)	C(4)	115.3(2)	C(10)	C(11)	C(12)	116.2(5)
O(1)	S(1)	C(1)	105.1(3)	S(4)	C(12)	C(11)	109.8(4)
O(1)	S(1)	C(4)	104.5(3)	S(3)	C(13)	C(14)	117.0(5)
C(1)	S(1)	C(4)	100.9(3)	C(13)	C(14)	C(15)	109.0(6)
$\mathrm{Ru}(1)$	S(2)	O(2)	118.6(2)	S(4)	C(16)	C(17)	111.6(4)
$\mathrm{Ru}(1)$	S(2)	C(3)	111.9(2)	C(16)	C(17)	C(18)	112.0(5)
$\mathrm{Ru}(1)$	S(2)	C(7)	112.7(2)	S(5)	C(19)	C(20)	112.8(5)
$\mathrm{O}(2)$	S(2)	C(3)	104.2(3)	C(19)	C(20)	C(21)	115.1(6)
O(2)	S(2)	C(7)	106.7(3)	S(6)	C(21)	C(20)	110.2(4)
C(3)	S(2)	C(7)	101.0(3)	S(5)	C(22)	C(23)	115.8(5)
Ru(2)	S(3)	$\mathrm{O}(3)$	118.1(2)	C(22)	C(23)	C(24)	111.8(6)
$\mathrm{Ru}(2)$	S(3)	C(10)	110.6(2)	S(6)	C(25)	C(26)	110.7(4)
$\mathrm{Ru}(2)$	S(3)	C(13)	114.3(2)	C(25)	C(26)	C(27)	109.7(5)
$\mathrm{O}(3)$	S(3)	C(10)	106.1(3)	S(7)	$\mathrm{C}(28)$	C (29)	110.5(4)
O(3)	S(3)	C(13)	104.7(3)	C(28)	C(29)	C(30)	115.1(5)
C(10)	S(3)	C(13)	101.4(3)	S(8)	C(30)	C(29)	111.7(4)
$\mathrm{Ru}(2)$	S(4)	O(4)	117.9(2)	S(7)	C(31)	C(32)	116.3(5)
$\mathrm{Ru}(2)$	S(4)	C(12)	111.5(2)	C(31)	C(32)	C(33)	$110.5(7)$
$\mathrm{Ru}(2)$	S(4)	C(16)	113.0(2)	S(8)	C(34)	C(35)	114.3(5)
$\mathrm{O}(4)$	S(4)	C(12)	104.4(3)	C(34)	C(35)	C(36)	110.3(6)
$\mathrm{O}(4)$	S(4)	C(16)	106.3(3)	$\mathrm{Cl}(11)$	C(37)	$\mathrm{Cl}(12)$	111.9(4)
C(12)	S(4)	C(16)	102.3(3)	$\mathrm{Cl}(13)$	C(38)	$\mathrm{Cl}(14)$	114.0(5)
$\mathrm{Ru}(3)$	S(5)	O(5)	119.7(2)	$\mathrm{Cl}(15)$	C(39)	$\mathrm{Cl}(16)$	112.9(6)
$\mathrm{Ru}(3)$	S(5)	C(19)	112.0(2)	$\mathrm{Cl}(17)$	C(40)	$\mathrm{Cl}(17 \mathrm{a}$	36.1(4)
$\mathrm{Ru}(3)$	S(5)	C(22)	111.3(2)	$\mathrm{Cl}(17)$	C(40)	Cl (18a	141(1)
O(5)	S(5)	C(19)	105.6(3)	$\mathrm{Cl}(17)$	C(40)	$\mathrm{Cl}(18)$	110.3(8)
$\mathrm{O}(5)$	S(5)	C(22)	105.8(3)	Cl 17 a	C(40)	Cl (18a	149(1)
C(19)	S(5)	C(22)	100.3(3)	Cl 17 a	C(40)	$\mathrm{Cl}(18)$	101.7(9)
$\mathrm{Ru}(3)$	S(6)	$\mathrm{O}(6)$	117.1(2)	Cl (18a	C(40)	$\mathrm{Cl}(18)$	46.9(8)
Ru(3)	S(6)	C(21)	111.8(2)	Cl 19 a	C(41)	$\mathrm{Cl}(19)$	34.0(4)
$\mathrm{Cl}(19 \mathrm{a}$	C(41)	$\mathrm{Cl}(20 \mathrm{a}$	105.9(5)				
Cl(19a	C(41)	$\mathrm{Cl}(20)$	76.2(6)				
$\mathrm{Cl}(19)$	C(41)	Cl(20a	103.9(6)				
$\mathrm{Cl}(19)$	C(41)	$\mathrm{Cl}(20)$	107.6(6)				
$\mathrm{Cl}(20 \mathrm{a}$	$\mathrm{C}(41)$	$\mathrm{Cl}(20)$	71.2(5)				

Angles are in degrees. Estimated standard deviations in the least significant figure are given in parentheses.
Table A.1 27. Bond Lengths (\AA) for $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot 2.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$

atom	atom	distance	atom	atom	distance	atom	atom	distance
$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	$2.393(2)$	$\mathrm{Cl}(13)$	$\mathrm{C}(38)$	$1.74(1)$	$\mathrm{C}(2)$	$\mathrm{C}(3)$	$1.528(9)$
$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	$2.483(1)$	$\mathrm{Cl}(14)$	$\mathrm{C}(38)$	$1.733(9)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$1.50(1)$
$\mathrm{Ru}(1)$	$\mathrm{Cl}(3)$	$2.469(2)$	$\mathrm{Cl}(15)$	$\mathrm{C}(39)$	$1.74(1)$	$\mathrm{C}(5)$	$\mathrm{C}(6)$	$1.51(1)$
$\mathrm{Ru}(1)$	$\mathrm{Cl}(4)$	$2.383(2)$	$\mathrm{Cl}(16)$	$\mathrm{C}(39)$	$1.67(1)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$1.51(1)$
$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$2.209(2)$	$\mathrm{Cl}(17)$	$\mathrm{Cl}(17 \mathrm{a}$	$1.10(1)$	$\mathrm{C}(8)$	$\mathrm{C}(9)$	$1.50(1)$
$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$2.206(2)$	$\mathrm{Cl}(17)$	$\mathrm{C}(40)$	$1.76(1)$	$\mathrm{C}(10)$	$\mathrm{C}(11)$	$1.54(1)$
$\mathrm{Ru}(2)$	$\mathrm{Cl}(1)$	$2.388(1)$	$\mathrm{Cl}(17 \mathrm{a}$	$\mathrm{C}(40)$	$1.78(2)$	$\mathrm{C}(11)$	$\mathrm{C}(12)$	$1.515(9)$
$\mathrm{Ru}(2)$	$\mathrm{Cl}(2)$	$2.477(2)$	$\mathrm{Cl}(18 \mathrm{a}$	$\mathrm{Cl}(18)$	$1.27(1)$	$\mathrm{C}(13)$	$\mathrm{C}(14)$	$1.523(9)$

$\mathrm{Ru}(2)$	$\mathrm{Cl}(3)$	2.482(2)	$\mathrm{Cl}(18 \mathrm{a}$	C(40)	1.28(2)	C(14)	C(15)	1.52(1)
$\mathrm{Ru}(2)$	$\mathrm{Cl}(5)$	2.390(2)	$\mathrm{Cl}(18)$	$\mathrm{C}(40)$	1.73(1)	$\mathrm{C}(16)$	C(17)	1.513(9)
$\mathrm{Ru}(2)$	S(3)	2.209(2)	Cl 119 a	$\mathrm{Cl}(19)$	1.027(9)			
$\mathrm{Ru}(2)$	S(4)	2.208(2)	Cl 19 a	$\mathrm{Cl}(20)$	2.08(1)			
$\mathrm{Ru}(3)$	$\mathrm{Cl}(6)$	2.390 (1)	Cl(19a	$\mathrm{C}(41)$	1.66 (1)			
$\mathrm{Ru}(3)$	$\mathrm{Cl}(7)$	2.444(2)	$\mathrm{Cl}(19)$	$\mathrm{C}(41)$	1.81(1)			
$\mathrm{Ru}(3)$	$\mathrm{Cl}(8)$	2.488(2)	$\mathrm{Cl}(20 \mathrm{a}$	$\mathrm{Cl}(20)$	2.12(1)			
$\mathrm{Ru}(3)$	$\mathrm{Cl}(9)$	2.388(2)	$\mathrm{Cl}(20 \mathrm{a}$	$\mathrm{C}(41)$	1.92(1)			
$\mathrm{Ru}(3)$	S(5)	2.205(2)	$\mathrm{Cl}(20)$	$\mathrm{C}(41)$	1.71(1)			
$\mathrm{Ru}(3)$	S(6)	2.207(2)	S(1)	$\mathrm{O}(1)$	1.490(4)			
$\mathrm{Ru}(4)$	$\mathrm{Cl}(6)$	2.408(2)	S(1)	C(1)	1.800(6)			
$\mathrm{Ru}(4)$	$\mathrm{Cl}(7)$	2.453(1)	S(1)	C(4)	1.789(7)			
$\mathrm{Ru}(4)$	$\mathrm{Cl}(8)$	2.476(2)	S(2)	$\mathrm{O}(2)$	1.491(4)			
$\mathrm{Ru}(4)$	$\mathrm{Cl}(10)$	2.377(2)	S(2)	C(3)	1.805(6)			
$\mathrm{Ru}(4)$	S(7)	2.200 (2)	S(2)	C(7)	1.801(6)			
$\mathrm{Ru}(4)$	S(8)	2.224(2)	S(3)	$\mathrm{O}(3)$	1.487(4)			
$\mathrm{Cl}(11)$	C(37)	1.750 (8)	S(3)	$\mathrm{C}(10)$	$1.805(6)$			
$\mathrm{Cl}(12)$	C(37)	1.750(8)	S(3)	C(13)	$1.796(7)$			
S(4)	O(4)	1.490(4)	C (17)	C (18)	1.50(1)			
S(4)	C(12)	1.800(6)	C(19)	C(20)	1.523(9)			
S(4)	C(16)	1.788(7)	C(20)	C(21)	1.52(1)			
S(5)	O(5)	1.501(4)	C (22)	C (23)	1.512(9)			
S(5)	$\mathrm{C}(19)$	1.809(6)	C(23)	C(24)	1.50(1)			
S(5)	C(22)	1.804(7)	C(25)	C(26)	1.538(9)			
S(6)	O(6)	$1.497(4)$	C(26)	C(27)	1.52(1)			
S(6)	C(21)	$1.796(6)$	C(28)	C(29)	1.51(1)			
S(6)	C(25)	1.800(7)	C(29)	C(30)	1.536(9)			
S(7)	O(7)	1.489(4)	$\mathrm{C}(31)$	C(32)	1.52(1)			
S(7)	C(28)	$1.802(6)$	$\mathrm{C}(32)$	C(33)	1.50 (1)			
S(7)	C(31)	1.804(7)	C(34)	C(35)	1.52(1)			
S(8)	$\mathrm{O}(8)$	$1.474(5)$	C(35)	C(36)	1.52(1)			
S(8)	C(30)	1.776 (6)	S(8)	C(34)	1.799(6)			
C(1)	$\mathrm{C}(2)$	1.514(9)	$\mathrm{C}(1)$	$\mathrm{C}(2)$	1.514(9)			

Distances are in angstroms. Estimated standard deviations in the least significant figure are given in parentheses.
Table A. 1 28. Atomic Coordinates for $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot 2.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$

atom	x	y	z	$\mathrm{B}(\mathrm{eq})$
$\mathrm{Ru}(1)$	0.4973	$0.93066(2)$	0.5020	$1.076(8)$
$\mathrm{Ru}(2)$	$0.74647(4)$	$0.82149(2)$	$0.54648(2)$	$1.153(8)$
$\mathrm{Ru}(3)$	$0.17353(4)$	$0.47576(2)$	$0.33053(2)$	$1.145(8)$
$\mathrm{Ru}(4)$	$0.41381(4)$	$0.36548(2)$	$0.38406(2)$	$1.181(8)$
$\mathrm{Cl}(1)$	$0.55025(10)$	$0.78507(7)$	$0.49337(5)$	$1.25(2)$
$\mathrm{Cl}(2)$	$0.72494(10)$	$0.94752(7)$	$0.48699(5)$	$1.45(2)$
$\mathrm{Cl}(3)$	$0.60312(10)$	$0.91018(7)$	$0.59562(5)$	$1.47(2)$
$\mathrm{Cl}(4)$	$0.47834(11)$	$1.07804(7)$	$0.51770(5)$	$1.85(3)$
$\mathrm{Cl}(5)$	$0.93411(11)$	$0.88287(8)$	$0.59434(6)$	$2.04(3)$
$\mathrm{Cl}(6)$	$0.36512(10)$	$0.51354(7)$	$0.38674(5)$	$1.23(2)$
$\mathrm{Cl}(7)$	$0.18397(10)$	$0.35297(7)$	$0.39055(5)$	$1.49(3)$
$\mathrm{Cl}(8)$	$0.32840(10)$	$0.38690(7)$	$0.287375)$	$1.44(2)$
$\mathrm{Cl}(9)$	$-0.00404(11)$	$0.410118)$	$0.27806(6)$	$2.15(3)$
$\mathrm{Cl}(10)$	$0.42739(11)$	$0.21724(7)$	$0.37227(5)$	$1.96(3)$
$\mathrm{Cl}(11)$	$-0.0818(2)$	$0.11076(14)$	$0.32572(10)$	$7.15(6)$

$\mathrm{Cl}(12)$	$-0.0025(2)$	$0.17855(11)$	$0.43332(8)$	$4.65(4)$
$\mathrm{Cl}(13)$	$0.3373(2)$	$0.67487(13)$	$0.60869(9)$	$5.17(5)$
$\mathrm{Cl}(14)$	$0.2849(2)$	$0.50223(13)$	$0.63999(10)$	$6.01(5)$
$\mathrm{Cl}(15)$	$0.0901(2)$	$0.3810(2)$	$0.72513(13)$	$9.16(8)$
$\mathrm{Cl}(16)$	$0.1325(3)$	$0.2071(2)$	$0.74737(15)$	$10.87(10)$
$\mathrm{Cl}(17)$	$0.4759(4)$	$0.1605(2)$	$0.6984(2)$	$8.25(10)$
$\mathrm{Cl}(17 \mathrm{a})$	$0.5662(8)$	$0.1685(6)$	$0.6809(4)$	$6.7(2)$
$\mathrm{Cl}(18 \mathrm{a})$	$0.6236(9)$	$0.0469(7)$	$0.7704(4)$	$8.6(2)$
$\mathrm{Cl}(18)$	$0.6810(2)$	$0.1163(2)$	$0.77944(11)$	$5.46(7)$
$\mathrm{Cl}(19 \mathrm{a})$	$0.8820(6)$	$1.1805(3)$	$0.5723(2)$	$7.71(15)$
$\mathrm{Cl}(19)$	$0.9512(6)$	$1.1387(4)$	$0.5636(3)$	$8.5(2)$
$\mathrm{Cl}(20 \mathrm{a})$	$0.8782(6)$	$1.0826(3)$	$0.6691(2)$	$8.92(15)$
$\mathrm{Cl}(20)$	$0.7500(5)$	$1.1710(3)$	$0.6285(2)$	$9.4(2)$
$\mathrm{S}(1)$	$0.30356(10)$	$0.90033(7)$	$0.52220(5)$	$1.39(3)$
$\mathrm{S}(2)$	$0.41971(11)$	$0.94440(7)$	$0.41561(5)$	$1.32(2)$
$\mathrm{S}(3)$	$0.74339(10)$	$0.71334(7)$	$0.60260(5)$	$1.37(2)$
$\mathrm{S}(4)$	$0.86066(10)$	$0.74423(7)$	$0.49566(5)$	$1.48(3)$
$\mathrm{S}(5)$	$0.17477(10)$	$0.57985(8)$	$0.27151(5)$	$1.46(3)$
$\mathrm{S}(6)$	$0.05391(10)$	$0.55325(8)$	$0.37881(5)$	$1.47(3)$
$\mathrm{S}(7)$	$0.61382(11)$	$0.38943(8)$	$0.37129(6)$	$1.65(3)$
$\mathrm{S}(8)$	$0.46771(11)$	$0.35031(7)$	$0.47326(6)$	$1.61(3)$
$\mathrm{O}(1)$	$0.2485(3)$	$0.8177(2)$	$0.50290(15)$	$1.94(8)$
$\mathrm{O}(2)$	$0.3782(3)$	$0.8672(2)$	$0.38402(15)$	$2.11(8)$
$\mathrm{O}(3)$	$0.6705(3)$	$0.6370(2)$	$0.58276(13)$	$1.69(7)$
$\mathrm{O}(4)$	$0.7986(3)$	$0.6691(2)$	$0.46781(14)$	$1.92(8)$
$\mathrm{O}(5)$	$0.2549(3)$	$0.6565(2)$	$0.28605(14)$	$1.99(8)$
$\mathrm{O}(6)$	$0.1141(3)$	$0.6303(2)$	$0.40575(14)$	$2.02(8)$
$\mathrm{O}(7)$	$0.6689(3)$	$0.4728(2)$	$0.3889(2)$	$2.13(8)$
$\mathrm{O}(8)$	$0.4938(3)$	$0.4266(2)$	$0.50666(15)$	$2.33(8)$
$\mathrm{O}(9)$	$0.3088(3)$	$0.6592(3)$	$0.4794(2)$	$5.30(12)$
$\mathrm{O}(10)$	$0.4163(4)$	$0.7102(3)$	$0.3682(2)$	$7.8(2)$
$\mathrm{O}(11)$	$0.5130(3)$	$0.5906(2)$	$0.49572(14)$	$2.25(8)$
$\mathrm{O}(12)$	$0.6173(3)$	$0.6387(2)$	$0.38562(14)$	$2.01(8)$
$\mathrm{C}(1)$	$0.1872(4)$	$0.9775(3)$	$0.4960(2)$	$1.90(10)$
$\mathrm{C}(2)$	$0.1708(4)$	$0.9745(3)$	$0.4343(2)$	$2.12(10)$

Table A. 1 29. Hydrogen bonds and $\mathrm{C}-\mathrm{H} \ldots \mathrm{Cl} / \mathrm{O}$ interactions.

A	H	B	$\mathrm{A} \ldots . \mathrm{B}$	$\mathrm{A}-\mathrm{H}$	$\mathrm{H} \ldots . \mathrm{B}$	$\mathrm{A}-\mathrm{H} \ldots . \mathrm{B}$
$\mathrm{O}(9) \vdots$	$\mathrm{H}(1)$	$\mathrm{O}(1)$	$2.676(7)$	0.95	1.73	170.8
$\mathrm{O}(9)$	$\mathrm{H}(2)$	$\mathrm{O}(6)$	$2.620(6)$	0.95	1.68	170.4
$\mathrm{O}(10)$	$\mathrm{H}(3)$	$\mathrm{O}(2)$	$2.563(7)$	0.95	1.61	179.0
$\mathrm{O}(10)$	$\mathrm{H}(4)$	$\mathrm{O}(5)$	$2.633(7)$	0.95	1.68	179.4
$\mathrm{O}(11)$	$\mathrm{H}(5)$	$\mathrm{O}(3)$	$2.663(6)$	0.95	1.72	175.7
$\mathrm{O}(11)$	$\mathrm{H}(6)$	$\mathrm{O}(8)$	$2.628(6)$	0.95	1.68	175.5
$\mathrm{O}(12)$	$\mathrm{H}(7)$	$\mathrm{O}(4)$	$2.665(6)$	0.95	1.73	166.1
$\mathrm{O}(12)$	$\mathrm{H}(8)$	$\mathrm{O}(7)$	$2.688(6)$	0.95	1.76	166.5
$\mathrm{O}(9)$	$\mathrm{H}(1)$	$\mathrm{Cl}(1)$	$3.222(5)$	0.95	2.90	101.5
$\mathrm{O}(11)$	$\mathrm{H}(5)$	$\mathrm{Cl}(1)$	$3.113(4)$	0.95	2.90	94.1
$\mathrm{O}(12)$	$\mathrm{H}(8)$	$\mathrm{Cl}(6)$	$3.320(4)$	0.95	2.95	104.7
$\mathrm{C}(6)$	$\mathrm{H}(19)$	$\mathrm{Cl}(17)$	$3.578(12)$	0.98	2.86	132.1
$\mathrm{C}(7)$	$\mathrm{H}(22)$	$\mathrm{Cl}(10)$	$3.592(6)$	0.98	2.81	137.2
$\mathrm{C}(18)$	$\mathrm{H}(47)$	$\mathrm{Cl}(16)$	$3.750(9)$	0.98	2.92	143.1
$\mathrm{C}(19)$	$\mathrm{H}(49)$	$\mathrm{Cl}(17)$	$3.733(8)$	0.98	2.90	144.0

$\mathrm{C}(19)$	$\mathrm{H}(49)$	$\mathrm{Cl}(17 \mathrm{a})$	$3.847(14)$	0.98	2.93	156.8
$\mathrm{C}(23)$	$\mathrm{H}(58)$	$\mathrm{Cl}(20)$	$3.647(9)$	0.98	2.91	132.4
$\mathrm{C}(29)$	$\mathrm{H}(71)$	$\mathrm{Cl}(19 \mathrm{a})$	$3.682(9)$	0.98	2.85	143.1
$\mathrm{C}(36)$	$\mathrm{H}(88)$	$\mathrm{Cl}(17)$	$3.543(9)$	0.98	2.77	135.7
$\mathrm{C}(37)$	$\mathrm{H}(90)$	$\mathrm{Cl}(7)$	$3.254(8)$	0.98	2.75	112.8
$\mathrm{C}(38)$	$\mathrm{H}(92)$	$\mathrm{Cl}(9)$	$3.650(10)$	0.98	2.74	154.8
$\mathrm{C}(40)$	$\mathrm{H}(96)$	$\mathrm{Cl}(20 \mathrm{a})$	$3.59(2)$	0.98	2.82	136.8
$\mathrm{C}(40)$	$\mathrm{H}(96)$	$\mathrm{Cl}(20)$	$3.47(2)$	0.98	2.85	122.7
$\mathrm{C}(41)$	$\mathrm{H}(97)$	$\mathrm{Cl}(2)$	$3.546(9)$	0.98	2.73	140.9
$\mathrm{C}(41)$	$\mathrm{H}(98)$	$\mathrm{Cl}(5)$	$3.555(10)$	0.98	2.85	129.7
$\mathrm{C}(41)$	$\mathrm{H}(98 \mathrm{a})$	$\mathrm{Cl}(5)$	$3.555(10)$	0.98	2.76	138.3
$\mathrm{C}(41)$	$\mathrm{H}(98 \mathrm{a})$	$\mathrm{Cl}(2)$	$3.546(9)$	0.98	2.80	133.7

Figure A.1.4. Stereoview of $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot 2 \cdot 5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Appendix 1.7 Crystallographic Data for trans- $\mathrm{RuCl}_{2}(\mathrm{BCyTE})_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Table A. 1 30. Experimental Details for X-ray Crystal Structure of trans$\mathrm{RuCl}_{2}(\mathrm{BCyTE})_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
A. Crystal Data

Empirical Formula	$\mathrm{C}_{30} \mathrm{H}_{56} \mathrm{Cl}_{6} \mathrm{RuS}_{4}$
Formula Weight	858.80
Crystal Colour, Habit	orange, irregular
Crystal Dimensions	$0.45 \times 0.35 \times 0.25 \mathrm{~mm}$
Crystal System	triclinic
Lattice Type	Primitive
Lattice Parameters	$\mathrm{a}=7.5953(10) \AA$
	$\mathrm{b}=10.638(2) \AA$
	$\mathrm{c}=12.5100(13) \AA$
	$\alpha=103.349^{\circ}$
	$\beta=96.6436(13)^{\circ}$
	$\gamma=96.3757(14)^{\circ}$
	$\mathrm{V}=966.9(2) \AA^{3}$
Space Group	$\mathrm{P} \overline{1}(\# 2)$
Z Value	1
D $_{\text {calc }}$	$1.475 \mathrm{~g} / \mathrm{cm}^{3}$
F $_{000}$	446.00
$\mu($ MoK $\alpha)$	$10.56 \mathrm{~cm}^{-1}$

B. Intensity Measurements

Diffractometer	CCD
Radiation	MoK α ($\lambda=0.71069$ A $)$ graphite monochromated
Detector Aperature	94 mm x 94 mm
Data Images	462 exposures@ 16.0 seconds
ϕ oscillation Range ($\chi=0$)	0.0-190.0 ${ }^{\circ}$
ω oscillation Range ($\chi=-90$)	-23.0-18.0 ${ }^{\circ}$
Detector Position	39.24 mm
Detector Swing Angle	$-10.00{ }^{\circ}$
$2 . \theta_{\text {max }}$	$60.0{ }^{\circ}$
No. of Reflections Measured	Total: 8775
	Unique: $4348\left(\mathrm{R}_{\text {int }}=0.033\right)$
Corrections	Lorentz-polarization
	Absorption/scaling (trans. factors: $0.8770-1.0000$)
C. Structure Solution and Refinement	
Structure Solution	Patterson Methods (DIRDIF92 PATTY)
Refinement	Full-matrix least-squares
Function Minimized	$\Sigma \omega\left(\left\|F o^{2}\right\|-\left\|F c^{2}\right\|\right)^{2}$
Least Squares Weights	$\omega=1 / \sigma^{2}(F o)=\left[\sigma^{2}(F o)+\mathrm{p}^{2} / 4(F o)^{2}\right]^{-1}$
p-factor	0.0000
Anomalous Dispersion	All non-hydrogen atoms
No. Observations	4348
No. Variables	187
Reflection/Parameter Ratio	23.25
Residuals (on F^{2}, all data): R ; Rw	0.055; 0.061
Goodness of Fit Indicator	1.52
Max Shift/Error in Final Cycle	0.00

Maximum peak in Final Diff. Map	$0.84 e^{-1 /} \AA^{3}$
Minimum peak in Final Diff. Map	$-0.95 e^{-1 /} / A^{3}$

Table A. 1 31. Bond Angles (${ }^{\circ}$) for trans- $\mathrm{RuCl}_{2}(\mathrm{BCyTE})_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$

atom	atom	atom	angle		atom	atom	atom	angle
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	180.00		$\mathrm{C}(2)$	$\mathrm{S}(2)$	$\mathrm{C}(9)$	$97.9(1)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$95.86(2)$		$\mathrm{S}(1)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	$112.3(2)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$84.14(2)$		$\mathrm{S}(2)$	$\mathrm{C}(2)$	$\mathrm{C}(1)$	$110.4(2)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$92.42(2)$		$\mathrm{S}(1)$	$\mathrm{C}(3)$	$\mathrm{C}(4)$	$112.6(2)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$87.58(2)$		$\mathrm{S}(1)$	$\mathrm{C}(3)$	$\mathrm{C}(8)$	$105.5(2)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$84.14(2)$		$\mathrm{C}(4)$	$\mathrm{C}(3)$	$\mathrm{C}(8)$	$111.4(2)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$95.86(2)$		$\mathrm{C}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$109.1(2)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$87.58(2)$		$\mathrm{C}(4)$	$\mathrm{C}(5)$	$\mathrm{C}(6)$	$111.6(2)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$92.42(2)$		$\mathrm{C}(5)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$111.6(3)$
$\mathrm{S}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	180.00		$\mathrm{C}(6)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$110.6(3)$
$\mathrm{S}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$87.22(2)$		$\mathrm{C}(3)$	$\mathrm{C}(8)$	$\mathrm{C}(7)$	$110.7(2)$
$\mathrm{S}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$92.78(2)$		$\mathrm{S}(2)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$111.3(2)$
$\mathrm{S}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$92.78(2)$		$\mathrm{S}(2)$	$\mathrm{C}(9)$	$\mathrm{C}(14)$	$109.3(2)$
$\mathrm{S}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$87.22(2)$		$\mathrm{C}(10)$	$\mathrm{C}(9)$	$\mathrm{C}(14)$	$111.2(2)$
$\mathrm{S}(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	180.00		$\mathrm{C}(9)$	$\mathrm{C}(10)$	$\mathrm{C}(11)$	$110.6(2)$
$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$\mathrm{C}(1)$	$101.76(9)$		$\mathrm{C}(10)$	$\mathrm{C}(11)$	$\mathrm{C}(12)$	$111.1(3)$
$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$\mathrm{C}(3)$	$110.98(9)$		$\mathrm{C}(11)$	$\mathrm{C}(12)$	$\mathrm{C}(13)$	$110.7(3)$
$\mathrm{C}(1)$	$\mathrm{S}(1)$	$\mathrm{C}(3)$	$104.3(1)$		$\mathrm{C}(12)$	$\mathrm{C}(13)$	$\mathrm{C}(14)$	$112.0(2)$
$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$\mathrm{C}(2)$	$104.13(9)$		$\mathrm{C}(9)$	$\mathrm{C}(14)$	$\mathrm{C}(13)$	$109.6(2)$
$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$\mathrm{C}(9)$	$117.26(9)$		$\mathrm{Cl}(2)$	$\mathrm{C}(15)$	$\mathrm{Cl}(3)$	$112.8(2)$

Angles are in degrees. Estimated standard deviations in the least significant figure are given in parentheses.
Table A. 1 32. Bond Lengths (\AA) for trans- $\mathrm{RuCl}_{2}(\mathrm{BCyTE})_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$

atom	atom	distance		atom	atom	distance
$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	$2.4262(6)$		$\mathrm{C}(3)$	$\mathrm{C}(4)$	$1.526(4)$
$\mathrm{Ru}(1)$	$\mathrm{C}(1)$	$2.4262(6)$		$\mathrm{C}(3)$	$\mathrm{C}(8)$	$1.525(4)$
$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$2.3629(6)$		$\mathrm{C}(4)$	$\mathrm{C}(5)$	$1.536(4)$
$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$2.3629(6)$		$\mathrm{C}(5)$	$\mathrm{C}(6)$	$1.513(4)$
$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$2.3646(7)$		$\mathrm{C}(6)$	$\mathrm{C}(7)$	$1.531(4)$
$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$2.3646(7)$		$\mathrm{C}(7)$	$\mathrm{C}(8)$	$1.527(4)$
$\mathrm{Cl}(2)$	$\mathrm{C}(15)$	$1.740(4)$		$\mathrm{C}(9)$	$\mathrm{C}(10)$	$1.507(4)$
$\mathrm{Cl}(3)$	$\mathrm{C}(15)$	$1.718(4)$		$\mathrm{C}(9)$	$\mathrm{C}(14)$	$1.529(4)$
$\mathrm{S}(1)$	$\mathrm{C}(1)$	$1.813(3)$		$\mathrm{C}(10)$	$\mathrm{C}(11)$	$1.536(4)$
$\mathrm{S}(1)$	$\mathrm{C}(3)$	$1.840(3)$		$\mathrm{C}(11)$	$\mathrm{C}(12)$	$1.522(4)$
$\mathrm{S}(2)$	$\mathrm{C}(2)$	$1.830(3)$		$\mathrm{C}(12)$	$\mathrm{C}(13)$	$1.500(4)$
$\mathrm{S}(2)$	$\mathrm{C}(9)$	$1.8373)$		$\mathrm{C}(13)$	$\mathrm{C}(14)$	$1.547(4)$
$\mathrm{C}(1)$	$\mathrm{C}(2)$	$1.515(4)$				

Distances are in angstroms. Estimated standard deviations in the least significant figure are given in parentheses.

Table A. 1 33. Atomic Coordinates for trans- $\mathrm{RuCl}_{2}(\mathrm{BCyTE})_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$

atom	x	y	z	atom	x	y	z
$\mathrm{Ru}(1)$	0.5000	0.5000	0.5000	$\mathrm{C}(6)$	$0.2008(5)$	$0.1089(3)$	$0.0454(2)$
$\mathrm{Cl}(1)$	$0.30784(9)$	$0.56458(7)$	$0.35930(5)$	$\mathrm{C}(7)$	$0.1198(4)$	$0.1981(3)$	$0.1355(2)$
$\mathrm{Cl}(2)$	$0.2417(2)$	$0.48924(12)$	$-0.04824(8)$	$\mathrm{C}(8)$	$0.2364(4)$	$0.2226(3)$	$0.2482(2)$
$\mathrm{Cl}(3)$	$0.2281(2)$	$0.74202(12)$	$0.09370(10)$	$\mathrm{C}(9)$	$0.7353(4)$	$0.7213(3)$	$0.3690(2)$
$\mathrm{S}(1)$	$0.55040(9)$	$0.30267(6)$	$0.38305(5)$	$\mathrm{C}(10)$	$0.6625(4)$	$0.8376(3)$	$0.4327(2)$

$\mathrm{S}(2)$	$0.76224(9)$	$0.60009(7)$	$0.45092(5)$	$\mathrm{C}(11)$	$0.6425(5)$	$0.9383(3)$	$0.3633(3)$
$\mathrm{C}(1)$	$0.7835(4)$	$0.3399(3)$	$0.3675(2)$	$\mathrm{C}(12)$	$0.8200(5)$	$0.9807(3)$	$0.3276(3)$
$\mathrm{C}(2)$	$0.8248(4)$	$0.4721(3)$	$0.3429(2)$	$\mathrm{C}(13)$	$0.8939(5)$	$0.8647(3)$	$0.2656(3)$
$\mathrm{C}(3)$	$0.4282(4)$	$0.2775(3)$	$0.2422(2)$	$\mathrm{C}(4)$	$0.9151(4)$	$0.7621(3)$	$0.3341(2)$
$\mathrm{C}(4)$	$0.5096(4)$	$0.1859(3)$	$0.1547(2)$	$\mathrm{C}(15)$	$0.2760(7)$	$0.5865(4)$	$0.0869(3)$
$\mathrm{C}(5)$	$0.3921(4)$	$0.1628(3)$	$0.0415(2)$				

Table A. 1 34. Hydrogen bond parameters for A-H...B interactions.

A	H	B	$\mathrm{A} \ldots \mathrm{B}$	$\mathrm{A}-\mathrm{H}$	$\mathrm{H} \ldots . \mathrm{B}$	A-H....B
$\mathrm{C}(2)$	$\mathrm{H}(3)$	$\mathrm{Cl}(2)$	$3.785(3)$	0.98	2.91	148.7

Figure A.1.5. Stereoview of trans- $\mathrm{RuCl}_{2}(\mathrm{BCyTE})_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Appendix 1.8 Crystallographic Data for trans $-\mathrm{RuCl}_{2}(\mathrm{BPhTE})_{2}$

Table A. 1 35. Experimental Details for X-ray Crystal Structure of trans- $\mathrm{RuCl}_{2}(\mathrm{BPhTE})_{2}$

A. Crystal Data
Empirical Formula $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{RuS}_{4}$ Formula Weight 664.75 Crystal Colour, Habit orange-red, plate Crystal Dimensions $0.05 \times 0.25 \times 0.25 \mathrm{~mm}$ Crystal System triclinic Lattice Type Primitive Lattice Parameters $\mathrm{a}=10.264(2) \AA$ $\mathrm{b}=10.866(2) \AA$ $\mathrm{c}=12.9980(14) \AA$ $\alpha=93.802(5)^{\circ}$ $\beta=108.4136(13)$ $\gamma=92.490(2)^{\circ}$ $\mathrm{V}=1875.9(3) \AA^{3}$ Space Group $\mathrm{P} \overline{1}(\# 2)$ Z Value 2 D $_{\text {calc }}$ $1.612 \mathrm{~g} / \mathrm{cm}^{3}$ Fooo 3 676.00 $\mu($ MoK $\alpha)$ $10.90 \mathrm{~cm}^{-1}$

B. Intensity Measurements

Diffractometer	Rigaku/ADSC CCD
Radiation	MoK α ($\lambda=0.71069 A$) graphite monochromated
Detector Aperature	$94 \mathrm{~mm} \times 94 \mathrm{~mm}$
Data Images	462 exposures of 30.0 seconds
ϕ oscillation Range ($\chi=-90$)	0.0-190.0 ${ }^{\circ}$
ω oscillation Range ($\chi=-90$)	-23.0-18.0 ${ }^{\circ}$
Detector Position	39.23(1) mm
Detector Swing Angle	$-10.0{ }^{\circ}$
$2 \theta_{\text {max }}$	$60.1{ }^{\circ}$
No. of Reflections Measured	Total: 12689
	Unique: $6147\left(\mathrm{R}_{\text {int }}=0.036\right)$
Corrections	Lorentz-polarization
	Absorption/scaling (trans. factors: $0.7088-1.0000$)
C. ' Structure Solution and Refinement	
Structure Solution	Patterson Methods (DIRDIF92 PATTY)
Refinement	Full-matrix least-squares
Function Minimized	$\Sigma \omega\left(\left\|F o^{2}\right\|-\left\|F c^{2}\right\|\right)^{2}$
Least Squares Weights	$\omega=1 / \sigma^{2}\left(F o^{2}\right)$
p-factor	0.0000
Anomalous Dispersion	All non-hydrogen atoms
No. Observations	6147
No. Variables	316
Reflection/Parameter Ratio	19.45
Residuals (on F^{2}, all data): R ; Rw	0.055; 0.052
Goodness of Fit Indicator	1.35
Ṅ'. Observations ($\mathrm{I}>3 \sigma(\mathrm{I})$)	4088
Residuals (on F, $\mathrm{I}>3 \sigma(\mathrm{I}$) : R ; Rw	0.031; 0.025

Max Shift/Error in Final Cycle	0.0007
Maximum peak in Final Diff. Map	$1.05 e^{-1} / A^{3}$ (near Ru)
Minimum peak in Final Diff. Map	$-1.45 e^{-/ /} A^{3}$

Table A. 1 36. Bond Angles (${ }^{\circ}$) for trans- $\mathrm{RuCl}_{2}(\mathrm{BPhTE})_{2}$

atom	atom	atom	angle	atom	atom	atom	angle
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	$178.13(4)$	$\mathrm{C}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$119.7(3)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$84.14(3)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$\mathrm{C}(6)$	$120.4(3)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$95.08(3)$	$\mathrm{C}(5)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$119.9(4)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(3)$	$83.65(3)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$119.5(4)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(4)$	$96.90(3)$	$\mathrm{C}(3)$	$\mathrm{C}(8)$	$\mathrm{C}(7)$	$121.3(3)$
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$94.09(3)$	$\mathrm{S}(2)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$116.6(2)$
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$84.18(3)$	$\mathrm{S}(2)$	$\mathrm{C}(9)$	$\mathrm{C}(14)$	$124.3(3)$
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(3)$	$98.09(3)$	$\mathrm{C}(10)$	$\mathrm{C}(9)$	$\mathrm{C}(14)$	$119.1(3)$
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(4)$	$83.92(3)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$\mathrm{C}(11)$	$120.1(3)$
$\mathrm{S}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$86.03(3)$	$\mathrm{C}(10)$	$\mathrm{C}(11)$	$\mathrm{C}(12)$	$119.9(4)$
$\mathrm{S}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(3)$	$167.66(3)$	$\mathrm{C}(11)$	$\mathrm{C}(12)$	$\mathrm{C}(13)$	$120.6(4)$
$\mathrm{S}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(4)$	$97.97(3)$	$\mathrm{C}(12)$	$\mathrm{C}(13)$	$\mathrm{C}(14)$	$120.2(3)$
$\mathrm{S}(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(3)$	$93.26(3)$	$\mathrm{C}(9)$	$\mathrm{C}(14)$	$\mathrm{C}(13)$	$120.0(3)$
$\mathrm{S}(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(4)$	$167.69(3)$	$\mathrm{S}(3)$	$\mathrm{C}(15)$	$\mathrm{C}(16)$	$107.2(2)$
$\mathrm{S}(3)$	$\mathrm{Ru}(1)$	$\mathrm{S}(4)$	$85.29(3)$	$\mathrm{S}(4)$	$\mathrm{C}(16)$	$\mathrm{C}(15)$	$108.4(2)$
$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$\mathrm{C}(1)$	$102.6(1)$	$\mathrm{S}(3)$	$\mathrm{C}(17)$	$\mathrm{C}(18)$	$123.3(3)$
$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$\mathrm{C}(3)$	$121.9(1)$	$\mathrm{S}(3)$	$\mathrm{C}(17)$	$\mathrm{C}(22)$	$115.6(2)$
$\mathrm{C}(1)$	$\mathrm{S}(1)$	$\mathrm{C}(3)$	$98.5(1)$	$\mathrm{C}(18)$	$\mathrm{C}(17)$	$\mathrm{C}(22)$	$121.1(3)$
$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$\mathrm{C}(2)$	$103.59(9)$	$\mathrm{C}(17)$	$\mathrm{C}(18)$	$\mathrm{C}(19)$	$118.8(3)$
$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$\mathrm{C}(9)$	$117.0(1)$	$\mathrm{C}(18)$	$\mathrm{C}(19)$	$\mathrm{C}(20)$	$120.7(3)$
$\mathrm{C}(2)$	$\mathrm{S}(2)$	$\mathrm{C}(9)$	$102.2(2)$	$\mathrm{C}(19)$	$\mathrm{C}(20)$	$\mathrm{C}(21)$	$119.8(3)$
$\mathrm{Ru}(1)$	$\mathrm{S}(3)$	$\mathrm{C}(15)$	$103.6(1)$	$\mathrm{C}(20)$	$\mathrm{C}(21)$	$\mathrm{C}(22)$	$120.5(3)$
$\mathrm{Ru}(1)$	$\mathrm{S}(3)$	$\mathrm{C}(17)$	$119.2(1)$	$\mathrm{C}(17)$	$\mathrm{C}(22)$	$\mathrm{C}(21)$	$119.1(3)$
$\mathrm{C}(15)$	$\mathrm{S}(3)$	$\mathrm{C}(17)$	$100.3(1)$	$\mathrm{S}(4)$	$\mathrm{C}(23)$	$\mathrm{C}(24)$	$122.1(2)$
$\mathrm{Ru}(1)$	$\mathrm{S}(4)$	$\mathrm{C}(16)$	$104.1(1)$	$\mathrm{S}(4)$	$\mathrm{C}(23)$	$\mathrm{C}(28)$	$116.5(3)$
$\mathrm{Ru}(1)$	$\mathrm{S}(4)$	$\mathrm{C}(23)$	$121.0(1)$	$\mathrm{C}(24)$	$\mathrm{C}(23)$	$\mathrm{C}(28)$	$121.2(3)$
$\mathrm{C}(16)$	$\mathrm{S}(4)$	$\mathrm{C}(23)$	$99.7(1)$	$\mathrm{C}(23)$	$\mathrm{C}(24)$	$\mathrm{C}(25)$	$119.9(3)$
$\mathrm{S}(1)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	$108.9(2)$	$\mathrm{C}(24)$	$\mathrm{C}(25)$	$\mathrm{C}(26)$	$119.2(3)$
$\mathrm{S}(2)$	$\mathrm{C}(2)$	$\mathrm{C}(1)$	$106.8(2)$	$\mathrm{C}(25)$	$\mathrm{C}(26)$	$\mathrm{C}(27)$	$120.0(3)$
$\mathrm{S}(1)$	$\mathrm{C}(3)$	$\mathrm{C}(4)$	$122.6(3)$	$\mathrm{C}(26)$	$\mathrm{C}(27)$	$\mathrm{C}(28)$	$121.4(3)$
$\mathrm{S}(1)$	$\mathrm{C}(3)$	$\mathrm{C}(8)$	$118.2(3)$	$\mathrm{C}(23)$	$\mathrm{C}(28)$	$\mathrm{C}(27)$	$118.3(3)$
$\mathrm{C}(4)$	$\mathrm{C}(3)$	$\mathrm{C}(8)$	$119.1(3)$				
A$)$	C						

Angles are in degrees. Estimated standard deviations in the least significant figure are given in parentheses.
Table A.1 37. Bond Lengths (\AA) for trans- $\mathrm{RuCl}_{2}(\mathrm{BPhTE})_{2}$

atom	atom	distance	atom	atom	distance
$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	$2.4266(8)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$1.372(5)$
$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	$2.4244(8)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$1.393(4)$
$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$2.3557(9)$	$\mathrm{C}(9)$	$\mathrm{C}(14)$	$1.387(4)$
$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$2.3424(7)$	$\mathrm{C}(10)$	$\mathrm{C}(11)$	$1.378(5)$
$\mathrm{Ru}(1)$	$\mathrm{S}(3)$	$2.3440(9)$	$\mathrm{C}(11)$	$\mathrm{C}(12)$	$1.368(5)$
$\mathrm{Ru}(1)$	$\mathrm{S}(4)$	$2.3594(8)$	$\mathrm{C}(12)$	$\mathrm{C}(13)$	$1.370(5)$
$\mathrm{S}(1)$	$\mathrm{C}(1)$	$1.844(3)$	$\mathrm{C}(13)$	$\mathrm{C}(14)$	$1.377(5)$
$\mathrm{S}(1)$	$\mathrm{C}(3)$	$1.788(3)$	$\mathrm{C}(15)$	$\mathrm{C}(16)$	$1.508(4)$
$\mathrm{S}(2)$	$\mathrm{C}(2)$	$1.815(4)$	$\mathrm{C}(17)$	$\mathrm{C}(18)$	$1.378(4)$
$\mathrm{S}(2)$	$\mathrm{C}(9)$	$1.777(3)$	$\mathrm{C}(17)$	$\mathrm{C}(22)$	$1.388(5)$
$\mathrm{S}(3)$	$\mathrm{C}(15)$	$1.835(3)$	$\mathrm{C}(18)$	$\mathrm{C}(19)$	$1.397(4)$

$\mathrm{S}(3)$	$\mathrm{C}(17)$	$1.799(3)$	$\mathrm{C}(19)$	$\mathrm{C}(20)$	$1.383(5)$
$\mathrm{S}(4)$	$\mathrm{C}(16)$	$1.836(4)$	$\mathrm{C}(20)$	$\mathrm{C}(21)$	$1.373(5)$
$\mathrm{S}(4)$	$\mathrm{C}(23)$	$1.793(3)$	$\mathrm{C}(21)$	$\mathrm{C}(22)$	$1.394(5)$
$\mathrm{C}(1)$	$\mathrm{C}(2)$	$1.514(5)$	$\mathrm{C}(23)$	$\mathrm{C}(24)$	$1.373(4)$
$\mathrm{C}(3)$	$\mathrm{C}(4)$	$1.389(4)$	$\mathrm{C}(23)$	$\mathrm{C}(28)$	$1.403(4)$
$\mathrm{C}(3)$	$\mathrm{C}(8)$	$1.384(5)$	$\mathrm{C}(24)$	$\mathrm{C}(25)$	$1.401(4)$
$\mathrm{C}(4)$	$\mathrm{C}(5)$	$1.390(5)$	$\mathrm{C}(25)$	$\mathrm{C}(26)$	$1.397(4)$
$\mathrm{C}(5)$	$\mathrm{C}(6)$	$1.377(6)$	$\mathrm{C}(26)$	$\mathrm{C}(27)$	$1.378(5)$
$\mathrm{C}(6)$	$\mathrm{C}(7)$	$1.389(5)$	$\mathrm{C}(27)$	$\mathrm{C}(28)$	$1.383(4)$

Distances are in angstroms. Estimated standard deviations in the least significant figure are given in parentheses.
Table A.1 38. Atomic Coordinates for trans- $\mathrm{RuCl}_{2}(\mathrm{BPhTE})_{2}$

atom	x	y	z
$\mathrm{Ru}(1)$	$0.17633(3)$	$0.42116(3)$	$0.28037(2)$
$\mathrm{Cl}(1)$	$0.38363(8)$	$0.30901(7)$	$0.32390(6)$
$\mathrm{Cl}(2)$	$-0.03416(8)$	$0.52838(7)$	$0.23181(6)$
$\mathrm{S}(1)$	$0.07126(8)$	$0.23633(7)$	$0.17658(6)$
$\mathrm{S}(2)$	$0.19651(8)$	$0.48748(8)$	$0.11791(6)$
$\mathrm{S}(3)$	$0.32480(8)$	$0.58400(7)$	$0.38769(6)$
$\mathrm{S}(4)$	$0.12045(8)$	$0.38616(8)$	$0.43917(6)$
$\mathrm{C}(1)$	$0.0429(4)$	$0.2765(3)$	$0.0359(2)$
$\mathrm{C}(2)$	$0.1717(4)$	$0.3453(3)$	$0.0304(2)$
$\mathrm{C}(3)$	$-0.1013(3)$	$0.1836(3)$	$0.1629(3)$
$\mathrm{C}(4)$	$-0.1778(3)$	$0.2414(3)$	$0.2209(3)$
$\mathrm{C}(5)$	$-0.3100(4)$	$0.1933(4)$	$0.2090(3)$
$\mathrm{C}(6)$	$-0.3647(4)$	$0.0880(4)$	$0.1413(3)$
$\mathrm{C}(7)$	$-0.2873(4)$	$0.0289(4)$	$0.0850(3)$
$\mathrm{C}(8)$	$-0.1579(4)$	$0.0778(3)$	$0.0954(3)$
$\mathrm{C}(9)$	$0.3620(3)$	$0.5466(3)$	$0.1210(2)$
$\mathrm{C}(10)$	$0.3748(4)$	$0.6709(3)$	$0.1030(3)$
$\mathrm{C}(11)$	$0.5022(4)$	$0.7266(4)$	$0.1141(3)$
$\mathrm{C}(12)$	$0.6159(4)$	$0.6591(4)$	$0.1405(3)$
$\mathrm{C}(13)$	$0.6040(4)$	$0.5356(4)$	$0.1538(3)$
$\mathrm{C}(14)$	$0.4780(4)$	$0.4791(3)$	$0.1454(3)$
$\mathrm{C}(15)$	$0.2620(4)$	$0.6101(3)$	$0.5042(3)$
$\mathrm{C}(16)$	$0.2481(4)$	$0.4861(3)$	$0.5468(2)$
$\mathrm{C}(17)$	$0.3147(3)$	$0.7359(3)$	$0.3397(3)$
$\mathrm{C}(18)$	$0.1957(3)$	$0.7774(3)$	$0.2714(3)$
$\mathrm{C}(19)$	$0.2001(4)$	$0.8954(3)$	$0.2356(3)$
$\mathrm{C}(20)$	$0.3217(4)$	$0.9691(3)$	$0.2673(3)$
$\mathrm{C}(21)$	$0.4387(4)$	$0.9272(4)$	$0.3369(3)$
$\mathrm{C}(22)$	$0.4371(4)$	$0.8095(3)$	$0.3732(3)$
$\mathrm{C}(23)$	$0.1473(3)$	$0.2409(3)$	$0.4979(2)$
$\mathrm{C}(24)$	$0.1873(3)$	$0.1413(3)$	$0.4474(2)$
$\mathrm{C}(25)$	$0.1977(4)$	$0.0274(3)$	$0.4929(3)$
$\mathrm{C}(26)$	$0.1665(4)$	$0.0170(4)$	$0.5892(3)$
$\mathrm{C}(27)$	$0.1252(4)$	$0.1177(4)$	$0.6380(3)$
$\mathrm{C}(28)$	$0.1138(4)$	$0.2306(3)$	$0.5937(3)$

Figure A.1.6. Stereoview of trans- $\mathrm{RuCl}_{2}(\mathrm{BPhTE})_{2}$.

Appendix 1.9 Crystallographic Data for $\left[\mathrm{RuCl}_{2}(\mathrm{BETP})\right]_{2}(\mu-\mathrm{Cl})_{2}$

Table A. 1 39. Experimental Details for X-ray Crystal Structure of $\left[\mathrm{RuCl}_{2}(\mathrm{BETP})\right]_{2}(\mu-\mathrm{Cl})_{2}$
A. Crystal Data

Empirical Formula	$\mathrm{C}_{14} \mathrm{H}_{32} \mathrm{Cl}_{6} \mathrm{Ru}_{2} \mathrm{~S}_{4}$
Formula Weight	743.50
Crystal Colour, Habit	orange, block
Crystal Dimensions	$0.30 \times 0.40 \times 0.45 \mathrm{~mm}$
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	$\mathrm{a}=9.4203(13) \AA$
	$\mathrm{b}=7.8644(13) \AA$
	$\mathrm{c}=17.2910(5) \AA$
	$\beta=98.8128(7)^{\circ}$
	$\mathrm{V}=1265.3(2) \AA^{3}$
Space Group	$\mathrm{P} 2 / \mathrm{n}(\# 14)$
Z Value	2
$\mathrm{D}_{\text {calc }}$	$1.951 \mathrm{~g} / \mathrm{cm}^{3}$
$\mathrm{~F}_{000}$	740.00
$\mu($ MoK $\alpha)$	$21.58 \mathrm{~cm}^{-1}$

B. Intensity Measurements

Diffractometer	Rigaku/ADSC CCD
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71069 \mathrm{~A})$ graphite monochromated
Detector Aperature	94 mm x 94 mm
Data Images	462 exposures of 40.0 seconds
ϕ oscillation Range $(\chi=-90)$	$0.0-190.0^{\circ}$
ω oscillation Range $(\chi=-90)$	$-23.0-18.0^{\circ}$
Detector Position	$39.22(1) \mathrm{mm}$
Detector Swing Angle	-10°
$2 \theta_{\text {max }}$	63.6°
$2 \theta_{\text {full }}$	60.1°
No. of Reflections Measured	Total: 10528
	Unique: $3419\left(\mathrm{R}_{\text {int }}=0.024\right)$
Corrections	Lorentz-polarization
	Absorption/scaling
	(trans. factors: $0.7434-1.0018)$

C. Structure Solution and Refinement	
Structure Solution	Patterson Methods (DIRDIF92 PATTY)
Refinement	Full-matrix least-squares
Function Minimized	$\Sigma \omega\left(\left\|F o^{2}\right\|-\left\|F c^{2}\right\|\right)^{2}$
Least Squares Weights	$\omega=1 / \sigma^{2}\left(F o^{2}\right)=\left[\sigma^{2}\left(F o^{2}\right)+p^{2} F o^{2}\right]^{-1}$
p-factor	0.0200
Anomalous Dispersion	All non-hydrogen atoms
No. Observations	3419
No. Variables	118
Reflection/Parameter Ratio	28.97
Residuals (on F^{2}, all data): R; Rw	$0.060 ; 0.076$
Góodness of Fit Indicator	1.90
No. Observations (I>3o(I))	2650
Residuals (on F, I>3o(I)): R1; R1w	$0.034 ; 0.036$
Max Shift/Error in Final Cycle	0.001

Maximum peak in Final Diff. Map	$1.15 e^{-/ /} A^{3}($ near Ru $)$
Minimum peak in Final Diff. Map	$-1.50 e^{-/} / A^{3}($ near Ru $)$

Table A.1 40. Bond Angles $\left(^{\circ}\right)$ for $\left[\mathrm{RuCl}_{2}(\mathrm{BETP})\right]_{2}(\mu-\mathrm{Cl})_{2}$

atom	atom	atom	angle	atom	atom	atom	angle
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)^{*}$	$84.14(3)$	$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	$173.59(3)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(3)$	$90.35(3)$	$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$85.46(3)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$96.74(3)$	$\mathrm{Cl}(1)^{*}$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	$99.62(3)$
$\mathrm{Cl}(1)^{*}$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(3)$	$86.95(3)$	$\mathrm{Cl}(1)^{*}$	$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$92.49(3)$
$\mathrm{Cl}(1)^{*}$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$172.05(3)$	$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(3)$	$94.22(3)$
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$89.94(3)$	$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$88.13(3)$
$\mathrm{Cl}(3)$	$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$175.81(3)$	$\mathrm{Cl}(3)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$85.14(3)$
$\mathrm{S}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$95.45(3)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)^{*}$	$95.86(3)$
$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$\mathrm{C}(1)$	$110.16(11)$	$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$\mathrm{C}(4)$	$107.85(11)$
$\mathrm{C}(1)$	$\mathrm{S}(1)$	$\mathrm{C}(4)$	$99.78(15)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$\mathrm{C}(3)$	$11.62(11)$
$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$\mathrm{C}(6)$	$110.65(10)$	$\mathrm{C}(3)$	$\mathrm{S}(2)$	$\mathrm{C}(6)$	$100.54(15)$
$\mathrm{S}(1)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	$112.9(2)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(3)$	$113.6(3)$
$\mathrm{S}(2)$	$\mathrm{C}(3)$	$\mathrm{C}(2)$	$117.3(2)$	$\mathrm{S}(1)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$112.5(3)$
$\mathrm{S}(2)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$110.7(2)$				

Angles are in degrees. Estimated standard deviations in the least significant figure are given in parentheses.
Table A. 1 41. Bond Lengths (\AA) for $\left[\operatorname{RuCl}_{2}(\operatorname{BETP})\right]_{2}(\mu-\mathrm{Cl})_{2}$

atom	atom	distance	atom	atom	distance
$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	$2.3915(7)$	$\mathrm{S}(1)$	$\mathrm{C}(4)$	$1.823(3)$
$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	$2.4617(7)$	$\mathrm{S}(2)$	$\mathrm{C}(3)$	$1.808(3)$
$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	$2.3258(7)$	$\mathrm{S}(2)$	$\mathrm{C}(6)$	$1.813(3)$
$\mathrm{Ru}(1)$	$\mathrm{Cl}(3)$	$2.3501(8)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	$1.52315)$
$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$2.3677(8)$	$\mathrm{C}(2)$	$\mathrm{C}(3)$	$1.5215)$
$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$2.32018)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$1.511(5)$
$\mathrm{S}(1)$	$\mathrm{C}(1)$	$1.815(3)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$1.521(5)$

Distances are in angstroms. Estimated standard deviations in the least significant figure are given in parentheses.
Table A. 1 42. Atomic Coordinates for $\left[\mathrm{RuCl}_{2}(\mathrm{BETP})\right]_{2}(\mu-\mathrm{Cl})_{2}$

atom	x	y	z
$\mathrm{Ru}(1)$	$0.01544(2)$	$0.07158(3)$	$0.402663(12)$
$\mathrm{Cl}(1)$	$-0.11601(7)$	$0.15130(10)$	$0.50486(4)$
$\mathrm{Cl}(2)$	$0.16600(8)$	$-0.00636(10)$	$0.31390(4)$
$\mathrm{Cl}(3)$	$-0.16463(8)$	$-0.12495(10)$	$0.35461(4)$
$\mathrm{S}(1)$	$0.18705(8)$	$0.27429(10)$	$0.45849(4)$
$\mathrm{S}(2)$	$-0.10155(8)$	$0.25303(10)$	$0.30786(4)$
$\mathrm{C}(1)$	$0.2389(4)$	$0.4103(4)$	$0.3827(2)$
$\mathrm{C}(2)$	$0.1131(4)$	$0.5094(4)$	$0.3385(2)$
$\mathrm{C}(3)$	$0.0208(3)$	$0.4055(4)$	$0.2757(2)$
$\mathrm{C}(4)$	$0.3563(3)$	$0.1630(5)$	$0.4888(2)$
$\mathrm{C}(5)$	$0.4615(4)$	$0.2672(5)$	$0.5443(2)$
$\mathrm{C}(6)$	$-0.2217(3)$	$0.3943(4)$	$0.3497(2)$
$\mathrm{C}(7)$	$-0.3655(3)$	$0.3083(5)$	$0.3524(2)$

Appendix 1.10 Crystallographic Data for $\left[\mathrm{RuCl}_{2}(\mathrm{BPTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$

Table A. 1 43. Experimental Details for X-ray Crystal Structure of $\left[\mathrm{RuCl}_{2}(\mathrm{BPTP})\right]_{2}(\mu \text { - } \mathrm{Cl})_{2}$

A. Crystal Data

Empirical Formula	$\mathrm{C}_{20} \mathrm{H}_{44} \mathrm{Cl}_{10} \mathrm{Ru}_{2} \mathrm{~S}_{4}$
Formula Weight	969.48
Crystal Colour, Habit	red, platelet
Crystal Dimensions	$0.40 \times 0.20 \times 0.03 \mathrm{~mm}$
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	$\mathrm{a}=11.803(2) \AA$
	$\mathrm{b}=7.4111(6) \AA$
	$\mathrm{c}=21.7417(8) \AA$
	$\beta=99.4766(10) \AA$
	$\mathrm{V}=1875.9(3) \AA^{3}$
Space Group	$\mathrm{P} 2_{1} / \mathrm{n}(\# 14)$
Z Value	2
$\mathrm{D}_{\text {calc }}$	$1.716 \mathrm{~g} / \mathrm{cm}^{3}$
$\mathrm{~F}_{\text {ooo }}$	972.00
$\mu($ MoK $\alpha)$	$17.52 \mathrm{~cm}^{-1}$

B. Intensity Measurements

Diffractometer	Rigaku/ADSC CCD
Radiation	MoK $\alpha(\lambda=0.71069 A)$ graphite monochromated
Detector Aperature	$94 \mathrm{~mm} \times 94 \mathrm{~mm}$
Data Images	462 exposures of 50.0 seconds
ϕ oscillation Range $(\chi=-90)$	$0.0-190.0^{\circ}$
ω oscillation Range $(\chi=-90)$	$-23.0-18.0^{\circ}$
Detector Position	$39.180(7) \mathrm{mm}$
Detector Swing Angle	-10°
$2 \theta_{\text {max }}$	60.1°
No. of Reflections Measured	Total: 17721
Corrections	Unique: $4854\left(\mathrm{R}_{\text {int }}=0.037\right)$
	Lorentz-polaratiotion
	Absortion/scaling
	(trans. factors: $0.6735-1.0000)$

C. 'Structure Solution and Refinement

Structure Solution	Direct Methods (SIR92)
Refinement	Full-matrix least-squares
Function Minimized	$\sum \omega\left(\left\|F o^{2}\right\|-\left\|F c^{2}\right\|\right)^{2}$
Least Squares Weights	$\omega=1 / \sigma^{2}\left(F \sigma^{2}\right)$
p-factor	0.0000
Anomalous Dispersion	All non-hydrogen atoms
No. Observations	4854
No. Variables	163
Reflection/Parameter Ratio	29.78
Residuals (on F^{2}, all data): R; Rw	$0.077 ; 0.070$
Goodness of Fit Indicator	1.52
No. Observations (l>3o(I))	2896

Residuals (on F, I>3 (I)): R; Rw	$0.037 ; 0.029$
Max Shift/Error in Final Cycle	0.0007
Maximum peak in Final Diff. Map	$2.35 e^{-1 A^{3}}($ near Ru)
Minimum peak in Final Diff. Map	$-3.98 e^{-1 / A^{3}(\text { near Ru })}$

Table A. 1 44. Bond Angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{RuCl}_{2}(\mathrm{BPTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$

atom	atom	atom	angle		atom	atom	atom	angle
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)^{*}$	$82.98(3)$		$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	$174.10(4)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{C}(3)$	$90.06(3)$		$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$85.89(3)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$97.50(3)$		$\mathrm{Cl}(1)^{*}$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	$92.56(3)$
$\mathrm{Cl}(1)^{*}$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(3)$	$88.83(3)$		$\mathrm{Cl}(1)^{*}$	$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$91.07(3)$
$\mathrm{Cl}(1)^{*}$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$173.32(4)$		$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(3)$	$93.72(4)$
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$90.36(4)$		$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$87.39(3)$
$\mathrm{Cl}(3)$	$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$175.93(4)$		$\mathrm{Cl}(3)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$84.51(4)$
$\mathrm{S}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$95.62(4)$		$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)^{*}$	$97.02(3)$
$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$\mathrm{C}(1)$	$110.27(14)$		$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$\mathrm{Cl}(4)$	$110.74(13)$
$\mathrm{C}(1)$	$\mathrm{S}(1)$	$\mathrm{C}(4)$	$99.0(2)$		$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$\mathrm{C}(3)$	$112.80(14)$
$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$\mathrm{C}(7)$	$109.73(13)$		$\mathrm{C}(3)$	$\mathrm{S}(2)$	$\mathrm{C}(7)$	$100.6(2)$
$\mathrm{S}(1)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	$112.0(3)$		$\mathrm{C}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(3)$	$114.1(3)$
$\mathrm{S}(2)$	$\mathrm{C}(3)$	$\mathrm{C}(2)$	$117.5(3)$		$\mathrm{S}(1)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$112.8(3)$
$\mathrm{C}(4)$	$\mathrm{C}(5)$	$\mathrm{C}(6)$	$112.3(4)$		$\mathrm{S}(2)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$111.3(3)$
$\mathrm{C}(7)$	$\mathrm{C}(8)$	$\mathrm{C}(9)$	$114.0(4)$		$\mathrm{Cl}(4)$	$\mathrm{C}(10)$	$\mathrm{Cl}(5)$	$112.0(3)$

Angles are in degrees. Estimated standard deviations in the least significant figure are given in parentheses.
Table A. 1 45. Bond Lengths (\AA) for $\left[\mathrm{RuCl}_{2}(\mathrm{BPTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$

atom	atom	distance		atom	atom	distance
$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	$2.3833(9)$		$\mathrm{S}(1)$	$\mathrm{C}(4)$	$1.814(4)$
$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	$2.4605(9)$		$\mathrm{S}(2)$	$\mathrm{C}(3)$	$1.806(4)$
$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	$2.3213(9)$		$\mathrm{S}(2)$	$\mathrm{C}(7)$	$1.821(4)$
$\mathrm{Ru}(1)$	$\mathrm{Cl}(3)$	$2.358(1)$		$\mathrm{C}(1)$	$\mathrm{C}(2)$	$1.515(5)$
$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$2.356(1)$		$\mathrm{C}(2)$	$\mathrm{C}(3)$	$1.531(6)$
$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$2.331(1)$		$\mathrm{C}(4)$	$\mathrm{C}(5)$	$1.511(6)$
$\mathrm{Cl}(4)$	$\mathrm{C}(10)$	$1.746(6)$		$\mathrm{C}(5)$	$\mathrm{C}(6)$	$1.509(6)$
$\mathrm{Cl}(5)$	$\mathrm{C}(10)$	$1.782(6)$		$\mathrm{C}(7)$	$\mathrm{C}(8)$	$1.527(6)$
$\mathrm{S}(1)$	$\mathrm{C}(1)$	$1.813(4)$		$\mathrm{C}(8)$	$\mathrm{C}(9)$	$1.500(6)$

Distances are in angstroms. Estimated standard deviations in the least significant figure are given in parentheses.
Table A.1 46. Atomic Coordinates for $\left[\mathrm{RuCl}_{2}(\mathrm{BPTP})\right]_{2}(\mu-\mathrm{Cl})_{2}$

atom	x	y	Z
$\mathrm{Ru}(1)$	$0.44366(3)$	$0.43216(4)$	$0.420673(14)$
$\mathrm{Cl}(1)$	$0.46196(8)$	$0.30652(11)$	$0.52274(4)$
$\mathrm{Cl}(2)$	$0.44475(9)$	$0.56642(12)$	$0.32431(4)$
$\mathrm{Cl}(3)$	$0.26444(8)$	$0.55676(12)$	$0.43201(4)$
$\mathrm{Cl}(4)$	$0.15729(15)$	$0.3947(2)$	$0.21330(7)$
$\mathrm{Cl}(5)$	$0.14123(14)$	$0.7728(2)$	$0.24937(7)$
$\mathrm{S}(1)$	$0.62293(9)$	$0.29734(12)$	$0.41622(4)$
$\mathrm{S}(2)$	$0.33402(9)$	$0.20132(12)$	$0.36777(4)$
$\mathrm{C}(1)$	$0.6184(4)$	$0.1775(5)$	$0.3432(2)$
$\mathrm{C}(2)$	$0.5319(4)$	$0.0247(5)$	$0.3364(2)$
$\mathrm{C}(3)$	$0.4080(4)$	$0.0842(5)$	$0.3133(2)$
$\mathrm{C}(4)$	$0.7292(4)$	$0.4670(5)$	$0.4063(2)$

$\mathrm{C}(5)$	$0.8507(4)$	$0.3956(6)$	$0.4195(2)$
$\mathrm{C}(6)$	$0.9385(5)$	$0.5396(7)$	$0.4135(3)$
$\mathrm{C}(7)$	$0.3168(4)$	$0.0193(4)$	$0.4217(2)$
$\mathrm{C}(8)$	$0.2161(4)$	$0.0554(5)$	$0.4560(2)$
$\mathrm{C}(9)$	$0.1007(4)$	$0.0433(7)$	$0.4153(2)$
$\mathrm{C}(10)$	$0.1353(5)$	$0.5429(9)$	$0.2726(2)$

Appendix 1.11 Crystallographic Data for Mer-Cis-RuCl ${ }_{3}(\mathrm{DPSO})_{2}(\mathrm{DPSO})$

Table A. 1 47. Experimental Details for X-ray Crystal Structure of Mer-Cis$\mathrm{RuCl}_{3}(\mathrm{DPSO})_{2}(\mathrm{DPSO})$
A. Crystal Data

Empirical Formula		$\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{Cl}_{3} \mathrm{O}_{3} \mathrm{RuS}_{3}$
Formula Weight		814.24
Crystal Colour, Habit		orange, plate
Crystal Dimensions		$0.15 \times 0.35 \times 0.40 \mathrm{~mm}$
Crystal System		triclinic
Lattice Type		Primitive
No. of Reflections Used for Unit	Cell	25 (22.6-28.4 ${ }^{\circ}$)
Determinations (2θ range)		
Omega Scan Peak Width at Half-height		0.37°
Lattice Parameters		$\mathrm{a}=13.097(2) \AA$
		$\mathrm{b}=15.701(2) \AA$
		$\mathrm{c}=10.312(1) \AA$
		$\alpha=106.765(9){ }^{\circ}$
		$\beta=102.02(1)^{\circ}$
		$\gamma=103.14(1)^{\circ}$
		$V=1890.2(5) \AA^{3}$
Space Group		P $\overline{1}$ (\#) 2)
Z Value		2
$\mathrm{D}_{\text {calc }}$		$1.431 \mathrm{~g} / \mathrm{cm}^{3}$
F_{000}		826
$\mu(\mathrm{MoK} \alpha)$		$8.25 \mathrm{~cm}^{-1}$

B. Intensity Measurements

Diffractometer	Rigaku AFC6S
Radiation	MoK $\alpha(\lambda=0.71069 A)$ graphite monochromated
Take-off Angle	6.0°
Detector Aperature	6.0 mm horizontal
	6.0 mm vertical
Crystal to Detector Distance	285 mm
Temperature	$21.0^{\circ} \mathrm{C}$
Scan Type	$\omega-2 \theta$
Scan Rate	$16^{\circ} / \min ($ in $\omega)($ up to 9 scans $)$
Scan Width	$(1.21+0.35 \text { tan } \theta)^{\circ}$
$2 \theta_{\text {max }}$	60°
No. of Reflections Measured	Total: 11483
	Unique: $11033\left(\mathrm{R}_{\text {int }}=0.044\right)$
Corrections	Lorentz-polarization
	Absorption
	(trans. factors: $0.906-1.000)$

C. Structure Solution and Refinement

Structure Solution	Patterson Methods (DIRDIF92 PATTY)
Refinement	Full-matrix least-squares
Function Minimized	$\Sigma \omega(\|F o\|-\|F c\|)^{2}$
Least Squares Weights	$\omega=1 / \sigma^{2}(F o)=\left[\sigma^{2}{ }_{c}(F o)+\mathrm{p}^{2} / 4 F \sigma^{2}\right]^{-1}$
p-factor	0.0000
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (I>3 $3(1)$)	5914
No. Variables	451
Reflection/Parameter Ratio	13.11
Residuals: R; Rw	$0.040 ; 0.045$
Goodness of Fit Indicator	2.01
Max Shiff/Error in Final Cycle	0.01
Maximum peak in Final Diff. Map	$0.73 e^{-1 / A^{3}}$
Minimum peak in Final Diff. Map	$-0.50 e^{-1 / A^{3}}$

Table A. 1 48. Bond Angles (${ }^{\circ}$) for Mer - $\mathrm{Cis}-\mathrm{RuCl}_{3}(\mathrm{DPSO})_{2}(\mathrm{DPSO})$

atom	atom	atom	angle		atom	atom	atom	angle
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	172.63(5)		S(1)	C(7)	C(12)	120.1(4)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	S(3)	91.18(5)		C(7)	C(8)	C(9)	118.1(5)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{O}(2)$	86.82(9)		C(9)	$\mathrm{C}(10)$	C(11)	121.1(6)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	S(3)	91.73(5)		C(7)	C(12)	C(11)	118.4(5)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	O(2)	89.57(9)		S(2)	C(13)	C(18)	120.4(4)
$\mathrm{Cl}(3)$	$\mathrm{Ru}(1)$	$\mathrm{O}(1)$	173.70(9)		C(13)	C(14)	C(15)	118.9(5)
S(3)	$\mathrm{Ru}(1)$	$\mathrm{O}(1)$	87.42(9)		C(15)	C(16)	C(17)	120.5(5)
O(1)	$\mathrm{Ru}(1)$	O(2)	86.5(1)		C(13)	C(18)	C(17)	119.8(5)
$\mathrm{O}(1)$	S(1)	C(1a)	112.0(5)		S(2)	C(19)	C(24)	120.9(4)
C(1)	S(1)	C(7)	97.9(4)		C(19)	C(20)	C(21)	119.4(5)
O(2)	S(2)	C(13)	103.0(2)		C(21)	C(22)	C(23)	121.0(5)
C(13)	S(2)	C(19)	101.4(2)		C(19)	C(24)	C(23)	118.8(5)
$\mathrm{Ru}(1)$	S(3)	C(25)	117.1(2)		S(3)	C(25)	C(30)	123.4(4)
$\mathrm{O}(3)$	S(3)	C(25)	106.0(2)		C(25)	C(26)	C(27)	118.8(5)
C(25)	S(3)	C(31)	99.0(2)		C(27)	C(28)	C(29)	119.7(5)
$\mathrm{Ru}(1)$	O(2)	S(2)	120.0(2)		C(25)	C(30)	C(29)	119.2(5)
S(1)	C(1)	C(6)	123.9(9)		S(3)	C(31)	C(36)	122.0(4)
S(1)	C(1a)	C(2)	123.6(10)		C(31)	C(32)	C(33)	118.6(5)
C(2)	C(1a)	C(6a)	112(1)		C(33)	C(34)	C(35)	119.5(5)
C(1a)	C(2)	C(3)	132.3(9)		C(31)	C(36)	C(35)	118.1(5)
C(2)	C(3)	C(4a)	108.9(9)		C(8)	C(7)	C(12)	120.9(5)
C(3)	C(4a)	C(5a)	124(1)		C(8)	C(9)	C(10)	121.2(6)
C(4a)	C(5a)	C(6a)	120(1)		C(10)	C(11)	C(12)	120.4(6)
C(1a)	C(6a)	C(5a)	118(1)		S(2)	C(13)	C(14)	118.2(4)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(3)$	93.22(5)		C(14)	C(13)	C(18)	121.0(5)
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{O}(1)$	87.14(9)		C(14)	C(15)	C(16)	120.1(5)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(3)$	93.02(4)		C(16)	C(17)	C(18)	119.7(5)
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	O(1)	86.23(9)		S(2)	C(19)	C(20)	117.3(4)
Cl(3)	$\mathrm{Ru}(1)$	S(3)	98.86(4)		C(20)	C(19)	C(24)	121.6(5)
$\mathrm{Cl}(3)$	$\mathrm{Ru}(1)$	O(2)	87.28(9)		C(20)	C(21)	C(22)	119.9(5)
S(3)	$\mathrm{Ru}(1)$	$\mathrm{O}(2)$	173.65(9)		C(22)	C(23)	C(24)	119.3(6)
O(1)	S(1)	C(1)	94.9(4)		S(3)	C(30)	C(29)	119.2(5)
O(1)	S(1)	C(7)	105.2(2)		C(26)	C(25)	C(30)	121.1(4)
C(1a)	S(1)	C(7)	107.1(5)		C(26)	C(27)	C(28)	121.3(5)
$\mathrm{O}(2)$,	S(2)	C(19)	103.5(2)		C(28)	C(29)	C(30)	119.8(5)

| $\mathrm{Ru}(1)$ | $\mathrm{S}(3)$ | $\mathrm{O}(3)$ | $113.0(1)$ | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{Ru}(1)$ | $\mathrm{S}(3)$ | $\mathrm{C}(31)$ | $114.5(2)$ | | | |
| $\mathrm{O}(3)$ | $\mathrm{S}(3)$ | $\mathrm{C}(31)$ | $105.8(2)$ | | | |
| $\mathrm{Ru}(1)$ | $\mathrm{O}(1)$ | $\mathrm{S}(1)$ | $119.8(2)$ | | | |
| $\mathrm{S}(1)$ | $\mathrm{C}(1)$ | $\mathrm{C}(2)$ | $115.9(8)$ | | | |
| $\mathrm{C}(2)$ | $\mathrm{C}(1)$ | $\mathrm{C}(6)$ | $119(1)$ | | | |
| $\mathrm{S}(1)$ | $\mathrm{C}(1 \mathrm{a})$ | $\mathrm{C}(6 \mathrm{a})$ | $123(1)$ | | | |
| $\mathrm{C}(1)$ | $\mathrm{C}(2)$ | $\mathrm{C}(3)$ | $123.1(3)$ | $\mathrm{C}(31)$ | $\mathrm{C}(32)$ | $116.5(4)$ |
| $\mathrm{C}(2)$ | $\mathrm{C}(3)$ | $\mathrm{C}(4)$ | $123.0(9)$ | $\mathrm{C}(31)$ | $\mathrm{C}(36)$ | $121.5(5)$ |
| $\mathrm{C}(3)$ | $\mathrm{C}(4)$ | $\mathrm{C}(5)$ | $115(1)$ | | | |
| $\mathrm{C}(32)$ | $\mathrm{C}(33)$ | $\mathrm{C}(34)$ | $120.9(6)$ | | | |
| $\mathrm{C}(4)$ | $\mathrm{C}(5)$ | $\mathrm{C}(6)$ | $119(1)$ | | | |
| $\mathrm{C}(1)$ | $\mathrm{C}(6)$ | $\mathrm{C}(5)$ | $116(1)$ | | | |
| $\mathrm{S}(1)$ | $\mathrm{C}(7)$ | $\mathrm{C}(8)$ | $118.9(4)$ | $\mathrm{C}(35)$ | $\mathrm{C}(36)$ | $121.4(5)$ |

Angles are in degrees. Estimated standard deviations in the least significant figure are given in parentheses.
Table A. 1 49. Bond Lengths (\AA) for $\mathrm{Mer}-\mathrm{Cis}-\mathrm{RuCl}_{3}(\mathrm{DPSO})_{2}(\mathrm{DPSO})$

atom	atom	distance		atom	atom	distance
$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	$2.338(1)$		$\mathrm{C}(8)$	$\mathrm{C}(9)$	$1.359(8)$
$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	$2.324(1)$		$\mathrm{C}(9)$	$\mathrm{C}(10)$	$1.335(8)$
$\mathrm{Ru}(1)$	$\mathrm{Cl}(3)$	$2.305(3)$		$\mathrm{C}(10)$	$\mathrm{C}(11)$	$1.335(9)$
$\mathrm{Ru}(1)$	$\mathrm{S}(3)$	$2.251(1)$		$\mathrm{C}(11)$	$\mathrm{C}(12)$	$1.375(8)$
$\mathrm{Ru}(1)$	$\mathrm{O}(1)$	$2.090(3)$		$\mathrm{C}(13)$	$\mathrm{C}(14)$	$1.379(6)$
$\mathrm{Ru}(1)$	$\mathrm{O}(2)$	$2.111(3)$		$\mathrm{C}(13)$	$\mathrm{C}(18)$	$1.385(6)$
$\mathrm{S}(1)$	$\mathrm{O}(1)$	$1.524(3)$		$\mathrm{C}(14)$	$\mathrm{C}(15)$	$1.365(7)$
$\mathrm{S}(1)$	$\mathrm{C}(1)$	$1.93(1)$		$\mathrm{C}(15)$	$\mathrm{C}(16)$	$1.397(8)$
$\mathrm{S}(1)$	$\mathrm{C}(1 \mathrm{a})$	$1.65(1)$		$\mathrm{C}(16)$	$\mathrm{C}(17)$	$1.365(8)$
$\mathrm{S}(1)$	$\mathrm{C}(7)$	$1.790(5)$		$\mathrm{C}(17)$	$\mathrm{C}(18)$	$1.368(7)$
$\mathrm{S}(2)$	$\mathrm{C}(13)$	$1.788(5)$		$\mathrm{C}(19)$	$\mathrm{C}(20)$	$1.377(6)$
$\mathrm{S}(2)$	$\mathrm{C}(19)$	$1.780(5)$		$\mathrm{C}(19)$	$\mathrm{C}(24)$	$1.373(7)$
$\mathrm{S}(3)$	$\mathrm{O}(3)$	$1.472(3)$		$\mathrm{C}(20)$	$\mathrm{C}(21)$	$1.370(7)$
$\mathrm{S}(3)$	$\mathrm{C}(25)$	$1.798(4)$		$\mathrm{C}(21)$	$\mathrm{C}(22)$	$1.359(8)$
$\mathrm{S}(3)$	$\mathrm{C}(31)$	$1.806(5)$		$\mathrm{C}(22)$	$\mathrm{C}(23)$	$1.394(8)$
$\mathrm{C}(1)$	$\mathrm{C}(2)$	$1.18(1)$		$\mathrm{C}(23)$	$\mathrm{C}(24)$	$1.379(7)$
$\mathrm{C}(1)$	$\mathrm{C}(6 \mathrm{a})$	$1.85(2)$		$\mathrm{C}(25)$	$\mathrm{C}(26)$	$1.385(6)$
$\mathrm{C}(1)$	$\mathrm{C}(6)$	$1.38(1)$		$\mathrm{C}(25)$	$\mathrm{C}(30)$	$1.371(6)$
$\mathrm{S}(4)$	$\mathrm{C}(10)$	$1.806(4)$		$\mathrm{C}(26)$	$\mathrm{C}(27)$	$1.362(7)$
$\mathrm{C}(1 \mathrm{la})$	$\mathrm{C}(2)$	$1.38(2)$		$\mathrm{C}(27)$	$\mathrm{C}(28)$	$1.371(7)$
$\mathrm{C}(1 \mathrm{a})$	$\mathrm{C}(6 a)$	$1.35(2)$		$\mathrm{C}(28)$	$\mathrm{C}(29)$	$1.382(7)$
$\mathrm{C}(2)$	$\mathrm{C}(3)$	$1.347(5)$		$\mathrm{C}(29)$	$\mathrm{C}(30)$	$1.385(6)$
$\mathrm{C}(3)$	$\mathrm{C}(4)$	$1.30(1)$		$\mathrm{C}(31)$	$\mathrm{C}(32)$	$1.381(6)$
$\mathrm{C}(3)$	$\mathrm{C}(4 a)$	$1.34(2)$		$\mathrm{C}(31)$	$\mathrm{C}(36)$	$1.384(6)$
$\mathrm{C}(4)$	$\mathrm{C}(5)$	$1.38(2)$		$\mathrm{C}(32)$	$\mathrm{C}(33)$	$1.371(7)$
$\mathrm{C}(4 \mathrm{a})$	$\mathrm{C}(5 a)$	$1.36(2)$		$\mathrm{C}(33)$	$\mathrm{C}(34)$	$1.370(8)$
$\mathrm{C}(5)$	$\mathrm{C}(6)$	$1.41(1)$		$\mathrm{C}(34)$	$\mathrm{C}(35)$	$1.374(8)$
$\mathrm{C}(5 \mathrm{a})$	$\mathrm{C}(6 a)$	$1.40(2)$		$\mathrm{C}(35)$	$\mathrm{C}(36)$	$1.369(7)$
$\mathrm{C}(7)$	$\mathrm{C}(8)$	$1.379(7)$				
$\mathrm{C}(7)$	$\mathrm{C}(12)$	$1.366(7)$				
D						

Distances are in angstroms. Estimated standard deviations in the least significant figure are given in parentheses.

Table A. 1 50. Atomic Coordinates for Mer-Cis- $\mathrm{RuCl}_{3}(\mathrm{DPSO})_{2}(\mathrm{DPSO})$

atom	x	y	z	atom	x	y	z
$\mathrm{Ru}(1)$	$0.11952(3)$	$0.35548(3)$	$0.21549(4)$	$\mathrm{C}(17)$	$-0.4144(4)$	$0.2955(4)$	$0.1702(7)$
$\mathrm{Cl}(1)$	$0.0664(1)$	$0.23915(9)$	$-0.0082(1)$	$\mathrm{C}(18)$	$-0.3131(4)$	$0.3151(4)$	$0.2618(6)$
$\mathrm{Cl}(2)$	$0.17137(10)$	$0.45567(8)$	$0.4495(1)$	$\mathrm{C}(19)$	$-0.1110(4)$	$0.2882(3)$	$0.4516(5)$
$\mathrm{Cl}(3)$	$0.02953(9)$	$0.44822(9)$	$0.1329(1)$	$\mathrm{C}(20)$	$-0.0696(4)$	$0.3426(4)$	$0.5932(5)$
$\mathrm{S}(1)$	$0.1149(1)$	$0.16519(10)$	$0.2600(2)$	$\mathrm{C}(21)$	$-0.0755(5)$	$0.3011(5)$	$0.6927(6)$
$\mathrm{S}(2)$	$-0.08971(10)$	$0.34429(8)$	$0.3277(1)$	$\mathrm{C}(22)$	$-0.1225(5)$	$0.2073(5)$	$0.6510(7)$
$\mathrm{S}(3)$	$0.28516(9)$	$0.41504(8)$	$0.1919(1)$	$\mathrm{C}(23)$	$-0.1653(5)$	$0.1520(4)$	$0.5078(7)$
$\mathrm{O}(1)$	$0.1854(2)$	$0.2652(2)$	$0.2955(3)$	$\mathrm{C}(24)$	$-0.1588(5)$	$0.1933(4)$	$0.4073(6)$
$\mathrm{O}(2)$	$0.0299(2)$	$0.2870(2)$	$0.2400(3)$	$\mathrm{C}(25)$	$0.2887(4)$	$0.4226(3)$	$0.0221(5)$
$\mathrm{O}(3)$	$0.3627(2)$	$0.3644(2)$	$0.2261(3)$	$\mathrm{C}(26)$	$0.3753(4)$	$0.4013(4)$	$-0.0232(6)$
$\mathrm{C}(1)$	$0.1724(9)$	$0.1609(8)$	$0.446(1)$	$\mathrm{C}(27)$	$0.38675)$	$0.4101(5)$	$-0.1474(6)$
$\mathrm{C}(1 \mathrm{la})$	$0.110(1)$	$0.1398910)$	$0.403(2)$	$\mathrm{C}(28)$	$0.3156(5)$	$0.4408(4)$	$-0.2264(5)$
$\mathrm{C}(2)$	$0.1455(7)$	$0.2059(5)$	$0.5378(8)$	$\mathrm{C}(29)$	$0.2288(4)$	$-0.4612(4)$	$-0.1815(5)$
$\mathrm{C}(3)$	$0.1635(7)$	$0 . .1989(6)$	$0.6673(8)$	$\mathrm{C}(30)$	$0.2153(4)$	$0.4520(4)$	$-0.0559(5)$
$\mathrm{C}(4)$	$0.234(1)$	$0.1611(10)$	$0.715(1)$	$\mathrm{C}(31)$	$0.3535(4)$	$0.5363((3)$	$0.3011(5)$
$\mathrm{C}(4 \mathrm{a})$	$0.114(1)$	$0.111(1)$	$0.654(2)$	$\mathrm{C}(32)$	$0.4592(4)$	$0.5573(4)$	$0.3854(5)$
$\mathrm{C}(5)$	$0.284(1)$	$0.1181(10)$	$0.617(2)$	$\mathrm{C}(33)$	$0.5149(4)$	$0.6486(5)$	$0.4692(6)$
$\mathrm{C}(5 \mathrm{a})$	$0.061(1)$	$0.039(1)$	$0.585(2)$	$\mathrm{C}(34)$	$0.4674(5)$	$0.7178(4)$	$0.4686(6)$
$\mathrm{C}(6)$	$0.2501(10)$	$0.1178(9)$	$0.477(1)$	$\mathrm{C}(35)$	$0.3620(5)$	$0.6952(4)$	$0.3841(6)$
$\mathrm{C}(6 a)$	$0.057(1)$	$0.0544(9)$	$0.400(1)$	$\mathrm{C}(36)$	$0.3031(4)$	$0.6047(4)$	$0.3006(6)$
$\mathrm{C}(7)$	$0.1833(4)$	$0.0929(3)$	$0.1670(5)$				
$\mathrm{C}(8)$	$0.1306(5)$	$-0.0017(4)$	$0.1015(7)$				
$\mathrm{C}(9)$	$0.1826(6)$	$-0.0550(4)$	$0.0279(7)$				
$\mathrm{C}(10)$	$0.2815(6)$	$-0.0171(5)$	$0.0181(8)$				
$\mathrm{C}(11)$	$0.3322(6)$	$0.0748(5)$	$0.0790(9)$				
$\mathrm{C}(12)$	$0.2839(5)$	$0.1322(4)$	$0.1554(7)$				
$\mathrm{C}(13)$	$-0.2235(4)$	$0.3068(3)$	$0.2094(5)$				
$\mathrm{C}(14)$	$-0.2380(4)$	$0.2797(4)$	$0.0659(6)$				
$\mathrm{C}(15)$	$-0.3398(6)$	$0.2580(4)$	$-0.0250(6)$				
$\mathrm{C}(16)$	$-0.4284(5)$	$0.2667(5)$	$0.0278(7)$				

Appendix 1.12 Crystallographic Data for RuCl_{2} (DMSO)(L)
Table A. 1 51. Experimental Details for X-ray Crystal Structure of $\mathrm{RuCl}_{2}(\mathrm{DMSO})(\mathrm{L})$
A. Crystal Data

Empirical Formula	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{ORuS}_{5}$
Formula Weight	512.57
Crystal Colour, Habit	red, prism
Crystal Dimensions	$0.12 \times 0.15 \times 0.35 \mathrm{~mm}$
Crystal System	tetragonal
Lattice Type	Primitive
No. of Reflections Used for Unit Cell	$25\left(56.1-64.1^{\circ}\right)$
Determinations (2 θ range)	
Omega Scan Peak Width at Half-height	0.42°
Lattice Parameters	$\mathrm{a}=20.784(2) \AA$
	$\mathrm{c}=9.284(2) \AA$
	$\mathrm{V}=4010(1) \AA^{3}$
Space Group	-
Z.Value	$\mathrm{P} 42_{1} \mathrm{c}(\# 114)$

$\mathrm{D}_{\text {calc }}$	$1.698{\mathrm{~g} / \mathrm{cm}^{3}}^{\mathrm{F}_{000}}$
$\mu(\mathrm{CuK} \alpha)$	2064.00
	$136.13 \mathrm{~cm}^{-1}$

B. Intensity Measurements

Diffractometer	Rigaku AFC6S
Radiation	CuK $\alpha(\lambda=1.54178 A)$ graphite monochromated
Take-off Angle	6.0°
Detector Aperature	6.0 mm horizontal
	6.0 mm vertical
Crystal to Detector Distance	285 mm
Voltage, Current	$0 \mathrm{kV}, 0 \mathrm{~mA}$
Temperature	$21.0^{\circ} \mathrm{C}$
Scan Type	$\omega^{-2 \theta}$
Scan Rate	$8.0^{\circ} / \mathrm{min}($ in $\omega)($ up to 9 scans)
Scan Width	$(0.89+0.20 \tan \theta)^{\circ}$
$2 \theta_{\text {max }}$	154.7°
No. of Reflections Measured	Total: 4647
	Unique: $2428\left(\mathrm{R}_{\text {int }}=0.063\right)$
Corrections	Lorentz-polarization
	Absorption
	(trans. factors: $0.5012-1.0000)$

C. Structure Solution and Refinement

Structure Solution	Direct Methods (SIR92)
Refinement	Full-matrix least-squares
Function Minimized	$\Sigma \omega\|F o\|-\|F c\|)^{2}$
Least Squares Weights	$\omega=1 / \sigma^{2}(F o)=\left[\sigma^{2}(F o)+\mathrm{p}^{2} / 4 \mathrm{Fo}^{2}\right]^{-1}$
p-factor	0.0000
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (I>3.00 $\sigma(\mathrm{I})$)	1951
No. Variables	190
Reflection/Parameter Ratio	10.27
Residuals: R; Rw	$0.033 ; 0.037$
Goodness of Fit Indicator	0.81
Max Shiff/Error in Final Cycle	0.00
Maximum peak in Final Diff. Map	$0.58 e^{-1 / /{ }^{3}}$
Minimum peak in Final Diff. Map	$-0.48 e^{-1 / A^{3}}$

Table A. 1 52. Bond Angles $\left({ }^{\circ}\right)$ for RuCl_{2} (DMSO)(L)

atom	atom	atom	angle	atom	atom	atom	angle
$\dot{\mathrm{Cl}(1)}$	$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	$90.39(9)$	$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$97.64(8)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$86.46(9)$	$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(3)$	$88.41(8)$
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(5)$	$91.43(9)$	$\mathrm{S}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$85.64(9)$
$\mathrm{Cl}(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$175.80(9)$	$\mathrm{S}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(5)$	$86.14(8)$
$\dot{\mathrm{Cl}}(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(5)$	$90.53(9)$	$\mathrm{S}(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(5)$	$92.31(9)$
$\mathrm{S}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(3)$	$100.25(8)$	$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$\mathrm{C}(1)$	$106.5(3)$
$\mathrm{S}(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(3)$	$88.42(7)$	$\mathrm{C}(1)$	$\mathrm{S}(1)$	$\mathrm{C}(8)$	$92.3(5)$
$\mathrm{S}(3)$	$\mathrm{Ru}(1)$	$\mathrm{S}(5)$	$173.61(9)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$\mathrm{C}(3)$	$102.7(3)$
$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$\mathrm{C}(8)$	$132.9(3)$	$\mathrm{Ru}(1)$	$\mathrm{S}(3)$	$\mathrm{C}(4)$	$100.9(3)$
$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$\mathrm{C}(2)$	$106.4(3)$	$\mathrm{C}(4)$	$\mathrm{S}(3)$	$\mathrm{C}(5)$	$101.9(4)$
$\mathrm{C}(2)$	$\mathrm{S}(2)$	$\mathrm{C}(3)$	$97.3(5)$	$\mathrm{Ru}(1)$	$\mathrm{S}(5)$	$\mathrm{O}(1)$	$116.3(3)$

$\mathrm{Ru}(1)$	$\mathrm{S}(3)$	$\mathrm{C}(5)$	$112.0(3)$	$\mathrm{Ru}(1)$	$\mathrm{S}(5)$	$\mathrm{C}(12)$	$114.5(4)$
$\mathrm{C}(6)$	$\mathrm{S}(4)$	$\mathrm{C}(7)$	$100.7(4)$	$\mathrm{O}(1)$	$\mathrm{S}(5)$	$\mathrm{C}(12)$	$105.8(5)$
$\mathrm{Ru}(1)$	$\mathrm{S}(5)$	$\mathrm{C}(1)$	$113.0(4)$	$\mathrm{S}(1)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	$115.4(7)$
$\mathrm{O}(1)$	$\mathrm{S}(5)$	$\mathrm{C}(11)$	$104.5(7)$	$\mathrm{C}(2)$	$\mathrm{C}(1)$	$\mathrm{C}(10)$	$133.0(9)$
$\mathrm{C}(11)$	$\mathrm{S}(5)$	$\mathrm{C}(12)$	$101.2(8)$	$\mathrm{S}(2)$	$\mathrm{C}(3)$	$\mathrm{C}(4)$	$109.6(6)$
$\mathrm{S}(1)$	$\mathrm{C}(1)$	$\mathrm{C}(10)$	$111.0(7)$	$\mathrm{S}(3)$	$\mathrm{C}(5)$	$\mathrm{C}(6)$	$106.6(6)$
$\mathrm{S}(2)$	$\mathrm{C}(2)$	$\mathrm{C}(1)$	$110.3(7)$	$\mathrm{S}(4)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$114.2(7)$
$\mathrm{S}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(3)$	$111.7(6)$	$\mathrm{S}(1)$	$\mathrm{C}(8)$	$\mathrm{C}(9)$	$108.1(8)$
$\mathrm{S}(4)$	$\mathrm{C}(6)$	$\mathrm{C}(5)$	$113.9(6)$	$\mathrm{C}(8)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$115.2(10)$
$\mathrm{S}(1)$	$\mathrm{C}(8)$	$\mathrm{C}(7)$	$122.4(7)$				
$\mathrm{C}(7)$	$\mathrm{C}(8)$	$\mathrm{C}(9)$	$129.4(9)$				
$\mathrm{C}(1)$	$\mathrm{C}(10)$	$\mathrm{C}(9)$	$12.89)$				
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$171.63(8)$				
$\mathrm{Cl}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(3)$	$82.27(8)$				

Angles are in degrees. Estimated standard deviations in the least significant figure are given in parentheses.
Table A. 1 53. Bond Lengths (\AA) for RuCl_{2} (DMSO)(L)

atom	atom	distance	atom	atom	distance
$\mathrm{Ru}(1)$	$\mathrm{Cl}(1)$	$2.400(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(5)$	$2.290(2)$
$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$2.320(2)$	$\mathrm{S}(1)$	$\mathrm{C}(8)$	$1.749(9)$
$\mathrm{Ru}(1)$	$\mathrm{S}(3)$	$2.375(2)$	$\mathrm{S}(2)$	$\mathrm{C}(3)$	$1.846(10)$
$\mathrm{S}(1)$	$\mathrm{C}(1)$	$1.764(9)$	$\mathrm{S}(3)$	$\mathrm{C}(5)$	$1.808(9)$
$\mathrm{S}(2)$	$\mathrm{C}(2)$	$1.82(1)$	$\mathrm{S}(4)$	$\mathrm{C}(7)$	$1.81(1)$
$\mathrm{S}(3)$	$\mathrm{C}(4)$	$1.822(9)$	$\mathrm{S}(5)$	$\mathrm{C}(11)$	$1.75(1)$
$\mathrm{S}(4)$	$\mathrm{C}(6)$	$1.784(10)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	$1.48(1)$
$\mathrm{S}(5)$	$\mathrm{O}(1)$	$1.479(8)$	$\mathrm{C}(3)$	$\mathrm{C}(4)$	$1.49(1)$
$\mathrm{S}(5)$	$\mathrm{C}(12)$	$1.79(1)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$1.50(1)$
$\mathrm{C}(1)$	$\mathrm{C}(10)$	$1.32(1)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$1.44(2)$
$\mathrm{C}(5)$	$\mathrm{C}(6)$	$1.57(1)$			
$\mathrm{C}(8)$	$\mathrm{C}(9)$	$1.36(1)$			
$\mathrm{Ru}(1)$	$\mathrm{Cl}(2)$	$2.430(2)$			
$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$2.300(2)$			

Distances are in angstroms. Estimated standard deviations in the least significant figure are given in parentheses.

Table A. 1 54. Atomic Coordinates for RuCl_{2} (DMSO)(L)

atom	x	y	z	atom	x	y	z
$\mathrm{Ru}(1)$	$0.49905(3)$	$0.21941(2)$	$0.32258(6)$	$\mathrm{C}(5)$	$0.3540(4)$	$0.1718(4)$	$0.168(1)$
$\mathrm{Cl}(1)$	$0.5282(1)$	$0.1497(1)$	$0.5180(3)$	$\mathrm{C}(6)$	$0.3148(4)$	$0.2298(5)$	$0.232(1)$
$\mathrm{Cl}(2)$	$0.4351(1)$	$0.2850(1)$	$0.4853(3)$	$\mathrm{C}(7)$	$0.3589(5)$	$0.3345(5)$	$0.077(1)$
$\mathrm{S}(1)$	$0.48339(9)$	$0.2801(1)$	$0.1157(2)$	$\mathrm{C}(8)$	$0.4150(5)$	$0.2991(4)$	$0.0147(10)$
$\mathrm{S}(2)$	$0.55666(10)$	$0.1508(1)$	$0.1771(3)$	$\mathrm{C}(9)$	$0.4247(6)$	$0.2784(6)$	$-0.123(1)$
$\mathrm{S}(3)$	$0.41066(10)$	$0.14742(9)$	$0.3052(2)$	$\mathrm{C}(10)$	$0.4820(5)$	$0.2407(5)$	$-0.1447(10)$
$\mathrm{S}(4)$	$0.2876(1)$	$0.2858(1)$	$0.0999(3)$	$\mathrm{C}(11)$	$0.5677(6)$	$0.3652(5)$	$0.375(2)$
$\mathrm{S}(5)$	$0.5870(1)$	$0.2833(1)$	$0.3631(3)$	$\mathrm{C}(12)$	$0.6255(6)$	$0.2703(7)$	$0.533(1)$
$\mathrm{O}(1)$	$0.6387(4)$	$0.2803(4)$	$0.2538(8)$				
$\mathrm{C}(1)$	$0.5175(4)$	$0.2359(5)$	$-0.027(1)$				
$\mathrm{C}(2)$	$0.5732(5)$	$0.1950(5)$	$0.012(1)$				
$\mathrm{C}(3)$	$0.4936(5)$	$0.0975(4)$	$0.104(1)$				
$\mathrm{C}(4)$	$0.4490(4)$	$0.0780(4)$	$0.222(1)$				

Appendix 1.13 Crystallographic Data for $\left[\mathrm{Ru}(12-\mathrm{S}-4)(\mathrm{DMSO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}$

Table A. 1 55. Experimental Details for X-ray Crystal Structure of [Ru(12-S4)(DMSO) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}$

B. Intensity Measurements

Diffractometer	Siemens SMART CCD
Radiation	MoK $\alpha(\lambda=0.71073 A)$ graphite monochromated
Take-off Angle	2.8°
Detector Aperature	35 mm circle
Crystal to Detector Distance	2.964 mm
Voltage, Current	$50 \mathrm{kV}, 40 \mathrm{~mA}$
Temperature	$-80.0^{\circ} \mathrm{C}$
Scan Type	ω
Sec/frame	10
Scan Width	-0.30°
$2 \theta_{\text {max }}$	67.0°
No. of Reflections Measured	Total: 27813
	Unique: $9942\left(\mathrm{R}_{\text {int }}=0.055\right)$
Corrections	Lorentz-polarization
	Absorption
	(trans. factors: $0.661-0.814)$

C. Structure Solution and Refinement

Structure Solution	Direct Methods
Refinement	Full-matrix least-squares
Function Minimized	$\Sigma \omega(\|F o\|-\|F c\|)^{2}$
Least Squares Weights	$\omega=1 / \sigma^{2}\left(F o^{2}\right)=\left[\sigma_{c}^{2}\left(F o^{2}\right)\right]^{-1}$
p-factor	0.0000
Anomalous Dispersion	All non-hydrogen atoms
No. Observations	9942
No. Variables	403
Reflection/Parameter Ratio	24.67
Residuals (based on F^{2}): R; Rw	$0.064 ; 0.073$

No. Observations $(\mathrm{I}>3 \sigma(\mathrm{I})$)	6560
Residuals (on F, I $>3 \sigma(\mathrm{I})$): R1; R1w	$0.042 ; 0.034$
Goodness of Fit Indicator	1.44
Max Shift/Error in Final Cycle	0.005
Maximum peak in Final Diff. Map	$2.04 e^{-/ / A^{3}}$
Minimum peak in Final Diff. Map	$-1.93 e^{-/ / A^{3}}$

Table A.1 56. Bond Angles (${ }^{\circ}$) for $\left[\mathrm{Ru}(12-\mathrm{S}-4)(\mathrm{DMSO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}$

atom	atom	atom	angle	atom	atom	atom	angle
$\mathrm{S}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$84.29(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$\mathrm{C}(3)$	$99.36(9)$
$\mathrm{S}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(4)$	$87.46(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(3)$	$\mathrm{C}(4)$	$103.87(8)$
$\mathrm{S}(1)$	$\mathrm{Ru}(1)$	$\mathrm{O}(1)$	$94.28(5)$	$\mathrm{C}(4)$	$\mathrm{S}(3)$	$\mathrm{C}(5)$	$100.6(1)$
$\mathrm{S}(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(4)$	$91.98(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(4)$	$\mathrm{C}(7)$	$102.56(9)$
$\mathrm{S}(2)$	$\mathrm{Ru}(1)$	$\mathrm{O}(1)$	$87.62(5)$	$\mathrm{Ru}(1)$	$\mathrm{S}(5)$	$\mathrm{O}(2)$	$113.97(7)$
$\mathrm{S}(3)$	$\mathrm{Ru}(1)$	$\mathrm{S}(5)$	$100.72(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(5)$	$\mathrm{C}(10)$	$114.18(9)$
$\mathrm{S}(4)$	$\mathrm{Ru}(1)$	$\mathrm{S}(5)$	$87.18(2)$	$\mathrm{O}(2)$	$\mathrm{S}(5)$	$\mathrm{C}(10)$	$106.7(1)$
$\mathrm{S}(5)$	$\mathrm{Ru}(1)$	$\mathrm{O}(1)$	$93.36(5)$	$\mathrm{O}(3)$	$\mathrm{S}(6)$	$\mathrm{O}(4)$	$114.4(1)$
$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$\mathrm{C}(8)$	$101.23(8)$	$\mathrm{O}(3)$	$\mathrm{S}(6)$	$\mathrm{C}(11)$	$103.3(1)$
$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$\mathrm{C}(2)$	$98.96(9)$	$\mathrm{O}(4)$	$\mathrm{S}(6)$	$\mathrm{C}(11)$	$102.7(1)$
$\mathrm{C}(2)$	$\mathrm{S}(2)$	$\mathrm{C}(3)$	$106.2(1)$	$\mathrm{O}(6)$	$\mathrm{S}(7)$	$\mathrm{O}(7)$	$114.5(1)$
$\mathrm{Ru}(1)$	$\mathrm{S}(3)$	$\mathrm{C}(5)$	$101.31(8)$	$\mathrm{O}(6)$	$\mathrm{S}(7)$	$\mathrm{C}(12)$	$102.9(1)$
$\mathrm{Ru}(1)$	$\mathrm{S}(4)$	$\mathrm{C}(6)$	$102.59(9)$	$\mathrm{O}(7)$	$\mathrm{S}(7)$	$\mathrm{C}(12)$	$103.3(1)$
$\mathrm{C}(6)$	$\mathrm{S}(4)$	$\mathrm{C}(7)$	$106.4(1)$	$\mathrm{S}(1)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	$113.5(2)$
$\mathrm{Ru}(1)$	$\mathrm{S}(5)$	$\mathrm{C}(9)$	$113.77(10)$	$\mathrm{S}(2)$	$\mathrm{C}(3)$	$\mathrm{C}(4)$	$106.6(2)$
$\mathrm{O}(2)$	$\mathrm{S}(5)$	$\mathrm{C}(9)$	$107.8(1)$	$\mathrm{S}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(3)$	$112.4(2)$
$\mathrm{C}(9)$	$\mathrm{S}(5)$	$\mathrm{C}(10)$	$99.3(1)$	$\mathrm{S}(4)$	$\mathrm{C}(6)$	$\mathrm{C}(5)$	$105.7(2)$
$\mathrm{O}(3)$	$\mathrm{S}(6)$	$\mathrm{O}(5)$	$113.3(1)$	$\mathrm{S}(1)$	$\mathrm{C}(8)$	$\mathrm{C}(7)$	$113.9(2)$
$\mathrm{O}(4)$	$\mathrm{S}(6)$	$\mathrm{O}(5)$	$116.8(1)$	$\mathrm{S}(6)$	$\mathrm{C}(11)$	$\mathrm{F}(2)$	$111.8(2)$
$\mathrm{O}(5)$	$\mathrm{S}(6)$	$\mathrm{C}(11)$	$102.2(1)$	$\mathrm{F}(1)$	$\mathrm{C}(11)$	$\mathrm{F}(2)$	$107.7(3)$
$\mathrm{O}(6)$	$\mathrm{S}(7)$	$\mathrm{O}(8)$	$115.5(1)$	$\mathrm{F}(2)$	$\mathrm{C}(11)$	$\mathrm{F}(3)$	$107.4(3)$
$\mathrm{O}(7)$	$\mathrm{S}(7)$	$\mathrm{O}(8)$	$114.4(1)$	$\mathrm{S}(7)$	$\mathrm{C}(12)$	$\mathrm{F}(5)$	$110.4(2)$
$\mathrm{O}(8)$	$\mathrm{S}(7)$	$\mathrm{C}(12)$	$103.9(1)$	$\mathrm{F}(4)$	$\mathrm{C}(12)$	$\mathrm{F}(5)$	$107.9(3)$
$\mathrm{S}(2)$	$\mathrm{C}(2)$	$\mathrm{C}(1)$	$107.7(2)$	$\mathrm{F}(5)$	$\mathrm{C}(12)$	$\mathrm{F}(6)$	$107.0(3)$
$\mathrm{S}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(3)$	$116.83(2)$	$\mathrm{S}(3)$	$\mathrm{C}(5)$	$\mathrm{C}(6)$	$113.6(2)$
$\mathrm{S}(1)$	$\mathrm{Ru}(1)$	$\mathrm{S}(5)$	$91.10(2)$	$\mathrm{S}(4)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$105.7(2)$
$\mathrm{S}(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(3)$	$83.80(2)$	$\mathrm{S}(6)$	$\mathrm{C}(11)$	$\mathrm{F}(1)$	$110.8(2)$
$\mathrm{S}(2)$	$\mathrm{Ru}(1)$	$\mathrm{S}(5)$	$175.35(2)$	$\mathrm{S}(6)$	$\mathrm{C}(11)$	$\mathrm{F}(3)$	$111.1(2)$
$\mathrm{S}(3)$	$\mathrm{Ru}(1)$	$\mathrm{S}(4)$	$87.35(2)$	$\mathrm{F}(1)$	$\mathrm{C}(11)$	$\mathrm{F}(3)$	$107.9(2)$
$\mathrm{S}(3)$	$\mathrm{Ru}(1)$	$\mathrm{O}(1)$	$90.83(5)$	$\mathrm{S}(7)$	$\mathrm{C}(12)$	$\mathrm{F}(4)$	$112.4(2)$
$\mathrm{S}(4)$	$\mathrm{Ru}(1)$	$\mathrm{O}(1)$	$178.17(5)$	$\mathrm{S}(7)$	$\mathrm{C}(12)$	$\mathrm{F}(6)$	$111.2(2)$
$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$\mathrm{C}(1)$	$103.60(8)$	$\mathrm{F}(4)$	$\mathrm{C}(12)$	$\mathrm{F}(6)$	$107.8(3)$
$\mathrm{C}(1)$	$\mathrm{S}(1)$	$\mathrm{C}(8)$	$101.5(1)$				
$\mathrm{A}(8)$	S						

Angles are in degrees. Estimated standard deviations in the least significant figure are given in parentheses.

Table A.1 57. Bond Lengths (\AA) for $\left[\mathrm{Ru}(12-\mathrm{S}-4)(\mathrm{DMSO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}$

atom	atom	distance	atom	atom	distance
$\mathrm{Ru}(1)$	$\mathrm{S}(1)$	$2.3852(6)$	$\mathrm{Ru}(1)$	$\mathrm{S}(2)$	$2.3708(6$
$\mathrm{Ru}(1)$	$\mathrm{S}(3)$	$2.3907(6)$	$\mathrm{Ru}(1)$	$\mathrm{S}(4)$	$2.2903(6)$
$\mathrm{Ru}(1)$	$\mathrm{S}(5)$	$2.3011(6)$	$\mathrm{Ru}(1)$	$\mathrm{O}(1)$	$2.193(2)$
$\mathrm{S}(1)$	$\mathrm{C}(1)$	$1.864(3)$	$\mathrm{S}(1)$	$\mathrm{C}(8)$	$1.860(3)$
$\mathrm{S}(2)$	$\mathrm{C}(2)$	$1.822(3)$	$\mathrm{S}(2)$	$\mathrm{C}(3)$	$1.823(3)$
$\mathrm{S}(3)$	$\mathrm{C}(4)$	$1.872(3)$	$\mathrm{S}(3)$	$\mathrm{C}(5)$	$1.851(3)$

$\mathrm{S}(4)$	$\mathrm{C}(6)$	$1.836(3)$	$\mathrm{S}(4)$	$\mathrm{C}(7)$	$1.837(3)$
$\mathrm{S}(5)$	$\mathrm{O}(2)$	$1.494(2)$	$\mathrm{S}(5)$	$\mathrm{C}(9)$	$1.794(3)$
$\mathrm{S}(5)$	$\mathrm{C}(10)$	$1.798(3)$	$\mathrm{S}(6)$	$\mathrm{O}(3)$	$1.461(2)$
$\mathrm{S}(6)$	$\mathrm{O}(4)$	$1.445(2)$	$\mathrm{S}(6)$	$\mathrm{O}(5)$	$1.444(2)$
$\mathrm{S}(6)$	$\mathrm{C}(11)$	$1.837(3)$	$\mathrm{S}(7)$	$\mathrm{O}(6)$	$1.442(2)$
$\mathrm{S}(7)$	$\mathrm{O}(7)$	$1.463(2)$	$\mathrm{S}(7)$	$\mathrm{O}(8)$	$1.442(2)$
$\mathrm{S}(7)$	$\mathrm{C}(12)$	$1.829(3)$	$\mathrm{F}(1)$	$\mathrm{C}(11)$	$1.341(4)$
$\mathrm{F}(2)$	$\mathrm{C}(11)$	$1.339(3)$	$\mathrm{F}(3)$	$\mathrm{C}(11)$	$1.335(4)$
$\mathrm{F}(4)$	$\mathrm{C}(12)$	$1.331(4)$	$\mathrm{F}(5)$	$\mathrm{C}(12)$	$1.347(3)$
$\mathrm{F}(6)$	$\mathrm{C}(12)$	$1.344(4)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	$1.525(4)$
$\mathrm{C}(3)$	$\mathrm{C}(4)$	$1.526(4)$	$\mathrm{C}(5)$	$\mathrm{C}(6)$	$1.533(4)$
$\mathrm{C}(7)$	$\mathrm{C}(8)$	$1.528(4)$			

Distances are in angstroms. Estimated standard deviations in the least significant figure are given in parentheses.
Table A. 1 58. Atomic Coordinates for $\left[\mathrm{Ru}(12-\mathrm{S}-4)(\mathrm{DMSO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}$

atom	x	y	Z
$\mathrm{Ru}(1)$	$0.55767(2)$	$0.14052(2)$	$0.27009(1)$
$\mathrm{S}(1)$	$0.74761(5)$	$0.20227(5)$	$0.30121(3)$
$\mathrm{S}(2)$	$0.61800(5)$	$-0.02319(5)$	$0.33019(4)$
$\mathrm{S}(3)$	$0.38734(5)$	$0.03806(5)$	$0.24033(3)$
$\mathrm{S}(4)$	$0.62666(5)$	$0.08322(5)$	$0.15882(3)$
$\mathrm{S}(5)$	$0.51429(5)$	$0.30424(5)$	$0.21269(3)$
$\mathrm{S}(6)$	$0.16915(6)$	$0.16505(6)$	$0.37392(4)$
$\mathrm{S}(7)$	$0.69027(5)$	$0.33126(6)$	$0.50386(3)$
$\mathrm{F}(1)$	$0.0652(2)$	$0.1233(2)$	$0.4986(1)$
$\mathrm{F}(2)$	$0.0796(2)$	$0.2961(2)$	$0.4738(1)$
$\mathrm{F}(3)$	$0.2286(2)$	$0.2062(2)$	$0.5133(1)$
$\mathrm{F}(4)$	$0.6086(2))$	$0.5146(2)$	$0.5591(1)$
$\mathrm{F}(5)$	$0.6536(2)$	$0.3909(2)$	$0.64105(9)$
$\mathrm{F}(6)$	$0.4987(2)$	$0.3739(2)$	$0.5724(1)$
$\mathrm{O}(1)$	$0.4868(2)$	$0.1919(2)$	$0.37607(10)$
$\mathrm{O}(2)$	$0.6159(1)$	$0.3609(1)$	$0.18159(10)$
$\mathrm{O}(3)$	$0.2570(1)$	$0.2455(2)$	$0.3561(1)$
$\mathrm{O}(4)$	$0.2113(2)$	$0.0542(2)$	$0.3809(1)$
$\mathrm{O}(5)$	$0.0623(2)$	$0.1804(2)$	$0.3323(1)$
$\mathrm{O}(6)$	$0.6857(2)$	$0.2205(2)$	$0.5312(1)$
$\mathrm{O}(7)$	$0.6251(2)$	$0.3498(2)$	$0.43423(9)$
$\mathrm{O}(8)$	$0.8023(2)$	$0.3819(2)$	$0.5072(1)$
$\mathrm{C}(1)$	$0.7993(2)$	$0.1031(2)$	$0.3734(1)$
$\mathrm{C}(2)$	$0.7030(2)$	$0.0361(2)$	$0.4067(2)$
$\mathrm{C}(3)$	$0.4819(2)$	$-0.0648(2)$	$0.3691(2)$
$\mathrm{C}(4)$	$0.3982(2)$	$-0.0835(2)$	$0.3034(2)$
$\mathrm{C}(5)$	$0.4252(2)$	$-0.0251(1)$	$0.1509(1)$
$\mathrm{C}(6)$	$0.5540(2)$	$-0.0488(2)$	$0.1447(2)$
$\mathrm{C}(7)$	$0.7778(2)$	$0.0519(2)$	$0.1827(2)$
$\mathrm{C}(8)$	$0.8271(2)$	$0.1555(2)$	$0.2189(2)$
$\mathrm{C}(9)$	$0.4062(2)$	$0.2933(2)$	$0.1398(2)$
$\mathrm{C}(10)$	$0.4449(2)$	$0.4018(2)$	$0.2712(2)$
$\mathrm{C}(11)$	$0.1338(3)$	$0.1997(2)$	$0.4699(2)$
$\mathrm{C}(12)$	$0.6087(3)$	$0.4074(2)$	$0.5721(2)$

Table A.1 59. Hydrogen bonds and $\mathrm{C}-\mathrm{H} \ldots \mathrm{O} / \mathrm{F}$ interactions.

A	H	B	$\mathrm{A} \ldots . \mathrm{B}$	$\mathrm{A}-\mathrm{H}$	$\mathrm{H} \ldots \ldots \mathrm{B}$	$\mathrm{A}-\mathrm{H} \ldots . \mathrm{B}$
$\mathrm{O}(1)$	$\mathrm{H}(1)$	$\mathrm{O}(3)$	$2.765(3)$	$0.84(4)$	$1.96(4)$	$178(4)$
$\mathrm{O}(1)$	$\mathrm{H}(2)$	$\mathrm{O}(7)$	$2.703(3)$	$0.85(3)$	$1.85(4)$	$173(3)$
$\mathrm{C}(1)$	$\mathrm{H}(3)$	$\mathrm{O}(2)$	$3.283(3)$	$0.91(2)$	$2.53(3)$	$140(2)$
$\mathrm{C}(2)$	$\mathrm{H}(5)$	$\mathrm{O}(6)$	$3.189(4)$	$0.93(3)$	$2.46(3)$	$135(2)$
$\mathrm{C}(2)$	$\mathrm{H}(6)$	$\mathrm{F}(3)$	$3.378(3)$	$0.92(3)$	$2.50(3)$	$161(2)$
$\mathrm{C}(3)$	$\mathrm{H}(7)$	$\mathrm{O}(1)$	$3.141(4)$	$0.91(2)$	$2.55(3)$	$124(2)$
$\mathrm{C}(4)$	$\mathrm{H}(10)$	$\mathrm{O}(4)$	$3.112(4)$	$0.95(3)$	$2.49(3)$	$122(2)$
$\mathrm{C}(5)$	$\mathrm{H}(11)$	$\mathrm{O}(8)$	$3.401(3)$	$0.95(3)$	$2.46(3)$	$169(2)$
$\mathrm{C}(6)$	$\mathrm{H}(14)$	$\mathrm{O}(8)$	$3.357(3)$	$0.93(3)$	$2.46(3)$	$161(2)$
$\mathrm{C}(8)$	$\mathrm{H}(17)$	$\mathrm{O}(5)$	$3.378(3)$	$0.94(3)$	$2.51(3)$	$154(2)$
$\mathrm{C}(10)$	$\mathrm{H}(23)$	$\mathrm{O}(3)$	$3.311(3)$	$0.96(3)$	$2.40(3)$	$158(2)$

Appendix 1.14 Crystallographic Data for $\mathrm{Ru}(\mathrm{OEP})(\mathrm{CO})(\mathrm{THF})$

Table A. 1 60. Experimental Details for X-ray Crystal Structure of Ru(OEP)(CO)(THF)

A. Crystal Data

Empirical Formula	$\mathrm{C}_{41} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Ru}$
Formula Weight	733.96
Crystal Colour, Habit	red, irregular
Crystal Dimensions	$0.30 \times 0.15 \times 0.08 \mathrm{~mm}$
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	$\mathrm{a}=10.4420(8) \AA$
	$\mathrm{b}=32.418(2) \AA$
	$\mathrm{c}=10.7811(2) \AA$
	$\beta=99.5847(7){ }^{\circ}$
	$\mathrm{V}=3598.6(3) \AA^{3}$
Space Group	$\mathrm{P} 2_{1} / \mathrm{c}(\# 14)$
Z Value	4
D $_{\text {calc }}$	$1.355 \mathrm{~g} / \mathrm{cm}^{3}$
$\mathrm{~F}_{\text {ooo }}$	1544.00
$\mu(\mathrm{MoK} \alpha)$	$4.77 \mathrm{~cm}^{-1}$

B. Intensity Measurements

Diffractometer	Rigaku/ADSC CCD
Radiation	MoK $\alpha(\lambda=0.71069 A)$ graphite monochromated
Detector Aperature	94 mm x 94 mm
Data Images	768 exposures of 30.0 seconds
ϕ oscillation Range $(\chi=-90)$	$0.0-189.9^{\circ}$
ω oscillation Range $(\chi=-90)$	$-23.0-17.8^{\circ}$
Detector Position	$39.218(8) \mathrm{mm}$
Detector Swing Angle	-10.0°
$2 \theta_{\text {max }}$	60.1°
No. of Reflections Measured	Total: 33364
Corrections	Unique: $9166\left(\mathrm{R}_{\text {int }}=0.057\right)$
$i:$	Lorentz-polarization
	Absorption/scaling
	(trans. factors: $0.8404-1.0000)$

C. Structure Solution and Refinement

Structure Solution	Patterson Methods (DIRDIF92 PATTY)
Refinement	Full-matrix least-squares
Function Minimized	$\Sigma \omega\left(\left\|F o^{2}\right\|-\left\|F c^{2}\right\|\right)^{2}$
Least Squares Weights	$\omega=1 / \sigma^{2}\left(F o^{2}\right)$
p-factor	0.0000
Anomalous Dispersion	All non-hydrogen atoms
No. Observations	9166
No. Variables .	505
Reflection/Parameter Ratio	18.15
Residuals (on F^{2}, all data): R; Rw	$0.096 ; 0.077$
Goodness of Fit Indicator	1.21
No. Observations (I>3 $\sigma(\mathrm{I})$)	4171
Residuals (on F, I>3 $\sigma(\mathrm{I})$): R; Rw	$0.044 ; 0.034$
Max Shift/Error in Final Cycle	0.01
Maximum peak in Final Diff. Map	$3.07 e^{-1} / A^{3}(1.37 \AA$ from Ru)
Minimum peak in Final Diff. Map	$-2.21 e^{-/ / A^{3}}$

Table A. 1 61. Bond Angles (${ }^{\circ}$) for $\mathrm{Ru}(\mathrm{OEP})(\mathrm{CO})(\mathrm{THF})$

atom	atom	atom	angle	atom	atom	atom	angle
$\mathrm{O}(2)$	$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	$87.0(1)$	$\mathrm{C}(16)$	$\mathrm{N}(4)$	$\mathrm{C}(19)$	$106.6(3)$
$\mathrm{O}(2)$	$\mathrm{Ru}(1)$	$\mathrm{N}(2)$	$85.3(1)$	$\mathrm{N}(1)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	$110.2(3)$
$\mathrm{O}(2)$	$\mathrm{Ru}(1)$	$\mathrm{N}(3)$	$87.0(1)$	$\mathrm{N}(1)$	$\mathrm{C}(1)$	$\mathrm{C}(20)$	$124.1(3)$
$\mathrm{O}(2)$	$\mathrm{Ru}(1)$	$\mathrm{N}(4)$	$87.4(1)$	$\mathrm{C}(2)$	$\mathrm{C}(1)$	$\mathrm{C}(20)$	$125.6(3)$
$\mathrm{O}(2)$	$\mathrm{Ru}(1)$	$\mathrm{C}(37)$	$177.2(1)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(3)$	$106.6(3)$
$\mathrm{N}(1)$	$\mathrm{Ru}(1)$	$\mathrm{N}(2)$	$89.89(9)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(21)$	$125.2(3)$
$\mathrm{N}(1)$	$\mathrm{Ru}(1)$	$\mathrm{N}(3)$	$174.0(1)$	$\mathrm{C}(3)$	$\mathrm{C}(2)$	$\mathrm{C}(21)$	$128.2(3)$
$\mathrm{N}(1)$	$\mathrm{Ru}(1)$	$\mathrm{N}(4)$	$90.0(1)$	$\mathrm{C}(2)$	$\mathrm{C}(3)$	$\mathrm{C}(4)$	$107.6(3)$
$\mathrm{N}(1)$	$\mathrm{Ru}(1)$	$\mathrm{C}(37)$	$92.5(1)$	$\mathrm{C}(2)$	$\mathrm{C}(3)$	$\mathrm{C}(23)$	$128.4(3)$
$\mathrm{N}(2)$	$\mathrm{Ru}(1)$	$\mathrm{N}(3)$	$89.5(1)$	$\mathrm{C}(4)$	$\mathrm{C}(3)$	$\mathrm{C}(23)$	$124.0(3)$
$\mathrm{N}(2)$	$\mathrm{Ru}(1)$	$\mathrm{N}(4)$	$172.7(1)$	$\mathrm{N}(1)$	$\mathrm{C}(4)$	$\mathrm{C}(3)$	$108.7(3)$
$\mathrm{N}(2)$	$\mathrm{Ru}(1)$	$\mathrm{C}(37)$	$97.4(1)$	$\mathrm{N}(1)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$124.6(3)$
$\mathrm{N}(3)$	$\mathrm{Ru}(1)$	$\mathrm{N}(4)$	$89.8(1)$	$\mathrm{C}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$126.7(3)$
$\mathrm{N}(3)$	$\mathrm{Ru}(1)$	$\mathrm{C}(37)$	$93.5(1)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$\mathrm{C}(6)$	$127.8(3)$
$\mathrm{N}(4)$	$\mathrm{Ru}(1)$	$\mathrm{C}(37)$	$89.9(1)$	$\mathrm{N}(2)$	$\mathrm{C}(6)$	$\mathrm{C}(5)$	$124.8(3)$
$\mathrm{Ru}(1)$	$\mathrm{O}(2)$	$\mathrm{C}(38)$	$123.1(3)$	$\mathrm{N}(2)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$109.9(3)$
$\mathrm{Ru}(1)$	$\mathrm{O}(2)$	$\mathrm{C}(41)$	$127.1(3)$	$\mathrm{C}(5)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$125.3(3)$
$\mathrm{C}(38)$	$\mathrm{O}(2)$	$\mathrm{C}(41)$	$109.0(4)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$106.6(3)$
$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	$\mathrm{C}(1)$	$126.7(2)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$\mathrm{C}(25)$	$125.3(3)$
$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	$\mathrm{C}(4)$	$126.3(2)$	$\mathrm{C}(8)$	$\mathrm{C}(7)$	$\mathrm{C}(25)$	$128.1(3)$
$\mathrm{C}(1)$	$\mathrm{N}(1)$	$\mathrm{C}(4)$	$106.9(3)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$\mathrm{C}(9)$	$106.8(3)$
$\mathrm{Ru}(1)$	$\mathrm{N}(2)$	$\mathrm{C}(6)$	$126.5(2)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$\mathrm{C}(27)$	$127.7(3)$
$\mathrm{Ru}(1)$	$\mathrm{N}(2)$	$\mathrm{C}(9)$	$126.3(2)$	$\mathrm{C}(9)$	$\mathrm{C}(8)$	$\mathrm{C}(27)$	$125.4(3)$
$\mathrm{C}(6)$	$\mathrm{N}(2)$	$\mathrm{C}(9)$	$107.2(3)$	$\mathrm{N}(2)$	$\mathrm{C}(9)$	$\mathrm{C}(8)$	$109.5(3)$
$\mathrm{Ru}(1)$	$\mathrm{N}(3)$	$\mathrm{C}(11)$	$126.6(2)$	$\mathrm{N}(2)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$124.8(3)$
$\mathrm{Ru}(1)$	$\mathrm{N}(3)$	$\mathrm{C}(14)$	$125.6(2)$	$\mathrm{C}(8)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$125.7(3)$
$\mathrm{C}(11)$	$\mathrm{N}(3)$	$\mathrm{C}(14)$	$107.7(3)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$\mathrm{C}(11)$	$127.7(3)$
$\mathrm{Ru}(1)$	$\mathrm{N}(4)$	$\mathrm{C}(16)$	$126.6(2)$	$\mathrm{N}(3)$	$\mathrm{C}(11)$	$\mathrm{C}(10)$	$124.6(3)$
$\mathrm{Ru}(1)$	$\mathrm{N}(4)$	$\mathrm{C}(19)$	$126.7(2)$	$\mathrm{N}(3)$	$\mathrm{C}(11)$	$\mathrm{C}(12 a)$	$106.3(5)$
$\mathrm{N}(3)$	$\mathrm{C}(11)$	$\mathrm{C}(12)$	$110.4(4)$	$\mathrm{C}(13)$	$\mathrm{C}(13 \mathrm{a})$	$\mathrm{C}(14)$	$81(1)$
$\mathrm{C}(10)$	$\mathrm{C}(11)$	$\mathrm{C}(12 a)$	$124.3(5)$	$\mathrm{C}(13)$	$\mathrm{C}(13 \mathrm{a})$	$\mathrm{C}(31)$	$60(1)$
$\mathrm{C}(10)$	$\mathrm{C}(11)$	$\mathrm{C}(12)$	$124.5(4)$	$\mathrm{C}(13)$	$\mathrm{C}(13 \mathrm{a})$	$\mathrm{C}(31 \mathrm{a})$	$97(1)$
$\mathrm{C}(12 \mathrm{a})$	$\mathrm{C}(11)$	$\mathrm{C}(12)$	$30.4(4)$	$\mathrm{C}(14)$	$\mathrm{C}(13 a)$	$\mathrm{C}(31)$	$113.6(8)$

C(11)	C(12a)	C(12)	76(1)	C(14)	C(13a)	C(31a)	127.1(9)
C(11)	C(12a)	C(13)	99.2(7)	C(31)	C (13a)	C(31a)	37.1(6)
C(11)	C(12a)	C(13a)	106.6(9)	$\mathrm{N}(3)$	C(14)	C(13)	108.2(4)
C(11)	C(12a)	C(29a)	124.6(9)	N(3)	C(14)	C(13a)	107.7(5)
C(11)	C(12a)	C(29)	109.2(8)	N(3)	C(14)	C(15)	125.0(3)
C (12)	$\mathrm{C}(12 \mathrm{a})$	C(13)	63(1)	C(13)	C(14)	C(13a)	30.5(4)
C(12)	C(12a)	C(13a)	95(2)	C(13)	C(14)	C(15)	126.1(4)
C(12)	C(12a)	C(29a)	90(1)	C(13a)	$\mathrm{C}(14)$	C(15)	123.1(6)
C(12)	C(12a)	C(29)	56(1)	C(14)	C(15)	C(16)	127.5(3)
C(13)	C(12a)	C(13a)	31.1(5)	N(4)	C(16)	C(15)	125.2(3)
C(13)	C(12a)	C(29a)	122.1(9)	$\mathrm{N}(4)$	$\mathrm{C}(16)$	C(17)	110.4(3)
C(13)	C(12a)	C(29)	101.2(8)	C (15)	$\mathrm{C}(16)$	C(17)	124.4(3)
C(13a)	C(12a)	C(29a)	128(1)	C(16)	C(17)	C(18)	106.6 (3)
C(13a)	C(12a)	C(29)	124(1)	C (16)	$\mathrm{C}(17)$	C(33)	125.1(3)
C(29a)	C(12a)	C(29)	34.1(6)	C(18)	$\mathrm{C}(17)$	C(33)	128.2(3)
C(11)	C (12)	$\mathrm{C}(12 \mathrm{a})$	73(1)	$\mathrm{C}(17)$	C(18)	C(19)	106.9(3)
C(11)	C(12)	$\mathrm{C}(13)$	105.7(6)	$\mathrm{C}(17)$	$\mathrm{C}(18)$	C(35a)	127.4(5)
$\mathrm{C}(11)$	C (12)	C(13a)	93.6(6)	$\mathrm{C}(17)$	C (18)	C(35)	$125.2(5)$
$\mathrm{C}(11)$	$\mathrm{C}(12)$	C(29a)	111.8(6)	$\mathrm{C}(19)$	C (18)	C(35a)	120.2(5)
C(11)	$\mathrm{C}(12)$	C(29)	125.8(7)	C(19)	$\mathrm{C}(18)$	C(35)	126.9(5)
C(12a)	C(12)	C(13)	86(1)	C(35a)	C (18)	C(35)	30.1(5)
C(12a)	C(12)	C(13a)	57(1)	N (4)	$\mathrm{C}(19)$	C (18)	109.4(3)
C(12a)	C (12)	C(29a)	63(1)	N(4)	$\mathrm{C}(19)$	C(20)	124.1 (3)
C(12a)	C (12)	C(29)	98(1)	C (18)	C(19)	C(20)	126.4(3)
C(13)	C (12)	C(13a)	29.0(4)	C(1)	C (20)	C (19)	128.0 (3)
C(13)	$\mathrm{C}(12)$	C(29a)	119.7(7)	C(2)	C(21)	C(22)	112.3(4)
C(13)	C (12)	C(29)	127.3(8)	C(3)	C(23)	C(24)	115.1(4)
C(13a)	C(12)	C (29a)	102.5(7)	C(7)	C(25)	C(26)	$112.5(3)$
C(13a)	C (12)	C (29)	126.5(8)	C(8)	C(27)	C(28)	113.4(3)
C(29a)	C(12)	C(29)	34.5(5)	$\mathrm{C}(12 \mathrm{a})$	C(29a)	$\mathrm{C}(12)$	26.7(5)
C(12a)	C(13)	C (12)	30.9(5)	C(12a)	C(29a)	C (29)	84(1)
C(12a)	C(13)	C(13a)	63(1)	C(12a)	C(29a)	C(30)	158(2)
C(12a)	C(13)	C(14)	95.3(6)	$\mathrm{C}(12 \mathrm{a})$	C(29a)	C(30a)	104(1)
C(12a)	C(13)	C(31)	124.4(7)	C(12)	C(29a)	C(29)	57.0(9)
C(12)	C(13)	C(13a)	94(1)	C(12)	C(29a)	$\mathrm{C}(30)$	169(2)
C(12)	C(13)	C (14)	106.8(6)	C(12)	C(29a)	C (30a)	$77.8(9)$
C(12)	C(13)	C(31)	129.2(8)	C(29)	C(29a)	C (30)	116(2)
C(13a)	C(13)	C(14)	68(1)	C(29)	C(29a)	C (30a)	22.3(9)
C(13a)	C(13)	C(31)	92(1)	C(30)	C(29a)	C(30a)	97(1)
C(14)	C(13)	C(31)	122.2(7)	$\mathrm{C}(12 \mathrm{a})$	C(29)	C (12)	26.3(4)
C(12a)	C(13a)	C(12)	28.8(5)	C(12a)	C (29)	C (29a)	62(1)
C(12a)	C(13a)	C(13)	86(1)	C(12a)	C (29)	C (30)	90.3(7)
C(12a)	C(13a)	C(14)	107.3(9)	$\mathrm{C}(12 \mathrm{a})$	C(29)	C(30a)	160(2)
C(12a)	C(13a)	C(31)	119.6(9)	C(12)	C(29)	C(29a)	88(1)
C(12a)	C(13a)	C(31a)	125(1)	$\mathrm{C}(12)$	C(29)	C(30)	116.6(7)
C(12)	C(13a)	C(13)	57(1)	C(12)	C(29)	C(30a)	142(2)
C(12)	C(13a)	C(14)	98.8(7)	C(29a)	C(29)	C(30)	28.6(9)
C(12)	C(13a)	C(31)	101.1(8)	C(29a)	C (29)	C(30a)	123(3)
C(12)	C(13a)	C(31a)	124.5(9)	C(30)	C(29)	C(30a)	98(2)
C(29a)	C(30)	C (29)	35(1)	C(31)	C(32a)	C(32)	69(2)
C(29a)	C(30)	C(30a)	55(1)	C(31a)	C(32a)	C (32)	26.6(6)
C(29)	C(30)	C(30a)	21.9(4)	$\mathrm{C}(17)$	C(33)	C(34)	112.3(3)
C(29a)	$\mathrm{C}(30 \mathrm{a})$	C (29)	34(2)	$\mathrm{C}(18)$	$\mathrm{C}(35 \mathrm{a})$	C(35)	61(1)

C(29a)	C(30a)	C(30)	27.5(5)	C(18)	C(35a)	C(36)	160(2)
C(29)	C(30a)	C(30)	60(2)	C(18)	C(35a)	C(36a)	93(1)
C(13)	C(31)	C(13a)	27.6(4)	C(35)	C(35a)	C(36)	137(3)
C(13)	C(31)	C(31a)	93(1)	C(35)	C(35a)	C(36a)	35(1)
C(13)	C(31)	C(32)	117.2(9)	C(36)	C(35a)	C(36a)	107(2)
C(13)	C(31)	C(32a)	153(2)	C(18)	C(35)	C(35a)	89(1)
C(13a)	C(31)	C(31a)	66(1)	C(18)	C(35)	C(36)	109.6(7)
C(13a)	C(31)	C(32)	89.7(8)	C(18)	C(35)	C(36a)	147(1)
C(13a)	C(31)	C(32a)	168(2)	C(35a)	C(35)	C(36)	21(1)
C(31a)	C(31)	C(32)	25(1)	C(35a)	C(35)	C(36a)	113(2)
C(31a)	C(31)	C(32a)	111(3)	C(36)	C(35)	C(36a)	96(1)
C(32)	C(31)	C(32a)	86(2)	C(35a)	C(36)	C(35)	22(1)
C(13a)	C(31a)	C(31)	77(1)	C(35a)	C(36a)	C(35)	32(1)
C(13a)	C(3la)	C(32)	157(2)	$\mathrm{Ru}(1)$	C(37)	O(1)	176.6(3)
C(13a)	C(31a)	C(32a)	103(1)	O(2)	C(38)	C(39)	108.7(4)
C(31)	C(3la)	C(32)	119(3)	C(38)	C(39)	C(40)	104.6(4)
C(31)	C(3la)	C(32a)	26.9(9)	C(39)	C(40)	C(4)	103.7(4)
C(32)	C(31a)	C(32a)	92(2)	O(2)	C(41)	C(40)	112.0(5)
C(31)	C(32)	C(3la)	37(2)				
C(31)	C(32)	C(32a)	25.3(4)				
C(31a)	C(32)	C(32a)	62(2)				
C(31)	C(32a)	C(31a)	42(2)				

Angles are in degrees. Estimated standard deviations in the least significant figure are given in parentheses.
Table A. 1 62. Bond Lengths (\AA) for $\operatorname{Ru}($ OEP $)(\mathrm{CO})(\mathrm{THF})$

atom	atom	distance	atom	atom	distance
$\mathrm{Ru}(1)$	$\mathrm{O}(2)$	$2.241(3)$	$\mathrm{C}(3)$	$\mathrm{C}(23)$	$1.524(5)$
$\mathrm{Ru}(1)$	$\mathrm{N}(1)$	$2.052(2)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$1.387(4)$
$\mathrm{Ru}(1)$	$\mathrm{N}(2)$	$2.059(2)$	$\mathrm{C}(5)$	$\mathrm{C}(6)$	$1.392(4)$
$\mathrm{Ru}(1)$	$\mathrm{N}(3)$	$2.056(2)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$1.454(4)$
$\mathrm{Ru}(1)$	$\mathrm{N}(4)$	$2.054(3)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$1.362(4)$
$\mathrm{Ru}(1)$	$\mathrm{C}(37)$	$1.805(4)$	$\mathrm{C}(7)$	$\mathrm{C}(25)$	$1.512(4)$
$\mathrm{O}(1)$	$\mathrm{C}(37)$	$1.144(4)$	$\mathrm{C}(8)$	$\mathrm{C}(9)$	$1.452(4)$
$\mathrm{O}(2)$	$\mathrm{C}(38)$	$1.413(5)$	$\mathrm{C}(8)$	$\mathrm{C}(27)$	$1.510(4)$
$\mathrm{O}(2)$	$\mathrm{C}(41)$	$1.306(6)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$1.388(4)$
$\mathrm{N}(1)$	$\mathrm{C}(1)$	$1.364(4)$	$\mathrm{C}(10)$	$\mathrm{C}(11)$	$1.382(5)$
$\mathrm{N}(1)$	$\mathrm{C}(4)$	$1.374(4)$	$\mathrm{C}(11)$	$\mathrm{C}(12 \mathrm{a})$	$1.49(1)$
$\mathrm{N}(2)$	$\mathrm{C}(6)$	$1.360(3)$	$\mathrm{C}(11)$	$\mathrm{C}(12)$	$1.507(9)$
$\mathrm{N}(2)$	$\mathrm{C}(9)$	$1.371(3)$	$\mathrm{C}(12 \mathrm{a})$	$\mathrm{C}(12)$	$0.78(1)$
$\mathrm{N}(3)$	$\mathrm{C}(11)$	$1.370(4)$	$\mathrm{C}(12 \mathrm{a})$	$\mathrm{C}(13)$	$1.52(1)$
$\mathrm{N}(3)$	$\mathrm{C}(14)$	$1.376(4)$	$\mathrm{C}(12 \mathrm{a})$	$\mathrm{C}(13 \mathrm{a})$	$1.36(2)$
$\mathrm{N}(4)$	$\mathrm{C}(16)$	$1.354(4)$	$\mathrm{C}(12 \mathrm{a})$	$\mathrm{C}(29 \mathrm{a})$	$1.56(2)$
$\mathrm{N}(4)$	$\mathrm{C}(19)$	$1.361(4)$	$\mathrm{C}(12 \mathrm{a})$	$\mathrm{C}(29)$	$1.75(1)$
$\mathrm{C}(1)$	$\mathrm{C}(2)$	$1.443(4)$	$\mathrm{C}(12)$	$\mathrm{C}(13)$	$1.37(1)$
$\mathrm{C}(1)$	$\mathrm{C}(20)$	$1.393(5)$	$\mathrm{C}(12)$	$\mathrm{C}(13 \mathrm{a})$	$1.62(1)$
$\mathrm{C}(2)$	$\mathrm{C}(3)$	$1.348(5)$	$\mathrm{C}(12)$	$\mathrm{C}(29 \mathrm{a})$	$1.75(2)$
$\mathrm{C}(2)$	$\mathrm{C}(21)$	$1.493(5)$	$\mathrm{C}(12)$	$\mathrm{C}(29)$	$1.46(1)$
$\mathrm{C}(3)$	$\mathrm{C}(4)$	$1.455(4)$	$\mathrm{C}(13)$	$\mathrm{C}(13 \mathrm{a})$	$0.79(1)$
$\mathrm{C}(13)$	$\mathrm{C}(14)$	$1.535(8)$	$\mathrm{C}(29 \mathrm{a})$	$\mathrm{C}(30 \mathrm{a})$	$1.47(2)$
$\mathrm{C}(13)$	$\mathrm{C}(31)$	$1.48(1)$	$\mathrm{C}(29)$	$\mathrm{C}(30)$	$1.54(1)$
$\mathrm{C}(13 \mathrm{a})$	$\mathrm{C}(14)$	$1.44(1)$	$\mathrm{C}(29)$	$\mathrm{C}(30 \mathrm{a})$	$0.67(1)$
$\mathrm{C}(13 \mathrm{a})$	$\mathrm{C}(31)$	$1.70(1)$	$\mathrm{C}(30)$	$\mathrm{C}(30 \mathrm{a})$	$1.76(2)$
$\mathrm{C}(13 \mathrm{a})$	$\mathrm{C}(31 \mathrm{a})$	$1.59(2)$	$\mathrm{C}(31)$	$\mathrm{C}(31 \mathrm{a})$	$1.05(2)$

$\mathrm{C}(14)$	$\mathrm{C}(15)$	$1.391(5)$	$\mathrm{C}(31)$	$\mathrm{C}(32)$	$1.56(2)$
$\mathrm{C}(15)$	$\mathrm{C}(16)$	$1.376(4)$	$\mathrm{C}(31)$	$\mathrm{C}(32 \mathrm{a})$	$0.71(1)$
$\mathrm{C}(16)$	$\mathrm{C}(17)$	$1.441(4)$	$\mathrm{C}(31 \mathrm{a})$	$\mathrm{C}(32)$	$0.75(1)$
$\mathrm{C}(17)$	$\mathrm{C}(18)$	$1.342(4)$	$\mathrm{C}(31 \mathrm{a})$	$\mathrm{C}(32 \mathrm{a})$	$1.47(2)$
$\mathrm{C}(17)$	$\mathrm{C}(33)$	$1.510(4)$	$\mathrm{C}(32)$	$\mathrm{C}(32 \mathrm{a})$	$1.67(2)$
$\mathrm{C}(18)$	$\mathrm{C}(19)$	$1.451(5)$	$\mathrm{C}(33)$	$\mathrm{C}(34)$	$1.526(5)$
$\mathrm{C}(18)$	$\mathrm{C}(35 \mathrm{a})$	$1.70(2)$	$\mathrm{C}(35 \mathrm{a})$	$\mathrm{C}(35)$	$0.85(1)$
$\mathrm{C}(18)$	$\mathrm{C}(35)$	$1.483(9)$	$\mathrm{C}(35 \mathrm{a})$	$\mathrm{C}(36)$	$0.79(1)$
$\mathrm{C}(19)$	$\mathrm{C}(20)$	$1.405(5)$	$\mathrm{C}(35 \mathrm{a})$	$\mathrm{C}(36 \mathrm{a})$	$1.49(2)$
$\mathrm{C}(21)$	$\mathrm{C}(22)$	$1.504(7)$	$\mathrm{C}(35)$	$\mathrm{C}(36)$	$1.53(1)$
$\mathrm{C}(23)$	$\mathrm{C}(24)$	$1.494(6)$	$\mathrm{C}(35)$	$\mathrm{C}(36 \mathrm{a})$	$0.93(1)$
$\mathrm{C}(25)$	$\mathrm{C}(26)$	$1.519(5)$	$\mathrm{C}(38)$	$\mathrm{C}(39)$	$1.504(6)$
$\mathrm{C}(27)$	$\mathrm{C}(28)$	$1.510(5)$	$\mathrm{C}(39)$	$\mathrm{C}(40)$	$1.466(7)$
$\mathrm{C}(29 \mathrm{a})$	$\mathrm{C}(29)$	$0.99(1)$	$\mathrm{C}(40)$	$\mathrm{C}(41)$	$1.498(7)$
$\mathrm{C}(29 \mathrm{a})$	$\mathrm{C}(30)$	$0.82(1)$			

Distances are in angstroms. Estimated standard deviations in the least significant figure are given in parentheses.

Table A. 1 63. Atomic Coordinates for $\mathrm{Ru}(\mathrm{OEP})(\mathrm{CO})(\mathrm{THF})$

atom	x	y	z	atom	x	y	z
$\mathrm{Ru}(1)$	$0.56609(3)$	$0.373289(8)$	$0.26066(3)$	$\mathrm{C}(33)$	$0.1207(3)$	$0.38011(12)$	$0.4961(4)$
$\mathrm{O}(1)$	$0.3995(2)$	$0.37021(8)$	$0.0117(2)$	$\mathrm{C}(34)$	$0.1720(4)$	$0.3655(2)$	$0.6297(4)$
$\mathrm{O}(2)$	$0.6812(2)$	$0.37786(9)$	$0.4552(2)$	$\mathrm{C}(35 \mathrm{a})$	$0.1566(13)$	$0.4763(5)$	$0.3869(13)$
$\mathrm{N}(1)$	$0.6195(3)$	$0.43320(7)$	$0.2352(3)$	$\mathrm{C}(35)$	$0.2017(9)$	$0.4719(3)$	$0.4592(8)$
$\mathrm{N}(2)$	$0.7369(2)$	$0.35312(7)$	$0.2095(3)$	$\mathrm{C}(36)$	$0.0976(8)$	$0.4906(3)$	$0.3582(10)$
$\mathrm{N}(3)$	$0.5239(3)$	$0.31366(8)$	$0.3047(3)$	$\mathrm{C}(36 a)$	$0.2160(11)$	$0.4953(4)$	$0.5085(11)$
$\mathrm{N}(4)$	$0.4086(2)$	$0.39373(8)$	$0.3348(3)$	$\mathrm{C}(37)$	$0.4671(3)$	$0.37092(10)$	$0.1067(4)$
$\mathrm{C}(1)$	$0.5511(4)$	$0.46782(9)$	$0.2544(4)$	$\mathrm{C}(38)$	$0.7628(5)$	$0.3459(2)$	$0.5117(5)$
$\mathrm{C}(2)$	$0.6162(4)$	$0.50401(10)$	$0.2180(4)$	$\mathrm{C}(39)$	$0.8182(4)$	$0.3585(2)$	$0.6441(5)$
$\mathrm{C}(3)$	$0.7260(4)$	$0.49074(10)$	$0.1805(4)$	$\mathrm{C}(40)$	$0.7680(8)$	$0.4003(2)$	$0.6567(5)$
$\mathrm{C}(4)$	$0.7287(4)$	$0.44597(10)$	$0.1906(4)$	$\mathrm{C}(41)$	$0.6694(8)$	$0.40574(15)$	$0.5400(6)$
$\mathrm{C}(5)$	$0.8258(3)$	$0.41992(9)$	$0.1636(3)$	$\mathrm{C}(25)$	$1.0600(3)$	$0.36703(10)$	$0.1057(3)$
$\mathrm{C}(6)$	$0.8309(3)$	$0.37710(10)$	$0.1731(3)$	$\mathrm{C}(26)$	$1.0404(3)$	$0.37301(12)$	$-0.0360(4)$
$\mathrm{C}(7)$	$0.9389(3)$	$0.35150(9)$	$0.1502(3)$	$\mathrm{C}(27)$	$0.9858(3)$	$0.27338(10)$	$0.1633(4)$
$\mathrm{C}(8)$	$0.9058(3)$	$0.31178(9)$	$0.1714(3)$	$\mathrm{C}(28)$	$0.9548(4)$	$0.25166(10)$	$0.0381(4)$
$\mathrm{C}(9)$	$0.7782(3)$	$0.31302(9)$	$0.2081(3)$	$\mathrm{C}(29 \mathrm{a})$	$0.6058(12)$	$0.2013(4)$	$0.3739(13)$
$\mathrm{C}(10)$	$0.7092(3)$	$0.27911(10)$	$0.2399(4)$	$\mathrm{C}(29)$	$0.5561(10)$	$0.1982(2)$	$0.2878(11)$
$\mathrm{C}(11)$	$0.5918(4)$	$0.27897(10)$	$0.2831(4)$	$\mathrm{C}(30)$	$0.6565(7)$	$0.1826(2)$	$0.3987(8)$
$\mathrm{C}(12 \mathrm{a})$	$0.5495(12)$	$0.2460(3)$	$0.3630(11)$	$\mathrm{C}(30 a)$	$0.5370(13)$	$0.1801(3)$	$0.2624(15)$
$\mathrm{C}(12)$	$0.5121(8)$	$0.2409(3)$	$0.2954(7)$	$\mathrm{C}(31)$	$0.3079(7)$	$0.2304(3)$	$0.3958(12)$
$\mathrm{C}(13)$	$0.4039(7)$	$0.2543(2)$	$0.3395(7)$	$\mathrm{C}(31 a)$	$0.3569(14)$	$0.2351(4)$	$0.4884(15)$
$\mathrm{C}(13 \mathrm{a})$	$0.4427(11)$	$0.2606(3)$	$0.4060(10)$	$\mathrm{C}(32)$	$0.3215(10)$	$0.2309(3)$	$0.5418(10)$
$\mathrm{C}(14)$	$0.4167(4)$	$0.30131(11)$	$0.3540(4)$	$\mathrm{C}(32 \mathrm{a})$	$0.2451(12)$	$0.2216(4)$	$0.3958(15)$
$\mathrm{C}(15)$	$0.3253(3)$	$0.32777(11)$	$0.3911(4)$				
$\mathrm{C}(16)$	$0.3225(3)$	$0.37014(11)$	$0.3838(3)$				
$\mathrm{C}(17)$	$0.2277(3)$	$0.39571(11)$	$0.4298(3)$				
$\mathrm{C}(18)$	$0.2585(4)$	$0.43493(11)$	$0.4078(4)$				
$\mathrm{C}(19)$	$0.3723(4)$	$0.43364(11)$	$0.3469(4)$				
$\mathrm{C}(20)$	$0.4375(4)$	$0.46771(11)$	$0.3063(5)$				
$\mathrm{C}(21)$	$0.5673(5)$	$0.54719(11)$	$0.2215(6)$				
$\mathrm{C}(22)$	$0.4545(5)$	$0.55555(12)$	$0.1184(6)$				
$\mathrm{C}(23)$	$0.8313(4)$	$0.51621(11)$	$0.1342(5)$				
$\mathrm{C}(24)$	$0.8188(4)$	$0.51964(13)$	$-0.0054(5)$				

Figure A.1.7. Stereoview of $\operatorname{Ru}(\mathrm{OEP})(\mathrm{CO})(\mathrm{THF})$.

Appendix 1.15 Crystallographic Data for $\mathrm{Ru}(\mathrm{TPhP})(\mathrm{CO})(\mathrm{py})$.
Table A. 1 64. Experimental Details for X-ray Crystal Structure of $\mathrm{Ru}(\mathrm{TPhP})(\mathrm{CO})(\mathrm{py})$

Empirical Formula	$\mathrm{C}_{6050} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{ORu}$
Formula Weight	959.09
Crystal Colour, Habit	red, plate
Crystal Dimensions	$0.50 \times 0.45 \times 0.12 \mathrm{~mm}$
Crystal System	triclinic
Lattice Parameters	$\mathrm{a}=10.6294(3) \AA$
	$\mathrm{b}=11.6314(3) \AA$
	$\mathrm{c}=19.6878(5) \AA$
	$\alpha=96.460(1){ }^{\circ}$
	$\beta=99.5847(7)^{\circ}$
	$\gamma=93.815(1)^{\circ}$
	$\mathrm{V}=2409.81(11) \AA^{3}$
Space Group	P $\overline{1}^{-}$
Z Value	2
$\mathrm{D}_{\text {calc }}$	$1.322 \mathrm{Mg} / \mathrm{m}^{3}$
F_{000}	990
absorption coefficient	$0.373 \mathrm{~mm}^{-1}$

B. Data Collection

Diffractometer	Siemens SMART Platform CCD
Wavelength	$0.71073 A$
Temperature	$173(2) \mathrm{K}$
θ range for data collection	1.77 to 25.01°
Index ranges	$-10 \leq h \leq 12,-11 \leq k \leq 13,-21 \leq l \leq 23$
Reflections Collected	11799
Independent Reflections	$7993\left(\mathrm{R}_{\text {int }}=0.0223\right)$

C. Solution and Refinement

System used	SHELXTL-V5.0
Solution	Direct Methods
Refinement method	Full-matrix least-squares on F^{2}
Weighting Scheme	$\omega=1 / \sigma^{2}\left(F o^{2}\right)+(\mathrm{AP})^{2}(\mathrm{BP})$, where $\mathrm{P}=\left(\mathrm{Fo}^{2}+2 \mathrm{Fc}^{2}\right) / 3$,
	$\mathrm{A}=0.0291$, and $\mathrm{B}=1.9388$
Absorption correction	$\mathrm{SADABS}($ Sheldrick, 1996 $)$
Max. and min. transmission	0.96 and 0.83
Data/restraints/parameters	$7993 / 13 / 646$
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$	$\mathrm{R} 1=0.0369$, wR2 $=0.0814$
R indices (all data)	$\mathrm{R} 1=0.0478, \mathrm{wR} 2=0.0868$
Goodness of Fit on F^{2}	1.017
Largest diff. peak and hole	0.345 and $-0.391 e A^{3}$

Table A. 1 65. Bond Angles (${ }^{\circ}$) for $\mathrm{Ru}(\mathrm{TPhP})(\mathrm{CO})(\mathrm{py})$

atoms	angle		atoms	angle
$\mathrm{C}(45)-\mathrm{Ru}(1)-\mathrm{N}(4)$	$91.53(10)$		$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(27)$	$118.0(2)$
$\mathrm{C}(45)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$92.91(10)$		$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C}(10)$	$125.9(2)$
$\mathrm{N}(4)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$89.81(8)$		$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	$108.8(2)$
$\mathrm{C}(45)-\mathrm{Ru}(1)-\mathrm{N}(3)$	$90.06(10)$		$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$125.3(2)$
$\mathrm{N}(4)-\mathrm{Ru}(1)-\mathrm{N}(3)$	$90.14(8)$		$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$107.2(2)$

$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{N}(3)$	177.03(8)	C(12)-C(13)-C(14)	107.9(2)
$\mathrm{C}(45)-\mathrm{Ru}(1)-\mathrm{N}(2)$	93.37(10)	$\mathrm{N}(3)-\mathrm{C}(14)-\mathrm{C}(15)$	125.5(2)
$\mathrm{N}(4)-\mathrm{Ru}(1)-\mathrm{N}(2)$	175.09(8)	$\mathrm{N}(3)-\mathrm{C}(14)-\mathrm{C}(13)$	108.6(2)
$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{N}(2)$	89.80(8)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	125.9(3)
$\mathrm{N}(3)-\mathrm{Ru}(1)-\mathrm{N}(2)$	90.00(8)	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	126.0(2)
$\mathrm{C}(45)-\mathrm{Ru}(1)-\mathrm{N}(5)$	178.27(10)	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(33)$	116.4(2)
$\mathrm{N}(4)-\mathrm{Ru}(1)-\mathrm{N}(5)$	87.91(8)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(33)$	117.6(2)
$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{N}(5)$	88.73(8)	$\mathrm{N}(4)-\mathrm{C}(16)-\mathrm{C}(15)$	125.8(2)
$\mathrm{N}(3)-\mathrm{Ru}(1)-\mathrm{N}(5)$	88.30(8)	$\mathrm{N}(4)-\mathrm{C}(16)-\mathrm{C}(17)$	108.9(2)
$\mathrm{N}(2)-\mathrm{Ru}(1)-\mathrm{N}(5)$	87.19(8)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	125.3(2)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(4)$	107.3(2)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	107.5(2)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Ru}(1)$	126.4(2)	C(17)-C(18)-C(19)	107.6(2)
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{Ru}(1)$	126.3(2)	$\mathrm{N}(4)-\mathrm{C}(19)-\mathrm{C}(20)$	125.7(2)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(20)$	126.0(2)	$\mathrm{N}(4)-\mathrm{C}(19)-\mathrm{C}(18)$	108.8(2)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	108.9(2)	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	125.4(2)
$\mathrm{C}(20)-\mathrm{C}(1)-\mathrm{C}(2)$	125.2(2)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(1)$	125.5(2)
$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(6)$	107.3(2)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(39)$	117.6(2)
$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{Ru}(1)$	126.1(2)	$\mathrm{C}(1)-\mathrm{C}(20)-\mathrm{C}(39)$	116.9(2)
$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{Ru}(1)$	126.6(2)	$\mathrm{C}(22)$-C(21)-C(26)	118.7(3)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	107.7(2)	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(5)$	120.4(3)
$\mathrm{C}(14)-\mathrm{N}(3)-\mathrm{C}(11)$	107.5(2)	$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{C}(5)$	120.9(3)
$\mathrm{C}(14)-\mathrm{N}(3)-\mathrm{Ru}(1)$	126.2(2)	$\mathrm{C}(21)$-C(22)-C(23)	120.2(4)
$\mathrm{C}(11)-\mathrm{N}(3)-\mathrm{Ru}(1)$	126.2(2)	C(24)-C(23)-C(22)	120.0(4)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	107.3(3)	C(25)-C(24)-C(23)	119.9(4)
$\mathrm{C}(16)-\mathrm{N}(4)-\mathrm{C}(19)$	107.2(2)	C(24)-C(25)-C(26)	120.8(4)
$\mathrm{C}(16)-\mathrm{N}(4)-\mathrm{Ru}(1)$	126.2(2)	C(21)-C(26)-C(25)	120.4(4)
$\mathrm{C}(19)-\mathrm{N}(4)-\mathrm{Ru}(1)$	126.6(2)	C(28)-C(27)-C(32)	117.7(3)
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	125.7(2)	C(28)-C(27)-C(10)	121.6(2)
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	108.9(2)	$\mathrm{C}(32)-\mathrm{C}(27)-\mathrm{C}(10)$	120.7(2)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	125.3(3)	$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	121.6(3)
$\mathrm{C}(46)-\mathrm{N}(5)-\mathrm{C}(50)$	117.0(3)	$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(28)$	119.7(3)
$\mathrm{C}(46)-\mathrm{N}(5)-\mathrm{Ru}(1)$	121.9(2)	$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(29)$	119.3 (3)
$\mathrm{C}(50)-\mathrm{N}(5)-\mathrm{Ru}(1)$	121.1(2)	$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	120.9(3)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	125.9(3)	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(27)$	120.8(3)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(21)$	117.2(2)	$\mathrm{C}(38)-\mathrm{C}(33)-\mathrm{C}(34)$	117.7(3)
C(4)-C(5)-C(21)	116.9(2)	$\mathrm{C}(38)-\mathrm{C}(33)-\mathrm{C}(15)$	121.5(3)
$\mathrm{N}(2)$-C(6)-C(5)	125.5(2)	$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{C}(15)$	120.8(3)
$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	108.9(2)	$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	121.5(3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	125.6(3)	$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(34)$	120.1(3)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	107.4(2)	$\mathrm{C}(37)-\mathrm{C}(36)-\mathrm{C}(35)$	119.1(3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	107.3(2)	$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{C}(38)$	120.9(4)
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	126.4(2)	$\mathrm{C}(33)-\mathrm{C}(38)-\mathrm{C}(37)$	120.8(3)
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(8)$	109.0(2)	$\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{C}(44)$	117.1(3)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	124.6(2)	$\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{C}(20)$	120.7(3)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	125.3(2)	$\mathrm{C}(44)-\mathrm{C}(39)-\mathrm{C}(20)$	122.2(3)
C(42)-C(41)-C(40)	120.7(4)	$\mathrm{C}(57)-\mathrm{C}(52)-\mathrm{C}(51)$	119.8(4)
C(43)-C(42)-C(41)	118.7(3)	$\mathrm{C}(53)-\mathrm{C}(52)-\mathrm{C}(51)$	121.8(3)
$\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(44)$	120.8(3)	$\mathrm{C}(52)-\mathrm{C}(53)-\mathrm{C}(54)$	120.8(3)
C(39)-C(44)-C(43)	121.7(3)	$\mathrm{C}(55)-\mathrm{C}(54)-\mathrm{C}(53)$	120.1(3)
$\mathrm{O}(1)-\mathrm{C}(45)-\mathrm{Ru}(1)$	177.8(2)	C(54)-C(55)-C(56)	119.3(3)
$\mathrm{N}(5)-\mathrm{C}(46)-\mathrm{C}(47)$	122.9(3)	$\mathrm{C}(57)-\mathrm{C}(56)-\mathrm{C}(55)$	120.5(3)
$\mathrm{C}(48)-\mathrm{C}(47)-\mathrm{C}(46)$	118.5(3)	C(52)-C(57)-C(56)	121.0(4)
$\mathrm{C}(49)$-C(48)-C(47)	120.1(3)	$\mathrm{C}(60)-\mathrm{C}(59)-\mathrm{C}(58)$	122.3(4)
$\mathrm{C}(48)$-C(49)-C(50)	118.7(3)	C(59)-C(60)-C(61)	121.8(4)

Table A. 1 66. Bond Lengths (\AA) for $\mathrm{Ru}(\mathrm{TPhP})(\mathrm{CO})(\mathrm{py})$

atom	distance	atom	distance
$\mathrm{Ru}(1)-\mathrm{C}(45)$	1.837(3)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.449(4)
$\mathrm{Ru}(1)-\mathrm{N}(4)$	2.057(2)	$\mathrm{C}(12)-\mathrm{C}(13)$	1.351(4)
$\mathrm{Ru}(1)-\mathrm{N}(1)$	2.057(2)	$\mathrm{C}(13)-\mathrm{C}(14)$	1.447(4)
$\mathrm{Ru}(1)-\mathrm{N}(3)$	2.062(2)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.404(4)
$\mathrm{Ru}(1)-\mathrm{N}(2)$	2.062(2)	$\mathrm{C}(15)-\mathrm{C}(16)$	1.401(4)
$\mathrm{Ru}(1)-\mathrm{N}(5)$	2.207(2)	$\mathrm{C}(15)-\mathrm{C}(33)$	1.504(4)
$\mathrm{N}(1)-\mathrm{C}(1)$	1.377(3)	$\mathrm{C}(16)-\mathrm{C}(17)$	1.448(4)
$\mathrm{N}(1)-\mathrm{C}(4)$	1.379(3)	$\mathrm{C}(17)-\mathrm{C}(18)$	$1.346(4)$
$\mathrm{C}(1)-\mathrm{C}(20)$	1.403(4)	$\mathrm{C}(18)-\mathrm{C}(19)$	1.446(4)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.444(4)	$\mathrm{C}(19)-\mathrm{C}(20)$	1.401(4)
$\mathrm{O}(1)-\mathrm{C}(45)$	1.151(3)	$\mathrm{C}(20)-\mathrm{C}(39)$	1.497(4)
$\mathrm{N}(2)-\mathrm{C}(9)$	1.374(3)	$\mathrm{C}(21)-\mathrm{C}(22)$	1.382(4)
$\mathrm{N}(2)-\mathrm{C}(6)$	$1.377(3)$	$\mathrm{C}(21)-\mathrm{C}(26)$	$1.386(4)$
$\mathrm{C}(2)-\mathrm{C}(3)$	1.350(4)	$\mathrm{C}(22)$ - $\mathrm{C}(23)$	$1.403(5)$
$\mathrm{N}(3)-\mathrm{C}(14)$	1.377(3)	C(23)-C(24)	$1.371(6)$
$\mathrm{N}(3)-\mathrm{C}(11)$	1.381(3)	C(24)-C(25)	1.362(7)
C(3)-C(4)	1.447(4)	$\mathrm{C}(25)-\mathrm{C}(26)$	1.387(5)
N(4)-C(16)	1.378(3)	C(27)-C(28)	1.380(4)
N(4)-C(19)	1.378 (3)	C(27)-C(32)	$1.388(4)$
C(4)-C(5)	1.402(4)	C(28)-C(29)	$1.390(4)$
$\mathrm{N}(5)-\mathrm{C}(46)$	1.343(4)	C(29)-C(30)	1.377(4)
$\mathrm{N}(5)-\mathrm{C}(50)$	1.349(4)	C(30)-C(31)	1.369(4)
C(5)-C(6)	1.403(4)	$\mathrm{C}(31)-\mathrm{C}(32)$	1.381(4)
$\mathrm{C}(5)-\mathrm{C}(21)$	$1.505(4)$	$\mathrm{C}(33)-\mathrm{C}(38)$	1.360(4)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.445(4)	$\mathrm{C}(33)-\mathrm{C}(34)$	$1.367(4)$
$\mathrm{C}(7)-\mathrm{C}(8)$	1.352(4)	C(34)-C(35)	1.389(5)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.447(4)	$\mathrm{C}(35)-\mathrm{C}(36)$	1.358(5)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.404(4)	$\mathrm{C}(36)-\mathrm{C}(37)$	1.347(5)
C(10)-C(11)	$1.406(4)$	C(37)-C(38)	1.397(5)
C(10)-C(27)	1.505(4)	C(39)-C(40)	$1.370(4)$
C(39)-C(44)	1.374(4)	$\mathrm{C}(56)-\mathrm{C}(57)$	1.379(5)
C(40)-C(41)	$1.395(5)$	C(58)-C(59)	$1.576(8)$
C(41)-C(42)	1.367(5)	$\mathrm{C}(59)-\mathrm{C}(60)$	$1.366(6)$
C(42)-C(43)	$1.350(5)$	C(60)-C(61)	$1.396(6)$
C(43)-C(44)	$1.386(5)$		
C(46)-C(47)	1.379(4)		
C(47)-C(48)	1.365(5)		
C(48)-C(49)	$1.360(5)$		
$\mathrm{C}(49)-\mathrm{C}(50)$	1.377(4)		
C(51)-C(52)	1.515(5)		
C(52)-C(57)	1.382(5)		
C(52)-C(53)	$1.379(5)$		
C(53)-C(54)	1.395(5)		
C(54)-C(55)	1.374(5)		
$\mathrm{C}(55)-\mathrm{C}(56)$	1.378(5)		

Table A.1 67. Atomic Coordinates for $\operatorname{Ru}(\mathrm{TPhP})(\mathrm{CO})(\mathrm{py})$

atom	x	y	z	atom	x	y	z
$\mathrm{Ru}(1)$	1156(1)	1742(1)	7607(1)	C(25)	-4819(4)	3675(5)	6583(2)
$\mathrm{N}(1)$	340(2)	2210(2)	6721(1)	C(26)	-3763(3)	3110(4)	6758(2)
C(1)	$779(3)$	2010(2)	6074(1)	C(27)	223(2)	2353(2)	10067(1)
$\mathrm{O}(1)$	-244(2)	-595(2)	7448(1)	C(28)	570(3)	3383(3)	10472(2)
N (2)	-219(2)	2529(2)	8159(1)	C(29)	272(4)	3555(3)	11154(2)
C(2)	-88(3)	2440(2)	5593(1)	C(30)	-384(3)	2683(3)	11438(2)
$\mathrm{N}(3)$	2025(2)	1355(2)	8503(1)	C(31)	-752(3)	1665(3)	11039(2)
C(3)	-1032(3)	2891(2)	5948(1)	C (32)	-460(3)	1496(3)	10360(1)
$\mathrm{N}(4)$	2611(2)	1093(2)	7064(1)	C(33)	5066(3)	-115(2)	8188(1)
C(4)	-772(3)	2746(2)	6661(1)	C(34)	6193(3)	532(3)	8301(2)
$\mathrm{N}(5)$	2256(2)	3437(2)	7755(1)	C(35)	7309(3)	26(4)	8442(2)
C(5)	-1503(2)	3139(2)	7203(1)	C(36)	7300 (3)	-1138(3)	8463(2)
C(6)	-1238(2)	3040(2)	7898(1)	$\mathrm{C}(37)$	6196(4)	-1787(3)	8352(2)
C(7)	-1993(3)	3452(2)	8454(1)	C(38)	5073(3)	-1279(3)	8214(2)
C (8)	-1426(3)	3188(2)	9040(1)	C(39)	2193(3)	1362(2)	5166(1)
C(9)	-308(3)	2605(2)	8857(1)	$\mathrm{C}(40)$	2831(4)	2252(3)	4896(2)
$\mathrm{C}(10)$	524(2)	2174(2)	9324(1)	C(41)	3073(4)	2166(4)	4203(2)
C (11)	1602(2)	1589(2)	9154(1)	C(42)	2665(3)	1194(3)	3773(2)
$\mathrm{C}(12)$	2466(3)	1150(2)	9636(1)	C(43)	2047(4)	308(3)	4035(2)
C(13)	3384(3)	667(2)	9274(1)	C(44)	1810(4)	388(3)	4725(2)
C(14)	3118(2)	792(2)	8560(1)	C(45)	275(3)	314(2)	7503(1)
C(15)	3872(2)	441(2)	8018(1)	$\mathrm{C}(46)$	1847(3)	4370(2)	7492(2)
$\mathrm{C}(16)$	3630(2)	582(2)	7327(1)	C(47)	2486(3)	5451(3)	7607(2)
$\mathrm{C}(17)$	4418(3)	217(2)	6774(1)	C(48)	3582(4)	5577(3)	8006(2)
C (18)	3872(3)	505(2)	6193(1)	C(49)	4039(3)	4643(3)	8265(2)
C(19)	2730(3)	1053(2)	6368(1)	C(50)	3362(3)	3585(3)	8129(2)
C(20)	1889(3)	1479(2)	5905(1)	C(51)	3477(4)	5765(4)	5147(2)
C(21)	-2663(3)	3741(3)	7023(1)	C(52)	2449(3)	6210(3)	5593(2)
C(22)	-2643(4)	4938(3)	7111(2)	C(53)	1357(3)	5539(3)	5669(2)
C(23)	-3717(5)	5496(4)	6928(2)	C(54)	404(4)	5981(3)	6063(2)
C(24)	-4793(4)	4854(5)	6664(2)	C(55)	543(4)	7100(3)	6380(2)
C(56)	1638(4)	7771 (3)	6311(2)	C(59)	5456(4)	3896(3)	10059(2)
C(57)	2580(4)	7329(3)	5923(2)	$\mathrm{C}(60)$	4192(4)	4049(3)	10029(2)
$\mathrm{C}\left(59^{\prime}\right)$	5456(4)	3896(3)	10059(2)	C(61)	3735(4)	5134(4)	9975(3)
C(58)	5990(7)	2703(7)	10189(5)				

Appendix 2. Experimental for the Kinetic Studies of $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$.

The chemical behaviour of $[\operatorname{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ in aqueous solution was monitored spectrophotometrically in a thermostated Hewlett-Packard HP 8452A Diode Array instrument using quartz cells of path length 1.0 cm fitted with a plastic cap. The cell was thermostated at temperatures in the range of $15-35{ }^{\circ} \mathrm{C}$ and $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ was added to $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ or $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$. The sample was shaken to ensure complete mixing prior to monitoring absorbance changes at a fixed wavelength. The concentration of $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}$ ranged from $(0.15-1.5) \times 10^{-3} \mathrm{M}$ and that of $\mathrm{H}_{2} \mathrm{O}$ from (0-55.6) M ; thus pseudo-first-order conditions were maintained. Log (absorbance difference) vs. time plots gave linear plots for at least 2.5 to 3 half-lives, from which the pseudo-first-order rate constants, $\mathrm{k}_{\mathrm{obs}}$, were determined.

Appendix 3. Thermal Gravimetric Analyses Plots

Figure A.3.1. TGA of $\left[\operatorname{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$.

Figure A.3.2. TGA of $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot 2.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure A.3.3. TGA of $\mathrm{Na}_{4}\left(\mathrm{H}_{2} \mathrm{TSPhP}\right) \cdot 15 \mathrm{H}_{2} \mathrm{O}(12.7460 \mathrm{mg})$.

Figure A.3.4. TGA of $\mathrm{Na}_{4}[\mathrm{Ru}(\mathrm{TSPhP})(\mathrm{CO})] \cdot 4 \mathrm{H}_{2} \mathrm{O}(9.9060 \mathrm{mg})$.

Appendix 4. Accumulation Data of Ru in CHO Cells

Figure A.4.1. Accumulation of Ru in CHO cells after a 2 h incubation with
$\left[\mathrm{Ru}(12-\mathrm{S}-4)(\mathrm{DMSO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}(1),[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}(2),\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-$ $\mathrm{Cl})_{2}(3),\left[\mathrm{RuCl}(\mathrm{BPSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}(4),\left[\mathrm{RuCl}(\mathrm{BBSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}(5)$.

Appendix 5. DNA-binding Data of Ru in CHO Cells

Figure A.5.1. Ru-DNA-binding after incubation with $\left[\mathrm{Ru}(12-\mathrm{S}-4)(\mathrm{DMSO})\left(\mathrm{H}_{2} \mathrm{O}\right)\right][\mathrm{OTf}]_{2}(\mathbf{1})$, $[\mathrm{RuCl}(\mathrm{BPSP})]_{2}(\mu-\mathrm{Cl})_{3}(\mathbf{2}),\left[\mathrm{RuCl}(\mathrm{BESE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}(\mathbf{3}),\left[\mathrm{RuCl}(\mathrm{BPSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}(4)$, $\left[\mathrm{RuCl}(\mathrm{BBSE})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mu-\mathrm{Cl})_{2}(5)(\mathrm{CHO}$ cells, 2 h$)$.

[^1]: \dagger The loosely used "mononuclear," "dinuclear" and "trinuclear" terms refer to the number of metal atoms within a molecule.

[^2]: ${ }^{a}$ In KBr , unless stated otherwise. ${ }^{b} v_{\text {so }}$ free DMSO, $1055 \mathrm{~cm}^{-1}$ in Nujol (ref. 34). ${ }^{c} \mathrm{NaCl}$, Nujol or hexachlorobutadiene mulls. ${ }^{d}$ Nujol mulls between CsBr windows.

[^3]: ${ }^{a}$ Indicates data taken from refs. 52 and 53 for the 4 complexes, all of which were characterized by X-ray analysis; otherwise data represent this thesis work. ${ }^{b}$ Complexes characterized by X-ray analysis. ${ }^{c}$ Formulated with one $\mathrm{H}_{2} \mathrm{O}$.

[^4]: ${ }^{a}$ Trans to S. ${ }^{b}$ Trans to $\mathrm{Cl} .{ }^{c}$ Bonds involving backbone carbons. ${ }^{d}$ The C -atom of an alkyl substituent.

[^5]: ${ }^{a}$ Data taken from refs. 52 and 53. ${ }^{b}$ Trans to S . ${ }^{c}$ Trans to $\mathrm{Cl} .{ }^{d}$ Bonds involving backbone carbons. ${ }^{e}$ The C -atom of an alkyl substituent.

[^6]: ${ }^{a}$ Terminal Cl. ${ }^{b}$ Trans to $\mathrm{Cl} .{ }^{c}$ Trans to S. ${ }^{d}$ Bridging Cl. ${ }^{e}$ Backbone C-atoms. ${ }^{f}$ End substituents.

[^7]: ${ }^{a}$ Trans to $\mathrm{Cl} .{ }^{b}$ Trans to $\mathrm{O} .{ }^{c}$ Trans to S.

