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ABSTRACT 

The present work was directed toward the synthesis of a 

new c h i r a l c a t a l y s t f o r asymmetric homogeneous hydrogenation. 

E f f i c i e n t ways to synthesize the ferrocenylphosphlne ligands 

(R,S)- and (S,R)-c<-[2-diphenylphosphlnoferrocenyl]ethyldlme-

thylamlne ((R,S)- and (S.R)-FcNP) and t h e i r c a t i o n i c rhodium 

complexes [(dlene)Rh(-)FcNP] A were developed. Struct u r a l / 

data f o r the ligand and models of i t s metal complex have been 

used to r a t i o n a l i z e the stereochemical approach of the subs­

trate to the metal complex, and hence predict the absolute 

configuration of the product. 

The rate of c a t a l y t i c hydrogenation i s dependent on the 

substrate as i s the o p t i c a l y i e l d of the product alkane. 

High o p t i c a l y i e l d s are obtained when <*-aceta.midocinnamlc-

acid i s hydrogenated:at.1 atm E? and 32° • 
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INTRODUCTION 

General Review 

The search f o r and creation of a system which can pro­

duce o p t i c a l a c t i v i t y l n chemical compounds has long been a 

goal of the preparative chemist, since the deliberate pro­

duction of asymmetry i s an important problem from both the 

theo r e t i c a l and p r a c t i c a l point of view. In the case of many 

compounds i t i s only one enantiomer which i s useful l n bio­

l o g i c a l systems, and examples are found, f o r example, i n 

pharmaceuticals (1), food additives (2), and perfumes (3). 

In 18^8, Pasteur f i r s t succeeded i n separating the two 

enantiomeric forms of sodium ammonium tartarate with the aid 

of forceps and a magniflng lens which i n i t i a t e d much e f f o r t 

i n developing methods of c h i r a l synthesis. Most early r e s u l t s 

showed either low o p t i c a l y i e l d or the need f o r large quan­

t i t i e s of o p t i c a l l y active reagents (5i6), consequently many 

chemists transfered t h e i r attention to b i o l o g i c a l systems 

involving enzymes (7); f o r only enzymes could convert o p t i ­

c a l l y inactive substances into o p t i c a l l y active compounds l n 

p r a c t i c a l l y 100̂  o p t i c a l purity without the help of large 

quantities of o p t i c a l l y active reagents (7). 

In 1956, Akaborl, Sakurai, Izumi and F u j i i , succeeded i n 

the asymmetric hydrogenation of various oxime and oxazolone 

de r i a t i v e s ; o p t i c a l y i e l d s of up to 35% were obtained. They 

used a heterogeneous c a t a l y s t consisting of meta l l i c palladium 
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drawn out on s i l k ( 8 ) . The o p t i c a l purity of the product was 

found to be dependent on the o r i g i n of the s i l k f i b r o i n and 

i t s chemical pretreatment, and even worse t h e i r r e s u l t s were 

not reproducible. In another heterogeneous system, Raney 

ni c k e l was modified with amino acids and other chira.l rea­

gents to give catalysts that were used to e f f e c t asymmetric 

hydrogenation (9 ) . However, i t was found that the o p t i c a l 

p u r i t i e s of the products were very dependent on pH and the 

method of c a t a l y s t preparation. 

Over the past two decades, many pioneering studies d i ­

rected towards c a t a l y t i c asymmetric synthesis, mostly i n 

homogeneous systems, have been undertaken. Most of the work 

is summarized i n some review a r t i c l e s and books ( 1 0 ) . 

Since the f i r s t report by Wilkinson and co-workers l n 

1965 (11,12) concerning the c a t a l y t i c a c t i v i t y of solutions 

of [(CgH^)^P]^RhCl with respect to hydrogenation, extensive 

mechanistic studies have been c a r r i e d out on this system ( 1 3 ) . 

However, the d e t a i l e d picture i s s t i l l somewhat cont r o v e r s i a l 

( 1 ^ , 1 5 ) . Wilkinson and co-workers postulated a mechanism 

based on k i n e t i c data f o r the hydrogenation of o l e f i n s . This 

i s outlined i n Figure 1 (16) . This mechanism involves the 

dissociated, solvent saturated species (Ph^P^RhCl(S) as a 

key intermediate. 

It was envisioned that the rate-determining step could 

be either one or both of the two paths shown i n Figure l i ( i ) 

attack of o l e f i n on the dihydro complex, the k' path, or "ny-. 



{V?hj)jBhCl + Solvent (S) (PPh 3) 2RhCl(S) + PPh 3 

(PPh 3) 2RhCl(S) + H 2 

Ki 
E 2 ( P P h 3 ) 2 R h C l ( 3 ) 

o l e f i n k' o l e f i n 

k" 
(PPh 3) 2RhCl(olefin) • (PPh^) 2RhCl(S) + p a r a f f i n 

Figure 1. A proposed mechanism for hydrogenation by Wilkinson's c a t a l y s t . 



dride route" ( l ' l ) ; ( l i ) attack of hydrogen on the o l e f i n 

complex, the k" path, or "unsaturate route" (l'l-). I t was 

found that both pathways are possible and the actual mechanism 

is dependent on the choice of the substrate (l ' J - , 16,17). 

Contrary to the postulates of V/llkinson, Tolman et a l . 

found that the RhCl(PPh^)-^ complex does not d i s s o c i a t e into 

RhC'l(PPh^)2 to a s p c c t r o s c o p i c a l l y detectable extent, but i s 

i n equilibrium with the chlor i n e bridged dimer [RhCl(PPh^) 2] 2 

(15), This dirner, which reacts with R 2 to form K 2 [RhCl (PPh^ ) 2 J 2 

1_, was proved to be a. good homogeneous hydrogenation c a t a l y s t 

PPh q 

PPho CI K K / \ / 
Rh Rh 

PPh^ CI H 
-> PPh^ 

for the reduction of cyclohexene and ethylene. The major 

paths for the hydrogenation of cyclohexene are outlined i n 

the following scheme: 

^ [RhCl (PPh. )oW rf2RhCl(PPh~)2 

k l H 2 k - l k2«2 P - 1 
1 0\l2LRhCl(PPh 3)2J2 1 0 , 2 H 2 R h C l ( P P h 3 ) £ 

and the actual c a t a l y s t s are dihydrides of b i s ( t r i p h e n y l -

phosphlne)rhodium species. 
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In spite of the differences i n opinion about the precise 

mechanism, three points on which there i s a general agreement 

can be emphasized. 

1. At some point i n the c a t a l y t i c cycle one phosphine 

ligand i s dissociated, a.nd Rg i s activated by the formation 

of metal-R bonds. Dlmerlzation to [RhCl (PPlr^ ) 2 ] g also occurs 

a f t e r the phosphine d i s s o c i a t i o n . 

2. An intermediate (or at l e a s t an activated complex) 

exists i n which phosphine, hydrogen, and o l e f i n are a l l 

coordinated to the metal. 

3. The hydrogens are transfered successively from the 

central metal to the coordinated substrate which forms meta.l-

a l k y l bond f i r s t a.nd then the lea.ving product. 

Hydrogen a c t i v a t i o n i s l a r g e l y dependent on the coordi­

nation number and e l e c t r o n i c configuration of the metal. 

P r a c t i c a l l y a l l meta.l complexes which are hydrogenation ca-
6 8 

t a l y s t s have a d to d configuration. Coordlnatively satu­

rated complexes are unreactive unless the ligands present are 

l a b i l e i n s o l u t i o n . Thus i t i s obvious that hydrogenation 

catalysts are quite s e n s i t i v e to solvents, substrate and 

ligand properties. 

Halpern (18) has noted three mechanisms of a c t i v a t i o n 

i n homogeneous hydrogenation: (1) h e t e r o l y t i c s p l i t i n g ; ( i i ) 

homolytlc s p l i t i n g ; ( i l l ) dihydride formation by oxidative 

addition. Of these, the dihydride formation appears to be 

the most commonly encountered. Px>th (1) and ( i l l ) involve 

oxidative-addition of hydrogen to the metal complex. The 
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dihydride formation Involves the addition of two hydrogen 

atoms, which increases the oxidation state of metal by two; 

whereas one hydrogen atom i s added to the metal a f t e r hemoly­

t i c s p l i t t i n g of hydrogen, which causes the oxidation number 

of the metal to Increase by one. The general order of re­

a c t i v i t y of metals increases from Ni to Fe, and from Fe to Os 

(18). Ligands such as phosphines and carbon monoxide which 

have both donor and acceptor properties s t a b i l i z e the metal-

hydrogen bond. Formation of a. hydride Involves either, i n t e ­

r a c t i o n of the IsS bonding Hg o r b i t a l with a vacant metal d 

o r b i t a l , or attack of an empty ls6 anti-bonding Kg o r b i t a l 

upon a f i l l e d metal d or d-hybrld o r b i t a l . In the case of 

rhodium complexes the second a l t e r n a t i v e seems favored since 

[Rh(Ph2PCH2CH2PPh2)2]C1 f a l l s to add Hg while the more basic 

complexes, e.g., [Ir(Ph2PCE 2CH2PPh 2) 2]C1 and [Rh(MegPCHgCHg-

PMeg)g]Cl d o (19). (The greater the b a s i c i t y of the metal 

center the larger and more available are the d o r b i t a l s . ) 

For a given metal ion, r e a c t i v i t y i s enhanced by ligands 

which are more e f f e c t i v e i n s t a b i l i z i n g high oxidation states 

of the central metal, e.g., PPh3, rather than CO. Thus, f o r 

example, the r e a c t i v i t y order toward H 2 i s Rh(PPh^)^Cl > 

RhCl(CO)(PPh 3) 2. 

It has been generally accepted that coordination of the 

unsaturated substrate at a vacant s i t e on the metal i s nece­

ssary for homogeneous hydrogenation to proceed. This substrate 

a c t i v a t i o n through Tr-olefln coordination r e s u l t s i n a l e ­

ssening of the double bond character of the substrate and 



also maintains the o l e f i n i n a. favorable position for hydrogen 

transfer. In asymmetric hydrogenation of a. p r o c h l r a l substrate 

the a c t i v a t i o n of the substrate seems to be a key step i n pro­

ducing the c h i r a l product. (Indeed models show that the abso­

lute configuration of the product can be predicted i f the geo­

metry of the bound o l e f i n i s taken into consideration.) 

The l a s t process i n the hydrogenation reaction i s the 

transfer of hydrogen from, the metal to the Tr-coordinated subs­

trate . This i s generally regarded as a. two step hydride trans­

f e r . . . 

At about the same time Wilkinson reported his v e r s a t i l e 

c a t a l y s t , other groups had been working on the preparation 

and configura.tiona.l c o r r e l a t i o n of c h i r a l phosphines (20-2*4-). 

Realizing the p o s s i b i l i t y of combining both streams of resea.rch 

Horner et a l . (2 5) hypothesized that a. Wllkenson type catalyst 

with c h i r a l phosphines as liga.nds should show asymmetric ca­

t a l y t i c behavior. 

Horner's suggestion was put into practice by Knowles and 

Sabacky i n 1968 (26). Knowles used P*PhHePr- as a c h i r a l l i ­

gand to make complexes of the type R h L ^ C l ^ (where L* i s the 

c h i r a l ligand) which were used i n the hydrogenation of atropic 

acid and ita.conic a c i d . The reduction conditions and results -

are indicated i n Figure 2, Although the structure of the 

active ca.talyst i s not known, Knowles and Sabacky (26) su­

ggested that the octahedral d^ Rh(III) complexes might y i e l d 

a square-planar d^ Rh(I) complexes on reduction with H 2, 

which would be coordinatlvely unsaturated and would behave 



Ph 

/ 
HOOC 

atropic acid 

L ^ R h C l - ^ 

20 atm K o , 60 
benzene-EtOH-Et^N 

P h — C H — C H ^ 

COOH 

15% e.e 0 (S) 

H 2 C = C N 

^CEgCOOH 

C O O H 

L * o R h C l 3 

20 atm Ii2, 60 
benzene-EtOE-Et^N 

C H o — C H — C H o C O O H 3 , 2 
COOH 

i 

Itaconic acid )% e,e 

L* = P*PhMePr-

Figure 2. Early examples of homogeneous asymmetric hydrogenation (26). 
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In a manner s i m i l a r to Wilkinson's c a t a l y s t . 

Horner et a l . ( 2 7 ) used a. c a t a l y s t prepared i n s i t u from 

(S)_ ( + )-methylphenyl-n-propylphosphine and [Rh (1 , 5-hexa.diene ) 

Cljg i n benzene, a. procedure designed to give neutral, square 

planar Rh(I) complexes of the type R h L ^ C l . They envisaged 

the structure of the intermediate state as i n Figure 3 to 

explain the (S ) - ( + ) - 2-phenylbutane (7-8% e.e.) obtained from 

o<-ethylstyrene and the (R)-( + )-l~methoxy-l-phenylethane (3-^% 

e.e.) obtained from 1-methoxystyrene. 

During studies of the hydrogenation of atropic acid with 

the P*MePhPr--Rh(I) system, Knowles' group (28) found that 

when the L/Rh r a t i o was increased from 2 to 8, the hydroge-

na.tlon reaction rate and o p t i c a l purity increased to a. maximum. 

This wa.s quite peculiar since l t had been established that 

excess ligand lowers the a c t i v i t y of a. Wilkinson-type c a t a l y s t 

by competing with substrate f o r vacant coordination s i t e s on 

the metal. It was eventually found that" l t was the formation 

of a phosphobetalne by the reaction of atropic acid with any 

ligand i n excess of 2 equivalents per equivalent" of rhodium, 

which influenced the rate and o p t i c a l y i e l d . Associated with 

this was the conversion of the substrate to the carboxylate 

a.nlon (Figure k). It was also found (28) that i n the presence-

of trlethyla.mine and using L/Rh = 2 a. t h i r t y - f o l d rate increase 

was observed, compared with the ra.te without triethylamine. 

An increased o p t i c a l purity (28%, e.e.) was also obtained. 

In 1 9 7 1 * both Morrison's and Kagan's groups showed that 

i n order to obtain asymmetric reduction using rhodium phosphine 
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(Pro S) (Pro fi) 

R = methyl or methoxy group. 

Fi g u r e 3 . A model f o r the c o r r e l a t i o n of the stereochemis­
t r y o f r e d u c t i o n products with t h a t of the 
c h i r a l l i g a n d ( 2 7 ) . 

Ph 
L + H 2C=G 

OOH 
-* L — C Ho C HG 0 0 

Ph 

phosphobetalne 

LH" CH 2GHC00H'E 2C=c: 

Ph 

.Ph 

C H 2 = C L 

Ph 

"C00H 

•ohosnhobetslne sa.lt 

F i gure *K Reac t i o n of a. t e r t i a . r y phosphlne w i t h a t r o p i c 
a c i d to produce a. phosphobetalne sa.lt. 

http://sa.lt
http://sa.lt
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complexes the c h i r a l center does not have to be on phosphorus. 

Thus Morrison et a l . (29) prepared t h e i r c a t a l y s t i n s i t u by 

the reaction of (+)-neomenthyldlphenylphosphlne (NMDPP) with 

rhodium (I) complexes of ethylene or dlene i n ethanol-

benzene. This c a t a l y s t , thought to be Rh(NMDPP)jCl, was used 

to reduce (E)-/S-methylcinnamic a c i d i n the presence of t r i e -

thylamine. The r e s u l t i n g 3-phenyl-butanoic acid contained a 

6l% e.e. of the S isomer (Figure 5). Reduction of ef-ethylsty-

rene gave only 7% e.e. and l t was suggested that t h i s was due 

to the lack of b i f u n c t i o n a l interactions through both the : . 

carboxylase anion and o l e f i n i c bond (29,30). 

Kagan and Dang used the dlphosphine, (-')-2,3-0-isopro-

pylldene-2,3-dihydroxy-l,^-bis(diphenylphosphino)butane ( ( - ) -

DIOP), 2, derived from (+)-ethyl tartarate, to prepare, In 

Ph 2PH 2C • 0 
H 

2 

s i t u , a complex represented by [Rh(-)-DIOPClS], where S i s 

the solvent (31»32). This s o l u t i o n catalyzed the reduction 

of alkenes at room temperature and atmospheric pressure. 

Thus o!-acetamidocinna.mic a c i d was reduced to (R)-N-acetyl-

phenylalanlne with an o p t i c a l y i e l d of 72%, the chemical 

y i e l d being 95%* They att r i b u t e d the high s t e r e o s e l e c t i v i t y 



H-C H . fh 
3 \ / [Rh(CH ?=CE 9)pCl] . NMDPP | 

> C 1 7 t H qC—C—CH 2COOH 
/ \ 2 0 atm K 2, 6 0 ° | 

Ph COOH benzene-EtOri-Et^N H 

(E)-£-methylcinnamic 6l% e.e. (S) 
a c i d 

NMDPP = H-jC- ,,,'i< \—=3Pri = > 
PPh 2 PPh 2 

fx: 

i 

Figure 5 . Asymmetric homogeneous hydrogenation w i t h a neomenthyldiphenyl-
phosphlhe (NMDPP) c a t a l y s t (29). 
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of this reduction to the conformational r i g i d i t y of the trans­

fused dloxolane ri n g and also to the presence of the rhodium-

containing chelate r i n g . Stereochemical control through par­

t i c i p a t i o n of the carboxylic acid function of the substrate 

also seemed to be indicated since hydrogenation of methyl cX-

phenylacrylate gave methyl-2-phenylpropa.noate of the R c o n f i ­

guration l n only 7% e.e. (31). Later, i t was found that a 

substrate containing the enamlde group could be hydrogenated 
NECOCEo 

with high o p t i c a l y i e l d (32). For example, CEoCE=c" 
J NPh 

was hydrogenated to afford a 7&% o p t i c a l y i e l d . Table 1 shows 

the results obtained by Kagan et a l . with DIOP as the ligand 

in the hydrogenation of <X-a.cyla.midoacryllc acids. They found 

that the Rh-(-)-DIOP c a t a l y s t gave the unnatural R or D-amino 

acid derivatives, whereas L-amino acid derivatives could be 

obtained with the (+)-DIOP c a t a l y s t . 

In 1972, Knowles and co-workers (30.33-36) synthesized 

c h i r a l o-anlsylcyclohexylmethylphosphlne (ACMP) This 

2 (+)-(R)-ACMP 

ligand gave complexes with rhodium, which were very e f f e c t i v e 

catalysts f o r the reduction of o(-a.cylamidoacrylic acids. Op­

t i c a l y i e l d as high as 90% were obtained. Catalysts prepared 



Table 1. Asymmetric Kydrogenations of oi-Acyla.midoa.crylic 
Acids with the Soluble DIOP Catalyst (32). 

R'HC= 
NHCOR R'CEgCHIfflCOH 

R' 

COOK 

R 

COOH 

Conversion Optical y i e l d {%) 

H 

Ph 

p-OK-phenyl 

p-OE-phenyl 

1-0 3H 7 

CE. 

CH. 

CB 

CH. 

Ph 

Ph 

96 

95 

92 

97 

95 

98 

73 

72 

80 

79 

62 

22 

a[Rh] = 3 mM; P = 1.1 atm; room temperature. (-)-DIOP-Rh 
complex gives D amino acid derivatives; (+)-DIOP-Rh complex 
gives L. 
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from ( + )-ACMP give L-a.mlno acid derivatives, and (-)-ACMP give 

D-amino acid d e r i v a t i v e s . In 1975 > they obtained an enantio­

meric excess of 9&% l n the reduction of <*-a.cyla.midoacryllc 

acids using a. new c h i r a l d i ( t e r t i a r y phosphine) 4 as the 11-

gand (37). The c a t a l y t i c species was believed to be i n the 

cat i o n l c form. They found that the high o p t i c a l y i e l d s ob­

tained with this chelating ligand were not sensitive to tem­

perature and pressure change. 

While d i f f e r e n t kinds of "Wilkinson type" catalysts were 

being developed, Osborn and his co-workers were working on 

cat i o n l c rhodium systems. These proved to be useful as hy- . 

drogenatlon and h y d r o s l l y l a t i o n catalysts (37i39-^0 • They 

have the formula [(diene)Rh I^]"* and are e f f i c i e n t at 25° and 

1 atm of E2. They are easy to make i n large numbers since L 

can vary widely and can be i s o l a t e d for physical studies. 

These cationlc. c a t a l y t i c systems are very v e r s a t i l e , for 

example, some w i l l reduce alkynes s p e c i f i c a l l y to c i s o l e f i n s 

(*+3), chelating dlenes to monoenes (*J-3)p and ketones to alco­

hols (39,^1,^*0. Knowles used his asymmetric ligands, ACMP 
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2 and d i ( t e r t i a r y phosphine) 4, to make cati o n l c rhodium com­

plexes which catalyzed the reduction of <X-acyla.mldoacrylic 

acids giving o p t i c a l y i e l d s as high as 96% (33.37). In l a t e r 

studies, however, Knowles found that the i n s i t u preparation 

of rhodium (I) catal y s t s gave the same re s u l t s as using the 

c r y s t a l l i n e , a i r stable, c a t i o n l c complexes [Rh(1,5-cyclo-

octadlene)(ACHP)] +BF4~ or BPh^~ (33). In these l a t t e r experi­

ments the ca t a l y s t was prepared by adding the phosphine ligands 

to al c o h o l i c solutions of [Rh(diene)C1] 2. Two ligands per 

rhodium were shown to give optimum r e s u l t s , just as expected 

for the formation of c a t i o n l c complex species. 

In 1976, Kagan prepared a c a t i o n l c rhodium complex with 

(+)-DIOP as the ligand. An o p t i c a l y i e l d of 92% was attained 

ln the asymmetric reduction of N-acetyl-l-phenyl-l-aminopropene 

(4-6). A tentative hydrogenation intermediate £ was proposed 

as follows but with l i t t l e substantlatloni 

Complexes of Co and Ru have also been used f o r the asym­

metric hydrogenation of p r o c h i r a l o l e f i n s (^7.^-8); but most 

results are not very s a t i s f a c t o r y . However, recently an op-
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t i c a l y i e l d of 60% f o r the hydrogenation of tX-acetamidoacrylic 

a d d has been obtained using [RugCl^DIOP)^] as the c a t a l y s t 

(W. 

Present Studies 

Since the discovery of ferrocene i n 1951 (50i51)» there 

have been many investigations of the chemistry of t h i s sand­

wich compound, e s p e c i a l l y r e l a t i n g to i t stereochemistry (52-

56). This i n t e r e s t was due i n part to the recognition that 

ferrocene derivatives are c h i r a l i f one r i n g c a r r i e s two 

d i f f e r e n t substltuents X and Y. 6 and £ a r e two cases In 

Fe Y 

which this may happen and should be noticed that these com­

pounds are o p t i c a l l y active even though there i s no center of 

asymmetry but only a planar element of c h l r a l l t y . A study by 

Ugl and co-workers (57) found that ferrocene derivatives with 

a. plane of c h l r a l l t y e xhibit a strong asymmetric inducing 

power, without having large s t e r i c bulk close to the reactive 

s i t e . This i s In contrast with the asymmetrically inducing 

s t e r i c templates that contain only central elements of c h l ­

r a l l t y , where one extremely bulky group, a. medium sized group, 

a small group and the reactive s i t e usually constitute the 



four ligands of the inducing central c h i r o l d ( 5 8 - 6 2 ) . 

At the begining of the present study, i t was decided to 

attempt the synthesis of (+)- a.nd (-)-(2-diphenylphosphino-

ferrocenyl)ethyldimethyla.mines ((+)-vand (-)-FcNP) and use 

them as asymmetric ligands i n rhodium complexes. It was 

expected that (+)- and (-)-FcNP would be easy to prepare be­

cause l t had been shown that l i t h i a t i o n of (R)-N,K-dimethyl-

1-ferrocenylethyla.mine ((R)-FcN) with butyllithium i n ether-

hexane affords only the ortho l i t h i a t i o n products ( 5 5 i 6 3 ) » 

which consists of a 9 6 : ^ mixture of (R,R)- and (R,3)-FcNLl 

a.s mea.sured by ga.s chromatography following treatment with 

trimethylchlorosilane ( 5 5 ) . Thus treatment of the l l t h l a t e d 

products with chlorodiphenylphosphine would be expected to 

y i e l d (R,3)-FcNP (96%) a.nd (R.R)-FcMP (k%). The o v e r a l l 

reaction i s shown i n the following scheme: 

F e \ H/' 3 d » F e \ H 3 2 

^ < 0 > P ( C 6 H 5 ) 2 

-C! J (R.R)-FcKLi (R,3)~-FcNP 
^ X ^ > N ( C K 3 ) 2 

P ( C 6 E 5 ) 2 

N ( C H 3 ) / g \ / N ( C H 3 ) ; 

CH 3 

(R.S)-FcNLl (R,R)-FcNP 
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The same scheme applied to the (S)-isomer of N,N-dime-

thyl-l-ferrocenylethylamine should afford 96% of (S,R)-FcNP 

and k% (S,S)-FcNP. It i s very i n t e r e s t i n g to note from F i ­

gure 6 that (R.S)-FcNP and (S.R)-FcNP, instead of being 

dlastereomers of each other, are enantiomers. 

A prelimina.ry communication has described ligand (o,R)-

FcNP and i t s use i n a. rhodium complex to catalyze the hydro-

s l l y l a t i o n of ketones (64-). It i s of intere s t to study the 

hydrogenation of p r o c h i r a l substrate with both (3,R)- and 

(R,S)-FcNP as the c a t a l y s t ligand a.nd one aim of the present 

work was to prepare and i s o l a t e the cat a l y s t or cat a l y s t 

precursor, l n order to determine i t s s o l i d state structure. 

This would be of value l n v i s u a l i z i n g the reaction Interme­

diate which i n turn would help i n r a t i o n a l i z i n g the configu­

r a t i o n of the reduction products. 



* 0 

re 

P ( C 6 H 5 ) 2 

c ^ N ( C H 3 ) 2 

H * 

(H 3G) 2N 

(H 5C 6) 2P 

(S.R)-FcNP 

M(CH 3) 2 

<s> 

(R,S)-FcNP 

Figure 6. The enantiomeric r e l a t i o n s h i p of (R,3)- and (S,R)-FcNP. 
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EXPERIMENTAL 

General 

Unless otherwise s p e c i f i e d a l l chemicals were purchased 

from commercial sources and were used as received. 

In p a r t i c u l a r , dry d i e t h y l ether was obtained from 

Malllnckrodt and was used without further drying. Tetrahydro-

furan (THF) was d i s t i l l e d from LiAlK^ and was stored under 

nitrogen over molecular sieves. Benzene was refluxed over 

potassium wire and stored under nitrogen over molecular 

sieves. Ethanol was d i s t i l l e d from LiAlE/4 and was stored 

under nitrogen over molecular sieves. Spectro grade methanol 

from MCB and reagent grade lsobutanol from AMACHEM were used 

without p u r i f i c a t i o n but were vacuum degassed before use. 

Hydrogen was obtained from Canadian Liquid A i r and was 

passed through a "Deoxo" c a t a l y t i c p u r l f e r before use. 

Conductivity measurements were made i n nitromethane at 

25 0 with Wayne Kerr Universal Bridge B221A. 

Infrared spectra were measured on a Perkln-Elmer hyi 

spectrometer. Carbonyl frequencies were measured on a Unlcon 

3P1100 Infrared Spectrophotometer. Spectra were c a l i b r a t e d 

using a polystyrene f i l m . 

NMR measurements were made on either Varian Model HA-100 

or T-60 Instruments operating at room temperature. Chemical 

s h i f t s are given i n ppm downfleld from i n t e r n a l TMS. 

Optical rotations were measured on a Perkln-Elmer l 4 l 

polariraeter. The sodium-D l i n e of wave length 589 nm was used 
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as the monochromatic l i g h t source. An o p t i c a l c e l l of 1 cm 

path length was used. 

Melting points were determined using a. Gallenkamp Melting 

Point apparatus and are reported without correction. 

A l l microanalyses were done by Mr. Peter Borda of this 

department. 

Hydrogenation Apparatus 

The apparatus used f o r hydrogenation i s shown schema­

t i c a l l y i n Figure 7. The reaction f l a s k A consists of two -• 

compartments Al and A2, which are used to accommodate substrate 

and ca t a l y s t respectively. The U-shaped o i l manometer was 

f i l l e d with butyl phthalate which has n e g l i g i b l e vapor 

pressure. A measuring burette I of volume.50 ml and length 

about 90 cm was mounted on the l i n e at one end and at the 

other end was connected to the mercury reservior C, The 

reaction f l a s k was thermostated i n a. p a r a f f i n o i l bath l n - _ 

sulated with polystyrene foam. Constant temperature was 

maintained by JUMO-MSD.B.P. thermoregulator and JUMOGKT10-0 

relay control u n i t . Heating was supplied by a 25 watt elon­

gated l i g h t bulb. A 3* magnetic s t i r r e r was used i n the 

thermostat bath and a 0.5' magnetic s t i r r e r was used i n the 

reaction f l a s k A. 

Experimental procedure f o r a t y p i c a l gas uptake experiment 

The ca t a l y s t precursor and the substrate were measured 

out to to,l mg and placed In A2 and Al respectively. The 



Figure 7. A schematic drawing of the c a t a l y t i c hydrogenation apparatus. 
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flask A was evacuated and f i l l e d with Ng. Cap 1 was opened 

and 10 ml of solvent was added while f l u s h i n g with nitrogen. 

Cap 1 was closed and the s o l u t i o n (substrate and solvent) was 

degassed by pumping f o r a few seconds. E was closed and the 

reaction l i n e was evacuated through H while F was open and G 

closed. A was frozen with l i q u i d nitrogen and E opened to 

remove a l l a i r from the reaction f l a s k . E was closed, the 

nitrogen coolant was removed and nitrogen gas was admitted to 

the rest of the l i n e up to tap E. The gas i n l e t G was closed 

and E was open to l e t nitrogen into A. E was closed and the 

frozen solvent was thawed. Flask A was t i l t e d to wash the 

catalyst precursor into A and the mixture was s t i r r e d to 

obtain complete s o l u t i o n . The s o l u t i o n (substrate, solvent 

and c a t a l y s t ) was frozen again. A was evacuated and then 

thawed again a f t e r c l o s i n g E. The f l a s k was thermostrated 

to the required temperature and hydrogen was admitted into 

the l i n e up to E. The gas i n l e t G was closed and E was opened 

to admit Hg to the whole system at a. pressure less than 1 atm„ 

After thermal equilibrium had been reached (this was checked 

by c l o s i n g F and observing any change l n the o i l l e v e l s of 

the manometer.) G was opened to admit more hydrogen u n t i l 

the mercury l e v e l s of I and C were the same and F was closed. 

Any gas uptake was accompanied by a. r i s e i n the l e v e l of 

the o i l manometer. The pressure loss was compensated by 

r a i s i n g the mercury res e r v o i r u n t i l the two o i l column were 

leveled again. The mercury l e v e l of the measuring burette 

was monitored as a function of time. No attempt was made to 
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correct the data, f o r any contribution from the solvent vapor 

to the pressure. 

Isolation of hydrogenation products 

N-Acetylphenylalanlne The product, a f t e r pumping o f f 

the solvent, was washed with k ml of dlchloromethane three 

times. N-acetylphenylalanlne v i s Insoluble l n CHgClg and i n 

this way the product was separated from c a t a l y s t without a l ­

tering i t s form. ( R e c r y s t a l l i z a t i o n from water could r e s u l t 

i n enrichment of one ena.ntlomer and an a r t i f i c i a l l y high 

o p t i c a l y i e l d . ) 

N-Acetylalanlne The mixture was dissolved l n 10 ml of 

water a f t e r the solvent had been removed by pumping.. It was 

then f i l t e r e d through c e l l t e twice. The product was obtained 

a f t e r freeze drying the aqueous so l u t i o n . 

Preparation of Acetylferrocene (65) 

Ferrocene (93 St 0.5 mole) was dissolved i n ^00 ml of 

dry dlchloromethane i n a 1 1 f l a s k equipped with a 2 i n . mag­

netic s t i r r i n g bar and f i t t e d with a drying tube (Ca.Cl 2). 

Acetyl chloride (k-J g, 0.55 mole) was added. The f l a s k was 

then immersed i n an ice water bath of 0 - 5 ° . Anhydrous a l u ­

minum chloride (67 g, 0.5 mole) was added i n about 10 portions 

with 2-5 min. between each portion to allow heat exchange. 

The reaction was vigorous and the color of the sol u t i o n 

changed from red-brown to deep wine-red. The reaction mixture 



was s t i r r e d f o r 2 hours as the ice water bath gradually 

warmed to room temperature. The reaction mixture was 

hydrolyzed by the slow addition of 100 ml cold water l n 

5 ml portions while the whole f l a s k was immersed i n cold 

water bath. An a d d i t i o n a l 120 ml of water was then added 

more r a p i d l y . The cold water bath was removed and about 

50 ml of fr e s h l y prepared 10$ aqueous Na 23 20ij. s o l u t i o n was 

added dropwlse with s t i r r i n g u n t i l the upper la y e r changed 

color from brown to cream-yellow. The s o l u t i o n was s t i r r e d 

for about one hour u n t i l the odor of 50 2 was undetectable. 

The reaction mixture was separated and the aqueous l a y e r 

extracted three times with 100 ml portion of dlchloromethane. 

The organic extracts were combined and washed with 100 ml of 

5% aqueous NaOE so l u t i o n and 100 ml of saturated aqueous NaCl 

so l u t i o n . The s o l u t i o n was-dried-over-anhydrous f^CO^ over­

night, f i l t e r e d , and the solvent was evaported to give 110 g 

(95%) of the orange s o l i d product, mp 8 7 ° . ( l i t . mp 8 5 - 8 6 ° 

( 6 5 ) ) 

Preparation of a-Ferrocenylethanol (65) 

Acetylferrocene (25 g, 0.11 mole) was dissolved i n 

anhydrous ether (500 ml) l n a *4—necked 1 1 f l a s k equipped with 

a r e f l u x condenser, nitrogen i n l e t , magnetic s t i r r e r and 

dropping funnel. The solution was s t i r r e d and slowly treated 

dropwise with a suspension of 2.2 g of L1A1% l n ether and 

then heated under r e f l u x for two hours. The excess of LiAlH^ 

was destroyed by the slow addition ('!•") of ethyl acetate and • 



the r e s u l t i n g reaction mixture was treated with a saturated 

s o l u t i o n containing 30 g of NH/J.C1 l n water. After being 

s t i r r e d 0.5 hour at 0 ° , the reaction mixture was f i l t e r e d 

and the organic layer separated. The ether s o l u t i o n was 

washed twice with water and then concentrated to dryness 

to y i e l d 22.5 g of a. yellow s o l i d , rap 7^°« This product was 

pure enough to use d i r e c t l y but a portion of i t was recry­

s t a l l i z e d from n-heptane to give yellow needles, mp 79° ( l i t . 

mp "78-79 ° (65)).-

Preparation of a-Ferrocenylethyl Acetate (65) 

d-Ferrocenylethanol (69 g. 0.3 mole) and acetic acid 

(20 ml, 0.33 mole) were dissolved l n 500 ml of reagent grade 

benzene and placed i n a 1 1 round bottom f l a s k f i t t e d with a 

water separator (Dean and Stark trap), and a re f l u x condenser 

with a drying tube on top. Some b o i l i n g chips were added 

and the s o l u t i o n was refluxed overnight. 

The reaction mixture was cooled, decanted from the 

b o i l i n g chips, and evaporated to a f f o r d about 80 g of a dark 

red-brown o i l . The product was not p u r i f i e d and was used 

d i r e c t l y . 

Preparation of N, N-Dlmethyl-cx-Ferrocenylethylamlne (65) 

cx-Ferrocenylethyl acetate (68 g, 0,25 mole) was dissolved 

i n about 1*1-00 ml of methanol i n a 21 c o n i c a l f l a s k to which 

was added 2*1-0 ml of 2$% aqueous dimethylamine. The mixture 

was s t i r r e d f o r three days at room temperature. 
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The solvent was evaporated leaving a dark o i l y residue 

which s t i l l contained some water. This was s t i r r e d with a 

mixture of 300 ml Q»5% aqueous phosphoric a c i d and 100 ml of 

ether. The layers were separated and the a c i d aqueous so l u ­

t i o n was washed with 100 ml of ether to remove neutral by­

products. The dark green a c i d i c s o l u t i o n of the amine was 

neutralized by cautious addition of NagCO^, allowing the 

effervescence to subside before each subsequent addition. 

The process was continued u n t i l no more effervescence was 

observed and by that time the dark green s o l u t i o n had turned 

yellow-brown. The amine was extracted with three 100 ml 

portions of dlchloromethane and washed with 100 ml of water, 

dried over KgCO^ (MgSO^ cannot be used) and evaporated to 

give about 50 g of a dark red-brown o i l which was rap i d l y 

vacuum d i s t i l l e d to avoid decomposition, bp. 118V0.5 mmHg 

( l i t . l20°/2 mmHg ( 6 5 ) ) . The y i e l d was about h$ g. 

Resolution of N, N-Dlmethyl-ot-Ferrocenylamlne (65) 

The racemlc amine (25.7 g, 0.1 mole) and 15 g of R~(+)-

t a r t a r l c acid were each dissolved l n 50 ml of methanol l n 

250 ml f l a s k s . Both fl a s k s were Immersed i n a hot water 

bath at about 55 ° f o r about 10 min. to reach thermal e q u i l i ­

brium. The t a r t a r i c a c i d s o l u t i o n was then poured into the 

amine solut i o n while s t i r r i n g . The temperature of the bath 

was allowed to f a l l at a. rate of 2-5°/hour. Occasional 

scratching the f l a s k with a. glass rod was required to a i d 

s o l i d formation. S t i r r i n g was continued overnight and 
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about 15 g of the • (-)-amine tartarate was c o l l e c t e d . The 

mother l i q u o r was set aside for l a t e r use. The tartarate 

s a l t was a.dded to about 50 ml of 20% aqueous NaOH sol u t i o n 

in a separatory funnel and the amine extracted with three 

25 ml portions of dichloromethane. The amine solution was 

dried over K2CO-3 and evaporated to give the o p t i c a l l y active 

amine as dark o i l . 

The amine thus obtained a.nd 5«55 g of t a r t a r i c acid, 

each l n 25 ml of rae.tha.nol. were mixed and. seeded. as above'" to 

a.fford the amine ta.rtarate s a l t . This affords 9 g of o p t l -
25 

c a l l y active (-)-amlne, [cx] D -12 (c 1, 95;! ethanol), ( l i t . 

[ o t j ^ -1*4-° (c 1, 95$ ethanol) ( 65 ) ) when treated with base as 

above. 

The mother l i q u o r from the f i r s t c r y s t a l l i z a t i o n was 

concentrated to about one-fourth of i t s o r i g i n a l volume. 

Diethyl ether was a.dded slowly to the solu t i o n u n t i l p r e c i ­

p i t a t i o n wa.s complete. The mixture was l e f t at 0° overnight 

and 24 . 3 g of ( + )-amine tartarate wa.s c o l l e c t e d . The ( + )-

amine tartarate c r y s t a l s were r e c r y s t a l l i z e d by d i s s o l v i n g 

them i n about 30 ml of hot water followed by the addition of 

about 300 ml acetone. Fine needle c r y s t a l s of the (+)-amlne 

tartarate were obtained l n t h i s modified way. O p t i c a l l y 

pure (+)-amlne, [ > ] D
5 1^.5° ( c 1. 95% ethanol) ( l i t . 

1*1- ( 65 ) ) was obtained from the tartarate as described above 

for the (-)-isomer. 

http://rae.tha.nol
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Preparation of (S.H)- and (R.S)-FcKP (66,67) 

At 23°, 10 g of (R)-(+)-FcN was dissolved l n 60 ml anhy­

drous d i e t h y l ether l n a two-necked 250 ml round bottom flask 

equipped with a magnetic s t i r r e r and a r e f l u x condenser. To 

this solution was added dropwise 21 ml of 2.2 M n - b u t y l l i -

thlum l n n-hexane. The reaction was s l i g h t l y exothermic and 

the color of the mixture changed from red-brown to orange 

red. After s t i r r i n g 1.5 hours, the mixture was slowly treated 

with 17.5 ? of chlorodiphenylphosphine. This reaction was 

very exothermic and the color turned to yellow with the pre­

c i p i t a t i o n of L i C l . The mixture was refluxed f o r 2 hours and 

then cooled to room temperature. An aqueous s l u r r y of NaHC03 

( 80 ml) was added to the reaction mixture very slowly while 

s t i r r i n g . The mixture was s t i r r e d for about 20 min. to hy-

drolyze the product. The s o l i d was f i l t e r e d o f f and washed 

with d i e t h y l ether u n t i l a l l the orange yellow compound had 

been dissolved. The ether layer was separated, added to the 

washings and dried over MgSO^. After evaporating to dryness, 

the dark brown o i l was cooled to k' overnight to a f f o r d a 

brown yellow s o l i d which was r e c r y s t a l l i z e d from ethanol to 

y i e l d 6 g of brown yellow c r y s t a l s of (R,3)-(-)-FcNP, mp 136°, 

L>Jp" -36k" (c 0 .^2, ethanol). (3)-(-)-FcN was treated i n the 

same manner to y i e l d (3,R)-(+)-FcNP, mp 135°, l*^ +36l.^°( 
c 0.3^1, ethanol), ( l i t . mp 139°, L * ] ^ 5 +36l° (c 0.6, EtOK), 

(6k)). Anal. Calc. For C 2 6H 2 8FcNPi C, 70.7; H, 6.35; N, 3.17. 

Found: C, 70.̂ ; K, 6.33; N, 3.1^. 1H NMR (CDCl^) 1.17 (d, 
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J=7 Hz, C-CK 3), 1.80 (s, N(CK 3) 2), 3.9 (s, FeCy^) , 3.5-^.5 

(m, FeC^Ify mixed with C-E), 6.9-7.85(m, CgH^). The NMR and 

analytic data were obtained from the racemic mixture. 

Preparation of [(NBD)RhCl] 3 (68) 

Rhodium t r i c h l o r i d e trlhydrate (0 .7 g) was dissolved i n 

95% ethanol (10 ml) l n a 100 ml Schlenk tube and 2 ml of nor-

bornadiene (C^Eg) was added to the solut i o n . The tube was 

flushed with nitrogen and sealed with a serum cap. A y e l ­

low pr e c i p i t a t e appeared about 15 minutes a f t e r the reactants 

had been mixed. The reaction mixture was s t i r r e d f o r two 

days. The yellow deposit was Isolated and r e c r y s t a l l i z e d 

from chloroform-petroleum ether to give fine yellow c r y s t a l s . 

Preparation of [(CQD)RhCl] 2 (69) 

In a 100 ml three-necked round bottom f l a s k was dissolved 

rhodium t r i c h l o r i d e trlhydrate (1 g) and 1,5-cyclooctadlene 

(2 ml) in 30 ml of 95% ethanol. The solution was heated and 

refluxed for 3 hours. The orange yellow c r y s t a l l i n e product 

was f i l t e r e d and washed with ethanol and then r e c r y s t a l l i z e d 

from acetic acid to afford orange yellow crystals.' 

Preparation of [ (CgK^, )RhC112 (70) 

Rhodium t r i c h l o r i d e trlhydrate (1 g) was dissolved i n 

99.5# ethanol (20 ml) l n a 100 ml Schlenk tube. Cyclooctene 

(3 g) was added to the soluti o n and the mixture was sealed 



under nitrogen, and was kept at room temperature for.three 

days. A red brown s o l i d was formed (0.85 g). The product 

was i s o l a t e d and washed with a small quantity of absolute 

ethanol, then dried and stored under nitrogen i n the r e f r i ­

gerator (T<5°). 

CO 

Preparation of FBh(C0) 2C1] 3 (71) 

, An.apparatus, shown as Figure 8, with a 

porous disk (medium porosity) was set up 

l n the fume hood. Rhodium t r i c h l o r i d e t r i -

hydrate (1 g) was pulverized and placed on 

the top of the disk. The apparatus was 

flushed slowly with CO and Immersed l n an 

o i l bath maintained at 96-100°. The water 

vapor which condensed at the top of the 

tube was removed occasionally with absor­

bent cotton. Orange red c r y s t a l s of pro­

duct sublimed to about half way up the tube. VJhen the re­

action was completed, (about k hours) the apparatus was removed 

from the o i l bath and cooled. The c r y s t a l s were scraped from 

the reaction vessel to give about 0.75 g of pure product, mp 

1 2 ^ - 1 2 6 ° ( l i t . 12^4-125° ( 7 D ) . The c r y s t a l s were stored l n 

a r e f r i g e r a t o r (T<-5°)» 

Figure 8. 

Preparation of (Acac)Rh(COD) (72) 

A mixture of [(COD)RhCl] 2 (O .76I g), d i e t h y l ether (17 ml) 
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and acetylacetone (0 .6 l ml) In a 200 ml Schlenk tube with a 

magnetic s t i r r i n g bar was c h i l l e d to -78° and a sol u t i o n of 

1 g of KOH i n 3.3 ml of water added dropwlsely. The mixture 

was warmed to 0 C with s t i r r i n g , and l a t e r , a. further 17 ml of 

d i e t h y l ether was added. This mixture was s t i r r e d at 0° f o r 

0.5 hour. The ether was separated, f i l t e r e d and c h i l l e d to 

-78" again. The yellow c r y s t a l s which pr e c i p i t a t e d were 

separated and dried. The f i l t r a t e was concentrated and 

c h i l l e d again and more c r y s t a l s were deposited, mp 125°. Anal. 

Calc. for. C 1 3H 1 9 0 2Rh: C , 50.3; E, 6.13; Found: C, 50.*+; H, 

6.b0%. 

Preparation of f (FcMP)Rh(CO)Cl] (91) 

[Rh(CO) 2Cl] 2 ( 0 . 1 3 ' g ) was dissolved i n 2 .5 ml of benzene. 

In a 100 ml Schlenk tube. On addition of 25 ml of benzene 

containing 0.3 g of FcNP, CO was evolved and the colour 

changed from orange yellow to red. The sol u t i o n was evaporated 

under vacuum to dryness and a yellow brown s o l i d remained. 

The s o l i d was dissolved In a minimum quantity of degassed 

CH 2C1 2 and d i e t h y l ether was slowly a.dded u n t i l s l i g h t turbu­

lence was seen. The mixture was cooled to 5° and s o l i d formed 

in about one hour. The solvent was removed a.nd the s o l i d 

product was washed with ether, and r e c r y s t a l l i z e d from ben­

zene, mp 124-125°. V(C0), 1990 cm"1 (cyclohexane). Anal. 

Calc. for Co^E^ClFeNOPRh: C, 58.2; H, 4 .99; N, 2.05; CI, 5.21. 

Found: C, 58.1; H , 5.10; N, 1.80; CI, 5.08$. *H NMR (CDC1-,) 
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1.25' (d, J=7 Hz, C-CH 3), 2.47 (s, M-CH3), 3.1*4-. (s, N-CK 3), 

3.79 (s, FeC^H^), 3.9-4-.7 (m, F e C ^ mixed with G-R), 6.9-7.9 

(m, CgH^). 

Preparation of (FcNP)Nl(C0) 3 (73) 

FcNP (3.4 g, 7.7-mmole) was dissolved i n 33 ml of d i e t h y l 

ether i n a. 3-necked, 100 ml f l a s k equipped with a. r e f l u x con­

denser, nitrogen i n l e t , and magnetic s t i r r e r . The solution 

was- heated i n an e f f i c i e n t fume hood to the reflux temperature 

a.nd Nl(CO). (1.31 g, 7.7 mmole) was a.dded to the solution. 4 
The rea.ction mixture wa.s refluxed for 30 minutes, then l t wa.s 

cooled to room temperature. An orange yellow s o l i d was formed 

which wa.s wa.shed with d i e t h y l ether to afford 3.1 g of orange 

yellow c r y s t a l s , mp 135°. Anal. Calc. For Cp^EggFeNNiO-^P: C, 

59.6; H, 4.79; N, 2.40. Found: C, 59.4,.. H, 4.83; N, 2.44;$. 

y(CO), 1980, 2000, 2060 cm"1 (cyclohexane). 

Preparation of .[ (NBD) Rh (FcNP) 'l*PFg" (7*0 

[(NBD)RhCll (250 mg, O.56 mmole) dissolved' i n 8 ml C.E. 
d 0 0 

and FcNP (0.685 £» 1*55 mmole) dissolved i n 2 ml THF were com­

bined together i n a. 100 ml Schlenk tube, and to this mixture 

wa.s a.dded NH^PF^ (0.171 g) i n acetone. The fine p r e c i p i t a t e , 

which formed Immediately, was f i l t e r e d and washed with d i c h l o -

romethane. After concentrating the f i l t r a t e and washings un­

der reduced pressure, two phases formed. The turbid bottom 

phase was is o l a t e d and further concentrated to about half i t s 
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volume. Red so l i d s separated at thi s time and more came out 

a f t e r standing 12 hours at room temperature. If no s o l i d pre­

c i p i t a t e d , etha.nol was added very slowly u n t i l a s l i g h t tur­

bulence wa.s seen then a drop of d i e t h y l ether was added. The 

mixture was cooled to ̂ ° overnight to aff o r d a. red s o l i d which 

was washed with d i e t h y l ether and dried. The s o l i d was re­

c r y s t a l l i z e d from a minimum quantity of dlchloromethane by the 

addition of ethanol and d i e t h y l ether and red fine c r y s t a l s 

resulted, mp 192° (decomp.). Anal. Calc. f o r C^H^FeFgNPoRh: 

C, 50.7; H, b.6l; N, 1.79. Found: C, ^7.7; H, 4.73; N, l.k8$. 

A=72.3 ohm"1cm"1M~1. XH NMR (CDCl^) 1.78 (d, J=6.k Kzy C-CH3), 

2.1*2 (s, N-CRj), 3 .19 (s, N-CH3), 3 . 6 l (s, FeC^Ec), 1.^6 (s, 
methylene), >. 16 • (s, methine.), k.kk (m, F e C ^ ) , 7-8.5 (m, CgH^) 

Preparation of f (COD)Rh (FcNP) ̂ ClO)," (7^) 

Rh(COD)(acac) (250 mg, 0.81 mmole) was placed l n a Schlenk 

tube Into which 3 ml of TKF and 115 mg (approximately 1 drop) of 

70^ HCIO^ i n 1 ml of THF was added under an Ar atmosphere. Ad­

d i t i o n of FcNP (800 mg, 1.81 mmole) changed the color of the 

sol u t i o n from yellow to orange-red. The solvent was removed 

and the resultant s o l i d dissolved l n a. minimum quantity of 

b o i l i n g 957= ethanol, cooled to room temperature, and stored 

at k" f o r four hours, A dark s o l i d formed. The s o l i d was 

is o l a t e d and washed with ether. The s o l i d was r e c r y s t a l l i z e d 

from ethanol to y i e l d ora.nge-red c r y s t a l s , mp 185° (decomp.). 

Anal, Calcd. f o r C^H^ ClFeNO^PRhj C, 55.2j H, 5.41; N, 1.89. 
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Found: C # 5^,6; H, 5-09; N, 1 .90$. A = 73.6 phrn era M . 

Prepara t i o n of [ (COD) Rh (FcNP) ;i*BF^~ (74,75) 

To a. Schlenk tube purged with N 2 was added. [_(C0D)RhCl] o 

(0.246 g, 5 mmole) followed by 3 ml of methanol with s t i r r i n g . 
FcNP (0.53 g» 1.2 mmole) d i s s o l v e d i n about 10 ml of metha.nol 
was added to the mixture. A f t e r s t i r r i n g f o r 20 min, the 
s l u r r y had. become an ora.nge-red s o l u t i o n . NE^BF^ (0.14 g) i n 
1,6 ml of H 2 0 was added while s t i r r i n g , and an orange-red 
s o l i d p r e c i p i t a t e d . This wa.s separated, washed with 1 ml of 
H 20 and 1 ml of methanol, and r e c r y s t a . l l i z e d from ethanol. 
These f i n e orange-red c r y s t a l s were washed with d i e t h y l ether 
and d r i e d under reduced pressure, mp 190° (decomp.). Recrys­
t a l l i z a t i o n could also be achieved by d i s s o l v i n g the s o l i d i n 
a minimum q u a n t i t y of CE 2C1 2 and adding ethanol. Anal. Calcd, 
f o r C^^E^gBF^FeNPRh: C, 55.2; E, 5.4-1; N, 1 .89. Found: C, 55.2; 

H, 5.31; N, 1 .89$. A=73.9 ohm"1cm~1H"1. 1 E NMR (CDCl^) 1 .01-

I. 61 (m, methylene), 1.87 (d, J=6.2 Hz, C-CE^), 2.71 (s, N - C E 3 ) , 

3.30 (s, N - C H 3 ) , 3.56 (s, F e C 5 E 5 ) , 4.16-4.46 ( l n . - F e C ^ mixed 
with C-H), 5.06 (s, o l e f i n ) , 5 .61 (s, o l e f i n ) , 7.06-7^6 (m, 
C 6 H 5 ) . 

Prepa r a t i o n of. [ (NBD)Rh (FcNP) 1*010)," (74) 

[(NBD)RhClJ 2 (130 mg, 0.28 mmole) was d i s s o l v e d i n 4 ml 
of benzene l n a Schlenk tube to which was added FcNP (0.3564 

g, 0.81 mmole), and a. s o l u t i o n of NaClO^ (86.9 mg) i n 1 .3 ml 
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of TKF. The suspension was further s t i r r e d for 5 min. "before 

2 ml of d i e t h y l ether was added to complete the p r e c i p i t a t i o n . 

The s o l i d was separated, washed with 2,5 ml of benzene and 

2,5 ml of d i e t h y l ether, and dried. The yellow s o l i d was 

dissolved i n 1 ml of dlchloromathane and f i l t e r e d to remove 

s o l i d impurities. After adding ethanol and d i e t h y l ether to 

the f i l t r a t e a. yellow s o l i d formed which turned into orange 

brown c r y s t a l s a f t e r storing at 0" for 12 hours, mp 190° (de­

comp.) Anal. Calcd. for C^H^ClFeNO^PRh: C, 53.8; H , 4.89; 

N, 1.90. Found: C, 53.5; H, 4,84; N, 1.83$. 

Preparation of [ (COD )Rh ( (-)-FcNP) 1 * 5 ( 0 ^ ) J ;~ . (74 ) 

[(C0D)RhClj 2 (0.1255 g, 0.25 mmole) was dissolved i n 

methanol i n a. Schlenk tube under argon. To this was added 

FcNP (0.4484 g, 1.06 mmole) and the mixture was s t i r r e d . 

More methanol was added to dissolve any remaining s o l i d . 

Solid sodium tetraphenylborate (0,1095 g) was added and 

s t i r r i n g was continued f o r 10 min. The ora.nge yellow s o l i d • 

which prec i p i t a t e d was f i l t e r e d and washed with benzene and 

di e t h y l ether and dried under reduced pressure, mp 150-15 2 ° 

(decomp.). Anal. Calcd. for C^H^BFeNPRhi C, 71.7; H, 6,22; 

N, 1.44. Found: C, 71.4; H, 6.10; N, 1.44,%'. A=50.13 
- 1 - 1 - 1 

ohm cm M 
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RESULTS AND DISCUSSION 

Synthesis of The C h i r a l Phosphine Ligands ( + )-. (-)-FcNP 

As mentioned i n the Introduction, l t was decided to 

attempt the synthesis of c h i r a l ferrocenylphosphine ligands 

((R,S)- and (S ,R)-ot-[2-diphenylphosphinof e r r o c e n y l ] e t h y l d i -

methylamlne or (R,3)- and (3,R)-FcNP) which not only have an 

asymmetric center at carbon but also have planar c h l r a l l t y . 

In addition, this ligand would contain a heavy ferrocene 

group which might show some s t e r i c and electronic effects i n 

asymmetric hydrogenation reactions. 

The precursors of the ligands ((R)- and (3)-FcN) and 

related compounds have been studied extensively by Ugi and 

his co-workers (54,55i57,7&). Ferrocene derivatives with more 

than two d i f f e r e n t substltuents i n one r i n g have planar c h l ­

r a l l t y which cannot be described by the usual R and S nomen­

clature (58,59t77). The following modification of the nomen­

clature has been suggested by Ugi (55(b))for t h i s type of 

compound and w i l l be used i n t h i s t h e s i s . In Figure 9i the 

Viewed from above 

Figure 9. Ferrocene derivatives with planar c h l r a l l t y 
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observer looks along th axis of the parent ferrocene rings 

with the dlsubstituted r i n g directed towards him. The c o n f i ­

guration of the substituted ferrocene Is termed "R" i f the 

ligands X and Y descend i n p r i o r i t y l n the shortest clockwise 

arc. ("Priority" here has the same meaning as used f o r the 

usual R,S nomenclature). Likewise, i f the p r i o r i t y ascends 

ln a clockwise d i r e c t i o n , the planar c h i r a l i t y Is "S". I f 

d i f f e r e n t types of c h i r a l i t y a.ppear i n one compound, e.g., X 

and Y contain central c h i r a l elements, R and 3 symbols w i l l 

r e f e r to these various types of c h i r a l i t y i n the order cen-

tral>a.xial>planar. For example, i n Figure 9 i f X = - C L J and 
OH * i r W e 2 

Y=-C. then i t w i l l be refered to as (S,R,3) ( 4 5 ) . The 

f i r s t 3 refers to the c h i r a l i t y of Y which has higher p r i o r i t y 

than X which has c h i r a l i t y R. The t h i r d 3 i s the planar c h i ­

r a l i t y of whole molecule. If Y=P(C^H^), as In the desired 

ligand, FcNP, then i t Is (R,S). 

The preparative sequence f o r the c h i r a l ferrocenylphos-

phlne (FcNP) i s sketched l n Figure 10. 

Both ferrocene and o(-acetylferrocene are commercially 

ava i l a b l e . oC-Ferrocenylethanol i s obtained by the reduction 

of o/-acetylf errocene. Although Ugi (65) reported the reduc­

ti o n with both lithiu m aluminum hydride (LiAlK^) and sodium 

bis(2-methoxyethoxy)aluminum hydride (commercially known as 

" V l t r l d e " ) , i t has been found i n the present studies that V i t -

rlde i s not as active as LiAlH^ and chromatographic separation 

is required a f t e r reduction. Thus about 65$ of the o<-acetyl-

ferrocene i s reduced by V i t r i d e , but more than 95$ reduction 
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Is attained i f LiAlE/j, Is used. cx-Ferrocenyldimethylamlne i s 

obtained by nucleophilic displacement of the a.cetate group 

by dlmethylamlne i n aqueous methanol following treatment of 

o(-ferrocenyletha.nol with acetic acid ( 6 5 ) . Instead of 

getting amide and alcohol In the reaction of the carboxyate 

ester with the amine ( 7 8 ) , the amlnolysls proceeds with the 

a l k y l a t i o n of the amine and cleavage of the carboxylic a c i d . 

This i s because the a-ferrocenylethyl carbonium ion i s so 

stable that carboxylase anion i s a. s u f f i c i e n t l y good leaving 

group to provide f o r i t s formation ( 6 5 ) . 

The resolution of N,N-dlmethyl-o<-f errocenylethylamlne with 

(R)-(+)-ta.rtarlc acid gives high y i e l d s of both antipodes a f t e r 

three recrystalllza.tions from t h e i r respective amine t a r t a -

rates. 

L i t h i a t i o n of (+)-N,K-dimethyl-^-ferrocenylethylamlne 

((+)-FcN) with n-butylllthlum i n d i e t h y l ether-hexane as 

shown i n a scheme on page 18 affords.only.the two ortho sub­

s t i t u t e d products, FcNLi, i n a. r a t i o of 9 6 : 4 as measured by 

chromatography following treatment with trimethylchlorosllane 

It was also found (?6) that the major Isomer reacts with 

anisaldehyde to give j3. The absolute configuration of t h i s 

( 5 5 , 6 3 ) . 

8 
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complex was determined by crystallographic techniques and the 

results show that the configuration about the a.mine-substituted 

carbon i s R and that (H-)-FCN has the R absolute configuration. 

Thus the marked difference between the two ortho positions 

with respect to l l t h i a t i o n apparently results from s t e r i c 

repulsion between the methyl•group-on the asymmetric carbon and 

the cyclopentadiene r i n g and a.lso the s t a b i l i z a t i o n of the 

l i t h i a t e d derivative by coordination with the amino group,, 

Thus l l t h i a t i o n of (R)-(+)-FcN affords p r a c t i c a l l y pure (R, R) -

FcNLl, and (3)-(-)-FcN y i e l d s p r a c t i c a l l y pure (S,3)-FcNLl, 

the a.ntlpode of (R,R)-FcNLi. Using a "more a.ctive reagent, 

further l i t h l a , t i o n w i l l occur i n the unsubstituted ri n g 

(64). This second l l t h i a t i o n i s s i m i l a r to that of ferrocene 

i t s e l f which undergoes l l t h i a t i o n less r e a d i l y than the amine 

(63,79-81). Thus Kumada et a l . ( 8 1 ) . l i t h i a t e d ferrocene with 

n-butyllithlum-N,N,N',N'-tetramethylethylenediamine (THEDA) 

to give 1,1'-dillthioferrocene which was.condensed with 

chlorodimethylphosphlne to give 1,1'-bis(dimethylphosphlno)-

ferrocene and has been used to prepare metal complexes (81).' 

In the present i n v e s t i g a t i o n the dlphenylphosphino 

derivative of ferrocenylethylamlne was formed by the rea.ction 

of FcNLi with chlorodiphenylphosphine i n ether. The r e s u l t i n g 

mixture was hydrolyzed by a.dding an aqueous sl u r r y of sodium 

bicarbonate arid the product was extracted into the ether 

phase. The ferrocenylphosphine-ether phase wa.s c a r e f u l l y 

dried with MgSCij. and, a f t e r evaporating the solvent, the pro­

duct was obtained as brown yellow s o l i d which was r e c r y s t a l -
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11zed from ethanol three times to afford c r y s t a l l i n e phos­

phine in a y i e l d about 35%, At about the same time t h i s work 

was i n i t i a t e d an independent i d e n t i c a l synthesis of the same 

ligand by Japanese workers was described (64). They i s o l a t e d 

the phosphine by alumina-column chromatography and p u r i f i e d 

i t by r e c r y s t a l l i z a t i o n from ethanol (50%), 

Figure 11 shows the absolute crystallographic structure 

of (3,R)-FcNP (95) . S i g n i f i c a n t features about the structure 

are as follows: ( i ) the methyl group on the asymmetric carbon . 

Is directed away from the cyclopentadlene ring ; t h i s confirms 

the absolute configuration of the s t a r t i n g amine discussed • 

before (p. 4 l ) j ( i i ) the cyclopentadlene rings are eclipsed 

whereas In parent ferrocene they are staggered. 

Synthesis of Metal Complexes of the FcNP Ligand 

Some i n i t i a l attempts to prepare complexes of FcNP with 

compounds of Ni, Pt and Pd were l a r g e l y unsuccessful. The only 

well characterized products, apart from the c a t i o n l c rhodium 

complexes to be described next, were (FcNP)Ni (CO)^ and (FcNP)-

Rh(CO)Cl. The former was obtained by d i r e c t reaction of the 

ligand with 111(00)^ i n d i e t h y l ether solution. 

FcNP + Nl(CO)^ > (FcNP)Ni (CO)^ + CO 

This complex which was characterized by microanalysis, 

shows IR absorption of carbonyl groups at 1980, 2000 and 2060 

cm"1. Most Ni(C0)^ complexes show only two such bands so ap­

parently the bulky FcNP coordinated to the n i c k e l destroys 



Figure 11. Absolute c r y s t a l l o g r a D h l c 
(S,R)-FcNP ( 9 5 ) . 

s t r u c t u r e of 
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the l o c a l C^ v symmetry. 

The complex Eh(FcNP)(CO)Cl was obtained by reacting 

Rh 2(CO)^Cl 2 with FcNP i n benzene. The IR spectrum shows one 

Rh 2(CO) 2Cl 2 + 2FcN? • 2Rh(FcNP) (C0)C1 + 2CO 

carbonyl absorption band at 1990 cm - 1. This compound crys­

t a l l i z e s with one benzene molecule of solvation as indicated 

by microanalysis and the HER spectrum. In the free ligand, 

the chemical s h i f t of the N-methyl hydrogens i s 1.80 ppm ( 

s i n g l e t ) ; but the comnlex shows two absorptions (2.4-7 and 3.1^ 

pnm) of the equal area. Thus l n t h i s complex FcNP acts as a 

bidentate ligand with both N and P coordinated to the rhodium. 

The chloride and carbonyl group are c i s to 'each other. A l ­

though Rh(PPh^) 2(C0)C1 has the trans configuration, l t i s not 

unusual to f i n d the c i s Rh(C0)Cl moiety l n chelate derivatives 
I 1 

(P-P)Rh(C0)Cl ((P-P) = Ph 2P(CH 2) 2PPh 2 (82), Ph2PC=Cpph2 (CF 2 )^ 

(83)). 

The general methods of synthesis of the io n i c rhodium com­

plexes are based on the published methods (7^) with minor mo­

d i f i c a t i o n s . These preparative sequences are summarized In 

Figure 12 . The preparation of the o p t i c a l l y active complexes 

simply involved the same procedures but o p t i c a l l y active FcNP 

was used instead of racemic FcNP. 

The equivalent co n d u c t i v i t i e s of four of the compounds, 

[ (COD)Rh (FcNP) ] +BF^~ , [ (NBD)Rh (FcNP ) j +PF^~, [ (COD)Rh (FcNP) J +G10 

and [(COD)Rh((-)-FcNP] BPh^ have been measured. A l l these 
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[Rh(NBD)Cl] 2 

FcNP, NB^PF 6 

C 6E 6/THF 

FcNP, NaClO/j, 

[ (NBD )'Rh (Fc NP) ] + P F 6 " 

•* [ (NBD) Rh (Fc NP) j +C10^ 
C 6H 6/TBF 

[Rh(C0D)Cl], 

a c e t y l a c e t o n e 

( C 2 E 5 ) 2 0 
(acac)Rh(COD) 

EC 10; 

FcNP/TEF 
+ *• [ (C OD) R h (Fc NP ) ] +C10^" 

FCNP, 

C 2 E 5 O E 

FcNP, NaPFg 

CH 2C1 2 

[ (COD ) Rh (Fc NP) j +BF^-

-> [ (COD) Rh (Fc NP) j +PF. 

FcNP, NaBPfy 

CH^OH 
[ (COD) Rh (Fc !>JP) j + 5 ( C 6 K 5 ) 

Fl g u r e 12. P r e p a r a t i o n of I o n i c rhodium complexes with the 
FcNP l i g a n d . 
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are i n the range of ?4 ohm" cm"iM"1 except one ([(COD)Rh((-)-

FcNP)] +BPh i (~), which i s 50.13 ohm"1cm~1M~1. 

The NMR spectrum of [(NBD)Rh(FcNP)j +PF^~ shows that the 

amino group of FcNP i s c o o r d i n a t e d to the metal with two ab­

s o r p t i o n s due to the N-methyl hydrogens a t 2,42 and 3.19 ppm, 

compared with the s i n g l e t of the f r e e l i g a n d a t 1,80 ppm. In 

the case o f [(COD)Rh(FcMP)] +BF^~, the two bands due to the 

methyl groups a.re found a t 2.71 a.nd 3-30 ppm.. The NMR data, 

as w e l l as the elemental a n a l y s i s suggested tha.t only one 

FcNP liga.nd per rhodium Is found i n a l l the i o n i c complexes 

even though attempts to prepare complexes with two FcNP l i g a n d s 

per rhodium were made by u s i n g excess l i g a n d . 

Asymmetric Homogeneous Eydrogena.tlons 

( I ) . C a t a l y t i c P r e c u r s o r s and C a t a l y t i c P r i n c i p l e s 

In the pre v i o u s s e c t i o n , the p r e p a r a t i o n and. some pro­

p e r t i e s of the c a t a l y s t p r e c u r s o r s , [(diene)Rh(1)-FcNPJ +A 

(A~; PFg~, BF^~, ClO^" a.nd B(CgP, J^""), have been" d e s c r i b e d . 

Here the word " p r e c u r s o r " i s used because l t has been w e l l -

documented (86) that c a t i o n complexes [ ( d i e n e ) R h L n J + A ~ (diene: 

norbornadiene o r 1,5-cyclooc ta.diene; A": PF^~, BF^~ or C l O ^ - ; -

LJ a. t e r t i a r y phosphine, a r s i n e (n=2 or 3) or a c h e l a t i n g d l -

(t e r t i a . r y phosphine) ( n = l ) ) , r e a c t r e a d i l y with molecule hy­

drogen (1 atm, 25°) i n s o l u t i o n (acetone o r a l c o h o l ) ; diene 

i s q u a n t i t a t i v e l y reduced to alkane and ca.ta.lytlca.lly a c t i v e 

http://ca.ta.lytlca.lly
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complexes o f formula. [RhL H^j" 1 a r e t h e r e b y g e n e r a t e d i n s i t u . 
n 2 

T h i s k i n d o f c a t a . l y s t p r e c u r s o r o f f e r s s e v e r a l n o t a b l e advan­

tages o v e r the i n s i t u p r e p a r e d W i l k i n s o n type c a t a l y s t s . 

Some a r e as f o l l o w s : (1) the complexes can be p r e p a r e d and 

i s o l a t e d e a s i l y ; ( i i ) the d i e n e i s c o m p l e t e l y reduced and e-

l i m l n a t e d from the c o o r d i n a . t i o n sphere o f rhodium; thus a v a ­

cancy i s l e f t f o r the b i n d i n g o f hydrogen and the s u b s t r a t e 

to be reduced; ( i l l ) the r e a c t i o n pathway does not i n v o l v e 

d i s s o c i a t i o n o f a. l i g a n d and thus the r e a c t i o n s a r e much l e s s 

s o l v e n t dependent. 

In. the p r e s e n t - w o r k l t has been o b s e r v e d t h a t l n a.lco-

h o l l c s o l u t i o n s , [ ( d i e n e )Rh ( (±)-FcI\ip)] r e a c t s w i t h hydrogen 

(1 atm, 32 ) i n the absence of s u b s t r a t e . The b r i g h t y e l l o w 

c o l o r f a d e s t o p a l e y e l l o w l n a few m i n u t e s ; t h i s i s •presu­

mably due t o the f o r m a t i o n of [Rh (.(±-)-Fo'NP)K23x]+, where S 

i s the s o l v e n t . 

( I I ) . C a t a l y t i c F y d r o g e n a t l o n o f O l e f i n s 

Knowles and co-workers ( 3 3 ) r e p o r t e d t h a t a c t i v e c a t a l y t i c 

s o l u t i o n s can be p r e p a r e d i n s i t u by m i x i n g [ (1 ,.5-hexadiene)-

R h C l ] 2 o r even R h C l - j ' 3 H 2 0 w i t h c h i r a l l i g a n d s , L*, i n a l c o h o l i c 

s o l u t i o n and the r e s u l t s a r e i d e n t i c a l w i t h t h e s e o b t a i n e d 

u s i n g the c r y s t a l l i n e complexes [ (COD).RhL* 2] +B(CgH^ o r 

BF^"". However', i n the p r e s e n t s t u d y , l t was d e c i d e d t o use 

the w e l l - c h a r a c t e r i z e d complexes [ ( d i e n e ) R h ( +)-FcMP] +A~ t o 

c a t a l y z e the h y d r o g e n a t i o n o f o l e f i n s . 

The p r o c h l r a l s u b s t r a t e s which were i n v e s t i g a t e d a r e 
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l i s t e d l n Figure 1 3 . The extent of reaction was monitored 

using a simple gas uptake apparatus and was checked by de­

termining the NMR spectrum of the f i n a l reaction products. 

Table 2 and 3 show the res u l t s obtained f o r the homogeneous 

hydrogenation of rt-acetamidocinnamic acid and <tf-acetamldo-

a c r y l i c acid respectively, using cat i o n l c c h i r a l Rh-FcNP 

complexes as c a t a l y s t precursors. High o p t i c a l y i e l d s are 

obtained i n the case of o(-acetamidoclnnamic acid and the 

results seem to be Independent of the diene as expected. 

The anion except f o r BfCgE^)^" plays l i t t l e role on the o p t i c a l 

y i e l d although i t seems that c a t a l y s t precursors with ClO^" 

or PFg~ as anion give f a s t e r rates. The use of BtCgE^Oz* " as 

counterlon l n rhodium complexes has been discussed by Osborn 

(84) and Bennett (85). They found that one of the a.rene rings 

of the tetraphenylborate coordinates to the metal via a. h°* i n ­

teraction to form a complex shown as 9_, where L i s trl p h e n y l -

phosphine, following hydrogen treatment of the cati o n l c com-' 

plex in solution. A s i m i l a r i n t e r a c t i o n of one arene ring 

L L 

1 
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C6E<; 

E O 
I « 

C-CK 

c = c 

H ^ ^COOE 

H i x. \ / 
E O 
I » 
IJ—C-CH-

E COOH 

ot-Acetamidocinnamlc A c i d * o(-Aceta.midoacrylic Acld') 

C 6 H 5 / C 6 H 5 
\ / 
C = G / \ 

E CODE 

E 
C 6 H 5 

/ \ 
E COOH 

ot-Ph.enylclnna.mic Acid Atropic Acid 

H COOH 

/ \ 
C 6H 5 C E 3 

CH, 

C^H 

COOH 

6*5 H 

o(-Methylcinna.mic Acid 0-Me thylc innamlc Ac i d 

* These two substrates have been most i n t e n s i v e l y studied 
because they belong to a. class of compounds which are 
amino acid precursors. 

Figure 1 3 . Prochlral oc.,/9-unsaturated earboxylic acid substrates 
used i n thi s study. 

http://ot-Ph.enylclnna.mic


Table 2 . Asymmetric Hydrogenation of c*-Aceta.midocinnamic Acid with the FcNP-Rh 
C a t a l y s t 9 • 

Catalyst precursor Solvent Time (hr) 
Conver­
sion {%) 

Optical . 
y i e l d (%) h 

Configu 
r a t i o n 

[ (COD)Rh( (- )-FcNP) JCIO^ methanol 2 5 91 80 3 

[ (COD)Rh ( (+)-FcNP)]Cl(fy methanol 2 5 93 73 R 

[(COD)Rh((-)-FcNP)jBF^ ethanol 40 83 75 3 

[ (NBD)Rh ( ( - )-FcNP) ]C10^ methanol 2 5 93 78 5 

[ (COD)Rh( (-r)-FcNP)]BF^ ethanol 48 91 83 R 
[(NBD)Rh((+)-FcNP)]PF 

6 
isopropanol 48 96 80 R 

[(NBD)Rh((+)-FcNP)]PF 6 ethanol 22 : 88 84 R 

[ (COD)Rh( (-)-FcNP) JB(C 6H 5)^ methanol c c c _c 

3 R e a c t i o n s were carried, out at 1 atm K 2 and 32° . The c o n c e n t r a t i o n of the c a t a l y s t ' 

was l . O x l O - 3 M and the s u b s t r a t e l . O x l O - 1 M. ^ O p t i c a l y i e l d s are c a l c u l a t e d on the 

b a s i s of reported values f o r the o p t i c a l l y pure compounds: N - a c e t y l - ( E ) - p h e n y l - a l a -

n i n e , L*] 2/' -51.8 (c 1, EtOi:) (92); N - a c e t y l - (S ) - p h e n y l a l a n i n e , +46.0 (c 1, 

EtOH) ( 9 3 ) . 0The r e a c t i o n r a t e was too low to be measured. 



Table 3. Asymmetric Hydrogenation of <X-Acetamidoacrylic Acid with the FcNP-Rh 

C a t a l y s t 3 . 

Conver- Optical Configu-
Catalyst precursor Solvent Time (hr) slon (,%) y i e l d (%)° r a t i o n 

[(COD)Rh((-)-FcNP)]BF^ methanol 7 100 58 S 

[(COD)Rh((+)-FcNP)JCIO^ methanol 7 100 55 R 

[ (COD)Rh( (-)-FcNP) jClOjj, methanol 6 100 43 3 

[ (COD)Rh ( (-)-FcNP)]B(CgH^)24. methanol 92 90 26 3 

aReactions were ca r r i e d out at 1 atm H 2 and 32°C. The concentration of the c a t a l y s t 

was 1.0xl0~3 i«i and the substrate 'l.OxlO - 1 M. ^Optical y i e l d s were calculated on the 

basis of reported value f o r the o p t i c a l l y pure, compound: N-acetyl-(R)-ala.nine , L aJD 

+66.5 ( c 2, K 20) (94) j1 the pure (S)-isomer was assumed to ha.ve the same degree of 

o p t i c a l r o t a t i o n with opposite d i r e c t i o n . 
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with the metal may happen in. the present instance a f t e r 

[(C0D)Rh((-)-FcNP)] +3Ph^~ reacts with hydrogen. The rate 

of hydrogenation of <*-a.ceta.midoacryllc acid using [.(COD)Rh-

((-)-FcNP)] +BPh^~ a.s the ca t a l y s t i s about one-thirteenth the 

rate of tha.t when the anion i s BF/j.-; and the o p t i c a l y i e l d of 

N-acetylalanine i s half the value when [(COD)Rh((-)-FcMP)] H"BF^ -

i s used as the.catalyst (see Table 3). Also, when L(COD)Rh-

((-)-FcNP)] +BPh^~ was used to ca.talyze the hydrogenation of 

<x-acetamidocinnamic acid, the reaction rate was so low that 

no hydrogen uptake was detected. In contrast, -Knowles and 

co-workers found that [(COD)Rh((t)-ACMP) 2J +B(CgE^)^- i s as 

good a ca.ta.lyst a.s the same cation used with 3F^~ or PF^~ as 

the anion at 3.7 atm (75) and 0.7 atm (3'3). It i s d i f f i c u l t 

to account for the differences. 

In the ca.se of the cati o n i c rhodium complexes i t seems 

that the composition of the solvent i s not an important va­

r i a b l e In determining the hydrogenation reaction rate and 

product o p t i c a l purity (75), and i n the present study, metha-

nol, ethanol and. isopropa.nol were used. In contrast, i n a 

study of Wilkinson type c a t a l y s t s , Hasler (38). showed.that 

solvent composition of benzene-ethanol (1:1, v/v) gives the 

best results (high chemical and o p t i c a l y i e l d s ) when [(+)-

NMDPPj^RhCl i s used to catalyze the hydrogenation of (E)-<x-

methylcinna.mic aci d . When the r a t i o was changed to 3:1 (ben­

zene-ethanol), only Q3% i s reduced, and the o p t i c a l y i e l d i s 

2% lower (compared with 100$ reduction i n 2k hours i f 1:1 

benzene-ethanol solvent i s used). If pure benzene i s used, 

http://ca.se


only 13$ reduction a f t e r 24 hours i s achieved; and i n 2-buta-

none, reduction takes place to the extent of 40$ and the op­

t i c a l purity of the product drops to 26.5$ e.e. from 60$ e.e. 

obtained i n 1:1 benzene-ethanol. The res u l t s are summarized 

ln Table 4 . 

Table 3 shows that the reaction rates f o r the hydroge­

nation of cx-acetamldoacryllc acid are about four times fa s t e r 

than the rates for the hydrogenation of o(-acetamidocInna.mic 

acid (see Table 4 ) , but the o p t i c a l y i e l d s of N-acetylalanlne 

produced are much lower. Again, [ (COD)Rh(-)-FcNP]+B(CgH<- )^~ 

is peculiar with regard to both reaction rate and o p t i c a l 

y i e l d ; thus l t takes 9 2 hours to achieve 95$ hydrogenation 

(estimated fron the NMR spectrum) and the o p t i c a l y i e l d i s 

only 26$ . 

In the hydrogenation of both c<-a.ceta.midoclnnamlc acid 

and rt-acetamidoacryllc acid, c a t a l y s t s with (+)-FcNP as the 

ligand always give products with the R configuration whereas-: 

catalysts with (-)-FcNP give the S configuration. E a r l i e r , 

Kagan and Sinou (46) postulated the reaction Intermediate 

shown as ̂  ( p . l 6 ) to account f o r the re s u l t s of many homo­

geneous c a t a l y t i c hydrogenatlons of -acylamidoacrylic acids 

using DIOP as the asymmetric ligand. The major feature i s 

that the acetyl oxgen atom as well as the double bond i s co­

ordinated to the rhodium. This ensures that the o l e f i n Is 

held In a r i g i d o r i e n t a t i o n so that when the hydrogen on the 

rhodium i s transfered to the prochira.l carbon atom i n the 

next step of the reaction, l t i s transferred s t e r e o s p e c i f l c a l l y . 



Ta.ble 4. The Influence of Solvents on the Reduction of (E)-O(-Methylcinnamic Acid 

by the Rhodium-(+)-NMDPP Catalyst System (38). 

Solvent Reduction {%) Yield {%) Configuration Optical y i e l d {%) 

1:1 benzene-ethanol 100 90.3 R . 6 0 . 0 

3:1 benzene-ethanol 83 67.0 R 58.0 

benzene 13 

2-butanone 40 - R 26.5 

1:1 benzene-ethanol 3 100 71.0 R 56.3 

In this experiment 25 mmole of substrate and 25 mmole of triethyia.mine were used. 
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In one experiment (88) an i n s i t u c a t a l y s t prepared, from 

C(C2H2j.^2 R h C 1 ^ 2 a n d ( H*)~ D T 0 P v , a s used to c a t a l y z e the hydro­

g e n a t i o n of N-a.cetyl-ot-phenyl ethylamine i n both e t h a n o l and. 

benzene as s o l v e n t s . Both the r e a c t i o n s gave about the same 

o p t i c a l y i e l d s (42.5 and kh% r e s p e c t i v e l y ) but d i f f e r e n t con­

f i g u r a t i o n s were o b t a i n e d . T h i s phenomenon was a s c r i b e d to a 

change of mecha.nism (87)» the argument being t h a t i n pure ben­

zene the enamlde would be c o o r d i n a t e d to rhodium o n l y by i t s 

double bond. In the. presence of a l c o h o l , d i s s o c i a t i o n of Rb­

C l bond c o u l d occur to g i v e a c a t I o n i c s p e c i e s which would 

then intera.ct with both the double bond and the amide group 

of the enamlde. 

Intermediates of the type shown a.s _5 c a n a l s o be used to 

e x p l a i n the r e s u l t s o b t a i n e d d u r i n g the present i n v e s t i g a t i o n . 

On t h i s b a s i s two i n t e r m e d i a t e s can be dra.wn a.s i n F i g u r e 14 

and F i g u r e 15 when (R,3)-(-)-FcNP i s the l i g a n d . The diene 

(NBD or COD), which was c o o r d i n a t e d to the metal, has r e a c t e d 

with hydrogen to form the alka.ne and has l e f t the c o o r d i n a t i o n 

sphere. The va.ca.nt s i t e s are occupied by the s u b s t r a t e which 

forms both a. metal o l e f i n bond and a metal amide bond. 

The two faces of the s u b s t r a t e double bond are s p e c i f i e d 

as f o l l o w s : when the s u b s t r a t e molecule i s dra.wn as 10., then 

1 A 
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H 

Figure 14. A proposed i n t e r m e d i a t e i n which the s i - r e face 
of the s u b s t r a t e i s d i r e c t e d towards the metal 
complex with (R,S)-FcNP as the l i g a n d . 
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Figure 15 . A proposed i n t e r m e d i a t e i n which the r e - s i face 
of the s u b s t r a t e i s d i r e c t e d towards the metal 
complex with (R,3)-FcNP as the l i g a n d . 
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" s i " Is assigned (89) to the face around Cl according to the 

usual p r i o r i t y rule, and "re" i s assigned to the face around 

C2 (when viewed from above the page). The face facing the 

viewer i s c a l l e d the s i - r e face. 

In Figure l4 the s i - r e face of the substrate i s directed 

towards the metal a.nd three s t e r i c repulsions are apparent j 

one i s the repulsion between the phenyl groups of the sub­

strate and the ligand; the second i s between the phenyl group 

of the substrate a.nd the cyclopentadlene ring; the t h i r d i s 

between the carboxylic group and the methyl groups on the l i ­

gand nitrogen. 

In the case shown i n Figure 15 i n which the r e - s i face 

of the substrate approaches the ca.ta.lyst, these s t e r i c re­

pulsions are minimized. 

From th i s analysis i t can be seen that hydrogen transfer 

to the coordinated o l e f i n i n the more favored case (Figure 15) 

w i l l give a. product with the S configuration. 

When (S,R)-(+)-FcNP i s considered, the more stable i n t e r ­

mediate which can be constructed i s the mirror image of the 

intermediate shown i n Figure 15. This w i l l a fford products 

of configuration R. 

When the substrate i s cx-acetamidoacryllc acid, s i m i l a r 

Intermediates can be constructed. However, since the phenyl 

group i s repla.ced by a. hydrogen atom, the only stereochemical 

control i s the repulsion between the carboxylic group on the 

substrate and the methyl groups on the ligand nitrogen. This 

accounts for the re s u l t s that Rh-(+)-FcNP complexes s t i l l give 
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products predominantly with configuration R and Rh-(~)-FcNP 

complexes give predominantly S; but with lower o p t i c a l y i e l d . 

Table 5 l i s t s the r e s u l t s Knowles et a l . obtained (30,3^) 
when d i f f e r e n t tf-acylamidoacryllc acids were hydrogenated 

using cationic rhodium complexes with 2 a s the ligand. It i s 

seen that higher o p t i c a l y i e l d s are obtained i f R̂  i s a bulky 

substituent. In t h i s case the methoxy group on the ligand 

Is believed to form a hydrogen bond with the amide group of 

the coordinated substrate, which would account for the ste­

reochemical control (3*0« It seems u n l i k e l y that an i n t e r ­

mediate of the type shown i n Figure 15 would account f o r the 

r e s u l t s since two separate phosphines would not give the ste­

r i c bulk associated with the si z e and r i g i d i t y of the chelated 

FcNP ligand. 

In the present i n v e s t i g a t i o n , attempts to hydrogenate 

four other substrates: atropic acid, «-phenylcinna.mic ac i d , 

and <*-, /9-methylclnnamic acids.were made-using [(C0D)Rh(+)-

OCK 

(+)-(R)-ACMP 2 



Table 5. Asymmetric Hydrogenation of <x-Acylamidoacrylic Acids by Rh-complex with 
o-Anisylcyclohexylmethylphosphlne as the Ligand (30). 

^COOH 

^NHCOHg 
* HjCHg. 

COOH 
1 

— C — H 
1 
NECORg 

R l R2 Optical 
y i e l d •{%) 

Resulting 
amino acid 

3-MeO-4-OH-C6H3 Ph 90 L-DOPA 

3-MeO-4-OH-C6H^ Me 88 L-DOPA 

C 6 H
5 

Me 85 L-phenylalanlne 

C6 H5 Ph 85 L-phenylalanine 

p-Cl-CgH^ Me 77 p-chloro-L-phenylalanine 

3-(l-Ac-indolyl) Me 80 L-tryptophan 

E Me ' 60 L-alanine 
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FcN^J^BF^" as the c a t a l y s t precursor. No hydrogen uptake was 

observed a f t e r two days. A possible explanation i s that these 

prochiral o l e f i n s lack the amide group which, i n the presence 

of the bulky FcNP ligand, i s indispensable to bind the sub­

strate before hydrogen transfer. This pattern i s also found 

i n the cationlc rhodium c a t a l y s t using ACMP 3_ as the ligand ( 7 5 ) . 

where simple o l e f i n s are reduced at a rate about one-tenth the 

rate of cx-acetamldocinnamic a c i d (Table 6)» 

A s i m i l a r ligand, (3,R)-BPPFA, 11. (64) has been used to 

produce a c a t a l y s t i n s i t u f o r the hydrogenation of crt-acyla-

midoacrylic acids at 50 atm hydrogen presure and room tempera­

ture ( 9 0 ) . The r e s u l t s are shown i n Table 7. In t h i s case 

i t was postulated that a t t r a c t i v e i n t e r a c t i o n between an un­

coordinated amino group on the ligand and the carboxylic group 

on the substrate contributes to the asymmetric induction. 

Yovevev, ln view of the present r e s u l t s , the amino group could 

be expected to coordinate to rhodium and thus the reaction 

intermediate could be s i m i l a r i n structure to that su^rested 

above for the FcNP complexes. 
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Table 6 . Hydrogenation Rates of Various Olefins Catalyzed by 
Rh-DIOP and Rh-ACMP complexes ( 3 1 , 3 2 , 7 5 ) 

Catalyst ligand Substrate Approx, r e l , . r a t e 

AC MP <*-a.ceta.mldoclnnamic acid 1 

DIOP a-a.ceta.mldocinna.mic acid 2 

AC MP cycloocta.dlene-. < , 1 

ACMP n o r b o r n a d i e n e . 5 

-ACMP 1-octene . . 5 

- AC MP ot-phenylacryllc a d d < . 1 

Table 7 . Asymmetric Hydrogenation Catalyzed by (S,R)-3PPFA-Rh 
Complex8 ( 9 0 ) . 

Olefin Solvent Optical y i e l d {%) 

(Configuration) 

PhCE=C (IMHCOMe )COOH 

Ac 0-

KeO 

Me OH 9 3 ( 3 ) 

E 20/EtOH ( 1 / D 92 (S) 
H20/Me.OH ( 1 / D 8 9 (S) 
KeOH 8 (S) 
EtOH 38 (S) 
H20/MeOK ( 1 / 3 ) 8 7 (S) 
EtOH 36 ( 3 ) 

H 2 O/MeOH ( 1 / 2 ) 8 6 (s) 
K20/MeOK ( 3 A ) 52 (S) 

!T(H ?) = 50 atm; (S,R)-BPPFA/Rh = 1 . 2 / 1 ; Rh/Substrate = 0 . 5 mol%. 
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GENERAL CONCLUSIONS AMD RECOMMENDATIONS FOR FUTURE WORK 

The most Important f i n d i n g of th i s work i s that the c h i ­

r a l Rh-FcNP complexes catalyze the hydrogenation of a class 

of compounds which are amino acid precursors i n high o p t i c a l 

y i e l d and under mild conditions (32° and 1 atm Hg). The 

highest o p t i c a l y i e l d i s 84$ which i s comparable to the best 

results (85$) obtained with a Rh-ACMP complexes and i s better 

than the results (72$) obtained with a. Rh-DIOP complexes as 

ca t a l y s t . 

The ligand i s f a i r y e a s i l y to prepare (about ten steps 

from the s t a r t i n g material to both (+)- and (-)-FcNP) and to 

Isolate i n o p t i c a l l y pure form and the complexes L(diene)Rh-

(Ij-FcNPj^A" which can be Isolated i n c r y s t a l l i n e form are 

believed to be the c a t a l y s t precursors. 

When the Rh-FcNP complexes are used to catalyze the hy­

drogenation of a,/3-unsaturated acids, the rate i s found to be 

very low. It seems that the present c a t a l y t i c system Is good 
for the hydrogenation of cx-acylamldoacrylic acids and, I f the 

proposed intermediate i s correct, other enamides. 

There are many di r e c t i o n s f o r further work l n the area 

of asymmetric reactions i n which the c a t a l y s t contains asym­

metric ligands which are ferrocene d e r i v a t i v e s . One would be 

to modify both rings of ferrocene to obtain ligands with more 

than two donor s i t e s . An example was prepared, recently (64) 

as follows s 
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P^Nph, a ? -•5 l L 1 J ^ P P h ? 
< § > 2 fe) < 5 ™ 2 G 1 < 0 > P P h 2 

This could coordinate to metals using the two phosphorus 

atoms leaving the amino group free to i n t e r a c t with the bound 

substrate. 

A s i m i l a r procedure could y i e l d a v i n y l group on the 

second r i n g to give a derivative which could be polymerized 

to y i e l d an o p t i c a l l y active polymeric ligand which could be 

used i n supported c a t a l y s t systems. 

Other reactions such as h y d r o s i l y l a t l o n are catalyzed by 

Rh complexes and complexes of ligand such as FcNP should be 

investigated with respect to the addition of 31-H to C=C, C=0, 

and C=N bonds. In addition, the asymmetric hydrogenation. of 

C=0 and C=N bonds should be studied. 
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