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ABSTRACT

This work concerns the description of eigenvalue indepen-
dénﬁ:partitioning theory, and its applicationzto guantum mech=-
anical calculations of interest in chemistry. The basic theory
for an m=fold partitioning of a hermitian matrix H, (2-< m <€ n,
the dimension: of the matrix), is developed in detail, with
particular emphasis on the 2 x 2 partitioning, which is the
mostfuseful. It consists of the partitioning of the basis space
into two subspaces == an nA-dimensional subspace (nA >1), and
the complementary n-n, = nB;dimensional,shbspace. Various n,-
'(orang) dimensional effective operators, and‘projections ohto
m, - (or nbf) dimensional eigenspaces of H, are defined in: terms
of a mapping, f, relating the parts of eigenvectors lying im
each of the partitioned subspaces. This mapping_is shown to
be determined by a simple nonlinear operator equation, which
can be solved by iterative methods exactly, or by using a pertﬁf-
bation“expansion.f Properties of approximate solutions, and
various alternative formulas for effective operators, are -
examinedm The theory is developed for use with both orthonormal
and non~orthonormal basese |

Being a generalization of well known one-dimensional
partitlonlng formalisms, this eigenvélue independent partition-
‘ ing theory has a number of important areas of appllcation. New
and efficient methods are developed for the simultaneous deter-

mination of several eigenvalues and eigenvectors of a large

hermitian matrix, which are based on the construction and
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diagonalization of an Qpppopriate effective operator. Pertur-
bation formulas are developed both for effective operators
defined in terms of f, and for projectibns onto whole eigen=
spaces of H. The usefulness of these formulas, egpecially
when the zero order states of interest are degenerate, is
jillustrated by a number of examples, inecluding a formal uncoup-
ling of the four component Dirac hamiltonian to obtain a two
component hamiltonian for electrons only, the construction: of
an effective nuclear spin hamiltonian in esr theory, and the
derivation of perturbation series for the one-particle density
matrix in: molecular orbital theory (in both Huckel-type and
closed shell self-consistent field contexts)e.

A procedurevis developed for the direct minimization of
the total electronic energy in closed shell self-consistent
‘ﬂield theory in terms of the elements of f, which are uncon-
strained and contain no redundancies. This formalism is
extended straightforwardly to the general multi-shell single
determinant case. The resulting formulas, along with refine-
ments of the baéic conjugate gradient minimization:algorithm,
which involfe the use of scaled variables and frequent basis
modification, lead to efficient, répidly convergent methods
for the determination of stationary values of the electronic
energye. This is illustrated by some numerical calculations

in the closed shell and unrestricted Hartree~Fock cases..-
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CHAPTER 1
EIGENVALUE INDEPENDENT PARTITIONING,

AN INTRODUCTION

(

"Phe average Ph. D.. thesis is nothing but

a transference of bones from one graveyard
to another."

(J. Frank Dobie, A Texan in England,. 1945)




2.

Matrix partitioning is a well established technique im
linear algebra, and such techniques have been found to be'very
useful in quantum chemistry. In a series of papers, Léwdin
(1968, and references cited therein) has demonstrated the
power and generality of a one-dimensional partitioning forma-
lism. which contains, as special cases, many conventional
methods used in:quantum-mechanical calculations. Through the
partitioning of the basis space into two subspaces -- a one=-
dimensional space spanned by a chosen reference function, and
the complementary n-1 dimensienal space =~ he obtains an expres-

sion for the eigenvalues, € of the matrix H as

a’

= Hy, + Ho (€1, = Hy )"l (1.1)

aa a’?

where ﬁ;a is a function not only of the elements of H, but also,

of €, itself. Further development of the formalism leads to

a variety of perturbation formulas (including, among others,.

the Rayleigh=Schrodinger and Brillouin+Wigner'types). iterative

méthods for determining a éingle eigenvalue, formulas for upper

and lower bounds to eigenvalues, and many other useful results.
The function H__ (€

aa' a
one~dimensional effective operator which depends implicitly:on

) in eq. (1.1) can be regarded as a_

the eigenvalues Ga of He. A number of attempts have been made

to construct effective operators without implicit eigenvalues
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(see Klein (1974) and references cited therein), one of which
is the_eigenvalue independent partitioning of Coope (1970), which
has some similarities to a nonfcanonical approach to the con-
struction of effective opérators,in-elementary particle theory,
first formulated by Okubo (1954). This'theéis is primarily.
- concerned with the development of this partitioning formalism,
and. its application in:quantum mechanical calculations. The
basic theory is described inaéonsiderable detail in chapters
2 - 4o

In,thé simplest (2 x 2) case, the basis space is partitioned’
into two suﬁspaces -- an nA-dimensional subpace and the comple=-
mentary n-n, = nhidimensional subspace, where 1 € n, <An-1 ;;
but now, the fundamental quantity is taken to be a mapping, f,
relating the parts of the eigenvectors lying in these two sub-
spaces. It is possible to define a variety of nh-dimensional
(and also, nB—dimensional) effective operators in terms of this
mapping. The set of eigenvalues of these effective operators
form a subset of the eigenvalues of the matrix H, but the
effective operators themselves no longer depend explicitly or
implicitly on these eigehvalues. Also, the corresponding
eigenvectors of the full matrix Hﬁare,optained straightforwardly
from those of the effective operators using the mapping f.

Lowdin and Goscinski (1971) are quite correct in pointing
out that implicitness of some sort is unavoidable in a partie
tioning formalism, and that this eigenvalue independent parti-

tioning formalism could be described, in.a particular sense,.



b,

as an eigenvector implicit partitioning. This implicitness is
basically a result of the fact that the eigenvalues (and through
them, the eigenvectors) of a matrix are nonlinear funqtions_of
the elemeﬁts of the matrix. As indicated by Coope (1970), the
orne=dimensional partitioning formalism of Léwdin can be obtained
as a special case of this eigenvalue independent partitioning
formalism when n, = 1 (as is, im fact, élso demonstrated, but '
not emphasized, by Loéwdin and Goscinski (1971)).

The adoptionfof this more general point of view, in which
the partitioning thebry is formulated im terms of a mapping
between the partitioned spaces rather than in terms of the
eigenvalues and eigenvectors of the matrix,ﬂleads to new and
important areas of applications In particular, it is especially
suitable when groups of eigenvalues or eigenvectors are to be
treated simultaneously. In chapter 2, it is shown;thét the
mapping £ can be used to define projections onto whole eigen-
spaces of He The condition defining f can bé formulated
variationally, and is also seen to be related to measures of
errors in such eigenprojections. It is also shown that f
transforms nonlinearly under a linear transformation of the
basis vectors, and that this has important practical implica-
tionse. | | :

The simplest (2 x 2) case of the eigenvalue independent
partitioming described above is straightforwardly generalized

to partitioning of the basis space (and eigenvector space) into

m, (2 € m< n), subspaces, as is demonstrated in chapter 4.
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Thére are two main areas of application of this partitibning
formalisme One of them is in: the constructiom of effective
operators in‘nA-dimensional spaées. with n, > 1. For eigen=-
values which are well separated from: all others, oné-dimensional
partitioning formalisms, as im eqe (1.1), are useful, but when
degeneracy or near degeneracy occurs, these formulas become ill-
conditioned. Traditionally, multi-dimensional efféctive opera=

tors have been constructed using a canonical procedure,

H= U?H* Y, ' (1.2)

requiring the calculationi.of a unitary transformatiom, U,.
which uncouples the desired eigenspace of the operator from
the rest of the eigenvector space (for examplé, Van Vleck"
perturbation: theory, (Vam V¥leck, 1929), also, see Tani (1954)
and Kleim (1974)). The unitarity of U is commonly ensured by

A

writing it as

U= ei.S‘«.! (1.3)

where S-is a hermitian operator. Thus, in obtaining the
desired uncoupled operator'ﬁ,,one must determine the exponential.

ISQ, This can be done straightfgrwardly“usingva

operator,. e
perturbation. formalism when that is appropriate, but it is very
difficult, in general, to calculate S exactly otherwise. On

the other hand, the mapping f, in this partitioning formalism,.
is defimed by a much simpler, though still nonlinear, equation,

which can not only be solved using a perturbation: expansion,

when appropriate, but can also be solved iteratively in a very
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- straightforward manmer to obtain f to any desifed level of
accuracye

Methods for the iterative determinatiqﬁxof f, and its
generalization in a multi-partitioning formalism,are giveﬁ in
chapter 5, and accompanying appendices. The particular appli-
cation to the calculatioh-of a small number of eigenvalues and
eigenvectors of a large hermitian matrix is considered in:detail,
and test calculations demonstrate the usefulness of this new
approach to the probleme.

Because of the simple algebraic form of the condition .
defining f, compared to those defining the operator S in.eq.
(1.3), perturbation formulas for f and for effective operators
defined in terms of f, are obtained stfaightforwardly for
arbitrary order, unlike the involved step by step procedure-
required in the canonical épproach.. Certain of the more useful
geries are developed in chapter 6. Two examples are included
to demonstrate the scope and ease of use of these formulaém
It is shown that a formal uncoupling of the four-component
Dirac equation,to obtaim a two-component relati&istic wave
equation for electrons, is obtained by a particularly simple
application of the basic formulas derived in the early part of
chapter 6. Also, 2 nuclear spin hamiltonian for the strong
field case is dérived to second orders. In all cases, the
presence of degeneracy in zero order is of no concern as long
as all degenerate or nearly degenerate levels are treated at

the same timee.
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' Another major application of this eigenvalue independent

partitioning formalism is in the use of the mapping operators
to describe projections onto particular eigenspaces. As shown
in chapter 2, projections omto eigenspaces can be written im
terms of f in a form which 1s automatically idempotent‘and

self-adjoint for any value of fe Eecause the elements of f
vare required to satisfy only’a singie simple defining condition,
perturbation formulas to arbitrarily high order are again
obtained straightforwardly. In chapter 7, perturbation formulas
~ for suéh'projéctions are developed with reference to molecular
orbital theory. In particular, perturbation formulas for the
density matrix in Huckel, extended Huckel, and closed shell
self-consistent field theory are produced.-

The density matrix (the projectiom onto the occupled
orbitals) in closed shell self-consistent field theory can be
written solely in ferms of the operator f corresponding to a
partitioning of the eigenvectors of the Fock operator, F, into
two sets, consisting, respectively, of the occupied and the
unoccupied orbitals, and thus, thé‘total electronic energy is
completely specified by f. The application of this partitioning
formalism in: self-consistent field theory represents a generali-
zation. of the simple matrix partitioning described above, in
that the operator, F, to be brought to block diagonal form,.
itself depends on the partitiohing operator f through its
dependence on the density matrix Re Since the matrix elements

of f are not constrained im any way and do not contaim any
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redundancy (see section 8,2), théy are a particularly suitable
set of variables in terms of which to determine the stationary
values of the energy directly. The derivatives of the Hartree-
Fock energy with respect to these variables are given very
compactly using the columns of the density matrix and its
complement. This formalism is extended straightforwardly to-
the general multi-shell single determinant case using the multi-
partitioning formalism described im chapter 4. Some numerical
calculations in the closed shell and unrestricted Hartree~Fock
cases are described im chapter 8, and they indicate that refine-
ments involving the use of scaled variables and the adoptiom

of bases whiéh nearly diagonalize the Fock matrices, result in
practical procedures which are superior to the Roothaan proce-
dure and to other currently available direct .minimization: self=-

consistent field procedures..
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CHAPTER 2

2 x 2 PARTITIONING THEORY

~

“The White Rabbit put on his spectacles.
*Where shall I begin .. please your:
Ma jesty?' he asked..

*Begim at the beginning', the King
said gravely, ‘and go on: till you come
to the ends then stop.' "

(Alice's Adventures in Wonderland,
Lewis Carroll)
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2.1 Basic Theory

2¢1ea The f-operator

Consider the matrix eigenvalue equation,

HX=X$§, (2.1a)

x'x =1, (2.1b)
where H is an n x n hermitian matrix, X is the n x n unitary
matrix whose columns are the orthonormal eigenvectors of H,
and y. is the n x n diagonal matrix whose elements are the
corresponding real eigenvalues of He. If the n-dimensional
basis set being used is partitioned into two subsets spanning
Spaces'SA and SB of dimensions m and ngs respectively, and
the eigenvectors of H are similarly partitioned into two sets
X(A) and X(B). spanning spaces S; and Sé. also of dimensions
ny and Npe respectively, then, the ﬁatrix, X, above can be

written in the block form,

x = [x(8) x(B)] o |¥an Fan| EA h:l |—fAA
| *Ba *BB £ 1p [0  Xgp

~n N

= T . : (2.2)

o

Formally, one has,

£ = Xg, x;i , ' (2.32)
and,
ey x-1
h =X, X5p - (243D)

The operator f maps the part of an eigenvector x(A)

r lying in

SA into the part lying in SB‘ It can be considered as a-
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generalization of the operator‘f(E). defined by Lowdin (1962),
in connection with a partitioning formalism with n, = 1 (that
is, with the space S, one-dimensional). The function of the
space SA here is analogous to that of the so-called reference
function in one-dimensional partitioming formalisms. Similarly,
the operator h maps the part of an eigenvector x§BD lying in
SE‘into the part lying inmSA. From egs. (2.3), it is seen that
f exists if the matrix block XAA is non-singuiar, while h
exists if the matrix block Xgp is non-singular. Since the
eigenvectors of a hermitian matrix are orthogonal if the basis
functions are linearly independent, the above conditions on.
XAA and xBB are satisfied simultaneously for atleast one
partitioning of the basis functions.

The orthonormality condition, (2.1b), on X can:be uged to
show that

hoe -t | (244)

Thus, in the simple 2 x 2 case,
f=| A . (2.5)

The operator f is the fundamental quantity in this 2 x 2
partitioning formalism. Because of (2.4), it completely
’ ’ '
determines projection operators, PA and PB? onto the two-

eigenspaces S; and Sg. One has

. 1 ‘
' = A ;
PA = X(A)x(A)f = . (XAA x;A ) EIA ff IN
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However, from the orthonormality condition, (2.1ib), on X,

one can write,

bt
L
[
-

x'x = %' ¢ (2.6)

where,

L]
1t

o
f
3

o (247)
0 &g

The matrices g, and gg define metrics, with respect’ to which

the truncated eigenvectors ianAA and XBB' are orthonormal.

That is,
Xy Xpp =1 (2.8a)
AA BA “aa A .
‘and,,
1 -
Xpp &g Xpp = 1p (2.8b)

These truncated eigenvectors are not orthonormal with respect
to unity unless f = 0. Since X is invertible, from (2.6) or

(2.8), one has,

gy = (X, X3 )7 = (1, + £7), (249a)
and,
e t =1 _ 1

Using (2.9a), the projection PA can now be written,

-1 -1 .t
! g g f

P, = | Megt [1, £17=| AL (2.10)
f ng ng f

. L}
In a similar manner, the projection Ponnto the eigenspace
]

SB.can be written solely in terms of f as,
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Py = gg L-f 15l =| T e (2e11)
B B B

It is easily verified that P; + Pé = 1. The operators PA

and Pé above are manifestly self-adjoint. Furthermore, using
the definitions of g, and gg im terms of f, given in eqgs. (2.9)}
these matrices can be shown to be idempotent by direct matrix

multiplication. Finally,

' -1 -1t _ -1 t
tr Py = tr g,~ + tr fg, tr g, (1A + £ f)
| = tr 1A = My, . ' (2.12a)
and similarly,
| ‘
tr Py = tr 1y = ng, (2,12Db)

where the cyélic property of the tracé has been used. Thus,
for arbitrary f, the operators P; and Pg satisfy all the
criteria necessary to be orthogonal projection operators. The
usefulness of the formulation in terms of the operator f is
essentially that, While the operators Pi_and Pé must satisfy
a complicated set of general constraints in order to be projec-
tions onto (any) spaces SA and Sg. the partitioning operator
f is not constrained in any way.

The eigenprojection 2; is completely specified by the

(a)
r

n,n complex components of the vectors x)"/, (r =1, «ee, nA),

[}
spanning SA" However, the space SA is also spanned by any
(4)

other set of n, vYectors Yp related to the xgﬁ) by a none

singular n, xny linear transformation. This transformation
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corresponds merely to a change of basis in SA.V Therefore,
there are nA2 abbitrary. or redundant, complex parameters
present in the specification: of SA using X(A). Thus only

nA(n - nA) = hAnB complex parameteré are necessary to specify
the eigenspace S;. But this is exactly the number of degrees
of freedom (or matrix elements) in f. Thus the operator f
represents the minimum amount of information necessary to
specify a projection onto the eigenspace SA (and therefore,
also onto Sé, which is the complement of S;) of H. This parti-
tioning formalism is therefore particularly useful in situations
in which only eigenspaces have significance, rather than

specific eigenvectors,

2.1.b The Defiming Condition For f

The matrices f and h, defined in the previous subsection,
can be obtained by diagonalizing H to get its eigenvectors, X,
and then applying the formulas (2.3) directly. However, it
is possible to formulate a system of equations for f andvh.
which do not require knowledge of the eigenvectors of H..

The eigenvalue equation (2.1a) is rewritten as-

N

HT = (2.13)

[}

where
W ae a1 |Hy O
f=88xt=0* _ 1, (2014)
. 0 HB

ijs to be block diagonale The diagonal blocks of eqe (2.13)
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give expressions for ﬁA and ﬁB in terms of f, h, and H,

£, =H

A +H

£, (2.15a)

AA AB

and,

"

H

If these expressions are substituted back into eq. (2.13), the

two off-diagonal blocks become nonlinear matrix equations,

D(f) = Hy, + Hppf = £ ﬁA(f)
_ (2.16)
= Hp, + Hypf = £ Hy, = £ Hpf = 0,
and,
D'(h) = Hy,h + H,p - h ﬁB(h)
o (2.17)
= Hyg + Hyyh = h Hpg = h Hgh = 0.

Equations (2.16) and (2.17) are both systems of n,ng gimulta-
neous nonlinear equations, the first for the matrix elements
of f, and the second for the matrix elements of he. It is
noteworthy that the two systems are not coupled, and thus

can be solved independentlye.

Of course, in this case, it is not necessary to solve
both (2.16) and (2.17), because if one or the other has been
solved, the solution: of the remaining system is given by eqwe.
(2.4)¢ In fact, it can easily be seen that D' is of the same
form in -hf. as D(f) is in f, implying eq. (2.4) without
explicitly making use of orthogonality (the hermiticity of H
is used, and this, of course, implies the orthogonality condi-

tion anyway).
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In the 2 x 2 partitioning formalism, eq. (2.16) is the
fundamental equation determining the operator f, if an ortho=-
normal basis is used. A number of efficient iterative tech-
niques for the exact solution of (2.16) will be detailed later.
The quantity D(f) is closely related to other more commonly
used quantities in the determination of eigenprojections. In
particular, D(f) will be seen to be related in several ways to

the error in an eigenprojection.:

2.1.c Rederivation From a Projection Point of View

An alternative approach to this partitioning formalism
can be made via the projection operators themselves. The
objective is to determine the eigenprojection PA onto a space
S; spanned by n, eigenvectors of H, in terms of some minimal
set of variables which number n,np, as shown previously. It
is useful to examine this approach in some detail, not only
because it provides a different point of view, but also,
because the projections themselves are manifestly basis
independent}

The conditions that P; be an eigenprojection of H are

]
that PA commute with H,

]
(e, P 1=0, . (2.18)
and that PA be a projection operator, that is,
'02 _ ] |1. . ’
P,“ =P, P," =P, tr P, = n,. (2.19)

It is convenient to define a partitioning of the basis
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functions into two sets, spanning spaces SA and SB of
dimensions n, and»nB, respectivelys Projections onto the

spaces S and S are given by,

P = . 2.20
B
0 1B

This partitioning of the basis functions implies that the

]
projection PA can be written in block form,

. P P ”
P, =| A 4B, (2.21a)
Pea  FB
where,
] []
P,y =P, Py P, ,
[ ] . [ ]
Ppa = Pg Py Py s |
’ . (2021b)
P,g = P, P, P
and

+g
]
o
o
‘o

B A B "

In terms of the partitioned matrix, (2.21), the idempotency
condition, P;z
[} |2 [ ] ]
= Pax - Fas Pma
1 ] ] [ ] L] [ ]

- Pg F Ppa

[ ] .
= PA’ is equivalent to the three block equations,
= () R

=0, (2.22)

A ~ FBB
and
[ ] '-2 [ ]

BB ~ FBB - PBA Pap = Ov

P
the remaining block equation being just the adjoint of the
second one. Since there are only n,ng independent variables

in P s it is possible, in principle, to express PAA and PQB
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[}
in terms of PBA" However, the equations are nonlinear, and

while formal general solutions can be written down,

P, = 31t (1 - 4pitopL )R], (2.23a)
and
Php = #(1 % (1 - 4Py, P;‘{)é] . (2.23b)

they are seen to contain: the ambiguity in the square root,.
and are generally difficult to evaluate.

A more useful result is reached by a different route..
The matrix Pi is of rank'nA. because the projectiom operator
onto an nA-dimensionaI space has precisely n, non-zero eigen~
values, corresponding to the n, eigenvectors of PA which span
the image space S;. This means that there is at least one
n xn, submatrix of P; which: is non-singularu It will be
assumed that the partitioning of the basis set,(2.20),is carried
out so that P;A is such a submatrix, that is, det(P;K) £ Oe
With this assumption, the first equation of (2.22) can be

rewritten as

[ ]
Poa = Py (1, #

'-1P'T ' a1 ' "
Poa Fpa Pma PAA ) Py, (2.24).

The quantity inside the brackets in (2.24) will be greatly

e
simplified if PQA is written as some factor times PAA,»that
ig, if

= £ P,

£t (2.252)
where f is an ng X n, matrix, and thus represents a suitable
quantity, in terms of which the matrix PA could be expressed;

.
The existence of f is assured by the invertibility of P,,,.
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L 05-1

f= PBA PAA . (2.25Db)
Now, (2.24) yields

P, = (1, + £76)7L, (2.26)
From (2.25),

Pgy = £ (1, + £70)71, (2.27)

Finally, substituting (2.25) into the second of egs. (2.22),
and multiplying from the right by f*(fft)°1, yields,

' toy=1.1

Equation (2.18) can now be used to derive an egquation
defining the operator f. Expansion of the commutator again

yields three unique block equations,
. toyv=1,y t
(EQ),, = (1A + £7£)7(Hy, + £ Hp)
toy=-1
- (Hy, + Hypf)(1, + ££)°7 =0,

t\=1 t ,
(E@)BA = (15 + ff ) (fHAA + ff HBA) (2.29)

toy=-1
~(H HBBf)uA + £'f) = 0,

BA *
and,

' ; tyv=1l,o0 t
t - 2 ty=1 _
= (Hp, £' + Hppff )(15 + ££7) O,
Here, use has been made of the relations,
toy=1 t,=1
£(1, f ££)7" = (15 + ££7)7°1, |
and (2.30)

(1, + £1e)1et = P14 ee)-1,

to move all of the inverse operators to the outside of each
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term. It is then seen that

(1, + £78) (R),, (1, + £72) + (15 + ££7) (BQ)g (1, + £'0)

= Ho, + Hpnf = fH

AB;
(2.31)
and also, '

(1B,+vff*) (EQ)g, (1, + £e) + (15 + ££7) (EQ)pp(1p + ret)e

= D(f) = 0,

where the quantity D(f) has been defined in eq.n(2.16) That
is, the operator f defined in eq. (2.16) is of the same size
and satisfies the same defining equation as the partitionﬂng
operator f described in the previous two subsectionse. This
result re-emphasizes the fact that this partitioning formalism
is based on the idea of defining an eigenspace of a hermitian
operator, rather than individual eigenvectorse. |

The *pull-through' relations, (2.30), are used extensively
in the 2 x ? partitioning formalism. They are most usefully

written‘as

rgt=gglf,  (2.32a)
and
- 1t t -1 '
gt =gt , (2.32b)

im the notation established in the previous subsections;
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2.1.d The Relationship Between: T and the'Eigenprojections--

Covariant and Contravariant Represehtations
The columns of the pértitioning mafrix ﬁ, of eq. (2.2) or:
(2.5), can be regarded as a set of non-orthonormal basis vectors
spanning the original n-dimensional basis spaceQ These vectors
will be denoted here by e, (r = 1, eeey n), fhat:is
1, -t

@‘s [61. 32. esey énJ = ¢ . BEE (2033)
B

The metric defimed by the scalar products of these vectors,
Erg = ©p’Cge is given by

atn gA o

E‘z PP =
0 &€p:

. (234)

using the notation developed in.eqes (2.7). Using the inverse

metric, E’= gfl. a set of contragredient basis vectors er,

(r =1, eeey nN), can be defined by

n . ..
er = I grs eS’ (2035)
s=1
or -
[ 1 -1 -1t
g O ~f g, -g, £
1 2 : Ex
[e’y €%y eeey e”] = o , nh §1f. 4
¥ 3] B &g & €p
-1
g
= |2, e (2.36)
B £

On: comparison with eq..(2,10), the first n, of these vectors

ef can be identified as the first n, columns of the projection:

P. onto S'm Similarly, the last ng of the el

A A are the last
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. [}
ng columns of Pp = (1 - PA)’ the projection onto the comple-

*
mentary subspace SB“ Thus the two sets of n, vectors

. (2.37)

are dual (contragredient), both spanning the eigenspace S;}

while the two sets of ngy vectors,

v
e =
~B
e
and — . (2‘38)
~ -(PA)'AB
e ~© ' = ’
|15 = (PL)3p

.
are also dual, both sets spanning the eigenspace SB?
From a different point of view, a metric X can be defined,

with respect to which the e_ are orthonormal, namely,

r
o~

e;o A oes = 6!‘8 ’ (res = 1, ooy n), (2.39)
That is,.

o~

VAN = g’é‘fo
Here 1

~ g, 0

A =3t =| A e (2.40)

0 gp :

1 above.,. Similarly, the e’ are orthonormal

is the same as g~
with respecf to 25'1, which is the same numerically as §’above.
It should be noted that 8"1 and g and Z and g"ias denoted
here are, im principle, quite different quantities. They

happen to be numerically identical here because 38* = 3?5
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(and ggf = g*g); Such is not the case, however, if the ori-
ginal basis is non-orthonormal. These sets of contragredient
vectors are very useful for writing a number of important

relations, to be developed later, in a very compact manner..

2.1.e Variational Formulatiom of D(f) = 0

The expectation value of an operator with respect to one
of its eigenvecfors is stationary with respect to arbitrary
L}
small variations in that eigenvector. As a result, if PA is
L}

a projectiom onto the eigenspace SA of the operator H, then:

the expectation value of H over S;, given by

E=tr PH, (2.41)
will be stationary with respect to arbitrary small variations
in P,. That is

E(P, + 6P,) = E(P,)

tr[P, (£+65) - P, (£)JH

tr 6PAH + 0(8%), (2.42)

must vanish to first order in the infinitesimals., It is
assumed here that H is independent of PA or fo From eqs. (2.10),

to first opder,

-1 -1
" =8, 08, & »

N T = -1 -1
(°PA)BA' fg, 68, &,

P | -1 gt -1, 0t (2.43a)
(6P)), 5 = -8, 788, 8, & + g of" ,

i

(°PA)AA

+ éi‘gx.i »

and

-fgzlagA gzlff + éfgr‘ft + rg-tett

L
(8%, )pp A



24,

. where to first order,

sg, = o't + £lof. (2.43b)
Substitution of (2.43a,b) into eq. (2.41), followed by use of
the cyclic property of the trace, and the ‘pull-through’

relations (2.32) for f and ff, results in an expression of the

form
8E = tro£’D + trof D' + 0(8%), (2.ol4ls)
where
'15 -l -l N
= gg D(f) g~ (2.45)
1,

' Because 6f and &f' are arbitrary variations in f and ff, the
conditiom that E vanish in first order is that the matrix D
vanishe The matrices gzl and gi} are positive definite,
however, and thus D can vanish only if D(f) itself vanishes..
Thus, the conditiom that the expectatiom value of H over the
image spaceuof the projection:P; be stationary is equivalent
to the conditiom D(f) = 0, eqe (2.16)e

It is also interesting to note here that the quantity D
iri-eqe (2.45) is the BA block of the hamiltonian H, in the basis
of contragredient, non-orthonormal vectors & of eqe (2.36)%

Thus one can write

3E _ . ' . ' Ny
3§3r7 ([(1 - PA).H.PA]BA)or fz.uéa)
= Hegei (2.46D)

and the rate of change of the expectatiom value E with an
element for of f is seen to be proportional to the correspond-
ing element of the off-diagonal block of the hamiltonian, im

this particular basis.
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2.1 Rg;ation:Bbtweentcz and D(f) -- Eigenvalue Dispersion

Im the study of matrix eigenvalue problems, it is useful
to define the variance oz,zwhich is a measure of the error in ,

an approximate eigenvector, x, of a matrix H, given by

2 _ (Hx - ax)'(Hx - Ax)
L . (2.47)

If the approximate eigenvalue, A, is calculated as the Rayleigh
quotient of H with respect to x,

A= E2HX (2.48)
X X

themr eqe (2447) becomes

1.2 t 2
2= X ?ux - (;_%_5) = <H?>x - <H>§ ' (2.49)
X X XX

which is in the form of the usual definition: of variance. In
terms of the projection

P, = x xt, |
onto the one-dimensional space spanned by the normalized
vector X, eqe. (2.49) can be written as

¢? = tr H(1 - P)HP . (2450)

Equatiom (2.50) suggests a generalizatiom of the concept
of the variance 02 to apply to projections P; onto a multi=-
dimensional space spanned by several approximate eigenvectors
of H. Substitution of eq. (2.10) for P, into eq. (2.50),
and use of (2,16), gives

2 ¢: ..
¢ = tr H(1-P,)HP,

tr g D(£)g; D(£)"
lezinen gt (2451)
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where A} = ( 2|‘A‘rsF% denotes the Hilbert-Schmidt norm of the
r,s
matrix A. This may also be written ini the form

of = -3tr([ B, P, ]%). (2.52)

[ ]
If PA is an exact eigenprojectiom of H, the variance 02 im
(2451) must vanish, because then [ H , PA ]_ = 0. Since gil

and gﬁl

g

are positive definite matrices, 02 can: vanish only if
D(f) = 0, In this case, D(f) is seen to give a quantitative
measure of the error in PA. rather than merely a criterion
for the presence or absence of error.

. In terms of matrix elements, one has

o? = 2é<q,lg§%D(f)g;%I¢t>|2 = El<fliloPl®, (2.53)

Po- Pe
where @, (P & £y eoe, nh), and @, (t =2 1, seey nh), are basis
elements in»the‘subspaces SB and SA' respectively. The ¢8,

(p =1y eoey nh), and the ¢g, (t = 1, eoey nh), are the

orthogonalized transformed. _basis vectors,

{¢2§ - | g;% ’ {¢2} -7 ggé v (2.54)
£ 15

2 is seen to be

in the basis of the ¢, and Byo above., Thus o
a measure of the smallness of the elements of the off-diagonal
block of H in this basis. Using the closure relationjglp><rl=

1 - ZIt><t|, eqe (2.53) cam be rewritten as
t

o? = 9l - T ,|<edHie>|?, (2.55)
tESA, t,sGSA

| where ¢°§ ¢°, in these summations run over eigenvectors in: the
t s
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L}
space SA only. On transforming these vectors to a new set:

Yo (r =1, eeey nh), which diagonalizes H in SA. eqe (2455)

becomes _
i

2 A 2 2

¢ = 21[ <V Bl > - <y [H|y > 7]

e | ,
.

= gh oi . (2456)

n=1

If £ is an exact solutiom of (2.16), uncoupling the parts
of the ¢:. (t = 1, oy nk), in S,y and the ¢§, (P = 1y eoey nNgls
fm Sps exactly, then the #Jn in (2.56) are exact eigenvectors
of H, and each L is: identically zeroe. If f is not exact,
then the anlwill be only approximate eigenvectors of H, and
oihis the variance of H with respect to the single approximate-

2 is the'isum over these individual

eigenvector Y o Thus o
variances, and is useful not only as a guantitative measure
of the accuracy of f, but also as an upper bound to the

individual o2,

2.1.2 Transformatiom of f Under a Change of Basis

The quantity f defined by eqs. (2.2) is clearly dependent
upon the basis set being used. Because of eq. (2.3), it does
not transform limearly under a linear transformatiom of the
basis vectorse

Consider the linear transformation,

L ] vn 1‘ A R
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of the basis vectors {¢u1, so that the eigenvectors of H,
referred to the new basis {¢;} have coefficients,

X' =V X (2.58)
In the new basis, partitionings of eigenvectors and basis
vectors similar to those described in section 2.1.a can be

carried out, yielding,

. X X, 1 -f X
Xpa Xpp £ 1z | |@
where
[ ’ LI | '
f = XBA XAA ’ (2.59Db)

analiogous to eqse. (2+2) and (2¢3)e.
To obtain the relationship between f and f., we proceed
as follows. From (2.2),

X' =vx=vD%

at Al
=% % ,
or
~ L N L . | )
T o=vEBiER T, | (2.60)

[ B
whéhe: the right hand side of eq. (2.60) is independent of f ,
.
but does depend on the truncated new eigenvectors il. However,
from the AA block equation: of (2.60), it follows that,.

]

Substitution of this equatiom into the BA block equation of
[ ]
(2.60) gives £ in terms of f and V only,

£ = (VBA + VBB;)QVAA + VABf)-l‘ (2e62)

While such a complicated transformatiom can be very
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inconvenient im some cases, it is also a feature which can be
usefully exploited. In calculations in:which the élements of
f are acting as coordinates, the metric character 6f the object
function can be radically altered by a simple basis change,
because of the nonlinear dependence of f' on Ve For quantities
transforming linearly in V, such a basis change merely results
in a rotation of the object functione This point is discussed
in greater detail in éhapters 5 and 8.

If £ is small, the inverse matrix in (2.62) can be

expanded as

o -1 _ -1 -1,-1
(vAA + VABf) VAA (1A + VABfVAA)
= vl lyely vl L., (2.63)

AA AAAB” AA
and thus, to first order in f,

' -1 - y=ly S
£ = Vg Via + (Vgp = VBAVMVAB)vaA + 0(£%)e  (2.64)

Thus, if f is small, the transformation (2.62) is nearly

Iinear, although not homogeneous.
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2.2 Effective Operators

2¢2.a Basic Definitions

The primary application of the partitioning formalism just
described is in the construction of effective operators. Ih‘
this contéxt, such operators are defined in either of the sub-
spaces SA or SBbaf the full basis space, but their eigenvalues
form a subset of the eigenvalues of the original operator in
the full basis space, and the corresponding eigenvectors are
related in some way to those of the original operator. There
are two ways of regarding the matrices of such effective opera-
torse They can be regarded as the matrix of a transformed
operatof in the old basis (active sense), or, alternatively,
as the matrix of the o0ld operator in a transformed basis
(passive sense). Both points of view are equivalent, but in
what follows, the former will be emphasized.

Thg@simplest set of such effective operators for the matrix
H has already been defined in equations (2.,14) and (2.15). 1In

Sk, we have the operator

fi, = H,, + H,f, (2.652)
with the eigenvalue equation

B, X, =%, §W, (2.65b)
and inaSB, o

ﬁ:B = Hpp = Hmft (2.66a)

with the eigenvalue equation,

R5 Xsp = %pp J‘-"(EE) . (2.660)
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Both ﬁA and ﬁhaare non~hermitian in general, although their
eigenvalues f(“ and f(m)} are real, since they are subsets
of the eigenvalues of the hermitian operator He The eigen-
vectors xAA and Xnﬁgare not orthonormal in general, because
they are truncations of the orthonormal eigenvectors X of the
full hamiltonian H..

It is possible to derive a pair of self-adjoint effective
operators directly from the eigenvalue equation (2.1a). Pre-

multiplication: by ot » and use of eq. (2.17), yields,

GXyp = &Ky § (x), (2.67a)
where

L AtA L t t., |

G, = (B'HD),, =W, + Hpf + £TH,, + £'Hg £,  (2.67D)
and, v

‘- (B)

GpgXpp = &¥pp § » (2.68a)

where

. A bod . t | +

t

The off-diagonal block of T Hﬁ is given by,

Gpp = Hpy *+ Hpgf = THy, - fHpf, (2.69)
which is just the quantity D(f), defined in eq. (2.416)e When

Gﬁﬁ‘z 0, it can be shown that,

-

A"
using eas. (2.9), and the definitipns of the effective operators
presented above. Thus, when f is known exactly, the self-
adjoint effective operators GA and GE;could be considered to-

be obtained from the non=-selfadjoint effective operators ﬁA
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and ﬁE by orthonormalizing the eigenvectors of the latter..
It is also possible to obtain self-adjoint effective
operators in-SA and SBiby orthonormalizing the truncated
eigenvectors. The effective operators ﬁA’ ﬁb? and GA and Gb~
above, are uniquely determined once particular partitionings
of the basis and eigenvector spaces are defined. The self=- |
adjoint effective operators obtained by orthonormalization
are not unique, howevér.‘in that they depend on the particular
orthomormalizatiom procedure employed.
The symmetrical orthogonalization procedure of Lowdin-
(1970) and others, has the feature that the new orthonormalized
vectors resemble the initial vectors as closely as possible,

in a particular sense.1 Applied to the present case, the new

orthonormal eigenvectors are given by

GAA = gAé X ’ (20718.) -
in SA' and,

inWSB’ Thus one has,

t . t
efc,, = X|,&,X,, =1, » |
AAYAA T AaaBataa T (2.72)

zxt

c BBEB*BB ~

C

BECEB 1

B *

by eqe (2.8)s The eigenvalue equation in CAA_iS'obtained

either by premultiplying (2.65b) by gAé or (2.67a) by'gX% to get,

11n1the notation used above, the difference between the two
sets is measured by

, 2

Lle, . - X,

i,j'ij i
which is mimimized if C is given by eqe. (2.71) (Lowdin, 1970)..
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AP (A)
ﬁACAA = Can ; ’ (273)
where
ﬁA = gA% ﬁAgzé (2.7%4a)
g;é GAg;%-. (2.74Db)

Similarly, pfemultipiication1of (2.66b) by gB% or (2.68a) by

ggé, gives the equation

EBCBE= cgs B2, (2.75)

where
Ty = eg’ fpep’ (2.76a)
= gﬁ% 8 '5 (2.760)

Itfis also possible to define effective operators in:
either SA or SBLfor any other operator defined in the unparti-

tioned space. For some operator M,

(M)t  (A) _ ot = |
X MX X aMX, ., (2.77)
where
. , M, M. |1
% o=[1, £1]]| M TAB A
A" TA M., M £
BA BB
., has the same form in M as G, defimed in (2.67b) has in H.

A A

Here ﬁA_haé the same expectation values for the truncated
eigenvectors x AA as the operator M has for the full eigen-
vectors X(A), An effective operator with the same properties
with respect to the orthonormalized elgenvectors CAA is

clearly given by,
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ﬁA' = g;% ﬁAgi%" (2.79)
which is analogous to ﬁA defined im eq. (2.74)s The analogue
of the effective operator ﬁA of eq. (2.65a) can be obtained
by premultip]lying‘f&A by g'i » following eqe (2.67b)e Effective
operators for M restrictéd to Sps analogous to (2.77) = (2Q79).

can be obtained in a similar manner.

2.2.b§ Eigenvectors and Eigenvalues of the Effggtive Operators-

In order to amplify the material in the immediately pre-
ceding subsection, the connection between the eigenvalues and
elgenvectors of the operator H and those of the effective
operators ﬁ,\G, and ﬁ; will be illustrated here from a diff-
erent point of views The full operator H has the eigenvalue
egquation

H+i = Fiy‘i. (i = 1, esey n). (2.80)

Once the two basis spaces,.sA and SB,.are defined, each eigen-

vector ‘wi can be written as a sum of two parts,

one part in SA and one in SBF The eigenvectors are them-

selves divided into two sets,. ﬁpgA), (1 =1, ;.a; nA); and

YJiBgm (L =1, eoey nB), where hA *+ ng = n, according as they
L]

L}
lie in SA or SB’" The basic property of f is to map the part
of WPgA) in S, into the part in Sgs according to
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'\P&,’ = £ pA), (2.82a)

Similarly, one has,.
piB) o (et w(B), (2.82b)
Combinatiom with eqe (2.81) yields,

«Pg\) = wiﬁ) + (A) »P(A) + f«l’&)

= (1, + wa‘“ | (2.83a)
and,
(B) B): (B) _ ( Bv (B)
v - w‘ * w * Pia

In: the notation used here and throughétut this subsection, the

operator f is to be regarded, when~necessary;.a3>embedded in-

the n-dimensional basis space, but will be denoted by the same
symbol as before..

The eigenvalue eqﬁationwfor ﬁA is
R WA . W Gy, i n, (2e8k)
where the eigenvectors satisfy , |
A)lgAl »p(“> =650 (1,3 = 1, ceey e (2.840)
For the effective operator GA' it is
G’A ’\P&) = §A) gAVJ&). (1 =1, eeey nh). (2.85)

with the same orthomormality conditions (2.84b). Finally, for

the effective operator ﬁA, the eigenvalue equation is

Hy X{h= gWIA) a 1, e ), (24860)

where,
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'X&) = gA%#’&). (i = 1. eeey nA). (2.86b)
and,
<KANXA> =y (Li= 1, ) (20860)

In: terms of the eigenvectors of'ﬁA. the eigenvectors of the

original operator H are

YA o1, e gt XA, | (2.87)
(1)

In all of these equations, the eigenvalues ,Fii (1 =1y eeey m),

are exactly the n, eigenvalues of the original operator H

‘corresponding to the eigenvectors WPgA). (1 =1, eoen my)e
The eigenvalue equations for the effective operators ﬁB' Gge
and HB? defined inaSB. are of the same form as those given
above for the corresponding effective operators inzSA'u
Pinally, consider the projections PA and Pé}onto the

eigenspaces S;, and S;¢ respectively. For PA,

U (A): (A)
P, = 1oy | ¥5 ><"Pi |
m
= m?1(1A + f) FW(A) ’wgﬁ)|(1A + £7) (2.88a)
Here,.
m
Z i<y - M (2.88b)

defines an embedding of the inverse of the metric gy in the

n=dimensional basis space. Similarly,

v TB () (B)
Py = I 1Y <yl
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;) A |
2121 (1g - £7) W(B)><'P§g,,)"|('13 - f), (2.89a)
where,,
{ By (B o gB)-1 (2.89b)

is an embedding of the inverse of the metric gp in: the full

n-dimensional basis space..

2.2¢¢c Relationships With Other Formulations

Many of the quantities defined or derived above have
appeared in one form or another in the literature, usually in
connection with the calculation of eﬁfective operators inm-a
perfurbationrformalismo The treatment by Friedrichs (1965)
of an isolated part of the spectrum of an operator H} is
particularly interesting in this regard. Several interrela-
tions between the current non=canonical formulation and the
more commonly used unitary methods are illustrated by rewriting
some of the quantities introduced in that treatment;“using the
block notation employed here.

Following Friedrichs, the aimaheré is to obtain an expres-

siom for a projection operator P_ onto a space spanned by a

€
set of eigenvectors which correspond to an isolated part of
the spectrum of some perturbed operator H.. Rather than
requiring that the projectiontPé be orthogonal (that is,. that

be hermitian), or explicitly idempotent, it is

the operator Pé
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required only that

PP, = P PP = P

o' (2490)

(34
where Pb is a projection onto the corresponding eigenspace of
the unperturbed operator Hb. These linear conditions, (2.90),

imply idempotency,

2

P€ = PGPOP€ = PePo = Pé’
and

P2 =pPPP =PP =P

o 0 €0 0 € o!

. thus verifyiﬁg that Po and PE are projections.. However, by

themselves..they do not imply that P; = Pe..or that P; = Po;
€ to
be a projection, without prescribing any information about the

Equations (2.90) represent the minimal conditions for P

internal structure of its image space.
In a basis adapted to the solution of the zero order:

problem, that is, with the matrix representation,

A i, 0
P, = [* :l , | (2.91)
[ 0. 0

where the subscript A denotes the space spanned by the zero:
order eigenvectors of interest, the form of the matrix repre-

sentation of P, is restricted by (2.90) to

1, 0
Pe =1 ’ (2492)
fe O

where: f. is a matrix undetermined by (2.90).
It is now possible to define-mappings.,UE(S°4>S€) and

UZ(S€€>SOY. between the spaces SE spanned by the eigenfunctions
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of the perturbed operator, and the space So spanned by the
corresponding eigenfunctions of the unperturbed operator.

Im terms of the projections Po and Pe, these mappings are

5 o, . ,
Uz = 1% (P - Py (2.93)
as given by Friedrichs. It then follows that the operator
F _ .+ -
He = Ug He Ug o , (2,9%)

is from So)to So’ but has the same spectrum as He, the
perturbed operator. That is, Hg is an effective operator in
the space S .
° +
In the matrix notatiom introduced above, the mappingS'UE

are
be = , (2495)

where the subscript B denotes the space of all eigenvectors of
Ho except those of intereste Thus, in the notatiom developed

in» the previous sections,.

H, (f H
alfe) ‘:‘B . (2.96)
D(£,) fig(fe)

7

€

It is possible to define a new set of unitary mappings,

te

Ue , which map between S_ and So' and vice versa, as

€

. (2497)

Using (2.97) instead of (2.95) in eqe (2.94), a new trans-

formed perturbed operator is obtained,.
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' e L | Galfe) ()"

+ -t
. = U, H U, = (2.98)
€ fEE D(fg)  Gylfe)

which is self-adjoint. The operators GA and GBlare given by
eqse (2.67b) and (2.68b). These results are in accord with
the fact that the non-selfadjointness of the operators ﬁA and
ﬁBP inmroduced‘inmthe previous section, is associated with the
fact that the mappings between the two spaces SA and SBﬂare(
not unitary (that is, they do not leave the inner product
unchanged ). |

!' . :
g is block diagonal when the matrix

We point out that H
block £, of Us satisfies D(f¢) = 0, eqs (2.16). It is inter-
esting to note that choosing the matrix block fe in Ui of
eqe (2.95) to satisfy (2.16), is equivalent to a partial
reduction of HE toward the upﬁer Hessenberg form, the result
of a non-unitary procedure used in numerical matrix diagonali-
zation. However, ﬁgbis ot exactly upper Hessenberg even if

~

D(fe) %anishes. because the diagonal blocks of ﬁA and HJ
are not upper triangular in general.

Finally, note that Friedrichs introduces an operator ‘
(PEPG)-l' which is defined only im the image space S, of Po;

In the matrix notation: used above,

1 = t = (g

PEPE = lA + fEfE (gE)A- (2499)
Thus, the orthogonal projection:onto Se, given by Friedrichs

as

a to ye1
Pe Pe(PeP )™ P o
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is written in matrix notationm here as

_ =1 1 )
“ 1 o] (&) of |1 f
Pe Timr A €A : A €
o=0 fé 0 0 o 0 0

-1 elt
flge)y  Telee)y fe

which is identical to the projectionaP; of ede (2410),

Finally, we also point out that the operator ﬁ, defined by
symmetrical orthogonalizatiom im eqs. (2.74) and (2.76), coincides
with operators of Sz.-Nagy (1946/47; see also Riesz and Sz.-Nagy,.
1955, §136), Primas (1961, 1963), and also>Kato (1966, Remark 4.4
of chapter 2)e«
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2.3 Generalization to a Nonn;thdnormal Basis Set

The formalism presented in- the first part of this chapter:
can easily be generalized to the situation in which the basis
functions ¢., (i =1, eeeyp N), being used, are not orthonormals
In this case, the eigenvalue equatiom has the form |

HX =5 XE, | (2.101a)
with normalizatiom

x's x =1, (24101b)
where the elements of the matrix S are the inner products of
the basis functions,

Sijgz <¢il¢j?.
The partitioning of the basis set, and of the eigenvectors of
H imto two sets of dimensions n, and ngy. respectively, is

carried out exactly as before, leading to eq. (2.2),

where f and h are again formally given by (2.3). However, as
a result of the more complicated normalization condition (2.101b),

the simple relation (2.4) is now réplaced by
h=-(S,, + £1s_,)71(s,. + £'s.2) (24102)
’ AA BA AB BB/ * *

Because of the complexity of (2.102), it is convenient here

to retain the notatiom h and f throughout, rather than:

eliminate h entirely, as was done for the orthonormal case.
The metric matrices for the truncated eigenvectors,

as in eqe. (2.8), are given by the diagonal blocks of the product
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tts T,
-« t t o
gA = SAA + SAB? + f SBA + f SBB;' (2.103a)
and
. .1 + N
gE,- SBB?+ SBAh + R SAE + h SlAh' (2.103b)

The projection~PA still has the form (2.10), but the

[ ]
projectioﬁzPhEmust here be written,

h : hg'lht ﬁg‘l :
(] - : Bk ‘ ,
P, = glin 1,7-= B B 1. (2.104)
B 1 B B -lht -1
B €p: €p
These projections are self-adjoint, but now the idempotency-
econditions become (P;S)2= Pfsw and (Pé§)2 = P%S, as can he

verified by direct matrix multiplication. Also, it can
[} ,"
easily be shown that tr PAS =My, and tr PB§ = Nge
The defining conditions on f and h can be obtained from

the ahalogue of eq. (2.13), namely,

HT =5 7 #, (2.105a).
where
i=%g5, (2.105b)

is to be block diagonale The non=selfadjoint effective opera-

tors ﬁA and ﬁE are given by the diagonal blocks of (2.105a) as

~ - \ -1 . ’

Hy = (Syy + Sppf) " (Hy, + Hypf), (2.106)
and:

B = ; : -1 o

HE = (Smh + S'B‘Bf-) (Hmh + HBBL) . (2.107)

With these definitions, the eigenvalue equations for these
efféctive operators have exactly the same form as in the

orthonormal case,
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Alternatively, the inverse matrices in (2.106) and (2.107)
could be transferred to the right hand sides of the eigenvalue
equations for ﬁA and ﬁB’ respectively, and be regarded as

effective overlap matrices, giving eigenvalue equations of

the form:

~ = ~ (A) .

Hy Xgp = Sp %pq 7700 (2.108)
and

i = 4 (B) )

Hp Xpg = SpXpp B (2.109)

-t b ] )
where n'pw,qHA and ﬁﬁ are given formally by eq. (2.15), as

at :
HA.SVHAA + H,pf, (2.110)

"t
H )

B - HBBz+‘H

The operators §A and §Bﬁare of the same form in S,

§,

A (2.112)

= S + S = Sp,hi+ S

£y Sp = Spa BB*

AA AB

Equations (2.108) and (2.109) are generalized eigenvalue
equatiohé for a non-selfadjoint operatore.

Using (2.106) and (2.107) in the off-diagonal blocks of
eqe (2.105a), the defining equations for f and h, analogous
to (2.16) and (2.17), are now found to be

D(£) = Hy, +Hoof(Sq, +Soaf)f
pa*Hppt- (Spy +Sppf/Hy (2.113)

- e . . . . ,
= Hp, +Hppf=(Sp, +Spaf) (S, ,+8, )7 (H, , +H, pf) = 0,
and’
D'(K) = H,o+H, ,h=(S,,h+S, )H,
AE TAA AYTPABM B (2.114)

o J | -1 -
= Hyp+H, \h=(S, ,h+S, o) (S, h+Spp) ™" (Hp, h+Hpp) = 0.
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As for an orthonormal basis, the equations for f here are not
coupled to those for he.. Equations (2.113) and (2.114) are not
the only useful equations defining f and h. An alternative
approach is used in some detail in the next chapter. |

. Self-adjoint effective operators can again be obtained by
premultiplying the eigenvalue equation, (2.101a), by . The
resulting operator, G,, in SA is given by eqe. (2.67b), but the
corresponding effective operator ﬁn-SBEmust now be written

t

Cp = Hgg + Hyyh+ hHyp + n'H,n (2.115a)

AB AA

= g%gﬁ, . | (2.115b)
with (2;115b).hélding only if egs. (2.113) and (2.114) are
satisfied. vThe eigenvalue equations for these effective opera-
tors are as in eqs. (2.67a) and (2.68a), applicable also iﬁ~
an orthonormai basis. The BA block of T'H T is

. e tiw
Gy =‘HBA.+ Hppf + hi(H,, + H,pf), (2.116)

which becomeé'idéntical to D(f) if h is given by (2.102).

The effective operators ﬁA and ﬁBiare given by eqs.. (2.74)
and (2.76), respectively, in this case. Their eigenvalue
equations are given by (2.73) and (2.75).

Sets of contragredient vectors can be defined here in terms
of the columns of Pi“énd (1 - Pis», and their reciprocal
vectors. These are useful in writing various quantities in a
compact manner when a nonorthonormal basis is used. These
vectors are considerably more complicated in- this case than
those given in section: 2.1.de Their detailed examination: will
be deferred until some motivation has been provided for defining

theme
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CHAPTER 3
THE EFFECTIVE HAMILTONIANS-=

PRACTICAL CONSIDERATIONS

"So I prophesied as I was commandeds
and as I prophesied, there was a
noise, and behold a shaking, and the
bones came together, bone to his bone.
And when I beheld, lo, the sinews and
the flesh came up upon them, and the
skin covered them aboves but there
was no breath in thems"

Ezekiel 37+ 7,8 (KJV)
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3e1 Alternative Formulas

The purpose of this section is to exémine some of the
inter-relationships between the effective operators described
im sections 2.2 and 2.3, in somewhat greater detail, especially
when f is known only approximatelye. As has been pointed out
before, the two alternative expressions for the operators GA
and Gy given in eqsSe (2.67b), (2.68b), and (2.,70), are equiva-
lent only if f satisfies D(f)=0. If f satisfies D(£)=0 only
approximately, it is possible to distinguish two types of
approximate effective operators, ﬁA and ﬁB' namely,

A1) = m,, + Hypt, (3.1a)

AL = Hpy - Hy,e", (3.1b)
and

B2 - gl , | (3.22)

8l2) - 2toey | (3.20)

B‘. :
[

These two types of operators are related by

ﬁﬁz) = ﬁil) +g Af’D(i)(f) | (343a)
and : :
5(2) < /) 4 el (!, (3.3b)

wherewthe nntation1D(1)(fN is defined below im eqe (3e4)s

Thus the two sets of formulas, (3.1) and (3.2), are equivalent

only if D‘lx(f) = O, In'effect,.ﬁiz) and ﬁéz). here are gen=

eralizations of the Rayleigh quotient <% I}i |¥>/<¥|¥> for a
a(1)

single éigénfunctionu‘ The operators.ﬁil) and HE -correspond
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to the use of an intermediate mormalization, involving writing
the expectatiom value of H as <¢|H|¥>/<¢|¥ >, where ¢ is some
arbitrary reference functions The Rayleigh quotient is second
order in: ¥, while this intermediate normalization  is only"
first order im Ve ,
, a(1) a(2) : ,
In terms of the operators H, and H "7, ede (2.16) can

be written in one of two forms,

and

Dﬁz)(f) = Hp, + Hppf - fﬁXZ) = 0. (3-55

These t@o equations are equivalent in that they both have the
same solutions. However, their detailed forms are quite '
different away from this solution.. Equation (3.5) can be

1H§, rather than ﬁtﬂﬁ,

obtained directly by requiring that T~
be block diégonal,vthe latter being implicit in the derivation:
of (2.16)s It can be shown that the relationship between these

two quantities is given by
() = gglothn) (346)

in the Ease of an orthonormal basis.

It is also possible to distinguish between three different
formulas for calculating operators of the type designated ﬁA.
depending on which form of eq. (2.74) and also which form of
ﬁA is used.. Only one such form is useful, and for préctical

purposes, is given by either eqe. (2.74b) or by

H

L = et 1Pt ‘ (347)
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In the case of a nonorthonormal basis, the situation'is
considerably more complicated. Because the orthogonality
conditioir, (2.101b), is no longer simple, it is necessary to-
allow for the possibility that if f and h do not exactly"
satisfy eqs. (2.113) and (2.114), they may also falil to satisfy
eqe (2.102). As a result, the off-diagonal blocks of both

the matrices,

-~ ~ —_é G .
G=1TtHD = | A AB] (3.8a)
| SBa Gy ‘ -
and .
ne m g, &p |
Eaa  Sn

must be considered to be potentially nonzero in what followse.
Twaspairs of operators ﬁA and ﬁE are again defined in

this case,

A1) = (s, + 5,07 (H,, + H D), (3.9a)
and o
(1) = (sguh + Spp) ™ (Higy + Hyh), (3.9b)

identicél'to eqs. (2,106) and (2.107), and
a2 = gle, (3410a)
and . .
H(Z) = g3ty o | (3.10b)
Thegse two sets of operators are shown in Appendix 1 to be

related by the equations,.
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#(2) = (1) 4 glet D(l)(f) (3+11)
and
&éz)“= ﬁg}’ + g5 s p{l)(e)t, (3612)

where*D(ly(f), given formally by eqe. (3.4), is the quantity-
im ege (24113) defining f« Thus, these two pairs of operators
are identical only when both D(l)(fﬁ = 0,

5(1)
HA

The two operators and ﬁ(z) give rise to two different
A

defining conditions on f, given by

D1 (£) = Hy, + Hgpf - (Sp, + SpeDY) . (3.13)
and
D2 (2) = Hg,. + Hypf - (S, + SEOAZ) L (Gaw)

In this case, the relationship between the two quantities-

p{1)(£) ana p{3)(s) is

D(2)(£) = (sppeSp,h) (egrh’gyg) ™t (15-ep, 5 e )DL (2)e

| (3e15a)
When gp, = 0, this reduces to
2N (2) = (555 + spmepinte), (3+15b)
or. |
p®V(£) = [1p - (Sp, + Sppfle] 1et9p(1) (£, (3e15¢)

The derivations of egse (3.12) = (3.15) are quite long, and
have been outlined in Appendix 1.
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3.2 Implications of Inexact Solutions

Consider an approximate solution, £APProX 44 eéav(2.16),
given: by
g2PPEOX - ¢ + b1, (3.16)
where f is an exact solution of (2.16). If the effective
operators ﬁk’ Gm, and ﬁA are calculated using fapproxr the
error 6f will result in errors in: the effective operators at
some order in 6f.

Starting with the operator GA' and writing

approx _ n ,
Gy S = Gy *+ 8Gy » (3.}7a)

where G, is exact, it is easily verified, using (2.16), that

o (agt t 2
8G, = (8 f£)H, + H,(£76£) + 0(8%), (3+170)

v ]
to first order in the errors. Here the operator HA is exact,
Thus the error in GiPprox is first order in &6f.

Similarly, from eq. (2.70),

+'6GA = (g, + égA)(ﬁiz) + 5ﬁ§2))r

Gy
or

5&&2) = gf[ccA - égAﬁA] + 0(8%). (3.18)
Since

§g, = o't + £lor + 0(s2), (3419)

eq. (3.18) then yields
(2) - ~1rft(st = (¢ts )R 2y
sfty = g [Hy(fTef) - (£ s£)H,] + 0(s%) (3.20)
" On: the other hand, from (3.l1a), one has
(1) _
5ﬁAA = H
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exactlye. Except for m = 1, both these errors,lbﬁil) andléﬁiz)'

are first order im 6f. Howewver, (3.20) consists of the differ-
ence of two very similar terms, which actually vanishes for

m =1, This corresponds to the familiar property that the
error in an eigenvalue calculated as the Rayleigh quotient of
an approximate eigenvector is second order in:?he error in the:
eigenvector§ For n, > 1, the first order error, (3320), does
not vanish in general, but, as will be shown presently, the
first order correction to the eigenvalues does vanishe

Using eqe (3.20), and the result
se? = -g;0g, gt + 0(s?), | (3.22)
it is easy to show from (3.7) that
6ﬁA_= [ﬁA, gzéf*afgzé - GgA%gz%]’_+ 0(82). (3.23)

This also vanishes in first order when n, = 1, but is in
general non-vanishiﬁg when n, > 1.

For a non-orthonormal basis, eqs. (3.17b) and (3.23)
remainm the same because the formula for the operators GA and

EA used in deriving these results does not contain: the overlap

matrix explicitly. However, for the two operators ﬁi}) and

ﬁiz). the form of the errors caused by an error in f does

differ from (3.20) and (3.21). From eqe (3.9a),.

(1) _
5HA

= (Spa*Sps f-S,

£)~Y(u

ABY fﬂii)» + 0(6%)e (3e2k)

AB®
From (3.10a2), and using the same procedure as was used to

obtain eqe. (3420), one obtains,.
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aﬁf) = g [fij(s, 5 + £'spp)er (3.25)
- (Spp * f1SBB;5)_QfﬁA] + 0(6%),

Except for (3.25) vanishing when m =1, both (3.24) and (3.25)

are first order in 6f. Although the first order term in (3.24)

now involves a difference tetween: two terms, the two terms are:

not very similar, as is the case in (3.25), and therefore ﬁ(z)

A

is still expected to be inherently more accurate for a non-
orthonormal basis than ﬁxl).

The first order variatiom in the eigenvalues of GA due to.
some variations SGA. ‘gA” in the operators GA and Y respec=

tively, is given by
s 85 = <viale0, - o1 PiY)> + o6, (3.26)

The functions ﬁPiﬁ) are the eigenfunctions of the exact
operator G,, and eq. (3.26) follows directly from the eigen=-
value equation, (2.85), for Gy o But upon: substitution of
(3.172) and (3.20) into (3.26), and using the eigenvalue
equation (2.84a) for ﬁA’ it is seen that 6§, of (3.26) vanishes
in the first order im &6f. -

In: the case of the operator ﬁ(l), the first order error

A
in the eigenvalues is given by

o <3.27>
which clearly does not vanish in generale On the other hand,

one has,
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= <~+(A)|H (£f6f) -~ (£ af)H W(A)> + 0(6%)

= 0(6 )e (3.28)
The operator Hﬁz) is thus inherently more accurate than the
operator Hﬁl). when evaluated using an inexact f.

Phe first order errors in the eigenvalues of the operators
ﬁAﬁare just given as the expectation values of the first order
error operator,(3.23),with respect to the eigenfunctions
‘X(A) of the exact openator'ﬁA, defined in eqs. (2.86D).

Since 6H, can be written as a commutator to first order, its

A
expectatiom value will be zero, and therefore,
8 ?i = <X§ﬁ)|51~{A H(&B = 0(6%). (3429)

For a nonorthonormal basis, only the expectation values
of Sﬁil) and Sﬁiz) are different in nature from those given

above for an orthonormal basis. From (3.24), one obtainsj

(1) _ _ . (R) a(1)y o (A)
66: ' = <Pt/ g 6H > + 0(8%)
$i Via le A | 12> + of (3.30)
= <’P(A)|gA(SM S, pf ) (H, 5815, afﬁ<1))|1p(‘°‘)>+9(‘62).

which does not vanish in first order in 6f under any obvious

general conditions. However, from (3.25),
f(Z) - <y;(,{‘-)|gA6f{(_2)|1P(A)> + 0(s2)
= <pB il (s, aetsnret(s, pof SBB;)HA | Msa0(62)

= 0(s%). (3+31)
Therefore the eigenvalues of ﬁiz) in a non-orthonormal basis

are affected only in second order by errors in f.
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3+3 Perturbation Theory For HA " and HA

The purpose of this section is to outline perturbation:
formulas fof the eigenvalues and eigenvectors of the effective-
operators fi » GA' and ﬁh, defined in the space SA‘“ For the
most part, the formulas presented below are not new, however,
those for ﬁA and GA are not well known. These formulas- are
necessary'if’the eigenvalues and eigenvectors of the full
operator are to be calculated via a perturbation procedure
based on: this partitioning formalism.

The formulas for ﬁA will be derived in some detaii;
because they are unusual in that ﬁA is a non-selfadjoint |
operator (but with real eigenvalues). Those for G, and ﬁﬂt

will then just be summarizede

Je3%a The ﬁA Scheme
The eigenvalue equation: in this case is written,
ﬁi'V'i- y <'¢ilgA | Pj> = 5 (3e32)

where the subscripts and superscripts 'A' on the .Fi and the
y’i have been suppressed, and will be throughout this sectione

The metric matrix g, is selfadjoint. We have

=% alw, = £ ym,

A n=0 ‘ #& nFO‘1Pi‘ (3.33)
m (n) - ezo: (n) . 3 033 .

?i n=0 Ea- e &) ’

where the superscript is to indicate the order of the term
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in the perturbation parameter (or parameters), and the solution
of the zero order eigenvalue eduationz
N I R P I S
(334)
is known. The terms in the series for ﬁA-and g, are given,,
and the terms in the series for ;i.and #3 are to be calculated.
Consider the first order term of the eigenvalue equation
and normalization condition (3.32), given by
(ﬁf)- Fg})w,éo) R (ﬁﬁ.O)' fng))“P?) =0, (3.35a)
and _
2<n\bio), ngo;)1¢§1)"> + <¢§_€o)|g;(\1) w,io)> =0, (3.355)
when all quantities are real. The first order eigenvalue F(l)
is obtained by premultiplying (3.35a) by (g o)ﬁp(o))t, and

imtegrating, to give
§-1); - (,‘l’g-())l:gio)ﬁ}(\l) I+§0)> . (3036)

No' contribution is obtained from the second term of (3.35a),

- since from (3.34),
\P(O)l (O)H(O) L¢(1)> . F(0)<.¢§0)|g§0)‘1b(1)

cancelling the rest of the terme. The first order wavefunction

is obtained im a similar manner. Premultiplying (3.35a) by-

( (O)NP(O) and imtegrating, gives

(ﬁ;&,‘”- Fim)-ﬁ“’ﬁ(cml%im |'Y’§‘1)>="<“”1(§0) |g‘£9)'(ﬁ,§1)4 F§_1))‘4,,§9)>.
Writing 4P§1)where as,

pit) - 210“’) g (3.37)
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then: gives
(o) (0)4 (1) (0)
1) _ <Vy le | ¥;
k
The coefficient agi)is obtained from eq. (3.35b) as
aﬁ) -%<“P§_°)|g£1)l’4’§?)> , (3.38v)
and thus
(0) (0)3(1) (0)y
(1) _ ley My W' y (0)
Y g0 f(°’ J (3439)

"P§:O)| g“(‘.1) |1P§,°)> "pg_o)'.
The secbnd order terms of eqs. (3.32) are
B 4 HO G- 5 ¥ G- 50 9

= 0, (30“0&)

and

29 ()| g{®) | P50 2D g1 9 (05

| | (3.40D)
< b {10 |9 {oaeyp (02| ${O)s

The approach here is the same as that in the first order case.
Premultiplicationm of (3.40a) by (g 0)4P(0))f and integration,

leads to,

(2)_ (0] £0)3(2) | {O)
El ‘<1Pi |g l'llJ >+ (30413)

+ <1P§0) |g§0)(l{(1) F.'(Ll)) | 1/_,(1)

Substitution of egse. (3.36) and (3.39) into (3.41) to eliminate

?§}) and 'ng) frdmwthe latter, results in a formula somewhat
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reminiscent of the usual Rayleigh-Schrodinger second order

energy formula,

<#{O gV ¥ w0 OB | 97>

i .
i (0) - g(0)
o i’ = Fj (3441b)

v < (0] g(0(2) | g(0);,

The second order wavefunction1'¢(2) is expandedi in: terms of
the zero order wavefunctions,

'\Pi‘” z pi®a2 (3.42)

(2)

and the coefficients aji determined from egqs. (3.40a,b) in
the same manner as was used in the first order case. The

final result is

V(2), ¢ F"P,(co)l (0)3(2) |¢(°)>+<¢Qo)|g§o)m(1) F§1))I¢§1)> ;({0
i k4L g(()) - (0) |
' (3e43)
é[2<1}a(1)| (1)|.+(o)>+<\/,(o)|g(2) |¢(o)>+<¢(1)|g§o) |¢(1)>]¢§0).
th

The pattern is now clearm The n order terms of eqe. (3.32)

can be written as

n: . .

B ghed -, .
and

n

:]zo w0 ‘P‘”lé“' I=k) |9 (k)5 2 o, (3.44)

Premultiplylng (3.44a) by (ng)ﬁp(o) ,» and integrating gives,

;(n) - <«P(0)'gio)ﬂ(n)|4p(0)
(3.45)

+ 3 \P(O)Ig‘(\O)(H(j) Fi.‘)))lsb(n-.])
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The n?h

order wavefunction, “Pgn). is expanded as a linear
combination of the zero order wavefunctions, and the expansion

coefficients are deduced from egqs. (3.44a,b). The result is
(n) _
P -

] <¢l(c0)|g§0)ﬁ1(\n)lqp(0)>+ T <1P}((0)‘g§0)(}{(3) ﬁ(j))|¢(n-3)> 1/)(0)
k#i (0) _ F(O)
| i k

(3.46)
n=1
Az "P(j)lg(n k)ly,,(k) "P(O)
j=0 k-
k#n:

No attempt has been made in~any of these formulas to
eliminate higher order quantities in terms of lower order ones,
because that leads to computationally less efficient formulas.
All formulas above are given in terms of the eigenfunctions of
HA* ’
functions 1P(j) are replaced by column vectors x§j). and

To obtain formulas applicable in a matrix notation, the

all operators by their matrix representations..

3,3.b The G, Scheme

The eigenvalue equation in this case is written,

GA‘V).’L = FigA Y"j_" < wilg;\ I ‘Pj> = éij" (3e47)
Both GA and g, are selfadjoint. We have |
o (n) @ (n)
G, =L G Y. = Y
A n=0 1 n=0 i

e (n) ® (n) (3.48)
- E ['x = 2 . 'Y
;i n=0 Fi “A n=0
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where> the Gf}(\n) ~and the g’;}(\n) are given, and the ¥ gn) and the

§§“) are to be calculated. It is assumed that the zero order

eigenvalue equation,

0 0 0 0
60 ${0) o g(0),(0) (o)

<1’b.’(LO)|g’1(\O)| v.(jO)’ =835 0 (3449)
has been solved. The ntth order term of (3.47) is then:

PRCURY 2 gDl o, Guson
and

Jg; ;‘:; < {3)) glnm3-) | )y _ o, (3.50b)

The mth order eigenvalue can be obtained by pre-multiplying

(0)t

(3+502) by Y and integrating to give

-1
g ;‘z <«p‘°>|c<3) ] x F(k) (3-5)) | pn=d);

+ <‘P(0)|G(n) Z'. ?(k) (j-k)|w§0)>. (3.51)

The n*zth

order wavefunction: is expanded im terms of the '\P'(jo),
and the expansiom coefficients deduced from eqse (3.50a,b).

The final result is,

o0 <HOe(dE gV s
‘Pi‘ = I z 0 1/Jk
kAL §=1 Fgo) _F(o)
m=1 l’l- (3052)
4T <‘1[/(j)| g{n-k-3) | g(K), 4(0)
= k#n

These formulas can be shown to be equivalent to those derived
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im the ﬁA scheme, by expressing the Géj) im terms of the g{j)
and ﬁﬁj), according to eqe. (2.70)s These results also agree
with those given by Ae Imamura (1968), in:.a different notatiomn,
to second order. |

The first order formulas here are

I X I N e
and: )
(0), (1) 0) (1) o)
w1 g ¥ 1% - {061 | {%> (0)
i i (0) _ g(0) J
1 d (3+53D)

<90 g1 |05 $(.

The second order formulas are

0 1) 0) (1 0 2
oA (0) _ ¢(0)
1 J

(3e54a)
¢ <O - f D 190,

and

{

(2) (0)_ ¢(0)y=1r 4(0), L1)_ (1) _(0) 4(0)_(1)y4(1)
vi "j§i:.‘fi= - F3 LY (R T Tt b e
+ < ,(j"'O)|G)(\2)'F§39)5’2(\2)‘F§,1)g}\1) w§o)>] ,/,ga

4<p {0 2 [9{> » 2 (V1N 1>

(1) _(0) (1) (0)
+ <Pt g, >]Y
ple Y 1 (3.56m)
Here, eqe (3+53b) was used to eliminate ﬂpgl) from the

expression for .ﬁ§?)}- The resulting formula is longer, but

the first term is now of the more familiar form for a second
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order energy formula. The extra terms here compared to the
usual Rayleigh-Schrodinger formula are due to the presence of

e(1) ana £(2).

3.3.¢_The '}“{'A Scheme

The eigenvalue eguation in this case is
By Xy = Xy <Ly |Xy> = 8550 (3055)
where '
- o =%
Xi = gA %i;m
and the ﬁPi are the eigenfunctions considered in the ﬁA and G,

schemes. We have,

g = ¥ g = Fx(n) ( )
HA = nzo H’An ’ ’Xi _ngo‘xin » Fi = n L4 (3056)

The solution of the zero order eigenvalue equation;,

RO X0 = gOx(), <xO K05 26 Gusn)

ij*

ts assumed known. The H(M) are given, and the XM ang
A i

ﬁ gn) are to be calculated. Since H, is selfadjoint, this is

just the usual Rayleigh-Schrodinger perturbation theorye..

The m' order term of (3.55) is
m . .
and
jzo <X(J)|X(“'J)> =0, (m#o0). (3458D)

Pre-multiplying (3.58a) by Xéo)f and integrating gives the nth
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order eigenvalues,

; ~{ n-1 (3 T
I = <X A0 o 5 XD S50 1A
(3459)

th order eigenfunction is expanded im terms of the zero

The m

order eigenfunctions,

X = 2 Xy (3,60
where
<X ORI glid) xln=d)s
al® . 3 K Ll 3 U L S RO ROIPIY
j=1 g0 . g(®
i J
andi 1
a§’i‘) = -;El <X §j) |’x§n"‘5)> . (3.61b)
J=
The coefficient aii) vaniShes; but, in general, the agg) for

n > 1, are not zeroe. Equations (3.59) and (3.61) can be
written in terms of the eigenfunctions Hb§3) used in the ﬁA

and GA schemes using

X9 =z g2 W0, (3.62)
The terms in the series

J=0

are- given below, in chapter 6.
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CHAPTER &4

MULTIPLE PARTITIONING THEORY

"Great fleas have little fleas upon-their
back to bite ‘enm,,

and little fleas have lesser fleas, and
so ad infinitume.

The great fleas themselves in. turn have
greater fleas to go on,

while these again have greaterstill, and
greater still, and so ond'

(quoted in C. F. Froberg, Introduction
to Numerical Analysis, (1969
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Im this chapter, the possibilities of generalizing the
formulas derived im the preceding two chapters to a more
extensive partitioning will be examinede Such m x m parti-
tioning formalisms, for m > 2, have a number of applications
fnm the construction of effective operators and in the derivatiom
of perturbatiom formulas in eigenvalue problems imi which it is
convenient or necessary to divide the eigenvalues and their
eigenvectors info several distinct sets,. The limiting parti-
tioning formalism is that in which m: = n, that is; the
n=dimensional space spanned by the basis functions,and by the
eigenvectors, is partitioned into n one-dimensional spaces..

This is the ordinary eigenvalue problem..
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4ol The m x m Partitioning Formalism

ho1.a Basic Theory

For the present, it is assumed that the basis set used
consists of orthonormal functions, so that the eigenvalue

equation to be examined is

HX =X §, xtx =1, (bo)

where H is hermitian, X, the matrix of the eigenvectors of H,
is unitary, and F is the real diagonal matrix of the eigen-
values of He The set of basis functions is now divided into
musubsets, each spanning one of m subspaces,. 81, Sz,‘;.., Sm’
of dimensions, My My eoey My respectively. Heremliini is
equal to n,. thé dimension of the full space. Similarly, the
set of n eigenvectors of H, which are represented as the
columns of X above, are divided into m subsets,. X(l), X(z),
x‘m), each spanning one of m subspaces S;, S;. eoey S;. of the
same respective dimensions Njs Nyy eeey Npe Because of this
double partitioning, the matrices H and X can be written in

an m x m block form,

Hyp Hyp eee Hiy Xy Xyp eee Xpy |
= |Hpqg Hpp eeeHpy |y o1Xpy Xpp eee XKoo
| ¢ : ] :

__Hrvu Hyp oo HMVI_J _xlvn Xyp  voo Xyy

where the symbols HiJ,and xIJ represent ny X ny dimensional

matrix blockse. ILet the diagonal part of the eigenvector
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matrix be denoted by
[
X1

X2

ok ]
L)
]

(4e3)

e p—

The Basic quantities in this m x m partitioning formalism are
row obtained as the off-diagonal blocks of the operator i,

defined, as for a 2 x 2 partitioning, by the equation,

x:’i“i. (4.4)

In the notation: to be adopted, one has

iy

11 = 11

and . ' (I,J = 1, eeey M)y (4e5)
Tyg = frge JF L
where 1; is the identity matrix in the space SI’ and fIJ is

an n; X ny matrix given by

X5p = £5X1g » (4e6a)
or
= =1 “

The operators fIJ are straightforward generalizations of the
two operators f and h defined for the 2 x 2 partitioning

(where f = f,4» and h = ﬁiz).( The specific operator fKL'maps
L

the part of an eigenvector, X w lying in the space SL' into

the part lying in the space SKﬁ where the eigenvector x;P) is
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jim the space S£m It is seen from eqe. (4.6) that all the fIJ'
(I,7 =1, eeey my I # J), exist only if the matrix,i, of

eqe (4.3) is non-singular, or alternatively, only if the diag-
onal’blocks.AXII, (I =1, seey M)y, are nonsingular. However,
if the full eigenvector matrix, X, ié itself nonsingular (as
it must be if H is hermitian, since then X is an orthogonal
matrix, with inverse given by XT)..then there is at least one
partitioning of the basis functions for which X is nonsingulars
A particular block XII will be singular only if at least one
of the eigenvectors'xgl), (r=1, eeey ni), is orthogonal to
the basis subspace Sye

The blocks f.. of the partitioning operator T in eqe. (4.4)

1J -
are mot entirely independent. From the orthonormality condition
(4¢1), one has

xtx = X" % =1

or -
= (X &Nt = g, (447)

which is to be block diagonal. Thus the blocks of T are

related by the equations,

m
t t :
L#AJ,K (4.8)

Since g is symmetric, eqs. (4.8) represent #m(m=1) unique
matrix block equations, involving the m(m-1) different off=-
diagonal blocks of T Equations (4.8) could be used to
eliminate half of the elements of the off-diagonal blocks of

‘T in favour of the remaining half.. While this procedure leads
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to: the very simplg result f12 = -fgl in the 2 x 2 case, when
m is larger thanzz; the increase in complexity of eqse. (4.8)
makes it impossible inm practice to incorporate these equations
explicitly into the general formalisme. As a result, im what
follows, a notatiom involving all m(m-1) off-diagonal blocks
of T wilI‘bé used (though eqse. (4¢8) are implicit, at least
when the f;g are exact)e For the cases m = 3 and 4, eqs. (4.8)
are examined in: somewhat greater detail in Appendix 2.

Equations (u.s) express the orthogonality of eigenvectors
of H belonging to different sets X'¥) and x'¥). Thus it is
not necessary to impose themrexplicitly, since if H is hermitian,
this orthogonality is automatic. As a2 result, in many appli-
cations, the increasing complexity of eqse. (448) with increasing
mwis'of no practical concerne

The diagonal blocks gy of the matrix g of (4o7) are:

metrics, with respect to which the corresponding truncated

eigenvectors, in' are orthonormal. That is,

S — o
Xr1 81 X131 = 11 » (449)
where
gr = (T7T0)py = 17 + le S (4.10)
J#I

1] L]
The projections PI onto the eigenspaces SI can: be written:

solely in terms of the fyry (J = 1, seey my J # 1), for each

I. Using (4.7) and P; = X(I)x(I)T = @(I)gzlﬁ(l)*m it is seen

that

(p. £ gl £t (%e11)

i = Txr &1 frr -
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The definition, (4.10), of gp can be used to establish the
idempotency of P;, and if eqs. (4.8) are satisfied, it is
easy to show that P{P; = O. Equation (4.10) alone is suffic-
ient to establish that tr Pi = nye Thus, in expressing the
projection operators, P;, (I =1, eeey. m), im terms of the
Tr1

L
blocks fJI only if the PI

Furthermore, this formaliism provides an apparatus via egs.

as in (4.11), it is necessary to constrain the m(m-1)

are to bé mutually orthogonal.

(4.8), however tedious it may be, to express the Pi in terms
of a minimum number of unconstrained variables.

The minimum number of variables required to describe the
eigenspaces S;w ooy S;, is of considerable importance here,
as in the 2 x 2 case. The projectionAPi onto the eigenspace
S; is completely specified by the n ny complex components of
the eigenvectors X(I), which span1Sim Howewver, the space S;

is equally well spanned by any set of ny vectors obtained

(1)

from the X, (= 1, eee, n&), by a nonsingular- lirdear
transformatiom. Thus, there are niz complex variables in
X(I), which serve only to specify a particular basis in,Sia
Furthermore, the orthogonality constraints in (4.1), written,

t+ ,
D@ _ o, 1<g,
m: I-1

cam be used to eliminate a further & 2 ny complex
variabtles from all of the X(I). The remaining number of non=-
redundant and unconstrained variables required to simplys

L ,
specify the eigenspaces Sl” cesy Sh’ is thus
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m m m\ I-1 m Ie1
Z n.m, - L n - n E n, = % L N Noe
I, g=1 19 1= I - Z, M Jo1 9 1=2g=1 LY

(he12)
This is just the number of elements in the upper (or lower)
block triangle of %W and is also the number of independent
variables left 1an when eqs. (4.8) are explicitly incorporated
into the formallsm.

This multiple partitioning formalism can be defined
completely from the point of view of the determination of the
eigenprojections Pi, (I =1, eeey m), im a manner analogous to:
that used im section 2.l1.ce From eqe. (4.11), it is easily seen
that

5" 'y-1
fiop = (P (PL)IE & (4.13)
One of the difficulties in manipulating quantities in this
multipartitioning formalism arises from the fact that there is
no- counterpart here to the "pull-through" relations, (2.32),
which were used extensively in the 2 x 2 case to simplify the
various expressions arisinge In fact, in this case, the

analogue of eqse. (2.33) is

m
< x1) = =1lpt
(X XT)gg = 85 = s £k »
which, for J # K, gives
-1 -1 N
fiek = =85 fhr= L £ gt . (5K = 1,00e, my JFK).

I#J,K JI I KI
(4o1h)

Equations (4.14) are mot of great use im general because of the
summatiom term om the right hand sidee. In the 2 x 2 case, this

term does not occur, leaving eqse (2.32).
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belet The Pefining Conditions om: the f .

As im the 2 x 2 case, the off-diagonal blocks of the
partitioning matrix % can be determined by diagonalizing the
matrix H, to obtain its eigenvectors, X, and then using eqse.
(4.6) directly. However, it is again possible to formulate
systems of nonlinear equations which cén be solved to obtain

the T directly, thus making it unnecessary to fully diag-

JI
onalize He
Consider first the eigenvalue equation (4.1), written,,

using (4el4), as

Ht=3%pxt-%4, (4e15)
where the: matrix ﬁ, given  as
— —
Hy
" o
Hy
a a Aal
H=XEX " = , (4.16)
0 e .
".,

is to Be block diagonale Egquatiom (4.15) is valid only if

the diagohal’block part, i, of X is nonsingular, which is
exactly the condition that must be satisfied if the £y are

to existe The diagonal bBlock parts of (4.15) define the
operators ﬁI and the off-diagonal block parts provide equations

for the,fJIm Thus, one has
- m
H,. = H + I Hy.f.r o
I II J=1 1J°J1
J#L

(4417)
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The equations determining the fJi are then,.
: m

Dyp(T) = 0 = Hyy + oy Dokt - forfr
K#I (4.18)
m _ m
B SR s St s o ¢ Sl s SRS » o S S
K#I K#I
(I,0 = 1, eeey my I£T)e
. m
Equations (4.18) consist of . §=1 g coupld nonlinear
| I#5

equations im the matrix elements of the fJIm The solutions

of these equations will automatically also satisfy egs. (4.8)
because of the hermiticity of H.. Explicit incorporatiom of

eqsSe (M.B) into (4.18) could be used to reduce the total

number of equations and variables by a factor of two, but at

the expense of greatly increasing the complexity of the
equations to be solved. In eqs. (4.18), coupling occurs only
between: f in the same block column of T Thus, the (m - ni)ni
equations DJI(a) = 0, (J =1, eeeym, J#FI), can be solved for

th block column of 5, namely, the fJI'

the elements of the I
(J = 1, eeey my J¥I), without having to determine any of the
fKL for ILi=I1.

A somewhat different set of equations for the off-diagonal

blocks of i‘result if the eigenvalue equation is rewritten as

H

dut - 313 % B %71, (4e192)

G
and

g= T = (x xH-1, (4e19D)



e

where the second equality in (4.192) is obtained using (4.15).
Both G and g are to be block diagonal, and the condition that
their off-diagonal blocks vanish provides equations for the
fiI' Since both: G and g are hermitian, the vanishing of their:
off-diagonal blocks can. each provide only % T ninh«unﬁque
equations, and thus both of (4.19a) and’(4.§9g) must be used
together to determine all the ﬁdI‘ This results im a set of

coupled nonlinear equations of the form

& oo . t to o
G.(T) =0=H,, + £ H f. . + £ f H.+ T f frr o
JI gt ¥ g fafi T g fkaka Yy T fkakfLr
I,J
(4020)
and'
1 N ,
ggp = 0= f15+ f41 + L>:1 frofir v (4e21)
L#J,K

(1,J = 1, ocee, My J'<‘I»'

where egse (h.21» have appeared before in (4.8). These equations
effectively couple all of the off-diagonal blocks of i, and
therefore, the entire matrix E must be determined at once if
(4.20) and (4.21) are used. As a result, while the system of
equations (4.20)-(4.21) has the same solutions: as the system
(418), the two systems must be treated quite differently

from a computational point of view.

L,1l.,c Variational Formulation of the Equations for the fJI

In this multiple partitionming procedure, it is also ﬁossible

to show that eqse (4.18),determining the fJI' are equivalent
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to a variational criterion, in that the vanishing of the
quantities DKI(a), (K =1, eee, m K#I), implies that the
trace of the operator H over the image space of the projection
apefator Pi is stationarye. This stationarity implies that P;
is an eigenprojectiom of He

The algebra required to demonstrate this 'is considerably
more tedious here than in: the case of a 2 x 2 partitiohing.

The objective is to obtaim an expression: for the first order

variation of the quantity,

. * m '] .
Ep = tr P{H = | z; tr(PI)kJHJK . (4.22)
J,K=1

with respect to small variations in the fKI' (K=1, ...; my, K#I)e

From (4.11), one obtains,

o' _ 1.t 1.t -1, .t 2.\
8(Pp)yy = 8fyrey fp + fypda&y f5p + Typer 8551 + 0(67),
(4.23&)
where,
-1 -1 -1 2
6gy" = =gy 0grgx + 0(8%)
I 17517 (4e23b)
_ =1 t 1 -1 2
= -g] L§I (8fp f11 + fyp0fp)er + 0(8%).
Substitutiom of egqs. (4.23a,b) into the equation,
T (sP.) (4o2h)
8E. = tr T 6P H ‘ 424
1 J,k=1.  L'KJ JK °*

whem H is independent of the fJI' leads to the rather compli-

cated expression,

6E. = trE 6fy, &n [ (3TH) o - (BtD) . eolel ]
I : PIST ip =~ b 1181 *PI

P=1

P#I , 5 (4.25)

+ tr T ofl [(H}) oy = fprgtl(FTHD) . Je7! + 0(s2)
poy  PI PI ~ *‘p1ér ‘* "tM11lde:p .

PAI
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The passage from (4.24) to (4.25) uses the cyclic property of
the trace.
Consider the coefficient of 8fp; in (4.25); From (4.18),
one has,
1 ~
(T HT)II

(HD)py = fprey

- , - ?1 .j Aﬁ - ‘;1’ ~ X

~ - -1 a*a a’ a«r ~
Dpp(T) + fprey [(T'T)yHy = (TTHT)pf]

1

C D (D) + foas t e & sy
= Dpp(T) + fprer KﬁI firl fxafy = (HT)gq]

- "‘, -1
= Dpy(T) = fpyeg K§I £y KI(T)
=L (1 = Po)oyDyr(T)e (4426)

Consequently, the vanishing of all the DKI(E)’ (K=1, eeep My KFI),
fmplies the vanishing of the coefficients of bf;I in eq;-(4.25).
Since the coefficients of 8fp; in (4.25) are just the adjoints
of those of éf%Im they vanish also, causing éEI to vanish to
first order im the infinitesimals. The vanishing of 6EI to
first order implies the converse, namely, that all DKI;=
(K=1, sees m, K#I), vanish. This follows from the fact that
the rank of the matrix (1 - P;) must be n-n; if it is to project
onto the complement of the eigenspace S; of H of dimension.
n=ny. Because of this, the set of linear systems (one for each
column D;i of D;I)' written compositely as

m: ’ -

&y 4 Ppl (T = 0

K#1
has only the trivial solution DKI(“'I‘)'= 0, (K=1,v...; m, KFI) o
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L,1.d - Transformation of the fJI Under a Change of Basis

Under a linear transformation of the basis functions {¢u},

(see sectiom 2.1.g), the eigenvectors of H become (eq. (2;50)),

X =VX
AVl
=TX, (4e27)
where
Ay
TII = 1I »
and ‘ (I.J = 1.; eoey m‘)'. (QQZS)'

~

T&I = fgl', J¥4I

LRl ~
The off-diagonal blocks of T in the new basis and those of T

in the old basis are related by

P evxXlaxrxx™?
fromfwhich,

. a ] -

£31 = (VD) j1X11X77 (4429)
But, fromﬁ(4.27); one has,

Xpp = (VB)ppxpg
and thus,

. “ R 1

fy1 = (VTDJx[(VT)II]'

= (Vg # K§I Vi) (Vi * K§I VIKfK1)°1; (4.30)

L
which gives the fJI solely ini terms of the transformation

coefficients VIJ' and the fJI in the old basise
Agaim, the transformation for the f;; under a linear
basis change is complicated and nonlinear in both the coeffi-

cients of the transformation and the old variables. While
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such a complicated transformation is doubtless disadvantageous
under some circumstances, it can be also usefully_explbited,
as pointed out in section 2.l.ge

Note also, that, writing,

-1y -lv—l

= (1.+ £ V3 f )
I KfI II IK KI II

= (1;- T V] -1y + o(£2) vt

K#AT II IK KI II *

it is seen that

-1

. -1
IIVIK)fKI II

\ z (V K= v

71 = Vo111 * KT JI¥

+ O(fz)t
(4e31)

which, for small f, is nearly linear, but not homogeneous.
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4,2 Effective Operators

4,2,a Basic Definitions:

Like the 2 x 2 partitioning formalism, one of the primary
applications of this multiple partitioning formalism is in the:
constructiom of effective opera&orsr Such operators would be
defined in one of the subspaces, SI’ of the full bvasis épace,
but would have as eigenvalues, a particular subset of the
eigenvalues of the original'qperator H in the full space; Those
eigenvalues correspond to the eigenvectors of H spanning the-
space S;, Since they are restricted to the subspaces in-which
the effective operators are defined, the correSponding'eigen-
vectors of these operators are simple, or orthonormalized,.
truncations of eigenvectors of the operator H in the full
space. However, given the matrix i‘and the eigenvectors of
the effective operators, those of fhe original operator H in
the full space can be obtained straightforwa:dly;-

The types of effective operators arising here are
analogous tq’those defined previously in the 2 x 2 case. The
simplest set of effective operators has been defined already"

in eq. (4.14). These operators, .

- P . .
Hy = Hyp + le Hrgfrp v (I =1, eoe m)?.-.: (4.32)
J#T

are defimed im the corresponding subspaces SI’ and have the~
eigenvalue equations,

fpxgp s FUxp, (@ =1 e m, (4233)
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th

as seen from eq. (4.13). Here, P(I) is the I diagonal

block of the matrix of eigenvalues, § , in eq. (4¢1). The
operators ﬁi are non-selfadjoint, in general. However, their
eigenvectors,. XII' are orthonormal with respect to the non=
unit metrics gI; according to eqse. (4.9).

The corresponding basic set of self=adjoint effective
operators are those defined by the diagonal blocks of eq. (4:19a),
namely,.

6y = (TTud)p o (4e34)
with the eigenvalue equation,

6; Xy = g X B 0 (T =1, ey m)y (Ha35)
where |

gp = (B . (4.36)

Im detail, ome has,

Gp = Hyp * Jﬁl (f1gMpy + Hpgfyp) * o frrtokfkre
K#I (%437)

If eqse (4.16) are satisfied, this can also be written:asj<

Gy = % (§f’1J(H§)JI-= E;(if)IJ(&ﬁ)JI
= (') Hp = grfly . (4.38)

As in the 2 x 2 case, other sets of self-adjoint effective:
operators can be obtained by orthogonalizing the truncated
eigenvectors by other procedures. Lowdin's (1970) symmetrical
orthogonalization: (see sectibnzz;z.a) leads to the set of

orthonormal eigenvectors,
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CII = gI%XII ’ (I =1, eoey m), | (4.39)

b t
where C;;Crp = xIIgIXII = 15, by eq. (4.9)« These new vectors

satisfy the eigenvalue equation,

k7 z I .

Hy C11 = C11 g1, | (4e40)
where

ﬁ& = gI% ﬁi g;é , (%o.41a)

= gi_% & g;% , (4.41b)

the equivalences here being based implicitly on the assumption
that the partitiongng:operator % used is known exactly..

Effective operators in- the spaces Sl,‘m.@. Sh, can be
defined'forban& other operator in the full space, using the
definitions (4.4) and (4.39). In particular, matrix elements
of some operator O can be written,

(It ¢(I) _ 4t %
Here

0; = (T o'r)'II ’ (4.42D)

is- an operator confined to the subspace SI' but possessing the-
same expectation values with respect to the XII as the original
operator does with respect to the full‘eigenvectors X(I); A

second type of effective operator;

51 = gié 0; g}% . (Loli3)
will give the same matrix elements with respect to the ortho=-
normalized vectors 611* of (4.39), as the original operator-

0 does with respect to the X(I)., Here'ﬁi has the same form



82,

N
in 0 as. the operator Gi.,eq, (4e34), does in H, and OI‘iS‘of’
the same form as ﬁi given by (4.41b).

be2ob Eigenvalues and Eigenvectors of the Effective Operators

Up to this point, the m x m partitioning formalism has-
been presented almost totally in matrix notation. It is
instructive, however, to re-examine some of the relationships
quoted previously, from the point of view of the actual eigen-
functions of the operator H, and derived effective operators.

The eigenvalue equation, (4.1). for H is written .as
HY; = B:¥io

(10 = 1, eeep n)o.  (Bobl)

If a partitioning of the basis space into m subspaces Si s osey
Sm’ is carried out, these eigenfuctions of H can be written:

as a sum of parts,

m
'Pi = "Pil +'\Pi2 + e +'V-’im, = le"PiJg (‘4‘0’4'5)

with P, ; being the part of “Pi lying in the subspace Sje

The partitioning of the eigenvectors of H into m sets, spanning
eigenspaces S;, oo S;, merely divides the ﬂ'i into m sets ==
the notation ’PgJ), (J=1, eeepym} 1i=1, eeey nI), now denoting:

th

the i*" member of the j°° such sete. The basic equations, (4.6),

of the partitioning formalism then are,

YR = g WY (o46)
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This means that the eigenfunctions of H in the full space can

be written as
m

(J) . (J) (J) (J)
. “‘ () Ll

In the notdtion used im this section, the symbol‘fKJ represents
an embedding of the mapping fKJ,F(SJ.-r SK)' in the whole
n-dimensional basis space.

It is a simple matter to write down the eigenvalue equations
for the effective operators in this notation. The counterpart

of eqe: (4-33) for the operators ﬁI is,

(I) (I) (1) .
VI '\P Fl ’\PiI ’ (iy3=1, 000, ni)’
(4.48)

(1) (I). - (I = 1ynsps Mo
<"PiI IgI l ijI > = 6ij"’
The'eigenvalue equationb (4.35), for the operators G; becomes,

GI (I) ?gl)gl ii). (i=1 .;o~oo.nII I=1 9 ...m).
(4.49)

with the same orthonormality condition as inm (4.48)s The

eigenfunctions obtained from the 4P(I) by the symmetric ortho=

. gonalization procedure are‘glven'by,
X(I) %w(l) , : (4.50)

Thus, the eigenvalue equation, (4.40), for the operators ﬁI is

~ (I) (I) (1)
H ’
F iI (l J 1....,nI' I 1’.."m).

'x(I) x(I)> - 5132' (4e51)
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The full eigenfunctions of H are given in terms of the eigen=-

functions, (4.50), of the operators'ﬁi, by

P 2 (1 K§1 teper X1 (be52)
K#I |
Finally, for the eigenprojections, Pi; it is seen that,
p. = ;IIqP(I)><,¢(I)
1° |
i=1
1 (1), (1)
= T (1 + z £ 1 z e,
i=1 K=1 k) |Wir><¥ir l¢ Tk K 1)
KAT K*'#1
(1)
= (1 + z f 1 T f . b,
W kple +x'~1 1’ (4+53)
K#1 K'#1
where ng
gt - z 1p{Dscq(D)), (4o sk)

defines an embedding of the metric &1 in the full n-dimensional

basis space.
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4,3 Generalization to a Non-orthonormal Basis

The generalization of the multiple partitioning formalism
to the case of a non-orthonormal basis is straightforward. The

eigenvalue equation is now

HX =XS E, (4e55a)
with

x's x =1, (%455b)
as in eq. (2.90), wherg S is the matrix of overlap integrals
of the basis functions. The set of basis functions, and the
eigenvectors, X, of H, are each partitioned into m subsets,
exactly as described in section 4.1.a, making it possible to
write the eigenvector matrix X in the partitioned form (4.2).

The full matrix X can then be written in terms of some matrix

T, and the diagonal block part, X, of X, as given in eq. (4.4),

X =17ZX. | (4e56)
The matrix elements of T are given here also by egse (4e5)e
The conditions under which egse. (4.56) will be valid are
identical to those under which (4.4) are valid, namely, that
the partitioﬁing of the basis functions must be so defined
that i is invertible. While X is no longer a unitary matrix,
the hermiticity of H implies that the columns of X are
Iinearly independent (except possibly if S is singular) and
thus there will be at least one partitioning of the basis
functions for which X is invertible.

~

The m{m=1) off-diagonal blocks of the matrix T are not
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all independent, as can be demonstrated using the orthogonality
condition, (4.55b)e The analogue of eq. (4.7) is

st = (X)L = g, (4e57)
which must be block diagonal if the orthogonality condition is

to be satisfied. This implies the equations,

m ' m 1 m t
erg = St * (I Swfs (I et I frkitkfio
o L#J LAI K#I,L#J
= 0,. (I, = 1, eeey mp I£T) (4.58)

These equations could be used in specific cases’to'eliminate
half of the elements of the off-diagonal blocks of i from the
formalism.,'H0wever. they are considerably more complicated
than the corresponding equations, (4..8), for an orthonormal
basise. Therefore, the remarks following eqs. (4;8) apply here
with even greater emphasis. From a practical point of view,
such an elimination procedure is not to be recommended..

The diagonal blocks of g, given by

1 mot
S,. + T fls _f _,
LIPLI * g g KDKLLI?

(%459)

serve as metrics for the truncated eigenvectors XII’ as

m m.
+ I £
L%I

+

gI =-‘SII-~ T

L Si.1;

indicated in eqe. (4.9). Because of theAexplicit presence of
the overlap matrix, S, the leading term of 81 here iS’SiI;‘
rather than a unit matrix of the same dimension,.as occurs
with an orthonormal basis, eq. (4.10)

| The defining conditions on the off-diagonal blocks of %

are obtained in a manner similar to that employed with an
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orthonormal basis. Direct substitution of (4.56) into (4.55),
and use of the fact that i is invertible leads to

HT=5T (X §x) =s1TH, (4.60)
where H is to be block diagonal, as in eq. (4.14). The diagonal

blocks of (4.60) give H in terms of H, S, and T, as

fipo= [(s) T )
1 m .
= [S71 + = Spofgrd LHpp + i Higforle  (¥e61)
J#1 J#£I

If the overlap matrix is a unit matrix, the inverse matrix in
(4.61) reduces to an identity matrix, and eqe. (4.17) for an
orthonormal basis is recoveréd. The expression; (4.61), for
the effective operators ﬁi, (I=1, ese, m), are of the same
form as eqsSe. (2.95) and (2.96), given for the operators ﬁA‘
and ﬁB In the 2 x 2 partitioning formalisms From (4.60), it

is seen that the eigenvalue equations for these ﬁi are given by

fi, x

11 = X171 ?(I)' (I =1, «.o, W). (4.62)

I
exactly as in (4.33) for an orthonormal basis. As pointed out

ald

in chapter 2, however, a new set of effective operators HI

could be defined by

m .
+ le HIJ JI. (I=1.- [ X '] m)’ (""063)

which is identical to (4.17), but leads to an effective

PR
Hy = Hyg

eigenvalue equation of the forms

- & (1) '
By Xpp= Sy X £500 (4.6%)
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where

Spesp+ in Spafar » (ke65)
JFI |
can be regarded as an effective oveflap matrix.. EquatiOns
(4.64) and (4.62) are simply restatements of the same eigen-
value equation, and one typical way of actually solving (4e6k)
is by usiné_(d.éz) as an intermediate.
Definﬁﬁg conditions on the fJI are now obtained from the

off-diagonal blocks of eqe. (4.60), after substitution of (4e61)4

The result is

Dry(T) = (H?)IJ - (ST)pgfly
= Hp, + L Ko £y - (S;q + £ s )H
13 " oy MIK'KS 15 * E SiTra/Ms
K#I Kr1 (4e66)
T ( e )1
= Ho .+ L Hyp( £ pe S J* 2 s S .+ 2 S . f
e EARL 5 S akts S v S S LS SRS S %
K£T KA KAS
m] .
K#£T

Clearly, the presence of the overlap matrix severely complicates
the determination of the fJI’ It is seen: that these equations
still retain the property of being separately soluble for
individual block columns of %. Despite the complexity of egs.
(4.66), it is still possible‘to devise efficient iterative
schemes for their solution.

An alternative set of defining conditions, analogous to

eqss (4.19), are obtained by premultiplying the eigenvalue
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equation; (4.60), by i*, to give

Twt = (3's?) % g %71, (4.67a)

¢ =7
where ,

s = (X XT)7Y = g, (4.67D)
must be block diagonal. Thus G»itself must be block diagonal
and its diagonal blocks form a second set of effective operators,

when this is so, with the eigenvalue equations

Gy Xo ﬁ(I) (Izll.;‘ e ey m)g- (4.68)

1 %11 ® &1 X11
This is identiéal in form to eqs. (4.35), the effects of the
presence of the Qverlap matrix being buried in the detailed
form of g1~ The opergtor GI here is identical in form with
the corresponding quantity for an orthonormal baéis. When

eqss (4.66) are satisfied, implying that the second equallty
in (4.67a) is satisfied, it is seen that

G = erfip, (I =1, eouy m)o (4.69)

The matrices fJI can therefore also be determined by the
condition thatﬁthe off-diagonal blocks of G and g vanish,
eqSe (4.20) and (4+58)s Since both G and g are hermitian,
both eqs. (#.67a) and (4.67b) are required to determine all
the fJI‘ Tﬁese equations effectively couple all of the off-
diagonal blecks of %, which must therefore be completely"
determined simultaneously, rather than block column-wise,.as
is possible usimg (4.66) This drawback in using eqs. (4.67)

is probably more than: compensated for by the much simpler-

form of- these equations..
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Two of the three types of effective operators which were
defined for an orthonormal basis have been introduced above
in eqs.<(4,62) and (4.68) for the present case. The third
type of effective operator, namely, the ﬁI' (I =1, ;;Q, m);
given by eqs. (4.41), are identical in form here because the
oveflap matrix does not appear explicitly in their definitions.
The corresponding eigenvalue equations are given by (4;40)

with the eigenfunctions of ﬁimbeing related to those of ﬁI
and Gy by (4.39).
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4oy Practical Considerations

bohea Alternative Formulas

In the development of iterative procedures for the deter
mination of the 11 either from eqs.ﬁ(h.la) or (4.20), (4.21),.
or their counterparts in the case of a non-orthonormal basis,
it is necessary to take into account the manner in:which a
given f-dependent quantity is evaluateds. This point has been
explored in detail in section 3.1 for a 2 x 2 partitioning;

The purpose of this section is to outline the corresponding
(more complicated) results for a multiple ﬁartitioning formalisme
Consider first the case of an orthonormal basis. The

operators Gy are given by eq. (4.37) as
- ag =~ - . )
Gy = (T'HT) iy » (4.70)
When the D J(T) are not all zero, it is possible to distinguish

two distinct forms for the operators HI' namely,

H%l) = HIIV+ 2 HIJfJI. (I=1. esey m)" (40?1)

J=1
J#1

and in eq ¢ (4.17)". and’v

a(2) _

I gIG

I (I =1, eee, m), (4e72)

from eq. (4;69). It is a relatively simple matter to demonstrate

that (see Appendix 3),

(2) = R%i) + gI le fJIDSi) sy (I =1, eee, m),
AL | (4473)

where the D(%), defined below, are essentially the conditions
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(4418), defining the fyge Thus, if all. Dgi). (J=1, eeey My JFI),
vanish for a particular value of I, the two Qperators ﬁ§1)
and ﬁéz) (for. that particular value of I) are identical}

Givgn the two forms of the opefator ﬁi, it is possible to
write the first form of the defining conditions, (4.18), on the

fﬁI in one of two alternative ways, namely,

(1) a(1) Y
(T) = Hyp + K§1 Hyefxr = £y o (bo7k)

and | h
D(z)(‘l‘) =Hy + I %KfKI - fJIH§2) (4475)

| KA1
These twéjf;fms'are equivalent inwthe.sense that they both have
the same“zeros. by virtue of (4.73)s Im detailed form; they-

are quiteudifferent, however, away from a zeros Substitution :

of (4.735.into (4.75) gives

p{2) (@ = 1) (@) - 167! i £ 00p) (B)y (476)

verlfying that (%.74) and (4.75) are only equal where they
vanlsh. and that they do have all their zeros in common.
Equatlonz(4.76) is the generalization of eqe. (3¢6) in the 2 x 2
partitioﬁing formalisme

In the 2 x 2 case, it was shown that the conditions ,

= 0 also arose out of the requirement that =157 be-

(2)
Pr1 _ | S
block diagonal. In the present multiple partitioning case,
this is HO%ronéer true, because of the increased complexity of

the orthogonality conditions, (4.8); Since T = g, one has

=1 5,g;1@T. | ' (4e77)



93

and therefore,

=lud = g lofut = gl (4.78)

In the 2 x 2 case, g could easily be made block diagonal, . and
in so doing, Gy, became identiecal to D(i)(f), leading to eq.
(346)s In the present case, the general block diagonalization
of g is not possible._and therefore, a result similar to.that
of the formér case cannot be obtained..

Here, as in the 2 x 2 case, it is possible to calculate
the operators‘ﬁI using one of three different formulas, in
terms of ﬁ(l), ﬁ‘z). and Gi. respectively. The first form,.
in terms of H(l). as indicated in (4.41a), is not of practical
interest, because it represents only a partial’ re-normalization.

of the truncated eigenvectors. The latter two formulas,

ﬁi = giéH(Z) =% (4.79a)

- &7 ¢ g7%, (4.79D)
are effectivehy'I&enticallfrom a practieal point of view.
Consider now the case of a non-orthonormal basis. Many
of the results presented earlier, for the simple 2 x 2 parti-
tioning, have analogues in the present m x m: partitioning
formalism which are too compiicated to be likely to be useful,
Again, it is useful to distinguish two sets of effective .

operators of the HI—type, namely,

2(1) _ -1 :
Ry [SII+J§ Spgfar]” [Hpr* E Hpgfod o (%.80)

J¥I

and,
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i(2) | . -
= g7 Gy
T o (4.81)
T s
= g Ly J%I(fJIHJI Hygfop) + 5 237Hpyfirds

K

I =1, eeey M, in both cases. The relationship between these

two sets of operators is found to be (see Appendix 3),

(2) (1) pl1)

exactly as for an orthonormal basis..

The two types of effective operators, ﬁgl) and H(z) lead
to two different sets of defining conditions for the fJI,of

the typé (#.18). They are written

p{1) (%) - HJI+K§IHJKfKI-(sJI+K§IsJKfKI)ﬁ§1), (4.83)
and, ) ’
D(Z)(T) " Hyrt B Hotier= (S5 +K§IsJKfKI)ﬁ§2?, (484)

where.'in both (4¢83) and (4e84), I,J = 1, eesy m, IFJe
Direct application of eqe (4.82) to eq. (4.84) gives the |

relationship between these two types of quantities,

pt2) (1) 1)
Dy1° = Dg ‘(SJI*KﬁlstfKI)gI KilfoDéx . (4.85)

EQuation'(#.SS) is the generalization of eq. (3.15¢c) to the
multiplé.bartitioning case. A generalization of (3.15b) can
also be obtained here, but only at the expénée of a great.
deal of tedious algetira. The final result contains meny
additional terms not appearing in (3.15b), and thus is not
Iikely to be useful.,
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bo4.tr Implications of Inexact Solutions -

The purpose of this section islto examine the errors in-
the effective operators ﬁI” GI' and ﬁi, arising from the use
of inexact fJI’ (I,J = 1y eeey, my I#£J)s These results closely
correspond fo those given in section 3.2, and thus, only a
brief summafy is required heré.

Consider an approximate solution to egs. (4.18) or (4.20),

(h.21),_written_as

ff;gprox = fIJ + SfIJ vy (I,7 =1, eee, m, I;‘J)r,, (4+86)

where the fiJ’ here, are to represent an exact solution to
those equations. The error beJ in fIJ gives rise to errors
in the effective operators ﬁi. GI' and ﬁI" The only complica-
ting factor here, compared to a 2 x 2 partitioning, is that.
the erro;s.in"several'fiJ will contribute to the overall error
in a given effective operator.
From eq. (4.37), it is seen that
= § i 82 )

8Gy ° J;I (beIfJIHI + HIleafJI) + 0(8%). (4.87)

Similarly, from (4.71),

8iifl) = £ H..6f.. + 0(62).  (4.88)

Using the equation,
' a(2) , a(2)) .
(g + dgp)(H;™' + 8Hp"’) = G + &Gy ,

obtained from the definition (4.72) of H(z), the error in:ﬁ§2)

induced by the above errors in the fI is given by -
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2(2) _ _=ir,; 2(2) 2
oH = g- [6G,~ bg. H + 0(6°)
I J L | 11 ] (4.89)

= g1’ J§ [HI(£5685)=(£] 8 JI)HI] +0(6?).

In obtaining eqe (4.89), eq. (4.10) has been: used to write

bgp = I (8fi f i + £17885,) + 0(s%)..

J#1
Finally. using 6gI% 57'51% ég% glz + 0(62), it can be shown
that

~ 2 -y
sty = é(gI% ﬁ§ )gI%).

s -4 -% -3 2y
= [H;y g7 JﬁlfJIbeIgI - 6grgr] + 0(8%)y (4e90)

using eqe (4.79)e A similar, though not identical, form for
éﬁI is obtained if the formula (4.79) for'ﬁI in terms of 6y
is' used.

In eqse (4.87)-(4.90), all quantities on the right hand
gides which are not incremental, are exact. The formulas
(4487)=(4.90) exhibit substantial similarities with the corres-
ponding formulas for a 2 x 2 partitioning. In fact, in most.
cases, it is seen that terms involving the single block f in
the 2 x 2 case here contain sums over similar terms for each

th block column of %.

block fJE in the I

As for a 2 x 2 partitioning, the error expressions (4.87)=
(4.90) are all first order in the errors 6f57+ However, the
errors 8G; of (4.87), 5ﬁ£2) of (4.89), and GﬁI of (4.90), have
a vanishing expectation value in first order with respect to

the exact eigenvectors.of these operators. The error aﬁél)
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of (4.88) does not have such an expectation value which vanishes
in first order in the errors iﬁ the fJI' For this reason, the
ﬁél) can be considered as inherently less accurate than the
former three effective operators, when inexact values for the

~
elements of T are used.
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CHAPTER 5

EXACT DETERMINATION OF T

" *Why,*' said the Dodo, ‘'the best way to
explain it is to do it's (And, as you
might like to try the thing yourself
some winter day, I will tell you how
the Dodo managed it.)"

(Alice's Adventures in Wonderland,
Lewls Carroll
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Several sets of simultaneous non-linear equations, defining
the off-diagonal blocks of the partitioning operator.i, have
been derived. In general, these equations can only be solved
numerically. Some numerical iterative techniques are described
in this chaﬁtér, and some assessment of their efficiency and
reliability is made.» A number of additional ways of definihg
5 are also éiscussed, together with the numerical procedures
they suggesfo |

The metﬁbds'described can be applied im a wide range of
quantum mecﬁéhical‘calculations. They are particularly useful
when only a small number of the eigenvalues and eigenvectors}
or onlyﬁgﬁprejeetion onto a whole eigenspace (rather than the
individual eigenvectors) of a hermitian operator are desired.

The techniques described below represent new and practical

approaches to such calculations.
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5.1 The Calculation of a Few Eigenvalues of a Large Hermitian

Matrix

The choice of algorithms to determine f depends to some
extent on the nature of the applications which are anticipated;
One important applicatiom of the methods of this chapter is
the calculation of a small number of the lowest (or highest)
eigenvalues, and corresponding eigenvectors, of a large
hermitian matrixe. Such applications arise in the determina-
tion of electronic wavefunctions for the lower lying energy
Tevels of atoms and molecules in large scale configuration
interaction calculations, and in a variety of calculations in
applied mathematics and physics. .The matrices arising may
have dimensions up to tens of thousands..(Roos, 1975).

Algorithms for the partial diagonalization of large
matricesvmust satisfy a number of conditions to be practical.
With a matrix so large that it must be stored on some auxiliary
device, rather than in the central éomputer memory, only
"small sections are available to random access at one,fime.,
Techniques which involve many successive modifications to
the original matrix thus become very inefficient, and their
vulnerability tb significant cumulative round-off error
increases with the dimension of the matrixe Further; in tech~-
nigues in which the entire matrix must be brought to some
standard form before the calculation of a single eigenvalue
and eigenvector, the calculation of a small number of eigenQ
values and eigenvectors may reduire nearly as much work as the

calculation of all of them.
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In iterative techniques, on the cher hand,'these diffie
culties can be minimized. With proper organization, small
sections of the‘matrix can be used sequentially, and the
work per iteration can be made proportional to the actual
number of eigenvalues being calculated. For large matrices,.
this work should then also be roughly proportional to the
square of the dimension of the matrix, rather than the third.
powers. |

Most iterative techniques now available1 for the partial
diagonalizatiom of large matrices are based on the calculation
of successive corrections to some starting vector, to obtain
a sequence of vectors converging to a single eigenvector. Since
these techmiques typically use the maximization or minimization
of the Rayleigh quotient with respect to the approximate eigen-
vector aé the criterion for the calculation of the appropriate-
corrections, the single eigenvector obtained usually corresponds
to the largest or smallest eigenvalue of the matrixe. To find
other eigenvalues and eigenvectors of the matrix, the same
procedure is repeated, but convergence onto previously'caIQ
culated eigenvectors is prevented using one of several teche
| niques (Shavitt, 1973)..

A different approach to the partial diagonalization of a
large hermitian matrix by iterative methods, is provided by

this eigenvalue independent partitioning formalisms If a

lsee Shavitt et. ale,(1973)s Shavitt, (1970)s Nesbet; (1965);
and Peler, (1974).
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matrix f, corresponding to the uncoupling of an nA-dimensional
subspacé spanned by the desired eigenvectors, can be deter=-
mined, then the calculation of these nAeigenvalues and eigenQ
vectors reduces to the construction-and solution of an n, -
dimensional eigen#alue equation, to get truncated eigenvectors
XAA’ only, followed by the matrix multiplication,

. |
Al x

(4).
x\A) e R
e | An

(see eqe (2.3))e The n, eigenvalues and eigenvectors are:
determined simultaneouély; and thus, no error prome and time
consuming deflation or eigenvalue shifting procédures need be
employed to obtain eigenvalues greater than the smallest one.
If the accuracy of the elements of f is8 uniform, the éccuracy
of the n, eigenvalues and eigenvectors calculated should be-
uniform, rather than slowly deteriorating in the order in-
which they are calculated. These methods are especially use-
ful when the desired eigenvalues are nearly, or exactly, equal,.
but well separated from thelremaining eigenvalues of the
matrix. Existing procedures which consist of successive cale
culation of the desired eigenvalues. one at a time, may perform
very poorly in such a situation.

The major part of the procedures described here involves
the calculation of fe In developing suitable algorithms for
the iterative determination of f, two criteria were satisfied
whenever possible, namely, that the amount of computation per

iteration be proportional to nAnBz. and that the columns or
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ruﬁS‘of HBBibawrequired only"sequentiallyw With nh:>=>nh.
manipulations of ng X nbhmatrices (such as inversion, or the
evaluation of the product of two of them) require of the order-
of“nh? computational operations, which is of the same order
as the amount of work required to completely diagonalize the-
entire matrix by traditional methods..

To maximize their accuracy, given f to some accuracy, the
eigenvalués and eigenvectors should be computed from one of
the effective operators ﬁﬁz), Gh, or EA' rather than from'ﬁii),
even though the latter is easier to calculate. The computed
eigenvalues will then be accurate to second order in the error
in £ (see secinn 3¢2)s For ng >>mny, the calculéinn'of G,
requires of the order of nB?nh‘computational operatibns; The
remainder of the calculation, including the calculatlon of
ﬁ§2) or ﬁ3.~if desired, the'diagonaliZationlof the ny, x'n,
effective operator, and the determination: of X(A) all represent

negligible additional eomputation.
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962 2 x 2 Partitioning «- Orthonormal Basis

5.2.a General Considerations

This section is concerned with the determination of f by

solution: of eqe. (2.16),

of - £H, = 0. (501)

D(f) = Hpy + Hp
This matrix equation represents a system of nAnBisimultaneous
' nonlinear equations for the individual matrix elements fcr;
A general solution can be written down in only two special
casese. If the hamiltonian is already block diagonal, then,
clearly, f = 0. If the diagonal blocks of H vanish, so that

H is block off-diagonal or "alternant", then (5.1) reduces to
Hpy = fHygf = 0, (5.2)
which has the solution,
£ = (HBAHAB:)'QHBA = Hg, (H, gHp, -2, (543)
as can be verified by direct substitution..

When H does mnot ha?e one of the special forms mentioned
above, some iterative procedure or perturbation method must
be used to solve (S5.1)e Iterative methods to successively-
correct the approximation to a solution are considered here..
Perturbation methods are discussed in-the following chapterQ

Among.the simplest iterative techniques to apply are

those in which eq. (5.1) is rewritten as a fixed point problem;
£ = F(£) = #pr) + #£], (504)

where #f is some non-singular, possibly f-dependent super;w
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operator. Successive substitutions, f_ ,, = F(£f,), starting

from some initial guess fo’ give the scheme,
or ,, = *7in(s ), (5.52)

Loy = fp * 800 B = 0,1,2,000, (5.50)

hopefully; convergent to a solution of (5.1)s If the sequence
{fﬁicohverges, the rate of convergence will be linear in:
general if S is independent of £.2

Iterative procedures with better than linear convergence
invariably involve the use of an f-dependent operator . The

Newton-Raphson procedure is the simplest of this type; The

generalized Newton-Raphson: equations,
=J(f )ef .4 = D(£f ), (5.6)

are a special case of (5.5a), in which S4-is the negative of"
the Jacobian matrix, J(f), which consists of the first deriva-
tives of the elements of D(f) with respect to the elements of
f. Iteration on egsS. (5.6) and (5.5b) results in a second
order convergent sequence {fm}; That is;zthe error in the
estimate, fﬁ, of f, after the mth iteration: is given as a-
linear combination of second order products of the errors in
ﬂk-l’ the result of the previous iteration: (in the sense
described in Appendix 5), so that convergence becomes very
rapid as the soIution is approached. For eq. (5.6), as for
any iteration formula of order greater than one, convergence

—

2See Rall (1969), especially section 123 Traub,. (1964){ and’
also, Appendix 5 of this thesis.
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will always occur if a sufficiently accurate initial approxi=-
mation, fo’ can be obtaineds For linear iteration functions,
there need not be any initial estimate of f which will lead to
convergence.

A set of related iterative procedufes with high order-

convergence properties can be generated according to the scheme,

(1) _ -1 (p
0f " = =J(f, 4 )T TD(EL 4 )y

2 - y=lpce (1
6fé_) = «J(f ) D(E, 4+ 6ﬂé )
(547)

(3*1) L _rie 1 lpie o & gelX)
srld*l) = La(e ) D(fm_1+k§16fg e

. : J
It can be shown that the error in £ = f + Z 6f(k) is a linear

combination of (j-rl)":h order products of errors in : S (Traub,.
1964)s The advantage of using an iteration formula of the

type (5.7) is that the Jacobian matrix, which is typically of
large dimension (nAnB:x m ng here), need be constructed and
invertéd only once for eéch cycle of the type (5.7).

Iteration schemes with second gpder convergence require.
the evaluation and manipulation of the (nAnB)2 first derivatives
of D(f); Similarly, third order convergent iteration schemes
generally require the evaluation and manipulation of the
%(“hnBQB second derivatives of D(f). Algebraic expressions
for these sets of derivatives are easily obtained., Third and
higher order derivatives of D(f), eg. (2.16), with respect to
f ane zeroe

For the particular application to large matrices, these:
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jteration schemes with better than linear convergence involve
the manipulation of unacceptably Iargé amounts of information..
The solution of eqe. (5.6) for 6ﬁﬁ+1 involves of the order of
(nhnbga compubational operations, and for ny ® m >>mn,, this
is comparable to the amount of work required to diagonalize H
completely. For ng >>m, a third order.formula involves of
the order of nﬁ operations per iteration -~ equivalent to the
complete diagonﬁlization of the matrix n: times overe. For large
matrices, it is therefore necessary to concentrate on compu=-
tationally  efficient, linearly convergent iteration procedures.
When H is diagonally dominant, with the diagonal elements
of HAA close;y grouped about the value k:. the simple choice

A4 = ().XiB., - Hé%?)@lA (548)
(direct product notation) suggests itself. Here Hég) is the

diageonal part of HEE’ This gives an iteration scheme based

on the correction:

Do (f) (509),

L) N
A" Hbo

6f = N
closely related to degenerate perturbation theory.. In eq;‘(5.9)w
and throughout the treatment of the 2 x 2 case, Greek letters
refer to basis elements in SEF and Roman letters to basis
elements in SA‘“ The iteration ' ihdex m: will be dropped
wherever the context does not require ite.

More generally, for diagonally dominant matrices, the simple

choice,,
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A= 1,08 - ey, , (5410)
leads to the corrections,

D__(f)

or ' : -
6f . = " ' (5411)

rr = Hoo
also closely related to perturbation theorye The procedure
based on (5.11) will be designated as the "Simple Perturbation”
(SP) ‘algorithme Numerical calculations indicate that it
converges well only when the diagonal elements of H are ordered
monotonically; and when the diagonal elements of HAA are well
separated from those of Hﬁﬁg Details of test calculations;
using this‘and other algorithms, are given in sectiom 5e2+8e

A better approach is to base the choice of )*'on{approxiQ,
mations to the appropriate Newton-Raphson equationse. As
demonstrated in Appendix 5, these methods are still linearly
convergent, but hopefully exhibit some of the stability of
the Newton-Raphson equations, over a range of problems.
foferent approximations to (5.6) lead to algorithms exhibiting
different rates of linear conwergence; In assessing the compu-
tational efficiency of such algorithms, however; it is neces=-
sary to consider both the amount of computatiom per iteration
and the number of iterations required to obtain: desired
accuracye

During the iterative solution. of (5.1), the required
f-dependent quantities must be evaluated using the current

approximation to f.. Thus, the considerations in sections 3;1
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and 3.2 are relevant here, and it is useful to classify the
algorithms developed below according to the way in which the

f-dependent quantities involved are evaluated..

5e2+b: Methods Based on D(l)(f)

If fo is an approximatiom to the solution of eq;u(5.1),
and 6f is the exact correctiony so that f = fo + 6f is the
exact solution of D(l)(f) = 0, then, it follows from the -
definitionh.(Bou).~of D(l)(f), that

a(1) t s 1) & 4-
£ (2 )Ter - ariy (£) = ot (s ). (5012)

This is an exact equation for 6fe. The Newton-Raphson equations

for the systemnD(1>(f) = 0 are

aA- ~

Al (s ) ter - stV (g,) = -0z, (5.13)
the matrix elements of the Jacobian in this case being;

(1)

(1) . 3Dpg - (1)f (1) . 1y
JPt.cr = -a-;——' = (H‘ )pc rt © 6 (HI(\ )tr° (5.14)
orr

Equationm(j 13) differs from the exact equation (5.12) only in
that the exact operator m (f) appearing in (5.12) is replaced
by the cgrrentAapproxlmation‘ (1)(f ) im (5413).

Deéprte”the sparseness of the Jacobian matrix here, the
Newtone=Raphsen: method is still computatiohally inefficient.
A rnon-iterative method, such as Gaussian elimination, for

goIution of (5.13), does not easily allow proper exploitation
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of the blocked structure of the Jacobian. Straightforward
applicatiom of the Gauss-Seidel method and its refinements, to
the determination of &f from (5.13) with J(l)(f) and D(l)(f)
fixed, does allow the sparseness of the Jacobian matrix to be
exploitede However, such a procedure 1is inefficient in that
it does not make use of all the information available about f
at a1l times if J¢1) and D'!) are held fixed during the
jteration to determine 6f. Thus, a modified Gauss~-Seidel
procedure applied to (5.13) is required.

The simplest linear iteration formula based on the Newton-
Raphson equations, (5.13), is one in which the operator44'in
(5.4) is taken as the negative of the diagonal part of the
Jacobian matrix.. The successive corrections to f, . are then
given by

p(1)

6f = Zor ' (5415)
°r a1 (1)1
(Hﬁ ))rr“- (Héi) )oa

In view of the simplicity of the matrices.involved, the most
efficient computational procedure is to change only one element
of £ at a tlme. calculating D(l) at that time, and updating
H(l) and the diagonal part of H(i)t continually. After a
change in‘a s1ng1e f o’ these quantities are easily updated

Yecause they are linear in: f,
(aﬁﬁl))s sH_ 8., (8 =1, eees )y (5.16a)
and

(6&‘1)?)0 = -6f H = '(éﬁil))rr . (5416Db)
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Calculation of Déi) as. required involves the same number of
computational operations per sweep through 8f as the continual
updating of D‘l) (for which D(i) must be stored), but there is
a likelihood of significant accumulatiom of round-off error as
the solution is approached if such an updating procedure is
used for D(l). Where the diagonal elements of HAA are fairly
well separated from those of HEB’ the usual starting approxi-
mation-is f = 0, In this case, the starting approximations
to ﬁil) and ﬁé})f are simply HAA and HBB? The iterative
scheme based on (5.15) and (5.16) will be referred to here as
the “Simple Diagonal Newton-Raphson" (SDNR) algorithm;. A
precise statement of computational details is given in
Appendix 4.

The idea of the correctionx&ﬂbr, calculated in:(5.15); is;
that it should reduce the corresponding Dsi) approximately to
zero. This may be far from true early in' the calculation if
bfor is largee. The change afdr required to reduce Dgi) exactly
to zero can be determined from (5.12)s The result is a quadratic

equation in bfcr' namely,

5 o 1) .
Bro®for * [(Hil))rr°(ﬁ§1)t)oo]5for'nér) = 0o (5.17)

The iterative scheme based on this equation will be referred
to as the "Quadratic Diagonal Newton-Raphson” (QDNR) algorithm;
Precise details aie given in Appendix 4. If (5.17) has two
real roots, the desired correction is the one of smallest
magnitude numerically. When (ﬁi;))rr'(ﬁg})T)éo is much.

greater than either or both of Déi) or H%o' this correction
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differs negligibly from that given by (5¢15)s As the solution
of (5.1) is approached, and the magnitude of Dé;) becomes
progressively smaller compared to the other coefficients in
(5¢17) (which are constant, or effectively constant once a
reasonable approximatiom to f is achieved), it is necessary-
to use the formula for the root of a quadratic equation with

a rationalized numerator to avoid serious round-off error, that

18',.
1
o
6ﬂ6r = a P ' P Py
G GG S I B (& SRS G- LA W LR IS
where | o (5418)
X = sl (B! _~EVT) T, (5419)

when: all coefficients are reale

This equatiom can be used instead of eqs (5.15) in cases
where difficulty is experienced in establishing convergence..
If diagonal elements of ﬁil) and ﬁ%}) become very nearly equal
at some stage of the iterative calculation, eq. (5.15) may
Iead to divergence. Such diverging tendencies may be damped
if (5.18) is used. On the other hand, situatians.occur in-
.which eqs. (5.18) accelerate the divergent process;q The results
of some numerical calculations using both of these algorithms
are included in section 5.2.g and Table 5.1

If diagonal elements of HAA and HBBSare equal, it is
necessary either to use a nonezero starting approximation for

f, or to use algorithm QDNR imitially, since application of the
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SDNR algorithm may lead to a division by zero early in' the
calculation. It is unlikely that either of these stratagems
will lead to a rapidly converging calculation, however, unieSS'
a reasonable separation: is soon established between the diagé
onal elements of ﬁA and HB?

Im the limit nhi>:>nA' the quadratic algorithm, QDNR,
requires effectively the same amount of computation per sweep
through 6f as the linear algorithm SDNR. In both cases,'the
time consuming part of the calculatiom is the evaluation of
D‘(,:,). and’ possibly, the updating of }'{-}‘1) and 13](31 )t rather
than the calculation: of 6f;,. from either (5415) or (5.18)
Iteration on (5, 15) for 8f ., while updating (H(l)) ppe DUt
keeping (H(l)f) and D(l) fixed, is equivalent, if convergent.
to using-(5.18). This is not necessarily an efficient procedure,

However.

Se2eC" Methods Based onxD‘2)§f2"

The operator ﬁ(ly(f) appearing in'D(i)(f)‘must be con-
sidered to have errors of the same order as those in f itself.
As shown in 6ha§ter 3, however, the error in<ﬁ§2) is smaller,
in some sense, the eigenvalues being unaffected in first order
by a first order error in f. This insensitivity can be

exploited in iterative procedures for solving the equatibn}
(2) < H : s(2) _, .

which has the same solutions as does eqe (5.1).
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Because of the inverse operator gAl in Hﬁz). the exact:

Jacobian matrix of D(Z)(f) is no longer simple,.

2 , 2(2
Jéi)pt = _Eésl = Hopbpg = (H(Z))rt 800" gAfcsiizé'ilgs .
afpt s=1 afPt
(5.20a)
Here, one has,
a(i{?))__ -1
2o ( f )SP rt - (& £ )sf A)tr (5.20D)

Because of the term involving the derivatives of the elements

al
of HXZ); the exact Jacobian matrix is not at all sparse, in

general. unlike J(l) of eqe (5+.14). However, since Hﬁz)

varies slowly with f near the solution of (5. 19), it is

5(2)

expected that those elements of arising solely from the

third term of (5.20a) will be relatively smaller than the
remaining non-zero ones. On neglecting this term in (5.20a),

't
the approximation '

7(2) 2) . (2)
or,pt or,pt Hopart - (ﬁ )rt po * (5‘21%
is obtained. This gives the simple equation,
Hondf - 6fH(2) D(Z)(f)m (5.2255

BB
as an approkimation to the Newton-Raphson equations for the
system~(5.19).v‘1n contrast to (5.13), this equation involves
the origlnal HBB only, and not some modified ng X ng matrixe.
On the other hand, it is more complicated to update H(z)
than ﬁii). 'For any change 6f in f, the change in Hﬁz) is given

exactly,by,


http://or.pt
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6&&2)= gzl(newicinew) - gXl(old)G‘gold)
= g neW)5e, - og,fi{?)] (5.23)
= gt (neW)set (0B pe-o5hi{?))ew] 652" ori(?)],
where
Wy, = Hp, + Hppf. | (5.24)

All quantities on the right side of (5.23) are before updating,
except where explicitly indicated.

Since an n, x n, matrix inversion is required for each
updating of ﬁiz), the use of (5.22) is efficient only if groups
of elements of f are changed simultaneously before updating
ﬁﬁz). In application to large matrices, it is most efficient
to change entire nA-dimensional rows of f at one timee. For
ng >>n,, this leads to an algorithm requiring comparable
work, per itefétive sweep through 6f, to algorithm SDNR (that
is, of the order of nAnB2 computational operations per sweep) e
As in SDNR, only single columns of the block Hpp are required
at one timee.

Two iterative methods based on eqe (5.22) appear useful.
The first is the simplest diagonal approximation; which correQ
sponds to taking ¥ of eqe (5.4) as the negative of the diagonal
part of J(Z)m‘ This leads to the iteration formula,

o

6f°r = A » (r = 1.: ey nA)o\ (5.25)

(2)
(ﬁg der = Hoo

When: 6f . is given by this equation, the expressibn;ﬂ (5.23),
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for.éﬁkz) simplifies somewhat to

a(2)_ -1 1 2), oyt
ofi(2)= griimewlpglmewlty or JA(Z)e(wl)

= gA OAA AoafoA

. (o), 02, f(2)0],  (5:26)

a(2)

where H(Z)d is the diagonal part of H;“’, and where (WEA)AG.

(bf )Aa' (f(neW)f)Ag. and (éf)aA' refer respectively to the

crqb-h rows of W;A, f(new)f’ and’éft, and the oth

column of &8f.
The second method 1is to treat the n, equations in (5.22)
for each fixed ¢ as a system of simultaneous linear equations
for the 8f_ ., (r = I, eesy ny)e This corresponds to taking ¥
to be block diagonal, each diagonal block being the negative

#(2)

of the diagonal block of J referring to a row of 6f. The

resulting iteration formula can be written,

8f., = (2)[H (2)]‘1 - (5427)

OA oo A
which, in practice, involves the solution of a system of n,
simultaneous linear equations in n, unknowns. For this change
6f, the first term. of (5.23) vanishes, so that the updating
+(2)
Hy

formula for_ reduces to

#(3)9,  (5.28)

2(2) _ _=1(new) t 1,
SHy"" = & LWE ) ao®Ton = (F)o8 50 Hs

A
This method involves somewhat more computation per sweep
through §f than the preceding one, but may be expected té“
converge in fewer overall iterations in certain caseS'whére“
the off-diagonal elements of HAA are large..

The two procedures described above will be referred to

as the "Diagonal Generalized Nesbet” (DGN), and the "Full.
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Generalized Nesbet" (FGN) algorithms, réspectively. A precise
statement of computational details is given in Appendix 4, 1In
the case n, = 1, they both reduce to an algorithm of Nesbet
(1965)e There are also certain similarities to that of
Davidson (1975)e Test calculations using them are described

in section 5.2.8¢

8,24 Solutiom of the Newton-Raphson Equations by Descent Methods

The approximatiom of the full Newton-Raphson equations by
much simpler equations, to avoid prohibitively costly calcula-
tions, reduces both the rate of convergence and the range of
calculations for which convergence occurs'y.. A major factor in
non-conﬁergence of any of thé algorithms SDNR, QDNR, DGN, or
FGN, must be the neglect of some or all of the coupling between
elements of 6f in the Newton-Raphson equations. The successive
correction of individual (or at most a few) elements of f can
lead to very slow convergence ("spiraling"), and also divergence,
in: the case of systematic over-estimation of the elements of
6fe It is desirable to vary all of the elements of f simulta-
neously, but using methods which are less costly than solving
the Newton-Raphson equations exactly. The Gauss-Seidel
method applied to the full Newton-Raphson equations, with
updating of J and D only after one or more sweeps through &f

have been completed, is one possible way to appfoximate the

coupling between the elements of 6f. However, in this sub-
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gection, alternative methods tmsed on the minimization of
the residual, J8f + D, of the full Newton-Raphson equations,.
will be examined.

When 6f is real, the solution of the Newton-Raphson:
equations is equivalent to determination of the stationary
points of

Q(er) = ss6etger + 62D, (5.295

considered as a functiom of &f. PFurther, if J is positive=
definite, the solutions of the Newton-Raphson equations are
equivalenf to local minima of (5.29), so that 8f can be-
determined using a gradient minimization technique. The eigen-
values of‘J(l), of eq. (5.14), are evidently the differences
between the eigenvalues of ﬁ%l) and ﬁil). Thus, as long as
all the eigenvalues of ﬁé}) are larger than all the eigenQ '
values of ﬁ(;). the Jacobian J¢1) will be positive definites

A
5(2)

The eigenvalues of the Jacobian matrix are less easy to

deduce because of the terms involving the derivatives of ﬁéz)
im eqe (5.202 )% If these derivatives are sufficiently small,
then J(Z) Will be poéitive definite as long as some mimimum,
separationais maintained between the largest eigenvalue of |
ﬁiz) and thé'émallest eigenvalue of Hppe Phe condition that
the Jacobian be positive definite implies that it is the
lowest hA eigenvalues which are soughte.

If_thekJacobian matrix is not positive definite, the

solution of the Newton-Raphson: equations is equivalent to

minimization of the functienal,
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Q(sf) = (J 68 + D)'(J 65 + D)
=p'D + DTger + s£ta D + 627 5%8s, (5.30)

which is more difficult to handle than (5.29) because of the
generally 1arge_dimensionzof Je

When J is positive definite, the use of an iterative
gradient miﬁimization~technique~(such as: the method of steepest
descents or the method of comjugate gradients) to calculate
8f by minimizing (5.29) while holding J and D fixed, involves
modifying 8f as a whole by successive amounts a5V where'ai
is a scalar étep length chosen to minimize Q along the search
directionxvi. The search directions'vi are chosen equal to,
or related to, the directions along which Q@ changes most
rapidly. Computational details of the application of these
minimization technmiques to quadratic forms like (5.29) are .
given by Ralston (1965, DPpe 439=U445).

If the steepest descent method is used with the Newton=
Raphson equations based on:D(i)(f). the most costly part of the

minimization iteration is the determination of the step lengths

@s o which involves evaluation of the scalar~produ¢t

onprt (5'31)

21} vy
- P’li.r (vi)Pt(HA )’tr'(vi)Pr.j

For nh¥>='nA, this requires of the order of nAnB2 computational
operations. In the conjugate gradient method, an additional

nAnB? operations are required to evaluate the product VEJ'D,.
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necessary in determining Vie1® Thus, if m minimization
jterations are carried out, the calculation of &f, including
the initial evaluation of J(l) and D(l) requires of the order
of (m+2)nAnB2 operations using steepest descents, and a mini-
mum of (2m+2)nhn32 operations for conjugate gradienfs;,,This
is roughly equivalent to m+2 and 2m+2 iterations, respectively,
of the algorithms discussed in the previous three subsectionss
The advantage here is that a very good estimate of 6f may be
obtained for m small, because the first few iterations in

such minimization techniques frequently result in the greatest
movement towards the minimum. Coupling between the elements
of 8f is taken into account here, while the computation per.
iteration is still proportional to nAnB? for nB >>n,, as is
desired.

While such descent methods are not expected to be of much
use in application to large matrices, they are very useful in
the slightly more complicated self-consistent field problem
in molecular orbital theory (see chapter 8), where it is
considerably more costly to update D(f) and J(f), because of
the complicated dependence on f of the matrix being block

diagonalized.

528 Extremizing the Trace

Another alternative to eq;,(5;1)}is to determine f such

[}
that the trace of the matrix H over the eigenspace SA is
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stafionary (see section 2.1.e), that is, such that
E(£46£) - E(£) = OE = te[ P, (£+6£)~P, (£) JH
= btr P,H, (5432)
vanishes to first order in &6f. From egq. (2.39), this is
equivalent to the vanishing of the quantity

5= VeE-=g! ot g, (5.33)

- * -
Dy, being the derivative aE/afor. The derivatives of D with

respect to the elements of f and f‘r are given by

3D
[ T

af’ "(fg )Ot (fg )Pr ct® (503‘4’3-)
or

and

3D
Pt = -1 -1 -1

5T “(gB )GP(gA AgA )tr + (gA )tr(gB GBgB )

or | (5.34b)
Thus, the Newton-Raphson equations for the system D = 0 can
be written
-1

(gB GBgB,)éng -gBlef(gA G, &; -Dotr'eg; -g7 02"D

= =D . (5435)
Om multiplying from the right by g and from the left by‘gE,

these become
(2)*6f 6fH(2)= D(1)+[D(1) ~lorTrerer p(2)7 . (5.36)

If D(l) and D(z) are considered to be of the same order as &f
as the solution is approached, then the last term of (5.36) is
of higher order than the remaining three terms. If this term
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is neglected, the resulting equation is of the type (5.13)
with the operatorslﬁil) and ﬁél), replaced, respectively, by
(1)
Hy

ﬁiz) and ﬁ§2). Because the difference between Hi;). »y and

ﬁﬁz). ﬁé?), is of the same order as the term neglected, the
resulting approximate equation is not necessarily an improve-
ment over (5+13), desplite the presence of the more accurate.
effective operators.

The exact equations, (5.35) and (5.36), could be significant

for gradient minimization techniques, which can be set up so

that divergence cannot occur. However, the evaluation of ﬁé?’
involves the inversion of the ng X anmatrix, gpr 28 well as

1

the formation of the product gg GB’ For ng >>'nh. these two

computations could be prohibitive. ‘

5.2.f Minimization of the Norm of D

A further alternative to determining f by solution-of .
(5¢1) is to minimize the square of the Hilbert-Schmidt norm-
of D, | |

2 sk
IDI® = Z.1D,.1% (5.37)

O,r
i

with respect to f. The required gradients are

lipli? 3D,
L =21 p, —=
afks Cer af¢s
=2 (ﬁBp + D). . (5.38)

This approach is attractive because it invelves a suitablé
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convergence criterion directly. If a gradient minimization
technique is used, it is easy to ensure that a maximal rate of
convergence is maintained. By minimizing “D“2 itself along
some search direction in each iteration, problems of over=

shoot and undershoot can largely be avoided..

5.2¢f Test Caleculations

The algorithms described in sections 5;2.a - 5.2;chhavef
been applied to a series of matrices based on that considered
by Nesbet (1965). The off-diagonal elements of these matrices
are all unity, and the diagonal elements are some combination
of the first n odd integers, 1,3,5, eee o Matrices with
dimensions up to 250 x 250 were considered; this being suffi-
cient for testing.. The calculations were carried out on an
IBM 370/168 computer using double precision arithmetic., The
convergence criterion was based on the Hilbert-Schmidt norm,
Ipll=(tr D‘D)é, of the particular form of D(f) used in each
methode A criterion based on the maximum change 6f°r in the
elements of f during an iterative sweep can also bé usefule..
In all examples, the basis space, SA’ is defined by the first
n, basis functions in order, so that re-ordering the diagonal
elements of H is equivalent to varying SA'

For convergent calculatibns. it was found, except for
the first few iterations in some cases, that logliDll is usually-

well approximated as a linear function of the iteration number.



124,

That is, convergence was linear once the calculation stabilized,
with the value of |/|D|l decreasing on the average by some constant
factor for each iteration. This factor can be regarded as an
average asymptotic error constant. Table 5.1 gives these error
constants (or convergence rates) for a.number of examples, to
il1lustrate the effects of varying the size of the matrix,
varying the differences between the diagonal elements of HAA=
and HBB? and varying the ordering of the diagonal elements of
the full matrix to change SA' For comparison, Nesbet's
algorithm (Nesbet, 1965) was used to olitain a single eigen=-
value of each of the matrices considered. The square roet,

¢, of the variance for the approximate eigenvector, as defined
in eqe (2.49), was used as the convergence criterion in this
case, and log o was also found to be a linear function of

the iteration number. Note that the smallest numbers in Table
5.1 represent the fastest convergence.

For the basic Nesbet matrix, with SA the space corresponding
to the n, smallest (or largest) diagonal elements of H, all
methods converge to give the eigenspace of the n, smallest
(or largest) eigenvalues. The rate of convergehce varies little
with N, either increasing or decreasing slightly as n,
increases. When the largest eigenvalues are sought ( or
equivalently, when the off-diagonal elements are -1), con-
vergence is considerably poorer for n, = 1 than: for n, = Sy
except for algorithm DGN. The five algorithms tested have

rates of convergence generally comparable to the Nesbet method



TABLE Se1

Linear?® Convergence Rates of the Algorithms in Selected Calculations.

mgl m DIAGONAL MATRIX METHOD P Mesbet
n -
(",q + "3) ELEMENTS [N ORDER SP SDNR | QDNR| DéEN paN A=1
/ /0 13,5,..17,19¢ 021 | a24 | 0a4 | 0.23 | 0.23 0.23
! 20 1,3,5...37,39 0.33 0.3t | 0.3/ 0.30 | 0.3 030
! 250 | 1,3,5... 497,491 |o.5a | 0.5t - 0.50 | o.50 0.50
5 10 L,3,5,,.11,19 02 | 022 | 023 | o# |09 (4 | o023
5 20 1,3,5...37,39 030 | 029 | 030 | 0.37 |0.29(#H | o030
s 250 | 1,8,5... 492,499 | 0.55 | o.51 - 0.49 |o.50(4) -
h :,
S lo 19,1715 ...3,1 o.:w" 0.23" 0.23" O.74(sy| 0.24 (a)h o.54
s lo 1,3, . . 09119 | K |o33(s)| 0.99¥ o.40? o,;o(a" 0.23"
5 10 1.3, 5 1973...0719 | 0.61€ | O55¢ o.55¢ | 0.42% | 031 (W@ | p.a3
s 10 L3,..104379..1119 )| 0585 | 0315 | 031F | o42f | o9niy)s] o.23
5 10 | 1,3.,.8,,91.179057% o3tf | 0.3F | 0.43F | 0.999)9| o.23
5 10 19,17..9,4,...3.1 | 0.59¢| ) div. |o.6#i]| o0a3¢ | o.54
4,0-1,1.2,1.8,1.4,11,13,... 87, ,
5 .20 ' ‘15 ) 39’ 020 | 018 | 0.18 | 0.1 0.l m
4,10,1.2,1.3 1.4,1.5,
5 20 ! '-},"’;, K |o2o |07 ]098 | ofo m
5 0 413130435, a9 | 0.66 | 0. 41 | 040 | 057 t m
5 P parssuisss. | K |o45| o] K K m
47,29

A
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TABLE 5.1 (continued)

8Phe tabulated numbers represent the average factor by which
the norm DN is decreased per iteration, once a linear conver-
gence rate is established. SA is spanned by the first n,

basis functions. All off-diagonal elements are unity. The
numbers are obtained by a least squares calculation of the
slope of loglDl as a function of iteration number.

bihe number of iterations before linear convergence is established

~is indicate in brackets to the right of the convergence factor
when not zero.

cthe eigenvalues of this matrix are: 0.386, 2.461, 4.519,
66753, 84629, 10.691, 12,766, 14.868, 17.037, 22,072,

dconverges to the eigenvalues 0,386, 2.461, 4.519, 64573, 10.691.
€converges to the eigenvalues 0.386, 2.461, 4.519, 8.629, 10,691,
fc’onverges to the eigenvalues 0,386, 2.461, b.519, 10,691, 12.766,

€apparently converges to the eigenvalues 04386, 2.461, 4.519,
10,691, 14,868,

hconverges to the eigenvalues 10,691, 12.766, 14.868,17.037,
22,072,

; converges to the eigenvalues 8.629,. 12.?66. 14.868, 17.037,
2240724

JIol is oscillatory.

knD" is apparently divergent,

I“DH becomes constant (= 4.34) after 25 iterations.

™ & Becomes constant or increases very slowly after about
50 iterations..
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in cases where convergence is straightforward, as it is when
the diagonal elements of H are ordered monotonically and are
well separated. Frequently, large matrices arising in

various applications, for which only a few of the lowest
eigenvalues and their eigenvectors are required, have diagonal
elements arranged in roughly increasing order, with variation
in the diagonal elements large compared to individual off-
diagonal elements. As seen from the results in the first

part of the table, these algorithms are well suited for such
calculationse The simple perturbation: (SP) algorithm generally
exhibits the poorest convergence rates inh these examples, as
may bé expected, since it represents the crudest approximation
to the exact Newton-Raphson equations. The algorithm DGN'
works relatively poorly‘in two cases for n, = 5. Presumably,
one of the diagonal elements of ﬁiz) approaches one of HBB.too
closely during the calculation. The algorithm QDNR has
convergence rates identical to SDNR, because these two calcu-
lations differ significantly only at initial stages before
linear convergence is established.

The effect of varying the spaces SA and SB’ as defined by
the associated diagonal elements of H, is illustrated by the
third part of Table 5.1 Rates of convergence deteriorate
markedly when one or more diagonal elements of HAA.exceed at
least one diagonal element of HiB' The algo;ithms DGN. and FGN
sometimes converge to different eigenspaces SA than do SDNR

and QDNR. It is noteworfhy'that QDNR gives no improvement
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over SDNR in these examples, and is actually non=-convergent
in one case where SDNR converges wgll.

The uncertain convergence is presumably due to one of the
differences (ﬁél)T)co - (ﬁil))rr. or H,, - (ﬁ§2))rr' appearing
in the denominators of the iteration formulas, becoming small
or changing sign. The iteration formulas become ill-conditioned
or even singular under such circumstances. The presence of an
*induction period" before linear convergence is established is
presumably associated with an initial uncertainty in the sele-
ction of a space S; o+ When the diagonal elements of the
approximate A-space and B-space effective operators are not
well separated. _

In principle, the space SA, specified by the calculated
f, may correspond to any group of n, eigenvalues of the matrix
H. Thus, in principle, any subset of n, eigenvalues, none of
whose eigenvectors are orthogonal to the subspace SA of the
full basis space, can be calculated without previous deter=-
mination of any of the other eigenvalues., However, the first
three sections of Table 5.1 show that the iterative calculation
converges best when SA corresponds to the n, lowest (or highest)
eigenvalﬁes of the matrix, and SA to the smallest (or largest)
diagonal elements of the matrix. Deviations from this arrange-
ment entail considerable risk of poor convergence or ne conver-
gence at alle. If n, of the lowest m eigenvalues (m > nA)'are
desired, these convergence problems can be avoided by pre=-

diagonalizing a block of H containing the m smallest diagonal
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elements, as described iﬁ section 5e¢3ece

The last section of Table 5.1 shows the superiority of
the algorithms developed here over Nesbet's algorithm when the
lowest few diagonal elements of the matrix are nearly equal,
but well separated from the remaining ones. Generally, the
f-operator calcuiated must correspond to the space S; spanned
by the eigenvectors belonging to all of the nearly equal eigen-
values if good convergence rates are to be obtained. However,
a surprising feature of the results is that the algorithm  SDNR
performs very well, even when a diagonal element .of HBBEis
relatively close to one of HAA‘

These computations do not indicate any clear cut superiority
of one algorithm in all cases. When convergence is straight-
forward, all converge effectively equally rapidlye. When con-
vergence is not straightforward, any one of the methods may be
more stable or rapidly convergent than. the others. However,,
the algorithm DGN appears to be less successful than SBNR
and FGN, generally. The simple diagpnél Newton-Raphson
procedure, based on D(l)(f) = 0, is somewhat easier to program
efficiently for m, > 1, than the methods based on D(z)(f), and
from this standpoimt is particularly attractive.. In fact, in
most cases, the rates of convergence for this method compare
very favourably with those of the other, more complex, methods.
The extra computation involved im using QDNR rather than SDNR
appears to be of little value, im general, even though this

represents a negligible amount of additional work as ny
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becomes very large. While SDNR yields only the approximation

ﬁél) directly, a calculation of ﬁﬁz) at the end of the iterative

sequence takes only of the order of the time of one iteration,
and can be carried out if the eigenvalues and eigenvectors
B

of H corresponding to SA are desired. For n, =1, SDNR offers

an alternatiye to Nesbet's method, of comparable efficiencye
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503 Generalization to a Ndn-orthonormal Bagis == 2 x 2 Case

S5e¢3ea General Considerations

When the basis is not orthonormal, the relation of the
two off-diagonal blocks of.the partitioning operator is more
complicated fhan before (see section 2.3)e The off-diagonal
blocks, f and h, of 5. éq. (2.2), can be defined by the pair
of simultaneous equations representing the vanishing of the

off-diagonal blocks of G = ﬁ*Hi and g = ﬁ*sﬁ. namely,

G

s = Hp, + Hppf + 0'R, =0, (5.39a)

and

=S., +S..f+h'S§ =o0, |  (5439Db)

€pa BA BB A

al ~ .
where HA = HAA + HiBf” and SA = SAA+ SABf" Alternatively,
these equations may be combined to give separate equations

for £ and h,

Dpy(£) = Hpy + Hppf - (Spy + SppflHy = 0, (5.402)
and
D, p(h) = Hyp + H,h = (S,,h + S, ) = 0, (5.40b)

as im eqs.. (2.113) and (2.,114), Here, one has,.
1

a aniat '
HA =SA A » (S.nla)
and
~ Aniat : '
Hy = SpHp (5.41b)
LAl ~
with Hﬁiz HBB + HbAh' and SB}= SBBB+ SBAh'

Algorithms to calculate f and h, or either separately,

have again been founded on approximations of the full Newtone
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Raphson equations by less costly linearly convergent iteration

scheme.

5e3sb_Methods Based onm Gp, and g, -= A Generalization of
Aigorithwzsnwﬁ |

A direct genéralization of the SDNR algorithm based on the
equationtnéi)(f) = 0, does not lead to an efficient computa=~
tional scheme in. a nonworthonormal basis. Because of the
inverse matrix §Ki” a change in even a sihgle element of f
changes all of the elements of ﬁil)m making updating costlye
However, a very simple procedure can be based on the simulta-
neous solution: of eqse. (5.39), this procedure reducing to
algorithm SDNB when the overlap matrix S is replaced by‘in,
and h by'-ft; o

The Neﬁton—Raphson equations corresponding to the system
(5.39) can be written as the pair
oy 7

fijsf + an’ﬁ; = -Gy, » (5.42a)
and

§tsr + 6n'S, = -g (5.42D)

B! AT “8pp * Se!

These represent Znhnﬂgequations for the nAnBielements'of f and
the nhnh{élements of he The diagonal parts of these equations

are of the form

“:. t Ay
(HBa)oc (HA)rnv 6for qbr

a4 Py » 8 - , X (5‘“’3 )
(sag)bo (SA)rr Shpg Egy -
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with the solution,

-G (§ ) - & (I?{') B
Bfor = or A rr cr- A 'r-!: ] (SoMba)
D or
and
(H ) (8%)
6h:r - oofor * B,oo.cr ., (Se44Db)
A or f
where _
ﬁ.lt ~ .(f LN ]
Acn\ = (HB )OG(SA)rr - (SBV)OO(HA)I’I' . _ (5.“5)

A cnmputationa} procedure based on these equations invelves
roughly double the work per iteration as algorithm SDNR. The
quantities G and &gy are calculated as required, while ﬁ',
§A’ and the diagonal elements of S%iand HB; are stored. These
latter matrices are easily updated, because they are linear

in f and he For a change inf _and h. _ , one has
or ro

LA ] ’

(GEA)sr = Hggbfgr

“ } (S = 1,~ es ey nA).. (5.‘4‘6&)
(65,)gp = Sgobf i

80 oOr ,
and
AL - #* '
ﬂQHBﬁ) = Shpolpg » ‘
. (5.46Db)
(bsB )ao = 8h, .S . '

Precise*éomputational details of this procedure, designated as
thev“Simple Diagonal Newton-Raphson with Overlap" (SDNRS)
algorithm, are given in Appendix k4.

Agalm. a quadratic generalization. (here QDNRS) can be

obtained,_”Equations for the exact corrections 6f and 6h.,
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required to reduce GBA and &aa exactly to zero, are obtained

from (5.39) in the form,

..'f 1"" :
Hp 8f + 8h'H,+ sh' HABsf = ~Gg » (5.47a)
and ‘
3%er + 6n'S + on's. .6f = - (5.47b)
B A "SAB €pa * .

The corresponding "diagonal equations",

~g
(H )oo or * cnrc(HA)rr + °hroHrc5f ~Gype (5448a)
and
2t
(Sp)oo®for * an\ (sA)rr + anrosroafcr ~gqp ¢ (5448D)

' »
can be combined to give 6f6r and Bhro as the roots of gquadratic

equationse. The correction to for is the smallest root of

AbTZ  + Bofy + C = 0, (5.49)
where '
- avt
4,7 (Sﬂ)co ro = SrolHp Jgo
B=-Aor Srchr Hpo8op » ‘5'50)
and
~y -
C = gop(Hy)rp = (Sp)pyGop o
THe correction to ht is then
Toee, - (BT b2
6h* = a_ B. ‘g0 "or . (5451)

ro "t
(Hh)rr + Hrosfor

Precise computatiohal details again appear in Appendix 4.
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5.3+¢_Methods Based on D(z)(f) -- Generalized Nesbet Procedures
As explained in section 3.2, equation (5.40a) can be

understood éither as D(l)(f) = 0, or.D(z)(f) = 0, according as

ﬁA is taken as the approximation ﬁﬁl) or ﬁiz). In either case,

the Jacobian matrix has the elements

(1) anfy a(i) i
Jcr,pt =‘af = Hopart-s;ap(ﬂA )ip= |(Sga*Sppf)—— .
Pt Bl or

(5452)

Even without the last term involving the derivatives of ﬁii).
this matrix is no longer sparse, and the convergence of iterative
methods based on "diagonal® approximations may be adversely
affected.

Foppnsl)(f). this Jacobian matrix can be written,

(1) . a1, 2-1 -
orypt = [Hop=YorSK Hip1ory=[Sep=YoaSy SppJ(Hy ) gy
(5453)
This is considerably more complicated than before, and must

(2)

be handled in a similar way to the D methods.
The D(z) (generalized Nesbet) methods are extended to a

non-orthonormal basis straightforwardly. As before, it is

reasonable fo negléct the derivatives of ﬁﬁz), giving,
(2)
oD .
—or_ , F(2) " 7(2)
— ‘“'Jor.pt = Hg,0n = Sap(HA ip * (5.54)
Pt

For some change 0f in f, the operator Hﬁz) is updated according
to |


http://or.pt
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6fil2) = gT1neWirse? (p(2) 4y o - s

a(2),
BB STH ™)

BB

tor - vhoarn(?)], (3.33)

*Wea BaSTH,

where Wy, = HBA + Hbe and YBA = SBA + SBB;' The "Diagonal
Generalized Nesbet with Overlap" (DGNS) iteration formula is
(2)
Doy
éfor = A(z)-— » (r = 1.- o0y nA). (5.56)
SeoHy lpp - H

GO

for which the updating formula for ﬁXZ)..eq. (5.55), becomes

éﬁﬁz) - gzl(RGW)[(wgl)AobfaA + (I§XQW)T)A05f6Aﬁ§2)

t n(z)d (5'57)
* Se68fondfoaly 1e

The "Full Generalized Nesbet with Overlap” (FGNS) iteration

formula is
85a =“D§i)[sooﬁ§2) - Hooj-,l ’ (5.58)

which agaim, in: practice, is treated as a system of n, simul-
taneous linear edugtibns.».The first term of eqe (5¢55) now
vanishes, so that the updating formula for Hﬁz) becomes

t vty 2(2 :
t 0 acdon = (b )agdfealit) 3o (5059)

! 2& -1 neﬁ

oKy ) =‘g11( Lew
For both algorithms DGNS and FGNS, approximately twice the
computation is required per sweep through 6f, as for their
counterparts in an orthormormal basis. A precise statement

of computational details is given in Appendixlb;
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5¢3ed_Other Methods

For a non-orthonormal basis, the gradient of the trace
[}
of the matrix H over the image space, SA' of the projectiom

P; is given by

oE -

—F = = tr (P; H) = EU!" (5.60)
afor afﬂ!‘
where
D= -Y,gtc,el v W, et (5461)
BASA YABp BAEA ° Ie0L)

As this trace is stationary if and only if S; is an eigenspace
of H (section 2.1.e), one way to determire f is to solve the
equation' D = 0., Using eqs. (3.11) - (3.15), eqs. (5.61) can

e transformed to
D= D(,?)(f) g"1 -

- (5.62)
= [1p - Yyep e D ggt
which vanishes, as it should, when D(l)(f) and D(z)(f) vanishe.
This equation reduces to eq. (2.45) in an oﬁthonnrmaljbasis.

Algebraic expressions for the derivatives of D with

respect to the elements of f can be obtained without difficulty,

and give the Newton-Raphson equations for the system D=0, as

, -1t -1 -1t |
f(SBEr EA&A )bf(gA AgA )+(YBAgA WBA*HBB'DYBA)Gng
~Yg, & o' D-Bort v, g7t = B (5463)

These are somewhat more complicated than the previous eq. (5¢35),

but not hopelessly So..
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Phe Newton-Raphson equations, (5.42), 6; those arising
from D(l)(f) = 0, or D(z)(f) = 0, can be solved for 8f using
" descent methodé as described in section 5.2.d. As before, the
costly part of the minimizatiom: iteration,. the evaluation of
products like vi-J-vi, generally require of the order of
nkznh? computational steps, in addition to the work reduired
in calculating the Jacobian, and the other vectors entering
the producte. For the Newton-Raphson equations, (5.42),
reduction inAcomputation1by a factor of %ni results if the

blecked structure of the Jacobian is explicitly taken into

account, yielding,
. 'f aty
Vvedev z [(Vf or ) (Vf) '.'(vh) (SB)UP(Vf)Pr]

r ,
O (5.64a)

* I Llvglgr ) 40 (Th) t0* Vi) o 5a) £ (V) 1]
O,Ty

where the search vector, v, has been divided into an f part

and an h part,

i ‘v=
v = | £ . , (5+64b)

Equation: (5.64a) represents of the order of ZninBz coﬁputational
operationé for nBi>:’nA’ As for an orthonormal basis, then,

the approximate calculation of 8f (or 8f and 8h) from the .
Newton-Raphson equations using a gradient minimization proce-
dure is as costly as several iterations in algorithms.SDNRS,
QDNRS, DGNS, or FGNS,.

A third alternative is to determine f by minimizing the
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Hilbert-Schmidt norm of Gp, and gg,, or of D(l)(f) or D(z)(f)
directly. Only the scheme based on GbA and gBA'is considered
here because the derivatives of Gp, and ggy with respect to f
and h are particularly simple, and because the form of the
quantity to be minimized is not as simple as (5.37). Since

Gpy has dimerisions of energy, whereas gg, is dimensionless, the
quantity to be minimized should be of the form

2
I

N = {|Gg,lI° + d2“g31||= ozr (|Gypl + a2|g6r|),‘ (5¢65)
?

where a is a constant scale factor with dimensions of energy.

The first derivatives of N are

aN n.\ 2-; .
;;—— = 2(HgGp, + a“Spgo, )pgs (5.66a)
TS
and
\ ~ 9 ~
2 = 2(6g, 1, "+ o®ap,Slpge (5.66b)
3h:81, . .

Actual test calculatidns are required to develop criteria for
the choosing of a. It is desirable to choose a in some way
which maximizes the rate of convergence, but such a criterion
is not easily translated inte an algebraic condition on a.
The interpretation of a as an average energy scaling facf0r=_

suggests a # nil tr Gy e
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503.¢ Choice of an Initial Estimate, and Improvement of
Convergence Rates

When the off-diagonal elements of H are small compared to

differences between diagonal elements ianAA and HBB' the
matrix elements of f are small, and a reasonable (and practical)
starting approximationm in an iterative calculainn is fo = 0,
Arr improved starting approximation may be provided by*thé
solution of a similar problem when available, or more easily
calculated. For example, a pessible starting estimate of f
for a non-orthonormal basis is an approximate solution of the
corresponding problem with S replaced by a unit matrix (ortho-

rormal basis)e. Similarly, the operator,

f = - i » . ‘ (50673)

,‘ [. 18 Ham | © ]
¢ ['n ‘ 0 -l - ‘
[ = mm = s . g
E
0 0 HBE |

with m> Ny, m = m;f_nA, and ng = ng - MWy will also be an
improved imitial estimate for f, especially when HEA contains
the most significant elements of HBA’ If m is not too large,
the (m = QA) X my block f%i is easily calculated from the
eigenvectors of the block H o+ €de (5.67b), using eqe (2¢3)e

The idea here is to improve the initial estimate of the larger
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elements of f..

The consideration of asymptotic error constants.and rates
of convergence (Appendix 5) impliés that an improved initial
estimate of f may make the difference between convergence and
divergence, but, in general, will have little effect on the
rate of convergence eventually establishéd. This has been:
bbrn out im test calculations.

Generally, the rate of linear convergence in these
algorithms is inversely related to the ratio between the off=-
diagonal elements of H and the denominators occurring in the
iteration formulase Thus, the rate of convergence will be
increased if these ratios are decreased by carrying out a
linear transforﬁation to reduce the size of the off-diagonal
elements of H, and perhaps increasé the size of the qenominators
in the iteration formulas. Therefore, a partial dihqualization
of H to reduce to zero those off-diagonal elements Whiéh;are
coefficients of the potentially largest errors in:thé"errqr
formulas given in Appendix 5, followed by the iterative calcula-
tiom of f (with £, = 0) in this new basis, will result in
improved rates of convergencee. The desired mapping, f, in
the original basis is obtained using the transformation:
equations given in section 2.1t.fs Typically, this prediagonali-
zation would involve an m: x: m block of H (m > nA) containing
Hy, imaddition to that part of the remainder of H with the
strongest coupling to HAA‘

This prediagonalization is especially useful when some
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demominators in the iteration formulas are small (implying
that HAA and Hnashave some nearly equal or equal diagonal
elements), since in the new basis, these denominators may be
much larger, and rates of convergence correspondingly become
gignificantly improved. If the diagonal elements of;HAA_and
Hpp
a small block of a relatively larger matrix may not Be as

are initially well separated, the effect of prediagonalizing

noticeable.

It must be emphasized that this procedure is not the same
thing as the prediagonalization procedure described earlier to
obtain the starting approximation £’ of eqe (5.67a)e.  The
Iinear basis transformation corresponds to a nonlinear trans-
formation on the elements of f, and the metric properties of
the iteratiohzformula are changed, thereby changing the entire
character of the iterative calculatiom.

It is easily seen that for n33>> m > ni,,the transformation
of H to the new basis, given by the columns of the matrix V
relative to the old basis, and the subsequent back-transforma~
tion: of f requires at most of the order of nAnB2 operations,.
because the greater part of the forward transformation matrix

is a unit matrix, that is

v 0
= | mm : ,
v E . = |Vga Ve O . (5468)
B »
| 0 B

Here me,is the m x m matrix of the eigenvectors of the mx m
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block of H, 1§{£s an (n=m) x (n-m) unit matrix, and m = meny o

The transformed matrix H: is then

-,
H' = WtHV = vmmHmmvmmw (1 Bm mmt)f (5.69a)
__Ehxmmz 5t
#{d) 0 }{-é;—
= o uf& mgl|. (5.690)
LW B 1

The reverse transformation for f is
te " L3Ry ' t=1 yTe ! e
£ = LT g e (VTN IO+ (v 2 17 (5070)

The eigenvectors in me are normalized with respect to the corre=
sponding m x m block of S, that is, v;msmmvmm-1 ’ and therefore,

the inverse of the transformati'omwf is

S V. 0
Vf-l = mm mm . | (5471)

0 1§

Using this, the transformatiom (5.70) becomes,
(SV)=, + (SV)=xf= |
£ = mA R RGOy L, (5.72)
= ,

where the operator f' in: the partially diagonalizing basis has

been written

The evaluation of the right hand side of eq.. (5.72) requires
of the order of nAnh? operétibns when ny >> n,e No direct

handling or manipulation of an n:x n matrix is required.
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5¢3.f Test Calculations With Overlap

A series of test calculations have been carried out using
algorithms SDNRS, QDNRS, DGNS. and FGNS. In the model problems
examined, the basic matrix H was the same as that used
previously in the calculations without overlap, namely, with
diagonal elements equal to the first n odd integers, and the

offsdiagohal elements all unity. The overlap matrices were of

the form _
1 a a? cee g1
x 1 a P G.n!.z
S = . s . . ’ (5473)
L?m--l anpz vee 1 ]

This matrix is positive definite for all a < 1. It resembles
the overlap mafrix for a linear chain of atoms, with overlap
falling off with diétance (Sij'a a‘i'j'),but it also serves

to model a configuration: interaction calculation in which’
overlaps fall off with energy differences. For a = 0, the
orthonormal case is recovered, while as a approaches the
maximum value unity, the eigenvalue equation, (2.101) becomes
ill-conditionede At a =1, all bﬁt one of the eigenvalues of

S vanisﬁ, aﬁd the eigenvalue equation is singular.3

All other computational details are the same as for the

3F‘or large n, the eigenvalues of (5.73) will not differ
significantly from those for the corresponding "circulant”
matrix (Rutherford, 1949) of the same dimension. For such

a matrix, it can be shown generally that the eigenvalues

range between (1-a)/(1+a) and (1+a)/(i-a), with the greatest
co?centrationﬁof eigenvalues near the lower end as a approaches
unity.
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calculations of Table 5.1. As before, SA is the space of the
basis functions corresponding to the first n, diagonal elements
of H. The results of three series of calculations are given
in Tables 5.2 = 5.4, which include information on the effect

of varying the initial approximations to f and h, and of:
prediagonalization. As before, the rates of convergence
decreased only slowly with inpreasing dimenéionﬁof the eigen=
value problém@

Table 5.2 shows how convergence rates vary as the overlap
integral a increases from zero to 0.9, with n, and n held
constant. It is seen that all the calculations diverge |
between a = O.4 and a = 0.6, except those with prediagonaliza=
tion, for which the upper limit overlap is between 0.8 and
0.9. In this case, the rate of convergence of the algorithms
SDNRS -and QDNRS' at first deteriorates only slowly, but changes
abruptly to divergence between a = 0,8 and a = 0.9. For DGNS
and FGNS, the dgtenioration of convergence rates and onset of
divergence is more gradual. |

Initializations in this series of calculations tend to
favour convergence to eigenépaces corresponding to the n,
lowest eigenvalues. Except where noted,. convefgence in all
cases was to the space S; corresponding to the n, lowest eigen-
values. The only other combination of eigenvalues obtained
from a convergent calculation consisted of the n, ;;1 Iowest
eigenvalues together with the largest eigenvalue. A possible

explanation of this is that the iterative corrections are
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TABLE 5.2 (continued)

afo = 0, no basis change.

b%o calculated from eigenvectors of upper diagonal 10 x 10 blocke.
Cf = 0, iterative calculation carried out in basis diagonalizing
quer'diagonal 10 x 10 block.

d¢ = f caleculated for a=0 (nmon=-overlap case).

o

®Blank spaces indicate no calculation was carried out; bracketed
numbers indicate number of iterations before linear convergence
is est?blished (error constants were determined neglecting these
points).

fC"onvergence to lowest four eigenvalues, and largest eigenvalue,
Dl slowly decreasinge

€I\Dll = 0.34 after 50 iterations -- but convergence apparently
is to lowest 5 eigenvalues,

hypy slowly increasing -- calculation may be divergent.

8

iﬂDII"’lO after 50 iterations and is oscillatory.

J Calculation divergent if iterative scheme restarted in
original basis..

k“DH diverges slowly in partially diagonalizing basis, but
begins to converge in original basis.
ICalculationzis possibly converging slowly after 28 iterationse.

MIndicates that iterative calculation is divergent. IDl increases
over most of first 50 iterations.
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reflecting the situation which would occur if a actually were
greater than one. As a increases through unity, the largest
e;genvalue increases to +®© , re-emerges. from =<, and becomes
the new lowest eigenvalue, while the corresponding eligenvector
direction presumably changes little;

Table 5.2 shows that the rate of convergence, once linear
econvergence is established, is effectively'independént of the
starting f« An improvement of the initial f may slightly
reduce the overall number of'iterations, but does not increase
the rate of convergence.

These results also illustrate the substantial. improvement
in  convergence rates (as well as the substantially wider range
of values of a over which convergence is obtained) resulting
from prediagonalization of a small block of He This improve-
ment is not due to the improved starting approximation,. but
to the change of basis..

Table 5.3 gives rates of convergence for a set of calcula-
tions in which the basis space S, does not correspond to the
n, smallest diagonal elements of He It is seen that convergence
rates are very poor indeed, and that a large proportion of the
calculations did not converge at all. When convergent, DGNS
and FGNS did mot give the lowest n, eigenvalues in:these
calculations. However, except with prediagonalization, SDNRS
and QDNRS still give the lowest n, eigenvalues; the rates of
convergence being far superior to those of DGNS and FGNS in

these caseSe
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TABLE 5.3 (continued)

2Bracketed numbers indicate the number of iterations before linear
convergence is established. These points are ignored in calcula-
ting the rates of convergence. Convergence is to the lowest
n, eigenvalues im all calculations, unless otherwise noted.

bfb = 0, no basis change.

cfo calculated from eigenvectors of upper diagonal 10 x 10 block.

dfo = 0, iterative calculation carried out in basis diagonalizing.

upper diagonal 10 x 10 blocke.

efo = f calculated for a = 0 (non-overlap case).

fconverges to eigenvalues #1, 2, 3, 4, and 6.

€3low conwérgence (or possibly slow divergence), eigenvalues
after 50 iterations apparently #1, 2, 3, 5, and 6. :

Nglow oscillation in iDl, eigenvalues after 50 iterations are
#1, 2, 3, 5, and 6.

iéonvergence a paréntly”to eigenvalﬁes #1, 2, 3, 6, and 7 ==
modification (3 unstable after transformation back to original
basise. ‘ )

j6onvergence to eigenvalues #1, 2, 3, 6, and 7 == éonvergence
continues after back transformation.
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On the other hand, comparativély good rates of convergence
Yo eigenspaces S; not corresponding to the lowest n, eigen-
values of H were obtained if the iterative calculation was
carried out after prediagonalization (m = 2nh.in Table 5¢3)e
In fact, it is clear that prediagonalization is necessary if
higher eigenvalues are to be obtained. reliably and efficientlye.

If the resulting back-transformed f-operator was used as
an initial approximation for a calculation in the original
basis,the calculation diverged rapidly in a number of cases,
even though this initial approximation to f yielded values for

"D(z)“ or [ E (Gﬁr + gﬁr)]é which were less than 10”12, This
o,r

indicates that in certain cases, no improvement in the starting
approximation for f (without also changing the basis) will

lead to convergence -= the asympfotic’error constants defined
in Appendix S5 must be predominantly greater than one, leading
to an increase in the errors e r inzfor,aregardless,of how

c

small the e, are initially. By transforming to thé partially

r
diagonalizing basis, the most important of these error
constants are reduced to zero, and convergence oOCcCurse

The ca}gulations using the generalized Nesbet algorithms,
DGNS and FGNS. frequently consisted of a few initial iterations
during which- HD(Z)Hchanged relatively rapidly, either
increasing, or decreasing, or both, followed by a region of
apparent convergence in which "D(z)ﬂw decreased extremely
slowly. In such cases, it was not unusual for HD(z)Hto'

b

decrease by only one part in 10 = 1051per iteration. In:
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many of these calculations where convergence was vefy slbw.
certain of the n, eigenvalues of the effective operator GA

were surprisingly accurate in view of the large value of "D(z)ﬂ.
In several cases, with final »"D‘Z)ll in the range 0.1 = 0.2,
those eigenvalues of Gh belonging to the lowest n, of H were
obtained accurate to eight or more figures, whereas the
remalning eigenvalues of GA were much less accurates The

poor convergence is thus apparently associated with determining
that part of S; corresponding to eigenvalues not among the
lowest n, .

For convergent calculations, also, the plots of
Iog(IIG‘Bkll2 + “gBAnz)%” or log "D(Z)“,as a function of iteration
number often exhibited "induction periods" before linear conver-
gence was established. Figures 5¢1 and 5.2 show such plots for
two groups of calculations.. The shape and length of these
.induction'periods depends strongly on the initial f. Typically,
only 5§ - 10 iterations are involved =- the example in Fige. 5.2
is an extreme case in which over 30 iterations are required
before convergence finally occurs. As indicated im Table 5.3,
the two converging calculations in Fige 5.2 are to different
eigenspaces SA. Figure 5.1 illustrates clearly the independence
of the rate of convergence on the starting approximation of f.
Table 5.4 givesvrates of convergence for a series of

calculations in which the first n, or nA+1.diagonaltelemgnts

of H are nearly equale When the first nA diagonal elements

of H are well separated from the rest, convergence is rapid.
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'FIGURE 5¢1 Algorithm SDNRS
Hii = 1y 35 59 7o 11, 95 13, 15, eeey 39
n = 50 n= 20, a = 0,2
1. fb = 0, iterative calculation in original basis.

2. f_ calculated from eigenvectors of upper 10 x 10
block of H,

3 f_, = 0, iterative calculation carried out in basis

o
diagonalizing upper diagonal 10 x 10 block.

L, fb = £ calculated for a = 0 (nonwoverlap case).
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FIGURE 52 Algorithm SDNRS
Hi'i' = 1, 3y 5 11, 139 74 99 154 174 eeey 398 ﬂh"""So n=20, a=042.

£, = Oy iterative calculation im original basise
fb calculated from eigenvectors of upper 10 x: 10
block of He

fb = 0, iterative calculation carried out in basis
diagonalizing upper diagonal 10 x 10 blocke

ﬂ&xa f ealculated for a = 0 (nnn-overlap'case).
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TABLE 5.4 (continued)

2p11 caleulations converge to the lowest 5 eigenvalues unless
otherwise noted--bracketed numbers indicate the number of
jterations before linear convergence rates are established.

fo = 0, no basis change.

cfo calculated from eigenvectors of upper diagonal 10 x 10 block.

d}b = 0, iterative calculation carried out in basis diagonalizing

upper diagonal 10 x 10 blocke:

efb = f calculated for a = 0 (non-overlap case).
fconverges to second lowest eigenvalue--in cases with long
induction period, there is a shallow minimum in Dl after
between 10 and 20 iterations, after which it increases to
a maximum before decreasing again.

gé.pparently converFing to eigenvalues #1, 2,. 3, 4, 93 after
50 iterations, DI = 14,.8.

happarently converging to eigenvalues #1, 2, 3, 4, and 8;~
after 50 iterations, DI = 5.9.

iapparently converging to eigenvalues # 1, 2, 3, 4, and 73

after 50 iterations, lIDI = 5.8



The denominators in the iteration formulas are large, so that

‘the asymptotic error constants ére small, and the iterative
calculations well=-conditioned. When the first diagonal.

elément of HBB is close to diagonal elements of HAA (and a = 0.2),
the rates of convergence of the algorithms SDNRS and QDNRS are
virtually unaffected, whereas, those of DGNS and FGNS deteriorate
to a much greater extentm  The gréater the numbef of diagonal
elements of Hyy near those of H,,, the slower the rate of
convergence, as evidenced by the poor convergence here wnena

m =1 (Nesbet algorithm)e. The Nesbet algorithm is apparently
converging here to the second lowest eigenvalue of H at the 50th
jterationm, but the convergence is very slowe. In the calculations
reported in Table 5.4, convergence is normally to the space SA
corresponding to the lowest n, eigenvalues of He The only
exceptions are the most poorly converging generalized Nesbet

calculations, in which the space SA corresponds to the lowest

)St )nd

n, - 1 plus the (nA+1 y OF (nA+z eigenvalues of H.
Generally, the rates of convergence shown in Table 5.4 decrease
as the overlap a increases.. , _

From Tables 5.2 = S.l, it is seen that the two algorithms,
SDNRS and QDNRS are generally more reiiab1e~than the generalized
Nesbet algorithms. However, when convergence occurs, the rates
of all algorithms are similare Again, algorithm SDNRS is easier
to program efficiently than the others, and, unless the size
of the problem makes the extra storage to hold h a critical.

factor, this is probably the algorithm of choice. While the
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eigenvalue problem is more difficult with overlap, these
methods are useful, especially with prediagonalization. It
appears that attempts to obtain improved starting approxima-
tions for f are not of great value, and im particular, the
solution of the corresponding problem for an orthonormal
basis was frequently the worst starting approximation tried

" in these calculationse.
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Selt Multiple Partitioning

Finally, the possibilities for efficient, practical
iteration pfocedures for solving the m x m partitioning
equations of chapter 4 are cdnsidered. The basic strategy
is again to obtain efficient linearly convergent iterative
schemes by approximating the second order convergent Newton-
Raphson equations corresponding to the nonlinear system to
be solved.

Three sets of equations were introduced in chapter 4 for
the determination of the off-diagonal blocks of T in an ortho-

normal basise. They are:

(1) D(l)(T) + e fl1) 2o

s Hoi + I Hof
gr * B Hoxfxr * ot ' (5.7)
KAT —
(I,J = lyeeey My I%J) ”
2) D2)(}) =H.. + £ H £, + .03 =0,
JI g * Gk Maxfrr * farf (5.75)
K#1
(I.J = 1,.011 m,.I%J).
and the pair of systems,
(3) Gyp () = HJI*LﬁanLfLI L%JfLJHLI LJHLKfKI 0s.
K#I
gy (D) = f;J + £+ L§I f{JfJI = 0, (5.76D)
LT |

(I < J = lm mmo.um).

A fourth set of equations, intermediate between (5.74), (5.75)

and eqse. (5.76) are
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D(3)(T) = (g G)JI 0, (I,0 = 1, seey my IFT), (5.77)

which arise from the condition that (S%)'lﬂi be block diagonal.
These four sets of equations have the same solutions, however,
they lead to algorithms which are quite different..

While the iteration schemes derived from eqse (5.74) = (5.76)
are very similar to those developed for a 2 x 2 partitioning,

a major difference is that the complexity of the orthogonality
conditions (4.8) makes it a practical impossibility to explicitly
eliminate half the elements of the off-diagonal blocks of T
before solving one of these sets of equationé for the remaining
elements. In all algorithms, therefore, it is assumed that the
elements of all m(m-1) off-diagonal blocks of i are:to be
determined. A description of possible algorithms for solving

the four sefé of équations above is given in Appendix 6. No
numerical testing of these algorithms has been carried out.

The determination of the matrix elements of the off-
diagonal blocks of i for ah m X m partitioning in a non-ortho-
normal basis involves complications only in detail due to the
presence. of fhe overlap matrik.ﬂ Equations for this{case;have
been given in chapter 4, and they may be handled in essentially

the same way as those defining equations given above.
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CHAPTER 6

PERTURBATION THEORY .

0 polish®'d perturbation! golden: care!
That keep®st ports of slumber open wide,
To many a watchful night!

(Shakespeare, King Henry IV, Part II)

*I wouldn't lose any sleep over it"
" (wise old saying)
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6ol Introductiom

Only the simplest problems in quantum mechanics can be
solved exactly. As a result, perturbationfexpansions of some
sort are involved in many quantum mechanical calculationse.

Perturbation series fof effective operators are useful
in treating a set of degenerate, or nearly degenerate levels
with one or more perturbation parameters, especially when the
degeneracy is not split in first order. Effective operator
perturbation series are also useful in developing physical
pictures, as, for example, in:uncoupling the Dirac equation
to obtain equations for electrons onlye.

In this chapfer, perturbation series are developed for the
effective operators ﬁ', AY and ﬁA' defined for a 2 x 2 parti=
tioning in terms of the operator f. These series can be
derived straightforwardly because of the relatively simple
algebraic form of the rélations defining the operators. The
absence of ébnstraints or. auxiliary conditions on f makes
possible efficient computational schemes for automatic sequen=
tial calculation of the terms in: the perturbation series to
arbitrary“high order. The perturbation: formulas are not
complicated by degeneracies at any order, so long as all
eigenfuhctions im a given degenerate set in zero order are
partitioned into the same space.. In fact, as will be seen.
below, the ﬁresence of degeneracy tends to simplify the use of
these perturbatiom series.

Two examples are presented to illustrate the perturbation
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formulas derived. These are the uncoupling of the Dirac:
equation for a spin-# particle, and the construction of a
nuclear spin hamiltonian in: esr- theorys. Perturbation of the
projéctioniP; which, in molecular orbital theory, becomes the
one-particle density operator, is considered in the following
| chapter, and the formalism is extended there to the reiated.
but ﬁore complicated, self-consistent field molecular orbital

problem..
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662 2 x 2 Partitioning -- Orthonormal Basis

6242 General Discussiom

A perturbation formalism based on the material presented
in chapter 2, and in particular, on the eigenvalue equatiom
(2+41), will be considered first. It is assumed that the

hamiltonian H can be written as an infinite series

H= t ™, (641)
n=0

where the perturbation parameter or parameters are to be com-
sidered to be included implicitly in symbols like H(n), which
is of order n im the perturbation.

The operator f is written as an infinite series,

f = “i f(n)., (6.2)
n=0

Substitution: of these two series into the condition D(f) = O,

eqe (2.16), defining f, yields the series

p(s) = £ pM(g) = o, (643a)
n=0

where
D(n)(f)_H(n)+ T (H'(“"J) (3 f(J)H(n-J) £(D7F H‘gg-i-j')f(i))
j=0 1=0
(6.3b)
j=0 ' . -
The series for ﬁA is given below. Since (6.3a) is implicitly
a power series in one or more arbitrary perturbation parameters,

D(f) will vanish as a whole onlysif each term vanishes. Thus,
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a hierarchy of perturbation equations is obtained,.

D(n)(f) = 0, n = 0'1,2.0000 » (6.“)
from which the f(n) can be determined.

The zero order condition: is formally

which s just the original condition defining f for the zero
order operator ﬂ(o). Unless H(o) is block diagonal, f(o) will
not vanish, and consequently, the D(n) will depend on f(o)r
taking the form

o A glnmt) | (0)) |

= {0t _g(n)(0), () o, (6.6)

where A(n) is a quantity depending on terms in the series for
f of order n-1 or lower. General solutions for the nAnB-dimen-
sional system of simultaneous linear equations, (6.6), cannot
usually be written down, and the f(n) must therefore be deter-
mined By numerical methods.

11 1% is block diagonal, then £{%) = 0, and egs. (6.6)

become

(0) .(n) (n)y,(0)_ ,(n) ( -1) (1)
HBB f “’-f n Hy, ' =-A Nhe\n=2) ey £Y17),. (6.7)

which is again a system of nAnB.simultaneous linear equations,
which, in general, must also be solved numerically.. However,

these equations are considerably simpler than eqs..(6.6).
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Finally, if H(O) is diagonal, eqs. (6.7) reduce to
(0) (0)yp(n) . _,(n)
(HUU - Hnn“)fOR“ Aonwm (6083)

and in this case, the solution can be given explicitly,.

eln) _ or . | (6.8b)
Here, again, Greek letters refer to basis elements in the sub-
space SB@ and Roman letters to basis elements in SA'

In general, for f(o) = 0, the A(n) are given by

) n-1 n=2 n—J-l (J)

Aln) y(nd,

-3j) ). (n=
{n (H(n N el3)_g(3 H}(\X ADR™

H(n-l-J) (1)
31 31 11 AB

(649)
which is obtained by deleting terms depending on. £(™ ang £(0)
from eqe (6+3b)e When the series for H contains only a few

terms -- for example, when H = H(o) + H(l)

only -- it is more
useful to group terms in the D(n) and A(n) according to the
order of the hamiltonian, H, rather than f, in the term.

For A(n), this gives

-1
A(n>=H§X>+" () g(n=k) _g(n-k) g) "

k- f(J)H(g)f(n- 'k))
k=1 j=1
(60103)

-1
=n§;"+:§1(xa§§’f(n-k) _g(n-k)jli)y (6410b)

Table 6.1 lists the first few members of the perturbation
hierarchy, D(n)(f), for the case f(o) = 0, Explicit formulas,
in the format of eqe (6.10a), for low order A(n) are obtainable

from Table 6.1 by deleting the f(n) dependent terms in ‘the D(n).



Perturbation formulas, in terms of the f
for all of the other quantities defined in sections

2.2 follow directly from their definitions.

167.

(n) and H(n),

2.1 and

The formulas for

them presented in the remainder of this section apply when

£0) _ o

Using eq. (2.65a), the series for the effective operator

ﬁA is found to be

Py o n(n)
H = I .
A n=0 A
where _
a(0) _ (0)
Hyt o= Haa
a(1) _ (1)
HA - HAA 0
and '
(n) _ 4(n)
™ = Hpy 4

2 H(an) (J) (n1> 1).

j=1

For G,, given in eq.s(2.67b), one obtains

where,.
GXO) = 1l0)
ot = 1D,
and,

n-1

[- 4
¢, = ¢ g™,

G(n)_H(n)+ E (

H(j) (n j) f(n'J)fH(J))

ne2 m=d=l (n=j=1)t,(§)p(1)

j=1 i=1 BB

(6011&)

(6411D)

(6.122)

(6.12b)

(n>1),
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The metric g has the very simple series

g, = ;go g™, (6+13a)
where

g% =1,

et = o, (6413b)
and

g™ - nel cn=3)te(d),

=1

If the hierarchy, (6.4), is used to explicitly eliminate the

terms in Hégg from eqse (6.12b), the resulting series for GA

will be identical to that obtained by expansion of the relation

G, = gAﬁA, eq. (2.70), that is
(n) . 2 (j)a(n=3)

That the two expressions, (6.12) and (6.14), for G, are equiva-
lent if andlonly if the equations of the hierarchy (6.4) are
satisfied, is in accord with the fact (section 3.1) that the
two definitions, GA = (@tﬂﬁ)AA and GA = gAﬁA’ are equivalent
if and only if D(f) = 0. An advantage of egqs. (6,12) is that
they are the same whether or not the basis is orthonormal,
whereas, any formulas incorporating the relations_D(n)(f) = 0
explicitly must be different in a non-orthonormal basis, since
the con@itibn D(f) depends explicitly on the overlap matrix
in that case.

+

Perturbation series for the powers, gxé, of gy+ can be

obtained in several ways outlined in Appendix 7. Given these,



TABLE 6.1 D™ (f)

D () = u{Q) (1) £ (1)5{0) (1)

¢ B0 _gy(1) | y2)

i

Hég)f(B)_f(B)Hiz)
v 1L £(2)_p(2)y(1)_g(1)(1) (1)
+ Hég)f(l)-f(l)Hii)+ Hi3)
D" (£) = n{Q (M) _£(H)y(Q)
+ Héé)f(s)_f(s)Hﬁi)_f(z)Hxégf(i)_f(1)H§§3f(z)
v 1(2)2(2)_p(2)4(2)_o(1)y(2) (1)
NS IPIERIPICRI S DI CY
p(5)(£) = u{Q£(5).£(5)y(0)
v 1§10 _p(My(1)_p(1)4(1)(3)_g(2)(1) p(2)
_f(B)Hiégf(1)
+ Hég)f(B)_f(B)Hii)_f(1)ng)f(z)_f(z)ﬁié)f(1)

+ Hgg)f(Z)_f(z)Hiz)_f(l)H(2%£(1)

¢ PO

169.
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TABLE 6.2 A(™)

i
1 -

i -

i e

70D - j3)ag(2) (1) (1) (2)

30« gy g2 (1) (2)5(2) (1) (3)

A05) « (5D an(B)e(1) (3 £(2) () (3D (1) ()

5(6) = 1(8)en(5)21) () 1(2) 5 (D) ()3 (2) (8) (1) £(5)

the series for the effective operator ﬁA can be written down

from eqs. (2.74) as

~ % ~(n)
H = H [ (601 )
AT Tt 52
where,
~n) .2 D 3(i)a(n-i-j) ~#(j)
H =L .T & H . (6.15D)
O A A €x 5
or »
~(n) _ 8 D 3(i).(n-i-j) _-3(j) '

Explicit expressions for the lower order ﬁin), Gin). and

gin), according to eqs. (6.11), (6.12), and (6.13), and for
the ﬁ(n), are given in Tables 6.2 = 6+5. All three effective
A
operators, H,, G,, and 1 , are identical in zero and first
A A A

order. In general, they differ in second and higher order.
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TABLE 6.3 o™

A
(0) _ ,(0)
Gy © = Hpy
1) _ (1)
GX = Hyy
G§2) - Hﬁﬁ)*ﬂié)f(l)+f(1)tnéi)+f(1)tﬂég)f(l)
c§3) - H§2)+H§§)f(1)+f(1)tﬂéi)

v 11D g(2), (@) 1y(1), (1)1 (1) (1)
v £(2)1(0) (1) (1) 1(0) (2)
o)« u{M (g1, (1)1y (D)

— !

+ 12)(2), () 1y(2) (D 1y(2) (1)

v 1D (3), O, (1)1 (1) (2), (@)1 (1) (1)

v 2(11(0) (3), £(2)140) (2], 1 (3)13(0) (1)

TABLE 6.4 g{™)

~
o
~
"

& =

gil) =0

g2) = g (D1g(1)

g3) = £(2)14(1), g(1)14(2)

g = £0)1g(1) g (2)14(2), 1 (1)1403)

gf5) = £BI15(1), g0 14(2), 1 (2)14(3) ¢ (1)1g(8)

—~
N
~
n

£(5) (1), (1) 16(2), £(3)15(3), p(2) 1 5(8) £ (1) 14(5)
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TABLE 6.5 ﬁiﬁl

O - )

ﬁ£1) = Hﬁi)

~£2) - Hii) . Hﬁ%)f(1)+%[f(1)tf(1)' Hﬁg)]-

ﬁi3)'= H§2)+H§§)f(1)+Hi%?f(2)+é[f(1)’f(l). Hii)]_
w3 e(101(2)p(2)16(1) Hﬁg)]_

Y - afonQ e o@D (e

w3 e(1)1(2), p(2)1 (1) Hﬁi)J- +%[f(i)ff(1). Hﬁﬁ)+ﬂﬁégf(1)]_

(1) 12(0)24(0), 3, (1)15(1)y(0) (1) 14(1) _11;,,{&2)@»(1»1.(1) 2

P . -

Several alternative formulas for the terms of the perturbation
series of these effective operators can be given, the usefulness
of a given set depending on the situations The formulas given
above are not particularly well suited in some cases for the
calculation of high order terms. Procedures for deriving
alternative series are given im Appendix 7, along with a tabula-
tion of some alternative formulase. ,

The perturbatiom series (6.9) through (6.15) are rather
general in' that they give the various effective operators
ul'timately im terms of the £{n) gng win), However, as indicated
in eq. (6.8), if H(O) is diagonal, the f(n) can be written
explicitly in terms of the matrix elements of the H(n)m
Expansions corresponding to each of eqs..(6.8) through (6.15)
in terms of only the perturbed operator H will be given in the

mext two sections.
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6.2.0 A-states Degenerate

Explicit perturbation formulas are especially simple when
the eigenvalues of H(o) corresponding to the subspace SA are
all equal, say, to Ezm In its eigenbasis.'ﬁﬁg) is just a
multiple of the unit matrix, and the f(n) are defined by

(8{0) - €01 )£(m) = a(n), (6.16a)
Qith the solution

g(n) _ px(n) | (6416D)
where-

= (0) -1 " .
= (€15 - Hgp') (6417)

is the reduced resolvent matrix evaluated at ex.and restricted
to Sge -The useful point here is that L is a matrix, not a
supermatrix. If H§g) is diagonal, tﬁe}f‘no are given simply
as the products of the matrices A(n) with the ng x'nB:diagonal
matrix L, and thus, relatively simple matrix expressions can
be given in terms of H only, for the various perturbatiomn
series derived in the previous subsection. Perturbation formulas
of this type are given in Tables 6.6 - 6.11. When Hég) is not
diagonal,. the f(n) must be determined by solving a system of
nhnBasimultaneous equations,

Substitution of eqe (6+16b) into eqs. (6.10) yields

MELNEILE :‘gi(ﬂ(g)f(n-k) g(n=k)g (),

- f(j)fL-l :-1(H(g)f(n-k) f(n-k)H(k))’ (6.18)

which can be used to eliminate high order f(j) from perturbation
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TABLE 6.6 D)
(A-states degenerate)

e H41(3;)
L1622 5(2)2) ((1)_g(1)5(D)
11 (3)2 j(D) @ (1) _(1)5(2)
(D@ _g(22g(1)
L1 59 (D) (1) _g(1)5(3)
+u{2)e(2)_£(2)5(2)

L) (3)_g(3)g(1)

TABLE 6.7 _£(™)
(A-states degenerate)

-1e(1) Héi)

) < D ) ey

() en 2D (D (2) ey (1)1 (2)_ppp(2)y(1)

oy

2
U



()
ﬁii)
ﬁ§2)
ﬁ£3)

a(4)
Hy

n
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TABLE 6.8 ﬁi“) -~ REDUCED FORMULAS
(A-states degenerate)

(0)
Hpa

(1)

1(2) 4D (1)

H£2)+H§§)f(1)+f(1)fﬂéi)+f(1)fﬂéé?f(l);f(l)ff(i)ﬁﬁi)

H{ a3 £ (1), p(1)1y(3)

. Higgf(2)+f(1)fnéggf(1)_f(1)ff(i)ﬁﬁz)
v 2D (2)_p (1 1e(2)(1)

R ) 10 )
*Hkggf(Z)*f(z)fﬂéi)+f(1)fﬁéggf(1)_f(1)tf(1)§§3)
22 (1)1(2) £(2),1(2)14(2) (1) _p(1)1(2)3(2)
_f(z)*f(l)ﬁiz)+f(2)fﬂéé)f(z)_f(z)ff(z)gﬁl)
_,[f(l)tf(B)’ﬁél)]-

Hi2)+ﬁﬁggf(1)+f(1)tmé2)
+Hi;)f(2)*f(2)tﬂég)+ﬁﬂ1)fﬁég?f(l)_r(l)tf(i)gih)
+Hﬁ)f(B),,f(z)fH;l(a%)f(l)_f(z)ff(l);{iB)
+f(1)fﬁéggf(Z)_f(l)ff(z)ﬁ§3)+f(2)fH§§3f(2)
+f(2)ff(2)ﬁ§2)+f(1)fﬂéggf(a)_f(l)ff(z)QXB)

v (1)1 (3)_g(2) 101D, p(1), ENROE



(0)
Gy
gll)
«(2)

(3)
Gy

(0)
Hya

Hii)

(2)
Hpg
£(3)

g (4)

(0)
Hya

(1)
Hya

(2)
VY

(3)
Haa
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TABLE 6.9° A(™)
(A-states degenerate)

(1);,(1)
Hpp Mgy

(2) (1 1);,.(2
e H&B?LméA?

1);1:(1)7 (1) (1):24(1)(1)
Mg Lgp T - g g gy

(1) 4 (D) 4 q(2)04(2) | (1)2u(1)4(2)

1,5 LHpy AB LHgy AB gy AB L Hpy 'Hy
- {22l » u{Dr2eZn(}) + u{2 il il
1).(2). (1 1). (1), (2 1)22.(1) u(1)ru(1)
Héangéa)LﬁéA) + HiagLﬁéa)Lﬁén) - HﬁB)L HéA)HXB)LHéA)
(1) (1), (1), (1) 1)y, (1),2,(1) .. (1)
Hyp LHpp LHpp LHp, " = Hyp LHpp L Hpy "Hyy

2

AB BA TAA

TABLE 6.10 (™
(A-states degenerate)

(1) (1) (1)1 4(0); (1)
2H, 3 LHg, ! + Hyp LHpo/LHpy

Lp{l)pull)

(2); (1 (1 2
ol )LHéA) + ZHXB)LH( )y BHﬁB BB “"'BA

AB BA

s R 2 (1 4(1) | p(1)(1)24(1)

AB: "BA TAA AA TAB BA

iUl u(2) & 51

1) (1)4(1)
AB 7'BB L( BA BE iy " LH:, 'H )

BA TAA
2

(1), (1) _ o (1)(1 0);4(1
' G) + nplogy) - wiPu g ol
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TABLE 6,11 H(™
(A-states degenerate)

o

i

o) D)

#3) < w3+ 5Bu(l) + w{lE) + #{ L uu{L)1all)
-+l gy’ md)

For H = E‘o) + H(l) onlys

4
A A )

=(5) (1) (1) (1) 1) 1
A~ T W LHBB LHpp mu( LHéA)

B BB

+%{ (1)2,H§1)L(L H(1)+Lné§)L+H(1)L )LH(1)§+

+;{{H(1)H(2’)§ 'H}g]13_:),1,3}{1(311&)}+ -%{3“{§3)-H(1)L H(1)}+

[H(1)L H(1)[}{(1) zﬁéi)’ﬂ(1)]_]_
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expressions for the effective operators. Substitution of egs.
(6+18) for H(J) (j =1, esey n=1), in the formulas for ﬁ(Zn)

A
and ﬁ£2n+1)’ and simplification of the resulting expressions

using the formulas for L‘lf(n) given in Table 6.6, results in
a(n)
Hy

the so-called "reduced" formulas for the given in Table

6.8 It is seen that, in the formula for ﬁiZn) and ﬁ(2n+1).

A
(n+1) (2n) .re in the form of

all terms containing f through f
commutators with a lower order term in the expansion of ﬁA‘
When'nA = 1, these commutators vanish, and one obtains a 2nt+1
rule in the sense that f through order n is sufficient to
determine ﬁA correct through order 2n+l. Similar explicit
results have not been obtained for the operators GA and H ’
but the discussion of section 3.2 implies that errors in the
eigenvalues of these two operators, when calculated from f
correct through order n, should be of order 2n+2. For nAfl.
none of these effective operators can be given correct to

order n+2 or higher solely in terms of f(l) f(n).

through
In this case, Hﬁz) and ﬁiz) are identical. In general,
all three effective operators are different in third and

higher order here.

6.2.¢c A-states Non-degenerate

(0)

If the eigenvalues of H corresponding to the subspace

S, are not all equal, then the factorization (6.16a) is not

A
possible, and it is necessary to calculate the matrix elements
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of the f(n) via eqes (648), which can be written formally as
f(n) = J:(A(n)). (6.19)

Here, & is a superoperator, which, when acting on the operator
A(n) produces the operator f(n). The superoperator ¢ can be
represented as a four index matrix, so that (6.19) becomes

(n) _ (n)
fU;'I = P?t {or’etket . (6.203)

If H(o) is diagonal, with eigenvalues Gg, then

1
l:or.pt = €® . ¢° 60p5rt'
r o

(6420D)
In this case, the perturbation formulas are for single matrix
elements. Tables 6.12 « 6,15 give some low order formulas of
this typee. One application of these formulas is in molecular
orbital theorye. The application to the derivation of Coulson-
Longuet Higgins type Hickel theory is outlined in the next

chaptere.
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TABLE 6.12 £M)

(1)

1) _Mor
or EO - 60

r v

n, .(1).(1) n, ,(1).(1)
£(2) %ﬁz) + ZB Hog ng _ ZA Hog Hir L
or ~. O

or 0 =1 €O _ O o _
p=l € - € t=1 €3 - €2 € €

ny .(2),(1) (1),(2)  np (1),(1) (1)
L) _ [H(3)+ 2B Hoy Hur” ;A Hoy Her' zB’ gA Hoy Hey Hyp'
or or

=1 €? _ ¢© =1 €O _ ¢© —1 o O_¢Oy(eO_¢0
ulGr €u tht €0 u=1 t=1 (€t Eo)(ér Eu)

ng (1) ) ng y(g(1)  ny y(1),(1)
+ L g ) H( * L= g -z ot tg
= - Hr y = - = -
p=1 €)-€7 y=1 €7 - €7 t=1 € - €
n n, ,(1),(1) n, (1),.(1) (1)
(o), BEy My K Hog Hay ) Ay 1
_ ot _ 0 o - o o] o .0 o] 0
t=1 =1 Et - Gu g=1 ES - 60 Gt-€€| GI‘ - 60
TABLE 6413 ﬁifl
ﬁ(O) - H(O)

rs rs

(1) H(1)
rs rs

n, 4(1),(1)
8(2) o p(2) ,p Iwus

rs - o) 0
u=1 €, - eu
ng .. (2),(1) (1),(2)
B
a(3) _ 4(3) , g Mru'Hus® * HraMus
rs rs U=1 6o - 6o
s u
(1) (1)y(1) 1)u(1
. ;B Hru Ny Huy H&s _ ny Hét)H%s)
0 [} (¢] [») [0 2 0
=1 € - € =1 € =~ € =1 € = €
p=1 s u v=1 s Y t=1 t u
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TABLE 6,14 Gé )

(o) _ ,(0)
Gre” = Hpg

(1) _ (1)
Gpg™ = Hrs

n o] 0o .0
o(2) _ 42) , S ) 6et6mey)
rs rs - ru ns 0_ (o] O__ 0
n=1 (ep-€7) (€g-€))
m, |(2).(1) (1),(2) np, n (1),(1),(1)
al3) - x(3), ZB Hpo Hog . Hpg Hog N EB' EB _E;c How His
rs rs (o] (o] 0 (o] - - (o] (o] (o] 0
o=1 |€3 - €7 € - € 0=1 p=1 (€p-€7)(€g-€))
n, o.(1) ng, (1),(1) n, (1),(1)
b3 EEL gt p s gt st |
o=1 €2-€2 p=l € - €7 t=1 €5 - €0 €2 - €
ny n, .(1).(1) n, (1).(1) 0,(1)
. zB, (2), 2B~Hr Hio' 2A H .y Heo 1 . €oH o
= ro Zy €0 _ O -1 €9 _ O 0__0 0_.0
o=1 =1 €) - €0 t=1 €3 - € | €€ €2-€2



=(0)
frs

(1)
HI‘S

=(2)
Hrs

=(3)
Hrs

]
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TABLE 6.15 ﬁgfl

(0)
Bre

(1)
Hre

n 1¢£0,.0 0
B [g(er+es)-eoj

(2) (1).,(1)
H W7 + L H
rs o4 (E;_eg)(eg_eg) ro ''os
n, (1),(1)
H(B + EB Hro Hcs
rs &, .0 o
o=1 Gs - ea
n, n (1),(1),(1) (1), (1).,(1)
+ zB EA Egg Hot Hts Hrt Hto Hos

Z1 4o ©_ 0y (e% €0y (e9_¢9)(eO_O
o=1 t=1 | (€ -€ ) (€ i~ € ) (€ € )(€ -€)

n, (1) 0_c0 ng (1):(1)  n, (1).(1)
B H, €o-€. (2) B Hy 'H A Hop His
+o§1 €%-¢© 1+2€°-e° fos ™ E1 €2 . €° -t§1 €® . ¢°
- s © r o B= s = t o
ng np (1)(1) n, (1).(1) (1) (.0 _ .0
o 2B ((2), 23 B, 'Hie' 2A Hi* Hig Hog' (&g =€)
- ro - 0 _ .0 - _ O 0_O0 0_.0
o=1 p=1 € € t 1 €5 - € (€2-€7)(€2-€0)
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6.3 Examples

6s3esa_ The Dirac Equatiom

A particularly simple application of the perturbation

formalism just developed is to the formal uncoupling of the
Dirac equation for a spin-% particle in an electric and
magnetic fields Not only are the A-states (E(O) = mcz) degen-
erate in zero order here, but the B-states (E(o) = -mcz) are
degenerate as wells Historically, much effort has been
expended on the problem of obtaining a two component effective
operator describing the behaviour of a spin-% particle in an
electromagnetic field, from the four component Dirac Hamilt-
oniane In several cases, special algebraic properties of the
Dirac hamiltonian were used to construct the desired effective
operators, so that it appeared that such operators were unique,
in some sense, to the Dirac equation, and not necessarily
analogous to effective operators constructed in other contexts.
In this section and the accompanying Appendix 8, it is shown
that the perturbation formulas tabulated in section 6.2.b yield
the desired effective operators immediately.

The Dirac equation is special in that if only a magnetic
field is present, the condition D(f) = 0 can be solved exactly.
Other methods for the exact uncoupling of the Dirac equation
in the absence of an electric field have, of course, been
known for many years (for example, Foldy and Wouthuysen, 1950).

The Dirac hamiltonian, including electromagnetic inter-

actions, will be written here as



184,

g = g0 4 xg(1) | (6.21)
where,
2
mc 0
(0 - .| (6.22a)
0 -me
and
s ogex
g(1) - , (6+221b)
cg'n e

Here ¢ is the electric potential, (cx,c .oz) are the Pauli spin

matrices, 11 = P - %;5 is the mechanicalymomentum of the systemn,
and m, e, ¢, are the mass and charge of the electron, and the
velocity of light. With the perturbation defined in (6.22b),
the implicit perturbation parameter is 1/m. This is strictly
not the usual non-relativistic approximation, in which the
terms of the series are ordered by powers of v/c, and which
will be dealt with later. Both ordering schemes eventually
give the same terms in the perturbation series, but the order
in: which specific terms occur may be different.

The hamiltonian (6.22a,b) is blocked according to the
partitioning of the basis space into the subspaces SA (E(o)=mc?).

£(0)

and S =-mc2).~ The reduced resolvent (6.17) is just a

g (
multiple of the unit matrix because both the A-states and the

B-~states are degenerate, that is,

L=—-1-§-1. (6.23)
2me

Referring now to Table 6.8, it is seen that
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Rﬁl) = ed ,
a(2) _ 1 Y (6.24)
HA = §E~(9-ﬁ) ’
and
~(3) e 2
H = (gem)e(gen) - (gem)®e
A l&m"zc’2 - .

Standard methods1 can be used to transform these expressions

into the more explicit forms,

5€2) _ zhe ., L.
HA ng)""("ZmEg’

(6425)

and
. 2

5(3) -he ihe eh

H = =3 g¢(Ex 1) - =55 E'n + ——> Y'E.

A bmZe 4m® c? ym®e? ~
Here X = ¥ x A is the magnetic field, and E = -¥¢ is the
electric fielde The various terms in (6.24) are readily
identifiable. ﬁio) is the rest energy of the system in the
absence of any fields, and Hﬁl) is the electrostatic energy.
ﬁ(z) includes both the kinetic energy of the system, and the

A
magnetic dipole interactions The non-<hermiticity of the

1Using the well known commutation properties of both the Paulil
matrices and of differential operators, one obtains,

(¢, n]_ = ih¥e = -ihE,

(g+m)e(g*m) = -hge(E x 1)-R2ggs X + inEem + gem,
(g'm)? = 2ige(E X 1) + 1h¥-E,

(gem)?e = B85 oo 3l + meys,

(8, men] = n°92%¢ - 2inEem.

o~ ot T e [
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operator ﬁA is seen to appear first in third order. The first
term in ﬁiB), eq. (6.25), is the spinw~orbit interaction, and

the second term is the so-called Darwin term. Equations (6.24)
are identical to the results obtained using the Pauli elimina-
tion method to uncouple the Dirac hamiltonian. The correction
to the kinetic energy due to the relativistic variation of mass

arises out of the term ~—%—§ (g-n)u, appearing in ﬁﬁb).
8m- ¢’

Similarly, using Table 6.11, one obtains,

ﬁﬁo) = mcz,
ﬁﬁl) = eg
ﬁ£2) = g; (2.2)2 (6.26)
and
#2) = —g— [gom, [oom 611
8m~ ¢
= —8— (gem)o(oem) - —2— [#(aem? + (g°m)?s].
2z leemeleen 8m2c2[ gen g*m)e]

The second and third order terms can be rewritten

ﬁ(z) = :...h.gq.)'( + -!'-non ’

A 2me ~ -~ 2m ~
and 2 (6027)
~(3) ~he eh
H = ge(E x 1) - V -E.
A ymee? ~ 8mec?

Except for the fourth order relativistic correction to the
kinetic energy, which will appear here in ﬁ}n), this is effect-
ively the result quoted by DeVries (1970), which was obtained

from a perturbation series to fourth order in v/c calculated
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via the Foldy-Wouthuysen procedure. The point of eqs. (6.24)~-
(6427) is that, except for some algebraic manipulations necessary
to obtain the effective hamiltonians in a more familiar form,
these expressions could be written down without any other
calculation, using the tabulated formulas in section 6.2,

The first and second order terms in the expansion of f

are particularly simple here also, being given by

£(1) = L gun,
and (6.28)
(2) e ihe
b = ——E—»-[¢. gon] T - EOE'
bm* oo - ymed = =

That is, each is made up of only one term. These two terms are
sufficient to determine ﬁA and ﬁA to fourth order. Equations
(6.28) are also useful for calculating effective operators for
other properties of the system.

For an expansion in powers of v/c (the non-relativistic
approximation), the Dirac Hamiltonian is usually rewritten as

(DeVries, 1970),
g = 70 4 51 4 x2) (6.29a)

where H(O) is as in (6.22), but now
0 cgen
w(l) - [ :|. (6+29D)

» (60290)

and
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Actual expressions for ﬁA.‘GA.and ﬁA to sixth order, based on
eqSe (6.29),are given in Appendix 8 in a somewhat more abstract
notation. Because of the particular form of the first and
second order perturbations here (the first order perturbation
couples two states only if they are in different subspaces SA
and SB’ whereas, the second order perturbation couples states
in the same subspace only), the perturbation series for these
effective operators have only even order terms nonzero, while
the series for f has only odd order terms nonzero. To sixth
order, the operator ﬁA is exactly equal to the result obtained
to sixth order in v/c using the Pauli elimination method to
obtain a non-relativistic approximation. Similarly, to sixth
order, ﬁA is identical to the results of a canonical uncoupling
of the Dirac hamiltonian, such as that carried out by Eriksen,
(1958)s DeVries (1970) demonstrates that the Pauli hamiltonian
is related to the Eriksen hamiltonian to sixth order by a
fourth order similarity transformation defined in the space of
positive energy states only. Such a relationship is evident
from the definition of ﬁl, eq. (2.74a), in terms of ﬁA'

namely that

ﬁﬂ. = gA%;{A g;%‘ (6.30)

Thus, the required similarity transformation matrix is just g;%.

Because Hﬁg) here is a multiple of the unit matrix, the terms

inagié) in eqe (6.30) exactly cancel if ﬁA is desired to sixth

(5)

order only. Since gx = 0, as seen from the tabulations in

3

Appendix 8, the similarity transformation g; need be known only
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to fourth order to determine ﬁ; to sixth order.

A treatment of the Dirac equation with some similarity to
the above application of the partitioning formalism has been
given by Morpurgo (1960)s In the course of a rather complicated
derivation of a unitary transformation to bring the Dirac
hamiltonian to an uncoupled form, it becomes convenient for

Morpurgo to define an operator of the form

yot (6.31)

G = Ugg Upp »

BB
where the quantities Uzp and UAB are blocks of the unitary
transformation matrix when partitioned in the same manner as

H in eqe (6¢22)e It is not difficult to show from the defining

condition given by Morpurgo that, for the Dirac hamiltonian only,
¢ = (-£")"1, (6.32)

It is not known if the quantity G has useful generalizations
in other contexts, as does the operator f. Certainly, the
relationship (6.32) can possibly hold only in cases where SA
and Sy have identical dimensions (so that Upyp has an inverse).

If an electric field is not present, these effective
operators can be calculated exactly, since the perturbation
is nonzero only in off-diagonal blocks. This was, in fact, the
basis of Foldy and Wouthuysen's free particle calculation (1950),.

The equation D(f) = 0, defining the operator f, becomes,

ge - 2mef - fgenf = O, (6.33)
Multiplication by gen from the right yields a quadratic equation

for (gem)f. The desired solution is
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£ = L0 , (6.34)
me + [m,zc2 + (g.g)zjé ?

since the root with the plus sign in the denominator leads to
the expansion (6.28). Given this exact expression for f, all
other quantities defined in chapter 2 can be written, exactly,

in terms of mc and gene The operator HA is particularly simple,

HA. = HAA + H"ABf
2 c( 1)?
= me” + L . (6435)

me + [m2c2 + (g.‘n)Z:'i>

The operators GA and EA are obtained in the same way, but the
expressions are much more complicated. It is also possible to
write down an exact expression for the projection onto the
space S;, spanned by the eigenvectors of the perturbed hamil-
tonian which have zero order energy E(O) = mcz. Since

g, =1, +f'f= L +£2
_ [me + Jme)? + (ge)? 1 + (gom)?
me + [(mc)® + (gop)?]

by eqe (2.9a), one obtains, from eq. (2.10),
Py = {fmc + [me)? + (gem? TP + (gem?}

mc+[(mg)2+(gyg)2]% [mc+[(mc)2+(g°n)2]%](g°2)

(gem)[mes{ (me)?+(gem?TH] (g+m)?
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6¢3.b Derivation of a Spin Hamiltonian -- Strong Field Case

Consider the hamiltonian operator

H = nog +* z 0§_ + §02°§, (6037)
where h is the effective magnetic field, -Bg}ﬂ, and where
g =z 19,0, (6.38)
i

the é(j) being hyperfine tensors. This hamiltonian describes
the interaction of a system of nuclear spins with an electronic
spine In the strong field case, the term heS (the electronic
Zeeman interaction) is large enough that the energy separation
between levels of different electronic spin is greater than the
energy separations between nuclear spin levels. Therefore, a
perturbation expansion with respect to H(o) = heS is appropriate
in examining the characteristics of the nuclear spin system.
In this subsection, 2 nuclear spin hamiltonian is constructed
from (6.37), in which the electron spin quantum numbers are
present only as parameters.

In the strong field case, the electronic spin is quantized
in the field direction, taken to be the z-axis in the notation

adopted here. Thus, the zero order hamiltonian is
0
H( ) = hsz’ (6'39)

where h = |hles It is convenient to expand the perturbation

w(1) - deS+3+DeS in the form,

x(1) . 9,8, + %95, +%9.s_ 6.40)

SZ 1

+D, S _

+D,,(S_S,+5,5_)+D (s2-35%)+D_, (5,5,45,5,)+D_,s°

2
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Here St = S+ S are the usual shift operators for the electronic

X y
spin, and 9, = .}x ¥ jy are of the same form in the components
of 3. The coefficients Dq are
= 2
Do 2 Dzz"
- + 3
Dyy = #(D,, 2 1Dyz), (6el41)
and
- +
D,, = 3 #(D,, - Dyy) z 1ny].

The zero order levels having Sz = m define the space SA
for the effective nuclear spin hamiltonian 9+ﬁ@ Because the
perturbation H(l) has matrix elements with Am = 0, %1, #2 only,
there are only a small number of nonzero matrix elements in
f(l), which can be written down directly using Table 6.6 and

(6.40). These are

(1) ’%[D-1(2m*1) + 5-3_][52 - m(m+1)]%.

m+1 m

£(1)

mhl,m’

irp, (2n-1) + 3 ,7(s? - m(m-1)22,
(6.42)

#

£(1)

m+2,m 2h .2L8 2 m(me1) JE[g%-(me1) (me2) JF

and

rsx-l-%.m = %ﬁ%zfﬁz-m(m-l)]%[éz-(m-l)(m-z)J* .

The A-states are degenerate, and so ﬁA is identical to ﬁA to
second order. Therefore, Tables 6.8, 6.9, or 6.11 yield (to

second order),



193.

and
94(2) = £¥p, oD [2s -2m -1]- [:'4'82-8m-1]
n -2 h D+1P.1L72

. (6443)
-fﬁ_:}?_&_l [p,, 9_+D,3,]

*éﬁ{[j-'gJ-('ﬁz*mz) tm Uw 9-}+} *

This derivation appears to assume a special, and inconvenient,
coordinate system. However, all reference to special coordinate
directions (x and y) perpendicular to the field directiom
disappears on developing the terms in (6.43). If ﬁ specifies

a unit vector in the direction of h, then the effective hamil-

tonian to second order can be written

-}lm - Cm + 5.2 E(J)’l(j) + 2‘ l(i).ﬁ(iJ).L(J)’ (6444)

J i,
Here C_ is
a. .n 2 o Tre
C = hm+ Do(mz-%gz) + %l}h_%.m_ - heD-p [28°~-2m“-1]
EOfep?ef - (ReDeB)I[4s%-8m-1],  (6.45a)

the latter two terms giving the overall second order shift of

the endor levels. The other effective parameters are

19 ema Dpe2(3n2-52)pe (1-np) oAl + A (Pna 3, (6.us0)

and

§(15)= é(j)'(l - ﬁﬁ)'éfj)- (6.45¢)
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Also, f) and 1 are the cofactor matrices,
D = D laet(p), A = A"Mdet(a). (6446)

The third order }/—(g) has been obtained in a similar way.
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&4 Non-orthonormal Basis =-- 2 x 2 Partitioning

Many quantum mechanical calculations are carried out using
a non-orthonormal basise. In such situations, it may be inconven-
jent or undesirable, (or even impossible for certain kinds of
perturbation) to transform to an orthonormal basis in order to
carry out a perturbation calculation. This section outlines
perturbation expansions based on the formalism in section 2.3,
applicable in a non-orthonormal basise

It is assumed that the given perturbed hamiltonian and

overlap matrices have the expansions

H= T H(n),, s= % s(n), (6.47)
n=0 n=0

where H(n) and S(n) are implicitly of order n in the perturba-
tion parameter or parameterse.

As observed in section 2.3, there are two alternative
types of conditions defining the off-diagonal blocks of the
partitioning operator 5, in this case, the first being egs.
(2.113) and (2.114). If perturbation expansions are desired
only for effective operators in the A-space, then only eq. (2.113)
need be considered,

D(£) = Hy, + Hypf - (Sp, + Spyf)Sy H, (6.48a)
=HBA+HBBf'(SBA+SBBf)(SAA+SABf)-1(HAA+HABf)=O'
(6.480b)
Substitution of the series, (6.47), for H and S, and expansion

of f in a similar series then leads, as before, to a hierarchy
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of equations,
D(n)(f) = 0,. n= 0.1'~2...l L (60"’9)

It will be assumed in the remainder of this section that H(o)
and S(o) are at least block diagonal, so that f(o)=0. Formulas
for the D(n)(f) in terms of H, S, and f are then obtained in
stages. Writing

2 _ (0) (1), L (n) e (n=3) ()
§,=S,./+S,, '+ L (S,'+ o's £497)
AT PAA TPAR T 2 le AB

2501, 45(0-15 (Vs (01§  (s(n),” S(n-a) (17, (6.51)

AA AA _2 AA j 1

one obtains

(0)=1, & Kre(0)=1a(1)
=S + I (=1)7fS S +
A TOAA k=1 (San’" Saa (6.52)

(0)-1 % ((n), " (0-3) (3 s (01
+S T (S\a+ z Sa )
A e AL oA J

from which low order terms in the perturbation series for §;1
can be obtaineds Then for the operator HA= SAlﬁA. one has
i - 3 a0 (6.53a)
1] [
A n=0 A
where
f(n) - T 310 (m=3)
5=0
m n-
- §=1(3) (g(n=3), 1 (n-j=k) g(k)y .

Given (6.52) and (6.53), eqe. (6.48) can be expanded straight=
forwardly, and the hierarchy (6.49) can finally be written
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#(Q (M) g () (s (0)=14(0) = x(m) | ner iz ie, (605w

where

A(n)_y(n ,,“ng(n-J)f(j)_“;}(S}gn-j),,“gjs(n-j-k)f(k));{ﬁj)

TR R TH e
. (6455)
y N~ - ~
~(s{Ms £ gm0 glk))gl0),

k=1

The equations (6.54) for the f(n) are more complicated than

those for an orthonormal basis because of the blocks Ség)and

Sﬁg)'l appearing on the left hand side. This linear system
can be solved for f(n) using numerical methods, but a general
solution in terms of S and H cannot be given.
The expansions (6.51) = (6.55) become much simpler when
H and S are diagonal in zero ordere. Then S(o)=1n.(so that
0 0)w -

SéB) = 1g, SXA) 1. 1A)’ and the equations defining the f(n)
become identical in form to eqs. (6.8),
{n)

e(n) _ Aoy
or §l0) _ glo)*
rr oo

(6456)

where the A(n) are now given by (6.55).

Low order terms in the expansions (6.48) and (6.53) are
given in Tables 6.16 and 6.17 for the case S(°)=1n. In terms
of f and H, the effective operator GA is independent of S, and
therefore the expansion (6.12) still holds (Table 6.3)s Low
order terms for the metric g have been listed in Table A9.1
of Appendix 9. The formal definition of‘ﬁA, eqe (2474), in

:
terms of g, 3 is also unaffected. However, the series for gy
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TABLE 6.16 D(n)(fl -- Non-orthonormal Basis

1 0 1 1 0 1 1 0
p(1) & (@) (1) _(1)y(0) (1) (1) (0)

]

2) (0).(2) (2),(0)
p! HiQ) p(2)_g(2)y 10

BB

(1)4(0)

(2),c(1)o(1),,(0)
ar Hpa )=(Spy +SBB)f )HXA

an{2lan{D () ({142 (1)) (y{1) s

) (0) (3) ~(3).(0)
p{3) - Hyp' f 3)_¢(3 Hyp

1) o(2)

+H§z)+ﬂ(2)f(1)+ﬂé3

BB

R O R S

v5(1)25(0) 5
sy e ) )

2 1 1 2 0
gB)f( )+S§B)f( ))HﬁA)

(0) o(4) (4).(0)
pp © =f THy,

-(Séi)+s

o)

f
o

{2 (1) (2) (2D (1) £3)
-(séi)+f(1))ﬁ§3)-(séi)+séé)f(l)+f(2))ﬁXZ)
_(S§2)+S§%)f(1)+S§%)f(2)+f(3))(Hii)_sgi)ﬁig))

L5045 (3)£(1),5(2)(2),5 (1) (3 )4 (0)
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TABLE 6,17 ﬁf“)(f) == Non-orthonormal Basis

GRRER

50 = nfp s

R O o O O R R R

ﬁ§3) = sz) +H§%)f(1)+ﬂﬁé)f(z)_sﬁi)(Hii)+H§%)f(1))
R IS
(5D B4 (L)e(2))(0) f5 (1) 5(2)45 (1 (1)] 4(0)
°S§i)jﬁiﬁ)

TABLE 6,18 ﬁin) -« Non-orthonormal Basis

=(0) _ ,(0)

£ = )

(1 1 1 0
i) = -4y

72) = q(B)a(L) (1) qp o (1T (s (1), (1)) | 5(0)q

2 0
R, ), + R D).

1 1 1 1



(1)
Gga

(2)
Gy

(3)
Gpa

(4)
Gpp

(1)
€BA

(2)
€pa

o

(4)
€A
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TABLE 6.19 ng) ~= Non-orthonormal Basis

1{0) £(1) (1) 15(0) (1)

10)£(2) (2 T(0) y(2) (1) (1) (1) 1y(D)

{00034 (3) 1 (0)

0) (&), , (&)t (0

Hég)f( ) ep(4) HiA)
+Héﬁ)*H§%)f(1)+H§§)f(2)+H§é)f(3)
+h(1)f(H§2)+ﬁig)f(1)+H£§)f(2)) + h(z)f(H§§)+H§%)f(1))

RAEIMEY

TABLE 6420 ggz) -- Non-orthonormal Basis

f(1)+hﬂ1)f+s§i)

f(2)+h(2)f+Séi)+S§%)f(1)+h(1)f5§i)

£(3)n(3)1

w5215 2) 1,5 (1) (2 (1)1 (2D, (1) (1)) ()15 (D)
), ()1

w45 (2)(1),5(2)£(2),5 (1) 4(3)

(D105 ()e(1),5(1g(2)) ()1 (5(2)as (L)1)

RRCINCY
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TABLE 6,21 g(“) -~ Non-orthonormal Basis
(A~-states degenerate)

£ = pafy)-e@sii)) H o= H €5
£(2) = 1r(@arr{Drmll)edsit))
-L[S(1)+L(H(1) Ezsék))J(H(l) eos(l))

ee01s{2s (Dl -e2s 1))

£(3) . LH§3)+LHé§)LH(1)+LH(1)[LH(2)+LHéé)LH(1) —r(s{b)nfi{L))x{L)

+e0(s{2)ss{a{l)))
_L(S(1) ”(1))[H(2)+H(1) (1) S(1)H(1)

AA
'GX(S(Z)+S§%)LH(1))+€XS§1) ]
2[5 {)as LR e (2D e (L) A r(s{Pfit))E(D)
+€ L(S(z) Sé%)L (1))] (1)
_EX[S§2)+Sé2)LHéi)+S(1)IJ&“2)+Hgé)LH(1) (S(l)+LH(1))H(1)

+€A(S(2)+S(1)LH(1))}]

now depends on S, and has a first order term, so that, while
eqs. (6+15) hold here also, the formulas im Tables 6¢5, A7e7,
and A7.8 are no longer valide. Explicit expressions for low
order terms in the series for ﬁk in terms of H, S, and f are
given in Table 6418,

As in an orthonormal basis, the perturbation series for
the effective operators ﬁA’ GA' and ﬁk, are much more compact

when the A-states are degenerate in zero order. Equations
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TABLE 6.22 ﬁin) -- Non-orthonormal Basis
(A-states degenerate)

£(0) _ 4(0)

NIRRT N

2 (1) | (1) _eog(1) . (1)

PR VU U VRV

1(2) « @)W s (M1 e (3(2)*S§§)L§(1)>+€AS§1)2
=(3) . x(3),4(2);5(1)

A = HR g Ly

+H(1)L[H(2)+Hé%)LH(1) (s(1)+LH(1))H(1)+e (5(2)+s§%) (1) )7

os{l) H(l) eos{l) +€A{S§k)' Sii)+s(1)LH§k)}

O A

(6.16) and (6.17) apply here, with the modified A(n) of eqe (6455),
and can be used to obtain explicit matrix formulas for f, ﬁA’
GA » and HA’ solely in terms of H and S. The lower order terms
for these expansions are given in Tables 6+21 = 6424,

If the A-states are not degenerate in zero order, use of
eqss (6.56) yields formulas for the individual matrix elements
of the operators f, ﬁA' G s and HA Low order formulas of this
type are given in Tables 6425 = 6428,

The second set of conditions defining f and h arise from

the requirements
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TABLE 6.23 G\™ -- Non-orthonormal Basis
(A-states degenerate)

() - 1(0) _ co,

A - AA A”A
(1) _ 4(1)
G§ = Hua
o) « WA e Y
(3) o w(3),4(2)p(1) 5(2)4(2)
6>’ = HAR tHyp LHéA AB LHpy
x LHég)LHgi)
+e°L(s(2)+s§%)LH§i))]
+ii{ {1 rn{l)
TABLE 6.24 Eé"o -- Non-orthonormal Basis
(A-states degenerate)
~(0) _ (0) -
Hﬁ )’ - HAA) = €1y
~(1 1 (1) _ (1)
Hﬁ ) - HﬁA) €xSan AA
#(2) - u()ay(Dl). eA(s(2)+s§]13)LH(1)) as{D), vl

+ eXSXi)Z
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(]
i

(T HT)BA = HBA*HBB £+h! (H +H f) = 0, (6.57a)

and

~ 1‘ N -
gpy = (F's)g, = Sg,+ Sppf+h’ (S,,+5,58) = 0. (6.57b)

Whean(o) and S(o) are diagonal, expansiom of these equations

yields
1#(Q) g (M 4n(P)ty(0) o _p(n), (6.58a)
and
g(n) , p(mit -Bé“), (6458D)
where explicit use has been made of the condition1s(°)=1. Here,
one has,.
() i ( ) (n-3) ¢(] )0 i)t (n=j)
B{mp(n), E 1H g;a Ji +j=1 nld Hy 04
(6.592a)
R SR C O P S Es NG
i=1  j=1
and
Bén)-sérAl),’, T (Sén-'])f(j)*h(j)fs(n-a)) |
J=1 (6459b)
R RN C LN € SRS P E I
i=1 §=1 AB

Equations (6.58) can be solved simultaneously for the matrix

elements of £ ang hSn), which are given by

g, - atr,

(rr) E
o(m) _ r (6.60a)
or o o
€. - €
and
~8{M) 4 €9(B{?))
ﬁ?)*? Lor ¢ g _or (6.60D)
€ - €
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(0)

where the Eg are the eigenvalues of H o If the overlap matrix
is not perturbed, the quantities Bén9 all vanish, and eq. (6.602)
reduces to eqe (6.9), and (6.60b) implies eqe (244).

If eqs. (6.57) are to be used as the basis of a perturbation
formalism here, the series for h and f must both be considered
simultaneously. This complication is offset by the simpler
for of the expansions (6.59). Several low order terms im the
series for Gp, and gg, are given in Talkles 6+19 and 6.20,
Explicit expressions for the corresponding quantities B{?ﬁ and
Bén% can be obtained from these tables by deleting the ferms
Inah(ng and f(n)‘

If the A-states are degenerate, eqse. (6.58) can be written as

H}gﬁgﬂ)f('n}) - ezhi(nof - _B{n)._

and : (6.61)
f(n)'+ hﬂn)t = _Bén)'

which can be solved as a system of two matrix equations in: two '

unknown matrices. The solution is

s(m) L[B{n) . Gzﬁén)]’

and (6+62)

n(n)t - (€L - 1)B§“) - LB{“’,

where L is given im eqe (6.17)s If these equations are used to
obtain expressions for the f(na solely in terms of H and S, the
expressions obtained are naturally identical to those from (6.16)

and (6.17) with (6.55)s However, eqs. (6.62) provide a more
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efficient computational scheme for the calculation of high
order terms in the series for f.

AA collection of alternative formulas for the tefms in
the series for ﬁ; along with formulas for the metric gA‘and
related quantities have been given in Appendix 9. This type

of perturbation theory is useful, for example, in extended

Huckel molecular orbital theorye
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TABLE 6425 f(no -= Non=orthonormal Basis

(1) (1)
f(1) - Hop' - €;S"or
or

o o
Gr-eo

(2) _ [4(2) (1) (1),Hgp’ = €2557)) (2)

- . og(1)ypr. = “rpr ‘', o

for = [%ar * g (pr - €r§bp ) €0 qg * €Sor
r

(1) H(t) - egs‘t) (1) (1) 1
. otT. 1] (o)
-}1:;(8“ ! . )(Htr & )|e°

o r tr (o}
€ - o r =

TABLE 6.26 ﬁin) -= Non=orthonormal Basis

~a(0) _ ..(0)
Hpg' = Hpg

a(1) _ (1) (1)
Heg' = Hpg' = Egsrs

(2) _ ,(2) (1) ou(1), s’ = €3sga)) (1),(1)

2 s~ PSs

Hoe =Hpg' * % (Hrp = 6ssrp ) O _ €O = (SKA Han'rs
s P

2
0.(2) 0/(1)
= essrs + EnﬂsAA )rs



&(0) «

rs
(1)
GI‘S

(2)
Crs

~(0)
Mrg

~(1)
I-II’S

~(2)
He' =

208,

TABLE 6.27 GX“) -~ Non-orthonormal Basis

(0)
Hes

(1)
- Hrs
(1) _0.(1) (1) .o0.(1)
k@ g Bes S%s) | By 6See) ()
! S
TR T el g f

(1) (1) (1) (1)
vg o Uy - €pSpp ) (Hpg’ - €5Spe")
P

———

P (o} 0 o] 0
_ (€ = €P)(Gs = ﬁ°)

TABLE 6.28 ﬁén) -« Non=orthonormal Basis

= y(0)

rs

) - g e ey

(H(l) - egs(é))

ul2) L g ks = s7ps © 4y (u{l)s(1) , g(1)4(1),

rs e re 5: - eg £ rt ts rt ts

(1)_ o (1) (1)__og(1)

P o_.o0 s 0 _ (9
€2-€p € - €3

- (1) 0. (1)
+3(€%+€°) s(2) , ¢ S(l)(HPs - €555 )
r s rs F "rp *

o (o]
€ - €

2
e e, + 1T s
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CHAPTER 7
EIGENVALUE INDEPENDENT PARTITIONING AND

MOLECULAR ORBITAL THEORY

“*We have applied the same process,’'

Mein Herr continued, not noticing Bruno's
question, 'to many other purposes. We
have gone on selecting walking-stickse-
always Keeping those that walk best--till
we have obtained some, that can walk by
themselves! ¢ee'"

(Sylvie and Bruno Concluded, Lewis Carroll
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7+1 Introductiomn

The eigenvalue independent partitioning formalism developed
in*chapter 2 is particularly suited to situations in which onlyr
the whole space spanned by a subset of eigenvectors of some
operator has significance, rather than the individual eigenvectors
themselves. The mapping f is sufficient to determine the proj-
ectibnxP;, eqe (2.10), onto the subspace of interest, so that, in
principle, all relevant properties can be determined once f has
been~calCulatédm One of the more important areas of quantum
chemistry in which these aspects‘of the partitioning formalism
can be exploited is im molecular orbital theorys

In molecular orbital theory, a closed shell system containing
2"1 electrons is represented by a Slater determinant made up from
m, doubly occupied orbitalse. Sihce this determinantal wave-
function changes by at most a complex scalar factor under am
arbitrary linear transformation.of these occupied orbitals, the
individual orbitals have no direct significance. In an n-dimen=-
sional basis space, the n, occupied molecular orbitals are
specified by mn = nh(nh + nb) complex numbers, the lcao (linear
combination: of atomic orbitals) coefficients. Since these N
molecular orbitals are arbitrary up to-an’nA X ny, linear trans-
formation, so that nhz of these complex numbers must be redundant,.
there are only nAnE'independent complex variables in the problem,.
which is exactly equal to the number of Brillouin conditions that
must be satisfied. This is also the number of (complex) matrix
elements im the mapping f defined inxeé.,(z.z), arising out of

a partitioning of the eigenvector space of the hamiltonian into
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an:nh-dimensional subspace spanned by the occupied molecular

orthiitals, and an nB-dimensional subspace spanned by the unoccu-

pied orbitals~1

Thus, not only is the mapping f sufficient to
determine the projectionm onto the space of the occupied orbitals,
tut it élso represents the minimum amount of informatiom required
to specify that projections The matrix elements of f contain

no redundancies, and are subject to no constraintse. These two
propertiés of f are of considerable practical importance..

This chapter is primarily concerned with the derivatiom of
perturbatiom formulas for the projectionz?A onto the space of the
occupied molecular orbitals. This projection: is also frequently
referred to as the one-particle density matrix in molecular orbi-
tal theory, and is equal to the charge-bond order matrix except
for a factor of twoe. Both the simple matrix (Huckel theory),
and the self-consistent field,cases are considereds. The latter
is more general than the matrix uncoupling considered hitherto
in that the operator to be block diagonalized by f, itself depends
on fe This chapter is restricted to consideration of closed
shell systems onlye.
1The detailed nature of the partitioning of the basis space is
not of central importance here, as long as f existse. Nevertheless,
particular partitionings may be of special interest im certain
cases because the elements of f then have a particular physical
significance. One example is a basis made up of localized: bond,

lone pair, and antibond orbitals. When this space is partitioned
into an nh-dimensional subspace,.SA. spanned by the bond and lene

pair orbitals, and an-nhrdimensional subspace,, SB@ spanned by the

antibonding orbitals, then the elements of f measure the delocali=-
zatiom of the bond and lone pair orbitals through the mixing in
of antibond orbitalse. In the same way, in a self-consistent field
calculation,. carried out im a Huckel basis, which diagonalizes the
hamiltonian in the absence of explicit electron-electron inter
action, and partitioned into occupied and unoccupied orbitals, the
elements of f represent the magnmitude of the mixing of these init-
ially occupied and unoccupied orbitals because of the electrom
repulsiom: terms.
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7.2 Perturbatiom of the Density Matrix --Orthonormal Basis

7e2e8 General Theory:

Consider a partitioning of the basis space into two sub-
spaces, S‘A and SB’ spanned by the orbitals occupied and
unoccupied, respectively, in zero order. The projectiontP;
onto a subspace SX, spanned by the occupied perturbed orbitals,

cam be written (eqe (2.10)), as,

-1 -1_1
' gA g’A f .
Pp = a1 o1t | e (7+1)
fgk ng f

where gy = 1A + f*f. The perturbation series for f therefore
determines series for each of the blocks of PA’ given by

(P )(1’1) - g,.‘l(n).

o

(B - B Dt

J=1

(7.2)

and '

(2, )(n) ngl nei £() A1(n-1-.)) ()t
i=1 j= 1

when the zero order hamiltonian is at least block diagonal (that
is,. whéan(O) = 0). In the simple matrix case, the terms in
the perturbation series for f are determined from the hierarchy
of conditions D(n)(f) = 0, eqse. (6.4)e In a self-consistent
(n)

field formalism, the equations defining the f may be more
complicateds They are considered in some detail in section 7.4.
From eqse. (7.2), it is seen that the first two terms in

[ ]
the series for PA are given by,
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1 0
,:A :l (7.3)
0 0

e

v'(0)
Py

and

. 0
p' (1)

where ‘PA is the projection: onto the basis space SA' The blocks
of the second and higher order terms of PAiare all non-vanishing
in: generale. The special form of P (1),‘in which the only non-
vanishing matrix elements are those between the zero order
occupied and unoccupied spaces, is a consequence of the absence
of a first order contribution: to the metric g

Using the formulas given ini sectiom 6.2, the perturbation
series for PX can be expressed solely iIm terms of the perturbed
hamiltonian He Tables 7e¢l = 7.3 givé these formulas for the
elements of (P )(n) (PA)(n), and (P )ég), for m= 0,1,2, and 3.
The case iniwhich the A-states are all degenerate is not of
great importance in molecular orbital theory, and no formulas
for'(P;)(n) applicable to that case are included here.

The formulas in Tables 7.1 = 7.3 give the matrix elements
of the perturbed density matrix in the basis of the zero order
orbitalss These, in turn may be knqwn in terms of some more
primitive basis functions, for example, as a linear combination
of atomic orbitalse. The coefficients with respect to such a
basis (eges the lcao: coefficients) will be denoted here as the

columns of a unitary matrix C. The perturbed density matrix

in the original basiis will be denoted by R. | The terms in: the
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perturbation series for R are given by
- ]
R = cp, (Mot

or

(n) _ °S¢ (m)q  o* (n) #*
D = 5 oy L + R o LD, o

(7 5)
occ unoce:

+ T T Gin[( (n)]ro 30' tior[( (n)]

?
r p or® Jr

where: the primes on: the summation indices indicate that they
are referring to basis elements in"SBi(that is, numerically,
v = | in C '
c o+ m 1n‘Cn°,)
In the simple matrix case (Huckel theory), the energy of
the system described by the determinantal wavefunction made up

.
of orbitals which span: the image space of PA is given by

E = v tr P;_H, (7.62)

v being an occupation number for the orbitals.. Using eqs. (7.2),
a perturbation: series for E im terms of f and H, and ultimately,

in terms of H only, can be derived. The general formula'is

g(n) _ zotr[(P )(J) (nh.]) + (P )X%)HI(BK 3 . (2, )(J) ég—a)
J=

+ eiPuE"1 (7.6m)

Formulas for E(no im terms of f(n) and H(n) are given in Table:
7o4 through fifth order. By using the conditions D(n)(f) = 0,

eqse (6.4), it is possible to obtain a 2n+l rule here, in that
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and E can be written in terms of f(l) through f(n)

only, as is done in the formulas in Table 7.4. Table 7.5 gives

E(n) in terms of the perturbed hamiltonian:

formulas for the
only, through third order.

The formalism presented above corresponds to some extent
to that developed by McWeeny (1962), for the perturbation: of
the density matrix in the context of self-consistent field
theory. Since self-consistency terms are not indicated
explicitly im much of that derivation; the resulting formulas
correspond closely to those derived aboves The procedure used

"

by McWeeny to derive a perturbation series for PA was to expand

the equatibns2

(4, B,] = 0, (7.72)
and

"2 - " ) '1— -

PA - PA » PA PA ) (7o7b)

in perturbation series, and then successively)sdlyé the
hierarchy of simultaneous equations efféectively for the blocks
of PA” as it is partitioned in eqe (7.1). The series obtained
by McWeeny for P; Iis identical to that obtained here -- only
the derivation is different. Here PA has been written in: terms
of a matrix f im such a way that eqe. (7.7b) is automatically
satisfiede The hierarchy of equations,_D(n)(f) = 0, defining
the series for f, is equivalent to the hierarchy resulting

from eq. (7.72), as shown: in sectiom 2.3. In his derivation,

2McWeeny refers to the one-particle den51ty matrix, denoted as
PA here, by the symbol p im his 1962 papers
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)(1’1)

McWeeny effectively takes the elements of (P as the

independent variables to be determined im the calculatiomn,,
! ] .

and calculates the elements of the other blocks of (PA)(nQ

from themi.

TABLE 7.1 1‘“9 -- Molecular Orbital Basis
(0) _
(P4’ = 1,
L) = o
ng  x(1)u(1)
2
[(P )( )]rs =- T or 'os

- o 0
o=1 (€7 - ec)(en”- €)

n, ng (1) (1) (1)(1)
[e(P] = - 5 |-ull) g ceeles i “op Tor_ ) y(1)
TS e=t| T p=1 (€2-€5)  \e=t (€2- €g) / °F

1).,.(1) 1).,(1)

(1) oA Hét His Hﬁt) ir (1)

“Hor E ) § Hos
t=1 (et- ec) t=1 (et- eo)

(1),(2) (z) W | 1
+ H H’ H -
or US gs (€g-€g)(€;r€g)
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TABLE 7.2 (P, 1(“) -- Molecular Orbital Basis

(D)

T (€ - €)

ng (1) my y(1),(1)

(2) - H(2) + T (] r _ g ot “tr '_ 1
A Jor °r  p=1 (e - ep) Tg=1 (et- eo) (eg;- €2)
(2)4(1) (1)y(2)
L S P B Egﬁ__e__ i Egz__zz_
or C'I‘

p=1 (e - €3) t 1 (e - € )

. ny ., (1),(1) ny (1) (1)

my n (1) (1) (1) (1) (1)
i 2 (2), ZB EJ&..E__ A Hgo'Hg Her
t=1 "ot f=1 (€9~ €9) s= 1 (€S- ec) (€9-€2)

To, 1),.(1),(12
. ga ZA Hét Hip) ér) 1
€) | (e) - €

p=1 t=1(€3-€2)(e2-€3 o)

- I ) sP pr

s=1 p=1 (€-€_ )(e -€0) (€2-€5)
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TABLE 7.3 )-(n) -- Molecular Orbital Basis
()4%) = o
(p{L) = 0
' mo (1)
(@), = 5
P r=1 (er,- ec)(er €))
(3) [ 0,02) , w0, (1) 2B By Ry
- _ex__xz_
[(P )53 ] r§1 |:or pr * Hor Hpr * Hop y= 1 (6 -c )

ng 5{1)g(1) ny g(1)y(1)
+ [z .__l_.L_ g1 _ 41 ¢ _EE___]:_;_
y=1 (e - € ) for Or ¢=1 (e - %)

1 1
. (;A Hét)Hir)>H(1) 1
t=1 (€2- €2) | OF [ (€2- €g) (€= €])
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TABLE 7.4 £{") __ Molecular Orbital Basis

89 =y tr w0
et =y ¢ n{l)
803 =y wr [n{2) 4 y{l)e(1)y
e e UL CONCO RN CTRCOINCE
N UM
=) <y e ) o 2D 4 g3) | D1, @)
s e DRG0 D)
¢ 1O ()142) | 4(2) (@)1 (0
2y [P VR (D D) (D101 (3)
P, (2) () (2D (11, (1) (201, )

2)t.(1 1)t.(2) 2) 2)t.(2),(1) 2 2 1
(221 p(1) (1)1 4 )HEA ~£(2)1p( HKA +£(2) ”HXA)
_f(l)Tf(z)f(l)THéi)_f(l)f(Z)Tf(l)H§é>

v (1100 1(2) (1) (1) 14(2)(0) (1)
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TABLE 7.5 E(n) -- Molecular Orbital Basis

m
A
E(O) =vzge
r=1
;.
A
gt -y ()
r=1 =7
m [ ny . (1),(1)
g(2) =y o | a2) B Hrg Hor”
- rr: - (o] (o}
r=1 B o=1 (Gn:- GU)
n [ my omy o (1),(1)(1) ng L (1).(2)
(3) _ A (3) A B Hp.gHge "Hg B H.Hoy
E =VvEI|Hp - I O _0y/.0 O 0o .oy
r=1 ' s=1 o=1 (Erreo)(ésé€o) o=1 (en’ Go)

n: n., n (1).(1),(1) n, (1),(1)
B B A H H H A H H
v 5 oS ‘'sp PO + 5 _98 'so

- _ - o O o O - o} o)
o=1 |p=1 s=1 (€_-€ )(€_~€) s=1 (€.~ €))
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7.2eb Huckel Molecular Orbital Theory

As an illustration of the straightforward way in which
the tabulated perturbation formulas for P; can be used,,
expressions for the bond-bond, bond-atom, atom-bond, and atom-
atom polarizabilities, as defined by Coulsom and Longuett-
Higgins (1947) in Huckel molecular orbital theory, will be
derived. These quantities are proportional to the first order
response of diagonal and off-diagonal elements of the charge-
bond order matrix, P = 2R, where R denotes the density matrix
im the atomic orbital basis, (or the second order response of
the energy, (7.6)), to a perturbation: of diagonal or off=-

diagonal elements of the hamiltonian, H(o)

». in: the atomic
orbital basis. Thus, the results below are determined by
combining the formulas im Tables 7l = 743 with eqe (7¢5).

First, consider the single center perturbatiom given by

(1)y .
(Hyo )pq = bay 80804 v (7.82a)
representing a change in Hﬁ%) by an amounit 6atf On trans=-

forming to the zero order molecular orbital basis, this becomes

(H&é))ij = 804CpiCos s (1,3 =1, eoey )y, (7.8D)

assuming the Ci' are all reale. Substitutiom of (7.8b) into

J}
the first order formulas for PA in Tables 7+l = 7¢3, and back-

transformatiom to the atomic orbital basis via (7.5) then: gives

the results,

Ryg _ L )

aHit éat

(7093.).

ij *
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where,
c,.C
1) occr unoce: Cy Oy | ‘
R( = I r =t (e, ,C. + C. C. l «9b;
éat i3 P s ec[[ i0'Cjr * Cip Jc.]. (7+9b)

and, in particular, for the diagonal elements,

occ: unoce: G, _,C, C. ,C.__
Rii) o1 T to otr icg'“ir (7.9¢)
bat r () Er - 60

These quantities are respectively the atom-bond and atom-atom

ij,t
as defined by Coulsomr and Longuett-Higgins (1947).

polarizabilities (n and T t) to within - a factor of two,
’ ' ‘

One may obtain second derivatives of the elements of R
with respect to one or more diagonal elements of H in an
analogous manner. A summation over all éat is incorporated
into eqs (7.8), allowing for a simultaneous perturbation of all
diagonal elements of Hgg). The second derivatives of elements
of R with respect to two diagonal elements, pr y and H__, of

aq
HAO are obtained by isolating the coefficient of éapéaq ian‘z),

o R...
ij B ogc unocc*C occ CquqO.CerJS
2 .
oH__oH r c € - €® - e
pp aq " g

+un§cc:CqP.quClo.CJe.
P o)
Gr - Ep.

occ' unocc C |
+ I nD _DQL_QE [CerJO‘ + CiC’er]

(7.10)
o
r o Er- G

unncczc .C oce C__ G
X X “pet7ap' _ by _E__&__

(o] (o]
P €. = €p s es-eo
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While this is considerably more complicated than the first order
formula, it is nevertheless obtained quite straightforwardly

from: the formulas tabulated for P;. This procedure can be

continued to arbitrary order, but the explicit formulas rapidly
become more complex and less useful. The computation of high

order terms can be done more efficiently by successively cal-

culating the f(r) and gxl(l), evaluating the P;(l) in terms of

these quantities numerically using eqs. (7.2), and then trans-
forming to the atomic orbital basis. The attractive feature

of the derivation of (7.9) and (7.10) above is that the wvarious

(n

summations in the formulas for the Rij) appear automatically

as being either over occupied orbitals or over unoccupied
orbitalse. This is not so when conventional perturbation
formulas, based on the perturbation series for the occupied

~ orbitals, are used, for which the derivation and simplification

(n)

of formulas for R for m > 1 becomes very laborious.

For a two-center perturbation given by (Hié)) o= (H(l))

rd AO ‘gp

= 6qu, the matrix of the perturbation in the molecular orbital

basis is
(1) = : -
(Hyg Jrs = 6qu[cprc'qs * qucps]' (7.11)

The formulas im Tables 7+l =7.3 and eqe. (7+5) yield immediately

h - ; d bond-atom izabiliti ‘s .
the bond-bond an ond-atom polarizabilities, ﬂla,pq and nl,pq’
(to within a factor of 2), respectively,

3R, ..

3H_ 5 iy *
P o
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where
1 R(1) - ogc‘ungcc [cpo“cqr ch' prjtclo'car CerlO']
ij . o _
éﬁpq, r c €n* 60
(?ole‘)
and
C:_oC.
(1) __oce unoce Cigy 1r
e i Y 5 el e = LCpo1Cqr*Cqo+Cpr e
~ L}
ra r ° . (70'1202)

Higher order formulas are obtained straightforwardly here also,
but even in second order, they are lengthy and none will be

given here.

7+.2¢C Numerical Example -~ Huckel Theory:

To-obtain some informatiom on the nature and usefulness
of high order perturbatiom series for the charge-bond order
matrix, P = 2R, a number of numerical calculations were carried
out, based om three Huckel-like hamiltonians. The first two

of them were

H(o) . (7.13)

-1 0 00 0 =1 0

which could represent a six=membered ring of identical atoms

in Huckel theory (ege. benzene), and,
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1 -1 0 0 0 0 0 -1
-4 0 =1 0 0 0 0 0
0 -1 =1 =1 0 0 0 0

Hﬁgﬁ ) 0 0 -1 0 =1 0 0 o (5.

By, O 0 0 -1 =1 =1 0 0
O 0 0 0 -1 0 -1 0
0 0 0 0 0 -1 =1 -1

-1 0 0 0 0 0 -1 o

representing an eight-membered ring around which two kinds of
atoms alternate (eg. PHNM)’ The third example, denoted as

Hﬁcg{m is obtained by setting the (1,1) element of

573 AyBy,
zero. Series for P11 and P12 for a single-center perturbation

(H11 varying) only will be described. They can be written: as

- (), n

and coefficients in each case for m= 0,1,2,3, and 4, are given
in Tables 7.6 = 748

Because of the symmetry of Hizl the series for P11 contains
only odd order terms, while that for P12 contains only evemn
order termse. For the AuBh and ABBﬁvsystems, none of the coeffi-
cients in the series for P, and P,, through fourth order are
zeroe The coefficients im the series obtained decrease in
magnitude quite rapidly, with the fourth order coefficient being
smaller than the zero order term by a factor of up to several
hundred. The coefficients given in: Tables 7.6 = 7.8 are both
positive and negative, but no pattern: in sign is recognizable

to' fourth order. Plets of exact values of Pj; and P, as a
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functiom of Hll' along with plots of the first through fourth
order series approximating these quantities are given im
Fi’gur.es 7e¢l = 706'/&

The two matrices, H&i%h and Hﬁo%;, can: be considered as

573
alternative zero order terms when the (1,1) element only is to:
be perturtred. Thus, the exact quahtities P11 and P12. considered
as functions of Hll’ are identical in both cases. The alternatiwve
series given in Tables 7.7 and 7.8 are then seen to be power
senies:expénsions of the functions Pll(Hil) and’Plz(Hil)
around two different wvalues of Hll‘

Two potential pitfalls in the use of high order perturbation
gseries, which warrant some emphasis, are illustrated by the
nesults‘hereu These are: rather obvious dangers which apply
quite generally to the use of any truncated power series expan~-
sion, which is what such finite perturbation approximations
actually are. Firstly, as the size of the perturbation in-
creases, the error im a higher (but finite) order partial sum
eventually bYbecomes larger than the errors in:' the lower order
truncations of the series, although, by the time this occurs,
none of the partial sums of lower order may be sufficiently
accurate to be usefull. Thus, while the inclusiom of the next
higher order term im a given series will generally increase
the accuracy of the approximation when the perturbation is:
small, it may substantially decrease the: accuracy iIf the
perturbation is large. Secondly, the range of acceptable

accuracy of an approximatiom to: a given order depends signifi-
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cantly on' the zero order approximation used. As: seen from
Pigures 7.4 and 7.6, the first order approximatiom for P12(H11)
has a considerably wider range of usefulness around H§g) = -l

than around Hég) = 0e If ani approximation  for P12 as a function

of H11 is desired for =1 < Hll < 0, it is clear that the zero
0)
4By,

order hamiltoniam‘ﬁ( is: superior to H(o). .
A A533

| fbr=Aszystem:(H(0) = 0)
6 11

Pig) = 1.0 Pig) = 0.666667 (2/3)
Pi}) = =04398148 - Pi%) = 0.0

‘ng) = 0.0 | P{S) = -0.053626

Pig) = 0.031875 Pig) = 0.0

Pif) = 0.0 P§g) = 04006489



4Btk 7.7 (2, )Y for an 4B system ({9 = -1)

0
Py

1)
F§1
2)
P§1
»(3)
P12

(4)
P11

TABLE 7.8 (PAG)(i)’ for an A5E3_§.‘L§19£f_:_£.§§gl—=-—‘l)-

(o)
Piq

(1)
P11

(2)
Py

.
g

(4)
Pi1

1]

1.477301

-04068263

-0,001732

0.005201

1.140825
-0387179
-0.030147

04027841

0.005568

(0
P&z)

1
{3’

(2
Piz)

(3)
P12

'l
Piz)

0
Piz)

1
Piz)

2
Piz)

(3)
P1g

1]

04575869

04104447

-0.009937

= =0.,011540

= -0,002410

0

= =0,048380

= «-0,008863

0.004953

04657296

0,045056

228,
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73 Perturbation of the Density Matrix =-- Non-orthonormal Basis

763082 General Theory

In this section, perturbation formulas for the density
matrix are developed for the case in which the primitive
(atomic orbital) basis is initially non-orthonormal, and in
which the overlap between these orbitals may itself be perturbed.
Such a situation would arise, for example, for a perturbation
involving a bond length change in: a Huckel-type molecular
orbital formalism. The major complications here are the
explicit presence of the perturbted overlap matrix, and the fact
that the transformation between the zero order molecular orbitals
and the atomic orbital basis is now non-unitary. The projec=-
tion, 3;, onto the space of occupied orbitals, is still given
by eqe (7e2), and therefore, the formal expansions, (7.3), still
hold. However, now the formulas for the f(j) and gil(j) must
be obtained from section 6.4.

TheiJﬁxial perturbation series are calculated in a basis
of zero order molecular orbitals, with coefficients relative
to the atomic orbital basis demoted here as the columns of the
(generally non~unitary) matrix C. That is, in the calculation

of the f(j) and gXi(Jo, the perturbations are

WD) - oo S = OTs{o etz (7016)

where HMO‘ ) ‘MO are to be at least block diagonal (so that

£40) <0). when c's{Qc = s§9) = 1, the transtormation,

]
of the density matrix, Pk’ from the molecular orbital basis to
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the original atomic orbital basis can be written as

R= cpAc-:‘;, S (7417)

When.H§8) is diagonal,, explicit fofmulas for the elements of

P; (and R), in terms of those of H, S, and C, only, can bhe
written downe It will be assumed that Hég) is diagonal and
that~8&8) = 1 in what follows. |

The zero order term of P; i's still given by ege (7e3)e

However, the first order term is now

) - -(S%i):“ o . (7018)
f 0
The matrix elements between: zero order occupied orbitals appear
as a result of the perturbation of the overlap matrix. Explicit
formulas for the matrix elements of the blocks of PA(HO in
terms of HMO andlsmo only are given in Tables 7.9, 79103 and
7411 for m = Oy1, and 2. '
A perturbation series for the Huckel energy E (eqe (7.6))

can again be obtained using eq. (7.7)s Expressions for the E(n?
in terms of f, H, and S only are given in Table 7.12 for nn = 0,
1, 2, and 3. No difficulty is encountered in eliminating f(z)
from the expression obtained via (7.7) for E(B). Howewver, no

attempt was made to verify that'E(u) and E(5) can: be written
(1)

dowm: solely in terms of and f(2)~byrusing the conditions

defining the ﬁ(n), as was done for the case of am orthonormal
basis. Formulas for the E(n) in terms of the elements of H

and S only are given for m = 0, 1, and 2 in Table 7.12,
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' -
TABLE 7.9 (PAIXE) -- Non=orthonormal Basis

v (o) _
(Pylap” = 1y
(1) _ (1)
(Pylan” = =Spa
ng ¢l g(lleoy  my
'v(2) - «(2) (1) - S (1) (1)
[(PA)AAi]rs = =S p§1 S, ?62122) s’ . tzl Set Sis

) gbt(Hii)-eggé%))(Hgé)-S(égeg)

- o O o .0
p=1 (€2-€2)(€2-€3)

TABLE 7.10" (P:l(nﬂ -=- Nom=orthonormal Basis

BA:
*v(0) _
(Pydgp” = 0
(1) ox (1)
[(P.)(l)] - Hor' = €r8or.
-*"A’BA Jor €o - €°
r )
' n; (1)_c0a(1)y (1) ,0q(1)
A’BA YJor: or roor: - O o
P“i (erf- GP)

t

P iy s{ed) (1) 1
1 (eg-€g) ¢

) ‘(1) 0“(1)
b -eSor ) (1)

- (o] 0
t=1 (Et 60)
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LR

TABLE 7,11 (PAl]gg) -- Noneorthonormal Basis

"y(0) _
(Pylpp’ = ©
*v(1) |
Ly (1) (1) (1) (1) ;o
[(P')(Z)] - ;IA (HC(II’ - S'or: eg) (HI‘P - SI?.'P Gg)
: A’BB -op r=1 (eg_ Eg)(eg_ eg)

TABLE 7612 E(m) - Nl'on.-orthonorma]f Basis

g0 =y g wd)

1) oy er@ll) - s{Du(9))

ACDI tr[Hﬁi)-sﬁi)Hﬁi)+f(1)ﬁgg)-(s§§)+s§é)f‘1)-Ski)zxﬁig)]

803) < v e u{3)sp(1)y(2) 4y (2) (1)1
-[sii)+s§§3f41)+f‘1)*(s§i)+f(1))-sii)zjﬁﬁi)
gD (DT (1) (D ()

#(s{2)as (L) e(1), g ()15 (1),£(1)))5 (1)
w5 (D (s (Bas (L) p(1)y 1 ({10 (1)) 5(1)77(0)

(1)€1)(1)1..(0)
5D D10
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TABLE. 7e13 E‘m) -~ Non=orthonormal Basis

n
, A
g0 -y & 34
r=1 :
(1) A (1) (1)
(1) _ 1) o (1
E = v r§1 (.. - ersnrw)

A : T
22) .y g E(z) _ R (1)1

r=1 | *F t=1 rt tr
‘ n, g (1) _eog(1)
-0 [ s(2) zA s(1)g(1) | SB S(l)(Hor* €Sor )
r rre poq o =1 YO (Ezreg)

n; (1) 0x(1)
+ v EB (Horr - €n;son*) H(i)
~ o oy, 7o
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Ze3eb._ Extended Huckel Molecular: Orbital Theory

The formulas just developed for use with a non=orthonormal
basis will now be used to derive explicit expressions for the
first brder response of the elements of the density matrix R
(in the atomic orbital basis) =-- equal to the charge-bond order
matrix divided by 2 -- under a perturbation of both the hamile-
tonian and ovérlap:matrices. These formulas: are analogous to
those df sectionu?oz.b>for ordimary Huckel theory, and would
be appliicable, for example, in: an extended Huckel formalisme
The increased complexity of the formulas due to the presence
of the overlap matrix probably accounts in: part for the lack
of a detailed treatment of this problem in the literature,
although a number of low order formulas have appeared in
connection: with particular applications (Fujimoto: et: al, 1974;
Coope, 19563 Libit and Hoffmann, 1974)..

For single centerrperturhationsm we: have

(1)
(Hpo' ) pq tzi°“t ptdqt?
and (7.19a)
(s(l)) g 6S,, 6 .6
t=1 tt "ptiqt: ¥
so that
)5 = T sy CuyCys s
t=1 Tg. Mgy €5 ?
and (7e190)
(st 2
= 6S,..C. +Copson
)i5 gop o LEUEECEV
The derivatives-aRfi/a(HAO)pp and aRij/a(SAO)pp are given by
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the coefficients of éap and 6Spp, respectively, in the expression

obitained for R(g) by inserting the first order formulas in

Tables 7.9 = 7.11 with eq.>(7.19b), in eqe (7¢17)e In detail

(1) n ogc"occ*C & o ¢t
Riy" = -tzi day - §< ir‘trts”js ]
(7420)
n occ unoce [6a, - €26S,.]
t r ~tt
+ Iz z o ) Ctrcto'
t=1 r c an- eo'
';*
X [Clr o' Qio‘GijJ'

where the Gg are the eigenvalues of H(O)..and it has been

assumed that H‘o) is diagonal and S&g) = 1.

In the same way, for two-center perturbations,. (H(l))

AO pq
(3{3) ap = L and (Sié) pq (Sié))qp = bqu, for all p,q,
(p # a), which implies that
(H(l)) £ B [CC .+ C.C.ls
1 7 p,q=1 BT PiYa§ " “pitai-l’
and (7.21)
(1)), = £ s -
one obtains
( 1 ) n. ocec: ocet
ij p'§=1équ r g N 1r[ pr ‘qs” ps qu C
(7422)
n. occ: unocc: (68 -€°6$ ) *
+ T I = . T (¢ ¢ ]
N o ° priqoe*” po Car-

c . o Col]
x[ irrc ¥ C’jo""nj"
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from which the first derivatives of the elements of R with

respect to 6ff-diagona1 elements of HAO and SAO may be obtained.

Formulas for higher order terms in the series for R can
be obtained here in the same way. However, they are long and
tedious, and not very informative by themselves. Nevertheless,
using-formulas developed im section 6.4, it is possible to
compute these higher order terms numerically for specifiec

applications, in a relatively efficient mannere
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2ok Seilf-consistent Perturbation Theory

The object of this section is to develop a perturbatiom
formalism for the one-particle density matrix in closed shell
Hartree-Fock theory. The formulas developed here allow a
more rigourous calculation: of various properties of atoms and
molecules than those gi?en in previous sections of this
chapter; because electrom repulsion: terms are included expli=-
citlys. The entire effect of the self-consistency terms is
buried in the detailed calculation of the perturbation series
for f, and therefore, formulas for the density matrix and
related quantities in terms of f, which were derived for the

simple matrix case, will apply here alsoe

7;4;5'TGenera;VTheQ£x

In: this case, the perturbation: series for the operator f

is' obtained by expansion of the equation
D(f) = Fyy + Fpgf = £(F, + Fypf) = 0, (7.23)

leading to a hierarchy of equations determining the f(n). This
hierarchy is formally identical to that obtained im the simple
matrix case, except that now, the matrix F (the closed shell
Fock matrix) itself depends on f through its dependence on the

density matrix, ?A”
. [ ]
F(P,) = H + G(Py)e | (724)

Here H is the core hamiltonian, and the two-electron part,
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G(P;), representing electron repulsion, is given by

' m ' ’
G(Py) g = 2tm§=1(35)tu([rsuutj - #rtlhus]), (7+252)

with
[relut] = /}'¢;(1)¢s(a1)n;2¢;<z)¢t<z>dfla«2 »  (7.25b)

the ¢r_being elements of the zero order molecular orbital basis
used for the calculatione Direct iterative solution of eqe (7.23)
for f, without making a perturbation expansion, is equivalent
to solving the Hartree-~Fock equations exactly.

We will consider here only those perturbatians which can

be introduced as perturbations of the core hamiltonian,

w= ¢ gM, (7426)
n=0

This perturbation will induce changes in the electron distribu-

tion described by P;, and through that, the two-electron part

th

of the Fock matrix is perturbedes Thus, the n’" order term in

the perturbatiom series for the Fock matrix consists not only

of the nth

th

order term.H‘n), in (7.26), but also‘includes-an
order two-electrom terme The exact form of this n*® order
two-electron term depends on the manner in which eqe (7.23)
is expanded imto a hierarchy of equations determining the
terms of the series for f, as is explained below.

It is convenient, but not strictly necessary, to require

that F(O)(f) be at least block diagonal, so that f itself is

o oy
at least a first order quantity, £f = L f(n)m In some
n=1

applications, it may be desirable to relax this requirement,
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and the modifications which must be made in such a case to the
formalism given below are indicated in Appendix 10. However,
in this section, and sections 7.4.b and 7.4.c following, it
will be assumed that we are working in a basis in which'F(o)
is at least block diagonal..

Formal substitution of the series for f and F into (7.23)

glives
pfm . ngujg (=) () g (DDp(n-3))
, 52 “‘5‘1 £($)p(n=i-3)¢(§)
i .3"1 (7+27)
ne= 0. 1, 2.:‘40 .
Here, omne has
J 1 .
) (7428)
N “"é' £(D)p(n=1-3)(8)
i=1 j=1

which does not depend explicitly or implicitly (through F(ng)
onzf(n). Tﬁ;fquantity'(7.28) is not the same as the analogous
quantity“in’eq."(6.9) in the simple matrix case, because Féz)
may now depéﬁd»onxf(n), and therefore, for the purposes of
solving (7.27), it must appear explicitly. The extension.of
these equations to a non-orthonormal basis will lead to
equations similar to '(6454) and (6455) in place of (7.27) and

(7.28) o



246,

‘Despite the similarity of the basic equations, the deter=-
mination of the perturbation: series for f is more complicated

(n)

here than in the simple matrix case when the term FBA in
(7.27) is considered to depend on f(n), that is, when the n?h

order Fock matrix is considered to be
p() = y(0) 4 g(p (M), (7.29)

When (7.29) is incorporated into (7.27), the so-called "coupled
Hartree-Fock" perturbation scheme results, and the equations

for the f(n) in this case are derived in the following sub-
sections Formalisms im which the dependence of F(n) on 3;‘"9

is par%ially or completely neglected, leading to schemes referred
to as "uncoupled Hartree-Fock" perturbatiom theory, are dis-

cussed in sectiom 7.4ece

. 2.4;b~ Coupled Hartree=Fock PerturbatibnﬁThébfx~
In the coupled Hartree-~Fock perturbation scheme, F(n) is
f(n)

considered to be dependent on ags indicated in eqe. (7¢29)e
That is, the two-electron integrals are considered to be order

neutral. It is convenient to write the n*? order density

matrix,. P;(nQ' in the form:
, (m)t
] : -~ 0 f ot 8 [ -
PA(HI) = PA(n) + f(n) 0 = PA.(H") + fin) ’

(7+30)
where*?A(n) depends- on f(j) for j € n=1 only. Thus, eqs. (7.27)
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become
D) (g) = gy, (27)) & B(Qelm) | £(Mp(0) , pln)(gt(m)
+ Aéx) = 0, n=20,1, 2, eoe 57.31)
where:

ng)(ig(“)) = Héﬁ) + GBA(f;(“)). o (7.32)

The last two terms of (7.31) are now 1ndependent of f(n). The
important: feature of eqs. (7+31), however, is that the first
three terms -- those which are dependent on f(n) -~ are of a
pérticularly simple form, which is the same for all values

of 'ne

From eqe (7.25a),

unocc occ.
GBA(f(n)) § 3 fé?) 2[r'slre*] - DT'O’”rs]
(7.33)
unocc - oce B l
+ I P fﬁ?)* 2[r'sllo'r] - [»'rllo*s] .
o r
If all quantities are real, this reduces to-
. unocc occ _ f
caalf My = E T g Mrvsllere] - [rretivs]
B . - [*'rlovs]
unoce occ
- (n) ,
§ §M for Aprgror (7e34)

The four index quantity,. Af'src" has sometimes been referred

to as  the Nesbet supermatrixe. Thus, if the zero order Fodk

th

matrix is block diagonal, the n” order equation (7.31) can
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be written

(n) _ 0S¢ umgce (n) (n) (%' (m) (m)
D 2 ﬁy § B?srofo? * [F A (P n‘)l *A nijfs 0,
(”'31, seey I-TB?K.: 8=1, eeey nw.A).
(7¢35a)
where:
(0) (0) ‘ K
B}'rsrc: (F )fo rs (F )rs 70 Avsrc‘ (7.35%)

Whert the zero order Fock matrix is diagonal, eq.»(7;35a) becomes

(n) (n) , Unocc: oce: )
Drg- = (€ Gs)ir: § z, Arsrcf(n

(7369
+ [Féx)(i;(n)) + A§2)17S =

(1’31.5 .olro-.; HEI' 831.,. o0y nh).‘

where the eg are the eigenvalues of the zero order Fock matrixe.
In either case, the calculation: of f(n) reduces to the solution
of a system of n N simultaneous linear equations. Even when
the zero order Fock matrix is diagonal, it is no longer possible
to obtain a closed formula for the elements of f(n>, because

of the self-consistency term. However, only the terms F(no(fg(n))
and Aéx) need be calculated for each value of n, since the
coefficients of . the fgg? in D(n)(f) are the same for every
value of ne The calculatiom of these two quantities is easily
done automatiecally, and therefore, the formalism'above can be
used to calculate high order perturbation: series for~R’ﬂwithout

A
having to derive and use explicit perturbation equations.
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Because of the potentially large dimension: of the matrix
B im eqe. (7.35a), non-iterative methods of solution (such as
Gaussian elimination) may not be practical in applicationfto
that linear system, especially if B is a sparse matrix. Per=-
haps the simplest iterative technique is the Gauss-Seidel

procedure, with the iteration formula

Y o fe : unoce: occe ‘ '
(n), [F'i(ax)(PA(m) )f'-"‘l(af‘)]*s' o¥r ris B;'SI‘“f‘(’;a)- o (7437)
T B;ssT

This procedure has been found to be satisfactory im the small
number of calculations we have done, although no data has been
obtained on actual rates of convergence. Many other efficient
techniques are available for the iterative solution of large
linear systems. We shall not explore this aspect further here,

However.

ZQu.m Uncoupled Hartree-Fock PefturbationxThqux_»

The term "uncoupled Hartree-Fock perturbation. theory" has
been applied to a number of related approximations,}proposed
over a period of years, in order to simplify the solution of
(7.27) (for example, Langhoff, Karplus, and Hurst, 1965;
Musher, 1967), usually only in first ordere The complicated
coupling term im eqss (7.35a) or (7.36) arises directly from
the requirement that self-consistency be maintained in all
orders in the perturbation.. However, in a situation im which

the perturbation is expected to distort the electronic distri-
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Bution only slightly, it may be possible to obtain acceptable
results by relaxing this self-consistency requirement somewhat.
In first order, this amounts to ignoring the dependence of

Féi) onaf‘l). leading to the same result as in the simple matrix

case,
(1)
glliume . £ __ | (7.38)
€=

wheanxo) is diagonal. A degree of ambiguity enters if this
formalism is to be extended to higher order, however. It is
not clear whether onme should ignore Jjust the f(h) dependent part
of Pi(n), or all of PA(n) im the n'™® order equation, (7.27).
There may be an accumulationm of non-self-consistency as one
proceeds to higher orders, depending on the exact form of the
approximations employed, and this may cast doubt on: the validity
of these higher order terms.

An internally consistent and unambiguous perturbatiom
formalism does result if the two~electrom integrals are con=-

sidered to be first order quantities except where they enter

implicitly fn“F‘o)¢ Then:

F(n) = H:(n) + G(PA(H‘PI)’)V _ | (7039)

th

f(n) will occur in the n

and mo-self-consistency term im order
equation of (7.27). In fact, except for the implicit dependence
of the F‘j) in Agg) om lower order f(j); the resﬁiting hierarchy
of equations deterﬁining’the f(n)'wirl‘bewidentical‘to that in
the simple matrix case. Only by actual calculations can the

validity of the assumption (7.39) be assessed, however..
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CHAPTER 8

DIRECT MINIMIZATION SELF-CONSISTENT FIELD THEORY

"*In that case', said the Dodo solemnly,
rising to its feet, 'I move that the
meeting adjourn, for the immediate
adoption of more energetic remedies==-'"

**Would you tell me, please, which way I
ought to go from here?'

'‘That depends a good deal on where you
want to get to', said the Cat.

'T don't much care where~-', said Alice.
‘Phen it doesn't matter which way you go',
said the Cat.

'~=50 long as 1 get somewhere®', Alice added
as an explanatione
'Ch, you're sure to do that', said the Cat,
*if you only walk long enough's

Alice felt that this could not be denied, s
she tried another question. ‘'What sort of
people live about here?’

*In that direction,' said the Cat, waving
its right paw around, 'lives a Hatter: and
in that direction’, waving the other paw,
*l1ives a March Hare. Visit either you lik

they're both mads” (Alice's Adventures in
Wonderland, Lewis Carroll)
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8¢1 Introductiom

In the Hartree-Fock approximation, the total electronic
energy of an atomic or molecular system described by a single

determinant wavefunction, '\P, can be written in a given basis as

m n

(1), . 2 p(1)g(J)
E=Zv, L R Zh__+3% I wv,v L R 'R
i=1 ir.,s=1 Sr TS T4,i=1 173 r,s °F tu
tyu=1

x ([rsllut] - aij[ntnus])

m n occ s
=£v, t ¢ x{IxD% (8.1)
i=1 r,s=1p K H
m n occ .
A1)y (1)%,(J) ()%
+3 L v,y T T X'‘>'X Xrye’X
i,j=1 i’ rys a,8=1 sa “ra "t Tup
tou=1

x ([rs|jut] - aijprt"us]).

Here h is the core hamiltonian for the system, and the [rs]jut]
are two-electron imtegrals defined inm eqe (7+25b)e The
summation indices, i, j, refer to electronic shells, ?he Xéi)
are expansiom (lcao) coefficients, expressing the occupied
normalized orbitals as linear combinations of the given basis
functionse. The vi are occupation numbers for these orbitals,

and the a, . are constants determined according to the values

1)
of Vi and ”j‘ The operator R‘i) (the one-particle density
matrix for the ith shell) is a projection onto the space of
the ith shell occupied orbitals,

R(i) = x(i)x(i)T. | (8.2)
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The electromnic energies of the stationary states of the
system are approximated by the stationary values of E, eq. (8.1),
considered as a function of a suitable set of variables, such
as the Xéi) or R(i). The traditional and still, at present,
the most commonly used procedure for determining the. stationary

values of E has been by solving the corresponding Hartree-Fock

equations (Roothaan, 1951),
F(i)X(i) = S X(i) ﬁ (i). (i = 1'« ...‘.m).h (803)

The matrices E‘i) depend on:all of the occupied orbitals X(j),
(§i= 1, eeey m)e An initial estimate of the X(i) is used to
construct approximations to the E(i), which are then diagonalized
to yield, it is hoped, an improved estimate of the X(i),,which
can be used to obtain a further improved approximation for the
F‘i)m- This iterative procedure is continued until self-consist-
ency is achieved. It is conceptually very simple, and in
applications to the simplest (single shell) systems, rateé of
convergence relative to the work required in:each iteration
are quite good. Difficulties in obtaining convergence do arise,
however, especially in calculations involving more complicated
multi-shell systems.

An alternative to the use of the Hartree-Fock eguations
is' to minimize the energy, E, directly with respect to a chosen
set of variables. One problem in using the elements of the

density matrices, R(i), or the lcao coefficients, X(l)

uv ” fOI‘

this, is that a relatively large number of constraints must be

iﬁposed if the simple functional form, (8e1), of the energy
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is to be preserved.

When using the lcao coefficients, the presehce of redundant
variables also causes difficulties for procedures, such as the
Newton-Raphson method (Appendix 11), which require that the
matrix of second derivatives of E (the Hessian matrix) be non-
singular near stationary points. Redundancy among the expansion
coefficients is associated with the invariance (to within a
complex scalar factor) of the determinantal wavefunctiom
to non-singular linear transformations of occupied orbitals
i the same shell, Under orthonormality constraints, the
redundancy associated with unitary transformations still
remains. The density matrices contain no redundancy, but must
gatisfy more complicated constraints. The presence of q
redundant variables implies the existence of a q-dimensional .
constant energy surface through each point in- the coo;dinate
space of the unconstrained variables. A serious consequence
for some gradient minimization techniques is that the Hessian
matrix is then singular at stationary points of the energy"
(Sutcliffe, 1974, 1975; Coope, unpubls)e.

En‘efficient technique for eliminating the orthogonality
constraints on the lcao coefficients for closed shell systems
has been developed by Fletcher (1970), and extended by Kari
and Sutcliffe (1970, 1973) to more general multi-shell and
multi-determinant cases. However, calculations in which,
Fletcher's method is used {n:conjunction with the conjugate

gradient minimization technique, are frequently poorly"
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convergent near the energy minimum. As a resuit, such direct
energy minimization procedures have been used more to provide
improved starting estimates for the solution of the Hartree-
Fock equations than as an:alternative to the Hartree«~Fock
equations (see, for example, Claxton and Smith, 1971) .

Sutcliffe (1974, 1975) has explicitly exhibited the singule
arity of the Hessian matrix at the energy minimum in formalisms
based on Fletcher's method, and he has suggested that this
singularity may contribute to the slowness of convergence near-
the energy minimume. This suggestion is questioned below, both
on: theoretical grounds, and by examination of rates of converg-
ence for calculations involving minimization of the energy with
respect to a set of unconstrained variables containing no-
redundancies. It is our contention: that the observed poor
convergence rates arise rather out of deficiencies in the
straightforward implementation of the conjugate gradient mini-
miZation’algofithmw

Sutcliffe (1974, 1975) has proposed several solutions to
the redundancy problem, but clearly, the simplest would be to
write the total electronic energy, from the beginning, in terms
of a set of unconstrained variables not possessing such redund-
ancies. The eigenvalue indepéndent partitioning formalism
developed inm chapters 2 and 4 provides such sets of variables;
namely the matrix elements of the off-diagonal blocks of the
matrix.ﬁ. In the following sections, the application of the

partitioning formulas to the minimization of the energy of a
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systemfrepresented by a single determinant wavefunction: is
described. One of the major advantages here is the fact that
the derivatives of E with respect to these variables can be-
expressed very simply in terms of the columns of the projecé
tions, (8e.2), onto the occupied orbitals, and their complements.
A scaled descent method,based on partitioning with respect to
current occupied and unoccupied molecular orbitals, is proposed,

(section 8+3.c), which appears to be very successful in practice.
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8.2 Closed Shell Systems

8+2+a Orthonormal Basis

The square matrix, X, of the éigenvectors of the closed
shell Fock matrix is partitioned into the n, occupied and the
g unoccupied molecular orbitals. The orthonormal basis func-
tions, in terms of which these orbitals are expressed, are
partitioned into two sets of the same dimensions, nA.and nE;
defining spaces SA and SEP In this way, the coefficient matrix
X can be written in the blocked form (2.2)e. The projectiom, R,

onto the space of occuplied orbitals, is given by eqe. (2.,10) as

gzl gA-l.fT
ng , &, ¢

wheﬁe‘gA = 1A + fthis-the metric for the eigenvectors X‘Aaw
truncated to the space SA‘
In the closed shell case, the energy functional is parti-

éularly simple,

E = 2 tr Rh + tr RG(R)

n B ¢ & )
= 2r§sRsr h. + tfu- Rtu_([rs”ut] - #[rtllus]). (8.5)

Substitutionm of (8.4) into (8.5) gives the energy im terms of
the matrix elements of f onlye. Since the degrees ofvfreedomr

avaiIablei, n, Ny exactly equal the number of matrix elements

lpne argument involvinhg numbers of variables is of central.
importance here, and is as follows for the closed shell’ case.
(cont*d)



of £, there can be no redundancye. Also, the matrix f is
cnmpietely unconstrained because R, eq. (8.4), automatically

satisfies the criteria necessary to be a projectiom (sectiom

2.14a)e In short, the matrix elements of f represent é‘set
of unconstrained varlables Eossessigg no _redundancies, with

respect to which the energx can be minimizeds
In principle, the elements of the block RHA also provide

a set of non-redundant and unconstrained variables, but they"
are mot very suitable for specifying the energy, because of

"y . . v ‘2
the complicated relationship between RBA.and Ry, or Rppe

If no constraints are imposed on the occupied molecular orbitals,
X(A). specified by n,n complex parameters, then these orbitals-
are arbitrary up to an n, x ny linear transformation. Therefore,.
there must be nhz complex redundant variables among the lcao
coefficients in the single determinant wavefunctiong.léaving'

m, N, complex: variables which are independent. If the molecular
orbitals are constrained to be orthonormal, then: nh real para-
meters are eliminated by the constraints, and nhz of the real
parameters remaining are redundant (equal to the independent
parameters in a unitary transformatiom -- this includes the m,
arbitrary phase factors), again leaving ZnAnBjrealiparameters
or“nknhicomplex'parameters which are independent.

2For the density matrix, the requirement of idempotency- leads to.
2 2
the nh + “ﬁ. (complex) constraints: Ryp - Ryp * RygRpa = 0,

amnd RBE - RBARAiRAB, which give the blocks R,, and Rgp in terms

of RBA’ specified by nAnB(anmplex parameters. Given RAA and’ RBA’
it is easy to calculate RBB’ but the first equatiom here is not
easily solved for RAA (see section 2. 1.c, and in. particular.

eq. (223))e
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The first and second derivatives of E with respect to the
elements of f are most easily obitained by the ineremental app-
roach used in sectiom 2.1.e, but now retaining terms to second
order in the variation. Writing gii(f + 8f) = gzl(f) + 65;1,
to second order one has,

1 1

1 1

gg; = -gz g, gK + g; g, g;]'égA gzl + 0(53)o~ (846)

where

sg, = o2’ + £lor + sr'or, (847)

For the density matrix, the variation R(f + 6f) = R(f) + &R,

is given, exactly, by

. -l
SR,y = b8y £ + g Of + dg, of,
) (848)
SRy, = fog, + ste;l + sfogl,
_ erg=let =1t -1, .t -1t -1, .t
bRBE<" f&gA £ + 6ng f + ng o6f + 6f6gA £f + fbgh 6f
+ srgrlor’ + srogy ot

The first order term in the expansion of E(f + &f) can be

simplified to give

8{VE = 2 tr 6RF (8.92a)
=2 trn-6f'D + 2 tr 6£D 1, (8.9b)

where 
B = g5lD(f)gg e (8.9¢)

Phis is identical to the result obtained for a simple matrix
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(section 2.1.e), except that here, the quantity D(f), given
by,

is defined in terms of the Fock operator,

F = h + G(R), (8e11)

which itself is a functiom of fe As before, gy = 1B + ff*; is
the metric for the eigenvectors X(B» of F truncated to the
space Sge From (8.9b), the first derivatives of the energy are

seen to- be
=2E_ - 25, (8.12a)
afor '
= 2[(1 = R)FRJor (8+121)
=2 For, (8e12¢)
eEeA ’

using the notation developed in section 2.1.d. Here and below,
Greek letters denote basis elements in1SE, and Roman letters
denote basis elements inzSA,- The first derivatives of the
energy with respect to the variables fdr are therefore given

by elements of the off-diagonal blocks of the current Fock
matrix between contragredient nonpqrthonormal'vectorS*givemf

by the first n, columns of R and the last ny columns of (1-R) .

Because the metric matrices g and gp are positive definite

(as, therefore, are their inverses), it is seen that the first

derivatives of the energy with respect to the elements of f can

vanish only if D(f) = 0., In fact, this condition, or the more
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generalione, eq. (2.13),
FT=7F,

with % defined as in (2.15a), can be regarded aé an.axpressiona
for the:Hartree-Fock equations in the present formalism. As
inmdicated in section 2.2.a, the condition: D(f) = 0 (and therefore,
VG@E‘= 0) is also equivalent to xtrx being block diagonal..

Isolation of the coefficients of the second order terms
in E(f + 8f) ylelds the second derivatives of the energy.with
respect.to the elements of fe After considerable algebraic:

manipulation, one obtains

2
9 E - cTH.8.r
$—g—=— = F 0 ¥R _ - (1 = R),F.r.s - [ederllefer]
aforaffs egép T oY exen B BJ ATA
(80138)
BeA"e 333'
and
azE ¢ sypT.r
7 = -[eB@A“eBpA] + 2[e eA"eBeA
ar ifs (8.13b)
- 2B g+ 2E
af'\’s

In the particular case that the partitioning chosen is defined

by the current projectiom R, so that £ = 0 and R = 1A' and
further, when particular bases adapted to R and (1 - R) are

chosem which diagonalize FAA(R) and FBE(R),’nespectively; then:
the doménant terms in egs. (8.13) are the derivatives azE/aﬁorafor
with the_valﬁe;
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2
3“E =1
3 —p2— = €_ - Er «eJ _+ 2K 6 = (\Er .G’ (8elly)

c ro T
afcrafor

(the ei being the eigenvalues of F) equal to the singlet single
excitation energies. At the energy minimum, the remaining
second derivatives all reduce to combinations of two-electron
integrals. To the extent that these combinations are small,
the excitation energles, (8.14), approximate the eigenvalues
of the Hessian matrix, which are thus positive, as they should
be for an energy minimume.

In the case that all quantities are real, the above

derivative formulas become (see Appendix 12),

SLE. - LF o.T , (8e15)
afcr B"A
and
2
o 'E = r op.sY r.%i.9,8 r 0| T S
%;-;—a—'— uleye} lexes] - [exepllegex] - [epenllereyd
or zfs
oFE ok
- =2~ R__ + = Ry + FoeR__ - (1=R) _F r s
os 8 e, e, IS or e,e,’
afYr afos B°B ATA
(8.16&)
with

2
e E ¢ o|ILr.r o rgpor oE
*;;2" = -[egep leA%] M 3[93%"913%] -2 a"f" — Ry
or or

+ Fe%e%ﬁrr - (1'R)00Fe§e§ . (8+160b)
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8.2.b Non-orthonormal Basis

In this case, the density matrix, R, and the electronic
energy, E, are still given by egs. (8.4) and (8.5), respectively;‘
However, now both E and R depend, through the metric gy oM.
the overlap'matrixo

According to eqe. (2.103a), the metric g5 is given here by

g, = Sp, *+ Sppf * £'sg, + £'spf, (8417)

g0 that now eqe. (8.7) must be replaced by

1 t, ‘ t .
6gA_= (SAE + f SBE)éf + of (SBA + SBBf) + &f SBB§f

. 1 t _
= Y, pbf + 8f Y, + Of Spaof, (8.18)

in the energy variatioms The quantity YBA = SBA *-SBB; has
been defined previously in sectiom 5.3.c, and reduces to f for-
an orthonormal basis.

Isolation of the first order part of E(f + 6f) gives the

first derivatives of the energy with respect to the elements

of f as
2E . opor, (8.19)
of epea
cr A

which is identical to eqe. (8+.12c). The orbitals ei; (r=1..@.,nh),
are the same as before, but now the egr (0=1,000y nB). are given

as the columns of

-2, Y, , )
ep = A A = [1 - rs](®), (8420)
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That is; the first derivétives of the energy with respect to
~ the elements of f are given as matrix elements of the current
Fock matrix between two sets of contragredient non-orthonormal
vectors consisting, respectively, of the first n, columns of
the density matrix, R, and the last ny coiumns of the comple~
mentary matrix (1 - RS). 3

As before, the'second derivatives are obtained by isolating
the coefficients of second order terms im E(f + 8f). The
calculation of these coefficients is considerably more: lengthy
and tedious than for an orthonormal basis, but the final results

are given simply by

2 .
T 8- :
3—2E = 2[e3eToFe2] - [e30flefe]]

3f p 3% ( )
8.21&
- (SR), —2E- + (sR), —2E-
Saf, raf
T os
and
é__23§___ 5'2[e°enﬂesgr] - [eSe; "e j
v B%A IBA®E: B®B °A
or 4S8 (8.%1b)
+ R Fov - (1 - RS) rFo8.T o
ST egep T e e,

These formulas are identical in' form to those obtained in am
orthonormal basis, eqs. (8.13), except for the factors R and
(1-R) being'replaced by SR and (1-RS), respectively, in certain:

placese..

3This is not the complement of R in the usual sense of the
words Si‘nce'(’RS)2 = RS, one has (1=-RS)R = 0, however,. the

reverse product R(1-RS) = R = R%S is not zero in general,
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Am analysis of the metric properties of the ei and eg
similar to that of section 2.1.d for an orthonormal basis can
be carried oute The algebra is tedious and only the major
results are listed here.

Writing these vectors as columns of a matrix €,

-1 -1

- g -g, Y
fey 1y - gy Y)p
one can show that
b gt (1,45 )]t glet-(1,+ e )glty, o]
8 8=¢g-=

-1 t ?"'1 -1 t fl
(=Yg, 8y (1,+f £)]e, 1p+Yp, 8y (1,4 £)g Y, 5

-1 -1,1
~fg, Y, g-Yp\8

(8.23)

verifying the non-orthomormality of the columns of ®. A set

t

of vectors dual to the ei (that is, such that @'g = 1 = gfé)

are given by

’ (8424)

where §A = SAA + SAB:' These vectors are also non-orthonormal,

as is seen from

ata : . At ot
S + Y, Y Y, = f
efe=g= | AATTEER W TN (g

It is seen from eq. (2.33) that the last ny of the e; are
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formally the same here as in an orthonormal basis.

Metric matrices, with respect to which the ei and e; are

orthonormal, can be constructed explicitly. One obtains,

a At _t a . t
~ SS8T+¢'r S,v,.-¢
A=t = | A4, ATAB . (8426)
YppSy, = £ 1p * YppYyp
and
-1
t =g, (1,+ Yy p¥p, )8

. -1 —1 ‘ o -1
~Yp,8y *Egy (1,+4Y, Y5, 0,

1 t

- -1, . -1
gy Yap*ey (1,*Yp¥pale, "t

» (8427)

t o =1 -1,
“Ypp8y T -fgy Yyp

15+8ey (1y+Yyp¥p,)e] 1

ﬁbr.whdch it is easy to verify that
g_fa.g =1, | _3*[}5 =1,

Not only are these results more complicated than for an ortho-
normal basis, but now & # A\ and g¥ A »im contrast to the

previous case. The matrices e and @ are no longer normal..

Be2.¢: Results of Test Galcﬁlations - C‘losed‘dShell “C"‘aLse

A set of CNDO/2 calculations were carried out to obtain:
informatiom 6n the convergence properties of direct energy
minimization procedures based on the formalism presented im-

sections 8.2.a2a and 8.2+bs The calculations were carried out
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on an IBM 370/168 computer using double precisionlarithmetic.u
In all calculations, the convergence criteria imposed were

12 6 per iteratione. The number

|sE|< 10™** a.u. ana |6R,,| < 107
of iterations required to satisfy both these criteria are given
in Table 8.1 fdr selected calculationses In practice, a single
iteration in addition: te those indicated in the table is.
required im each case to verify that fhe convergence criteria
have been satisfied.

The seven molecules chosen are ones for which the Roothaan
iteration method can be used with varying degrees of success.
Four of thenm, CHu, HF, LiF, and Hzo, present no problems at alle.
For two of them, BeO and BN, Réothaan‘s method is only slowly
convergent, and the last one, PN, leads to oscillations betweem
definite chargé distributions after about thirty Roothaan: iter=
ations. For each of these last three diffichlt cases, convergQ
ence of Roothaan's method will occur or can be accelerated if
a suitable inter-iteration density matrix averaging procedure
is employede.

The variables f&r were defined by a partitionling between
'occupied’ bond and lone pair orbitals; and ‘unoccupied' anti-
bond and atomic orbitals. The bond orbitals were non-polar:
combinations of hybfid atomic orbitals, the hybrid AOs used.

being far from optimal in some cases (for example,. sp3 hybrids

“Phe parts of the programs involved in calculating the CNDO/2

integrals and core hamiltonian were adapted from the CNDO/2
program of Pople and Beveridge (1970)..
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om the F atom)e. In this bond/antibond/lone pair orbital basis,
the starting approximatiom was f = 0. For calculations done
directly im the atomic orbital basis, the startingfvalue of £
was: calculated using eq. (2.3a), where X defines the starting
orbitals in the AO basis.

It is seen that in all but a small number of calculations,
substantially fewer iterations were required to satisfy the
cohvergence criteria when using the direct minimization methods,
than when using Roothaan's method, Even in the cases causing
difficulty for the Roothaan method, convergence appearé'sfriaghta
forward for the direct methods. When variables,f ., defined by
an arbitrary partitioning of the A0 basis are used, the number
of  iterations required increases somewhat, Rates of convergence:
for Fletcher's method and the partitioning method are generally
comparable, indicated that the presence of redundant variables
i the former has no observable effect on convergence ratess.
Generally, it was found that the overall rate of convergence
depends very little on the accuracy of the step length as long
as some minimal accuracy is maintained.

Assuming that the construction-of the Fock matrix islby'
far the most costly single step in an SCF calculation, direct
energy minimization procedures based on: the conjugate gradient
algorithm are at least twice as costly per iteration as the
Roothaan method.. Thereforé, even a rather substantial decrease
in the number of iterations required for a direct method may

not represent a more efficient overall calculatione However;
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the direct methods do have an advantage of reliability -- they
can never diverge, if set up appropriately.

With the partitioning defined in‘thé bond/antibond/lone
pair basis, the full Newton-Raphson equations converge very
rapidly -- ini none of the seven examples studied are more than
five iterations required to satisfy the stringent convergence
critéria. In the case of CHﬂ, this rate of convergence can be
duplicated using the comjugate gradient techniQue if the step
lengths during the linear search are calculated sufficiently
accurately (correct to four figures), but not for H,0. If'an
arbitrary partitioning is defined in the atomic orbital basis,
initial convergence of the Newton-Raphson method is generally
very much poorer. For two of the molecules, the calculation
actually diverges, while for a third, it converges to a stat-
jonary point above the minimum: value of the energy;

Because of the expense involved in using the full Newton-
Raphson equations, both a diagonal block and diagonal approxi-
mation were tested, these being analogous, respectively to-
algorithm FGN, and to algorithms DGN and SDNR, as described im-
chapter 5 While these approximations represent a very signifi-
cant reductiom in computatiom required, the methods are seen
to be generally unreliable. Convergence is not only much poorer,
but some calculations actually diverge in cases where Roothaan's
method conwerges; The;ﬂewton;Raphsonwequatibns can, nevertheless,
be usefully exploited in other ways; one of which is described
and illustrated in section 8.3.c.
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TABLE 8.1 Closed Shell Case ~- Test Calculationsa

. Molecule
Method
CH# HF LiF HZO BeO BN PN
Roothaan 10 16 17 20 49 - >80° osc.
Fletcher d, 7 5 14 7 18 19 16
dé 2 L 14 L 18 19 16
c 7 5 14 9 18 18 16°
Partitioning |

' d, 7 5 15 7 19 19 18
bond orbital d3 2 n 14 5 19 20 15
basis ' .
c 7 5 14 9 19 19 16
| d, 8 7 20 10 18 19 4l
atomic orbital d3 " 5 18 10 18 20 43

basis h
c 5 5 18 10 18 20 43
Partitioning: 5 >40

(steepest descents)

Newton=Raphson:
Full (B/A basis) 2 3 4 2 5 5 5
Full (AO basis) 3 4 139 4 dive 5 adiv.
Block Diagonal 4 3 27 7 dive dive dive
(B/A basis) ‘ | § _
Diagonal 17 11 dive 24 dive dive dive
(B/A basis)
8Number of iterations required to satisfy |6E| <10°12, l(»l%'nl'ﬂ()'6
per- iteratiom..
T:’:‘czf:omrergent

cEinxerpolationzschemess d, -- secant formula, i timess
¢~ -~ cubic formula

ddonwerged to an excited state,



8+3 Unrestricted Hartree-Fock Theory

8¢3.a Energy Derivatives

The formalism developed in the previous section for the

closed shell case'can be carried over with minor modifications
to unrestricted Hartree-Fock calculations. In fact, it is
possible, im some sense, to view the resulting formalism as
that of two coupled closed shell systems, one for the a-spin:
electrons, and one for the B-spin elecmroné¢

The energy functional is now |

: x
E=42L Rsr(Zh

£ Ra ([rs”ut]-[rt”us])+ E R [rs”ut])
Iy 8: t,u

!‘St

+: T RB Af2h, + T Rgug[rs"ut]-[rt"us])+t8 R%u[rsnut])
t,u U

r,s
- érst“ (21, +G2 ) + % zsRB (2n, +Ghe)e  (8428)

The matrices RY and RB are the one-particle density matrices:
referring to the a-spin and B-spin occupied orbitals, respectively.
A set of unconstrained, non-redundant variables completely
specifying E can‘be inmtoduced'aS"folIows; In the choéen basis,.

the ng occupied a-spin orbitals are written as columns of a
matrix Xa(A), and similarly, the ngaoucupied'B-spin;orbitalsf
aS'XB(A), These orbitals will be eigenvectors of the appropriate
Fock operatorse Now, two differént partitionings of the basis-
set are carried oute In the first case, the basis functions-

are partitioned into two sets of dimensions nﬁ and n%:spanning'
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spaces Sﬁ and Sa, A second partitioning is defined in which
the basis functions are partitioned into two sets of dimensions
ni and n%ispanning spaces Si and Sg, respectively. As a result,

the occupied a-spin and B-spin orbitals can be written in the

Bblock form
x| xP
xa(A) o [ TAAL xB(A) . :A . (8.29)
QL
X%, Xos

It is now possible to define two f-operators, namely,

= x$,x3t, # = xB 0, (8430)

in terms of the two sets.of occupied orbitals. Then one has

i§; » 1-1 1f
Rl oWt | & & T
ﬁig% fi&i fi
with v
g =1, pllel, (8432)

giving the two density matrices, and thus the electroni¢ energy
solely in terms of the nﬁn%; ningzelementS’of £% ana P,

That the elements of £® and fa are the minimum number of"
variables necessary to specify the energy, but not subject to
any constraints nor possessing any redundancies, can be esta-
blished in the same way as for the closed shell case. The
requirement that the a-spin occupied orbitals be orthonormal,
and the redundancy associated with the invariance of the energy;

(8+28), to an ni xrn% unitary transformation of these orbitals
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2 .
together eliminates n% of the n%(n% + n%) lcao coefficients

1n@x“(k), leaving nin%iﬁndependent variables -~ equal tbythe
number of elements inxf“. Similarly, orthonormality constraints
and redundancy leave only nin%'independent variables in the
B-spim occupied orbitals, which is equal to the number of
elements in fB. Orthogonality between a-spin: orbitals and the
B-spim orbitals is aﬁtomaticy due to the orthogonality of the
spim parts. The so-called "pairing conditions® sometimes used
in the derivation of this different-orbitals-different-spin
(DODS) formalism (Rosenberg and Martino, 1975), mefely represent
a particular choice of some of the redundant variables in the
orbital coefficients of the two sets of'spinaormdtals, and
thus need not be considered in the above arguments concerning
the number of degrees of freedom in the problems

For a variation 6R} in the Ri (i=a,B), the corresponding

change 6E in'E, eq. (8428), is given exactly as
oE = te[sR%F® + 6RPFP] + 3tr[oR%6G™ + sRPscP]. (8.33)

Here Fa and FB are the a=-spin and B-spin orbital Fock matrices

respectively,

F* = nh+ ¢ =hn+ JRY - K(RY) + JGRP) , (843ka)
and

PP =h+ 0P =hn+ J@RP) - kK(RP) + J(RY) . (8.34b)

The first order part of (8.33) is the sum of two terms of the
gsame form as (8.9a) for the closed shell case. Therefore, one

has immediately that
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2B - [ - ris)PiRYY | (8+352)
Yol
= F%e';)“(ebm' (1 =a,8). (8435b)

Thus, the first derivatives of the energy with respect to the

elements of the f1

are again just matrix elements of the corres-
ponding current Fock operator between two sets of contragredient
(nmonworthonormal) molecular orbitals, which are, respectively,
the first ni columns of the density matrix R} and the last n%
columns of the matrix (1 - R;S), (i = a, B)e It is seen that
the first derivatives of the energy with respect to elements
of £% depend omfB only implicitly through the dependence of
e oanB, and vicg versae

The second derivatives of the energy are given Dby,

2
E i 3E ol oE
5B = -fiseh) v v
382 2t { o8 afy TE agld
+ [(e)% (el Flkobi” (e}3-Leed)?(ebr® kel T (e})7T]
(8436)

2 'Y
3 E = i.i - . ri i, .
i Rl T (1 R et ep”

b ebrled* e f-Lieh?(off lepr®ep®} .

and

2 : ‘ . . .
i epterled el s
or S

(8437)
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2 2 » ,
af§ﬁ§f3"= g[(eggo(ei)r“(eﬂ)s(egjr]' i#J .

or "7Ts

These formulas are different from those in the closed shell
case because the coupling between a-spin and B-spim orbitals

is explicit in the secomd order variatiom: of E with % and fB.

8s3eb Test Calculations and Computational Refinements}

A series of minimal basis éet (ST0) ab inmitio calculations
were carried out on the molecule CN in order to obtain informa-
tiom on the practical implementation of the UHF-SCF formalism
Vjust deseribed., Claxtom and Smith (1971) have reported comne
vergence problems in similar calculations. A Roothaan iteration
procedure converges very slowly when the interatomic distance
is 2.0 ae.ue, and exhibits oscillatory behaviour, failing to
converge, when this distance is increased to 2.2 a.u. (see:
Figures 8¢1 and 8.4). When a direct minimization procedure
based om Fletcher®s method was used, it was found that converge
ence was rapid at first, but became very slow as the mimimum
was approachede They concluded that the most efficient proce=-
dure was to use the direct’method initially, until a good
estimate of the energy minimum was obtained, and then complete
the calculation using a Roothaan iteration procedure, which
converges well when provided with a good starting approximations
| The calculations here were carried out on an IBM 370/168

computer using double precision'arithmetic; The integrals in
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the Slater orbital basis were obtained from a version of the
POLYCAL program. Orbital exponents were taken from Clementi
(1963).. The linear search step in: the conjugate gradient
algorithm was required to reduce 3E/3\ by a factor € compared
to its value at A = 0, and € was usually chosen.as 0els The
starting approximation in all but one case was equivalent to
theleigenvectors of the core hamiltonian.

It was found that the convergence of the direct minimiza-
tiom calculations based om the partitioning formalism was very:

i
poor if the fcr

were defined by an arbitrary partitioning of
the atomic orbital basis. Convergence improves greatly if they"
are defined by the partitioning of a set of molecular orbitals,
%O' which more nearly block. diagonalize the Fock operators In
practice, this involves evaluating the energy gradient and

f-operator in the new basis, that is,
0 t ' o]
Y7f1EM = (e%ileFiA (xoei). (8438)

the calculation requiring less computation if the quantities
in thé bracketes are evaluated first, and then the back-trans-
formation of the density matrix as calculated from the MO basis
f-operator using (8.31),

i)AO

(rRHA = x ®H)M0x], (8.39)

if x;SXO = 1. No transformatiom of the two-electron integrals

1sAnecessary.§ The Fletcher and Roothaan calculations were done

5The transformation1to the MO Basis has an additional advantage
when working in a non-orthonormal AO basis, because(if the)new
cont'd
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in the original atomic orbital basis. Tables 82 and 8.3
summarize the resulté of sixteen different calculations done
here. The relative rates of convergence of some of the methods
and refinements are also illustrated in Figures 8.1 - 8.3 for
the CN molecule with a bond length of 2,0'a.Us, and im Figures:
8ot = 8,6 for a bond length of 2.2 a.u.. The energy range is
Figures 8.1 and 8.4 is larger by a ratio’of 400115 than that
in the other four figures. ,

Onwcompéring the results of the caleulations involving:

Fletcher's method (2, 4, 5) to those based. on: the use of the

i
cr'

poorly near the energy minimum, but that Fletcher's method

(6, 7)s it is seen that not only do both methods converge

actually inghtly outperforms the method based on the parti-
tioning formalism. This is also seen in Figures 8.1 and Belto
A number of modifications of the basic method based on

' i
the use of the for

were examined. Slow rates of convergence
near the minimum imply significant lineaf dependence between
successive search directions in the conjugate gradient calcula-
tiome. Simply restarting the calculation:with a steepest descent
directiom more frequently resulted in no improvement (Figures
842 and 8.5). However, a major increase in the rate of conver=-

gence was obtained when the basis, Xo, in which the partitioning

was defined was replaced by the eigenbasis of the current Fock

basis vectors satisfy x SX = 1, then the energy gradient
formulas applying in an orthonormal‘basis can be used since
SMO 1. This partially, if not completely. offsets the
additional cost of the transformations in (8.38) and (8.39).
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TABLE 8.2 Details of Direct Minimization Calculations
CN Molecule (.r = 2,0 a.ru.-r)-

Type?| min® ¢ |-modification Final Energy® | ran®
alg. c d e asle

1 R -112.,6912168 | 16
2 FL | cege -112.835540" | 10
3 R -112,8457221 | 3
§ PFY CegZe | 0ol , =112.841230 8
5 FI | eege| 0,01 -112.840916 9
6 P | cegel|0s1 -112,818824 | 1k
7 P cegs | 0401 -112.822130° | 13
8 P Cege | Ool 3 -112,805275 | 15
9 P cogs | 0ol 3| x -112.845708 i
10 P coge | 001 x| -112.845365 6
11 P cige | 001 3 x -112,845418 5
12 P Coge | 041 3| x | x | -112.8487223 | 1
13 P Sede | 001 | -112.824592 | 12
14 P | sede] 0.1 3t | -112.845121 7
15 P | sede| 0at x* | -112.832004 | 11
16 P | sede|o0a1 3t L x| -112.8u5722 | 2

éR&Roothaan;7F1=Fletcher, P=Partitioning

Beege = conjugate gradient, s.d. = steepest descent.
°§teepest~déécent restart frequencye.

Spasis update at steepest descent restart.

fgradlent scaling in effect

after 30 Iterations unless otherwise noted, exact energy is
-112, 845722 aelUe

géB iterations

29 iterations

uses final result from calculation #2 as starting approximation..
jcomrergence criteria |5E|<10-12m|6311|<1° -6 satisfied in 25 its.
kusing eigenvalues of core hamiltonian.

lindicates the frequency of basis modificatiom.

M ndicates the order of the final energies, from lowest to highest.

i
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FIGURE 8.1 Total electronic energy as a function of iteration number for the CN molecule,

(bond length = 2.0 a.,us)e (1) Roothaan; (2) partitioning, steepest descent search directions
onlys (3) partitioning, conjugate gradients; (4) Fletcher, conjugate gradients; (5) partitioning
conjugate gradients with gradient scaling and basis update with steepest descent restart every
3 iterations. In all direct minimization calculations, € = 0.1 (see Table 8e2)e



(*n°*8) X HYIANTI

oLell-

gL'el-

9L~

bL'Cli-

tg'eli-

. B e — e ———
' ITERATIONS |

. s 0 . 5 Jo as 30
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gradient algorithm=-partitioning approach onlys (1) steepest descent restart every 3 iter-
ations only; (2) basic conjugate gradient algorithmy (3) gradient scaling only; (4) gradient
scaling and steepest descent restart every 3 iterations;;%g)_Steepest descent restart every
3 iteratioms with basis update at restarts (6) gradient scaling, steepest descent restart

every 3 Itergtions with basis update at restart (see Table 8e2) e
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FIGURE 8.3 Total electronic energy as a function of iteration number for the CN molecule,
(bond length = 240 a.ue)e Comparison of the effect of various modifications on the steepest
descent algorithm--~partitioning approach onlys (1) steepest descent algorithm onlys

L4 d L

(2) basic conjugate gradient algorithmy (3) steepest descents with gradient scaling only;

(4) steepest descents with basis update every 3 iterationss (5) steepest descents with
gradient scaling and basis update every 3 iterations; (6) conjugate gradients with gradient
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scaling, steepest descent restart every 3 iterations with basis update at restart (see Table 8.2).
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operators at the time of the steepest desognt restart, as was
done for the calculations numbered 9 in the tables. The
partitioning operators fi are set to zero when the new basis

is incorporated into the calculation, and therefore, this basis

modification is equivalent to a single Roothaan iteratione.

8s3ec_ Use of Scaled Variables

A second modification of the basic élgorithm~which-resultSH
in a major improvement inm convergence, is suggested by the
Newton~Raphson equations for determining the zeros of the
energy gradient (see Appendix 11). Upon neglecting the two-
electron: integrals inneqs..(8.36)‘and (8¢37), and in a basis

" diagonalizing the current Fock operators, it is seen that

2 :
9-55- s el e;?. (8440)
® f"o r

Thus, the diagonal approximation: of the Newton-Raphson egquations

can be written,.

1 (el L ly=1 3E A oay
6f . ® =N(€j = €)) s gl (8.41)
or

where A is some constant independent of ¢ and r. If the
‘minimization problem is rewritten in terms of a new set of

variables,

Foo (el e}.)éfi (8o42)

or c or ¥
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TABLE 83 Details of Direct Minimization Calculations
CN Molecule (r = 2.2 a.ue)

'I‘ypea mfnbb) € odificatiom Final Energyf | rank?
alge < d e asle
1 R Dy i o0sCe® 16°
2 FI | cege | ~110,9913330 8
3 R -111.012914% | 2
¥ FI | cege | 0ot ~110.995595 5
5 FI | cege | 0.01 ~110.994936 6
6 P Coge | 0ol -110.976114 13
7 P cege | 0401 -110,977213 12
'8 P Coge | 0ol 3 ~110,975463 14
9 P cege | 0e1 | 3 | x -111.011872 3
10 P Cege | 0ol x3 | -110.981282 11
i1 P CeZe | Ool 3 x «110.984485 9
12 P cege | 0e1 | 3 | x | x ~111.012980 1
13 P Sede | 0ol | ~-110.951620 | 15
1t P | seds | 0at 3| | -110.992565 7
15 P sede | 0.1 x? | -110.981113 10
16 P | seds | 0ot 3 | x ~111.010863 4

aR=Rbothéan. Fl=Fletcher, P=Partitioning

bbug. -conjugate gradient, S.de = steepest descent.
steepest descent restart frequencye.

d:‘nasis update at steepest descent restart..

gradlent Bcaling in effect.

after 30 iteratlons unless otherwise noted, exact energy is
«111.012980 a.ue

€28 jterations

h29 iterations -

iuses final result from calculation #2 as starting approximation.
Jﬁsing eigenvalues of core hamiltonian.,

kindicates frequency of basis modifications.

1

)

indicates the order of the final energies from lowest. to higheste.
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conjugate gradient algorithm=-partitioning approach onlys (1) steepest descent restart
every 3 iterations only; (2) basic conjugate: gradient algorithm; (3) gradient scaling onlys
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scali'rr%. §teepest descent restart every 3 iterations with basis update at restart (see
Table o=3 .
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then: the diagonal Newton-~Raphson equations, which are approxie-

mations of a second order convergent method, give the correctiom
~j_‘
8L ..

steepest direction. This modification can easily be incorporated

as a simple step (the same for all ¢ and r) along the

into the ordinary conjugate gradient formalism by scaling the
energy gradient,

3E i i\=% RE
= (€X - €) — . (8443)
& [} r I*
L e for

Then the appropriate correction for the unscaled variables is

S P | 1y=d i | el i3
8f, .. = (eo - er) of, . A(eo - en) Vor ¥

(8olt)
where v is the conjugate search direction, computed from the
scaled gradients, and A is the step length computed by inter~
polatiom in: the usual manner. This gradient scaling (or the
implicit use of the scaled variables f&*) is aimed at correcting

the problems in descent methods caused by anisetropy in. the

i
u
used are the best available estimates of the eigenvalues of the

curvature of the energy surface. In practice, the numbers €

Fock operator at any stage of the calculation. Imitially, any
gsuitable estimate may be used (for example, orbital energiles-
from a semi~-empirical calculation of some sort, or even the
eigenvalues of the core hamiltonian, as was done for the cal=
culations described in: Tables 8.2 and 843). This scaling
procedure has no simple counterpart for Fletcher's methode

The calculations numbered 10 were done by incorporating

only this scaling procedure into the basic conjugate gradient
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algorithm,; resulting in a substantial improvement in the rate
of eonvergehce’ Increasing the steepest descent restart frequency
to every thieé'iterations (compared with 45 as recommended by
Fletcher and Reeves, (1964)), resulted in a further small
imProvemént,' waever. when the molecular orbital basis defining
the pariitidning is'reblaced by the elgenbasis of the current
Fock matrix at the steepest descent restart, the most rapidly
conwergent algorithm-resulted. For the 2.0 aesue interatomic
distance, the energy became correct to fifteen figures (effectively
the 11m1t of the machine precisiom), and the diagonal elements
of the density matrices to seven figures, in:only 25 iterations.
Nearly %ﬁéZSAmefresults were obtained for the 2.2 a.u. bond
lengthe’ _' | o

The test calculations described above support the assertion
that the 51ngularity'of the Hessian matrix at the energy minimum
has no ngefvabie effect om the rate of convergence of the cone
jugate gradient algorithmu6‘ Rather, they indicate that much of
the poo?'coh&ergence is due to the fact that the energy curvature
is high;y anisotropic in general, and the usual conjugate-:gradient
aIgorithmfdbes not take proper accoumt of thise. A single average
6Pcr 2 quadratic form, it is easily demonstrated that a singular
Hessian matrix has no effect on the convergence properties of
the conjugate gradient algorithm, except that the minimum will
be located in fewer iterations, since no linear search is
required in directions corresponding to those along which the
form has zero curvature. Im a converging energy minimization
calculation, the part of the coordinate space corresponding to
the redundant variables should effectively act as a null space-
as far as the choice of search directions is concerned. This

is especially true near a minimum, where the energy is most
like a quadratic forme
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step length along the descent direction generated tends to
overestimate the necessary correction for some variables and
underestimate it for the others. This is a well known shorte
coming of steepest descent procedures also. Im fact, the
steepest descent algorithm employing a cubic interpolation:
linear search, does not converge much more slowly than the
conjugate gradient algorithme It appears that in application
to direct minimizatiomn self-consistent field theory, the finite:
terminatiom property of the conjugate gradient method is of
Iittle advantage, since, even for the smallest systems, this
finmite terminatiom in principle requires considerably more-
iterations than dre acceptable if efficient calculations are to-
resulte.. |

No attempt was made in this series of calculations to
determine an optimal restart frequencys: The rate of convergence
is usually greatest either in an iteration involving a restart,
or in the one immediately following, and therefore, it is
unlikely that an interval between restarts of much more than:
three iterations will result im faster overalliconvergenceQ»
Despite such fregquent steepest descent restarts} there still
appears to be some advantage to using the conjugate gradient
search directions, as can be seen on comparison of calculations
13 = 16, respectively, with calculations 6, 9, 10, and 12 The
calculation of these search directions from'thg steepest direcw
tions is a small part of thg whole calculation. Even so, the
steepest directions by themselves give remarkably good results

here (see Figures 8¢3 and 846).
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8elt: Theory for the General Single Determinant Case

8oltea The Basic Variables of the Calculatiom

We now consider the case of an N-electron system represented
by a single determinant wavefunction constructed from occupied
orbitals for which there is a natural grouping into m sets,
called shells, which are relatively weakly coupledby the

X(i), associated

x (1)

hamiltonian operatore. The ny occupied orbitals,

sth

with the shell, are chosen from a set of m orbitals

p(3)

which are eigenfunctions of~the Fock operator, » referring
to the ith gshell. The total energy of the system, eq. (8.1),
is: then completely determined by the projections (one-particle

density matrices im molecular orbital theory),
RUE) o x{Dg{D), (£ = 1, eeep m), (8445)

onto the individual nI-dimensional subspaces of the full
n~dimensional basis space, each subspace spanned by one of
these sets of occupied orﬁifals. It will be shown that the
columns of these projections and their complements again pro-
vide non-orthonormal basis vectors, im terms of which the
first and second derivatives of the energy, (8.1), with
respect to a set of variables provided by the multi-partitioning
formalism of chapter 4, can be written effectively as compactly
as in the closed shell cése.

If the simple formi of the energy, (8. 1), is to be preserved,

these projections must satisfy the constralnts

g(3)t . g(1) (8.46a)
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and

r()gg(d) o R(i)éij. | (8.46b)

or, equivalently, the occupied orbitals must satisfy the ortho-

normality conditions,

(L)toy (J) -
XgrlUsxy .11613,4 (8.47)
Here S is the matrix of overlap integrals of the fixed basis
functions in terms of which the X(i) and R(i) are defined.

The number of independent parameters necessary to specify
the energy exactly is determined as followse. The total number-

of parameters in the lcao coefficients, X%i), (1 =1, eesy M,

m m+1
is n X . where m= L nye Is the dimensiom of the full
I=1 I=1

basis space. Withim each set X%l), the orthonmormality constraint,
and the redundancy due to the invariance of the energy, (8.1),

to an arbitrary unitary transformatiom of orbitals in the same

shell, together account for niz parameters. The orthogonality
mw 1

of orbitals in different shells is expressed by I Top z n;
‘ I=2 J=1

unique conditions, making it possible, im principle, to elimin-
ate an equal number of parameters. Thus, the total number of.

unconstrained and non-redundant parameters required to specify

mi I
the energy in the form (8.1) is £ ni(nx- T nﬁ)‘
, I=1 J=1

The intra-shell constraints and redundancy can be elimine
ated by rewriting the energy im terms of a new set of parameters
chosen as followse For each i, (1 = 1, eee, m), the m eigen=

vectors X(i), of the Fock operator F(i), are divided into mw»1
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subsets, x}i)m of dimensibnan. respectively, such that the
subset X§i) is the set of occupied ith shell orbitalé.. Simile
arly, the n-dimensional basis space is partitiomed into m+il
subspaces Sz (J =1, eoe, m+l), of the same dimensions, Mgy,
respectively. The matrices x(i), (1 =1, eeey m), can now dbe
written inwan (m+1) x (m+1) block form, similar to that in
eqe (4¢2)e A set of uncoupling operators, Q(i), is defined,
such that (eqe (4e4)),

1 2 W) e, e, m), (8.48)

where i(i) is the diagonal block part of x(i),.making it

possible to write the block columns of interest as

— - - -
(1) (i)
X1 51
(1) xéi) a(1), (1) fé%’ (1)
SaE S e = P0X 70 = . in »  (8ek492)
: .
x(1) .
L__m-,tl,I__ ?
(i)
_fmu,x
(i’ = 1, o-'owo.: nn). where
f(-i)- = x(i) x(i)-l (J = 1, eeey m+l)e (8.-495:)

JI JI - - "I1 '

That is, we have implicitly set up m (m+1)-fold partitionings,
one for eagh 6f the X(i).f The parts of each shown in (8.49a)
are the'only ones which enter the energy expression, (8e1).

The f&%), (J = 1, eoe, m+l, JFI), are specified by’ni(n-ni)
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complex parameters, which is exactly the number of parameters
in the X%l) after intra~shell orthonormality and redundancy:

have been accounted for.

m I-1
The intershell orthogonality constraints imply I L iy
I=2 J=1

(1)

relations between the elements of the f£37', (1 =1, ceey Mo
The explicit incorporation of these relations into the theory

will be considered im sectiom 8.4.d.

8elel The Energy Varietion and First Derivatives

The energy functional will be written here in terms of the
(1)
R:

E = 2 tr v R(i)m + 4 18 tr viR(i)Gi . (8450)
i=1 =1 .

where h is the core hamiltonian matrix, representing the elec-
tronic kinetic energy, and the interaction: between the electrons
and the nuclei, and the Gi represent the inter-electronic repul-

sion terms of the hamiltonian operators. 1In detail, one has

6= £ 6 (v s £ v &) (8451)

17 e 1Y PR P R
where

31,543» = J(R) = aijg(xa.. (8¢52a)
and

S AR Sl Bt (8.52b)

= 3 otherwise.
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The matrices J(R) and K(R) are the usual Coulomb and exchange

matrices with elements given by

J(R) g = Ry lrslut], K(R),. = tfu Ry Lrtllus],
' (8.52¢)

where- the symbol [rsllut] is defimed im eqe (7¢25B)e The oceupa-

z
teu

tiom numbers, Vis mBY have values of 1 or 2 onlye

Am incremental approach is employed to obtain the deriva-
tives of the energy. A change bR(i) in E‘i), (1 = 1, eeep M),
produces a change in the energy given exactly by

m m
6E = L v,tr GR(i)F(i) + % T v tr"bR(i)bG., (8453)
i=1 i i=1 v : L

where F(i) is the Fock matrix associated with the ith shellQ
F(i) = h + Gio‘ (806“)

Im the motation established in the previous subsection, the

blocks of the projectianR‘i) are given by
-1 (it
R o (D) gl ell) (8455)
where-
t
g§i) = (x§%)x§%) )-1 -
: z T 2T :
aspp+ st e xofB s v o5 gt s el

KI K#I KI "KL LI

LAI
LI (8.56)

KAI

Then, one has,,
(1) ae(d) (1)=1,(0)t o(1) ()e1 (i)t (1) (i)=1,.(i)t
SRy =0f5r ey '~ Ly +f5y 0ep iy tfpyiert 8%y

+6f§%)6g§1)‘1fé§)*+5ﬁ§%)g§i)‘1af§§)*+f§%)a fi)’laf§%)*

soelileg{t)=1oe)T (8457)
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To second order, one has

st = gl)=1yglD) ()=1, (3)=1, (1) (1)1, (1) (1)1

+ 0(s7), (8458)
where eqe. (8.56) yields

(1) , 5 aeliltg

(1) . .
6gy" = I Sypbfy kg1 ~KI kI

LA (8.59)

i ee{t) s, oe{DasrlDs, 621,

(i)t
+ zI Lofyy’ 'Sigfir *fk1 Siadfir *ofkT

K¥£I
The calculation of the first derivatives is simplified by
roting that terms in éE linear in 6f§%) or bfé%)*, for a specific
value of i, can only enter via a single term of the first sume
mation (over shells) in eqes (8453). Substituting (8.57) -« (8.59)
into (8+.53), and retaining terms onl& to first order im the
Gféi) and their adjoints, one obtains

(1), . T Rl Al e (1) (4)=1(d)t, (1) (i)=1,.(1)t
& E'giil vitn ng Kﬁl 5fJI &y fKI *fJI 81 afKI

‘fg)g;([i)'l[ s f"(i)-c- T 6f;(1)1’s.

LAt 1811 wgr ML SMI
+M§I(af§%)*sMLf£§)+f§§)*sMLaf£§))]
L¥I

1)=1.(i)t (i
« -t 5]

te1 ps1 %

#1 xu(i(i)tn(i)§(i))II]g§i)-1 .

1 ol | : -
= % Vitr m{ Gf(l)f[(F(i)T(i))PI-(S\Q(i))PIg:Ei)_i
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(1) _(1L)e1p A(1)t(1) a(1)1o(1)a(1)
+P216fpl &1 (r B2 o0)pp-(T pld)a( )11
#1
X g§i)-1(T(i)fS)IPJ
m 'm+1
(i)t (1) (1) (i)
tof £ of T (1-SR Fe LR
"o 1 lB[1==@u==1 PI J,K( 9% _
1 (8.60a)
+m;16f(i) £ R{Vr{D (1.r{bs) 10,
P=1 J K
A

Thus, on defining a new set of non-orthonormal basis vectors,

(1) . (1 - Rii)s)- » K£I,
eJK ‘ o JK # g' (J)K = 1. ee oy m+1)}

e-g']il) = R%)a (1 =1, seep m),
| ‘ (8461)
one can write,.
s (Vg - ml o (1)1o(1) (1)p(1)
B 1§1V1trP§1[‘f D (Drg(a) AT (e )]
1 P ©1 I
(8060&9

From this, one obtains,,.

1 oE

(1)
= F ‘ ’
Yiaelh),, el

- (8462)

as the formal first derivatives of the energy with respect to

the elements of the f§§) and their hermitian conjugates.: As

ihxthg‘simpler closed shell case, the first derivatives of the
energy'arermétrix elements of the appropriate current Fock

operator im a basis of nen-orthonormal molecular orbitals
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which are columns of the corresponding projection.R(i) and the
complementary matrix (1-&‘1)5). The metric properties of the

basis vectors, (8.61), are examined in Appendix 13

8el4ec The Second Derivatives

The second derivativés of the energy are obtained in a
straightforward, but somewhat tedious, manner, by isolating the
second order terms in (8.53). These terms consist of two types.
The first arises from the trace over the product of second order
variations in the projections R(i) and the corresponding Fock
operator F(i), while the second arises from the terms of the-

form tr 6r'1)

GGi, which contain products of first order varia-
tions of the density matricese.

Consider first the simple term:

| n
tr 6R(i)GGi*=j§1erzs eR(i)aR(i){[rs”ut]-a j[rtHus]}

t,u (8064)

This equation can be viewed as representing linear transforma-
tions on the basis functions in terms of which the two-electron
integrals are evaluated. The summations over r,s can be treated
independently of those over t and u, above. To first order,.
one has

£ sr{Herlls> = "ot (er{1))_ <riis>

r,s J,K=1 re€K JK
s8€J.
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m+1 m+1 m+l . . '
= 3 z (5f(1)) T T [5 - f(l)g(l)-lf(i)fs
P=1 p€p T PV g Ke1 rek VT j=1 91 T 11 SLplsy
#I vel s€J
m:tg§i)-1f§%)f]vr<rus>

m+l m+1 :

vz oz (el g [elbgli)-ly

P=1 p€lX FI LA J,K=1 re€K JI ©1 su
#I veP - 8€J

n+l : T
, (1) (1)=1,(i)1 :
x [°xp’i§13xpr1 e fxr Jup<rle>

+1 ,
="z eellh) <(eft))Y||ceft))H>

) PI ‘uv
P=1 p€P
1 vel (8465)
mt+l ’
(i)t (1))l e(i)yu
* ot O Dyy<tep ) lcez?s¥>.
#1 veEP

Here, the notation <rlls> is to indicate symbolically only that
the basis functiom¢r enters the expression antilinearly, while

¢s enters it linearlye. It is not meant to imply that matrix
elements of the type [rs|lut], given by (7.25b), can be written
as the product of two simpler matrix elements. Combining (8.65)
with the corresponding result for the sum over indices t,u, in

the original expression (8.64), then leads to: the result

(i) m+l m+1 m+l )

tr 6R'°78Gg = £ L L I I
=1 P=1 Q=1 u€P a€J

#I #J veEl peq

1) 0 g LD e

-aiji(eéi))"(eéj))aIkeéj))s(e§i))”]}



299,

el ol [Tl e$1))7 |[ef37)% (e{ 3718
~ay (o5 R (ed 1B [lceld) )2 (ef 1)) 1}

O S LI (B S ME S (B E LTIy
-ay L(eft))¥(e§3)% [Ice{3))B (of 1M1}

+(sgit)) (o283 a{[(e?))"(e;ﬂ)“||(e§~"’*)°‘(eé~")-)3]
cag L (ef1))7 (el )8 [[(ef3))% (e fH) )"]}) .

(8+66)

Each of the four terms here consists of a Coulomb and exchange
integral combination, evaluated in-fhe particular non-orthonormal
molecular orbital basis given by (8.61). The contributions of
the second term in (8.53) to the second derivatives of E are
easily obtained from (8.66).

Consider now the first term of eqe (8+453)¢ A considerable
amount of algebraic manipulation is required to obtain the

second order terms in compact forme The final result is

s o o ME DT (sr(D)) eI 1p(e).

P,Q=1 PI QI (3 (l))( (i))

#1

m+1

N (Dtrg (1) (1) p(1)
-t z 6f S(1=-R S 8f F
" pge UTFL Y1 gl g0,

#I

(1)5(1) 5 p(1)tR(1)
6f 5f
+ 8fpr Rpr 811 (g(i))(g(i))}
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m+l
, (1) /(1) (i)
-t I 8f 7 (R'T'S) 8fqy’F
r P,Q=1 FI 1q (eii))(e(i))
#I
(8467)

This equation contains ne terms involving products of matrices
bfé%) with different values of i; Thus, the first term of
(8453) gives contributions only to second derivatives of the
energy with respect to variables referring to the same shell.
The complete second derivatives of the energyvcan-now be
written down by combining eqs. (8.66) and (8.67), and incorpora-
ting constant factorsand occupation numbers where indicated by
(8¢53)e In all, there are only six different formulas (of

which two pairs are complex conjugates of each other):

32E' -y,

. o= _l, (SR‘i)
*a(f(i) 3 RYTER - Jup

OE:
(f(i)*)

ag av

oE

o (i
+ (SR 1))GV a(f(iy*)

: . uB
v 2 . °
. _%_l?(eél))u(e§l))vn(eéi))a(e§i))53

e Lol ()P [he{th% el 1],

2

O'E vy (1) oE
Lo ¢y st ¢ 3 enntililial LRI
+ (R(i)s)B

QI av
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2
v
+ —i—{?(e§i)iv(e§i))““(eéi))s(eéi))a]

-aii[(eéi))v(eéi))a"(e§i))3(e§i))uj} ,

2 = 4| _[s(1-r{t)s3 pli)
a(f(x) » f(i))as [:F ( i (i))a(°§i))v

(1) p(
+ RBV (e(i))u(eéi))é]
+ ___{t(e(l))u(e§i))vlkeéi))ﬁ(eéi))a]
-ay L(EH i) etthBe{)) 1}
{8068)

2

o°E : V.V ‘

3 — £ - _L_J (eli)yr(a{i)yvK (3)ya(ald)y
a(f(i) ) va(fé):}‘)*)ay {[ °P °1 I °Q €J

_aia[(e(i))ﬂ(eéj))Y|keéj))a(e£i))vj} ,

2
O°E V.V .. . .
AT S PP C NN TN DR €)
%a(f(i)) (f(j)) 2 {[(ell )V(epl )u“(eJ )Y(er )d]

G SOMO DL CIELIC LI

2°E V.V, | _
- = 2 (1) (1) (3) (i)
2 (£l 1" (P )gy 2 {[(ep #(e{1))[l(e{37)¥(e{ 32

-a, [(epl))"(e(J))a“(e(a))v(e(i))v]}

In all these formulas, the convention u€P, v,B8 € I; a€qQ, and

Y€J, is implied.
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Belted Incorporation of the Intershell Orthogonality Constraints

The intershell orthogonality constraints on the lcao
coefficients are given by eqe. (8.47)¢ The equivalent expres-

sions inzterms of the fé%) are

0 - g e e
analogous to eqse (4.58)s Only half of these equations are
unique, the other half being their adjoints,

There are two ways to incorporate these constraints into
the theory. The constraint equations, (8.69), cam be used to
explicitly eliminate an appropriate number of elements of the
ﬁé%) occurring im the energy functionale. The derivatives of
the energy with respect to the remaining unconstrained variables
are then obtained from eqs. (8+62) by a simple application: of
the chain rule. ‘The advantage of using this method to handle
the imtershell constraints is that the energy and its deriva-
tives are then expressed im terms of a minimum number of uncon-
strained and mon-redundant variables. The resulting formalism
is suitable to use with true minimizatiom techniques, such as
the conjugate gradient method with wvariations discussed previously
(sectiom 8e3¢b)e. Such procedures would be reliable, since
divergence could not océur, and efficient, as long as the
number of shells is smalle. AS the number of shells increases,.
the intershell constraint equations become considerably more

complicated (see Appendix 2) and the additional cost of calculating
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the energy derivatives with respect to the independent variables
may soon offset the other advantages. Another problem here is
that the eliminatiom procedure is not easily automated for use
with an arbitrary number of shells. This approach is illustrated
in detail in sectiom 8.4.e for a two shell syétem,

A second approach to incorporating the intershell constraints

m I-1
into the theory is to consider the I ny I n,; unique: con=
1=2 L g=q Y
m m+l

straint equations, (8+69), and the I n; I
: I=1 J=I+1

equations expressing the vanishing of an appropriate set of the

ny independent

same number of first dérivatives of the energy, as a system of

m
El~ni(n - ni) simultaneous nonlinear equations for the elements
I=1

of the fé%). (P =1, eeey m*¥l, PAI3 1L = 1, ees, m)e The deriva-
tives of the gé}j). eqe (B8e469), are

13)
- j)
s - Suber®urlE Sukfkd ps 0 (8.70a)
ML ‘pq
and
(13)
2139 e mL(1)¢
a2l A°La’sq' s, 'KI SKi'rp

With these formulas, and eqs. (8.62), the Jacobian matrix for
the complete system can be constructed, and the fé%) can be
determined iteratively, using one of several methods (for
example, the Newton-Raphson equations).

The advantage of using this approach is that the energy-
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derivatives, (8.62), and the derivatives, (8.70), of the
constraints, can be used without fﬁrthér modification, and cam
be calculated automatically for systems involving an arbitrary
number of shellse. The calculation now involves twice as many
variables as in the first approache. The large number of variables
may preclude the use of the full Newton—Réphson equations,

making it necessary to develop linearly convergent approximations
to them which are more efficient overall, much as was done in
chapter 5, in a different context.7 These methods are not
descent methods, and therefore, will not necessarily yield an
energy minimum at all times. Nevertheless, for systems involving
a large number of shells, this would appear to be the approach

of choice..

7The situation is admittedly greatly complicated here by the
presence of the large number of two-electron integrals (which
must be transformed to a new molecular orbital basis in each
iteration) entering the second derivatives of the energy.

They would have to be partially or totally neglected, or else
approximated in some manner if a computationally efficient
algorithm based on the Newton~Raphson equations is to result.
An alternative procedure would be to use a method not requiring
these second derivatives (for example, a generalization of the
secant method for the solution of a single nonlinear equation).
No information  on the performance of such methods has yet been
obtained,however..
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Beltee Example =~ The Two Shell System

As an illustration of the

general formalism just described,

formulas applicable to a two shell system are given here explic-

itly.
The variables qgtering the
14
a(1) (¢ON B a2
L2 TR I T2
(1)
| F31°_

A 3 x 3 partitioning must be used in this case.

calcg}ation'are
(2)]
fi2

1 (8471)

2

(2)
LF32_

where the occupied orbitals for the two shells are written,.

(1) _ ~(1),(1) (2
X770 = Ky X5

) . 522 (8.72)

The projection operators onto these two occupied spaces are

given explicitly by

-1
g{1)
-1
R o [ gDt o
.t
f31°8 £5
and — o
(2) (2)7" (2)
12 gé fiz !
-1
2 2
r(2) o gé ) f§2)f
(2) ()"t _(2)1
f32 gé f12

L
D™ o)1 o7
Do DT D0
| (8473)
f§§>géz)‘1 £§§>g§z>'1ﬂ§§);-'
7 T
f§§>g§z)'1 f§§)géz)‘1f§§)f

(8474)
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In an orthonormal basis, one has,

glt) =1y + 2D Te{l) 4 £{D)TelD), (8475a)
and
g2 =1, + £2015(2) 4 £(2)1,02), (8475b)
(1)

If the basis is non-orthonormal, explicit formulas for the 81

are considerably lengthier, for example,.

(1) _ (1) o (1) (1)t (1)t (1)1 (1)
g, Sn-o-s,-lzf21 +513f31 +f21 321+f31 831+f21 Szzf21

1),0(1)¢ (1
fél +f31 833f31),

(8476)

(1)1e (1), (1)t
*2217 S23%3174131" Sy

and similarly for géz).
For an orthonormal fixed basis, the non-orthonormal contra-
gredient molecular orbital basis, (8.61), in terms of which the

energy derivatives can be written very compactly, are given by

1,
w(1) _ (1) _ | S| (1)t
ey " =R4T =T |8 "
(1)
_ 3 —_
. _gii) g(1)1

~(1)

| -1
888 e (1 =) = [, - £fDe{t) £{])T

21 8 s (84772)

(1) (1)~ (1)t
-f31°¢ 3%
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and -l
(1) (1)t
-& ' 13

1) 1) 1) (1" ()t
= (1 - g )3 "= 'f§1 gi ) f§1) .

(1) (1)t (1)t
13- %3,78"" 131

The expressions for the Sﬁ?) are analogous,,

2l 4 (1-&‘2))'1. ) =2, 3{P) - (18 ..

(8477b)

For a non—orfhonormal fixed basis, explicit expressions for the
Eéi) im terms of S and the fé%) and g§i)-121(1 = 1,2), are cone
siderably lengthier. In the course of a calculation, the
current projections R(l) and R‘a) would always be known, So:

that the eéi) would be obtained directly from formulas like
(8.77b), rather than being evaluated using formulas like (84772)

The vectors dual to the T¢1) are given by

(1)t (1)t
1, -t -f31
(1) (1)
(1)
f31 0 13

The scalar products of these vectors and the metric matrices

with respect to which they are orthonormal are given by

$(1) L g(Dtp(1) o g(g()r o X(1)
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- _
6{1) 0 0
-l =1
) 1) (1 1)1 (1) (1)1
= 0 12'f§1)g§ ) f§1) : 'f§1)8§ ) f§1’* , (8.79)
(1) (1)1 (1)1 (1) (1)1 (1)t
| ° 13178 oh 13713178 f§1)
and!
§(1) - 2(1)72(1) - 2(1)9_(1)t - é(l)
gt 0 o
=1° 1 * féi)féi)* féi)féi’* , (8480)
| 1) (1)t 1) (1)t
o f§1)f§1 15 ¢ f§1)f§1)
(2) ~(2)

with similar results for and e e Similar, but lengthier,

£
results are obtained in a non-orthonormal fixed basis, but, in
that case,'E(i) # 2&(1)' and §Fi) # 4§(i), (1 = 1,2), and thus,
the number of formulas doubles. The similarities between eqse.
(8477) = (8.80), and the results given in section 2.1.d, appli=-
calile to a single shell system, are easily seenes

The formal first derivatives of the energy are

3E _
(1)#
S a(f;)

(1)
= v, F e
)or 1 (eéi))O(ej(.l))r
-39

(1)*
a(f31 )ar

(1)
=y P
1 (Bgl))a(,e](.l))r
(8.81)

-A*é%;~ = v_E(z)
2(£120%) 2 (BT (eP))e
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and

= yv.p(2)
a(f(T)ao v2 (e(z))a(e(z))

Formal second derivatives can be written down explicitly from
eqse (8.68). Even in this simple case, there are thirty-two
different explicit second derivative formulas (E depends omn
éi), gi) ig). and fgg), and their adjoints) neglecting those
which are complex conjugates..
There is only one intershell constraint equation in this

cases In an orthonormai’basis, it is

{;2) - f(2) . féi)f f§i)ff§§) 0w (8.82)

This equation is easily used to obtain

(2) ()t el1)t (2) ’
£i2° = =123 £317 f327 (8.83)

giving fig) in terms of f(l). fgi), and fgz). whose elements

can be used as a set of unconstrained and non-redundant variables,
in: terms of which the energy may be minimized. Equation (8.83)

is unusually simple. For the next simplest case, a three shell

system, there are three intershell constraint equations, which,

while similar to (8.82), cannot be used to obtain three "dependent®

blocks, fé%). im terms of the remaining six "independent” blocks

without introduction of an inwerse matrix (see Appendix 2)..

In fact, for a two shell system, when the fixed basis is non=-

orthonormal, the intershell constraint becomes

12 a(L)t a(2)
552 ) - (Ti S?é M2
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(2) , S, * S (2) + 1.(1)1(s 2(2) f(2))

S11%12 13f32 f12 *S22%523%
(1)t (2) (2) '
31 (531f12 +832+333 32 ) = 0, (8.8%4)
from which one obtains -
(2) = - “S +f(1)TS + f(l)tS -1
12 [ i1 21 31 31] (8.85a)

o (1)t (1)t (1)t (1)tg (2)
x [S,,+£3 Spptfay’ 'S +(813+f31 Spytfyy’ Sgq f32
= -A"1B. (8.85b)

- Not only is this expression considerably lengthier than (8.83),
Bbut the presence of the inverse matrix complicates the applica=-
tion of the chain rule, and leads to more complicated formulas

for the energy derivatives with respect to the remaining indep-

endent variables. From (8.83), one obtains

a(£82)) a(£{2))

(2)
2z wd b » = (f )
a(fzzj) b oy a(fm*) up*

‘uv uv

(f(z)) (8.86)

() |
;?;T-y;—ﬁ v B g

31 ‘pv

Combining these with eqs. (8.81) then yields,

p(1) - v.p2)
a(f‘17' "1 (o§1)o o) T V2T (o2))0 (o (2 *

ar &5

o -y, 1) 2).(2 q
2(£17%) VeSth(eft))r 2 5 F(<%)r (2) |-

w

(8.87)

]
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andi

' p(2) ( 1)p(2)
= -V f
(ET? V2t (2)ya,.(2)y0 T (2)1 (2) ’
B(f (e )" (e57) e, " ey 1o
which require little additional work once the derivatives in
(8.81) are known. For a none~orthonormal basis, eqs. (8.85) can

be used to obtaiﬂ;

a(2{2V) _ |
ro (2)
a(f(l)*)¢s relS21AT'B = S5 = 553052 Lo
222 )
s Ar;[831A g . S5, = S35 3§ Jyo + (8+88)
a(f )CST
and’ 2)
_ f](.z )ro =z wf [A-l(f(l)fs + f(l)fs <)] '
a(£l2)) 2 23 31 337 ra
32 a?
which lead to
= (1 )
a(f(lyi vlF(e 1)) (eq 1))s
+v,[((S,, A" B -5, - S f(z))F( Ny
2L (554 22 = S23f3 (Z)t (2) rs®

= (1)
a(f(l)*)as ¥4 F (e(l))a(e(i))s

-1
. . (2) A-l7
+v2[(331A B 532 333f32 yr(2 (2)1 (2) ]as



312,

and

(2)
= F
B(f(ij— v2 (e(Z))a(e(Z)f'

a1

;sz(533f§})+532f§1))(A )'lF((%)f (2) Jare
€2
(8.89)
Both sets of equations, (8.87) and (8.89), are suitable for use
with gradient minimizatiom algorithms. Second derivatives of
E with respeet to elements of,féi), ;}), and fgg). and their
'adjOints are obtaimed in a similar way. The greater complexity
of the formulas (8.89) compared to those in (8.87) is not of .
much concern here, since in an actual calculation, one would
gxpgct to carry out the energy minimization in a molecular:
ortital basis in which S = 1 (see section 8¢3.b).
In. this case,. the stationary points of the energy can also
be determined by solving the éystem-of 2n1n2 + my Ny + néna (in

general complex) simultaneous nonlinear equations given by

(8.89)

(2)
F = 0
ééZ)fEéZ)
and

(12)

812 = 0.
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APPENDICES

*Humpty Dumpty looked doubtfule 'I‘'d ”
rather see that done on paper,' he saids
(Through the Looking Glass, Lewis Carroll)
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APPENDIX 1

Proofs of Alternative Formulas -- 2 x 2 Partitioning

This appendix outlines some of the manipulations necessary
to establish a number of inter-relations which have been
quoted in section 3.1l |

Consider first the orthonormal case. The relationship-
between the two sets of effective operators (3.1) and (3.2)

is easily established. From the definition-

~(2) _ =1,
Hy"' =gy Gy o
one obtains, .
~(2) _ -1 ' k t, <
iy = 2 [ Hy, + Hypf + £ (Hg, + Hppf)]

1[H(1) + 1) (£) fH(l))]
= &)+ glefpWe).
A similar procedure establishes the relation (3.3b) betweem
(%) ana i{!). 1o establish eq.. (3.6), the result (3.3a) is
substituted into-(3.5), and the "pull-through" relations,. (2.32),

used. This yierds
2oy = 1 ~(2)
D'“/(f) = Hp, + Hppf - fHy

. g (1)) o gemletn(M) (£)
(Hg, + Hppf =fH,"') - fgy £ D "7(£)

(1g = fgzlf*)ufl)(f)

15(1)g),

The conditiom that' T~'HT be block diagonal is easily determined

- .
inia direct manner. The inverse of T is



-1 -1t

act |8 A T

T -1 “1.t| ¢
-tey  1p- fg
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Matrix multiplecation, followed by use of the "pull-through”

relations,. (2.32), then establishes: that the off-diagonal

-1

blocks of ﬁf Hﬁ“are'given by D‘zx(fﬁ = gﬁ}D(l)(f)m

Before deriving-eqse (3.11) = (3e15), applying in the

case of a monorthonormal basis, it is necessary to examine the

orthorormality condition, (2.101B), im more detail..

of” the matrix g are

. e gt .
€y = Spp * Sapf * £'Spy * £ Sppfs
. + te w
and
o = h's,, + hls, £+ s, +S_.f=g
€Ba T T Pan T T am BA © °BB" - 8B °

Thus, ome has,
_ t . 1. ~ -r .

and

gg = (15 - h'eN)Sp + nlg o o
Here, and throughout this appendix, the notation

§A =S,, +S,of , §Bi= Son + S,y

AA AB BB BA

established in eqe. (2.112), is used to simplify the
From (Al.2) and (Al1.3), one obtains,

- g1 = Th 1 -1
and:
g.821 = (1 - ntst) + ntg, 821 .
BB g~ AR’B °

The blocks

(A1.1)

(A1.2)

(A1.3)

equationse.

(Alelt)

(Al.5)
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From these last relations, two generalizations of the "pull-

through" relations in the orthonormal tase, can be derived.

They are
ael _ U t -1 -1
h gS, = gA B Int & n's gBA s o gABSB hY,  (A1.6)
andi
a=1.1 _ | am1 t_ a-1.t :
gSy f = 7 &Sy * £th! gg5p - T gBA§A '« (A1.7)

The lIast two temms vanish in each if Epp = 03 leaving the

simpler expressions

h'egs:t = Bsg1n' , | (A1.8)
and
gS;iet = g 55t . (A1.9)

Two other relations will be useful below in deriving (3.15).

They are,
hlg, = =(1, - hTeT)(S,, + Soaf) + (A1410)
& B~ 1 MSpy Y Spet) T Epa 0 .
and
te = (1, - £ThT)(s,,h +S,.) + & (A1.11)
€p A RALTVY AB” 7 Epp * .

The first, (A1.10), is obtained as follows,

1 =1
h,gA.

NS Y r tot
(15 = h'f )h.§A + hf g

Lo taty oy owtet
--(1E & k£ )(S ga * Sgef - gBA» + hif g,
= <(1g = h'ET NSy, + Spaf) + &y o
The first line here- is obtained by premultiplying (Al.2) by nt,
The second line then follows directly from: the definitiom,

(Al.1), of Sgpe The relatiom (Al1.11) is derived analogously,
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by first premultiplying (Al1.3) by ff. and then using (Al.1)
for E\p © g%io A number of other relations similar to these
could be derived here also, but these are sufficient for what
follows. |

To establish the relationship between the operators H(l)

and Hﬁ )m we proceed as followse. First, from (Al.1),

- yig=1
= Lepy - (Spy * Sppf)JSy" »

and thus, GQm-(3w13) yields
‘ -1 , : (1 ; ~ .
gy + Hapf = <(n' - 3,371 20y + myp) (M ()e (arar2)
Then, using (3.8), one obtains

2(2) _ -1g
Hy g Gy

-1
g [Hy, + Hypff+ £ (Hg, + HBBf)]

L

g t(H,, + Hypf - £7[(n' - gBA STy, + HypE)
- V()73
g (1, = £'hl)(H,, + Hf) + g, gt o{l)(g)

1
* g te gBAHX )

L]

But, from eq. (Al 2 )‘9-

(1, - £'n%) = (g, - £7g3,)5;%,

and thus,, _
~(2) a=~1 : “lotrn(l) _ &=1,. v
Hy' = Sp7(Hy, + HAB;L + g, £'[D -gBAS (H .+HABﬂ)
(1)
* epfly ]

establishing (3.11). Equation (3.12) is obtained im an analogous

mannere.
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A number of approaches can be used to obtain eqs. (3.15),
one of which is as follows:

(2) _ o ,
D Hpy + Hppf = (Sp, + Sgpf) 5A A

=1y

G

toty=1
Hp, + Hppf + (15 - h¥e')"t(w'- g, 67006,

-t - % : . ) -y
(15 = wTeN) ™1 (1, - w'eT) (g, +H  0) + n'e,-gp,e776, ]

= (1, - n*f*»'1(13 -1, t)D(l)(f). (Al413)

B EpaBy T
The transitiom from the first lime to the second is effected
using the relatiom (A1.10), and the remainder by use of
previous definmitions, including (Al.12) aﬁovem From (Al.3),
one has
(15 = n'£T) = (spg + Sph)(eg + hegy )t
which, upon substitution into (A1.12)), gives eq. (3.15a)e.
Equatibnx(B;iSb% follows directly from (3.15a) by simply
dropping the terms inthBannghAm The easiest way to obtaim
(3.15¢c) is to begim again: from the definition, (3.14), of D(z)(f),
p{?)(g)

L]

H

BA

- 2(2).
+ Hppf = (Spy + SppflHy

Hpy *+ Hpgf - (Spy * SBB;)[ﬁil) * gzlffD<1)(f)]

(15 - (Sg, + Sgfler e M ().
This derivation:is analogous to that establishing (3.6) in the
case of an orthomormal basis..

For an orthonormal basis, it was: found that the condition
D‘z)(fb = 0 could be obtained by requiring that the product

%’1H§ be bBlock diagonale For a nonorthonormal basis, the
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corresponding condition is to require the product (S@)’lﬂi‘tm
A.rh

Be block diagonal. But writing T ST = g, one has,
(sT)! = g~137,

amd’
(s?)~1ur = ¢~17tHT = g*lc..

Thus, whem g is block diagonal, (Si)’lﬁa has diagonal blocks
ﬁiz) and ﬁé?), and off-diagonal blocks,

8 2 ' g ‘.-;'- .- - 1

Dém) = [(sD)"'HD]y, = gh}n( ),
and Lo

2)* S _ =1 (1)t

Dﬁ& = [(ST)T'HT], 5 = & pl1)t,
While: this is of the form of eqe. (3.6), Déi). can not be
written in terms of ﬁiz) as inieqe (3e14), unlike the analogous

result im an orthonormal basise
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APPENDIX 2

The 3 x 3 and 4 x 4 Case -~ Orthonormal Basis

To illustrate some of the complications which arise in a
multiple partitioning formalism, a number of explicit formulas
are given here for quantities arising out of a 3 x 3 and a
4 x4 partitioning formalism.

In the 3 x 3 partitioning formalism, the three non-self=-

adjoint effective operators given by (4.17) are

Hy = Hyy + Hypf5y + Hyafa, o

ju o1 3
i

p = Hop + Hy 15 + Hygfgy |
| | (A21)
and

Hy = Hgy + Hy fy5 + Hypfps s

each containing only one extra term compared to the 2 x 2 case.

A considerably greater increase in complexity occurs when m=3
in the defining conditions on: the fj;, given by (4.18). There
are now six matrix block equations with six terms each; in
place of the two block equations with four terms each, as . in:

the 2 x 2 case. They are,

Dyy = Hyy% Hppfpy+ Hpafayy = £ (Hy + Hypfpy + Hygfqy) =
Dgy = Hyy¥ Hypf 4 Hygfyy = £y (Hyg+ Hypfyy + Hygfq) =
Dy, = Hyp* Hyy it Hygfay = £15(Hpp Hy 815 + Hyyfgp) =
Dyp = Hyp# Hy fip% Hygfay = f5p(Hypt Hyyfp + Hpsfsp) =
Dyy = Hyq% Hy £i9% Hypfhg = £5(Hygt Hy £y + Hypfpa) =

and,
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Dp3 = Haz* Ma3fys* Hapfpg = fp3(Hys* Hyyfyg + Hypfpy) = 0.
(A2.2)
The orthogonality condition in (4.1) gives rise to three matrix

block equations here,

- t .ot e o
812 = f1p * £y + 3,85, = 0y
. too et .
g3 = f1q * £33+ £3, = 0y (12.3)
and,
R ’ t
833 = fypfyq * T3 + £35 = 0.

These equations can be used to eliminate f12' f13 and f23 from
the remainder of the formalism, in favour of le, f31 and f32;
In fact, it is not difficult to show that

t t
f12 = =f31 = £31%35 »

o t oot =1, ot t ot
f23 = (1g = £1p851) (~f35 + £1,85,)
. t t e Tlre ot t ooyt
= -l1y + (£ + £39855)05, 17085, + (fpy + £3:03,)85, 1,
and (A2 k)

ot t
f13 = =f31 = £31%35

= tlie £ (1 r(eh v 2] £00] T e e (2] 02 £002] T,
The problems involved in eliminating f12, f23 and f13 from egs.
(A2.2), and thereby reducing the number of block equations
which must be considered from six to three, are clear from these
equations. It would be quite difficult to derive efficient
procedures to solve such a system, because of the generally

complex dependence of the remaining three block equations on:

the elements of f21m f31 and f32.
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For a 4 x 4 partitioning, the orthogonality conditions,

g1y = ¢, give the following six unique matrix block equations,

. t t t )
812 = f1p * o1 * f31%32 * Ty = O (A2.5)
g3 = f13 * f;1f23 + fgl + fﬁlfu3 = 0, .

(A2,.6)
R w 1 t .
8p3 = T1pf1q * foq + 35 + £)58,5 = 0,
g1y = iy * Tpfay * T3185 * Ty = O

B | R |

&y = fipfqy + T3 * f32f31+ + £, = 0, (A2.7)
ot t t
gy = T13T1y * fa3fpy + f34 * fjy3 = 0

These six equations can be used to write the fI . (J >.%),
solely in terms of the f150 (J < 1I), as followss Equation
(A2.5) gives £, directly as-

. _ t :
| £y, = -(f21 + f31 32 * £h1542) 0 (A2,.8)

Then the two equations, (A2.6),are solved simultaneously for.

f13 and f23, yielding,
f23 = (f12f51‘1)-1[f§2* flzfu3' £15(£3,* f;1fu3)3;
and (A2.9a)
£,4 = =(£); + £4,8)5) - £31555e (A2.9%)

Substitution of the adjoint of (A2.8) inmto (A2.9a) then: gives
23 i terms only of the fyg (J < 1), and substitution of

that result into (A2.9b) does the same for fi3;. The three

equations (A2.7) can be solved simultaneously for flb? fzu;'

‘and f34” yielding,
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_ t oot ot ot ot t oot yelopt ot ot 4=l
£ = -[1-f13f31-(f23-f13f21)(1-f12f21) (f32-f12f31)]
t oot ot et ot of t oot y=1, ot Lot ot
x [£)q+8y 38y + (£p3=T1 3851 ) (1=, 051 )7 (=Lyp4 T 50 ) s
(AZ.IO&)
- t oot y=lpot Lot ot oot ot of
fon = =(1=£1,85, )T [E)p+E By +(£35-F1 5,85, )15, ],
‘ (A2,10D)
and :
£, = (8, + £ £+ g1 £ ). (A2.10¢c)
14 41 31734 217247 *

Substitution of egs. (A2.8) and (A2.9) into_(szloa) gives féu
im terms of the fi;, (J < I), onlys Similarly, (A2.8), (A2.9),
and (A2.10a) can then be used to writéAfzu in terms of the

same set of variables. Equations (A2.10a2,b) then can be used
to eliminate f,, and fjwjfromf(Az.loc). The resulting expres=-
sions will clearly be very léngthy.._

It should be noted that the elements of the fiJ' (J> 1),
can be calculated numérically much more easily from those of’
the f1;, (J < I), than egs. (A2.3) or (A2.8) - (A2.10) indicate.
Such a calculation involves the solution of Ilenink

| J<I
simultaneous linear equations in:the same number of scalar
variables. The complicated formulas above arise only when

analytic formulas are desired relating these different matrix

Blocks fiJ”
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APPENDIX 3

Proofs of Alternative Formulas -- Multiple Partitioning

This appendix outlines some of the manipulations necessary
to establish a number of inter-relations which have been
quoted in section 4.4.

Equations (4.73) for an orthonormal basis are obtained
as follows. From eqe (4.37) and eq. (4.72), one has,

2(2) -1
Hi™' =g G

1[}{(1)

= &g %1 £3pLHy* Kot Hygfxrdd « (A3.1)

Elimination of the quantity in the inner brackets in this

equation using

1) ] Py a n(l)
D1 = (W Ty = (TR gy

= H a(1)
= Hyp + K§I Hpefxr = frip (A3.2)

leads te the desired expression,

a{2) - gll[H(1) el (o{s £ A{1))]

J%I

(1) -1 (1)
=f;7 + g7 J§IfJIDJI .

JI

Equation (4.10) has also been used in the last step;

The relation (4.76) between D(l) and DCZ), in an ortho-
normal basis, is established immediately by substituting eq.
(4.73) into the definition, (4.75), of D(z)

The non-orthonormal case presents many more complicatlons

here. From eq. (4.58), one has,
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+ X S, f

Sk1* L%I KL LI = gyx1* LK(SLI+ L Spufur)e (53,3)

fo M#I

Upon substitution of this equation into eq. (4.59), a series
of alternative formulas for the metric g1 ¢an be obtained,

among them,

gr= fx(Sprt E SLMfMI)]*SII+ Z Srkfxr

fralexr 3 LAK MFT KFI

K#I

et
K#I fx1 LK(SLI

L#K

ZS
MFL

+ L S.. T

wfmr’* 2 KIgKI*SII kg1 TK'KI

K¥£I

- t ot
=[1= £ £ f1, J(S;;*+ T Spyfir)= E [ (s + L S .fo)]

L%I

t
+ L f &yt (I = 1y eeey M)o (A305)
K#T KI®KI ’

This last formr is the generalization to the m x m partitioning
of eqs. (Al.1) and (A1.2) of Appendix 1. In the case of a |
2 x 2 partitioning, the second term of (A3.5) does not occur
at all because of the restrictions on the range of the inner
summation. Also, the summation symbols in the first and third
terms of (A3.5) can be deleted in that case, since the
summation is over only one term.

Using the notation'-gfI of eqs (4.65), the generalizations
of eqse (Al1.3) and (Al.l4) of Appendix 1 are obtained from
(A3.5) as

= (1= T £F

g1
I 1 KA

1t
KI IK)+{K# 1[ LIL K(SLI+M§ISLM )]
.(A3.6)
a=1

-KﬁIfﬁIgKI}SI » (I’-‘l pees .M) .
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The analogues of eqs. (Al.5) and (Al.6) of Appendix 1 are now
obtained by right multiplying (A3. 6) by fIP, (P#1), and left
multiplying the equation for gPSP by the same factor, and |

combining the two equations to get,

ta-l _ _ a-l ot 1 1
108157 = epop f1p = D f1p * f1p B,
and: (ABC'?)
3-1,1
g5y fpr = fPIgPSP - fPI:D + &8 fPI'
where
B=x el £l 4 [z et (s..szs  f£..)]-¢ £ g S§71
ki1 KI'IK x;! KI £k LK rr* s LMMI x;!I 1 KI 51 °
K#P L#1
and L . (A308)
t .t t t -1
=L f  f + L f (S;o* L S:pofup)]= T £.08 szl,
K;;P kpTPK" T TKP %;K LK L o S e 1=y 7 fkpeke Sp
KAT -

The two equations, (A3.7), as well as the two quantities, &8
and &) , can be obtained from each other by interchanging the
indices P and I. The generalization of egqs. (A1.7) and (A1.8
of Appendix 1 is then:obtained by dropping those terms in
(A3.7) above involving gicr? K#1. Here, however, this amounts
to dropping only the last term inside the curly brackets of
£ and D . Thus the usefulness of the resulting equations
as generalized multiple partitioning 'pull-through' relations
is severely hampered, because of the complexity and size of
the last two terms of (A3.7), even when the orthogonality
conditiom is satisfiede.

Finally, the generalization of eqs. (A1.9) and (A1.10) of
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Appendix 1, which were used to obtain one of the relations
between D(z) and D(l) for a 2 x 2 partitioning, can be obtained

as followse. From (4.58), one has

=g (Sp*+ L S )=(S.4++ L 8 )
IJSI JI™ KfJ J KI LfI KL LI JI KfI JK KI’*
KFIL (A3.9)
so that, from eq. (4.59) and (A3.4),

t bt t | |
£178r = (1=fr 85 gyp= L £y s(Sygp* L SKLfLI)°(SJI+K§ISJKfKI)]

K#J L#I
K#I
t
+fi . L f f -] e (S.,+ L S )]
Iy iy KI IKSI IJK%I KI- % LK LI* g LM a1
K#ET L#I
t 1
+ fIJkilfKIgKI
2 w(1ef] £7 (S 1+ T S, fr)tgi+El L £]
1713/ Va1 JKTKI/T8J17 g KI8KI
K#I K#£I

K#£J

t t+
*frg k1 IKSI‘fIJ z fKI[ fLK(SLI+ L Syyfyr)]
K#£I K#£J L#K M#1
KA KA  L#I
(A3.10)
t e i
- fKJ(SKI*KiJSKLfLI)‘
K#I

The last four complicated summation terms in (A3.10) make thé
result effectively useless, and therefore, no generalization
of eqs. (3.15a,b) is given here.

The proof of eqs. (4.82) is as follows. From:eq;n(A3.9),

one has,

-(Sy5*

—tal
(S + £ S £.7)1S7"
KA KJ K1* KL LI*PI

o yA=1_ .t
S £,.2)ST =2f L e[ girr=
JK KI/®1 tIJTLegI”T JFT

s
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Then, eqe (4.83) becomes,

(1) a=1
D =H +EHf—(S + LS. . f .)ST (Hee+t ZH <)

-1
=f..+ L H o[£} - g;p= T £5 (Spr* L S o) 57]
Iy UK Txrtlirs- &1 %i% KJ KT 2 KL LT

x (Hpp+ L Hpgfi0)e (A3.11)
1" gy 18 IT 11,

from which, an-expressiOn;for the combinationrHJI+K§ HJKfKI
' I
camr be obtained. By definition, one has,

2(2)
Hy ‘51 GI

=‘311[*‘11

£ 4 L £h (Hoet E Hppfrr)]
Hrafor JAT 91T T gy JKTKIY S

J#L #1

which becomes, after using (A3.11),
~(2)
Hy

81 HII+J§IHIJfJI JﬁlfJI[fIJ &1y

1 a=1 (1)
L fpy(Spr* E Spqfry) S ](H +J§1HTJ 717051

K#I L%I
| KAJ
-1, t oot vrw
=g7" (1= Z £7 f3 )J(Hy .+ L Hy £.0)
I el o BLALS s atv i S b
t (1) (1)
J%IfJI[gJI'Kng J(SKI+L§ISKLfLI)]H *JﬁlfJIDJI
K#I
=gT [g [ (S, -+ £ S..f )J+ L 1 e 1
1 L8 K%I KI L#K 1kSL1 wy MM’ d* % Tkrek
LAT
2e1 /4 N _
X Sp (HII+J§IHIJfJI)
, (1) (1)
*in JI[gJI J(SKI+L§ISKLfLI)]H +J§IfJI JI°

“
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uging eq. (A3.5) to obtain this last forme. A large amount of

cancellation now occurs'among the coefficients of

(1) a~1
= ST (Hyp+ z Hy £71)y

with the final result being eq. (4.82),

2(2) (1) pl1),
'Hé = * g J§I 1 -
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APPENDIX 4

Description of Algorithms -- 2 x 2 Case

This appendix gives detailed descriptions of the
implementation of the algorithms discussed in chapter 5.
In various instances below, especially in the updating
cycles, the order in which the computations are done is

important. Greek indices refer to basis elements in Sy,

Iy

Roman indices to basis elements in SA'

1. Simple Diagonal Newton=Raphson (SDNR).

initialiiationw ' f =0
~(1)
Hym" o= Hpy

~(1)diag _ diag

Hp™ = Hpp

thens
m; n
B A
(1) . ~(1)
Dor = Hop p§1H0pfpr t=1 ct(H )tr '

5f = D(l)/[(H(l)) (ﬁél)f)qo] ¢ I‘zlmovc‘-o ..nA

updéte: o=1.....nB

(ﬁ(l)) - (ﬁ(l))sz“*msdéf (s=1 ,_....,.nA),.

or?*

a(1)ty ‘
-+ (Hp ' )gg= 855 Hog o




2. Quadratic Diagonal Newton-Raphson (QDNR).

initializations f =

ﬁﬁl) = Hpae

ﬁ( )diag _ Hgg?g:
then ng n,

p{1). a(1)
H .+ L H f z £ (H ")
Dor OT 4z9 OP pr- t=1 ot( A ‘tr’

2(1)y 2(1)t
zsor = (Hé )rr - (HB )oc

B (1)
if Hcr = 0, then 8f = D /[;or

6for 0, otherwise,.

if Both Hbr=o.zlcr=o, then 8f _=0,

otherwise,
' 2%
Hor™ Aor [sz +4Horngi’]é .
X = sen(A, )
u;;ate:

(}{»(1)) .’(H(l)) +H806f°r" (s=1,...,nA):

GO GO er n

co"( cr ro '

fcrd'for * 6fcr ¢

it A, =0, then Gfora+JD£r)/Hro if real,.

334

= ey Ny

= 1,000, nBo



3. Diagonal Generalized Nesbet (DGN).

initializatiom f=0,
2(2)
Hy o= Hypo
gy % 1A ’
thens ; _
g

W= H +IH
or or . op pr *

i

p®lay g r (72

or or" t=1 ot( A )tr' T=lpesesny,

or or rr- 00]

updates
t
(6gk)ts 6ftcfos*ftoafof{’ftcafos ’
(S.t = 1’ se oy nA) .
gA. -> gA + agA ’

for ~p far 6f°r [ ] (I"‘l, o000 ) nA).

oA
A f z
rs ro..,

wt 6fus [} (r,S = 1. o0 0y nA).

a(2) a(2) -1

2(2) t a(2)
5f (HA )ts+5frcbfcs(HA )ss'

335e

O = 1ly00e, nB_



l,. Full Generalized Nesbet (FGN).

initialization:s f =0,

£(2)
i) =My,

gy, © 1A v

thens iy -

W =H +LH
or "Or ,.y 9P pr ’

n;
D@y o
or or" t-l

r=i, .‘"-..nA *

2(2)
ot(H )tr'

| 5(2) - n(2)
solve 6ch[HA HcclAJ Do *

update:

t
(8gp)q= 6ftofcs f%abfos*aftcbf

(83..1; = 10-,; seey nA) ’

os *

g, = 8 * 08 »

. n"
ot 1(2)
Ars wrcsfos fnotfiaf £ s
(I‘..,,S-'l .,o-tr.n‘n) 'Y

ﬁ{2) H(2) + gt .

for - fOr + éfor " (I‘.'."-‘* 1..‘ sesy. nA),

—

336

°=1’. 00y nE.
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Simple Diagonal Newton-Raphson With Overlap (SDNRS).

initializations f=0, h =0,
al ~
Hy = H,, , Sy, =Sy,
s'tdiag: _ tdiag ‘fdiag fdiagﬁ
Hy, =Hgg v Sg = Sgg
thems my, n N
G or Hor+ L Hupfpr* E hsu(HA)sr »
e=1
e o o(Sy)
=S, + L S_f +L h §
€or ™ or" p=i 9P PT g9 B A‘sr ?
'Z& —(HB )ao( A)rr -(H ) (SB)oo

bforzcgor(ﬁ;;.) rr'Gcr(é’A) rr /i Ac:r ’

) Af a..r
éhroz[(SBQUGGor'(HB%)ocgorszscr,’

updates
LEE ‘0.
(HA)sr-" (Hh)sr

(S

»A)Er -—.(S

A)sr

(FeT) e (BT
B ‘go- B ca

‘.1’ C o “1' .
(SB:?)bc -> (S‘Bi)oc

for == fTor * 8%
pg * Bpg + o0

ot 5h Sro »
or

ro °*

+ Hsosfcr. r=1.u 0.0y nA'

s=1 .“.m‘s.',.nh.v :
- 0=1, ese e
f Sgedfore _' "B

+ 6h Hrc ’
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6« Quadratic Diagonal Newton-Raphsom with Overlap (QDNRS).

initialization: f =0,
ey,
ﬁéfdiag - H;giag'
thens ng m,

G =H + L H_f + T h ()

or “or ., %®Pr __, 86 A'sr '
: ) -
Eor~Sor* pflsqo fpr*sfl 156 SA ) er

~ ‘ ‘4.
A= (Sn)ocﬂio - Sro(HB?oc ’

B = (Sp)gq(H,)

¢ = -(§,) (H,)

if A=0, B=0, 6for

L 4 .
rrir * &or rr’

= O’

| if a0, BFo,  of_ _ = =B

: Ty
§é£+(H§.) of

"o Gg_"0r
ahrov - . _ L
' “HigTop=(Hy ) p
updates
.r. ’ ~ . ) -
(HA)§£.’(HA)sr+Hsu§fbr’

(8=140009n,),
A . » “ A
G lgp>Gplg* Se0°Tor?

AR . AR :
(H?t)oo"(HBi)00+6h£9Hr°'

: -

24t t -
(SBg)OC"’(SE-)oa+5hfasro”

f o f&

+ f Al
or T 85p o

hro‘-b hrc + bhra ,

" . ) )
rr?(SA)rr(HB)ocfsrcGor*Hrogﬁr'

= (-c/m)¥ i c/a <0,

if Ao, B=0, 6f, .
6f,.. = 0 ‘if C/A > 0,

2C
o I (r'm +{ BF=GAC

h = 0'1

Sp = Spa 0
tdiag: _ Sfdiag‘
.“ BB—‘; '

Sg

—

I‘“l peoe .nA.

c=1 pee o.-nBio




7. Non=Orthogonal Diagonal Generalized Nesbet (DGNS),

initializations f=0,
a(2) _
HA SAA HAA .
) < SAA '
thens
Ty

Y =S +ZS_°f

ar “or.  on1 op Pr. (r=1,¢oo.nh)'

nB —
w + H
or Har p21 op pr?
Déi)awor t 1 t(H(Z))tr’ rgl,.om,QA.

5% =D‘2’/[m‘2’)

or Or

rr oo oo]’
update:

t
&f +6ftoS°°6f

(SQt = 1""r nh)'_,

' .t
(égA)ts =5£) Y +Y

to0°06s8 “to o8 !

gA - gA + 5€A »”

rdrdbxf Sgobf (r=1,..¢.nA),
n, _

I 2(2)
Ars wroafcs Y, otglbfot(HA )

or’

a(2)
+6frosoaéfos(ﬁ )ss

(r.szpom.,nA)o

H(z) -»H(z) + gA A »

for -l fﬂr + 6f°r » (r=1....,nk).

339.

0#1,....n3.



8% Non-Orthogonal Full Generalized Nesbet (FGNS)..

initializations f=0,
| a(2) _ =1
HA SAA HAA R
gA = S"AA ’
thens: ]
Np

Y. =S_+ LS

or-"or oot opfpr » (ral.,....nA).

warg}‘ﬁar"' pfi}{bp fPr »
r=ljeeeyn,,

n
A
(2) : (1(2)
Dor awor'tflyot(HA Ver

a(2) a (2)
oohA 'HoolA] = Dga'»

solves 8f ,[S
update:

50y =ae? v 1
(55h)ts“5ftoYos+ Y"t:o os to" oo

(s,t=1,;.m,nA).

: t '
6f _+6f__S 6f°s,.

€y ™ € + agA .in
t A
to Z 6f

=(2),
AN S

et
Ay =Wy Of

ts to os™ Y

or(

(S.legooo.nA)o

A s HA + g;lA 9

T - f r + 5f°r. (r=1..-~-.nA).

340,

o=1 peee .nE{.
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APPENDIX S,

Rates of Convergence and Asymptotic Error Constants

This appendix analyses thé rates of convergence of some
- of the algorithms, for the determination of f, described im
chapter 5. These considerations are based to some degree on
the work of Traub (1964).

To avoid confusion: between subscripts denoting iteration
number, and those denoting matrix elements, the fixed point

iteration formula, eq. (5.4), will be rewritten here as.

¢(f) = £ - X D(£), . (AS5.1)
where X = -)fdc Thus, ¢(fexact) = fexact' because D(fexaCt)ao.
The basic iteration formula, eqs. (5.5), can be written in

this notation as

fm*i = fm - ‘%D(fm) = ¢(fm)o _ (A502)

If the necessary derivatives of ¢(f) exist at'fexaCt,

then ¢(f) can be expanded im a Taylor series centered on
ﬂ?xaCt, which allows one to write an expression for the error
in the current estimate of f, given by ¢(f), in terms of the

error in the result of the previous iteration. One has

2 .

(m+1) 3%p4 (m) 8 %ot (m)_(m)
ept = I espr * z €or Stpt

f'rafor fexact °{raforafofr' fexact

; o

* eeaae 'Y (A5'3)
where-

(m) _ exact - '
€or (flor ~for * (AS.4)
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The iteration function ¢(f) is then said to be of order p if
all derivatives of the elements of ¢, with respect to eleménts
of f, of order less than p vanish at f = fexactw while at

least one derivafive of order p does not vanishe. Near the
solution, the dominant term in the error will then be a sum:
over terms containing the product of p errors frbm the previous
iteration;v The asymptotic error constants for this iteration

th order coefficients in (A5e3).

functions are taken here as the p
For the exact Newton=Raphson equations.,(s.é), the iteration
function is

-1

o"R(g) = £ - J°1D. ' (A5.5)
Thus, one has
NR -1
Y 3(J™ )
Vet .y 2 rure g, (A5:6

f = ﬁexaCt exact) = 0,. The second

which vanishes at ,» because D(f

derivatives are

2_NR 2, -1 2
ot L _ g 2 et 5 L (1) gy ® Bpg
3F, 3f 00 TeS 3G %o, 8 48 LAY Y I

(A5.7)

where the identity, 3(J71J)/af . = 0, has been used to obtain
the last terme At f = fexactw the first summation in (A5.7)
vanishes;, but not the second one,in general. The Newton-Raphson
egquations are thus second order convergent, as is well known,

and one can write
2

"D
e%$+1) =-t & U I)Pt,¢s . ?é?)éb-r-
: oy,ror" aforafaa.r. fexact '
"l".S'

+ O(GB)w (A5.8)
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indicating explicitly the second order nature of ¢NR(f).

The algorithm SDNR. is based on the equation D(l)(f)=0.
As seen from eq. (5.15), the operator.ﬂt in; the iterationm
formula ¢SDNR(f)'is just the inverse of the diagonal part of

the Jacobian matrix,

SONR . 1
-]Cpt,or - Jllf Secbrt (A5.9)
pty ot
so that .
’SDNR D(i)(f) .
(f) = t - E%TT-*- ’ (A5.10)
et, pt:
and’
agSDNR g1
Pt Pt or | "
= §,. 06 : (A5611)
_ Pc’rt ~ (15 ’
afor ﬂgxact th.pt fexact

" which vanishes onlyvfor p=0, and t=r, in general. Thus, for

¢SDNR, one can write

(1)t (m) 2(1) (m)
H z H
($+1) 0§=( B )po ot r#t( )rt PT
P ol

which verifies that ¢SDNR is indeed linearly convergent, and

+ 0(e®),  (A5.12)

gives an expression for the dominant error term near the solution.
A sufficient condition for convergence to occur is

(m)

(m+1) Ie ’ (P=1.010'HB} tzigowo'nA)m (A5013)

ept

Assuming that
o (M)

or
m

£1, (0=1,...,n3§:r=1,....nA).. (A5.1#)
ePt . i .

is true when'¢pt is to be evaluated, it can be seen from (A5.12)
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3hlte

that convergence will definitely occur if

(1)1 5(1) £(1) a(1)t
o [EH )"ol*rgtl(HA el |-G asars)

which is obtained by replacing all the ratios of the type (AS.1l)
occurring in (AS.13) by unity. When cycling systematically
through the elements of f, all far' (o%p, r#t), will have been

updated more recently than f at this point, and thus, in an

et
appropriate basis, the condition (A5.14), is not unreasonable,
as long as the calculation is converging and the errors thus
decreasing. While the condition (A5.15) is too crude to be
of any practical use, it does indicate that the rate of conver=
gence is related to the relative magnitudes of the differences
between diagonal elements in ﬁA and ﬁB’ and of their off-
diagonal elements. Convergence requires only that the errors
in the elements of f decrease over a number of iterations,
rather than that the errors in each element of f decrease in
every iterations.. The results of test calculations in Table 5.1
show that good rates of convergence occur when (A5.15) is
violated substantially for some elements of f (ag*for the
example with n = 250).

A more detailed error analysis indicates that a crucial
factor for convergence is the calculation of 6f one element at
a time, with continual updating of ﬁil) and ﬁél) (and implicitly,
of D(l)); If these quantities are updated only after a

complete sweep through 6f, convergence occurs only for small

nA, and Nge and is very slow, at best.
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For the generalized Nesbet algorithms, based on the
equation D(Z)(f)zo, the same sort of result is obtained. From
eq. (5.25), one has

3¢DGN Jgi)cr :
S000tr = S(z7 » (A5.16)
afor ﬂexact HPP - (HA )tt fexact

which does not vanish in general, and thus ¢DGN"is linearly
convergent in general, with

£ H (m) - I (H(z)) (m)

po qt , rt r

£2+1) Ofﬁ r£t . P + 0(e?). (A5417)

(#2)) 4y - Hop

For nAél, one has
(m)
H e
c-0

(m+1) o#P e + 0(e2). - (A5.18)

Therefore, algorithm DGN is second order convergent when nA=1
only if HEE is diagonal.

For the algorithm FGN, the operator X is the inverse of
the diagonal block part of J(z), defined in eqe. (5.21), each

such diagonal block of X corresponding to a row of D(z).
The algorithm is linearly convergent, since,
FGN Ny, N,
¢ B A
%o+ FGN (2)
_ = 6 8 + I I J. (A5.19a)
\ ecrt __ = ptyrs "tTs,or
3af : =1 s=1 ’ e
with
FGN. 2(2)
.?‘pt,g{s = —bp?’;[}iﬁp 1, = H ]St ’ (A5419D)
exact

does not vanish in general at f{
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The generalized Nesbet algorithms for use with a non-
orthonormal basis give similar results. From section 5.3.c,
it is seen that

9(DGNS -1 6

= — &
pt,or ~(2) - po rt’
' Sco(HA )rr Hoo

(A5.20)

and

FGNS _ a(2)q-1
g(pt.nr' 6po[Hoo - SaoﬁA I (A§.21)

Therefore, one has,

J(2)

Pt,or
= § 8 + (A5022)
Po rt a(2) ’
SPP(HA )tt - HPP\‘ fexact

_ a¢2$“s
afor fexact

which does not vanish in general for any values of pt and or.

Thus, for algorithm DGNS, one has,

omtl) ol & Jéiior ofm 0(e?).
Pt o,r| P°® rt Hﬁp - %W°(ﬁ£2))tt gexact or
(A5.23)

It is seen from eqe (5e¢52),. defining J(z),.that unless n,=1,

A
the coefficient of egi) on the right hand side here is not zero,

although it is likely very small. The expression for the error

FGNS is of the same form as (A5.19a) with (A5.21) substituted

in ¢
for (A5.19b)..

The error analysis for algorithms SDNRS and QDNRS requires
an extensien: of the procedures used above. The iteration

formula must now be written as the pair of equations

oot 2| o em a1 (,n)| o, (£00)

8, (£,1) h %2 (g,n) (32 (g,n) gp, (£2h)

(A5.24)
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Comparison to equation (5.44) yields the result,

(11) _ Gales | (12) _ =gy
Xi,or = - %0ebtr Kt,or =~ Spo’rt
Oy ’ Apt
] (ASOZS)
PS ~tt
@ -Gy ) U)o
yOr  ———— » yOR eo tr’
Lkpt po tr L}Pt

where lkpt is defined in eq. (5.45)s An expression for the
errors in the iteration formula (A5.24) must now be obtained

from a Taylor series in the elements of both f and h, which

yields the result,

[ae,) 3(s,)
(e§m+1))Pt= [;—-—2—33 (egm))'or +» —Lfet (egm))r;]
O,r afor ahro
2
3 (¢f)Pt (m) o (m)
T : (e ) e
+3 ?.r. aforafd'r"(ef )or(ef o'r _
0% (A5426)
25 (Be)s o™y (o(m), 2" (0)p (6(M))  (olm))
+ e e R e tat
aforauf'u' f or‘ " h r‘c ahroahr'o' h ro'®h r'c
+ 0(93)9

for ¢f. with all derivatives evaluated at fexact and hexact.

A similar expansion can be written for (e£m+1)). Substitution

of (A5.25) and (A5.24), then gives

at "t ~ al 1-
(elm*1)y - ¢ LHY ) 44(Sglpg = (S3)44(Hp Jog] (e{m))
f pt ToeE
o#P Doy,
al " Al (As.z?)
R CR (SA)tt(HA)ff](e;m))rP + 0(e?),
r#t Doy
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and
(er(amﬂ))tp _ z[ Blop B B pe B oo (¢‘§"‘))ot
O%P APt
(A5.28)
'y .
. [(SB PP A)rt (H )P(SA)rtJ (e(m)) + O/eez)o

r" t AP

Neither (e(m))Pt or (e(m)) tp occur in the first .order term of
either of these equations.

In all the first order error estimates derived in this
Appendix, the denominator of the error estimate is seen to be
identiecal to the denominator in the iteration formula. Thus,
'if this denominator becomes small, not only does 6f (or 6f and
6h) become large, but so do the errors in f (or f and h).
Also; it is seen that these error estimates all involve off-
diagonal elements of H (or H and S), and therefore, improved
convergence is expected in all algorithms if these matrices

are made more diagonal.
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APPENDIX 6

Algorithms for the Determination of T =

Multiple Partitioning Case

The purpose of this appendix is to outline, in some
detail, algorithms for solving eqs. (5.74) = (5.77) for the
matrix elements of the off-diagonal blocks of the uncoupling

-~

operator T in an m x m partitioning.

A6.1 Methods Based on D&I)(T) = 0.

If the fJI' (I,J=1, eee, m, I#J), are approximate solutions
to any of the defining conditions (5.74) = (5.77), and the exact
: 2 - o .
solutions are given by fJI = fJI + éfJI,.then,‘from the equations
(1)(T) = 0, it is seen that the exact corrections 6f;1 to the

fJI are given by
z HJK(T )6fKI -beI I(T) D(i)(T o (I,J=1,e0e,my I#J),
K#I
(A6.1)
where
D1 20, _ o

A\ ~
If the exact effective operators HI(T), (I=1,¢eso,m), were known,
the linear system (A6.1) could be solved directly for the 6fyye
The Newton-Raphson equations corresponding to the nonlinear

systemeéi) = 0, eqsS. (5.74), aré

JK(To)beI - °fJIH?(T°) = -D(l)(T°). (I,J=1,000,m, I£J),

K#I
(A6.3)
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which differ from (A6.1) only in that the approximate effective
operators ﬁél)(ﬁo) appear in (A6.3) in place of the exact
operators ﬁi(i) in (A6.1)s Equations (A6.3) are obtained by
substituting the Jacobian matrix with elements
S0 20 - V) s @)
JrIﬂoK 1 3 (£ ) r® or Skt Mok P SrtdLI ¢
KL'Pt | (A6.4)
into eq. (5;6), and isolating the JI block. The similarity of
eqs. (A6.1) - (A6.4) to the corresponding equations for a
2 x 2 partitioning is seen if it is noted that H%B = ﬁé})*
inm that case..
If solved exactly, eqs. (A6.3) would lead to a second
order convergent algorithm. In fact, if the ﬁ§1)(§°) are
replaced. by the ﬁéz)(fo), the resulting iteration formula is
nearly third order convergent, just as in the 2 x 2 case.

However, the linear system (A6.3) is of dimension 2 £ nInw.
I<J

which can bé‘unacceptably large even when n = L ny is itself

not unusually large, !
There are at least two levels of diagonal approximations

possible here. In the diagonal block approximation, only terms

involving 8f;; itself inteq. (A6.3) are retained, leaving

ﬁ.IiJ&fJI - bf‘nﬁ%“ ‘(ﬁ)o (I,0=1,000,m, I#j)e (A6.5)

This involves the solution of m(m-1) smaller systems of linear
equations in each iteration, of dimensions, respectively,
ninge (i,J=1...;.m.fI%J), a considerable reduction. in

computation: per iterative sweep. These equations become
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especially useful if each of the ny is small, that is, if the
partitioning divides up the full space into a large number of
subspaces of small dimension. It might also be necessary to

use (A6.5) if the off-diagonal elements of theqﬁgJ

are large. In the 2 x 2 case, eqs. (A6.5) are still the full

and the ﬁ%l)

Newton-Raphson equations, howevers. _ v

The lowest level of diagonal approximation of (A6Q3) gives
an iteration formula which reduces to that of algorithm SDNR
in the 2 x 2 cases It consists of retention of only the indi=-
vidual diagonal elements of the Jacobian matrix (A6.4), which

leads to the iteration formula,

o(1)
5r _ = 1 (A6.6)
91 [(ﬁél))rr = (ﬁgJ)oc ]

Like SDNR, an efficient iterative scheme based on eq. (A6.6)

would consist of cycling through the beI one element at a

time, calculating the Délg as required, and storing the ﬁ%l)
J°I
and diagonal elements of the ﬁ%J continuously. Because the
”~ : A :
H§1) andfsgm.ane?linear in the fJI' they are easily updated,
according to
2(1)y ; -

(bHI )"Sr = (HIJ)SOPfOJrI' (S.—lgo»-o ou,nI), (A6o7a)
and

AT - (e - (an(1)

(GHJJ)ca - (HIJ)robfaJrI B (5HI )rr . (A6.7b)

A chan elinwf affects only ﬁ(l) and‘ﬁm . If the diagonal
cnange ki, YA KK* &
elements in different diagonal blocks of H are well separated,

and the off-diagonal elements are small compared to these
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separations, then a reasonable starting approximation is §=1n,
or 1 = 0, (I,J=1,ee,m, IAJ). The block columns of T can be

determined individually here, in any order, because the effective

operators H%l). andqﬁgJ. as well as the quantities Dgi),

(J=1, ees,m, J#I), depend only on the fr10 (L=1, e0e,m, LFZI).

Substitution of f£.. = £%. +6f into eq. (A6.1) yields

A JI Jr *
the exact equation for the beI’

Jl

(1) - (1) m0
D (T )== L H (T )6f -6f ~H (T7)+of L Hi 8f 1,
KfI JK JI'I JIK#I IK""KI
(I’J=1’ sesy M, I%J)o (A608)
The diagonal block approximation,
(1) ,50,_ Q1 (1)
DJI (T )--HJJéfJI+6fJIHI +6fJIHIJ5fJI' (A6.9)

has a form in ébe like the form of the basic defining condition,
eq. (2.16), for a'2 x 2 partitioning. The diagonal elements

of this equation give a quadratic iteration formula,

. 2 a(1) (1) |
(HIJ)rcafo r +[(HI ) (HJJ)oajbfo (D ) 0.
J°I Jr1 ( 6.10)
. Ab6L10
When 6f r is large, this formula may give improved convergence.
J°I A

The relative increase in cost accompanying the use of (A6.10)
in place of (A6.6) depends on: the dimension of the problem,

but becomes negligible as H becomes large..
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A6.,2 Methods Based onlggi)(i) = 0.

The elements of the Jacobian matrix in this case are given by,

2)
52 _anith,

%7 I’PL K a(fLK Pt

2(2)
=1 D gr8op Prgbkr * (Hyplopdrtdyr

[(HJJ qo r
ny a(ﬁ(z))s
'sfi(fJI)cs

r )

a(fr 1)y

where,, from.(u.89). one obtains,

2(2)
3(H" g
A =181t 4
2(£. ) M%I[(gl I MI)s rt (gI MI)sp I)tr]bLM’

L1’ et (A6e12)
For any np which are unity, the first derivatives of the corres-
ﬁ{z) are zero. The relative insensitivity of the

4(2) ~0

effective operators Hy (T%),as approximations'tO'the exact

ponding

operatoFS'ﬁI(i), to errors in the off-diagonal blocks of 5,
can again be exploited by neglecting the derivatives of ﬁ£2)
in: (A6. 11).. This truncation leaves the simplified Jacobian

matrix, J(Z), with the only nonzero elements given by,
~(2) ' =(2) .
rropyt [(HJJ)op rt~ (A1 )tr op °1a* (Hyp)gpdrye
J I PL 1
b ' (A6.13)

This yiéids the Newton-Raphson equations

a(2) (z) e
JIHI +K§JHJK6fKI=-D s (I,0=1y00e,my I#T)s

K#I (A6.14)

H.,0f

33%%g1-%%
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In these equations, ohly the coefficlent matrices,ﬁ depend

(2)
I
on T, and these only om the Ith block column of @, respectively.
Therefore, in principle, egqs. (A6.14) can be used to solve for
the fLI' P
is, for a single block column of T at a time.

(L=1,e0eomy L¥I) for each value of I individually, that

If the separations between diagonal elements in different
diagonal bldcks are not small compared to the dff—diagonal
elements of H, then diagonal approximztions of (A6.14) are

usefulls. The diagonal block approximation: is

deéfJI-éfJIﬁ§2)=-D§§)' (J=1,000,my. JFI), (A6415)

where the nI(n-nI) dimensional system of linear equations (A6.14)
for a givén.vélue of I is replaced by (m=1l) linear systems of
the smaller respective dimensions 5Ny (J=1,00e,my. J¥I)e
Equations (AG.JS) can still lead to relatively costly overall
iteratiénS”uﬁless the products nin; are all small. However,
they can be.aﬁproximated further to give generalizations of
the algorithms DGN and FGN.

The exact change in ﬁ%z) due to a change in a set of fKI’
(K=1, es eom, KFI), is

o) agt (WL £ ae] (0fF)e T Hpony e, fER))
J#1 K#I ,
2) (A6.16)
t t s
+zwl sr -t £t sr /{27,
where
Wop =Hgp v L Hppfrp e (A6.17)
LFI |

Iffonly a single fgq is changed, eq. (A6.16) reduces to the
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same form as eq. (5.23),

otf?)eqt ("ol (0 ue p-0e, P
(A6.18)

t t 2(2)
* W88 y-fyp8fHy " ]

For any chahge in fJI' the entire operator ﬁ§2) is changed, and

thus, as for az2x2 partitioning, it is most efficient to

change groups of elements within: the matrix fJI before

updating ﬁéz).

The generalization of the algorithm DGN is

(2)

(D;37)
6f = JI ‘or ’ (r=1,,.-...,n1). (A6019)-

0?%1 (ﬁéz))rr = (HJJ)od

th

and when all ng elements of the o row of fJI are changed in

this way, the change in'Héz) is

2(2)__~1(new) (new)t 2(2) t
SHp " T=gy™ T L5y ) (85 ) opHy T+ (Wrp) 1o (8851 ) o1
a(aet 2(2)d
+(8F51) 1o (8L 57) ogH " 10 (A6.20)
The genéraiization'of élgorithm FGN is |
(p(2) 5(2)-1 |
(8250)61= (051 ) orl () golr-Hr ™ 17 (46.21)

and the cdrrespending change in ﬁ§2)is

6?‘[](:2 )zgil(nﬁw)[(wf

F ) 108Fo1=(E1) 1608 ﬁ§2)].. (46.22)

JI’Ic "ol

In eqse (A6.20) - (A6.22), the symbols Io (0I) indicate the

th th

o columns (rows) of the I block row (column)e.
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A6.3 Methods Based on the Simultaneous Solution of GJI(§)=0
and g5, (T)=0.

The Newton-Raphson equations arising from eqs. (5.76) are

the pairs

L (s

t t
o) W+ Z (W,,) 6f. .= =G (A6.232)

and
1 t oo A |

L#J (I<Jd=1, ;oo.aMOr

where the quantities Wy p are defined in eqe (A6.17). All of
these equations must be solved simultaneously. That is, they
cannot be separated easily into a number of subsets without
common. variables..

The diagonal block aﬁproximation to (A6.23) is the pair

, t t
(881 5) Wyp*Wys8L57==Cyrs (A6.24a)
and
T
ofyp* (821) =gy (46.240)

Solving the diagonal parts of these equations simultaneously
for corresponding elements of ébe and (afiJlf,.gives the

iteration formulas

(&) gpnWry)  +(G 1)
(82,00, = €11’cr'\ 11 rr7 Jl'or (A6.25a)
(wII)rr - (WJJ)UO
and
“(G 1)t (&) (W o)
(5 ,) o= —JLer Aler JJos (A6.25D)

\ ¥
Wrpder = Migdoo
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which are similar to the iteration formulas for algorithm SDNRS,
The simplicity of eqe. (A6.24b) makes it possible to eliminate
either &f

or (GfJI)i from eq. (A6.24a), leaving an equation

JI
in terms of only one of these. Substitution of

. v
into (A6.2ua), gives the equation

=8 Wy * Wigbfyr = =Gy + gyp¥yp » (A6.27)
for GfJI" The diagonal part of this equatibn;yields

(Gy1)ep - (gJI 11lor
(8£51) 5 p= <L &« , (A6.28)

(WII)rr - (wJJ)ao

and, using this in~eq..(A6.26) gives

(52" ) =Gy or* (€51¥11) or= (81 ) ol (W) e~ (1) 0o
15 BE———
ro” W) = (W3)ge |

These formulas amount to addition: of the quantity § (gJI)
t#r

to  the numerator of (A6.25b) and its subtraction from the numera-

ct(wII)tr

tor of (A6.25a). If 6fJI is first eliminated from (A6.24a),
then the same sort of result is obtained,. but now, the quantity

p?b(wJJ)°P(gJI)Pr is added to the numerator of (A6.25b) and

subtracted from the numerator of (A6.25a). This ambiguity in
iteration: formula is undesirable. Only actual numerical studies
can determine whether the inclusion of these potentially costly:
additional terms in the iteration formulas (A6.28) and (A6.29)
is justified, in comparison to (A6.25).

The implementation of these iteration formulas is similar
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to the SDNRS algorithme The quantities Wj;, (I,J=1,¢0e,m) are
stored, and updated continuously as the elements of fKL are

changed. The elements of GJI are calculated from

Gyp = Wyp + I (fLJ)*wLI, (A6.3o)

JI LT

and those of gjy from (5.76b), as required.

A6.4  Methods Based on D(3)(T) = 0.

The Newton=Raphson equations corresponding to eqs. (5.77) are

-z[(anK) +6fKM+N§ ((s¢ K) ST € S éfNM)]DM
- N#M (A6.31)

L%K(stK) wLI+L§ (W K) 8fy 1==Cir s (KyI=lyeoosmy KFI)e

All of the off-diagonal blocks of T occur in each of these equa-
tions in a complicated manner. If only those terms involving

beI
simpler approximation: results,

on the left hand side of (A6.31) are retained, a much

t (3)
Wxkdfkr = 8fk1D1T -G

KI® (KyI=1lyeeeomy, KFIL)e (A6432)
Note that Dé%) = (‘g"lG)II # ﬁ§2) unless eqse (5.77) are satisfied.
It has not been determined whether or not an efficient iterative
procedure can be based on:eqse. (A6.32).. The quantities D§%)

are comparafively costly to calculate, and the iterative scheme
would apparently require the maintainence of some estimate of

g?l throughout the calculation.
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APPENDIX 7

Additional Perturbation Series «- Orthonormal Basis

In section 6.2, several perturbation formulas for the
mapping £, and the effective operators f v Gy and ﬁA’ were.
given.. The purpose there was to give the low order terms of
the perturbatiom series solely in terms of the perturbed
operator H. Such perturbation formulas for the effective
operators would then have a general significance, in that they
are not necessarily obtainable only from the partitioning form-
alism presented in chapters 2 and 3. For example, the formulas
for ﬁi ¢an also be obtained using a canonical transformation
formalism..

The purpose of this Appendix is to supplement the material
in sectiom 6.2. Additional information on the efficient calcu-
lation, especially of high order terms, of the perturbatiom

1

‘ + o~
~ series for gi ’ gz » and HA is presented. The formulas tabulated

in section 6.2 become too lengthy with increasing order to be
of practical use much beyond third order.

Perturbation series for those powers of the metric gjo
namely gX%, gi%, and gzl, can be obtained im a number of ways.
In terms of the perturbation series for f, the seriesbfor these
quantities is obtained by generalization of the familiar power
series expansions, |

% gié‘('n’)

% toy3
= (1, + £ f)= =
A . n=0

€
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= 1,+3£7¢ - %(ﬁ*f)2 1 T2t te)3 . —ia(f )k -2-%6%(171175)5 “eses
(A7e1)

- -t
g % = (1, + ﬁif) 2 . 2 & -%(n)
A A n=0

=1,-drtred(e )2 e ) e B ) R £ 1) Se

(A7.2)
and
gl = (1, +2'0)°t = T ¢
A A oo A
=1, - e e (£70)2 = (£78)3 + (£T0)% - oeh o

(A7.3)

In each of (A7.1), (A7.2), and (A7.3), actual expressions for

the g‘,A‘%(n)" grA%(n),.( and gAl(n)

are obtained by substituting eq.
(6.8) into each product, and isolating all terms of order n.
Tables A7.1, A7.2, and A7.3 contain some low order formulas of
this type. Perturbatiom formulas based on egqs. (A7.1) - (A7.3)
can be generated to high order automatically without great
difficulty, but with increasing order, they rapidly become very
lengthy, and thus costly to use.

For automatic computation of high order terms in each of
these series, a more efficient procedure is available., It is

-3 -
possible to obtaim a series for any of gi%” giz, and gAl. in
terms of that of & and other powers of gy by expanding

identities of the form

gAg;1 =1, « (A7.4a)



361,

(gf)2 =& v (A7.4c)
gA%gA% 1, » | (A7.44)
gA%gKlgA% " (A7.le)
Eley &l = 1y (A7.4%)

and so on. From (A7.4a), one obtains

. -1 |
gzi(m) = 1A5§n0sg - l:; =0 (n-']) -1(3) n 2 0, (A7.5)

giving gkl(n) in' terms of g(j)

s (ji= 040006y n), and lower order
gil(a), (j= 0, evey n=1). Here, the second term is assumed |
to make no contributiom when (n-1) < 0. Similarly, eq. (A7.4c)

yields the expansion

%(n) = 32l - 3 ot gAé(n*-J) 5, (A7-.6)
J=1

(n)

giving“gf%(ng in terms of g, and lower  order terms in the
A A

expansiom of gA%, Equation (A7.4b) yields a similar result

=1(n)

for g'%(n) in terms of gA and lower order terms in the

series for gA%. From eq. (A7.4d), one obtains

g 3w - . jgl g dm gt oy, (A7.72)
and
ghm o | 3 A%(mj) =33, .52, (A7.75)
Jz

which inter-relate the perturbation: series for gh% and gi%m
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Somewhat more complex expressions are obtained from egs. (A7.ke)
and (A7.4f)s The important feature of eqs.z(A7o5) - (A7.7),
and other similar ones, is that the evaluation of a kth order
quantity generally requires the evaluation of no more than k
products of two n, xny matrices. As k increases, this represents
a rapidly decreasing fractiom of the computation: required if
formulas like (A7.1) = (A7.3) are used explicitly. This substan=
tial computational advantage is a result of not having to
repeatedly re-evaluate certaim often-occurring combinations
in (A7.1) = (A7.3)e The need to store all lower order terms
in these series for use in' the calculation of higher order
terms may be regarded as a disadvantage, but it is of no
consequence if n, << Nige Anm appropriate combination of egse
(A7e5) = (A7.7) with eqse (6415), together with egqse (6.12) or
(6013), is certainly the most practical procedure for the
calculation of high order terms in the series for ﬁA.

Equations (A7.5) = (A7.7) can also be used to obtain: the

3 1 solely in terms of the gﬁj).

~terms in the series for g: and gi
Such expressions are particularly useful when moderately high
order calculations are being done by hand and algebraically,
rather than numerically by machine. Tables A7.4, A7.5 and A7.6
contain several low order formulas of this type. Note the
simplicitly of these formulas relative to those im Tables

A7.1 = A7.3. Tables A7.7 and A7.8 contain expressions for low
ordér terms in: the series for ﬁi im terms of only gy and ﬁA or

GA.. Finally, Table A7.9 contains low order formulas for GA
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i which the equations D(no(f) = 0 have been used to eliminate

all terms involving Ho.e These formulas are the same as those

derived using eqs. (6.14).

gA%(OI

gA%(l)

51%(2)

g2

g 2

sA%(SO

g, H6)

TABLE A7.1 gk%(n)

1a

0

= 3p(1)1(1)

it

3((1)15(2) £ (1)14(2),

o 21 1e(8) £(2)1403),£(3)14(2), o(8) 14(1)

d%{f(l)ff(2)+f(2)tf(1)m f(1)1f(1)}+

(115030, p(2)10(2) g 14(1) | ((D)1p(1]
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TABLE A7.2 g’%(no

g;3(0) =1,

g;%(i) =0

g;11;(2) = oa(e(l)te(1)y

QX%(B) = 3(e(1)1p(2) £ (2)15(1)

éz%(u) - -%(f(l)1f(3)+f‘2)?f(2)+f(3)ff(1)) + %(f(l)ff(i))z
3(5) o g((1)15(8),g(2)1403),2(3)14(2) o (M) 14(1)
BeM15(2) ()11 (D1 (1)

+%(f(z)ff(1)+f(1)ff(2))2 _f%(f(i)ff(1))3



-1(0) _

o[22, p(1)1p(2) - p(1)1.(107

e (D1603),5(2)14(2) 2D 1(1) | g(D1e(1)}

H(e(D1(2),£(2)1:(1))2

€a =1,
gii(l) =0
g;1(2)
g;1(3) -
g;1(u) -
g;1(5) -
g.‘;‘-‘1(6) -
g, 70 21,
gié(l) = 0
é!J.,;‘.%-(Z) - 2g1(\2)
1%(3) = ig (3)
g H¥) - 1 (4)
%(5) = 3g (5)
3&%(6) . %g(6)

TABLE A7.3 E)

-1(n)

= p(1)1(1)

e 1p(2), (201 (1),

TABLE A7k gAé(“g

1 (2)2
- B8\

{ (2)

glex

(4)

(3)}

g 5A2)}+

1 _(3)?
85A

-(f(1)ff(3)+f(2)ff(2)+f(3)ff(1)) +.(f(1)ff(1))2

-(f(l)*f(u)+f(2)?f(3)+f(3)?f(2)+f(4)tf(1))

+

(f(l)f (1))3

3
¢ el

365.

-(f(i)?f(5)+f(2)fﬁ(u)+f(3)ff(3)+f(4)tf(2)+f(5)tf(1))
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2(n)
5
9
A7
E
ABL
TA

) 1
3(0) _ N
gA%m B (2)
&y ) - -3, | ) .
3(2 ' (2 (3)}+
& = -ig, g % g
%(3) (4 { :
@ e .
(4 (5
g‘:‘('5) -
G

3
)
(2
2 %

)

g (3

4)}

(2) » &

+ ¢ea

6) ,

6) _

-%(

gA

BL & ga

1
100) . g
= o
.gﬁl(l) - . |
gX ) . -€) | | 2 gi
- g (2) 3)}+ 3)
&p: ) _ -8, ] g‘i g}t
‘ +
-1(3) _ (&) , (2)’ 3)§
& o -«
. (5) (2)’ j
&t ¥ .
. (6)
& o
6 -
-1(
9%
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(n)

TABLE A7.7 ﬁi“” im Terms of the g’ and ﬁﬁfﬂ

2(0)
Hy

A(l)
By

i
K3« a0e, 1D, » a0e®, KV,
‘{‘” + 4el* B0« 2P, BN+ ael®, /P

<z)2m(o> %Hm (2)% _ 1 1e(2)5(0) (2)

ﬁ(5)+%[g(5) (0)] +%[g (&) H(l)] +%[ (3),H(2)] +%[g‘2) ﬁ(3)]-

gfg(Z)ng”} A0+ 3R(0 g (2) (3%, 4 (z {06 (2)*

E( (2) (0) (3) (3)m(0)g(2)) E (Z)H(l) (2)

'gA

H(6)+%[ (6) H(O)] ,,,%[ (5) }ﬂ(l)] +i[ g (4)"HA2)] +%[ (3) H")“B)]-
+ie (2).~(4)] 1{344)'8A2)} H(0) gﬁ(o){ (u)’gAz)}

2, 2 3 3
3 RO 630 A g ()R035 (0) 2)

2 2
el a2 A B (62 6] o2 B g2 gf2)

2 * 2
Le{MF(0)(2) 1 (2)5(0) () 1 (2)%4(0) (2), 3 (2)5(0) (2)

(3)50) (3 4

Egh A “L8a

1) (2 2)2(1 )_1,.(2)5(2) (2
(B)H( )gﬁ )‘Egi )”( ) (3 -nsﬁ )3( ) ( )



TABLE A7.8 H(“D im Terms of the g,

(0)
Ga

1
o(1)

A

(m) .4 G(m)

e2) - 3ge®), olO%,

6 - 4lg2, o, - el a1,

a{M4 fo(0), (W) gg}(\zﬂ} (g3, a1},

%{ (2)" G(Z)}d-

2
6504 [a(®),-3g{5) 43 (e() &{D}, 1+ fo 1) el age (P}

%{G(Z)'gAB)} .

v1(e{3)a(0)gf2)

1 (2) (0) (2)

%{G(B)’gAZ)}+

+el

2)(0)g(3)) , 3g(2)c(1)g(2)

o{6)-31e(®),0(O0 ,-21e(5) 0 (1} -3 ()0 (2],
33,00, e 31680 (62, &{*N 1,

+8’?‘;{GA(_O)03A3) } "%{G(O)DgAZ) } ‘g{G(l) {g(z)ngB)} }

3,67,

he{o{) gf?)

+1

1 (

+gA

(4) (0)g£2)+ng§2) (0) (4),,11;%&3)

2)(1)4(3)_34(2)(0) (2)

(2)5(0) (z)z,,i (2)g(2) gf2)

1

L8

368,

+

6(0)g(3)



369,

TABLE A7.9 G'™)

| C—
N

Gj(\o) - Hﬁg)
6y2) = mB {3 e (1) eg () Te(1)y{D)
63 - H§2)+H§§)f(1)+nié)f(2)+f‘1)*f(1)ﬁ§i)

P21 1420, 4(2)14(1) ) (0)

AA A

w1 23D (1) (1) 1 (1), (£ (1)14(2) (2 10(1) (1)
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APPENDIX 8

Non-relativistic: Approximatiom of the Dirac Hamiltonian

The purpose of this appendix is to list expressions for
the various effective operators dealt with in section 6.3a, to
order (v/c)6, for comparison:with expressions reported by
DeVries (1970). In order to facilitate this, the terms im

the Dirac hamiltonian will be written in the symbolic form

: m 0 o 0] 0
(0 . Cu@ . .
0 a 0 . 0 ¢
~ (A8.1)

Here all the natural constants have been dropped except for
the mass m, which is useful in comparing the formulas below
to those in sectiom 6.3a. In this notation, the reduced

resolvent is

L = =1

B*

Formulas of the type given in Table 6.6 or 6.7 give the following

first six terms in the series for f,

(1) _ 1
f Znt
(2)

f = 0,

(3) _ _1 1 t

7 = —{da - ag] - —F aa a,
um? 8m? '

(A8.3)

e(®) 0,

(5) 1,2 2 1 t t t t

f = —=={¢“a+ap”-2¢ag] + ——p[-2d0a a+2aa ag+aga a-aa ga
8m> 16m ]

+ =2 a(a'a)?,

16mP
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and

£(6) = o,

Only odd order terms are nonvanishing in the expansion: for f.

Formulas of the type given in Table 6.8 can now be used to

obtain,
2O -,
1) < o,
ﬁiz) = ¢ + g;lata,
QXB) = 0, (A8.4)
ﬁ;ﬁ.u) = Z{tg(afm - a'ap) - -é-:?(a*a)z...
?ﬁf) = 0,
ﬁ§6) = _£§ (2a+a’ag?-2a"gag)
8m

t

aa7¢a+2(afa)2¢+afa¢a7a)+ 1 5(afa)3.
16m

1 t t

+ ;Z;g(-Za oo o=
As expected from the structure of the perturbation, only even
order terms are non-vanishing in this expansion. It is seen
that the fourth and sixth order terms here are explicitly non-
hermitiam. Comaprison of eqs. (A8.4) with the formulas in
Table A8.1, obtained using the Pauli elimination method, indicates
that both sets are identical..

For calculations of GA and.ﬁam up to sixth order, formulas

of the type given in Tables 6.10 and 6.11 are cumbersome. It
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3

is preferable to calculate the series for gy gA%, and gz ’-
and to use egs. (6.14) and (6.15b) or (6.15¢c), respectively..
The perturbation series for these metric quantities are given
in Tables A8.2 through A8.4. Again, it is seen that they
contain only even order terms since they are defined in only

a single subspace, S,. Equation (6.14) yields,

GXO) = m’,
o{t) = o,
of2) o 4 h}' ota
A m ’

(3)
Ga

Oy (A845)

Gﬁu) = —lg(haf¢a-¢a*a-a*a¢) - —$§(afa)2r
8m’ 8m-

L]

+(5)
G, 0,.

and

Giéa = -1 (5a*¢2a-3af¢a¢-3¢a*¢a+a7a¢2+¢2afa-¢afa¢)
16m>
+ ——1-1;(~4a*¢aafa-4afaaf¢a+(afa)-2¢+¢(,afa)2+2afa¢a?d)
32m:
+ —}'—(0.1(1 ) 3 .
6lm?

Equatiom (6.15) yields,

?{"XO) = My
#(1)
HA = 0,

ﬁ§2) & ﬂ,éaﬂa a,



373

W) o
~(4) _ 1 1 t 1 1t N2
Byl o= g;z (20 ga-a ag=-ga o) - -~ (a'a)c, (A8.6)
ﬁ§_5) = 0,
ﬁff)' = --1—3- (20t ¢20-2a T pag-2¢a Tpa+aa T6%+¢%a o)
16m~
+——§—E(12a1¢aafa-12ataaf¢a+7(ata)2¢+7¢(afa)2+10afa¢afa)
128mr
! t 3
+-———§(a (!.) .
16m

Both of these operators are manifestly self-adjoint. Comparison
of eqs. (A8.6) with the formulas in Table A8.5 obtained using
Eriksen's method (Eriksen; 1958) indicates that the.Eriksena
hamiltonian is identical to EA” at least to sixth order. The
transformation, V, used by DeVries (1970) to transform the

Pauli hamiltonian into the Eriksen hamiltonian,

- -]
Hpp = VHpys Vor (A8.7)

is given in Table A8.6. Om comparison of Tables A8.4 and A8.6,
the similarity transformation, V'l, implied by eq. (A8.7) is

seen: to be identical,to fourth order, tozgif%.,
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TABLE A841 Pauli Hamiltonian (adapted from DeVries (1970))

Hégili =m

H;;&Ii =0

Héi&li = ¢+ 3a'a

Hégili =0

Héggli = ;iﬁ(-afa¢+a'¢a) - gig(a*a)z
Hégili =0

Héﬁ&li = gij(afa¢2-2a'¢a¢+a*¢2a)

+—J*E(2(afa)2¢-a7aaf¢a+afa¢a7a-2af¢aa*a) + L 5(afa)3
16m 16m

TABLE A8,.2 Ep—== Non~relativistic Approximation

g = 1
g§1) = 0
(2) _ 14t
T ?
gXB) =0
gin) = gig(Zaf¢a-¢aTa-a*a¢) - gin(afa)z
giﬁ) =0
5&6) =

= —ghE(3af¢2a-3¢a1¢a-3a?¢a¢+¢2a1a+aTa¢2+¢ata¢)
16m
1

+--—---5(-Ll-a*aaf a-a’ aafa+3 (afa)2+3(afa)2¢+2a1a¢afa)-—iig(afa)3
32m ? ? ? 64m
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TABLE A8e3 ~r% -= Non=relativistic Approximation
£ relativisti pproxim

gA%(o)= 1

A

O

3(2)_ 1t

A
gA2(3)= 0

3(u)_ _1 (2 1¢a_¢ fa_afa¢) _ 9 (af )2
A P b : r2emt
51%(5)= 0

g% ;ﬁ;y(3af¢2a-3¢df¢a-3af¢a¢+¢2afa+afﬁ¢2*¢a1a¢)

+-—l—g(-18afaaf¢a-18af¢aa7a+13¢(ata)2+13(a7a)2¢+10a7a¢afa)
256m

+——22—3(afa)3

1024m:

TABLE A8.4 gf% -=- Non=relativigtic App;oximafion,

-%(0)_

g =1,

-3(2)_ 1t

-3(4)_ 1 ( 2af¢a+¢afa+ata ‘ 11 t 2

= - ¢) + —x(a’'a)

! 16m3 128m’
. ‘515(5)=n 0

g&%(6)= ;ﬁ;y(-3a*¢2a+3¢a*¢a+3af¢a¢-¢2a*a-a*a¢2-¢afa¢)

;;é—g(22afaat¢a+22a*¢aa7a-15¢(a*a)z-ls(a*a)2¢-14a?a¢a*a)
m .

- ——-6-2—3(ata)3

1024m
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TABLE A8.5 Eriksen Hamiltonian (adapted from DeVries, (1970))

(0) _ .
HEr. = m

(1) _
Hg, =0

(2) _ 1 ¢
Hpp! =6 * 350 ¢

(3) _

r 0 »

(4) 1 ..t t t 1 .1 2
Hp. = =—=3(a ag=-2a ga+sa a) = —=z(a a)
Er 8m 8m3

(5) _

r 0_ .
1(6) = L _(atas?+e?a’a-2a 0g-200 pa+2a e%q)
Er  q6nd

s (7(a’a)20+78 (a'0) 2~ 124"

aa7¢a-12aT¢aafa+10aTa¢afa)
128m :

1 t .3
+———3(a a)
16m

TABLE A8.6 Transformation Connecting Hpo 1 j—and Heo
(adapted from DeVries, (1970))

vi0 - g,

wﬁl) =0

Vﬁz) = gif a?a
vi3) =0

(4) 1 1 t 1 t \2
v = (2a ga-a ag=ga a) = -—2-5 (a'a)
A 16m7 128m
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APPENDIX 9

Additional Perturbation: Series -- Non-orthonormal Basis

In this appendix, some alternative perturbation formulas,
“applicable in the case of a non-orthonormal basis, are derived
and listed. In particular, the series for the metric 90 and
its powers, and two sets of alternative formulas for the opera-
tors ﬁin).are given. here.

Formulas for the perturbation series for g, in terms of
f and S are obtaiped straightforwardly by expanding eq. (2.103a)

to obtain

n=0

Po-S
gA‘- I-: gin)

where

gin) = S&),’,Jz [S(n-‘])f(J)+f(j)f(S(n-'])'l'lElS(n-J-l) (i))]

(A9.1)
Explicit expressions for several low order terms of (A9.1) are
given in Table A9.1. It is seen that g, oW contains a nonzero
first order term.

Similar explicit expressions could be obtained for the
matrices g;1, gA%, and gi%._ They rapidly become even more
lengthy than those im Table A9.1, and lose their usefulness.
However, eqs.(A7.4) - (A7.7) still hold, and can be used here
to ekpress the perturbatiom series for these powers of g, in:
terms of the seriesvfor gx itself. Such formulas, given in

Tables A9.2 - A9.4, are: seen to be very similar tovthe corres=-

ponding formulas in an orthonormal basis, given in Tables
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A7.4 « A7.6. They are more lengthy generally, because of the
presence of the first order term in gj*

Finally, formulas such as those given in Tables A9.2 =
A9+4 can:again: be used to obtain useful alternative formulas
for the ﬁ§n0 in terms of the gﬁn) and either ﬁin) or Gin)‘ Low
order expressions of this type ané given in Tables A9.5 and

AS.6.

TABLE AQ.1 gﬁn) -= Non=orthonormal Basis

—
o
~

1]

Ex 1A
gil) = Sﬁi)
gl2) = £(1)1p()y(s{1)p(1),p (115 (1)) o 5(2)

(3) o (1)1p(2),p(2)14(1), (£(2)15(1)45 (1) £(2)) 5 (1)1 (1) (1)
+(S£%)f(1)+f(1)fsé§)) + Séz)
H(2 (215245 (2)(2)) (215 (1) (1) (1) 15 (1) (2)
se15(2) (1) (5 (1)15(3),5(3) (1D, (1)

P25 @)s(2)£0)) e (1) (1) (D153 (1)

v(2)15 (1) (20, 1 (D15(2) (20, (41115 (H) 5 (4 (1)) o5 (5)



gA%(0)

(1)

gA*}‘.‘(Z)
3(3)

gA%(’#)

g:A‘l%(s)

TABLE A9.2 gA%(n’ -- Non-orthonormal Basis

=

H

1,

%g(l)
2
%g(z)_ %g(l)

(3) 1{g(1)

g.t(\z )} _GgA

(1)>

2l Lo (”-é’f)} 1 (z) W1 {gmz,gAz)}

1) (2) (1
*"Kg}(x )gﬁ. €A

%gAS) l{g(l).gﬁ

z
W1 {g(i).gﬁ‘?)

) _5_3(1)
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u)}+ 3{8(2)-gA3)} *“6{8(1) .gAB)}
(1) _(3) (1)1 (2) (1) (2)

+*‘ZgA ST

-%g{g“p-gf)} _g_a( (1)

*1880 E&r &)

(2) (1)%, (1)? gf?)

8y &a

+gA

TABLE A9.3 gzév(n) -= Non-orthonormal Basis

"

1p

-;g(l)

_;gAz) % (1)2

3
%gAB) %{g(l)'gAz)L 1 gil) ,

2
PUONTACINEY S %g(z) BAACY &2,

jg (1)g§2)g§

1) _355 (1)

5
gﬁ_l)) gggg(l)

5)%{ (1).%4)}+ g{g(Z)’gAB)} "'53{ (1)% .gAB)}

.%g(1>g(3)g(1)..§5{g(2) ,g(1)§ - (2)g}(\1)gé2)

_ﬂg{( (1) (2)

ve(@elV),

£,

E‘% (1)2
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TABLE AQ.4 gA1(n) -~ Non-orthonormal Basis
-1(0) _
&g =l
-1(1 1
g1 o gt
-1(2) _ _(2),,(1)?
gA - "gA +gA

3
100 o (3)+{€(2)'gA1)} ey

-1(&)

PG ON NEIREC +g&z) [gm 3)} g§1>g§z>g§1>+g§1>
105 5) e, 60 e, 6021, {gm &), - (1>g§3>g§1)
2 5
2 2 1 2 2
{( 2,60} _e(2)glD) (@) (1) (2], o )g§1),gﬁ1)g gt

TABLE A9.5 ﬁén) -- Noneorthonormal Basis

7(0) - (®)

AA
ﬁil) - (1) + %[ (1)' Hﬁﬁ)]-
3(2) =H(z>+l[g 2) (0] i) R

1 (1)2 0) 4 e (0) (1) ,3,(0) (1)2
“B8A ( Haa g§ % Hy

~ - 2a
HO) « ) eafePiO ] eafgf®) AT L ealelt), H(P 1 eV REV

LD g1 21 (1)° YA K020 (1)@2)}

1_(1),(0) (2) 1,(2),4(0) (1), (1) (0)_5,(0) (1)
-G8 Haa'8a -hEn Haa 8A *188a  Haa “T6Mar &

1 (1)2 (0) (1), 3 (1)4(0) (1)
*188x  Hap 8 J%
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TABLE AQ.6 ﬁino'd; Non-orthonormal Basis
H(O)
(1) _ 1) %{ (1). G(°)§

¥(2)
Hy

2
Gﬁz)_%{ (2) 60O (1(1)g(0)gl1)_3{o(1) (1)} L3 (1)% clo)y
103 - a3 afg(3, a0, -4(el?) {1} -2 falD) 0,

AN el 00l 42 (1)2.(;(1)} _%{g(l)3,0(0)}

+71;%(‘.1) (1) (1),,11;%{2) (0) (1)+11;g‘£1) (0) (2)

2
1 0 1) 1).(0 1
el 1)6(0) 1) _3 o) )gzﬁ)
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APPENDIX 10

Self-Consistent Perturbatidn.Theogy When F(o) is not Block

Diagonal

The requirement that the zero order part of the Fock matrix
be at least block diagonal was imposed in section: 7.4 for reasons:
of convenience rather than necessity. The basic changes in the
formalism resulting from a relaxatiom of that requirement will
be summarized heree. | »

IffF(o) has nonzero off-diagonal blocks, eq;.(?.23) implies
the existence of a zero order term in the series for f, given
by the equation

(0)(f)_F(0)+F(0)f(0) £(0)p (0) -£(0)p (O)f(o)= 0. (A10.1)
This equation has a non-zero solution fCO) inageneral, if
Fgg) } 0, because it is just the defining equation for the
mapping f(o) corresponding to the non-block diagonal F(O).
In the coupled Hartree~-Fock perturbation formalism, the

n*! order equation (defining f‘n)) now becomes.

D(ng(f) F§2)+ T (F(n-a) (J) f(j) (n‘j))
i=

. ot g (n-l-.'j) ()
i=0 j =0
=GBA(f§n))+GBB¥f§n))f(O)-f(O)GRA<f§n))

f(o)G f(n))f(o) +

25{Tq
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+F(o) (n)_g(n)g (o) -£(0) ﬁg)f(n) e(n)p (o)f(o)

+F§2) (i;}'\(n) ).,,Fég') (’f,‘;(n) )f(O)_f(O)F}\X) (‘i‘,‘;(n) )

f(o) (n)(P (n))f(0)+ (F(n-J)f(J) f(J) (n‘j))
‘ le B

el (90p (n=i-3)¢(3)
i=1 j=1
= 0. (AIOQZ)

These equations can be written in the simplified form

D(n)(f) = £ B, .. fég) c£2)= 0, (A10.3)
O, '

¢V=1, csny nBJ s=1, ""’"i)'

but now,,
4 = (0)_ (0)_ (0) (o)
H';'vsor"' Afsro * 2 Arprcfﬁs i Atsrci:'rt fPt i:'H: Atfrofps
£(0) (0)
+(FB5f )%'oasr (F (f ))rs 7o’ (A10.4)
and

c(n) ng)(ﬁg(n))+F§g)(ﬁi(n))f(O)'f«»FKXQ(?i(n))

f(o) (n)(P (n))f(O) + Z (F(n-J)f(J) f(j) (n‘j))
j=1

-1 i
- nz n; f(i)F(n—l-JZf(j) (A1005)
i=1 j=1

The operators FB , and FA are defined formally in eqs. (2.66a)
and (2.65a), respectivelye
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The additional complexity of egs. (A10.3) = (A10.5) over
the corresponding equations given in section 7.4 for,f(°)=0,
is easily seen. Nevertheless, there are situations in which
it may be desirable to use this formalism. For example, if
the calculation is to be carried out in a particular basis
(for instance, localized orbitals of some sort), it is probable
that the zero order Fock operator is not block diagonal. . It
may, however, be more efficient in such a'case to carry out
the calculation in a second basis in which F‘o) is at least
block diagonal, and then transform the results back to the
desired basise It must be remembered that the presence of a
nonzero-f(o) invalidates all the perturbation: formulas derived

in chapter 7, including those for PL and E.
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APPENDIX 11

Minimization Algorithms

Details of two minimzation algorithms referred to in:
Chapter 8 are given here, with particular reference to direct

energy minimization calculations for closed shell systemss

Al11.1 Method of Conjugate -Gradients

The conjugate gradients method is a descent optimization
procedure, It can be regarded as a steepest descent algorithm
with memory. As is true of any descent method, the value of the
object function cannot diverge here if it is bounded from below.
However, éonvergence is not guaranteed in general..

As applied to the closed shell case, when the energy is
to be minimized with respect to the elements of the operator f,

the algorithm is as follows:

1. Initiélization--an=initigl.estimate of the f-operator,
leading to an initial estimate of the density matrix, R,
is reﬁuired. An: initial estimate of the Fock matrix;
F(R), is calculated from this initial density matrix.

2+ The energy gradient is calculated,.
Y]fE = 4 Fytg , (all quantities real).
BTA

3¢ Given V/,E, and the searchudirection used in the

old

previous iteration, ¥y ~ , the current search direction

is calculated as
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Se
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~.._._.\_ va + BVOld

where

Wl oBel VeBorl®
Ve[S = Ivfx-:::ldl

If this is the first iteration (or an iteration

numbered a multiple of nAnB) take B = 0, that is

X = "Von
which is the steepest deScént direction..

Minimize E(f + Av) as a function of the single parameter

A, representing a step length along the current

‘search directione This is usually done using a cubic

interpolation procedure of Davidon (see Garton and

Sutcliffe, 1974)..

Update,

f-»f+ xminY’

and re-evaluate R and F(R)s If predetermined convergence
criteria have not been satisfied, return to step 2.

Otherwise, exit the procedure.

The linear search is the most costly step in the calculation.
It is therefore important to use interpolation schemes which do
nmot require a large number of energy evaluations, and which make
maximal use of the information available.. The cubic interpolation
formula will give the exact minimum of a quadratic function, and
is therefore quite suitable in direct energy minimization calcula-

tions, especially near the energy minimume. In the calculations

N
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reported in section 8.2.c, a second interpolation procedure, based
on the secant method for solving nonlinear equations, was used.
Given values of 3E/3A at two points along the search direction,

an approximation to the minimizing step length is given by

_ E'(kz)kl - E'(kl)xz

mim - N . (A11,.1)

A

2~ M

While this interpolation formula does not make use of all the
information available (it uses the energy derivatives, but not
the energy itself), it does have the advantage of not fequiring
that the energy minimum be bracketed by 11 and xz. If E(\) is
a quadratic function, Aminlgiven by (Al11.1) is exact.

Since both the cubic interpolation formula and eq. (All.1)
locate the minimum along the search direction only approximately,
it is necessary to ensure that E(f + xminv) is indeed less than
E(f).; If this is not so, then a sécond interpolation on -one of
the two subintervals of the original interval must be carried out.

Finally, it'should be noted that components of the search
direction v on surfaces where E is constant can only enter via
the memory term. Therefore, if the calculation is converging
(that is, if §7fE is decreasing), then B < 1, and these compo=-

nents are attenuated in: succeeding iterationse.

A11.2 The Newton-Raphson Method

The application of the Newton-Raphson:method to the closed

shell self-consistent field calculation involves a different

\
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strategy for determining stationary values of the energy, namely,
solving for the roots of the system of simultaneous nonlinear

equations Fgfg = 0o This method is not a descent method, and
BTA

does not necessarily converge to an energy mimimum. The overall
algorithm as applied to the closed shell case can be summarized

as followss

1, Initialization--same as for the conjugate gradient
methode.

2+ The energy gradient is calculated, )

= 4 Futy , (all quantities real).
VeE 858"

3. The Jacobian matrix is calculated (the Hessian matrix

of the energy),

2
J O E

3 £2 RS ——
or,¥s y
afcraf'fs

4, The Newton-Raphson equations,

J5f 2 - va.
are solved for the elements of the correction: 6f to f.
Se. The f-operator is updated, f —» f + &f, and new esti-
mates of R and F(R) calculated. If the prescribed
convergence criteria are satisfied at this point, the

calculation is terminated. Otherwise, return to step 2.

The Newton-Raphson-.algorithm is conceptually simple to

implement in the sense that there is no ambiguity present like
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N,

that associated with the linear search step in the conjugate
gradient method. It is second order convergent; one Newton-
Raphson iteratiom being roughly equivalent, in principle, to
m conjugate gradient iterations, where m is the number of

' independent variables in the problem (Daniel, 1965). However,
the large amount of computation required per iteration as m
becomes large tends/to offset the rapid rate of convergence,
and it is generally considered inapplicable for application to

self-cohsistent field calculations, as outlined aboves
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APPENDIX 12

Derivatives With Respect to Real and Imaginary Parts of f.

Most of the formulas derived in this chapter have been in
terms of the elements of f and their complex conjugates. Under
some circumstances, it is more useful to rewrite these formulas
in;terms of the real and imaginary parts of f, denoted here as
fR and fI. If a real basis set is used, it is necessary to have
derivatives of the energy only with respect to the real part of
fo. The formulas for obtaining these derivatives from the
previously obtained ones are summarized here..

Writing
_.R 1 » I
for = for * ifor ” for = fgr = ifar ’

one has

3.3, 2, A W WA
agh | af . of of 28 oty

or or or or
and
22 2? a2 Y 2°
";ﬁ—"ﬁ‘ = + Cantig W + ¥ e}
d orafTs aforaf&s aforaf¢s afcrfffs aforaffs
T - ’ * * = ® ’
3f; 3T, 3, BT, 3 3, 3f 3L, A, Bf
and / ‘ ,
___32 . a2 a2 ., a2 32 _
R arl  af of.  of _af._  3f . af._  of ofr
L or Ts or ~1s or 7s or 7Ts or Ts.

It is worth noting that if both E and f are real, then 3E/3fl

vanishes,
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APPENDIX _ 13

Covariant and Contravariant Representations -- The General Case

An analysis of the metric properties of the non-orthonormal
molecular orbitals defined im eq. (8.61) for a general multi-’
partitioning, can be carried out in a manner analogous to that

of section 2.1.de The major formulas only are summarized here..

We have
'é“(nii-) - (1 - R(i)S)JK
]l m+l
= 178, - f&%)g§i) . fé%”spx. KAI,  (A13.1a)
and
~(i) _ (1)
;1 = RoT
oy el
= gD (17 | (A13.1b)
Writing-
(1) o g(D)1z(1) \ (A13.2a)

ome obtains

(1) .M (7o) (1))

f11 T .z, &1 LI ‘LI &1
2
PRTILN
\ ‘ . -1 mel : -1
A1) | (D) 2 p(1) (1) (1)1 ,(1)7 (1)
&1 =l ESppfer e Efir i Jeg

2 .
= @ sk gD G,

and
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Ca(i) mlo (1) _(1)7 (i) tg (1) (1)71 (1)t
= Snc Elforer’ frr SexSspfrrer k1
 oml -1 =1
e(1) (1)T7 (1) 1,(1) (1)77(4)¢
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(1)

demonstrating the non=orthonormality of the -1 with respect
to the identity in general.

A set of vectors, g(l). dual to the 6(1); are given by

m+1
Sta = b * Som oy Sppfsrs (L A D),
eld) = eV, mADn, (13.3)

and

1
(1) . "% (1)
g11 = &, Srefer

They are also non-orthonormal with respect to the identity, :

g(i)fg(i) glg(i)' (A13.ka)
where .
Eéﬁ) =8 f{%)fé%)*. (L, # 1),
(1) _ ™1 (1) (1) B (1)
g1 = Jf, Swefer’ - fir I, SipfRI
= g§%)fm (L A1), T (A13.4D)
and .
(1) me (i)t <  o(i)
g1 = L, fpr SpsSyprfpip e

J,P,P'=1
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However, these two sets of contragredient vectors can be
used to construct metfic matrices, with respect to which they

are orthonormal. In detail,
T A1) oy, | (A13.58)
where the blocks of 4§i) = g(i)gfi)* are

(1) _ o™ W)t
Oun’ = S *, L Scefer fp'1 Sprwe (LM 7 1)
[ M

+1 |
£§£§) P O PP € YPLC DL S 4;%%)*,. (LFT),

LI *p pray CLPTPI TP'T PRI _
and : : (A1345b)
oY - :éi 25371 e 4y +P.P$;1 Spptit £44] Sprre

#I ’
Similarly,
BT AL oy (A13.6a)

where the blocks of Zéi) = E(i)g(i)f are,

X (1) (1) (07 Ty Ml (D)) (17 ()
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m+1 i

(L, M # 1),

(A13.6b)
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~ -1 m+l S |
AfY = VeV xS sy epipet
el JIEL T
P,P'el
m+l -1 =2
i) (i (1) _(
-P§1SLPf§I gtV + et
= ’A:([%)to (L % I),
and 1 | 1 1
~ -1 m+ -
Ay - 5§1) (e 771 S ICHNL CON T S
P,P' =1

It is seen that 'é(i) # 5(1), and g(i) £ Q(i).:‘so that the
(i) (1)

matrices € and e, are not hormal in this general case,,.
where the fixed basis is non-orthonormal.
The above formulas simplify greatly if the fixed basis is

orthonormal. One obtains,.

8y = - r . e, (J,K=1, eoey m+l),
<(1) _ p(4) (11, vorpm)e D)
&1 T Ryre . |
Then, one has,
(D) o gDtp(h) | DDy - FA) (A13.8a)
where |
E{&) = (1 - R(i))LM. (L,M # 1), o
B9 0=, @, (A13.80)
| and . |
G



Similarly, for the dual vectors, one obtains,

2]2%,) = 1L ’ (L = 1, eeey m+l),
| (1) _ (1) _ __(i)t
g1 < frr’ = =e1’ o
and \ _
el 2o, A, L),

Then, one has,

g 2 g | () (1 L (i)

where
§£§) = 5im_* f{%)f&%)*. (L,M # 1),
g =0 = BT (g g,

and

(1) . (1)
g1 " & ¢

395.

(A13.9)

(A13.,10a)

(A13.100b)



