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Abstract

This thesis reports studies of the electronic spectra of some gaseous

4 42' electronic transition

oxide molecules. The (0,0) band of the €'z~ - X
of VO has been recorded by intermodulated laser-induced fluorescence at a
resolution of about 100 MHz over the range 17300 - 17427 cm']. The hyper-
fine structure caused by the S]V nucleus (I = 7/2) is almost completely
resolved. Internal hyperfine perturbations between the F2 and F3 elec-
tron spin components {where N = J - %—and J + %3 respectively) occur in
both electronic states; these are caused by hyperfine matrix elements of

the type AJ = #1. The C4

1~ state has many local electronic-rotational
perturbations, and also suffers from large spin-orbit perturbations by
distant electronic states, for which it has been necessary to introduce
a second spin-rotation parameter, Yg > and the corresponding isotropic
hyperfine parameter, bS‘ The background theory for this new hyperfine
parameter and the calculation of its matrix elements are described.

The A4H - X4Z’ electronic transition of VO in the near infra-red has
been recorded at Doppler-limited resolution by Fourier transform spectrés—
copy, and rotational analyses performed for the (0,0) band at 1.05nand
the (0,1) band in 1.18 u. The hyperfine structure is prominent in the
4H5/2 - qu' subband, and in many of the spin satellite branches. As
shown by the value of the Fermi contact hyperfine parameter in the A4H
its electron configurafion is (450)] (3d6)] (4p1r)1 in the single confi-
guration approximation.

Laser-induced fluorescence spectra of gaseous FeD have proved that

the bands whose P and R branches have been analysed rotationally by Harris

and Barrow (and which are known to involve the ground state) are ” = 4 -
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Q°c =4 transitions. The electron configuration (450)] (3d6)3 (3dn)2
SAi is the only reasonable assignment for the ground state of Fe0.

The rotational structure of the 000-000 band of the 2490 R system
of 15N02 (2282 - yZA]) has been analysed from high dispersion grating
spectrograph plates. The band is found to be s]ight]& predissociated,
exactly as in the ]4N02 isotope, which suggests that it might be usable

for laser separation of the isotopes of nitrogen.
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Chapter 1

Introduction



Free radicals are molecular fragments or unstable molecules which
usually possess one or more unpaired electrons. This definition of
C.H. Townes and his coworkers (1) includes closed-shell unstable molecules
such as CS, CFZ’ etc. as well as open-shell stable molecules 1{ke 02, NOZ’
etc. Most spectroscopists would enlarge the definition to include any
open-shell or paramagnetic species regardless of stability. In this thesis
we shall be dealing with molecules with open-shell ground and excited
electronic states.

Free radicals are of importance in almost every branch of chemistry,
even though most branches are not directly concerned with their study. A
chemical reaction involves the breaking and/or making of covalent bonds
while the redistribution of electrons involved in either of these processes
can result in species with open-shell electron configurations. Thus the
intermediates in chemical reactions are often free radicals, which is why
radicals are of such importance in chemistry. Radicals can undergo
various types of reaction, such as decomposition, abstraction and combin-
ation, and consequently a wide variety of end products can result. A
knowledge of these reaction pathways is important for both kinetic and
photochemical studies, although for different reasons - whereas a kineti-
cist determines reaction rates for individual steps involved in the total
reaction, a photochemist is concerned with the way in which these inter-
mediates, when formed in excited states, lose their excess energy.
Nevertheless, the information provided by such studies is compiementary
in the sense that both indicate the reaction mechanism. An understanding

of the processes involved in these complex gas phase reactions is also



essential to those interested in the chemistry of the upper atmosphere.

As a further example of the role played by radicals in gas phase
reactions, it has Been suggested that many reactions occurring in inter-
stellar gas clouds proceed via free radical intermediates. The evidence
for such reactions is supplied by the detection of absorption and emission
signals by radioastronomers. The interstellar radicals detected so far
have been mainly organic molecules, but in view of the high cosmic abun-
dances of transition metals and oxygen, transition metal monoxides are
possible interstellar molecules. These radicals are, therefore, of great
astronomical significance, since inany case several of them are important
constituents of the atmospheres of cool stars (2).

A rather different aspect of open-shell molecules arises from the
presence of electron spin and/or orbital angular momenta within the
molecules. Interactions between these angular momenta, although often
making the analysis of the spectra more complicated, ultimately yield far
more information about the electronic structure of the molecule than can
be obtained for closed-shell systems.

An accurate determination of the parameters describing the intra-
molecular interactions is invaluable in evaluating theoretical models for
the electronic structure: the experimental parameters are compared with
those computed using ab initio wavefunctions. The magnetic hyperfine
parameters are particularly useful in this respect since they are sensiti-
ve to the distribution of unpaired electrons, and hence provide a yigorous
test for proposed wavefunctions. Measurements of this order of accuracy
call for high resolution experimental techniques such. as subeoppler laser

spectroscopy (3), molecular heam methods (4), or microwave-optical double



resonance (5).

Our particular interest lies in high resolution studies giving
information on the electronic strﬁctures of gas-phase radicals. The ex-
periments described here employ the high resolution techniques of conven-
tional grating spectroscopy and subeoppTer Taser spectroscopy in the
visible region, and also Fourier transform spectroscopy in the near
infrared region. The parameters obtained in these experiments are inter-
preted through an effective Hamiltonian which is restricted to operate
only within the particular electronic and vibrational state from which the
spectra arise.

Chapter 2 deals in detail with the theory of molecular energy
levels, including the construction of an effective Hamiltonian. The
derivation of the third order isotropic Fermi contact interaction (a
higher order effect appearing in the energy Tevels of high multiplicity
states) is detailed in chapter 3. Chapter 4 describes briefly the
technique of laser induced fluorescence spectroscopy. Chapters 5, 6 and
7 describe studies of free radicals by means of different experimental
techniques. Laser-induced fluorescence studies of the - X4Z' system of VO
and the ground state of FeO are presented in chapters 5 and 6 ; chapter 7
is concerned with conventional grating spectroscopy of the 2282 - RQA]
system of ]5N02. Finally chapter 8 gives the analysis of the Fourier

a4

transform spectra of the A4H(b) - X'z system of VO.



Chapter 2

Theory of Molecular Energy Levels

of Free Radicals



A. Introduction

The energy levels of a molecule are given by the eigenvalues of

the time-independent Schrodinger equation

Hy=EY (2.1)
where H is the total Hamiltonian which may be written as

H=Ho+ Hpot ™ Her * ths (2.2)

Ho represents the nonrelativistic Hamiltonian of the non-rotating mole-
cule,i.e. the kinetic and potential energies of the electrons and nuclei
other than the nuclear rotational energy, Hrot symbolizes the rotatio-
nal motion of the nuclei, H., contains magnetic terms that cause the
electron spin fine structure and thsincludes all nuclear spin and
nuclear moment terms that cause the hyperfine structure. ¥ is the
eigenfunction associated with a stationary state and the eigenvalue E
is the energy of this state.

It is impossible to solve Eq. (2.1) analytically. In practice,
one chooses a convenient finite basis set ¢; and expands the eigen-

functions ¥ in terms of 9;

¥ =§a1¢1 (2.3)

This then reduces the solution of Eq. (2.1) to finding the roots

of the secular determinant

| Hij—Eéijl=0 (2.4)
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where the quantities Hij are the matrix elements of H, defined as

Hij—~/;1H¢jdr (2.5)

The choice of basis set is, of course, arbitrary and any comp1ete
basis set would suffice provided the calculations are carried out to
sufficient accuracy. However by making a wise choice of the initial
basis set, H may be roughly partitioned into diagonal blocks (sub-
matrices) between which there are only small off-diagonal matrix ele-
ments. In the general case the diagonal blocks refer to Born-Oppenheimer
or adiabatic states.

This thesis is concerned with the rotational and spin structure
of individual vibronic states. A convenient way to obtain the required
energy level expression 1is illustrated in Fig. 2.1. In the first step
degenerate perturbation theory is used to include matrix elements
linking a particular vibronic state with nearby vibrational and/or
electronic states. This leads to an effective Hamiltonian operator

which operates only within the rotational sub-space of that vibronic

state.
Eigen-
H Degenerate H Matrix y Matrix values
Tot | perturbation | eff element <Neoff”|diagonalization | +
theory evaluation by computer |Eigen-
functions

Fig. 2.1 The step-wise development of the theory employed
in the analysis and interpretation of molecular

spectra.
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The second step in Fig. 2.1 is the evaluation of a matrix repre-
sentation of theeffective Hamiltonian. Irreducible tensor methods have
been used in these evaluations because they are particularly convenient
for dealing with coupling of three or more angular momenta.

The final step is the diagonalization of the Hamiltonian matrix
and the determination of the eigenvalues and eigenfunctions. Electronic
computers make this nowadays a routine matter.

In section B(i) the general Hamiltonian Ho is discussed. This is
followed by a description of the Born-Oppenheimer separation of nuclear
and electronic motion in section B(ii). Section B(iii) is concerned

with the eigenfunctions of the rotational Hamiltonian, H Sections

rot’
B(iv) and B(v) derive the operators for the electron spin fine structure
and the nuclear hyperfine structure from physical principles. Finally,
B(vi) deals with the important concepts and derivation of an effective
Hamiltonian operator.

Section C describes the evaluation of matrix elements of the effec-
tive Hamiltonian. In sections C(i) and (ii), some important results
from the theory of angular momentum and some useful relationships in
spherial tensor algebra are stated. These will be needed in the subse-
quent calculations. Hund's coupling cases(a) and (b), and their inter-
conversion, are discussed in detail in section C(iii). Matrix element
expressions are listed in section C(iv), for both case (bBJ) and case
(aB), in terms of Wigner's 3-j, 6-j and 9-j symbols. The absence of

the third Euler angle in linear molecules, which Teads to problems in

the computation of matrix elements, is also discussed.



B. Hamiltonians and eigenfunctions

(i) The General Molecular Hamiltonian

A molecule is an assembly of nuclei and electrons, which is, in
Carrington's words(1), "prepared to coexist in a certain configuration
with considerable stability". To understand the energy levels of a
molecule it is necessary to begin with the Hamiltonian operator corres-
ponding to the total energy (2,3). It has been shown by Howard and
Moss (4,5) that, starting from a relativistic many-body Hamiltonian,
with terms correct to order c'z, jt is possible to obtain all the
familiar energy level expressions used by experimental spectroscopists,
and in addition, some not readily detectable new terms such as mass
polarization and spin-vibration interactions. For our purpose, however,
a non-relativistic many-body Hamiltonian, in which spin is added as an
additional hypothesis, js adequate to describe the system. We therefore
omit the relativistic effects, and define the potential energy of the
Hamiltonian as depending only on the positions of the nuclei (Q) and
the positions of the electrons (q). The Hamiltonian operator for the

total energy of a molecule consisting of N nuclei and n electrons is then

given by
H = ! Q-P 2 (electron kinetic energy)
0 2me o~
1 Np2
+5Ih (nuclear kinetic energy)
n Mn

+V(q,Q) (potential energy) (2.6)
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where NnZ e2
v(q,Q)=-I I a (electron-nuclear attractions)
ai ~ia
NN Y Z'e2
+I % a’b (nuclear-nuclear repulsions) (2.7)
abra r
~ab
non e2
+ z = (electron-electron repulsions)
i j>i A

In eq. (2.6) Ee and P denote the linear momenta of electron i {mass
me) and nucleus " (mass Mn) respectively, and in eq. (2.7) e is the
electron charge, Zae is the charge on nucleus a and'gxy is the radius
from particle x to particle y.

The magnetic interactions, such as electronic and nuclear depen-
dent terms, are much smaller then the electrostatic interactions which
characterized V, and for the present purpose may be neglected. They

will be added later in a perturbation treatment.

(ii) Born-Oppenheimer Separation of Nuclear and Electronic Motion

Just ac the classical problem of the relative motions of three
bodies cannot be solved exactly, the quantum mechanical problem of

finding the exact sclutions of the full Schrodinger equation

H,¥=EY (2.8)

is also impossible for anything except the hydrogen atom. The approxi-
mation introduced by Born and Oppenheimer (6), in which the electronic

part of the problem is solved first, forms a good basis for finding
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approximate solutions. The total wavefunction ¥ is assumed to be expand-

able in a complete set of functions which are products of an electronic

part wei(q,Q) and a nuclear part wvri(Q),

ewxqo)xwm(qomggn)

where ¢ei(q,Q) is an eigenfunction of the "electronic Hamiltonian"

2
~e

H= o o B2+ V(a,0)
e

e

according to

i
Hell)e.i(q sQ)=Ee lpe-i (q !Q)

(2

(2.

For eq. (2.9), which implies that the total energy € is the sum

the electronic energy, Ee

€=Ee+EvY‘

on substituting eq. (2.9) into eq. (2.8) one has

2
1

ni

or

P 20gi (0, Q)+,, (Q)

: i 1
% Yyr (Q)(Zm 2'~e

e

1.Pn?
V(a,Q)vq5(a,Q+vg;(as Q)(-z-z =, (@)

3

, and the nuclear energy, Evr

CWQ+MJ%nMJNMHm€%Jmm()@

.10)

.12)
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. P . i .
. wv‘(o)(; Mz) 0,00+ n,}n[inei(_q,o)][inw‘(o)]§= ARCIOMIC)

(2.14)

Since the wei(q,Q) are eigenfunctions of He’ the first two terms give
wvri(Q)Eei(Q)wei(q,Q). Multiplying from the left by wék*(q,Q) and inte-
grating over the electron coordinates q (which essentially picks out the
state k from the electronic manifold) the equation becomes

] P

3(7 ﬁ ) ~/nll)ek (q,Q) ( —Wr> (q ,Q)dQ%
k * Rn i k

Yy (o)+i§k[§ﬁek(q,o) (ﬂ;)wei(q,o>dq.,an}ww (Q) =&, (@) (2.15)
Neglecting the cross-term which contains wvri(Q)’ eq. (2.15) is a new
differential equation that defines the vibrational and rotational
functions of the electronic state k. The equation has the form of a
Schrodinger equation where the Hamiltonian consists of the nuclear
kinetic energy, the electronic energy as an effective potential energy,
and a small mass-dependent term which contributes a small electronic
isotope effect.

The cross-terms neglected in eq. (2.15) are those which couple

the electronic and vibrational motions in different electronic states.
If the electronic states are degenerate (meaning that there are two or
more orthogonal electronic functions corresponding to states of the
same energy) severe breakdowns. of the Born-Oppenheimer approximation
can occur: these were first described for linear mo]ecu]és by

Renner (7), and for symmetric top molecules (possessing a 3-fold or
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higher axis of symmetry) by Jahn and Teller (8). If the electronic
states are non-degenerate the cross-terms give rise to the phenomenon
of vibrational momentum coupling, which is one of the principal causes

of the complexity of the electronic spectra of NO, and S0,.

(iii) Rotational wavefunctions

The separation of vibration and rotation is in general difficult
because certain combinations of vibrations produce motions indistin-
guishable from rotations, with accompanying vibrational angular momen-
tum. This separation has been discussed in many excellent texts (9,10),
and it is not necessary to repeat it here. The success of this separa-
tion depends of course on the magnitude of the vibration-rotation
coupling terms. If these can be neglected one has essentially indepen-
dent Hamiltonians which describe the vibrational and rotational motions
separately. We restrict ourselves in this thesis to an extremé]y brief
- discussion of the rotational Hamiltonian and its eigenfunctions.

The classical rotational Hamiltonian (10) is

J 2 2 J 2

J
=X 4 L+ (2.16)
rot ZIX ZIy 212

where Jx’ Jy and Jz are the components of the rotational angular momen-
tum Q,along the principal axes of the molecule, and Ix’ Iyand IZ are the
principal moments of inertia (that is, where the axis system is chosen
such that the off-diagonal elements of the moment of inertia tensor I

vanish).
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If the moments of inertia do not change during the rotational
motion eq. (2.16) is known as the rigid rotator Hamiltonian. The

corresponding Schrodinger equation

Heot ¥y = Eydy (2.17)

can only be solved analytically for spherical and symmetric tops. The
motions of a rotating body (a 'top') are usually described by specify-
ing the Euler angles (a,g,y) (11) about the principal moments of inertia,
which are angles describing how much the body has rotated from an

initial reference configuration. The symmetric top eigenfunctions of

h

eq. (2.17) are simply related to the elements of the Jt rank rotation

matrix (12)

v (o)
by = Uy T [g%ﬂ] Dy (o857 (2.18)

where J is the rotational angular momentum quantum number, K is the
projection of the rotational angular momentum vector on the molecule-
fixed z-axis, M is its projection on the space-fixed Z-axis, and DMﬁd)*
is an element of Wigner's rotation matrix. The choice of phase factor
implicit in eq. (2.18) is equivalent to defining the matrix element of
Jx’ the component referred to the molecule-fixed x-axis, as real and
positive (13).

The eigenfunctions of a rigid asymmetric top molecule (where no

axes of symmetry higher than 2-fold are present) are more complicated

than those just considered; they may nevertheless be expressed as
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Tinear combinations of symmetric top wavefunctions (14)

(2.19)

v =1La v
JK_]K1M K JKM " IKM

where 2 kM is an appropriate numerical coefficient, the subscript K_4
and K] are the values of the component K for the limiting prolate symme-

tric top and the 1imiting oblate symmetric top, respectively.

(iv) Electron Spin Fine Structure Hamiltonian

The effects of spin in molecular spectra arise from the inter-
action of each of the electron spin magnetic moments with:

(a) the magnetic moments generated by the orbital motions of the elec-
trons (interaction with its own orbital motion being the most im-
portant); this is known as spin-orbit interaction.

(b) the magnetic moments generated by the rotational motions of the
nuclei; this is called spin-rotation interaction.

(c) the spin magnetic moments of the other electrons which is known as
spin-spin interaction.

Therefore the electron spin fine structure Hamiltonian operator, He]’

is the sum of these interactions,

He] = Hso + HSr + Hss (2.20)

where Hso’ Hsr and HSS are respectively the energy operators for spin-
orbit, spinjrotation and spin-spin interactioﬁs.
(a) Spin-orbit Interaction

An electron possesses an intrinsic spin angular momentum, s. This

gives rise to a spin magnetic moment u., whose value is
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Mo T T9 ¢ (2.21)
%. ~

In this equation g is the relativistic “g-factor", 2.0023, ¥p is the
unit of magnetic moment (the Bohr magneton, efi/2m, which equals
9.274 x ]0'24 JT_] in SI units), and s is the spin angular momentum such

that

W

<s“>* = (s{(s+1))* A (2.22)

According to Maxwell's equations (15) an. electron moving with uni-
form linear velocity v relative to a coordinate system where a static

electric field E exists, experiences a magnetic field, B, given by

B=Ea (2.23)

o 1<

2

as a result of its motion. Now electric field is the gradient of po-
tential, so that if the electric field results from the presence of a

charged nucleus we have

E=-v-=- <-§ dv (2.24)
~ r/dr
where ;z is the unit vector from the position of the nucleus towards
r
the position of the electron, and dV is the rate of change of the

dr
(Coulamb) potential of the nucleus with distance. Then

0 (dM)
B == — [S2r v (2.25)
~ c2r dr ~
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The operator for the interaction energy of a magnetic dipole with a

magnetic field is
H=-n.B. (2.26)

This becomes the operator for the spin-orbit interaction, on substituting

the values of n and B; the result of the substitution is

H, = "9B (dV\ rav.s (2.27)
dr ~

g \O
When the explicit meanings of x and v are considered, r becomes L the
distance of the electron from the nucleus, and v becomes v, the veloci-
ty of the electron with respect to the nucleus. For completeness the
electron spin s is written-ie. When the further relativistic correction
introduced by Thomas (16) is included in the expression, Ven equals
We = Voo This 'Thomas precession' represents the fact that time
appears to be slowed down for the fast-moving electron as seen by the
nucleus, and it happens that it appears (to the nucleus) to be spinning

only half as fast as if it were static. As a result we have

= ~9u . .
Hso —Z—B- %_X__ f’:en’\(}’le '!Jn)" Se (2.28)
hcér en
en
The spin-orbit interaction is additive for the various electrons and

nuclei, so that for a molecule

?1 1 (ddv> Ien"(~l’le - Xn)' Se (2.29)



-18-

If eq. (2.29) is written as the difference of two terms, the second

term may be taken as the interaction between the rotation of the nuclei,
represented by'gn, and the electron spin: it is the spin-rotation
interaction. The second term will be dropped at this point and consi-
dered again in the next section. The first term becomes. recognisably

the spin-orbit interaction when we substitute
o = Loy 2 M Ve (2.30)

as the orbital angular momentum vector operator for electron e moving

around nucleus n:

= ~Su 1 (d 2.31
R o (a3
2hmc en \''en
This may be approximated as
Heo = i ae(r) Lo - Sp s (2.32)
where a,(r) = Swop 1 [dy
HmcZ " Ten \Yen

is a parameter for electron e, which sums over all n nuclei. Eq. (2.32)
is the sofca11ed "microscopic spin-orbit Hamiltonian" (17,18), describ-
ing the interaction of electron spins with the field due to electrons
and nuclei, and containing spin-orbit, spin-other orbit and electronic
screening effects. Using either eq. (2.31) or (2.32) the correct para-

metric dependence of the interactions is obtained but the interpretations
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of the constants differ.
A convenient simple isotropic form of eq. (2.32),

H, = A(r) L.S, (2.33)

where A(r) is an r-dependent parameter, is often used for the calcula-
tion of matrix elements diagonal in S. 1In eq. (2.33) L is the total

electronic orbital angular momentum of the molecule or radical,
L=2 g, (2.34)

and S is the total electronic spin angular momentum of the molecule or

radical,

S=12 (2.35)
;

~

The microscopic spin-orbit operator, zai(r)gi.iﬁ, is needed if
i
matrix elements of the spin-orbit operator off-diagonal in S are to be

calculated.

(b) Spin-Rotation Hamiltonian

The so-called spin-rotation interaction arise from two causes.
One of these is the direct interaction of the electron spin with the
magnetic field of the molecular rotation. It can be shown (18) that
the second term in eq. (2.29) is equivalent to

r € N S, (2.36)

048 A uB o NB
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where the vector N denotes the nuclear rotational angular momentum, and
the coefficients edS are complicated functions of the moments of inertia,
the internuclear distances, and the average distances of the electrons

to the various nuclei of the molecule.

Besides the direct coupling between electronic spin and molecular
rotation, the combination of off-diagonal spin-orbit and orbit-rotation
matrix elements, treated by second order perturbation theory, gives rise
to much larger effective operators with the same angular momentum
dependence (19,20). The two contributions cannot be distinguished, and
are therefore added to produce the determinable spin-rotation coefficient
eOLB.

Eq. (2.36) relates two non-commuting operators, E,andlg, through

the tensor e, so that, strictly speaking, it should be written as the

hermitian average:

H =%Ze (N S +5S. N) (2.37)

. (c) Spin-Spin Hamiltonian

Since electrons possesses magnetic moments, all the electrons of
a molecule must interact with each other through Coulomb's law of mag-
netic interaction. This mechanism gives rise to the dipolar electron
spin-spin interaction.

A spinning electron at a point j in space can he considered as a
bar magnet with magnetic moment by The magnetic vector potential (15)

that is produced at coordinate i is given by

.
e AT 2.38
Ay = mg~ TyilTsy (
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By Maxwell's equations this corresponds to a magnetic field at point i

Bi =V k
- . 3

The Hamiltonian for the interaction of a second electron placed at i
(with magnetic moment ﬁi) and the electron at j (with magnetic moment

.) is
nJ)

$S,1J 00~

- 2
= 798" VA s:ara:f 1 \|s; (2.40)
K r..
3i
1\ _ -r
v <?>_ : (2.41)

v AvVAaV=v(v.Y) - v2V (2.42)

~

Using the relations

and

for any vector ¥, this can be written

2
- 9 2 _ (s..7)s: (1
i~ A )](rﬁ) (2.43)

Hss,ij

The first term of eq. (2.43) can be further simplified with Gauss' diver-

gence theorem which gives

72(—l;> = - 4 s(r.;) (2.44)

T ji
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where 6(rji) is a Dirac delta function. It is defined such that it picks
out the square of the amplitude of the electron wavefunction for electron

j at the coordinate origin, i.e. at the position of electron i

] 2
<6(rji)> = ij(o)l | (2.45)

Therefore, the first term becomes

H ,.. (contact) = -gzsz |2

ss’i]
ﬁZ

The second term in eq. (2.43) is more involved, but, it can be

4n | wj(o) 55 -85 (2.46)

shown that, after some algebra, it becomes

2 2 -
g -
——E%— §4ﬂ v (0) ]2 + [(31;§j)rj12 - 3542540 (85-254) 1055 5% (2.47)

Finally, collecting terms and summing over all electrons, the spin-spin

interaction Hamiltonian is

9up 2
H = —5" 5 {-8x |w(o)|2 S..S .,
ss 2 .= ~J
it 15 3 (2.48)
+ L9052 - 35051 (8 37r.. 0
SIS RgXyi'dTsi 3

The first term turns out to give a constant contribution to the energy,
and is included with the Born-Oppenheimer potential; the second temm is

the dipolar electron spinjspin interaction.
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(v) Nuclear Spin Hyperfine Structure Hamiltonian

Hyperfine intefactions, caused by nohfzero nuclear spins, are the
last terms we consider in the molecular Hamiltonian. Hyperfine structure
results from the interaction of the magnetic and electric moments of the
nuclei with the other electric and magnetic moments in the molecule. We
shall write

Hhgs = Hmag. hfs HQ (2.49)

where H is the magnetic hyperfine Hamiltonian, which arises from

mag.hfs
the interaction of the nuclear-spin magnetic moments with other magnetic
moments in the molecule, and HQ is the electric quadrupole Hamiltonian,
which arises when nuclei with spin I21 (which possess electric quadrupole
moments) interact with the non-spherical electron charge distribution in
the finite volume of each nucleus.

In molecules with electronic angular momentum, the magnetic hyper-
fine structure is usually much larger than that due to electric quadrupole

moments. We begin by discussing the magnetic hyperfine Hamiltonian for

a single spinning-nucleus.

(a) Magnetic hyperfine structure hamiltonian

The theory of magnetic hyperfine structure in diatomic molecules has
been given by Frosch and Foley (21), who derived the Hamiltonian from the
Dirac equation for the electron. An alternative and simplified derivation
of the same hyperfine interaction expression is given by Dousmanis (22).

The mechanism giving rise to magnetic hyperfine structure is exactly
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the same as the electron spin interaction, so with the replacement of
one of the electron spin magnetic momenis, ., by the nuclear spin mag-

netic moment, 1y

~

Eq. (2.48) becomes

-9, ¥ 2
fmag.hfs = ot L. &r 1ui(odl ™ Li-g4
h J (2.51)
L(Ies)rai? = 3L re ) (55T
L1i-85075;5 Lir5i 1085 -T550 47 54

In this case the first term does not give a constant contribution; it is
called the Fermivcontact interaction and is a measure of the extent to
which the unpaired electrons have non-zero probability amplitude at the
spinning nucleus. For the amplitude to be non-zero an unpaired electron
must occupy a molecular orbital derived from an atomic s orbital. Unlike
the dipolar coupling, the Fermi contact interaction is isotropic, and is

represented by a term of the form
ra_ . l.s. (2.52)

where ac is the isotropic coupling constant.

The second term is the dipolar (E,E) interaction between the nuclear
magnetic moment and the magnetic field produced at the nucleus by the
valence electrons.

Eq. (2.51) gives the contact and dipolar parts of the magnetic inter-
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action; on addition of the term I a; 1.2 (23), which gives the inter-

i i
i
action of the nuclear magnetic moment with the orbital angular momentum
of the unpaired electron or electrons, the total magnetic hyperfine

Hamiltonian is obtained as

Hmag.hfs ) ? @

(2.53)

It is usually sufficient to collect the sums over electrons into a

single parameter, giving

Hnag,hfs = 3 L-L ¥ b LS+ clS, (2.54)
where a = ggan“n< 1 ) (2.55)
72y, 3
;
a. = 81 _9%"B¥n |y (0)[? (2.56)
3 f]Z
c =3ggn“B“n<§3 cosze-ll> (2.57)
2 hZ Y3

_ 1 :

and b=a, -3¢ (2.58)

The terms a, b and c are determinable coefficients in the magnetic hyper-
fine Hamiltonian; a is the nuclear spin-orbit interaction, b is a com-
bination of ¢ with the Fermi contact interaction, a.s and ¢ is the dipo-

lar electron spin-nuclear spin interaction.
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(b) Electric quadrupole Hamiltonian

Although the magnetic dipole interaction is responsible for the
largest contribution to the observed hyperfine structure of a molecule
in a multiplet electronic state, electric quadrupole effects are present
whatever the multiplicity is, provided I 2 1. These are caused by the
interaction between the nuclear electric quadrupole moment and the
electric field gradient produced by the surrounding electrons(24).

The electrostatic interaction between a nucleus at point r. and an

J
electron at the point r; is given by Coulomb's law as
He = -2e° = -z¢° (2.59)
Li 5 5L

Recalling that electrons are point charges but nuclei have a finite size
for their electric charge distributioﬁ, we shall neglect any electronic
charge lying within the nuclear radius, then rs > rj and we can expand
eq. (2.59) in ascending powers of rj/ri giving (25)

k
H = -ze" 1 fg__ Pk(cos eij) (2.60)

where Pk (cos Bij) is the Legendre polynomial of order k and eij is

the angle between Ly and r..

The first term in the summation of eq. (2.60) represents a monopole
interaction and when summed over all electrons gives the familiar coulomb
interaction. The second term represents a nuclear electric dipole inter-
action which, by application of parity and time reversal symmetry

arguments (26), can be shown to be identically zero, as are the higher

electric muitipole moments of odd order. Finally, the term with k=2



-27-

corresponds to an electric quadrupole interaction. The separation of
electric and nuclear coordinates in eq. (2.60) can be completed by

applying the spherical harmonic addition theorem:

(ej,¢j) (2.61)

) k k
P (cos 6;:) = 4n (-1 Y (o5,05) ¥
K U 2T o=k e T

where Yq (8,4) is the qth component of the spherical harmonic of order
k, and the angles 6 and ¢ are spherical polar coordinates. The electric

quadrupole interaction then becomes

2 s
z

q
-1)% ) (ax 2 2 . A2 2
q ¢ 2 (-1) (%\} ryT Y, (6559) (4_5_> (z_e_3)Y _q (ei,¢i)£

Y.
1

X
il

e s (-1 T2 (Q) T2, (VE) (2.62)
q q -q

We observe that the above expression has the form of the scalar product

of a nuclear electric quadrupole tensor and an electric field gradient

tensor, each of rank two. (The properties of spherical tensors will be

discussed in section (2.C)). Therefore:

W= e T2(Q) . T2(VE) (2.63)

Q

For a linear molecule the tensor TZ(VE) has one independent component,
so that there is only one "quadrupole coupling constant" which will be

defined in section (2.C).
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{vi) Effective Hamiltonian and Degenerate Perturbation Theory

The analysis of molecular spectra using the true molecular eigen-
functions is impractical, since it would require the diagonalization of
an infinite matrix. Even if this matrix were suitably truncated the
problem would still be very difficult to handle. Ideally a matrix re-
presentation is required that contains no terms off-diagonal in vibra-
tional or electronic state; although the matrix representation is still
infinite it consists only of submatrices, each containing only elements
pertaining to a single electronic-vVibrational level. Eigenvalues can
be obtained for the various submatrices, from which it is possible to
determine the transition frequencies. The construction of such sub-
matrices requires that the effects of all elements of the full Hamilto-
nian that are off-diagonal in vibrational or electronic state be reduced
to a negligible level. A simple practical way to set up these matrices
employs an effective Hamiltonian that only operates within the manifold
of a particular electronic-vibrational state. There are two commonly-
used methods for deriving the effective Hamiltonian, namely contact
transformations and perturbation theory.

In the contact transformation method (27) a carefully-chosen unitary
transformat{on is applied to the Hamiltonian to eliminate specific off-
diagonal elements; since this method has not been used in this thesis
it will not be discussed further. The technique of degenerate perturba-
tion theory has been used extensively in the next chapter and will
therefore be discussed in more detai1;

Messiah (25) has described the techniques of non-degenerate and

degenerate perturbation theorymost comprehensively, but a rather more
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readable account of the derivation of an effective Hamiltonian has been
given by Soliverez (28), using the formalism set up by Bloch (29).
The eigenfunctions |i> , of the total Hamiltonian which operates
over all vector space, form a complete orthonormal set. We want a
Hamiltonian that operates only within a particular manifold of the
total Hilbert space. In other words we wish to project the effects of
the total Hamiltonian operator onto a chosen vector space which is of
dimension less than that of the total vector space, and hence to construct
an effective Hamiltonian that operates only within this chosen vector
space, and with the equivalent operator form within this manifold of the
total Hamiltonian. The operator which brings about this projection of
the total Hamiltonian is a projection operator, Po'
Soliverez {28) shows that it is possible to set up an effective
Hamiltonian which has the following properties:
(a) It operates only within a manifold of dimension less than that cof
the total vector space.
(b) Its eigenvalues are identical to those corresponding eigenvalues of
the total Hamiltonian.
(c) Its eigenvectors are simply related to the corresponding eigen-
vectors of the total Hamiltonian.
(d) It can be expanded as a power series in terms of a perturbation V,
and is Hermitian to all orders of the expansion.
We shall indicate briefly here how such a Hamiltonian is set up.
The total Hamiltonian of the system under study is spiit into two

parts
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H ,=H0+V (2.64)
where the eigenvalues and eigenvectors of H, are known:

Holj>o = E. ]3> (2.65)

J 0

and the eigenfunctions |j>o from a complete orthonormal set over all
vector space.

V is a perturbation to this Hamiltonian and we are interested in
its effects on the eigenvectors and eigenvalues of Ho' In particular, we
are concerned with the eigenvectors spanning the particular manifold onto
which the total Hamiltonian is projected; these will have a particular
eigenvalue, Eo'

The projection operator is defined as
Py = ? li><i] (2.66)
where the eigenvectors |i> span the manifold under consideration. It

follows at once that
HP =P H =EFP (2.67)

I't is supposed that EO can be degenerate, and that the perturbation
YV lTifts this degeneracy. The eigenvalues corresponding to the perturbed
energy levels are given by

(H0 + V) k> = (Eo + Ak) | k> (2.68)
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which can be rearranged to give

(H_ - Eo) |k> = (Ak - V) k> (2.69)

o .

A are the shifts in the energy levels caused by the perturbation

V. Using eq. (2.67) it can easily be shown that
POV |k> = A Py k> = By lk>o (2.70)

where the |k>0 are eigenfunctions of Ho’ and in particular are those
eigenfunctions |i> spanning the vector space under consideration.
There is a complementary projection operator Qo which follows from
the closure relationship
QO 1- P,

§.|2><5Ll (2.71)

fl

where the eigenvectors |g> have been excluded from eq. (2.66) since
they do not span the manifold we are interested in. Qg also has the

property

Q
% =(Q_o)(H0 - Ep) = (Hy - EQ) <;°> (2.72)

where .Qo 5 1es<t
(7;) = %fgfﬁi) (2.73)

From eq. (2.69) and eq. (2.72) it follows that

Q, lk> =(Q0>(.Ak - V) |k (2.74)
\a
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We are now able to find a relationship for k> in terms of the un-

perturbed eigenvectors |k> :

[k> = (P, + Q) k>
= |k>0 +<%§)(Ak - V) |k> (2.75)

The Ay terms can be eliminated from eq. (2.75) by repeated use of

a
that is substituting L.H.S. of eq. (2.75) into R.H.S. The eigenvectors

eq. (2.70) to give an expansion of |k> in terms of |k>0, v, P0 and(?d),

for the perturbed and unperturbed Hamiltonians are thus related by an

jdentity of general form
k> = U lk>0 ' (2.76)

% which can be expanded as

a
an infinite series in terms of these operators. Substitution of eq.

where U is an operator involving V, P0 and

(2.76) into eq. (2.70) leads to the following eigenvalue expression
PO v Ulk>0 =By ‘k>0 (2.77)

‘1f we identify (Po V ) with the effective Hamiltonian we see that
it does possess the properties listed by Soliverez (28), although its
hermitian nature has not been demonstrated. Note that the Ak's denote
the energy shifts from an origin E. Eq. (2.77) is also particularly
convenient in that it uses eigenfunctions of the unperturbed Hamiltonian

as basis function and these are by definition known.
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We can now return to the derivation of an effective molecular Ha-
miltonian. The basis function3|k>o are taken to be the electronic-vibra-
tional states of interest, which are eigenfunctions of H, and V is the
perturbation that mixes them.

As described above (28,30) the total Hamiltonian is divided into

two parts:

Ho=Ho+ 2V (2.78)

The parameter X is a small number because V is assumed small compared to
Ho'
The projection operators P0 and Qo are given the more explicit

definitions

Po = § |20 i><e i (2.79)
Q

(—2)= z T |ei><qi (2.80)
a 2#20 i (Eo _ En)n

where 20 refers to the electronic-vibrational state of interest, & refers
to the electronic-vibrational states other than 20 and i refers to the
set of quantum numbers within the manifold such as £,2 or K etc.

The effective Hamiltonian is given by
Heff =2 PO yu (2.81)

As has already been noted, U can be expanded as an infinite series


http://electronic-.vi.bra-

U= 1 A" u" (2.82)

where U" is given by the general formula

K2

v ersf sty oL sty (2.83)
n

except that

o‘:

U P0 (2.84)
Kn can take the values 0, 1, 2 ... such that

K] + K2 + ... Kn =n

> 3 > -
Ky + Ky oo Ky 2d (3 =1,2 ...n-1)  (2.85)

-

£ is the condition that all K, are non-negative. In addition
n

o:—
S P0

s" =(—% for n # o (2.86)
2 ,

As noted by Freed (31), certain terms in the expansion may be non-
Hermitian, but by taking the Hermitian average of such terms the effec-
tive Hamiltonian is made Hermitian to all orders.

By the use of eq. (2.82) and (2.83),eq. (2.81) can be expanded

as fol]ows;



-35-

T
1

AP, VP
(2.87)

+

2
A Po v (Qo/a) VP,

3, ¥ (gy/a) V(0 /a) VP

2 +
[P,V (Qy/a®) ¥ Py VP 1)
4

4

+ A
where the dagger means that the Hermitian average of the term ia square

th order

brackets is to be taken. The coefficient of A" represents the n
contribution to the effective Hamiltonian. The expansion of the effec-
tive Hamiltonian is expected to converge fairly rapidly, although the
rate of convergence will depend on how the Hamiltonian was originally
partitioned. In practice the total Hamiltonian is partitioned in such
a way that the dominant interactions arise in first order of perturbation
theory. Smaller interactions are included in the effective Hamiltonian
by appealing to higher orders until the required precision of the eigen-
values, a limit usually imposed by experiment, is reached.

The effective Hamiltonian written in terms of operator equivalents

will be considered in the next section after a brief discussion of

angular momentum operators and some standard spherical tensor techniques.

. Calculation of Matrix Elements

The Eoncepts of angular momentum and rotational invariance play
an important part in the analysis of molecular spectra. Using the
general theory of angular momentum (11,12), expressions which depend
only on the rotational properties of various operators and state vectors

can be separated from quantities which are invariant under rotations.
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It is worth noting that the structure of these expressions is primarily
a function of the‘comp1exity of the system being studied such as, for
instance, the number of angular momenta in the coupling scheme. When
these ideas are to he carried out mathematically, spherical tensor
algebra has proved extremely useful and also offers gfeat physical in-
sight.

It is not intended to give a through account of angular momentum
and spherical tensor theory in this section ; the aim is merely to give
some important results and useful relationships that will be called upon

in subsequent calculations.

(i) Angular Momenta

Angular momentum operators are defined as those quantum mechanical

operators that obey the commutation rules (11, .12)
[Py, Pyl =1 Pz (2.88)

(and cyclic permutations of X, Y, Z) where Py, Py and P, are cartesian
components of the operator P. Since these components do not commute it
is not possible to determine them all simultaneously. However, the an-

gular momentum and the energy are both constants of the motion, so that
[P, H] =0 (2.89)

where H is the Hamiltonian operator. Because they commute P and H must

possess simultaneous eigenfunctions. This js an important point because
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matrix elements of the Hamiltonian operator can be calculated using the
angular momentum eigenfunctionsas basis functions. For this purpose it
is convenient to write the Hamiltonian operator in terms of angular mo-
mentum operators and their components, rather than in terms of differen-
tial operators. The basis functions are defined in terms of quantum
numbers relevant to the individual angular momenta rather than the ex-
plicit forms of the wavefunctions.

There are various kinds of angular momentalthat can arise in a
molecule. Firstly, there is the electronic orbital angular momentum L
which is the sum of the orbital angular momenta of each of the electrons

LIy =i LAY (2.90)

where/zi and p; are respectively the position and momentum operators for
the individual electrons. §’and‘l are the electronic spin and nuclear
spin angular momenta respectively. Finally we shall consider the angular

momentum due to rotation of the nuclei, R. According to the rules of

vector couph’ng1 resultants J and F can be constructed:
J=R+L+S (2.91)
E=4d+]1 (2.92)

! The possibility of different coupling schemes and the different sets
of well-defined quantum numbers that emerge will be dealt with in

section C (iii).
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is the total angular momentum in the absence of nuclear spins, while

2
F is the grand total angular momentum. A partial sum
N=J-5§ (2.93)

will also be considered. Conservation of angular momentum applies to
the total angular momentum (E‘or A) but not necessarily to the component
angular momenta. This is equivalent to saying that only the conserved
angular momenta possess well defined eigenfunctions. In general, for any

conserved angular momentum P we have the well known relations
2 _ 2 .
PO PM > = P(PEIIRT [P M) > (2.948)

P, | P My > =My h|p My > (2.95)

P is the quantum number of the angular momentum P, and can take integral
or half-integral non-negative values. Mp is the quantum number referring
to the projection of the operator P along the Z-axis (as yet undefined)
and takes the (2P+1) values P, P-1, ..., -P. The symbol f is Planck's
constant divided by 2w; however in what follows it will be assumed that
the angular momenta are dimensionless, and the f units will be mainly

dropped.

It is possible to define two new operators Py and P_ for which

PylPM > = (Py+iPy) |PM,>

exp (i¢) [P(P+1)-M

n

p(Mpﬂ)Jli [PH+1> (2.96)

P_lPMp> (PX

exp (i) [p(p+1)-Mpch-1)]% |Ph -1 (2.97)

-1PY)1PMP> |
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where P_ and P_ are called raising and lowering or shift.operators, as
they rafse and lower by unity:the projection quantum number Mp. In eqs.
(2.96) and (2.97) ¢ is an arhitrary phase angle: the ¢ommutation rela-
tionships of eq. (2.88) do not fix the magnitude of ¢. Condon and
Shortley (24) take ¢=0 which fixes the relative phases of the (2P+1)
states | P Mp> of different,Mp: This phase convention is used throughout
this thesis.

It is well known that the operator P, is the “generator of infinite-
simal rotations about the z-axis"(32), because by successive infinitesimal
rotations about this axis it is possible to generate an operator for
rotation through a finite angle o about this z-axis. This operator will

be called D(a), and defined as

P -OL2 pP.2

4 —_— zZ + ...
a2

Ol
= exp (-%% P,) (2.98)

D(a) =1 - i

In general, for a rotation of a physical system in which the coordinates
of points after rotation are related to the original coordinates by the

Euler angles a,8,y (11).
D(a,B,y) = exp(-1aPZ/h)exp(-ispy/h)exp(-iypz/ﬁ) (2.99)
The matrix elements of this rotation operator are defined as

- _ (P)
<P Mpl D(.Of"s "Y) I P Mp >.‘ DMpMp/ (..0‘58_ aY). (2:]00)

Unfortunately the phase conventions used by various authors (Rose (33),
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Brink and Satchler (12), and Edmonds (11)) differ; the definitions for
D(a,B,y) given By Rose will be followed in this thesis.

It has been stated in section B(iii) that the rotation matrix
elements D&P% . (a,B,y) are the eigenfunctions of a symmetric top, and
it can also be shown that they are eigenfunctions of the angular momentum
operators (11); therefore the angular momentum eigenfunctions |P,Mp> in

general can be defined in terms of rotation matrix elements.

(ii) Irreducible Spherical Tensors

An irreducible spherical tensor operator of rank k will be defined
as consisting of (2+1)functions TE(E) (q = -k, -k+1, ..., k) which trans-
form under the 2k+1 - dimensional representation of the rotation group

according to

k) (agy) (2.101)

K, oy -] _ k (
D(agy) To(P)D™ (aty)= E,Tq,(P)Dq,q

This means that under a coordinate rotation D(agy) the operator Tg(g) is
transformed into linear combinations of the 2k+l operators T:jP), where
the expansion coefficients are the elements of the Wigner rotation
matrices, Dé%é(aBy). This definition can be shown (32) to be equivalent
to Racah's original expression (34).

[3: » TER)T = TE,(R) [(KFa) (keqe))] (2.102)
and

k k
[J,, TqQE)] =q Tq(g) (2.103)
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which are the alternative definitions of irreducible tensor operators.
A simple illustration of Racah's expressions is provided by the

set of angular momentum operators; for instance, if ké] then the sphe-

rical components T;(g) are related to the cartesian components of a

vector P (a vector is a first rank tensor) according to

(= ey sy (2.104)

1
Z

T(R) =P, (2.105)

Angular momentum operators are vectors, and can therefore be written
in spherical tensor form. Tensor operators of rank 2 or more can also
arise in the Hamiltonian operators, for instance, the dipolar spin-spin
interaction operator and the electric quadrupole operator both involve
second rank tensors.

We choose to write all the terms in the Hamiltonian operator in
spherical tensor notation. We are then able to use the extremely use-
ful, and powerful, spherical tensor technique in the calculation of
matrix elements. Products of spherical tensor operations can be treated
without much difficulty, which is of particular value when products of
matrix elements are to be written in an equivalent operator form. Some
particular equations that will be of importance are as follows; these
and other standard expressions can be found in standard texts on'angu-

lar momentum (11, 12, 32, 33, 35].

(a) Tensor product of two tensor operators

k = ' T _ "k]+k2-q k .k k'| k2
T*(n8) = (2k41) Zo (1) (k] Zk)Tq](A) Te2(®)

T e 94929
with [y =Ky | <k< Ky tko | 172 (2.106)
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(b) Scalar product of two tensor operators of the same rank

p.E) = & () TEA) TE(B) (2.107)

(c) Wigner-Eckart Theorem

<PMp|q 0
-M_q M

™y eemes = (-1)P Mo, Pk P’)<P||Tk(P)||P’> (2.108)
(o

The symbol <P||Tk(P)||P’>1s called a reduced matrix element because it
contains no reference to a coordinate system. It is the Wigner-Eckart
theorem that enables terms which depend on the orientation of the coor-
dinate system, mainly terms involving Mp, to be factored out. In this
thesis Edmonds’ definition (11) of reduced matrix elements is used, which

pS = [P(P+1)(2P+1)]" o - (2.109)

implies explicitly <P||T(P)]|

(d) Relation between tensor operators in different coordinate systems -
these systems can be transformed into each other by means of rotations
through the appropriéte Euler angles. If p and q are the components

of the tensor in the two different coordinate systems,

k

- (k)* k
o(B) = Iy Dpg’ (e8v) To(A) (2.110)

where Déz)*(aey) is the complex conjugate of the (p,q) element of the

kth rank rotation matrix'ﬁ(k)(uﬁy). The phase convention implicit in
eq. (2.110) is that adopted by Brink and Satchler, and Rose {opposite
to Edmonds).

The symbol (J] Jy Jg

) in equations (2.106) and (2.108) is the
my M, mg
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Wigner 3-j symbol, which is a coefficient relating the eigenvectors
corresponding to the angular momenta J, and s to those corresponding

to the angular momentum J, that results from coupling J; with J,

= Ji-Jd,-m
| Jqdpdgma> = ; ; |3qmy>[dpmy>(-1) 71772 73

172

5
(2J3+1) (J] Jo JB)
my m, -m,

Wigner 3-j symbols are simply related to the Clebsch-Gordan coefficients

(2.111)

that arise in the coupling of two angular momenta. We shall also have
occasion to use Wigner's 6-j and 9-] symbols, which are needed to
describe the coupling of three and four angular momenta, respectively.
Wigner symbols are used here because they have greater symmetry than the
corresponding Clebsch-Gordan and Racah coefficients; in addition, they
are easier to manipulate.

The symmetry properties of these symbols are cgiven in standard
texts (11,12). The relations of particular relevance in subsequent
calculations are those by which 3-j (and 6-j) symbols can be reexpressed
in terms Qf 6-j(and 9-j) symbols; a produtt of two 3-j symbols can be .

contracted in the following manner
Ji L, % e 3, 1\ = (=172 (2 3,4)
(1 2 3)( 1 92 3> L (2
my up tiy/ \my M H3 3
(2.112)

<J1 Jdp Js)(‘ﬁ 25 J-3> {‘H Jp Js}

my My Mg/ Nug-ip M3/ {2y 2y &3
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where P = g9 * 2, t 0 +uy tuy tugs and the last collection of symbols
in braces is a 6-j symbol. Similarly, by the use of the Biedenharn-Elliot

relationship (11), a product of two 6-j symbols can be rewritten

s
3J1 I J12i {923 91 J1232 - (29724+1)
J3 9123 J23) (91 9 Yug 124

(2.113)
gJ3 J2 923 % ) §J2 Iy J12§ 333 12 J123%
J14 9 J124 g J124 14 RV Y

where S = Jq + J, + d3 + Jp + Jyp + dpg ¥ Jyg ¥ dypz F gy Y Y

A product of four or five 3-j symbols summed over appropriate

indices can be contracted as follows:
5 (BEH)(CFI)(ADG)(DEF) GH Iy
defghi\b e h/\c fi/\a dg/\def/\ghi)
= (ABC\(ABC
abc/|DE Fz (2.114)
GHI
L (CFI (ADG)(DEF GHI)
dfgi \. ri)\adg/\def/\ghi

ABC
- 3 (2841) (A B C <B E H) D E F{
B a b'c) bef

GHI
The symbols containing a 3 x 3 array of letters are Wigner 9-j symbols.

: (2.115)

In this section, only the properties of irreducible spherical tensors .

have been discussed. The transformation from cartesian tensors T(i)
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to irreducible spherical tensors is considered in Appendix I.

In the next section, we will consider different Hund's coupling
cases and the different sets of well-defined quantum numbers that are
implied. After that we can calculate the mqtrix elements we require by

applying irreducible spherical tensor techniques.

(ii1) Hund's Coupling Cases

Provided we use basis functions that are combinations of eigen-
functions of the appropriate angular momentum operators, we have essen-
tially complete freedom of choice in how to set up these combinations
when we calculate matrix elements of the Hamiltonian. Sometimes it may
be advantageous to use a basiswhere the calculation of the matrix ele-
ments is easy but the matrix itself is far from diagonal, since digital
computers make the diagonalizations routine. At other times we may wish
to use a basis that gives the most nearly diagonal representation, since
the diagonal elements will already be a good approximation to the observed
energy level pattern. The basis giving the most nearly diagonal repre-
sentation depends on the relative magnitudes of the couplings of the
various angular momenta.

In all known cases, coupling between the nuclear spin and other
angular momenta by hyperfine interactions is much smaller than other
couplings, so it is reasonable to begin the considerations by excluding
nuclear spin. Hund investigated the various coupling schemes for elec-
tronic motion and showed that there are five possibilities, known as
Hund's couplings cases (a) to (e) (36). Light diatomic and symmetric

triatomic molecules (free radicals), such as described in this thesis,
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normally belong to eithercase (a) or case (b), although case (c) is
occasionally met.

Figure 2.2 illustrates coupling schemes (a) and (b). Case (a)
applies when the spin-orbit interaction is quite large relative to the
rotational energy. The orbital angular momentum Ll(which results from
the circulation of the electrons around the internuclear axis) precesses
about fhis axis, and LZ, the projection of L onto the internuclear z-axis,
remains a constant of the motion but L itself is not conserved. S is
coupled strongly to L by the spin-orbit interaction. The quantum num-
bers r and A refer to the projections of S and L along the internuclear -
lar axis, respectively. L and § are coupled to the nuclear rotational
angular momentum, R, to produce the total angular momentum excluding

nuclear spin, J:
R+L+5=2J (2.116)

The quantum number for the projection of J along the molecular axis is

called @, and is given by

A+t L =20 (2.117)

The basis set in this case is completely defined in terms of the

above-mentioned quantum numbers;

lnAas3SE s da> (2.118)

The symbol n refers to the other electron coordinates needed to describe

the electronic state fully.



-47-

(i) case (a)

| naszyga->

1=

- A

(ii) case (b)

N+s=y

.

| n AN (K)SJ >

&=

A

K.r A‘__—’

Fig. 2.2 Hund's coupling cases (a) and (b)
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The case (b) scheme is important when spin-orbit coupling is small,
so that there is no reason for S to be coupled to the internuclear axis.
L has the same significance as for case (a); however in case (b) no
distinction is made between the angular momenta for the motions of the
nuclei and the electrons in obtaining the total rotational angular momen-

tum of the molecule, N. Formally one can write

R+L=N (2.119)

This is then coupled with S to form the total angular momentum excluding

nuclear spin J:
N+§S =4 (2.120)

The quantum numbers € and © are undefined in this scheme; the only 'good'
projection quantum number is K, corresponding to the component of N along
the z axis. K is called A for a linear molecule, where R is perpendicu-
lar to the molecular axis so that the projection of N along the axis is
due to the electron orbital motion only. The basis set for case (b)

takes the form
|'n A3 NKSJ> (2.121)

The transformation of basis functiors from case (b) to case (a) is

given by Brown and Howard (13):

| nA; NKS J>= s () NSN30 s NY [ nAsSE3d 0
DAY’ Q -z -K

(2.122)



lnASTJdolF>

Fig. 2.3a Molecular coupling schemes including nuclear spin

)

Case (au) and Case (aB



Fig. 2.3b Molecular coupling schemes Case (bBS) and Case (bBN)
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‘nA(NS)JIF>

Fig. 2.3c Molecular coupling scheme Case (b ;)
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We now consider the couplings involving nuclear spin angular momen-
tum. It will be assumed that only one spinning nucleus is present. The
nuclear spin may be coupled with varying strength to the several molecu-
lar angular momenta, providing additional coupling possibilities. The
commonly expected coupling schemes are shown in Fig. 2.3 . They are
classified according to Hund's scheme, with the subscript o indicating
that the nuclear spin is most strongly coupled to the molecular axis (as
is S in Hund's case (a)) and a subscript 8 indicating that the nuclear
spin is not coupled to the molecular axis but to some other angular mo-
mentum (as in case (b)). For Hund's case (a), one may expect the nuclear
spin to be coupled either to the molecular axis (case (aa)) or to J (case
(aB))' Fig. 2.3a. However, for Hund's case (b), where the electron spin isnot
coupled to the molecular axis, it is very unlikely that the nuclear spin
will be coupled to the molecular axis since the interaction of its small
nuclear magnetic moment with the molecular fields should be considerably
less than that between the electron moment and the molecular fields.
Hence only the various (b_) cases are expected to occur. The vector

B
models and basis sets for different coupling schemes are written explicit-

1y in Fig.2.3 b&c.Case (pr) where the nuclear spin is coupled to the
molecular rotation more strongly than the electron spin is, is also not
expected to occur. Case (bss) is found when the Fermi contact interaction
a_ 1.5 is larger than any of the electron spin interactions, but case

c
(bBJ) is the most common situation.
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jv) Matrix Elements in case {b ) and (a ) coupling
BJ— B

Quantum mechanical calculations for systems having symmetry may
usually be divided fairly completely into two parts. One part consists
of deriving as much information as possible from the symmetry alone.
The other is the evaluation of certain integrals, the estimation of
parameters, or the solution of equations which have no symmetry or for
which symmetry considerations can provide no information. The irreduci-
ble tensor methods described above are designed to separate these two
parts and then to provide a well deVe]oped and consistent way of calcu-
lating matrix elements involving the angular momentum operators. Since
the free radicals discussed in this thesis are diatomic and triatomic,
) and (b

matrix elements for both Hund's cases (a are given. Case

B BJ)
(a) expressions are particularly useful in dealing with diatomic or
Tinear free radicals.

In the derivation, we follow Brown and Howard's procedures (13).
They do not use Van Vleck's reversed angular momentum method (18) but
instead evaluate matrix elements directly in space-fixed (p) components,
rather than in a molecule-fixed coordinate system (q). Operators that
are naturally defined in the molecule-fixed axis system, such as the
electron orbital angular momentum L, are referred back from the space-
fixed axis system by the use of the rotation matrix eq. (2.110). 1In
this way the anomalous commutation relations are completely avoided
and spherical tensor methods can be applied in their standard form.

Matrix elements in the case (bBJ) coupling scheme will be presented

first. The details of the derivations are mainly omitted, but as an
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ilTustration the matrix elements of the dipolar hyperfine interaction
are derived in Appendix II. The rotational Hamiltonian for a near-
prolate asymmetric top can be written in the familiar cartesian form
of eq. (2.16 ), where the I" association (10) of the inertial angular

momentum axes has been made:
= A NZ +BN" +CN (2.123)

The equivalent irreducible tensor form of Hrot is

H K( K(

B) . TUN,N) | (2.124)

oM
—

rot k=0

where the Tk(B) are irreducible tensors of rank k. There are only three

distinct non-zero components, namely Tg(B), TOZ(B) and TS(B) = T?z(B)

(Appendix I). Tk(N,N) is an irreducible tensor operator of kth rank
obtained by coupling TY(N) with itself, according to eq. (2.106).
The matrix elements of the rotational Hamiltonian Hrot in eq. (2.124) are

given by

<nNK SJTF|H [nNKSJIIF>

2
z

q

. N kN
£ (-nNVE e < - < NilTk(N,N)|1N> (2.125)

where the reduced matrix elements are

NTROLI TN > = (D% [(2ke1) T5 IN(NT) (2N41)]

3N N ]2 (2.126)

k1N
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The quartic centrifugal distortion terms for an asymmetric top can be

described by an operator of the form (37)

2y2_p  NON-n NEos NP2 N

2 . 2
Nk N N8N =0y )

N

H = -AN(N X - y

: 2 2yvn 2y 2y 2y 2
-cSK{(NX -Ny )NZ +NZ (NX -N )Y (2.127)

This expressionis valid provided that the effective Hamiltonian
is soundly based (i.e. there are no strong interactions between vibrational

states) and that the molecule is not an accidental symmetric top. When

cast in irreducible form the general expression for HCd is

4
H., =- L z

k=0 k1,k2

K K, 4
( (Ne ) (2.128)

172

T T°(N

A
k1k2) is an irreducible tensor operator formed by coupling the
vector Tl(N) with itself four times

1 k k k, k, K
rd ) = 0PI e s T TR ( b )
p 152 Py 5P, P Psy P1 Py p

The five determinable centrifugal distortion parameters can be chosen
in several different ways; eq. (2.127) represent just one such choice.

The matrix elements of the centrifugal distortion Hamiltonian are
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<nNKSJIF|H,4|nNKSITF->

2 2 4
-y NE(N+1) -ANKN(NH)KZ-AKK (2.130)

and
<qn NKx2 SJIF chdl nNKSJIF>

5, [KP+(ke2)2])

N —

o - Sy N(N+1) -

(2.131)
5

IN(N+T)-K(K£1)T% [N(N+1)- (K1) (K22)]

The electron spin fine structure Hamiltonian consists of spin-orbit,

spin-rotation and spin-spin dipolar interactions. We will first consider
the spin-orbit interaction for a non-linear molecule. The spin-orbit

Hamiltonian takes the general form

_ 1 SO
Hoo =L - K% .8 (2.132)

=

where éso is a 3x3 matrix containing the spin-orbit coupling coefficients.
Since molecules do not possess spherical symmetry, L is far from being

a good quantum number. This makes it necessary to consider the product
Lt %0

~

as a vector X,(19). The interaction Hamiltonian is therefore a

scalar product of this vector with S, or, in irreducible tensor notation,

1
Heo = THY) . T(S) (2.133)

The matrix elements (38) are

<n” N K SJIF|[H, [nNKSJITF->
= (-1)MSH [s(s+1)(25+1) 0% [(2N+1)(2N"+1)]

Js N’i (VK T NNy DT | >
'y s q (_k, - (2.138)
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The spin-rotation Hamiltonian in cartesian tensor notation (39) is

or = 7a.8asly 2t S ) (2.135)

where o and 8 run separately over the molecule-fixed coordinates. 1In
irreducible tensor notation, this Hamiltonian is

2
z

=l
sr 2 kEB

! IT*(e) . T8N, +TH(N,S) . TH (e)] (2.136)

in which Tk(g,§) is the tensor operator obtained by coupling the two
first rank tensors T]Qﬁ) and T]Lg) in a manner defined in eq. (2.106).
Tk(e) js an irreducible tensor (k= 0,1,2 ) and in general all nine compo-
nents can be non-zero; these components are usually defined in the mole-
cule fixed inertial axis system. The relationships between these nine
components and €,g° Van Vleck's spin-rotation parameters(18) as extended
by Raynes (40)), and Curl and Kinsey's parameters (41) are given by
Bowater et al (39).

The matrix elements of the spin-rotation Hamildonian are given by

the expression

<nNKSJITF|H, [ nNKSJIIF>

-2
= 3 (2137 [S(s+1)(25+1) 1% [(2N+1)(2N"+1) ]
k=0

GOSN s gy 1 LD DN (2ne) ]
| gs N 1% '

3-1 1 kg . [N'(N'+])(2N'+1)]%31 1k § ]
N“ N N NN N

N

e
: (-n" ( Nk N)Tk(e) (2.137)
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The spin-spin dipolar interaction given in eq. (2.48) can be ex-

pressed in tensor notation either as the tensor product (32)

= 2 2 -3 L0/-2,] 1, &
fog==/B0g" 35 2 Rig” TT(T gy, (557)°) (2.138)
or the scalar product
- 2 2 -3 41 1. 2 (
Ho =/T0 g% ug 1§j Ri3T THsy) T(sys C) (2.139)

where Rij is the distance between the unpaired electrons and Cg(e,¢) is

closely related to the second rank spherical harmonic,
2 - L 2
C5(0,6) = (4#) Yo(8,6) (2.140)
q 5 q

6 and ¢ are the spherical polar angles defining the position of one
electron relative to the other.

The matrix elements of the spin-spin interaction are

<nN K SIIFJH [nNKSJITF>s= -/6 92 uBZ

r <S | Tz(;q,§d) lls >

(-1)SHN g s W
i>]

2 NS

Nk Y LA
z(-1) [(2N+1) (2N +1) 12| - ¢ ) To(O) (2.141)
q

where the reduced matrix element I <S || T2(§4,§j)|l S > has the
i>]
value listed in ref. (42) and Appendix III for different spin multiplici-

ties. The components
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12c) = <n | € (8,6) | n > (2.142)
q o 3
R
are the parameters describing the dipolar interaction.

The nuclear spin terms consist of two kinds of interactions, namely
the magnetic hyperfine and the electric quadrupole. We shall confine
ourselves with the case in which only one of the nuclei has non-zero spin.
Thus the magnetic hyperfine interactions in eq. (2.54) can be written as

(39)

H =a THD.THL) +a. THD).THS)

mag.hfs
(2.143)

Lgf_ gy T1(1) T3, %)
R

where the third term is the nuclear spin-electron spin dipolar interaction
and R is distance between the unpaired electron and the nucleus with

spin I. The matrix elements of Hmag.hfs are

<n N KSJ IF]| Hnag. hfs | nNKSJIF->

= (-1)9tIHF 3F 1 a} [ 1(141)(21+1)(20+1) (237+1) 17
191

[ [ (v (e T2 (el 1sHoH] §N’ J’s%
J N 1

: (-1 'K( N N) <l Q) I
q -K" q K
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: N+S+J 41 -
+ 8oy o [S(541)(2541) 1% (1) +54 35 J N% a
Js 1

- (30)quguy  [S(S+1)(25+1)(2N+1)(2N+1) ]

(N" N 2 -~ N 2N
N"-K 2
zs S 1‘ z(-1) (-K’ q K) Tq(c) ] (2.144)

. q
J J1
where the quantities -'<ané(L)|n>.a and ac are experimentally determinable pa-

(C) are the parameters describing the dipolar
“(

rameters. The components Tq

interaction. In general, there are five independent components of T C)
but for a planar molecule these are reduced to three (39). A detailed
derivation of the nuclear spin-electron spin dipolar interaction matrix
elements is worked out in Appendix II.

If the nucleus has a spin greater than %3 we must include the nuclear
quadrupole interaction. The operator for this interaction has been
written in tensor notation in eq. (2.63). The matrix elements of HQ are
given by (39)

< N K SJITTF| Hy | n NKSJIF->

- & <1 2 1)‘] (-1)

2 \.101

JI1 2

N Ty s% [(20+41)(23741) (2N+1) (2N "+1) 1%
J N2

2 (-nN K N 2N\ T

a -k~ q K

ny

(VE) (2.145)

0
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where the electric quadrupole moment Q is defined by

1 2
zQ=<I1] T (Q) | 11>
=( 121 > < 11| P Q| 1> (2.146)
-1 01
and TZ(VE) is the electric field gradient tensor.

Finally, the interaction of the nuclear spin with the magnetic field
of the molecular rotation gives rise to an operator
1

| Hin = <1 T1{£) . T(N) (2.147)

where ¢ is the nuclear spin-rotational coupling parameter. The matrix

elements are
<naNKSJ IF|Hy|lnNKSJITF>

= (_1)J+I+F 3F I J’E (_])N+S+J+] ‘S N J’z
1J1 j] J N

[1(1+1)(2141) (20+1)(207+1) N(N+1)(2N+1)T7 ¢

(2.148)

This completes the matrix element expressions for case (bBJ) coupling.
For non-linear molecules all three Eu]er'ang1es are needed to specify the
orientation of the molecule, but this is a problem for linear molecules
because the orientation round the molecular axis is undefined so that one
of the Euler angles is missing. The 'absence' of the third Euler angle

leads to problems later on in the theoretical treatment when one comes to
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compute and use matrix elements, since much of the theory, and in parti-
cular irreducible tensor methods, require there to be three rotational
coordinates. Hougen (43) and later Watson (44), have provided a solution
to this problem by introducing the third Euler angle as a redundant
coordinate in an isomorphic Hamiltonian.

Consider a linear molecule which is modified by the addition of an
of f axis, nearly massless particle, which is bound to the molecule, but
which does not affect the motion of the nuclei and electrons of the mole-
cule. The missing third Euler angle must be restored in order to specify
the orientation of this non-linear pseudo-molecule. The visualization of
such a molecular system immediately suggests that the formalism developed
earlier will be abp]icab]e to linear molecules. This isomorphic Hamil-
tonian can be handled in the normal way, except that only certain of its
eigenvalues and eigenfunctions are acceptable, the other solutions being
a consequence of the redundancy introduced into the Hamiltonian.

Linear molecules or free radicals where A and S are greater than
zero have first order spin-orbit effects. The diagonal elements in
Hund's coupling case (a) are then a closer approximation to the energy
level pattern. We now discuss the operators and matrix elements for
linear molecules or free radicals in case (aﬁ) coupling.

First of all, the rotational kinetic energy and centrifugal distor-

tion energy are described by the operators (45)

- 2 -
Hrot =B T (~) (2.149)

and
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Heg = - D TA(R) . T°(R) (2.150)

~

where
R=3-L-%
Their matrix elements are respectively,

<nASy 3 @ TF[H ,InaSz JalF>

_ 2 . 2 2 2
= B{ 52,2 SQ,Q [J(3+1) - @F + S(S+1) - ™ + < Lx + Ly >]
23 (-9 SR ( 31 a> ( s 1 s)
g=z1 - ’
-0 qQ -1 q %
[I(J+1)(23+1) s(,s+1)(zs+1)]%} (2.151)

and

<nhSz J TFlH, 4lnASTIQIF>

= -D{éz,z 800 [[J(J+1) - 92 + S(S+1) - 22 ]2

‘43 /313 )2 ( 5 1S >
g=x1 ",z <;Q q 9" -z gz

[3(3+1)(23+1) S(S+1)(25+1) ]]

2

-

2 Iy (0 +3-2 ( J 19 < S 1 S)
-2 q Q) -z qzs

[0(a+1)(2041) S(5+1)(25+1)T* [23(3+1) - (27)°
- o2 4 25(s+1) - (27)2 - 12]
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+4 1 (-1 F et J]J)(S]S)(J]J s 15
q=1 Q'L (—Q'q 2"/ \-z"q "/ \-'q Q) (-Z"q 2)
[3(3+1)(20+1) s(_s+1)(_25+1)]} (2.152)

The spin fine structure Hamiltonian consists of three different con-

tributions.

1

Heo = A Té(&)To(s) represents the spin-orbit
interactions (2.153)

Hoo = %—VE A Ti(§,, S) the spin-spin interaction (2.154)

Hep = Y1J(£,- §) . T](g) the spin-rotation interaction (2.155)

where A, ) and y are spin-orbit, spin-spin and spin-rotation parameters

respectively. Their matrix elements are

AArcz (2.156)

<nASZJQIFIHSO|n,ASZJQIF>

% A [322 - S(s+1)1]
(2.157)

<nASzJdalF|H [nAaSzdalF>

cnaSz7d L F|H, |[naSzdalFo>

= vYs_..6 [az-S(s+1)] + = (-1
{ T TR q=¢1

J-Q7-5-12°
)

< J 1 J> ( s 15) [3(3+1) (20+1) s(,s+1)(zs+1)]’f}(2-‘58)

2" q@ Q2
The magnetic hyperfine interaction terms appropriate to Hund's case
(aB) coupling are
(L) +a, THD) . TH(S)
I, S) (2.159)

Hmag.hfs -
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whefe a and c are the hyperfine parameters defined by Frosch and Foley
(21) and a. is the Fermi contact parameter. The matrix elements are

given by

<nthsz 3 @ 1F|H |nASTJIQIF>

mag.hfs
- (- 3F J1 f [1(1+1)(2141)(23+41) (23 "+1) 1"
110

% (-1)J RN [a P
g -2 qQ

+a (<15 T7s 1 s\ [S(s+1)(25+1)]1°
(:Z' q:

-

+-% (30)7 ¢ (-9 (-1)°7% s 1s\/1 21
(—z'qz -q 0 g

[S(s+1)(zs+1)]%] (2.160)

In a linear molecule, the charge distribution is symmetric around

the molecular axis; the electric quadrupole interaction becomes

Hy = e Tg(Q) ) Ti(vE) (2.161)

and the matrix elements are
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<nASzd QIF | Hy [nASzJIalF>

—_

= 7 ea <'1 21\ (- HHF gF 31
-101 213

V04 (2.162)

[(20+1)(207+1)1% (-1)Y Q( i 2 a>
where 9o " eq=e¢e <VEZZ> which is the expectation value of the zz com-

ponent of the electric field gradient tensor at the nucleus produced by

the electrons.
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Chapter 3

High Order Spin Contributions to the
Isotropic Hyperfine Hamiltonian in High

Multiplicity © Electronic States
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A. Introduction

The nuclear hyperfine structure of an open-shell molecule :is domina-
ted by interactions between the nuclear spin magnetic moments and the
electron spin and orbital magnetic moments (1). The two principal inter-
actions between an electron spin § and a nuclear spin l‘are the isotropic,
or Fermi contact, interaction, which has the operator form IS (2), and
the dipolar interacticn, with operator form [3(1;{)(§;[)-(1;§)r2]r'5,
which corresponds to the interaction between the two particles treated as
tiny bar magnets whose separation is given by the vector r. The Fermi
contact interaction is proportional to wz(O), the probability-of finding
the electron at the nucleus, and is therefore particularly large when
unpaired electrons occupy o m.o.'s derived from s atomic orbitals in the
1.c.a.0. description. When the unpaired electrons possess orbital angu-
1ar momentum their orbital magnetic moments also interact with the nuclear
spin magnetic moments, producing an operator of the form 1-L (1,3). The
much smaller hyperfine effects that are familiar in closed shell molecules,
and which do not depend on the presence of unpaired electrons, are of
course still present in open-shell molecules; these include electric
quadrupole interactions for nuclei with I > 1, nuclear spin-rotation
interactions and couplings between two Or more nuclei.

So far the hyperfine structure in gaseous open-shell molecules has
only been studied extensively for doublet and triplet electronic states.
States of quartet and higher multiplicity are quite rare, and high
resolution spectra have only been obtained for such states in diatomic
molecules:; as a result not much information on their hyperfine structure

is available (4). The aim of this chapter is to point out that higher
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order magnetic hyperfine interactions are required for a full description
of states of quartet and higher multiplicity, and that the largest of
these is a third-order cross term between the spin-orbit interaction and
the isotropic hyperfine operator. A second independently-determinable
isotropic hyperfine parameter arises, whose existence is required by
group theory arguments.

Recent sub-Doppler optical spectra of the C4Z- state of VO (4) have
shown the need for this second isotropic parameter, and it should obvicus-
1y be included in accurate work on all 5 states where S > 3/2. There is
a close parallel between the new hyperfine parameter and the second spin-
rotation interaction parameter, originally introduced for 42 states by
Hougen (6), and discussed in more detail by Brown and Milton (7); it
will be shown that the mechanisms for their appearance are very similar,

and that their qualitative effects on the Tevel structure are analogous.

B. Isotropic hyperfine interaction in the third-order effective Hamil-

tonian

When unseen electronic states are causing perturbations that affect
every level of'a vibronic state whose structure is to be analysed, it is
often convenient to set up an effective Hamiltonian (8) which has matrix
elements acting only within the state of interest. A1l the parameters
determined by least squares are effective, but the problem of determin-
ing them is separated from the problem of interpreting them. A conve-
nient procedure for setting up the effective Hamiltonian, based on dege-

nerate perturbation theory, has been described by Miller (9). The Hamil-
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tonian is‘'divided into a zero-order part that is independent of the spin
contributions, and a perturbing Hamiltonian, which for the purposes of

this work can be taken as (7)

V =H H

.+ . . . . . .
rotation Hsp1n-orb1t * spin-spin * Hsp1n-rotat1on

* Hiagnetic hfs  (3.1)

The effective Hamiltonian consists of the zero-order part, plus additio-

nal terms, which, up to third order, from eq. (2.87), read

eff PoV Po

eff PoV (Qo/a)V.Po (3.2)

fope () = POV (0g72)V (Qp/a)V P,

- 5P,V (Qo/az)v PV P, + PV PV (Qo/az)v P, ]

where the perturbing Hamiltonian V s that part of the total Hamiltonian

giving matrix elements off diagonal in vibronic state, and

P

0 " L i]ok><1okl

k
T T 1Tk><1k/|
1#10 k EO-E1

In eq. (3.3) the symbol 1 refers to any vibronic state, including the

1t

(0y/2")

state of interest (which is given the special symbol 10), and k stands
for all the rctational and spin quantum numbers for the sub-levels

making up a vibronic state .
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Since this study is concerned with hyperfine effects in r electronic

states we shall write the perturbing Hamiltonian as

2 2
Ve B(g-5)? + 53,8y + 20(38,°-80) + v ()R

+Ib.l-5; ¢ Ecilzsiz

where the terms correspond to the way in which eq. (3.1) is written. A1}
the coefficients in eq. (3.4) are assumed to be functions of internuclear
distance, and it is further assumed that i electrons are present, but
only one spinning nucleus, which has spin I.

When the additional terms in the effective Hamiltonian, eq. (3.2),
are computed, the largest of the higher order terms are centrifugal
distortion corrections to the rotational energy and the spin energies,
and corrections to all of the main parameters resulting from transforma-
tion of off-diagonal elements of the spin-orbit interaction. For the
hyperfine structure the largest corrections can be shown, by order-of-
magnitude considerations, to be cross-terms between the spin-orbit inter-
action and the isotropic hyperfine interaction, because in general the
spin-orbit parameters a; for the various electrons are larger than the
rotational constant B, and the isotropic hyperfine parameters bi are
larger than the dipolar parameters Cs when s electrons are considered.
From here on we can omit the spin-spin and spin-rotation interactions
(the terms in X and vy, respectively) because they are very much smaller

than the effects of the spin-orbit interaction.
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Qualitative arguments based on perturbation theory show that the
first cross-terms that give additional hyperfine interactions in ¢ elec-
tronic states arise in third order. For instance, if the off-diagonal
elements of V are treated directly by second order perturbation theory,
and the spin-orbit and isotropic hyperfine operators are approximated
as L-S and S-1 respectively, the second order cross-term essentially has
the form

<1Ok|£-£l1k’><1k’|§-l|1ok”>/AE]o-l

using the notation of eq. (3.3). Even without writing explicit matrix
elements it can be seen that this is equivalent to the results of having
an effective operator Heff(z) of the type L-I1 acting within the state of
interest, 10. An operator L-1, or I-L, must have zero matrix elements
within a = electronic state, because pﬁe value of A is zero. In third

order one of the cross-terms given by perturbation theory has the form

<A kS LI Tk"><Tk LS |1 k75 <1k |$ 1|1 k77 7> /aE?

(3)

which has the same effect as if an operator Heff of the type S-1 (or
1;5) were acting within tHe state of interest, 10. It will be shown
below that this third order effective operator Heff(B) contains a part
which is exactly equivalent to the first order isotropic hyperfine inter-
action, and a part which has a slightly different dependence on the spin
quantum numbers; in qualitative terms the difference between the two
parts is connected to the relationship between k and k*””. The first

part of Heff(3) is incorporated into the first order hyperfine interaction,
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but the second part gives the new hyperfine effect which appears for states
with $23/2.

The exact form of this thirdforder interaction is most easily derived
using spherical tensor algebra. We choose a Hund's case (aB) basis,
InASZJQIF>, because it is an advantage to have as many of the electronic
angular momenta as possible with well-defined eigenvalues for their mole-
cule-fixed zcomponents. The symbols in this basis are well-known; n
stands for the vibronic state, and the others are all familiar diatomic
molecule quantum numbers (10). Translating the operators of eq. (3.4) into

spherical tensor form, we flave

1

Tspin-orpit = IT (@3L3)" TH(z;)
(3.5)
H. . zb T](I) 7!
isotropic hfs ;1A - TRy
Their matrix elements, in Hund's case (aB), are
<nASZJQIF|HSpin_0rbit]n‘A‘S’Z‘JQIF> = z(-l)q(-1)s'z(_§ L i)
q “
1
x 2T g s >nl T (a1 nas> (3.6)
i
-q

A ¢ .
<" SZJQIF‘H1sotropic hfs

L

In“AS 270" 1F> = (-1)““]'+F { F
]

« [1(141)(21+1)(2041)(23°+1)1% = (-1>J'9<
q -
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The final terms in each of these expressions are parameters that in prin-
ciple can be evaluated eXperimenta]]y, and can be computed by ab initio
methods. Both expressions obey the selection rule aS = 0, +1, as a result
of the microscopic form of the electron spin operators; in addition the
isotropic hyperfine operator is diagonal in A, but the spin-orbit opera-
tor follows AA = 0, 1.

When we substitute the matrix elements of eq. (3.6) into the ex-
pressibn for Heff(s) given in eq. (3.2) we get nine terms, because there
are three parts to Heff(3)’ and three ways of permuting the operators of

eq. (3.6) remembering that H must be taken twice. There is no

spin-orbit
need to write out any of these terms because the substitution is entirely
straightforward. Many common factors occur in a1l nine because they are
constructed similarly, and closer examination shows that they can be
collapsed to five different types of term, which must be evaluated sepa-
rately. Table 3.1 summarizes the properties of these five types.

It is apparent that the quantum numbers S and ¢ for the distant per-
turbing electronic states occur in the matrix elements of the third order
effective Hamiltonian, but they must not appear explicitly in the final
expressions because the effective Hamiltonian is assumed to act only
within the vibronic state of interest. It is therefore necessary to use
relationships between the Wigner coefficients to sum over these quantum
numbers as far as possible, and to cast them into the form of an experi-
mental parameter or parameters. We follow Brown and Milton (7), who en-
countered a similar problem in their discussion of higher order spin-

rotation interactions in multiplet © states, and solved it by applying

the relation in eq. (2.112).



Table 3.1 The five types of term contributing to the third-order isotropic

hyperfine interaction.

First Second
Initial Operator intermediate Operator intermediate Operator Final Energy
state state state state denominator
1 SA s.0. S°A” iso S A” S.0. SA (EO'E])(EO'EZ)
S.0. S“A” iso SA” $.0 SA
$.0. Sn” iso S“p” S.0. SA
2 SA S.0. S°A” S.0. S’A° iso SA (EO'El)(EO'EZ)
iso S°A” S.0. S°A” S.0. SA
3 SA s.0. SA” 5.0. S“A iso SA (EO-E1)(E0-E2)
iso S’A S.0. SA” S.0. SA
4 sh 5.0. S-h- 5.0. SA iso  SA (50-51)2
5 SA iso SA 5.0. S°A” s.0. SA (EO'E2)2
isotropic hyperfine (see eq (3.6))

The operators are s.0.

spin-orbit and iso

-9[—
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For example, in the terms of type 1 from Table 3.1 we have the product

- S‘- ‘ - - ’: -
S1S\ (-1 F /s 1 s7\-1)S T s
\-z g9z’ -0 q 1 T
where the single and double primes on S and T refer to the intermediate

states, and £°°~ refers to the final state. After two applications of

eq. (2.112) this product becomes

(-1) Y (2k+1)(2K+1) 35 S K 2(5 S K\/1 k K
TkSTI\z -z -q <—q g+q -Q)

35”Sk§<11 k)
11 15Y\-q -q" q+q°

In this expression k and K are tensor indices that arise in the successive
applications of eq. (2.112). It will be seen that nowhere do the inter-

mediate state © values (£~ and £°“) appear.

Eventually the general matrix element of the third order effective
Hamiltonian can be obtained as

""" 1= (1) +I+F'3FJI %

1107

X141+ 1) T8 [(2041)(237--+1)3% T-DP7F 01 07\ S-1°7F s ks
Q’ (pqp)k

§(-1)S"‘5(-1)q(2k+1)(2|<+1)(1 1 k>(1 K K)Ukk 2

|
SN . ) ..
(q) q -9 9+a7/\a -a-a" a /(s S S

-1 q 1

)
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1 o) T
X 1Z<nA|T_q(ai,]ﬂ-)|ﬂ A7><n”A ITq(a'i']\,'i)lnA><S HT (,%])||S>

] . ] .. o 0 -1
X [1z<s|[r (s HISH><S TS > {11k [(E8 -0, o)
S 5-- 5-4

D _EO

K+1
nAS "n TA°S T ]

x (E )-]{<nl\’5‘lb1.|n"/\’S“>(-'I)]+k+K+<n“AS”[biinAS>['I+(-1) }

§ tnAS- n" A°S””

- Is(s+1)(25+1)7% s IT () ]157 > 31 1 k%(’o E© )72
§S-*S

X <nﬁ5!bi‘nAS>xi[1+(-1)K+]J] (3.8)

The separate contributions of the five terms from Table 3.1 can be distin-
guished in the bracket forming the second half of eq. (3.8).

The triangle rules from the 3-j symbols 1limit the values that k and
K can assume, such that k can be 0, 1 and 2, and K is then restricted,

according to the value of k, to

k=0 1 2
g,1,2 1,2,3

=
TR
—
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It is evident that the coefficients 1+(-1)K+]

in eq. (3.8) cause most of
it to vanish for even K values, and only the term with coefficient
(-])1+k+K coming from the type 1 terms in Table 3.1 is left. However it
can be shown, by arguments similar to those used by Brown and Milton (7),
that this also vanishes for K even. The procedure, in essence, is to
prove, by the Biedenharn-Elliot relationship (eq. 2.113), that the terms
with g=1 and -1 in the sum over q in eq. (3.8) differ by a factor (-1)]+K;
therefore they are equal and opposite for even K. The gq=0 term is easily

shown to be zero for even K, so that the whole sum vanishes. One of the

steps in the proof requires the equality

1 e RS
Tq(aili)ln A”> = <n”A IT_q(aili)‘w/\> (3.9)

<ﬂA

which therefore limits the results to A=0, i.e. I states only.
The value of K can be 1 or 3 only, in consequence. Consider K=1

first. The two 3-j symbols involving k in eq. (3.8) can be contracted:

2

2(1 1 k>(1 K 1)= 2(11 k)
% \-q -q" q+q°/\a -9-9” a” \aq 9~ -9-q~ (3.10)

and, using the orthogonality properties of 3-j symbols [11], become

0

2

% (” k > ._‘3_ (3.11)

qQq” -3-q~

The general matrix element reduces to
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1

3 ,r” ==
<nASZJQIFlHisé ) K=1|nasz o707 -0~ TF>=(-1)0 7 HHF ;F J1 2[1(1+1)(21+1)]‘
113~

J-Q - 2 -
xI 0701 N3 s s P DY TT)Y (2ke)
a -0q° Q" -1 q 3 2/‘ k=0

1 ] 1 .
X §<nAIT_q(aili?]n AZ><n”A qu(aili)lnA> §<S|1T (ii)IIS’ >

y 31 k1 E [Z<S\1T](%i)l|5‘><5‘}\T](gi)ilS"> 31 1k 2 (0 (€% o))

3 nAS Tn a”
$S 5 S 5-- 5
x (E0 (-E°.. )" enn-s - |bs [na-s < <> (-1) ¥ 42en- a5 - |
T R : jInAS 7> <n”7AS 77 [by[nAS >} (3.12)
- [s(5+1)(25+1)]" Vs ) ls 0 g0 -2 .
[s(51) (2535 1T (5) 157> 31 R TICAIN LI S I BEN
S 57 S ]

which can be seen, by comparison with eq. (3.7), to be exactly similar in
form to the normal isotropic hyperfine matrix elements. For K=1 the third
order spin-orbit interaction therefore gives a higher order contribution
to the Fermi contact parameter.

The final remaining term in eq. (3.8) has K=3 and k=2. Using eq.
(2.112) again, the pair of 3-] symbols involving k in eq. (3.8) can be

recast into the form
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(3 12 >< 11 2 )
Q° q -q-97/ \-q -q~ g-°+q

(-1N9°9(5) /3 1 2\/1 12\ {312
( ’ - )( ) (3‘]3)
g°-q~ 0/\q -q 0 112

(-1)% (3 ] 2) (-1)9 <1 12 3 14
9 -9~ 0 q -q 0) (3.14)

where we have substituted the value
31 2)_ 1 '
° 3 (3.15)

It turns out that the 3-j symbol with q” in it is important when we carry
out the transformation from case (aB) coupling to case (bBJ)’ so that it
must not be incorporated into the sum over distant states comprising the

experimental parameter. The K=3 term then becomes

<nASZJQIF|Hisé3),K=3{nASE"‘J“‘Q”‘IF>= (-1)d 7 HIHF ;F J1 511(1+1)(21+1)j%
11 9°--

x [(20+1)(29---+1)1" § (-1)J'Q( 31 J"‘) (-1)°°F ( $3 S >

q -0 q° 9°°° 2 qd

L9731 2\ 35 T TDYTS 1 2 ennlTh(ag1) [noats
S-A°5 g @ g0 q

. - .
x <n’h \T_q(ail\n-)fn/b g <SH|T (§J1)||S > 31 23 % [1Z<SHT1(§\,~;)HS‘>
S§SS-
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-1 -] ! - '] -1

S T (s )1 1 © -g° ° -E°

x ST gy 157> ;s ; 2 ; A L R
- Sf

{<nA”S7|by [n”7AS ~*>+2<n " 7AS 7 |by [nAS>) _[s(s+1)(25+1) 77 2<51l71(%1)\!5”>
i

11 2( 0 0 -2 (3.16)
g §-- Ss (ET\AS—EH"/\’S”) <r1/‘.S\b,i\nf\58 .

Eq. (3.6 ) represents a new type of hyperfine interaction matrix element,
which, as can be seen from the properties of the second 3-j symbol, is non-
vanishing for electronic states where S 2 3/2. The form of eq. (3.16) is
somewhat similar to the isotropic hyperfine matrix element given in eq.
(3.6); the differences are that the reduced spin matrix element appears
in another place, and that the simple matrix element of b; is replaced by
the complicated expression between the Jarge brackets which becomes the
experimental parameter.

Our definition of the new experimental parameter has been chosen with
the analogy between it and Brown and Milton's second spin-rotation para-
meter yq (7) in mind. Not surprisingly, since the mechanisms for their
appearance are similar, the analogy between the two parameters is very
close. To make the analogy as close as possible we name the new parameter

bS’ and define it as

L

bS=-4(,3/35);’[(25-2)(25-1)2s(zs+1)(zs+2)(zs+3)(2s+4)]'1t (3.17)

o)

where t is the complicated expression in large brackets in eq. (3.16). The
reason for the peculiar numerical factor will become apparent when we con-

sider the matrix elements in case (bBJ) coupling in the next Section.



Table 3.2 Matrix elements of the third order isotropic hyperfine interaction in a Hund's case (aB) basis

<nASXJQIFlHiS(3)|nASZJQIF>= b RE[F(F+1)-1(141)-0(J+1) 1[35(5+1) -52%-1]
~ 2J(J+1)

[nAST ,d-1,01F>= bSZ(JZ-QZ)%[(F+I+J+1)(I+J-F)(F+J-I)(F+I-J+1)]5[35(5+1)-522-1]

<nnszdalFIH; L3) 2!
20(49°-1)

-28-

ennszaalFIH, L3 [nas pa1,0,001 1P b [3(941)-0(221) 1" [ (5+1) -2(z21)]"
43(J+1) ’
x [FOF+1)-1(I+1)-J(Jd+1) ][S(S+1)-52(z+1)-2]

(3) - 5 v
<nASZJQIF|HiSO InAS,541,0-1,0+1,1F>= tbs[(Jxﬂ)gJ¥Q;1)] [S(5+1)-5(z1)]"2
4J(43°-1)

x [(F+I+J+1)(I+J-F)(F+J-I)(F+I-J+1)]H[S(S+1)-52(Zil)-2]

The phase choice for the rotational wave functions follows that of Brown and Howard (14) or

Carrington, Dyer and Levy (19), based on Condon and Shortley's conventions (20).
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On subsﬁtuting eq. (3.17) into eq. (3.1€), and writing explicit ex-
pressions for the Wigner coefficients, the matrix elements of the third
order isotropic hyperfine interaction in case (aB) coupling can be obtained;
they are listed in Table 3.2.

C. Transformation to case (bBJ) coupling

0f the vafious 42 states known, only two, those in GeF (12) and
SnH (13), show marked departures from case (b) coupling. Therefore,
despite the logical preference among diatomic spectroscopists for calcu-
lating energy levels in a Hund's case (a) basis, it is instructive to 1ook
at the form of the matrix elements in case (b) coupling, because the
diagonal elements show directly how the parameter affects the level struc-
ture in a real situation.

With the case (b) functions given in terms of case (a) functions (14)

by

(o]

insgs= 7 (-DNSRn)® (0 s N [aszoes (3.18)
2 Q - -A

we obtain

NASITFIH, . 3) k=3 [N n-sa71F>= p.(-1) 197 %F J1 %[1(1+1)(21+1)]’1

iso
1149

T.0 707
@ 174 Q -¢ -AJ\g-2" A

x 11 (1) N-SHUN =S4T (g (28-41) 7" (J s N> (f’ s N’)
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[(23+1)(207+1)]" (3.19)
Xg’('])m(‘” J’)“”” s3 05 (-9 (3 1 2
cfan T9 E’) (q’ -q° 0)

(where we have replaced the triple primes of eg. (3.16) by single primes).
After some rearrangement (which by happy chance eliminates virtually all
the phase factors) we can contract the sum over the product of five 3-J
symbols to an expression involving a 9-j symbol (15); vremembering that

A and A- are restricted to the value 0 we finally get

3 e v TEes L 1+J°+F
<NSJIF|Hng ),K=3\N $J-1F>= 1(35/3) "bg. (-1) ii J 1 %
19°

X [I(I+1)(21+1).(2J+1X2J’+1).(2N+1)(2N’+1).(25-2)(25-1)25(25+1)(25+2)

(25+3)(25+4)1*  (-1)N (f 2 N’) \N N~ 2\ (3.20)
co00 Jiss 3

JJ

which is the desired result. These 9-] symbols are unfortunately not
listed in standard tabulations (16), and give very cumbersome algebraic
expressions, but vast amounts of cancelling occur in the evaluation of
actual matrix elements, so that quite simple expressions are finally ob-

tained. Our algebraic forms for the 9-j symbols are given in ref. (5).
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We do not list general forms for the matrix elements of eq. (3.20),
but give merely the diagonal elements for a 42 state. It is useful to
include the diagonal elements of the isotropic hyperfine interaction b 1.3

in these expressions:

Fy(3=N+3): 3CIb-bN/(2N+3)1/(2N+3)
Fp(d=N+3) : LCIb(2N+9) +3bg {(3N+2)+3/(2N+3) 1]/ [(2N+1) (2N+3) ]

. (3.21)
F3(J=N-%): -lC[b(ZN-7)+3bS{(3N+1)+3/(2N-1)}]/[(2N-1)(2N+1)]
Fa(3=N-2): -3C[b-bg (N+1)/(2N-1)]/(2N-1)
where
C=F(F+1)-I(I+1)-3(J+1) (3.22)

It can be seen how when N is large, so that similar powers of N can be
cancelled, these expressions simpiify so that there is one effective b para-
meter for the F, and Fp Jevels and another effective b parameter for the

F, and Fq levels:

. ~ l . . ~ g
F, and Fy: beff—b-zbs, F, and Fj: besf b+zbg (3.23)

The 3-j symbol and its phase factor in eq. (3.20), if the values of
A and A~ are left unspecified,are actually (-1)N'?1N 2 N ), which, when the
_]\qj\’

normalization factor [(2N+1)(2N’+1)]123 is included, is the reduced matrix

element of the second rank rotation matrix (17):
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<NA| lD(z)*(w) ‘ ‘N’A’> =(-'I)N.A[(2N+'l)(ZN’-H)]1§ ( N 2 N’)
: (3.24)

-AqA”

This suggests that it is possible to devise an equivalent operator, acting
within the manifold of a given vibrational level of a multiplet ¢ electronic
state, which has the same matrix elements as eq. (3.20) but which gives a
different perspective on how the new hyperfine interaction operator is con-
structed.

After some experimentation the equivalent operator was found to be

e (3) xez= 5 1M T RSy 1P 24, 3
is0 igj (D). TITHTHS) T (555550 3,C70/ry

(3.25)

where i and j are electrons, rij is their separation and C2 is related to

the spherical harmonic giving their relative polar coordinates,
2_ 3
Cq-(4n/5) Yzq(e,¢) (3.26),

The matrix elements of eq. (3.25) are identical to those of eq. (3.20)
except that they are given in terms of a parameter Tg(c), which must be

expressed in tevms of bS’ according to
bs=(3/10)T§(c)/(14)Lz (3.27)

The derivation of the matrix elements of eq. (3.25) is interesting because
it involves a number of widely-occurring electron spin reduced matrix
elements, several of which appear not to have been given in general form

(though some explicit expressions have been given by Brown and Merer (18).
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In order to interpret the parameter h according to eq. (3.16), or to ob-
tain expressions for the A-doubling parameters, 0, p and q,in terms of the
spin-orbit matrix elements for high multiplicity states (18), it is useful
to have fhese general forms. Accordingly the derivation of the matrix
elements of eq. (3.25) is given in Appendix III.

The operator form of eq. (3.25) shows exactly how the effective opera-
tor for the new third-order cross-term is constructed. In Cartesian tensor
notation it consists of a sum of terms of the type Iusﬁsysé; the<advantagé
of the spherical tensor form is readily appreciated.

Exactly similar expressions to eq. (3.21) are found to hold for Brown
and Milton's Yg parameter (7). The transformation of the case (a) matrix
given in ref. (7) to case (b) coupling is rather more messy than the trans-
formation of eq. (3.19) to eq. (3.20) because now there is only a partial
sum over the index q~ (which cannot take the value zero since the spin-un-
coupling operator is -ZB(JXS +J. S.) rather than -2B J.3 so that the gq°=0

X yy
component is missing). After some algebra we find

(3) . 1 L
NS inlrotation k=3I SJ>=H(2/3)%YSI(2N+1)(ZN’+1).J(J+1)(2J+1)]2

y [(25-2)(25-1)25(25+1) (25+2) (25+3) (25 +4) ]*

x T (2z+41) ( 32 1)(-1)N (N 2 N‘) N N- 2z
z=2,4 ‘
101 000 /{ss 3{

JdJd 1

(3.28)

As explained in ref, (5) the matrix elements are more easily obtained by
an algebraic transformation of the case (a) matrix rather than directly
from eq. (3.28) because of the complexity of the 9-j symbols. Correspond-

ing to eq. (3.21) we have
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Fra=N3): Ely-vg (N+1)/(2N+3) IN

Fp(J=N+3) : %[Y(N-B)+3YSN(3N+5)/(2N+3)]

NS (3.29)
F3(J=N-3): =5 [¥(N+4)+3vg (N+1)(3N-2) /(2N-1) ]
3
Fa(3=N+3) : =2Ly=vgN/(2N-1) J(N+1)
which simplifies for high N to
(3.30)

. I T
F] and F4- Yeff £ Y-2vg5 F, and F3: Yeff ¥ Y+§YS

The points we make in this section are (i) that by choosing the
numerical factor as in eq. (3.17) we can define the new hyperfine parameter

b. so that egs. (3.23) and (3.30) have exactly the same form, and (ii) that

S
the case (b) expressions show how the third order isotropic hyperfine term

and the third-order spin-rotation term both act in the same way, which is
to give the Fy and Fy Jevels different effective parameters from the F,

and Fq levels in a 4 <tate. 1In addition it is possible to derive the form
of the effective operator, acting entirely within the manifold of the &

electronic state, which is equivalent to the third-order isotropic hyperfine

term.

D. Conclusion

This chapter gives the background theory for the new hyperfine para-

meter bg which had to be introduced by Cheung et al (5) to explain the
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hyperfine structure of the qu' state of VO ieasiired by sub-Doppler laser-
induced fluorescence. The new parameter is a third-order cross-term be-
tween the spin-orbit interaction and the familiar isotropic hyperfine
interaction, and, Tike the corresponding spin-rotation effect (7), must be
included in accurate work on all electronic r states of quartet and higher
multiplicity. The new effect will be especially large if there are nearby
states that interact strongly through the spin orbit operator with the
state of interest; therefore it will probably be more important in the
excited electronic states of high mu]tip]iéity molecules than in their
ground states, since ground states are often well separated from other
interacting electronic states.

The new term in bg is in fact required for all electronic states of
quartet and higher multiplicity, not just I states. The reason is that no
approximations have been made in its derivation which limit the value of A
(or K for polyatomic molecules), so that eqs. (3.16) and (3.17) for case (a)
coupling, or eqs. (3.20) and (3.24) for case (b) coupling, are entirely
general. The only restriction to 2 electronic states is in eq. (3.9),
which was invoked to prove that the terms involving the tensor ranks K=0
and 2 vanish for A=0. We have not investigated the consequences of not
invoking eq. (3.9), but qualitatively it seems that the K=2 terms should
give rise to a higher order contribution to one of the other hyperfine

operators, probably a k.k, which is non-vanishing when A#0
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Chapter 4

Laser Induced Fluorescence Spectroscopy
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A. Introduction

The advent of high power monochromatic tunable laser sources has
stimulated important advances in optical spectroscopy as documented by
several recent reviews (1 - 4);

Laser induced fluorescence (which will be taken here to mean the
process whereby a molecule absorbs laser Tight at one wavelength and
emits some fraction of the energy as light at the same and other wave-
lengths) is a much more sensitive technique than absorption spectroscopy

(5). The ratio of (S/N)abs and (S/N)f1 where S/N means signal-to-

uor’
noise ratio, is proportional to the noise equivalent power of the
detector, NEP, and the fourth power of the fluorescence wavelength. As the
fluorescence wavelength decreases, fluorescence detection is increasing-
1y favored. In regions where photomultipler tubes can be used, the
NEP drops considerably and fluorescence detection becomes even more
favorable. Consequently, most laser experiments done in those regions
use fluorescence detection techniques.

The highest resolution in optical spectroscopy is achieved by
eliminating the Doppler broadening of atomic and molecular spectral
lines. The high intensity of laser light has led to the development
of a variety of new nonlinear spectroscopic techniques which permit
Doppler-free observations of a simple gas sample. Saturated absorption
spectroscopy or Lamb dip spectroscopy (6,7) was the earliest developed
and perhaps the most widely used of these methods; here the spread of
atomic velocities along the direction of observation is effectively

reduced by velocity-selective bleaching and probing with two counter-

propagating monochromatic laser beams. Saturated fluorescence spectros-
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copy (8) and in particular the sensitive technique of intermodulated
fluorescence (9) extended the potential of this method to optically
very thin fluorescent samples.

In this chapter, various effects related to laser experiments
will be discussed; they include (i) non-Tinear interactions of mole-
cules with a very intense laser beam to produce saturation effects,
(ii) observation of excitation spectra (which are essentially absorption
spectra provided no radiationless process is occurring) by menitoring
the total fluorescence, and (iii) the use of saturation effects to
study atomic or molecular lines without Doppler broadening. Moreover,
the experimental techniques of intermodulated fluorescence and resolved
fluorescence will also be considered; the former yields line positions
to very high precision (1 part in 108), while the latter gives relation-

ships between lines which permit unambiguous rotational assignment.

. Saturation of Molecular Absorption Lines

In light absorption experiments at "conventional" low power levels
Beer's law states that the absorbed power is a constant fraction of
the incident power. This linear relationship holds only if the incident
power is low. In contrast, intense cohérent light sources, which are
capable of supplying very high power densities, and hence a very strong
optical electric field, can generate a wealth of non-linear phenomena
as a result of the dielectric polarization of the absorbing medium by
the intense field.

The order of magnitude of the optical electric field ¢ required

to produce non-linear effectscan be obtained from Heisenberg's uncertainty
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principle
ill€'T?f], (4.1)

In this expression u is the electric dipole matrix element for the

transition, t the relaxation time and f (= Planck's constant h, divided

by 2m) ~ 10'34 J.s. A laser power of 1 W through a cross-section of

5 2

0.1 cm2 (typical beam size) gives a power density of 10 Wm ~ and

4 1

produces an electric field of ¢ ~ 107 NC -, so that a power of 1 uW

gives € v 10 NC'] (since power density is proportional to the square of

6

the electric field). Therefore, a laser power of 107° to 1 W is

adequate to observe non-linear effects in molecules with p =1 D and

8 s. A rotational relaxation time of

3

a relaxation time of 107° to 10°
this magnitude is typical at a gas pressure of 107~ to 1 torr (10).

Let us consider the behavior of an isolated system with two energy
Tevels, Ey and E,, under the action of an electromagnetic field. The

behaviour of the system, that is its wavefunction V¥, is described by

the time-dependent Schrodinger equation,

ih oy = Hy (4.2)
at

where H is the total hamiltonian of the system, composed of the unper-
turbed hamiitonian Ho and the energy of the quantum system-field inter-
action, or, more specifically in this case, the electric dipole inter-

action between particle and field, which has the form

H' = _E.'

H =H
= H

+ 1™

Hl

0
o - W'e €OS wt : (4.3)
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In eq. (4.3) p is the component of the molecular dipole moment along
the direction of the field, € is the strength of the electric field of
the 1ight wave, and v its frequency.

The wavefunction ¥ can be expressed in term of eigenfunctions of

the HO operator,

¥ = g an(t)e (4.4)

n

i.e. as a superposition of the wavefunctions n of the quantum system

without a 1ight field, where o0 is defined as

iﬁ,3¢n = H (4.5)

ot

o n
Then the equation to determine the coefficients in the expansion
is

= -9 % H : -
%tan %'k H' (k@ exP [%-(En E ) t] (4.6)
from eq. (4.2).

In a two-level system, n = 1 and 2, and the single transition frequency

is w = (EZ—E])/h. Eq. (4.6) gives a pair of coupled equations for

a](t) and az(t)

daj=1 K e a, {eXP[i(w'wo)t] + exp[-i(m+wo)t:]}
dt 2

K e a]' {eXp[-'i,(_w-wo)_t] + exp [‘i(}w+w0)t]}

Q.Lo.
o+

[
~o] =

where K = 2 p]z/ﬁ, in which uyy is the dipole matrix element between

the states 1 and 2. As long as the Rabi frequency w; = Ke is very much
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less than w , we may neglect the high-frequency terms, expl i(w+wo)t],

in the rotating wave approximation; then eq. (4.7) gives

d?ap + i(u-w ) dap + (Ke)?a, = 0 (4.8)
122 & 4

The general solution to eq. (4.8) is

i~
N
—
+
~—
i

[A exp(int/2) + B exp(-iot/2)] exp(-iat/2) (4.9)

- 1 [(a-0)A exp(iat/2) + (a+0)B exp(-int/2)] exp(iast/2)
Ke

=1}
—
—
+
~—
n

1 .
witha = w-w and o= IAZ + (Ke)z]z; the constants A and B are determined
from the initial condition of the system.

Assuming that the molecule is initially in the lower state 1,

a](to) = exp(i®) (i.e. one multiplied by an arbitrary phase factor)

and aZ(to) = 0. This gives the coefficient
a,(t) = [cos @ (t-t )-i A sin 0 (t-t )]exphGe+ia(t-t_ )/2]
1 -é 0 _S—Z ? ] o]
(4.10)
az(t) = i Ke sin [Q(t-t )] exp[ie-ia(t-t_ )/2]
D ? 0 0

The squares of the coefficients which correspond to relative populations

of the two states are

Ny (£) = Ja ()12 = a2+ (Ke)? cos® alt-ty)
2 ? 2 (4.11)
M) = la(t) |7 = (kg)? sinlalt-t))
Y]

In a gas at low pressure, the coherent oscillation of the molecular di-

pole moment is interrupted by collisions between molecules and by the
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life time of the eigenstate.

The effect of collisions can be incorporated in this treatment by
averaging eq. (4.11) over a Poisson distribution of dephasing ‘collisions
with relaxation time t. The probability that the molecule has survived

undar coherent interaction with the field in the interval t = to is

dN(t) = 1_exp[4(t-to)/1] dt (4.12)

The transition probability for an ensemble of molecules in the gas is

then obtained by taking an average over t , to give

<|a2|2>

t .
lf la,(t,t )| expl-(t-t )/x] dt,
Y= (4.13)
:

1 (KE)Z
2 (w-wo)z + T-Z + (Kg)2

This average increases monotonically with the intensity of the radiation
field and approaches 0.5 as the limit € » «. This means that a very
intense field will eventually equalize populations between upper and
lower levels of a transition.

The power absorbed, which is the observable in this system, can be

obtained as

oP = i _(Ng-Ny) ho (Ke)®
21 [(w—wo)2 + =2 + (Kg)z]

dt

where N] and N2 are the numbers of molecules in the states 1 and 2, respec-

tively. The power flow per unit area in SI units

P=le.cecl (4.14)
2
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where ¢, is the dielectric constant and c is the speed of light.
As ¢ - =, AP becomes a constant, the power absorption coefficient

of a gas of two-level molecules is given by

o = 8P = (Ny-N,) 2wk >0 (4.15)

A
P

et [lowy) + %+ (k)7

and the medium saturates. With w = w this can be rewritten as the

o,

phenomenological expression

a=__ %o (4.16)
T+ 1/
where all the appropriate factors are incorporated into oy and IS. The
saturation parameter IS is the power per unit area that a wave on reso-
nance must carry in order to reduce the population difference to one-
half its unsaturated value (11).

With a moderate intensity (I < IS), we have

+ ...) (4.17)

A similar derivation, by the use of density-matrix equations, is
discussed by Letokhov and Chebotayev (3). Saturation of Doppler-
broadened absorption lines has been considered by Shimoda and Shimizu

(10).

C. Saturated Fluorescence Spectroscopy

A Doppler-broadened spectral line is a sum of a great number of

much narrower lines corresponding to molecules with different thermal
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velocity, v. This is why the Doppler effect on spectral lines is often
called inhomogeneous broadening. A coherent light wave of wave vector
k interacts only with particles it resonates with, that is, with parti-
cles for which the Doppler shift in the absorption frequency, k.v, com-
pensates precisely for the detuning of the field frequency, w, With

respect to the transition frequency, w , of a fixed molecule, (Fig. 4.1)

O = + k.v ' (4.18)

The excitation of particles with a certain velocity changes the
equilibrium distribution of particle velocities in each level of the
transition. In the lower level there is a lack of particles whose velo-
city complies with the resonance condition, that is, a hole appears
in the velocity distribution, an effect i~ known as Bennett hole
burning (12), Fig.4.2. By contrast, in the upper level there is an
excess of particles with resonance velocities or a peak in the velocity
distribution. The hole depth and peak height depend on the degree of
absorption saturation by the light field. The width of the hole deter-
mines the homogeneous line width, which can be thousands of times less

than the Doppler width.

E, 7

0y,

sz(EZ—ET)/ﬁ

E,

Fig. 4.1 Two level system
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lower

Fig. 4.2 Molecular velocity distributions for both upper and lower

levels under the action of a laser wave of frequency w.

A related phenomenon known as the Lamb dip (7) forms the basis for
many experiments in saturation spectroscopy (6). Although Lamb has
shown, in his gas-laser theory (7), that the interaction of a Noppler-
broadened line with a standing wave produces this phenomenon, in fact,
the light wave need not be a standing wave: a strong travelling wave is
sufficient to produce the same effect (9). Also this signal can be
detected by monitoring the total fluorescence, which is just a constant
fraction of the total absorbed power.

Consider the situation that two strong travelling waves from the
same laser source pass through a cell in opposite directions. A photo-

multiplier tube is mounted next to the cell so that fluorescence light
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from the cell, perpendicular to the laser propagation direction, can be

monitored, Fig. 4.3.

~N —— Cell — U
PMT

Fig. 4.3 Lamb dip experiment

Fach travelling wave burns its own hole in the velocity distribution.
Because these two waves run in opposite directions, there arise two
holes symmetrical about the centre of the Doppler profile, fig. 4.4a
.In this case, the total fluorescence intensity is the sum of the contri-
butions from each beam. As the laser frequency is tuned near to the
centre of the Doppler profile, the two holes get closer and closer;
also because of the gaussian distribution of the molecular velocities,
the total fluorescence intensities increases. When the laser frequency
is tuned to the centre of the Doppler profile, those two holes coincide
and the travelling light wave interacts with only one group of particles,
Fig. 4.4b. This results in a resonant decrease of absorbed power, which

in turn, decreases the total fluorescence intensity, Fig. 4.5. This
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effect is known as a 'Lamb dip'. Experimental observations of this

effect were reported in (6,8).

(a) (b)

Pop. Pop.

Fig. 4.4 Velocity distribution curves

+ w

o)

Fig. 4.5 Total fluorescence intensity vs laser

frequency
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D. Intermodulated F]uoresxmceSpectroscogx

The decrease in fluorescence intensity from the Lamb dip phenomenon
has been used to detect saturation peaks and is particularly useful when
the total absorption is small. Sorem and Schawlow (9) developed a sen-
sitive modulation method for isolating a small change in fluorescence
intensity.

Consider an experimental set up as Fig. 4.6. The molecules are
exposed to light of two oppositely-directed beams from the same laser
which are chopped at different frequencies, wy and Wy . The modulated

fluorescence signal is detected by phase sensitive detection with

reference signal set at the sum frequency, wy * wj.

Fig.4.6. Experimental set up for intermodulated fluorescence
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The basic concepts behind this saturated fluorescence technique
can be understood in terms of a very simple two level model. In the
limit of the Doppler width being much greater than the homogeneous
linewidth and I < IS’ from eq. (4.17) the absorption'coefficient at

frequency w is given by

) (4.18)

o = o (1 - %s
The total power of the beam is Al where A is the cross-section of the
beam and the transmittance is given by Al exp[-aL] where L is the sample
length. Since the fluorescence power, F, is some fraction of the ab-

sorbed power,

F=KAI {1 - exp[-aL]} (4.19)

where K is a proportionality constant. When ol < 1, the exponential

term in eq. (4.19) becomes 1-aL, such that

F = KAlal (4.20)

Since the beams are modulated at wy and Wy s the powers contained in

beams 1 and 2 are

_ 1 .
I] = ?’Io cos w]t,
21 .
I2 - Io cos wzt, respectively,
with 1 = I1 + 12
_ ] '
= E'Io (cos wyt + cos wzt) (4.21)

where Io is the total power hefore splitting. Substituting eq. (4.17)
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and eq. (4.19) into eq. (4.20) with rearrangement gives

_ 1 '
F = 2KALIDa0{cos wyt + cos wyt

fig [1 + cos (m] + mz)t + COS (w] - wz)t

ZIS

1

1
+ % C€OS Zw]t + > €OS 2m2t]} (4.22)

Therefore the fluorescence power at the sum freguency wp towp is

Folug + wp) = - KALIOZOLO cos (wg + wp)t (4.23)

41 ¢

It should be noted that there will also be narrow resonant terms modu-
lated at the frequencies Wys Wps Wy = Wy and zero, but that each of
these will be accompanied by a large background because of low frequency
amplitude noise in the iaser power. Equations (4.22) and (4.23) show
that the ratio of the power at the reference frequency to the d c¢ fluorescen-
ce backgroﬁnd is independent of aoL. Comparing to a similar calculation
for the saturated absorption (13) shows that this ratio is proportional
to oyl in the limit of aoL<1. Thus this method, which is called inter-
modulated fluorescence, has a strong advantage for experimentalists
working with very weak transitions, very low particle densities, or a
poorly populated Tower state.

This technique has been employed by a few workers in spectroscopy
to study hyperfine splittings (9,14 - 16). The highest resolution
achievable by this method, where the signals have a full width at half
maximum (FWHM) of a few hundred kilohertz is obtained when the gas
pressure is less than 0.1 torr. The signal suffers from sizeable pressure

broadening if the pressure is substantially higher than 0.1 torr.
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E. Reso1yed'F1uorescence Spectroscopy

Heavy molecules with high. spin multiplicity always exhibit
severely blended spectra in the optical region. The overlap of differ-
ent subbands or hot bands makes the analysis difficult simply because
it is no longer possible to recognize the patterns of branch structure,
and some "lines" have unexpected intensity due to the blending of many
lines. In addition, rotational perturbations by different electronic
states cause shifts and splittings of the lines. Under such circumstan-
ces, the rotational analysis would be completely impossible without some
knowledge of the quantum numbers involved in the individual lines or
their relationship to other lines. Resolved fluorescence is of very
great value in solving this problem.

If a molecule is irradiated with Taser light having the wavelength
of a single rotational line, the absorbing molecules will be brought
into the upper state of this particular absorpticn line only. The
excited molecules can then emit light, falling to different rotationai
levels in the ground state according to the selection rules for elec-
tronic transitions (17) with emission of radiation, and giving rise to
other fluorescence wavelengths besides the exciting wavelength.

The first step in the experiment is to tune the laser to a parti-
cular line of an electronic transition. Fluorescence, induced by the
pump laser, is monitored, perpendicular to the laser propagation di-
rection, by a monochromator with a photomultipler tube. A resolved
fluorescence spectrum is obtained by scanning the monochromator.

There are two important pieces of information concerning the line

assignment that can be obtained from a resolved fluorescence spectrum:
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i) the aJd selection rule for the Tine which is excited by the laser.

When a single energy level is optically excited the fluorescence

spectrum consists of two or three lines. If X 1is the exciting wave-
length, one of the lines in the fluorescence spectrum will always appear
at A. If only two lines appear and the other line is at a shorter
wavelength, the exciting line belongs to an P branch; 1if the other line
is at a longer wavelength the exciting line belongs to an R branch.

A Q line may appear, in between the RP doublet, depending on the select-
jon rules and the type of transition. When a Q line is being excited in a
parallel transition, most of the intensity is re-emitted in the P and R

lines, Fig. 4.7.

Jl)

AN J

P(J"+1)
Q)

R(J™-1)

pa A

Fig. 4.7 Origin of induced fluorescence lines
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ii) The separation between P(J"f]) and R(J"-1) fluorescence lines,

called 4,F"(J"), is given for a linear molecule by

—d

b FP(3") = (48] - 6D1) (3" + %) - 8DI(J" + )

5 (4.24)

where B" and D" are the effective rotational and centrifugal distortion
constants for the lower state (17).  Measurement of the various sepa-
rations allows the assignment of the J numberings to be made and simul-
taneously gives a rough B; value for this ground state. In anactual
case, because the resolution of the monochromator is an order of magni-
tude lower than that of the laser excitation spectrum, it is often not
possible to identify exactly which line in a crowded excitation spectrum
goes with the line being excited, to within 1 cm']. It may be necessary
to determine this by measuring the resolved fluorescences for various
1ines in the range indicated by the first experiment.

Furthermore, the excited molecules can also emit to different vi-
brational levels of the lower state. We could thus obtain in fluorescen-
ce a progression with v' = constant but different V" in the lTower state,
each band consisting of a P line, an R line and possibly a Q line.
Vibrational assignment of the upper state can sometimes be made by
counting the minima in the intensity pattern of a vibrationally resolved
fluorescence spectrum (18); the number of minima corresponds to the
number of ncdes in the vibrational wavefunction.

Combining the powerful techniques of intermodulated and resolved
fluorescence, it becomes possible in principle to analyse any spectrum

of any complexity - for instance high resolution spectra where small
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hyperfine splittings are present can be analysed to give the details
of the electron spin and hyperfine coupling constant with great precis-
jon, and perturbed electronic band systems can be unambiguously

assigned no matter how fearsome the perturbations may be.
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Chapter 5

Laser Spectroscopy of VO; Analysis of

the Rotational and Hyperfine Structure

4

of the ¢ - x*z” (0,0) Band
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Introduction

Vanadium.monokide; YO, is an important constituent of the atmos-
pheres of cool red stars, its band systems being used for the spectral
classification of stars of spectral types M7-M9 (1). There are three
band systems of VO in the visible and near infra-red. Near 1.051 ié
the A-X system discovered by Kuiper, Wilson and Cashman (2), and later
studied in the laboratory by Lagerqvist and Selin (3); following
recent Fourier transform work by Cheung, Taylor and Merer (4) this is
assigned as A4H—X4Z-, where the A4n state has quite small spin-orbit

42' system (5,6) where the B4n state

coupling. At 7900 R is the B4H-X
is extensively perturbed by an unseen 4 state (4), and near 5700 A

is the C4z'-X4z' system (6-9) whose detailed analysis is described in
this chapter.

A partial rotational analysis of bands of the C-X system was first
performed by Lagerqvist and Selin (8). Their spectra were obtained
using an arc between vanadium electrodes, which gives a very high tem-
perature, and correpondingly wide lines. Their line assignments were
correct, but they were only able to analyse parts of the R2, R3, Py and

Pa branches, and they suggested that the transition was possibly ZA-ZA.

The ground state was later established as 062'42' by the e.s.r. work
of Kasai (10), and shortly afterwards Richards and Barrow (6), reinves-
tigating the B-X and C-X systems, found that the two systems contain

Jines of different widths as a result of hyperfine structure in the

~ground state caused by the S]V nucleus, which has Ié7/2. Richards and

Barrow could not resolve the hyperfine structure in their furnace

spectra, but they discovered a very unusual internal hyperfine perturb-
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ation in the ground state. What happens is that the F, and F3 Tevels
(J=N+%) with the same N value happen to cross near N=15 because of the
particular values of the rotational and electron spin parameters.
Matrix elements of the hyperfine Hamiltonian of the type aAN=0, AJ=zx]
act between them, and cause an avoided crossing of the hyperfine levels
making up the two rotational levels. At medium resolution the perturb-
ation appears as a small doubling of the lines near N”~“=15, and the
minimum separation, which is related to the isotropic hyperfine para-
meter b (11), was found to be consistent with the e.s.r. work .

The hyperfine structures of the R1, R4, P] and P4 lines were re-
solved by Hocking, Merer and Milton (12) in high resolution grating
emission spectra. The hyperfine patterns give the difference of the b
parameters in the C and X states, and it was found that there are
sizeable hyperfine splittings in the C state as well. Another internal
hyperfine perturbation, similar to that in the ground state, was dis-
covered at N“=5 in the C42' state. A rough value could be obtained
for the isotropic parameter b, but the dipolar interaction parameter C
could not be extracted from their Doppler-limited spectra.

In this chapter we describe an analysis of the C4z—-X4z' (0,0)
band from sub-Doppler spectra recorded by the technique of intermodula-
ted fluorescence (13). The line width is limited by pressure broadening
effects to about 100 MHz, but this is sufficient for the hyperfine
structure to be essentially completely resolved, barring the region at
the R2 head. Except for the places where the upper state suffers from

electronic perturbations the lines can be fitted by least squares with
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1

a standard deviation of better than 0.0008 cn . Accurate values for

the rotational, electron spin and nuclear spin constants have been ob-

tained for both states.
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B. Experimental Details

VO was prepared in a flow system by passing VOC]3 mixed with argon
through a 2450 MHz electrodeless discharge operating at 75 W. The
mixture was pumped through a stainless steel fluorescence cell fitted
with quartz windows, and VO fluorescence was excited by Tight from a
Coherent Inc. Model CR-599-21 tunable dye laser. The strongest fluores-
cence occurred when the microwave discharge was a purplish pink colour
with a pale blue 'tail'; the fluorescence induced by excitation of the

C42'-X4

- (0,0) band (at 5738 K) was a yellow orange colour.

Spectra of VO were recorded at sub-Doppler resolution by intermo-
dulated fluorescence (13). Figure 5.1 illustrates the optical arrange-
ment for this experiment. A Coherent Radiation CR-10 Art Taser operat-
ing at 514.5 nm with 2.2 W output is used to pump a Coherent Radiation
CR-599-21 dye laser with rhodamine 6 G dye. Dye laser output is typi-
cally 3C mW single frequency (AVFWHM " 3x10'5 cm']), and is monitored
using a 1.5 GHz free spectral range (FSR) spectrum analyzer, a
299-MHz FSR fixed length semiconfocal Fabry-Perot interferometer, and an
12 cell. 12 fluorescence excited by the dye laser is detected perpendi-
cular to the laser propagation direction by an RCA IP28 photomultiplier
tube (PMT 1) operated at -870 VDC. The dye laser beam was split by a
50-50% beam splitter (B S), and the resulting two beams were chopped
mechanically at 582 Hz and 784 Hz. The laser power was about 15 mW in
each beam, and the»f]uorescénce signal was recorded through a sharp-cut
yellow filter using an RCA C31025C (PMT 2). A narrow-band electrical

filter selected the sum of the chopper frequencies, and the intermodul-

ated signal was extracted with a Princeton Applied Research model 128A
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Tock-in-amplifier. A1l the necessary electronics were connected as in
Fig. 5.2 to minimize the ground loop problem. The results were dis-
played on a three-pen chart recorder. As the laser frequency was
scanned one pen plotted the intermodulated signal, the second pen gave
frequency markers spaced at 299 MHz intervals from the semi-confocal
Fabry-Perot interferometer, and the third pen recorded the fluorescence
spectrum of I2 for absolute calibration. This system is similar to
that used by Field et a1.(14) in their intermodulated fluorescence ex-
periments, except that we use a narrow band electrical filter rather
than a second lock-in-amplifier (15).

For intensity reasons we were not able to run the microwave dis-
charge such that the total pressure in the fluorescence cell was less
than about 1 mm Hg if we were to record intermodulated fluorescence.

As a result the linewidths in our spectra are pressure broadened, and
were never less than about 80 MHz even though the laser linewidth is
1-2 MHz. For the weaker high N lines we had to increase the total
pressure; the linewidths rose to about 130 MHz, but fortunately these
lines are only rarely blended so that the only adverse effect was lower
precision in their calibration.

We encountered no problems with relative calibration of the spectra

1

over a 1 cm~' scan of the dye laser; for example the ground state

hyperfiﬁe combination differences in the P2 and P3 Tines were routinely

1 (15 MHz); this is because the inter-

reproduced to within +0.0005 cm”
ferometer markers are sharp compared to the VO lines, and because the

temperature of the room (which affects the positions of the markers
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though not their spacing) remained sufficiently constant during the

few minutes required for a scan. However the absolute calibration was
always much less certain. As explained we used Doppler-limited 12
fluorescence lines, excited by a portion of the laser beam picked off
by abeam-splitter. The wavenumbers of the 12 lines have been listed

to 0.0001 em” ! (3 MHz) by Gerstenkorn and Luc (16), but, since the I,
lines are about 1 GHz wide because of unresolved hyperfine structure,
their absolute uncertainty is about 0.002 cm_] (60 MHz). Fortunately
the YO spectrum is sufficiently dense near the band head that we were
able to establish the relative shifts of the "ladders" of interfero-
meter markers between successive 1 cm'1 laser scans, using lines
duplicated in the overlap regions. In this way we could plot a cali-
bration graph for the I, Tines relative to the interferometer markers
over ranges of up to 10 cm']. This gave us the marker spacing with
great accuracy, and enabled us to use 40-50 I, lines to establish the
absolute calibration of the "ladder". The calibration graphs consisted
of a scatter of points, one for each I, line, spread randomly over
+0.002 cm'] along a straight line. This procedure is very laborious,
but we consider it worthwhile because it improves the standard deviation
in a least squares fit to the line positions by nearly a factor of two:
the final standard deviation for 1300 low N lines calibrated in this

way was 0.00076 cm'1 (23 MHz).
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C. Rotational and hyperfine energy level expressions

Since this work on VO is the first detailed study of the hyperfine
structure in a %z electronic state, we did not know at first which
terms to include in the Hamiltonian. After some experimentation we
found it necessary to vary 12 parameters for each electronic state.

The Hamiltonian was taken (17,18) as

= (3
Ho=Hoop ¥ Hey * Hpgs * He],c.d. +HTo. (5.1)
where

_ onl nnd
Hpot = BN -DN
H = yN +3x(3s 2-52)

el ~R"3 z R/, )
Hpgs = BL.3 + ¢l S, + e Qql31, -1 ) 4 c;L.N (5.2)
AT(21-1)
Hot c.d. = Yp(N-SINT + 325035, "-STIN" + N7(35,7-57)]
(3)

which are basically described in chapter 2, and H represents third-

s.0.
order spin-orbit contributions to the parameters y and b, which are
described later. The rotationa] energy, given by Hrot’ requires no
explanation; the terms in He] are the electron spin-rotation inter-
action and the electron spin-spin dipolar interaction, while the terms
in ths are the direct electric and magnetic hyperfine interactions.
The terms in b and ¢ are the determinable coefficients in the magnetic
hyperfine Hamiltonian for a 42 state; ¢ is the dipolar electron spin-
nuclear spin interaction, and b is a combination of c with the Fermi
contact interaction, a.. A more fundamental way of writing these I,S

magnetic hyperfine terms (19), which is convenient for the calculation
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of matrix elements, is

] 1
H = a_ 1§ + c(1,S, - 31.8) (5.3)

mag.hfs
The electric quadrupole interaction (e2Qq) and the nuclear spin-rotation
interaction (cI) are familiar from microwave spectra of singlet states
(18,20), while the centrifugal distortion corrections to He] should be
self-explanatory.

In the 42 states of VO under discussion the electron spin-spin
interaction (1) is large compared to the hyperfine effects, so that the

basis giving the most nearly diagonal representation is case (bBJ)

coupling (11,18) where

=
+
in
u
I
lea
+

1=F (5.4)

The basis functions are then |NASJIF>, where A can be suppressed be-
cause it is equal to zero. However the matrix elements in case (bBJ)
coupling are much more complicated algebraically than those in case

(a,) coupling so that the use of case (bSJ) is logical for VO only

B
because of the internal hyperfine perturbations mentioned in the Intro-
duction. The matrix elements responsible for the internal hyperfine
perturbations are off-diagonal in both basis sets, but in case (aB)

the spin-uncoupling is also off-diagonal. The spin-uncoupling matrix
elements, which arise from the x and y components of the operator

-2B J.5, are very much larger than the internal hyperfine perturbation

elements, and we found that they gave trouble with the energy ordering
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of the eigenvalues in the regions of the internal hyperfine perturbations.
This led to disaster in our attempts to fit the line positions by least
squares, so that we returned to case (bBJ)’ though not without misgi-
vings. In retrospect a two step diagonalization starting from case

(a,) might have saved much lengthy algebra: the first step would have

)
been essentially a numerical transformation to case (bBJ)’ and the
second step would have completed the diagonalization.

We quickly discovered that it was necessary to use a full matrix
treatment for a correct description of the magnetic hyperfine effects;
for instance the AN=%2, AJ=*1 elements of the dipolar interaction have
a significant effect on the course of the energy levels at the internal
hyperfine perturbations. Therefore the only simplification we have
made was to omit the AJ=:2 elements of the electric quadrupole inter-

action, after calculating that these were less than 1 MHz. The matrix

elements of the terms in B, D, vy and yj are diagonal in case (bBJ):

- 2 2
rot + spin_rothSJIF> = BN(N+1)-DN"(N+1) (5.5)

5 [N(N+1) 45 (S+1)-3(3+1) J[y+y pN(N+1) ]

<NSJIF|H

Matrix elements of the other terms in eq. (5.2) are most conveniently
calculated using spherical tensor formalism as shown in chapter 2
(19,21). For electronic = states of any multiplicity, where a single

spinning nucleus is present, we have
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NSITF[Hg s s INSITF> = S 3J s N*i
2 NS (5.6)
X[S(5+1)(25+1) (25-1)(2543) 1* (-1 <N’ 2 N>[(2N+1)(2N’+1)]l’
0 00

NSITFIH o pgg |NSITF> =

hfs gF I J’s[(2J+1)(2J’+1) I(I+1)

1391 (21+1)]"

N+S+J7+1
(-1) ; (5.7)

s J° N [S(s+1)(25+1)]" a
Js 1%

-%c[30(2N+1)(2N’+1) S(s+1)(25+1)7% (N- N 2y (-1)N/n- 2 N
s s 1‘ | (o 0 o)

J-J 1

H{-VSH g s% IN(N+1) (2841) 1% ¢

J N 1

where a. (the true Fermi contact interaction)is b + %c, and

-1
INSOTF> = %e’Qq ( 1 2 1> D RARRAIN T B
10T 2 31

<N‘S‘J’IFlHquadrupMe

(5.8)

(-1 ST [(2041)(20°41) (201 (2N°41) 17 {5 N- 37 -V (N’ 2 N>
;2 3 N s 0 0 0

It is straight-forward to obtain explicit expressions except for the

dipolar term c(IZSz-%1;§), where the 9-j symbol is not listed in

standard tabulations (22), and the algebraic expressions given by
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Mizushima (23) contain various small but important errors. For complete-
ness we 1ist the corrected forms of the relevant 9-j symbols in Appen-
dix IV. Our phase choice in egs. (5.5)-(5.8) corresponds to that of
Bowater, Brown and Carrington, where N is treated as a space-fixed
operator (19), and the order of coupling the vectors in eq. (5.4) is
also the same as theirs.

The third-order spin-orbit contributions will be unfamiliar since
they only occur for SZ%, that is for electronic quartet states or worse.
In this study we have had to use the third-order contribution to the
spin-rotation interaction, Yg» introduced by Brown and Milton (25),
and the corresponding correction to the isotropic hyperfine interaction,
which we call bg (26). The term in Yg has a complicated history. The
original formulae for 42 states derived by Budé (27) and Kovacs (28)
accounted nicely for Nevin's data for 02+ (29), but not for the data on
GeH (30) and SiF (31). Hougen (32) attempted to find the source of
the discrepancy, and extended the theory to include the second spin-
rotation parameter required by group theory arguments for a 42 state in
the general case. Later work by Martin and Merer (33) showed that the
original SiF spectrum has been misassigned, and that there were no dis-
crepancies, but their theoretical treatment was still incomplete.
Finally Brown and Milton (25) gave a full discussion of the higher
order spin dependence of the spin-rotation interaction in 42 states.
Their conclusion was that the single spin-rotation term in y given in
eq. (5.2) will usually suffice, except in cases where very high resolut-

jon is available, or where another nearby electronic state interacts
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strongly by spin-orbit coupling; in this case a second spin-rotation
term will be needed. This second term results from a third order
interaction where the spin-uncoupling operator -28(J.,S +J. S ) is taken

XX yy

with the spin-orbit operator Ia 1i'si twice: the matrix elements in
ii
case (a), with ¢ and @ taken as signed quantities, are

sz,00 K 3| s221,00815> = g [s(s41)-52(221)-2]
¢ [9(3+1)-a(g:1) 1" [S(s+1)-x(221)] (5.9)

The experimental parameter vyg is a complicated function of the spin-
orbit matrix elements, the energy separation to the interacting states
and the differences AB between the B values of the interacting states
and the state of interest.

Barrow (34) has reported that the C4Z' and X4Z' states of VO both
require two spin-rotation parameters (presumably in Hougen's formalism).
The present work confirms this conclusion, although we have used Brown
and Milton's definitions for the parameters. These states of VO are the
first 42 states known where two y's are definitely needed.

The high precision of our data has required that we consider the
corresponding effect in the isotropic hyperfine Hamiltonian. The
mechanism for its appearance is entirely analogous: instead of the
spin-uncoupling operator -2B(J.S_+J.S.) we take the isotropic hyperfine

XX yy

operator Zbil.si with the spin-orbit operator twice (26). The result
1. o~
is as if there were an effective operator

3) _ o ey D 3crs) . 12 2
Hiso I, T (T1)s Tlg-85))> TO) (5.10)
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acting within the manifold of the 42 state of interest. As given in

ref. (25), the matrix elements of eq. (5.10) in case (bBJ) coupling for

A=0 are
<N’SJ’IF|H$23[NSJIF> L O DRALMANN T8 S [(23+1)(20-41) .I(1+1)(21+1)]?
131
x(-1)N /N 2 N) [(2N+1)(2N“+41)T% (N° N 2 (5.11)
0 00 s S 3£
3 31

x[35(2s-2)(2s-1)zs(2s+1)(2s+2)(25+3)(2s+4)/3]‘?bS

The experimental parameter T%(C), which would result from eq. (5.10),
has been put equal to 139-(14)1/2 bg » in order to define a parameter bg
which is as similar as possible to Brown and Milton's Yg-

Calculation of the explicit matrix elements from eq. (5.11) in
case (bBJ) coupling was a long process because the 9-j symbols give
uncompromisingly intractable algebraic expressions. For reference they
are included in Appendix IV. No doubt there are simpler forms for the
9-j symbols with N”=N, but we have not tried to search for them. The
final matrix elements, on the other hand, are quite simple because of
extensive cancelling.

Another approach to the matrix elements of these third-order terms
is to set up the matrices in case (aB) coupling and transform them al-
gebraically to case (bBJ) using the eigenvectors of the case (aB)

rotational matrices. This is no real advantage for the hyperfine term



-125-

because the case (aB) matrices are already quite complicated, having
elements of the type aq=0,+1, AJ=0,1; we did however transform the
diagonal blocks in this way in order to check the calculation of the
9-j symbols. On the other hand the spin-rotation term has a simple
matrix representation in case (2) coupling, consisting only of the
elements given in eq. (5.9), but a fearsome form in case (b):-

1
2

. (3) -1 .
NSITFIHg i pot NSIIF> = 7 L(2N+1) (2N-+1) . 3(3+1) (20+1) ]

x[2(2$-2)(2$-1)25(25+1)(28+2)(2$+3)(25+4)/3]% Ys

(5.12)
x z (2x+1)/ 3 x 1)(-1)N' N- x N\ (N7 N x
x=2,4 101 0 0 o> s S 3
J J

Accordingly we converted eq. (5.9) to case (b) algebraically using a

Wang transformation followed by the similarity transformation

~ o~

If the H%?) element corresponds to |Q|=3/2 and the Hg?) element to F,

or F4, the eigenvector matrix S, given by

5 = C -S '
[s C] (5.14)

has elements for a 42' state as follows:-



-126-

e levels (F, and F3): c = %[3(J-%)/J]%, s = -3'5]:(J+%)/J:J;ﬁ

Y

] 3 ,  (5.15)
f levels (F, and Fy): 5[(3-5)/(3+1) ] [3(3+3)/7(3+1)]

The two third-order terms have quite similar effects on the energy
1eve1.structure. Table 5.1 gives the algebraic forms of the matrix ele-
ments we have used. It can be seen that when similar powers of N are
cancelled, the spin-rotation and isotropic hyperfine energies follow the

same type of expression:

Na3Y . v ,3 N 3
F] and F4 (J-Ni2 : Esr + Eiso = i§N(Y-1YS) i§C(b—%bs)/2N (5.16)
- ) v 9 9 ’
Fs and Fs (J=N+%) : Egp ¥ Eico = i%N(y+?yS) iC(b+§bS)/2N
where
C = F(F+1) - J(J+1) - I(I+1) (5.17)

The result is that the F1 and F4 levels have different effective y and
b parameters from the F, and Fs levels.

The energy level calculations based on the matrix elements of
Table 5.1 require that two 16 x 16 matrices be set up and diagonalized
for each F value. One of these matrices has basis functions extending
from N=F+5 to N=F-5 in steps of 2, and the other has basis functions
from N=F+4 to N=F-4, also in steps of 2. Unfortunately the structures
of the two matrices are not the same, and there are problems with
missing levels at low F values: the complete 16x16 matrices first

appear for F=5. We have reduced the general forms of the matrix elements
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Table 5.1 Matrix elements of the spin and hyperfine Hamiltonian

for a 42 state in a case (bBJ) basis.

Diagonal elements

3 (J-N+§)' 3'N + E-Bf N(N+1)-20N + ¢, ON 4 é-c{b + c-bsN )} - eZQQXN ] /(%43
1 2 3 s 1 2 2543 T (e yene sy 4 /(85 3)

fz(J=N+%); %T(N‘3) + [%1SN(3N+5) + 2 (N+3) J/(28%+3)

F e e . 1., . . 3 € N
2 - ! 2
+ [cIC\-h(h+1) + (8=3)) + EC‘b(2N+9) + 3bs(3h+-+ T ) + c( N3 + 7)1

2 -
_ e 0gXCHI (2R3 /T (28+1) (23
21(21-1) .N(2N+3) e : ']

F N - L) + 3 (D (35%-2) + 2(5-2) I/ (28-D)

(N (1) = (N P PP ‘ 3 + 6 _ 1
+ [e CONOD)=(¥48) ] = SCIB(2N-T) + 3b (3N+1+ oo ) (g = 1

2 . ae
. € Qq X(h-Z)(ZM':) J/[(ZN—I)(ZMI)]
21(21-1) .(¥+1) (28-1)

3 3 3 3 c+bs(r\‘+1)
=he—) ! - (N e - (N % _ poe —S T
F, (3=5-3) ?(M-l) + [T/St\()wl) 23 (N+1) + cIC(\+1) 3¢t pTom) )

eocx(n+1) 1/(25-1)
2I1(21-1) .N(2N-1)

X = %c(c+1)-1(1+1)J(J+1). C= F(F+1)-J(J+1)-I(1+1), and b = ac—c/3

The rotational Hamiltonian has only diagonal elements, equal to BN(N+1)—DNZ(N+1)2

Off-diagonal elements

<N-2 J F'H/NIF>= {[3(.1%)(&%)]"/(21«-1)} [2x + {5(34-]2-')(3—N+1)-2] vg

2
3e“Gqg X L q -] 254 2300+
+{CC + TG0 I-D (25 +5 sc {2(5N+3) (J-N+1) 2_} /123( ]

where X and C have been defined in the diagonal elements
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Table 5.1 Continued.

%
<X J-1 F|H|NIF>= [(P+J+I+1)(J—F+I)(F+J-I)(F-J+I+l)]‘ [R(®) 743] [b-cI + b Q(N)

(N(N+1)+T7-18/4) {C v 3elgq EED-IAHD-Q-D D) } ]
(2K-1) (28+3) 41(21-1) (J-1) (J+1)
where R(X) and Q(X) are given by
J=N+%: R(K)= [3N/(N+1)]%; Q(X)= =(&N+3) /(4K+6)
J=N*%: [(2:<-1)(2:<+3)/{rs'-(::-+1):-]‘ﬁ [128(%+1) =30/ [ 2(25-1) (25+3) ]
J=N—%: [3(N+1)/r:];i - (4N+1) /(68-2)

<K-2 J+1 F|HIKIP>= -%[(HMI%)(x-r+1—%)(y+x—1—%)(?—N+1+%-)/-’.N(N-1)}]Lﬁ x

{F(F+1)-1 (I+1)—(N—%) (),_,,_12_) }

2
[e + 3e7Qq - bs{ION(N-1)+l}] J(2%-1)

1(21-1) (258-3) (2N+1)

<¥-2 J-1 F EiNIP>= [(F+J+I+l)(J-Y+I)(F+J—I)(F-J+I+1)] % Tw(x)/{83(28-1)1] «

2 IR -1+ -I-D )Y LS
[e + 3e0q Z21(21-D (3-D) (3+D) Ps*2sCa,53 )
where 6J N—l is the Kronecker delta, and W(X) is given by
2
J=N+%: W(N)= [3(r<-1)(2r<-1)(zzc+3)/r<fi
g WD) (5-2) 1°
J-N—%: [3N(2N—1)(2N—5)/(N-1)]%
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to algebraic expressions, rather than programming the computer to call
subroutines for the Wigner angular momentum coupling coefficients, in
order to save computing time; immense amounts of cancelling occur in
the calculation of the algebraic expressions from the Wigner coeffi-
cients, and even without this it takes 20 seconds of CPU time on the
University's Amdahl 470 V/8 computer for one Jeast squares iteration

to N=25 using the algebraic expressions.

D. Anatysis of the spectrum

(i) General description of the band

The (0,0) band of the C4z' - X4z' system of VO is quite strongly
red-degraded, and has two well-marked heads at 17426.4 e (R] and Ry)

1

and 17424.2 cm (R, and R3). The spectrum is very crowded down to

about 17400 cm'1, with typical line densities of the order of 50 per
wavenumber. To the red of this the band opens out and the rotational
Tines become well separated; the eight hyperfine components of each

5]\I nucleus are clearly re-

line resulting from the 1=7/2 spin of the
so]ved, and the lines can readily be assigned to their respective elec-
tron spin components by their distinctive hyperfine patterns. Some
typical hyperfine patterns are illustrated in Fig. 5.3. The hyperfine
patterns of the F1 and F4 branches are three times as wide as those of
the F2 and F3 branches, as can be understood from the diagonal matrix
elements of the hyperfine Hamiltonian given in Table 5.1.

There is no problem with the rotational assignments in the tail of

the band because the constants given by Barrow (34) usually reproduce
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the line positions to within 0.2 cm ',

We have recorded the band out
to 17288 cm'1 (the P(41) group), where the branches have nearly died
out. A1l four electron spin components suffer from rotational perturba-
tions by other electronic states, which mainly appear as discontinuities
in the branch structure; we have found extra lines in only two of the
perturbations, though Lagerqvist and Selin (8) have identified extra
lines in various higher N perturbations in their arc spectra.

The assignment of the hyperfine F quantum numbers is easy for the
F and F4 electron spin components because the hyperfine structure
follows the Landé interval-type pattern described by eq..(5.17) and the
diagdnal elements of Table 5.1: the hyperfine patterns open out at the
high F side, and the higher F lines have greater intensity. For the F,
and F3 branches the internal hyperfine perturbations cause the patterns
to be irregular over the complete range of N values we have studied,
even though the maxima in the internal perturbations are at N”=5 and
N--= 15. It can be seen in Fig. 5.3 how the most intense hyperfine
lines (which have the highest F values) are clustered together, in con-
trast to the patterns for the F, and Fa branches. The reason is that
the F, and Fa spin components of the ground state are only 0.5 cm']
apart at N=30, and the hyperfine matrix elements between them, which are
1

F-dependent and of the.order of 0.1 cm~', are able to reverse the Landé

patterns.

(ii) Internal hyperfine perturbations

As the F2 and F3 branches are followed to Tower N values extra

Jines induced by the hyperfine perturbations start to appear at N=21.
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Fig. 5.3 Hyperfine structures of lines from the four electron spin
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components of the VO C'L - XAZ (0,0) band.
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These extra lines, fhpugh not resolved into individual hyperfine compo-
nents, had been observed by Richards and Barrow (9) and Hocking, Merer
and Milton (12). The patterns of hyperfine lines become very complica-
ted because the F order of the hyperfine components inverts at an inter-
nal hyperfine perturbation, producing a kind of band-head in the hyper-
fine structure for both the main lines and the extra lines. The pertur-
bation-induced extra lines can be seen for about five N values on each
side of the maximum, so that the effects of the upper and lower state
internal perturbations run into each other and produce extra lines over
the complete range N=4-21. These lines have proved to be very valuable
in determining the spin and hyperfine constants, as will be described

in Section F.

The internal hyperfine perturbations are best understood from plots
of the energy levels against N. Fig. 5.4 shows the quartet electron
spin structure of the ground state with the hyperfine effects omitted.
The F] and F4 levels cross near N=10, but their J values differ by
3 units, so that they do not interact. The F2 and F3 Tevels cross in
zero order near N=15, but must avoid each other because of the AF=AN=0,
AJ=+1 matrix elements of the hyperfine Hamiltonian. The avoided
crossing is shown magnified in Fig. 5.5 with the hyperfine structure
drawn in. Only seven of the eight hyperfine components of each level
actually avoid each other. The reason is that the range of F values is
di fferent in the two levels; F2(J=N+%) has F=N-3 to N+4 while F3(J=N-%)
has F=N-4 to N+3. Hyperfine components with F=N-3 to N+3 occur in both
electron spin levels, and therefore perturb each other, but the F=N+4

component of F2 and the F=N-4 component of F5 pass through the avoided
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crossing region unaffected. They give rise to the isolated strong
lines in the centres of same of the hyperfine patterns which are very
characteristic, as can be seen in Fig. 5.6.

Figure 5.6 shows the Pq Tines for N--= 15-18. This is almost the
only region where the perturbed lines are not overlapped by other branch
structure. The P3(18) Tine has most of its intensity in the short wave-
length components (left hand side), which are the zero order P3 transi-
tions. The intensity transferred to the induced Tines (on the right)
depends on two factors, the separation of the zero-order hyperfine com-
ponents, and the value of F. For P3(18) the two factors approximately
balance for F=15-18, but the higher F components, which are starting to
form a hyperfine 'head', are much weaker. The central unperturbed F=14
line (F=N-4) is very distinct.

With decreasing N the intensity of the P, lines is progressively
transferred to the long wavelength components, and the 'heads' in the
hyperfine structure become very pronounced. As might be expected from
Fig. 5.5 the effects pass through a maximum at N--=15. An interesting
effect of the reversal of the hyperfine energy order at the perturbation
is that the different hyperfine 'branches' (with the same value of F-N)
have their minimum separation and most nearly equal intensities at
di fferent N values: for instance the F=N+3 hyperfine components have
minimum separation at N=14, but the f=N-3 components have minimum sepa-
ration at N=17. This caused us some difficulty in the early stages of
the least squares fitting, because we needed to establish the exact
parentage of a hyperfine component in order to match it with an eigen-

value from the diagonalization.
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nternal hyperfine perturbations in VO, X4~
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'Fig 5.6 The P, branch lines of the chzm - x*

£~ (0,0) band in the

region n'" = 15-18, showing the hyperfine patterns near the

ground state internal hyperfine perturbation. The F"' quantum

numbers for the hyperfine components are marked.
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Below N--=15 the patterns are unfortunately blended because the
upper state spin splittings are smaller than the ground state pertur-
bation doublings; also other branches interfere. Figure 5.7 shows the
Py and Py lines for N°-=11-14. At this stage the N values are low enough
for the energy 'spread' of the hyperfine structure of the FZ"(N) and
F3”(N) Tevels to be noticeably different, as can be seen in Fig. 5.5.
. This difference governs many of the features of the low N hyperfine
patterns, and results from the factors (2N+9) and (2N-7), respectively,
in the diagonal elements of bl.S for the F, and F4 components. The
result in the spectrum is that the F2 branches are very open while the
Fq branches begin to collapse into sharp spikes where the hyperfine
structure is often not fully resolved. The factor (2N-7) for the F3
levels in fact causes the hyperfine energy order to invert between N=3
and 4.

The upper state has a similar hyperfine perturbation centred near
N-=5. The energy level pattern is shown in Fig. 5.8. Parts of this
pattern are anomalous because the N values are so low that the full
complement of eight hyperfine components is not present. Also the in-
version of the hyperfine energy order for the lower set of interacting
components does not occur: the reason is that the inversion in the F3
components between N=3 and 4 cancels the inversion caused by the fact
that they turn into F2 levels at the perturbation. The only seeming
irregularity in the lower set is that the F=N+3 components lie above
the F=N+2 for N-=4 and 5.

The Py and P3 branches in the region N-“=5-8 are shown in Fig. 5.9.

The P2 lines are more than 0.5 cm'] to the blue of the P3 lines with the
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same N-~ value, reflecting the large spin splitting in the ground state,
and their appearance is altogether different because of the different
overall hyperfine energy 'spread’ described above. The Pg lines are

only partially resolved even at our resolution of 100 MHz, and it is
fortunate that the induced lines in the P2 branches are so well resolved,
otherwise it would not be possible to follow the upper state hyperfine
energy pattern. The hyperfine assignments are very difficult to make

in this region, because the line positions depend critically on the spin
and hyperfine constants of both states; this was in fact the last region

of the band to be assigned.

jii) The band centre

The centre of the band contains R lines with N--=15-20 (correspond-
ing to' the ground state internal hyperfine perturbation) together with
the very lTow N lines. The R lines confirm the hyperfine patterns given
by the P lines, but blending limits their usefulness. The low N lines
on the other hand are very interesting because they carry most of the
information about the dipolar I,S interaction and the gquadrupole con-
stants. Often they are quite difficult to assign because the hyperfine
patterns are fragmentary, and detailed calculations of the energy Tevels
are needed.

Typical patterns are shown in Fig. 5.10. The upper tracing, which
covers the region just to the blue of the band origin, shows the P2(1),
R3(2) and Qef(%) lines, superimposed on the perturbed R2(17) and R3(17)
lines. The line strengths in éur spectra are such that hyperfine compo-

nents with F~“<$2 are usually not seen. However in the range F~’=3-7 we
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frequently observe lines with AF#ad, and, where lines with a cammon
lower level lie within the same Doppler profile, we observe centre dips.
These two effects are well-known in sub-Doppler spectroscopy, particu-
larly for 12(35), and require no further explanation. The advantage of
the additional lines that arise is that they give direct hyperfine com-
bination differences, which break the correlation between the upper and
lower state hyperfine constants resulting from the parallel selection
rules of the electronic transition. For example, in the line Qef(%)
(or PQ]2(0), to give it its case (b) designation) we observe all four
of the possible hyperfine components, and therefore obtain directly the
separations of the F=3 and F=4 components of the two combining J=%
levels. An energy level diagram illustrating this is given in Fig. 5.11.
The lower tracing of Fig. 5.10 shows the P](4) and P2(3) Tines,
against the background of R3(21) and R](22). The P](4) 1ine has par-
ticularly clear AF=paJ hyperfine components, and also centre dips between
them and the case (b) allowed AF=AJ=-1 components. An interesting centre
dip involves the strong F“=7-F~“=8 component and the unobserved
F-=8-F--=8 component; this centre dip is quite weak, because the
strength of a centre dip is proportional to the square root of the
product of the strengths of the two contributing transitions (35).
Altogether about forty aF#aJ hyperfine components have been identi-
fied in the Tow N Tines. We had not anticipated them in our original
least squares programme for fitting the observed transitions, and had
to include them as special cases. Similarly we had not anticipated that
the Q branches would be so comparatively strong. Twelve hyperfine com-

ponents belonging to four Q lines have been assigned; the observed Q
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lines are Qef(%) and Qfe(%), which form the A-doubling components of

the Q(J=%) line of the 42é - 42; sub-band in a case (a) description,
2

and the corresponding first Q lines of the 4 4

Qef(%) and Qfe(%)‘

23/2 sub-band,

I32 -

At these low J values the case (b) description of the levels and
transitions breaks down, and some apparently impossible lines arise.
The Q(%) lines are good examples: Qef(%) and Qfe(%) become PQ]Z(O) and
RQz](-1), respectively.

We have kept the case (b) notation for the main branches since
they show no discontinuities when followed down from high N. This
breakdown in notation for a 42 state in fact only happens when the
Q=%-component in case (a) corresponds to the F] and F2 levels, that is
when the spin-spin parameter ) is greater than the rotational constant
B(33); both the C4Z' and X4Z' states of VO have Xx>B.

The inner band head formed by the R, and R3 branches is very
complex because it contains many extra lines caused by the internal
hyperfine perturbations, together with overlapping R] and R4 lines.
Nevertheless all the features have been assigned with the aid of com-

puter calculations. The assigned lines of the band are Tisted in

Appendix VI , Table I.

. Electronic perturbations in the C4z_ state

Nine electronic perturbations have been found in the C4z' v=0
Jevel. Seven of these are shown in Fig. 5.12, which is a plot of the

energy levels against J(J+1); two others, at F2(74) and F3(85), which
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were discovered by Lagerqvist and Selin (8) lie beyong the range of
the figure. The figure also includes the perturbation matrix elements
where they can be determined from the jnduced extra lines. The only
regularity we can recognize is that the perturbations at F4(26) and
F3(45) are caused by the two A-components of an orbitally-degenerate

state, which could possibly be th as we now show.

(i) The F4(26) perturbation

The perturbation at F4(26) is particularly annoying because the
perturbing state has almost the same B value as 642'; jts effects there-
fore do not die away rapidly to zero on either side of the maximum of
the avoided crossing. It can be shown that the perturbation shift at the
origin of c*s™ is still 0.006 em™ ', so that since we can determine the
Tine positions to better than 0.0005 cm'1 we must allow for the effects
of the perturbation over the complete range of Fy Jevels. The details
of how this was done are given in Section F.

We can assign the perturbations at F4(26) and F3(45) to the same
perturbing state because it is possible to interpret the F4(26) pertur-
bation in detail from the laser spectra. Ignoring the hyperfine struc-
ture initially, we fitted the upper state term values with N-=24-28
(including the single observed rextra' level) to the eigenvalues of the

Hamiltonian matrix

+ B N(N+1) H

H= Te + B¢

12
(5.18)

H B N(N+1)

12 pert * pert
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It was necessary to fix Bc (for the 042' state) at an effective value

for this N range calculated from preliminary Jeast squares work, and to
assume that the perturbation matrix element can be treated as constant
over such a small N range. The results are given in Table 5.2.The fit

]

is good, and the parameter TC comes out to within 0.1 cm = of the C

state origin; also the perturbation matrix element H12 is given to an
accuracy of +0.005¢ cm'1.
Eq. (5.18) assumes that the rotational energy of the perturbing
state is proportional to N(N+1); however the N range of the fit is so
small that we can convert the results, without loss of accuracy, to the
case where the energy of the perturbing state is linear in J(J+1). When

1

this is done it is found that B agrees to within 0.0007 cm™ "~ with

pert
what is obtained if the F4(26) and F3(45) perturbations are assumed to
be caused by the same perturbing state. This is excellent agreement,
and unambiguously proves a connection between the two perturbations.
Because the F, and Fs Jevels have different e/f symmetries the perturb-
ing state must have rotational levels with double parity (i.e. it must
be orbita]]y—degenérate); the two perturbations are therefore caused by
di fferent A-components of a perturbing orbitally-degenerate state.

4n and A4H

Extrapolation of the vibrational structures of the B
states (34) rules them out as candidates for the perturbing state. of
course a third 45 state could be responsible, though we see no evidence

for such a state in our Fourier transform spectra, which extend down

1

to 6000 cm ' : the emission transition to %5~ would be spin and orbi-

tally allowed. On the other hand the hyperfine structure suggests that
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Table 5.2 Analysis of the CAZ_, F4(26) perturbation.

Upper state energy levels

N' with F = N-1 (cm-l) Obs-calc (cm_l)
24 17716.011 -0.003
25 17740.641 0.003
26 17766.039 17767.084 0.000 -0.000
27 17793.169 0.002
28 17820.725 -0.001
least squares results: (1o0)
T, = 17420.055 * 0.018 cm -
Bc = 0.49336 (fixed)
T = 17447,313 + 0.020
pert
B = 0.4550 + 0.0003
pert
le = 0.496 * 0.0055
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the perturbing state has only moderate spin-orbit coupling, so that a
possible candidate would be a 21 state from the same electron configura-
tion as A*m (probably 4sc]3d614pﬁ1).

The sum of hyperfine energies of the doubled F4(26) Tevels is
found to be linear in F(F+1), so that the perturbing state must follow
case (ae) or (bBJ) coupling; also the spacing of its hyperfine levels

4

is found to be almost exactly the same as that of C I, F4(26). If we

writé the hyperfine energy expression for a rotational level (N,J) as

E =Tt kF(F+1) (5.19)

hfs

where k is a function of N, J and the hyperfine constants, the deper-

turbed values are

4 1

0.000234 cm
1

k(C

5, N=26, J-24%)
(5.20)

k(perturbing, J=24%) 0.000205 cm~

Now case (b_,) states have wider hyperfine spacings at high J than case

gJ
(as) states for the same hyperfine parameters, as can be seen from the

diagonal elements of b£;§; the case (bBJ) expression

<NASJIF[bL.S [NASITF> = -b[N(N+1)-S(S+1)-3(3+1) JIF(F+1)-1(1+1)-3(3+1)]
43(J+1)

(5.21)

has essentially an extra factor of J compared to the case (aB) expression

(11,36)
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<JeSTATF|bL.S|J0STAIF> = bar[F(F+1)-1(1+1)-3(3+1)]

7303+ (5.22)

Therefore the comparatively large value of k for the orbitally-degene-
rate perturbing state indicates a considerable tendency to case (bBJ)
coupling, or in other words that it has comparatively small spin-orbit
coupling. This is what we expect for a zn state from the same confi-
guration as ptn (where A = 30 cm']), but not what we expect for a 2y
state from the same configuration as B4H (where A=70 cm']). If the

2y state corresponding to

perturbing state js indeed a component of the
A4n, the positive sign of the hyperfine parameter k suggests that it

is the Fy component, though its magnitude is only a quarter of what we
calculate for case (bBJ) coupling, indicating that the spin-uncoupling

is only quite part1a1].

! The argument runs as follows. The hyperfine parameter b for A4n is

4 1

known to be virtually identical to that of X %, namely 0.0273 cm-

4

The 2n state from the same configuration as Al should, in first

approximation, have a b-value three times as large, because the isotropic
hyperfine operator is strictly £ b, ini rather than bl.S. Therefore
i electrons ~
from eq. (5.21) we calculate, for case (bBJ) coupling,
K(21,F,, J=24) = 0.00084 cm’|
s'ls - "2 = . cm

K(%m,F,, d=24%) =-0.00080 en”!

Further evidence that the spin-uncoupling has not progressed very far
comes from the spin-orbit matrix elements given by Kovdcs (37): in pure

case (b) coupling 2 4 -
< H’FliHs.o.l I .Fy>=0

so that no perturbation would have been observed.
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Gi) The F](37) perturbation

The very small perturbation at F](37) has been reported already (38).
It forms an instance where an avoided crossing occurs within the hyper-
fine structure of a single rotational level, and the analysis can be
carried out by treating the hyperfine structure as a fragment of rota-
tional branch structure. Two regions of the spectrum are shown in
Fig. 5.13. The lower tracing is the P](27) Tine near 17353 cm'], which
is unperturbed and shows the Landé-type pattern; the lower state F
values are given underneath. The upper tracing shows two lines, the
P](38) and P3(38) lines. The P](38) line consists of 13 components,
rather than eight, and the intensity pattern is anomalous. The P3(38)
line has been included to give the intensity scale; nevertheless its
hyperfine pattern is found to be irregular as well, as a result of the
internal hyperfine perturbation in the ground state described earlier.

Intensity considerations allow the F" quantum numbers to be
assigned to the components of P](38), as given in Fig. 5.3. It s
evident there has to be a perturbation within the hyperfine structure
of the F](37) rotational level of the upper state. The lower state
rotational-hyperfine energies can be calculated from the rotational
constants got by fitting the ground state combination differences
The upper state term values can then be obtained by combining these
with the line positions, as in Table 5.3. When the upper state energy
Jevels are plotted against F(F+1), the classic pattern of an avoided
crossing (41) emerges (see Fig. 5.14): there are two sets of energy
levels which have minimum separation where the intensities of the

corresponding lines are equal, and the averaged energy levels are
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Table 5.3 Analysis of the CAZ—, F1(37) perturbation.

A
P1(3B) lines 21(36) lines Fl'(37) levels 10 (0-0C)

Fl"(38) Tl"(36)
F' lower upper edergy lower urper efergv lowver upper lowver upper

35 17304.0117 4.1577 807.3564 17385.7700* 5.9101 725.6015 18111.3674 1.5129 12

36 3.9807 4.1195  7.3933 5.733¢ 5,716 5.6383 1.3731 1.5114 0 ©
37 3.9451 4.0824  7.4314 5.6954 5.8360 5.6764 1.3757 1.5131 -1 -3
38 3.9044 4.0475  7.4708 5.6587 5.8034 5,7158 1.3749 1.5190 <1 0
39 3.8601 4,0173  7.5115 5.6131 5.7565 1.3706 1.5281 -2 1
40 3.8116 7.5534 5.5654 5.7986 1.3645 6
41 3.7585 7.5958 5.5116 5.8420 1.3545 -3
42 3.7031 7.6414 5.4568 5.88€¢ 1.3441 1

-1 %
Values in cm 1; means blended line. Allowance hac been made in the averaging
for an absolute calibration shift of 0.0007 cx”! between the PI(BE)-and R1(36)

lines.

least sguares results:

bo- (1

S = 1B8111.6888 * 0.0020 cm ) (10)
K = -0.000176 * 0.000001,

pert : 1@ < gmmimz . 0.003
K, - 0.000241 + 0.000002

5, . 0.0685 2+ 0.0001

Standard devistion = 0.00028 cx >
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Tinear in f(f+1). The perturbation matrix element is very small, but
analysis is nonetheless possible because the k parameters are very dif-
ferent for the two interacting Tevels.

We have now disentangled the R](36) Tines from the strong over-
lapping P2(17) lines and can refine the parameters reported previously
(38). The effect of averaging the R1(36) amd P](38) data has been to
improve the standard deviation of the least squares. fit considerably.
The results are given in Table 5.3. The model used was a simple 2x2

matrix for each F value, akin to eq. (5.18):
_ (M)
Ho=|T, " ¢+ ko F(F+1) Hqo
(5.23)

H T{8) 4 1 F(Fe)

12

Nothing was held fixed in the least squares treatment, and the accuracy
of the model and the fit must be assessed by comparing the observed and

calculated k values for C4Z', F1(37):

-0.000185 cm” |

i

4.- N= .
k(C'z™, N=37, J=38%) .1

(5.24)
_0.000178+0.00004 cn” '(30)

4- = -
k(C'z , N=37, J—3815)0bs

The perturbing state has a lower B value than 042', which means
that further perturbations in the other spin components of C4z' might
be expected at lower N values. We have not identified any such per-
turbations, and can unfortunately say nothing about the nature of the

perturbing state except that its hyperfine splitting is large. An
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interesting effect of the perturbation is that the hyperfine structures
of the levels within about four units of N on either side of the avoided
crossing are noticeably irregular; this reflects the fact that the un-
perturbed level separations show a strong dependence on F.

A second small perturbation occurs in the F, component at N=36.
The F, component is also perturbed at this position. Unfortunately
extra lines do not occur and we can say nothing about these perturbations
except that they appear to be unrelated to each other or to the other

perturbations described.

. Least squares fitting of the line positions

I't has been a formidable problem achieving a least squares fit to
the observed data that reflects their precision adequately. We dis-
covered at an early stage that a full matrix treatment of the hyperfine
structure was required, and the only approximation we have made has been
to omit the AJ=+2 elements of the electric quadrupole interaction;
these are the only elements which do not add to matrix elements of the
magnetic interactions, and in any case are calculated to be very small.
We also quickly found that the absolute calibration of the isolated
lines in the tail of the band was less precise than that of the crowded
lines in the head of the band where the overlapping of VO lines between
successive 1 cm'] scans of the laser permits several scans to be cali-
brated at once (see Section B).

However, the main difficulty has been the fact that the C4Z' F4

levels are shifted by electronic perturbations throughout the N range
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of our spectra; also we cannot trust the other C4z} spin components not
to have been shifted similariy after about N-= 25. When we attempted to
fit the raw data we were unable to obtain a satisfactory converged fit
unless we restricted ourselves to N<20, and even then the upper state
centrifugal distortion parameter D was unrealistically low (,r\,6.2x10"7
cm'],'compared to the Kratzer relation value of 6.62 x 1077 cm']).

After some experimenting with higher order terms we realised that it
would be necessary to allow for the effects of the state crossing the

Fa Tevels at N=26, and not to attempt to fit the upper state beyond
N-=25; the ground state AZF” combination differences, although less
precisely determined because of calibration problems, could be included

for the full range of our data, to N=40.

(1) Deperturbation of the C4z' F4 level positions

The ‘'deperturbation' procedure obviously depends critically on
the nature of the perturbing state (hence the detailed discussion in
the previous Section). To summarize, we are certain that the perturbing
state is orbitally-degenerate, has an effective rotational energy ex-

pression

E - 0.482 J(d+1) an”)

pert (5.25)

and that the interaction matrix element <Jpert=24 |H[C4Z', N=26, J=24 >

]

is 0.496+0.006 cm~'. It seems unlikely that A states, or states with

2 4

2S+1>4 will be important, so that we are restricted to T and T states.

2

Provisionally we favour 7 because we might expect to see a perturbing
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4n state directly in emission to the ground 42' state, and particularly
because 6f arguments based on the hyperfine structure. Fortunately, as
can Be seen from the tables of Kovdcs (37), the matrix elements between
42', Fq and any component of 2n(a) or 4n(a) are essentially independent
of J, inasfar as matrix elements of BL can be neglected compared to
those of ?aili; the single exception 1sAﬁ5/2, but this is ruled out by
hyperfine arguments since the hyperfine splittings of the perturbing
state are either much too big or of the wrong sign.

We can therefore take the interaction matrix element as being in-
dependent of J, and can calculate the downward shifts caused in the
bs- Fy levels according to eq. (5.18), with the zero order perturbing
state energy written as in eq. (5.25). The shifts are given in Tableb.4,
where they are seen to rise from 0.0060 en”! at N=3 to 0.0300 ) at
N=22 . For the final least squares work we raised the F4 levels by the
amount fromTable5.4 in excess of 0.0060 cm']; the quantity 0.0060 en)
is thus incorporated into the effective A parameter for C4z'. Similar
corrections should be needed in the F3 levels (as Fig. 5.12 shows), but
it is easy to prove that they are an order of magnitude smaller. We
have not included them specifically, so that they are taken up in the
effective spin and centrifugal distortion parameters.

The principal justification of this deperturbation procedure is

that it works - it removes the systematic trends in the least squares

residuals for the rotational structure, and it makes the centrifugal

distortion parameters more realistic: for instance the upper state D

value, determined from levels up to N-=24 only, rises to 6.44 x 10'7
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Table 5.4 Calculated perturbation -shifts in the VO C z
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v=0 F4 level

A\)/(:m—1 N Av/cm N A\)/cm“1
0.0060 10 0.0082 17 0.0139
0.0062 11 0.0087 18 0.0156
0.0065 12 0.0093 19 0.0177
0.0067 13 0.0099 20 0.0204
0.0071 14 0.0107 21 0.0243
0.0074 15 0.0116 22 0.0300
0.0078 16 0.0126 23 0.0393
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cm'], compared to the Kratzer relation va]ue2 of 6.62 X 10'7 cm']. We

emphasize that the ground state rotational constants are unaffected:
they are determined principally from the AZF” measurements up to N=40.
Similarly the hyperfine constants of both states are unaffected; a
least squares fit of the uncorrected data up to N=6 gives essentially
the same hyperfine constants as the deperturbed data up to N=24, though

the precision of the latter is greater.

(i1) Least squares results

The least squares fitting was carried out in two steps. In a first
step all the ]ines to N--=23 and the high N AZF"'s up to N=40 were
fitted simultaneously. This gives a good determination of the spin and
rotational constants, though the lower accuracy of the high N AZF"'S
affects the statistics for the hyperfine constants. In a second step
the ground state rotational constants were held fixed, and only the
more accurately calibrated data up to N“7=23 were fitted. The spin and
hyperfine constants do not change, but their standard errors improve

considerably.

2 Anomalous D values in apparently unperturbed excited states of transi-
tion metal oxides are not uncommon. For instance the A62+ v=] state of
MnO (24) has a D value three times higher than gxpected, and many of
the upper levels of the 'orange system' of FeO have unusually large

D values (A.S-C. Cheung, A.M. Lyyra and A.J. Merer, work in progress) .
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The moéel used was the full matrix of Table 5.1 in each case. The
only constraints applied were that.AD and bS were set to zero for the
ground state, and that the nuclear spin-rotation parameters c; were
fixed. It was found that convergence was Very slow with the c; parame-
ters floating, but that the difference AcI=cI'-cI" was well determined
and remained constant in successive iterations. Accordingly, since the
apparent nuclear spin-rotation interaction, CILLN’ arises principally
from second-order spin-orbit effects (18), as does the electron spin-

rotation interaction y$.N, we made the arbitrary choice

cI(C4z') y(c4z')

- (5.26)
cI(X4Z_) Y(X4Z')

Effectively this portions out the contributions to Ac; from the two states
in the ratio of the two v's, on the assumption that the spin-orbit terms
are similar.

The results are given in Table 5.5. The error limits for the spin
and rotational constants are 3o values, taken from the first fit, in-
cluding the AZF"'S, where the overall standard deviation, normalized to
unit weight, is 0.00092 cm'] (28 Miz). The error limits for the hyper-
fine constants are from the second fit, using only the 1363 lines up to

]

N--=23, where the normalized standard deviation is 0.00076 cm ' (23 MHz).

. Hyperfine parameters

. 4 - . :
The electron spin resonance spectrum of VO, X'z, in an argon matrix

at 4 K has been measured by Kasai (10). He derived values for the iso-



Table 5.5 Rotational,

4 -

4 — -
spin and hyperfine constants for the C' L and XQZ

4L -

states of VO.

c't™, v=0 X't7, v=0
T, 17420.1025, + 0.0001, 0.0
B 0.493789,  + 0.000003, 0.546383 £ 0.000002,
10’ D 6.44 + 0.03 6.50, +0.01,
Y 0.018444  + 0.000069 0.022516 + 0.000066
A 0.7469, + 0.0003 2.0308, + 0.0002,
107 v, 5.43 +0.50 0.56 + 0.32 |
10° 2} 4.3 £ 0.5 0.0 fixed g‘j
10% vg -23.1 + 1.4 -1.0 £ 1.5
b -0.00881 + 0.00003 0.02731 + 0.00004
c ~0.00114 + 0.00009 -0.00413 + 0.00008
e’qq 0.00139 + 0.00023 0.00091 + 0.00088
106 cr -3.9 fixed 4.7 fixed
10° by 4.5 +1.8 0.0 fixed

Values in cm—l;

The bond lengths (ro) are:

error limits are three standard deviations;

Ao 1.6747 A, X't

[
1.5920 A.

o = 0.00076 cm‘l.
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tropic and dipolar interactions which are closely similar to our gas
phase values. With the conversions

b=a_—3¢=A,=

3 ‘?so-A

s c=h, -A=3Ay, (5.27)

dip ip

the values are

b = 0.02731 0.00004 e (gas)
, (5.28)
- 0.02792 0.00002 cm”' (matrix)
and ¢ =-0.00813  0.00008 cm™' (gas)

B (5.29)
--0.00408 0.00003 cm = (matrix)

There is excellent agreement for the dipolar constant c, but there is a
small though definite difference between the gas and matrix values of

the isotropic parameter. As pointed out by Kasai (10), these parameters
provide strong evidence for the ground state electron configuration 430]

3ds?

. the sign of b for transition metal d electron radicals is negative
because of spin polarization effects unless s electrons are also present
(39), and ¢ will be negative also. The parameter ¢ is a sum over the
valence electrons of the terms

-3 1 2
c; = ngBngN<n|r :7(3cos 6-1) |n> (5.30)

where r is the distance between an electron carrying spin angular momen-
tum and the vanadium nucleus.
1f we make the approximation that the states n closely resemble V

atomic orbitals, the sum becomes
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2

c=3x(2/3yngngN<3da1rf3.%(3cos 6-1) | 3dé> (5.31)

where the factor 2/3 arises because only the two 3d§ electrons, out of
the three valence electrons, give non-vanishing average values of

3cosze-1. For atomic-like orbitals the average value expression is

(18,20)

<n2mlr'3.5(3cosze-1)|n£m> = %<zm|3cosze-ﬂmn><nz|r'3|nz>

_ _[3m2-2(2+1)]<r'3>n2 (5.32)
(29-1)(22+3)

which, for the ground state of VO, gives c in cm'] units as
4 -3
C='79u391uN<r >3d/hc {5.33)

The observed value ¢ = -0.00413 cm'] therefore gives

3 24 Cm-3

<r’ >34 = 3.0 x 10 (5.34)

which is 85% of the value given by the Hartree-Fock calculations of
Freeman and Watson (40) for the free V atom.

It is interesting that this simple model also accounts for the value
of the ground state electric quadrupole parameter equ. Assuming that
only the two 3dé electrons are responsible for the quadrupole parameter

we find

-24 2

e2qq=-(4.803x10" 'Oesu) 2x0.27x107 "cm x2x-der™35 /he (5.35)
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from which the experimental value eZQq = 0.00091 cm'] gives

3

<r 7>

24

- 2.5 x 10%% en3 (5.36)

3d

However the error limits on e2Qq are so very large that the agreement
in the values of <r'3>3d is probably mainly fortuitous.

42' excited

It is not so easy to apply these agreements to the C
state because the 4sc electron has been replaced by a 4pc electron. As
expected the isctropic parameter b is negative because of spin polariza-
tion, and the dipolar parameter c is much smaller than in the ground
state. The decrease of ¢ on electronic excitation can be understood
from the model given in eq. (5.30). For the C4z' state the expression
becomes

-3

3 ‘ 2 -3 2 1 2
c=59ug 9y E§<r .(3cos s-1)>3d6+ F<r . (3cos 6-1)>4p0] (5.37)

It is not easy to obtain independent estimates of <r'3>4p, but with the

very crude approximation that <r'3>3d=<r'3>4p, we obtain

C=g“BngN(—%<r-3>3d+%<r-3>4p)/hc 5 33
=-0.171gigg <t >34/ hC = -0.00126 ! (5.38)
Somewhat surprisingly, this number agrees, almost to within the experi-
mental error, with our observed values. The upper state quadrupole
parameter does not fit this model.

As for the other two hyperfine parameters, bS and Cps We have diffi-

culty determining the parameters separately for the two electronic states,
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though the difference between the parameters on electronic excitation

is well determined. This is a consequence of the selection rule aAF=AN,
which applies except at the Towest N values; obviously, direct measure-
ments of the hyperfine level separations will be needed to break the
correlation.

We estimate that the measured difference AcI=cI‘—cI“ is accurate

to about 10%, or, in figures

1

pe=c; - 1=(-8.6£0.9)x107° m” (5.39)

I

The standard deviation in the least squares fit was improved by about

2% when we included the ¢, terms, though as explained above we had to

fix the Cq parameters in the ratio of the y parameters in the final

least squares fitting. The symptom showing that the c¢; terms were needed
was that the least squares residuals for the hyperfine structures of all

four electron spin components showed a systematic trend from positive to

negative with increasing F; the effect is only about 0.002 cm'1, but

it disappeared at once on inclusion of the ¢; terms.

The third-order cross term bg is well determined for the C4Z' state
provided we set bs“ equal to zero. This is not an unreasonable approxi-
mation because the value of bS reflects the positions of nearby electro-
nic states coupled through spin-orbit interaction, and we know that the
C4z' state suffers many local perturbations. Also the related parameter
Yg is essentially undetermined for the ground state but well-determined
for the C4z' state. It is unfortunately not simple to interpret the

parameter bS’ so that all we can do is point out the need to include
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' bS in precise work on excited electronic states of quartet and higher

multiplicity.

. Discussion

This analysis of the C4z'-X4z'(O,O) band of VO at sub-Doppler
resolution is the most detailed account so far of an electronic band
involving quartet states. The most interesting aspects are the internal
hyperfine perturbations in the two electronic states, which we can fit
jn detail using the complete 42 spin and hyperfine Hami]tonian;

Electronic perturbations are unfortunately widespread in the C4z'
state, which means that we cannot obtain a fit to the higher N data that
does justice to their precision. In fact we have had to apply corrections
to all the F4 Tevels of the C4z' state to allow for the comparatively
large perturbation at N = 26. Without these corrections the least
square§ results show systematic residuals even at low N, and the centri-
fugal distortion parameters are unrealistic. The final fit was performed
with 'deperturbed' data only up to N' = 24, plus ground state AZF" com-
bination differences to N = 40. The upper state term values beyond
N = 24 are calculated from this fit to within about 0.1 cm'], as can be
seen from Fig. 5.15. This figure shows the residuals for the R branch
Tines up to N' = 42, calculated using the final constants of Table 5.5.
The chaotic courses of all four spin components are readily appreciated.

The C42' state also suffers from 'global’ perturbations affecting
all levels, besides the Tocal rotational perturbations. These require
the introduction of a second spin-rotation parameter vg, following the

formalism of Brown and Milton (25). This parameter is a third-order
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spin-orbit effect, and gives eyidence for a close-lying electronic state
that interacts strongly through the spin-orbit operator. We have also
had to introduce the corresponding isotropic hyperfine parameter bg (26),
which arises in similar fashion as a cross-term between the lﬁé hyperfine
operator and the spin-orbit interaction. The parameters vq and bS only
occur for states of quartet and higher multiplicity.

The magnetic hyperfine constants for the two states have been
accurately determined. For the ground state there is good agreement
with the e.s.r. values of Kasai (10), inasfar as the gas phase and matrix
values can be compared. The magnetic constants for the upper state show

clearly that its electron configuration is 3d62 4p0].

The electric qua-
drupole parameters are unfortunately not well determined, though there
appears to be consistency beiween the ground state electric quadrupole
and magnetic dipole parameters, which involve roughly the same averages
over electron coordinates.

The electron spin-spin parameters A for the two states have been
accurately determined, despite the parallel selection rules, because of

the observation of Q branches at low N values. The Q lines essentially

permit an exact determination, according to the 42 relation
4A-2y=F2(N)+F3(N)—F](N)-F4(N) (5.40)

(which follows from Table 5.]) because they can be combined with the main
branch R and P lines to provide the separations F2(N)-F](N) and F4(N)-
F5(N). Less precise values could still have been obtained without the

Q branch measurements because the low N line positions are quite sensi-
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0.15

Obs-cdlc

T

0.10

Jem!

005

Fitted by least squares

-005

T

Perturbed
l of N=45

-010

Fig. 5.15

40

Residuals (obs-calc) for the R branch lines of the VO
CAZ— - Xaz_ (0,0) band, as compared to the positions predicted
from the constants of Table 5.5, plotted against N'.'Raw' data
have been used, so that the R4 lines from N' = 9—22,.§hich were
deperturbed for the least squares treatment (thick lines) have
non-zero residuals. Vertical bars indicate the spread of the

hyperfine structure.
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tive to the exact valuesof the two ) parameters.

The low N energy levels of VO X4Zf, v=0 will be of interest to
astronomers concerned with the detection of VO iﬁ interstellar space
and to spectroscopists concerned with microwave and far infra-red stu-
dies of the ground state. We therefore list the ground state rotational
and hyperfine energy Tevels (as calculated from the constants of Table
5.5)up to N" = 5 in Table 5.6. The experimental ground state hyperfine
combination differences, between levels with the same F value in the F2
and Fjq electron spin components over the range N" = 8-20, are listed in
Table 5.7.

To summarize, the VO qu' - X4z— electronic transition provides
'textbook' examples of the effects of electron spin and hyperfine
structure in a quartet state in case (bBJ) coupling; it is frustrating
that electronic perturbations prevent the higher N lines from being

fitted to an accuracy that matches their precision.
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Table 5.6 Rotational and hyperfine energy levels of the X & v=0 state of VO for N >5, calculated

-1
from the constants of Table 5.5. Values in cm .

N J FJ-7/2 F=J-5/2 F=J-3/2 F=J-1/2 F=J41/2 F=J+3/2 F=J+5/2 F=J+7/2
F, 1.5 -2.8982 -2.8391 -2.7595 -2.6576
F, 2.5 ~1.6426 -1.6160 -1.5759 -1.5220 -1.4541 -1.3716
F, 1.5 1.2592 1.2536 1.2434 1.2264
Fy 0.52 -3.1255 -2.9492
2 F; 3.5 0.6665 0.6766 0.6969 0.7273 0.7681 0.8194  0.8814 0.9545
F, 2.5 4,0231 4.0275 4,0340 4.,0425 4.0527 4.0642
Fy 1.5 5.9068 5.9379 5.9782 6.0269
F, 0.52 -0.8199 -0.9343
3 F 4.5 4.0522 4.0685 4.0930 4.1258 4.1670 4.,2167 4.,2751 4.3424
F, 3.5 7.6362 7.6389 7.6442 7.6525 7.6638 7.6785 7.6967 - 7.7190
Fy 2.5 9.0674 9.0741 9.0835 9.0948 9.1070 9.1187
F, 1.5 6.2261 6.2351 6.2490 6.2694
4 F 5.5 8.5121 8.5326 8.5599 8.5943 8.6357 8.6842 8.7401 8.8035
F, 4.5 12.2171  12.2219 12.2294 12.2396 12.2531 12.2703  12.2918 12.3183
Fy 3.5 13.3492  13.3505 13.3531 13.3565 13.3601 13.3632  13.3647 13.3636
F, 2.5 10.0328 10.0224  10.0072 9.9875 9,9638 9.9369
5 Fy 6.5 14.0522  14.0756 14.1050 14.1405 14.1820 14.2297  14.2838 14.3443
F, 5.5 17.8219 17.8279 17.8364 17.8476  17.8621  17.8803  17.9032 17.9318
Fy 4.5 18.7437  18.7449  18.7463  18.7475 18.7479  18.7468  18.7430 18.7354
F, 3.5 15.1594  15.1529  15.1400 15.1208  15.0955  15.0643  15.0275 14,9855

2 Note: F3(1), J =% and FA(Z)’ J = % must be treated as Fl(—l) and FZ(O), respectively, since X > B.

-¢LL-
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Table 5.7 Gronud state hyperfine combination differences,Fz(N)—FB(N), in ecm =, for the

4 -

X't”. v=0 state of VO in the range N=8-20.
N F=N+3 F=N+2 F=N+1 = F=N-1 F=N-2 F=N-3
8 -0.4193 -0.4606 -0.4896 -0.5101
9 -0.3325 -0.3770 -0.4066 -0.4272 -0,4411 -0.4510 -0.4559
10 -0.2638 -0.3103 -0.3411 -0.3629 -0.3735 -0.3804
11 -0.2091 -0.2581 -0.2871 ~-0.3057 -0.3163
12 -0.1699 -0.2190 -0.2461 -0.2615 ~-0,2692 -0.2700 -0.26717
13 -0.1484 -0.1947 -0.2184 -0.2300 -0.2330 -0.2287 -0.2213
14 0.1455 -0.1829 -0.2021 -0.2080 -0.2056 -0.1958 -0.1795
15 0.1589 0.1854 0.1977 -0.1993 -0.1909 -0.1750 -0.1501
16 0.1813 0.1992 0.2045 0.2001 -0.1859 -0.1628 -0.1281
17 0.2101 0.2197 0.2195 0.2104 0.1913 0.1631 -0.1202
18 0.2413 0.2400 0.2248 0.2040 0.1723 0.1252
19 0.2619 0.2466 0.2222 0.1888 0.1406
20 0.2694 0.2438 0.2095 0.1618

The tabulated values are observed quantities corresponding to the differences between

hyperfine levels with the same F value shown in Fig 5. 3.

the calculated

=€LL-
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Chapter 6

Laser-Induced Fluorescence and Discharge
Emission spectra of Fe0O; Evidence for a

5A1 Ground State
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Introduction

Ferrous oxide, Fe0, is probably the most important of the diatomic
oxide molecules whose spectra have so far defied detailed interpretat-
jon. It is of interest in astrophysics, as well as molecular spectros-
copy, because of the high cosmic abundances of both iron and oxygen.
The difficulties with FeO have been its low dissociation energy (which
means ‘that it is quite difficult to prepare in discharge systems), its
jnvolatility, and the tremendous complexity of its spectrum.

Considerable argument has surrounded the nature of the ground
state of Fe0. Quite recently Engelking and Lineberger(1) have inter-

preted the photoelectron spectrum of Fe0” in terms of a 5

A ground
state for FeQ, with a vibrational frequency of 970 * 60 cm'], and De
Vore and Gallaher (2) identified a band at 943.4 * 2.0 ean”) in infra-
red emission experiments on Fe0, but it is now clear, from the matrix
jsolation work of Green et al. (3), that Fe0 has a ground-state vibra-
tional frequency of about 875 cm']. This number is also found for the
lower state of the well-known electronic band system in the orange
region (4-6), which must therefore involve the ground state. The
orange band system is unusually complex (7,8), but has been found to
contain a few surprisingly simple parallel bands consisting of single
P and R branches (4-6), apparently of type s 12. Harris and Barrow
{6) recognize that the bands. must be more complex than this, since

5 +

theoretical predictions give, variously, 5A(9,10) and Jz (11) for the

ground state.
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The purpose of this chapter is to report new emission and laser-
induced fluorescence spectra of FeQ which prove that the simple bands
in the orange system are @' = 4 - Q" = 4 bands. This provides strong
evidence that the ground state is sAi, since @ = 4 components do not

arise in the other possible candidate states, 52+, 5n, and 7z+.

This
tdenti fication agrees also with Weltner's report (12) that matrix
jsolated Fe0 gives no ESR spectrum under conditions where orbitally

nondegenerate species normally give strong signals.
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B. Experimental Details

Emission spectra of Fe0 were excited by a 2450-MHz electrodeless
discharge in a mixture of flowing argon, oxygen, and ferrocene (dicy-
clopentadienyl iron) at low pressure. The discharge is unfertunately
not very stable, and gives mainly CO spectra if the buildup of solid
rust-like products becomes excessive, because these interfere with the
transmission of the microwave power. As a result, photographic expo-
sures longer than 1 hr were often unsatisfactory, but this time was
sufficient to give good spectra in the region 5500 - 6300 R using
Kodak I1a-D plates in a 7-m Ebert-mounted plane grating spectrograph.
The temperature of the emitting molecules, as estimated from the de-
velopment of rotational branch structure, is about 500°C.

Laser-induced fluorescence of FeO was produced using a Coherent
Inc. CR-599-21 tunable dye laser operating with rhodamine 6G, and
pumped by an argon jon laser. The optical arrangement for this experi-
ment was the same as in chapter 5. The laser beams were sent through
the end of the flame of the microwave discharge system described above,
and observed at right angle to the stream of molecules. Broadband and
single frequency laser excitation spectra, and Sub-Doppler intermodulated
fluorescence spectra (13) of certain regions of the 58198 band were
recorded, as well as resolved fluorescence spectra.

The photographic "survey" spectra were measured on a Grant auto-
matic comparator, and reduced to vacuum wavenumbers using a four-term
polynomial. Calibration spectra were provided by an iron-neon hollow
cathode lamp, for which the wavelengths have been Jisted by Crosswhite

(14). The laser spectra were calibrated by means of the jodine spec-
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trum atlas of Gerstenkorn and Luc (14), with the correction of

0.0056 cm'] to give absolute wavenumbers applied.
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C. Results

Harris and Barrow (6) have identified three~bands involving the
level v" = 0 of the state which appears also in the matrix isolation
experiments of Green et al. (3); they occur at.5583, 5819 and 5911 R.
The 5583- and 5911 R bands lie in crowded spectral regions where
blending is severe, but the 5819-A band is in a comparatively clear
region and we have selected it for study. Its head is illustrated in
Fig. 6.1. The band is a very strongly red-degraded parallel band, and
the assignments of the P and R lines are those of Harris and Barrow
(6).

A feature of this band is that where small rotational perturbations
occur they usually appear as two lines of equal intensity. Because this
implies that there are several exact coincidences of perturbed and per-
turbing levels if the states involved have o = 0 (as postulated by
Harris and Barrow (6) we suspected that there could be A-doubling pre-
sent which is not resolved in the grating spectra. Sub-Doppler inter-
modulated fluorescence spectra of the unperturbed Tine R(15) at a
resolution of about 75 MHz showed at once that this is true (see Fig.
6.2); in this figure the line is seen to consist of two equally intense
closely spaced components separated by about 120 MHz.

Given thatg' = " # 0, we searched for possible Q lines in the
grating spectra, because the J numbering of the first Q line would give
the o value. Quite a number of lines occur in the expected region, but
a branch could be picked out. Its numbering was established by plotting
the line positions against n(n + 1), where n is an arbitrary running

number, and choosing the best straight line. The result gave 9 = 4.
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The Q(4) line of the 5812-ﬁ band runs into the R(10) line in Fig. 6.1
because of the strong exposure; the lines are seen resolved in the
sub-Doppler spectrum shown in Eig; 6.2b. |

In view of the fact that there are many weak background lines
underlying the 5319-R band which could easily be mistaken for Q lines
(see Fig. 6.1) confirmation was sought from rotationally resolved
laser-induced fluorescence experiments. These turned out to be absolu-
tely conclusive and Teave no doubt about the Q branch and its numbering.
Some of the patterns observed are illustrated in Fig. 6.3. As expected,
excitation at the wavelength of the first line, Q(4), gives only Q(4)
and P(5) emission, while higher J Tines of the Q branch give R-, Q-,
and P-branch emission. Excitation of the R-branch lines gives consis-
tent patterns, and somewhat surprisingly, weak Q-branch emission can
even be seen when the line R(16) is excited. In the end it was possible
to follow the Q branch on the grating spectra from its first line,
Q(4), up to Q(26), where it becomes Jost in the background of weak
lines. The assigned lines of the 5819-A band and the other bands we
have studied are listed in Appendix VI Table II.

Figure 6.1 also shows the head region of the 6180-A band. This
band was shown by Harris and Barrow (6) to have the same o" value as
the 5819-R band, but with v"* = 2 rather than v" = 0. Quite a strong
Q branch can be seen, which can be numbered unambiguously by means of
the 8¢F" combination differences for the level ¥' = 2. Again the first
line is J = 4, which is consistent with the 1aserf1nduced fluorescence
experiments described above. Similar Q branches have been jdentified

in the 5583- and 5866-A bands (V" = 0 and 1).
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Fig 6.1 Head of the 5819-A band of FeO. Lower print: head of the 6180-A
band of FeO.
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Fig 6.2 Two regions of the intermodulated fluorescence spectrum of
FeO: (a) The twoA components of the R(15) line of the 5819-A
band. (b) The Q(4) and R(10) lines of the 5819-A band; the A
doubling is not resolved for these lines.
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R(4) || P(6)
J P(5)

Q(6) - |R(16)
excitation

R(W hPW) ,_/ Qu7) || Pe8)

5823 5829 5832 8846

Wavelength markers 1Y)

Fig 6.3 Resolved fluorsecence spectra of FeO produced by excitation
of various lines of the 5819~ A band: excitation of Q(4),Q(5),
Q(6) and R(16). The intensity of the excited line is anomalously
high as a result of scattered laser light.



-183-

D. Discussion
The work presented here proves that the comparatively simple bands
analyzed by Barrow and his co-workers (5,6) have " = 4. Some of these
bands (including the 61805K band illustrated in Fig. 6.1) form a lower-
state progression which gives yibrational constants (6) that are almost
jdentical to those obtained from the infrared spectrum of matrix-

isolated FeO by Green et al. (3), viz.,

Gas: o = 880.61 an ', w.x = 4.64 e '3
e , e’e , (6.1)
Matrix: We = 880.2 cm “exe = 3.47 cm .

Therefore the ground state of Fe0 contains an q = 4 spin-orbit compo-
nent.
The ground electron configurations of the transition oxides

immediately before FeO are known (15,16) to be (Appendix V)

Ti0  (4so) ' (3ds)’ .
Vo (4s0)'(3ds)? b (6.2)
ro (4s0) ' (3d6)2(3dm)' n,
Mo (4so)'(3ds)2(3dm)? &7

where the energy order of 4sg and 3ds is not certain. In FeQ the
extra electron could go into the next unoccupied m.o., 3ds , giving a
7z+ ground state, or into the 4sg or 3ds m.o.'s, giving 52+ or 5A as
the ground state. Theoretical computations (9-11) are divided between

52* and SA; through the CI calculations of Bagus and Preston (9) con-
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5

clude that the ground state is not :¥. The fact that there is an

Q = 4 component in the ground state is only consistent with'sA, where
the 2 values run frbm 0 to 4; the highest o values in 52+ and 7z+
states are 2 and 3, respectively.

It is interesting that the 5 state under discussion, which comes
from the configuration (4so)](3d6)3(3dn)2, must be irnverted, with its
Q = 4 component as the lowest in energy. This is probably the reason
why the matrix-#solation vibrational constants (3) agree so exactly
with the gas-phase constants (5,6) because at the low temperature of
the matrix only the @ = 4 component is 1ikely to be appreciably popu-

1 (by analogy with

lated, assuming spin-orbit intervals of about 100 cm”
Ti0 (17), where there is also an unpaired 3ds electron). The other

# components of the 5A state will have slightly different effective
vibrational frequencies because of the variation of the spin-orbit
coupling with vibration.

The subbands so far analyzed carry no direct information about the
spin-orbit coupling of the ground state. For a start the subbands are
all parallel-polarized (o' = Q"), and as yet only one spin component
has been identified. However, these ¢ = 4 subbands, though prominent
in the spectrum, account for only a small fraction of the total
emission intensity, and subbands involving the other spin components
must also be present. The prominence of the o= 4 subbands probably
results from the fact that the A-doubling is unresolved, so that their
lines have apparently twice the strength of other lines belonging to

subbands in the same region with resolved A-doubling; this effect is

also pronounced for the =3 subbands of the Asn—Xsn system of Cr0 (18).
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In the Cr0 spectrum the five subband heads form a regular series,
which is obvious in lTow-dispersion spectra, hut the same is not true
in the Fe0 spectrum. It appears. that there are extensive interactions
between two or more excited electronic states in FeD which produce an
almost random distribution of Q substates, as if the spin coupling were
case (c).

Because the @ value of each band has to be determined individually
in the Fe0 spectrum, it will be a lengthy process assembling data for
all five spin-orbit components of the ground state. At present even
the bond length is not accurately given by the available B value for
5A4 because of the spin-uncoupling. In principle, it would be possible
+o use the difference between the apparent centrifugal distortion con-
stant for the 5A4 component and the value given by the Kratzer relation
to estimate the spin-orbit separations and then correct the B value for
spin-uncoupling. In practice we find that the efror limits on
D (5A4) are too large for this approach to succeed. A least-

apparent
squares fitting of the A2F“’s we have measured gives

0.51089 + 0.00003 ™' (1o)

6.6, X 107 4 0.2, x 1077 cm”!

5
Bapparent( A4)

5
Dapparent( A4)

(6.3)

3

(in close agreement with the results of Barrow et al. (5,6)).

A comparison of the molecules Fe0 and FeF (19) is instructive.
FeF is known to have a 6Ai ground state which arises from the electron
configuration (450)] (3d6)3(3dn)2(3do)1; in other words the extra

electron in FeF goes into the 3de m.o. rather than into 3ds. This
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shows the close analogy between Fe0 and FeF, because the ligand field
effecf of an F atom is not as great as that of an 0 atom so that the
splitting of the iron 3d manifold is smaller. In FeF Hund's rules
apply to the three 3d orbitals and the 4s orbital as a group, producing
a high-spin situation, while in Fe0 Hund's rules apply only to 3ds,
3dw, and 4so.

In further laser-induced fluorescence experiments which a}e not
reported here, we have analyzed various sub-bands with " =0, 1, 2
and 3 in the orange system of Fe0. The regularity of the B" values
leaves no doubt that the lower levels form the other spin-orbit compo-
nents of the X5A1 state. The ground state bond length is 1.619 ﬂ, and

the spin-orbit intervals are about 190 cm'1.
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Chapter 7

15

[+
Predissociated Rotational Structure in the 2490-A Band of “NO
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Introduction

Slightly predissociated molecular band systems where there is a
sizable isotope effect offer the possibility of selective dissociation
of one member of a mixture of isotopes. The experimental requirements
are a suitable source of radiation which can be tuned to an appropriate
wavelength and a scavenging system (chemical or other) which can collect
the dissociated products without interference from the undissociated
compound. Various experiments of this type have been successfully
carried out using narrow-line lasers, for example, on s-tetrazine by
Karl and Innes (1) and by Hochstrasser and King (2), and on IC& by
Liu et al. (3).

2 2

The 2490-A absorption transition of N02(2 B, - XZA]) is slightly

predissociated (4) and therefore allows the possibility of laser-
induced isotope enrichment. For this reason we have studied the
corresponding band of 15NO2 with a view to identifying those wavelengths

where irradiation would selectively dissociate one isotope and permit

the separation of 14N and ]SN.

Spectroscopically, the 2490-R band of 15

that of ]4N02, though its origin is shifted 14.5 cm

NO2 is very similar to
! to higher energy.
An analysis of the quartic centrifugal distortion constants of the

upper state has been carried out.

. Experimental Details

The absorption spectrum of ]BNOZ in the region 2480 - 2520 R was
photographed in the 23rd order of a 7-m plane grating spectrograph,

using Kodak SA-1 plates. The absorption path was 1.85m, and photo-
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~ graphs were taken with the cell at room temperature and various tempe-
ratures up to 200°C. Doppler broadening of the 1ines becomes appreci-
able at the higher temperatures, and the highest temperature where
useful spectra could be obtained was 120°C. The background continuum
was supplied by a 1000-W xenon arc, and exposure times, with the spec-
trograph s1it set to 25 jm, were about 1 hr. Calibration lines were
supplied by an iron-neon hollow cathode lamp, the reference wavelengths
for which have been given by Crosswhite (5). The plates were measured
on a Grant automatic comparator, and reduced to vacuum wave numbers
with a four-term polynomial.

15

. Analysis of the 2490R Band of ~“NO,

The theory of the energy levels of asymmetric top molecules in
multiplet electronic states is now fairly well understood (6 - 9).
For reference we give the matrix elements required for the NO, spec-

trum in the absence of hyperfine effects:

< NKJHINK >= J(B + CON(N + 1) + [A - %(B + c) 3k
C4L0(3 + 1) - NN+ 1) - 3/8D[ay + al3KE/(N(N + 1))- 1)
kNN + 1T - gkt - agNN+ DKE - af(n e )P e
+ Hk® + HgktN ) L
< NK + 2[H|NK >= {%(B - €) -% b[J(J + 1) - N(N+ 1) - 3/4/IN(N + 1)]
C NN+ 1) - DK+ (K s 2)%1) IOV

1
.

x IN(N + 1) = K(K = DTN + 1) - (K = (K £ 2)T5%
N - KKK = (3 - .%nKZ)K[NZ NG
N - T = 2[HINK> = £ g BIN(N + 1) - K(K = 1)]

S INF K- 1)(NF K- 2)THN.

1
2
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The basis set for Eq.(7.1)is the type 1" representation case (b) basis
INJSK >, where the quantum numbers J and S have been suppressed because
‘the elements are diagonal with respect to them. The coupling scheme (8)

N+§=J (7.2)

-~

has been used, and the phases are appropriate for the definition of the
rotational angular momentum vector N as a space-fixed operator rather
than a molecule-fixed operator. The quartic centrifugal distortion
terms are complete, but only the largest sextic terms have been included.
The spin-rotation constants in Cartesian form (10) are related to those
of Eq. (7.1) by
Yy; a-= - L (2. = epp = €005

» aa bb cc

(7.3)

6
- -
b = - 5 (epp = ecc

and n is the leading centrifugal distortion correction to the spin-ro-
tation interaction parameter e_. (called Naaaa by Dixon and Duxbury (11),
g by Brown and Sears (12) and Ai by Cook et al. (13)).

The ground state of 15N02 has not been studied as comprehensively

as that of ]4N

02. The microwave spectrum of NO2 is very sparse because
of the large A rotational constant, and although it has been carefully
measured by Bird et al. (14) and Lees et al. (15) the available lines
do not carry enough information to determine all the centrifugal
distortion parameters required to describe the energy levels to the

precision of the optical spectrum. The missing data have been supplied

for'MNO2 by the high-resolution infrared spectrum (16), but as yet the
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infrared data for ]5N02 (17-19) are less complete. Even so, the best
centrifugal distortion constants for 15NO2 are in fact those from the
microwave spectrum (14), though, as recognized by Lees et al. (15},
they are not particularly good because so few lines are available.

In analyzing the 2490-R band of 15

NO2 we proceeded as follows.
First we converted the ground-state centrifugal distortion constants
(14) from Kivelson and Wilson's t's to Watson's formalism according to
the recipe of Yamada and Winnewisser (20). Next the gfound-state
energy levels were calculated employing the second-order approximation
formula of Cabana et al. (21) for the spin corrections to the rotational

energy levels. With the spin parameters written in spherical tensor

notation this formula is

ESPIN(g = N+ 172) = £1/20{a - 3 + 1/2bs; IN(N £ 1) - 3aK2

o k® - 9a2K20 - KE/(N + 172 1 12)27/88 AN+ 172 £ 1/2). (7.4)

where the term ia%bS],K refers to the two asymmetry components of
K, =1, not to the two J components of an (N,K) level. This approximat-
ion works very well, since NO, is so close to being a prolate symmetric
top, and breaks down (22) only where, by accident, a near-degeneracy OC-
curs between levels (N,K) and (N -1, K+ 2). Its advantage is that it
permits the rotational energy levels to be calculated using the forma-
lism for a singlet electronic state, where the matrices are half the
size of those required for an exact treatment of a doublet state.

At this stage the lines could be assigned by standard combination

di fference techniques, since there are no perturbations. The band is a
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normal asymmetric top type A (parallel) band, with the N and K structures
both strongly degraded to the red. The head of the ]SNOZ 2490-R band is
illustrated in Fig. 7.1 with the corresponding band of 14NO2 printed
alongside in its correct relative position. The line assignments

refer to the lower print, which is the 15 14

NO2 spectrum; the NO2
assignments are not repeated, having been given in Ref. (4). It can be
seen that the bands of the two isotopes are quite similar, particularly

in the qR0 head region, but that they are sufficiently different that it
is not possible to assign the 15NO2 lines by simply comparing the two
spectra. The two spin components of the qP](Z) Tine are clearly resolved,
and their relative intensities are found to be exactly as in the ]4N02
spectrum; this confirms the assignment of the ordering of the F1( J=N
+ 1/2) and Fs (J = N - 1/2) spin component Tines made in Ref. (4). The
argument goes as follows. The case (b) sejection rule aN = AJ forbids

any satellite branch transitions of the type that can be used in case

(a) coupling situations to identify which spin component is which. At
very low N;uhowever, the relative intensities of the two spin components
of a given line will be noticeably unequal, because the intensities are
governed essentially by the number of,MJ components in the combining
states, or in other words the J values. For the qP](2) line the two com-
ponents are J' = -%-J" = 1”% (F2 - F2) and J' = 1%. - J" = 2%. (Fy - F1),
so that the Fy component is expected to be sironger. It can be seen in
Fig. 7.1that the stronger line is the long wavelength component. A very
weak J' =15 = J" = 1%— satellite transition is predicted to occur;

this should fall between the Fy and F, main branch lines, but has not

been observed.
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Figure 7.2 shows the K = 7 and 8 subbands, printed from a piate
taken with the gas at 120°C, where the branches run to N values rather
higher than in Fig. 7.1. The spectrum jc seen to be still quite com-
plex, despite the wide separation of the subbands; but the characteristic
large spin doublings of the 9% branches are clear in the right-hand part
of the figure. The K2 dependence of the spin splitting for constant N
can be seen when the splittings for K = 7 and 8 are compared.

The upper-state rotational constants were determined by adding
the energies of the unblended Tines to the Tower-state energies, to
obtain the upper-state term values, and fitting these by least squares.
The Hamiltonian used for the upper state was the same as that for the
lower state. The results are given in Table 7.1. The quartic centri-
fugal distortion constants of the upper state are very much what would
be expected by analogy with ]4N02 (4), but the sextic constants are
completely different. The reason js that the ground-state Hamiltonian
includes no sextic centrifugal distortion, since the microwave data do
not allow these constants to be determined. We therefore set all the
sextic constants to zero for the ground state, which means that the
upper-state sextic constants in Table 7.1 are strictly the differences
between the upper- and Tower-state sextic distortion constants. When
this is appreciated the constants are found to be very much as expected.

14

For instance, in ' NO,, Hallin and Merer (4) could only determine the constants

2’
H"K and H'KN’ all the others being too small to measure, and they found
- (-3.26 +0.46) x 107%™,

- (-1.85 + 1.30) x 1078 en”). (7.5)

] 1]
H'y - H K

H'n ™ Mk
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Allowing for the mass difference these quantities compare favorably
with those in Table 7.1.

We did not attempt to refine the ground-state quartic centrifugal
distortion constants in this work, even though they clearly need impro-
vement. The reason is that the most poorly determined microwave con-
stants are precisely those wiiich the parallel selection rules of the elec-
tronic transition prevent us from improving. Specifically, the constant
By is probably the least well determined because the microwave results
go only to K = 3. The electronic spectrum also contains information on
the K-stack separations up to K = 3 in the form of SR branches, but
natura]}y it is far less precise; for K > 4 there are no transitions
observed in the electronic spectrum except AK =0 branches. Also the
constant AK is difficult to obtain from the electronic spectrum because
it is determined from differences between the asymmetry components of
the low K stacks, where the lines involved lie in the most crowded
region of the spectrum and blending is most severe. A second reason is
that because of the predissociation in the upper state the lines are
wider than the Doppler width alone.

Because of the difficulties with the ground state we have not been

15

able to obtain as good a fit to the data for NO2 as Hallin and Merer

(4) could for ]4N02, even though the data themselves are of comparable

quality. The overall standard deviation is 0.032 cm'_1 for 15NOZ, which

] 14y 1

should be compared to 0.025 cm ' for 0,.

The assigned rotational lines have been.collected in Appendix VI .

]In other words we could perhaps have lowered the standard deviation for
5N02 by refining the ground-state centrifugal distortion but because of
the problems described above the improvement would almost certainly have
been artificial.
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TABLE 7.1
Rotational Constants Ffor the 2490-f Band of 15N02(cm'])
2282, 000 (upper state) YZA], 000 (ground state)
Ty 40140.339 + 24 0.00
A 3.9266 19 7.63047 + 13
B 0.403300 94 0.433735 6
c 0.363946 102 0.409440 6
10% 8, 460 51 2297
10% 8y, 13.17 158 -17.69
10% o, 0.439 31 0.2817
108 o, 8.8 86 2.704
10% &, 0.098 34 0.03189
10% 1, -1.93 42 ;
10% Hy, 1.9 20 -
€ -0.1724 40 0.1718
et 0 0.000256
e 0 -0.003163
n - ~0.000103
o 0.032 -

Notes: Ground state rotational constants from ref. (14), with the quar-
tic centrifugal distortion converted from the t values, which are

3 5 -1

Tyaaa- (-9-12%0.13) x 1?5 T bbb (-1.382+0.005) x 107" cm
(5.87+0.06) x 10

- _ -6
Taabb Tabab™ (8.16+0.03) x 10

Ground state spin constants from ref.(15) except n which was calculated
as Tyaaa- €aa/2A (11). Uncertainties are three standard deviations, in
units of the last significant figure quoted.
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D. Ccnclusion

1 15

The 2490-A bands of both ' 'NO, (4) and ' °NO, are found to be
s1ightly predissociated, and to have essentially the same linewidths.
The predissociation Tifetime was determined in Ref. (4) to be 42 + 5 psec.
The possibility of selective dissociation of ]4N02 in the presence of
]SNOZ, and vice versa, has been explored in this work. The two spectra
are compared in Fig.7.1 It is seen that there would be no difficulty
dissociating ]SNOZ in the presence of 14NO2 because the isotope shift
of 14.40 cm-] for the qRO heads means that many strong ]5N02 lines lie
in a region where only weak sparse SR lines of ]4N02 fall. On the
other hand, dissociating ]4N02 in the presence of ]5N02 would require
narrow-line lasers specifically tuned to certain wavelengths. The most
promising regions appear to be in the heads of the qR1 and qu branches

of 14N0,, where many close-lying strong 14NO2 lines fall in gaps between

15N

the 02, qP], qR2, and qP2 lines. The exact wavelengths can be cal-

culated from the tables of assignments given in Table IIT for ]SMOZ and

the Appendix to Ref. (4) for ]4N02-

Spectroscopically, the 2490-K band of 15

NO2 confirms the analysis
of the corresponding band of ]4N02 in detail, and poses no questions.
The need for a more detailed examination of the infrared spectrum of
]5N02 js pointed out. It is likely that the resulting changes in the
ground-state qonstants can be transferred. directly to the upper-state
constants reported in this work, since we have essentially determined
the differences between the upper- and lower-state constants in this

work. However, it is not impossible that the upper-state constants may

need to be reworked if the ground-state changes are considerable, since
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the relationship between the two sets is not one-to-one because of the

large changes in the rotational constants on electronic excitation.
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Chapter 8

Fourier Transform Spectroscopy of YO,
Rotational Structure in the A4H-X4z'

System near 10500 R
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A. Introduction

Vanadium monoxide, VO, is present in considerable amounts in the
atmospheres of cool stars, to the extent that its two electronic band
systems in the near infra-red are used for the spectral classification of
stars of types M/7-M9 (1). Both of these systems, A-X near 10500 A and
B4H-X4Z' near 7900 R, were in fact first found in stellar spectra (2,3)
before laboratory wérk, respectively by Lagerqvist and Selin (4) and
Keenan and Schroeder ( 5), proved that VO is the carrier. The purpose
of this chapteris to report rotational analyses of the (0,0) and (0,1)
bands of the A-X system from high dispersion Fourier transform emission
spectra; the A-X system is shown to be another 4H-42' transition.

The A4H state of VO is found to have quite small spin-orbit coupling,
so that the rotational and hyperfine structure follows case (aB) coupling
at low rotational quantum numbers, but is almost totally uncoupled to
case (bBJ) coupling at the highest observed quantum numbers. The hyper-
fine structure caused by the 51V nucleus (I = 7/2) is not resolved in the
spectra reported here, but an interesting result is that the hyperfine
parameter b for the A4H state can be estimated from the line shapes at
high N values and is found to be essentially the same as in the ground
X4z' state. The conclusion is that the A4n state comes from an electron
configuration containing an unpaired 4so electron, as does the ground
state.

In contrast to the other excited states of VO the A4H,v = 0 level
is unperturbed rotationally; it therefore provides one of the very few

examples known where the energy formulae for 4n states can be checked

directly against observation.
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B. Experimental details

The near infra-red electronic transitions of VO in the region
6000-14000 an”! were recorded in emission using the 1 meter Fourier
Trans form spectrometer constructed by Dr. J.W. Brault for the McMath
Solar Telescope at Kitt Peak National Observatory, Tucson, U.S.A. The
source was a microwave discharge through flowing VOCI, and helium at low
pressures, which was focused directly into the aperture of the spectro-
" meter. An indium antimonide detector cooled by liquid nitrogen was
used, and the resolving power of the spectrometer was set to approximate-
1y 800,000. Forty-two interferograms, each taking six minutes to record,
were co-added for the final transform. The resulting spectrum, consist-
ing of tables of emission intensity against wave number for every
0.013608 cm-], was processed by a third degree polynomial fitting pro-

gramme to extract the positions of the line peaks.

C. Appearance of the spectrum

1

The spectrum of VO in the near infra-red down to 6000 cm = consists

837 The B-X systenm

of the two electronic transitions B4H-X4Z- and A4H-X
js very much stronger than the A-X system under our discharge conditions,
so that the B-X progressions and sequences mask most of the A-X system
except for the (0,0) and (0,1) bands. Even the (0,0) band of the A-X
system (which is by far the strongest band) is not free from overlapping
B-X structure, which causes same difficulty in the analysis. The main

heads of the A-X (0,0) band are illustrated in Fig. 8.1; each of the

four sub-bands produces one strong head (SR43, R3, RQZ] and R1), and there
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Fig 8.1 Fourier transform spectrum of YO in the region 9410-9570 cm_'1 showing the heads of the

Al‘n - X% (0,0) band of VO.



-204-

is also a less prominent Q head in the 4H_%-42' sub-hand, Two other
heads, belonging to the B-X (1,4) band, abpear in the region of the
4n5/2‘42- sub-band; they have not been identified in the Figure, though
their branch structure is readily picked out at higher dispersion.

The A-X (0,1) band is qualitatively similar, though since it is
weaker the background of B-X Tines is more troublesome. The A-X (1,0)
band is so heavily overlapped by B-X structure that we have not been

1
i

able to analyse it; the SR43 head appears to be at 10503.3 cm ' but even

this is not definite.

D. Energy levels of 4n and 42 states

Energy levels for 4n electronic states have been considered by a -
number of authors (6-11). The most detailed treatment is that of
Féménias (9), who has given a full explanation of how to calculate the
matrix elements for the higher order centrifugal distortion terms.
Detailed analyses of 4n states, against which to test the formulae, are
less common; the best examples come from the spectra of 02+ (10) and
NO (12). |

42 states, on the other hand, are much more numerous, and have been
extensively treated (6,7,9,10,]3-]7), It will therefore only be necessa-
ry to sketch the Hamiltonian and its derivation, and to give the matrices
we have used.

Following van Yleck (18) we take the rotational Hamiltonian, the
first and second-order spin-orbit interactions and the spin-rotation

interaction, respectively, as
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4= B (-9 + AL + AN sigh) + gy 8. (8D)

The expansion of the parameters A, B, » and v, which are functions of
the internuclear distance r, in temms of the normal coordinate, produces
centrifugal distortion terms, which are conveniently written in operator

form as

He g = DIk 5)°

c.d. . 1,5,]

¥ %ADI(QfL 2"z +

¥ %_AD[(3S§-§?), (3-1-9)°, + wvpl(-L- 9%, (1:8).8], (8.2)

where [x,y]+ means the anti-commutator xy + ¥yX, which is necessary to
preserve Hermitian form for the matrices. The A-doubling of the 1 state
was calculated by setting up the 12x12 matrix for a 4n state interacting
with a single 42' state according to the first two terms of eq. (8.1),
applying a Wang transformation to convert to a parity basis and treating
the elements off-diagonal in A by second order perturbation theory. The

effect is as if there were an operator

Ho = a(orp+q) (52452)-u(p+20) (3,5 49 S )+ yq(35+0) (8.3)

LD

acting only within the manifold of the 4n state (11,19). The A-doubling
parameters (o+p+q), (p+2q) and q are related to matrix elements of the
spin-orbit operator, as given in ref. (11). The centrifugal distortion
corrections to eq. (8.3) are obtained in the same way that eq. (8.2) is
constructed from eq. (8.1). The spin-spin operators % alr )(SZ+SZ) and
% A(])(r)(35§7§2) are incorporated into the terms in (o+pt+q) and X,
respectively.



state in case (a) coupling.

Table 8.1 Matrix elements of the rotational Hamiltonian for a 1

|- ' IR 13
Tt (8-3A,#22p) (241) -/32[B-15v-R-20(242) ] -/3(z-1) [2D(Ja+%) #/(z2-1)(z-4) [4q
) ,
<-4 -D(2°45241) #/3[(o+pta) + (2+2)0 ., #(p+2a)* Dy yig oEDp,Zq + %Dq(z-Z)]
¢ 309+, 100 +5(21—\)Dp*2q] Wi(241)0 00 g(z-z)oq]
T, ¢ (B-'sRp-24p) (2 43) -2/2-1[B-4sy-2xy-20(2+2) /(z-1)(z-8) [-2D
2 _
<] -D(2°4+13245) + (9+,) [(p+2q) :ﬁ(J+z)iq+§Dp+2q ggoq(d+3)]

+30 4p4q * quq(z +3)+Dq(z-l)] +Dq(z+2))] N

o

(@)}

1

Ty ¢(BuA-20 ) (241) -/3(z-8) [B-4v+Ay
<3| -D(2°492-19) -20(2-2)]
~(z-1)(J+5)Dq
Symmetric
3 -
T5/2+(Bf5AD+2AD)(Z 5)
<3l -p(2%-72413)
er signs refer to e and f rotational levels respectively.

z = (J+‘-5)2 Upper and low

The basis functions |Ju- have been abbreviated to Ja>
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L -~
Table 8.2 Matrix elements for spin and rotation in a I state

in case (a) coupling .

3 JS
2x + Bx - D(x2+3x) -f3_x[B-1/2y-'Ys-12¥D(X+7*{2J+1})
<31
i
’ - 3y - 3y -2D(x+2) #HJ+:))]
20+ B(x+4)-D[(x+4)2+7x+4]
) -%Y-YD(7X+16)
<%| symmetric
¥ 2[B'I/Z'Y’1/2YD(X+]])+%YS
- 2D(x+4)](J+%)

X = (J+%)2-1. Upper and lower signs give the e(F] and F3) and

f(F2 and Fd) levels respectively. The basis functions | Jz>

have been written |z>
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The resulting Hamiltonian matrices which we have used are given in

4n and 42 stateS'respectiye1y). The X4z',v=0

Tables 8.1 and 8.2 (for
parameters were not varied in this work since they have been determined
with great precision from the C4Z‘AX4Z' transition using sub-Doppler
techniques (17). The parameter vg in the 42 matrix represents the third-
order spin-orbit contribution to the spin-rotation interaction (16,17);
neither Yg hor the centrifugal distortion correction Yp appears in the
4H matrix because they are not needed.

Hyperfine effects have not been considered in Tables 8.1 and 8.2 be-
cause the hyperfine structure is not resolved. However, with the large
spin and nuclear magnetic moment of 51V (1 = 7/2), the hyperfine structure

is important in determining the details of the branch structure, as witl

be shown below.

E. Analysis of the branch structure

Rather surprisingly, the analysis ¢f the A4H-X42' bands of VO proved
to be remarkably difficult because of unresolved hyperfine structure
effects and overlapping sequence bands from the B-X transition. The pro-
blem with the hyperfine structure is that only when the hyperfine 'widths'
of the combining levels making up a rotational line are the same does the
spectrum consist of sharp rotational lines (where the eight hyperfine
transition; 1ie on top of each other). Since the four electron épin
components of the ground state have hyperfine widths that differ from one

1

to the next by about 0.2 cm ', rotational lines with the same upper

state which go to different electron spin components of the ground state
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have noticeably different Tine-widths. The broader the line-widths

the more the intensity is spread out, and the more the 1ine tends to
~get lost in the background of overlapping B-X structure. Therefore al-
though a 4H-4Z— transition should have 48 branches, most of them are
broadened beyond recognition by the hyperfine structure in this case.

There are only two regions of clear branch structure in the (0,0)
band. One of these, shown in Fig. 8.2, 1ies between the two shortest
wavelength heads. The obvious branch, later identified as R043, could
be assigned at once to the Fj spin component of the ground state because
it contains the characteristic internal hyperfine perturbation pattern
at N" = 15 discovered by Richards and Barrow (20) in the B-X and C-X
systems. This internal hyperfine perturbation is a remarkable occurren-
ce, where the F, and Fq electron spin components (N = J-% and N = J¥%
respectively) would cross at N = 15, because of the particular values of
the rotational and spin parameters, were it not for the fact that they
differ by one unit in J, and therefore interact through matrix elements
of the tiyperfine Hamiltonian cf the type aN = AF =0, AJd = +1. Extra
iines are induced, and, since the detailed course of the ground state
levels is known (17), their positions tell whether a branch containing
them has F2" or F3“, and also give its N-numbering.

Given the numbering of the obvious F3" branch, the other three F4'
branches marked in Fig. 8.2 could be numbered easily using ground state
spin and rotational combination differences, The R, and Q branches are
hyperfine-broadened, and even though they are jntrinsically strong they
are by no means obvious in the spectrum. At this stage the lower states

of the branches were known, but the nature of the upper state was still
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unclear.

The other region of obvious branch structure is the tail of the
band, part of which is i1lustrated in Fig. 8.3. There are at least ten
sharp branches in this region, but only eight of them actually belong to
the A-X (0,0) band. A further complication is that there are mno ground
state ;ombination di fferences connecting any of these eight. The analy-
sis was performed by comparing the (0,0) and(0,1) bands, since the
separations between corresponding (N,J) levels of the X4Z' v=0 and 1
Jevels are known from the analysis of the C-X system (21). This method
gives at most two possible N-numberings for the branches, but it is less
easy to determine the ground state sp%n component since the intervals
are very nearly the same for the four spin components. Eventually all
eight of these branches were identified, and assigned to their respec-
tive ground state spin components. The resulting pattern can be inter-
preted as the Q and P main branches of a 4n-42 transition where the 4n
state is close to case (b) coupling at these high N values, and all four
components show A-doubling. The analysis is confirmed by the jdentifica-
tion of the four R branches, and various weak hyperfine-broadened spin
satellite branches.

The Qg branch is interesting because it is a sharp branch at the
high N values of Fig. 8.3, but hyperfine-broadened at the lower N values
of Fig. 8.2. It is possible to follow the Qq -branch over the complete
range of N values, and to see how it changes from broad to narrow fairly
quickly in the region N=40-50. The reason for the sudden disappearance

of the RQ43 branch near N=35 (see Fig. 8.2) is then clear - the RQ43
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branch is prominent at low N because the hyperfine structure of the
4n F4 1eve1 is initially the same as that of the,X4z'vf3 Jevel, but with
increasing N spin-uncoupling changes the 4n hyperfine level pattern until
at high N it becomes the same as X42' Fps as a result the R043 branch
becomes broadened. In addition the intensity of R043, which is a spin
satellite branch that becomes forbidden in a 4n(b)-4z(b) transition,
must diminish as spin-uncoupling sets in.

What emerges finally is a 'text-book' example of a 4HT-4Z transition
where the 4n state has quite small spin-orbit coupiing so that it changes

4n state is shown

fairly quickly from case (a) to case (b) coupling. The
to be regular (with a positive spin-orbit coupling constant) because

there is no detectable A-doubling in the F4 component (4n5/2) before

about N=45, whereas the other three spin components show A-doubling
effects almost from their first levels. The A-doubling and spin-uncoupl-
ing patterns are shown qualitatively in Fig. 8.4, where the upper state
energy levels, suitably scaled, are plotted against J(J+1). The curvature
in the plots of Fig. 8.4 is a consequence of the spin-uncoupling. The
assigned lines of the {0,C) and (C0,1) bands of the A-X system are given

in the Appendix; only the sharp lines are listed, because they are suffi-
cient to determine the upper state constants, and in any case it is often

quite difficult to obtain the exact Tine centres for the hyperfine-

broadened branches.

F. Least squares fitting of the data

One of the unexpected effects of the ground state internal hyperfine

perturbation is that the F2" and F3“ levels are appreciably shifted from
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line positions to allow for the

Corrections applied to the observed F2 and F3

Table 8.3
internal hyperfine perturbation shifts.
N F2 F3 N F2 F3 N F2 F3
4 -0.030 -0.003 14 -0.079 +0.055 24 +0.029 -0.026
5 -0.031 +0.008 15 +0.080 25 0.027 -0.025
6 -0.031 0.012 16 +0.075 -0.086 26 0.026 -0.024
7 -0.033 0.017 17 0.065 -0.075 27 0.025 -0.022
8 -0.034 0.022 18 0.051 -0.060 28 0.023 -0.021 |
9 -0.036 0.025 19 0.047 -0.058 29 0.023 -0.020 'E
10 -0.053 0.031 20 0.043 -0.043 30 0.022 -0.019
1 -0.060 0.033 21 0.038 -0.039 31 0.021 -0.018
12 -0.065 0.034 22 0.035 -0.031 32 0.021 -0.018
23 0.032 -0.028 33 0.020 -0.017

13 -0.070 0.043

The corrections were obtained by subtracting the rotational energy calculated

in the absence of hyperfine effects from a weighted average of the rotational-

hyperfine energies given by a full calculation of the hyperfine structure.
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the positions that they would have in the absence of hyperfine structure.
Therefore it is necessary to correct all the line positions in the
branchies involving F, or F5 lower levels for this effect.

It may seem surprising that a hyperfine effect can shift the
positions of rotational Tevels, but the hyperfine matrix element acting
between F, and Fq Jevels with the same N value is about 0.08 cm'l, while
the zero-order separation of the F2 and F3 Tevels (whfch depends on the
spin-rotation parameter v) remains less than 1 cm'] even some distance
from the N-value of the internal perturbation. The calculated shifts
are given in Table 8.3.

After applying these corrections to the F2" and E3" branches we
fitted the lines directly to the appropriate differences between eigen-
values of the 4n and 42' matrices. No attempt was made to vary the
X42', v=0 parameters in the present work since they have been determined
with high precision by the sub-Doppler spectra of (17), where the reso-
Jution is a factor of ten higher. Our procedure is therefore equivalent
to fitting the term values of the A4H, v=0 state to the eigenvalues of
Table 8.1. The (0,1) band was then fitted similarly, but with the A4H
upper state parameters fixed at the values derived from the (0,0) band;
the results give essentially the differences between the parameters for
X}z v=0 and v=1.

The final parameters are assembled in Table 8.4. The overall stan-
dard deviations listed correspond to unit weighting of all the data;
they are not as low as we had expected, but in view of the blending and

the unusual line shapes produced by unresolved hyperfine structure effects

in some of the branches we see no reason for concern.
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Table 8.4 Parmeters derived from rotational analysis of the A4H - X3 (0,0)

and (1,0) bands of VO in cm—l.

Aan, v = X'z ,v=0 v

1.,  9555.500 +0.011 (30) T, 1001.812 £0.011  (36)

T, 9512432 +0.017 B 0.546383, 0.542864  +0.000013

1, 9477.830 +0.023 10’0 6.509 6.5 10.03

T, 9M9.710 +0.021 ) 2.0308, 2.028 +0.002

B 0.516932  +0.000006 v 0.02251 0.0226 fixed
1070 6.782 +0.010 0% - R fixed

q .  -0.000151  +0.000012 108, 5.6 5.6 fixed R
pt2q -0.01349 +0.00027 fixed 3
o+p+q 2.107 +0.008

v 0.00383  0.00010
1070 0.023 +0.022
107Dp+2q -2.32 +0.68
10500*p+q -4.95 +0.42

- 0.000050  +0.000004

Standard deviations (unit weight):- Aan, v = 0: 0.024 cm”

Bond lengths: Aan. o =

1.6368 R; Xaz', Y

(B,

= 0.54814

1

3* %e

: XAZ_, v=1:0.024 cm

- 1.5020 A, r = 1.5894 A

= 0.003514 en™')

1
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G. Discussion

(i) Spin-orbit coupling constants and indeterminacies

Since 1 states are comparatively uncommon it is instructive to see
what parameters can be determined in this case, and what happens to the
problem of the indeterminacy of some of the parameters in the general
case. |

Veseth (21) has pointed out how y and A, (the spin-rotation interac-
tion and the centrifugal distortion correction to the spin-orbit coupling)
cannot be determined separately in a 2n staté, and Brown et al (19) have
proved this rigorously. Brown et al have also shown that an indetermina-
cy exists between B, AD,_AD_and y for case (a) 3n states, essentially
because there are only three effective B-values for the three spin-orbit
components, but four parameters to be determined from them. The indeter-
minacy can be avoided if the Jevels can be followed to high J vafues,
where case (b) coupling applies, because there is additional information
in the effective D-values of the three spin-orbit components. No such
indeterminacy occurs for 4n states because there are now four effective
B-values to determine the same four parameters; only if higher-order
terms such as Yg (the third-order spin-orbit correction to the spin-rota-
tion interaction {16,17)) are needed will further indeterminacies arise.

It is very clear from our data that AD is effectively zero for the

4

ATy state of V0. If Aj is floated the standard deviation increases

-1

D

marginally, and Ap is given as (4 +12) x 107 cm Nevertheless if it
were not so small it would in principle have been determinable from the

data.
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Another indeterminacy may arise in the sub-state origins for the
components of a mu]tiplet T state. These origins can be expressed, in

terms of the spin-orbit and spin-rotation parameters, as

T, =T, + AL + % AIBzZ-_.S(,s_H'),_‘l

9) (8.4)

2

+ y[oz-S(S+1)] + nA[Z3-(3S +35-1)z/5]

where n is the third-order spin-orbit interaction (22,23). From the

3n(a) state only effective

previous discussion it is seen that for a
vaiues of To’ A and A cén be determined, but that all five parameters can
be determined for a 4H state, because y can be obtained from the rotatio-
naT structure.

Because vy has to be determined separately we have written the sub-
state origins in Tables 8.1 and 8.4 in the form of TQ values. However,
it would be entirely equivalent to use expressions derived from eq. (8.4)

in the least squares work. Converting from the TQ values given in

Table 8.4 we have

, = 9498.878 em™ ' 5 A =35.193 en”)
(8.5)

1.867 an™! s n = 0.331 cn”)

—
it

>
L

It is interesting to see how comparatively large the second-order
parameter ) is compared to A. As is well-known (18) the second-order pa-
rameter ) includes the diagonal spin-spin interaction, but since the
latter cannot be estimated easily it is not possible to say how much of

the observed A is caused by it. The observed ) for the Abn state is
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similar to that for the X42' state (see Table 8.4), so that its large
size is not unexpected. To our knowledge an accurate value of the
third-order parameter n has only previously been obtained for the level
Vo= 4 of the 4nu state of 02+ (23), though estimates have been made for

the A5n and X5n states of Cr0 122).

ii) p-doubling parameters

In the approximation where a single 42' state causes the A-doubling

in a 4n state the parameters o, p and q are given by

4 . 4 -

o = -ntnlaL, | e
4 4 - 4 4 -

p = -2< ]I'lAL+l T os< H‘BL_*_l b >/AEHZ (8.6)
4 4 - 2

q = -2< nlBL+\ T > /AEHZ

Two approximate relations between the A-doubling parameters follow at

once:

p/q = A/B . (8.7)

and

p% = 4oq (8.8)

Equation (8.7) should in fact be obeyed quite well no matter what the
states causing the A-doubling are because it assumes only that the matrix
elements of AL+ and BL+ are in the ratio of A to B; from Table 8.4 we

find
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(p/q)/(A/B) = 1.26 (8.9)

which is not far from unity. Equation (8.8) on the other hand is not
obeyed at all, and the expefimenta1 ratio p2/4oq ijs -0.,13. There are

two possible reasons. One is that the off-diagonal spin-spin interaction
parameter o (which should be subtracted from the expression for o in

eq. (8.6)),1is important; the other, which is rather more Tikely, is that
there is a nearby strongly interacting electronic state of different
multiplicity. Assuming that the spin-orbit operator is responsible,

such a state will have rotation-independent matrix elements with A4H,

so that it will contribute to the parameter o, but not to p or q.

As far as we can tell from our spectra the A4n, v=0 level is unper-
turbed rotationally, and the principal perturbations in B4n are by
another 42— state; however, there is evidence (17) for a 21 state
perturbing C42_, v=0 (at 17420 cm']), which possibly comes from the same
electron configuration as A4n and is a good candidate for causing the
effects described. |

4

(ii1) Hyperfine structure of the A’y state

Section E described how the main branches (aN = ad) in all four
4n-4z' sub-bands become ‘'sharp' at high N values (where the spin coupling
approximates case (bBJ) in both states) although they are often hyperfine-
broadened at low N. It has been possible to obtain the approximate hyper-
fine widths of the four components of A4n from detailed measurements of

the line shapes in the various branches, together with the known hyper-

fine structure of the ground state (17); the results are shown in
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Fig. 8.5. This figure should be considered only as an "artist's impress-

jon" because the hyperfine structure is never resolved in the A4H-X4

o=
transition, and the deconvolution of the Doppler and hyperfine profiles
has not been attempted. The error bars given for the F, and F3 components
show that it is relatively futile to try to obtain values for any of the
hyperfine parameters except b, but on fhe other hand the value of b can
be obtained with reasonable accuracy.

To understand why only the hyperfine parameter b is determinable we

consider the magnetic hyperfine Hamiltonian [24] in detail:

=al- . [FYRAR: -2i¢ ~
Hmag.hfs ~ 2 Irb+bI-s+clyS, + »d(e” IS + e 1,s,) (8.10)

In this equation the first term is the interaction between the electron
orbital motion and the nuclear spin, the second term is a combination of
the Fermi contact interaction and the dipolar interaction, and the last
two terms are dipolar interactions, respectively diagonal and off-diagonal
in A in a signed quantum number basis. The term in d gives rise to
different hyperfine structures in the two A-doubling components of 4n]/2,
and its effects can be seen in Fig. 8.5, where there is a definite diffe-
refice between the hyperfine widths of the Foe and sz levels up to about
J = 50. This difference can be measured fairly accurately because the
Tine widths in the P2 and 02 branches are quite obviously different,
though the absolute values of the hyperfine widths are uncertain to the
extent of the error bars in Fig. 8.5.

In case (ag) coupling the diagonal matrix elements (25) of the first

three terms of eq. (8.10) are
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Fig 8.5 Hyperfine widths, AEhfs= Ehfs(F=J+I) - Ehfs(F=J—I), of the four spin components of the

4
A’ state of VO, plotted against J. Points are widths calculated from the ground state

hyperfine structure and the observed line widths, without correction for the Doppler width.
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<JQAIF|thSlJQAIF> = [F(F+1)-I1(1+1)-3(J3+1)]Jalar+(b+c)z]/[23(3+1)]

(8.11)

while the d term contributes = d(S+%) (J+%) [F(F+1)-1(1+1)-3(3+1)1/[43(0+1) ]
to the diagonal elements for © = % when S is ha]f—integraT. The hyper-
fine widths (in other words the separations of the hyperfine components

with F=Jd+1and F=J-1) for a 4H state where I = 7/2 are therefore

bE, g = 7(+u)ala+(bre)T]/[3(31)]

2,0 (8.12)
+7(J+%)“d /[J(J+1)]

Equation (8.12) implies that the hyperfine widths should decrease as 1/4
except that there is a J-independent contribution of #7d in the two
A-components of 4H%.

In case (bBJ)’ on the other hand, the diagonal matrix elements of

the magnetic hyperfine Hamiltonian are

<NASJIFthfSlWNASJIF> = [F(F+1)-I(I+1)—J(J+1)] { aA2X(NJS)
43(3+1) N(N+1)

+ bX(JSN) - c[3 N(N+1)][3X(SNJ)X(NJS) + 2X(JISN)N(N+1)]
IN(N+T)(2N-T) (2N+3)

(8.13)

+ A[BX(SNDX(NIS) + 2X(SMN(WDT &)y }
2(2R-T)(2N+3)

where X(xyz) = x(x+1) + y(y+1) - z(z+1). It is not so easy to see the
J-dependence in these formulae, but order-of-magnitude considerations
show that the coefficients of a and ¢ decrease as 1/J, while the coeffi-

cients of b and d are almost independent of J. The hyperfine energy
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expressions for 4n(b) states are roughly

F (0 = N43/2) oo = - 3 (bad) X(JIF)/(2M43)
Fp(d = N+1/2) - 5 (baud) X(JIF)(2N+9) /[(2N+1)(2N+3)] \
5.14
- .I .
Fyld = N-1/2) 7 (beid) K(JIF)(2N-7)/L(2N-1)(241]
Fy(3 = N-3/2) 3 (baxd) X(JIF)/(2N-1)

where the terms in kd refer to the A-doubling components; for I = 7/2
the approximate hyperfine widths in the four spin components, in units of
7(b+%d) /2, are 3,1,-1 and -3, respectively.

Fig. 8.5 shows that the hyperfine patterns in the A4H state of VO,
over the range J = 10-80, correspond to a spin coupling intermediate
between cases (aB) and (bBJ). As described above, the different hyperfine
widths in the F, and sz components represent the dipolar d term, but
the observed difference is a complicated function of how far the spin-
uncoupling has proceeded. The d term should show up again as a small
difference between the Q and P branch widths for the high N Fy and Fy
lines, but this is not observable at our resolution. The high N pattern
corresponds to almost pure case (bBJ) coupling, with the parameter b
being very nearly the same as in the ground state (hence the 'sharp' main
branch lines where the hyperfine components all fall on top of one

another). The experimental value of b is

1

b(A*n) = +0.026 + 0.002 cm” (8.15)

compared to the ground state value 0.02731 + 0.00004 e (17).



-226-

We have not attempted to obtain values for a, € and d from Fig. 8.5,
since the pattern is clearly dominated by the parameter b, with the
exact details being governed by the extent of the spin-uncoupling.

The fact that b(A4n) is closely similar to b(X4Z') indicates that
the same 4sc electron responsible for the Fermi contact interaction in
the ground state is also present in the A4H state. In single configur-
ation approximation the electron configurations must therefore be
)2

X} (8s0) ' (3ds
(8.16)

A s (aso) (3ds) (apm)!

The configuration given for A4H also produces a 4@ state, which should
lie at still lower energy; the chances of observing it appear slim at
present since its A-value differs by at least 2 units from all the other

known states of VO.
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Appendix I

Trans formation between Cartesian Tensors

and Spherical Tensors
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This appendix gives the tranformation between cartesian and spheri-
cal tensor components for operators of up to second rank, and outlines
some problems that arise when angular momenta referred to different axis
systems commute in different ways.

In practice, it is not always necessary to formulate every. inter-
action 1in spherical form; for example, the electron spin-rotation inter-
action can be written conveniently in cartesian form (A1). However for
uniformity all terms in the Hamiltonian will be written in spherical
tensor form in this thesis.

Tensors of rank 0 are scalars, and are the same in cartesian and
spherical form. First rank tensors (i.e. vectors) can be expressed either
in a cartesian basis |i> with i={Xx,Y,Z} or in a spherical basis \1,g>
with p= {-1,0,1}. The unitary transformation <i|2,u> between the two

bases is

|1,1> 11,0> 11,-1>
| X> (2)7" 0 (2)7*
> -i(2)7" 0 -i(2)7" (A.1.1)
| Z> 0 . 1 0

i.e. for the components of a vector T.

H(2)7H(Ty + 1 T)

T, (A.1.2)

= (@7 -1 )
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It is implicit in (A.1.1) that cartesian components satisfy the

commutation relations with the "normal" sign of i,

[Ty Tyl = TyTy - TyTy = #i7; (A.1.3)

The transformation of second-rank tensors from cartesian to spheri-
cal form can be performed in a two step process. Starting from a second-
rank cartesian tensor (whose elements are Ti112)one first changes the
cartesian coordinates into spherical coordinates through a product of
unitary transformations <ile,u> . This results in a reducible spherical
tensor, which is reduced by the well-known properties of the Clebsch-

Gordan coefficients to give the irreducible spherical tensors T; (A 2,A 4).

J . . .

T, = <dm |1 Tuy p2><1,u]\11><],p2l12>Ti] i, (AL.4)
where <Jm | 11 I P is the usual Clebsch-Gordan coefficient, which
is related to the Wigner 3-j symbols by

1
¢

cdm |1 Tuyw, > = (-1)™ (20+1)

1 1 J (A.1.5)
(U] Ho 'm>

Substituting numerical values for the 3-j symbols, and using (A.1.1), a
second rank cartesian tensor can be decomposed into a sum of spherical

tensors of ranks 0, 1 and 2,

L R L (A.1.6)
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The explicit expressions are

0 -4
To = - (3 T+ T+
GYF ATy * Ty * Ty

(A.1.7)

) Tyg + Tgy) =1 (Tyz # UMk

| —

In molecular spectroscopy we must distinguish between space-fixed and
molecule-fixed operators. Tensor components defined in terms of axes
mounted on the molecule, which are denoted by x, y and z, have the sign of i

in the commutation relations reversed (A 1), i.e.

[, Ty] =-i T, (A.1.8)

Components of molecule-fixed tensor operators will transform diffe-
rently from cartesian to spherical form. For components of a molecule-

fixed vector T (A 3):

1 oy .
=L@ - T
1
=T, (A.1.9)
T = (75T, +1 1)
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] are different from (A.L7)

I+ -

For second rank tensors, only Té and T

1 _ -y
T - (2) {Txy - Tyx}
(A.1.10)

{(TZx - sz) + i (sz - Tyz)}

—
0]

.
T 2
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Appendix 11

The Derivation of the Nuclear spin -
Electron spin Dipolar Interaction

Matrix Elements in case (bBJ) coupling
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This Appendix gives a derivation of the matrix elementsof

H .- 00 vy 9N By T(1)-1'(5.6%) (A.I1.1)

in the case (bBJ) basis (i.e.| n NKSJIF>) givenas eq.
(2.144) in Chapter 2.

Matrix elements can only be evaluated when the operator and the
relevant parts of the wavefunctions are in the same reference frame,ic.
either both in the molecule-fixed axis system (q) or in the space fixed
axis system (p). Our procedure will be to expand the Hamiltonian in the
first instance as a space-fixed operator, so that irreducible tensor
methods can be applied in their standard form; and then those parts that
are physically appropriate are referred to the molecule-fixed axis system
by means of the rotation matrix eq. (2.110).

The operator H is a scalar product of two commuting tensor

ns-es
operators because I and § are in different spin spaces. Therefore, from

Edmonds' eq. (7.1.6) (A5)

«cnq N K STI 17 F M

F oA

e | MNKSJITFM >

} 3,
=- (100" g ug Iy ¥y SFF OM." M

F

(1) 1I*F %F J 1’2
F

11 4

T [T en W K87 TUS.CA) [ n NKS 3>
3

R
(A.11.2)

where the reduced matrix elements are with respect to the space-fixed axis

system. <17 1] T](I) || T > can now be evaluated directly, because,
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in case (bBJ), the nuclear spin I is quantized in the space-fixed axis
system, as is the operator T](I).

Therefore by eq. (2.109)

<1 || TN 11T s = s DI (214007 (A.11.3)

1 2y
The operator T (S,C ), in the second reduced matrix element, is a compound
tensor operator constructed from simpler commuting operators; by using

Edmonds' eq. (7.1.5) (A5),

ca N KTST I T1§S§C2) [ nNKSJ>= (3)5[(20+1)(237+1)1”
R

<5’HTHS\‘S><HWK'H£ﬂ\nNK>gWNZ
R> 57 s 1
l J a1 (A.11.4)

Again for a case (bBJ) coupling scheme the electron spin S is quantized

in the space-fixed axis system, so that, for the matrix elements
cs 1 TNE) 1S > Egeg [stsH (25 (A.11.5)

The second-rank spherical harmonic C2 is defined in the molecule-fixed
axis system, but so far jts matrix elements have been reduced with respect
to the space-fixed system. The transformation from space-fixed to molecu-

1e-fixed axes is carried out by means of the rotation matrix D,

(2)*
2 _ 2
ct = z D, () G (A.I1.6)
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where w represents the three Euler angles (aBy).
(2)*
D q(w)is the rotation matrix with no reference to the space-fixed
components, and its reduced matrix element is defined by eq. (A.11.17).

When this is substituted into the redUced matrix element we obtain

-y 2
<n N K |l IlaNKk>= z<n|C [n>
RS q +
R
.. (2)*
<N K || D q (w) || NK> (A.IL.7)
where < n | Q%_ | n > is an experimentally determinable parameter, which
R
will be redefined as
2 2
T (C) = C A.11.8
g€ =< | _ELJ n > ( )
RS
(2)*

lastly, we must calculate < N" K™ || D q ()]} N K>

- ” ” *
which is the reduced matrix element of < N K M l Dég) (w) | NKM>.
We will first evaluate < N” K M D&%)* (o) | NKM> and then apply

the Wigner-Eckart Theorem (A5) to get its reduced matrix element.

Since .
LR [———2“”] o () (A.11.9)
87r2
and its complex conjugate is
y (N)

2

<N KM | = [ZN +1] Dy~ (w) (A.11.10)
8
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the relationship between D* and D is (A7)

(k)* _ _yp-a k)
Do (w) = (-1) Dln -q (w) (A.11.11)
Therefore,

v k| o8 Nk M s = [N 1) (2N )]
Pq 812

. (-1)Pe (—1)M'K'/D]S4N‘;),(w) o) o) o)y e

(A.11.12)
Using the relationship in Silver (A6) p. 43, we Have

k)*(w) | NKM> = (-1)p'q (-1)M'K [(2N'+1)(2N+1)]%

q
Nk N N~ k N
M -p -M K™ -q -K (A.11.13)

The pair of 3-j symbok in (A.I1.13) will be non-zero only if they satisfy

<N’K’M|D(
p

the conditions

1
(]

M+ (-p) + (-M)

and K™+ (-q) + (-K) (A.11.14)

1]
o
.

Also with the use of symmetry properties of the 3-j symbol, we finally

obtain
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el - *
<N"K™ M lDé? () | NKM>

= - M“K‘ - 172 - s
(-1)" 7 [(2n+1)(2N+1)] (N, k N>(N, X N) (A.11.15)
M pMJ\-K" qgK

Applying the Wigner-Eckart Theorem, we find

CNTKTN lDég)* W Nkms= (VT ke
<:M' p M

<N K Lfg)* () || NK>
(A.I1.16)

Therefore,

N K] ka)* | NK> = (VK penea (o) I

q
N kN (A.I1.17)
-K* qK

with the special case of k=2

Lo, N"=K rpon ey
<N K || D4 Il NK>=(-1) [(2N"+1)(2N+1)JFN" 2 N
' K" q K
(A.11.18)

Combining eqs (A.11.2), (A.11.3), (A.11.4), (A.11.5), (A.I1.7), (A.11.8)

and (A.11.18) we finally get
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<N K SITF|IH o InNKSITF>

= "(30)1/29 PB gN JJN ('])J+I+F I J‘ F§
JI 1

[1(141)(2141)5(5+1)(25+1) 17 [(ZJ’+1)(2J+1)(2N’+1)(2N+1)]%

NT N2 )
ts 5 1 % g (- K <‘N, 2 N\ TZ(C)
7 a1l @ -Koak

(A.11.19)

which completes the derivation.
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Appendix I1I

Derivation of the matrix elements of the

operator = T](l). T][T3{T](§). T2Q§1#§j)},C2]/r?j
i>]

in a Hund's case (bBJ) basis



-253-

We begin by applying egs. (7.1.5) and (7.1.6) of Edmonds (A5) to

reduce the general form of the matrix elements of eq. (3.25) in Chapter 3,

TR, Bgegts Uy
i>]
set up in a Hund's case (bBJ) basis:

<A NASJIF|: DT IRrHE) T s 15891 c?]/rfj | n'N 47 sJTF>
: i>J i ~

L
3

- () 3F 31 2< D] 7D |1 1>x (3)7 [(23+1)(237+1)]

110 )
NN 2
3 (o1 2 2 At
ss 3{z <s|[T ”(gﬁ(&&ﬂ}“ S> < NA|JCo|In N A >
JJ 1 s1>3 rg.
id
(A.II1.1)

The scaled spherical harmonic 02 js defined in molecule-fixed axes, soO

we need to project it into molecule-fixed axes according to

2 =5 (&% () 2

A.III.2
q O q ( )

where w stands for the Euler angles of the rotation. The reduced matrix

element of Cz/r?j then becomes

cna ol () T
Toen | Gyl

1>

o p (NN (2N ) T N 2 N Té(c) (A.111.3)
9 (—A q A'> ‘

poenNa (] e N s

z
i>]j q
X
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In our .case A =_A'= 0, so that q = 0. There will be just one experimental

parameter ]g(C), which will be proportional to be.

Next we break up the reduced matrix element of the electron spin tensor

product in eq. (A.I11.1) using Edmonds' eq. (7.1.1):

5 o<s | TS T gguey)y 1S > (7 (-1B* 31 2 3§
17 $SS

[s(s+1)(25+1)]1* x £ <S || T 2sq0s9) 1S > (AIILA)
1>J

where we have eliminated the sum over states with total spin S~ because

cs ] T 11T > = Is(sHn(2s+1)]” sgg (A.II1.5)

The tensor product in eq. (A.111.4) appears in the matrix elements of the

dipolar electron sbin-spin interaction and the A-doubling parameter 0; with

Edmonds' eq. (7.1.1) again we find

s> =(5"

<SHT(~1’~J :

p (-1)B* %1 1 22< S| Ts) 11s7 >
$SS

“ T1(§d) ]S > (A.i11.6)

The triangle rules on the 6-j symbol Timit S* to S or St1, but S = S+1

is physically impossible, so that the tensor product becomes
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<5 || Tgnsy) 115> = (2) (-1)3[(1 12 §< s || TAs;) |1 s-1>
35_5 S-1

<51 [ Ty S > 31 1 22<s T s) 1S >
SSS

cs | Tlgy) 118 >] (A.I11.7)

To evaluate the reduced matrix elements of s; and 53 we define the coupling

scheme

+ ...58, = +S (A.I11.8)

Then, by Edmonds' eq. (7.1.7)

Ny

csT ] THg) 1] $>= (-1)S175a*5*T [(2s41) (25 +1)T% 59 57 S,

s s 1

csy 1 Te) Hsy > (AI11.9)

Ny

1 1 .
where < sy || T (id) H 59> = [s]€51+1)(2$]+1)]2= (3/2)%, following
eq. (A.111.5), since Sy = %u Using the definition éa = §;§J, and substi-

tuting for the Wigner coefficient, we obtain
<S | Tl(zﬁ I1s > =%[(S+1)(25+1>/SJI/2 (A.I11.10)

which is a general expression holding for all Si and

< s ] THg) 1l S>= - [(25-1)(25+1) /5T
Ses | T ] s (A.111.11)
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For the off-diagonal reduced matrix elements of the other spins we need

to extend the coupling scheme:

(A.111.12)

Then

s> = (151%™ [(,zs+1)(2s-1)]1/2§sa 5-1 s]%

<51 ] T(s,)
(s s, 1

a2 1 T(s,) 1 S, > (A.111.13)

Now éa still represents a coupled basis as far as electron 2 is concerned,

so that

s, 11 Tgp) 11 %> e (-1)%a*Sp*s2t (25 +1) { S Sb%

Sy Sy 1
<s, |1 Ty 1lsp> (A.IT11.14)
which gives the results
sl | THs,) 11 s> =‘7[(2s+1)/{5(zs-1)}]1/2
co<s ] T 1] ST (A.I11.15)

We can now return to eq. (A.III.7), and substituting the new expressions

just obtained, we get

(A 111.16)

o5 || TAgpogg) 1S > = LSS (2543) (245(25-1)117
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We need the sum, I <S || Tz(si,sj) || >, for eq. (A.I11.4), which is
i>]
equivalent to multiplying eq. (A.111.16) by 5(25-1) since each pair of

electrons is counted once only; this gives

LR T2(£4’§d> 11's>= [(25-1)25(25+1)(25+2)(25+3y 247"
i>] A
1 S 2

<SS |1 1ls> (A.111.17)

Finally, substituting into eq. (A.111.4) we find
s o<s || T ATHS), To(ss) 118>
i>] ~ ~1~)

- [(25-2)(25-1)25(25+1)(25+2)(2$+3)(ZS+4)/640]% (A.111.18)
so that

o NASITF s THD-TT(S) T g8 N VO I A
i>]
] <f§~>% (-1 *F ZF 31|21
640 1137

-

q Ag A fiss 3

[(2J+1)(2J‘+1)(2N+1)(2N’+1)]1”2 X z(-])N’A< N 2 N')}N N 2£
JJ 1

[(25-2)(25-1)(23)(25+1)(25+2)(25+3)(25+4)J% Tz(C) (A.111.19)

Where q, A and A" are zZero this becomes equivalent to eq. (3,20) in chapter 3,
with

2y = 10 (10)" b (A.111.20)


file:///640J
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The useful results from the derivation are the general forms for the

electron spin reduced matrix elements, (A.111.10), (A.III.11), (A.I11.15)

and (A.I11.17).
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Appendix IV

Wigner 9-3 symbols needed for the lﬁ§ld1po1ar
interaction and the third-order isotropic

hyperfine interaction



3X(NSJ)X(NJS) + 2X(SJIN) N(N+1)

1
[30(2N-l)2N(2N+1)(2N+2)(2N+3).S(S+1)(25+1).J(J+1)(2J+1)]’

N N 2
s s 1 -
J J 1
where X(abc) = a(a+l) + b(b+l) - c(c+l)
N N 2 2 i
[NCN+1) + 3S(S+1) - 3J° ][ (N+J-S) (N+S-J+1) (J+S-N) (J+5+N+1) ]
1 - -
-1 11 [15(2N—1)2N(2N+1)(2N+2)(2N+3).s<s+1)(25+1).(2.1-1)2.1(2J+1)]"i
N-2 N 2 Y
[ (J+S+N+1) (N45-J) (N+J-5) (J+S~-N+1) (N+S5-J-2) (N+S-J~1) (J+S-N+2) (J+5~N+3) ]
s § 1} = -
g4 g 1 [10(2N-3)(2N-2)(2N-1)2N(2N+1).s(s+1)(2s+1).(2J+1)(2J+2)QJ+3)]5
N-2 N 2 ((J4SHNAL) (N4S=0) (NHI=S) (JHS-NHL) (NESHT) (NhI-S-1) (N45-J-1) (J45-8+2) |
S s 1) = -
J 31 [20(2N-3)(2N—2)(2N—1)2N(2N+1).s(s+1)(25+1).J(J+1)(2J+1)]5
N-2 N 2 [(J+S+N+1)(N+S-J)(N+J—S)(J+S—N+1)(N+S+J)(N+J—S—1)(N+S+J—1)(N+J—S-2)]8
S 1} = - :
1 [10(2N-3)(2N—2)(2N—1)2N(2N+1).S(S+1)(2$+1).(2J—1)2J(2J+1)]’

J-1

09¢-



1202X (JSN) X (SNJ) [SN(N+1) - -2] 2X(NJS)S(S+1) [2X(SNJ) - 1] - SX(NJS)X(SNJ) X(JSN)

N N2 JAX(SNJ)J(J+1) - AX(ISN)N(N+1)S(S+1)}

S S 3] =

131 [lOS(ZNol)ZN(ZN‘l)(ZN*Z)(iN*}).2J(2J¢l)(2J*2).(25-2)(23-1)25(25#1)(ZS+2)(2503)(2544)]5

where X(abc) = a(a+1) + b(b+1) - c(c+1)
NN 2 206 (N+SHI+1) (JH5-N) (N+I-S) (N45-341) 17
3 = x
-1 11 [35(2N-1)21~¢(2N+1)(2N+z)(2n+3).(21-1)2J(2J+1).(2s—2)(25-1)25(zs+1)(2s+2)(zs+3)(2s+4.)1'~
x ([SN(N+L) + S(S+L) - 5(J-1)(J+1) - 13/2}[N(N+1) + S(S+1) ,
~N
S (J-1)(J41) - 3/2] - GNQNHD)S(S+1) + 3(J-1/2) (J+1/2)} )
1
N-2 N 2 Y
2[ (N4S+T) (NHSHT+1) (N4S+T=1) (N+I-5=2) (N+J-S-1) (N+J-5) (N+5-J) (J+S- -N+1) )

s § 3} = -

-1 31 [35(2N-13) (2N-2) (2N-1) 2N(2N+1) . (2J-1) 23 (2J+41) . (25-2) (25~ 1)zs(zs+1)(2s+2)(zs+3)(zs+a)]3
x [SJ(J41) + SN(N+1) - S(S+1) - 10N(J+1) + 2)
N-2 N 2 4] (NASHT) (HFSHIH1) (N4S-1) (IHS-J-1) (N+I-5-1) (N+I-8) (J+S-N+1) (145~ w21t
s 3) =
5 51 [70(2N-3) (2N-2) (2N-1) 2N(2N+1) .23 (23+1) (2J42) . (25- 2) (25~ 1)29(25+1)(zs+2)(2s+3)(25+a)]3
x [SJ(J+1) - SN(N+1) + S(S+1) + 2(5N-1) ]

N-2 N 2 2[(J+S—N+3)(J+S—N+2)(J+S—N+1)(N+S—J)(N+J-S)(N+J+S+1)(N+S—J—2)(N+S—J-1)]H

s s 3) = -

g1 [35(zn—])(2N—2)(2N—1)2N(2N+l).(2J+1_)(2J+2)(2J+3)-(25—2)(23—1)25(254-1)(254-2)(25+3)(ZS4-6)]l’

x [5J(J+1) + SN(N+1) - S(S+1) + 10N] + 2]
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Appendix V

Molecular Orbital Description of

the First-row Transition Metal Monoxides
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This appendix gives a molecular orbital description of the first-row
transition metal oxides. In this approach the molecules are formally
represented as M2+ 02' and the splitting of the degenerate d orbitals of
te 12 ion by the Tigand field of the 0° fon is considered (AB).

The relative stabilities of high-spin or low spin states will depend on
the size of this ligand field splitting (A9).

A typical molecular-orbital energy level diagram for a first-row
transition metal monoxide is presented in Fig. AV.1. The relative
positions of the 3ds and 4so orbitals in these oxides vary as the atomic
number increases, as a result of the screening effect created by the elec-
trons. Therefore Fig. AV.1 represents only one way of writing this mo-
lecular-orbital energy level sequence, as found in Sc0 and TiO, for
example.

The ground state electronic configurations and term symbols that

have been determined for the transition metal oxides (A8, A10) are

5c 0 (4s0)" 25
Ti0 (4s0) " (3ds)" 3.,
VO (130)" (3d8)° bs-
Cro (4s0)) (3d6)2 (3am)] o1
MO (4s0)! (3d8)% (3dm)° 65+
Fe0 (4s0)) (3ds)’ (3dn)’ Sy

Cu0 (4s0)2 (3d8)* (3dm)° I
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Fig A. V.1 Relative orbital energies in a general transition-metal

monoxide molecule, MO.
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Appendix VI

Tables of assigned lines
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This Appendix contains. the rotational line assignments on which the
results of this thesis are based. The abbreviations used have meanings
as follows:

* 4indicates a blended line

} indicates multiple line assignments for a given rotational

transition

( ) indicates the Tine assignment is uncertain

. indicates a line is expected but has not been observed

p indicates the line is perturbed.



N

N

-1

0

TABLE I ROTATIONAL LINES ASSIGNED OF THE C4z7- X4Z~ (0,0) BAND OF VO
BRANCH Jv F/-F" F"=J"-7/2 F=u-5/2 F=d-3/2 F=d-1/2 F=u+1/2 F=u+3/2 F=J+5/2 F=U+7/2
R1(-1) 0.5 1 - 17422 .3960
0 17422 .6435* -
RQ21(-1)FE 0.5 1 424 .7946
0 424 .7657* 424 6161
-1 424 .5847*
R1( 0) 1.5 0 - 17423.2760 - -
P1( 0) 1.5 -1 17422 .4357*% 17422.2735
(o} 422 .5170 422 .3751*
1 17422 .5758 -
R2( 0) 0.5 1 - 422.9294
PQ12( O)EF 0.5 1 420.4331
0 420.4952* 420.5507
-1 420.6116
R1( 1) 2.5 1 - - - 17423.8571 17423.7646* 17423.6589
t( 1) 2.5 -1 - - 420.9413 420.8177*
0 - 17421 .0956 421.0096 420.9015*
R2( 1) 1.5 1 - 422 .6854 422 .6779 422 6718
P2( 1.5 -1 420.3914 420.4420
o} 420.3814+* 420.4246*
R1( 2) 3.5 1 17424 .6441* 17424 6288+ 17424.5994*% 17424 .5545% 17424.5020 17424 .4336 17424 .3508 17424 .2540
0 - - - - 424 .4514 Co- -
P1( 2) 3.5 -1 - 419.7263 419.6699 419 .5987 419.5111 419 .4076
0 419.7569 419.7113 419.6500 419.5757* 419.4815*
R2( 2) 2.5 1 - - - - 422 .7955 422 .7605
P2( 2) 2.5 -1t - - 417.9737 417.9324
R3( 2) 1.5 1 - 420.8046 420.7608 420.7084
0 - - 420.7637* -
RQ43( 2)FE 1.5 0 - - - 419.2124
-1 419.1927 419.2260 -
( 3) 4.5 1 17425.1708 17425.1478+ 17425.1122 -17425.0673 17425.0127 17424 .9461 17424 8682 17424.7795
( 3) 4.5 -1 - - - 418.2437 418.1876 418 1191 418.0386 417 .9451
o} - - 418.2762 418.2288 T - -
R2( 3) 3.5 1 - - - - - - 423.0844+ 423.0314
P2( 3) 3.5 -1 - - - 416 .2622* 416 .2255 416.1796
0 - - 416.2974 - 416.2441 -
R3( 3) 2.5 1 421.6615 421.6483+ - - 421.6055* 421.5935*
0 - - 421.6521 - - -
P3( 3) 2.5 -1 - 414 .6489* - 414 .5950*
R4( 3) 1.5 1 - 423.0193 423.0218+* 423.0218*
PQ34( 3J)EF 1.5 0o - - - 417 .4442

=19¢-



TABLE I (CONTINUED)

BRANCH J" F’-F" F"=Jd"-7/2 F=J-5/2 F=u-3/2 F=d-1/2 F=u+1/2 F=J+3/2 F=u+5/2 F=Uu+7/2
N= 4 1( 4) 5.5 1 17425 . 6131% 17425.5847 17425.5474 17425.5001 17425.4452 17425.3802 17425.3057 17425.2215
1( 4) 5.5 -1 416.7986+ 416.7734+ 416.7366 416.6905 416.6346 416.5686 416.4920 416 .4053
o - 416.7628* 416.7245 416.6765* 416.6176 416.5487* -
R2( 4) 4.5 1 - - - 423.4934* 423.4796 423.3872 423.3652 423 .3504*
RQ32( 4) 4.5 i - - - - - 423.4573 423.4261
P2( 4) 4.5 -1 - 414 .6593* 414 .6489* 414 .6349+* 414 .6167* 414.5889* 414 .5551* 414 .5059
R3( 4) 3.5 1 - - - - - - - 422.3534
P3( 4) 3.5 -1 413.4042 413.3946* 413.3898 413.3807* 413.3743* 413.3713
0 - 413.3995 413.3920 413.3827 - -
PQ23( 4) 3.5 -1 - - - - 413.5095 413.4989 413.4850
0 - - - - - - 413.4614
R4( 4) 2.5 1 - - - - 424 .3073 424 .3527
P4a( 4) 2.5 -1 - - 415.2546* 415.3016
N= 5 Ri1( 5) 6.5 1 17425 9648 17425.9313* 17425 8922 17425.8442 "17425.7887 17425.7255 17425 .6529* 17425.5738
P1( 5) 6.5 -1 415.1702 415.1395 4151004 415 .0531 414 .9970 414.9323 414 .8594 414.7781
R2( S) 5.5 1 - - - - - 423.6966 423.6723 423.6463 [
RQ32( S) 5.5 1 - - - - - - 423.7488* g
P2( 5) 5.5 -1 412.9848* 412.9776 412 .9689 412.9577 412.9394 412.9137 412.8776 412.8190 1]
0 - - ’ - 412.9528 412.9325* 412.9002* - !
PE32( 5) 5.5 -1 - - - - - - 412.8102
R3( 5) 4.5 1 - - - - - - - 422.9153
RS23( 5) 4.5 1 - - - - 422 .8330* 422 .8330* 422 .8383
P3( 5) 4.5 -1 - 411.9873 411.9820 411.9769* 411.9707* 411.9677* 411.9689* 411.9769*
PQ23( 5) 4.5 -1 - - - - - 412.0513 412.0453
R4( 5) 3.5 1 425.0202 425.0323 425.0539* 425.0794 425.1178 425.1623 425.2146 425.2754
P4( 5) 3.5 -1 - - 4141441 414.1891 414 .2424 414 .3045
o) - - - 414.1574 - -
N= 6 R1( 6) 7.5 1 17426.2207 17426.1828* 17426.1427 17426.0954 17426.0393 17425 .9771 17425.9069 17425.8300
P1( 6) 7.9 -1 413.4495 413.4156 413.3743* 413.3260 413.2702 413.2072 413.1364+* 413.0574
R2( 6) 6.5 1 424.0326 - 424 .0013 423.9826 423.9621 423.9400* 423.9126+* 423.8819*
P2( 6) 6.5 -1 411.2497* 411.2454~ 411.2402+* 411.2268 411.2135* - 411.0930 411.0756
P0O32( 6) 6.5 -1 411.1994+* - 411.1754 411.1573 411.1377 - 411.1536
R3( 6) 5.5 1 - - - - 423.3383 423.3440 - -
RS23( 6) 5.5 1 - 423.2582 - - - - -
P3( 6) 5.5 -1 410.4471 410.4398 410.4329 410.4254+* 410.4204* 410.4204+* - 410.4958*
PQ23( 6) 5.5 -1t 410.4812 - - - - 410.4240 410.4355
R4( 6) 4.5 1 425.63973* 425.6558+* 425 .6823" 425.7173 425.7599 425 .8088* 425 .8668 425 .9313*
P4( 6) 4.5 -1 - - 412.7606 412.7931 412.8337+ 412 .8845* 412.9427* 413.0090
0 - - - 412 .8040 - 412.9002* 412.9608
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F'/-F" F"=y"-7/2 F=J-5/2 F=J-3/2 F=J-1/2 F=d+1/2 F=J+3/2 F=J+5/2 F=d+7/2
1 17426.3805 17426.3446* 17426 .2991 17426.2491 17426.1936 17426.1318 17426.0634 17425 .9890
-1 411.6312 411.5950 411.5529* 411 .5032 411.4475* 411.3850* 411.3160 411.2402
1 424 .1946 424 . 1800* 424 .1638 424 .1471* 424 .1253 424 .1018 424.0743 424 .0396
-1 409.4051* 409 .3903* 409.3735 409 .3552 409 .3347 409.3117 409.2858 409 .2571
-1 409.4418* 409.4418+ 409.4384 409.4292 409.4152 - 409 .3636
1 423.6267 423.6324 423.6377 423.6422 423.6480 423.6552* 423.6645 423.6774
-1 408.7877 408 .8013 408 .8085 408 .8136 408 .8189 408 .8249 408 .8312 408.8386*
-1 408.7660 408.7554* 408 .7488* 408 .7449* 408.7449* 408.7488* 408 .7618
1 426.0828 426 .1077 426 .1358 426 . 1740 426.2203 426.2722 426.3321 426 .3986*
-1 - - 411.2497 411.2869 411.3325 411.3850* 411.4451* 411.5120
1 17426 .4376 17426.3985 17426.3540 17426 .3038 17426.2489 17426.1872 17426.1198 17426 .0471
-1 409.7154 409 .6764 409.6334 409 .5827 409.5273 409.4651 409.3989* 409.3240
1 424 .2666 424 .2540 424 .2389 424 .2192* 424 .2010* 424 1756 424 1471 424 1102
1 - - - - 424.3428 424 .3251 424 .3005
-1 407 .5051* 407 .4902 407 .4744 407 .4560 407 . 4357 407 .4121 407 .3842 407 .3495
-1 407 .5605* 407 .5605* 407 .5549 407 .5476 407 .5349 407 .5151 407 .4869
1 - - ~ - 423.8465 423 .8556* 423.8660* 423.8819
-1 407 .0122 407.0188 407 .0261* 407 .0301* 407 .0375 407 . 0453 407 .0545 407.0677
-1 - - - - 406 .9432* 406 .9496* 406 .9647
1 426 .3808* 426.4079* 426.4428 426.4842 426 .53 11 426 .5842 426 .6445 426.7098*
-1 409 .5310* 409.5560 409.5886 409.6290* 409 .6764* 409.7297 409.7896 409.8563

FROM HERE ON ALL THE LINES HAVE DELTA F EQUAL TO DELTA N

BRANCHES LABELLED RQ32, PO32, RS23 AND PQ23 ARE INDUCED
BY INTERNAL HYPERFINE PERTURBATIONS

-69¢-



TABLE 1 (CONTINUED)

BRANCH J" Fr=Jd"-7/2 F=J-5/2 F=J-3/2 F=J-1/2 F=J+1/2 F=J+3/2 F=u+5/2 F=U+7/2
N= 9 R1( 9) 10.5 17426.3957 17426.3542 17426.3091 17426.2584 17426.2031 17426.1427 17426.0762 17426.0052*
P1( 9) 10.5 407 .6953 407 .6570* 407 .6107 407 .5606 407 .5051 407 .4432 407 .3768 407 .304 1
R2( 9) 9.5 424 .2448 424 .2333 424 .2192¢ 424 .2010 424.1813 424 .1579 424 1272+ 424 .0869*
P2( 9) 9.5 405.5092 405.4956 405 .4809 1405.4640 405.4436 405.4203 405 .3907 405.3516
P0O32( 9) 9.5 405 .5876* 405 .5876* 405 .583 1 405.5763* 405 .5639 405 .5457 405.5180*
R3( 9) 8.5 423.9205 423.9249 423.9314* 423 .3400* 423.9527 423.9714
P3( 98) 8.5 405.1270 405 . 1317 405 . 1366 405.1420 405. 1491 405.1573 405. 1687 405 . 1855*
PQ23( 9) 8.5 405 .0368"* 405.0368* 405.0424 405.0578*
R4( 9) 7.5 426 .5492 426 .5802 426 .6174 426 .6603 426 .7098* 426 .7631* 426.8231 426 .8886
P4a( 9) 7.5 407 .7252 407 .7555 407 .7913 407 .8334 407 .8824 407 .9368 407 .9970 408 .0636
N=10 R1(10) 11.5 17426.2491 17426 2083 17426.1627 17426.1113 17426.0554 17425.9963 17425.9313 17425.8609
P1(10) 11.5 405 .5765* 405 .5349 405 .4894 405 .4386 405 .3828 405 .3216 405 .2566 405 . 1855
R2(10) 10.5 424 . 1253+ 424 . 1150 424 .1018* 424 .0869* 424 .0674* 424 .0437 424.0135 423.9678
RQ@32(10) 10.5 424 2132
P2(10) 10.5 403.4155 403.4035 403 .3894 403.3747 403.3548* 403.3317 403.3015 403.2570
PO32(10) 10.5 403.5190 403.5167 403.5092 403 .4994 403.4813 403 .4537
R3(10) 9.5 423.8959 423.9002* 423.9067 423.9149* 423.9314* 423.9493
P3(10) 9.5 403.1321* 403.1343 403 . 1386 403.1432 403 . 1506 403 . 1583+ 403.1707 403. 1899
PQ23(10) 9.5 403.0118 403.0165* 403.0218 403.0373
R4(10) 8.5 426 .5960 426 .6301 426 .6689 426 .7130 426.7631* 426.8168 426 .8776* 426.9419
P4(10) 8.5 405 .8008 405.8341 405.8719 405 .9161 405.9655 406 .0200 406 . 0807 406 . 1457
N=11 R1(11) 12.5 17426.0025 17425.9602 17425.9136 17425.B609* 17425.8065 17425.7471 17425.6823 17425.6131
P1(t1) 12.5 403 .3551* 403.3125 403.2651" 403.2147 403.1583* 403.0993 403.0344 402 .9647
R2(11) 11.5 423 .9091 423.9002* 423.8878 423.8725 423 .8556" 423.8322* 423.8015 423 .7488
RQ32(11) 11.5 424 0509
P2(11) 11.5 401.2233 401.2132+* 401.2017 401. 1872 401.1695 401. 1467 401.1153 401.0628*
PO32(11) 11.5 401.3506 401.3455 401.3356 401.3192 401.2919
R3(11) 10.5 423.7610* 423.7610* 423.7610* 423 .7646¢ 423.7705% 423.7782 423.7928 423.8146
P3(11) 10.5 401.0289+* 401.0289* 401.0313* 401.0343 401.0398 401.0483* 401.0622* 401.0825*
PQ23(11) 10.5 400.8881* 400.8825* 400.8825* 400.8879* 400.9062
Ra(11) 9.5 426 .5266 426 .5629 426 .6031 426.6488 426 .6989* 426.7540 426 .8140 426 .8776*
P4a(11) 9.5 403.7575 403.7923 403.8321 403.8775 403.9279 403.9827 404 .0429 404 .1076
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TABLE 1

(CONTINUED)

BRANCH J*" Fr=J"-T7/2 F=U-5/2 F=J-3/2 F=J-1/2 F=u+1/2 F=J+3/2 F=J+5/2 F=J+7/2
=12 Ri(12) 13.5 17425.6529 17425 6089 17425.5618 17425.5103 17425 .4546 17425.3953 17425.3312 17425 .2630
P1(12) 13.5 401.0280 400.9863 400.9389 400.8880* 400.8324 400.7730 400.7085 400.6400
R2(12) 12.5 423.53800* 423 .5834 423.5742 423.5618 423.5459 423.5251 423.4934 423.4297
RQ32(12) t2.5 423.7784* 423 .7646* 423.7386
P2(12) 12.5 398.9331* 398.9258 398 .9163 398.9038 398.8876 398 .8652* 398.8345 398.7714
pP032(12) 12.5 399.0869* 399.0839* 399.0767 393.0611 399.0341
R3(12) 11.5 423.5195* 423.5195* 423 .5195* 423.5195* 423.5251+ 423.5327 423.5459* 423 .5684
RS23(12) 11.5 423.3000* 423 .3000* 423.3058 423.3229
P3(12) 1.5 398 .8174* 398 .8174* 398 .8174+* 398.8174+ 398 .8225* 398.8304* 398 .8426* 398 .8652*
PQ23(12) 141.5 398 .6655* 398 .6556 398.6481* 398 .6426* 398.6426" 398.6481 398 .6655*
R4(12) 10.5 426 .3447* 426 .3808* 426 .4240 426 .4699 426 .5209 426 .5761 426.6354 426 .6989*
Pa(12) 10.5 401 .6059 401 .6428 401.6840 401.7298 401.7809 401 .8358 401.8955 401.9594
=13 R1(13) 14.5 17425.1974 17425.1535 17425.1058 17425.0539 17424 .9983 17424.9392 17424 .8757* 17424 .8090
P1(13) 14.5 398 .6036 398.5600 398.5124 3398.4607 398.4051 398.3457 398.2823 398.2145
R2(13) 13.5 423.1612* 423.1525 423 .1373* 423.1169* 423.0875 423.0077
RQ32(13) 13.5 423.3980 423.3915* 423.3793 423.3559*
P2(13) 13.5 396 .5417 396.5375* 396.5316* 396.5205 396 .5061 396.4879* 396 .4576* 396.3771*
P0O32(13) 13.5 396.7235* 396.7235¢* 396.7178"* 396 .7039 396.6798
R3(13) 12.5 423 1717 423.1849 423.2075
RS23(13) 12.5 422 .9492¥ 422.9187 422 .9236 422.9390
P3(13) 12.5 396 .4995+ 396 .4922* 396.4922* 396 .4941+* 396.4935 396 .5108 396.5313*
PQ23(13) 12.5 396.3220 396.3088* 396.2992+* 396 .2915* 396 .2890* 396.2937* 396.3088*
R4(13) 11.5 426.0492 426 .0900 426 .1317 426.1794 426.2302 426.2851 426 .3447* 426 .4079*
P4(13) 11.5 3938.3410 399.3792 399.4217 399.4687 399.5199 399.5750 399.6345 399.6982
=14 R1(14) 15.5 17424.6399 17424 .5947 17424.5470 17424.4950 17424 .4397 17424 .3809 17424.3177 17424 .2517
P1(14) 15.5 396.0721 396.0277 395.9798 395.9282 395.8717 395.8127 395.7498 395.6832
R2(14) 14.5 422 .6502* 422 .6502* 422.6473 422.6401 422 .6294 422.6130 422.4420 422.4831
RQ32(14) 14.5 422 .8875 422 .9006* 422 .9055* 422.9081 422 .9055* 422.8961 422 .7309
P2(14) 14.5 394 .0504* 394 .0504* 394 .0465 394 .0394 394.0282 394.0112 393.8404* 393.8815
P0O32(14) 14.5 394 .2455 394 .2557 394 .2613* 394 .2637* 394 .26 13* 394.2509 394 .0857
R3(14) 13.5 422.7179 422.7089 422.7034 422.6999* 422 .6999* 422 .7034 422 .7130 422 .8765
RS23(14) 13.5 422 .4708 422 .4544 422.4420* 422 .4323 422 .4293* 422.4301 422.5875
P3(14) 13.5 394 .0738 394 0651 394 .0590* 394 .0558* 394 .0558* 394 .0590* 394 .0683 394 .2311
PQ23(14) 13.5 393.8695 393.8527 393.8404* 393.8308* 393 .8268* 393.8279* 393.9859
R4(14) 12.5 425.6465 425 .6861 425 .7305 425.7780 425 .8300 425.8849 425.9436 426 .0052
Pa(14) 12.5 396 .9664 397 .0059 397.0496 397.0964 397.1482 397.2029 397.2622 397.3252
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N=15

TABLE 1 (CONTINUED)

NBRANCH J" Fe=d"-7/2 F=J-5/2 F=J-3/2 F=u-1/2 F=Jy+1/2 F=J+3/2 F=J+5/2 F=u+7/2
R1(15) 16.5 17423.9774 17423.9314* 17423.8819% 17423.8318% 17423.7782v 17423.7178 17423.6552 17423.5300
P1(15) 16.5 393.4373 393.3923 393.3440 393.2926 393.2367 393.1780 393.1154 393.0491
R2(15) 15.5 422 .0307* 422 .0346" 422 .0346* 422 .0307* 421.8254* 421.8254* 421.8317* 421.8553

RQ32(15) 15.5 422.2928 422 .3051+* 422.3145* 422.3201* 422.1221* 422 .1304* 422 .1409*

P2(15) 15.5 391.4571* 391.4613* 391.4613* 391.4571* 391.2517* 391.2517+ 391.2584* 391.2819

PO32(15) 15.5 391.6741 391.6886 391.6979+* 391.7042* 391.5082* 391.5120* 391.5248*

R3(15) 14.5 422 .1572 422 .1409* 422.1304+* 422 .1241 422 .1221* 422 .3201* 422.3145* 422 .3008

RS23(15) 14.5 421 .8808 421.8601 421.8441 421.8317* 422 .0231 422.0108 421.9899
P3(15) 14.5 391.5414 391.5251+* 391.5144 391.5079 391.5062* 391.7042* 391.6979* 391.6835

PQ23(15) 14.5 391.3080 391.2872 391.2710 391.2584° 391.4496 391.4363 391.4140°*
R4(15) 13.5 425.1339 425.1745 425.2190 425.2670 425.3194 425.3746 425.4333 425 .4955
P4a(15) 13.5 394 .4824 394.5229 394.5672 394.6150 394 .6662 394.7214 394 .7802 394 .8423
R1(16) 17.5 17423.2103 17423.1650* 17423 .1161% 17423.0636 17423.0077* 17422.8492 17422 .8875% 17422.8222
Pi1(16) 17.5 390.6994 390.6537 390.6051 390.5520 390.4967 390.4379 390.3760 390.3105
R2(16) 16.5 421.3102 421.3187+* 421.3225 4214.1213 421.1124 421.1089 424 .1114 421.1239

RQ32(16) 16.5 421.5926* 421.6101 421.6234* 421.4321* 421.4312* 421.4334 421.4422
P2(16) 16.5 388.7643 388.7737* 388 .7771* 388.5781 388 .5674 388.5634 388 .5668* 388.5786*

PO32(16) 16.5 389.0035 389.0228 389.0359* 388 .8451* 388.8451* 388 .8B451* 388.8506*

R3(16) 15.5 421.4901 421.4625 421.4472 421.4375* 421.6324* 421.6339" 421.6324* 421.6234*

RS23(16) 15.5 421.1816 421.1567 421.1366 421.3225 421.3168 421.3071 421.2929
P3(i6) 15.5 388.9030 388.8755 388 .8601 388 .8506* 389.0451* 389.0451* 389.0451* 389.0361*

PQ23(16) 15.5 388.6365 388.6111 388.5913 38B.77714* 388.7720* 388 .7630" 388.7478*
R4(16) 14.5 424 .5127 424 .5545* 424 .5994 424 .6482 424 .7000 424.7548 424 .8131 424 B757*
P4a(16) 14.5 391.8910 391.9326 391.9779 392.0258 392 .0776 392. 1327 392.1914 392 .2528
R1(17) 18.5 17422.3389 17422.2928* 17422 .2434 17422 .1916* 17422.1360" 17422 .0772 17422.0158 17421.9509
P1(17) 18.5 387.8556 387 .8094 387.7610 387 .7082 387.6532 387.5944 387.5330 387.4677
R2(17) 17.5 420.4920 420.3419 420.3203 420.3035 420.2914 420.2844 420.2835 420.2900

RQ32(17) 17.5 420.7930 420.6537 420.6415 420.6333 420.6302* 420.6302* 420.6347*

P2(17) 17.5 385.9744 385.8251 385.8034 385.7864 385.7730* 385.7672* 385.7672* 385.7730*

PO32(17) 17.5 386.2348 386.0954 386.0833* 386.0756* 386.0717* 386.0717* 386.0756*

R3(17) 16.5 420.7171 420.6730 420.8177* 420.8332 420.8452" 420.8495* 420.8495* 420.8452*

RS23(17) 16.5 420.3712 420.5050 420.5112+ 420.5128* 420.5112°
P3(17) 16.5 386. 1586 386.1145 386.2584 386.2742 386 .2860* 386.2910* 386.2910* 386.2860*

PQ23(17) 16.5 385.8547 385.9877* 385.9944* 385.9944* 385.9944*

R4(17) 15.5 423.7831* 423.8253 423 .8725* 423.9205* 423.9714 424 .0278 424 .0869* 424 1471
P4(17) 15.5 389. 1906 389.2326 389.2788 389.3274 389.3794 389 .4343 389.4926 389.5539
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TABLE 1 (CONTINUED)
BRANCH J" Fr=d"-7/2 F=J-5/2 F=J-3/2 F=u-1/2 F=J+1/2 F=u+3/2 F=J+5/2 F=J+7/2
N=18 R1(18) 19.5 17421.3628 17421.3158 17421.2668 17421.2143 17421.1590 17421.1008 17421.0382* 17420.9757
P1(18) 19.5 384.9112 384 .8647 384 .8157 384 .7630 384 .7081 384 .6495 384 .5880°* 384.5235
R2(18) 8.5 419.4485 419.4176 419.3941 419.3761 419.3622 419.3525* 419.3508* 419.3508*
RQ32(18) 18.5 419.7711 419.7501 419.7362 419.7263* 419.7209 419.7196
P2(18) 18.5 382.9627 382.9313 382.9081 382.8300 382.8760 382 .8664* 382 .8664* 382 .8664*
p032(18) 18.5 383.2442 383.2230 383.2089 383.1998 383.1937* 383.1937* 383.1937*
R3(18) 17.5 419.8368 419.8957* 419.9218 419.9397 419.9524 419.9611* 419.9611* 419.9611*
RS23(18) 7.5 419.5738 419.5899 419.5987* 419.6014* 419.6014* 419 .5987* 419.5899*
p3(18) 17.5 383.3101 383.3695 383.3952 383.4133 383.4246 383.4346* 383.4346* 383.4346*
PQ23(18) 17.5 383.0879 383. 1041 383.1123* 383.1159* 383.1159* 383.1123¢ 383.1041*
R4a(18) 16.5 422.9454 422 .9889 423.0350 423.0844 423.1373 423.1920 423.2502* 423.3116*
P4(18) 16.5 386.3846 386.4274 386.4739 386.5231 386 .5750 386.6299 386.6885 386.7494
N=19 R1(19) 20.5 17420.2835* 17420.2359 17420.1861 17420.1336 17420.0784 17420.0204 17419.9611* 17419.8957*
P1(19) 20.5 381.8741 381.8273 381.7781 381.7247 381.6702 381.6121 381.5509 381.4869
R2(19) 19.5 418.4159 418.3845 418.3603 418.3412 418.3250 418.3151 418.3083* 418 .3083*
RQ32(19) 19.5 418.7595 418 .7363 418 .7211
P2(19) 19.5 379.9597 379.9278 379.9038 379.8846 379.8697 379.8588 379.8520* 379.8520*
P0O32(19) 19.5 380.2616 380.2397 380.2255 380.2147 380.2086 380.204 1" 380.2041*
R3(19) 18.5 418 .8511 418.8991 418 .9255 418.9442 418.9579 418.9674 418 .9732* 418 .9732*
RS23(19) 18.5 . 418.5566 418.5725 418.5823 418 .5879
P3(19) 18.5 380.3537 380.4022 380.4287 380.4469 380.4613 380.4705 380.4759* 380.4759*
PQ23(19) 8.5 380. 1004 380.1166 380. 1260* 380.1312* 380.1312* 380. 1312+ 380. 1312+
R4(19) 17.5 421.9999% 422.0439 422 .0907 422.1409* 422.1924* 422.2477 422.3051* 422 .3663
P4(19) 17.5 383.4733* 383.5173* 383.5637* 383.6133* 383.6656" 383.7203* 383.7785* 383.8390*
N=20 R1(20) 21.5 17419.0980 17419.0506 17419.0007 17418.9477 17418.8930 17418.8350 17418.7745 17418 .7114*
P1(20) 2t.5 378.7066* 378.6594* 378.6094* 378 .5567* 378.5020* 378.4442* 378.3833* 378.3195*
R2(20) 20.5 417.2740* 417.2433 417.2190 417.1993 4147.1832 417.1710 417.1627 417 .1597
P2(20) 20.5 376.8502 376.8187 376.7945 376.7747 376.7585 376.7467 376.7382 376.7349
P0O32(20) 20.5 377.14723 377.1508 377.1355 377.1246 377.1175* 377.14175* 377.1175*
R3(20) 19.5 417.7591* 417.8001 417.8265 417.8458 417 .8603 417.8708 417.8776 417 .8804
RS23(20) 19.5 417.4531 417.4626
P3(20) 19.5 377.2922 377.3337 377.3598 377.3792 377.3940 377.4047 377.4119 377.4139
PQ23(20) 19.5 377.0124 377.0286 377.0384 377.0453* 377.0453* 377.0453* 377.0453*
R4(20) 18.5 420.9476 420.9920 421.0382+ 421.0891 421.1412 421.1962 421.2538 421.3140
P4(20) 18.5 380.4530 380.4975 380.5446 380.5942 380.6465 380.7018 380.7596 380.8199
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TABLE I (CONTINUED)

BRANCH J" Fr=J"-7/2 F=u-5/2 F=u-3/2 F=u-1/2 F=u+1/2 F=J+3/2 F=u+5/2 F=u+7/2
R1(21) 22.5 17417.8084 17417.7604 17417 .7108 17417.6585 17417 .6027 17417.5452 17417 .4840 17417.4214
P1(21) 22.5 37%.4483 375.4005 375 .3508 375.2980 375.2429 375. 1850 375.1238 375.0609
R2(21) 21.5 416.0261* 415.9954 415 .9707 415.9508 415.9332 415.9209* 415.9117 415 .9060
P2(21) 21.5 373.6304 373.6007 373.5765 373.5561 373.5393 373.5261 373.5170* 373.5117+*
P032(21) 21.5 373.9745* 373.9547* 373.9386*
R3(21) 20.5 416 .5598 416.5967 416.6221 416 .6414 416.6572 416.6687 416 .6766 416.6808
. P3(21) 20.5 374.1254 374.1620 374. 1864 374.2066 374.2217 374 .2333 374.2407 374 .2449
PQ23(21) 20.5 373.8357 373.8445¢*
R4(21) 19.5 419.7864 419.8315 419.8790 119.9288 419.9816 420.0367 420.0941 420.1538
Pa(21) 18.5 377.3269 377.3716 377.4188 377.4689 377.5216 377.5767 377.6343 377.6939
R1(22) 23.5 17416.4131 17416.3655* 17416 .3149 17416.2622 17416.2071 17416.1493 17416.0890 17416.0261*
P1(22) 23.5 372.0866 372.0390 371.9888 371.9363 371.8810 371.8231 371.7627 371.7001
R2(22) 22.5 414 6701 414 .6407 414.6167 414 .5950 414 .5787 414 .5652 414 .5551* 414 .5478
P2(22) 22.5 370.3084 370.2783 370.2540 370.2336 370.2164 370.2028 370. 1921 370.1852
R3(22) 21.5 415.2546* 415.2884 415.3130 415.3323 415 .3480 415.3601 415.3690 415.3747
P3(22) 2%1.5 370.8570 370.8907 370.9158 370.9349 370.9512 370.9633 370.9721 370.9768
R4(22) 20.5 418.5155 418.5611 418 .6093 418.6592 418.7114+ 418.7669 418.8240 418 .8834
P4a(22) 20.5 374 .0930 374.1376 374 . 1864 * 374.2356 374 .2883 374.3432 374.4008 374.4601
R1(23) 24.5 17414.9127 17414.8649 17414 .8148 17414.7617 17414.7067 17414 .6490 17414.5883 17414.5261
P1(23) 24.5 368.6174 368.5700 368.5193 368.4668 368.4112 368.3536 368 .2936 368.2307
R2(23) 23.5 413.2101* 413.1815 413.1576* 413.1364* 413.1193 413.1047 413.0941 413.0858
P2(23) 23.5 366.8756 366.8473 366.8227 366.8021 366 . 7850 366.7702 366.7594 366.7513
R3(23) 22.5 413.8440 413.8744 413.8390 413.9178* 413.9343 413.9471 413.9570 413.9632
P3(23) 22.5 367.4704 367.5018 367.5261 367 .5453 367.5610 367.5736 367.5847 367 .5900
R4(23) 21.5 417 1301 417.1758 417 .2239 417 .2740% 417.3271 417.3822 417.4392 417 .4986
P4(23) 21.5 370.7522 370.8021 370.8500 370.9004 370.9528 371.0078 371.0652 371.1248
R1(24) 25.5 17413.3091 17413.2612 17413.2101% 17413.1576* 17413.1029 17413.0448 17412.9848 17412.922S
P1(24) 25.5 365.0467 364.9974 364.9473 364 .8941 364.8390 364 .7817 364.7214 364 .6597
R2(24) 24.5 411.6444 411.6158 411.5923 411.5718* 411.5529* 411.5395 411.5272 411.5181
P2(24) 24.5 363.3486 363.3211 363.2967 363.2763 363.2590 363.2439 363.2316 363.2233
R3(24) 23.5 412.3285 412 .3578 412.3811 412 .4005 412.4165 412.4300 412 .4401 412.4486
P3(24) 23.5 363.9938 364 .0237 364 .0484 364 .0667 364.0829 364 .0952 364 . 1064 364 . 1131
R4(24) 22.5 415.6102 415.6568 415.7052 415.7557 415.8084 415.8633 415.8209* 415.9793
Pa(24) 22.5 367.2973 367.3437 367.39815 367.4423 367.4948 367.5498 367 .6070 367 .6665
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TABLE 1 (CONTINUED)
BRANCH J" Fr=g"-7/2 F=J-5/2 F=J-3/2 F=u-1/2 F=d+1/2 F=U+3/2 F=J+5/2 F=J+7/2
R1(25) 26.5 17411.6003 17411.5496* 17411.5013 17411.4475*% 17411.3930 17411.3342% 17411.2744 17411 .2135*
P1(25) 26.5 361.3685 361.3203 361.2696 361.2169 361.1617 361.1043 361.0444 360.9832
R2(25) 25.5 409.9726 409 .9457 409.9216 409.9010 409 .8834 409 .8681 409.8563* 409 .8462
P2(25) 25.5 359.7140 359.6871 359.6631 359.6412 359.6241 359.6089 359.5962 359.5868
R3(25) 24.5 410.7053 410.7350 410.7582 410.7770 410.7933 410.8069 410.8168 410.8255
P3(25) 24.5 360.4086 360.4364 360.4601 360.4788 360.4946 360.5083 360.5187 360.5260
R4(25) 23.5 413.7716 413.8183 413.8664 413.9178* 413.9675 414 .0231 414.0790 414 1377
Pa(25) 23.5 363.7398 363.7864 363.8355 363.8855 363.9385 363.9938 364 .0504 364 . 1097
R1(26) 27.5 17409.7867 17409.7376 17409.6870 17409.6334* 17409.5793 17409.5219 17409.4623 17409 .3989*
P1(26) 27.5 357.5880 357.5393 357.4889 357.4363 357 .3808 357.3247 357.2632 357.2025
R2(26) 26.5 408.1940 408 .1678 408.1439 408 .1222 408 .1048 408 .0894 408.0758 408 .0658
P2(26) 26.5 355.9693 355.9432 355.9192 355.8979 355 .8802 355.8654 355.8519 355.84 14
R3(26) 25.5 408..9786 409.0060 409.0278 409.0470* 409.0633 409.0773 409.0887 409.0975
Pa(26) 25.5 356.7132 356.7397 356.7622 356.7818 356 .7974 356.8120 356.8232 356.8310
R4(26) 24.5 412.5748 412.6189 412.6679 412.7181 412.7710 412.8256 412.8823 412.9407
P4(26) 24.5 360.0464 360.0932 360. 1422 360.1916 360.2455 360.3009 360.3567 360.4159
R1(27) 28.5 17407 .8654 17407.8178 17407 .7659 17407 .7129 17407 .6570* 17407.6010 17407 .5417 17407 .4796
P1(27) 28.5 353.7048 353.6554 353.6044 353.5510 353.4960 353.4387 353.3785 353.3181
R2(27) 27.5 406 .3112 406.2847 406.2614 406 .2405 406.2221 406 .2068 406 . 1934 406 . 1826
P2(27) 27.5 352. 1217 352.0955 352.0720 352.0521 352.0333 352.0184 352.0041 351.9934
R3(27) 26.5 407 .1429* 407 .1683 407 . 1904 407 .2097 407 .2261 407 .2399 407 .2529 407 .2611
P3(27) 26.5 352.9143 352.9409 352.9635 352.9824 352.9985 353.0122 353.0246 353.0325
R4(27) 25.5 410.7125 410.7613 410.8086 410.8598 410.9125 410.9671 411.0236 411.0822*
Pa(27) 25.5 356.0296 356.0755% 356.1244% 356.1751% 356.2278; 356.2819} 356.3368% 356.3975%
357.0774 357.1235 357.1718 357.2203 357.2722 357.3251)¢ 357.3808)* 357 .4365)*
R1(28) 29.5 17405.8B412 17405.7925 17405.7418 17405 .6887 17405.6336 17405.5763 17405.5180 17405 .4560
Pi(28) 28.5 349.7179 349.6673 349.6184 349.5651 349.5105 349.4534 349.3943 349.3326
R2(28) 28.5 404 .3237 404 .2968 404 .2743 404 .2538 404 .2345 404 .2193 404 .2050 404 . 1940
P2(28) 28.5 348 .1768 348 . 1511 348.1279 348. 1069 348.0893 348.0727 348.0584 348.0478
R3(28) 27.5 405.2016 405.2276 405.2497 405.2680 405 .2848 405 .2991 405.3113 '405.3216"*
P3(28) 27.5 - 349.0140 349.0402 349.0619 349.0813 349.0974 349 . 1117 349.1235 349.1332
R4(28) 26.5 408.7915 408 .8388* 408 .8880 408 .9392 408 .9922 409.0470* 409. 1033 409.1619
P4(28) 26.5 352.6560 352.7039 352.7523 352.8039 352.8564 352.9114 352.9668 353.0246
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TABLE 1 (CONTINUED)
BRANCH J* Fr=J"-7/2 F=d-5/2 F=J-3/2 F=d-1/2 F=d+1/2 F=J+3/2 F=J+5/2 F=u+7/2
R1(29) 30.5 17403.7129 17403.6637 17403.6126 17403.5595 17403.5050 17403.4471 17403.3888* 17403.3270
P1(29) 30.5 345.6249 345.5754 345.5240 345.4717 345 .4164 345 .3592 345 .3002 345.2397
R2(29) 29.5 402.2290 402 .2034 402 . 1802 402.1599 402 .1420 402 .1259 402.1115 402 .1001
P2(29) 29.5 344 .1137 344.0888 344 .0653 344.0443 344 .0265 344 .0088 343.9958 343.9847
R3(29) 28.5 403 .1559* 403. 1806 403.2021 403.2208 403.2379 403.2526* 403 .2652~* 403.2745
P3(29) 28.5 345 .0052* 345 .0289+* 345 .0510* 345.0705* 345 .0869* 345 . 1011+ 345.1125 34%. 1233
R4(29) 27.5 406.7729 406 .8206 406 .8698 406.9213 406.9743 407 .0301 407 .0850 407 .1429*
P4(29) 27.5 348 .6240 348 .6707 348.7200 348.7715 348.8234 348.8790 348.9348 348.9929
R1(30) 31.5 17401.4781 17401.4296 17401.3777 17401.3240 17401.2694 17401.2133* 17401.1535 17401.0926
P1(30) 31.5 341.4290 341.3784 341.3275 341.2746 341.2198+* 341.1630 341.1043 341.0430"
R2(30) 30.5 400.0305 400.0048 399.9825 399.9614 399.9432 399.9268 399.9129 399.9011
P2(30) 30.5 339.9561 339.9308 339.9074 339.8869 339.8687 339.8522 339.8382 339.8263
R3(30) 29.5 401 .0027 401.0274%* 401.0481* 401.0630* 401 .0825* 401.0976 401.1108 401.1213
P3(30) 29.5 340.8908 340.9153 340.9360 340.9555 340.9717 340.9856 340.9991 341.0087
R4(30) 28.5 404 .6556 404 .7029 404 .7523 404 .8040 404 .8570 404.9113 404 .9683 405.0259
P4(30) 28.5 344 .5278 344 .5751 344 6252 344 .6753 344 .7291 344.7839 344 .8401 344 .8988
R1(31) 32.5 17399.1419 17399.0922 17399.0407 17398.9876 17398.9329+ 17398.8760 17398.8180* 17398.7564
P1(31) 32.5 337 .1277 337.0787 337.0272 336.9743 336.9197 336.8630 336.8029 336.7424
R2(31) 31.5 397.7282 397.7029 397 .6802 397.6598 397.6416 397.6249 397.6106 397.5985
P2(31) 31.5 335 .6900 335.6655 335.6424 335.6214 335.6034 335.5869 335.5719 335.5595
R3(31) 30.5 398 .7457 398.7714* 398.7905 398 .8101* 398.8253* 398.8401* 398.8533 398.8652*
P3(31) 30.5 336.6717 336.6967 336.7176 33G.7347 336.7519 336.7668 336.7796 336.7899
R4(31) 29.5 402.4313 402.4791 402 .5290 402 .5801 402.6340 402 .6876 402.7440 402.8017
Pa(31) 29.5 340.3376 340.3844 340.4346 340.4861 340.5395 340.5945 340.6499 340.7087
R1(32) 33.5 17396.7000% 17396.6500 17396.5992 17396.5453* 17396 .4879% 17396.4334 17396 .3765* 17396.3140*
R2(32) 32.5 395.3172 395.2915 395 .2689 395.2488 395.2300 395.2136 395.1984 395. 1856
R3(32) 31.5 396.3814+* 396.4037 396 .4246 396.4442 396.4611* 396.4763* 396 .4879* 396.4995
R4(32) 30.5 400.1058 400. 1537 400.2033 400.2546 400 .3080 400.3630 400.4192 400.4771
P4(32) 230.5 336.0468 336.0944 336. 1466 336. 1955 336.2494 336.3046 336.3605 336.4186
R1(33) 34.5 17394.1558 17394.1064 17394.0570 17394.0020 17393 .9468 17393.88399 17393.8278 17393.7712
P1(33) 34.5 328.2193 328.1706 328.1188 328.0660 328.0101 327.9533 327.8947 327.8338
R2(33) 33.5 392.8034 392.7786 392.7560 392.7352 392.7169 392.6994 392.6848 392.6720
P2(33) 33.5 326.8487 326.8245 326.8019 326.7813 326.7628 326.7462 326.7311 326.7193
R3(33) 32.5 393.9114 393.9343 393.9553 393.9740 393.9907 394 .0056 394 .0190 394 .0303*
P3(33) 32.5 327.9225 327.9461 327.9665 327.9857 328.0012 328.0167 328.0298, 328.0414
R4(33) 31.5 397 .6763 397.7242 397.7739 397 .8249 397.8779 397.9326 397.9885 398.0466
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TABLE I (CONTINUED)
BRANCH J" Fr=d"-7/2 F=J-5/2 F=J-3/2 F=d-1/2 F=u+1/2 F=u+3/2 F=J+5/2 F=J+7/2
R1(34) 35.5 17391.5145* 17391.4678* 17391.4167+ 17391.3651 173914 .3107 17391.2544 17391.1870 17391.1373
P1(34) 35.5 323.6086 323.5598 323.5072 323.4522¢ 323.3998 323.3428 323.2840 323.2235
R2(34) 34.5 390. 1826 390. 1584 390. 1358 390. t145* 390.0962 390.0795 390.0641 390.05 11
P2(34) 234.5 322.2716 322.2475 322.2252 322.2044 322. 1866 322.1694 322. 1547 322.1412
R3(34) 33.5 391.3347 391.3574 391.3781 391.3967 391.4140 391.4286 391.4419 391.4537
p3(34) 33.5 323.3887 323.4127 323.4318 323.4522 323.4676 323.4824 323.4961 323.5072
R4(34) 32.5 395.1372 395. 1856 395.2345 395.2862 395.3397 395.394 1 395.4503 395.5081
P4(34) 32.5 327 .1620 327.2106 327.2604 327 .3119 327.3652 327.4199 327.4760 327.5336
R1(35) 36.5 17388.6951 17388 .6471 17388.5970 17388.5449 17388.4914 17388.4361 17388.3793 17388.3202
P1(35) 36.5 318.8962 318.8456* 318.7943* 318.7424 318.6866 318 .6314 318.5723 318.5120
R2(35) 35.5 387.4764 387.4518 387.4288 387 .4074 387.3870 387.3695 387.3535 387.3388
P2(35) 35.5 317.5879 317.5639 317.5410 317.5211 317.5016 317.4851 317.4690 317.4571
R3(35) 34.5 388 .6511 388.6738 388.6951 388.7128 388 .7297 388.7459 388.7583 388.7643*
P3(35) 34.5 318.7509 318.7731 318.7943* 318.8121 318.8290 318.8456* 318.8589 318.8694
R4(35) 33.5 392.4938 392.5423 392 .5924 392 .6441 392.6973 392.7519 392.8075 392.8655
P4(35) 33.5 322.5611 322.6098 322.6605 322.7121 322.7645 322.8193 322.8759 322.9325
R1(36) 37.5 17385.7700) 17385.7333) 17385.6984) 17385 6587) 17385.6131 17385.5654 17385.5116 17385.4568
385.9101) 385.8716) 385.8360) 385.8034)
P1(36) 37.5 314.1003 314.0457 313.9988 313.9479 313.8926 313.8370 313.7801 313.7207
R2(36) 136.5 384.6143 384 .5880 384.5679 384.5476 384 .5286 384 .5116 384 .4966 384 .4825
P2(36) 36.5 312.8120 312.7874 312.7647 312.7453 312.7271 312.7109 312.6943 312.6808
R3(36) 35.5 385.8616 385.8840 385.9040 385.9226 385.9395 385.9547 385.9687 385.9803
P3(36) 35.5 314.0165 314.0376 314 .0505 314.0778 314 .0941 314.1088 314.1225 314 . 1350
R4(36) 34.5 389.7428 389.7914 389.8419 389.8933 389.9462 390.0008 390.0572 390. 1145
P4(36) 34.5 317.8555* 317.9042* 317.9539+* 318.0065* 318 .0594* 318. 1140+ 318.1709* 318.2275*
R1(37) 238.5 17382.9005 17382.8523* 17382.7993 17382.7461 17382.6814 17382.6349 17382.5766 17382.5167
P1(37) 38.5 309. 1084 309.0605 309.0095 308.9571 308.9046 308.8491 308.7927 308 .7342
R2(37) 37.5 381.6934 381.6702 381.6476 381.6274 381.6088 381.5917 381.5758 381.5623
P2(37) 237.5 307 .9339* 307.9089 307.8856 307 .8646 307 .8450 307 .8264 307.8100 307.7972
R3(37) 36.5 382.9668 382.9890 383.0093 383.0279 383.0445 383.0601 383.0740 383.0879
P3(37) 236.5 309.1624 309. 1845 309.2034 309.2228 309.2391 309.2547 309.2690 309.2810
R4(37) 35.5 386.8887 386 .9366 386.9871 387.0387 387.0922 387 . 1466 387.2024 387.2598
P4(37) 23%5.5 313.0558 313.1056 313.1552 313.2070 313.2598 313.3151 313.3697 313.4288*
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TABLE I (CONTINUED)

BRANCH J" Fr=g"-7/2 F=4J-5/2 F=4-3/2 F=u-1/2 F=J+1/2 F=J+3/2 F=U+5/2 F=J+7/2
R1(38) 39.5 17379.8342 17379.7841 17379.7323 17379.6785 17379.6241 17379.567! 17379.5087 17379.4491
P1(38) 338.5 304 .0095) 303.9787) 303.9481) 303.9030) 303.8586) 303.8098 303.7575 303.7020
304 .1553) 304 .1168) 304.0800) 304 .0458) 304.0142)

R2(38) 38.5 378.6378 378.6140* 378.5923 378.5719 378.5526* 378.5356 378.5207 378.5059*
P2(38) 38.5 302 .9061 302.8835 302 .8599 302.8397 302.8216 302.8037 302.7895 302.7741
R3(38) 37.5 379.9630* 379.9852 380.0054 380.0239 380.0405 380.0561 380.0701 380.0826
P3(38) 37.5 304 .2041 304.2260 304 .2461 304 .2647 304.2811 304 .2967 304 .3105 304.3233
R4(38) 3G6.5 383.9286 383.9778 384 .0281 384 .0806 384 .1333 384 . 1880 384 .2434 384 .3011
P4(38) 36.5 308.1335 308.1829 308.2344 308.2841 308.3370 308.3920 308.4480 308.5054
R1(39) 40.5 17376.6630 17376.6130 17376.5610 17376.5077 17376.4533 17376.3962 17376.3384 17376.2783
P1(39) 40.5 298.9842 298.9340 298.8820 298.8289 298 .7735 298 .7172 298.6588 298.5996
R2(39) 398.5 375.4894 375.4660 375.4439 375.4234 375.3880* 375.3725 375.3577*
P2(39) 39.5 297 .8052 297.7808 297 .7597 297.7394 297.7206 297.7040 297 .6886 297 .6739
R3(39) 38.5 376.8533 376.8749 376.8943 376.9136 376.9302 376.9452 376.9596 376.9724
P3(39) 38.5 299. 1469 299. 1683 299. 1887 299.2070 299.2241 299.2398 299.2540 299.2660
R4(39) 237.5 380.8613 380.9104 380.9610 381.0125 381.0656 381.1202 381.1758 381.2334
P4(339) 37.5 303. 1179~ 303.1653* 303.2166* 303.2680°* 303.3217* 303.3765* 303.4321* 303.4894*
R1(40) 41.5 17373.3860 17373.3362 17373.2838 17373.2300 17373.1754 17373.1196 17373.0610 17373.0014
P1(40) 41.5 293.7550 293.7053 293.6565 293.5998 293.5456 293.4895 293.4307 293.3713
R2(40) 40.5 372.2370 372.2132 372.1918 372.1706 372.1524 372.1348 372.1134 372.1054
P2(40) 40.5 292.6033 292.5783 292.5572 292.5368 292 .5176 292.5000 292 .4846 292.4716
R3(40) 39.5 373.6518 373.6712 373.6902 373.7074 373.7225 373.7367 373.7496
P3(40) 239.5 293.9824 294 .0026 294.0237 294 .0412 294 .0581 294.0735 294 .0877 294 .0998
R4(40) 38.5 377.6885* 377.7369* 377.7869* 377.8395* 377.8932* 377.9483* 378.0039*

P4(40) 238.5 297 .9912 298.0398 298.0914 298.1428 298. 1961 298.2505 298.3058 298.3638
R1(41) 42.5 17370.0064 17369.9561 17369.9046 17369.8508 17369.7962 17369.7406 17369.6815 17369.6225
P1(41) 42.5 288.4225 288.3720 288.3207 288 .2666 288.2120 288.1553 288.0974 288.0362
R2(41) 41.5 368.8754 368.8523 368.8294 368.8092 368.7898 368.7737 368.7579 368.7435
R3(41) 40.5 370.2947 370.3162 370.3367 370.3548 370.3720 370.3880 370.4027 370.4150
P3(41) 40.5 288.7093 288.7305 288.7504 288 .7689 288.7862 288.8017 288 .8156 288.8283
R4(4t) 39.5 374.4071 374.4601* 374 .5069 374.5585 374.6130 374.6674 374.7226 374.7800
Pa(41) 39.5 292.7646 292.8127 292 .8636 292.9153 292 .9686 293.0240 293.0794 293.1374
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TABLE 1 (CONTINUED)

BRANCH J" Fr=g"-7/2 F=U-5/2 F=J-3/2 F=u-1/2 F=J+1/2 F=U+3/2 F=J+5/2 F=J+7/2
R2(42) 42.5 17365.3637 17365.3429 17365.3243 17365.3067 17365.2915 17365.2772
R3(42) 41.5 366.9103 366.9263* 366.9405*
R4(42) 40.5 17371.0271 17371.0761 371.1248* 371.1781 371.2315 371.2873 371.3423 371.3995
R2(43) 43.5 17361.8357* §7361.8137* 17361.7913* 17361.7699* 17361.7512% 17361.7341* 17361.7173* 17361.7020*
R4(43) 41.5 367.5270* 367.6300* 367.6825* 367.7360*

R4(44) 42.5 17363.8522~ 17363.8988* 17363.9533+ 17364.0137* 17364 .0829*% 17364.1654* 17364 .2492*

R3(45) 44.5 17356.2819* 17356 .2946 17356.3135 17356.3368* 17356.3516 17356.3697 17356 .3860 17356.4005*
R4(45) 43.5 360.2333* 360.2842* 360.3365* 360.3859* 360.4369* 360.4945* 360.5497* 360.6047*
R3(46) 45.5 17352.3349* 17352 .3554* 17352.3746* 17352.3941* 17352.4104* 17352.4266* 17352.4420* 17352 .4566*
R4a(46) 44.5 356.3162* 356.3712* 356.4214+ 356.4712* 356.5224* 356.5745* 356.6271* 356.6818*
R3(47) 46.5 17348.3506* 17348.3727* 17348.3906* 17348 .4097% 17348 .4257* 17348.4426* 17348 .4567% 17348.4712*
R4(47) 45.5 352.5050* 352.5545* 352.6060* 352.6598" 352.7089* 352.7649* 352.8203* 352.8764*
R4(48) 46.5 17348.4856 17348.5354 17348.5862 17348 .6383 17348.6909 17348.7462 17348 .8022 17348.8585
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TABLE 11

5819 A BAND (V"=0)

ROATIONAL LINES ASSIGNED IN THE Q' =4-Q' =4 BANDS OF FEO

(CONTINUED)

J" R Q
4 17180.200 17176.120
5 79.990 75.091 17171.011
6 79.582 73.859 68 .962
7 78.982 72.435 66.710
8 78.184 70.808 64 .261
9 77.201 68.994 61.618
10 76.035 66.989 58.781
11 74 .686 64.798 55.756
12 73.163 62.432 52.545
13 71.472 59.888 49. 156
14 69.598 57 . 161 45 .593
1S 67.579 54.284 41.848
16 65.402 51.243 37 .949
17 63.074 48 .045 33.889
i8 60.591 44 701 29.670
19 57.979 41.196 25.307
20 55.227 37.565 20.783
21 52.373 33.800 16.135
22 49.350 29.926 11.347
23 46 .215 25.881 06.446
24 42.957 21.731 01.397
25 39.560 17.446 17096.228
26 36. 161 13.045 90.936
35.998
35.872
27 32.458 85.511
32.401
28 28.647 80.071
97.912
79.791
29 34,282 74.342
33.530 74.287
24 .630
30 27.118 68.503
26.551
20.309
20.198
18.924
18.424
31 21.284 71.985
20.604 71.356
14 . 160 62.454
13.915

Jn R P
32 17116.479 17062 .915
15.763 62.349
07.427 56.106
55.996
54.719
55.051
33 12.542 55.051
11.271 54.373
10.355 47.928
47.685
34 09.723 48 .223
06.897 47.503
06.504 39.161
04.860
as 06.067 42 261
03.175 40.983
02.461 40.072
00.992
36 17098.961 a7.411
98.114 34.588
96.782 34,194
32.548
37 94 .656 31.747+
93.698 28.842
92.564 28. 131
26.653
a8 90.083 22.603
89.206 21.759
88.219 )
39 85.148 16.272
84.516 15.331
83.566 14.187
40 82.393 09.690
81.173 08.809
79.536 07.824
a1 77.289 02.737*
76.289 02.105
74.416 01.158
42 72.432 16997 .965
71.677 96 .744
68.655 95. 111
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TABLE I1 (CONTINUED)

5583 & BAND (V*=0)

6230 A BAND (V"=2)

J*" R Q P

4 17906 .063 17901.406

5 06.544 00.943

6 06.977 00.437

7 07.278 17899.798 17893.272

8 07.543* 99.138 91.639

9 07.676* 98.310 89.897

10 07.676* 97.408 88.137*
11 07.676* 96G.446* 86.188

12 Q7.543* 84 .203

13 07.358 82.143

14 07.089 79.992

15 06.728 77.748

16 06.285 75.441

17 05.740 73.055*
18 05.150 70.545

19 04.706 68.07%

20 03.827 65.336

21 02.958 62.864

22 02.059 59.946

23 01.071 57 .055

24 00.009 54.098

25 17898.834 51.074

26 97.913 47 . 991

27 96 .446* 44 .795*
28 - 41.624

29 - 38.325

30 92.225 34 .957

31 890.699 31.527

32 89.094 28.022

33 87.395 24 .469

34 85.661 20.838

35 83.746 17.114

36 81.787 13.353

37 79.664 09.405

38 77.623 05.424

39 75.441* -

40 73.197+* 17797 .218

a1 93.009*
42 88.670*

R P
16168 .326
6173.531* 67 .954*

74.032 67.484 16161.879
74.463* 66.991* 60.470
74 .795+* 66.410 58.922
75.079* 65.748 57.348
75.288* 64.010 55.686
75.460* 53.922*
75.460* 52.151
75.460* 50.265
75.460* 48.310
75.288* 46 .309
75.079+* 44.234
74.795¢ 42.082
74.463* 39.872
74.316 P 37.582
73.729 35.242
73.192 33.079 P
72.608 30.484
71.970 27.948
71.264 25.360
70.464 22.717
69.735 20.009
68.874 17.201
67.954* 14 473
66.991* 11.610
65.971 08 .691
64 .897 05.732
63.773 02.701
62.576 16099 .647
61.343 96 .521
59.962 93.329
58.538 P 90. 100
56.969 86.725
55.497 83.292 P
53.922* 79.764"
52.286 76 .307
50.582 72.708
48 .789 69.098
47.052 65.406
44 .077 61.639

-18é-



TABLE II1 ROTATIONAL LINES ASSIGNED IN 2491 R BAND OF 15NO2

K=0 K= K=2
N QR11+QR22 QP114QP22 QR11+QR22 QP 11+4QP22 QR 11+QR22 QQ 11 0022
2 40142 .352 (a) 40125 .275¢* 40125.804+
3 40139.202* (40133.798+) 124.992% 125.392+
4 143.300* 40136.441+ 139.857+* 132 .880* 124,682~ 124.992+
5 (139.857+%) 131.621* 124.429* 124 .682*
6 144 .025* 134 .013* 140.649 130.479+ 123.9514
7 140.280* (129.055*) 123.526 A
8 144 .360* 131.431 141,131+ (127 .869*)
9 140.280* 126 . 164+ 40129.819+
10 144 .360* 128.403 141.456* 124 .992+ 130.029*
11 110.037* 122.864+ 129.819+
12 144 .025 124.992* 141.366* 121.884+ 129.942+
13 139.394+* 119.294 129.363*
14 143,232+ 121.293 141,131+ 118.336 129.639
15 138.422+¢ 115.327 (128.673*%)
16 142.035 117.081* 140.450* 114 .569 129- 146+ '
17 137.079 111.012* 127.6414* gg
18 140.450* 112.630* 139.394+ 110.401* 128.430* N
19 135.336 106.251+ 126.164* 1
20 138.422* 107.733* 138.079 106.096* 127 .463~
21 133.153* 101.324* 124.566*
22 135.978 120.428* 136.346+* 101.324+ 126.164*
23 130.737 095.915+ 122.376
24 133.135* 096.610* 134.161* 096.128* 124.682*
25 127 .869* 090. 145 199.914
26 129.774+ 090.466* 131.696% 090.743* 122.864*
27 124.566* 083.891¢ 117.081+*
28 126.164* 083.891 128.754+* 084 .878% 120.999*
29 120.999+* 077.372* 113.901+*
30 121.976 076.861 125.275* (076.861%) 118.600
31 117.081* 070.521+* 110.401*
32 117 .471 069.474+ 121.378 071.702% 115.931
33 112.630* 063.217¢ 106 .410*
34 122.630* 061.624~ 117.081* 064 .458+¢ 112.894+
35 107.733* 055.460* 102.025
36 107 .513* 112.211+# 056.733* 109.357+*
37 102.608+ (047 .583%) 097.279*
38 101.851 106.915* 048 .529+ 105.614+
39 097.083* 039.021 092.179*
40 095.915+ 100.992+* 039.857+* 101.324+
41 0381.035* 030.114+¢ 086.597*
42 0B9.466* 094.723 030.673* 074.219*
43 0B84 .878* 020.993+
44 088.045

(a) 40135.000 (F2) 40134.790 (F1)
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TABLE III (CONTINUED)
K=2 K=3
QP11 QP22 QR11 QR22 Qo111 0022 0Pt QP22
40106 . 600* 40107 .513*
106.410*

40120.619 40120.999~* 106.096* 106 .600* 40102.159* 40102 .781*
119.294+* 119.621* 105.614+ 106 .096* 100.992* 101.660*
118. 117 118.336* 105.614" 099.745+* 100.319+*

116.777* s 098 . 400 098.762
115.327* 097.083* 097.279*
113.901* 40111.937* 095.433* 095.915*
112.211+ (40111.547+) 111.868¢ 093.879 094.173
110.585* 092.179* 092.454
108,733+ 111.216* 111.547% 090.466* 090.743*
107 .208* 191.012* 111.216+¢ 088 .680 088 .881
104 .988* 110.585~ 110.800* 086 .697* 086 .884*
103.495 110.243* 110.410* 084.878 084 .878*
(100.992*) 109 .600* 109.771 082.858* 082.858*
099.601* 109.176* 109.357* 080.777* 080.777*
096.465* 108.381* 108 .540* (078.653%)
095.433* 107 .733* 107 .978+* 076.326*
091.714 (106.727*) 106.915¢* (073.646*)
090.996* 106 .251+* 106.410" 071.620*
086.597* 104 .988* 105.026 068.933*
086.422* 104 .585 066.709*
081.188* 102.781* 063.635*
081.489* 102.428* 061.509+*
075.340 (100.319*) 058. 165
076.326* (100.319%) 056 .084
069.145+ 097.578+* 052.262*
070.986* (097.727%) 050.478+*
062.636 094 471 046 .064*
065.063* 095.123* 044 .589*
055.675* 090.996+* 039.597*
059.070 092.316* 038 .627*
(048.520%) 087 .162* 032.810~
052.556+* (089.431*) 032 .496*
040.745* 083.091¢ 025.654
045.794+ 086. 141~ 026.080
032.600* (078 .653*)
038.309* 082.652* 019.504
024.180 073 .646 010.282
030.553* 079.011* (012.480)
015.342* 068.396¢* 002 .060*
022.553* 075.005* 005 .490*
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TABLE III (CONTINUED)

K=4 K=5
QR11 QR22 QQ11 0Q22 QP11 QP22 QR QR22
40080.777* 40082 . 103+
080.641* 081.489¢+
080.224*
079.639* (080 .443%) 40074 .216 40075.017*
079.639* 072 .900 073.665*
078.998 071.645* 072.100*
40086 . 141+ 40086 .697* 069,984 070.514* (40053.769*) 40054 .347*
(086.141%) 086 .597* 068.392 068.933* 053.577* (054.347%)
085.911+* 086.422* 066.709* 067.209 053.488+ 054 .105*
085.791 (086.141%) 065.071* 065.4 11 053.204* 053.879*
085.439* 085.791* (063.236*) (063.643*) 052.929* 053.483*
(085.110*) 085 .439* 061.280" 061.607* 052.572* (053.100%)
084 .668* (085.110*) 059.284 059.626 052.044* 052.573*
084.049* 084 .426 057.201 057 .568 051.539 052.044*
083.522 083.891* 055. 111 055.427* 050.910* 051.450*
082.858* 083.091* . 052.912* 053.146* 050.275* 050.625*
082.103 082.378 050.621* 050.903 049 .508* 049.907
081.188* 081.489* 048.239* 048 .545* (048 .552*) 049.037*
080.443* 080.641* 045,785+ 046 .087 047.733+ 048. 169"
079.415 079.639 043.341* 043 .556 046 .765* 047 .120
(078.352*) (078.651*) 040.760* 040.945 045.775* (046 .064*)
077.372* 077 .421+* 038.090 038.308* 044 .600* 044 .843*
(076.326%) 076.326* 035.398 035.562 043 .357 043.558*
074.848+* 075.005* 032.618* 032.711* 042 .052 042 .355
073.646* 073.930* 029.756* 029.913 040.767* 040.947*
072.096* 072.096* 026.778* 026.964* 039.277* (039.575*)
(070.868*) 070.867* 023.816* 023.994* 037.741 (038.091*)
069.041* 069.145* 020.656* 020.816* 036.151 036.353
067.732 067 .989+* 017.619* 017 .168 034.470 034.747
065.675 065.798* . 014 .234* (014.402*) 032.718* 032.923*
(064 .458*) 064 .458+* (011.093*) 011.288* 030.947* 037.162*
(062.013*) 062.215 007 .572* 007 .716* 029.004 029.304*
060.696 060.886 004 .466 004 .588 027 . 114+ 027.278*
058 . 165* 39997 .485* 39997 .637* 023.047*
993.206 993.360* 020.827* 020.941*
053.908+ (990.450*) 018.490" 018.764*
052.916* 985 .64 1 016.101 016.301
(049.503%) 982 .935* 013.921*
048.714* 977.739 011.250*
(044 .611*) 975 .337
(044 .404*) 969.587*
039.310* 967.676*
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TABLE II1 (CONTINUED)
K=5 K=6
Q11 Q022 QP11 QP22 QR11 QR22 Q011 0Q22
40049 .498"

40047 .583* 048 .927+* 40042 .962 40044 .394* 40008 .137* 40010.061*
047 . 119* 048 .242* 041.861" 042 .962 007 .802* 009.252*
046 .589* 047 .583* 040.469* 041.436 007 .280* 008 .594*
046 .064* 046 .760* 038 .993* 039.849* 006 .614* 007 .718*

(046 .064*) 037 .541 038.310 40014 .237* 40015.344* 005 .344+* 006 .977*
045 .134* 035.927 036.625 014 .237* 015.344* 005 .045* 006 .041*
034 .256 034 .946 014.237* 015.042 055 .045*
032.533* 033.132 013.910* 014.722
030.670* 031.242 013.594+ 014.370*
028.761 029.303 013.214* 013.911
026.780* 027.278 012.709* (013.594+%)
024.712 025.200 012.188* 012.850
022.550* 023.037 011.492+* 012.187*
020.365 020.818* 010.841+* 011.492* '
018 .009 018 .479* 010.062* 010.704 ¢ N
015.653 016.089 009 .252* 009 .806 gz
013.212* 013.584°* 008 .411* 008 .841 1
010.704%* 0t1.095 007 .300* 007 .719*
008 .143* o008 . 411¢ 006.227* 006 .619
005.475* 005.79) 005.049 005 .477*
002 .664 002 .946* 003.799 004 . 135
39999.907* 000 . 148 002 .503* 002.917*
997 .035 39999.258 000.992+* 001.465
994 .013* (994.337¥) 39999.628* 39999.908*
990.972* 991.249* 998.078* 998 .377
987 .816 988 . 106" 996 .526¢ 996.789
984 .542* 984 .892 994 .687 995.015
981.330 981.573* 992.942°* 993.208*
977.963 978.224 990.990* (991.249%)
974 .528 974.782 ({989.052+) 983.413*
971.107* 971.245* 987 .083 987 .414+*
(967 .486*) 967 .665"* 985.097 985.339*
963 .885* 964 .024* 982 .941¢ 983.147*
960.073* 980.616 980.949*
(956.280%) 956 .585 978.224* 978 .558*
952 .389* 952 .675* 975.899* 976.232*
948 .504* 948 .798* 973.493 973.790*
944 .538* 970.887* (971.222*)
936 .308* (940.763*) 968.272" 968 .618+*
932 .294~ 965 .596+ (965.956*)



N
7
8

9
10
11
12

13
14
15
16
17
18

TABLE 111 (CONTINUED)
K=6 K=7
QP11 QP22 QR11 OR22 Qa1 nN22 QP11 0P22
(40002.057) 40004 . 055+ 39961.699
000.994+* 002.508 961.152*

39999.630* 000.996+* 39968 .287* 39969 .911* 39962 .228¢* (39962.665*) 39955.374*
998.080* 39999.353 (968.176*) 969.773* 959.831 961.354 952 . 1311 953.764*
996 .528* 997 .644 968 .176¢* 969.590" 960.420* 950.523* 951.987+*
994 .8GG* 995.915 968 .008* 969.306" 958. 105+ 959.473* 948 .813* 950.253
993.210* 934 .018* 967 .860* 969. 116" 957. 152+ 947 .110 948 .491*
991.251+* 992. 190 967 .630* 968.619* 956 .009* 957 .158 945 .261* 946 .481*
989 .421 990.260 967 . 137" 9c8.176* 954.808* 956.009* 943.398 944 .528*
987 .416* 988 . 110 966 .668 967.669* 953.677* 941.407 942.442
985.341+* 986 .070 966 . 153 967 .137* 952 .400* 953.321°* 939.312 940.285
983.148* 983.863 965.592* 966 .410! 951.042* (951.706%) 937 .146 938.129*
980 .951* 981 .577+ 964 .804+* 965.592* 949.503 950.268¢ 934.936* 935.782
978 .560 979.257 964 .023* 964 .804"* 947 .950* 948 .809°* 932.570 933.414
976.237 976 .836 963 . 123" 963 .8B6* 930.209 931.026
973 .791 974 .361 962.226 926.948* 927.751* 928.478
971.231+* 971.789 961.147 961.844 925.180 925.862
968 .618* 969 . 117+ 960.073 960.728"* 922.523 923.211
965.3853* 966.411* 958 .903* 959.467* 919.814 920.434
963.122°* (963.646*) 957 .567 958 . 141 916 .980* 917.606*
960.409* 960.729 956.279 956.776 914.164+* 914.743*
957 .390 957 .818 954 .809* 955.368 911.174+* 911.671*
954 .375 954 .810* 953. 307 953.769 908.102* '908.643*
951.296 951.703 951.702* 952.207 904 .998* 905.635*
948 .148* 948 . 500" 950.044 950.527* 901.789 (902.386)
944 876" 945 .266* (948 .352+*) 948 .817* 898.509 898 .990*
941 .507* 941.913 946 .485* 946 .982+* 895.190 895.614*
938.177* 938 .497* 944 .532* 944.974* 891 .724* 892 .235*
934 .773* 934 .942* 3942 .581 943.012 888.171* 888 .780*
931.153 931.487 940 .554 940.938 884 .580 885 . 150¢
927 .606" (927.8227) 938 .358¢* 938.807 881.021* 881.392
923.912 924 . 181 936 .230* 936.534 877. 121 877 .690*
920.095 920.440* 933.810 934 .2%0 (873.340") 873.763
916.240* 916.519* 931.491* 931.861 869.536* 869.950*
912.355* 912 .525* 928 .996 929.450 (865.460) 865.918
908 .370* 908 .640* 92G.540 926.910 861.481* 861.888*
904 .285* 923.917* 924 191 (857.293*) 857 .752+
900.053* 921.199 921.634

918.461* 918 .847+*
915.587* 916 .007*

887 .213
910.029

-98¢-



TABLE II1 (CONTINUED)

K=8 K=9
QR11 QRrR22 QQ i QQ22 QP11 QP22 QR 11 QR22
39908 .637* 39911 .177*
908 .116* 910.327*

(39915.775*) 39917 .809* 907 .382* 909.426 39899.633* 39901 .792*
915.777+* 917.613* 906 .574 908 .371¢* (898.143*) 900.051*
(915.680*) 917.285 905.638* 907 .382* 886 .395 898. 152
(915.530*) 916.991* 904 .703* 906 .238* 894.720 896 .402* 39856 .807 (39858 .468*)
915.110 916.520* 903.581* (904.973*) 892.907 894 .380 856 .506"* 858.468*
914 .746* 916.012 902 .394* 903 .783 B90.979 892 .239* 856. 130" 857 .755*
914.166* 915.480* 901.203* 902 .394* 888 .945 890.234 855.524* 857 .165*
913.710 (914.750*) 886.872 888.181* 854 .999* 856 .506*
913.073 914.170* (884.714) 885 .881 854,391 (855.699*)
912.347 913.391 882.472 883.570 853.607 854,999+
911.564* 912.527 880. 120 ag1. 162+ 852.927«* 854 .075
910.583* (911.677*%) 877.690 878.725 851.936* 853.036*
909 .656 910.587 875.208 876.170 850.898* 852.014*
908 .645* 909.428* 872.626 873.540 849.730* 850.898*
907 .376* 908.369* 869.948 870.841 848 .727* 849 .730*
906 .241* 907 .042 (867.218) 868.052 847 .360* 848 .437*
904 .980* 905.641* 864 .370 865.214 846 .086* 847 .050*
903 .586* 904 .283 861.473 862.236 844 .596 845.625*
902 . 100* 902.815 858 .502* 859.246 843.126* 844 . 155*
900.535* 901.212* 855.516* 856.133 841.601 842 .446*
898 .991* 893.650* 852.231* 852 .968 839.897* 840 .768*
897.240 897 .898 849.156* 849.620* 838.179* 838.938*
895.433* 896.074 (845.626*) 846 .394 (836.216") 837.153
893.576 894 . 185* (824.431*) (843.8939+) 834 .425* 835.297+*
891.748* 892.243* 838.929¢ 839.499* (832.573*) 833.203
889.587 890.238* 825.298* 835 .931+* 830.372* 831.129
887 .451 ‘888 . 185+ 831.692 832 .346+* 828.263* 828 .968
885.294 885.884* 827 .981 828 .563 826.058* 826.786
882.870* 883.573* 824 .226* 824 .785 823.797* 824 .339*
880.656* 881.166* 820.274¢ 820.782 (821.207*) 821.907
878.279 878.728* B816.338¢* 816.838"* 818.759¢* 819 .503*
875.749 876.181* 812.287* 812.916* 816.347* 816.836*
(873.081) (873.549*) (813.624*)

804 .034 804 524
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TABLE II1 (CONTINUED)
K=9
Qo1 0022 QP11 QP22
39849.434 39852.236%
848 .727 851.251 39841.011* 39843 .711¢
(848 .049*) 850.256 839.487* 841.841
847.050* 849 .162* 837.908* 940.030*
846 .086 848.049* 836.071* 838.179*
844 .956* B46.863 834,335+ 836.216*
843.828* 845 .625* 832.330* 834. 122+
844 .155 830.358* 832.017
841.281* 827.263 829.849
839.837* 841.281* 826.039 827.549
823.794 825.184
836.745 821.450 822.772
835.098* 818.999 820.284
(816.357*) 817 .685
813.834 ° 815.027
811.166 812.274
808.417 809.470
805.573 806 .605
802.628 803.615
799.674 800.585
796.518 797.428
793.366 794 . 188
(789.925) 790.988
786.722 787.526
783.367* 784.139
779.807+ 780.503
776.219 776.966

SRO SR
F1+F2 F1+F2
ASYMME TRY
INDUCED

40158 .837+ 40167.552+
158.357 166.174
157 .768 164 .740
157 .045 162.971*
156.279+ 161.020
155.211 158.837+%
154 . 156 156.279*
152.727 153.706
151.229 150.834
149.580 147 .680*
147.685*

145,550

-88¢2-



TABLE IV ASSIGNED ROTATIONAL LINES OF THE A4l - X 4L~ (0.0) BAND OF VO
N Pt Qi R P2 Q2 R2 P3 Q3
8 9463 .781+
9 9464 .329 '
10 9464 .857
11
12 9465.522*
13 9475.676*
14 9445 .053 9476 .479* 9499.634*
15 9443 .808 9477 .192* 9459.359 9498 .535)
98.348)
16 9442 .432* 9465.573* 9477 .857* 9457 .662 9479.218 9497 .349)
: 97.147)
17 9441.077 9465.484+ 9478 .474* 9455.897 9478.572* 9496. 124
18 9439.591 9464 .989* 9478 .989* 9454.010 9477 .857* 9494 .847
19 9438 .053 9464 .642 9479 .453* 9452 .210* 9477 .042 9493 .540
20 9436 .339+* 9464 .051 9479.817+* 9450.217* 9476 . 164 9492.169
21 9434 .673 9463 .383* 9480 .116* 9448 .210* 9475. 195 9490.751
22 9432 .8B46* 9462 .702¢ 9480 .343* 9446 . 150* 9474 . 189 9489 .272*
23 9430.936* 9461.873* 9480.501 9444 . 080 9473.09% 9487.782*
24 9428 .994+ 9460.968* 9480.626* 9441.903 9471.922 9493.023 9462 .440 9486 . 195*
25 9426.963 9460.014+ 9480.626* 9439.537+ 9470.674 9492 .829 9459.841 9484 .581
26 9424 .883* 9459.029+ 9480.572* 9437.343 9469 .360 9492 .616 9457 .208 9482.915
27 9422 .725+ 9457 .860* 9480 .343+ 9434.997+ 9467 .977 9492 .253 9454 .513 9481. 180
28 9420.476* 9456 .680* 9480.116+* 9432.560 9466.521 9491 .868* 9451.765 9479.411
29 9418.133 9455 .394+ 9473 .817* 9430.044 9464 .989 9491.414 9448 .978* 9477.573
30 9415.714 9454.010 9479.453* 9427.502 9463.383* 9490.920% 9446 .052* 9475.676
31 9413.245 9452 .588 9478.989* 9424 .883* 9461.723 9490.334* 9443.213 9473.750
32 9410.705* 9451 .04 1 9478.474+* 9422.199 9460.014+% 9489.693 9440.251 9471.748+*
33 9408.076 9449.435 9477 .857* 9419.535* 9458.218 9488 .950* 9437.235 9469.707
34 9405 .384 9447 .786 9477.192+ 9416.649 9456 . 360 9488 .220 9434 .157 9467 .606
35 9402 .600* 9446 .052+* 9476.479* 9413.713 9454 .426 9487 .380* 9431.023 9465 .448¢
36 9399.787 9444 .214 9475.676* 9410.834 9452 .434+ 9486 .472+ 9427 .851 9463.238*
37 9396 .867 9442.319 9474.779 9407 .808 9450.382 9485 .578 9424 .644+* 9460 .968*
38 9393.899 9440.36G1 9473.838 9404.777 9448 .237 9484 .483* 9421.311 9458.634
39 9390.879+ 9438.324 9472 .819 9401.649 9446 .052+ 9483.415* 9417.932 9456 .247
40 9387.752 9436.218 9471.748 9398.462 9443 .808 9482.232 9414 .516* 9453.812
41 9384 .577 9434 .042 9470.590 9395. 189 9441 .491 9481.006 9411.067* 9451.317+*
42 9381.333 9431.796 9469.360* 9391.881 9439.113 9479.723 9407.538 9448.764
43 9378.035* 9429.482 9468.058 9388.488 9436 .667 9478 .358 9403.951* 9446. 150*
44 9374.641 9427 .096 9466.708 9385 .048 9434 . 157 9476.932* 9400.301 9443.492
45 9371.193 9424 .644 9465.275 9381.535* 9431.588 9475 .503 9396.600 9440.773
46 9367.675 9422.120 9463.78 1 9377.964* 9428.948 9473.898* 9392 .844 9437.992
47 9364.110 9419.535 9462.220 9374.325 9426 .253 9472.292+ 9389.018 9435. 145
48 9360.455¢ 9416.869* 9460.587* 9370.603 9423 .490* 9470.590+* 9385 . 143 9432 .255
49 9356.743 9414.154 9458 .895 9366 .856 9420.660 9468 .870* 9381.213 9429303
50 9352 .965 9411.366 9457.132 9363.009 9417.755 9467 .046 9377.203 9426 .295

-68¢-



TABLE 1V (CONTINUED)

N P1 02} R P2 Q2 R2 P3 Q3

© 51 9349 .124 9408 .512 9455.313 9359 . 144 9414 .818 9465.175 9373.172 9423 .236
52 9345 .218 9405 .596 9453.403 8355.179 9411.812 9463.238* 9369.059 9420. 106
53 9341 .248 9402 .600* 9451 .458 9351 . 164 9408.719 9461.240 9364 .889 9416 .869*
54 9337.209 9399.548 9449 .435" 9347 .089 9405 .596* 9459. 180 9360 .665 9413.659
55 9333.103 9396.427 9447 .330* 9342 .949 9402 .396 9457 .047 9356 .385 9410.379
56 9328.940 9393.239 9445 . 170 9338.733¢ 9399. 145 9454 .856 9352.043 9407 .024
57 9324 .708 3389.992 9442 .940 9334 .482 9395.812 9152 .588* 9347 .637 9403 .604
58 9320.412 9386.677 9440.648 9330.137"* 9392 .429 9450.273* 9343 . 180 9400. 126
59 9316.061* 9383.295 9438.321" 9325.763"* 9388 .982 9447 .863" 9338 .663 9396 .600*
60 9311.634 9379.847* 9435 .887"* 9321 .306 9385.467* 9445 .437 9334 .087* 9393.001
61 9307.134 9376 .340 9433.386 9316 .793 9381.901 9442 .940"* 9329.456 9389 .348
62 9302 .600 9372.771 9430 .837 9378.277 9440.361* 9324 .756 9385 .643
63 9297 .979* 9369. 130 9428 .212 9374 .573 9437 .712 9320.012" 9381 .901*
64 9293 .298 9365.424 9425.497 9370.820 9434 .997* 9315. 194+ 9378 .035
65 9288 .569 9361.658 9422.78% 9366 .984 9432 .233* 9310.325" 9374.158
66 9283.764 9357 .811* 9419.979 9363.124 9429 .386 9305.433* 9370.209
67 9278 .906 9353.937 9359. 184 9426 .454* 9300.415* 9366 .201
68 9273.976 9349.976 9355. 178 9423 .490* 9295.368 9362 . 139
69 9268.9380 9345.925 9351.123 9290.247 . 9358.013
70 9263 .925 9341.849 9346 .994 9353.827
71 9258.810 9337.715 9342 .808 9349 .565
72 9333.503 9338 .563 9345.277
73 9329.220* 9334 .248 9340.922
74 9324 .885 9329.879 89336.500
75 9320.490 9325 .454 9332.017
76 9316.024 9320.963
77 9311.484 9316.410
78 9306 .899 9311.793
79 9302.240
80 9297 .529
81 9292 .724
82 9287 .905
83 9282 .998
84 9278.036
85 9273.010
86 9267 .920
87 9262.779
88 9257 .507

-06¢-



TABLE IV (CONTINUED)
N R3 P4 Q4 R4
51 9478.859 9386 .394 9438.425 9491.584
52 9476.779 9382.035 9435.104 9489.272*
53 9474 .642 9377 .667* 9431.705 9486 .908
54 9472.422 9373.172 9428 .260 9484 .483*
55 9470. 167 9368 .694 9424.770 9482 .031
56 9467.836 9364.110* 9421.213 9479.453*
57 9465.448* 9359 .534 9417.620 9476.932*
58 9463 .006 9354 .888 9413.962 9474 .295*
59 9460.511 9350. 189 9410.254 9471.619
60 9457 .860* 9345.365" 9406 .486 9468.870*
61 9455.913* 9340.672* 9402 .664 9466 .090
62 9452 .588* 9335.757 9398.791 9463.238*
63 9449 .857 9330.827 9394 .869 9460.345*
64 9447.071* 9325.819 9390.879* 9457 . 417*
65 9444 ,214* 9320.823 9386 .844 9454 .361*
66 9441.311* 9315.761 9382 .762 9451.291*
67 9378.609 9448.164*
68 9374.407 9444 .980*
69 9370. 143 9441.740*
70 9365.828 9438.442*
71 9361.447 9435.088+*
72 9357 .012 9431.676*
73 9352.527 9428.207*
74 9347 .977
75 9343 .379 9421 117+
76 9338 .733* 9417 .452
77 9334 .000 9413.773*
78 9329.228+*
79 9324 .393 9406 . 190
80 9319.494 9402 .337*
81 9314 .542 9398 . 380
82 9309.530 9394 .382
83 9304 .461 9390.303
84 9299 .336 9386.202
85 9294, 143 9382 .035*
86 9288.901 9377.794
87 9283.597
88 9278.224
89 9272.797
90 9267.312
g1 9261.786

RN MDA = b o oes ot o b = e
Awwaowmqmmuuw-—owmqmwa

PQ13 SR32

9448 .699

9448 .303

9447 .863*

9447 .330*

9446.731

9445 .276

9444 .427

9443.497*
9531.011
9531.956
9532 .856
9533.688
9534 .481
9535.213
9535.880*
9536 .525
9537. 105
9537 .649*
9538. 104

-l6¢-



TABLE IV (CONTINUED)

N R3 P4 04 R4 QP43 RQ43 SR43

4 9552 .881
5 9553 .306
6 9546.923+* 9553 .904
7 9546.320* 9554 .335
8 9545.672* 9554 . 829*
9 9545 .003* 9555 . 197+
10 9544 .291* 9555 .563*
11 9532.315 9543.567 9555.897
12 9530.485* 9542 .B05 9556 .205
13 9528.632 9542.020 9556.476
14 9526 .736 9541. 188+ 9556.712*
15 9525.020) 9540.533) 9556 .930)

24 .806)* 40.311)* 57.183)

16 9515.097 9539.649 9557.314
17 9514.934 9521.083 9538.740 9557 .465
18 9514 .842 9519.094 9537.793 9557.583*
19 9514 .596 9517.073* 9536 .841 9557 .705*
20 9514 .365 9535 .880 9557 .795+%
21 9514.067 9512.963* 9534 .857 9557.823*
22 9513.716 9510.867 9533.818 9557 .823*
23 9513.335 9508 .74 1 9532.750 9567 .823*
24 9512.830 9506.581 9531.644 9557 .795*
25 9512.313 9504 .387 9530 .485* 9557.705*
26 9511.738 9502.169+* 9529.314 9557 .583+*
27 9511, 148* 9499 .901 9528 . 121 9557.428
28 9510.446 9497.616* 9526 .880 9557 .231
29 9509.703 9525.597 9556 .997
30 9508.911 9467 .217* 9524 .274 9556 .712*
31 9508.062 9463.781* 9522 .908 9556 . 404
32 9507.159 9460.348+ 9521.514 9556 .057
33 9506 . 199 9456 .809* 9520.077
34 9505.178 9453 .282+ 9518.593
35 9504 . 100 9449 .685 9521.901* 9517.073*
36 9502 .964 9446 .052 9520.250* 9515.501*

37 9501.772 9442 .436* 9480.116* 9518 .718* 9513.899+*
38 9500.521 9438.691 9477 .400* 9517.073* 9512.223+*

39 9499.205 9434 .928* 9474.642 9515.406* 9510.534+
40 9497.835 9431.146 9471.922 9513.716*
41 9496 .408 9427 .349 9469 . 112 9511.923*
42 9494 .918 9423.490% 9466.306 9510. 126*
43 9493.376 9419.535* 9463.383* 9508.293*
44 9491.777 9415.536 9460.445* 9506.331
45 9490. 103 9411.499 9457 .464* 9504 .387¥
46 9488.378 9407 .446 9454 .426" 9502.375*
47 9486 .591 9403.330 9451.317+* 9500.323

48 9484 .752 9399. 199 9448 . 172 9498.213

49 9482 .838 9395.007 9444 .985 9496 .028*

50 9480.877 9390.728 8441 .746 9493 .844*

=262~



TABLE IV (CONTINUED) (0.1) BAND OF VO A-X SYSTEM

N P1 Q1 R1 P2 Q2 Q3 R3 RQ43 SR43

7 8461.506

8 8462 .320 8544 .072* 8553.232

9 8462 .959 8543.503* 8553.720*

10 8463.595 8513.337* 8542.869 8554 . 122

11 8463.987 8513.525 8542.216 8554 .542

12 8464 .292* 8513.756 8541.537 8554 .940*

13 8464 .613* 8513.980* 8540.840 8555.340

14 8464 .803* 8514 .053* 8540.112 8555.639

15 8464 .919+* - 8539.560)* B8555.959)
39.365) 56.162)

16 8464 .919* 8477 .084 8538 .798 8556 .449*

17 8464 .855 8477 .814~* 8514 .250* 8537 .999 8556.724

18 8464 .613 8478 .389* 8537 .192 8556 .993

19 8464 292+ 8479.046* 8514 .053* 8536.370 8557 .238

20 8463.840 8479 .541* 8475.833+ 8513.980* 8535.543 8557 .439*

21 8434 .525* 8463 .421* 8479.963* 8475.026 8490.470* 8513.865 8534 .672 8557 .641

22 8432.863* 8462 .815* 8480.331* 8474.157 8489.268* 8513.712 8533.786 8557 .804*

23 8431.115 8462.084* 8480.658* 8473.223* 8487 .849+* 8513.413 8532 .876 8557 .954+*

24 8429 .321* 8461.374+* 8480.859+ 8472.214 8486 .513* 8513.122 8531.937 8558 .079*

25 8427 .481* 8460.532* 8481.059* 8471.153 8485.040 8512.779 8530.988 8558 . 191+

26 8425.521 8459 .660* 8481.167* 8470.004 8483.568 8512 .406 8529 .946 8558 .245*

27 8423.567 8458.726* 8481 .167* 8468 .819 8482 .041 8511.969 8528.969 8558 .245*

28 8421.507 8457 .703+ 8481.167* 8433.667* 8467 .559 8480.446 8511.447* 8527.933 8558.245*

29 8419.354+* 8456 .629 8481 .059* 8431.333* 8466.220 8478 .824 8510.936* 8526.799 8558 .245*

30 8417.136 8455.449 8480.859* 8429.051 8464 .855 8477.152 8510.384 8525.732 8558 . 191*

a1 8414.913* 8454 . 250 8480.658* 8426 .561* 8463.421¢ 8475.437 8524 . 611* 8558.079*

32 8412 .544 8452 .951* 8480.331* 8424 .102 8461.918+* 8473 .668 8509.075 8523.419 8557 .945*

33 8451 .563 8479 .936* 8421.635 8460.353 8471.847* 8508 .329 8522.211* 8557.724

34 8407 .787 8450. 131 8479 .541* 8419.000 8458.726* 8470.004* 8507 .557 8520.976*

35 8405.228* 8448 .638 8479.046* 8416 .433 8457 .053 8468 .075 8506 .725

36 8402.670* 8447 .049 8478 .540 8413.759* B8455.312 8466. 112 8505 .850

37 8399.992 8445 .450 8477 .896 8410.979 8453.513 8464 .098 8504 .909

38 8397 .276* 8443 .744 8477.229 8408 . 184 8451.675 8462 .034 8503.9165*

39 8394.513 8441.988 8405.313 8449.673 8459.929 8502.894

40 8391.710 8440.163 8475.677 8402 .448* 8447 .776 8457 .779 8501.811

41 8388 .844* 8438.273 8474.812 8399.438 8445.734* 8455.565 8500.665

42 8385 .855 8436.320 8473.879 8396 .420 B443.656 8453.326 8499 .478

43 8382.857 8434 .312 8393.343 8441.510 8451.014 8498 .230

44 8379.777 8432 .241 83380.246* 8439.315 8448 .638* 8496 .933

45 8376 .656 8430.107 8387 .006 8437.062 8446 .261 8495 .604

46 8373.467 8427 .908 8383.782 8434.750 8443.806* 8494 . 171

a7 8370.208* 8425 .658 8380.458 8432.390 8441 .306* 8492.729

48 8366 .915 8423 .336 8377 .098 8429.956 8438.748 8491.237

49 8363.533 8420.961 8373.671 8427 .481 8436. 145 8489.672

50 8418 .516 8424 .948 8433.486 8488 .069

-€6¢-



TABLE 1

V. (CONTINUED)

Q1

Q2

Q3

8416.
8413.
8410.
8408 .
8405.
8402.
8399 .
8396.
8393.
8390.
8387.
8384.
8381.
8378.
8374 .
8371.

033
479
854
184
466
670"
819
900
945
943
855
722+
622
287
797
622

8422 .
8419.
8417.
B414.
8411.
8408 .
8405
8402.
8399
8396
8393.
8390.
8387
8383.
8380.
83717

356 8430.781

694 8428.033*

016 8425 .215
253 8422 .356
454 8419 .444
579

.669

670

.654
.560

442
246+

. 006

782
458

.098+*
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