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ABSTRACT

The near~infrared electronic system of FeO has been recorded in emission at
high resolution with the l-meter FT spectrometer at Kitt Peak National Observatory.
‘The system has been found to consist of two overlapping band systems lying in the
region 7000 ~ 14000 cm:' These share a common lower state and this is the same
lower state as that of the orahge system. This state, which has vibrational constants
(in cm™) we = 880.4148, WeXe = 4.632 15, and WeYe = 5.55x105% has been -
established as the ground state of the molecule by the matrix isolation experiments of
Green, Reedy, and Kay (J Mol. Spectrosc. 1979, 78, 257-266) and has been
identified as a 5Ai state in earlier studies done in this laboratory on the orange
system. The present work has proven this identity, and least~squares data reduction
has yielded the ground state constants: B, = 0518721 cm;' a, = 0.003 825 cm;'
Ve = -48x107 om;' D, = 7210x1077 cm;' B, = L51x10° cm;'

I, = 0161 64 nm, and A = -949 cm:' These were based on cdmbined data from
the infrared and orange systems for the levels v = 0-3, together with six microwave
frequencies obtained by Endo, Saito, and Hirota (A4p. J. 1984, 278, L131-L132). Both
the %A, and 5A, substates are found to show small A-doublings, with that in 54,
being the larger (~0.3 cm™'). In contrast to all the known excited states of FeO,
the ground state is well-behaved, but even this state possesses one small rotational
perturbation. This is observed only in one parity component of the J = 15 level of
the v = 2 level of the X®A, substate and is probably caused by the low-lying ’Z
state predicted by Krauss and Stevens (J. Chem. Phys. 1985, 82, 5584-5596).

The upper level of the infrared system consists of two overlapping states about
10200 cm~! above the ground state and separéted by. only about 213 c¢cm~' at their
v = 0 levels. The upper of these, a 5IIi state, has the approximate values
AG,, = 627 cm™ and A, = 217 cm;' and for the lower *®; state AG,, = 593

cm™' and A, = -47 cm>' These are very rough estimates only, as a result of the
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vast number of rotational perturbations present. Effective rotational constants for the
individual substates have been determined rather than a global set of constants, again
because of the perturbations. Amongst the perturbing states, at least one multiplet Z
state is present and there may be as many as three. Evidence is also presented for

the existence of a 3& state.
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AUTHOR’S PREFACE

The work reported in this thesis was part of an ongoing study into the
electronic spectrum of FeO being conducted in this laboratory and begun prior to the
author’s arrival. Thus, while the present thesis deals with the electronic infrared
system of FeQ, this cannot be considered in isolation from the work on the orémge
system, which formed part of the subject matter of the thesis by Cheung (Ph.D,
The University of British Columbia, 1981). Since the two projects were going on
simultaneously for awhile, and in particular since the orange and infrared systems
involve a common lower state, the two projects were interactive in nature, with
information from one contributing to the analysis of the other and vice versa.

In light of this, although described in the section 4"Other Work Done in This
Laboratory” (Section LB), the author was partly involved with the work in which the
spin-orbit intervals of the ground state were deterrninéd. On the other hand, tables
of rotational lines of the orange system have been inclﬁded in this thesis
(Appendix I), although the author was only slightly involved in their determination.
Justifications for this inclusion are (1) for completeness (since most of the line
positions were not included in the thesis of Cheung) and (2) the fabt that
orange-system data were included in the ground state least-squares fit that forms part

of this thesis.



CHAPTER 1

INTRODUCTION

Iron monoxide, FeO... '. at first glance, a simple molecule: diatomic, consisting
of two commonly occurring elements, relatively easy to obtain by several methods.
Yet FeO possesses an electronic spectrum so complex it has repeatedly defied analysis,
including attempts by a number of notable spectroscopists. .

The present chapter summarizes these early investigations into the spectrum of
FeO and culminates with a description of the recent cracking of the ground state
problem in this lab by Cheung and Merer. The following chapters present a
continuation of the investigation into the electtonic spectrum of FeO, namely the

analysis of the infrared system.



I.LA. Historical Survey

Over the years, the spectrum of FeO has been observed in numerous
laboratories, not always by design. Since the spectrum can be obtained simply by
striking an iron» arc in air, it had probably been observed on a number of occasions
before it was actually identified. Early references to the spectrum of FeO have been
summarized by Kayser (1) and by Eder and Valenta (2).

The most detailed of these early studies was that reported by Domek (3) in
1910. The emission spectrum obtained from an iron arc was found to exhibit a weak
band in the green plus two bands in the yellow and red beginning respectively at
578.974 and 618.066 nm and both degrading towards the red. The latter two "bands”
actually - consisted of a large number of narrower bands and close-lying lines, the
positions of which were tabulated. Comparison with the grating spectra obtained in
this laboratory as part of the present study shows .that individual rotational lines were
resolved but that only the more intense lines were reported. This was considerably
higher resolution work than that of many of the later studies (to be described
shortly). No vibrational or rotational analysis was done, however, since this was prior
to the development of modern quantum mechanical theory and its application to
Spectroscopy. »

Howell and Rochester (4) made prism spectrographic observations of FeO in an
arc flame during the early 1930s but gave no details of the spectrum or its analysis.

Richardson (5) also photographed the specttum of an iron-arc flame and, in
1934, published the band-head positions of six red-degraded bands, together with the
wavelengths of the fourteen strongest lines in the strongest band (head: 578.965 nm),
but was unable to provide an analysis. Comparison with the present grating spectra
shows that two of the fourteen lines (those with >‘air = 582.2182 nm and

582.8916 nm) are absent or very weak in our spectra.



Based upon absorption work with a prism spectrograph, Trivedi (6), in 1935,
reported a continuous region of absorption, with a long wavelength limit of 250 nm.
There is some doubt as to whether FeO was actually present, since the visible bands
were not seen, though this may have been due to the experimental conditions, as
explained by Trivedi.

The emission spectrum of FeQ is also obtained, usually as an impurity, when
CO is burned in air or oxygen if the carbon monoxide has been stored in steel
cylinders. This is due to the formation of a small amount 6f iron pentacarbonyl.
Not surprisingly, the spectrum is also obtained if iron pentacarbonyl is introduced
deliberétely into a flame, And this 'is one of the favorite sources that has been used
over the years. This relationship between FeO, CO, and Fe(CO); has been mentioned
by Gaydon in several publications (7,8,9).

In fact, work on the specttum of FeO formed part of Gaydon’s PhD thesis in
1937 (10). He observed, at low resolution, a number of strong emission bands in the
orange and near—infrared regions. This work was apparently not published, however
(other than as the above-mentioned thesis), until the appearance of the (now
well-known) book by Pearse and Gaydon, The IHentification of Molecular Spectra (11).

Initially unaware of the work done by Gaydon, during the early 1940s Rosen
also studied the spectrum of FeO, again at low resolution, this time by means of
exploding wires as well as with an arc (12,13). During 1940 he studied the yellow
region of the spectrum in collaboration with Delsemme (14) and later, with Malet
(1942) (15), extended the investigation to the blue and photographic infrared. These
investigators found that band systems observed in the orange and blue regions of the
spectrum appeared to have the same lower state vibrational frequency (wo = 875 cm;!
WoXo = 5 cm™')' and thus probably possessed a common lower level, whick they

believed likely to be the ground state. They also observed bands in the near-infrared

Standard spectroscopic notation is used throughout this thesis (16).



region, most of which they classified into a system having a lower state vibrational
frequency of 955 cm;' which does not agree with more recent work (this thesis),
though they did recognize that some of the infrared bands belonged to a series having
the 875 cm™' frequency. They classified the orange bands into two systems, which
they called A and B, with the A system being further subdivided into A; and A,.
The blue system was labelled C and that part of the infrared system having a lower
state frequency of 955 cm;' D. These designations, especially A and B, are still .
frequently referred to today, though another subdivision of the A system, introduced by
Pearse and Gaydon (11), viz. A; and Aj;, is sometimes used.

In 1952, Bass and Benedict (17), although not specifically looking for FeQ, did
in fact record its near-infrared spectrum while doing studies on the combustion of
carbon monoxide containing a small quantity of iron pentacarbonyl. The spectrum was
observed as an intense‘ band system extending from 7000 to 15000 cm:' Although
the resolution was very low, Bass and Benedict were able to analyze the vibrational
structure, and their analysis was basically correct. Their assignments of the bands as
(2,0), (1,0), (0,0), (0,1), and (0,2) were correct for what is shown in the present work
to be the 5I1 - X5A system. They did not, however, realize that there were two
overlapping systems, so some of their sequence band labels were not correct

In a compilation of metallic oxide spectra by Gatterer, Junkes, and
Salpeter (18), Rosen revised much of the existing data on FeO but was still not
satisfied with the proposed analysis of the band systems. He suggested that further
work needed to be done.

During the course of flash photolysis experiments involving explosions of amyl
nitrite, n—heptane, and oxygen mixtures containing ferrocene or iron pentacarbonyl
additives, Callear and Norrish, in 1959-60 (19) observed not only the orange system
(in emission and absorption) and the infrared system (in emission) but also a diffuse

ultraviolet system (in absorption) between 241 and 243 nm. They reported the latter



system as a new feature of FeO, though we point out that there is a slight
possibility that this was the continuous region mentioned previously as having been
reported by Trivedi (6). This diffuse absorption band was seen again (at 241 nm)
about 1966 by Callear and Oldman (20), who speculated that this may be a Rydberg
type of transition and that it probably involves a low-lying state of FeO, but not the
ground state. No further work has been done on this feature, and its true nature
remains undetermined.

In 1962, Bass, Kuebler, and Nelson (21) recorded the FeQ spectrum in
absorption in selected parts of the visible and near UV regions using a flash heating
technique. They observed some of the orange system bands and interpreted their
presence in the absorption spectrum as indicating that their lower state was the ground
state of the molecule, in agreement with Rosen’s earlier interpretation. They did not,
however, detect any absorption due to the blue system. This implied a different lower
state for this system, a different conclusion to that arrived at by Rosen. They also
obtained the diffuse absorption feature of Callear and Norrish at approximately
242 nm.

In 1966, Dhumwad and Narasimham (22) recorded the orange system at higher
resolution than in any of the previous investigations, using an arc at low pressure.
Their analysis showed that the system possessed simple R and P branches with no
A-doubling. An attempt was made to analyze several of the bands in terms of a
'L - 'Z uansition. However, this analysis was refuted by Barrow and Senior (23) |
three years later on the following grounds:

(a) The ground states of Fe and O are respectively *D and 3P. These cannot
give singlet molecular states.
(b) Comparison with other first-row transition metal oxides shows that the

derived ground state internuclear distance is much too large:



VALUES OF r, (um) (from ref. (23))
Sc0 TiO VO Cro MnO FeO
0.1668 01620 0.1589 0.1627 --- 20.197?

Barrow and Senior recorded the orange system using similar experimental
conditions to those of Dhumwad and Narasimham. Their new analysis yielded the
much more reasonable value of Ip = 0.1626 nm. They obtained the ground state
constants (in cm™'): w, = 830.53, weXe = 4.63, B, = 051271, a, = 0.003 76.

Their interpretation was that the lines analyzed probably belonged to the
Q'=0- Q" =0 part of a multiplet Z - Z transition, with the states most likely
being °Z or ’Z.

West and Broida (24), in 1974, studied the visible and infrared systems at
relatively low resolution in chemiluminescent flames. They observed some weak new
bands in the orange region and a "new"? group of weak bands between 500 and
540 nm which they called the "Green System.” Some of the new orange bands were
found to be separated by the ground state vibrational spacing, wg = 880 cm;' and the
green system had upper and lower state vibrational constants the same as those given
by Malet and Rosen for the blue system, although it did not appear to be connected
to this system nor to the orange system when looking at the specttum. They also
did some laser-induced fluorescence and radiative lifeu'nie studies on the orange system
and obtained values of w, = 8758 cm™' and wgx, = 4.6 cm™' for the ground state.
This w, value was in rather poor agreement with the value of Barrow and Senior
(880.53 cm~'), a point which we will return to shortly. Although they determined
some additional spectroscopic constants, they were unable to settle the question of the

natures of the states involved — in particular, was the ground state 5Z, 7Z, or

what? Even 3II- had once been proposed (by Lagerqvist and Huldt (25)).

*Possibly this was the weak green band mentioned previously as having been reported
much earlier by Domek (3).




Shortly after this, Montano, Barrett, and Shanfield (26), while performing
low-temperature Mossbauer studies on iron monomers and dimers in inert gas matrices,
happened to obtain a six-line specttum which they attributed to FeO. They found a
large positive internal magnetic field at the Fe nucleus ((3.52+0.06)x107 A.m™' in an
argon matrix). This was indicative of a high spin multiplicity for the ground
state (27), but unfortunately did not remove the ambiguity as to what this state was
since most of the candidates for ground state were of high multiplicity.

Engelking and Lineberger (27) studied FeO by means of photoelectron
spectrometry of FeO~ in 1976, with mixed success. They obtained a ground state
vibrational frequency of 970+60 cm;' which was in poor agreement with the previously
accepted value of w, = 875-880 cm:' They also observed another state lying
3990+100 cm~' higher. Their interpretation was as follows: The state with a
'vibrational frequency of 970 cm™' was the true ground state (which they therefore
labelled X), and the previously accepted ground state with a vibrational frequency of
~8380 cm~! was the excited state at 3990 cm-' (which they labelled X'). Calling
upon the theoretical predictions by Bagus and Preston (28) and Waich and
Goddard (29), they assigned the X state as a °A state and the X' state as a SZ*
state.

Influenced by Engelking and Lineberger, DeVore and Gallaher (30), in 1978,
attempted to obtain the infrared vibrational spectrum at ~970 cm:' They claimed to
have found this band at 943 cm;' but this author finds the line assignments in their
‘published spectrum unconvincing.

Weltner (31,32) attempted, unsuccessfully, to observe the ground state via ESR
in. a low-temperature matrix. As discussed by Weltner, this negative result was
evidence that the ground state was an orbitally degenerate state, such as Engelking and

Lineberger's 5A state.



Kay, Bartelt, and Byler (33) conducted flash heating-kinetic spectroscopy studies
of gaseous FeO and obtained high~resolution electronic absorption spectra of the orange
B system. Their measured rotational constants and band separations were in good
agreement with the emission valnes of Barrow and Senior. The ease with which these
bands were obtained in absorption in this and the previous absorption studies provided
some supporting evidence for the lower state of these transitions being the ground
state, as had been assumed prior to the work of Engelking and Lineberger.

So we see that as recently as 1978, despite the efforts of many people over
the course of many years, not even the ground state, let alone any of the excited
states, had yet been established. The questions still to be answered for the ground
state  were:

(i) Which of the observed states was the ground state?
and  (ii) What was theA identity of this state?

The choice of candidates had essentially been narrowed down to two: the state seen
as the lower state in a number of studies having a vibrational frequency of

~880 cm-! and labelled as either 5Z or 7Z by Barrow and Senior, versus the state
with a vibrational frequency of ~970 cm~' seen by Engelking and Lineberger and
labelled by them as SA. |

In an effort to clarify the situation, Green, Reedy, and Kay (34), in V1978,
recorded the infrared vibrational spectrum of FeO in an Ar matrix at 14 K. They
obtained values of w, = 880 cm™' and wex, = 3.5 cm?' That the species being
studied was indeed FeO was established beyond a doubt by the identification of peaks
due not only to **Fe'*O but also to the other three isotopomers **Fe'*Q, **Fe!*O, and
$6Fel*Q, with relative absorbances in agreement with the natural abundances of the
isotopes of iron and the known oxygen isotopic composition of the reaction mixture.
Any shift in vibrational frequency due to the matrix would not be expected to exceed

about 1% of the observed value (34) and would probably be much less than this.



No state other than the ground state has ever been shown to be populated in
matrix—isolated molecules near absolute zero (34). Hence this study definitively
established the ground state of FeO as having a vibrational frequency of ~880 cm:’
The conclusion was that the ground state was the lower state of the orange A and B
systems and possibly of the blue, green, and infrared systems also.

(FeO had actually been seen previously (1977) in a low-temperature matrix by
Abramowitz and Acquista (35) during the ‘course of studies on FeO,. They observed
a frequency of 873 cm™' in agreement with the AG, s> value of Green, Reedy, and
Kay. Of the two studies, that of the latter group is considered the definitive study
on the subject due to the isotopic work performed.)

Since there cannot be a state lower than the ground state, the photodetachment
spectrum of Engelking and Lineberger must now be reinterpreted. The discrepancy
between 970 and 880 cm™' leads to some uncertainty as to whether it was actually
the FeO~—FeO system that was seen at all. Assuming that it was, it may have
been an excited electronic state of FeO that was produced by the laser
photodetachment process, as suggested by Green, Reedy, and Kay (34). In this thesis
we will assume that it was the ground state that was observed and attribute the
discrepancy to experimental error or to interpretational error.

One possible cause for this could be that the vibrational peaks (vi? 0’ vi':e O_)
assigned by Engelking and Lineberger as "(1,0)" and "(2,0)" may actually have

contributions - from transitions involving =1 and 2. We point out that the

vl';eO'
energy difference between the peaks labelled as (0,1) and "(2,0)" corresponds very
closély to three FeO vibrational intervals (using the correct ground state interval, rather
than the value of Engelking and Lineberger) and the separation between (0,2) and
"(2,0)" corresponds to four times this interval. Therefore, the peak labelled as "(2,0)"
may actually be a superposition of the transitions (3,1) and (4,2). Similarly the peak

labelled as "(1,0)" may actually be a superposition of (2,1), (3,2), and (1,0). While
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the populations of the FeO; v = 1 and 2 levels appear small from the intensities of
the (0,1) and (0,2) bands, the Franck-Condon factors may favor the sequence bands,
since the FeO~ vibration frequency is smaller than that of FeO.

Another anomaly visible in the spectrum published by Enéelking and Lineberger,
though not commented on by them, is that the peak labelled as "(2,0)" appears to
have extra intensity relative to the other bands in the sequence "(0,0)", "(1.0)",
"(2,0)", and (not labelled) "(3,0)." A Franck-Condon envelope for such a sequence
cannot have any extra bumps in it Here again, the reinterpretation given in the

preceding paragraph could account for this. Yet another explanation will be presented
later in this thesis ‘(Section IV.D)

While the foregoing interpretation is admittedly pure speculation — it could be
tested by redoing the experiment at higher resolution or at a different temperature —
we have dwelt on this because, assuming that it was indeed the ground state of FeO
that was seen, the work of Engelking and Lineberger is important in that it contains
the only observation of the state at ~3990 cm:' Although there is no experimental
evidence as to the nature of this state, it is currently assumed to be a SZ* state on
theoretical grounds (see Section IV.D). We point out, however, that in view of the
uncertainty surrounding the ground state vibrational freduency, the value of 3990 cm™!
could easily be in error by an amount larger than the quoted *100 cm:'

We will have cause to return to the work of Engelking and Lineberger later
in this thesis in connection with a new 7Z* state found during the course of the
present work.

Meanwhile, work on FeO continued in several laboratories around the world.
McDonald (36), in 1979, photographed the orange systems in emission with a
3.4 meter Ebert spectrograph. He confirmed the analysis by Barrow and Senior of the
orange A; bands and rotationally analyzed several other bands all having the same

lower state as the A;; bands but new upper state levels.
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At about this same time, Harris and Barrow (37) also recorded the orange
system on a 3.4 meter Ebert spectrograph (Jarrell-Ash). They extended the analysis of
Barrow and Senior and determined that the bands involved in that earlier study
belonged to a common, but highly perturbed, upper state level. They additionally
analyzed' bands belonging to three other, also highly perturbed, upper state levels. All
the transitions analyzed were parallel ones, and no Q branches were found. The
bands were shown to belong to a lowér state vibrational progression having a
frequency of 880 cm;' thus leading to the conclusion, in view of the work vof Green,
Reedy, and Kay, that the orange system lower state is the ground state. They
obtained the following values for the ground state (in cm™'): we = 880.61,
weX, = 4.643, B, = 051272, a, = 0.003 760.

Harris aﬁd Barrow were able to account for the poor agreement of the West
and Broida vibration frequency value W, = 875.8 cm~'). The latter investigators had
neglected to allow for the effect of the rotational J-dependence on the vibrational
intervals. |

(In 1980, Trkula (38) also started work 6n FeO, as did Lindgren and
Sassenberg (39) in 1981or2. Trkula obtained low-resolution spectra that showed the
orange and blue systems, but did not show the green system, and he started some
laser-induced fluorescence work on the orange system. This study by Trkula was
terminated, however, upon his learning of the state of advancement of the
corresponding studies being conducted in this lab. Lindgren and Sassenberg obtained |
spectra of the 550 - 620~nm region, but these were found to be similar to those
already published by Harris and Barrow and by this lab, so no further analysis was
done.)

Although the matrix-isolation study of Green, Reedy, and Kay had established
which of the observed states was the ground state of FeO, neither this nor the more

recent gas-phase studies were able to characterize the state involved (i.e. identify its
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symmetry or multiplicity). For example, the orange-system bands observed by Harris
and Barrow were all parallel-polarized, with. simple R- and P-branch structure and no
Q lines detected, but such structure would be consistent with any of the most
commonly proposed transitions for these bands: 3Z - 5Z, %A -%3, 7Z -7L,

Several theoreticians have conducted ab initio investigations into the electronic
structure of FeO. One study by Bagus and Preston (28) predicted three low-lying
statés: SZ, 51, and 5A. The study concluded that the ground state is not 3Z*% thus
leaving SII and S5A as possibilities. Walch and Goddard (29) obtained similar results.
Based on the work of these two groups, Engelking and Lineberger (27) gave a state
ordering A, 5Z% SII, ... . Michels (40), on the other hand, predicted that the ground
state is L% His assignments for ihe upper states of the A and B orange systems
were SZ* and SII, respectively, and for the infrared system, SII.

The theoreticians, being unable to come to agreement amongst themselves, were
unable to help in characterizing the ground state. The lack of a low-temperature,
matrix-isolated ESR spectrum would seem to eliminate Z states, but more positive
evidence was really needed to establish the identity. |

Such was the state of affairs when work was begun in this laboratory. This
work will be the subject of the next section and the following chapters; but first,
brief mention will be made of a number of other FeO-related studies.

Various estimates of the dissociation energy of FeO have been made. Gaydon,
in the first edition of his book, Dissociation Energies and Spectra of Diatomic
Molecules (1947) (41a), gave a linear Birge-Sponer (42) extrapolation value of
480 kJemol-!' (5.0 eV) for the ground state:

. 0 _ — R -1
FeO(g) == Fe(y). + Oy AH = D@ = 480 kJ- mol LAL)

with the recommendation that this value be reduced by 20% to 390 kJ-mol™'

(4+1 eV) to take into account the fact that deviations from linearity frequently occur.
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By the third edition of this book (1968) (41(b)), the recommended value had been
revised to 410 kJ-mol~' (4.3+0.5 eV) on the basis of a number of other studies that
had been done by this time.

More recently (1971), Balducci, de Maria, Guido, and Piacente (43) obtained a
value of DP = 406+13 kJ-mol~' during mass spectrometric measurements of the |

vaporization of Apollo 12 lunar samples. The reaction studied was
FeO(gy == Fer) + 30y ~(LA.2)

and the AHS obtained by second- and third-law calculations together with the
accurately known dissociation energy of O, yielded the above value.

Jensen and Jones (1973) (44) obtained the value DL = 402+20 kJ-.mol‘1 from
spectrophotometric studies of iron-containing flames by second-law analysis only. The

reaction studied was
Fe) + OHgg) == FeOyy + Hey L(1A3)

By means of high temperature mass spectrometﬁc measurements of the
components of an effusion beam, Hildenbrand (1975) (45) determined, by third-law

analysis, the value DL = 405413 kJemol-'. This time, the reaction looked at was
Fe) + Oig) == FeO) + O (LA.4)

While these various recent values for D (FeO) may appear to be in fairly
good agreement with each other, as pointed out by Hildenbrand (45), caution must be
exercised when interpreting- the results obtained from equilibrium measurements. The
values depend significantly on the particular molecular and spectroscopic constants used
in the analysis. For example, Hildenbrand recalculated the results of Balducci er al.
(see above) using the constants that he had employed in his analysis and obtained

DL = 427 kJ-mol™!, considerably different from the value of 406 kJ+mol~' obtained
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by Balducci et al. The spectroscopic constants of FeO used by Hildenbrand were
those of Barrow and Senior (23).

Thus, although thermodynamic studies such as these hold the potential of
yielding a much more accurate value for the dissociation energy than a simple
Birge-Sponer type of extrapolation, they still require accurate spectroscopic values.

For completeness, we briefly mention several other specialized studies on FeO
not directly related to the present work. Intensity measurements of the ground state
vibrational band were made during the early 1970s by von Rosenberg and Wray (46),
who additionally studied the kinetics of reaction (LA.4), as did also Fontijn and
Kurzius (47) around the same time. Also at about this time, absorption coefficients
for the infrared vibration-rotation spectrum were calculated by Fissan and

Sulzmann (48).
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LB. Other Work Done in This Laboratory (49,50,51,52)

LB.1. Characterization of the ground state

Work was begun in this laboratory on the electronic spectrum of FeO in
September, 1979. High resolution spectra of the region 550 - 630 nm were
photogfaphed, following which a laser-induced fluorescence study of a number of bands
of the orange system was performed. This provided the breakthrough which finally
allowed for the rotational analysis of the ground state and identified the ground state
as being a SA state.

At the time. work was started, the lower level of the orange system had been
established as the ground state of the molecule by the matrix isolation study of
Green, Reedy, and Kay (34), but the classification of this state was still undecided
upon. The possible candidates, supported by various theoretical studies, were 5Z% 7L+
or 5A.

The unravelling of the problem proceeded as follows. The band first studied
was the 582-nm band, since it occurred in a comparatively uncrowded region of the
‘spectrum. This band, which was one of the bands also studied by Harris and
Barrow (37), exhibits a number of small rotational perturbations in which the lines
appear doubled, with two lines of equal intensity. Such a pair of lines could be
produced either by an exact coincidence of perturbed and perturbing levels or by
A-doubling. The existence of several exact coincidences would seem rather unlikely, so
A-doubling was the more probable explanation. The A-doublet splitting had been too
small to resolve in the spectra of Dhumwad and Narasimham (22) or those of Harris
and Barrow or (at other J values) in the current grating spectra, but a sub-Doppler
intermodulated fluorescence spectrum of the wunperturbed line R(15) at a resolution of
about 75 MHz showed that A-doubling was indeed present, there being two equally
intense components having a separation of about 120 MHz (51). Lower J lines,

however, such as R(10), did not show any resolvable A-doubling. Thus A-doubling
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was present but was small and J-dependent

Since A-doubling cannot occur in I states, which are non-degenerate, the
existence of A-doubling indicated that the states involved were not I states.

Harris and Barrow showéd that the 558-nm band, which waé the (0,0) band of
Delsemme and Rosen’s (14) A; system, posséssed a common lower level with the
582-nm band (which, incidentally belongs to Delsemme and Rosen’s B system). The
558-nm band had been studied previously by Barrow and Senior (23), who had
postulated that the states involved had € = 0. Since, to first approximation,
A-doublet splitting is given by [J(J +1)],Q for @ = 0 a constant, J-independent
A-doublet splitting would be expected, with ahy J-dependence being small relative to
this. This was not what was observed, a fact which would imply that either the
constant A—doubling term in the lower state was being cancelled by an equal constant
term in the upper state (not very likely) or that @ = 0.

Q lines are forbidden for ' = 0 «— Q" = 0 wansitions in Hund’s coupling
cases (a) and (c) and for Z - I transitions in case (b) but are allowed for other
transitions (16(a)). Although Barrow and co-workers (23,37) had not found any Q
lines, armed with the above new evidence that € may not have the value 0 and
since the existence of A-doubling showed that the states were not I states, a search
was made for Q lines in the grating spectra. A branch was indeed found and its
numbering established by plotting the line positions against n(n+1), where n was an
arbitrary running number, and choosing the best straight line. The analysis of the
Q-branch was confirmed with rotationally resolved laser~induced fluorescence
experiments.

The lowest-J Q line observed in the grating spectrum was Q(4). This was
confirmed as being the lowest-J line by the laser-induced fluorescence work: while

excitation of higher-J Q lines gave R-, Q-, and P-branch emission, excitation of the

SRef. (49) seems to imply that the very existence of A-doubling is the reason why
Q@ # 0. This is not correct. The real reason is as presented here.
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Q(4) line yielded gnly Q(4) and P(5) emission (no R(3) emission). This meant that
Q' =Q" = 4

Several of the other bands studied by Harris and Barrow were also studied
and ali were shown to possess Q branches and to have J = 4 first Q lines. Some
of these bands form a lower-state vibrational progression. As shown by Harris and
Baﬁow and confirmed here, the vibrational constants are in close agreement with the

matrix-isolated values of Green et al. (34):

464 cm™!

Gas: we = 880.61 cm? WeXe

Matrix: we = 880.02 cm! WeXe = 347 cm:!

Therefore the ground state of FeO contains an £ = 4 spin-orbit component.

Of the three possible candidates for the ground state (3Z% 7Z* or SA), only
SA is consistent with the presence of A-doubling and only 5A possesses an
Q = 4 component. The  values for a 5A state run from 0 to 4, whereas the
highest € values for 7Z* and SZ* are 3 and 2, respectively. Thus the ground state
of FeO was finally established as being a 5Ai state.

All subsequent work performed in this laboratory has yielded no information

inconsistent with this assignment and in fact has firmly established it as being correct.

LB.2, The orange system

All of the bands (actually subbands) studied in the work described in the
previous section involved Q' = Q" = 4 levels as did, it is now known, all subbands
which had ever been rotationally analyzed by previous investigators (22,23,24,37).
Subbands involving other spin components must also be present. Following submission
of the foregoing work for publication (49), continuing laser-induced fluorescence
experiments on the ofange system did eventually find, not one, but several subbands

involving each of the € values 0, 1, 2, and 3.
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The prominence of the € = 4 subbands results from the fact that at this high
an Q value the A-doubling is usually not resolved, at least not until high J values,
so that the lines are effectively twice as strong as those of other subbands where the
A-doubling causes resolved splittings often even at low J values. In the case of
absorption experiments, the § = 4 subbands are additionally enhanced, especially for
v" = 0, due to the Maxwell-Boltzmann distribution that governs the populations of the
levels. = Since the effective temperature of the moiecules involved in the excitatjonv
spectra obtained in this lab was roughly 350 K, the Q" = 4 substate — being the
lowest in energy of the five inverted A substates, which have a spin-orbit separation
of about 190 ecm~' (see next section) — is heavily favored over the other substates.

A total of 34 subbands (including two **FeO isotopic subbands), lying in the
wavelength regions 558-564 and 579-623 nm were rotationally analyzed in this
laboratory. These involve over 20 Q' substates lying between 16 350 and
18 550 cm:' Every one of these substates is extensively perturbed, and the rotational
analysis of most would not have been possible without the use of rotationally resolved
laser-induced fluorescence.

The measured line positions of the orange system are presented in Appendix L
A detailed description of the individual subbands and corresponding upper state energy
levels has been given in ref. (51) and will not be repeated here. Instead we describe
only the overall pattern which emerged from this study.

" The upper state of the orange system is a 5Ai state, together with a large
number of extra @ substates. Thé A state has a B value of about 0475 cm;’
corresponding to a bond length of 0.169 nm. Some of the "extra" substates may
form another °A; state, but this is much less certain.

When the upper energy levels are plotted against J(J+1), many of the
substates show marked curvatures to their plots over and above that caused by

centrifugal distortion. Such curvatures indicate interaction with fairly distant perturbing
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states via large interaction matrix elements, and the matrix elements are
rotation-dependent and/or the zero-order energy separations are rotation-dependent. In
some cases, the curvature is probably due to spin-uncoupling, with the "fairly distant
perturbing states” just being other € substates of the same vibrational level of the
same case (a) state, acting via the -2BJ -S operator,' although it is not alwayg clear
which of the observed (or unobserved) levels are the other Q components.

Other instances of curvature are due to avoided crossings, with the interactions
being either homogeneous or heterogeneous in nature. ~An example of the latter effect
is shown in Fig. 1, in which the rotation-dependent nature of the interaction between
the @ =2 and @ = 3 upper levels of the 592~ and 585-nm bands is clearly seen.
The large difference between the B values of these substates (as determined at low J
before the "onset” of the interaction) indicates that the substates belong to two
different electronic states. In this case the interaction is via the -2BJ] - L operator.
This type of perturbation has proved to be extremely useful in that the resultant
mixing of the upper state levels of different Q' wvalues has allowed the determination
of the spin-orbit coupling of the ground state, as will be discussed in the next
section.

In addition to the perturbations causing large overall curvatures, numerous small
perturbations are seen throughout the upper states of the orange system in thé form
of local avoided crossings.

From arguments based on the anomalous vibrational intensity patterns observed,
the conclusion is reached in ref. (51) that many of the observed levels probably would
not, in isolation, possess transition moments to the ground state. They obtain their
oscillator strengths by various interactioh mechanisms. In view of the large energy
separations between these levels and the levels from which they borrow intensity, the

interaction matrix elements in a case (a) basis must be very large (hundreds of cm™!

*Vectors are denoted by a _ symbol in this thesis.
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Fig. 1. Interaction between the @' = 2 and @' = 3 substates of the 585- and
592-nm bands. Upper state energy levels are plotted as a function of
J(J+1) after having been scaled by subtraction of the quantity
0.428J(J+1) - 10-%J2(J+1)®. The separation between the two components
has been reduced by ~12 cm:' A number of small local avoided crossings
and splitting apart of the A-doublet components are apparent in addition to
the large interaction between the two substates.
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units). This suggests that electrostatic interactions are present, in addition to the more
common spin—-orbit interactions. Electrostatic interactions have similarly been proposed
to explain some of the effects in the MnO specttum (53).

Yet another feature is the presence of numerous branch fragments that can be
followed for only a few J values and that have non-Boltzmann intensity distributions,
yet which bear no simple relation to a pattern of avoided crossings. These also
appear to result from levels which have no zero-order transition moments of their
- own, and which obtain small transition moments by spin-orbit or some other form of
homogeneous mixing wiﬂ1 comparatively distant states having the same Q' value. In
this case, the oscillator strengths picked up are small. The observed intensities vary
erratically with J because of interactions with other such states that have also picked
up small transition moments by simﬂar means, but which have different B' values.
Where the transition moments happen to reinforce for several J values, a "branch
fragment” appears. Such effects commonly occur in perturbed polyatomic spectra
(e.g. CS, (54,55)), but have apparently not been encountered before in diatomic
molecules.

In short, the upper states of the orange system are extremely complex. The
density and magnitude of the rotational perturbations are quite exceptional for a
diatomic molecule and are more comparable with the notorious visible system of
NO, (56,57,58). Although the FeO orange system upper states basically belong to

Hund’s coupling case (a), they show strong tendencies toward Hund’s case (c) coupling.
LB.3. Ground state spin-orbit intervals

As mentioned in the last section and shown in Fig. 1, the upper levels of the
592~ and 585-nm bands, with €' = 2 and 3 respectively, perturb each other. The
spin-orbit components belong to different electronic states, and the rotational-electronic

matrix element is
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<vAQ=37J|-2B]-L| v' A-1Q=2J>

= -<vA|BL,| v' A-1> [JJ+1) - 6]V2 ~(LA1)

where we find |-<vA [BL,| v' A-1>| = 0374 cm:"

The result of this interaction is that the substates mix with each other. In
the aﬁsence of such mixing, transitions to the ground state would be purely paraliel
transitions (AQ = 0) and there would be no way of accurately determining the
separations between the ground substate levels. As a result of the mixing, however,
AQ = %] transiions can occur. That is, because the upper state wavefunctions are
realiy mixtures of Q' = 2 and Q' = 3 wavefunctions, transitions to both Q" = 2 and
9". = 3 levels of the ground state can occur from a single upper level. The
difference gives directly the ground state spin—orbit separation between the Q" = 2 and
Q" = 3 substates.

Figure 2 shows the resolved laser-induced fluorescence 6btained upon excitation
of the R(20) line of the 585-nm band. Four fluorescence lines result, arranged in
two pairs separated by about 192 cm:' One pair, the excited R(20) line together
with P(22) has a separation (ground state rotational combination difference, A,F")
showing that this pair has " = 3. The other two, another R(20), P(22) pair,
likewise has Q" = 2. Laser excitation of either member of the latter pair gives the
same resolved fluorescence pattern.

The intensity of the P5(22) line, where the ‘subscript denotes Q" = 3, is
greater than that of the P5(22) line (Fig. 2). (The R(20) line intehsities cannot be
directly compared because of laser light scattering at the excitation frequency.) This
indicates that the upper state wavefunction has more ' = 3 character than Q' = 2
character. Beyond J = 30, the states become essentially completely mixed, so that four
equally intense lines are obtained in the resolved fluorescence spectra.

The weak 587-nm band, which has an upper level that is primarily ' = 3,

also gives Q" = 2 spin-orbit satellites. The interacting ' = 2 level is again probably
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Spin- orbit satellites from the 5845 A band

R (gO)
laser

P(22) R(20) P(22)

—

17080.131 cm~ 17035.988 16887.633 16843.230

Fig. 2. Rotationally resolved fluorescence of FeO excited at 17 080.131 cm:' Because
of perturbations in the excited state the Q' = 3 level emits to both the
Q" = 2 and 3 components of the ground state, permitting determination of
the € = 2-3 spin—orbit interval.
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the upper level of the 592-nm band.

Altogether, it has been possible to measure the spin—orbit separations between
the € = 2 and @ = 3 substates. of the v = 0 level of the ground state for almost
every J value between 11 and 34.

Likewise, the Q" = 1-2 separation has been measured from spin-orbit satellites
induced by an unseen Q' = 1 level in the €' = 2 upper level of the 582-nm band.
Unfortunately, this separation has only been measured for one J value (J = 21) and
even for this one, the lines are weak and blended. The Q" = 1-2 interval is
therefore not as well determined as the 2-3 interval.

Weak spin-orbit satellites occur fairly commonly in the resolved fluorescence of
many of the bands of the orange system. Since the upper state spin—orbit separations
are very large and since the spin-orbit satellites are often seen at quite low J values,
these must arise from rotational-electronic interactions between different electronic states,
caused by the -2BJ - L operator, rather than from spin-uncoupling effects within a
single electronic state. The frequency of occurrence of these satellites indicates that
such interactions are widespread.

Unfortunately, other than in those cases already mentioned, the extra lines
resulting from these interactions are too weak to identify in the laser excitation spectra,
so accurate measurements of the line positions have not been possible. Thus only the
Q" = 2-3 and (less accurately) 1-2 intervals of the v = 0 level have been measured.
This does, ilowever, provide enough information to determine the major spin=-orbit
parameters, not only for the ground state v = 0 level, but for the other observed

vibrational levels (v = 1-3) as well (see Section IV.C).
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LC. Reasons for studying FeO

Prior to the work done in this lab, not even the symmetry classification of the
ground state was known, let alqne that of any of the excited states. Over and above
the challenge of being the first group to establish such a seemingly fundamental
property as the classification of the ground state, the information is itself very useful
in diverse ways. -

Comparison of the properties of FeO with those of other transition metal
oxides yields information regarding trends across the periodic table and down the
Fe, Ru, Os column — such trends as the change in ground~state bond length and
the relative energy ordering of the 4so0 and 3d6é molecular orbitals (Section IILK) as
one progresses across the first-row transition metal oxides, and the effects of shielding
as the d orbitals become progressively filled.

As described previously (Section LA), theoreticians have been unable from
purely ab initio arguments to correctly predict the energy ordering of the states of
FeO. Experimental determination of the correct energy ordering should help the
theoreticians refine their basis sets.

FeO possesses such esoteric states as 5&, SA, 5T, 5Z, and 7Z. Such states
are comparatively rare and little has so far been published about them — e.g. the
rotational matrix elements for ®A and 5¢ states are not available in the literature,
and had to be worked out (Section IILH). Of the three types of states with which
the present -thesis is mainly concerned, only examples of SII states have ever been
reported and rotationally analyzed and these only in one molecule (CrO — also,
incidentally, studied in this lab (59,60)); to the author’s knowledge, %A and 5% states
have never been reported, although there is indirect evidence for the presence of a
5A state in CrO (60).

It has previously been indicated (Section I.A) that accurate moments of inertia

and vibration frequencies are required for the most reliable third-law treatments of the
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high temperature equilibria from which dissociation energies are derived. Moreover, the
ground state and any nearby states must be well-characterized in order to establish the
electronic partition function. The importance of this is illustrated by TiO (61). The
ground state could be 'Z% 3Z; or 3A according to various qualitative arguments.
The corresponding electronic degeneracy factors, if only one of these states contributes,
would be 1, 3, or 6, respectively, With corresponding contributions to the free energy
(at 2500 K) of 0, 23, or 38 kJ.mol~', respectively. The difference between _these
values cannot be ignored when calculating an accurate value for the dissociation energy.
In actual fact, the ground state is known to be 3A (62), but a 'A and a 'Z* state
lie very close to the ground state and contributions from all three states must be
considered. In FeO, if the ground state were a >Z* state as once thought, the
electronic partition function, g, for this state in isolation would be 5, whereas for the
actual 5A ground state it is 10 (ignoring the spin-orbit intervals; 7.8 taking them into
account, at 2000 K). A 5Z state at 3990 cm~' would have g, = 0.3 at 2000 K (a
typical temperature in the mass spectrometric methods used for FeO dissociation energy
determinations). We show in this thesis that there is also another low-lying state, a
7L state. For this, qe = 15 at 2000 K, assuming this state to have its v = O level
at 2100 cm:! This state therefore has a significant population relan’ve. to the ground
state, and possibly even higher than indicated here if the level detected has v > Q.
Thus, a thorough description of the low-lying states is of importance to the accurate
determination of the dissociation energy.

An application where accurate thermochemical data (such as dissociation energies
and ionization potentials) are required is upper atmospheric research.
Chemiluminescence and resonance fluorescence of FeQ were studied by Best and
co-workers (63) upon release of iron pentacarbonyl from a rocket into the atomic
oxygen-rich region of the upper atmosphere. The formation of FeO from Fe(CO),

plus atomic oxygen and its destruction to Fe and O, were studied.
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An example of a more direct application of spectroscopic information to
"atmospheric research” was provided by the detection of FeO, amongst other species,
in a meteor as the meteor passed through the atmosphere. Ceplecha (64) was able to
attribute 157 lines to the FeO molecule. © Individual rotational lines or groups of lines
were identified by comparison with the tables published by Domek (3). In fact, FeO
turned out to be the third brightest molecular species visible in the whole meteor
spectrum and the second brightest, behind only N,, in the continuum part of ‘the
emission. The meteor was of cometary origin, and thus the information derived is of
use not only in studying the composition of meteors but of comets also. The
published line positions resulting from work in this laboratory should be of use in
future studies of this sort

Proceeding farther from the earth’s surface, FeO is potentially of great
astrophysical importance because of the high cosmic abundances of both Fe and O.
Optical absorption spectra have shown the presence of the metal oxides TiO, VO,
CrO, YO, ZrO, and others in the atmospheres of M stars (65). Since FeO is formed
at relatively high temperatures in the laboratory it could be abundant in the
atmospheres of late-type stars and/or circumstellar shells. Although TiO and CaO
have not been found in molecular clouds despite radio-wavelength searches (66),
gas-phase Fe is more abundant than Ti and Ca in interstellar clouds, so FeO is a
potential species to be found there. Again, such searches are dependent on
laboratory-obtained line positions by which to idenﬁfy‘ the astrophysically-observed
| frequencies.

Delsemme and Rosen (14) have pointed out the close agreement between the
position of the R-head of the 579-nm band and one of the previously unidentified
lines in the solar spectrum. This line is listed at 578.9767 nm in the Revision of
Rowland’s Preliminary Table of Solar Spectrum Wave-lengths (1928) (67) and also

appears as a weak line at 578.976 nm in the more recent atlas of Delbouille, Roland,
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and Neven (68). The first "line" of the yellow band measured by Domek (3) occurs
at 578.974 nm, which is in very good agreement with the solar line. The higher
resolution grating spectra obtained in this laboratory show that the R-head of the
579-nm band actually occurs at 578.963 nm. (Richardson (5) reported 578.965 nm, in
good agreement with our value.) There are, however, several other intense lines to
the long wavelength side of this so that Domek’s "line" is really a blend. We
therefore conclude that the R-head ‘(actually several lines) of the 579-nm band is a
possible assignment for this solar spectrum line.

Richardson (5) compared the wavelengths of fourteen of the strongest lines in
the 579-nm band (not in the region of the head) with the line positions present in
the specttum of a sunspot. Although good matches were found for twelve of the
fourteenA lines, the other two were conspicuously absent in the sunspot spectra.’ The
conclusion was that FeO was either absent from the sunspot or not present in
sufficient abundance to be detected.

Lest the reader be left with the impression that a study of the spectrum of
FeO is of use omly to theoreticians and star-gazers, the following examples illustrate
"down-to-earth" applications.

Garger (69) studied the spectrum of the Bessemer flame and found that lines
for FeO and atomic Fe predominate in the spectrum during the second half -of the
fusion operation and that the spectrum could be divided into 5 peﬁods, with each
period having characteristic lines. This research could lead to imsight into mechanisms
occurring in this industrially important process.

It is known that a number of tranmsition metal compounds act as antiknock
agents in spark ignition systems. Ferrocene and iron pentamrboﬂyl are two such
compounds which have been studied in this regard by Callear and Norrish (70,19) and

by Erhard (71,72). These investigators performed flash photolysis experiments in which

SThese are not the same two lines reported in Section 1.A as being absent in our
grating spectra.
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ferrocene or iron pentacarbonyl were used as additives to various fuel mixtures in the
presence of oxygen. Spectroscopic observations of the resultant explosions detected,
amongst other species, the presence of FeOQ. In fact, the FeQ visible and infrared
emission specturn occurs with extraordinary brilliance under these conditions, and it was
even speculated (70,19) that this FeO emission could be responsible for the antiknock
behavior of these compounds: the emission could affect the temperature of the
burning gas by radiative cooling and/or propagating centers of preignition could be
déactivated by electronic excitaﬁon of FeO. While this mechanism has been cast into
doubt by the later work of Erhard, both groups of workers used the spectrum of
FeO extensively to monitor the course of the explosions and thus helped advance
mankind’s knowledge of how to prevent knocking in spark ignition engines.

Finally, we point out that the infrared system, the analysis of which forms the
basis of this thesis, has never been studied previously at high resolution. This alone

is justification for the project!
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LD. Some Very Recent Studies Based on the Results of the Present Work

In Section LA the history of research on FeO was traced prior to the
beginning of work in this laboratory. In Section 1.C an attempt was made to justify
the present study. We now continue th¢ historical review and present some very
recent studies which have been done or are being done or will be done. All these
studies are based in part on information obtained in this laboratory. The work has
already proved useful; ...what better justification than this?

While working out the matrix elements for a 5A state for the first time
(Section IILH), the problem of how to handle the A-doubling in the X®A state came
up. This led to the question of A-doubling in A states in general. In the past,
A-doubling in A states has often been considered too small to. be of any significance,
since it would be a fourth-order effect It has been resolved on previous occasions,
but only in a very few molecules. Those that the author is aware of are: in the
A%, sate of PtH (73), in several A states of NiH (74), in the X®A,, state of
FeCl (75), in a *A - *A transition of FeH (76), and, reported very recently, in the
A%A state of CH (77). At the time of the early stages of the current project, no
detailed treatment of A-doubling in A states had yet been published. (Recently a
partial treatment for the case of a ®A state has been performed by Delaval and
Schamps (75), and more recently still Brazier and Brown (77) have dealt with the 2A
case.) Early in the present work, A-doubling in the © = 0 component of the X5A
state was handied in a phenomenological manner by means of the terms
i%[o + oJJ(J +1)] in the diagonal positon of the energy matrix. However, upon
finding A-doubling in the £ = 1 substate as well, it was decided that such an
approach was no longer adequate. Clearly the entire phenomenon of A-doubling in A
states needed to be studied. This provided a theoretical project for Cheung and
Merer, the results of which are to be published shortly (78); this paper will

undoubtedly become the definitive work on the subject of A-doubling in A states.
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As stated in previous sections, theoreticians have been unable to correctly
predict the energy-ordering of the lower states of FeO. This statement still stands,
although the situation is improving. Krauss and Stevens (79) have very recently
performed multiconfiguration self;-consistent- field (MC-SCF) calculations for FeO and
RuO. In the case of FeO, five states are calculated to lie within 0.1 eV of each
other, of which 7Z* is the predicted ground state — the order, from lowest in
energy to highest, is 7Z* < SI < 5¢ < A < 5Z* While unable to predict the
correct ground state, the complete active space (CAS) MC-SCF wavefunctions provide a
qualitatively correct description of the electronic structure as shown by comparison of
>the calculated spin—-orbit coupling constants, A, with the experimental values determined

in this laboratory (in cm™'):

A i B
calculated: -84 -203 -40

experimental: -95 ~=217 ~=47,

Agreement is also fair for the ground state bond length:

calculated: _ I, = 0168 nm
experimental: ‘ I = 0.162 nm
but poor for the vibrational frequency:
calculated: we = 681 cm™! WeXe = 6.3 cm™!
experimental: we = 880 cm! WeXe = 4.6 cm?!

The agreement is better for RuO. The calculated natural orbitals and their
occupancies (i.e. electron configurations) for the various states are useful for
understanding the bonding in FeO, and, given the experimental fact that the 5A state
is the ground state, Krauss and Stevens were able to formulate an aufbau for the
ground states of most of the first and second row transition metal oxides in terms of

these orbitals.
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In the last section, the importance of a correct experimental description of the
lower states of a molecule for the accurate determination of such thermodynamic
properties as the dissociation energy was discussed. Most of the previous
determinations of the FeO dissociation energy have assumed a SZ ground state.
Armed with the information provided by this laboratory that the ground state is
actually a 5A state, Smoes and Drowart (80) have recently made a new determination

of the dissociation energy by the mass spectrometric Knudsen cell method:
DP (FeO) = 403+8 kJ- mol;!

This value should be more reliable than any of the previous determinations. The
authors have critically compared this value with the literature data and have explained
a number of discrepancies. We point out, however, that the low-lying state tentatively
identified as a 7Z state, discovered during the course of the present work

(Section IV.D), was not allowed for in the determination of the above DY value,
since the existence of this state had not at that time been published. The foregoing
value for DY, while being an improvement over the previous values in the literature,
may therefore not yet be the ultimate determination.

The potential astrophysical importance of FeO due to the high cosmic
abundances of both Fe and O was indicated in the previous section. This prompted
a search by Merer, Walmsley, and Churchwell (65) for FeO in a number of
astrophysical environments based on line frequencies predicted by the work of this
laboratory. The pure rotational lines searched for and their predicted rest frequencies

are as follows®:

5 v=0 J=54 153.141 GH:
0 v=1 J=54 - 152.014 GH:
4 v=0 J=54 154.058 GH:z

¢Later work (Endo, Saito, and Hirota (81) and this thesis) has refined the frequency
values slightly to 153.135, 152.013, and 154.060 GHz, respectively, The conclusions of
ref. (65) are not altered.



33

with 30 errors of £0.005 GHz. Although a selection of molecular clouds, stars,
supernova remnants, and planetary nebulae were searched, the results were negative in
all cases. The search was not in vain, however, as the absence of FeO also carries
information. In the Orion nebula, for example, at most 2 x 107 of the cosmic
abundance of iron can be in the form of FeO, otherwise it would have been
detected. One‘ cause for the lack of FeO could be condensation of interstellar iron
onto grain surfaces, thus depleting the amount available in the gas phase. The very
lo§v value for the upper limit on the abundance of FeO implies that such depletion
must be very efficient. Other possible reasons for the low abundance of FeO are
discussed in the paper by Merer, Walmsley, and Churchwell (65).

P. Feldman (82) has recently expressed interest in conducting further
astronomical searches for FeO (and other metal oxides) at other frequencies and has
requested predicted frequencies from this laboratory. The values obtained in this thesis
have been forwarded to him.

Meanwhile back on earth, Endo, Saito, and Hirota (81) have detected and
measured six pure rotational lines of FeO in the millimeter-wave region, observations
made possible by the predictions of this wbrk. The measured frequencies are listedl in
Table I and, because of their high accuracy, have been included in the latest
least-squares fits presented in this thesis (Section IV.C).

Cheung and Radford (83) and Evenson (84) are currently looking at the
far-infrared laser magnetic resonance (LMR) spectrum of FeO. Again, line-frequency
predictions from the present work have been communicated to both groups. These

will show where to look and will help in the interpretation of their spectra.



TABLE L Millimeter-wave pure-rotational tramsitions of FeQ2

J' «— I Q Frequencyb

5 «— 4 4 153.135 259 (55)
6 «— 5 4 183.757 163 (23)
5 «— 4 3 154.059 726 (31)
6 «— 5 3 184.867 223 (14)
5 «— 4 2 154.948 453 (19)
6 «— 5 2 185.932 444 (20)

(a) Measurements by Endo, Saito, and Hirota (80).
(b) Values in GHz; numbers in parentheses are the standard deviations of the
measurements in units of the last two figures.



CHAPTER 11

EXPERIMENTAL DETAILS

II.A. Introduction

A variety of methods of obtaining FeO have been successfully employed in the
past In emission work, Rosen and co-workers (12,13,14,15) used arcs and the method
of exploding wires to study the visible and near infrared regions. Arcs were also
employed by Domek (3) (visible), by Dhumwad and Bass (85) (orange system), by
Dhumwad and Narasimham (22) (orange), and by Barrow and Senior (23) (orange).
Low-pressure chemiluminescent flames obtained by reacting Fe, evaporated from a
furnace, with O;, N,;0, NO,, or discharged O, in a flowing inert gas allowed West
and Broida (24) to study the infrared, orange, and blue systems at a relatively low
temperature (700 K). They also produced FeO at atmospheric pressure by seeding an
oxygen—acetylene flame with Fe(CO);,. Bass and Benedict (17) obtained the near
infrared spectrum during combustion studies of CO containing a small quantity of iron
pentacarbonyl. McDonald (36) used an electmdeless discharge through a mixture of
Fe(CO)s, O,, and Ar (orange system). Trkula (38) has recently looked at the orange
and blue regions by sputtering an Fe cathode; a mixture of 5% O; in O, was used
and a bright yellow "flame" was obtained.

In absorption work, Green, Reedy, and Kay (34) used a holiow-cathode
sputtering technique to study the vibrational infrared spectrum of matrix-isolated FeO.
Bass, Kuebler, ‘and Nelson (21) studied the orange system and the diffuse feature at
~24]1 nm by flash heating metallic Fe in the presence of O,. Callear and
Norrish (70,19) conducted émission and absorption flash photolysis experiments (orange
system and 24l-nm feature) in which ferrocene or iron pentacarbonyl were used as

additives to amyl nitrite and n-heptane fuel explosions in the presence of oxygen.
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Similar experiments using pentyl nitrite plus hydrogen or isoamyl nitrite and hydrogen
as fuel were performed by Erhard (71,72). Mixtures of Fe(CO); in Ar were flash .
photolyzed by Callear and Oldman (20) to obtain the 241-nm feature in absorption.
Lindgren and Sassenberg (39) conducted flash-photolysis experiments involving the
reaction of Fe(CO); with N,O (whether in absorption or emission is not stated). Very
recently, Endo et al. (81) have studied the millimeter-wave region by means of a DC
glow discharge in a mixture of ferrocene and oxygen in a l-meter long free—space
absorption cell.

Some more exotic sources have been employed to obtain FeQ for various
specialized studies such as the shock tube experiments4 on Fe(CO); + O, in Ar by
von Rosenberg and Wray (46) and the tubular fast-flow reactor used by Fontijn and
Kurzius (47) for a kinetic study of the reaction Fe + O, — FeO + O. Even
vaporization of .Apollo 12 lunar samples has beén used as a source of FeO (by
Balducci et al. (43) for a thermodynamic study).

Nohe of the sources are completely ideal for spectroscopic work. Many
produced sttong atomic Fe lines. Dhumwad and co-workers (85,22) experimented with
various sources, including a hollow cathode discharge and found that a low-pressure
arc (~50 mm Hg) was best at suppressing atomic lines. Barrow and
co~-workers (23,37) also tried low-pressure arcs, but the lines obtained were weak and
broad and occurred against a continuous background. A water-cooled composite-wall
hollow cathode discharge of the type described by Bacis (86) was found to produce
better spectra (orange system), but its behaviour was described by Harris and

Barrow (37) as "capricious.”
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II.LB. Description of the Source

Gaseous FeO molecules were produced in a flow system by passing a mixture
of ferrocene, oxygen, and a noble gas through a 2450-MHz electrodeless discharge at
low pressure. The experimental arrangement was as follows. Ferrocene
(dicyclbpemadienyliron, Fe(C;H;),) was heated to between 65 and 80°C in a wide-bore
pyrex -tube wrapped with heating tape, and the vapor was entrained in a stream of
noble gas. Argon was used for the visible region; helium .for the near-infrared. A
small amount of O, was added, and the mixture (at a totalv pressure of a few
mm Hg) was pumped rapidly through a microwave discharge cavity, with the discharge
operated at a power of 120 W. A long orange-white "flame" resulted, the orange
color being due to the orange emission system of FeO.

Solid rust-like products tended to accumulate on the walls of the apparatus,
and if allowed to become excessive resulted in the discharge becoming unstable,
presumably because of interference with the transmission of the microwave power.
However, with experience it was found possible to run the discharge continuously for

several hours, with only occasional "tweaking” of conditions.
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ILC. Methods of Detection

IL.C.1. Grating spectra’

"Survey" emission spectra covering the region 550-630 nm were obtained with
a 7-meter Eberi-mounted plane grating spectrograph and photographed on Kodak
Ila=D plates. Ca!ibration spectra were provided by a neon-filled iron hollow cathode
lamp, for which the wavelengths have been listed by Crosswhite (87). The spectra
were measured on a Grant Instruments Co. oscilloscope-setting comparator, and reduced
to vacuum wavenumbers using a four-term polynomial.

IO.C.2. Laser-induced fluorescence’

The tail of the "flame" of the microwave discharge was pumped across a
cube-shaped metal fluorescence cell fitted with Brewster-angle windows and light
baffles. The laser beam was sent through this tail, and the resulting fluorescence was
observed at right angles to the beam and to the stream of molecules.

The laser system consisted of a Coherent Inc. model CR 599-21 cw tunable
dye laser, operating with rthodamine 560 or 590, and pumped by a model CR-10
argon ion laser. .In some of the later experiments the blue~green lines from a model
CR 3000K krypton ion laser were used to pump a model CR 699-21 ring dye laser.
Laser powers of up to 450 mW were used.

Non-laser-induced FeO emission (from the microwave discharge) was present as
a background, but this was weak in comparison with the laser-induced fluorescence
and could be almost entirely suppressed by chopping the laser beam and using
phase-sensitive detection.

Laser excitation spectra were obtained for large regions of the orange system
(see Section 1.B.2). Additionally, sub~Doppler intermodulated fluorescence spectra (88)

were recorded for certain regions of the 582-nm band. With both types of spectra,

'Work done by R.M. Gordon and A.J. Merer.
*Work done by A.S-C. Cheung, A.M. Lyyra, A.J. Merer, and the author.
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molecular iodine fluorescence lines were recorded simultaneously for calibration.
Wavenumbers from the iodine spectrum atlas of Gerstenkorn and Luc (89a) were used,
but with 0.0056 cm~' subtracted from each listed value as a calibration

correction (89b). Markers for interpolation between the iodine lines were provided by
a Tropel 299-MH:z free-spectral-range fixed length semiconfocal Fabry-Perot
interferometer.

..The FeO fluorescence was detected through a sharp-cut yellow filter with an
RCA (C31025C photomultiplier tube. For- the sub-Doppler spectra, the sum of the ‘
chopper frequencies was selected with a narrow-band electrical filter, and a Princeton
Applied Research model 128A lock-in-amplifier was used to extract the intermodulated
signal. Fluorescence from the calibration I, cell was detected by an RCA 1P28
photomultiplier tube operated at =870 V DC. .

Resolved fluorescence spectra were obtained using a Spex 0.75-meter scanning

monochromator in first order.
ILC.3. Fourier transform spectroscopy

Fourier transform spectra covering the near-infrared region 4 000 - 14 000 cm™!
were recorded at Kitt Peak National Observatory near Tucson, Arizona, using the
l1-meter FT spectrometer constructed by Dr. J. W. Brault for the McMath Solar
Telescope. The bright center of the microwave discharge was focused directly into the
aperture of the spectrometer. Suitable wavelength cutoff filters (CS5-56 and RG715)
were used, and the emission was detected with a liquid nitrogen—cooled indium
antimonide detector. The resolving power of the spectrometer was set to just over
800000. A total of 46 interferograms, each of which took 6 minutes to record, were
co-added for the final spectrum. A quintic window and apodization were applied to

the transform.



ILD. The Spectra

The complexity of the orange system spectrum has already been described in
Section 1.B.2. In many regions, the spectrum as recorded on the grating photographs
appears very dense, with numerous branch fragments overlapping each other. Very few
bandheads stand out, and the only obvious progressions are the two corresponding to
Delsemme and Rosen’s A; and A, systems, which begin at 558 and 561 nm,
respectively. The analysis of most regions was only made possible by extensive
rotationally resolved fluorescence studies and the very accurate A,F" combination
differences obtained from the laser excitation spectra, together with a simultaneous
analysis of the infrared system, which involves the same lower state.

The infrared system, analysis of which is the main subject of this thesis, will
be described more fully in Chapters IV and V. Suffice it to say for now that this
region of the spectrum is also very complex, with numerous perturbations, and in
many regions involves extensive overlap of branches belonging to various vibrational
levels of various substates of two separate band systems. The analysis of this region
was, in its initial stages, somewhat more tractable than that of the orange region,
especially with the availability of accurate A,F" combination differences obtained from
the orange system. However, the extensive perturbations and the pileup of branch
structure in certain areas still made analysis of this system a challenging problem, as
will become evident in later chapters.

As previously mentioned, reaction by-products tended to build up on the walls
of the discharge cell and then made the discharge susceptible to unstable operation.
Continued running under these conditions often gave mainly CO spectra. It was
possible to obtain CO-free grating spectra with good FeO intensity if recording times
were kept to under one hour. | |

Operating times much longer than one hour were used when doing the laser

experiments and recording the Fourier transform spectra, due to experience gained in
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maintaining optimal running conditions. It was usually possible to avoid CO emission
by observing the color of the discharge with and without a hand-held spectroscope,
although admittedly one band due to CO has been discovered in the FT spectra.
This band, the (2,0) Asundi band, was identified from line positions calculated from
the molecular constants and matrix elements published by Effantin et al. (90), and,
once identified, caused only minor difficulties in the FeO analysis.

| Atomic Fe lines were present in the grating spectra. These were often absent
in the laser spectra, however, and therefore caused no great problem: where a
portion of the grating spectrum was "blanked out" by an atomic emission line, the
laser could often "see through" to excite the FeO spectrum. A notable example is
provided by the strong Fe I emission line at 17 802.46 cm;' which blanks out about
3 cm™' of the grating spectrum but is entirely absent in the laser excitation spectrum
because it does not involve the 5D ground level of iron (Fig. 3).

Atomic lines present in the FT spectra were of greater consequence, particularly
the very intense ones, not merely because of the areas blanked out by the lines
themselves, but, more significantly, because of "ringing” and loss of signal-to-noise in
the surrounding regions. One particularly bad region was caused by the extremely
intense O I lines at 11836.17 and 1183632 cm™': the effect extends to some
70 cm™' to either side of these lines.

The FT spectta were obtained in the form of tables of intensity versus
wavenumber, which were subsequently plotted out. Line positions were extracted with
a third-degree polynomial fitting program. In cases where this method failed, due to
blending, a simple three-point comparison was used to find the intensity maxima. The
spacing between data points was 0.013 608 cm;' corresponding to three or four data
points within the Doppler profile of each molecular line. The Dopplet-limited full-

width-at-half-maximum for unblended lines is 0.03 cm;' and the experimental accuracy
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5624 nm. The laser excitation spectra are shown as stick diagrams above the
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proportional to intensity. Note the difference between the two types of
spectra in the regions of the strong Fe lines.
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of the positions of unblended lines should be better than 0.007 cm:' * The accuracy
of the laser excitation line positions is roughly 0.002 cm~' for unblended lines of the

orange system.

30.007 cm~' = one-half the spacing between data points.



CHAPTER III

THEORY

IILLA. Introduction

The energy levels of any atomic or molecular system are given by solution of
the time-independent Schrodinger equation

Hy = Ey -(IILA.1)

where H is the hamiltonian operator, Y is the wavefunction, and E the desired
energy. Unfortunately, this equation can only be solved exactly for the hydrogen
atom, so already in only the second sentence of this chapter we must start considering
the use of approximate methods if we are to have any hope of understanding our
experimental results!

The first approximation, due originally to Born and Oppenheimer (1), is to
consider the motions of the electrons and nuclei as occurring independently of each
other. The result, is that the Schrodinger equation can be divided into separate
electronic and nuclear parts, as will be shown in Section IIL.C. The next step
(Section III.D), which again involves approximation, is to continue this division process
and separate the nuclear motion into vibrational and rotational parts.

The hamiltonian used in Sections III.C and D neglects the spin of the
electrons. Spin, which arises as a relativistic effect, is then introduced in Section E.
To improve upon the approximations made in the above separations, an

effective hamiltonian can be constructed (Section H) that operates on the rotational

wavefunctions within a given vibronic' level as does the hamiltonian derived from the

'The term "vibrational level” is used to refer to the vibrational levels of a specific

electronic state, whereas the term "vibronic level” is used to refer to any vibrational
level regardless of which electronic state it belongs to, the electronic state then being
included within the vibronic state labelling information.

44
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Born-Oppenheimer and rotation-vibration separation methods, but which, unlike the
latter hamiltonian, takes into account interactions with energetically distant-lying states.
This method does not take into account interactions with close-lying states, however;
these effects are treated as perturbations — the topic of Section J.

Since 5A and 5@ states have never previously been identified, their energy
matrix elements have not been derived before. Also, there is only one known
example of a molecule possessing a SII state where a detailed rotational analysis has
been attempted, namely CrO (2,3). Hence much of this chapter is devoted to the
derivation of the effective hamiltonian and matrix elements for these high multiplicity
states, together with sufficient background theory to carry out this derivation.

During the course of the foregoing procedures, the eigenfunction ¢ is expanded

in terms of a complete set of basis functions ¢,
Vv = "’;‘Ci"’i «(ITLA.2)
i

where the c¢;’s are constants. In Sections C and D, the basis functions are the
Born-Oppenheimer basis functions (defined by eqn. (III.C4)). In Section H, the
effective hamiltonian is derived in terms of a different basis. In fact, a choice of
several bases exists for this purpose and the form of the effective hamiltonian is
dependent on the choice made. FEach of these bases consists of the eigenfuncﬁons of
a certain set of commuting angular momentum operators corresponding to one of
Hund’s coupling cases, as will be discussed in Section F. Once a suitable basis is
chosen, the energies of the rotational levels are obtained by writing the matrix H of
the hamiltonian H and diagonalizing it

Lambda-doubling is discussed in a general way in Section G, then for the
specific case of a 5A state in Section H.2.a. This topic is of particular interest in

that observations of A-doubling in states with |A] > 1 have been comparatively rare.
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While a study of intensities in the specttum of FeO was_not a primary
objective of this project, a derivation of the intensity formulas is still useful since it
demonstrates the origin of the . selection rules operating in the spectrum. Also, the
intensity formulas are useful in a qualitative sense for understanding the relative branch
intensities and the relative line intensities within a branch. Section 1 (for intensity!)
thus covers this subject

One cannot go far in studying any part of the spectrum of FeO before one
encounters perturbations — lots and lots of them! Hence this chapter would not be
complete without a section on this topic. Section J provides a general introduction to
the subject of perturbations.

Finally, in Section K, single-configuration representations of electronic structures
are used to view FeO in terms of the more general picture of the first-row transition

metal oxides considered as a series.



47

IIL.B. The General Molecular Hamiltonian

The non-relativistic hamiltonian operator for a molecule consisting of N nuclei

and n electrons is

nz Y V4 |
Hy = - > z M. (kinetic energy of nuclei)
A Tp
- _h% 7 vz kineti £ electr
Zme L Va ‘ (kinetic energy of electrons)
+V(qg,Q) ' (potential energy) ..(IIL.B.1)

where M A is the mass of nucleus A; m, is the mass of an electron; © is Planck’s

(<

constant divided by 2m; and V2 ("del squared”) is the Laplacian operator, which is,

in Cartesian coordinates,

R 2 2 2
vz = ;;2 + ;;2 + ;}2 .(IILB2)
and in spherical polar coordinates,
2 o 1 8 (g20 _1 8 (g 92 1 92
V: = 57 3r‘R*3R) * R7sing 36 °1"0 35 * RTsInTe 347
.(IILB3)

The potential V(g,Q), which depends on the positions both of the electrons (q) and

of the nuclei (Q), consists of three terms,

vV(ig,Q) =z z L2 (nuclear-nuclear repulsion)

A B>A Ipp
Nn ze?

-ZZz (electron-nuclear attraction)
A a Tap
n n ez

+Z I (electron—-electron repulsion) -(IILB.4)
a b>a Ipa

where e is the charge of an electron, Z,e is the charge on hucleus A, and Tyy is

the distance from particle x to particle y.
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A relativistic treatment (4) yields a hamiltonian in agreement with the above
but thh a number of additional terms. Most of these extra terms describe effects
that are too small to be detected by the vast majority of spectroscopic methods, but

two are of importance and must be added to the non-relativistic hamiltonian H:
H = Ho> + HS + thS ...(III.B.S)

These new terms involve electron spin (H) and nuclear hyperfine structure (Hpg)- 1In
the case of iron oxide, both Fe and O have nuclear spins of zero, hence nothing
further will be said about Hpe. The electron spin hamiltonian Hg, however, will be
considered in detail in Section IILE.

The hamiltonian H, is written in a space-fixed (= laboratory-fixed) coordinate
system. We are not interested in the kinetic energy due to translation of the
molecules, because in free space this is not quantized. The translational motion can
be separated off by shifting to a coordinate system parallel to the laboratory-fixed
éystem, but with its origin at the center of mass of some particular molecule (5a,6).
This is very nearly an exact separation for a low-pressure gas in the absence of
externally applied electromagnetic fields, since intermolecular forces are too weak ﬁnder

these conditions to perturb the free translational motions to any significant extent
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III.C. Separation of Electronic and Nuclear Motions — The Born-Oppenheimer

Approximation

The mass of a proton is about 1840 times that of an electron. As a result
of their smaller masses, electrons move much faster than nuclei, and this fact provides
the foundation for the Born-Oppenheimer separation of electronic and nuclear motions.
The electrons are treated as if they move in a field of fixed nuclei and are able to
adapt themselves instantaneously to successive nuclear configurations as the nuclei move.

The original derivation by Born and Oppenheimer (1) is rather long and
complicated and will not be described here. Bomn later published a simpler, yet more
general, derivation (7.8), and this is the treatment we follow. A more detailed
derivation, including relativistic terms, has been given by Bunker (9).

The Schrodinger equation for the non-relativistic hamiltonian is
N

nz N
H¢={——Z

_ nz 0 -
ﬁ; g va2 + V(q,Q)}w = Ey .(I1.C.1)

In the limit of infinitely heavy nuclei, the hamiltonian, Hy, becomes

h? 3 g2
He = - g § v;? + Vvig,Q) ~(IILC2)

which can equivalently be regarded as the electronic hamiltonian for the case of fixed
nuclei. Born (7,8) assumes that the electronic problem has been solved for each fixed

value of Q,

HovX (q,0) = EX(0)¢k(q,0) (IILC.3)

where \[Jg(q,Q) is the electronic wavefunction for the kth state and is a member of
the complete set of normalized orthogonal electronic wavefunctions. He then tries an

expansion of the total wavefunction y(q,Q),

¥(g,0) = Z ¢i(q, Q)i Q) (ILC4)
1l
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as a solution to the Schriidinger equation for the complete system, where l[lg (Q)
depends only on the nuclear positions. Substitution of this into eqn. (II1.C.1),
left- multiplication with ll/é{* (g,Q), and integration over the electronic coordinates g,

selects out the k™ electronic state and yields as the final result’

{Hn + uk(Q>}¢,‘§(Q) + ¢ = Ekgk(Q) ~ (IILC.5)
where
nz N W
H, = - 3" £ 2 (IILC.6
| nz N
uk(Q) = k(o) + 2 z M—AI[VAwg(q,Q)lqu (IILC.T)

and C stands for | the cross—terms
- k i
c igk{fwe(q,omnwe(q,o)dq
oz N1k i i
n §M—Afwl/e(q,Q)VAwe(q,Q)quA}wn(Q) (IILC8)

Neglect of the cross~terms constitutes the Bom-Oppenheimer approximation. .
The energy Ek obtained by solution of the resulting equation is really the total energy
of the Kth state, but because of the way the calculations are actually carried out, in
practice this is regarded as only the nuclear energy, E% This comes about as follows.
The elecuonié energy Ele‘(Q) obtained from eqn. (III.C.3) varies with changing values of
the nuclear coordinates represented by Q to form what is called a potential well. In
practice, only that value corresponding to the bottom of the potential well is called
the "electronic energy" of the kP state. The variation in Elé(Q) with Q is then
incorporated into the "nuclear energy" (actually into the vibrational part of the
"nuclear energy”) via the Uk(Q) operator. That is, the electronic energy function

E]é‘(Q) (actually Uk(Q) — see next paragraph) plays the part of potential energy for

>The steps involved are given in more detail by Schutte (10).
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the nuclei. The zero of the "nuclear energy" scale is then set to coincide with the
bottom of the potential well for the K state,

To sum up, provided that the cross-terms can be omitted, the nuclear motion
has been separated from the electronic motions. The nuclei are found to move
against a potential Uk(Q) which depends on the positions of the nuclei. This
potential is almost equal to the energy determined from the electronic Schrodinger
equation as a function of Q té which is added a small correction term (the second
term on the right-hand side of eqn. (II.C.7)). This term, which contributes to the
electronic isotope shift, was not actually derived in the original Borm-Oppenheimer
treatment® It is therefore often overlooked in discussions about the electronic/nuclear
separation. However, it should be included, ‘espccially for light molecules.

The cross—-terms neglected in the Born-Oppenheimer approximation couple the
electronic and vibrational motions in different electronic states. If, in specific cases,
the electronic wavefunctions \bé (q,Q) can be solved for, the magnitude of these terms
can be determined. In gene;al, it can be seen if these terms are treated by
perturbation theory that, provided the energy separation between the kP state and any
other electronic state is large, the effect of these terms will be small. In the other
extreme, if the symmetry is high enough to permit twd electronic states to become
degenerate, the Born-Oppenheimer approximation breaks down* and the phenomena
known as the Renner-Teller effect (for linear molecules) or the Jahn-Teller effect (for

symmetric top molecules) occur (11,12).

30ften the phrase "Born-Oppenheimer approximation” is used to refer to the
approximation resulting from the neglect of the second term on the right-hand side of
eqn. (IILC.7) in addition to the neglect of the cross~terms C, whereas "adiabatic
approximation” is used to refer to the neglect of only the cross-terms.

‘The term labelled [c];_y # O in this situation, since the stationary states are
~ complex, rather than rea}.
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II.D. Separation of the Vibrational and Rotational Motions

The separation of the nuclear motion into vibrational and rotational parts, for
polyatomic molecules, is not a trivial process due to the presence of cross-terms
between the two motions (13,14). For diatomic molecules, the process is considerably
simpler since there are no such cross-terms to couple the vibrational and rotational
motions.

The separation for diatomic molecules follows directly from the fact that the
vibrational and rotational motions of the nuclei must be orthogonal. Vibrational motion
can only occur in a direction along the internuclear axis — i.e. stretching or
compression of the internuclear distance. Motions of either or both nuclei in any
other direction(s) must automatically produce a translational or rotational motion of the
molecule as a whole.

The derivation of the energy level expressions for the individual vibrational and
rotational parts is well known (5b,15) and is not reproduced here. Experimentalists

usually express the vibrational energies in the form (16a)

G(v) = wo(v+3) = wx(vH3)2 + Wy (v+i)3 + ... ~(IILD.1)

where G(v) is the "energy” (in cm~')’ of the vl

_vibrational level and v is the
vibrational quantum number. If only the first term in the series is retained, the
expression describes the energy levels of a harmonic oscillator; the additional terms are
anharmonic terms. The vibrational frequency w, and the anharmonicity constants WeXes
WeYe, ... are treated as empirical constants, which are obtained by fitting the observed
vibrational spacings (extrapolated if necessary to zero rotation) to eqn. (IIL.D.4).

If the internuclear distance R is assumed to be fixed (the "rigid rotor

approximation”), the solution to the rotational Schrodinger equation is

*Obtained by dividing energies in joules by hc.
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_ _h |
FI) = grpoged (9+1) .(IILD.2)

where F(J) is the rotational "energy” (in cm~') of the 1 rotational level, J is the
total angular momentum quantum number, ¢ is the velocity of light (in cm-s™'), and
u is the reduced mass of the molecule. In reality, the molecule is not a rigid
rotator. To correct for this, eqn. (IILD.2) is modified in two ways. _First, because
the molecule is vibrating, it is necessary to average over the coordinate R, which we
do by defining the rotational constant B, such that

*

By = 5=3— [Vy a7 VAR .(ILD.3)

v 8mcu
Since the value of B varies with vibrational level, as denoted by the subscript v, it is

usual to express this dependence on v as a power series,
By = By = a (v+]) + yo(v+§)2 + 5 (v+1)3 + ... ~(IILD.4)

where B, = -B_w?leu_R-f the value of B at the bottom of the potential well (where
e

R = R, the equilibrium bond length), and a 6., ... are vibration-rotation

e’ 7 e’ e’

interaction constants.

Another type of vibration-rotation interaction arises from the centrifugal force
that results when the molecule rotates. This occurs even for v = 0 and has the
effect of stretching the bond. This is taken into account by means of additional

terms,*
Fo(J) = B,Jd(J+1) - D,[J(3+1)]2 + H [a(a+1)]?

+ L,[J(3+1)1% + ... -.(IILD.5)

Usually it is only necessary to use one centrifugal distortion term, the Dy term. Its

power series expansion is

D, = Dg + Be(v+3) + ... .(IILD.6)

‘Some authors use a "-" sign in front of the L,, term.
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In summary, as a result of the separations described in this and the previous
section, the total energy for a diatomic molecule (neglecting spin for now — see next

section) can be writien as the sum of electronic, vibrational, and rotational parts,
EkVI = EK(Ry) + 6(K)(v) + r{K)(g) .(ILD.7)

where the electronic energy (now in cm~') is defined as that value of Elé(Q)
occurring at the bottom of the potential well, the vibrational energy scale has its zero
value at this same point, and the rotational energies are defined relative to the

appropriate vibrational level.
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HLE. Electron Spin

While not present in classical theory, the concept of spin arises when relativity
theory is applied to the wave equation for the electron (or nucleus) (17). This
explains a number of properties not accounted for with the non-relativistic hamiltonian.
For a molecule such as FeO with no nuclear spin, the additional features of interest
are:

(i) spin-orbit coupling;
(ii) spin-rotation coupling; and

(iii) spin-spin coupling.

ie.

He, = H + H + H

g = Hgo *+ Hgp (IILE1)

ss
An electron possesses a magnetic moment u, which, according to the relativistic
theory, is given by

gugs
£ = T

(IILE.2)

where g is the gyromagnetic ratio (= magnetogyric ratio = 2.002 3); ug, the Bohr

magneton, stands for the collection of constants LR _ 9274 x 10-28 3. T (where -¢

2me

is the charge on the electron,” -1.602 x 10-'® C, and m, is the mass of the electron,

e
9.110 x 103! kg); and s is the spin angular momentum' of the electron.
The interactions of this electron spin magnetic moment with
(i) the magnetic field generated by the orbital motions of the electrons;

(ii) the magnetic field generated by the rotation of the nuclei; and

(iii) the spin magnetic moments of the other electrons

give rise to the three coupling terms listed above.

"The convention e = +|e| is used here.
*Angular momenta will be defined and discussed in Section IILF.
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IM.E1l. Spin-orbit interaction

We first consider a single atom possessing one electron with non-zero orbital
angular momentum. The positive charge of the nucleus produces an electric field E.
Thinking classically, an observer positioned on the electron would experience a magnetic

field B due to the apparent motion of the nuclear electric field,

E:—LV

_ 1
czYen ¥ E = 2 E X Ve .(IILE.3)

c?~

where v, is the velocity of the electron relative to the nucleus. Since the electric
field is the gradient of the potential V, and since the spherically symmetrical field
arising from the point charge of the nucleus corresponds to a central field potential

V = V(1,,). we can write

r
~en av
E=-gradV = - | =— .(IILE4)
~ <r en> dren
where r ., is the position vector of the electron from the nucleus and Ten its
corresponding magnitude. Then
1 av
B =-— Lep X V -.(IILE.S)
c®ren <dren> en en

Classically the hamiltonian for the interaction of a magnetic field and a magnetic

moment is given by
H=-up-B ..(IIL.LE.6)

Upon substitution of the relativistic expression for 4 (eqn. (IILE.2)) and the expression

for B from (IILES), this becomes

9up av
H= - r X Von*S ~(IILE7)

We now decompose the vector v the velocity of the electron relative to the

en’

nucleus, into components corresponding to the individual velocities of the electron and
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nucleus in a laboratory-fixed coordinate system. Unlike in classical mechanics, however,
Ven is not -simply the vector difference of the electron velocity Ve and the nuclear
velocity v . There is an additional relativistic correction (a factor of %) that arises
from a phenomenon known as Thomas precession (18). As discussed by Jackson (19),
this occurs because the electron rotates with respect to the laboratory frame of
reference as a result of the acceleration experienced by the electron as it moves in

the Coulombic field of the nuclei and other electrons. With this correction the vector

Yen becomes

. | - ’
Ven = 2¥e T ¥n .(IILE.8)
so that
gup S\ :
H= - r X (3Vo, - V,)*S ..(IILE.9)

The coordinate system was specified above to be a laboratory-fixed frame, but it can
actually be chosen to be a frame moving with the molecule, with origin at the center
of mass for example, provided that it is regarded as instantaneously space fixed (20).

For an atom with more than one electron, the interaction energies are assumed
to be additive.® Likewise, in a molecule, each electron is assumed to interact with
every nucleus, and each such interaction contributes a term of the form of

eqn. (IILE9), ie.

_ 94 1 dVeapn .
Hso = " he? Exzx r <dren Len ¥ (3ve - vp)-se .(IILE.10)

*These procedures are not strictly correct. For example, the interaction of u with the
magnetic fields resulting from the relative motion of the electric fields of the other
electrons has not been taken into consideration. To account for this, Van Vleck (21)
includes an additional term, itself similar to eqn. (IILE.10) but for the other electrons.
Here, we allow for this in an approximate way when we introduce Ze (see

eqn. (IILE.14)). (Note that eqn. (37) of Van Vleck’s paper (21) contains several
errors. A oorrected version has been given by Kayama and Baird (20); this version
also contains misprints (two of the subscript K’s in their eqn. (28) should be k’s).)
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By the distributive principle, this breaks up into two terms,

9up 1 <dven

H=s -—2XZ —r xmv'-s
2hmec2 en dren ~en e.e ~e

Ten

qu av
+ S rr [ &)
hc‘ en Ten dren ~

X Vn*Se .(IILE.11)

where the first term has been multiplied and divided by the mass of the electron.
It can now be recognized what the two terms 'represent. The second term,

which contains v

vV involves the motion of the nuclei ~— specifically, for diatomic

molecules, the rotation of the nuclei’® This is the spin-rotation interaction, which will

be discussed later. The first term is the spin-—orbit interaction, H.,, as becomes clear

SO’
if this term is rewritten as
Qug 1 dVen
H = —e— Ll — [e—— ] 1_.°*S (ITLE12)
SO 2‘1‘1mec2 en rgn <dren ~en <e
where the substitution
len = Len X MgVep _ .(IILE.13)

has been made. 1., is the orbital angular momentum of electron e about nucleus n.
So far we have not allowed for the effect of the charges on the other

electrons. This can be done satisfactorily by taking the potentials V., as Coulomb

potentials in which "effective” nuclear charges Zeff,ne describe the screening effect of

the electrons:

2 e
v = eff,n” | (IILE.14)
en dnreor en

where e, is the permittivity of free space. Then

av 2 e
T2 - - oihn .(IILE15)
r en MeEol en

"Diatomic molecules possess no vibrational angular momentum, so there is no
spin-vibration interaction.
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giving

guf Z
B__ygpleffin, o (IILE.16)

Ho . = ——
SO 4meoc*h® en rg, ~en =e

This can be rewritteﬁ as (22)
Hgy = E ae(r)_J‘.'(_._,-‘sj'e (IILE.17)
by summing over the nuclei, where

ag(r)ly =

== lep ~(IILE18)

The relation between l e the towl orbital angular momentum of electron e, and the
len’s, ‘the orbital angular momenta of electron e with respect to each nucleus n, is

~

deliberately left vague because of the lack of a common origin for the 1., a
point which has been addressed by Veseth (23) for diatomic molecules. The
hamiltonian given by eqn. (IILLE17) is called the "microscopic spin-orbit hamiltonian.”
A simplification of this equation that is often used in practice, but which involves

further approximations, will be presented in Section IILH.2.
IILLE.2. Spin-rotation interaction

The second term in eqn. (IILE11l) gives the spin-rotation interaction. As with
the spin-orbit interaction, the potentials V., are approximated as Coulomb potentials

for each nucleus, with the nuclear charges being partially shielded by the electrons,

guge Zeff ,n
Hsr = “Treoc?h 55 "r3. Zen * ¥Yn'Se ~(IILE.19)

en

Following Van Vleck (21), we write the nuclear velocities as

“Note that 1,, 1., and s each contain Ti. The units of Hg, are joules (or cm~t if
the expressions are divided by hc).
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Va = @ X ro ..(IILE.20)

where r., is the position vector of nucleus n relative to the center of mass and w is
the angular velocity of the nuclei, with the nuclei being regarded as forming a rigid
rotator.”? The rotational angular momentum R is the moment of inertia multiplied by

the angular velocity
R = Iw ~(IILE.21)

We therefore obtain

guge Zeff,n

Ho,. = -
Sr 4meoc?Ih en

c3 [Zen * (Rx p)l-ge  .(LED)

which, upon use of the identity
a x (bxc)=(c-a)b - (b-alc .(IILE.23)
becomes

H

guge Zeff,n
L —3 [(fn-Len)R]:Se

Sr T " Umeoc?Ih en rdn
9uB® Zeff,n
Treoc?ih 25 t7. [(R'Ien)fenl'Se -(IE2)

en

In fact, at least for diatomic molecules, only the first term contributes to the
spin-rotation interaction of a given state. (The second term, which is very small,
connects different electronic states.) The "microscopic form" of the spin-rotation

interaction hamiltonian is then (24,25,26)

Hgr = R+ Z be(r)se ~(TILE25)

2The motion of the nuclei due to vibration can be ignored, since positive and .
negative contributions cancel in the mean. The variation of the bond lengths due to
anharmonicity and centrifugal distortion will be discussed in Section III.H.2.
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where

guge zeff,n
be = 4meoc?IR T rd, In°ZLen .(IILE.26)

As with the spin-orbit interaction, a simplified version of this expression is usually

used in practice (see Section IILH.2).
HLE3. Spin-spin interaction

Each spinning electron behaves as a tiny bar magnet. According to classical
electromagnetic field theory, the magnetic field at a point i that is a distance T from
an electron at point j is (27a)

Bi = Vx A | (IILE27)

where A; is the magnetic vector potential,® which is related to the magnetic dipole

moment I3 of the electron at j according to (27b)

u s X r:-
Ay = — =15=1] (IILE.28)
~ 4n rij

where uo is the permeability of free space. Eqn. (IILE.6) gives the hamiltonian for
the interaction of the magnetic moment of an electron located at point i with the

magnetic field due to the electron at j, namely

Hgg,i§ = " Hi*Bj
Hog” kg’ v £ij TLE.29
= ——W— Eiv X §j X rij ...( . )

where the magnetic moments have been written in terms of the spin angular momenta

using eqn. (IILE2). The relation

r * e
vi1-}) = - =1 .(IILE.30)
i Ti4

In SI units, A; has units of Wbem"'
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H

uogzuBZ -
ss,ij = ¥ TImz .Ei X V]

uogzuBz

47h? ~1

Hog2ug?

= o —————— ...— . Q - 2 »
- s;+ [V(V-55) ng]

47h? ~1

#ogzﬂBz

=+ ——— [(§i'§j)vz - (Ei'V)(éj'V)]r

47h?
where the relationship
VxVzxas=V(Vea) -Vzg
has also been used. Now let

- LK ] . -—-1—
[a] = (S:l SJ)Vzrij
- LI ) . ;
and [b] = (s1 V)(SJ V)rij

Consider the [b] term. This will become undefined for r;= 0 because of

s:+|V x V x s

1

rij

)

.

1]
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...(III.E'31)

.(IIL.E32)

..(IILE.33)

..(IILE.34)

the 1.

1y

in the denominator. We can handle this problem by dividing [b] into two parts,

[b] = [bl4o + [bl._g
The first part is easily treated, as follows:

[blrgo = §i-[v(gj-v);%§]

“Note that eqn. (IILE32) is not a general vector relation (28).
cartesian coordinates and then only for the individual cartesian components.

VxVzxa=5hO
then for the x-component, b, is

0 - -
sz(v'g) Vzax = bx

with similar equations for the y- and z-components. The right-hand side of

eqn. (IILE32) is a symbolic shorthand for these three equations.

«(IILE.35)

It holds only in
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S e [(s ..V)V._!_]
~1 ~J rij

1
T 85 [(Ej *V) (?j};ij )] ...(III.‘E.36)

Then by the usual rule for differentiating a product,

1 1 Lij
[blrso = 'Ei'[ﬁj'r_gj - 3Lij 7w r—l]
1] 1) 1]
S;°S5 (Si’fij)(sj‘rij) ‘
=-=x1=) 43 =2 =i) )~ (IILE37)

The second part of [b] is more difficult to treat — but, not impossible!
Any use to which the hamiltonian will be put will involve multiplication by some
function (e.g. the square of the electronic wavefunction w;\p'e) then integration over the
spatial coordinates. For the [b],..q part, this can be dome by carrying out the
integration over a small spherical volume of space of radius e surrounding the origin,
then letting e go to zero — ie lim [£[b]f(r)dr]. Now (gi-V)(g‘»_j-V) can

€ =>

be rewritten as

. (V) = S:.8:. 20 -
(51°V)(55°9) = SixSix 332 * SixSjy o5 3y * o+ ~({E®

where only the first two of nine terms have been shown. After operating on -

ij
with this expression, multiplying by f(r), and then integrating over the region bounded
by t = e, when the limit as e==0 is taken, the cross-terms (such as the second
term on the right-hand side of eqn. (IILLE.38)) will become infinite. These can be

ignored, since we will only be interested in energy differences; the infinities, which are

constant, will cancel. Thus we are left with

. - 5  ogs. 07 Coga, O
lim [{[b]f(r)dr] = lxm0 [f (slxij =52 * SiySiy 3y ?

€~ €=

. g. 0%\ _1
* Si,54z azz)rijf(r)d'r] ..(IILE.39)



By symmetry, the value of the integral does not depend on the absolute spatial

orientation of the vectors S; and s;, but only on their relative orientation. Therefore,

J7
Sixij’ Siysjy' and sizsjz can each be replaced by the average value
.5,1 2y
lim [f[b]f(r)dr] = i(s;-s. ) lim [fszf(r)df] .(IILE.40)
e— € ~1°33 e Tijy

where the definition of V2 (eqn. (IILB.2)) has been employed. Since all uses to
which the hamiltonian will be put involve integrals of this type, we can effectively set
[blpog = [%(s *55)V? —] -(IILE41)
ijd e=0
This is of the same form as the [a] term, which we now look at
A consequence of Gauss’s divergence theorem is that (29)

vz—‘—- = - 4n8(r;
Tij

i3 :) ..(IILE.42)

where 6(rij) is the Dirac delta function, which is defined to be zero everywhere

except at r;; = 0. This definition is consistent with the way in which the [ b]r=0

1
term is to be evaluated (i.e. limo). Thus ‘the [a] and [b],._( terms have the

€~

same form and can be combined, giving

HogZup? 81
Hss,ij = —gmmz |~ 3 (8i°83)8(rij5)
+ [(s S )1;'1J - 3(§i.£ij)(Ej.Eij)ri?j]r¢0§...(III.E43)

where the [ ],.( indicates that any integrals involving this part of the hamiltonian
are to be evaluated excluding the infinitesimally small region about Iy = 0.

In summary, the hamiltonian as given in eqn. (IILE.31), when present in
integrals evaluated over all spatial coordinates, will yield values of infinity — actually,
infinity plus additional finite terms. The derivation following eqn. (IILE.31) has

projected out these finite terms (by neglecting the infinite parts, a legitimate procedure
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since they cancel upon taking differences ...spectral lines being énergy differenceé).
The first term in eqn. (III.LE43) is a contact term — ie. the two electrons are
in contact with each other, since L = 0. The contact interaction was first worked
out quantitatively by Fermi (30), using the relativistic Dirac equation. It can, however,
be treated using purely classical theory, as has been shown by Ferrell (31).2* The
derivation of the spin-spin interaction presented here is a "middle-ground” treatment
in the sense that the spin was assumed to come from relativity theory, then classical
theory was used to derive the hamiltonian (29). That part of the derivation dealing
with the contact term is a modified version of that given by Bethe and Salpeter (33).

Eqn. (IIL.LEA43) describes the interaction of two electrons. For more than two

electrons, we sum over the electrons, being careful not to count twice,

u‘ng“Bz 8
Hgg = ngig 5 (85-85)8(ry5)

This equation applies equally well to atoms and to molecules. The first term, the
contact term, gives a constant contribution to the energy of a given electronic state, so
in pract;'ce it is included with the potential energy functon Uk(Q) obtained during the
derivation of the Born-Oppenheimer approximation — i.e. this part of Hy is-to be
included as an additional term in eqn. (IILC.7). bnly the remaining part, the dipblar

term, is conventionally regarded as giving rise to the electron spin-spin interaction.

15See also Levine (32) for a clearer explanation of Ferrell’'s work. The derivations by
Fermi and by Ferrell were actually for the case of interacting electron and nuclear
spins, rather than for electron and electron spins as here. The arguments and forms
of the equations are the same, however. The contact interaction in the electron—
nuclear case is called the Fermi contact interaction.
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ILF. Angular Momenta and Hund’s Coupling Cases

The last several sections have derived the various parts of the hamiltonian
operator. In this section some basic properties of angular momenta will be presented,
following which the types of angular momenta that occur in diatomic molecules and

the ways in which they couple will be considered.
NLF.1. Angular momenta

A quantum mechanical operator A is an angular momentum operator if its

space-fixed cartesian components obey the commutation rules (34a,22)
[AI ,AJ] = iTl E eIJKAK ...(HI.F.].)
where

+1 if IJK are a cyclic permutation of XYZ
€1JK = 0 if any two coordinates are repeated

-1 if DK are an anticyclic permutation of XYZ «(IILF.2)

It is often convenient to refer to a molecule-fixed coordinate system (denoted by small
xy,Z, as opposed to capital X,Y,Z for space-fixed components). When referred to
molecule-fixed axes, some angular momenta (I, L, S, J a)" obey commutation rules

analogous to those in space-fixed coordinates, namely

[A;,A5] = in L eiikPk ~(IILE.3)
while others R, F, J, g O) obey anomalous rules (22)

[A;,a5] = -in E €ijkAk .(IILF.4)

1For definitions of the angular momentum symbols, see Table II.

o~
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TABLE IL. Angular momenta present in a diatomic molecule possessing no nuclear spin.

Total anqular momentum Projection on molecular axis
Vector Quantum no. Vector projection Quantum no.
t a
Orbital ang. mom. of the i h electron 1, 1, 1, A
_ -1 i iz i
Spin of th B electron 8
pi ei 5 s iz %
.t .- .
Total ang. mom. of the i h electron 21 'ji b wi,g Ai +0
Total electronic orbital ang. mom. L=2 1i L Lz A b
- i~
Total electron spin S§=1 s; [ Sz L
- i -
Rotation of the nuclear framework R - - -
Total ang. mom. J=R+L+ S J Jz Q=A+
Total ang. mom. excluding electron spin N=R+L=J-S N Nz (= Lz) A
Total ang. mom. excluding electron orbital
ang. mom. O=R+8=J-~L -~ - -
. . . : = =J
Total electronic ang. mom ga % + § Ja Jaz ( z) f
Total atomic electron orbital ang. mom.
(e.g. for atom A) EA = F %Ai LA - -
i
Total atomic electron spin , S. =Is S - -
(e.g. for atom A) A i WAl A
Total atomic electronic ang. mom.
(e.g. for atom Aa) {A EA + %A JA
(a) _ A
Ai =0,1,2,3,... are signified by o,n,8,¢,...
() , _ e
A =0,1,2,3,... are signified by I,0,A,9,...

L9
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An angular momentum basis function |AsM A is simultaneously an
eigenfunction of three operators:
(i) A®...the square of A itself
(i) A,...the projection of A onto the molecular (z) axis
(iii) Agz...the projection of A onto the space-fixed Z axis.
The eigenvalues are h2 A(A+1), ho, and TM,, respectively, where A, ¢, and M A
are quantum numbers and are also used as labels for the basis function, i.e.
|AaM, >,
All matrix elemeﬁts of A%, Ay, Ay. and Az can be derived from the
commutation rules (eqn. (IILF.1)) without ever specifying the explicit functional form of

|AsM, > or the differential operator form of A (35a)

<A'a'Mj|A%|AaMp> = +DZA(AT1)8n0 0851 g0mim, ([ILE.5)

<A'a'MAIAzlAaMA> = +hMA6A'A5a'a8MAMA . ...(III.F.G)
106y =6y 44) V2

<A'a'Mp|A |AaMp> = +The A UATT [A(A+1)-Mp(Mp21)]

* 8A ' A 6@ ' a GMAMAi 1 ...(III.F.7)

For the molecule-fixed components of angular momenta that obey the normal

commutation rtules (eqn. (ILF.3)), we have the analogous matrix elements

<A'a' MA I AZ lAaMA> + ha&Av Aaav a'aMAMA ...(HI.F.S)

+ he [A(A+1)-a(ax1)]V?

<A'a'Mj|AT [AaM,>
hd SA ' A 6a v at 1 5MAMA ...(III.F.g)

For the molecule-fixed components of angular momenta that obey the anomalous

commutation rules (eqn. (IIL.F.4)), eqn. (IILF.8) still holds, but
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i(¢, - )
1197 a3 [A(A+1)-a(azx1)]"?

<A'a'Mj|A%|AaM,> = +he
* 6A1A6al 07-1 6MAMA ..(IIIFIO)

In the foregoing equations, ladder operators have been used; these are defined as

Ay = Ag t iAy | ~(ILF.11)

and A% = A

I+

x * iAy | (IILF.12)

-GM A’ GMAi 1» 9o and ¢, 1 are arbitrary phase factors of the basis functions. For
space-fixed components, the convention of Condon and Shortley (35(a)) is generally
adopted. By this convention, the 2A+1 |AeM,> basis functions (with My = -A,
-A+1, ..., +A) all have the Me phase factor, obtained by requiring all matrix
elements of Ay = -;-(A.,, +A_) to be real and positive. Unfortunately, for
molecule-fixed components, a standard phase convention is not in universal use, though
such a standard convention has been proposed by Brown and Howard (36) (see also

Lefebvre-Brion and Field (22)). For this work we choose

J0am0axr) | 1005700z _ (TLF.13)

IILF.2. Hund’s coupling cases

Table II serves to define the various types of angular momenta present in
diatomic molecules, though only certain ones will be relevant in any particular case.
The angular momenta present in a diatomic molecule are described as
"coupled” according to the relative strengths of their various interactions. Hund (37)
distinguished four such types of coupling, labeled (a) to (d). A fifth type, case (e),

not discussed by Hund, was introduced by_ Mulliken (38). A number of sub-categories
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have been described (36)'": cases (b') and (d') and the close-nuclei and far-nuclei
forms of case (c). Yet further sub-categories arise when nuclear spin is present (42).
All of these cases and sub—categories thereof are limiting situations. Any given state
of any given molecule may be best described by one or another of these limits or
may be somewhere in between., By "best described by" we mean the basis set is the
one in which the hamiltonian matrix is the most nearly diagonal — see next section.
Within a particular state, conditions may change from being closer to one limiting
coupling case to being closer to another ‘as rotation increases (ie. as J or N
increases).

Since the states of FeO studied in this thesis exhibit behavior typical of the
case (a) situation, the present discussion is limited to Hund’s case (a) coupling. For
the other cases, the reader is referred to such general texts as Herzberg (16), Townes
and Schawlow (43), or King (44a).

Case (a) coupling occurs when the energy separations between the components
of a 2S+1AQ multiplet state resulting from the diagonal elements of H, are much
larger than the off-diagonal elements of the S-uncoupling operator BJ i-§$. The
matrix eleménts involved will become clearer after Sections IILF.3 and IILH; for now

they are just stated without explanation:

| <nASZQIM|Hg, | 1ASEQIM>-<nASL' Q' IM|Hg, | ASI' @' IM>|=|2A]|

.(IILF.14)
|<nA529JM|Bg‘§+|nAsz'n'JM>| = BJYZS (IILF.15)
where
Z'=ZL - 1
(IILE.16)
Q= Q- 1

necessary (see, for example, Refs. (40) or (41)).
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Thus case (a) occurs when
|AA| >> BJYZS - (IILE.17)

In principle, the limit of pure éase (a) is approached more and more closely as
|A] = or as B— 0. However, in practice, if the spin-orbit interaction becomes
too large, it becomes difficult to recognize the multiplet components as belonging to
the same state and the case (c¢) model becomes more appropriate. Thus the best
examples of case (a) occur when A is moderate in value and B is small. Note also
the J-dependence in eqn. (IILF.17); as a consequence, as J increases case (a) becomes
a less good description and eventually case (b) may become a better one.

In Fig. 4 the angular momenta present in case (a) are represented as vectors.
Both the total electronic orbital angular momentum L and the total electron spin S
are coupled to, and precess rapidly about, the molecular axis, with constant projections
L, and S, and associated quantum ﬁumbers A and I, respectively. The total angular
momentum, in the absence of nuclear spin, is J = R + L + S, and its component
along the molecular axis is represented by the quantum number € = A + Z.

The quantum number Z can take the 2541 values
Z=2S, 81, ..., -8 .(IILF.18)

The total angular momentum J cannot be smaller than its component and so, for a

given &, J has values

J e, |@+1], |9+2], ... -(IILF.19)

Since S = Is;, where s; = +3, and since & = A+Z; S, Z, €, and J will all be
i

integral or half-integral depending on whether there are an even or ‘an odd number
of electrons present in the molecule, respectively, and this will hold for all states of
the molecule. The multiplicities, 2S+1, of the Qtates must correspondingly be odd or
even. With a total of 34 electrons, all states of FeO must have odd multiplicity and

the values of S, Z, ©, and J will all be integral.
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Fig. 4. Vector diagram for Hund’s coupling case (a).
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IILF.3. Angular momentum basis functions
If wo (or more) operators commute, that is, if
AB¢ - BA¢ = 0 | - .(IILF.20)
for all functions ¢, or symbolically, if
[A,B] = AB - BA = 0 _ ~(ILF.21)

then a complete set of functions must exist that are eigenfunctions of the two (or
more) operators simultaneously. While there are only a few operators that commute
with the exact hamiltonian H (two examples being J 2 and J,), there are many that
commute with parts of H — notably, and of most importance here, a number of
angular momentum operators.

In Section (IILH), H will be partitioned into two parts
H = H° + H' ..(1ILF.22)

Hund’s coupling cases each correspond to a set of mutually commuting angular
momentum operators. The partitioning indicated by eqn. (IIILF.22) can be done in
such a manner that H° commutes with the set of angular momentum operators of a
given coupling case. Therefore, there must exist simultaneous eigenfunctions of H°
and the angular momenta of that coupling case. Since the actual functional form of
an angular momentum eigenfunction does not have to be specified (Section IILF.1),
these eigenfunctions can be designated simply by listing the quantum numbers
associated with the angular momenta of the particular coupling case. These are called
good quantum numbers for H® since H° possesses only diagonal matrix elements in
this basis set

The choice of basis set is, in principle, completely arbitrary, provided the basis

set forms a complete. set of functions. However, usually one set will be more
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appropriate or convenient than the others. In this thesis, a case (a) basis set will
always be used, because the states of FeO being studied exhibit good case (a)
behavior (although one could argue that they are tending towards case (c) as a result
of the large number of perturbations present), and because the matrix elements of H,
and Hy, can be evaluated in this basis using simple ladder operator techniques (see
Section IILH) as a result of the presence of the maximum number of molecule-fixed
z-components of the angular momenta (A, Z, and ) and the absence of intermediate
angular momenta (such as N in case (b), J, in case (c)).

The good quantum numbers in Hund’s case (a) are A, S, Z, €, J, and M.
The basis states are therefore written as |nvASZIQJIM>, where nv (sometimes written
as 7) designates some particular vibronic state — n is a label standing for the
electronic state and v is the vibrational quantum number. M, the quantum number
associated with the projection of J on the space-fixed Z axis, has 2J+1 values: -],
-J+1, ..., +J. In the absence of external electric or magnetic fields, each J level
has a degeneracy of 2J+1 and M does not need to be specified in the basis set

labels. The basis states can be factorized as follows

| nvASZQIM> |nA; v; SZ; QIM>

| nA> | v> | SZ> | QIM> -(IILF.23)
where the parts have the meanings

|nA>  electronic

|v> vibrational (=radial) non-rotational basis

v

Totational (total) basis
|SZ> spin

| 20M> rotational (=angular)
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IO1.G. Symmetry, Parity, and Lambda-doubling

The concepts .of symmetry and parity form an integral part of any discussion
of A-doubling, so we begin with these. Parity refers to the behavior of the complete
wavefunction (apart from translation) when the signs of the space-fixed Cartesian
components of all particles are reversed. The parity operator or inversion operator E

can be defined by its behavior on the space-fixed coordinates of the ith

particle as'®
E*(X;,¥;,2;) = (-X;,-Y;,-2;) (IILG.1)

Another operator of importance here is the reflection operator in a plane containing

the molecular axis, 0y (xz) (46b)
Oy(xz)(Xi,¥5,23) = (x5,-y5,23) .(IILG.2)
Oy(xz) (X3 ,¥5,23) = (-X;,-Y;,-23) (IILG.3)

If the total molecular wavefunction ¢ is represented by a case (a) basis
function | nASZQJM> with signed values of A, Z, and £, and if |nASZI> represents
the corresponding nonrotating molecule basis function, and if | nA> represents the
electronic orbital part of the wavefunction .. then it can be shown that the actions

of these operators are as follows (45,22)

E* | nASZQIM> = (-1)97S*S|y -A,5,-Z,-0,3,M> - (ILG.4)
0y (xz) | MASZ> = (~1)ATL™S¥S |y A 5, -E> -(IILG.5)
Oy (xz) | 78> = (-1)A*S|q,-A> (IILG.6)

"Some authors use a different symbol: E (Larsson (45)) = I (Hougen (462)) = i
(King (44b)) = isp (Zare et al. (47)) = P (Landau and Lifshitz (35b)). Note that
the space-fixed inversion operator is different from the molecule-fixed inversion
operator.
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where (47)

1 for Z- states
s = -(IL.G.7)

0 for Z* states and (by arbitrary choice) for all -other states
See Larsson (45) and Lefebvre~Brion and Field (22) for discussions about the phase

choices implicit in these equations. The two operators are related as follows (45):
E' [ 7ASZQIM> = 0y (xz) | AASE>Cy (y) |RIM> ~(ILG.8)

where C, ) rotates the molecular frame around the y-axis by an angle of .
The eigenvalues of these operators must be *1, as follows immediately from

the fact that two successive operations must return the original eigenfunction
(E*) 2 | nASZQIM> = p? |nASEQIM> = |9ASEQIM> — p = 1 .(ILGY)
(oy(xz))21nA> = pZnA> = [nA> — De = %1 ..(ILG.10)

p (= + or —; or "even" or "odd") is called the parity of the total wavefunction,
and p, (= + or =) is called the symmetry of the electronic wavefunction, where we
are considering only the spatial (molecule-fixed) coordinates of the electronic
wavefunction (not spin). Corresponding to the two eigenvalues of E* are two

eigenfunctions, which can be distinguished by means of + and -~ signs denoting their

parity,
E*w# - +w+
* (IIL.G.11)
E Yy~ = -y
and similarly for the 0y (xz) eigenfunctions,
a w# = +w#
vixz)Ve € (1.G.12)

Oy (xz)¥e = Ve
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States with |A| 2 1, if completely isolated from all other states, are doubly
degenerate because there are two values, *|A|. As can be seen from eqns.
(II.G.4)-(G.6), for |A| 2 1 the case (a) basis functions, or parts thereof, are not
eigenfunctions of the inversion or reflection operators, since they are themselves
changed by the actions of the operators. However, we are free to take linear
combinations of the basis functions, since by the definition of a complete basis set,
any linear combination of basis functions must also be a member of the set. Hence
we can choose as our basis set those linear cpmbinations that are eigenfunctions of
E* and of Oy (xz) long as they are linearly independent. As can easily be

checked by the use of eqns. (II.G4) or (G.6), these are, for E*

| nASZQIMpP> = A [I nASZQIM> t |n,-A,S,-Z,-9Q,J ,M>] (IIL.G.13)

V2
and for Oy (xz):
| nApg> = -‘/%[lnm + |n,-A>] .(IILG.14)
where
p =2 (-1)J75*s | - (IILG.15)
Pe = * (-1)A*S | LG6)

The basis set formed by taking the linear combinations of case (a) basis functions as
in eqn. (III.G.13) is called a parity basis, since the resulting basis functions have a
definite parity. These parity basis functions correspond to the eigenfunctions called ¢*

and ¥~ in eqn (IILG.11), ie.

| nASZQIM+> = ¢+
(IL.G.17)

| PASZQIM-> = ¢~

The ocorresponding electronic wavefunctions likewise have definite symmetries as seen
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from eqn. (I11.G.14), where

| nA+> = Ve
(IILG.18)
| nA=> = Ve

Note that a total wavefunction having positive (= even) parity, for example,
does not necessarily belong with an electronic wavefunction having positive symmetry.
In fact, each § substate of a given electronic state has two components corrésponding
to.the symmetries + and -, and each of thése has associated with it a set of
rotational levels whose parities (even or odd) alternate with J. For a given value of
J, the two symmetry components have opposite parities, where the parity of a |
rotational level is that of the corresponding total wavefunction. The symmetry
components of an electronic state can be denoted in the state symbol by means of a
superscript + or -, eg. SA* or 5A-"

For Z states, A = 0, so there is no double degeneracy. I states normally

belong to Hund’s case (b), for which
E"[n,A=0,SIN> = (-1)N*S|5, A=0,5IN> (LG 19)

Thus the case (b) functions themselves form a parity basis without needing to take |
linear combinations. Since there is no degeneracy in A, a given I state will be
either a Z* state or a L~ state. If a I state is represented by a case (a) basis,
eqn. (II1.G.13) still applies, with A = -A = 0. |

The hamiltonian is invariant under inversion (i.e. H commutes with EX ); hence,
according to group theory, nonzero matrix elements can only occur between rotational

levels having the same parity, ie.

selection rule: + - + - -— - -(I1L.G.20)

YHerzberg gives a different definition of + and - on page 239 of his book (16).
However, in two other places (pp. 217 and 237) he gives the same definition as used
here. King (44c,b) also defines the + and ~ symmetry labels as used in this thesis.
Some authors (e.g. Kovics (48a) and Merer (49)) define + and - as Pe = * instead
of as in eqn. (IILG.16); this definition is not based on o,,.
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Another selection rule is (see Section IILJ)
AJ = 0 .(11L.G.21)

Since + and - parity levels so not occur in pairs in Z states as they do in non-Z
states, interaction of a non-Z state with a Z state or states results in a lifting of the
degeneracy in the non-Z state — ie. A-doubling occurs. Specifically for
odd-multiplicity states, as in FeQ, it is the § = 0 component of the I state(s) that
causes A-doubling, since the other £ components occur as parity pairs.

It is convenient to distinguish the two A-doubled members of each rotational
level by means of a label other than the symmetry label %, since this is too easily
confused with the parity symbol + with which each level is also labelled. Various
conventions have been used in the past; the modern labelling scheme uses the letters

¢ and f, defined as follows (50):
levels with parity (=1)979 are § levels (IILG.22)

where

1 for even—multiplicity states

o = -(II1.G.23)
0 for odd-multiplicity states

The definitions of e and f are such that for a given non-Z state all e levels have
electronic wavefunctions with the same symmetty (+ or -) and all f levels have

electronic wavefunctions with the same symmetry but opposite to that of the e levels

(= or +)2 When the hamiltonian matrix is written in a parity basis, it factorizes

2*Whether the e levels correspond to an electronic wavefunction symmetry of + or of
- depends on the values of A and S. This can be determined from the simultaneous
use of eqns. (IILG.13), (G.14), (G.15), (G.16), and (G.22). For example, for a A
state, these equations yield A*~ e; 5A-~ f.
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into two submatrices — one of symmetry e and one of symmetry f?' The selection

rules for interactions between levels become, in this nomenclature,

€ = ¢ f «sf «(I11.G.24)

and, as before,

AJ = 0 .(II1.G.25)

In situations where it is not known which level of a parity-doublet pair is ¢
and which f, the labels a and b are used for the levels lying lower and upper in
energy, respectively (50).

Since the @ = 0 components of I states are of particular interest (see above),
the parities and e/f labels for these are given in Table III. For other & components
and for even multiplicity Z states, eqns. (II1.G.13) and (G.15) are used to determine
the total parities just as for non-Z states.

The matrix elements responsible for the interactions that lead to A-doubling
will be discussed in Section IILH.2.a, where the specific case of A-doubling in a 5A

state will be treated in terms of an effective hamiltonian.

u1Sometimes in the literature the word "parity” is used loosely to refer to the e/f
labels, or .even to the +/- symmetries, instead of just in its restrictive meaning used
in this section — i.e. the behavior with respect to E of the total wavefunction.
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TABLE III. Total parity and e/f labels in the & = 0 components

of odd-multiplicity T states.?

+ total parity - total parity e levels f levels
1Z+, 32;, 52;, etc. even J odd J all J -
12-, 32;, 52;, etc. odd J even J - all J

() Based on Lefebvre-Brion and Field (22).
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OIL.H. Effective Hamiltonian and Matrix Elements

During the analysis of a spectrum, a process of data reduction must of
necessity occur. Starting with often as many as thousands of measurements of line
frequencies, the object is to mathematically reduce these to only a certain few
parametérs ("constants"), without loss of information, and in the process to enhance
understanding by emphasizing physical interpretations. If enough terms are included,
experimental data can always, in principle, be fitted to a mathematical formula of
some sort, but such a i)rocess is only worthwhile if the terms can be interpreted to
convey physically useful information.

Since the nuclei and elect;rons in a molecule can arrange themselves in
essentially an infinite number of ways, a complete mathematical description of a
molecule could, in principle, contain an infinite number of terms — -obviously not a
desirable nor physically enlightening approach to take. The key to making the
situation more tractable is the separation into individual electronic, vibrational, , and
rotational su_b—problems described in Sections IILC and D. While these sub-problems
still involve infinite series (see egns. (IIL.D.1) and (D.4)), in practice, since the terms
in the series become successively smaller, only a few are actually needed.

The problem is that the separations do involve approximations. In reality,
interactions between the various motions do exist, and for high resolutidn work cannot
be completely neglected.

The solution is to manipulate the hamiltonian in such a way that the
separation into individual electronic, vibrational, and rotational parts becomes an
acceptable approximation. This can be accomplished by creating an effective
hamiltonian that operates only within the rotational sub-space of a given vibronic state.
A number of methods of doing this have been developed — see, for example,
Miller (51), Soliverez (52), and Brown and co-workers (53,54). These usually start by

dividing the exact hamiltonian into two parts
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H = H° + H' «(IILH.1)

in such a manner that the matrix representation of H® is completely diagonal in vthe
basis set being used and that any off-diagonal matrix elements will come from H'
Some form of perturbation theory treatment is then used to bring the effects of H'
onto the diagonal positions or into diagonal blocks.

Ordiriary nondegenerate perturbation theory is not aﬁpropriate for this purpose
since it does not apply to close-lying energy levels such as the different spin-levels
of a multiplet state. Degenerate perturbation theory can be used (51,52) but is very
complicated in practice. An alternative method, derived initially by Van Vieck (55)
and later described in more detail by several other authors (56,57,58,22), is simpler to
use than degenerate 'perturbation theory. This method applies a form of nondegenverate
perturbation theory to situations where there are close-lying levels (such as the spin
levels of a multiplet state or several close-lying vibronic levels), and separates these
levels from all distant-lying levels. Unlike ordinary nondegenerate perturbation theory,
which only introduces energy correction terms into on-diagonal matrix positions, Van
Vleck’s method yields both on- and off-diagonal elements within the group of

close-lying levels.??
IIILH.1. The Van Vieck transformation

Following Lowdin (59), the infinite basis set is partitioned into two classes:
class 1 includes the 6ne or more (but a finite number of) basis functions whose
associated energies lie in the energy region of interest; class 2 consists of the infinite
" number of remaining basis functions, which li¢ at remote energies to the class 1

functions.

22This will be seen in eqns. (IILH.18)}(H. 22) below: there are matrix elements ﬁab
for a # b as well as for a = b.
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The Van Vieck method consists of applying a specific unitary transformation, a
type of contact transformation called a Van Vleck transformation, to the original exact
hamiltonian matrix, H, to produce a new, still exact, matrix, _ﬁ_ in which
class 1-class 2 elements are smaller by a factor of [H,,/(E$ - E$)? ? than the

corresponding elements in H. That is,

I‘l‘_liz = E (IILH.2)
or, in terms of the submatrices,
Hzz Hi2 VAN VLECK Hzo Hi ~(IILH.3)
H,y Hy, TRANSFORMATION Eu En

Since the matrix elements in E,z (=E21) are smaller than the original H,, (=H;,)
elements, it is a better approximation to neglect these elements than to neglect the
original off~-diagonal elements (as would be done in the Born-Oppenheimer
approximation). Thus, to a good approximation, an effective hamiltonian matrix can be

defined as
nett = H,, (IILH.4)

that is, only the class 1 part of E is retained.
Expressions will now be derived for the matrix elements of E” following
Kemble (57), Wollrab (58), and Lefebvre-Brion and Field (22). We start by writing

the matrix representation of eqn. (IILH.1) with a perturbation parameter A inserted,
H = H® + AH' ~(IILH.5)

where A can have values between 0 and 1, and the second term, AH] is regarded as

a perturbation. The situation for X = 0 corresponds to the unperturbed problem (the

3The symbols will be defined shortly.
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class 1 states in isolation), and when A = 1, the corresponding hamiltonian is the
exact hamiltonian for the complete system (class 1 + class 2). As used here, A is
an order-sorting parameter.

The matrix after transformation can be expanded as a power series in A,
H=H + N " + 22H? + ... .(IILH.6)

It is the aim of the Van Vleck method to eliminate the first-order terms in A that
connect classes 1 and 2. This is accomplished as follows. Let T be a unitary
matrix, which can always be written in terms of a hermitian matrix S as follows,

then expanded,
: 2 I3
T=eS -1+ ing - 252 - %‘ S + ... (IILH.7)

Performing the unitary transformation indicated by eqn. (IIL.H.2)

e o]
I

3 (0 31 T7(2
—_Ii()+7\§()+)\2§()+...

(1 - i - -;‘-zgz + ) (HO + AH'") (1 + iAS - %zgz - .

(IILH.8)

terms in equal powers of A can be equated,
A°: H® = HO (IILH.9)
A H = H' + i(H°S - SH®) ~(IILH.10)

A2: H® = i(H'S - SH') + SH®S - 1(H°S? - S§%H°) .(ILHII)

The functional form of the elements in S has so far not been specified, other
than that it be hermitian. We are free to construct S so that T will transform H
into the desired approximately block-diagonal form. Denoting the individual elements

within each class by Roman letters (a,b) for class 1 and by Greek letters (a,f) for
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class 2, S is constrained s§ that no mixing can occur among the class 1 functions,
S‘ab = 0 .(IILH.12)

or among the class 2 functions, |
Sep = O ~(IILH.13)

for all values of a and b (a # b) and of a and § (a # B). In order to force the
first order elements of E off-diagonal in class to vanish, it follows that, for any

values of a and a,

iH]
aa
Saq = To—=3 ~(IILH.14)
ae = EQ - EJ

where

E2 = <a|H%|a> = H?
2 = a8 (IILH.15)
EJ = <a|H®|a> = HJ,

This can easily be checked by substituting eqn. (IIL.H.14) into the appropriate element

of (IILLH.10), which we look at first:
3N - ' : -
H'aq = Hag * 1[(HS)5, - (SH®)g,]

= Hyg * 1[H2;S54 ~ SaqHaal (TILH.16)

where use has been made of eqgns. (IILH.12) and (H.13), together with the diagonal
nature of H® (within the classes as well as between classes). Substitution of

eqns. (IILH.14) and (H.15) gives

Oyt 0

}’:i(‘l) = H! - EaHaa _ HéaEa
= 0 - () 0 - 4]
aa aa Ea Ea Ea Ea

Hya - Hag
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HD =0 ~(ILH.17)

which is the desired result. As a consequence, the lowest order class 1-class 2
interaction terms in H occur in the second-order term H‘?, and these do not
contribute to the energies until the fourth order (56).

The Van Vieck transformation is completely defined by eqns. (IILH.9) - (H.14)

and similar equations for higher orders. The class 1 block matrix elements E,, are

21 - A ()] x4 )] 17 (2) T7(3)
Hab = Hab + Hab + Hab + Hab + .. .(IILH.18)
where

Hip = <a|H®|b> = EZ8,p ..(IILH.19)

Hip = <a|H'|b> = Hip | .(IILH.20)

Y = 4z |2e2b ., 2aab (IILH.21)

=b [E =5y " Bp - By

3% - Héch'zBbe

ab = gl (B - EQ (E§ - ER)

- 15 acHcaab + éa ac éb
24 c| BT - ED(EY - EY) (B - ED(ES - ET)

-(IILH.22)

where 6,y is the Kronecker delta. Notice that the zeroth- and first-order terms for
the (a,b) element are the same as the (a,b) element of the exact hamiltonian,
ie. H.y, The higher-order terms fold into the class 1 submatrix the effects that
were originally off-diagonal in class.

The second-order term is often rewritten in terms of an averaged energy
denominator

§2 -3 aatab
ab " ¢ TEJ + ER)/2 - Eg

(TILH.23)
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which differs from the version given in eqn. (IILH.21) by a negligible amount if

EJ + EJ
a b _
— ES .(IILH.24)

|[ES - ERI <<
Furthermore, when several of the class 2 levels are close in energy, it is sometimes
convenient to similarly use an average energy value E_a for these levels. This will be
done in writing eqn. (IILH.4l) in the next section. In a similar manner to
eqn. (IILH.24), this approximation will be good if the energy separation between the
class 2 levels involved is much smaller than the class l-class 2 separation.

The summations over the class 2 levels in the above equations are for all spin
substates of all vibronic levels of class 2, regardless of how near or far in energy
they lie. and regardless of symmetry species, including ionization and dissociation
continua (which are integrated over rathe_r than summed over).

In summary, the Van Vleck transformation has eliminated the first-order
off~diagonal terms connecting the class 1 levels with all distant states. The
information has not been lost but has been "folded” into the class 1 block of H.
The remaining class l-class 2 off-diagonal elements, which are very small, are then
neglected; only that part of the transformed hamiltonian acting within the class 1
block is retained, and this is called an effective hamiltonian. Note that the effective
hamiltonian is really defined in terms of its mﬁx representation (eqn. (IILH.4)); thus

its form is specific to the particular basis set being used.

II.H.2. Construction of the effective hamiltonian and matrix elements in a case (a)

basis

Brown et al. (54) and Brown and Merer (60) support the concept of an
effective hamiltonian involving a minimum number of experimental fitting parameters.
Certain (small) interactions are neglected in the construction of the effective

hamiltonian; their effects are then incorporated into the other parameters when a fit to
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the experimental data is performed. Thus the physical interpretation of the parameters
differs somewhat from what it would be if the parameters were the exact parameters.
This is a disadvantage but is done in the interests of practicality.

For the reasons stated ai the end of Section IILF.3, a case (a) basis
| nPASZIQ> is chosen. We write the effective hamiltonian for the rotational levels of

any given multiplet state as

eff eff eff eff eff eff eff eff
H = Hoy *+ Hp "+ Hgg '+ Hgg + Hgp + Hog + Hip  .(IILH.25)

where the terms are the vibronic, rotational, spin-orbit, spin-spin, spin-rotation,
centrifugal distortion, and lambda—_doubling terms, respectively. Zare et al. (47) have
given expressions for most of the terms in the effective hamiltonian, and these were
derived in a manner similar to that used here. Some of their signs are different
from ours, however, due to a different phase choice.?*

The vibronic hamiltonian is of little interest here and will be handled in a
phenomenoiogical manner by including T, terms in the diagonal positions of the
energy matrix to represent the vibronic origins. |

The rotational hamiltonian is given by?*

Hr = B(r)_l32 = B(r)(g - E - §_)-(Q - E - §_) ...(ITILLH.26)
where
'_ h
B(r) - eﬂzc“rz . ...(HI.H.27)

The constants have been defined previously (cf. eq. (IIL.D.2)) except that the

%4They chose ®a ~ a1 = 3 ip eqn. (IILF.9) for S—, in contrast with our
choice of +1 (eqn. (IILF.13)).
*Some authors (e.g. Hougen (46) write H. = B(r) (R;+R§.) to explicitly show

that RZ2 = 0 in a diatomic molecule. However, if R2 is included, as here, all
contnbuﬁons from it will cancel each other out anyway. Thus both versions of H,
are completely equivalent.
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internuclear separation is now represented by small r to avoid confusion with R.

Eqn. (IILH.26) can be expanded to give

He = B(r)[Jg? + 82 + LI - 2J,L, - 23,5, + 2L,S,]

+

B(r)[LZ + L§]

B(r)[2(JySy+JySy) = 2(LySy+LySy) + 2(JyLy+JyLy)]

~(IILH.28)

The term on the second line of eqn. (IILH.28) possesses non-zero matrix
elements that are diagonal in all quantum numbers associated with the case (a) basis,
including A, but they can be on- or off-diagonal in electronic state. It can be seen

how this arises by rewriting this term in ladder operator form (cf. eqn. (IIL.F.12))
[L + 03] = IL7L7 + L7LY] (IILH.29)

The ladder operators ladder up and down in A, but the final state, although having
the same value of A as the initial state, may be different. Those matrix elements

diagonal in electronic state are often represented by the symbol B <L i> (46¢)

B,<ASIQJ|LZ + L§|ASZQJ> = B,<ASZQJ|L? - LZ|ASLQJ> = B, <L?>

...(IIL.H.30)

where the vibrational level has been integrated over (eqn. (IILD.3)). It can be shown
that, to a good approximation, this term is constant for a given electronic state
(46c,22). We therefore neglect it entirely from Hgff which is equivalent to saying
that we include it with the electronic energy (where it, incidentally, causes part of the
electronic isotope shift (9)). Those elements off-diagonal in electronic state will
presumably also contribute an approximately constant shift to a given electronic state;
in any case, their effects will be small, so they are ignored also.

All the terms in the first line of eqn. (IILLH.28) are diagonal in all quantum

numbers within a given vibronic state, and furthermore, there are no off-diagonal
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elements between different electronic states, — eg. for J 2
<n'v'A'SfZ'Q'J'M‘|B(r)g2|nvASZQJM>
= va VJ(J+1 ) 60 ' n(SAv ASS v Sazv Zagv QﬁJv J&MVM (HIH31)
where

By

v = <V'|B(r)|v> = —h__ |#|v> ~(IILH.32)

8wicu

These terms are therefore assigned to H® for the purpose of performing a Van Vieck
transformation. (For the moment, the existence of non-zero matrix elements of these
terms between different vibrational levels of the same electronic state

(cf. eqn. (IILH.32)) will be ignored.) The terms from the third line, which are

off-diagonal in at least one quantum number, then form H!

H) = B(r)[J? + s§? + L - 2J,L, - 2J,S, + 2L,S,] .(IILH33)
Hp = - 2B(r)[(JySy + 3ySy) = (LySy + LySy) + (JyLy + JyLy) ]

-.(IILH.34)
The matrix elements of H. for a given vibronic state are, through first order,
<NVASZIQ|H_ °|nvASEJIR> = B,[J(J+1) + S(S+1) - @2 - £2]
-(IILH.35)
<n,v,A,S,Z+1,Q+1,J|HL | nvASEZIQ>

= - B,[J(J+1) - Q(Q1)]1V2[s(s+1) - Z(Z£1)]1"Y2 _(ILH36)

where the vibrational level has again been integrated over (eqn. (IILD.3)). The
diagonal elements (eqn. (III.H.35)) have come from the terms in (IIL.H.33) by means
of eqns. (IILF.5) and (F.8), while the off-diagonal elements (IIL.LH.36) have arisen from
the ~2B(r)JxS, + J ysy) operator with the aid of eqns. (IILF.9), (F.10), (F.12), and

(F.13). The latter operator, which can be rewritten as

-2B(r) (3,Sy + J,Sy) = -B(r)(J%Z" + J7z*) (IILH.37)
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mixes together the components within the multiplet state and is called the
S-uncoupling operator; it is responsible for the transition from Hund’s case (a) to
case (b) as J increases. The remaining two terms in eqn. (IILH.34) only produce
non-zero matrix elements that are off-diagonal in A and these therefore do not
contribute in first order.

Second~ and higher-order terms arising from matrix elements connecting the
multiplet vibronic state of interest with other, distant vibronic states could be included
in H?ff However, we choose not to do so. Their effects will be included as, or
absorbed into, other parts of the total effective hamiltonian. Second- and higher-order
contributions from the terms in eqn. (IILH.33) and from the S-uncoupling operator in
eqn. (IILH.34) provide a centrifugal distortion correction to Hi’ff This will be included

eff

as part of Hey.

The operator 2B(r)(L;S, + L BUXL*Z- + L"Z*) has the same form

X ySy) =

as part of the spin-orbit hamiltonian’* namely A(r}L,S, + LySy) (see below), so
that only their sum, [A(r) + 2B(r)](LxSx + LYSY)’ will be determinable. Since for

case (a) states A(r) is larger then B(r), the combined operators are included with Hsg

where they contribute in second and higher orders. They also contribute to Hiflf).

The operator -2B(r}J,L, + J = -B(r)(J+ L+ J L+) is known as the

yly)
L-uncoupling operator, and it is responsible for a. gradual transition from case (a) to
case (d) as J increases. It possesses non-zero matrix elements between electronic states
differing by oﬁe unit in A and will therefore be assigned to Hif]f).

In the foregoing discussion, it has actually been the effective rotational matrix
elerﬁents that we have been deriving (cf. eqn. (IILH.4)). The effective rotational

hamiltonian then follows: it is that hamiltonian which when operating solely within

as is done in calculating the higher—order spin-orbit terms (22) but this is ignored
here since A(r)>>B(r) for FeO and since the difference will be absorbed by the
effective nature of the parameters.
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the vibronic state of interest produces matrix elements that are the same as the

effective matrix elements. The effective rotational hamiltonian is

eff_ r _ - _ o 1te- -t
Ho © = Byild?+8%?+L2-2J,L,~2J,S,+2L,S,~(J"S" +J°8")]

..(IILH.38)

for a particular vibrational level of the multiplet state under consideration. Sometimes

this is written as

~ ~

= ByR? = By(J - L - §)2 ~(IILH.39)

but then one must remember that certain parts of this are to be thrown away, as
discussed above.
We next consider that part of the centrifugal distortion hamiltonian H_4 arising

ff

from H., and use it w illustrate how second- and higher-order contributions to H®

are handled. As a result of the r-dependence of B(I),
v'v # 0 .{(ILH.40)

(cf. eqn. (ILH.32)). Thus all the terms in H,, except those off-diagonal in A

(i.e. except the last two terms in eqn. (IILH.34)), musei the vibrational levels within a
given electronic state to couple together. If the vibraﬁonal spacings are large
compared with the splittings between the multiplet components, then the matrix
elements off-diagonal in v can be treated by the Van Vleck transformation method.
They give rise to second- and higher-order contributions to the matrix elements acting
within the vibrational level of interest 'We must now repartition H. such that all
those terms that previously formed H? (eqn. (IILH.33)) are now included with Hy,
leaving HY = 0. From eqn. (IILH.23)

2 Actually Hg and H. could have been defined this way in the first place instead of
as in eqns. (IILLH.33) and (34), and the same results would have been obtained. It is
conventionally done as here, however, to emphasize the usefulness of Hund’s coupling
cases.
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<nVASI . J|H] [nv'ASI'Q'I><nv'ASE'Q'J|H |nvASL,Q, J>

ﬁ (2) - b
ab ‘ -
v #EV . Env = Enye
Q' ..(IILH.41)

where E;, is the average value of the energies of all the multiplet components of
vibrational level v, and E, v has the corresponding meaning for level v. Using these
average energy values is a good approximation provided t.ha}t Ev = Epy Is large
compared with the multiplet separations. As per Section IILD, eqn. (IILH.4l) can be

separated into a product of _radial (i.e. vibrational) and angular (i.e. fotational) parts,

qo - | » <nv|B(r) |nv'><nv' |B(r) |nv>
v'#v Env = Epyr

.[93:2' <ASZaQaJ|52|ASZ'Q'J><ASZ'Q'JIBZ|ASZbeJ>] (IILH.42)

where we have written 52 for convenience, but it must be remembered that certain
parts are to be neglected. Following Zare et al. (47) (see also Albritton et al. (61))
we let the first factor in this equation define -D,, the centrifugal distortion constant

for the vth vibrational level,??

<nv|B(r) |nv'><nv' |B(r)|nv>

..(ITIL.LH.43)
v'#v Env = Epye

%D could ailtematively be called Bpy by analogy with Ap, Ap, etc. D is more usual

When working out the matrix elements of Hgg,r' the angular part of eqn. (III.H.42)
or (H44), ie. 9§Z'<Zaﬂa|32 |Z'Q'><Z'Q" |R? |Z,0Qp>.

is conveniently calculated by writing down the matrix of H,. for any vibrational level
but with the common factor B, omitted, then squaring it This automatically carries
out the summation ? .- It works because, as a result of the factorization into

radial and angular parts, the angular parts are the same for all values of v' including
v = v,

The summation over v' in the foregoing equations, in principle, really includes
integration over the vibrational continuum. However, as the |v'> states differ
progressively in quantum number from the ]v> state, the increasing difference in
number of nodes in the two states results in a rapid decrease in magnitude of the
nondiagonal matrix elements <v |B(r) |v'>, so that, except for states near the
dissociation limit, the contribution from the continuum is seldom needed (61).
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(2
Hyp = ~Dy<ASZ Q,J|R"|ASZ,J> (IILH.44)

Higher—order centrifugal . distortion terms can be included as needed, though
they seldom are. These are worked out in a similar manner to the second-order

term (61). The effective centifugal distortion hamiltonian for rotation is then

chfifr = =D, R* + H,R® + ... ~(IILH.45)

The microscopic forms of the spin—orbit, spin-rotation, and spin—-spin
hamiltonians have been given earlier in eqns. (IILE.17) and (E.18); (E.25) and (E.26);
and (E.44); respectively. However, these forms are not practical for the purpose of
data reduction. It is traditional to replace them by phenomenological expressions

involving a limited number of adjustable parameters:

Hgo = A(r)L-S | .(IILH.46)

Hg, = 7(r)R-S or Hgy = 7(r)N-S (IILH.47)

Hgg = 2A(r)(3sZ - s2) (IILH.48)
where

L = z;_ le .(IILH.49)

.(IILH.50)

and S =Z s
2 e €

Two forms of the spin-rotation hamiltonian have been given in eqn. (IILH.47).
Both forms are in common use in the literature. For case (b) states, the form in N
is perhaps more convenient (47,22), but. for case (a) states the choice is arbitrary.
Since N = R + L, the two forms differ by the amount 7(r)L-S, which is of the
same form as the spin-orbit hamiltonian, A(r)L-S. Therefore the choice of form

used for H; affects the value of A, but since usually A >> v, this difference can
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normally be -ignored (except for very light molecules like H, (62)). The 7(r)g-§_
~version has been used in this thesis.
By means of the Van Vleck transformation method, the effective spin-orbit

hamiltonian is found to have the following diagonal contributions:

eff

Heo =0 (IILH.51a)
effw

Heo = A L,S, ~(IILH.51b)
eff

Heq = 22\, (382 - s?) (IILH.51c)
effa _ S_[S2 - 1(382 - 1)] I 1
HSQ = n,L,S,[S2 - 1(38 1 .{IILH.51d)
peEE™ _ 1 13568 - 305252 + 2552 - 652 + 354] ILH.51
so = 130y z 279z z 2 2 -(IILH.51¢)

As discussed earlier, these terms contain small contributions from the
2B(r)(LxSx + LYSY) part of H,.. There are also even smaller contributions from
=y(DLySy + Lysy) if the R-S version of He; is used — see below.

' It may seem excessive to include terms as high as fourth order in pertubation
theory. However, for quintet states, with five substates and four spin-orbit intervals, it
is necessary, in principle, to use five parameters to give their positions. These can be
written either as five term origins T, as has been done by Cheung, Zyrnicki, and
Merer (63), or as one vibronic term origin To plus four péramg:ters characterizing the
four spin—orbit intervals. The latter method has been used here; hence the necessity
of going to fourth order.

The spin-rotation hamiltonian expands out as

ja ol
|

sr = 7(r)(J - L - 8)-§

~

Y(E) (3,8, = LS, = 82+ (JySy + JySy) = (LySy + LySy) ]
~(TILH.52)

from which we get
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ffw
Hop =0 . .(IILH.53a)
peEEM 1S, - Los. - §2 + 1(J*s™ + 3°s%)] 1ILH.53b
sr = Yvl¥zoz z°z 2 FAtY J ~(IIL.H.53b)

Higher—-order contributions are usually not needed, since v is usually small in

comparison with A. In any case, higher-order contributions from

-Y(DLySyx + LySy) can be assumed to be included in with the corresponding

higher-order terms of H:g |
Comparison of eqns. (III.LH48) and (H.51c) will show that the (first-order)

spin—-spin hamiltonian has exactly the same form as the second-order spin-orbit

hamiltonian. The two are 100% correlated and are experimentally indistinguishable.

The parameter A, therefore contains contributions from both interactions. Since the

second-order spin-orbit contribution is usually the larger, we set

eff
Hgg = 0 (IILH.54)

and let the spin-spin interaction be include