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ABSTRACT

In traditional theories for electrolyte solutions the solvent is treated
only as a dielectric continuum, A more complete theoretical picture of
electrolyte solutions can be obtained by including the solvent as a true
molecular species. In this thesis we report results for the structural,
thermodynamic, and dielectric properties of model electrolyte solutions which
explicitly include a water-like molecular soivent, The ions are modelled simply
as charged hard spheres and only univalent ions are considered. The
water-like soivent is also treated as a hard sphere into which the low-order
muitipole moments.and polarizability tensor of water are included. The
reference hypernetted~chain theory is used to study the model systems, The
formalism of Kirkwood and Buff is employed to obtain general expressions
relating the microscopic correlation functions and the thermodynamic properties
of electrolyte solutions without restricting the nature of the solvent, The low
concentration limiting behaviour of these expressions is examined and
compared with the macroscopic results determined through Debye-Huckel theory.
The influence of solvent polarizability is examined at two theoretical levels,
The more detailed approach, the R-dependent mean field theory, allows us to
consider the average local electric field experienced by a solvent particle as a
function of its separation from an ion and is shown to have an effect upon
the limiting laws of some thermodynamic properties, Model systems for liquid
water are investigated over a large range of temperatures and pressures and
are found to have dielectric constants which agree reasonably well with
experiment, Model aqueous electrolyte solutions are studied both at infinite
dilution and at finite concentration, but only at 25°C. The equilibrium
dielectric constants of these solutions are qualitatively consistent with those
of experiment. A remarkable diversity of behaviour is obtained for our model
solutions by simply varying the hard-sphere diameters of the ions. In many
cases the behaviour observed for thermodynamic quantities is in accord with
experiment, The ion-ion, ion-solvent and solvent-solvent correlation functions
of the solutions are examined in detail, revealing a wealth of structural
information, lonic solvation is generally found to be very sensitive to the

details of the interactions within the system.
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CHAPTER |

INTRODUCTION

The study of electrolyte solutions, particularly aqueous electrolyte
solutions, has been one of the most active areas of physical chemistry. The
considerable attention received by aqueous electrolyte solutions appears to
have two principal motivations. The first arises from an innate interest in
water, or in this case, in water as a solvent, Of course, the importance of
water as a chemical substance cannot be overstated. Not only is water the
only naturally occurring inorganic liquid on earth [1], but its unusual physical
properties [2-4] and the fact that all biological processes use it as a soivent
[25] make water essential to all life on this planet, The second arises from
the central role charged species play in many chemical reactions and
electrochemical processes [5]. It is little wonder then that aqueous electrolyte

solutions have received so much attention.

An electrolyte solution is a homogeneous liquid consisting'of" an ionic
solid, commonly known as a salt, dissolved in a polar solvent, a liquid usuélly
characterized by a /arge dielectric constant, For agueous solutions the solvent
is water. An electrolyte solution is often defined as one having a high
conductance [3]. In this study we consider only strong electrolytes, i.e., those
which can be assumed to fully dissociate (or ionize) in solution, Aqueous
electrolyte solutions have been the subjects of numerous experiments and a
great deal of experimental data on their macroscopic properties has been
accumulated [6-8]. Properties such as densit‘y, vapour pressure, and apparent
dielectric constant have been measured and their dependence upon salt
concentration determined [6-9]. Unfortunately, much of this data has proven
difficult to interpret and the details of the underlying microscopic properties
remain rather poorly understood [5-12]. We know that the solute exists as a
free ionic species in solution, but only recently [13-16] have direct
measurements of the microscopic structure in solution (i.e., the ion-ion,
ion-solvent, and solvent-solvent distribution functions) been possible, However,
these measurements are difficult to perform. Moreover, the results obtained

are somewhat ambiguous [13,16] and provide only limited information, Thus,



the details of the microscopic structure of aqueous electrolyte solutions and
how they relate to macroscopic properties remain poorly understood. What is
needed then is a more complete microscopic understanding of electrolyte

solutions in order to more fully understand the macroscopic observations, It

is to this point that this thesis is addressed.

The study of electrolyte solutions began during the 19th century in that
field of chemistry which has now become known as electrochemistry,
Investigators [17] were intrigued by the fact that matter was transportéd in
electrolyte conductors but not, of course, in electronic conductors. Clausius
[17] noted that ionic solutions obey Ohm’ law and concluded that there must
be electrically charged particles present, In 1887 van’t Hoff [18] published
experimental results which clearly indicate that conducting solut“ions possess
colligative properties distinct from those of non-conducting solutions. These
resuits were interpreted by Planck [19] as a possible indication of ionization
of the solute, However, the present day theory of electrolyte dissociation in
solution is usually credited to Arrhenius [20] who first published his theory in
1887. At the time this seemed like a radical idea, but with the support of a

wealth of data it gained general acceptance by the turn of this century,

Many attempts were made during the first decades of this century to
develop equilibrium theories, and later dynamical theories, to describe
electrolyte solutions and their behaviour, The long-range nature of the ion-ion
interactions made it possible to derive [21] limiting laws for many of the
properties of dilute electrolyte solutions. These theoretical results were found
[21] to be in very good agreement with experiment, The theories of Debye
and Huckel [22] and of Onsager [23] stand out today as landmarks., The
theory of Debye and Huckel for the equilibrium structure of electrolyte
solutions -became, and probably remains, the standard approach [356] used in

discussing or describing them.

Much of the work done on the equilibrium theory of electrolyte
solutions [6,21,22425] in the 50 years after the advent of Debye-Huckel theory
was concerned with justifying and improving the theory itself, However, the
basic approach to electrolyte solutions used by Debye and Huckel [22], in
which the solvent is treated simply as a dielectric continuum,6 remains
essentially unchanged. It was actually McMilian and Mayer [26] who formally

showed that the solvent need not be explicitly considered as a molecular



species if an effective solvent averaged ion-ion interaction potential is used,
Of course, implicit in the above statement is the assumption that all effective
many-ion potentials can be ignored [25], although this assumption is really

only valid at very low concentration, Within McMillan-Mayer theory [26], the

effective ion-ion potential can be written in the form [13]
| q; q;
s i
u .(r) = wWir) + = (1.1)
13 1] er

where r is the distance between the ions i and j, q, and qj are their charges,
€ is the dielectric constant of the solvent and u?j(r) is the short-range
ion-ion interaction. Models for electrolyte solutions which are defined in
terms of eq. (1.1), /.e., which treat the solvent as a dielectric continuum, are
know as primitive models, |f we take u?j(r)zo, we obtain the Debye-Huckel
primitive model, The restricted and extended primitive models [1327] result
when u?j(r) is a simple hard-sphere potential [27]. The so-called refined
primitive models [2829] attempt to use more realistic short-range ion-ion
interactions while also incorporating short-range solvent effects, Primitive
model systems have been extensively examined [242527-30] and researchers
have been fairly successful at fitting the concentration dependence of many
thermodynamic properties of aqueous electrolyte solutions [28] with these
simple models. Unfortunately, primitive model studies have given very little
insight into the microscopic structure of real aqueous electrolyte solutions
because they ignore the molecular nature of the solvent. Therefore, the
primitive model is not particularly useful if one wishes to investigate the
microscopic properties of electrolyte solutions and determine how they may

affect the macroscopic behaviour,

Of course, before one can really even begin to consider investigating
mode! aqueous electrolyte solutions which explicitly include the solvent as a
molecular species, one must first be able to'study and characterize the pure
solvent. The first computer simulation studies [31-33] of water-like models
took place almost 20 years ago. Since then numerous other computer
simulations [33-49] have been carried out on many different water models,
Several of these models have been found to reproduce the microscopic
structure and many of the thermodynamic properties of liquid water at normal
temperature and pressure quite well [34364147], although almost all models

give rather poor results when studied in the gas or solid phase [36]. Also,



the dielectric properties of two of the more successful models, the MCY [49]
and TIP4P [41], have recently been shown to agree quite poorly with those of
real water [4546]. This result has been attributed [46] to the fact that these

models neglect molecular polarizability,

Computer simulation techniques have also been used fairly extensively to
examine model aqueous electrolyte solutions [3450-59], with alkali halide
solutions receiving the most attention, A variety of ion and solvent models
have been employed [345859] to study ihfinitely dilute solutions (i.e.,
containing only one ion) and those at moderate to high concentration (i.e.,
> 1M). These investigations have concentrated mainly on the determination of
the solvent structure around the ions [3458], for which they obtain reasonable
agreement among themselves and with experiment [13,16]. Unfortunately,
computer simulation studies of aqueous electrolyte solutions are somewhat
limited as to the systems and the propérties which can be examined, This is
due mainly to the fact that they consider systems of only a small number of
particles, Hence, the ion-ion and long-range ion-solvent structure and the’
many thermodynamic properties which depend upon them (e.g., Var Vz, etc.) are
not currently accessible through computer simulation, Moreover, one can not

study solutions at low concentration,

Integral equation methods, commonly used in liquid state theory
[27,33,60], have been used very successfully to investigate primitive model
eliectrolyte solutions [24,25,27,28,30]_ They have also been shown to be very
useful in the study of multipolar fluids [27,61-72]. Solutions of hard-sphere
ions in a dipolar solvent [73-78] were examined extensively with integral
equation techniques, More recent work [79-82] has focussed upon the
calculation of ion-ion potentials of mean force at infinite dilution in
water-like solvents, Unlike computer simulation, integral equation theories
consider an infinite system and will, in principle, yield all equilibrium
properties of the solution, Furthermore, the entire concentration range can, for

the most part, be investigated with integral equation theories,

In the present study we will use integral equation methods first to
examine a water-like solvent and then to study model aqueous electrolyte
solutions, both at infinite dilution and at finite concentration, We stress that
we can consider only eguilibrium properties of these systems because of our

choice of an integral equation approach, The solvent model we shall



investigate is a simple one which incorporates a set of known (measured)
molecular properties of the water molecule with no freely adjustable
parameters, When determining the properties of this water-like solvent,
particular attention will be paid to its dielectric constant, since e represents
the ability of the solvent to screen the coulombic forces between ions that
are far apart (¢f. eq. (1.1)). Model aqueous electrolyte solutions will then be
studied, The structural, thermodynamic and dielectric properties of these
systems and their dependence upon salt concentration will be determined. The
results obtained will be compared with those of real solutions., These
comparisons will be mostly qualitative in nature, Their basic purpose will be
to help identify which microscopic properties are important in ionic hydration
and in determining the macroscopic properties of aqueous electrolyte solutions,
We also hope to demonstrate the usefulness of the current approach, It
should also be noted that in the present study a great deal of theoretical
formalism is introduced and derived, most of which can be applied to more
general models than those examined here, Most of the work presented in this
thesis is being prepared for publication [8384], or has been submitted or

accepted for publication [8586].

In Chapter |l we define the models considered in this study and
describe the speci.fic integral equation theory (the reference hypernetted-chain
[68]) employed. A general formalism which relates certain thermodyhamic
properties of electrolyte solutions to integrals of radial distribution functions
is outlined in Chapter lil. The Ibw concentration behaviour of our expressions
is examined and the limiting laws obtained. These limiting laws are in terms
of microscopic properties and can be compared with the macroscopic (e.
Debye-HﬂckeI) results, In Chapter IV we discuss two levels of theory in
which the polarizability of the solvent can be taken into account, We find
that polarization can have long-range effects which may influence the limiting
laws of some thermodynamic quantities, The results obtained for the pure
solvent are given in Chapter V., while in Chapter VI we present our findings
for model aqueous electrolyte solutions, both at infinite dilution and fihite
concentration. Finally, Chapter Vil will summarize all the results presented_in
this thesis, pointing out areas which need' further investigation and indicating

possible extensions of the present study,



CHAPTER I

STATISTICAL MECHANICAL THEORY

1. Introduction

Statistical mechanics plays an essential role in the present day study of
real systems [273387]. Its principal function is often viewed as being a
bridge between the disciplines of thermodynamics and quantum (or classical)
mechanics. Thermodynamics is primarily concerned with the measurement and
interpretation of the macroscopic, or bulk, properties of materials while
quantum mechanics is, at present, restricted to the study of individual (or very
small numbers of) atoms or molecules within materials. Like thermodynamics
and quantum mechanics, statistical mechanics embodies a very large theoretical
framework built upon only a small number of axioms., This development is
not given here but may be found in introductory books [87-89] on statistical

mechanics,

Statistical mechanics provides several different approaches through which
to study matter [8788). Distribution function language [273387] is frequently
used in such studies since it allows a complete but compact description of
the microscopic structure, Knowledge of the probability distribution functions
is sufficient, in general, to determine all thermodynamic properties of a liquid
system, In all statistical mechanical studies of matter, we start by first
defining a microscopic model for the system of interest. It is usually
sufficient to define such a model by specifying the interaction potential
between particles of the system. Then given this interaction potential,
statistical mechanical theory provides us with a means of determining the
average microscopic structure which in turn specifies the macroscopic
properties of the system, This chapter will outline the theoretical approach we

have used,

in this thesis we are concerned with the study of systems in the liquid
state, Most liquids and solutions can be reasonably described using classical
statistical mechanics [2733]. Ligquid hydrogen, liquid helium, and solvated
electrons are some of the few exceptions, Two basic approaches are currently

employed to study classical fluid systems; they are computer simulation and



approximate methods,

Computer simulation [27 3387] can be regarded as essentially an exact
method aithough it usually requires considerable computational resources. All
but the simplest model systems require several hours on a powerful computer
to obtain statistically meaningful results, even with present day
super—-computers, |In order to keep such times on a reasonable scale only
small systems, usually consisting of 100-1000 particles, are studied., As a -
result quantities which are very sensitive to boundary conditions, such as
dielectric constants, or systems which have long-range forces, such as

electrolyte solutions, pose major problems for computer simulation,

A great deal of effort has been spent in developing approximate
theories [27336087]. Up until the advent of the modern computer some 25
years ago, they represented the only means through which model systems
could be studied. Approximate theories do not suffer from the statistical or
boundary condition problems present in computer simulation., Also, they usually
require much less computation than do computer simulations, However, being
approximate, they can only give estimates for the unique set of properties

that exist for a given model system,

Integral equation theories are one set of approximate methods which
have been used extensively in the study of fluids [273360,6187]. Most
integral equation theories can be written as two coupled equations. One of
these, the Ornstein-Zernike (0OZ) equation [90], is a basic relationship in the
equilibrium theory of fluids, The 0OZ equation is an exact relationship. A
second equation is required to close the system of equations, hence the term
closure is given to this expression. An integral equation theory is usually
known by the name given the closure equation. At present only approximate
closures exist., Therefore, it is the closure approximation which determines thé
accuracy of the integral equation theory, Also for all but the simplest cases,

these theories must be solved numerically,

There are several different integral equation theories which have been
extensively studied [2733,6087]. These include the Mean Spherical
Approximation (MSA) [91], the Percus-Yevick (PY) [92] theory, and the
Hypernetted-Chain (HNC) [83-97] theory. Further discussions of these theories
can be found elsewhere [2733,6087]. Of importance here is the fact that the
HNC theory is known [27,6087] to be superior for fluid systems possessing



long-range interactions (e.g., charged systems),

Until recently, it was not possible t.o solve the HNC theory for systems
characterized by non-spherical potentials. As a result further approximations
were made to the HNC ciosure in order to obtain several related theories,
inctuding the linearized HNC (LHNC) [62] and quadratic HNC (QHNC) [63]
approximations, The LHNC and QHNC theories have been used extensively to
study systems with non-spherical interaction potentials and have been shown
to give good results for some multipolar fluids [61-65,67 69]. However, recent
advances [68] have made the use of the full HNC and the closely related
reference HNC (RHNC) [68] possible in the investigation of systems possessing
anisotropic potentials., The models studied include dipolar hard spheres [68]
and S-‘tockmayer particles [70], as well as dipole linear quadrupole systems
[71]. Very recently, the HNC was used to examine liquid crystal models [98]
as well as hard ellipsoids and spherocylinders [99,100]. In all cases the HNC

has been found to agree reasonably well with computer simulation results,

In this chapter we are concerned with the development of the classical
statistical mechanical theory necessary to study model water and electrolyte
solution systems using integral equation methods, primarily the RHNC theory,
Since the water molecule has C2v symmetry [4], we have restricted ourselves

to mode! systems in which all species have at least C symmetry, We shall

consider the simplifications that result from this restrictzi\;n. Section 2 of this
chapter will deal with the interaction potentials used in this study. In section
3 we describe that generalized reduction of the OZ equation for a multi-
component system employing the rotational invariant language [68,101-103]
outlined in section 2, A discussion of the HNC and RHNC closures and their
application is given in section 4, Section 5 of this chapter will outline some
of the techniques used to obtain a numerical solution to the equations of
sections 3 and 4, Finally, in section 6 we will summarize the relationships
used to calculate some of the average properties of polar solvents and
electrolyte solutions, In Chapter Il we will examine how other thermodynamic
properties of electrolyte solutions may be obtained from Kirkwood-Buff [104]

theory,



2. Interaction Potentials

In the study of real .systems and their physical properties the
development of usefu/ models and the potentials that characterize them is an
essential step. For a model to be useful it must be simple enough to enable
us to produce meaningful results with resources currently available, yet it must
have a sufficient degree of sophistication so as to adequately represent the

system of interest,

The interactions which determine most bulk properties of liquids, and of
matter in general, are essentially electrostatic in nature [33]. They arise from
the coulombic interactions between nuclei and electrons, At this level we
could treat any system exactly by solving the many-body Schrodinger equation
describing the motion of all nuclei and electrons. Unfortunately, such a task is

several orders of magnitude beyond our present day capabilities.

in order to simplify the model, we first use the Born-Oppenheimer
approximation [105] in which the heavier nuclei are held fixed while we
determine the electronic distributions. The ground electronic states are then
used to determine average charge distributions and polarizabiiities. A second
approximation is made in assuming .that all molecules are rigid, We ignore all
intramolecular vibrational and rotational modes, (This may not be a good
approximation for large polymeric molecules) A third simplification arises
from the fact that the behaviour of the particles within most fluids at
ordinary temperatures can be described classically, as was mentioned above,
Hence we find it convenient to restrict ourselves to classical mechanics and

classical statistical mechanics.

Subject to the above assumptions, the total interaction potential, Unpe will
depend only upon the positions and orientations of all particles within the
system, We write [33] '

uy = u(§1,§_2,---,§N) , (2.1)

’

where §i represents the positional and angular coordinates of particle i, and N
is the total number of particles in the system. In general, this N-body
interaction potential in very complicated, particularly for liquid systems, and

the N-body problem is very difficult to solve, To allow further simplification,



- 10 =

we express [33] the total interaction potential as an expansion

u(X

o e o = (2) . . (3) . . L Y
e E) = B UP(ELERD ¢ B uD(E R KD b, (2.2)

1<] 1<j<k

in which the first term is the sum of all unique pair interactions, the second
term is the sum of all unique 3-body interactions, and so on., It is generally
agreed that for most liquids the pair interaction potential is the dominant term
[2733]. In most statistical mechanical studies higher order terms are usually
neglected or the pair potential is modified in an attempt to take into account
higher order terms [2733]. In Chapter IV we will describe how the many-body

problem of polarizability can be reduced to an effective pair potential,

It is convenient to write the pair interaction potential term of eq. 2.2)
as [106]

1f”(§1,§2) = u(12) = u*(12) + v®(12) , (2.3)

where u*(12) is the interaction due to the. overlap and instantaneous
anisotropies of the charge distributions of the particles, and ue(12) is the
interaction due to permanent anisotropies or net charges associated with the
charge distributions of the particles, Thus u'(12) contains the short-range
repuisive terms and the long-range dispersion terms of the interaction, It can
be approximated by potentials such as the hard-sphere or Lennard-Jones [106]
interactions, ue(12) is the electrostatic interaction between two non-overlapping
charge distributions, It is usually described in one of two ways; either using

point charge models or using multipole expansions,

A point charge model uses a small set of discrete charges in place of
the continuous charge distribution of the molecule of interest, Hence ue(12) is

given by

q.(1) q.(2)
L ) ], (2.4)

u®(12) = _Z,[
_ il gy

where q; is the ith charge on particle 1, qj is the jth chafge on particle 2,

and rij is the separation between points i and j. In general, the larger the



number of discrete charges, the more closely the real charge distribution can
be mimicked. It has been found [39] that for simple molecules relatively few
point charges are necessary to give a reasonable description of their

electrostatic interaction,

ue(12) may also be described in terms of multipole expansions. The
electric potential produced at a point t by an arbitrary charge distribution can
always be expressed as a Taylor series in spherical harmonics khown as a
multipole expansion [106,107]. In a similar fashion, the electrostatic interaction

between two non-overlapping charge distributions is given by [72,102 106]

(21+1) 173
e = -1)m "
u-(12) = mEl (=1) é~'m+n,ll:2m! 2n!]

my
' =y
—Q“M—Q“q!““l(sz,,szz,f) , (2.5)
fmnl rl+1 uy

X

where & is a Kronecker delta function, r is the separation between the centres
(/.e., the points of expansion) of particles 1 and 2, and the rotational
invariants, 6221(91 ,8,,E), are defined below. The multipole moments, érun are

defined for a discrete charge distribution by [72,102,106]
g - E[ea (r,) R‘Eo(ea,qsa)] , | (2.6a)

where the coordinates (ra,Ga,¢a) of the charge ea are given in the molecular

(rotating) frame of reference. The generalized spherical harmonic [72,108]

* ar 73 m
R‘:O(G,tﬁ) [m] Ym(9r¢)

Ju|-u (m-|ul)t73 iug
i [——_(m*'lul)!] Pr“n(cose)e , (2.6b)

where Y;(G,dJ) is a spherical harmonic [106] and P:l(cose) is an associated
Legendre polynomial [106]. We note that for a continuous charge distribution
the multipole moments will be given by an expression analogous to eq. (2.6a),

except now the sum over discrete charges will be replaced by integrals over
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the charge distribution [106].

For an isotropic system we would expect u(12) to be translationally and
rotationally invariant., That is to say, the interaction observed between
particles 1 and 2 will be invariant to the position and orientation of the
frame ‘of reference attached to the vector joining the two particles, with
respect to the lab fixed frame. Translational invariance is retained by eq. (2.5)
by noting that r is just the interparticle separation, The functions
<I>muI;1(Q1 Q2 ,%), which fulfill the requirement of rotational invariance in eq.

(25), are known as rotational invariants, They are defined by [68,101]

nl ay _ nnl mnl n 1,4
U0, ,2) = f 3, ta B PR R0 R (IR (), (2.7)

where m,n,l are positive integers, Rrgu(ﬂ) is again a generalized Wigner
spherical harmonic [108], Q=(8,¢,y) is the set of Euler angles [87,108] for
each particle, £ is the orientation of the vector from particle 1 to particle 2
and (") is the usual 3-j symbol [109]. The orientations &,,Q,,F are the
.sets of angles of rotation from the lab fixed frame to the molecular fixed .
frame [87). The sum in eq. (2.7) is only over those values of a,f,y for
which the 3-j symbol evaluates to a non-zero value, The triangle condition

[108] in the 3-~j symbol requires that
[m-n| < 1 < m+n . (2.8a)
From the definition of the generalized Wigner spherical harmonics we have

|u] <m and |»] < n . (2.8b)

In eq. (2.7) fmnl can.be any non-zero constant, In this thesis we will make

use of two different definitions:

mnl 1!

f = Fn—h—l—)— ' (2.9a)
000

gl _ [(2m+1)(2n+1)]% . (2.9b)

We will alternate between egs. (2.9a) and (2.9b) when it is convenient to do

SO,
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The rotational invariant functions generated by eq. (2.7) form a basis set
of orthogonal polynomials [101] which will span the complete space of
orientations of particles 1 and 2, Equation (25) is an expansion in this
rotational invariant basis set. The expansion is such that the coefficients will

only depend upon the interparticle separation r and all angular dependence is

in the functions @rnur;l(ﬂnﬂz,f'). Using fmnl as given by eq. (2.9b), we
rewrite eq, (2.5) as
e _ mnl nl a
u-(12) = mglu“v(r)d}nup (2,,2.,8) , (2.10a)
uv
where _
— T
mnl m (21+1)1 3 Q#l o
o) = oM | ] : (2.10b)
kv m+n,1l](2m+1)!(2n+1)! 1+

We can expand eq. (2.3) in a similar manner, Later we will find it very

convenient to expand other functions in this same basis set,

A rotational invariant expansion must also satisfy two other symmetry
conditions of isotropic fluids, Since the labels 1 and 2 are totally arbitrary
for an isotropic fluid, exchange of these labels should leave ue(12) unchanged,
It has been shown [101,110,111] that this condition requires that the invariant

expansion coefficients satisfy

umnl(r) = (-1 )m+n Unml(

L vy r) . (2.11)

We also have the requirement that ue(12) must remain unchanged under
symmetry operations on the individual particles, Conditions for several
symmetry groups are given in Blum and Torruella [101]. In this study we will

make use of the following requirements:

i) for spherical symmetry in both particles
m,n,l,u,» =0, (2.12a)

ii) for linear symmetry in both particles
w,» = 0, (2.12b)
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iit) for C2v symmetry in both particles
u,v = even (2.12c)
and

mnl _ .mnl
u,, (r) = uiuiu(r) . (2.124d)

Blum and Torruella [101] also showed that since ue(12) must be real then

[ur:r;l(r)]* _ (oq)mtntleuty urfz}y(r) . (2.13)

Together eqs. (2.12c), (2.12d) and (2.13) imply that at least for particles of C

2v
symmetry
m+n+l = even (2.14)
mn 1 o ,
and U, (r) must be real, The conditions given by egs. (2.12) and (2.14)

serve simply to remove some of the basis functions from the rotational

invariant expansion,

Let us now return to eq. (25). The sum in eq., (25) is infinite where
m,n,l,u,v are subject to the restrictions given by egs. (2.8), (2.12) and
(2.14). We know that the multipole expansion for non-overlapping charge
distributions must be convergent [106], in which case ue(12) must be given
equivalently by eqs. (24) and (25). Also, as we go to higher moments in the
expansion and 1 becomes larger, the terms in eq. (25) become .shorter ranged
as their (1/r) dependence increases, Therefore, we would expect the multipole
expansion to converge quickly at large separations while converging more
slowly at short-range. This property of multipole expansions will be used in

discussing the models used in this study,

The multipole expansion is frequently given in Cartesian tensor form
[107,112], whereas eq. (2.5) is really a spherical tensor form [113] of the same
expansion, In Cartesian notation the first four moments (n = 0,123) of a

discrete charge distribution are [107,112,114]

q=2ZZe_ , (2.15a)
a
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©.. =+Ze (3r; r: - r28: .) (2.15¢)
1] 24 a 1a Jja a 1] : :
and
_ 1
Q1jk fgea[srlarjarka
_ .2
ra(riasjk + rjaaik + rka‘sij)] , (2.154)

where q is the net charge, p; are the components of the dipole vector, and
Gij and Qijk are the components of the quadrupole and octupole tensors,
respectively, In egs. (2.15) the sum is over the discrete charges ea and R
no are the i, j, k components, respectively, of the vector r given in the
molecular axis frame. We again point out that for a continuous charge
distribution the sums over chérges in eqgs. (2.15) become integrals over the
charge distribution, A common convention, and one we will use, is to choose
this reference frame such that the origin (/.e., the point about which the
expansion is made) is at the molecular centre of mass and the axis of

highest symmetry is labelled the z-axis,

An electric muitipole moment has, in general, (2n+1) independent
components, However, this number can be greatly reduced by molecular
symmetry [107,114]; of most importance here is the reduction under C2V
symmetry, From Kielich [107] we have that for C2v symmetry, the dipole,
quadrupole and octupole moments have 1, 2 and 2 mutually independent
componen‘ts, respectively., Thus, the dipole moment is given by the scalar [

and the quadrupole tensor has the form

G)xx 0 0
0 = 0 (5] 0 ' 2.16a
© vy ( )
0 0 (~)zz
where we require [107] that
Gxx + ®YY + Gzz =0 . (2.16b)
To specify the octupole tensor it is sufficient to give Qxxz’ nyz and szz
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where ‘Qxxz+ Qy . QZZZ= 0.

Y
The Cartesian representation is the form most often used in the

literature to Aspecify the multipole moments of specific molecules. In this
study it is convenient to work with multipole moments as defined by eq.
(2.6a). To find expressions relating the two representations we use eqs, (2.6)
and (2.15) along with explicit forms for the associated Legendre polynomials
. . . . i¢ .
= + =
[106] and the relationships z, racose and X, * 1y, ,r051n0e . It is then

easy to show that in general

Q0 =q , (2.17a)

g - (2.17b)

1 By .

50 = @ (2.17¢)

2 zz '’ y

=+t _ *1 .

=+1 _ %2 .

Q; = -‘/—g(@xzi 1®Yz) (2.18b)
and

=+2 _ 1 _ . .

Q2 = _/E(@xx @Yyi 21®xy) . (2.18¢c)
If we restrict ourseives to C2v symmetry where By = uy= @xy= - G)YZ=O
[107], we have immediately from egs. (2.18) that

5y =9, =0, (2.19a)

gl -5 =0 (2.19b)

2 2 y
and

=2 _ =2 _ 1 _

Q2 = Q2 = ‘/E(exx G)YY) . , (2.19¢)

In a similar fashion we can show that for C2v symmetry the components of

the octupole moment are given by
=0 _ .
Q3 = Q ’ (2.206)

—1 _ = _
Q3 - Q3 - 0 ’ ' (2.20b)

52 _ 572 _ _3 i
03 = 057 = 255 Oy ™ Byyp) (2.20c)
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and
=3

_ 93 - '
03 =937 =0. (2.204)
We note that egs. (2.17) and (2.19) are consistent with the results of Carnie
et al. [72]. Price etal. [113] give similar relationships between the Cartesian
and spherical multipole moments, It is also obvious from egs, (2.17), (2.19)
and (2.20) that for C2v

non-zero components of the dipole, quadrupole and octupole moments,

symmetry we have the required 1, 2 and 2 independent

respectively.

It is clearly the case that particles of spherical symmetry will possess
only an n=0 moment (net charge) as given by eq. (2.15a). Thus the charge
distributions of spherical ions, such as the alkali halides, are completely
represented by a single point charge at their centre, It follows from eq. (2.5)
that the electrostatic interaction between two such ions, i and j, is itself

spherically symmetric, so we write

$i012) = i) = e S (2.21)

where <I>880(9,,92,f)=1 is understood and g, q; are the charges of the

ions, For non-spherical particles eq. (2.5) remains, in principle, an infinite sum

subject to symmetry conditions, such as those represented by eqgs. (2.12).

The gas phase dipole and quadrupole moments of water have been

measured [115]. [In this study we will take the permanent dipole moment, u,
as being 1855D [118] D =10 'C ’
quadrupole moment [119] are G)xxz 2638, @yy: -250B and @zzz -0,13B, where

B=10_26 esu,cm2. and the molecular axis system is defined as it appears .in

esu,cm.). The non-zero components of the

Figure 1. This definition for the molecular axis frame for water will be used
universally- throughout this thesis, For the higher moments of water we must
rely on quantum chemistry to give us reasonable estimates. There have been
many large scale Cl and SCF calculations done for the water molecule, but
only a few of these [115-117] report multipole moments higher than
quadrupole order. In this study we will use the octupole moment of Neumann
and Moskowitz [116] who_;iported tge values QXXZ=2.30F, nyz= -0.96F and
Q

222> -134F, where F=10 esu.cm’. Their calculated values of the dipole

and quadrupole moments are in reasonable agreement (within 8%) of the
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>N

Figure 1, Molecular axis system for the water molecule. The stars indicate the
atomic centres.
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measured values, More recent calculations [115117] for water using larger
basis sets show little improvement in their results for the dipole and
quadrupole moments, Moreover, their reported octupole moments are in good
agreement with Neumann and Moskowitz [116]. The hexadecapole moment of
water has also been calculated [115,117] and a very recent publication [117]

reports multipole moments up to and including the n=6 moment,

In this study we have chosen to ignore the hexadecapole and all higher
moments, Hence we have truncated the sum in eq. (25) to octupole order
(/.e., required mn<3). We might expect properties such as the dielectric
constant and processes such as ion solvation to be dominated by long-range
electrostatic interactions and thus not be particularly sensitive to this
truncation of the multipole expansion, Several early studies [626673~78] of
polar solvents and electrolyte solutions considered electrostatic interactions
only up to dipole order., This model was found to be quite unsatisfactory for
water, giving very poor results for its dielectric properties and generally a
poor description of ion hydration. More recent studies [67,79-81] have
indicated that the addition of the quadrupole moment to the solvent model
greatly improves the results, The dielectric properties seem to be approaching
those of real water [67]. For model aqueous electrolyte solutions at infinite
dilution the ion hydration appears more reasonable, much more like what is
believed to be the case in real solutions [79-81,120]. Therefore, for most of
the electrolyte solutions studied here, all those examined at finite
concentration, the electrostatic interaction will contain terms only up to
quadrupolie order. The influence of the octupole terms will be examined for
the pure water-like solvent as well as for electrolyte solutions at infinite

dilution,

Carnie and co-worker [67,72] have pointed out that to a good

approximation the quadrupole tensor of water can be expressed as

o 0 0
6, = |0 -8 0 (2.22)
0 0 0

by setting ezz to zero in eq. (2.16). Such a quadrupole tensor is totally
specified by the single parameter ‘G)S, which we shall refer to as a square

guadrupole moment (it is also known as a tetrahedral quadrupole moment
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[67,72]). In Figure 2(a) we have illustrated the simplest charge distribution that
has a square quadrupole as its lowest order moment, it is a charge
distribution where two positive and two negative charges of equal magnitude
have been placed at opposite corners of a square, In Figure 2(b) we have
illustrated what we will refer to as a tetrahedral charge distribution, in which
the four charges are now located at the vertices of a regular tetrahedron,
This point charge model, which possesses a dipole and square quadrupole as
its two lowest order moments, has been used to represent the real charge
distribution of water (/.e., the BNS model [44]), Carnie et a/. [67] have shown
that ue(12) is subject to an additional symmetry condition if both particles 1
and 2 have only dip.ole and square quadrupole moments. In this case, in
addition to eqs., (2.12¢) and (2.12d), we require that [72]

(g + » + 21) MOD 4 = 0 . (2.23)

Thus, if we consider moments only up to quadrupole order, restricting
ourselves to a square quadrupole moment will result in a smaller number of
basis functions, We point out that the tetrahedral charge distribution does not
represent a special symmetry group, since if we include the octupole moment
we return to general C2v symmetry, The tetrahedral point charge model does
have an interesting property in that it will interact with positive or negative
charges equivalently, Therefore a solvent with a tetrahedral charge distribution
will solvate simple spherical ions of equal size symmetrically. This property

will prove useful in the present study.

Now let us return to eq. (2.3) to consider the remaining term, u®(12), in
the expression for the total pair interaction potential. In this study we take
u'(12) to be spherically symmetric, /e, u'(12) = u'(r), This is frequently done
for water-like models [35-394467] since the water molecule is roughly
spherical (see Figure 1) and results in a much simpler pair potential. We
choose to represent u'(r) with the simplest possible pair interaction, the
hard-sphere potential. The hard-sphere potential, ulig(r), between two particles

a and § is given by [2733]

w; r<d
uig(r) = ap , (2.24a)
0; r>d
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Figure 2, A charge distribution possessing (a) a square quadrupole and (b) a
dipole and a square quadrupole,
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where

dyp = e B (2.24b)

with da being the diameter of particle a. It is clear from eq. (2.24a) that the
hard-sphere interaction is a purely repulsive potential. in approximating u'(r)~
with uzlg(r) we are making two further assumptions: first that the short-range
repulsions between the particles can be reasonably represented by the
hard-sphere potential, and second that the long-range dispersion forces are
small compared to the electrostatic forces in the systems of interest., The
validity of these assumptions and their -influence upon properties of interest

shall be discussed later,

The hard-sphere potential requires that we specify hard-sphere diameters
for our particles, Although the exact values are somewhat arbitrary, for water
a value of dsz 28R is a reasonable choice. It is consistent with O'TO
structure as measured by diffraction experiments [121,122] and has been used

in previous ‘studies [6779-81].

For ions in solution, the choice is not quite so obvious. We would
expect the radius of an ion in solution to be qlose to its crystal radius. For
the alkali halides however, there are several estimates of the crystal radii
[123,124]. Recent X-ray electron density measurements of ionic crystals seem
to be the most physically realistic method of defining ionic radii. To be
consistent with previous work [8081], we have chosen to use the radii of
Morris [124] as determined in this manner, Table | summarizes the values of
the ion diameters used in this study, They are expressed as reduced ion
diameters (i.e., in terms of solvent diameters), di'= di/ds’ where dS=2,8A,
The values have also been rounded to the nearest 004 to accommodate the
grid width used in the numerical calculations (i.e., 0.02ds), as discussed below,
included in Table | are reduced diameters for the alkali halides, as well as
those of four other ions which appear at the bottom of the table, Two of
the ions, Eq* and Eq- which have no real counterparts, are the same size as
the solvent and will be used simply to test solvation effects, The two other
ions, M~ and M-, are almost twice the size of the solvent, They are similar
in size to tetraalkylammonium ions and will be useful in investigating large

ion effects.
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TABLE |, Reduced ion diameters, di' used in this study,

ION | d.*

Li* 0.68
Na- F- 0.84
K+ 1.08
Rb*Cl- 1.16
Cs*Br- 128
- 144
M 1.80
M- 1.96
Eq*Eqg- 1.00

Finally we should point out that we have not ignored terms in the
interaction potential due to the polarizability of the particles in our systems,
These terms will be treated on a mean field level (i.e., by ignoring
fluctuations) and will be included as effective interactions in our pair
potentials, Details of how this can be done at two different levels are given

in Chapter 1V,

3. The Ornstein-Zernike Eguation

In liquid state theory the pair distribution function, g(Q,,Q,,r) = g(12),
is of fundamental importance [2733]. It is a measure of the probability
density of finding particle 1 with orientation £, and particle 2 with orientation
@, at the separation r. For a system defined using only pair potentials,
knowledge of g(12) is sufficient to completely describe the equilibrium
' thermodynamics of such a system. The radial distribution function, g(r), is the
angle-averaged pair distribution function and is obtained by integrating g(12)
over all orientations of particles 1 and 2, More detailed discussions of
distribution functions can be found elsewhere [278187]. One important
property of g(12), and of distribution functions in general, is that they are

normalized such that
g(12) —> 1 as r — o , (2.25)

In the development of integral equation theories [27,33,60] it is convenient to
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introduce the pair correlation function
h(12) = g(12) - 1, (2.26)

which measures the departure of the pair distribution function from its limiting

value,

In 1914, Ornstein and Zernike [90] defined a relationship in which h(12)
is expressed as a sum of a direct part involving only particles 1 and 2, and
an indirect part which takes into account all correlations involving other
particles, This expression is known as the OZ equation., When generalized to

a mixture [125], it can be written in the form

(12) =

Cap

1
hy g (12) + Ly zlo, fn, (13 e f32) axy] , (2.2D)

87

where p7= N7/V is the number density of species g and the integration is

over all positions and orientations of particle 3 of species y. The sum in eq.
(227) is over all species in the system, The original authors [90] called c(12)
the direct correlation function, The second term of eq. (227) is a convolution

and is often called the indirect part of h(12).

As stated earlier, the OZ equation is a basic relationéhip in liquid state
theory and is common to many integral equation theories [273360]. The 0Z
equation is now regarded as a definition of the direct correlation function,
since c(12) has no simple physical interpretation. More detailed discussions of
the OZ equation and how it can be derived through diagrammatic expansions
or functional differentiation appear in several text books dealing with liquid
state theory [2787]. |

In order to make the convolution in the OZ equation tractable, one has
only to Fourier transform eq., (2.27) with respect to the interparticle position
vector r. We then have [101,110]

5 -7 = h g
hog12) - 5,02) = Ly z[o R (13 (32)a,] ,  (2.28)

8«

where the integration is now over all orientations of particle 3 and the ~

denotes the usual Fourier transform [126,127]. If all particles in the system
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have spherical symmetry, then the integration over Q3 is trivial and eq. (2.28)
reduces to a simple algebraic form which is easy to solve numerically [81].
However, this is not the case for systems which may include anisotropic
terms in their pair potentials. Blum and Torruella [101] recognized that eq.
(2.28) could be reduced for systems with non-spherical pair potentials by
expanding h(12) and c(12) in terms of the rotational invariants defined in the
previous section, The reduction given below closely follows that of Blum
[101-103] but the expressions have been generalized to multi—-component
systems, The notation and definitions used are those of the more recent
literature [68]. Also, the description given here will only summarize the
important results, Discussions of the underlying mathematical details can be
found elsewhere [110,111].

Analogous to eq. (2.10a), we write the expansions

_ mnl nl a
bl 12) = I ) ‘I’l:v (2,,9,,%) (2.29a)
ny
and '
~ _ ~mnl nl ~
baﬁ(12-) = I buv;aﬁ(k)ﬂl"w (Q,,92,,k) , (2.29b)
uy

where baﬁ“z) can be caﬁ(12) or haﬁ“z)’ Saﬂ(‘lZ) can be Eaﬁ(12) or

Ha (12), and 4}221(91,92,f) and 49““21(9,,92,&) are defined by eq. (2.7).

B
- mnl .
.The coefficients buv;aﬁ(r) are given by

. jbaﬁ(12)[<l>':21(91,92,f)]* 49,49,
b (r)

uv:af , - (2.30)

[ 452’,}1(91 ,Q,, %) [d*“u’,}l(sz, ,Qz,f)]* aQ,de,

and the k-space projections, Erzg}aﬁ(k), are the Hankel transforms
~mnl _ 1 2 2. mnl
buv;aﬁ(k) = 47i for Jl(kr)buv;aﬁ(r)dr , (2.31)

where jl(kr) is a spherical Bessel function of order 1 [128]. In general, high

order (i.e.,, 122) Hankel transforms are very difficult to treat numerically since
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they can not make use of fast Fourier transform techniques [126]. Thus a
two-step method of performing these transforms has been introduced [102].

First we define the integral (hat) transforms

mnl
~mnl _ mnl 2 Cuviaf'®’! e ]
cuv;aﬁ(r) = Cuys aﬁ(r) J‘r[ . Pl(r/s) ds for 1 even,
(2.32a)
and
cmnl )
smnl _ mnl _ F| “uv;ap (o}
c‘w;aﬁ(r) = Cuys aB(r) rfr[—-————’sz Pl(r/s)]ds for 1 odad,
(2.32b)
in which the polynomials Pi(x) and Pi)(x) are given by
t-i _2i .
£ r(-1) 7 (t+1+3/2)1
B oaq(x) = 2 2 |= : , / , (2.33a)
t+1 i=oLi! (t-i)! (i+1/2)1
t-1 .21 .
o £ -1 7 (t+1+5/2)17
P (x) = 2 2 : . : ' (2.33b)
2t+3 i=oL iy (t-i)!  (i+3/2)1
for t20 and
P(x) = Pg(x) = 0, , (2.33c)
where we use the general definition of z! [128]. The k-space projections,
~r‘1:r;laﬂ(k) can then be written [102] as zeroth order (Fourier) and first order

~mnl (r)

Hankel transforms of Cuv;a.ﬁ Explicitly we have

Erxgiaﬁ(k) = 41rf r? Jolkr) € “rﬂ:laﬁ(r) dr for 1 even (2.34a)
and
gm0l g = 4 f r? §,(kr) E00% (r)dr  for 1 odd,  (2.34b)
where
Jolx) = Si;‘{" (2.35a)

and



- 27 -

. _ sinx _ cosx _
31(x) = T2 < . (2.35b)

We note that the transforms (2.34) can be computed using fast Fourier

transform techniques.

The expansions for Eaﬂ“z) and Ha3(12) can then be inserted into eq.

(2.28). After performing the necessary angular integrations and simplifying, one
obtains [102]

pmnl oy -zl

uv af - =ze zf,il:z

uv;iaB v 7|1,

i w m111 -~,1n12
x 0@ R a0l ]|, (2.362)

where

. ' il, .inl
1,1,1 _ . \m+n+i [21+1] £ 2042 1.1.1,,1,1,1
a1l o (o) 21 Sl 107" (2.369)

and {_  } is the usual 6-j symbol [109]. Following Blum [102] we now

introduce the x-transform

cmn; x (k) = Z(m n l) ~mnl (k)

uv ap x-x 0 Suv;ap ' (2.37)

in which the sum over 1 is from |m-n| to m+n, It is convenient at this

time to define the function

12) = h 12) - 12 2.38
"aﬁ( ) ﬁ( ) c 3( ), ( )
which, unlike haﬁ(12) or C 6(12) will be a smooth continuous function of r
for hard core models, For the choice of fmnl given by eq. (2.9b), it has

been shown [102] that we can rewrite eq. (2.36) as
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FONGX (k) - Ze, % r  (-1)X*@ [le PX (k) + cmiix (k)]

uv apf Y1 |w=—1 uw; ay Mw; ay
ln X
x C wv,-yﬁ(k) ' (2.39)
where N™0iX (k) js the x-transform of nmnl (k) as defined by eq. (2.37).

uv;ap uv;ap
By comparing eqgs. (2.36) and (2.39), we see that the x-transform has split the
general OZ equation into smaller independent sets of equations which should

be easier to invert numerically. Also, the numerical constant Zl 1‘ 11 has been

greatly simplified.

Again foliowing Blum [103], we define the matrices ﬁZﬁ and CX

ap

. .gh ~mn; X ~mn; X .
whose (i,j) elements are Nuv, ﬁ(k) and Cuv’aﬁ(k)’ respectively, where
i=m(m+1) + g + 1 (2.40a)
and
j = n(n+1) + p» + 1 , (2.40b)

Equations (2.40) follow from the fact that there are, in general, (2m+1) values
of u allowed for each m. The general OZ equation (2.39) can then be written

as

= Z(-1)X[Nx + E" ]p Pcyﬁ , (2.41)

aB ay

where p’y = p,yI is a diagonal matrix. The elements of matrix P are given by

PR i=m(m+1)-pu+1
I (-1) for [j:m(m+1)+u+1 . (2.42)

ij .
0 otherwise

Now, for an n-component system, we introduce the matrices ﬂx and gx

respectively, We also define

s

nX =X
whose (a, ) elements are Naﬁ and Caﬁ

p = diag(p ,py,++1p,) (2.43a)
and
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P = diag(P,P,+-+,P) . (2.43Db)
We thgn rewrite eq. (2.41) as

NX = (—1)X[ﬁx+ E"]ggéx , (2.44a)
which we can rearraﬁge to obtain

NX = E"EEEX[(—HXI - EEEX]_1 . (2.44b)

Thus, for each value of X we must construct the g" matrix and then solve
eq. (2.44b) to determine a EX matrix.

yma ;X
uviap
are easily obtained using the inverse x-transform

Once the values of N (k) are known the projections 7% mnl (k)

uvyap

Fnloopy - (e (™D )N“‘“ iX (k) , (2.45)
X X —X

MTyvsap uvi;ap

in which the sum over X is from -min(mn) to min(mn). Finally, the

mnl
projections nuv s ap

(234) and (2.32). The inverse Hankel transforms are given by

(r) are found by inverting the transforms defined by eqgs.

~mnl _ v 202 . ~mnl v
uv;aﬁ(r) = 2—1r2-fok Jolkr) 7). 4pk) dk for 1 even, (2.46a)
ﬁmnl (r) = i fmkzj (kr)'ﬁmnl (k) dk  for 1 odd (2.46Db)
uv;ap ogl 0 1 uv;ap ’ ’

and the inverse hat transforms by

mnl _ Amnl .1 FL2 Amnl

'nuv;aﬁ(r) = My, aﬁ(r) 3 foS wvs aﬁ(S) (s/r) ds for 1 even,

(2.47a)
mnl _ Amnl 1 I 3 .mnl
Tupsaft) = Tyuysaptt) FIOS nuv;aﬁ(s)P(s/r) ds for 1 odd,

(2.47b)

where Pi(x) and Pg(x) are defined by egs. (2.33).
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Hence, given a set of coefficients 'czlr;:.[aﬁ(r) we now have the
: [4
necessary relationships, as given in eqgs, (2.32)-(2.35) and (2.44b)-(2.47), to

nl
viap
equation (2.27) for a mixture of non-spherical particles. We should point out

calculate the set of projections nILl (r) which satisfy the general 0Z
that in general gx and L\I_X will be complex matrices and complex arithmetic

must be used to solve eq. (2.44b).

In principle, the expansions in rotational invariants (cf. eq. (2.29)) are
infinite sums., For obvious numerical reasons we must truncate the basis set

at some point to make it finite, We do this by requiring that [68,70,71]
m,n <n___ . (2.48a)

This is not a unique choice for restricting the basis set, However, the finite
set of rotational invariants that satisfy eq. (248a) does have the special
property of being a closed set under the generalized convolution of the 0Z
equation. That is to say, this particular set will generate only itself when the
angular integration in eq. (2.28) is performed. We will also examine the
effects of imposing an additional condition

1 < 1max . (2.48b)

Having truncated the basis set by imposing eqs. (2.48), it follows from eqgs.
(2.37) and (2.45) that eq. (2.44b) need only be solved for lesnmax‘ At this
point we recall that we have also truncated the electrostatic pair potential (cf.
eq. (2.10)) in an equivalent manner to eq. (248a). The two truncations need

not occur at the same value of Nna however, it is obvious that the basis

sets generated by eqs. (248) must always contain all terms we wish to
include in the pair potential. Patey and co-workers [687071] have found rapid
basis set convergence for several dipolar and dipolar-quadrupolar models. They
observed that a value of Mmax of four or five was sufficient to converge
properties such as the average energy and dielectric constant, Furthermore,

they found that higher order projections (i.e., n=45) only weakly couple to the

- low order ones (i.e., n=0,1),

It is easily shown [103] that the matrices NZB and Ezﬁ have

dimensions DxD where

_ 2
D = (nmax+ 1)° . (2.49a)
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For |x|>0, it follows from the definition of the Xx-transform and the
properties of the 3-j symbol [109] that these matrices will contain rows and
columns of zeros, corresponding to m,n<|x|, The number of such zero rows

(or columns) will be
(x=1) + 132 = 2. (2.49b)

We eliminate these zero rows and columns from the matrices by defining new

indices

m(m+1) + u - xz + 1 (2.50a)

e
"

and

n(n+t) + » - xz + 1 (2.50b)

Ix

to replace those defined in eqs. (240). The new dimensionality is

_ 2 2

For an n-component system, the matrices ﬂx and g" will then have

dimensions (an)x(an). We define the indices

g, = D (a-1) + i (2.52a)

X X

and

By

D (B-1) + 3 (2.52b)

Smn; x

such that the (gx,hx)th element of EX will be Nuy;aﬁ(k)' and similarly for

C€X. Also, eq. (242) is now replaced by
| " i =m(m+1)-u-x2+1
(-1)F  for [,X 2
JEm{me 1) +p-x"+1 (2.52c)
otherwise

P. . =
X=X 0

Let us now consider the simplifications that arise if we restrict
ourselves to systems in which all the particles have at least C2v' symmetry,
First we will examine the results of imposing eq. (2.14). Immediately, the
properties of the 3-j symbol- allow us to rewrite the x~transform, eq. (2.37),

as
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cmn; X _ n m 1, ~mnl
Chping®) = TG 3 9 T afk) o (2.53)

and then using the relationship given by eq. (2.11) for the exchange of labels,

we have

nm X (k) = (_1)m+n ~mn;x (k)

vu,ﬁ uv af . (2.54a)

It also follows immediately from the properties of 3-j symbols that

~mn; - _ ~mn;x
cup;ayk) Cupiag®) (2.54b)
and similarly for Nmn 7 X (k). Clearly then, the OZ equation as expressed by

uv;ap
eq. (2.39) will be invariant to the sign of x for systems with C2v symmetry.

Thus we need only solve the 0OZ equation for x in the range [0 in

,n 1.
max
this case the inverse x-transform, eq. (2.45), becomes

~mnl _ m n 1, 3smn;x
Tupsap®) = (21+1) Za, Q0 9 NDI0K) ,  (2.552)

where the sum over x is from 0 to min(mn) and

1 for x=0 ,
a = [ °r X (2.55b)

X 2 for x>0 .

We have already pointed out that in general C ’xﬁ(k) and Nmn.zﬁ(k) are
complex, However, for m+n+1l =even we find that there can be no mixing of
cmn ;X
uv;ap
real for m+n=even, or pure imaginary for m+n=odd, and similarly for
Nmn ;X

Nyps aﬁ(k)

real and imaginary projections by eq. (2.37). Thus, C (k) can only be

Now let us examine simplifications that result from imposing eqgs.
(2.12c) and (2.12d). We immediately obtain

cmn; x = omn;x
ChyiXgk) = CRiX. glk) . (2.56)

Then using eq. (256) and eq. (2.12c), we can rewrite the general OZ equation,
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as expressed by eq. (2.39), as

~mn ; x ) i yx . [zmi;x gmi;x
Wingk) = Zo | E(-1) qd[Nuw;a7(k) + Cuw;ay(k)]
cingx |
x Cpingtk)l (2.57a)
where
_ [1 for w=0 , (2.57b)
% = 2 for w>0 . )

In matrix notation, the general OZ equation (244b) will be unchanged but the
forms of the matrices will change., If we examine the changes in
dimensionality upon applying only eq. (2.12¢), it is easily shown that

D;( - [(nmax+1)2+ 11/2 - [x¥%+11/2 . (2.58a)

To determine the dimensionality, D;, under both C2V symmetry conditions, we
observe that in eq. (257a) we have essentially decreased the number of terms
in the sum over w by a factor of 2, except for the (r_1max+1)_-terms for

which w=0, For x=0 we have

Dg [D0.+ n + 11/2

max
2
= [(n .+ 2)71/4 . (2.58b)
We then generalize to obtain
i = [+ 2)%1/4 - [(x+1)%1/a . (2.59%)
In a similar fashion we determine that
i€ = [me1)?1/a + [w/2] - [(x*1)?1/a + 1 (2.59b)
and
3= [+ 0?1/8 + [w/2] - Tx+D?1/a + 1, (2.59¢)

We remark that the divisions in egs, (258) and (259) are to be taken as
integer divisions., For systems of C2v symmetry, eqs, (259) can be used to

replace eqgs, (250) and (251). However, the indices 9y and hX will still be
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C

given by egs. (252a) and (252b) with DX’ ix and jX replaced by D;, ix and
j; respectively. If we examine eq. (257), comparing it with eq. (2.39), we

find that the matrix P will no longer be given by eq. (242). Matrix P will

now be diagonal, given by

Pc.c = (2.60)

1.1

[1 for u=0 ,
X X

2 for u>0 ,

where the index ii is defined by eq. (2.59b).

4. The Hypernetted-Chain Approximation

The hypernetted-chain (HNC) approximation was developed simultaneously
by several authors [93-397] some 25 years ago. |t can be derived from
functional Taylor series or cluster series expansions for c(12) which is given
exactly by [27 87]

c(12) = h(12) - 1ng(12) - Bu(12) + B(12) , (2.61)

where B=1/KT. The function B(12) represents a class of diagrams known as
elementary clusters [33] or bridge diagrams [2787] which are not easily
expressed as simple functions of h(12). The HNC equation is obtained
[273387] by setting B(12)=0. The name hypernetted-chain equation reflects the
fact that the HNC approximation,

c(12) = h(12) - 1lng(12) - Bu(12) , (2.62a)
includes contributions to c(12) from classes of diagrams known [33] as simple
chains, netted chains and bundles. It is believed [2787] that B(12) is
short-ranged, having a h(12)2 dependence at large r. Therefore, the HNC is

thought to have the correct long-range behaviour, i.e., c(12)—-u(12) as

r—>o_ The HNC closure is often rewritten in the form
c(12) = explqn(12) - Bu(12)] - 9(12) - 1, (2.62b)

where 7(12) is defined in eq. (2.38),
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The HNC approximation has been used widely [2733,6087] to study
model systems defined by spherical potentials. For example, the HNC has been
found [6087] to be particularly successful for primitive model electrolyte v
solutions, Until recently, in order to study systems with angle~dependent
interactions, further approximations were made to the HNC closure., The LHNC
[62] and QHNC [63] closures were obtained by making a particular expansion
of the logarithm in eq. (2.62a) and retaining terms to only linear and quadratic
order, respectively, (A further discussion of the LHNC approximation will be
included at the end of this section)) Recently however, Fries and Patey [68]
have shown how it is possible to analytically expand the full HNC in terms

of rotational invariants, The following is essentially a summary of their work,

In order to eliminate the logarithmic term from eq, (2.62a), we take the
partial derivative with respect to r holding all angular variables fixed. Using

the definition

Ww(12) = -9(12) + Bu(12) , (2.63)
we obtain
or ar ar ’ )

Later we shall see that W(12) is really a dimensionless angle-dependent
potential of mean force (¢f/. eq. (2.100)), We now re-integrate eq. (2.64), taking
advantage of the fact that as r—>=, c(12)—>-u(12)—>0. One

immediately has the result

c(12) = [ h(12) 2¥U2) g0 gu(r2) . (2.65)
r or

in this form the HNC can then be expanded in rotational invariants, where the
binary product, h(12)[(3W(12)/dr)], can be expressed as a sum over a single

invariant., In particular, Fries and Patey [68] have shown that

grinily gnanal, o 7 genl ganl (2.66a)

R MoV mnl 4V Ky

in which the numerical coefficient
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fm,n,l1fm2n212

nl - - m+n+1+u1+V1+M2+V2
Pl = T (2m+1) (2n+1) (21+1) (=1)
m,n; 1, m
s my my My Ny Ny 1, 1,
X {IIEZ 22} } (u1 Uy _u) ( vy v, -V) ( 0 0) (2-66b)
and {:::} is the usual 9-j symbol [108]. Thus we have
myn,l
w 2102 Z(r)
M) =z z [p‘"“lf pMfalap)_Have dr]
uy m;n;1l; maynyl,L #¥ “r H1V; or
Hyvy HaVa2 ‘
i O (2.67)

where the sums are over all allowed projections,
For models with hard-sphere potentials (¢f. eq. (2.24)), it follows
immediately from eq. (2.62b) that
c(12) = -1 - n(12) for r<d, (2.68)
which is an exact closure, Thus for the models considered in this study, eq.
(2.68) will replace eq. (2.67) when r<d,

To improve the accuracy of the HNC closure, Fries and Patey [68]
employed a well known perturbation technique first suggested by Lado [128].
This technique separates the pair potential and correlation functions into

reference and perturbation parts. Explicitly, we write
x(12) = AX(12) + Xp(r) , (2.69)

where X(12) can be c(12), h(12), n(12), or u(12) and XR(r) is the same function
for some spherically symmetric reference system, Then applying eq. (2.69) to

eq. (2.62a), we obtain the reference HNC (RHNC) closure given by
c(12) = Ah(12) + lngyr) - 1n g(12) - pau(12) + cR(r) . (2.70)

This method assumes that exact results for gR(r) and CR(r) can be readily

obtained. One can then proceed as before and derive the result
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1
® aawm2N2t2(p)
Acmnl(r) J- Z Z [annl Ahm1n1l1(r) KoV o
i r{myn,l; myn,l,L #¥ K1V, or
ISR Mz V2
mnl
AW 9lng.(r)
Uy mnl %R _ mnl
+ hR(r) or Ahuy (r)—ar dr 6uuv (r) . (2.71)

The RHNC closure is easily generalized to mixtures, Clearly, in eq., (2.70)
we see that there can be no coupling between different pairs of components
in the HNC equation, Hence, for multicomponent systems, we have only to

apply eq. (2.71) to each unique component pair, af.

in the present study the appropriate hard-sphere fluid is the clear
choice of reference system., The exact hard-sphere radial distribution functions,
glig(r), are determined using the Lee-Levesque [130] generalization of the
Verlet-Weis [131] fit to Monte Carlo data, Again, because of the hard-sphere
potential, we only apply eq. (2.71) for r>da[3 and use eq. (2.68) when r<da5.

Expanding eq. (2.68) in rotational invariants, we have that for r<daﬁ

000 _ _. _ _0boo0

COO;aﬁ(r) = .1 nOO;aB(r) (2.72a)
and

mnl _ _.mnl

cuv;aﬁ(r) = n‘w;aﬁ(r) (2.72b)

for mnl#000, Equation (2.71) need not be used for spherically symmetric
components. In such cases it is numerically expedient to directly apply eq.

(2.70), which we can rewrite as

capt) = dag(r) exp[an (r) = By H0)] - my ) -1 L (2.73)

in this thesis we will also report a few results obtained using the
reference LHNC (RLHNC) theory [62,7481]. For hard core models, the RLHNC
closure is equivalent to the RHNC closure for r<daﬁ (cf. eqgs. (2.72)). When

r>daB we can show [81] that the RLHNC is given by

>
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i) = o ool ) - 00 0]
- ngg?aﬁ(r) -1 (2.74a)
- and
Acﬁ:%aﬁ(r) - hgggaﬁ(r)[Anﬁgiaﬁ(r) B ﬁAuﬂ?}aﬁ(r)]
i} ,,Auﬂg}aﬁm (2.74b)
for mnl#000. We point out that in the RLHNC theory, hgg?aa‘f)==h2§(f) for

a single component system, but this is not true for a multi—-component
system, Examination of eq. (2.74a) reveals that there is no coupling of the
000 (r)

anisotropic projections into COO'aﬁ in the RLHNC closure approximation,
r

Therefore, the angle-dependent terms of the pair interaction potential between
000 (1)

components afl can have no effect on gOO'aB This deficiency and its
r

consequences will be discussed later, However, comparing eqgs. (2.74a) and

(2.73) we see that the RLHNC approximation is equivalent to the RHNC

approximation for spherically symmetric components,

b. Method of Numerical Solution

In the previous two sections we have described how the two equations
which compose the RHNC theory can be solved by expanding them in terms

of rotational invariants, Hence we have two set of equations, the OZ and the
: mnl mnl

RHNC equations, and two sets of unknowns, the 17‘“};‘1‘3 uv;aﬁ_(r)

coefficients, The equations must be solved numerically and so the projections,

mnl mnl

Tuv;ap uv;ap

on a numerical grid of width Ar. In this study we will use a value of

Ar=0.,02d
s

represents a reasonable compromise between data storage, computational

(r) and c

(r) and c (r), must be represented with a set of discrete points

, Which is consistent with previous work [68707179-81]. It
requirements and numerical accuracy. The necessary Hankel transforms are
performed using fast Fourier transform techniques [126,127] and thus we
require 2" grid points, For the calculations done on pure solvent systems, we

find that 512 points are sufficient. For ionic solutions we find that more
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points are usually necessary to accommodate the longer ranged correlations,
The number of points varies with concentration as the screening length
changes, At 10 molar, 1024 points are required, while concentrations between
0.1 and 002 molar need 4096 points,

The RHNC theory is solved by iterating the RHNC and OZ equations in
a manner similar to that used in earlier work [6881]. The iterative cycle
begins with an initial guess for one of the functions, In this study we have

chosen cmnl

6(r) This guess is usually a converged result from a previous
calcu!at|on at slightly different conditions (e.g., concentration, total density,

temperature, etc) We then solve the 0Z equation to determine a set of

. . o mnl
coefficients (r). This set along with our initial guess for ¢ (r)
y 'aﬁ 9 9 uv;iaf
is used as mput into the RHNC closure which returns a new estimate for
mnl (r). Direct substitution of the new estimate for the initial guess will

Cuviap
not provide a stable solution unless the initial guess is already very close to

the correct result. However, convergence can usually be obtained by mixing

successive approximations, The (i+1) approximation is given by

cnl o o )(1+1) - (1 - gnl y mnl (r)(l)

Cuv;iap ®uviap’ “uv;af
mnl mnl (new)
r ' 2.75
%uv;ap Cuv;apt) ' ( )
. mnl : o
where the mixing parameter, ouv s a B’ determines how much of the previous

mnl

and new estimates are taken and it satisfies 0<o <1. Separate mixing

uv;ap
parameters are used for each projection to speed convergence and their values
are allowed to increase as convergence is approached. The iteration continues

in this manner until a desired state of convergence is attained.

However, unlike the mixing procedures used in previous studies in which

n (r) [81], or both nmnl (r) and cmnl (r) [68,70,71], were mixed, in
mal ()

uvap uv;ap uviaf
uvyap

this study we have chosen to mix only the functlons c
model systems being considered here, this is a better procedure. The

mnl

For the

functions which are actually mixed are short-range c¢’s; they are the

projections cmnl
J uv;iap

Appendix A. This method has several obvious advantages, These short-range

(r) with the potential terms subtracted, as described in

c’s contain no long-range tails due to the pair potential., As a result, they

can be readily truncated to reduce storage requirements, The long-range tail
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of Caﬁ(12) will always be given exactly, and hence it is relatively easy to
obtain solutions after making adjustments to the potential. For electrolyte
solutions, particularly at low concentration, Caﬁ“z) will change very little
with a small shift in the concentration, whereas naﬁ(12) will show much
larger changes because of its dependence upon the screening length,
Experience with the present systems would also indicate that, in general, the

convergence is faster and larger changes in parameters are tolerated when
cmn]..

uv;ap
discontinuous for hard-sphere models. Thus we would expect it to be more

(r) is being mixed. The one obvious disadvantage is that caB(12) is

difficult to change diameters in a multi—-component system,

The iterative procedure described above is a task well suited for an
automated program. Such a program has been written and was used to
generate all the results, both for one and three component systems, presented
in this thesis, The program uses the general forms of the multipole potential
(¢f. eq. (2.10a)) and the OZ and RHNC equations as described in the previous
~sections of this chapter, This same program is aiso being used to study
several different systems, including liquid crystal modeis [98], as well as
models for pure ammonia [132] and ions dissolved in ammonia. It has been
extended in order to study four component systems, in particular systems
consisting of a colloidal particle in an electrolyte solution [133]. With only
slight modifications, the program is being used to investigate systems of hard

ellipsoids [99] and spherocylinders [100].

All one dimensional integrals required by the Hankel transforms are
calculated using the trapezoidal rule. However, for the integration in the HNC
equation (¢f. eq. (2.71)), the trapezoidal rule was found to be inadequate near
contact (i.e., r=daﬁ) for some of the systems studied here. Hence, a higher
order rule [134] (n=6) was used in this region for these systems, The
numerical derivatives needed in the HNC closure were computed using a
standard 4th order central difference formula [134]. Comparison with results

obtained using only a an order formula showed almost no change,

Care must also be taken in computing the binary product in the HNC
closure equation., The number of terms in the double sum for a given
projection will grow as the square of the total number of projections,
Fortunately, for as many as 90% of these terms, the P‘:::l is zero, Even so,

for large basis sets several hours on a large computer are required in order
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to calculate a complete set of Pmur;l coefficients, Therefore it becomes
important to compute the coefficients only once for a given model, storing
them in a file in such a fashion so as to avoid storing zero values, A
further reduction in storage can be achieved by storing only unique values, it
was also found that for very large basis sets, many of the non-zero terms
of the double sum could be ignored because they were very small. Another
means of saving substantial amounts of time when computing the binary
product in the HNC equation is to limit the range in r over which the
caiculations are done, For most projections, particularly those with larger m or
n, the contribution from the binary product is relatively short-range., For the
model systems considered here the contribution to most projections is
essentially zero after the first 200-300 points., By automating a truncation

procedure, the binary product is computed only over that range in r where its
mol ()
uv;ap

range will vary with the projection being considered. A further discussion of

contribution to ¢ is significantly different from zero. Of course, this

computational details and their relationships to basis set will included in
Chapter V,

When studying multipolar models using integral equation methods, care

must be taken in treating the long-range tails in cr:‘“;].'aﬂ(r) due to the
r
electrostatic potential. This is particularly true here, where the ion-ion and
~mnl

some ion-solvent C (k)’s will have divergent behaviour at small k

uv;ap
[74,135] due to the long-range nature of the charge-charge and charge-dipole
interactions. A further discussion of how we treat these and other long-range

tails can be found in Appendix A.

6. Averages and Potentials of Mean Force

In section 2 of this chapter we have defined the models we will
investigate, The RHNC theory has been described in sections 3 and 4, and the
scheme for numerical solution is outlined in section 5. In this section we will
examine in detail how average properties of our systems can be calculated
once we have solved the RHNC theory. We should again point out that the
RHNC is an approximate theory and will give only approximate results for the
correlation functions of our system, Hence, any properties determined using

these correlation functions will only be estimates of the true values for the
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model system,

The RHNC approximation, or any related integral equation theory, will
provide us with numerical solutions for haﬁ“z) and caﬁ(12) which satisfy
the OZ and RHNC equations (to within numerical accuracy). General statistical
mechanical theory [3033] tells us that for a model system defined by only a
pair potential, knowledge of the pair distribution function, gaﬁ(IZ), is
sufficient to completely describe the thermodynamic properties of that system,
It can be shown [2733] from the definition of gaﬁ(12) that the average
value, Ma.ﬁ’ of any mechanical quantity, maﬁ(12), associated with the pair af

is given by the general expression

_ 1
= '—v fgaﬁ(lz)maﬂ(m)dﬂ,dﬂzdg , (2.76)

M
ab  (gn?)?
where V is the volume of the system. Now the total interaction potential for

a multi-component system (¢f. eq., (2.2)) is given by

Iy
Uop = & }i". ; uij(12) ' (2.77)

where Na and Nﬁ are the numbers of particles of species a and § in the
system. We have, of course, assumed that the system is completely
characterized by a pair potential. Using eqgs. (2.76) and (2.77) one obtains

[27,33,74] an expression for the total average configurational energy

Uror 1 1

_I:]—_ = i-pT aZB Xa'xﬁ'(—sﬂT)—é— Iga6(12) UaB(12) d91d92d£ ' (2.78)

where N is the total number of particles in the system, Pp = N/V is the total

number density and xazNa/N is the mole fraction of species a. Expanding

9ap
orthogonality condition [110,111]

(12) and u ﬁ(12) in terms of rotational invariants, and using the

*
14}221(9,,92,?)[#2:2:1‘(9,,92,?)] a,ae,

(-l e o s s s [ (£"1)2 (84%)?
mmy nny 1l Cupy wra | (2m+1) (2n+1) (21+1)

] (2.79)
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and
man 2
S fo dr = 4#nr”dr , (2.79b)
0
we have
Uror _ 27 5 [ (gnl)2
—_— = — p Py L
N Pp af| @ Bmnll(2m+1)(2n+1)(21+1)

uy

® 2 mnl mnl
x P e ar|| L (2.80)

mnl mnl
Here we note that guv;aB(r)_h#”aB

(2.80) to calculate all average energies reported in this thesis, Care must be

(r) for mnl#000, We will use eq.

taken in computing some terms such as the ion-dipole energy at infinite
dilution and the ion-ion energies. The contribution to the energy from each
individual ion-ion pair is divergent, However, for a charge neutral system

these divergences cancel and the total ion-ion energy, UII is a meaningful

quantity,

13

Also of interest in this study will be the total average energy, Uaﬁ of
single component pairs within the system. It is usually convenient to express

these energies per Na' rather than N, After eq. (2.80) we .write

Uaﬁ (fmn1)2
—= = 27a o) z
N aB "Bmnl|(2m+1) (2n+1)(21+1)
a ny
® 2 mnl mn1l
X & r guv;aﬁ(r)uuv;aﬁ(r)dr , (2.81a)
where : ” 8
if a=8 ,
= 2.81b
Bap [z if a#B . ( )

Another average quantity we can calculate for our systems is the
average pressure as given by the compressibility factor, Z=PV/NkT. From the
virial expression for the equation of state (cf. eq. (2.28) of Ref, 27), together
with eq. (2.76) we have that

du_ ,(12)
fr 1 (12) —ab

- — I r ——dQ,dQ,4dr . (2.82)
ERT o Xa¥p 8722 R S 1df.0r
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Equation (282) is often referred to as the pressure or virial equation. We
determine Z by again expanding gaB(12) and Uaﬂ“Z) in rotational invariants,
In evaluating eq. (2.82), the required derivative of the multipolar potential is
easy to perform analytically, while for the hard-sphere potential we must use
the identity [27]

auaéIZ)

Y = -kT 6(r=daﬁ) ' (2.83)

where & is the Dirac delta function, We must again treat the ion-ion terms

and the ion-solvent terms carefully,

In" general, we can also determine average quantities as functions of

particle separation. Let us define
(r)
WO <zﬁ w(12)) (2.84)

as the average total value of mZBUZ) at r, where <e«++> denotes the
ensemble average, m26(12) is some property of the particles of species f to
be evaluated at a distance r from a particle of species a, and Naﬁ(r) is the
number of particles of species f at the separation r, Using eqgs. (2.76) and
(2.79b), and recalling that [13,27]

4wr2p6980 aﬁ(r)dr = <Naér)> , (2.85a)

we have the expression

(r)> .
M (r) Yo fg (12) m®(12) 42,49, . (2.85b)
ab (87 )2 aoiggr)  F T e o

If we assume there is very little correlation between Maﬁ(r) and <Na.ﬁ(r)>’
then the average Maﬁ(r) per particle is given by
M (r)
<mzﬂ(r)> = —N—aﬁ(——)—-
<N, gr)>
1

(87%)° g

000 [ 9 12) Mo 4(12) 42440, . (2.86)
00; aér)
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_ In the study of liquids, the average orientations of the molecules as
functions of separation are usually of interest. We define <4}Br;];'aﬁ(r)> as
being the average orientation of a particle of species f at a distance r from
a particle of species a., Expanding gaﬁ(12) in eq. (286) and taking advantage

of the orthogonality of rotational invariants as given in eq. (2.79a), we obtain

mnl,2 B (r)
@l s - e — G562 - (2.87)
uv;ap (2m+1)(2n+1) (21+1) ggggag(r)

where we have assumed that m+n+l=even., The average orientation of solvent
molecules around an ion is an important property of electrolyte solutions and

will be examined in this study., The averages of most interest are

<P1(coseis)> <cos#, > (2.88a)

and '
<P,{(cosf, :)> §<c0529. > - 4 (2.88b)
2 is 2 is 2 7 *

where eis is the angle between the dipole vector and the vector joining the

ion, i, and the solvent, s, In Figure 3 we have illustrated our convention in
choosing eis for positive and negative ions, This convention guarantees that
cos«9is will be positive for favourable dipole orientations for both positive and
negative ions, For the choice of fmnl given by eq. (2.9a), and using explicit
forms for the rotational invariants [6181], it is easy to show that eqs. (2.88)

can be written as

011
h (r)
_ 00;+s
<P1(cose+s)>(r) = 000 , (2.89a)

3900;+s(r)

011
~hin._{r)
<P1(cose_s)>(r) = 886 S , (2.89b)

3900;_s(r)

and
2n)22. (r)
<P,(cosf. )>(r) = 2 , (2.89c)
2 is 000
Sgoo;is(r)

where + and - denote the positively and negatively charged ionic species, |t



Figure 3. The_angle eis for (a) a positive ion and (b) a negative ion,
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is also easy to demonstrate that for a random distribution of dipole

orientations
<P1(coseis)>(r) = <P2(coseis)>(r) =0 . (2.90)

Clearly then, eq. (2.90) must represent the large r limits of these averages,
From any introductory textbook in statistics [136], we have that the standard

deviation, o, of a distribution, y, is given by
1
o = (<y?>-<y>2)2 , (2.91)

where ¢ is a measure of the width of the distribution, Therefore we can

easily compute the standard deviation of (coseis) using eqs. (2.88) and (2.89).

The equilibrium, or static, dielectric constant is another quantity we will
calculate since it is an important property of polar solvents and of electrolyte
solutions [8,10,81,137]. For a pure solvent, the static dielectric constant, €, is
well defined [81,137-140] and is readily measured. For electroiyte solutions
the equilibrium dielectric constant, € is theoretically well defined [6181], but
the measured dielectric constant, e*(w), diverges at low frequencies, w, of the
applied field [1081]. This is due to the conducting properties of ionic

solutions, Hence, one defines [1081] an apparent dielectric constant, € for

electrolyte solutions given by

qses * _ 4w
€, = 2.)_1—m_>116 [e (w) —iZ)—] , (2.92)

where X\ is the zero-frequency conductivity, However, € is not a true
equilibrium quantity since several authors [1021,141] have shown that it
contains dynamical contributions, These dynamical contributions are not well
understood and g can not, at present, be unambiguously determined
experimentally for electrolyte solutions, Thus, for electrolyte solutions we
would not expect exact agreement between the dielectric constants calculated
for model systems and those determined experimentally using eq. (2.92).
However, the agreement that is obtained should give a further indication of

how large the dynamical contributions to €, may be.

In this study we will make use of three different expressions for
determining the dielectric constant of a pure‘ solvent, The first is the
Kirkwood [138,142] relationship
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(e-1)(2e+1)

= Y9 . (2.93a)
e
where 2
-l (2.93b)
Y2 Gkr -

in which u is the dipole moment of the solvent, The Kirkwood g-factor can
be expressed [6162] as
4mpg @ 2 110

{)r hyg.g¢lE) dr . (2.93c)

g = 1 +

It has been shown [143] that the dielectric constant can be obtained through

the limit

2
(r) — L1 s rso . (2.94)

41rpsye r3

112

h00;ss

We will also determine € using the relationship [74]

[
- .s|x110 - ~112 -
1 - B (e sske0) ¢ 2c00;ss(k'0):|
€ Pa o170 112 ’ (2.95a)
where . 2
~112 _ _ Tamu
cOO;ss(k'O) = 3kT (2.95b)
and it follows from eq. (2.31) that
~110 _ - Z 2 110
COO;SS(k_O) = 4n fo r cOO;ss(r) dr . (2.95¢c)

For electrolyte solutions, eq. (295a) is stili a valid route [74] to the
dielectric constant, However, eqgs., (2.93a) and (2.94) are no longer valid

because of the Debye screening of hg):)?ss(r) and hég)(_)ss(r). Levesque
r I

et a/l. [74] have shown that for a screened ionic system

e —1
_S__=Yg

' (2.96)
3

where y and g are still given by eqgs. (2.83b) and (2.93c). Chan et a/. [135]
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have also found that

_ 47 ~(2)
GS = XT lzj pi pj ql qJ- hl] ’ _ (2.97a)
where the sums are over ionic species and
~(2) _ -47 4

in which hij(r) is understood to be the spherically symmetric ion-ion pair
correlation function, Equations (2.97) are known as the Stillinger-Lovett [144]
second moment condition. |t is important to point out that for the HNC (and
LHNC) theory, the three formulas valid for a pure solvent (egs. (2.93), (2.94)
and (2.95)) and the three formulas valid for electrolyte solutions (egs. (2.95),
(2.96) and (2.97)) must, in principle, all yield e consistently for their respective

systems,

In this study we examine many electrolyte solutions at infinite dilution,
In discussing such systems it is convenient to introduce the ion-ion potential

of mean force, wij(r), defined by [27]

ﬁwij(r) = —lngij(r) , (2.98)
where gij(r) is the ion-ion radial distribution function and B=1/kT. At
infinite dilution, wij(r) is the potential associated with the solvent averaged
-force acting between the two ions, i and j. It inciudes all solvent effects
that influence the ion-ion correlations, The ion-ion potential of mean force at
infinite dilution is a measure of the free energy change of the system in
taking the two ions from infinite separation to some separation r., Pettitt and
Rossky [82] have exploited this relationship to determine the entropic and
energetic contributions to wij(r). We point out that wij(r) at infinite
dilution is the solvent averaged ion-ion potential required by McMillan-Mayer

theory [26] and it clearly follows from eq. (1.1) that
q: g
€r

Thus this effective ion-ion potential could be used to perform McMillan-Mayer

level theory for model electrolyte solutions at finite concentration, as was
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done by Pettitt and Rossky [82].

In the HNC theory, we rewrite eq. (2.98) using the HNC equation (2.62a)

to obtain

ﬁwij(r) = 6Uij(r) - nij(r) . (2.100)
However, since all our calculations are done using the RHNC approximation, we

will report the ion-ion potentials of mean force as given by

Bwij(r) = ﬁAuij(r) - Anij(r) + lng??(r) , (2.101)

which is the correct expression for hard-sphere ions in the RHNC theory.

Finally, we note that whenever a dielectric constant, energy, or other
average quantity is computed, the required integrations are usually performed
using both trapezoidal and Simpson’s rule [134]. This is done, in part, to
check our numerical accuracy. In most cases it is the result obtained using

Simpson’s rule which is reported,
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CHAPTER i

THERMODYNAMIC THEORY FOR ELECTROLYTE SOLUTIONS

1. Introduction

In the statistical mechanical theory of multi~component systems the
formalism of Kirkwood and Buff [104] often provides a convenient route to
the thermodynamic properties, The Kirkwood-Buff approach is well known
[87-89]. It uses grand canonical concentration fluctuation relationships in order

to relate certain thermodynamic functions to integrals of the type

G

> 2
2B = 41rfor ha

ﬁ(r)dl‘ ’ (3.1a)

where for notational convenience we use

_ ,000 000 _
and ggg?aﬁ(r) is the radial distribution function defined in Chapter |lI, This

makes the Kirkwood-Buff theory particularly useful in extracting thermodynamic
properties from the integral equation theories discussed in the previous
chapter, In this study we would like to be able to apply the Kirkwood-Buff
method to model electrolyte solutions in which the solvent has been included

as a discrete molecular species,

Fo; mixtures of uncharged particles, each species is an independently
variable component and the expressions given by Kirkwood and Buff [104] can
be directly applied. However, for electrolyte solutions where one has
correlation functions between dependent constituents rather than independent
components (i.e., the concentrations of individual ions cannot be varied
independently), the computational application of the Kirkwood-Buff theory is
not immediately obvious, The ambiguity stems from the fact that when charge
neutrality conditions are applied, all Kirkwood-Buff expressions [104] for the
thermodynamic properties (e.g., the partial molecular volume of the salt, the
compressibility of solution, etc,) are indeterminate. This problem has been
previously recognized and dealt with by Friedman and Ramanathan [145] for

model electrolyte solutions which treat the solvent at the continuum ievel,
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Several other authors [13,146,147] have employed the Kirkwood-Buff formalism
in order to relate the structure and thermodynamics of real electrolyte
solutions, However, the results reported are either {imited to particular
systems and thermodynamic properties or are not applicable to the present

study,

in this chapter we will use the Kirkwood-Buff expressions to derive
more general results for electrolyte solutions, The model we will consider
incorporates the solvent as a true molecular species, and hence the
relationships obtained are directly applicable to real systems. Although we will
only give expressions explicitly for a two component salt/solvent system, the
method we will outline in this chapter is totally general and can be readily
applied to solutions of more than one salt. We will also examine the low
concentration limiting behaviours of our expressions and compare these with

macroscopic results obtained through Debye-Huckel theory [6].

2. General Expressions

The exact formulation of Kirkwood and Buff [104] expresses the
thermodynamic properties of a multi-component system in terms of a matrix
B. The elements of B are defined by

= +
Baﬁ paéaﬁ papBGaﬁ , (3.2)
where Gaﬁ is given by eq. (3.1a) and pa= Na/V is again the number density
of species a. If we consider a mixture of m species and denote the
chemical potential of species a by B the partial molecular volume by Va,
and the isothermal compressibility of the system by Xps then the relevant

relationships given by Kirkwood and Buff [104] can be expressed as follows:

_y_[ﬁ‘g] _ _1_[1“3] _ 1Blag (3.3a)
oN N 0p - ! :
kT giT,V, y kT 8 T,p7 |B|

l’_[__a"a] - _‘_[_a"a] _ Ja'p (3.3b)
krLONglr, P, N krLOpglT, p KT X
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= AV 1 m
V = |0 = = 2 B , .
0 [aN,y]T,P,N S g=1 pﬁl—lvﬁ (3.3¢c)
a
1
kTxq = 5 |B| (3.34)
where
s = z B (3.3e)
= a,f=1 papﬁ|_|aﬁ ’ .Je

|B| is the determinant of B, and |§Iaﬁ indicates the cofactor of the element
Baﬁ‘ Also if we label the solvent as component 1 and the remaining species
by integers ranging from 2-.-.m, the derivative of the osmotic pressure, II,

with respect to Py is given by

m |B' |
‘—[g—“-] = L p—2 (3.4a)
kT pa Tlu1rp7¢1 ﬁ=2 |§ |
where the elements of B' are defined by
Ba.B = paaaﬁ + papBGaﬁ 7 a,B#1 . (3.4b)

It should be emphasized that eqgs. (3.3) and (3.4) apply to ionic solutions in
only a formal sense., This is because single ion properties can not be
evaluated by thermodynamic methods [6,7]. However, the physically meaningful
quantities that apply to the electrically neutral salt can be obtained from the

single ion expressions,

Although the method described below can be applied to any electrolyte
solution, we shall write explicit results only for a two component system
consisting of a solvent and a salt of the general type mev_' Throughout
this chapter, the solute (salt) will be referred to as component 2 and the
subscripts s, + and - will denote the solvent and the positively and
negatively charged ionic species. Also, it is convenient to introduce the
parameter v = v _ + V_, as well as the relationships Py = ViPy, P = V_Py
and p, =(v, /v_)p_. Also, since the salt molecule is electrically neutral, we
have that q, = -(v_/v, )q_. For electrolyte solutions, we have charge neutrality

conditions which can be expressed as [74,135,148,149]
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Zpiinij = "q- (3.53)
and

?piinis = 0. (3.5b)

For the systems we will consider, eqgs. (35a) and (35b) can be rewritten in

the form

(3.5¢)

and

G =G . (3.54)

As mentioned earlier, the charge neutrality conditions render indeterminate all
thermodynamic quantities obtained by direct substitution into the Kirkwood-Buff
equations. Therefore, in order to proceed it is necessary to employ a
formalism which allows the charge neutral limit to be taken analytically in
such a way that dseful determinate expressions are obtained for the
thermodynamic properties, One way of doing this in a general systematic

manner is described below.

We begin by realizing that

o~ - ~(0)

Gaﬁ = haB(k_O) = haB , (3.6a)
where

Bygk) = ilklf:rhaﬁ(r) sin(kr) dr (3.6b)

follows immediately from eqs. (2.34a) and (2.35a). At finite ion concentration
haﬁ(r) is screened and decays exponentially at large r (as will be discussed

below). Hence at small k, h (k) can be expanded in the form [73,74,135]
ap

(k) = B0 4 w252y o . (3.6c)

ha af ap

B

where the second moment, Eég), is given by eq. (297b). Thus we can

introduce the matrix B(k) whose elements are

Baﬁ(k) = paaaﬁ + papﬁhaﬁ(k) . (3.7)
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This then allows determinate expressions for the thermodynamic properties to
be obtained by taking the k—> 0 limit of the appropriate k-dependent

quantities,

For the MV XV /solvent system we consider, :B:(k) has the explicit form

+*

p2RT (k) b, o B, (K) b, 0 T, (K)

s +s
B(k) = |p, o B, (k) p2RT_(K) oo B k)], (3.8a)
pap By (k) p_p (k) p 2RI (k)
where
Rf (k) = B (k) + L | (3.8b)
aa aa Py *
and we have made use of the requirement that haB(r) = hBa(r)’ in which

a,f = +~-5s. In order to take the required k—>0 limits, it is necessary to

know the small k behaviour of the determinant |[B(k) and of the sum

S(k) = Z oy 00 1B gp (3.9)

where again IE(k)lag denotes the cofactor of the element —g-aB(k)' Using eq.
{3.7) together with the charge neutrality conditions given by egs. (3.5c) and
(35d), one finds that at small k

2, 2|50 §T(0) _ (5(0)y2

|B(k) |, . = o ‘e

S

+ kz[ﬁlé‘))ﬁff) * Hi?’ﬁég) - 2512’33’] + ool , (3.10a)

1B o = 1B, = ppep 2 [[RD12 - RIOVRELO) o2

~(0)z(2) , 2(2), _ z(0) x(2) _ =t(0) (2)
X [h+s [h+s +h_s ] h.” hss hss h+_] + , (3.10b)
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1B |__ = o2 0 f{i?)ﬁlém - [Eig)]z
. k2[ﬁg;°>'ﬁg> + 5O R2) - zﬁ§g>ﬁig>] +eeel, (3.100)

1B |, = 1B |, = p+p_2ps’k2[ﬁig>[ﬁif’ -5(2)3

+ 319)[52)—}?1?]] +eeel, (3,109
Bk) g = 1B(R) |4 = pfp_ps[kz[ﬁig’['ﬁi? - 52

L HOHD) 72)) } (52100
and
1B(k) |gq = pfp_z[kz[ﬁﬁhsif’+ﬁ£3’-zﬁj§>1] + } . (3.10f)

We remark that in the k—>0 limit |§(k)]+S = |§(k)|_s = IE(k)ISS = 0. The

explicit forms for the cofactors can then be used to show that as k—>0,

B | — 202 2[RI RO - (BP0 + o, iria)

S(k) —> p+2p_2psz[ﬁlé0) + E_f_O) - 2‘1\1'12)]Dk2 + «e¢ , (3.11b)

where

p = B2 4 §l2) zﬁff) . (3.11¢)

4+ ——

It is also obvious from egs., (3.11a) and (3.11b) that as k—> 0, both g(k) and
|B()|—>o.
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First we shall derive explicit expressions. for the volumetric properties,
For the present system the partial molecular volume of the salt, Vz, is defined
by [6]

ov

Vv, = |=— =pV +» V (3.12)
2 [aN] Ve TV
2 T,P,NS

where V+ and V_ are given by eq. (33c). It then follows that the appropriate
k—-dependent quantity is

V(k) = », U (k) + »_V.(k) , (3.13a)
where

o _ 1 ~ )

Tk = 2 LN P-(C TP (3.13b)

Now using eqgs. (3.10) and (3.11b) and collecting terms, we find that the
resulting expression contains the factor Dk2 in both its numerator and its

denominator, We then simply cancel this common factor to obtain

gT(O) _ gto)

11m1tV(k) = s . , | (3.14)
ks 2 2[h1*(0) _ f{i(_)) _ zgig)]

which in the convenient GaB notation gives

v, = | * PG5~ Grg) (3.15)
2 - _ . .
ppl1 + p (G + G, _ - 2G, )]

+

Clearly eq. (3.15) is the desired determinate expression for V2_
In a similar fashion we define the k-dependent quantity v (k) Then
msertmg egs. (3.10) and (3.11b) and taking the k—>0 Ilimit, we obtam the
partial molecular volume of the solvent,
G, _- G+s

V. = . (3.16)
s 1+ ps(.Gss+ G, _ - 2G+s)

+

it is easy to see that eqs, (3.15) and (3.16) satisfy the required relationship

pSVS + pzvz =1 . (3.17a)
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From eq. (3.15) we immediately have that

limit T, = - . (3.17b)

p.— 0 2 P2
S
Also, since in eq. (3.16) only G+__ is divergent in the limit p2——>0 (as shown
below), it follows that
limit VS =
p2—>0

L (3.17¢)
pS

Obviously eqs, (3.17b) and (3.17c) represent the correct single component
results for the partial molecular volumes, Finally, we note that for the

particular case when v 1, eq. (3.16) can easily be shown to be equivalent to

+ =
the expression given by Enderby and Neiison [13].

In general, the isothermal compressibility [27] of a system is given by

KTxep ='\‘-,[%]T,N = #[%?]T,N . (3.18)

it should be pointed out that when k appears in the combination kT, as in eq.
(3.18), it refers to the Boltzmann constant and is not to be confused with k
in the Fourier transform, By analogy with eq. (3.3d), we define the

k-dependent isothermal compressibility

~

KX (k) = —?‘U@(ku . (3.19)

The k—>0 limit follows immediately from egs, (3.11a) and (3.11b), and yields

the relationship

2
G, * p (G, _Gy - G, o)

: 3.20
- 2G,¢) ( )

KTx,. =
Xp 1+ ps(GSS+ G

+_
which agrees with the result previously given by Levesque et a/. [74].
Equations (3.15), (3.16) and (3.20) will be used to determine the volumetric
properties of the model electrolyte solutions being considered in this study.
We also point out that these expressions are totally general and can be

applied directly to those solutions which contain only a single salt,
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The chemical potential is a fundamental quantity in thermodynamics
[6,150] and is particularly useful in describing non-ideal behaviour in solutions
[15,7]. Using notation consistent with Harned and Owen [6], we express the

chemical potential of species a as

- .9 = 0
m, = u, *+ kTln ag = Mg, + kT ln('yama)
_ 0
= g, * kT In(y,c,) (3.21)

where a, is the activity of species a, ma and c, are concentrations expressed
0

as molality and molarity, Ta and Ya are activity coefficients, and "Z’ “a;m
and “Z;c are the chemical potentials of the standard states., Since K, must
be independent of the concentration scale in which a, is expressed, the
chemical potential of the standard state will contain a term dependent on the
choice of scale, Thus we find ug;m;t “Z;c and it follows that 'yaaﬁ Y,
Expressions relating the logarithms of the various activity coefficients can be
easily obtained (cf. egs. (1-8-13)-(15) of Ref. 6) and it can be shown that the
differences between the logarithms of the activity coefficients always have a
linear dependence on concentration at low solute concentration., We point out

remains unchanged if the

that the molarity activity coefficient, Ya

concentration scale is expressed as a number density.
For the electrolyte solutions being considered here, the chemical
potential of the solute (salt), Hy, is given by

My = vou, ot ov_u (3.22a)

where the single ion quantities are defined by eq. (3.21). If we introduce the

mean activity coefficient of the salt defined [6] such that
Y, = Yo¥o , (3.22b)

then it follows from eqgs. (3.21) and (3.22a) that

wy = W, * KTInGL oY) + pkTInly,p,) . (3.22¢)

We take the partial derivative of eq. (3.22c) with respect to Py holding T and

p., or T and P, fixed to obtain

S’
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o] S e | Sl (323
0p, T,pg Or P vkT| 0p, T,p, Or P Py

Expressions for the right hand side of eq. (3.23) can now be found by

applying the Kirkwood-Buff equations,
Using eq. (3.22a) together with the mathematical relationship

aui Bui

—| = .z p[____] ; 1 =+o0or -, (3.24a)
[892] J=+"‘ ] apj pk#j

one immediately finds that

2 + + _ 2 _
= = -_— + — + +
[apz] v, [ap+]p_ v, v_ [ap_]p+ [ap+:lp_ V_ [ap_]p+ I (3.24b)

where in addition to the variables specifically indicated T and Pg OF P are
also held constant. The partial derivatives, (aua/apﬁ), required in the
constant volume case are given by eq. (3.3a). Again, in order to obtain

determinate results it is necessary to define

~

ou |§(k)|
1 a = ap
|55 (k) = ———— . (3.25)
kTI:apﬁ:]T,p |B(k) |

Substituting eq. (3.25) into the right hand side of eq. (3.24b) and using egs.
(3.10) and (3.11a), then simplifying and taking the k—>0 limit yields the

determinate result

L[auz] ) P (3.26)
3p 2 _ 2y " y
KTLOP2IT pg  p,°[G,_ + p (G G, - G, 2)]

From eqgs. (3.3b), (3,12)>and (3.24b) we can show that the constant pressure

derivative can be expressed as

0 ) v
_V_[aT“Z] - -‘_[a_“z] - 2 (3.27a)
kT 2 T,P,Ns kT ypzTUps kaT

Inserting results from eqs. (3.15), (3.20) and (3.26) we obtain
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0 P
%[WMZ]T R - . (3.27p)
21T, P, Ng py"[1 + p (G + G_ - 2G, )]

Clearly, eq. (3.27b) does not represent the constant pressure derivative required

in eq. (3.23). In order to proceed, we introduce the relationship

) [ _ v 90,

_ T— il by / v N y (3.283)
kTLCOPIT, P kT 2T,P,NS 2T,P,Ns

where NS is being implicitly held fixed on the left-hand side of the equation,
However, pg can not be held fixed because the volume is allowed to vary. it

can easily be shown that

ap2

e M1 - T ) = L, T
[—aN_z]T,P,Ns = v(1 p2V2) = VpSVS . (3.28b)

Then combining egs. (3.27b) and (3.28), and using eq. (3.16) we obtain
o 1
_1_[.“2.._] - : (3.29)

op 2
kTLOP2IT, P pf(G,_ - G,,)

Expressions for the mean activity coefficients now follow immediately
from eqs. (3.23), (3.26) and (3.28). Explicitly, we have

[alnyi_] ) L L psGss -1 (3.30a)
%2 I1i0g by |vp,l6,_ + 5 (6,.G, - G,2)]
and
dlny 1 1
[a :] = — -1 . (3.30b)
P2 UT,P Py |wp,(G,_ - G, )

Equations (3.30) will be used in this study to calculate derivatives of the
mean activity coefficient, Again, these are general expressions for two
component salt/solvent systems but results for more complex mixtures could

be found with relative ease,
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in a similar manner, we can also derive relationships involving the

solvent chemical potential. In particular, we can show that

du G, _
ﬁ[a_ps]'r - * 5 (3.31a)
sI1r Py pg[G,_ + pg (G, G, - G.)]

and
L[ﬁﬁ] _ J_[E‘E]
kT 3PS T,p2 kT ap2 T,ps

-G
= s >— . (3.31b)
p,[G,_ + p (G G, - G, )]

Finally, we will consider the osmotic pressure, The derivative of the

osmotic pressuré with respect to Py is given by

b, s E S, O
S s’ Ty#1

where (an/api) is defined by eqg. (34a). Again direct substitution into eq.
(3.32) leads to an indeterminate result when the charge neutrality condition
(3.5c) is applied. Therefore, proceeding as before we define the matrix _g_'(k)
(¢f. eq. (34b)) and the k-dependent derivatives analogous to eq. (3.4a).
Substituting the k-dependent quantities for (an/api) into eq. (3.32) and taking
the k—> 0 Ilimit yields the expression

1 [on 1
— |5 = . 3.33
kT[apz]T, B Py G, ( )

For 1:1 electrolytes this result is equivalent to that given in Ref. 74, although

eq. (3.33) is a more general relationship.
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3. Limiting Behaviour

In order to determine the Ilimiting behaviour as p2—>0 of the
expressions given in the previous section, it is first necessary to deduce the
low concentration limiting laws for G__, G+S and GSS, For continuum level
theories of electrolyte solutions only G+_ is relevant and this function has
been previously considered by Rasaiah and Friedman [151]. The ion-ion

distribution function, g, _(r), can be written in the form
g, (r) = exp[-pw, (r)] , - (3.34)

where w+_(r) is the ion-ion potential of mean force (cf. eq, (2.98)). For both
continuum and molecular solvents it is possible to show [61] that as r—»

and k—» 0,

-q+ d_ -kr

w, (r) — e , (3.35a)
where
d
« = [_k_.e‘“ﬁf r piqiz]z (3.35b)

is the usual Debye screening parameter and e is the dielectric constant of the

pure solvent, For a solution containing only a single salt we have

_ [A4r 3
K = [?E-T— |q+q_| sz:l . (3.35¢c)

If we now expand the exponential in eq. (3.34) and keep terms to order
[Bw+_(r)]2, egs. (3.1), (3.35a) and (3.35c) yield (see Appendix B) the limiting

law

1 A :
G = + + oo, (3.36a)
+- vp Vvp
2 2
where 1 | 13
g [la, a3

We emphasize that eq. (3.36a) holds for both continuum and molecular level

theories of electrolyte solutions,

In order to obtain limiting expressions for G+s and G it is necessary

SS’
to reintroduce the direct correlation function, caﬁ(12), and to apply the OZ
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equation, both of which are described in the previous chapter, Our analysis
will require that we know the long-range behaviour of Ca6(12)‘ Therefore, we
must restrict ourselves to systems which can be described by pairwise or
effective pairwise additive potentials.

For the present purposes, the only relevant projections are hggoaﬁ(r)

From the OZ equation, as given by (2.36a), we have that

~000 _ %000 _ m0
hoo;agk) ~ E00;apk) = 2 |Z Zop

m . \w~0mm ~m0m
[ B CoeRT o etln o], Gl

where Zglgg is a nonzero coefficient given by eq. (2.36b). Obviously, it is the
small k dependence of this expression which is required here., In order to

reduce eq. (3.37) further, we take advantage of a property of the Hankel
~mnl
uva
forms for the spherical Bessel functions and expanding the sin and cos terms)

that if bmnl
uviap

tranforms, b B(k) (¢f. eq. (2.31)). It can be shown (by using explicit

(r) decays faster than 1/r3 then

)

mnl _
uv aB(k 0) = 0 for 1>0. (3.38a)

Of course, for all electrolyte solutions at finite concentrations, screening

Omm

ensures that h0 p(r) decays exponentially, and hence

I

Hg‘;";‘aﬁ(km) =0 for m»0. (3.38b)

Thus, if we consider the k—>0 limit of eq. (3.37), we can then apply eq.

(3.38b) to obtain the expression

Gas - ca.s = gp'yGa'yC'ys ' (3.39a)

where for notational convenience we have introduced

= ~000 - _ 2 000
Equation (3.38a) is an exact relationship subject only to the restriction that the

potentials describing our system be pairwise additive,
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For the systems being considered here we can explicitly write out the
terms in the sum of eq. (3.39a) and then rearrange to obtain
G o (1 - p Coe) = (1 + p, G )C .+ p G _C_ - (3.40a)
and
G_S(1 - psCss) = (1 + p_G__)C_s + 0,6, Coo (3.40Db)
which, when combined with the charge neutrality condition (35c), yield the

result

-g )

Equation (3.41) is in fact the origin of the charge neutrality condition (35d).
Also, since eq. (341) is obtained with the aid of the charge neutrality
condition (3.5c), it holds only for p2>0,

At this point it is interesting to note that if we examine eq. (3.37) at

small k, we have a relationship analogous to eq. (3.39a), namely

RO0vaslk) = [E000450k) + p, YO0 ,.0) 2009, (k)

00;:as COO;as Py 00;a+ 0;+s
~000 ~000 1
+ 5000, (k) 8007 (0| [———ppp (k)]. (3.42a)

1= 05C00;:ss

~000

The small k behaviour of hOO'i (k) (an apparent 1/k2 divergence) will
14

J ~
dominate this expression, and so it follows that hgg?as(k) must also have
’

the same small k dependence. Therefore, at large r we can write that

000

hOO;ivs(r) —> 3;5 P h, (r) (3.42b)
and

000 2

hOO;ss(r) —> 855 P h, _(r) , (3.42¢)

i ~000
where a is a constant dependent on the values of Cnhn. (k) at small k.
as 000 000 00;as

We remark that if c00;+s(r)=c00;_s(r) (ie., the ions are solvated

_ 000
equivalently), then a _=0. The long-range tails in hOO;as(r) that are a

result of eqgs. (342b) and (3.42c) will be discussed in more detail in later

chapters.
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Inspection of eqs. (341) and (3.36a) shows that at low concentration

G_H__,:.G_S will have a term due to Py G, _ which varies like |/p2,

also expect Cis (i= 4+ or =) to have a sz dependence at low concentration,

We might

SO we write

0 o
+ = -+ o s e
CIS ”+C+s V__C_s (1.)+C+s V_C_S) + Sc;/p2 + , (3.43)
where the superscript o indicates the infinite dilution result, It is not possible,
at present, to obtain an exact expression for the slope Sc‘ However, the HNC

equation (2.62a) can be used to find an approximate form for Sc'

We start by expanding the logarithm in eq. (2.62a) for large r and using
eq. (2.25), which immediately yields the result

1 2
Caﬁ(u) — §[ha6(12)] Bua6(12) as r—>, (3.44)
We then expand c¢(12), h(12), and u(12) in rotational invariant as .in Chapter Il.
It is possible to deduce, with that aid of eq. (342b), that as p2——>0 and

r—>

000 011 (r)]2 000 (r)

1
00;ist) > glhgo,is ~ Buyg,is . (3.45)

Thus for nonpolarizable particles the first term in eq., (34b) is the leading.

concentration_dependent term and it is sufficient to determine the limiting HNC

slope for Cis‘ it is known from the work of Hgye and Stell [61,152] that in

the limits p2—>0 and r—> o,

011 €= 1 i M) 1+kr —yr
Wb 1ser) — o< [ e (3.46)

where y has been defined in eq. (2.93b). Now substituting egs. (3.45) and
(3.46) into eq. (3.39b), it is possible to show, after considerable manipulation

(see Appendix B), that as p2—>0,

-112 94 #
Cig = G = (78T i s e (3.47)
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Combining egs. (3.43) and (3.47) along with eq. (3.35c), and then rearranging

gives

3 2
S _ —Av?(e-1) (3.48)
C - pSY€ . .

Again we note that eq. (3_48) is approximate, and furthermore holds only for
fluids of nonpolarizable particles, The accuracy of the HNC estimate for Sc

will be discussed below,

From egs. (3.36a), (3.41) and (343) we have the limiting law

S
_ _ A07 (o} A 0
G,g = Gg = Gy # [T+‘/—( v, +s+ ”—C—s)]‘/pz ’ (3.49a)
where
. . v, C?_ + » P
¢ =¢6° = limit G, = +*S s (3.49b)
s S  p —0+ 'S v(1-p.C2)
2 S 78S

We point out that p2-——90+ is the appropriate iimit here since eq. (341) holds
only for p2>0.

It is interesting to apply the infinite dilution limit (/.e., p,=p_=0) to
egs. (3.40) to obtain

CO
Gy = ——=— (3.50a)
1= psCss
and
(o]
2 = ——C's— . . (3.50b)
1 pscss

It is obvious that these expressions do not agree with eq. (3.49b), and hence
G_'_s and G_s must be discontinuous at p2=0_ Moreover, it follows from eqgs.
(3.49b) and (3.50) that

ot _ 0 _ 0
Gy = G4 = (v+G+S+ V_G_s)/v . (3.51)

Clearly, G_?_s and GE are just the weighted averages of G and Gfs, In
terms of the Fourier transforms, 00 ls(k) (i =+ or-), thrs discontinuous

behaviour can be expressed in the form
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limit limit 3389is(k)
p2—->0 k— 0 !

.. . .. ~000
# limit limit hOO;is(k)

k—0 p2——>0

. (3.52)

The left and right hand sides of eq. (3.52) give egs. (3.49a) and (3.50),
respectively. We note that this discontinuous behaviour in Gaﬁ (for a
charged-uncharged pair) was also indicated in earlier considerations [149] of

this function at the second virial coefficient level,

The limiting form for GSs can also be obtained by considering the 0Z

equation as expressed by eq. (3.39a). It can be shown that

(p,C._+ p_C__)G,_ + C
Ggg = ————— =255, (3.53)
pS SS

from which it follows that at low concentration

0
G.. = —>=— + 0(p,) . (3.54)
sS 1-p c 2
S 'ss
We also point out that
1 0 0
— Q% ~ 1+pSGss = pSkaT ’ (3.55)
1-p.C

s ss
where x,(I), is the isothermal compressibility of the pure solvent, Equation (355)
is a well known result [27], which can be obtained from the one component

limit of eq. (3.3d) or from the p2——>0 limit of eq. (3.20).

We can now examine the limiting behaviours of the thermodynamic
functions discussed in the previous section, First let us consider the mean
activity coefficient, Substituting eqs. (3.36a), (349a) and (3.54) into eqgs. (3.30),

it can be shown that in the limit pz-—>0,

dlny dlny -2
[ = i] — [—T_i] — —ﬁ . (3.56)
Py T,ps Py IT,P sz

Equation (3.56) agrees with the derivative of the usual Debye-Huckel limiting
law [6] for lny,, where it follows from the discussion in the previous
section that the limiting law for the mean activity coefficients must be

independent of the concentration -scale,
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Now let us consider the limiting behaviour of the derivative of the

osmotic pressure, Combining egs. (3.33) and (3.36a) we immediately obtain

1 an] | v ‘
— | — ——— —> p(1 - A/vp,) . (3.57)
kT[apz T ug 1+ A/vp, 2

We recall [150] that the osmotic pressure is a measure of the change in
chemical potential of the solvent due to the presence of the salt, A more
frequently used measure of the solvent chemical potential is the osmotic
coefficient [6,7], ¢, defined by

o = 1000 1

w103 (3.58)

where Ms is the molecular weight of the solvent, m is the concentration in
molality and ag is the solvent activity, |f we assume the solvent is
incompressible over the pressure change of II, then the osmotic pressure is

related [6,7] to the osmotic coefficient by

v kTMS

Mm=—5 4m. 3.59
1ooovs"”n ( )

The limiting law for ¢ (¢f. eq. (3-5-12) of Ref. [6]) can be written as

¢ —> 1 - %—A‘/ﬁz- as p2——>0' . (3.60)
At very low concentration eq. (3569) can be rearranged to give

n = va¢p2 . (3.61)

Now substituting eq, (3.60) into (3.61) and taking the derivative with respect to
Py, We again obtain eq. (357). Clearly, the limiting behaviours of the osmotic

pressure and of the osmotic coefficient are simply related,

The limiting behaviour of the partial molecular volume, Vz, is of
particular importance and requires careful attention, From eq. (3.15) and the
limiting expressions (3.36a), (349a) and (3.54), it is possible to show that as

pzéos
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’ (3.628)

1+p G° G
v, — [ s ss] _ +s
Pg Po Gy PG,

or using eq. (341)

1+p G? v,C,_+ pv_C_ o
Vv, — |— S 88| _ | TS S| . (3.62b)
2 p. p-G _ 0
§72 - 17 pgCsg
Now applying eqs. (3.36a), (343) and (355) we obtain the limiting law
expression
5 _ 0
V, =V, + S,vp, (3.63)
where
—=0 [} - 0 [¢] _ [}
v, V+kaT(1 pSC+s) V_kaT(1 psC_s) (3.64a)
- o _ o 0 0
= vkTxp pSkaT(V+C+S + v_C_S) (3.64b)
and
o
a Xm P S .
= 2|-40 - T8¢ '
S, = AkTv [ X —3 ] . (3.65)

Ay

We remark that as one would expect, Vg splits into two independent terms
which depend upon the interaction of the positive and negative ions with the
solvent (cf. eq. (3.64a)). It is also interesting to note that Vg can be written
as the sum of two terms, only one of which depends upon the ion-solvent

interactions, as in eq. (3.64b),

It is very instructive to compare eq, (3.65) with the exact macroscopic

(i.e., Debye~Huckel) result for Sv’ which can be expressed in the form [6]

= 3_.o0 olne
SV = AkT»? XT + 3[—B—P—:|T ’ (3.66)

where again € is the pure solvent dielectric constant, Clearly, our microscopic
result for Sv’ as given by eq. (3.65), is functionally equivalent to.eq. (3.66).
Comparing eqs, (3.65) and (3.66) we obtain the differential equation
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_ .0
dlne - X Pg Sc (3.67)
aP | a .
3Ap?
If we introduce the identity
dlne _ 1[0e 0 ’
[ 3P ]T B ?[aps]TPSXT ' (3.68)
which follows from eq. (3.18), we can then rewrite eq., (3.67) as
-S
1 l:ae ] C (
- = Y 3.69)
el d El
PsIT  3p,2

We note that at least for systems characterized by pairwise additive

potentials, eqgs, (3.67) and (3.69) are exact expressions,

If the HNC resuit for Sc (/.e., eq. (3.48)) is substituted into eq. (3.69),

then we obtain the differential equation

2
de€ _ (e-1)
[aps]T - '3p's'y ~ e ) (3-70)

This is exactly the equation obtained by Rasaiah et a/. [153] in their
consideration of electrostriction in polar fluids at the HNC level. Equation
(3.70) integrates to give [153]

e~ 1
e+2

=y, (3.71)

which is the Debye approximation for the dielectric constant [61] of the pure
solvent, Of course, eq. (3.71) is not a very accurate theory and overestimates
€. This means that one cannot expect the HNC theory to.give very accurate
values for SV since the HNC approximation appears to overestimate the effect
of electrostriction, Rasaiah [154] has shown that when bridge diagrams missing
in the HNC approximation are included in the closure, improved results are

obtained.

In the LHNC theory, it clearly follows from eq. (2.74a) and eqgs. (3.39b)
and (3.43) that Sc=0. As discussed earlier, this is a result of the lack of
coupling between the anisotropic potential terms and the radial distribution
function in the LHNC closure equation, This is consistent with the observation

of Rasaiah et a/. [163] that the LHNC approximation does not predict
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electrostriction in polar fluids,

We now examine the low concentration behaviour of the partial

molecular volume of the solvent, Vs' First we rewrite eq. (3.17a) as
Vo = (1 = p, 7)) . (3.72)

Then inserting eq. (3.63) into eq. (3.72) one immediately has the limiting law

= _ | _ 0
Vg = 5 (1 P Vo) (3.73)
S
Clearly, Vs has a linear dependence on Py at low concentration and its
limiting slope will be almost totally determined by 7(2) unless P has a strong

Py dependence,

Finally, from egs. (3.20), (3.36a), (349a) and (354) we can show that at

low concentration

0
Xp —> Xp * O(p2) . (3.74)

Thus we find that the compressibility also has a Py dependence in the limit
pz—->0_

It also possible to deduce limiting laws for some of the average
energy terms, In order to simplify the expressions slightly, we will consider
only symmetric electrolytes (i.e., v =v_=1). Using eq. (281a), eq. (2.10b), and
egs. (3.34), (3.35) and (3.46) we can show that at low concentration

U
11 _ _,[2#B]3 3

——.—' = 2[_6_]2 |q+q_|2Vp2 (3.75)
i

and

U, u?
iD _ “iD e-1] 27873 3

NN 2| [22]F ta, o P v, (3.76)
i

where UII/Ni is the total average ion-ion energy per ion and UiD/Ni is the
average ion-dipole energy per ion, In a similar manner, we can obtain an
expression for the dipole-dipole energy by inserting the long-range low
concentration form for hééfss(r) (¢f. 'eq. (2.35a) and Ref, 61) into eq. (281a).

Integrating and then simplifying yields the result



- 73 -

0
Up D 3 [e-1]2 2 e-112 27873 2
N_=N_.+a;|:e] 2, a-* - 4[6] [e]z |q+q_|2‘/€. (3.77)

i i

It is interesting to note that for systems in which the pure solvent has a

large dielectric constant, the limiting slopes of the first two energy terms, i.e,
egs. (3.785) and (3.76), are almost equal in magnitude but opposite in sign. The
limiting slope of the dipole~dipole energy (the last term in eq. (3.77)) is also
very similar in form, and since there are two ionic species present, it will be

almost cancelled by the two ion-dipole terms.

In subsequent chapters, in particular Chapter VI, we will use the
expressions derived in section 2 of this chapter to compute the various
thermodynamic properties of the electrolyte solutions being studied., We will
also test the validity of the limiting laws given in this section and examine

the ranges over which they hold.
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CHAPTER IV

MEAN FIELD THEORIES FOR POLARIZABLE PARTICLES

1. Introduction

In Chapter Il we have developed a theoretical approach and the
necessary methodology with which to study liquid systems of several
components, One requirement of this theory was that the total interaction
potential of the system contain only pairwise additive terms (¢f. eq. (2.2)). As
mentioned earlier, most statistical mechanical studies of fluid systems [33] use
only pair potentials to describe the interactions within the systems being
investigated, However, recent studies of polar-polarizable fluids using both
approximate theories [6167,155-158] and computer simulations [158-162] have
shown that the many-body interactions due to molecular polarizability are
important in determining the equilibrium properties of the systems. The
importance of polarization effects in water [35-38,67] and in electrolyte
solutions [3854] is now well known, Thus, in this study we have chosen to

include polarizability in the models we will consider,

In general, the many-body problem of polarizability is difficult to treat.
in the current theoretical framework (/.e., the RHNC theory as described in
Chapter 1l) it is not possible to treat it exactly, Fortunately, recent work
[61,67,166] has demonstrated that it is possible to take into account the
influence of many-body interactions due to polarizability through effective pair
potentials, The self-consistent mean field (SCMF) approximation [67] has been
shown [158,163] to be an accurate means of reducing the many-body potential
when applied to a fluid of polarizable particles with dipole and square
guadrupole moments, For purely dipolar fluids, the SCMF approximation is
equivalent to the 1-R theory of Wertheim [156]. Unlike other methods,
however, the SCMF theory uses approximations that are distinctly physical in
nature. It is also easily generalized to include contributions to the average
local electric field from higher order multipole moments, In section 2 of this
chapter, we will extend the SCMF theory of Carnie and Patey [67] to include
ion and octupole terms in order to facilitate its application to the systems

being studied here,
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in the SCMF theory the pairwise additive potentials, which result from
the reduction of the many-body interactions of a polarizable system, are
written in terms of an effective permanent dipole moment, m_, as described
below. This effective dipole moment is an average molecular property of the
system, that is, it is the same for all molecules, It will depend upon the
polarizability and permanent multipoie moments of the model, as well as upon
other properties of the model and the state parameters of the system. Within
the SCMF appproximation, the systems characterized by this effective dipole
moment will have the same structural and dielectric properties as the true

. polarizable fluid,

The SCMF the'ory has been previously used [79-81] in the study of
model electrolyte solutions at infinite dilution, There the effective moment,
Mg» must simply be that of the pure solvent., At finite concentrations we
might expect the effective dipole moment to vary due to the presence of the
ions and the resulting changés in the solvent structure, We know that at
small separations (~3A) an ion is surrounded by an intense electric field
(~108V/cm.) which will greatly alter the local solvent structure. Hence, the
average local solvent electric field might be expected to change appreciably,
Moreover, we would also expect an ion itself to significantly alter the local
field in its immediate vicinity, Thus it would be very interesting to be able
to examine the average local electric field experienced by a solvent molecule
in solution as a function of its separation, 'R, from an ion, and thereby
determine the R-dependence of the average dipole moment of a solvent

molecule,

If we consider an ion and only one polarizable solvent molecule, it can
be shown [139,140] that the dipole moment, p, induced in the molecule will be

given by

aq/r2 , (4.1a)

o
n

where
1

a = -§Trg_ (4.1b)
is the isotropic polarizability of the molecule, a being its polarizability tensor,
and q is the charge on the ion, It immediately follows that the interaction

between the charge and the induced moment is
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2

qu(r) = —:—%}- . (4.1c)
However, in solution an ion is surrounded by more than one solvent molecule.
These molecules will order in some fashion around the ion, and this must
give rise to local changes in the electric field around the ion. At finite
concentration the ion will also be surrounded by other ions which will tend to
screen its charge and again alter the local electric field, Thus, we would
expect eqgs. (4.1a) and (4.1c) to be poor approximations in a dense system

such as an electrolyte solution,

In this chapter we will describe two different levels of theory in which
a polarizable solvent may be studied, The first is the SCMF approximation
[67] which we will outline in section 2, In section 3 of this chapter we will
develop a second and more detailed formalism through which we can estimate
the average local field experienced by a solvent at a distance R from an ion,
As in the SCMF theory, we will follow a mean field approach (i.e., we will
ignore fluctuations). This R-dependent mean field (RDMF) theory gives rise to
an effective spherical potential between the ion and the solvent at R.
Moreover, this spherical potential is found to have an effect on the limiting
laws for thermodynamic quantities, such as V., which depend upon the

2
ion-solvent correlations,

2. The Self=Consistent Mean Field Theory

The SCMF theory of Carnie and Patey [67] reduces the many-body
problem of polarization into a problem involving an effective pairwise additive
potential, It does so by ignoring fluctuations in the Iocél eIe_ctri'c_ field. The
following is simply an extension of the SCMF approximation [67] to include
octupole and ion field contributions thus making it applicable to the systems

of interest in this study.

In. general, we will consider a system which contains three molecular
species, one of these being a polar-polarizable solvent. The two ionic species,

designated + and -, are assumed to be simple spherical ions possessing only

charges and no higher order multipole moments, The polarizability of these
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ions must also be spherically symmetric. When solvated, these ions will
experience no net average polarization since the average electric field
generated at the centre of such an ion by the surrounding solvent must be
zero, Therefore, we can ignore the polarizability of simple spherical ions at a
mean field level, (Of course, we have already chosen to ignore all dispersion

terms for the models we will consider))

For the solvent, we start by writing the total instantaneous dipole

moment of the jth solvent molecule as
= ‘J" + Ej 7 (4.23)
where —‘fj is the permanent dipole moment of the solvent,
> = a.(E )‘ (4-2b)
By = 2712175

is the instantaneous induced dipole moment and (El)j is the total
instantaneous electric field felt by the solvent j. If we let <—E—l> be the
average electric field experienced by a solvent molecule, then the average total
dipole momeht, <m>=m', (measured in the molecular frame) of each molecule
is given by

m = u+ g-<E;> . (4.3)

For molecules of C2v (or higher) symmetry in an isotropic fluid, we know that
<§_l> will be non-zero only in the direction of u., This immediately implies

that u, <§1> and m’ are all in the same direction, As a result, we can write
<E;> = C(m)m’ , (4.4)

where the scalar C(m’) will depend upon the properties of the system. I|f one
inserts eq. (44) into eq. (4.3) and then iterates the result with itself, one

obtains

2
"

u+ C(ma'-u , (4.5a)
where we define

a + C(m)a-a’ (4.5b)

e
n

as being a renormalized polarizability, This renormalized polarizability. of a
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molecule in a fluid of polarizable particles plays the same role as a does for
an isolated molecule. It will describe the fluctuations of the total dipole
moment of a polarizable molecule in solution about its mean value and thus

one can write

<®> = m? + (<p2> - <E>2)
= m? + 3a’kT , (4.6a)
where
a' = %Tr_g' (4.6b)

and <m2> is just the mean square dipole moment of the solvent,

in order to determine an expression for the scalar C{(m’), we now
examine the configurational energy of the polarizable system. For the system

we are considering, the instantaneous configurational energy is given by

_ 1
UN S Ys T Y T Yot Yot Yo t Yo Yo ??mj'(EID)j

- ?Ej'(ng) B ?mj'(-E—lo) - ?Ej'(_ﬁlll)

1 .
. . .+ =Lp.e(By). 4.7)
j ] 3+ 2%R By .
in which the sums over j are over the number of solvent moiecules, Ns’ and

where

(E)- )

5= (Byp)y * (E

; Eigls * (Byols * (}311)j .. (4.8)

j j =
E—lD’ E—lQ’ -E—:lO and '-E'-lI are the dipolar, quadrupotar, octupolar and total ionic
field contributions, respectively, In eq. (4.7) UHS is the instantaneous
hard-sphere energy and Y- uIQ’ UIO’ UQQ, uQO and UOO are the total
instantaneous ion-ion, ion-quadrupole, ion-octupole, quadrupole-quadrupole,
quadrupole-octupole and octupole-octupole energies, respectively. The first
term of the second line of eq. (4.7) is the total dipole-dipole contribution to
the energy, followed by the dipoie-quadrupole, dipole-octupole and total
ion-dipole terms, The last term in eq. (4.7) is the energy of polarization,
Since all the solvent molecules present are equivalent, the total average

energy can be expressed as
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- -1 . _ . _ . _ .
Upor = Ut = gNg<w-Ejp> - No<u+E o> - Ng<u-Eyn> - No<p-Ej.>
- . _ 1 . _1 .
_2-N5<E §1Q> 2N5<E §10> 2NS<E E_lI> r (4.9a)
where

Ut = UHS'+.UII + UIQ + Uy * UQQ + UQO * Uyo - (4.9b)

In the SCMF theory one ignores fluctuations in the electric field and assumes
that <p+E,> = <2>-<§1>. Using this assumption and the fact that for
molecules of sz symmetry the average electric field must always be directed

along the permanent dipole moment, we can rewrite eq. (4.9a) in the form

- _ 1 _ 1 ’
Upor = Ut 5N u <E;p> 2Ns(m +u)[<ElQ>+<ElO>+<ElI>] . (4.10)

If we now let
C(m’) = CD(m’) + CQ(m') +. Co(m') + CI(m’) , (4.11)

then it clearly follows from eqgs., (44) and (48) that

<Eip> = G(m)m (4.12a)
<§1O> = Co(m’)r_n_’ (4.12c)
and
<E,;> = C(m)m' . (4.124)

Inserting eqgs. (4.12) into eq. (4.10) yields

Upop = Ut = FNgum'C(m)

- N ) [cm)segmysem) | L (4a13)
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To obtain estimates for the average local fields, or for C(m’'), we now
define an effective system characterized by an effective pair potential, This
system should have very similar structure to the polarizable system (the
structures must become identical if fluctuations are Onimportant), and hence
one assumes that they will have the same local fields, For this effective

system the instantaneous configurational energy will be given by

2
. .

= I u.,(12) + 51, 4.14
uy j<ku3k( ) ?20 ( )

where the sum over j and k is over all particles of all species present, The
second term in eq. (4.14) represents the polarization energy which will be
non-zero only for solvent molecules, The pair potential, ujk(12), is described
in detail in Chapter Il, Of importance here are the terms (as given by eq.
(2.10b) and eqs. (2.17), (2.19) and (2.20)) which involve the dipole moment,

including

112 o my My
uOO;ss(r) ;/1573[—3;—] , (4.15a)
m. 6
Wareslt) = VT[22 (4.15b)
’ r
u3d (r) - -;/Tz'fj—g-ziz (4.15c)
00;:ss r5 v
and
q; m
Wil (o = L (4.154d)
’ r

where mj and m, are the total instantaneous dipole moments of solvents j

and k., To facilitate the simplification of the pair potential, one again ignhores
fluctuations in the local field. In eq. (4.14) we replace pj2 by <p2>,
Consequently, the polarization energy becomes a constant term which can be
dropped without altering the physics of the effective system. In eq. (4.15a)
we use

= el =
mom = <m> = m" (4.16)

where My is an effective permanent dipole moment, In all other potential
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terms involving the dipole moment (e.g., eqs. (4.15b)-(d)), one could replace mj
by m’. However, the effective potential would then involve two parameters,
m’ and ms. and considerable effort would be required to determine the
self-consistent average local field for the polarizable system, Therefore it is
convenient, from a computational viewpoint, to ignore the difference between
m’ and my, (for the systems we will consider this difference is only 2-4%)
and to use m, in place of m’ in the effective pair potential. Thus the pair
potential of the effective system becomes equivalent to that of a
nonpolarizable system in which we have replaced the permanent dipole moment
by Me-
We have yet to determine an explicit form for C(m’). For the effective

system we know that

e _ _1 e

Upp = ~3Ngm, <Ejp> ' (4.1‘7a)
e _ . e :

UDQ = Nsme<ElQ> , (4.17b)
e _ _ e .

Unp = ~Ngm, <Ejq> (4.17¢c)

and

uf = -N_m_ <E,.>% (4.174)
1D s e 11 ’ .

where the superscript e indicates the effective system. Since the effective
and polarizable systems are assumed to have the same structure, it

immediately follows that
e _
<Bj o> = <Bjp> (4.18a)

and similarily for <Elo> and <ElI>’ but

m
<E1D>e = 5?‘<E10> X (4.18b)

Combining eqgs. (4.18) and egs. (4.17) and then using eqs. (4.12), one simply

rearranges to obtain the desired expressions

oyt
cy(m) = UD% , (4.19a)
Nsme
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CQ(m’) = %, (4.19b)
Colm’) (4.19¢)
and

(4.194d)

'CI(m')

We note that although the effective and polarizable systems have the same
structure, their total average energies must be different since in the effective
system we have ignored the polarization energy. Substituting egs. (4.19) into

eq. (4.13) we find that the energy of the polarizable fluid is given by

e m'+u

e e e
Up * —é_n:[UDQ+ Uno * UID] . (4.20)

- um’
Uror = UT *+ ==
me

Patey et a/. [163] have also shown that the dielectric constant, e, of the
polarizable system is simply that of the effective system and does not
depend upon the method used to obtain the properties of the effective

system,

In order to solve the SCMF theory, we must first determine the average
energies of the effective system at several values of m, while all other
parameters are held fixed, Of course, in this study we employ the RHNC

theory, as described in Chapter I, to perform this task., The energies must

then be accurately fit to interpolating curves (here we have used cubic splines
[134]) so that C(m’) is known as a function of M- For given vaiues of u, a
and Xs = NS/N, egs. (45), (4.6) and (4.19) are solved iteratively, to give values
of m', a’' and m, that are consistent with the given molecular and state

parameters.
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3. The R-Dependent Mean Field Theory

The RDMF theory, as outlined below, is directly applicable only to
solutions of spherically symmetric ions, although extensions to more general
systems may be possible. In the following derivation we restrict ourselves to
a tetrahedral solvent model, that is a solvent model with only a dipole and a
square quadrupole, as described in Chapter IlI, For simplicity, we will again
consider solutions of only a single salt in which the ions are spherically
symmetric, Also, all particles will be treated as hard spheres where the

are given by eq. (2.24b).

»

hard-sphere contact distances, daﬁ

The problem we will be addressing will be that of an ion being
'immersed into a multipolar-polarizable solvent which may or may not contain
other ions, The RDMF theory will examine the changes in the average local
field which are a result of the presence of an ion. Considering only the case
of a spherically symmetric ion allows us to take advantage of the fact that
the fluid surrounding the ion must be isotropic from the viewpoint of the ion,
Thus, we need only examine the dependence of the average local field upon R,
the distance from the ion. Furthermore, all additional average fields generated
in the surrounding fluid, due to the presence of the ion, must be directed
radially at or away from the ion, and hence appear as though they are being
produced by additional (screening) charges placed at. the centre of the ion, We
will determine the average local fields at R by considering the average
interaction between the dipole of a solvent particle fixed at a distance R from
the ion and all other particles in the system., The average interaction can then

be easily reiated to the average local electric fields.

The electric field experienced by a solvent molecule at a distance R
from an ion will, in general, have both ion and solvent components, For: the
electrolyte solutions being considered here, the average local electric field at

R will be given by
<E{(R)> = <E;(R)> + <§1Q(R)> + <Eq.(R)> . (4.21)

We point out that this expression is just an R-dependent analogue of eq. (48).

We now rewrite eq. (4.21) in the form

<E;(R)> = <E;> + <AE{(R)> , (4.22a)
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where <§l> is just the average local field of the bulk solution as given by
the SCMF theory, <A§1(R)> is the correction to the bulk field when a
solvent particle is at a distance R from an ion, that is to say, it gives the
change in the average local field at R due to the presence of the ion. For

the present system we can express this correction term as

<AE{(R)> = <AE;,(R)> + <A§1Q(R)> + <AE,,(R)> . (4.22b)

As in the SCMF theory, we wish to determine the average total

molecular dipole moment. In the present context, we have
m(R) = u + a-<Ey(R)> , (4.23)

where m’(R) is the appropriate R-dependent quantity. Using egs. (4.3) and
(4.22a) it clearly follows that

m'(R) = m' + a:<AE;(R)> , (4.24a)
which we then write as
m’(R) = m’ + Ap(R) , (4.24b)

where AQ(R) is the average excess induced moment given by
Ap(R) = a-<AE(R)> . (4.25)

In the present theory we will find it convenient to express <A§1(R)> in an
intermolecular reference frame in which the z-axis is along the ion-solvent

vector. Hence, instead of eq. (4.25) we use
Ap(R) = a<AE;(R)> . (4.26)

where the average polarizability, a, of a solvent molecule is defined by eq.
(4.1b). We point out that for the water molecule a is nearly spherically
symmetric [164], and therefore eq. (4.1b) will be a very good approximation,
Also, since the present theory will be used in conjunction with the SCMF
approximation, m’ should be replaced everywhere with m_, the effective

permanent dipole moment,
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We now define the additional ion-solvent interaction term due to AE(R)
as

u‘i“s’(m) = -Ap(R) - <AE, (R)> - AQ(R)-[<A§1D R)>+ <A§1Q(R)>]

+ ZAp(R) + <A (R)> . (4.27)

The first term in eq. (427) is the interaction between the excess induced
moment and the excess ion field felt by a solvent at a distance R. The
second term takes into account the interaction between the excess moment
and the surrounding solvents, while the last term in eq., (4.27) is simply the
polarization term, Since eq. (4.26) ensures that Ap(R) and <A§1(R)> will

always be in the same direction, eq. (4.27) can be written in the form
BPR) = -Lap(R) <AE,(R)> . (4.28)
1s 2 1 ‘ :
Finally, combining eqs., (4.26) and (4.28) yields the expression
wWBR) = -[ap(R)1%/20 . (4.29)

It is interesting to note that u?g(R) is a spherically symmetric interaction

which will always be attractive relative to infinite separation.

We now have only to determine expressions for each term of eq,
(4.22b) contributing to <A_E_1(R)>. However, even for the current simplified
model, this is a non-trivial task., In the present theory we will consider only
those contributions which can be more easily characterized and: which require
knowledge of only the pair correlation functions, These terms should exactly
(at the mean field level) determine the long-range behaviour of <AE(R)>.
Hence the RDMF theory, as presented here, will be most accurate at large R,
Moreover, since we would expect the long-range behaviour of <A§l(R)> to
be more important for electrolyte solutions at infinite dilution or low
concentration, the RDMF theory should provide the best results for these
systems., We also point out that our approximation for <A§1(R)> is not
unique and that others may be possible, particularly if 3-body correlation

functions were available,
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Let us first examine the simplest case, that of <A_E_JlI(R)>, the average
excess local ion field at a distance R from an ion, We will identify
contributions from three terms, the first term being the direct term,
<A_E_lq(R)>, due to the charge on the ion, The other two terms, <A§l+(R)>
and <A§1_(R)>, are essentially screening terms and are due to all other

positive and negative ions in the system, Therefore we write
<AE, ;(R)> = <A§lq(R)> + <AE, (R)> + <AE, (R)> . (4.30a)
It is obvious that
_ 2
<AE1q(R)> = q;/r° (4.30b)

where q. is the charge on the ion, which we have labelled i, and <A§lq(R)>
will always be directed along the vector joining the ion i and the solvent at
R.

In order to determine the two other terms of eq. (4.30a), we will first
examine the average interaction between the dipole moment of a solvent
particle at R, which we will call the reference particle (see Figure 4), and all
other ions (i.eﬁ, exclud'ing qi). Now we know that because the solvent '
molecule has C2v symmetry, the average orientation of the total dipole
moment of the reference solvent will be in the direction of <AI_3_1q(R)> (i.e.,
along the ion-solvent vector) and all other orientations will average to zero,

Thus, if we ignore fluctuations we can define

+ o, 011
m'(R) = m’(R) <q>00;is(R)>

= m'(R)<coseis(R)> (4.31)

as the average projection of m’(R) onto the ion-solvent vector, where
<cosc’9is(R)> is given by eqgs. (2.8%9a) and (2.89b) and the angle GiS is
illustrated in Figure 3. Again, we stress that in the intermolecular reference
frame this will be the only non-zero projection of g’(R), If we can obtain
an expression for the interaction between ET(R) and a spherical shell of ions
at a distance r from Q;. then we have only to integrate (i.e., sum over all
such shells) to obtain an expression for the total interaction, In Figure 4 we
have illustrated the problem being considered and have indicated all the

variables used in the derivation outlined below,
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Figure 4., An illustration of the method used in determining <A§lI(R)>. The
case where q, is a negative ion is shown., The dipole moment, mT,
located at a distance R from the ion, a;. is that of the reference

solvent particle,
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From eqgs. (25) and (2.17) it is easy to show [7981] that the interaction
between ET(R) and 9j is given by

T,
m'(R) q.
- j 5101
umj(12) . 5 <I>00 (12) , (4.32)
mj
when we take fmnl as given by eq. (29a). Following the conventions given

in Figures 3 and 4, and using an explicit form for the rotational invariant (see
Appendix A of Ref, 81 or Appendix B of Ref, 61), we rewrite eq. (4.32) in the
form
ml(R) q.
umj(12) = -sign(qi)[—r—z—l]cose , (4.33)
mj
where the sign function equals 1 if q, is positive and -1 if q, is negative,

From the law of cosines [165] we have the relationships

rm§ =%+ g% - 2rRcos¢ (4.34a)
and
cosg = R-LCOS¢ (4.34b)
mj
which, when substituted into eq. (4.33), yield
o —el + R-rcos¢ ,
umj(R,r,¢) = 51gn(gi)m(R)qj 5 . (4.35)

a
[r2+ R°- 2rRcos¢]?

Then the average interaction energy, U;?(R,r), between QT(R) and the

spherical shell of ions (positive or negative) at a distance r from q, is given

by

h -
Uf’nj(R,r) = 05 955(R,r,8,9)upy(R,r,¢) dadr , (4.36a)
in which the element of area
dA = r?singde dy . (4.36b)

The limits of integration for dy are 0 to 2w (a full revolution), while for d¢

they are ¢m to m, where
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0, if |r-RI2djS
¢ = » 2+ R%-4.°2 (4.37)
cos [ Js], if lr—RIdes

2rR

guarantees that the ion qj and the reference solvent do not interpenetrate.

Now, in principle, we do not know gsj(R,r,¢,¢). However, since we
know that the distribution of ions must be uniform in the spherical shell
(valid only when Q, is a spherically symmetric ion) and if we assume it to
be independent of R, the position the reference solvent, then we can write

g °(R,r,¢,lll) = gij(r) 14 (4.38)
where gij(r) is just the ion-ion radial distribution function. This
approximation should become exact at large r. Inserting egs. (4.35) and (4.38)

into eq. (4.36a) and integrating over dy, one obtains
h - 2 . T
U;j(R,r) = -27r pjgij(r).51gn(qi)qjm(R) dr
X J'ﬂ (R-rcos¢)sing aé

< . (4.39)
®m [r2+ R? - 2rRcos¢]?

Then integrating eq. (4.39) over d¢ (using standard forms for the trigonometric
integrals which may be found in tables [165]) and simplifying yields the

expression

h 2 . +
U:lj(R,r) = -27r pjgij(r)51gn(qi)qjm(R)

_ T
x [ L reese 1] dr . (4.40)
R°[ 1%+ R®- 2rRcos¢l?- 4,

If one carefully evaluates eq. (440) at its limits, one finds that

h _
U;j(R,r) =0 | for r2R+dso (4.41a)
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m (R)
U;?(R,r) = -27r2 P59 (r)51gn(q )—J———
Rz—r -d s
X [1 + i ]dr for R-A4. <r<R+d._ , (4.41b)
2rdjs ]s Js
mi(R)
U;}J?(R,r) = -4wr2pjgij(r)sign(qi)[_J?__]dr
for rSR-djs . (4.41¢)

We remark that eqgs. (4.41) are consistent with basic electrostatic theory [140]
which states that from an internal point of view a spherical shell of charge is
electrically nonexistent (¢f. eq. (4.41a)); from an external point of view it is
electrically equivalent to a point charge whose charge is equal to that
contained in the shell (cf. eq. (441c) where NJ amr? P393 (r)dr)

The total average interaction energy, Umj(R)' between ET(R) and all
other ions, qj, in the system is found by simply integrating eqgs. (441) over

all values of r. The ions are not allowed to interpenetrate so we write

_ & .sh
Umj(R) = Erl.jU;j(R'r) , (4.42)
1

and inserting eqgs. (4.41) one obtains the necessary result

m(R) [R
X = - _1____ JS 2. .

Umj(R) 41rp351gn(q ) é . [r glj(r)]dr
ij »

2 2 2

R+d. R*-r“-d.

-2—,f Js[ (r)[ + JS]]dr . (4.43)

R—djs 2rdjs

Now taking advantage of the fact that all other ions will be uniformly
distributed in spherical shells about g, it clearly follows that <AE13(R)>

(i = + or=) will be non-zero only along mT(R), and consequently we have that
ot |
Umj(R) = (R)<AElj(R)> . (4.44)

Using eqgs. (443) and (4.44) one immediately obtains
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g. |R-d.
<AE. (R)> = 4mp.sign(q, )]s I° rzg. (r)|dr
13 J 1722 a 1j
i]
Rl R%- r?-d.2
w31 3[Pe o[t v ———2=]ar| . (a.45)
R-djq js
where j = + or -, To ensure that <A§lq(R)> has the same directional sense

as <A§lj(R)>, we must multiply eq. (4.30b) by sign(q,). Equations (4.30) and

(4.45) are combined to give the desired relationship

sign(q;) R—djs 2 .
<AElI(R)> = __—RT—— q; * j=§,- 4"quj é [r gij(r)_dr
ij
R+d.
1 Js 2 . 2
cws L [ro 0 1R~ (r-ay 0% ar ||, (4.46)
1S d

where <A§11(R)> will always be directed along the ion-solvent vector.

We now turn our attention to the excess local dipole field, <A§1D(R)>,'
Let us picture an ion in a polar solvent of C2v symmetry. We find that on
average all the dipole moments point either directly at or directly away from
the ion, depending upon the sign of the charge on the ion, Clearly, ail dipoles
in the same spherical shell (we shall refer to them as being lateral) will
mutually repel one another. |t is this contribution to the local dipole field due

to the latera! dipole moments which we will examine,

We determine the lateral dipole field, and hence <AE;(R)> in the
present theory, in a manner quite similar to that employed for <A§H(R)>.

1.

Again, it is only the average projections, m'(r), of the total dipole moments
that need to be considered, In order to derive an expression for <A§1D(R)>
we first examine the interaction between our reference dipole, gT(R), and all
spherical shells of dipole moments, Q_T(r), at a distance r from the ion. In
Figure 5 we have illustrated the situation being examined along with all the

necessary variables,

From eq. (25) and (2.177b) we can show [67] that the interaction
between _m_T(r) and _[I_IT(R) is given by
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Figure 5. An illustration of the method used in determining <A§1D(R)>. The
case where q; is a negative ion is shown,
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(4.47)

- eyl
_ =m'(r)m'(R) 112
umm(12) = - 3 (12) ,
mm
where we again take fmnl as given by eq. (2.9a). The rotational invariant can

be written [6181] in the form
112 _ - : : -
(12) = 2cosd, cosd, sinf, sin6,cos(¢,~¢,) , (4.48)
where 91 and 92 are the angles indicated in Figure 5 and ¢1 and ¢2 are the

azimuthal angles, It is easy to see from Figure 5 that ¢1 and ¢2 must

always be equal. Analogous to eqs. (4.34) we have the relationships

2 _ 2 2 _
rm =TC *+R 2rRcos¢ , (4.49a)
cosf, = B—:—i_—@-:‘:'—? (4.49b)
mm
and
cosf, = B—C—O%‘L———g . (4.49c)
mm
From the law of sines [165] it is easy to show that
sing, = L5102 (4.494)
mm
and
sing, = @ . (4.49e)
mm

Substituting egs. (4.49) into eq. (4.48) and combining this result with eq. (447)
yields

m(r)m(R)
— 5

rmm

umm(R,r,qb) = [3rR - 2(r2+R2)cos¢ + choszq):I . (4.50)
We note that this expression is invariant to sngn(q) because both T(r) and
T(R) will reverse direction if the charge on the ion i is reversed (i.e,
91—>180 +6,, 92—>180 +02)

The average lateral dipole-~dipole interaction energy, Ulat(R r), between
T(R) and the spherical shell of dipoles at a distance r from the same ion

will be given by
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U‘:;;t(R,r) = psfgss(R,r,¢,w)umm(R,r,¢)dA dr , (4.51)

where dA is expressed in eq. (4.36b). The limits of integration are still 0 to

27 for dy and ¢m to m for d¢, as was the case for <A§11(R)>, but now

0, if |r-R|2d

¢y = _ e+ R%-a? ' . (4.52)
cos [ 5 ], if |r-R|=<4d
2rR S

Again, as was the case for <A_E_lI(R)>, we know that gss(R,r,qS,\//) is
spherically symmetric (/.e., the solvents are uniformily distributed in the shell),

We will also assume it is independent of R and take
Ggg(RrT,6,9) = g;(r) = g9o)s (r) . (4.53)

Now substituting eqs. (450) and (453) into eq. (451) and integrating over d¢,

one obtains
at _ T +
u}nm (R,r) = 2mrép g; (r)m'(r)m'(R) dr

(4.54)

X f" [3rR - 2(r +R% Jcos¢ + rRcos ¢]51n¢ do

®n [r +R2—2chos¢]2

The integration of eq. (4,'54) is non-trivial to perform, but after considerable
manipulation (again making use of standard tables of trigonometric integrals
[165]) it can be shown that

1 - C052¢m
> J]dr . (4.55)
+ R“- 2rRcos¢]?

Ur}‘;t(R,r) = 2nr? NN (r) T(r)mT(R)[

[r

it then follows from egs, (452) and (4.55) that

at
2R, 1) = 0 for |r-R|2d, (4.56a)

and
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+ + .2+R2-d 2.2
at _ 2 o m'(c)m'(R)[, _ [E s
U;}Im (R, r) 2wr psgls(r) [1 [ >R ] ]dr

3
dg
for |r-R[<d, . (4.56b)

Finally, the total average lateral dipole interaction energy, Umm(R), between
gT(R) and all other dipole moments is found by integrating egs. (4.56) over
all values of r, although only those shells for which |r-R|<d_ will contribute.
We obtain the expression
T(r) R+d
mp.m(R)
Umm(R) = s %

2R% ds3 R-d

[m.l.(r)gis(r)[(ZrR)2 - (r2+R2-d52)2] dr .

S (4.57)

Now taking advantage of the fact that the solvent distribution about the
ion is independent of the angle, and because all the average projected

1.

moments, m'(r), are directed along the ion-solvent vector, it must follow that

the total average lateral dipole field will be in the direction of _rp_T(R). All
other components to the average field must average to zero, Thus, analogous

to eq. (4.44) we write that
S §
UnR) = (R) <AE,(R)> , (4.58)
“which when combined with eq. (457) vields

R+d

mp s| T 2,.2 2.2 2
<AE, (R)> = —xS= | m(r)g. (r)[(r“+rR“-4 _ “)“ - (2rrR)“]|dr .
1D 2R2ds3 R-ds[ is s ] (4.59)

1.

We point out that in eq. (459) m'(R) will contain contributions due to both
the bulk average dipole moment, m’, and the average excess induced moment,
Ap(R). From egs. (4.24b) and (4.31) we find that

mT(R) = m <cos€is(R)> + Ap(R) , (4.60)

where we have taken advantage of the fact that Ap(R), and hence <A§1(R)>,
will be non-zero only along _II_IT(R). This has already been shown to be the
case for <A§'._H(R)> and <A§1D(R)> in the present theory and below we
find this to be also true for <A§_1Q(R)>. Inserting eq. (4.60) into eq. (459)

and using eqgs. (2.89) we obtain the relationship
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011

T R+d_| rm’h (r)
<) (R)> = —sg g S| [ DULS s ap(r) gy ()]
2R“d_° R-q | L 3sign(g;)

[(r2+R2 a.2)2 - (er)z] dr ., (4.61)

which is the desired result, Inspection of eq. (4.61) reveals that two distinct
contributions to <AE1D(R)> can be identified, one due only to m’, and the

other due to Ap(R). This separation will prove useful in discussions below.

The excess local quadrupole field, <A§lQ(R)>, is determined in a very
similar fashion to that used for <AE,j (R)>. We will again consider the
contribution to <AEl (R)> due to lateral fields. These lateral fields are a
consequence of the average projections, G)T(r) of the quadrupole moments of
the solvent particles around the ion i. The projections @T(r) are analogous to

1.

the projections m'(r) and will be defined below, We emphaS|ze that this
derivation applies strictly to square quadrupole moments as defined by eq.

(2.22) and illustrated in Figure 2(a).

First let us define [67,72] the functions

2%(12) = #2%9,,9,,8) + 022(9,,92,r) (4.62a)
and
2'23(12) - ‘23(9,,92, ) + #)2%9,,9,,8) ,  (4.62b)
which, if fmnl is given by eq. (2.9a), can be written [81,166] in the explicit
forms
022 _ s 2 2_ (s .2 2
2212) = B[(5y08,,)% - (32,7 (4.63a)
and
123 _ s =& 2 _ s a 21(5 .3
2'2312) = VB[S0(8y02,)2 - (9,-8, )1 (5, -2,)

- 20(Ry2) (B0 £15)= (8,020 (9,2, 1] . (4.63D)

Then using the definition of the Euler angles a, f§, v as well as the rotation

matrix (see eq. (39)) of Ref, 166, it can be shown that
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8°2%(12) = V6 sinp, cos2y, (4.64a)

and

2123(12) = ‘/'6'[3cosﬁ1 sinzﬁ2 cos2y, + 2sinf, sing,

X [cosﬁ2 cos27, cos(a1-a2) +sin2y, sin(a1—a2) ]] . (4.64b)

As in the case of <A§1D(R)>, we will determine the average
interaction between all average projections, Gl(r), of the quadrupole moments
in a spherical shell at a distance r from the ion q, and the dipole moment
r_n_T(R), In Figure 6 we have tried to represent this geometrical problem,
indicating the variables used in the following derivation, However, before we
can examine the dipole-quadrupole interaction, we must first define QZ(r).
From eqs. (25), (2.19c) and (4.64a) it follows that the ion-square quadrupole
interaction [7981] is given by

Q. ©
12) = 13Ssin262cos272 . (4.65)
r

u; of
It is the most energetically favourable quadrupole orientation with respect to
the ion i which is pictured in Figure 6(a). This orientation of the.quadrupole
moment is the only one that will not average to zero for molecules of C2v
symmetry and it is onto this orientation that we determine the average
projection of the quadrupole moment, It is clear from eq. (4.65) that for @S
positive, which is the case for a water-like solvent [72], this projection

corresponds to

521 = 90° (4.66a)

and
cosz'y2I = -sign(q;) , (4.66Db)

where the superscript I indicates the angles as defined for the ion reference
frame (see Figure 6(b)). We point out that Ui®(12) is independent of a,2I and
therefore (_-)s(r) is allowed to spin freely about the 2; axis, We can then

write that



Figure 6, An iilustration of the method used in determining <A§1Q(R)>. The
case where Q, is a positive ion is shown, For clarity the various

reference frames and their rotations are separately given in (b).
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0,
ol(r) = ——=s—<"?%r)> , (4.67a)
S sign(g )
which, when combined with eqgs. (4.62a) and (2.87) becomes
022
- 8h (r)
+ _ O, 02;is

Now using egs, (25), (2.17b), (2.19c) and (4.62b) we can show that the
dipole~square quadrupole interaction, umG)(12)’ can be expressed [67,72] in the

form
n'(R) €l(r)

4
Ve rm@

However, the function 2]23(12), as given by eq. (4.64b), is not expressed in

u o12) 2'2312) . (4.68)

terms of angles shown in Figure 6. Thus, before proceeding we must first
write @123(12) in terms of these angles, i.e., BZI, 721, 31 and w. We begin
by expressmg the unit vectors x2, y2 and 22 in terms of the Euler angles
a2 [32 and '721 associated with the ion reference frame (see Appendix C).
Now in order to go from the ion reference frame to the frame (X,9,Z), we
must rotate about the Y1 axis by an angle w (see Figure 6(b)). Therefore we

apply the rotation matrix [166]

cCoSw 0 -sinw
R = 0 1 0 (4.69)

sinw 0 cCOoSw.

to the unit vectors iz, 5}2 and 22, We can also express 5&2, )72 and 22 in
terms of the Euler angles a,, BZ and Yy, @8 done in Appendix C. Equating
the components of the two forms for f(z, 172 and 22 yields several
relationships (given in Appendix C) between the two sets of Euler angles
associated with the two different reference frames. We substitute these
expressions into eq, (4.64b), for which we take a, =0 (this follows from our
choice of reference frame), and after considerable manipulation and

simplification (see Appendix C) we obtain
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2123(12) = ;/5[3cosﬁ1 (cos?w - sinzaz.I sin%w)

+ 2sinf, sinw cosw(1 + sin? Iy cosz'yI . (4.70)
1 ) 2

Finally, we replace [31 by 61 and eliminate the cosZ'yzI dependence in eq.
(4.70) by noting that the products

cos, cosZ'yzI cosé, (4.71a)

and

sing, COSZ'sz siné, (4.71b)

are independent of the sign of a;. Combining eqgs. (4.68), (4.70) and (4.71)
yields the necessary result
m'(R) ©}(r)
u (12) = —— 5 |3cos8 (coszw- sin?el sinzw)
me 4 1 @

r
me
. . . 2 I
+ 2sing, sinw cosw(1 + sin a2) . (4.72)

We have already pointed out that the average projection of the

quadrupole moment is allowed to spin freely about the zI axis, and hence we
) I I
cannot specify the a, angle. However, we can remove the a, dependence
from eq. (4.72) by taking advantage of the fact that all angles, a.2I are
equally probable (at the mean field level) and simply angle-averaging
(integrating) over them. After performing this integration one has the result
3m'(R) ©)(r)
<a> _ S 2 1 .2
Ue (12) = 7 [cost‘i’1 (cos®w - 5sin‘w)
me

+ sine1 sinw cosw] . (4.73)

As in the case of <A§1D(R)>, we employ relationships analogous to
eqs. (449) in order to express functions of 61 and w as functions of r, R and

¢, and consequently eq, (4.73) becomes
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(grR2+r3)cos¢

2
+ (r2R+-g—R3)cosz¢ - %—cos:)’qb] . (4.74)

<a> _
e (R,r,¢) = =

rm@

2r°R -

3m(RION(E) p 5 g3
- -

The average lateral quadrupole-dipole interaction energy, Ur}‘gt(R,r), is again
found by integrating over dA. Using the approximation (453) and integrating

over dy one has

waYR,r) = 6nr?p g; (1) 6l(r)ml(R) ar

3 2
T 2r°R - % - (%rR2+r3)cos¢ + (r2R+%R3)cosz¢ - %—cos%' _
X é 3 7 7 sin¢ d¢ ,
m [r“+R*- 2rRcos¢]? (4.75)

where ¢m is given by eq. (452). Evaluating the integral over d¢ in eq. (4.75)
requires a great deal of effort, but with the aid of tables of standard
trigonometric integrals [165] and after much simplification the result can be

written in the form

Urlngt(R,r) = 31rr2psgis(r) @l(r)mT(R)

2
(r-Rcos¢ ) (1-cos®¢ )
X [ m m]dr .

7.2 5 (4.76)
[r“+ R“- 2rRcos¢]
Applying eq. (452) immediately vyields
uraYR,r) = 0 for |r-R|2d (4.77a)
me ’ S .
and
f(r) €f(r) 2,m2-a 242
at _ 2 m s F _ [r"+R°-d
Ur'he (R,r) = 3nr psgis(r)———-g—g——b [_Hj—] :|
S
r2-R2+d
X [——-2—;——'5— dr for |r—R|Sds . (4.77b)

We remark that these expressions bear striking similarity to eqs, (455), the

lateral dipole result,
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The total average lateral quadrupole-dipole interaction energy is again
found by integrating egs. (4.77) over all values of r (j.e, summing over

shells). Explicitly, we obtain

1.
3rp_m (R) R+A_ref
R) = —S S[_@?s(_ﬂg,s(r)

U_
me 2 5 _ r 1
8R dS R dS

x [(2rR)? = (- 71 (PR D ar . (4.78)

One can use arguments very similar to those used for <A§1D(R)> to show

T

that <A§1Q(R)> will also only be non-zero in the direction of m'(R), so we

write
Ume(R) = - T(R)<AE1Q(R)> . (4.79)

Finally, the combination of (467b), (4.78) and (4.79) gives the desired result

022
37p 0, R+d, [h02;is(r)

5sign(q; )R d55 R-d,

<AE1Q(R)> = -

x [2rR)? - (PR )71 (P-’rg Prar . (a.80)

It is interesting to note that both <AE1D(R)> and <AE1Q(R)>, as given by
egs. (4.61) and (4.80), respectively, can be perceived as having an apparent
1/R2 dependence, Thus, they can be viewed as additional screening terms,
appearing to be the result of effective charges, analogous to the case for
<AEy (R)> and <AE;_(R)>.

We now have expressions for all three terms contributing to <A§I_1(R)>.
Given the necessary projections of the correlation functions, <A§H(R)> and
<A§1Q(R)> can be evaluated directly using egs. (4.46) and (4.80), respectively.
However, <A§1D(R)>, as given by eq. (4.61), must be for solved iteratively
since it depends on the value of Ap(R), which in turn depends upon
<A_E_21D(R)>. Once the total excess local field, <A§1(R)>, has been
determined, eqgs, (4.26) and (4.29) will immediately give us the effective
ion-solvent potential, uiAg(R), for the RDMF theory,

In the present study we employ the RHNC theory, as described in

Chapter Hl, to determine the correlation functions for a solution, These
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correlation functions can then be used in the RDMF theory to evaluate u?g_(R),
which in turn modifies the ion-solvent pair potential, and hence the correlation
functions, As mentioned above, the RDMF theory must be solved in
conjunction with the SCMF approximation., Therefore, for a given system we
solve the SCMF/RDMF/RHNC theory in the following manner, For a fixed set
of system parameters, including m, and a, the RHNC theory is soived
numerically still using the iterative method outlined in section 5 of Chapter II,
but now at each iterative cycle we update the current estimate for Ap(R). In
principle, this calculation must then be repeated for several values of the

s

effective permanent dipole, Mg to allow the self-consistent values of m’, a’
and my to be evaluated using the SCMF approximation, We point out that at

infinite dilution the value of my is just that of the pure solvent,

It follows from eq. (3.45) that because uiAg(R) is a spherically
symmetric potential term it may make a contribution to the low concentration
limiting behaviour of Cis‘ In order to investigate this possibility we need to
examine the large R and low concentration dependences of the terms

contributing to <AE;(R)>.

First we will examine the large R behaviour of <AE, (R)>. It can be

Q
shown [61] that at Py =0

hggfis(r) — a/r3 as r—»>o , (4.81)

022
02:is(r)
eq. (480) and integrate, one finds that the integral evaluates to an jdentity 0,

where a is some constant. If we then insert this form for h into

Clearly, we then have that at infinite dilution
<AE|(R)> = 0 as R—o . - (4.82)

Therefore, <A§1Q(R)> has no long-range tail, becoming zero as soon as
hg%?is(r) attains its large r behaviour, and consequently it cannot contribute
14

to the low concentration limiting behaviour of uiAg(R).

We now turn our attention to <AE, (R)>. From egs. (3.34) and (3.35a)

we have that as r—> > and k—>0,

. Qs —KT _ .
- |Xte
gij(r) — 1 ekT] = (4.83)



- 104 -

where k is given by eq. (3.36b). We insert eq. (4.83) into eq. (446) and
expand and integrate (see Appendix B). Then collecting terms and applying the

small k limit yields

. 2
51gn(qi) 1,.3 3 qg: 9. 4. =
AE, (R = —|g, + z drp.q.|=(R°-4. + 277 1]
<AE, (R)> o CRE T |3R-ad) + A
. ds  _
+ 2 (e R(r+1/k) - 1/x]] . (4.84)
kekT

If we now use eq. (3.35b) and charge neutrality, dropping any terms linear in
p2, we obtain the result
lqi |

_ -kR
<AE11(R)> = 2 e (1+kR) , (4.85)

which represents the R—>® and k—>0 limiting behaviour of <A§11(R)>. We
note that in the infinite dilution limit (i.e., k=0) eq. (4.85) becomes
|qi|

which is consistent with eq. (4.30).

In considering the low concentration limiting behaviour of <A1E—1D(R)>
we find it convenient to split <AE1D(R)>, and hence eq. (4.61), into two
parts: <AElm(R)> due only to m’, and <AElp(R)> directly dependent only
upon Ap(R). First we will examine <AElm(R)>. From eq. (347) it foliows

that as p2—>0 and R—»

lq. | _,7 R*d _
<AEh4R)> = -—3;7;[661]1' s[(1+xr)e kr
8R“d R-4d
S S 2 . 2.2
(R“-4_°)

X [rz— 2(R2+d52)+ ]]dr ) (4.87)

r

If one performs the integration in eqg., (487) and collects terms (see Appendix

B), then it can be shown that in the limit k—>0 and R—> =

<AE1H§R)> = 5 ———]e—KR(1+KR) . (4.88)

~2]q | [6-1
3R €



- 105 -

We remark that eqs. (4.85) and (488) are very similar. It is clearly the case
that at low concentration and long range nearly two thirds of the ion field
will be cancelled by the lateral dipolar field due to m, when the pure solvent

dielectric constant, €, is large (as is the case for water), This is an obvious

indication of how poor an approximation eq. (4.1a) is for aqueous electrolyte

solutions,

In order to determine the long-range low concentration behaviour of
<AElp(R)> we must know Ap(R), but Ap(R) depends upon <AE1(R)>,
which in turn depends upon <AE; (R)>. To obtain a first approximation for
Ap(R), which we will designate as Ap(I)(R), we use egs. (4.22b) and (4.26),
combined with the results from eqgs. (4.82), (485) and (4.88), which yield

2

a}q; -
ap' ' (r) = —I—i[iez]e R(1+kR) . (4.89)
3R

This result can then be substituted into the expression

R+d -
<6B) (R)> = —r5= | ®|ap(r) [(P+rP-a. ) - (2rv)1]ar ,  (4.90)

7.3 &
2R°d.° R-4,

which follows from eq. (461) when g. (r) =1 (valid at large r). After
. 9ig

performing the necessary integration and simplifying (see Appendix B), one has

that
<ag. (rR)>{1) = 19 lres2 (-£)e *R(1+R) (4.91a)
1p 3R2 € ’ *
where 8
- L;’s—“ i (4.91b)

We now combine this result with eqgs. (4.82), (4.85), (4.88), (4.22b) and (4.26) to

obtain a second estimate for Ap(R), namely

a|g; -
ap'2(R) - I—zll[f:-’-]e “R(1+kR) (1-£) . (2.92)
3R

By repeating the above procedure to obtain higher and higher order estimates

of Ap(R), it is possible to show that
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- a|q; -
ap'")(R) = —3| ;'[&gz]e R(1+kR) (1-g+£2-F+.00) . (4.93)
R

For |E|<1 (e, for aps<3/81r), we recognize the last factor in eq. (493) as

the Taylor series expansion for 1/(1+%). We note that for water at 25°C,

£ =0403. Therefore, we have the self-consistent result '
alqi|

Ap(R) = e+2 e “R(1+xR) , R (4.94)
(3+8'n'psa)R2 [ € ] =

which will be valid only at long range and iow concentration,

Let us now consider the average excess local field, <A§1(R)>,-~at
infinite dilution (/.e., Py =0) for the special lca's‘e when the solvent is
polarizable but non-polar, In such a case m’=0, and furthermore
<§l>=<A_E_:lm(R)>=O, Starting with an initial guess for <A§1(R)> as given
by eq. (4.86), and using eq. (4.90) in the same iterative scheme outlined above,

we can show that for this system at large R

lq; |
<AE(R)> = —1- 3 (4.95)
R 3+87rpsa.
Substituting the Clausius-Mosotti relationship [139],
e —1 4 .
=0 = e
5 T 3TAga (4.96a)
[+ -]
into eq. (4.95) immedi'ately yields the relationship
Q] e +2
<AE)(R)> = —— =~ , (4.96b)
R 3e,,

where €_ is the high freqhency dielectric constant due only to molecular
polarizability. Pollock et a/. [167] have also studied polarization effects in this
system, They obtained exactly the same expression for the large R
dependence of the average local field, Moreover, Pollock et a/. [167] found
that continuum theory predicted‘a different result., When the two expressions
were compared with reported values for the average local field at large R
obtained from computer simulation [167], eq. (4.96b) was found to give

essentially exact results, while the continuum expression was only accurate for
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small values of Pga.

It is also interesting to examine the behaviour of <A§_1(R)> at infinite
dilution when the solvent is pol/ar but not polarizable, From egs. (486) and
(488) it is easily shown that at large R

|q1| e+2

<AE.(R)> = — . 4,97
1 RS  3e ( )

Curiously, egs, (4.96b) and (4.97) are equivalent in form indicating that the field
due to a charge will be screened to the same extent in either system provided

that they have the same dielectric constant,

We point out that Ap(R) as given by eq. (4.94), has that same large-R
low concentration limiting behaviour as h8(1)1ls(r) and thus we would expect
it to affect the limiting behaviour of Cls. Using eqgs. (3.39b), (3.45), (4.29) and
(494) it is again possible to show, after considerable manipulation (see

Appendix B), that as p2—>0,

2
2ma fq, 2
P 1 e+2 ] -3 .
C?s — (3+87p a)z[ € ] (T o ) (4.98)
' Fs

where C‘-&p is the contribution to C,. due only to uiAp(R) and B=1/4kT. If we
now defme SAp as being the contribution to the total limiting slope, S

S (as given in eq. (343)) due only to uAp(R) then combining egs. (3 43)
and (4.98) along with eq. (3.35c) vyields

3
-12naAp? 2 ‘
gAP afv (e+2)” (4.99)

¢ (3+81rpsa)2 €

Furthermore, it follows from eq. (3.41) that if u-Ap(R) make a contribution to
the limiting slope of CIS’ then it must also mfluence the limiting behaviour
of G,o=G_g. Therefore, U; p(R) will affect the limiting laws of all
thermodynamic properties of electrolyte solutions which have a dependence on
ion-solvent correlations at low concentration (e.g., 2) We again emphasize
that the wvalue of S Ap should be accurately given by eq. (4.99) since the
long-range low concentrat|on behaviour of Ap(R) predicted by the RDMF

theory, /i.e., eq. (494), should be an exact result at the mean field level,
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CHAPTER V

RESULTS FOR WATER-LIKE MODELS

1. Introduction

In Chapter |l we have defined the water-like models we will investigate,
We will report results obtained using the RHNC/SCMF theory which was
described in Chapters Il and 1V, For the most part, this study will focus upon
the full C

find it convenient to refer to the C2v model which includes only dipole and

2v water model, with and without the octupole moment, We will

quadrupole moments as the C2v guadrupole model, where‘as the term C2v
octupo/le model will be used when the octupole has also been included,
However, the tetrahedra/ model (i.e., a model containing only a dipole and a
square quadrupole) was also examined to allow comparison with previous work
[67,168]. Moreover, this simplified model was employed extensively as the
solvent in our study of mode! aqueous electrolyte solutions (as will be
discussed in Chapter VI). It also proved useful in exploring the basis set
dependence of the RHNC theory for models of non-linear symmetry, We will
discuss basis sets and basis set dependence in section 2 of this chapter. We

find that the basis set corresponding to n =4 represents a reasonable

max
compromise between convergence and computational requirements., Hence, this
basis set was used to obtain virtually ail results reported in sections 3 and 4.
In section 3 we will present results obtained for the multipolar hard-sphere
models, A modified version of this model, which incorporates a soft spherical
potential, will be examined in section 4, Our discussions will focus mainly on
the structural and dielectric properties of the model systems being

investigated,

. In this study we have examined water-like models at several different
temperatures and pressures, The temperature and pressure points at which

calculations were done are given in Table I, along with the corresponding

experimental densities, The points sample a relatively large portion of the
phase diagram of liquid water and were chosen to correspond with those
examined in previous work [67,168]. Of importance here is the fact that the
dielectric constant has been measured [48,169,170] at all these points. We

shall refer to points at 1 atm. or at vapour pressure as being at normal
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TABLE I, Experimental densities of water for the temperatures and
pressures examined in this study.

Temperature Pressure Density
(°C) (g/ml)
25 1 atm. 099707 [169]
90 1 atm, 0.9653 [48]
200 Vapour Press, 0.865 [48])
300 Vapour Press, 0.710 [48]
370 Vapour Press, 0452 [170]
100 5000 bars 1.106 [170]
200 5000 bars 1.051 [170]
300 5000 bars 1 0.993 [170]
400 5000 bars 0.931 [170]

pressure, while those at 5000 bars shall be referred to as high pressure

points,

In Chapter IV we have outlined how polarizability may be included in
the present models through the SCMF approximation, Again, it is an
experimental value of the polarizability tensor which we have used in the
models, The individual components of the tensor were determined using the
average polarizability, a=1_444x10_24cm3, reported by Eisenberg and Kauzmann
[171] and the experimental results of Murphy [164] to find their relative
values, The following values of the components of the polarizability tensor

were obtained:

-24 3

axx_1.501)(10 cm-,

‘ -24 3

a _=1390X10 cm-,

Y 2 3
-24

azz_1,442X10 cm-,

This form for the tensor was employed in all SCMF calculations, We also
note that the SCMF results we will report are those determined when the
energies given by Simpson’s rule integration of eq. (2.80) are used in the
calculation. The dielectric constants we will give were determined through egs,

(2.93), again employing Simpson’s rule to perform the required integration,

In our calculations, and in some of the following discussion, it is
convenient to express all parameters in reduced units, The water-like fluids

we shall consider can be totally characterized by the following reduced
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parameters:
pF = pds3 , (5.1a)
a* = d/4; , (5.1b)
W - (8u?/a )% (5.1c)
o = (p6?/a %) , | (5.1d)
o* - (pe?/a)? (5.1e)
a* = a/ds3 , (5.1f)

where B=1/kT and d =28A is the hard-sphere dlameter of the water-like
model. It clearly foIIows from eq. (5.1b) that d =1.

2. Choice of Basis Set

in the present study it is important to first determine an HNC basis set
which is computationally practical, yet gives reasonable convergence for the
properties we shall consider, In Table Ill we have presented the number of
unique projection terms which must be included in the HNC basis sets for
both C2V and tetrahedral models for N hax =23456. In Table IV we have

explicitly given the unique projections for nmax_2 for both models, A set of

TABLE Ill, Numbers of unique projection terms required in HNC basis sets,
Both tetrahedral and C2v models are considered,

- n Tetrahedral C v Model
Mode!
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TABLE 1V, Projection terms included in nmax=2 basis sets,
Model # of Unique Projections Included
Projections (mni;uv)

(000;00),(022;00),(110;00),(112;00)
Tetrahedral 12 (121;02),(123;02),(220:00)(220;22)
(222;00),(222;22),(224;00),(224;22)

»

all those above plus
o 19 (011,00),(022;02),(121;00),(123;00),
(220;02),(222;02),(224 ,02)

TABLE V. Maximum numbers of non-zero terms for any given projection
in the HNC binary product, Values are given for each basis set
included in Table IIl,

N hax Tetrahedral C2v Model
Model
2 28 48
3 150 225
4 1000 1800
5 3200 6200
6 12000 —

unique projections consists of all terms which cannot be related by some
symmetry requirement of the model, /e, eqgs. (2.11), (2.12), (2.14), or (2.23). It
is obvious from Table |ll that the number of unique projections grows very

rapidly as n is increased, with the number of terms required by the

max
tetrahedral model being slightly more than half the number needed by a

general model of C symmetry, As one might expect, the HNC basis sets

2v
for systems of linear symmetry consist of far fewer projections when "m

(=6 [71,110)).

ax
is large (e.g., 84 for Nma
In Table V we have recorded the maximum number of non-zero terms
in the HNC binary product, or double sum (cf. eq. (2.67)), that any given
projection in a specific basis set can ever have, As we would expect, this
number grows very rapidly as Nmax is increased since the total number of

terms in the double sum will increase as the square of the number of
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TABLE VI. CPU time required per iteration on an FPS 164 array processor,
Times are given for each basis set included in Table Il and
are in CPU seconds, The values in parentheses are for
calculations which limit the number of terms considered in the
binary product (as discussed in the text)

Max Tetrahedral C2v Model
Model
2 25 30
3 70 95
4 30 : 50
5 90(80) (230)
6 470(330) not attempted

projections in the basis set, However, inspection of the values given in
Tables Il and V immediately leads us to conclude that at least 85% of these
terms are zero for a tetrahedral model, and this figure rises to 90% for a

general model of C2v symmetry.

Finally, in Table VI we report the times required for an FPS 164 array
processor (/.e., the CPU time required) to complete one full iteration of the
RHNC theory (see section 5 of Chapter 1l). Values are given for each basis
set considered in this study. Also included in the table are the times which
result when sma// terms in the binary product are ignored, We see that for
the largest basis set examined, the nmax:G tetrahedral, there is a considerable
time savings (*30%), although the amount of time saved becomes much smaller
for smaller basis sets, Consequently, this truncation procedure was extensively
used for calculations involving only the two largest basis sets (i.e., the
nmax=6 tetrahedral and the 'nmax—_:S C2v)' It should also be noted that there
was no detectable change observed in the solution sets obtained as a result

of this additional truncation of the HNC binary product,

The basis set dependence of the RHNC results for the dielectric

constant, e, the average energies and the contact value of the radial

distribution function, g(r=d), for a specific tetrahedral fluid is given in Table
VI, The parameters of the model being examined were chosen to be similar
to those of the water-like models at 25°C. It is obvious from Table VIl that

there is strong basis set dependence when going from nmax=2 to nmax=3 to

nmax=4' Fortunately, we find that there is only slight basis set dependence
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TABLE VII, Basis set dependence of e, the average energies and g(r=d), A
tetrahedral fluid for which p*=0.7317, u*=250 and es'=o,94 is
considered. v

Cmex L2 18 L o4 1 s 1 & |
€ | 89.1 | 837 | 665 | 664 | 662 |
“pp/NKTI o18 | s4z | sr7 ] o5 | s14 |
Tpo/NeTl 593 | eas | 7or | 7ee I 707 |
TUoo/MeTl e I reo | e 1 otre o
gr=d) | 1014 | 1124 | 1195 | 1207 | 1216 |
with the nmax=5 and nmax=6 systems, For all the properties considered in
Table VII, there is less than 2% difference between the n =4 and n =6
max max

results, The basis set dependence we observe for this tetrahedral model is

similar to that reported for models with dipoles and linear quadrupoles

[71,110]. Considering the fact that 100, and sometimes more, iterations are

required to converge a solution set for a inen model system, the n X=4

a
basis set would seem to be a reasonable compromise between computational

requirements and accuracy. Therefore, the nmax=4 basis set was used

exclusively to obtain all the results presented in sections 3 and 4.

One observation which can be made for the larger basis sets is that

when given in Cartesian representation (/i.e., when fmnl is given by eq. (2.9a))
hﬁr;l(r) becomes very small for large 1, e.g., for 127 all contact values are
iess than 10—3. Thus one might expect that these basis sets could reasonably
be truncated on 1. Equation (2.48b) represents the required condition, Two
calculations were done using the same tetrahedral model; one was nmax=4’
lmaxze’ and the other was n_ =4, lmax=4‘ In both cases the solution
sets obtained were markedly different (in an unsystematic manner) from the
solution with no truncation on 1, Clearly, truncation of the basis set on 1
does not represent a viable approach for the models we are considering,
Upon re-examination of the contact values of hmnl(r), this time in Blum’s

mnl my

[101-103] representation (i.e.,, when f is given by eq. (29b)), we find that

the values do not decrease for large 1, Obviously, it is the 1/1! factor in
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the Cartesian representation of hr:::l(r) which causes the large 1 terms for

these systems to appear to become small,

Finally, we point out that partial basis set dependence (i.e., for
nmax=2,3,4) was determined for a C2v quadrupole fluid at the same reduced
density and with the same dipole moment as the above tetrahedral model,
The reduced quadrupole moment was taken as being that of water at 25°C,
As one would expect, we found behaviour very similar to that demonstrated
by the tetrahedral model, as given in Table VII, The basis set dependence of

a C2v octupole fluid for nmax=4 and N =5 was also examined, We found

X
a slightly stronger dependence (e.g., aboutaa 4% drop in € and a 2% increase
in the magnitude of the total average energy) than was the case for the

tetrahedral system, This is not a surprising resuit since we would expect the
octupole moment to increase the magnitudes of the higher order projections,

and hence increase their importance,

3. Results for Hard-Sphere Modeis

Calculations using the nmax=4 basis set were carried out at all the
temperatures and pressures listed in Table Il, The C2v quadrupole model was
studied at all points, while the C2v octupole fluid was examined only at
normal pressure at 25°C and 300°C. The calculation at 25°C was repeated
with a tetrahedral model where (-)s'=0.94, this value being consistent with

previous work [6772 168],

The average dipole moments, m', as determined with the SCMF
approximation, are shown in Figure 7, Not surprisingly, we find that m’
decreases with increasing temperature, but increases with increasing pressure,
Yet, even at high temperature the value of m’ is still well above that of the
permanent dipole moment of water. The addition of the octupole moment is
found to cause only a slight increase in the average dipole moment, The
results obtained here are in striking agreement with previous work [67,168] in
which the tetrahedral model was examined over the same temperature  and
pressure ranges, . However, these earlier studies [67,168] employed the RLHNC
instead of the RHNC theory. In the present study, we found that the

tetrahedral fluid at 25°C gave values for m’ almost identical to those -
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Figure 7,

The mean dipole moment of water-like particles as a function of temperature
and pressure, The values of the moments are in Debyes. The solid and dashed
lines are the SCMF resdlts for the C2v quadrupole model at normal and high
pressure, respectively, The dotted line represents the permanent dipole moment
of water, The open squares are values obtained for C2v octupole fluids at
normal pressure, while the stars represent SCMF results at the same points for

the soft C2v model discussed in the next section,
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obtained for the C2v quadrupole system., The average dipole moments we
determine at 25°C compare very well with values that have been calculated

for ice [172] or reported for another polarizable water-like model [37].

The dielectric constants obtained for the polarizable systems being
investigated here are shown in Figure 8. We find that at higher temperatures,
i.e., > 100°C, the simple hard-sphere models we are considering give results
which are in good agreement with experimental data, both at normal and high
pressure, At lower temperatures, however, we find that the hard-sphere models
consistently overestimate €. We remark that this was not the case in earlier
RLHNC studies of the tetrahedral model [67], where good agreement with
experiment was found even at 25°C, Using the RHNC theory, we obtain
€ =105 for the tetrahedral fluid considered in Ref, 67 (we remark that this
value is larger than the value, € =974, found for the C2v quadrupole fluid),
even though the effective dipole moment was essentially the same. The RHNC
is usually the more accurate theory, therefore we would expect it to give the
better estimate of the dielectric constant for this model system. Later in this
section we will show that the packing structure (/.e., the rédial distribution
function) predicted by the RHNC theory for the present hard-sphere models at
25°C is quite different from that of real water, At higher temperatures, both
real water and our model fluids become less structured, and hence the
structural differences become less significant. The fact that we obtain good
agreement with experiment for e at higher temperatures but not at lower
temperatures strongly suggests that the unique packing structure of water at
low temperature, j.e., 25°C, affects its dielectric properties. This hypothesis

will be examined in detail in section 4,

The importance of polarizability in the present water-like fluids can be
easily demonstrated, If we ignore polarizability and take the effective dipole
moment to be simply the gas phase value, then we obtain € =284 for the
C2v quadrupole fluid at 25°C. It is also interesting to point out that the MCY
[49] and TIP4P [41] models, two popular water-like models, have recently been
shown [4546] to give dielectric constants of 34 and b3, respectively, at 20°cC.
Both models are non-polarizable and have dipole moments of about 22D, In
comparison with these resijlts, those obtained here at 25°C for our polarizable

hard-sphere fluids appear more respectable,
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Figure 8.

The dielectric constants of water and of water-like models as functions of
temperature and pressure. The dots and triangles are SCMF results for C2v
quadrupole fluids at normal and high pressure, respectively, The open squares
and stars refer to the same models as in Figure 7, The solid and dashed
lines represent experimental values [48,169,170] at normal and high pressure,

respectively,
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In general, we find that addition of the octupole moment to the C2v
quadrupole model causes a noticable drop in e for a fixed dipole moment,
We have also found (see Figure 7) that the addition of the octupole moment
to the model results in a larger average'dipole moment, which should give
rise to a larger dielectric constant. We find that the two effects tend to
cancel one another., Consequently, in Figure 8 we see that the C2v quadrupole

and C2v octupole fluids give quite similar dielectric constants.

The total average configurational energies, UTOT/NkT’ were computed for
these polarizable systems using eq. (4.20). At 25°C the tetrahedral, the C2v
quadrupole and the C2v octupole fluids give values of -164, -168 and -18.1,
respectively, These compare well with the experimental value [41] of -16.7,
This agreement is perhaps quite fortuitous since we might expect some of the
terms which we have ignored in the potential (e.g., dispersion and short-range
repulsive terms) to make fairly large contributions to the energy. We remark
that the RLHNC result [67] of -16.9 for the tetrahedral fluid at 25°C is again
close to the value given by the RHNC theory.

The radial. distribution function, g(r):gggo(r), obtained for the C,
quadrupole and the C2v octupole fluids at 25°C are shown in Figure 9. Both
systems have the same effective dipole moment, me'=2,75, and hence any
differences in structure are due solely to the influence of the octupole
moment, We point out.that this value of me' is very close to the SCMF

results of 274 and 2,77 for the polarizable C quadrupole and C2v octupole

fluids, respectively., Also shown in Figure 8 iivthe radial distribution function
of the hard-sphere reference system (which would alsc be the RLHNC result
for g(r)). The effects of the strong multipolar interactions are clearly evident,
For the two multipolar fluids, the contact value of g(r) has increased
dramatically from the hard-sphere value, while the position of the first
minimum has moved inward, The result is a very sharp first peak in g(r), as
is evident in Figure 9. The second peak has also sharpened and shifted
inward for both multipolar systems. However K its maximum still occurs at a

separation of about 2ds whereas for real water the maximum in the second

,

peak appears at about 1.65ds, corresponding to the tetrahedral distance

[121,122]. If we compute the coordination numbers,
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Figure 9,

Radial distribution functions for water-like fiuids at 25°C, The solid and

dashed lines are RHNC results for the C2v quadrupole and the C octupole

2v
models, respectively, when me'=2,75. The dotted line represents the

hard-sphere radial distribution function for that density,
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R
CN = 47rps£ rzg(r)dr , (5.2)
S

where R represents the separation corresponding to the first minimum of the

integrand, we find that both the C models give values of about 57 at 25°C,

2v
Again, these do not compare well with the result for water at 25°C, where
CN=45 [122]. Thus, even accounting for the structural effects of the

unrealistic repulsive cores of the C2V models, the RHNC results for g(r) for

these two fluids are still quite different from that of real water,

The effects of the addition of the octupole moment to the C2v
quadrupole model can also be seen in Figure 9, As might be expected, the
contact peak of g(r) becomes somewhat steeper due to the extra terms in the
multipole potential, The maximum in the second peak shows virtually no
change; however, a small shoulder on the second peak has developed at the
tetrahedral distance. Moreover, the third and fourth peaks appear to be shifted
slightly inward. Clearly, the octupole moment does influence the packing
structure in a desirable way, but the magnitude of its effects are still

relatively small,

In an attempt to try and improve our results for the radial distribution
function, we also examined the effects of increasing the values of the
quadrupole and octupole moments, We found that increasing the quadrupole
and octupole by 15% and 50%, respectively, produces very little change in the
RHNC result for g(r) except to generate an even steeper contact peak.
Therefore, at least within the RHNC theory, hard-sphere models containing only
the low order multipole moments of water appear unable to give a tetrahedral

structure similar to that of water,

in Figures 10-16 we have shown some of the projections of the pair
correlation functions of the C2v quadrupole and C2v octupole fluids, The
projections which have been plotted are all those which contain potential
terms for both models, as well as hg)éo(r), We remark that these projections
represent only a small subset of the total number of unique projections in the
HNC basis set used in the calculations. Most of the correlation functions are
at least moderately affected by the addition of the octupole moment to the

C,, Quadrupole model; h5§3(r) and hgg4(r) change markedly, while h(')§3(r)
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Figure 10,

The projection hééo(r), The solid and dashed lines represent RHNC results for
the C2v quadrupole and the C2v octupole models, respectively, at 256°C and
m,*=2.75.
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Figure 11,

112

The projection h00 (r). The curves are defined as in Figure 10,
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Figure 12,

The projection h8‘83(r). The curves are defined as in Figure 10,
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Figure 13,

The projection h6§3(r), The curves are defined as in Figure 10,



= €L -



- 132 -

Figure 14,

The projection hgg‘l(r). The curves are defined as in Figure 10,



- g€l -



- 134 -

Figure 15,

The brojection hggg‘(r). The curves are defined as in Figure 10.
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Figure 16,

The projection h§§4(r), The curves are defined as in Figure 10,
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and h§§4(r) appear to be the least affected, However, we find that there is
no systematic variation in the correlation functions since each represents a
different angle dependence, The dipole-dipole correlations, as given by
110(r) and h (r) are of particular interest, In both cases we find that
the correlation functlons become less structured with the addition of the
octupole moment. This is consistent with the observed drop in the dielectric
constant and the decrease in the average dipole-dipole energy. Clearly, the
octupole forces act to disrupt the dipolar structure within the fluid. This is

>

of course, also true of the quadrupole [67].

Before concluding this discussion of results for hard-sphere water-like
fluids, we point out that because of |ts simplicity, the tetrahedral model was
used extensively in our study of model aqueous electrolyte solutions (as will
be discussed in Chapter VI), It is obvious from Tables |lIl and VI that this
solvent model reduces the computational resources required to solve the RHNC
theory. This becomes an important consideration in the case of electrolyte
solutions, particularly at low concentration where a much larger number of
points is required in the numerical grid. In previous studies [67,7279-81]
~ which the tetrahedral model was employed, the parameter @ was somewhat
arbitrarily set to the value of 250X10 26esu cm2, In the present study, we
have found that this value of the square quadrupole moment underestimates
the effect of the fuII quadrupole tensor of water, However we do find that
(-) =257X10" 26esu cm (which is just slightly larger than half the sum of the
magmtudes of Gxx and @yy) works very well as an effective square quadrupole
moment, In this case the tetrahedral and C2v guadrupole models give aimost
identical results for all average properties, including the dielectric constant and
average energies, The radial distribution functions appear indistinguishable,
Thus, this value of the square quadrupole moment was used in the tetrahedral

solvent model employed in our study of aqueous electrolyte solutions.
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4. Results for Soft Models

In the previous section we have found that for hard-sphere water-like
fluids, the RHNC results for € do not agree well with experiment at lower
temperatures, /.e., < 100°C. We have speculated that this discrepancy might be
due to the fact that the structure, /j.e., the radial distribution function, of these
model systems is quite different from that of real water. In this section we
will show how the correct structure can be obtained by modifying only the
spherical potential (i.e., by making the model soft), We will then examine the

dielectric properties of this new model,

First, let us define an empirical short-range potential

2 4
USR(r)’= T[Aear + Bebr + cetX 4+ Dedy] ’ (5.3a)
where
X =T - X (5.3b)
and
y=r-y, . (5.3c)

This potential was added to the C2v octupole model as a spherically

symmetric term and the hard-sphere diameter was reduced to 0,92ds, The

parameters a, b, ¢ and d were empirically assigned the values —10d;1, -40d;1
-2 -4

-35d'5 and —700ds

respectively. T was taken as 1,34X10'13ergs per
molecule, while x0=1,16dS and y0=1,65ds. in Table VIl the values of A, B, C

’

and D used to generate three different forms of USR(I‘) are given, These will
prove useful in examining the effects of turning on, or off, certain parts of

the potential. In Figure 17 we have shown the three forms of the potential

TABLE VIll.  Parameters for ugp(r).
Potential | A | B | ¢ | D
W) | 40000 | 1x1£>15 | o | o
w2)(r) | 40000 | 1x10"® | 018 | o
uég)(r) | 40000 | 1x10'° | 018 | -008
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Figure 17,

Soft potentials at 25°C. The solid, dotted and dashed lines represent the

potentials Buég)(r), Buéﬁ)(r) and ﬁué}.t')(r), respectively, where the forms

of these potentials are defined by the parameters given in Table VIII,
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Figure 18,

Radial distribution functions for soft water-like models at 25°C and me'=2,75,
The solid, dashed and dotted lines are RHNC results for the models employing
ﬂus3)(r) Busfzz)(r) and ﬁuSR)(r) respectively. The dash-dot line represents

g(r) for the mode! system using 3)(r) but with no octupole moment,
Usgr
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2)
R
R (r) for r<1,35ds and

ﬁué:?)(r) for r>1.45d5, It is clear from Figure 17 that these potentials are

which we will investigate at 26°C. We point out that ﬁué (r) may be hard

to detect because it is indistinguishable from ﬁué‘?')

simple smooth functions.

In Figure 18 we have shown RHNC results for the radial distribution
function for 4 different soft water-like models 25°C. The dependence upon
the various terms in the soft potential, as well as upon the octupole moment
can be seen. We find that when a simple soft potential like Bué;)(r) is
employed, the first peak in g(r) becomes quite broad, its maximum being less
than 25, This is consistent with results which have been reported [121] for
water at 25°C, However, the first minimum in g(r) appears approximately
where the second peak should be, Moreover, the coordination number is
somewhere within the range 6-8, depending upon where we stop the
integration in eq. (6.2). In order to correct the position of the first minimum
and to reduce the CN, another repulsive term is added to the spherical
potential, j.e., we use ﬁuég)(r), The first minimum in g(r) now appears in
about the correct position and CN=47 which is close to that of real water,
However, the radial distribution function still has a minimum at about r=1_7dS
with small peaks on either side. These two small peaks are drawn into a
single peak centred at r=1.65dS with the additional attractive term contained
in ﬁué;)(r). We also see from Figure 18 that if the octupole moment is not
included in the model, then g(r) is clearly affected. The most significant of
the effects is the drop in the second peak at the tetrahedral distance. This
would seem to indicate that the octupole moment is important in stabilizing
the tetrahedral structure, In the discussion below we shall refer to the
water-like model which utilizes uég)(r) and includes the octupole moment as

the soft C model,

2v
The radial distribution functions of the soft C2v and of the C2v
octupole fluids at 25°C are compared with the experimental g(r) of Narten and

Levy [121] in Figure 19. The RHNC result for the soft C model is in good

2v
agreement with the experimental curve, while that of the C2v

clearly in very poor agreement, In Figure 20 the structure factors, S(k), of the

octupole fluid is

two model systems are again compared with the experimental result of Narten

and Levy [121]. In general, the partial structure factor is defined [13] by
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Figure 19,

Radial distribution functions of water and of water-like fluids at 25°C and
me'=2,75. The solid and dashed lines are RHNC results for the soft C2v and
the C2v octupole model systems, respectively, The dotted line is the
experimental result of Narten and Levy [121]. We note that most of the

contact peak for the C2v octupole model does not appear on the plot,
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Figure 20,

Structure factors of water and of water~like fluids at 25°C and me'=2_75. The

curves are as in Figure 19,
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S (k) =1 + 4”’]‘ r(g B(r)-—l)smkr dr , (5.4)

ap

Clearly, the soft C2v model is again in good agreement with experiment, The
Sk) of the C2v octupole fluid does not show the characteristic split peak
evident in the experimental curve and its amplitude of oscillation is too large,
We stress that the only difference between the C2v octupole and the soft
C,, models is the addition of the spherical potential, us3)(r) However, what
is not entirely clear is whether us3)(r) is simply correcting for inadequacies
in the hard-sphere model, or whether it is also compensating for a deficiency
in the RHNC theory. Very recent work [173] suggests that part of the problem
may actually lie with the RHNC theory,

Full RHNC/SCMF calculations were then done at 25°C and 300°C using
the soft C2v model. The resulting average dipole moments and dielectric
constants are shown in Figures 7 and 8, respectively., At 25°C the average
dipole moment is slightly larger than the C2v octupoie result, whiie at 300°C
the opposite is found, Of most importance here is the.fact that the dielectric
constants obtained at both temperatures are in very good agreement with
experiment., Thus, it would appear that the unique packing structure of water

at low temperature does influence its dielectric properties.

Again, we emphasize that there is nothing unique about our choice of a

soft potential, / uég)( r).

Our purpose was merely to show that the
experimental structure for water at 25°C could be fit with a simple multipolar

model by adjusting the soft spherical potential,
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CHAPTER VI

RESULTS FOR MODEL AQUEOUS ELECTROLYTE SOLUTIONS

1. Introduction

In this study we have investigated model electrolyte solutions consisting
of a single salt dissolved in one of the water-like solvents described in
Chapter V., The vast majority of the solutions examined (virtually all those at
finite concentration) utilize the tetrahedral solvent model because of its
simplicity, as described in Chapters Il and V. Also, in Chapter V we have
shown that when the full quadrupole tensor of water is replaced by an
effective square quadrupole moment, the properties of the pure water-like
solvent remain essentially unchanged. The ions are treated simply as charged
hard spheres, as discussed in Chapter II, Only univalent ions were considered;
their hard-sphere diameters are given in Table |. All the model solutions

investigated were at 25°C,

Model aqueous electrolyte solutions of this type had been previously
studied at infinite dilution with the RLHNC theory [79-81]. As an extension of
this earlier work [79-81], we began the present study by first attempting to
examine the same model solutions, again using the RLHNC, but now at finite
concentration, We found that although the RLHNC theory appears to give
reasonable results for ion-ion potentials of mean force at infinite dilution, it
does not work well for model aqueous electrolyte solutions at finite
concentration, Small ions appear to be quite insoluble (e.g., for KClI we were
able to obtain numerical solutions only up to a concentration of 0,125M),
while larger ions appear to be quite soluble (e.g., for Csl we were able to
reach a concentration of 2M with no apparent difficulties;), Ciearly, this
behaviour is not consistent with what is observed for real aqueous solutions
of the alkali halides [169]. This unrealistic behaviour of the RLHNC theory is
largely due to the fact that the RLHNC closure allows no direct coupling
between anisotropic terms in the pair potential and the radial distribution
function, as discussed in Chapter 1l, Consequently, we find that in the RLHNC
theory the degree of solvation of an ion (/.e., the packing of the solvent
around the ion) is determined almost exclusively by the hard-sphere packing

structure, Obviously then, we would not expect the RLHNC theory to give
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good results where there are strong interactions between the ion and the

solvent, as is the case for aqueous electrolyte solutions,

The reference QHNC theory [63] was also briefly examined for the same
model for aqueous electrolyte solutions, The ion solvation, particularly for
smaller ions, was found to greatly improve (i.e.,, the contact values of gis(r)
increased sharply). Furthermore, this change in the degree of solvation had a
strong influence upon not only the thermodynamic properties of the solution,
but also the ion-ion structure (/.e., gij(r)), These results clearly showed the
sensitivity of these systems and indicated that a very accurate theory would
be required in order to obtain accurate results for the present models,
Therefore, in the remainder of this Chapter essentially all the results reported
for rﬁodel electrolyte solutions were obtained using the RHNC theory, as

described in Chapter 11,

The HNC basis set dependence of the properties of interest in this
study was examined, The particular case of a model KCl| solution at 05M was
considered, As was the case for the pure solvent, strong basis set

dependence was observed for all properties when going from N x=2 to

a

nmax=3 to nmax=4' Fortunately, we again found only slight basis set

dependence for almost all results when going to n =5 (e.g.. the constant

volume derivative of the activity coefficient increasnelgxby about 1%). Of the
properties examined, 72 showed the greatest sensitivity, increasing 26 cc/mole,
We remark that the nmax=5 calculation was pushing our computational
resources to their limit, and hence the nmax=6 calculation was not even
attempted. Thus, the nmax=4 HNC basis set (nhow containing 95 vuniqqe
projections) was used exclusively to obtain all other results reported in this

chapter.

In this study we have examined several model aqueous electrolyte
solutions (employing the tetrahedral water-like solvent) over a range of
concentrations, including infinite dilution, as given in Table IX. (We remark
that the molarity concentration scale has been used universally throughout this
chapter) Aqueous solutions of alkali halides have received the most attention,
although three other salts have also been considered. In order to mimic the
constant pressure conditions under which most real electrolyte solutions are
studied, we have used the experimental densities [174,175] of the real systems

whenever possible in our model calculations, For both MBr and M’ we have
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TABLE IX. -Model aqueous electrolyte solutions studied., Those
concentrations given in parentheses are for solutions which are
beyond the solubility limit of their real counterparts. The
concentrations indicated with a star represent those beyond
which numerical solutions could not be obtained.

Salt | Concentration (moles/litre)
W oo
Cua ot
© NaCl | 0, 0025, 005, 0075, 0.1, 025, 05, 075, 10,

15, 2.0, 3.0, 40, (6.0), (8.0), (12.0), (16.0)
KCI 0, 0,025, 005, 0075, 0.1, 0.15, 025, 05,
075, 10, 15, 20, 30, 40
Csl 0, 0.025, 005, 0075, 0.1, 0,15, 025, 05, 0.75,
10, 15, 20, 25, (3.0), (40), (6.0), (9.0), 0.1)"
MBr 0, 0.025, 005, 0075, 0.1, 025, 05, 0.6,
07, 075, 08, 085, 09, 10
Ml 0, 0025, 005, 0075, 0.1, 025, 05, 086,
065, 0.7, 0725, 0.74*

EQEq | 0, 0.025, 005, 0075, 0.1, 025, 05

empioyed the density data of a (C2H5)4NBr solution [175]. We point out that
MBr and Ml have the same value of d __ (as given by eq. (2.24b)). In the
dicussidns below we will use d+_ as measure of the Jjon size of a salt. For
the EqEq solutions we have employed the densities of aqueous NaC! since
both salts again have the same value of d+_. Thus, results from model EgEq
and NaCl solutions, as well as from MBr and M’ solutions, can be compared

in order to examine the effects of ion asymmetry,

in the present study we found that tﬁe RHNC theory could be solved
for our model NaCl and Csl solutions at concentrations above the solubility
limits of their real counterparts, as indicated in Table IX. For example, we
were still able to study our model NaCl solution at a concentration of 16M,
which corresponds to the mole fractions xi=0,25 and xs=0_50! Densities for
these systems were obtained by extrapolating the experimental results., We

point out that for the salts Ml and Csl there were concentrations beyond
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which we were numerically unable to solve the RHNC theory (also indicated in
Table IX). The behaviour of these solutions near these points will be
discussed below. It is obvious from Table IX that for the most part the
alkali halides are very soluble in the tetrahedral solvent., An apparent
exception to this rule appears to be LiCl, However, the difficulties encountered
with LiCl may quite possibly be numerical in origin, In order to reach a finite
(but low) concentration of a given salt, a numerical solution set for that same
salt at infinite dilution always served as the initial guess (input) into the
RHNC theory. For all the other salts investigated (/.e., those given in Table
IX) this scheme worked well, Unfortunately, because of the extreme behaviour
demonstrated by Li* at infinite dilution (as described below), this method may

not be applicable to model solutions of Li* salts,

The solvent models we have considered in this study are polarizable,
Hence, a full SCMF calculation (as outlined in Chapter 1V) would be required,
in principle, at every concentration for each solution we wish to investigate.
Of course, for a solution at infinite dilution all properties of the solvent,
including its effective dipole moment, remain unchanged from those of the
pure solvent, A full SCMF calculation was carried out on a KC| solution at
20M. We found that even at this relatively high concentration the average
local electric field in the bulk (as given by the SCMF theory) changed by less
than 1% from the pure solvent value, Consequently, the effective dipole
moment obtained, me'=2,734, differs from the pure tetrahedral solvent result
by less than 025% If we define the quantity

e e e
2§D?<T+;ID1;QT+1:JII?T’ (6.1)
S S S

then it clearly follows from egs. (4.12) and (4.19) that within the SCMF theory
Y will be related to the average local field in the bulk., In Figure 21 we have
shown Y for several solutions which were examined using me'=2_74, the pure

solvent value, The value of Y obtained for a 20M KCI solution has also been
clearly indicated, It is obvious from Figure 21 that even at concentrations of

40M, we would still expect the average local field in the bulk to remain very
close to the pure solvent result, Thus, at least for the current models within

the SCMF approximation, it would appear that as the concentration of an

electrolyte solution is increased, the decrease in the solvent contribution to
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Figure 21,

The concentration dependence of Y, Results are given for four salts in the
tetrahedral solvent for which me'=2,74, The point indicated with a circle

represents a 20M KCI solution, Its significance is discussed in the text,
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the average local electric field is almost exactly compensated by an increased
contribution from the ions., Therefore, to a very good approximation, the
effective dipole moment of the pure tetrahedral solvent can be taken as being
independent of salt concentration, This is what was done in the present study,
and hence all finite concentration results presented in this chapter were
determined using me'=2.74. Moreover, the solvent model then becomes
equivalent to a non-polarizable model with a permanent dipole moment equal
to m. It should also be noted that not performing a full SCMF calculation at
each concentration for every solution represents a substantial reduction (by at

least a factor of three) in the total number of computations required.

In Chapter IV we have introduced the RDMF theory which allows us to
examine the average local field experienced by a solvent particle as a function
of its separation from an ion, The effects of treating the polarization of the
solvent at this level will be examined in section 5, where we will present

results obtained at infinite dilution and at low concentration,

All the results for model aqueous electrolyte solutions reported in
sections 2 through 5 were determined using the tetrahedral solvent model with
me=2.605D, In section 6 we will consider model electrolyte solutions at
infinite dilution which employ several different solvent models, including the
nonpolarizable tetrahedral solvent (i.e., me=u=1,855D), as well as the sz
quadrupole and C2v octupole solvents described in Chapter V. Particular
attention will be paid to the effects the different water-like solvents have

upon ion-solvent and ion-ion structure,

2. Dielectric_Properties

The equilibrium dielectric constants, €g. of our model electrolyte
solutions were determined using eqgs. (2.95), (2.96) and (297). In principle,
these three formulas should all yield the same value for €. However, in
Figure 22 we see that numerically the agreement is not exact, We find that
eqs. (2.95) and (2.96) give results which are essentially in mutual agreement
and which extrapolate to an infinite dilution value that is consistent with those
calculated for the pure solvent., The dielectric constants determined from eqs,

(297) are consistently smalier (by about 5%) than those obtained from the
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Figure 22,

Comparing theoretical and experimental values for the dielectric constant of

aqueous KCI solutions, The lines labelled with h110

and hij represent RHNC
results for model solutions calculated from egs. (2.96) and (2.97), respectively,
employing Simpson’s rule for the required integrations, At finite concentration
€g as given by eqé_ (2.95) fall very close to the h110 curve, The star and
the solid triangle are values for the pure tetrahedral solvent (me'=2.74)
obtained from egs. (2.93) using Simpson’s rule and from egs. (2.95) using.
trapezoidal rule, respectively, while the dot is the pure solvent dielectric
constant obtained from the limiting slope of p2G+_
represents the results of Behret et a/. [176] for aqueous KCI, while the open

. The experimental line

square, circle and triangle are measurements of Harris and O’Konski [177],
Giese et a/. [178] and Haggis et a/. [179], respectively. The dashed line is €
for a model Csl solution studied with the RLHNC theory,
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other two routes and extrapolate to a value lower than those found for the
pure solvent, This extrapolated value does, however, agree very well with the
pure solvent dielectric constant, € =883, which is consistent with all limiting
law behaviour reported in section 3. Unfortunately, this discrepancy appears to
be due to the lack of numerical accuracy in the Hankel transforms, with the.
limiting factors being the FFT and the numerical grid width employed, Ar=0,02,
(We remark that for solution systems with smaller values of the electrostatic

parameters the agreement between the various routes to e€_ is much better)

In Figure 22 we see that the discrepancy between the varis;us routes to the
dielectric constant is comparable to the variation found between typical
experimental results. Moreover, the qualitative behaviour of € for our model
solutions is independent of the route used to determine it. The dielectric

constants we will report below were ali obtained from eq. (2.96).

Also included in Figure 22 are RLHNC results for €g for a model Csl
solution. This theoretical curve is very similar to the experimental curve for
KCl. We note that the dielectric properties of aqueous KCl and Csl solutions
are quite similar at concentrations below 1M [176,180]. Thus, as with the pure
solvent, the RLHNC values (when they can be obtained) for the dielectric
constants of the model aqueous electrolyte solutions being considered here are
in surprisingly good agreement with experiment, Unfortunately, the RLHNC
results are probably less accurate that those for the RHNC for the present

models.

in Figure 23 we have compared experimental values of the dielectric
constants with those determined in the present study for model aqueous
eiectrolyte solutions, We find that at low concentration the RHNC results for
€, are consistently larger than those of experiment. This is simply a
consequence of the fact that the pure tetrahedral solvent has a larger
dielectric constant than does pure water. We also observe in Figure 23 that
for our model solutions the limiting siopes for € are steeper than those
found for their real counterparts, Again, the larger value of e for the pure
solvent can partially account for this discrepancy since the limiting siope
depends upon € [79]. At higher concentrations (j.e., >1M) the results for our
model electrolyte solutions appear to be in qualitative agreement with
experiment, Even at very high concentration (/.e., 80M) our model NaCl

solution has very similar behaviour to that of a real LiCl solution. For our
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Figure 23,

The dielectric constants of real and of model aqueous electrolyte solutions as
functions of concentration. The solid lines are RHNC results for model
solutions of NaCl, KClI and Csl, while the dashed lines represent the
experimental values [176] for LiCi, NaCl and KCl. The dotted portion of the

model NaCl curve indicates the concentrations for which extrapolated values of
the density were used.
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model solutions €g decreases more slowly with ¢ for larger ions, which is
also consistent with what is observed experimentally, Thus, the dielectric
properties of our model aqueous electrolyte solutions are in reasonable

qualitative agreement with experiment,

3. Thermodynamic Properties

First we will examine the average energies of the model electrolyte
solutions being investigated in this study, The average energies of the
effective systems were calculated using eqgs. (2.80) and (281). In principle, in
order to determine the total averége energies of the polarizable systems
within the SCMF approximation, we must employ eq. (4.20) which we can

rewrite as

_ e
Uror = Upor * Upor, - (6.2)

where UPOL is the total polarization energy. However, we have already found
that to a very good approximation <El>e (and hence UPOL) is independent of
salt concentration and we have taken m, to be constant, Therefore, in the
present study the energies we will report are those of the effective system
(when applicable), since those of the polarizable system are very closely
related, never differing by more than an additive constant.or multiplicative

factor.

in Figure 24 we have shown the average total ion-ion energies per ion
for model NaCl, KCI and MBr solutions along with the limiting slope given by
eq. (3.78). The ion-ion energies of all three solutions increase in magnitude
with increasing concentration and approach their limiting behaviour at low
concentration (i.e., <0,1M). At higher concentration we find that KC| has the
most negative values, although for all the salts examined the average ion-ion
energies are always smaller in magnitude than those predicted by the limiting
law relationship (/.e., eq. (3.75)). We remark that the Csl line, which has not
been included in Figure 24, lies between the KCL and NaCl curves., For
solutions of both larger and smaller ions than KCl (e.g., NaCl and MBr), it can
be seen that the average ion-ion energies deviate more quickly from the

limiting law,
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Figure 24,

Average total ion-ion energies per ion as -functions of square root
concentration, The solid lines are RHNC results for three of the model
electrolyte solutions studied, whiie the dashed line represents the Iimiting
slope determined from eq. (3.75) using e =883. We point out that it is the

negative energies which have been plotted,



- 164 -




- 165 -

Figure 25,

Average ion-dipole energies per ion as functions of square root concentration,
The solid lines are RHNC results for four of the ions being investigated, Na+
and Cl- of NaCl, Cs* of Csl and M+ of MBr. The dashed line represents the
limiting slope determined from eq. (3.76) employing € =883. For ease of
comparison the infinite dilution values (which are negative) have been
subtracted from all the energies, We also point out that it is the energies of

the effective systems which have been plotted,
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The average ion-dipole energies per ion for four of the ions considered
in the present study have been plotted in Figure 25, Only the low
concentration behaviour has been illustrated, It can be clearly seen from
Figure 2b that at very low concentration (/.e., <0025M) the ion-dipole energies
do take on the limiting law dependence given by eq, (3.76). We find that as
the concentration is increased the energies become more negative than those
predicted by the limiting law, although for Cs* we observe that for a small
range of concentrations the values are more positive than the values given by
eq. (3.76). Again, it is the smallest and the largest ions considered in Figure
25 which deviate most rapidly from the limiting slope., It should be pointed
out that unlike the ion-dipole energies, the average ion—quadrupole energies per
ion show a non-universal (/.e., a different slope for ions of different size)

linear dependence upon ¢ at low salt concentration,

In Figure 26 we have plotted the average ion-solvent energies, again per
ion, for four of the model aqueous electrolyte solutions we have examined.
As we would expect, the energies become more negative (j.e., increase in
magnitude) as ion size is decreased, but decrease in magnitude quite rapidly
as the concentration is increased, At low concentration the ion-solvent
energies become linear in yc because of the dominant ion-dipole term.
Counter-ion effects can also be seen in Figure 26, For Cl- at moderate
concentration (i.e., O.25M to 0.75M) we find that the ion-solvent energies are
more negative when Na*, rather than K-, is the counter-ion. This would seem
to indicate that Na* is more effective than K+ at disrupting the solvent
structure, thus allowing the solvent to interact more strongly with a Cl- ion at
these concentrations. At higher concentrations (/.e., >10M) the converse is
true, In these solutions the ions will on average be closer together, and
hence the preferential solvation of the Na* ion (as will be discussed in more
detail in section 4) is at the expense of the CI- ion, Counter-ion effects can
also be examined by comparing the Cs* and Br- curves in Figure 26, These
two ions will be solvated symmetrically by the tetrahedral solvent. In this
case we find that at moderate concentrations the Br- ion, which is paired with

the larger M+ ion, has the more negative energy.

The average solvent-solvent energies per solvent for model NaCl, KClI
and Csl! solutions are shown in Figure 27, It can be seen that with increasing

concentration the solvent-solvent energy decreases in magnitude, The most
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Figure 26.

Average ioh-solvent energies per ion as functions of square root
concentration, The solid, dashed, dash-dot and dotted lines are RHNC results
for model solutions of NaCl, KCI, Csi and MBr, respectively. Each line has
been labelled with its appropriate ion, It is the energies of the effective

systems which have been illustrated.
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Figure 27.

Average solvent-solvent energies per solvent as functions of concentration,
RHNC results for three of the model aqueous electrolyte solutions considered
in this study have been illustrated. The energies shown are those of the

effective systems,
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rapid decrease is observed for NaCl, the slowest for Csl. This clearly
indicates that small ions are more effective at disrupting the solvent structure.
We note that the average energies for a MBr solution, which have not been
included in Figure 27, are almost indistinguishable from those of Csl, being

only slightly more negative at lower concentrations,

The total average energies for four of the model solutions investigated
in this study are shown in Figure 28, We find that for all the solutions
examined, the total energy becomes more negative (i.e., increases in magnitude)
as the concentration is increased. Furthermore, with smaller ions the rate of
increase in magnitude of the total energy is more rapid. We also observe
from Figure 28 that to a good approximation the total average energies have
a linear dependence upon c,beven at higher concentrations, This is a
somewhat surprising result since Figures 24, 26 and 27 would indicate that the
average ion-ion, ion-solvent and solvent-solvent contributions to the total
average enérgy are not linear in concentration, Clearly then, the non-linear
contributions to the total energies must cancel one another to a large degree,
In Chapter Il (cf. egs. (3.76) and (3.77)) we have observed some cancellation
of this type for the total average ion-dipole energy and average dipole-dipole
energy in the low concentration limit (only when ¢ is large). What is not
clear is why the apparent linearity in the total average energy should persist
over such a large concentration range (evident to at least 4M). However, this
linearity is consistent with -what is observed experimentally for the heats of

dilutions of at least some strong electrolytes [174].

The pressures of our model solutions were calculated to RHNC level
accuracy using the pressure equation (282), We find that even at 1.0M the
calculated pressures have changed by less than 10% from the pure solvent
value, Hence, constant pressure conditions appear to have been approximately
maintained for our model electrolyte solutions, We again point out that we
- have used the experimental densities in our model calculations in order to

mimic real constant pressure conditions,

From our discussion in Chapter Ill we know that at finite concentration

haﬁ(r) (@8B=+,-5) are all screened at large r and so we can write

a
hy () = _aB gmkr (6.3)
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Figure 28.

Total average energies as functions of concentration, The four curves shown
represent RHNC results for model NaCl, KCI, Csl and MBr solutions. We note

that it is the energies of the effective systems which have been plotted,
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where aaﬁ is a constant dependent upon the parameters of the system., The

screening parameter, k, is given by eq. (3.35c) at very low concentration, By

fitting the long-range tails of haﬁ(r) to the functional form given by eq.
(6.3), we have obtained numerical values for k for the model aqueous
electrolyte solutions we have examined. Values for K‘:de were determined
from each of the functions h_ (r), h__(r), h, _(r), h+s(r) and h__s(r), as
well as from héé?ss(r), For most of the solutions investigated the
long-range tail of hss(r) was very small because of its p22 dependence (cf.
eq. (342c)), and hence was not used to calculate an additional value of «*.
The six values that were obtained were always in very good agreement at
concentrations less than 05M, Af concentrations higher than 05M the
numerical fits usually became too difficult to perform as the long-range tails
became shorter ranged (i.e., they were decaying faster because k was

increasing).

In Figure 29 we have shown results for K'z determined in the present
study. At very low concentration we find that the calculated screening
parameters approach the limiting law given by eq. (3.35c). Both positive (tend
toward larger vaiues) and negative (tend toward smaller values) deviations
from the limiting law can be seen in Figure 29, Of the solutions studied, x'z
increases most rapidly with concentration for NaCl. For both NaCl and KCI
solutions the values of K'z are consistently larger than those given by eq.
(3.3bc), indicating that for these solutions the long-range tails of haﬁ('r) are
shorter ranged (/.e., they are screened more quickly) than those predicted by
the limiting law. The smallest values of K‘z were obtained for M, these
values always being smaller than those given by eq. (3.35c). Thus the
long-range tails of haﬁ(r) for the M’ solution are longer ranged (i.e., they
are screened more slowly) than those predicted by the limiting law. We
remark that for M haﬁ(r) were sufficiently long ranged so as to enable us
to determine values for the screening parameter up to 074M (which is the
highest concentration studied for this solution), Over the concentration range
0.6M to 0.7M we discover that x'z stops increasing and remains approximately
constant, For concentrations above 0.7M x'z actually begins to decrease with
increasing c. We also find that at these concentrations the long-range tails of
h . (r) and h__(r) actually change sign and become positive, indicating an
apparent long-range attraction between like ions. This behaviour would seem

to contradict the usual notions of ionic screening and of ionic interaction
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Figure 29,

The square of the Debye screening parameter as a function of concentration,
The solid lines are results for four of the model aqueous electrolyte solutions
studied, The dashed line represents the limiting law as given by eq. (3.35¢c)

when € =88.3 is used,
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within solution, Clearly, solvent effects (in addition to those described by the
dielectric constant) are making significant contributions to the long-range
ion-ion correlations in the M’ solution, We will discuss these solvent effects
in greater detail below. From Figure 29 it can be seen that for the Csl
solution the screening parameters are just slightly smaller than those given by
eq. (3.356c). It should also be pointed out that the values of K'z for MBr and
EgEq solutions, which have not been included in Figure 29, lie very close to
the KCl curve, Therefore, we find that the behaviour of k depends not only
upon the ion size (i.e., the value of d+_), but also upon the size asymmetry
of the two ions, At a given concentration the value of k decreases within

increasing ion size, but increases with increasing asymmetry,

In order to make use of the thermodynamic expressions given in
Chapter il

we must first determine values for Gaﬁ by evaluating eq. (3.1a).
15 3s defined by eqs, (343) and (3.39b). The required

integrations were performed using the trapezoidal rule because all the Fourier

We will also examine C

transforms in our calculations were evaluated with trapezoidal rule and Gaﬁ
and Caﬁ represent the k—> 0 limits of these transforms, Care was taken in
computing the contributions to Gaﬁ due to the long-range tails of haB(r)’
particularly at low concentration, These contributions were determined
analytically whenever the long-range tail of haB(r) was successfully fit to eq.
(6.3). Finally, we remark that numerically the charge neutrality conditions given
by eqgs. (35¢) and (3.5d) were always satisfied to a reasonable level of |
accuracy (e.g., at 0.1M to within 001%, while at 40M to within 0,1%).

First we will examine our results for G,_. It is clear from eq. (3.36a)

that G+_ will diverge as p2—>0, Thus, in Figure 30 we have plotted the

+_
value of 1/» =05 for all the model solutions we have investigated, At low

product p2G which remains finite in the p2—->0 limit and has a limiting

concentration the values of sz always approach the limiting law, although

+_
the results for M’ deviate very rapidly from limiting behaviour, At low

concentration the M, MBr and NaCl solutions ali demonstrated what we shall

refer to as super /imiting-/aw behaviour, that is p2G+_

with yc than predicted by the limiting law. For NaCl the p2G+_ curve does

eventually cross the line representing the limiting slope at a concentration of

about 20M, For M| p2G+_

very rapidly with yc, reaching a value of 255 (not shown in Figure 30) at

increases more rapidly

appears to show divergent behaviour, It increases

»
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Figure 30,

The product p2G+_ as a function of square root concentration, The solid ‘Iines
represent results for five of the model aqueous electrolyte solutions
considered in this study. The dashed line is the limiting slope determined from
egs. (3.36) using € =883,
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0.74M. The values of p2G+__

for the MBr solution, however, they do not appear to be diverging. We find

also increase rapidly with increasing concentration

that at the highest concentrations studied for MBr the rate of increase appears

to have become constant, For KCl| the values of p2G are always smaller

-
than those given by eq. (3.36). We see in Figure 30 that the Csl curve
initially follows the limiting law quite closely, then turns ‘down quite sharply
at a concentration of about 1M. We note that the results for the EgEq
solution (not included in Figure 30) are only just slightly larger than those for
NaCl. Thus, the behaviour of p2G+_ appears to have no simple dependence
upon _ion size or asymmetry. Furthermore, we observe super limiting-law

behaviour for both large and small ions,

It is interesting to point out that at low (but still finite) concentration

the values of p2G+_

of h+_(r), at least for some of the solutions investigated here. We find that

are not entirely determined by the long-range behaviour

although both NaCl and MBr solutions show super limiting-law behaviour for

p2G+_ )

MBr the long-range tails of ha.ﬁ(r) do show some of the same peculiar

their values of k would predict the opposite to be true (although for

behaviour found for an M’ solution). The apparent divergent behaviour of
PoG,_
increases relatively slowly and then actually begins to decrease with increasing

for M’ is, however 6 consistent with the fact that its value for «

concentration, Consequently, even at relatively low concentration the
short-range ion-ion structure can play an important role in determining the
behaviour of p2G+_. Moreover, this short-range ion-ion structure will depend
strongly upon the details of the ion solvation, and hence upon the nature of

the solvent itself.

In Figure 31 we have considered the quantity CIS as defined by eq.
(3.43). At very low concentration we find that our numerical results do agree
with the limiting slope, Sc, determined from eq. (348)., There does, however,
appear to be a slight discrepancy between ch’ the infinite dilution value, and
the value obtain from the extrapolation of CIs to infinite dilution, This
discrepancy is easily accounted for by the difference in numerical accuracy of
the different calculations involved. We also observe from Figure 31 that, for
the most part, the larger the ions the more rapidiy CIS deviates from its

limiting behaviour,
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Figure 31,

CIs as a function of square root concentration, For ease of comparison we

0
1S and CIs

itself., The solid lines are RHNC results for five of the solutions examined in

have plotted the difference between the infinite dilution value, C

the present study., The dashed line represents the limiting slope, Sc’ determined
using € =883 in eq. (3.48)
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Figure 32,

G+s as a functiop of square root concentration. The difference between the
limiting value st (as defined by eq. (3.49b)) and G+s has been plotted for
ease of comparison, RHNC results for model NaCl, KCI, Csl, MBr and M’
solutions have been included,
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The dependence of G, =G upon vc for five model electrolyte
+g5 ~ -

solutions has been illustrated in Fis;;ure 32, At very low concentration G+s
appears to be a linear function of yc, although the limiting slope for each
solution is clearly different, Both of these observations are consistent with
eq. (3.49a). At higher concentrations we find G_'_s demonstrates a variety of
behaviours, with no simple relationship to ion size or asymmetry being
indicated, For example, G+s is a monotonic decreasing function for NaCl,
while for Csl it actually begins to increase and crosses the NaCl curve at a
concentration of about 15M, For the Ml and MBr solutions G+S decreases
rapidly, and in fact appears to be diverging for M’l, The apparent divergent
behaviour of G+s for. the M’l solution is an expected result, This is because
in Figure 30 we have already found that p2G+_

from eq. (341) we know that G;s depends upon the product p2G+_,

appears to diverge for M’ and

In Figure 33 we have shown results for Gss obtained for model NaCl,
KCI, Csl, MBr and M’ solutions, At very low concentration we find that Gss
has a linear dependence on c, which is consistent with eq. (3.54). We see
from Figure 33 that GSS is a monotonic decreasing function for the NaCl and
KCI solutions, while for Csl, MBr and Ml it strictly increases with increasing
concentration, The slope of the curves for Gss appears to increase with
increasing ion size, becoming very large for MBr and M’l, Again, we observe
that GSs appears to diverge for the M’ solution as the concentration
approaches 0.74M (where GSs has a value of 4,08d53), We remark that this
behaviour is consistent with eq. (353) and the apparent -divergent nature of

G+s observed for Ml in Figure 32,

Before proceeding, it should be pointed out that divergent behaviour in
p2G+__, G_*_S and GsS was also demonstrated by our Csl| solution at a
concentration of about 9M. For this solution the magnitudes of p2G+_, G+s
and Gss were found to increase sharply with ¢ for concentrations above 85M,
As indicated in Table IX, we were only able to reach a concentration of 9.1M,
above which we could not obtain numerical solutions for the RHNC theory.
Although the values of p2G+_, G+s and Gss also increase very rapidly with ¢
for the MBr solution, they do not appear to diverge (at least for the
concentrations examined) like those of the M’ solution, Consequently, for MBr
we were able to reach a concentration of 10M with no apparent difficulties,

ft is interesting to note that for the two salts MBr and M, d+_ (i.e., the ion
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Figure 33,

GSs as a function of salt concentration, We have shown RHNC results for five

of the model aqueous electrolyte solutions examined in this study.
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size) is the same. These two salts differ only in the size asymmetry of their

respective ions which clearly has a large effect,

The divergent behaviour demonstrated by the Csl and M’l solutions
appears to come through the OZ equation (see eq. (3.37)) but the actual
sources remain unclear, The physical significance of this behaviour is also not
entirely clear, However, if we examine the long-range tails of ha[)’(r) we find
that the values are positive for af = ++, --, +-, ss and negative for
af = +s, -s (/.e., at long range like species attract, unlike repel). Thus, it
appears as though these solutions may be preparing to undergo a phase
separation (e.g., salt precipitation) as p2G+__, G+s and Gss begin to diverge,
For MBr somewhat similar but more exotic behaviour can be seen in the
long-range tails of haﬁ(r)' There we find that the magnitude of h  (r) is
consistently must larger than that of h__(r) at long range. Moreover, the
long-range tails of haﬁ(r) are not exclusively positive or negative (i.e.,
repulsive or attractive), but rather show long regions (the order of 5 to 10ds)
over which the functions appear monotonic, separated by intervals of rapid
changes in sign. Again, we stress that the solvent must be playing a major
role in determining the behaviour of the Csl, Ml and MBr solutions. Clearly,

these systems and their behaviour require more detailed study.

Now having determined the Gaﬁ for our model aqueous electrolyte
solutions we can use the expressions given in Chapter liIl to calculate some
of their thermodynamic properties, First we shall consider the isothermal
compressibility, Xrp- in Figure 34 we have plotted kaT as obtained from eq.
(3.20) for the NaCl, KCI, and Csl solutions, Results for the three remaining
solutions which were studied at finite concentration were determined but are
not included in Figure 34, We find that the isothermal compressibility of the
pure tetrahedral solvent does not compare well with the result for real water
at 25°C, ka,.I,=45.7X1O"GBar"1 [169]. At low concentration the values of xu
show a linear dependence upon c in accordance with eq. (3.74). As is
observed experimentally [6,181], the compressibilities of our model solutions
decrease with increasing concentration, although the rates of decrease are
several times larger than those of the real solutions, From Figure 34 we see
that X decreases more rapidly for NaCl than for KCI which is consistent with
experiment [181], However, contrary to what is found experimentally [6], we

find that Xp decreases more rapidly for Csl than for KCI. Finally, we point
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Figure 34,

Isothermal compressibility as a function of concentration. Results for the three
model alkali halide solutions considered in this study are shown. The values

were obtained from eq. (3.20).
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out that the isothermal compressibility of the Ml solution (not included in
Figure 34) shows none of the divergent behaviour demonstrated by GaB’ but
rather forms a smooth curve which would lie just above the KCI result,
_Clearly, the apparent divergences in the GaB for Ml must cancel in the

expression for Xrp (cf. eq. (3.20)).

The partial molar volume of the solvent was determined using eq. (3.16)
and results for several model solutions are shown in Figure 35, At low
concentration we find that Vs becomes linear in concentration, as predicted by
eq. (3.73). We observe that Vs increases with increasing concentration for NaCl
and KCI, but decreases with increasing concentration for Csi and MBr, In
Chapter Ill we have concluded from eq. (3.73) that the behaviour of Vs (/.e.
whether it increases or decreases with c), at least at low concentration, will
be determined by VO. For all the solutions examined here we find this to be

2

true (vatues for Vzo can be easily computed from the results for '\7i° given

below in Table XlI),

The partial molar volumes of four of the salts examined in the present
study are shown in Figure 36, At very low concentration we find that the
partial molar volumes of all the saits studied obey the HNC limiting law given
by eq. (3.63). In Figure 36 we see that with” increasing ion size Vz deviates
more rapidly from limiting law behaviour, For the Csl and MBr solutions the
slopes of the curves for \72 actually change sign and VZ begins to decrease
with increasing concentration, We also observe that once the curves for V2
for these two solutions have turned over, they again appear to become linear
in vc. This behaviour (i.e., the negative slope together with an apparent
linearity in ;/E) for VZ has been found experimentally for some solutions,
particularly those of tetraalkylammonium salts [182]. In the past there has
been considerable debate in the literature [183] as to whether or not the
partial molar volumes of these tetraalkylammonium salts do in fact obey the
universal limiting law predicted by Debye-Huckel theory [6]. For many of the
tetraalkylammonium salts V2 appears to turn over at very low concentration,
as is the case here for MBr, Consequently, it becomes very difficult to obtain
experimental results [184] of sufficient accuracy at low enough concentration
in order to demonstrate that the limiting law does still hold for these sélts.
Fortunately, for our model solutions we are able to perform calculations at

infinite dilution. Thus, unlike experiment, we know the value of Vg for a
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Figure 35.

Partial molar volume of the solvent as a function of concentration, Results
obtained from eq. (3.16) for model NaCl, KCI, Csl and MBr solutions have been

included,
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Figure 36,

Partial molar volume of the solute as a function of sguare root concentration,
The solid lines represent results obtained from eq. (3.15) for model NaCl, KCI,
Csl and MBr solutions, For ease of comparison we report the differences
between '\72 and its infinite dilution value, Vg, The dashed line is the limiting
slope, Sv’ determined from eq. (3.65) using € =883 and Sc as given by eq.
(3.48). The dotted line is the limiting slope, S\'/', for real 1:1 aqueous
electrolyte solutions at 25°C [6], while the dash-dot line is the corrected
limiting slope which results from the multiplication of S\: by the ratio

x,(I).(tetrahedr'al solvent) / x,%(real water),
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given salt, and hence for salts such as MBr there can be no ambiguity about

the low concentration behaviour of VZ,

It is obvious from Figure 36 that Vz shows much larger variation with
concentration for our model aqueous electrolyte solutions than for their real
counterparts, The limiting slope determined for our model solutions is
approximately 20 times larger than that of real aqueous solutions at 25°C., A
factor of about 5 can be immediately accounted for by the difference in the
isothermal compressibilities of the two solvents, A corrected limiting slope for
the real solutions which takes this difference into account has been included
in Figure 36, However, this corrected slope is still much smaller than that of
our mode! solutions, In Chapter Il it was shown that for a given solvent
model the HNC theory overestimates Sc' and hence does not give accurate
results for Sv' We also recall that thermodynamics [6] provides us with an
alternative route for determining Sv’ cf. eq. (3.66). Numerically we can obtain
an approximate value for (Z)lnc—:/aP)T for the tetrahedral solvent by repeating
the pure solvent calculation at one or two slightly higher densities, The
isothermal compressibility can then be used to determine the corresponding
pressure changes. This procedure was carried out and the results obtained
indicate that the HNC theory overestimates Sc for the tetrahedral solvent by
about an order of magnitude! This error is more than sufficient to move the
limiting siope reported in Figure 36 for the tetrahedral solvent to a position
below that of the corrected limiting slope for water at 25°C. This reduction
of SV for the tetrahedral solvent is a desirable result since in Chapter IV we
have shown that the RDMF makes an additional contribution to Sc which will

increase Sv' We will discuss the effects of the RDMF in detail in section 5,

The constant pressure derivatives of the logarithms of the mean
molarity activity coefficients were determined in the present study using eq.
(3.30b). Integrating these values directly in order to obtain lny_ (we note that
here the constant pressure derivatives are the appropriate values— to integrate
since we have chosen to mimic constant pressure conditions) would prove
very difficult, however, because of the singularity in the derivative at Py =0,
We deal with this problem in a manner very similar to that used by Rasaiah

and Friedman [151]. The singularity is conveniently removed by subtracting the
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limiting law for the derivative of lny _ (as given by eq. (356)) from
(blnyj__/apz)P, The resulting differenc:—e function is smooth and equals zero at
Py =0, and hence can be easily integrated. We then simply add on the value
of 1lny, given by the Debye-Huckel limiting law. All the values for lny,

which we shall report were calculated in this fashion.,

In Figure 37 we have compared the values of lny  obtained for our
model aqueous electrolyte solutions with those of real sc;lutions_ We point
out that the limiting law slopes of the model and of the real solutions differ
slightly because of the difference in the dielectric constants of their
respective solvents, From Figure 37 we observe that in general lny+ deviates
much more slowly from limiting law behaviour for the model electro_lyte
solutions being considered here than it does for their real counterparts. If we
compare resuits for the real and model alkali halides, we find that lny+ turns
up much more quickly for the real .solutions. Like the experimental curv-es,
lny+ for our model KCI| solution turns up more rapidly than does the model
Csl -curve. However, unlike experiment, we find that our results for lny+ for

NaCl are consistently less than those of both Csl and KCI,

Also included in Figure 37 are the measured values of lny  for an
aqueous solution of Et4NBr which would seem to be a reasonable counterpart
for the current MBr system, We see that for MBr lny+ is always smaller
than for the model alkali halides. Similar behaviour can be observed for
Et4NBr with respect to the real alkali halides. Unlike Et4NBr, however, the
values of lny+ for MBr are always less than those given by the
Debye-Huckel |—imiting law, For lny+ we shall refer to this as super
Debye-Huckel behaviour., We remark _that for M’l (resuits for it have not been
included in Figure 37) lny+ decreases even more rapidly than for MBr. Super
Debye-Huckel behaviour ha; been observed experimentally for some
tetraalkylammonium salts (e.g., Pr4Nl and Et4Nl [186]) and has been interpreted
[5,186] as being a consequence of the hydrophobic natures of these relatively
large ions, Furthermore, it has been hypothesized [5,186] that in aqueous
solution there will be an attractive force (due to the solvent) between two
such large hydrophobic ions. In the present study we have seen strong
evidence for long-range attractive forces between both like and unlike ions in
our model Ml solution (and to a lesser degree for MBr), as was discussed

earlier, Clearly, many of the properties exhibited by the M7 and MBr solutions
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Figure 37,

lny, as a function of square root concehtration, The solid lines represent
RHNE results for four of the model solutions investigated in this study. The
dotted lines are experimental results [185,186]' for several 1:1 aqueous
electrolyte solutions at 25°C. The limiting law siopes (labelled with LL.) have

also been included for both the model and real solutions,
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are consistent with what is observed experimentally for aqueous solutions of

tetraalkylammonium salts,

it is obvious from eq. (3.30b) that the constant pressure derivatives of
lnyi_ depend upon both G,_ and G+S. If we ignore G+s in eq. (3.30b), then it

immediately follows that super limiting-law behaviour for sz implies super

4
Debye-Huckel behaviour for lny+, In Figure 30 we have found that NaCl, MBr
and M’ all show super Iimiting——law behaviour, although in Figure 37 we see
that only the MBr and M’ curves are super Debye-Huckel., For our model MBr
and M’I solutions GJrs is always negative, We note that this negative value
for G, will tend to decrease the value of (alnyi/apz)P, and hence will
emphasize super Debye-Huckel behaviour, For our model NaCl solution G+S is
positive (up to a concentration of 3.0M), and consequently wili tend to
increase lnyi. We find that even though G+s is generally much smaller than
G,_ for NaCl (about 40 times smaller at 10M), the effect of G+s is
sufficiently large to cause lny+ to turn up from the Debye-Hucke! limiting
law., Unfortunately, the values of G+S are not large enough to move the NaCl
curve for lny, above those of Csl and KCI. Clearly, however, the values of
G+s (which depend upon the solvent structure around an ion) can have a

strong influence upon results for 1ny+ even at very low concentration,

Let us now return again to Figure 30, What we would like to determine
is whether or not a real aqueous solution of NaCl (or any alkali halide for
- Obviously, the
mean activity coefficient does not represent a convenient means of

that matter) shows super limiting-law behaviour for sz

investigating this, However, if we examine eq. (3.33), we immediately see that
the derivative of the osmotic pressure depends only upon the reciprocal of
p2G+_. Unfortunately, osmotic pressure measurements for aqueous electrolyte
solutions are difficult to perform and have received relatively little attention
' [7]. On the other hand measurements of the osmotic coefficients (as defined
in eq. (3.68)) for aqueous electrolyte solutions have received a great deal of
attention [6,7] and numerous tables of values are available [6,7,185]. We note
that a general thermodynamic relationship between the activity and osmotic
coefficients [6,7] does exist. Unfortunately, the simple relationship between II
and ¢ given in eq. (3.61) holds only in the [imit pz-—>0, and consequently
cannot be used to deduce the behaviour of II from that of ¢ at finite

concentration, Equation (358) can be employed at finite concentration if the
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behaviour of VS is known, although this expression is still only an approximate
one, We point out that the derivative of the osmotic pressure in eq. (3.33) is
not only at constant temperature, but also at constant solvent chemical
potential, In our model calculations Mg has been allowed to vary with
concentration (experimentally, H would normally be held fixed at the pure
solvent value), and hence our derivative of Il will reflect this fact., Therefore,
no definitive answer can currently be given as to whether or not the present
reéults for p2G+_ for a model NaCl solution are consistent with those of its
real counterpart, Experimental values for ¢ for aqueous solutions of NaCl! at
25°C would suggest that this is not the case unless some of the
discrepancies mentioned above make large contributions to (an/apz).
However, we point out that the present results for NaCl may provide some
explanation for the unconventional behaviour demonstrated by other aqueous
solutions of small ions, e.g., the cation order reversal for 7y _ and ¢ for
fluoride salts [6]. We again emphasize that osmotic pressur; measurements
would provide a very simple and direct route for obtaining information about

ion-ion structure in electrolyte solutions,

4, Structural Properties

First we shall consider the solvent-solvent structure of our model
aqueous electrolyte solutions, In Figure 38 we have plotted the
solvent-solvent radial distribution functions of model KClI and NaCl solutions
at 40M and 40M and 12M, respectively, along with gss(r) for the pure
tetrahedral solvent at 25°C. We find that the solvent-solvent packing structure
in both solutions at 40M still resembles that of the pure solvent, although the
presence of the ions at this concentration is having an obvious influence., The
solvent structure generally appears to be dampened, that is to say, the peaks
in gss(r) have become smaller and the wells are not as deep, It is also
evident from Figure 38 that NaCl is more effective than KC! at disrupting the
solvent-solvent packing structure. If we now examine gss(r) for NaCl at 12M
we see that the solvent structure has changed dramatically from that of the
pure solvent, The contact value of gss(r) has decreased substantially and the
position of the first minimum has shifted outward, The ;econd neighbor peak,

which was orginally centred at r—_-2ds for the pure solvent, now appears as
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Figure 38,

Solvent-solvent radial distribution functions of the pure solvent and of several
model electrolyte solﬁtions, The solid line is the radial distribution function of
the pure tetrahedral solvent at 25°C, while the dashed line represents gss(r)
for a model KCI solution at a concentration of 40M. The dotted and dash-dot

lines are results for model NaCl solutions at 40M and 12M, respectively,
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three distinct peaks at r=1.8ds, 2ds and 2,15dS for 12M NaCl, The smallest of
these peaks (the one at r=2ds) is what remains of the second neighbor peak
of the pure solvent., The two remaining peaks appear at separations which
correspond to solvent particles separated by either a Na* or Cl- ion. The Na*
peak is the sharper of the two which would suggest that the solvents
surrounding a Na* ion are more rigidly held in position. The present results
for gss(r) clearly indicate that for 12M NaCl a vast majority of the solvent
particies in the model solution are directly involved in ion solvation (i.e.,
comprise the first solvation shell). Finally, we point out that small peaks at
r=185d, and 2.15d, can already be seen in gs(r) for a model NaCl
solution at 4.0M,

. 110
In the present study the quantity <cos€ss(r)> _(POO;SS

is just the angle between the two dipole vectors of two solvent particles, can

(r), where bss

be determined using eq. (287). Results for <cosess(r)> for the pure
tetrahedral solvent and for model NaCl and Csl solutions at 40M are shown
in Figure 39, We find that <cosess(r)> shows oscillatory behaviour similar to
that of gss(r). Again, the presence of the ions in solution is found to
disrupt solvent-solvent correlations, in this case dipole-dipole correlations,
From Figure 39 we observe that NaCl is much more effective than Csl| at
disrupting the dipolar correlations between solvent particles, If we examine
<cos€ss(r)> for NaCl and Csl more closely, drops in the values of the
functions can ‘be seen at separations corresponding to the diameters of the
ions present, Hence, these features of <cosOSS(r)> appear to be due to the

opposing (f.e., 6 S.—:180°) dipole moments of two solvent particles separated

by a single ion_S
Next we shall examine the ion-solvent structure of our model aqueous
electrolyte solutions, The ion-solvent radial distribution functions at infinite
dilution for three of the ions considered in this study (spanning a large range
of ion size) have been compared in Figure 40, The dependence of gis(r)
upon ion size is much as we might expect. For small ions gis(r) is more
structured (i.e., the contact and all subsequent peaks become larger and the
first and all subsequent minima grow deeper), As shown in Figure 40, gis(r)
for Na* has a very large contact value which then very quickly drops to a
deep minimum at a reduced separation (i.e, r-dis) of 0.2ds. This would

indicate that the first shell of solvent particles around a Na* ion is held in
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Figure 39,

<cos€ss(r)> for the pure solvent and for model electrolyte solutions, The
solid line is <cos€ss(r)> determined for the pure tetrahedral solvent at 25°C,

while the dashed and dotted lines represent results for model NaCl and Csli

solutions, respectively, at a concentration of 40M,



CL TN
o .e
\\\\\\
4
Prs

- 207 -

5
5
<
0000000000000000

»*
\\\\\
00000

1o
— 1)°%sod
—Z2° 0




~ 208 =~

Figure 40,

lon-solvent radial distribution functions at infinite dilution, The solid, dashed
and dotted lines are results obtained in the present study for Na*, Cl- and M+,

respectively,
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very tightly, For large ions such as M+ the contact value of gis(r) is much
smaller, The first minimum is also much shallower and has moved out to
r-diszo,sds (which is also the position of the hard-sphere minimum). Thus,
the first solvation shell of a M* ion appears to be held relatively loosely. As
in the case of the pure tetrahedral sovent, the positions of the peaks in
gis(r) are found to be strongly dictated by the hard-sphere packing of the
solvent around the ions, The second peak always has its maximum at a
reduced separation of one solvent diameter, However, we see in Figure 40
that at least for the smaller Na* and Cl- ions this second peak is distorted
towards smaller separations so that the average reduced separation of the

second solvation shell is slightly less than one solvent diameter,

The coordination numbers of the ions (/i.e., the numbers of solvents in
the first solvation shell) can be determined using eq. (6.2). We remark that
for small ions such as Na* the CN is reasonably well defined because the
first minimum of gis(r) is so deep. However, for larger ions such as M- it
becomes much less obvious at what point to stop integrating in eq. (6.2) (/.e,
the first soivation shell becomes more pooriy defined). For both the Na* and
Cl- we find CN=75, while for M* the CN is somewhere in the range of 10 to
15, For M+ the value of its CN appears reasonable because of its large size,
The CN for Na+ is somewhat larger than the values usually reported by
computer simulation studies [5051535458], CN=54-73, although for Cl- the
agreement is better, CN=56-84. Neutron diffraction studies [13,16] a high

concentration report a coordination number of about 58 for ClI-,

In the present study we have also examined the values of <cos€is(r)>
obtained from eq. (2.89a), where the angle eis is defined in Figure 3. Infinite
dilution results for this function are given in Figure 41 for the Na*, Ci- and
M+ ions. (We again note that positive values of <cos¢9is(r)> represent
favourable dipole orientations with respect to the ion, while negative values
indicate unfavourable ones.) The oscillatory behaviour demonstrated by
<cos€is(r)> is similar to that of gis(r), although the positions of the first
minima and second maxima do not coincide exactly with those of gis(r), As
in the case of gis(r), we find that the structural features of <cosf,  (r)>
are generally more distinct for smaller ions. From Figure 41 we see that for
both the Cl- and M+* ions, the average dipole orientation of the solvent is

favourable at all separations from the ion, However, for Na* the average
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Figure 41,

<cos€is(r)> at infinite dilution, The lines are as defined in Figure 40,
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dipole orientation actually becomes unfavourable for a small range of
separations around r-diS=0.35ds, We observe that the contact value of
<cos€is(r)> does not show strong ion size dependence, Nevertheless, if we
were to compute <cos€is> for the first solvation shell, Na* gives a much
larger result than does M+* since far more of the solvents in the first
solvation sheil of Na* are at or very near contact, It is interesiing to point
out that if we use the contact values of <coseis(r)> in order to compute an
<Gis> at contact (/.e., assuming the distributions are very narrow), we obtain

an angle of approximately 54°, which is essentially half of the tetrahedral

s

angle, This value compares favourably with results from computer simulations

[505358] and from diffraction experiments [13].

In Figure 42 we have plotted gis(r) for a CiI- ion at infinite dilution
and for several model electrolyte solutions at finite concentration. We
immediately observe that at finite concentration the packing‘of the solvent
around a Cl- ion is affected by the presence of other ions in the system,
particularly at high concentration, As in the case of gss(r), we see from
Figure 42 that the structural features of gi‘s(r) become dampened at finite
concentration (e.g., the contact peak drops and the first minimum becomes
shallower), Comparing gis(r) for NaCl and KC!| at 40M we find that gis(r)
has changed most markedly from its infinite dilution result for NaCl. This
wo‘uld again suggest that smaller ions, in this case Na* are more effective
than ions of moderate size, such as K¢* at disrupting the solvent structure, For
NaCl at 12M, gis(r) for Cl- bears surprisingly little resemblance to the
infinite dilution result, The first minimum has been dispiaced outward, while
the seco_nd neighbor peak has split into two distinct peaks, The smaller of
the two is what remains of the peak due to the second solvation shell of a
Cl- ion. Cilearly, at this concentration the Cl- ion appears to have only a
single solvation shell, The larger peak at a reduced separation of about 0.8ds
corresponds to the arrangement where the counter-ion is situated in between
the Cl- ion and the solvent, This feature is also evident, though much smaller,
for both the NaC! and KCI solutions at 40M., If we compute the CN of a CI-
ion in our 12M NaCl solution, we obtain a value of 55 which is in good
agreement with experimental estimates [13]. Moreover, for this same solution
we find that the CN of a Na* ion is approximately 4, which represents a
considerable drop from its infinite dilution value, Therefore, in the present

model of a 12M NaCl solution a Na* ion has fewer solvents in its first
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Figure 42,

lon-solvent radial distribution function for Cl-., The solid line is the infinite
dilution result, while the dashed line represents gis(r) for CI- in a model KCI
solution at a concentration of 40M. The dotted and dash-dot lines are results

for model NaCl solutions at 40M and 12M, respectively,
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Figure 43,

<c056is(r)> of Cl-.'The lines are as defined in Figure 42,
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solvation shell than does a Cl- ion, even though the Na* ion ‘interacts more

strongly with each of the solvent particles than does the CI- ion,

We have also calculated <cos€is(r)> for the solvent pafticles
surrounding a Cl- ion. In Figure 43 we have shown <cos€is(r)> at infinite
‘dilution along with results for NaCl and KCi solutions at 40M and a NaCl
solution at 12M. We observe that the contact value of <cosGiS(r)>
demonstrates only slight concentration dependence and almost no counter-ion
dependence (even at 4.0M), which is again consistent with experiment [13,16].
At infinite dilution <coseis(r)> for a Cl- ion is always positive, indicating
that the average dipole orientation is always favourable with respect to the
ion, although the degree of dipole alignment varies with separation as shown
by the oscillatory behaviour of <cos€is(r)>, At a concentration of 40M the
ion-dipole correlations become highly screened. We see in Figure 43 that at
40M <cos€is(r)> now oscillates about zero (except near contact) indicating
ranges of favourable as well as ranges of unfavourable dipole orientation,
Comparing the two curves at 40M we observe that <coseis(r)> is generally
more negative for NaCl than for KCI. This again implies that smaller ions
such as Na* are more effective at disrupting the ordering of the solvent
around a CI- ion, At 12M the shape of the curve for <cos€is(r)> has
changed markedly from the infinite dilution result. Strong dipole counter-
diszo,zds
and persisting until 0,9ds,'A sharp drop in the value of <cos€is(r)> can be

alignment is evident over a large range of separations, starting at r-

corresponding to the Na* peak

seen at a reduced separation of about 0,85ds
identified in gis(r). The NaCl and KCI solutions at 40M show similar but
smaller drops in <cos€is(r)> at separations corresponding to the arrangement

where the counter-ion is situated in between the Cl- ion and the solvent,

We will now turn our attention to the ion-ion structure of our model
aqueous electrolyte solutions, First we shall consider the potentials of mean
force at infinite dilution for pairs of oppositely charged ions. In Figure 44 we
have plotted results for Bwij(r) for LiF, NaCl, EqEq and MBr., For small ion
pairs (e.g., LiF) we find that wij(r) is very structured at short range,
obviously depending very strongly upon the molecular nature of the solvent,
For larger pairs of ions (e.g., MBr) wij(r) becomes a much less structured
function with much smaller oscillations, Thus, for large ion pairs wij(r) takes

on its long-=range asymptotic behaviour, as given by eq. (2.99), very quickly
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Figure 44,

Potentials of mean force at infinite dilution for several pairs of oppositely
charged ions, The solid, dashed, dotted and dash-dot lines represent results for

LiF, NaC!, EqEq and MBr, respectively, in the tetrahedral solvent,
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(/.e., within one or two solvent diameters), while for smaller pairs of ions
wij(r) takes three or four solvent diameters before approaching its
asymptotic form, From Figure 44 we see that at contact the magnitude of
wij(r) increases slightly for smaller ion pairs, although wij(r) rises much
more quickly from its contact value for pairs of small ions, If we compute
the numbers of contact or near contact ion pairs for these salts (excluding
LiF) at some low but finite concentration (e.g., 0.1M), we find that MBr has by
far the largest number (~0.26) and NaCl the least (~004). In Figure 44 we
observe that the first maximum of wij(r) increases with decreasing ion size
but appears at approximately the same reduced separation for all ion pairs
except MBr. For both LiF and NaCl this first maximum actually becomes
positive (/.e., wij(r) is repulsive with respect to infinite separation). We note
that this behaviour is consistent with that observed by Pettitt and Rossky [82]

for wij(r) for small ion pairs,

In Figure 44 we see that the second minimum in wij(r) for LiF is
very deep and broad and is centred at a reduced separation of only 0.8ds.
For NaCl and EqEg the second minimum in wij(r) is very similar to that of
LiF only not as deep, while for MBr it has become very shallow and has its
minimum value at one solvent diameter, The situation where a solvent particle
separates two oppositely charged ions is a very favourable dipolar
configuration [7981], and hence would be expected to become more important
for larger ions with the present solvent model (because of the short-range
nature of the ion-quadrupole interaction with respect to the ion-dipole
interaction). The solvent-separated ion pair is also favoured by the
hard-sphere packing of the solvent, The fact that the second minima in
wij(r) for LiF, NaCl and EgEq all appear at r'dij<d5’ indicates that a
solvent bridging structure (where the ions might be located near the tetrahedral
corners of the solvent particle) is more stable than the solvent-separated
geometry for smaller pairs of ions in the tetrahedral solvent, Clearly, the
quadrupole moment must be playing an crucial role in stabilizing this bridging

structure, Similar results were again reported by Pettitt and Rossky [82].

The effects of ion size asymmetry upon ion solvation can aiso be seen
in Figure 44 by comparing wij(r) for NaCl and EqEq. We have previously
noted that d+__ is the same for both of these saits, We find that wij(r) is

always more positive (i.e., less attractive) for NaCl than for EqEqg. Obviously
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increased ion asymmetry improves solvation for the present model. This
observation differs from previous RLHNC results [81] for the same solution

model which showed essentially no dependence upon ion size asymmetry,

iIf we compare the present RHNC results for wij(r) with those obtained
from the RLHNC theory [8081] using the same models, we find rather poor
agreement, as might be expected from our earlier discussions, For both
theories wij(r) showsl the same basic oscillatory behaviour and positioning of
the peaks. However, for small ion pairs such as LiF, the RHNC result for
wij(r) is generally more structured (i.e., has larger oscillations) than that of
the RLHNC., The RLHNC also predicts much more negative contact values for
wij(r) (for LiF the RLHNC gives about -12kT) clearly indicating that the RHNC
provides much better solvation of small ions. For larger ions the agreement
improves only slightly, with the RHNC result for wij(r) now being less
structured than that of the RLHNC. We note that this rather poor qualitative
agreement between the RHNC and RLHNC results for wij(r) can not be
explained simply in terms of the difference in the pure solvent dielectric

constants obtained from the two theories,

'The concentration dependence of g__(r) has been shown in Figure 45,
The particular case of a model KC| solution has been considered, We observe
that g, _(r) for KCI has a fairly simple concentration dependence; as the
concentration is increased (at least up to 4.0M) g+_(r) essentially shows only
screening effects. With increasing concentration g+_(r) is shifted downward
and the magnitude of the oscillations decreases, although the shape is
essentially retained, Most of the other solutions investigated in this study
show the same simple concentration dependence. The one major exception is
the M’l solution (and to a much lesser degree the MBr case). In the previous
section we have discussed how the long-range tail of g+_(r) grows with
increasing concentration for M’l. In Figure 46 we have plotted g, _(r) for the
M’l solution at three of the concentrations studied, including the highest
concentration we were able to reach, specifically 0.74M. At short range we
see the same concentration dependence found for KCI, At long range the tail
of g,_(r) drops when going from 0.1M to 05M, but then clearly increases

again when going to 074M,

Before proceeding, let us return to Figure 30 and the super limiting-law

behaviour demonstrated by NaCl for pZG

... If we examine g,__(r) for NaCl
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Figure 45,

Concentration dependence of g+__(r) for KCI. The solid, dashed and dotted

lines are results for model KCI solutions at 0.1M, 10M and 40M, respectively.
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Figure 46,

Concentration dependence of g__(r) for M. The soli.d, dashed and dotted

lines are results for model Ml solutions at 0.1M, 05M and 0.74M, respectively,
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we find that it shows very similar behaviour and concentration dependence to
that observed for model KCI solutions (see Figure 45), No obvious anomaly
appears in g+_(r) for our model NaCl solutions which might explain its super
limiting-law behaviour. However, we shall see below that g, (r) does show
some unexpected behaviour and we know from the charge neutrality conditions
(¢f. eq. (35c)) that G, _ and G, are inextricably linked to one another,
Therefore, the super limiting-law dependence demonstrated by NaCl for sz+_
may in fact be more a manifestation of the unconventional behaviour of its

Na*/Na* radial distribution function,

Now let us turn our attention to like-ion correlations in our model
eiectrolyte solutions. We have shown 5wii(r) for Na*, K*, |- and M* ions at
infinite dilution in Figure 47, We again remark that for the present ion and
solvent models, ions equal in size but opposite in charge will be solvated
equivalently (j.e., w_ (r)=w__(r)). The ion size dependence of wii(f) is
found to be not as simple as that of wij(r)_ For the four ions considered
in Figure 47 we observe that the contact value of w, i(x:) increases with
decreasing ion size (although this is not the case for Li*, see Figure 61). For
ions only slightly larger than the solvent (e.g., K* and I-) wii(r) is a
surprisingly featureless function which decreases rapidly from its contact value
to almost immediately take on its long-range asymptotic behaviour (as given
by eq, (2.99)). As ion size is increased wii(r) clearly becomes less repulsive,
particularly near contact, due in part to the decreasing coulombic repulsion,
For M-+, wii(r) actually has a local minimum very near contact (at a reduced
separation of about 0.25ds) which must be a result of the solvent forcing two
such large and somewhat hydrophobic ions closer together, However, it is the
behaviour of wii(r) for ions smaller than the solvent which appears the most
striking. We see in Figure 47 that for Na* wii(r) decreases very rapidly
from its contact value to a very broad well with its minimum at r-di=0.3ds.
This minimum in wii(r) is in fact negative, that is, it is attractive with
respect to infinite separation, Clearly, strong solvent forces must be present
to overcome the strong couliombic repulsion between two such small ions at
small separations. We find that this well grows (i.e., becomes deeper and
. extends to longer range) as the ion size is decreased (see Figure 61). In
Figure 26 we have also found that the solvent is drawn in much more tightly

to smaller ions. Together, these observations would suggest that ions which



- 228 -

Figure 47,

Potentials of mean force at infinite dilution for several pairs of like ions, The
solid, dashed, dotted and dash-dot lines are resuilts for Na+*/Na*, K*/K*, I-/I- and

M+/M* pairs, respectively, in the tetrahedral solvent,
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interact very strongly with the solvent will show a minimum in wii(r) at
small separations (i.e.,, the solvent prefers to solvate these ions as a divalent
pair). We will discuss this feature in wii(r) and its relationship with the

ion-solvent interaction in section 5 and again in more detail in section 6,

At this point we should say that although the present RHNC results for
wii(r) may not be exact, we do believe that they are qualitatively correct
for the present models, Pettitt and Rossky [82], using more complicated
models and a related integral equation theory (RISM), obtained similar results
for w, i(r) for small anions (i.e.,, F- and Ci-). Clearly what is now needed are
exact computer simulation results for these models in order to test the

present theories,

Comparing the present RHNC results for wii(r) with those obtained for
the same models from the RLHNC theory [8081], we again find poor
agreement, Generally the RLHNC results for wii(r) have an oscillatory
behaviour similar to that of wij(r) (only inverted), while the functions
determined in the present study show virtually no oscillations, Both theories
do predict an attractive well in wii(r) at small separations for small ions,
although in the RHNC this feature is much larger, For large ions the RLHNC
theory shows larger hydrophobic effects (j.e., for an ion twice the size of the
solvent wii(r) is actually negative at contact). Again, the differences we see
in W, i(r) for the two theories can not be explained simply in terms of the

difference in €.

In Figure 48 we have examined finite concentration results for gii(r)
for the same four ions considered in Figure 47. Included in Figure 48 are the
like-ion radial distribution functions of Na*, K+, |- and M* in 10M solutions of
NaCl, KCI, Csl and MBr, respectively, We observe that even at a concentration
of 1.0M much of the behaviour demonstrated by gii(r) for these ions still
closely resembles that predicted by the potentials of mean force at infinite
dilution, For both K+ and I- gii(r) starts at zero at contact and then rises
slowly to a value of 1.0, showing only a few relatively small structural
features, For M- gii(r) has a contact value of 05 and rises quickly to a
maximum of 25 at a reduced separation of 025d.. This first peak in gii(r)
for M* is found to grow with increasing concentration, probably due simply to
increased ionic screening. In Figure 48 we see that although gii(r) for Na*

starts out at zero at contact, it also rises quickly to a large peak with a
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Figure 48,

gii(r) for several ions in model electrolyte solutions at 1.0M. The solid,
dashed, dotted and dash-dot lines are gii(r) for Na* in a NaCl solution, K*

in a KCI solution, I- in a Csl solution and M* in a MBr solution, respectively,
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maximum at r-d, =04d_. The value of g..(r) then remains larger than 10
until r-di =ds (i.e., until a single solvent can just fit in between the two Na*
ions), at which point gii(r) drops sharply below 10. We point out that the
situation where a single solvent is between two ions of the same charge is
energetically unfavourable, At very low concentration the first peak in gi i(r)
for Na* is found to increase slightly with increasing concentration but reaches
a maximum at about 0,1M (where it has a maximum value of about 50). As
the concentration is increased above 0,1M, the peak then decreases and shifts
slightly outward, It continues to decrease up to a concentration of about
40M, after which it shows relatively little change, Peaks due to ion triples
can also be identified in Figure 48 (e.g., for |- and M* at a reduced separation
of 1,3ds), Although the ion-triples peak is quite large for the Csl and MBr

solutions, we find that it becomes much smaller for KCI and NaCl solutions,

The concentration and counter-ion dependence of the like-~ion radial
distribution function for Cl- has been shown in Figure 49. Solutions of NaCl
at 0.1M, 40M and 12M, as well as KCI at 40M, have been included in Figure
49. At 0.1M we see that from contact gii(r) rises slowly with increasing
ion separation, while at higher concentration gi i(r) rises much more quickly,
Much of this effect can be interpreted as resulting from simple ionic
screening. We point out that for NaCl and KCI solutions at 0,1M the curves
for gii(r) for Cl- are almost indistinguishable, However, at 40M the CI-/Ci-
radial distribution function shows definite counter-ion dependence, as can be
seen from Figure 49, Of course, the peak due to ion triples appears at a
larger separation for KC| than it does for NaCl, If we shift our attention to
smaller separations, we observe that both NaCl and KCI have a peak in
gii(r) for Cl- at a reduced separation of about 0_4ds, This peak appears to
grow with increasing concentration, although more quickly for NaCi than for
KCI. For the 12M NaCl solution this peak has become quite large, indicating a
relative high probability of finding two Cl- ions close together, It should be
noted that this peak must be due to different effects than the peak found in
95 i(r) for Na+, since there the peak decreases with increasing concentration,
The structure responsible for the peak in the CIl-/Cl- radial distribution function
is not obvious; however, one possibility is an arrangement where a single.
solvent acts as a bridge between two Cl- ions and the same cation, This

structure is consistent with the fact that the peak is larger for NaCl than
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Figure 49,

gii(r) for Cl- for several model electrolyte solutions. The solid, dashed and
dash-~dot lines represent results for NaCl solutions at 12M, 40M and 0.,1M,
respectively, The dotted line is gii(r) for CI- in a 40M KCI solution,
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Figure 50,

Cl-/Cl- partial structure factors for model NaCl solutions, The solid, dashed,
dotted and dash-dot lines are results for model NaCl solutions at 12M, 4.0M,
1.0M and 0.1M, respectively. We point out that the partial structure factor has

been multiplied by the mole fraction, x_, of Cl- ions,
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KCI, since g, _(r) would indicate that NaCl has a larger number of
solvent-separated unlike ion pairs, This structure also predicts the correct

concentration behaviour for the peak.

Finally, in Figure 50 we have plotted the CI-/Cl- partial structure factor,
as given by eq. (54), for a model NaCl solution at several concentrations. It
is obvious from Figure 50 that at low concentration S_ (k) is dominated by
its small k dependence, and hence by the long-range behaviour of g__(r). As
the concentration is increased we observe structure appearing in S_ (k) at
larger k values, |f we compare the Cl-/Cl- partial structure factor of our _
model 12M NaCl solution with an experimental result from 149 molal LiCl in
DZO obtained by neutron scattering (see Figure 27 of Ref, 13), we find that

they are qualitatively similar.

5. Effects of Including the RDMEF

Heretofore, the results reported in this chapter have been for model
aqueous electrolyte solutions which incorporate a non-polarizable solvent with
a permanent dipole moment equal to the effective dipole moment, Me. of the
pure tetrahedral solvent, We have shown in section 1 that within the SCMF
theory the average local electric field in the bulk is constant (to a very good
approximation) for the model solutions being examined in this study.
Consequently, the model solutions considered in sections 2, 3 and 4 of this
chapter are effective systems within the SCMF theory corresponding to model
electrolyte solutions which incorporate a polarizable water-like solvent, [n this
section we will examine the effects of treating the polarization of the solvent
at the level of the RDMF theory, as described in Chapter |V, We emphasize
that up to this point only the bulk average fields in our model aqueous

electrolyte solutions have been considered,

We would expect the RDMF theory to be most accurate at infinite
dilution and at low concentration, Hence, we have repeated calculations for
mode! solutions which include the RDMF only for concentrations at or below
0.1M. The Na*, K* Cs*, M* Cl-, Br-, and |- ions were all studied at infinite
dilution, while solutions of NaCl and Csl were investigated at finite '

concentration (i.e., for ¢<0,1M). It was found that at the low (but finite)
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concentrations examined, the inclusion of the RDMF had a negligible (~0.1% at
0.1M) effect upon the average local fields of the bulk. Therefore, as was
done in all previously reported calculations, the effective dipole moment of
the pure tetrahedral solvent was used in all model calculations reported in this

section,

First we shall consider the additional ion-solvent interaction term,
?g(r) as determined using eq. (4.29). In Figure 51 we have compared the
values of Uy p(r) given by the RDMF theory for a Na* ion at infinite dilution
with those obtamed from eq, (4.1c). We recall that eq. (4.1c) considers only
the two-body problem of a single polarizable solvent particle at a distance r
from an ion, and hence represents the low density limit, It can be seen from
Figure 51 that the RDMF theory predicts values for the additional ion-solvent
interaction which are much smaller than those determined from eq. (4.1¢).
Clearly, the lateral solvent fields are having a very large effect upon U?Is)(r),
even at smaller separations, In Chapter IV we have shown that at long range
the RDMF result for U?Is)(r) is essentially 1/9 that of u_{(r) (when ¢ is
large). From Figure 51 we observe that for Na+ qu(r) is about six times
larger than Uy p(I.‘) at contact, We note that a similar result was found for
all the ions mvestugated The contact value of u; p(r) for Na* corresponds to
Ap(r= d ) =0.425D. We find that u; p(r) drops rapudly from contact, almost
reaching zero at a reduced separatlon of O,Sds, then increases slightly to a
small peak at r—d _0 9d None of the other ions examined here showed
such a peak, although for wrtually all these ions ulg(r) did flatten in the
range 0_4ds<r—dis<ds. Beyond one solvent diameter uils)(r) was found to

rapidly approach its long-range limiting behaviour,

The additional attraction between an ion and a solvent due to the RDMF
was found to be relatively small at short range when compared with the
electrostatic terms of the ion-solvent potential. Very little change in gls(r)
due to u; p(r) was observed, although close inspection reveals a very slight

increase in gls(r) at almost all separations,

In Figure 52 and 53 we have shown the effects of uiAIs)(r) upon unlike
ion potentials of mean force at infinite dilution for NaCl and MBr,
respectively, We find that, in general, the addition of the RDMF improves ion
solvation, This would seem consistent with the fact that the ion-solvent

interaction has been increased slightly, For NaCl we observe that LA (r) has
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Figure 51,

Additional ion-solvent interaction term due to Ap(r) for a Na* ion at infinite
dilution, The solid line represents uq (r) as given by eq. (4.1c), while the
dashed line is u; p(r) obtained using the RDMF theory.
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Figure 52,

Effect of the RDMF upon w, (r) for NaCl. The solid line is fw, (r) for
NaCl in the tetrahedral solvent at 25°C when ug p(r)—O while the dashed line
represents the result when u p(r) is given by the RDMF theory.
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Figure 53.

Effect of the RDMF upon LA

j(r) for MBr. As in Figure 52, the solid line is
for uiAEs)(r)zo, while the dashed line is the RDMF result.
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become slightly more positive near contact with the addition of u?ls)(r),
although it then becomes more negative at the solvent separated distance- and
beyond, as can be seen in Figure 52, For MBr the addition of uiAg(r) shifts
wlj(r) to more positive values at all separations. Comparing the results in
Figures 52 and 53 we discover that the RDMF appears to have a relatively
larger effect upon L] (r) for larger ions, in this case MBr, In very recent
work using McMiIIan Mayer level theory, Pettitt and Rossky [B2] have shown
that some thermodynamic properties of model aqueous electrolyte solutions (in
particular that of ¢) are extremely sensitive to small changes in w, (r)

Thus, we would expect the shifts in w, (r) due to u; p(r) observed here for
NaCl and MBr to result in significant changes in the actnwty coefficients of

these two solutions at finite concentration,

The effects of the RDMF upon the like-ion potentiais of mean force at
infinite dilution for Na* and M+ are shown in Figures 54 and 55, respectively.
Here we find that small and large ions show opposite effects, For M* we
observe that the addition of U?Isa(r) shifts wii(r) to more positive values at
all separations, indicating improved solvation. This behaviour is consistent with
the proposed hydrophobic nature of these large ions; the increased ion-solvent
interaction would be expected to reduce the hydrophobic effects, and
consequently improve the solvation. For Na* we see in Figure 54 that the
addition of U.Ap(r) shifts w, .(r) to more negative values at all separations,
In section 3 we have proposed that the negative wells in LA (r) for small
ions are a result of their very strong interaction with the solvent. Thus, if
the ion-solvent interaction is increased we would expect the well in LA (r)

to grow deeper. This is in fact what is observed in Figure 54,

In Chapter IV we have shown that u?g(r) will contribute to C;¢ (cf.
eq. (4.98)) and have derived an expression (¢f. eq. (4.99)) for its contribution,
ScAp, to the limiting slope, The low concentration behaviour of CIS for model
NaCl and Csl solutions with and without the RDMF have been compared in
Figure 56, At very low concentration we find that our numerical results do
approach their respective limiting laws, [t is obvious from Figure 56 that Sé\p
makes an appreciable contribution to the limiting behaviour of CIS’ almost
doubling the total limiting slope. Clearly then, Uy p(r) can be expected to
significantly affect the limiting laws of all thermodynamlc properties of

electrolyte solutions which depend upon ion-solvent correlations, We remark
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Figure 54,

Effect of the RDMF upon W, (r) for Na*, The solid Ime is pw, (r) for a
Na* ion in the tetrahedral solvent at 25°C when Uy p(1:)—0 whlle the dashed

line represents the result when u; p(r) is given by the RDMF theory.
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Figure 55,

Effect of the RDMF upon wii(r) for M+, As in Figure 54, the solid line is
for u?gh:):o, while the dashed line is the RDMF result.
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Figure 56.

Effect of the RDMF upon CIs For ease of comparison we have plotted the

difference between the infinite dilution value C and C itself, Th_e dots

and solid triangles are RHNC results for modellgsl and I{SCI solutions,
respectively, when Uy p(r:')_O The open circles and triangles are results for
model Csl and NaCi solutlons respectively, when Uy p(r) is given by the
RDMF theory. The solid line is the limiting slope, Sc’ determined using eq.
(3.48) and €=883. The dashed line represents the sum of S and SAp where

the latter is given by eq. (4.99).
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Therefore, even though uig(r) appears as a relatively small term in the

that the limiting values, C are also increased dramatically. by the RDMF,
ion-solvent pair potential, its long-range 1/r4 dependence and the fact that it
is a spherically symmetric term allow it to have a relatively large effect upon

many thermodynamic properties of electrolyte solutions,

As mentioned above, model NaCl and Csi solutions which included the
RDMF were studied at low concentration., The average energies of these .
solutions remained virtually unchanged from the earlier u?g(r):.o results,
Quantities such as the dielectric constant and k were also only slightly
affected. As we would expect from our earlier discussion, the derivatives of
lny+ showed great sensitivity to the addition of the RDMF, even at the low
conc_entrations examined, For Csl the derivative was found to increase
(become smaller in magnitude) by about 20% at 0.1M, while for NaCl it
decreased by approximately 10%.

From our discussion in Chapter IV it would seem obvious that the
partial molecular volume of the solute should be particularly sensitive to the
inclusion of the RDMF. Their infinite dilution values show strong dependence,
For example, for Csl Vg =756 cc/mole when u?g(r)zo, while Vg =449
cc/mole with the RDMF turned on, We find that the limiting slope of V2 (see
Figure 36) is almost doubled due to a similar increase in Sc. Unfortunately,
even if we totally ignore the HNC contribution to Sc and use only SAp

c
determining Sv’ we discover that the theoretical limiting slope still exceeds the

in

real result by more than a factor of three, even after correcting for the
difference in the compressibilities of the tetrahedral solvent and real water,
Thus, it would appear that eq. (4.99) does not represent an exact result and
that the RDMF theory is still only approximate, even in the limits pz-——>0 and
r—> > What is not clear is why this should be the case. In Chapter IV we
have shown that at infinite dilution the RDMF result for the average local
field at long range (cf. eq. (4.96b)) is equivalent to the expression of Pollock
et a/. [167] for the special case when the solvent is polarizable but non-polar,
A very similar expression (¢f. eq. (4.97)) was obtained for the case when the
solvent is polar but non-polarizable, However, since there are no computer
simulation results available for the latter system, the accuracy of eq. (4.97) is
not known, One of the most likely sources of error in the RDMF theory

~would seem to be that aspect of our mean field approach in which we
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assume that only the average dipole moments directed towards the ion need
be considered, One might also expect the three-body correlations (e.g., |
dipole-dipole-ion) to be important in determining the average excess: Ioéal'
field, Moreover, since u?g(r) (and hence C; o) depends upon <AE1(R)>2,
small errors in the average excess local field will have a relatively large

influence upon CIS’ and consequently upon its limiting slope,

6. Results Obtained Employing Different Solvents

All results reported in the previous four sections were obtained using
the tetrahedral solvent model (described in Chapter V) with an effective
permanent dipole moment me=2,6050 and an effective square quadrupole
moment (-)S=2.57B_ Model aqueous electrolyte solutions employing three
different but closely related solvent models were also studied, with essentially
all calculations being carried out at infinite dilution. In this section we will

compare these results with those reported earlier in this chapter,

First we shali examine the effect of totally ignoring the polarizability of
the solvent and taking its permanent dipole moment as being 1855D, which is
the gas phase value for water [118). This nonpolarizable tetrahedral solvent
has a dielectric constant of 284 (as reported in Chapter V), while for the
polarizable model € =974, In Figure 57 we have compared wij(r) for KCI in
the polarizable and nonpolarizable tetrahedral solvents. Also included in Figure
57 are the primitive model potentials of mean force. Clearly, the results for
the two solutions differ markedly, We find much better solvation of the ions
in the polarizable solvent, wij(r) being shifted to much more negative values
for the nonpolarizable solvent, Closer inspection reveals that the potentials of
mean force have very similar oscillatory behaviour about their respective
long-range asymptotic limits, Thus, most of the dissimilarity seen in 'wij(r)
for the two solvent models comes through the difference between their
dielectric constants, Nevertheless, we would expect model solutions utilizing
the nonpolarizable tetrahedral solvent to have thermodynamic properties which
differ dramatically (for the most part) from those reported in section 3 for

solutions employing the polarizable tetrahedral solvent,
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Figure 57,

Potentials of mean force at infinite dilution for KCI in polarizable and
nonpolarizable tetrahedral solvents, The solid and dashed lines are RHNC results
for wij(r) determined for polarizable and nonpolarizable tetrahedral solvent
models, respectively, The dotted and dash-dot lines represent their respective
primitive model functions obtained from eq. (2.99) using the dielectric

constants given in the text.
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We have also investigated the effects of using the full quadrupole
tensor of water in the solvent model. In the tetrahedral solvent model it has
been replaced with an effective square quadrupole moment (as discussed in
Chapter V), Calculations were carried out at infinite dilution for several
different ions in the C2v quadrupole. solvent, A single computation was also
performed at 05M for a model KCI solution, We note that the effective
dipole moment and the dielectric constant of the C2v guadrupole solvent are
the same as for the tetrahedral solvent, As we would expect, the solvation
of the ions equal in size but opposite in charge (e.g., Eq*/Eq- and Na+*/F-) was
no longer 'symmetric, with positive ions receiving a slight preference because
of the negative zz component of the quadrupole tensor. Only slight changes
were noticed in the ion-solvent and ion-ion structure due to the generalization
of the quadrupole moment of the water-like solvent this effect being a great
deal smaller than that observed from the addition of the octupole moment to
the solvent model, as discussed below, At 05M the thermodynamic properties
of the model KCl! solution were found to be very similar (differing by less
than 1% in almost all cases) to those of the same solution with the
tetrahedral solvent, Thus, the small zz component of the quadrupole tensor of
water .appears to have relatively little influence upon ion solvation and upon

the thermodynamic properties of mode! aqueous electrolyte solutions,

Finally, we will consider the effects of the addition of the octupole
moment of water to the C2v quadrupole sdlvent. In particular_'we shall
examine its effect upon ion solvation and upon thermodynamicvproperties of
model aqueous electrolyte solutions, The C2v octupole solvent (as discussed
in Chapter V) has an effective dipole moment of me=2,634D and a dielectric
constant of 949, both values being very close to those of the tetrahedral
solvent, The Li*, Na* Eq*, K+, Cs* F-, Eq-, CI- and |- ions were all studied at

infinite dilution in the C2v octupole solvent,

First, let .us examine the changes in the ion-solvent structure, Iin Figure
58 we have plotted gis(r) for Na* and F- ions in the C2v octupole solvent
along with gis(r) for a Na* ion (or equivalently, for a F- ion) in the
tetrahedral solvent. In the CZV octupole solvent both ions show a slight
increase in the occurrence of tetrahedral packing of the solvent about the
ions, as indicated in Figure 58 by the increase in gis(r) at a reduced

separation of about O.65ds. This is not a surprising result since the addition
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Figure 58,

lon-solvent radial distribution functions at infinite dilution for the tetrahedral
and C, octupole solvents, The solid line is gis(r) for a Na* (or F-) ion in
the tetrahedral solvent, The dashed and dotted lines represent results for a Na*

and a F- ion, respectively, in the C2v octupole solvent,
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of the octupole moment was found in Chapter V to stabilize tetrahedral
packing within the pure solvent., |In Figure 58 we see that the contact peak in
gis(r) for a F- ion in the C, octupole solvent is sharper than for a F- (or
Na*) ion in the tetrahedral solvent, which in turn is sharper than for a Na* ion
in the C2v octupole solvent, A similar observation can be made for the
second peaks in gis(r). Beyond the second peak we observe that in the C2v
octupole solvent the amplitude of the oscillatory structure in gis(r) remains
larger for F- than for Na*. Thus, the solvation shell structure appears to be

more clearly defined for a F- ion than for a Na+ ion in the C . octupole

solvent, Moreover, we find that in general for iohs of equal s?}:e the anion is
always preferentially solvated over the cation. The influence of the octupole
moment, and hence the asymmetry in solvation, is -found to decrease with
increasing ion size because of the shor{-range nature of the ion-octupole

interaction (with respect to that of the ion-dipole).

In Figure 59 we have cormpared <coseis(r)> for Na* and F- ions in the
C2v octupole and tetrahedral solvents, It can be seen from Figure 59 that the
average orientation of the dipole moments of the solvent particles around
these small ions is strongly'influenced by the presence of the octupole
moment in the solvent model, In the C2v octupole solvent, we find a general
decrease in the oscillatory structure of <cos€is(r)>, particularly for Na-,
indicating an apparent decrease in dipolar structure, The positions and shapes
of the peaks in <cos€is(r)>, particularly for F-, are obviously affected by the
presence of the octupole moment in the solvent model. From Figure 59 we
observe that in the C2v octupole solvent the contact values of <cos€is(r)>
have dropped relative to the tetrahedral solvent results for both F- and Na*
ions, However, if we examine the standard deviation of coseis(r) as
determined from eq. (2.91)), we find that for F- the standard deviation, o, is
significantly smaller (by about 20%) in the C2v octupole solvent, indicating a
narrower distribution of angles. In the case of Na*, o actually increases
slightly from its value in the tetrahedral solvent, Evidently, the effect of the
octupole moment is such that the orientation of the solvent, at least near
contact, has become more directionally specific for anions than for cations of
the same size. All the effects reported here for Na* and F- ions were also
observed for larger cations and anions, although the influence of the octupole

moment is again found to decrease with increasing ion size,
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Figure 59,

<cos€is(r)> at infinite dilution for the tetrahedral and C2v octupole solvents,

The lines are as defined in Figure 58,
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Figure 60.

Potentials of mean force at infinite dilution for LiF in the C2v octupole and
tetrahedra! solvents. The solid and dashed lines are RHNC results for the

tetrahedral and C2v octupole solvents, respectively,



- 264 -

*p/("p-1)
0z 91 21 80 0 00
| | | | _ _ _ _ @.ml




- 265 -

Let us now consider the sensitivity of the ion-ion structure to the
presence of the octupole moment in the solvent model. The potentials of
mean force at infinite dilution for LiF in both tetrahedral and C2v octupole
solvents have been compared in Figure 60, We observe that for LiF wij(r) is
generally more negative (including the contact peak and the first maximum) in
the C2v octupole solvent, From Figure 60 we see that the second minimum
of wij(r) is shifted still further inward, Its minimum is now at a reduced
separation of about 0,75ds, indicating an increased preference for the solvent
bridging structure for this small pair of ions in the sz octupole solvent, We
again recall the work of Pettitt and Rossky [82] in which it was shown that
.small changes in wij(r) can result in large changes in some thermodynamic
properties (in particular ¢) of mode! aqueous electroiyte solutions, Clearly
then, we might expect lny_ for a LiF (or even NaCl) solution to show
dramatically different conce_ntration dependence when the tetrahedral solvent is
replaced by the C2v octupole solvent, It should also be pointed out that for
larger ion pairs the difference between the C2v octupole and tetrahedral results

for wij(r) is much smaller,

The like—ion potentials of mean force for Li* and F- ions in both the
C2v octupole and tetrahedral solvents have been shown in Figure 61, Here we
observe quite dramatic effects due to the addition of the octupole moment to
the solvent model, For Li* we find that wii(r') beéomes much more repulsive
at contact and the huge attractive well found with the tetrahedral solvent
becomes much 'shallower in the C2V octupole solvent, In Figure 61 we see
that the converse is true in the case of F-, As discussed above, the
behaviour of wii(r) at short range seems to be closely related to the degree
of solvation of that ion (/.e., how tightly the solvent is held to the ion and
consequently- how well defined the solvation shell structure is), Thus, for F- in
the C2v

Figure 58) and the attractive well in w; i(r) grows deeper, while for Li* the

octupole solvent the contact peak in gis(r) becomes sharper (see

opposite relationship is true, However, we emphasize here that it may well be
the long-range changes in the ion-solvent structure, also evident in Figure 58,
which_ have the largest influence upon the short-range behaviour of wii(r),
Once again, we note that the effects of the octupole moment upon w:.l i(r)

are most pronounced for small ions,
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Figure 61.

Like—-ion potentials of mean force at iﬁfinite dilution for Li* and F- in the C2v
octupole and tetrahedral solvents, The solid and dotted lines are RHNC results
for Li*/Li* and F-/F-, respectively, in the tetrahedral solvent, The dashed and
dash-dot lines represent ﬁwii(r) for Li+ and F-, respectively, in the C2v

octupole solvent,
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TABLE X. Average ion-solvent energies per ion at infinite dilution, Results
for the C octupole and tetrahedral solvents are compared,
The values given are in kT units and are those of the
effective systems,

ION Tetrahedral C2v Octupole
Solvent Solvent
Li+ -424 1 -3935
Na+* -3638 -3421
Eg* -316.2 -3017
K+ -2964 -2847
Cs+ ~-2558 -2496
F- -3638 =-3947
Eq- ~316.2 -3365
Cl- -2787 -2917
I- -2305 -2351

We will now examine the influence that the octupole moment has upon
some of the thermodynamic properties of electrolyte solutions at infinite
dilution. The average ion-solvent energies per ion at infinite dilution are given
in Table X, where results for several ions in both the tetrahedral and C2v
octupole solvents have been included, We find that the addition of the
octupole moment to the solvent model has a fairly large effect upon thev
average ion-solvent energies. As we would expect from our previous
discussions, Uis/Ni is more positive (i.e., smaller in magnitude) for a cation
in the C2v octupole solvent than for the same cation in the tetrahedral
solvent, while the converse is true for anions, Hence, if we consider two ions
of the same size which are equal and opposite in charge (e.g., Eq*/Eq- or
Na*/F-), we find that the anion interacts more strongly with the C2v octupole
solvent than does the cation, We also observe from Table X that this

asymmetry in solvation is largest for the smallest ions,

If we examine the individual ion-dipole, ion-quadrupole and ion-octupole
contributions to the ion-solvent energy for any of the ions listed in Table X,
we again find some interesting results., For anions in the C2v octupole
solvent the ion-octupole energy is negative and the ion-dipole and
ion-quadrupole energies have decreased (i.e., increased in magnitude) with
respect to their values in the tetrahedral solvent., For cations in the C2v

octupole solvent, however, the ion-octupole energy is positive (indicating a net
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average repulsion between the ion and the octupole moment) and the"
ion-dipole and ion-quadrupole energies have become less negative, Clearly,
when a C2v octupole solvent particle interacts with a positive ion, none of
the most favourable dipole and quadrupole orientations correspond to
favourable orientations of the octupole moment with respect to the ion. We
note that the magnitude of the ion-octupole energy is always less than 5% of

the total ion-solvent energy for all the ions listed in Table X,

Finally, let us focus upon the partial molar volume. In Chapter Il we
have shown that at infinite dilution Vg can be split into two independent
terms (of course this is not the case at finite concentration). Comparing egs,
(3.12) and (3.64a) we immediately have

50

_ 0 _ 0

5§18

where Vio is an individual ionic partial molecular volume, Then using eq. (64)
we have calculated values for Vio for several ions at infinite dilution in both
the C2v octupole and tetrahedral solvents, These values for Vio have been
recorded in Table XI| along with experimental results for ions in real water, It
is immediately obvious from Table Xl that the trends in the present results
are much larger than those of experiment. If we re-examine eq, (64), we see
that Vio depends upon the isothermal compressibility, x,(I),, of the pure solvent,
We have reported earlier (in section 3) that x,cI’, for the tetrahedral solvent is
five times larger than that of water at 25°C. For the C2v octupole solvent
x,‘I). is 50% larger still, Thus, in order to allow a more reasonable comparison
(f.e., one which does not depend upon the differences in X'(I)‘) between both
sets of theoretical results and those of experiment, we compute corrected
values for Vio using only the isothermal compressibility of real water in eq.

(64). These corrected values for '\7i° are also given in Table X,

it can be clearly seen from Table Xl that the octupole moment has a
very large effect upon individual ionic partial molar volumes. We find that Vio
is much smalier (i.e.,, more negative) for a cation in the C2v octupole solvent
than for the same cation in the tetrahedral solvent, while the converse
relationship holds for anions, Moreover, for two ions. equal in size and equal
and opposite in charge (i.e., Eq*/Eq- or Na*/F-) there is a dramatic difference
between their respective values of Vio in the C2v octupole solvent, with the

anion always having the larger value (/.e.,, appearing as though it is larger in
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TABLE Xl!. Individual ionic partial molar volumes at infinite dilution,
Results for the tetrahedral and C octupole solvents are
compared with those for real wa"t)'c\e/r at 256°C. The experimental
partial molar volumes are from Table 6 on page 376 of Ref. 5.
The value given in parentheses are corrected results as
discussed in the text, All values for Vio are given in cc/mole..

ION Tetrahedral C2v Octupole Expt.
Solvent Solvent

Li+ -103.1 (-20.0) -2265 (-29.3) -112
Na* -627 (-12.2) -1775 (-229) -74
Eq* -298 (-58) -136.1 (-17.6) -

K+ -145 (-28) -1166 (-15.1) 34
Cs* 226 (44) -683 (-88) 155
F- -62.7 (-122) -20 (-0.3) 33
Eq- ~-298 (-5.8) 460 (5.9) —

Cl- 03 (0.1) 879 (11.4) 237
i- 530 (10.3) 1585 (205) 414

solution), Clearly, for ions of the same size any dissimilarity in Vio must be
totally due to differences in their apparent electrostriction [5] of the solvent
(that is to the total volume change or compression of the solvent due to the
presence of the ion). Now one might expect that the electrostriction of the
solvent should be proportional to the average interaction between the ion and
the solvent, Consequently, we would then expect that the larger the magnitude
of the average ion-solvent energy, the greater the degree of electrostriction,
and hence the smaller Vio should be, Unfortunately, this deduction is
contradicted by the values in Tables X and X!, Let us try another approach,
One view currently held for electrostriction [5] suggests that most of the
effect occurs very near an ion, which for small univalent ions usually implies
just the first “solvation shell, If we re-examine Figure 58 we observe that the
first solvation shell of a F- ion in the C2v octupole solvent is held in more
tightly (i.e., experiences greater electrostriction) than is the first solvation shell
of a Na* ion. Furthermore, if we compute coordination numbers for the Na*
and F- ions (using eq. (6.2)), we find that in the C2V octupole solvent it is
the F- ion which has a slightly larger number of solvents in its first solvation
shell, Again, we would conclude that the anion, in this case F-, should have
the smaller value of Vio, but again this would be contrary to the results in

Table XI, In our discussion of Figure 58 we had mentioned apparent
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differences in gis(r) at longer range for F- and Na* ions in the C2“v octupole
solvent, Together, the above observations would strongly suggest that it is
these changes in the long-range packing structure of the solvent around the
ions which accounts for most of the gross dissimilarities in Vio seen in Table
Xl for ions of equal size, Clearly 'then, the long-range ion-solvent structure
(apart from the long-range ion-~-dipole correlations which give rise to SV)
appears to be an important factor in determining the values of ionic partial
molar volumes, at least for the model aqueous electrolyte solutions being

considered in this study,

We conclude this discussion by noting that the ionic charge and size
dependence of '\7i°, as shown in Table XI, for ions in the C2v octupole

solvent is consistent with the experimental results given,
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CHAPTER VII

CONCLUSIONS

In this thesis we have examined the structural, thermodynamic and
dielectric properties of model aqueous electrolyte solutions which explicitly
include the solvent as a molecular species, The dielectric and structural
properties of the water-like solvents employed in this study were also
investigated. The ion and solvent models used were simple ones incorporating
known microscopic (molecular) properties with no freely adjustable parameters,
We have considered only univalent ions, primarily focusing upon the alkali
halides, and hence have modelled these ions simply as charged hard spheres.
lonic crystal radii were used to determine the hard-sphere diameters, The
water-like solvent models were also treated as hard spheres into which
measured values of the low-order multipole moments and polarizability tensor

of water were inciuded,

Our model systems were studied using integral equation methods, the
RHNC theory [68] being employed almost exclusively. in order to apply the
RHNC theory, it had to be first generalized for a multi-component system, In
our generalization of the OZ equation we have examined the simplifications
which result when all the species present in the system have at least sz
symmetry. A computer program which uses general forms of the multipole
potential and the 0Z and RHNC equations was written and then used to
generate all the results presented in this thesis, both for the pure solvent and

for the solution systems,

In this study we have exploited the formalism of Kirkwood and Buff
[104] in order to derive general relationships between integrals over haB(r)
and certain thermodynamic properties of electrolyte solutions. The usual
Kirkwood-Buff expressions can not be applied directly because application of
the charge neutrality conditions leads to indeterminate results for the
thermodynamic quantities, By defining k-dependent analogs of the
Kirkwood-Buff equations and taking the appropriate k—>0 limits analytically,
we were able to obtain exact determinate expressions, These relationships are

directly applicable to real systems since the system we have considered
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incorporates the solvent as a true molecular species, Although we have
reported results for a two-component salt/solvent system only, the method we

have used is general and can easily be applied to more complicated systems, .

The low concentration limiting behaviour of our thermodynamic
expressions was also examined and compared with the macroscopic results
obtained through Debye-Hucke! theory [6]. Not surprisingly, the exact
Debye-Huckel limiting law for 1ny+ was extracted from the molecular theory,
Moreover, the microscopic limiting —law for Vz was found to be functionally
equivalent to the macroscopic expression. However, when the HNC
approximation for the limiting slope of Vz is compared with the exact
macroscopic result, we discover that the HNC theory is rather inaccurate for
this quantity. For the model aqueous electrolyte solutions we have considered,
the HNC theory appears to overestimate the limiting slope for VZ by about an
order of magnitude,

In the present study we have described two levels of theory with which
electrolyte solutions containing a polarizable solvent may be examined. The
first of these is the SCMF approximation [67] in which the many-body
problem of polarization is reduced (by ignoring fluctuations) to a problem
involving an effective pairwise additive potential, In this thesis we have
shown how the SCMF approximation can be applied to the present electrolyte
solution model in order to determine the average total dipole moment of the
solvent at finite salt concentration, We have also developed a second and
more detailed level of formalism, the RDMF theory, which allows us to
examine the average local electric field experienced by a solvent at a distance
R from an ion, The RDMF theory is a mean field approach (like the SCMF
approximation) and gives rise to an effective spherical potential between an
ion and the solvent particles around it. Furthermore, this spherical potential
was shown to have an effect upon the limiting laws of those thermodynamic

properties which depend upon ion-solvent correlations at low concentration,

It should again be emphasized that most of the formalisms developed
in this thesis are general and could be used with relative ease in the
investigation of other systems besides the model aqueous electrolyte solutions
considered in the present study. More general models for both the ions and
the solvent could be examined, e.g., where both the solvent and the ions

possess more complicated short-range potentials and have higher multipolé
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moments. Solutions of more than one salt with ions of several different
charges could be easily studied, We point out that the general form of the
RHNC theory presented in this thesis could, in principie, be applied to any

multi-component system characterized by angle-dependent pair potentials,

Several closely related water-like solvents were examined in this study
using the RHNC theory. The HNC basis set dependence for these models was
observed to be quite similar to that previously reported [71,110] for
hard-sphere models with dipoles and linear quadrupoles. Model systems for
liquid water were investigated over a large range of temperatures and
pressures., These systems were found to have dielectric constants which agree
well with experimental values, particularly at higher temperature. The RHNC
results for the distribution functions of our water-like fluﬂids are in rather poor
agreement with experiment, particularly at low temperature, However, we were
able to obtain the correct structure for liquid water at 25°C through the simple
addition of a spherical potential to the hard-sphere model, Moreover, the
addition of this soft potential also improved the low temperature dielectric
properties of our water-like model, The octupole moment was shown to have
relatively littie effect upon the dielectric constant, although it was found to
have a somewhat larger effect upoh the structure within the model fluid

systems,

Virtually all of the model aqueous electrolyte solutions we have
investigated at finite concentration employed a polarizable solvent model with
only dipole and square quadrupole moments, For these solutions and within
the SCMF approximation, the average local electric field in the bulk was
shown to be essentially independent of salt concentration, and hence the
average total dipole moment of the solvent was taken to be a constant. The
equilibrium dielectric constants obtained for these model solutions are in
qualitative agreement with the experimental values for the dielectric constants
of agueous electrolyte solutions, particularly at higher concentrations. We also
point out that all the microscopic limiting law expressions derived in this

study were confirmed by our numerical results at fow concentration,

Our relatively simple mode! for aqueous electrolyte solutions
demonstrated a remarkable diversity of behaviour through simply varying the
hard-sphere diameters of the ions. Pairs of smaller ions, such as NaCl, were

found to be extremely soluble, whereas pairs of larger ions, such as M, were
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refatively insoluble, Moreover, ion solvation and many thermodynamic
properties were shown to be quite sensitive to the ion size asymmetry of a
salt. The ion size dependence of several thermodynamic quantities was ‘
examined, including the isothermal compressibility, the partial molar volumes
and the mean activity coefficient., Some of the behaviour observed is’
consistent with that demonstrated by real aqueous electrolyte soluti,ons; e.g.,
the slope of V2 was found to change sign at very low concentration for
solutions of large ions, Some of the behaviour observed disagreed with
experimental results, e.g., the values for lny  for our model NaCl solutions
were less than those of Csl and KCI, Howe\—/er, even |n the case of the NaCl
system, the results reported in this study may provide some insight into
unusual behaviour exhibited by other aqueous electrolyte solutions, We find
that for thermodynamic properties such as the mean activity coefficient, both
ion-solvent and short-range ion-ion structure can have a large influence, even

at relatively low concentration,

In this study we have made a detailed investigation of the ion-ion,
ion-solvent and solvent-solvent structure within our model solutions. Smaller
ions were found to disrupt the solvent-solvent structure to a much greater
degree than larger ions, although this effect only became obvious at higher
concentrations, As we might expect, the solvation structure around an ion
becomes more clearly defined as the size of the ion decreases, although both
concentration and counter-ion effects were observed, Near contact the
ion-solvent structure shoWed little counter-ion dependence, yet strong
dependence was found in the second solvation shell, particularly at higher
concentrations. The molecular nature of the solvent was seen to have a very
strong influence on the short-range ion-ion structure for both like and unlike
ion pairs, This was especially true in the case of either very small or very
large ions, For the most part, the concentration dependence of the ion-ion
correlations was dominated by simple iohic screening effects, although some
counter-ion dependence was demonstrated by like-ion correlations at higher
concentrations, Finally, we remark that previous RLHNC results using the same
models at infinite dilution were found to be in rather poor agreement with the

present results,

The effects of the RDMF theory were examined for several model

aqueous electrolyte solutions at infinite dilution and at low concentration. The
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electric field due to the ionic charge was shown to be substantially reduced
by the lateral solvent fields, even at small separations, Consequently, the
RDMF had only a small effect upon the short-range ion-solvent structure,
although it appeared to have a larger impact on ion-ion correlations, As
expected, the RDMF was observed to have a large influence upon some
thermodynamic quantities, most notably Vz, However, at least for some
quantities the RDMF theory turns out to be relatively inaccurate, even in the
long-range and low concentration limits, For example, the RDMF contribution
to the limiting slope for V2 exceeds the known macroscopic result for real
aqueous electrolyte solutions. Nevertheless, we have been able to clearly
demonstrate the importance of polarization in determining the structural and
‘thermodynamic properties of electrolyte solutions. Obviously, further study of

these polarization effects is warranted,

Whereas ion solvation was found to be relatively insensitive to the
small zz component of the quadrupole tensor of water, the addition of the
octupole moment to our water-like solvent model was shown to have a large
impact., The octupole moment was found to have a particularly large effect
upon gii(r)‘ The individual ionic partial molar volumes at infinite dilution
demonstrated extreme sensitivity to the details of how an ion is solvated.
Futhermore, the present results strongly suggest that the long-range ion-solvent

packing structure is very important in determining the values of Vio,

Several suggestions for further study have been made immediately above
or in earlier discussions in this thesis, The very interesting behaviour exhibited
by our solutions of larger ions clearly requires more detailed investigation,
Our examination of the influence of the octupole moment of water upon ion
solvation and thermodynamic properties needs to be extended both to higher
moments (e.g., hexadecapole) and to finite concentration. lons with higher
charges (e.g., divalent) and with low order multipole moments (e.g., CN-) should
also be investigated, In this study we have considered model aqueous
electrolyte solutions only at 25°C. Clearly, the temperature dependence of
these systems should be examined, particularly at relatively high temperatures
where the present models would be expected to work much better, The
results presented in this thesis can very easily be used to test the
assumption that only a pairwise additive potential need be employed -in

McMillan-Mayer level theory [2528] in order to study primitive model
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electrolyte solutions. This investigation is currently being carried out [187].
Another extension to the present study which is also in progress [133] is the
examination of large colloidal particles and electric double layers in the same
model electrolyte solutions considered here. Finally, more complicated but

hopefully more realistic models might also be investigated using the methods

outlined in this thesis,

We conciude by again stating that the purpose of the present study was
not to develop and report results for an exact model of aqueous electrolyte
solutions, Rather, its main purpose was to systematically examine simple
models for these systems in order to learn what is important in determining
ion solvation and to help understand how details of the ion solvation affect

the measurable thermodynamic quantities,
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APPENDIX A

TREATMENT OF POTENTIAL TERMS IN c(12)

in general, care must be taken in handling the long-range tails in

mnl
(r) and Myvsaf

mnl
uv;ap

backward Hankel transforms (cf. eqgs. (2.32), (2.34) and (246), (247)). For the

c (r) when numerically performing both forward and
hard-sphere multipolar fluids being considered in this study, it is the
long-range contributions due to ﬁuaﬁ(‘IZ) that are of primary concern, since
caﬁ(12)_—>_ﬁuaﬁ(12) as r—>,  We find it convenient to define the
short-range functions

mnl S(r) _ mnl (r) + kmnl (r)

Cuv; aﬁ = Cuviap uv;ap ' (A.1a)

where for mnl#0

Bumnl (r), for r>d
g0 = | e ab (A.1b)

0, for r<daﬁ

mnl
uv a

. . 000 .
and daﬁ is the hard-sphere contact distance. We note that )‘OO;aﬁ(r) is

defined below, In eq. (A.1b) we assume that all potential terms that are not
multipolar are short-ranged, and therefore are not inciuded in Xmglaﬁ(r)
’

First let us consider a system which contains no charged species. For

this system we need to consider only terms for which 122, It follows from
~mnl

uv;ap

have divergent behaviour at small k. In fact, all but cééz (k) will go to

B

egs. (2.10b) and (3.38a) that none of the Hankel transforms, C (k), will
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zero as k—> 0. Furthermore, the integral transforms of the functions

krﬂsl.‘aﬁ(r) can be performed analytically, and it can be shown [103] that for
14
r2d imnl (r)=0. Hence, the potential term makes no contribution to
af "wv;ap
~mnl smnl
> <
cuv;aﬁ(r) for r'daB' For r‘da.ﬁ’ )‘uv;aﬁ(r) evaluates to a constant term
which can then be added to the hat transform of the short-range c to obtain
~mnl
the full C r).
uv;aﬁ( )

For a system containing both ionic and dipolar species, two additional

. . 011 000
terms require special treatment, namely COO;aB(r) and COO;aB(r)'

out that there are normally no integral transforms associated with these terms,

We point

It can be shown [61,135] that as k—>0, 88(1)10,3“‘) will diverge as 1/k (of
14

course, this is only the case when particle a has a charge and particle § has

a dipole moment)., We take advantage of the linearity of Fourier transforms

and transform only the short-range ¢ numerically; )‘8(1)10,/3(” can be
r

transformed analytically. Using egs. (2.10b) and (A.1b) we write that
011 - 2
xoo;aﬁ(r) - A/r 12 (A-Z)

where A will depend upon the charge and dipole moment of particles a and
B, respectively. Then inserting eq. (A.2) into eq. (2.34b) and evaluating the

integral vyields

~011 _ 4wiA .
kOO;aB(k) = > Sln(kdaﬁ) , (A.3)
d .,k
apf
~011

where i=y~1, We note that A (k) has the correct [135] small k

00;ap
behaviour., From the definition of naﬁ(12) (cf. eq. (2.38)) it clearly follows

that ﬁgélaﬁ(k) will also diverge as 1/k as k—> 0., Fortunately, this divergent
14
behaviour will pose no numerical problems in the back Hankel transform (cf.

eq. (2.46b)) because the divergent terms in the integral will cancel exactly at
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small k.

When both particles a and f are charged, it can be shown [61,135] that

Egggaﬁ(k) diverges as 1/k2 as k—>0. Thus, we again split ng(;)aﬁ(r) into

a short-range function, which can be easily Fourier transformed numerically,
and a long-range function, )\809 (r), whose transform can be derived
O:ap

analytically, Following previous workers [188-190], we define

000 _ %%, -or
)‘OO;aﬁ(r) = 8 . (1-e °7) , (A.4a)
which can be Fourier transformed analytically to give

2
3000 _ ol
Xoo;aﬁ(k) = 41rﬁqaq3|:;2—(—l?1—a—2—)—:| ’ (A.4Db)

where q, and qB are the charges on the ions, The constant ¢ must be

chosen with care so as not to cause kgg?aﬁ(r) to become /arge at small r,
[4

but it must also allow )\889‘13(1') -—> ﬁqan/r at some reasonable value of
14

r. It is again the case that ’ﬁOOO (k) wili have the same divergent
00;af

behaviour as E’gg?aﬁ(k); we note that at finite concentrations h88?aﬁ(r)

must be screened, and hence its Fourier transform will not contribute. Thus,
we define the short-range function

T00;ap T00:a8%) = X00;a8'K) - (A.5)

which can be Fourier transformed numerically without difficulty,

For an ionic system at infinite dilution, the fact that the functions

hﬂ:%aﬁ(r) are no longer screened requires that special attention be paid to
[
h000

certain functions, First, the long-range tail of 00°aB(r') must be corrected
14

for the k=0 point which was ignored in the numerical integration (/.e., by the

FFT [126] ) of ’ﬁOO;aB Also, the long-range tail of hOO;aﬁ(r)’ which
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000

has a 1/ dependence at large r [61], will affect both COO'aﬁ(r) and
cgg?aﬁ(r) Within the HNC theory, both functions have a dependence upon
14

[hgélaﬁ(r)]z at large r. The resulting 1/r4 tails are truncated during a
r

numerical calculation (both in the closure calculation and in the Hankel
transform), but analytical expressions which correct for this truncation can be
derived, We remark that these correction terms are small and relatively

unimportant (except when determining Cis) for univalent ions, but can become

quite significant for larger charges.
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APPENDIX B

REPRESENTATIVE EXAMPLES OF EXPONENTIAL INTEGRALS

First we will consider an integral of the general form

- — KT
F=af rz[(1+xr)e . ]zdr ' (B.1)

d r2

Where a is some constant, It is the behaviour of F as k—> 0 that is of

interest here. It is convenient to write eq. (B.1) in the form

F = a[I0 + I+ 12] , (B.2a)
where
a,e—2lcr (' )
I, = dr , B.2b
0 3 r2
I, = 2« f dr (B.2c)
a r
and
®
L, = [ e Tar . (B.2d)
d

Then using standard tabies of integrals [165], it is possible to show that

e_ZKd me—ZKr
I0 = - 2k dr (B.3a)
d d r
and
_ K _—2kd
I, = 5e . (B.3b)

We can then insert eqs. (B.2c) and (B.3) into eq. (B.2a) to obtain

"] ~2«d (B.4)

_ 1
F—a[a+§e

and expanding the exponential vyields
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F=a[é-—3—x+x2d* --«:l . (B.5)

Therefore, in the limit k—> 0, we have that

e -afh- 3 (5.6)

We will now examine the k—> 0 dependence of an integral of the

general form

R+d -Kr
af  (1+kr)S [(r2+R2—d2)2 - (2rR)2]dr , (B.7)
R-4 r

j
"

where again a is some constant. Equation (B.8) can then be written as

F = a[I3 + I, v I+ I+ I+ 1_2] , (B.8a)
where
R+d 3 —kr
I;= k) r’e * ar , (B.8b)
R-d
R+d _
I, =7 r? e KT gr , (B.8c)
R-d

R+d  _

1, = -2c(R%+a®) | re *Far , (B.8d)
R-d
R+d _

1, = -2(R%+d®) § e *Tar , (B.8e)
R-d
R+d -«kr

I, = k(R%-8%)?) & —ar (B.8f)
R-d T

and

R+d -«kr

I, = (Rz—dz)zf & >—dr . (B.8g)
R-d r

Using standard forms for the integrals in eqgs. (B.8b-e) and (B.8g) as given in

tables [165], we can rearrange eq. (B.8a) to obtain
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_ -kr|{,_3_42_28r _8
F = ale [( r’-—r 5~ —3)
K K R+d
2@ (r+2) - LE-D?]| . (3.9)
R-d
If we then evaluate eq. (B.9) at its limits, we find that
_ -kR| -kd|-8 _ 8R _ 84 _ 8Rd
F = ae e [—3 v > ——K ]
K K K
_ kdi-8 _ 8R 8d 8R4
e [-—3- —"2—+——2-+——K] ’ (B.10)
K K K
which we can write as
F = ae KR [_@_ +__8_R:| [ xd e-xd:l
3 2
K K
[—8—<23+————8Rd] [e"d+ e_Kd] . (B.11)
K K

Now, it is the k—> 0 limiting behaviour of eq. (B.11) we wish to determine,

By expanding the exponentials, we can show that at small k

e®d -7k L 54 4 %x3d3 (B.12a)
and

R N Ry (B.12b)
Inserting eqgs. (B.12) into eq. (B.11) and simplifying yields

F = —152 (1+kr)e ¥R | (B.13)

3d
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APPENDIX C

TRANSFORMATION OF THE ROTATIONAL INVARIANT 2123(12)

As in the text, we will make use of the notation of Steinhauser and

. Bertagnolli [166] in our discussion,

Using the rotation matrix given by eq. (39)

of Ref, 166, it is easy to show that in the (%, ¥, 2) frame of reference (see

Figure 6(b))

>
N
1]

In the ion reference

given by eq. (4.66a)

cosazcosﬁ2c0572 sinazsin-y2
sina2cosﬁzc0572 + cosaQSin-y2 , (C.1a)
—51nﬁ2c0572

—cosazcosﬁzsin'y2 sina.2c0572
—sina,zcosﬁzsin'y2 + Cc0Sa,cosY, | , (C.1Db)
] 51n6251n'y2

sinﬁzcosa2

sinf,sina, | . (C.1¢c)

cosﬁ2

.

frame we take advantage of the res.t’riction on 521 as

and write
—sinagsinyg
gl = cos Isin'yI (C.2a)
2 @ 2 | .
cos]
-sina%cosvg
A1 1 1| -
§, = | cosaycosy, | (C.2b)
Sinyg




In order to take the unit vectors }’E% 17%

reference to the (¥, ¥, 2) reference frame,
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cosazl
AI - . I
22 = 51na2 .
0

rotation matrix R, as given by eq. (4.69), which yields

[3d
N

N>
N

i 1

-sinagsinygcosw + c057§sinw
cosggsinyg

~sinalsiny) sinw - cosylcosw

i 2 5107 72 ]

IS SN ST S
sina, cosy, cosw siny, sinw

I I
cosa, coOsY,

—sina2I cos'szsinw + sin'szcosw

—

COSaZI COSw

sinag .

I ..
CcOSs Slhw
[©O5%

(C.2¢c)

and 2; from the ion frame of

we multiply the unit vectors by the

(c.3a)

(C.3b)

(C.3c)

We can now obtain expressions relating the two sets of Euler angles

associated with the two different frames of reference by equating components

of the two forms for iz, )72 and 22, From egs. (C.1c) and (C.3c) we have

that

and

cosazI cosw sin¢12I
sin = = :
b, cosa, sina,
I _.
cosB2 = CcOSa, Sinw .

(Cc.4a)

(C.4b)

Similarly, we use the z-components of }?2 and 3’}2, as given by egs. (C.1a),
(C.3a) and (C.1b), (C3b), to obtain
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I cos'szcosw
cosy, = sina,|siny; sinw + (C.5a)
2 2 . I
sina.
2
and I
1 sin72 cosw
siny, = sina,|-cosy, sinw + . (C.5b)
2 2 . I
sina,
Then using the trigonometric identities [165]
o 2 .2 '
cos2y = cos’y sin®y , (C.6a)
cos2y = 2sinycosy , (C.6b)

and the requirement that sin2'y2I =0, which follows from eq. (4.66b), it can be

shown that

: 2
cosz'y2 = cos2'y2I Sin2a2 [—C—9§§9—I— - sinzw] (C.7a)
sin a,
and
sin2y, = -2cos2y, sin‘a, [M] . (C.7b)

sinaz,I
If one substitutes eqgs, (C4) and (C.7) into eq. (4.64b) and takes a, =0, one

can obtain the result

2123(12) = v6|3cosp, (cos%w - sin2a2I sinzw)cosz-yzI
. 1 I . rsin
+ 251n[31cos272 [cosa2 cosa2smw[——_~—i-—
sina,
. . I .2 . 2 .
~ sina,sina; sinw| + 2sin“e,sinwcosw . (c.8)

COSzw

From eq. (C4a) we have the identities
: I
Sina,cosa, COSw

sinazI

cosa, = (C.9%a)

and
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cosa.zsina.zI

cosa21 CosSw

sina2 = . (C.9b)
Using these relationships, together with simple trigonometric identities [165],

we simplify eq. (C8) which can eventually be written as the expression for
2'23(12) given in eq. (4.70).



