THE ULTRAVIOLET ABSORPTION SPECTRUM OF THIONYLIMIDE AND

THE ROTATIONAL ENERGY FORMLLAE FOR LINEAR POLYATOMIC MOLECULES IN ${ }^{2}$ Z AND ${ }^{3}$ ELECTRONIC STATES IN WHICH ONE OR MORE QUANTA OF A DEGENERATE BENDING VIBRATION IS

EXCITED
by
JOHN MICHAEL ALLEGRETTI
A.B. (Honors) University of California, Berkeley, 1969

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

in the Department
of
Chemistry

We accept this thesis as conforming to the required standard

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of

The University of British Columbia
Vancouver 8, Canada

ABSTRACT

Thionylimide, HNSO, was prepared and its ultraviolet spectrum recorded for the first time. Two transitions are seen; a long series of bands in the $2700 \AA$ region and a continuum ending at approximately $3440 \AA$. Franck-Condon overlap calculations were carried out to ascertain how large a shape change was occurring in the $2700 \AA$ system. Reasons for the diffuse nature of the bands in the $2700 \AA$ system and the continuous nature of the absorption in the $3440 \AA$ region are given.

In the second part of this thesis, formulae for the rotational energies of linear polyatomic molecules in ${ }^{2} \Sigma$ and ${ }^{3} \Sigma$ electronic states in which one or more quanta of a degenerate bending vibration are excited are derived. It is found in ${ }^{2} \Sigma$ electronic states that the spin doubling and the ℓ-type doubling are independent provided the rotational constant B is much larger than γ, the spin rotation constant. In ${ }^{3} \Sigma$ electronic states departures from the normal triplet spin pattern occur at low N values, when the vibrational angular momentum is still mainly coupled to the axis of the molecule. The effect is enhanced if λ, the spin-spin interaction constant, is large compared to B. At high N values the normal triplet pattern is approached as the vibrational angular momentum is uncoupled from the axis of the molecule.

TABLE OF CONTENTS

PAGE
Abstract i
List of Tables and Figures iii
Acknowledgment v
Introduction 1
CHAPTER I THE ULTRAVIOLET ABSORPTION SPECTRUM OF THIONYLIMIDE 3
1-1 Experimental 3
a. Preparation 3
b. Apparatus 5
c. Identification of product 5
d. Preparation notes 6
e. Spectroscopic experiments 6
1-2 Results 13
1-3 Discussion 23
a. Ground state normal coordinates 23
b. Franck-Condon calculation 24
c. Electronic configuration and 40
Electronic states of HNSO
CHAPTER II ROTATIONAL ENERGY FORMULAE FOR LINEAR POLYATOMIC 47
MOLECULES IN 2_{Σ} AND 3_{Σ} ELECTRONIC STATES IN WHICH ONE OR MORE QUANTA OF A DEGENERATE BENDING VIBRATION IS EXCITED
2-1 Derivation of the Hamiltonian and its matrix elements 47
2-2 Results and Discussion 55
References 78
Appendix 1 81
Appendix 2 84

List of Tables and Figures

Table
1 Observed Bands of HNSO and DNSO 21
2 Force Constants and Calculated Frequencies 33

3 Results of Franck-Condon Overlap Calculations 37
$\left(\Delta R_{S O}=\Delta R_{N S}=.15 \AA, \Delta \alpha_{N S O}=15^{\circ}\right)$
4
Character Tables for C_{s} and $\mathrm{C}_{2 v}$ Point Groups and45

Correlation of the Irreducible Representations of the
C_{s} and $C_{2 v}$ Point Groups
5 Elements off diagonal in the vibrational quantum64 numbers for the $v_{2}=0$ level in ${ }^{3} \Sigma$ electronic states

6 Effective Operators Arising from Second-Order
Transformation of the Hamiltonian
7 Matrix Elements of Terms in Table 666

8 Matrix for $v_{2}=1$ for ${ }^{2} \Sigma$ Electronic State Correct 67 to Second Order

Case (a) and Case (b) Matrices for $v_{2}=2$ in a ${ }^{2} \Sigma$
Electronic State
Case (a) and Case (b) Matrices for $v_{2}=1$ in a ${ }^{3} \Sigma$
Electronic State
11
Case (a) and Case (b) Matrices for $v_{2}=2$ in a ${ }^{3} \Sigma$
Electronic State
FigurePage

1. Thionylimide Preparation System 10
2 Experimental Set up for the 1.5 meter Bausch andLomb Spectrograph11
Experimental Set Up for the 21 ftEagle Spectrograph11
4 4 Meter White Cell and the Order Separator 12
5
DNSO U.V. Spectrum 16
6 HNSO U.V. Spectrum (high pressure) 17
7 HNSO U.V. Spectrum (low pressure) 18
8 HNSO $2700 \AA$ System 19
9 HNSO 3440 A Continuum 20
10 Infra-Red Spectrum of Matrix Isolated HNSO at $4^{\circ} \mathrm{K}$ 22
11 Calculated Transition Envelope for $\Delta R_{N S}=0.15 \AA$ 38and $\triangle a_{N S O}=15^{\circ}$12. Correlation of $\Delta R_{N S}$ and $\Delta \alpha_{N S O}$ for Certain System Origin-39
Absorption Maximum Separations
13
Possible Potential Energy Curves for Thionylimide 46
14 Calculated Triplet Splitting Patterns for Vibronic ${ }^{3}$, 74,75,76$3_{\text {II }}$ and ${ }^{3} \triangle$ levels for $\mathrm{HCCN}, \mathrm{C}_{2} \mathrm{~N}_{2}$ and NCN15 Departure of the l-type Doubling Pattern from the Formulae77$\Delta v=q N(N+1)$ for the ${ }^{3}$ Vibronic Level of HCCN

ACKNOWLEDGMENT

The author wishes to thank Dr. A.J. Merer for his advice and encouragement in carrying out the research which this thesis is based on and during the writing of this thesis. The author also wishes to thank Peter Tchir and Dr. R.D. Spratley for providing matrix isolation infra-red spectra of thionlyimide and their help with the vibrational analysis programs, and last but not least, E.J.F. who gave quite a hand in putting this thesis together.

INTRODUCTION

This thesis consists of two parts which are basically unrelated. The first part deals with the molecule thionylimide (HNSO or DNSO) and its ultraviolet spectrum. This study is prompted by the fact that the first strong ultraviolet absorption system of the isoelectronic molecule SO_{2} has yet to be analyzed, despite many attempts $(1,2)$. It is reasoned that, thionylimide being isoelectronic with SO_{2} and having a similar shape, an understanding of the ultraviolet spectrum of thionylimide would help decipher the 2900 \& system of SO_{2}. In the end, though, due to the lack of information available from the thionylimide spectrum resulting from its diffuseness, the opposite occurred and preliminary results from SO_{2} were used to help explain the ultraviolet absorption spectrum of thionylimide.

In this thesis there is described the preparation of thionylimide and the first observation of its ultraviolet spectrum. Two absorptions have been seen: a long series of diffuse bands in the $2700-2100 \AA$ region and a continuum at longer wavelengths. Franck-Condon overlap calculations were carried out for the $2700 \AA$ system to see how large a shape change is necessary to explain the observed spectrum, and whether this shape change correlates with the shape change occurring in the $2900 \AA$ system of SO_{2}. Reasons for the diffuseness of the bands in the 2700 A system and the continuous nature of the long wavelength system are given based on
the electronic structure of thionylimide.
The second part of this thesis deals with the derivation and discussion of rotational energy formulae for linear polyatomic molecules in doublet and triplet Σ electronic states in which one or more quanta of a degenerate bending vibration are excited. As yet, no theoretical treatment exists for this topic(3), though with the advent of flash photolysis techniques, several examples of such molecules are now known. In particular, a system of HCCN at 3200-3400 \AA, which is probably a ${ }_{\Sigma} \Sigma^{-}-{ }^{3} \Sigma^{-}$transition, shows vibrational "hot" bands in the H-C-C degenerate bending vibration which have so far defied rotational analysis according to the conventional energy level formulae for ${ }^{3} \Sigma$ states (4).

The hamiltonian has been written in "effective" form (i.e. writing the electron spin interactions as parameters to be determined experimentally) and its matrix elements given in a Case (a) representation correct to second order. The results have been given in Case (b) notation for some cases of interest. The results are discussed in relationship to what would be seen in actual molecules.

CHAPTER I

THE ULTRAVIOLET SPECTRUM OF THIONYLIMIDE

1-1 Experimental

a. Preparation of HNSO and DNSO

The commonest methods of making thionylimide are the hydrolysis of NSF and the direct gas phase reaction of NH_{3} and $\mathrm{SOCl}_{2}(5,6)$. In all experiments reported here, thionylimide was produced by the latter method. This was because the starting material was readily available and results in a purer product than by the hydrolysis of NSF.

Since SO_{2} is always formed as a by-product during any preparation of thionylimide, one must be extremely careful to choose conditions which minimize the amount of SO_{2} formed, since SO_{2} absorbs throughout the ultraviolet. Kirchhoff (7), during his microwave studies of thionylimide, discovered that thionylimide could be prepared reasonably free of SO_{2} by using low pressures of NH_{3} and SOCl_{2} in the exact stoichiometric proportions for the reaction

$$
\begin{equation*}
3 \mathrm{NH}_{3}+\mathrm{SOCl}_{2} \rightarrow 2 \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{HNSO} \tag{1}
\end{equation*}
$$

Higher pressures of reactant gases resulted in a higher percentage of SO_{2} produced. Accordingly, Kirchhoff's conditions, 12 torr NH_{3} and 4 torr SOCl_{2}, were followed for all experiments. It was
found that the amount of SO_{2} impurity produced was very sensitive to traces of water present in the apparatus or reagents (presumably from the direct hydrolysis of SOCl_{2}). Thus the glass apparatus had to be well flamed under vacuum prior to the preparation, and the ammonia had to be carefully dried over sodium metal. SOCl_{2} was purified by trap to trap distillation to remove $\mathrm{SO}_{2}, \mathrm{HCl}$, and dissolved air. It was never possible to prevent the formation of SO_{2} entirely, and an average sample of thionylimide contained $5 \% \quad \mathrm{SO}_{2}$ as judged from the ultraviolet spectrum. This is presumably because reaction (1) is not the only reaction occurring $(5,6)$. A major difficulty with preparation of HNSO is that whenever the gas is trapped in dry ice or liquid nitrogen, it immediately polymerizes. It is thus not possible to purify HNSO by fractional distillation (see below).

DNSO was prepared in an analogous way to HNSO except that ND_{3} was used. The heavy ammonia was both prepared in the $1 a b$ and obtained from a cylinder. The $N D_{3}$ prepared in the lab was synthesized using $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ and $\mathrm{D}_{2} \mathrm{O}$ in the following reaction (8):

$$
\begin{equation*}
6 \mathrm{D}_{2} \mathrm{O}+\mathrm{Mg}_{3} \mathrm{~N}_{2} \longrightarrow 2 \mathrm{ND}_{3}+3 \mathrm{Mg}(O \mathrm{D})_{2} \tag{2}
\end{equation*}
$$

In the preparation an excess of $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ is used to produce a very dry sample of ND_{3}. The $\mathrm{D}_{2} 0$ used was from Stohler Isotopes ($99.8 \% \mathrm{D}$). The $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ was from Alpha Inorganics and had to be heated in vacuo prior to use to remove "light" water hydroxides. The bottled ND_{3} was from Merck, Sharpe, and Dohme and was 99\% D.

The samples of DNSO prepared were ascertained to be at least 70% D using matrix infra-red techniques.
b. Apparatus and preparative method

The thionylimide was prepared in a standard all glass vacuum line incorporating either a six or two twenty-two liter reaction vessels and a U tube trap (see fig. 1). Pumping was by means of a rotary pump and an oil diffusion pump. Pressures were measured with a thermocouple gauge and a manometer filled with Dow Corning 707 silicone fluid (12.8 mm oil $=1 \mathrm{~mm} \mathrm{Hg}$).

The actual preparation of thionylimide involved first filling the reaction vessel with dry ammonia to the correct pressure and then trapping the ammonia out in the U tube trap with liquid nitrogen. The reaction vessel was then filled with SOCl_{2}. The ammonia was then evaporated back into the reaction bulb where it reacted immediately with the SOCl_{2}, forming a yellow-white coating mostly of $\mathrm{NH}_{4} \mathrm{Cl}$ on the glass walls.
c. Identification and analysis of reactant products

Positive identification of the gas produced as thionylimide was accomplished by infra-red and mass spectrometric techniques. The infra-red spectrum was taken of a matrix isolated sample at $4^{\circ} \mathrm{K}$. The thionylimide was diluted with argon in the ratio of 1:800. Samples were deposited at 120 microns pressure on a CsI window. [See ref. (9) for a complete description of the matrix isolation technique.] Spectra were taken on a Perkin-Elmer 225 infra-red spectrophotometer. The matrix isolated spectrum was identical with
the gas phase spectrum except for small shifts caused presumably by interactions with the matrix, and the absence of rotational structure (see fig. 10).

The mass spectrum of thionylimide was taken on a MS 9 mass spectrometer. The mass spectrum showed a weak parent ion peak at $\mathrm{m} / \mathrm{e}=63\left(\mathrm{HNSO}^{+}\right)$and another peak at $\mathrm{m} / \mathrm{e}=15(\mathrm{NH})^{+}$. There was a strong peak at $\mathrm{m} / \mathrm{e}=48(\mathrm{SO})^{+}$, but the SO^{+}may have come from SO_{2} for there was also a strong peak at $\mathrm{m} / \mathrm{e}=64\left(\mathrm{SO}_{2}\right)^{+}$. d. Notes on other attempts to prepare pure thionylimide

Attempts to produce large pressures of thionylimide by condensing successive batches in a trap and reconstituting the monomer from the polymer by heating the trap to $70^{\circ} \mathrm{C}$ as reported by Schenk (10) only yielded large amounts of SO_{2} and very little thionylimide. It had been hoped that HNSO free of SO_{2} could be produced by this method, but it turned out that Schenk's results could not be reproduced at all.
e. Spectroscopic experiments

Preliminary ultraviolet spectra were taken on a Bausch and Lomb 1.5 meter Eagle spectrograph, the experimental arrangements having been as in fig. (2). The lamp shown in fig. (2) was a P.E.K. 75 watt high pressure xenon lamp. The one lens shown focused an image of the lamp on the slit. The cell shown is a 75 cm all quartz cell with Suprasil windows. With a $60 \mu \mathrm{slit}$ and cell pressures ranging from 4 to ~ 0.2 torr, exposure times were of the order of 4 seconds using Kodak SA-I film. For
calibration a 25 m.a. Westinghouse Iron hollow cathode lamp was used.

Higher reṣolution spectra (approximately 150,000 resolving power) were taken in the second order of a 21 ft . Eagle spectrograph as shown in fig. (3) with the previously mentioned light source and cell. To lower the exposure times, a 22.5 cm focal length cylindrical lens was used to focus the image of the arc on the slit as a line. A Corning 9-54 filter placed between the lamp and the cell was used to prevent photolysis of thionylimide. With a 20μ slit and cell pressures ranging from 4 torr to less than 0.1 torr, and using Kodak SA-I plates, exposures were of the order of two minutes. Calibration was with a 120 m.a. iron hollow cathode lamp of the lab's own design. In these experiments a moderately intense, but diffuse, band system lying in the region $2700-2100 \AA$ (to be discussed below) was discovered.

Temperature studies of the bands of this system were carried out using the same experimental arrangement as above except that the cell was wrapped with heating tape. The cell temperature was controlled by regulating the applied voltage to the heating tape. The cell was heated in 25° steps to a maximum of $100^{\circ} \mathrm{C}$. The cell temperature was monitored using a Chromel-Alumel thermocouple in conjunction with a Leeds and Northrup millivolt potentiometer.

The next experiment was a search for weaker transitions of thionylimide at longer wavelengths in the $3600 \AA$ region. To do
this a 4 meter White type (11) multiple reflexion cell was built and used in conjunction with a reaction vessel consisting of two twenty-two liter globes. The cell was constructed of 85 mm pyrex tubing, to the ends of which 6 inch sections of 3 inch diameter pyrex pipe end-pieces with 0-ring grooves were blown on. Normal pyrex pipe flanges were used to attach the end plates which sealed the cell (see fig. 4). One cell end-plate carried the Suprasil entrance and exit windows, while the other had the external controls for the D mirrors. Inserted in the cell was a"boat" to the front of which was attached the "shouldered" mirror. The number of traversals of the cell was controlled by manipulation of the D mirrors.

The cell was set up as in fig. (4) using the previously mentioned lamp. Care had to be taken so that the incoming cone of light matched the aperture of the white cell so as not to produce stray light reflected off the inside walls of the cell (cone too large) or to underfill the D mirror (cone too small). This critical adjustment was done by moving the 35 cm lens shown in fig. (4) relative to the light source. After the light had passed through the White cell, a 55 cm cylindrical lens focused the light on the slit of the spectrograph. Corning 0-56 and 7-54 filters were used to stop photolysis of the sample by light with a wavelength less than $3000 \AA$, which was found to produce decomposition products on the mirrors unless it was eliminated. With the White cell set for 24 traversals, or an effective path length of 96 meters, and a 80μ
main slit, exposures were of the order of four minutes using Kodak IIa-0 plates and cell pressure ranging from 2.6 torr to 0.23 torr. The $120 \mathrm{~m} . \mathrm{a}$. iron hollow cathode lamp was again used for calibration.

The White cell was also used to look at the weak "tail" of the $2700 \AA$ system of thionylimide. The cell was set up as previously described except that the Corning filters were replaced with an order separator in front of the main slit, consisting of a foreslit, concave mirror, and quartz prism (see fig. 4). The order separation was necessary because the filters could not completely eliminate the intense overlapping first order radiation ($\lambda \sim 5200 \AA$) from the xenon arc. Using Kodak I-D film, an 80μ main slit, a 2 mm foreslit, gas cell pressures of the order of 0.2 torr, and 4 traversals, exposures were of the order of 5 to 10 minutes. Calibration was as previously described.

None of the White cell experiments were repeated with DNSO, and for DNSO only the $2700 \AA$ system was photographed. Measurements were made from contact prints of the plates. These are probably good to $\pm 25 \mathrm{~cm}^{-1}$.

FIG. 1 THIONYLIMIDE PREPARATION SYSTEM

35 cm LENS
1.5 METER BAUSCH AND LOMB EAGLE SPECTROGRAPH XENON LAMP

FIG. 2

1-2 Results

Low resolution absorption spectra of thionylimide taken on a Cary Model 14 spectrophotometer show moderately strong absorption in the 2700-1900 \AA range (see fig. 5,6,7). The absorption maximum comes at 2170 ; the system obviously continues past $1900 \AA$ but could not be observed for experimental reasons. On the long wavelength side of the absorption maximum the system loses intensity rapidly and is no longer discernible at $2700 \AA$ where it is lost under the tail of the strong $2900 \AA$ system of SO_{2} (see fig. 6). The main features of the Cary spectra are a long series of absorption bands at the long wavelength end of the system, which can be followed from $2689 \AA$ to $2387 \AA$ (see fig. $5,6,7$). The bands are most distinct at lower energies and, at the absorption maximum, they are no longer discernible.

At high resolution the bands noted above were found to be entirely diffuse, not even showing any partially resolved rotational structure (see fig. 8). The band positions are given in Table (1). Upon examination of Table (1), one will notice that the bands are not regularly spaced and cannot be fitted into a single progression.

The $2700 \AA$ system of DNSO showed several distinct differences from that of HNSO. The bands which stood out well in the spectra of HNSO no longer do so in DNSO (compare fig. 5 and 6). The bands in DNSO appear not to have been shifted to any great extent,
though new bands at $2543 \AA$ and $2530 \AA$ have appeared and the band that was at approximately $2535 \AA$ in HNSO has disappeared. The band that was $2517 \AA$ in HNSO has been shifted to $2515 \AA$ in DNSO. The other bands in the spectrum of DNSO do not appear to have changed position relative to the bands in the spectrum of HNSO.

The high resolution spectra of the 2700 \& system of HNSO showed three very weak bands between the bands of the main progression. Due to the lack of contrast in the DNSO spectrum, the corresponding bands could not be seen. Upon heating the cell, these weak bands of HNSO appeared to gain intensity relative to the other bands as the cell temperature rose, thus showing them to be "hot" bands arising from excited vibrational levels in the ground state. Since the bands of the main progression did not change in intensity, they are "cold" bands.

The long path experiments in the $3400 \AA$ region did not disclose any sharp or banded absorption of HNSO but only a continuum beginning at approximately $3440 \AA$ (see fig. 9). Since SOCl_{2} also has continuous absorption near this region,it was necessary to show that the two continua were not identical. Comparison of the new continuous absorption and spectra of SOCl_{2} taken under similar conditions showed that the two continua were not the same. There are no other species involved in the preparative reaction that have a continuous absorption in the ultraviolet.

The long path experiments in the $2685 \AA$ region did not reveal any new bands in the tail of the $2700 \AA$ system of HNSO but

-15-

did verify the existence of a band at $2686 \AA$. From $2686 \AA$ and to longer wavelengths, the $2900 \AA$ system of SO_{2} rises in intensity and it becomes impossible to separate the weak and diffuse HNSO bands from the strong, sharp SO_{2} absorption.
\uparrow

(
Fig. 7
HNSO 0.8 torr
Taken on a Cary Model 14 Spectrophotometer

FIG. 8 The $2700 \AA$ System of HNSO taken on a 21^{\prime} Eagle Spectrograph

[^0]FIG. 9 The $3440 \AA$ Continuum of HNSO taken on a 21^{\prime} Eagle Spectrograph in conjunction with a 4 meter White Cell set for 24 traversals
A. HNSO Bands of the $2700 \AA$ system

FIG. 10 Infra-Red Spectrum of Matrix Isolated HNSO taken on a Perkin-Elmer 225 Spectrophotometer at $4^{\circ} \mathrm{K}$

1-3 Discussion and Interpretation of Results
As stated in the introduction, the reason for interest in thionylimide is its similarity with SO_{2}. In the following discussion, arguments will be made to further this point and results from SO_{2} will be applied to thionylimide to help explain the observed results.
a. Ground state normal coordinates

To understand the $2700 \AA$ system of thionylimide and the vibrations active in the system, one must first determine the normal modes of vibration in the ground state of the molecule. Richert (12), in his normal coordinate analysis, treated thionylimide as a triatomic molecule with the $\mathrm{N}-\mathrm{H}$ group as a single atom. He used the set of diagonal force constants given in Table (2). For this work, a full normal coordinate analysis using a full set of diagonal force constants (that is neglecting all interaction force constants) was carried out. The normal coordinate analysis was carried out using the computer programs written by Schachtschneider (13). The force constants were varied until the calculated frequencies of HNSO, DNSO, $\mathrm{HN}^{34} \mathrm{SO}$, and $\mathrm{DN}^{34} \mathrm{SO}$ agreed to within approximately $5 \mathrm{~cm}^{-1}$ of the observed matrix isolation frequencies except for the vibrations involving a hydrogen atom. No attempt was made to refine the force constants to achieve a better fit of the calculated frequencies due to the problem with anharmonicity and matrix effects (see below). The final force constants are shown in Table(2), along with the
observed and calculated frequencies. The large errors in the calculated HN stretching and HNS bending vibrational frequencies can be attributed to anharmonic effects which are always large in molecules of this type. The anharmonic effects arise from the fact that the H and D "sample" different parts of the vibrational potentials and thus the anharmonicity affects them quite differently. No attempt was made to correct the observed frequencies for anharmonicity to get a better fit. Table(2)includes the resulting matrices \underline{L} and \underline{L}^{-1}, where $\underline{\underline{L}}$ is the matrix that transforms the vector of normal coordinates Q to internal coordinates \underline{S}, by the equations

$$
\begin{equation*}
\underline{S}=\underline{L} 0 \tag{1}
\end{equation*}
$$

or, in reverse,

$$
\begin{equation*}
\underline{Q}=\underline{L}^{-1} \underline{S} \tag{2}
\end{equation*}
$$

See Appendix 1 for a discussion of the formalism of the FG matrix methods of Wilson, Decius, and Cross (14).
b. Franck-Condon calculation for the bands of the $2700 \AA$ region

Now that the form of the normal coordinates in the ground state is known, one can use the Franck-Condon principle to determine what vibrations are active in the transition and how large a shapechange is necessary to explain the observed transition. The basis of the Franck-Condon principle is that the electronic transition in a molecule is assumed to take place so rapidly compared to the vibrational motion that the internuclear distance can be regarded
as fixed during the transition (15). Translated into quantum mechanical language, the strongest vibrational transitions according to the Franck-Condon principle are those with the largest values of the Franck-Condon overlap integral $R_{\text {MN }}$, defined as

$$
\begin{equation*}
R_{M N}=\int \psi_{M}^{\prime}\left(Q^{\prime}\right) \psi_{N}^{\prime \prime}\left(Q^{\prime \prime}\right) d Q^{\prime} \tag{3}
\end{equation*}
$$

where $\psi_{M}{ }^{\prime}$ and ψ_{N} " are the vibrational wave functions in the upper and lower electronic states respectively. The relative intensity of a given band (M, N) in the electronic transition is equal to the square of this integral. Thus one is correlating an "overlap" between the upper and lower electronic state vibrational wave functions to the intensity of a given band.

As noted previously, the $2700 \AA$ system of thionylimide consists of a long series of bands that did not undergo any great change upon deuteration, though the bands did lose much of their intensity relative to the background. From the fact that a long series of bands is observed, one knows from the Franck-Condon principle that a large change of shape is occurring in the transition. From the fact that the observed series of bands is relatively insensitive to deuteration, one can say that the vibrations active in the transition, and therefore the shape change, do not involve the hydrogen atom and are centered in the S-0 end of the molecule. See Table (2) for a comparison of the ground state HNSO and DNSO frequencies. To get some idea of which vibrations might be strongly active in the electronic transition and how much of a change of shape would be necessary to
produce the observed absorption maximum, several rough Franck-Condon overlap calculations were done.

Integrals of the type shown in eq. (3) were first evaluated by Hutchisson(16) and later by Wagner (17), and Ansbacher (18). In general, such integrals are not easy to evaluate because Q' $\neq Q^{\prime \prime}$; in certain cases, however, and by using various approximations, overlap integrals of the type shown in eq. (3) can be quite easy to calculate. Smith and Warsop (19) have developed a method for calculating integrals of the type

$$
\begin{equation*}
R_{M O}=\int \psi_{M}^{\prime}\left(Q^{\prime}\right) \psi_{0}{ }^{\prime \prime}\left(Q^{\prime \prime}\right) d Q^{\prime} \tag{4}
\end{equation*}
$$

for large changes in shape. The integral shown in eq. (4) represents the overlap between the zero vibrational level of the lower electronic state with the vibrational level, M, in the upper electronic state.

To evaluate integrals of the type shown in eq. (4), one begins by relating the upper state normal coordinate Q^{\prime} to the lower state normal coordinate $Q^{\prime \prime}$ by the following relationship:

$$
\begin{equation*}
\underline{Q}^{\prime}=\underline{A Q} \underline{Q}^{\prime \prime}+\underline{d} \tag{5}
\end{equation*}
$$

where A is a square matrix which transforms the vector of ground state normal coordinates into the vector of upper state normal coordinates, and d is the change in the origin of the normal coordinates. Such a relationship is necessary so that \underline{Q}^{\prime} and $\underline{Q}^{\prime \prime}$ are functions of the same variable so that the integral over $d Q '$ will have some meaning.

To simplify the relationship between \underline{Q}^{\prime} and $\underline{Q}^{\prime \prime}$, \underline{A} is set to the unit matrix. Setting A equal to the unit matrix is rationalized by Coon, et. al. (20), who show that, for band progressions that originate in the $v=0$ level of the ground electronic state, the vibrational wave function in the ground state is largely concentrated around the origin of the normal coordinate and thus

$$
\begin{equation*}
Q^{\prime \prime \cong} \cong 0 \tag{6}
\end{equation*}
$$

for a large percentage of the time. This can easily be seen if one graphs the harmonic oscillator wave functions for the $v=0$ level. From this one can see that \underline{Q}^{\prime} will be very insensitive to \mathbb{A} (since $\underline{Q}^{"}$ is zero most of the time) but will be sensitive to \underline{d}. With \underline{A} set to the unit matrix, eq. (5) becomes

$$
\begin{equation*}
\underline{Q}^{\prime}=\underline{Q}^{\prime \prime}+\underline{d} \tag{7}
\end{equation*}
$$

and thus eq. (4) becomes

$$
\begin{equation*}
R_{M O}=\int \psi^{\prime}\left(Q^{\prime}\right) \psi^{\prime \prime}\left(Q^{\prime}-d\right) d Q^{\prime} \tag{8}
\end{equation*}
$$

Smith (21) has shown that for $\mathrm{R}_{\text {MO }}$ under the above conditions eq. (8)takes the form
where

$$
\begin{align*}
& R_{M O}=\left(2^{-M} q q^{M!}\right)^{1 / 2} \exp \left(1 / 4 r^{2} P\right) \cdot \sum_{\ell=0}^{M} \frac{(\gamma q q)^{M-2 t}(-x)^{t}}{(M-2 t)!t!} \\
& q=\frac{2\left(v^{\prime} v^{\prime \prime}\right)^{1 / 2}}{v^{\prime \prime}} \quad p=\frac{v^{\prime \prime} v^{\prime}}{v^{\prime}+v^{\prime \prime}} \quad r=\alpha^{1 / 2} d \\
& \alpha=\frac{4 \pi^{2} v c}{h} \quad x=\frac{v^{\prime \prime}-v^{\prime}}{v^{\prime \prime}+v^{\prime}} \tag{9}
\end{align*}
$$

Thus, to carry out the calculation, all one needs to know are the lower and upper state frequencies and d_{i}, the shift in the origin of the normal coordinate being considered.

The vector of normal coordinates, \mathbb{Q}, is related to that of the internal symmetry coordinates by eq. (2). The vector of the shifts in the origins of the normal coordinates, \underline{d}, is related to $\Delta \underline{S}$, the vector of changes in the internal symmetry coordinates, in the same manner.

$$
\begin{equation*}
\underline{d}=\underline{L}^{-1} \quad \Delta \underline{S} \tag{10}
\end{equation*}
$$

One should remember that in thionylimide, with the change in an internal symmetry coordinate being equal to the change in the corresponding internal coordinate, $\underline{\Delta}$ represents directly the changes in bond angles and bond lengths between the upper and lower states.

To calculate \underline{d} one must know the shape change occurring in the transition. In thionylimide, due to the diffuseness of the observed bands, no rotational analysis could be done and thus it was impossible to determine the structure of thionylimide in the excited state.

Thus, to calculate d, an appropriate excited state structure for thionylimide had to be assumed. The change of shape occurring in the $2900 \AA$ system of SO_{2} was assumed to be the same as the shape change occurring in the $2700 \AA$ system of thionylimide. This is justified by the facts that the change of shape occurring in thionylimide is occurring on the SO end of the molecule, that both transitions have similar
vibrational structures, and that both transitions are the first strong transitions seen in each molecule.

In a preliminary band contour analysis of the (010)-(000) band [Metropolis's vibrational numbering (2)] of the $2900 \AA$ system of SO_{2}, Dixon (22) has found that in the excited state, $\mathrm{R}_{\mathrm{SO}} \cong 1.58 \AA$ and $\alpha_{O S O}=105^{\circ}$. Since in the ground state $R_{S O}=1.43 A$ and $\alpha_{O S O}=119^{\circ}$ (22), $\Delta R_{S O}=0.15 \AA$ and $\Delta O_{O S O}=-15^{\circ}$ for the transition. Using these changes in bond lengths and bond angles and setting

$$
\begin{equation*}
\Delta R_{S O}=\Delta R_{N S} \tag{11}
\end{equation*}
$$

one can calculate d. Since the shape change has been reasoned to be taking place around the S atom, only the overlap integrals for v_{2}, v_{3}, and v_{5} [see table (2) for frequency assignments] need be considered since only these vibrations will have appreciable d_{i} 's. Using eqs. (10), and (11),

$$
\underline{d}=\underline{L}^{\prime \prime-1}\left[\begin{array}{l}
\Delta R_{N H} \tag{12}\\
\Delta R_{N S} \\
\Delta R_{\text {SO }} \\
\Delta \alpha \text { HNS } \\
\Delta \alpha N S O \\
\Delta \gamma H N S O
\end{array}\right]=\underline{L}^{\prime \prime}-1\left[\begin{array}{c}
0 \\
0.15 A \\
0.15 A \\
0 \\
0.26 R \\
0
\end{array}\right]
$$

Thus the individual d_{i} 's of interest become

$$
\begin{align*}
& d_{2}=(1.936-1.995)(0.15)+(0.028)(0.26)=0.052 \\
& d_{3}=(1.923+2.596)(0.15)-(0.142)(0.26)=0.674 \tag{13}\\
& d_{5}=(1.067+0.874)(0.15)+(3.352)(0.26)=1.163
\end{align*}
$$

From the above values of d_{i} for v_{2}, v_{3}, and v_{5}, one can see that v_{3} and v_{5} will provide most of the intensity. One would therefore expect a long series of band progressions in both v_{3} and v_{5}. The reason d_{2} is small even though the vibration is centered on the S-0 end of the molecule, is that it is mainly an asymmetric stretching vibration, thus the change in $R_{N S}$ is counteracted by that in R_{SO}.

Since we cannot be sure of the vibrational analysis of the $2700 \AA$ system of thionylimide, the excited state frequencies cannot be determined unambiguously.

The NSO bending vibration, ν_{5}, was assumed to be $285 \mathrm{~cm}^{-1}$ (the predominant vibrational interval seen in the transition), by analogy with the $2900 \AA$ system of SO_{2}, where the upper state bending vibration ($\nu_{2}^{\prime}=318 \mathrm{~cm}^{-1}$) is similarly prominent. This assignment is supported by the three previously mentioned "hot" bands which are all separated from bands known to be temperature-insensitive by the ground state frequency $v_{5}=453 \mathrm{~cm}^{-1}$ to within $\pm 25 \mathrm{~cm}^{-1}$ (i.e. for these diffuse bands within the accuracy of measurement). The other low-lying frequency, the torsional vibration v_{6} ", at $759 \mathrm{~cm}^{-1}$, cannot give rise to "hot" bands of this type because, since it is a nontotally symmetric vibration, it must obey the selection rule $\Delta v_{6}=0, \pm 2, \ldots ;$ then, "hot" bands arising from the level $v_{6} "=1$ are most likely to be sequence bands ($\Delta v=0$). However, the assignment of these "hot" bands as torsional sequence bands cannot
be entirely ruled out, though it is less likely than their assignment as the first members of ground state progressions in v_{5} ", since these are favoured by the Boltzmann distribution law. v_{3} was estimated using the rule given by Birge (24) for diatomic molecules:

$$
\begin{equation*}
r_{\omega}^{2}=\text { constant } \tag{14}
\end{equation*}
$$

where $r=$ internuclear distance and $\omega=$ vibration frequency. Thus:

$$
\begin{align*}
& r^{\prime 2} \omega^{\prime}=r^{\prime \prime} \omega^{\prime \prime} \\
& \omega^{\prime}=\left(\frac{r^{\prime \prime}}{r^{\prime}}\right)^{2} \omega^{\prime \prime}=859 \mathrm{~cm}^{-1} \tag{15}
\end{align*}
$$

A computer program written by Malm and Merer was used to evaluate eq. (9) using the previously determined d_{i} 's and frequencies. The results of these calculations are given in Table (3) and are graphed in Fig. (11).

Upon examination of the spectrum of thionylimide taken on the Cary 14 spectrophotometer (fig. 6), one can see that the bands are not discernible along the whole transition, and one must consider the possibility that the absorption maximum and the banded structure may not correspond to the same excited state. The absorption maximum comes at approximately $2170 \AA\left(46083 \mathrm{~cm}^{-1}\right)$ and the first discernible band is at 26908 ($37175 \mathrm{~cm}^{-1}$). If the observed absorption maximum and the banded structure are taken as arising from the same transition, the Franck-Condon maximum lies at least $8900 \mathrm{~cm}^{-1}$ from the system origin. The value shown in fig. (11) on the basis of Dixon's results for the $2900 \AA$ system of SO_{2} is approximately $6000 \mathrm{~cm}^{-1}$.

Thus the calculated transition is too "short" in relation to the observed transition provided the banded structure and the observed absorption maximum belong to the same transition.

Further calculations were done to correlate changes in $\Delta R_{N S}\left(=\Delta R_{S O}\right)$ and $\Delta \alpha_{N S O}$ in the transition to the "length" of the transition (or the position of the Franck-Condon maximum); thus it was possible to see how large a shape change was necessary for the Franck-Condon maximum to lie $8900 \mathrm{~cm}^{-1}$ from the system origin. The results are shown in fig. (12). From fig. (12) one can see that to explain the value $8900 \mathrm{~cm}^{-1}$ in thionylimide, one needs $\Delta R_{N S}=0.18 \AA$ and $\Delta \alpha_{N S O}=0.28$ Radian or other combinations from the graph. Thus one must accept approximately $R_{\text {NS }} \cong 1.69 \AA, R_{\text {SO }} \cong 1.63$ and $\alpha_{\text {NSO }} \cong 114^{\circ}$ in the excited state of thionylimide to explain the $2700 \AA$ system of thionylimide as a single transition. Such large changes in shape are approaching the limit for $\pi \rightarrow \pi^{*}$ transitions if one assumes one is seeing such a transition in thionylimide. The largest change of shape known for a $\pi \rightarrow \pi^{*}$ transition is in 0_{2} where there is a 33% change in the internuclear distance; thus in thionylimide where the π molecular orbital is spread over two bonds, one would expect that the maximum change in the NS or SO bond would be 16.5% which is $0.25 \AA$ in the NS bond and $0.24 \AA$ in the $S 0$ bond. These changes are not much larger than those listed above which are needed to explain the $2700 \AA$ system of thionlyimide as a single transition.

Table 2

	Richert (HNSO Q branches)	Matrix (HNSO)	Meaning
v_{1}	$3345 \mathrm{~cm}^{-1}$	$3309 \mathrm{~cm}^{-1}$	$v_{\text {NH }}$
v_{2}	1261	1249	${ }^{\text {U OSN }}$ asym.
v_{3}	1090	1083	${ }^{\nu}$ OSN ${ }^{\text {sym. }}$
v_{4}	911	900	${ }^{\alpha} \mathrm{NH}$
v_{5}	453	447	${ }^{\alpha}$ NSO
v_{6}	755	754	${ }^{\gamma}$ HNSO

Richert's Force Constants
${ }^{f}$ NS
8.2 mdyne \AA^{-1}
8.6 "
$8.4 \quad$ "
${ }^{f} \mathrm{NH}$
${ }^{f}{ }_{\text {NSO }}$
0.6 "
$0.598 \quad "$
${ }^{f} \alpha_{H N S}$
$0.51 \quad "$
$\mathrm{fr}_{\mathrm{HNSO}}$
0.22 "

Table 2 (continued)
Frequency fits for various isotopes using the force constants of this work

HAS $^{32} 0$
OBS. FREQ. TALC. FREQ. DIFFERENCE PERCENT ERROR

	$\left(\mathrm{cm}^{-1}\right)$
	3309.0
2	1249.0
3	1083.0
4	900.0
5	754.0
6	447.0

OBS. FREQ. CALL. FREQ. DIFFERENCE PERCENT ERROR
HAS ${ }^{34}{ }^{3} 0$

$\left(\mathrm{cm}^{-1}\right)$	$\left(\mathrm{cm}^{-1}\right)$	$\left(\mathrm{cm}^{-1}\right)$	
0.0	3321.6	0.0	0.0
1234.0	1239.3	-5.3	-0.429
0.0	1064.4	0.0	0.0
0.0	923.9	0.0	0.0
0.0	753.9	0.0	0.0
0.0	434.8	0.0	0.0

DIS ${ }^{32} 0 \quad$ OBS. FREQ. TALC. FREQ. DIFFERENCE PERCENT ERROR $\left(\mathrm{cm}^{-1}\right) \quad\left(\mathrm{cm}^{-1}\right)$ $\left(\mathrm{cm}^{-1}\right)$

1	2450.0	2432.4	17.6	0.718
2	1245.0	1244.4	0.6	0.050
3	1048.0	1043.0	5.0	0.477
4	752.0	724.0	28.0	3.717
5	592.0	590.9	1.1	0.192
6	400.0	412.9	-12.9	-3.227

INS ${ }^{34} 0$
OBS. FREQ. CALL. FREQ. DIFFERENCE PERCENT ERROR $\left(\mathrm{cm}^{-1}\right) \quad\left(\mathrm{cm}^{-1}\right)$
$\left(\mathrm{cm}^{-1}\right)$
1
2
3
4
5
6

0.0	2432.4
1230.0	1230.0
0.0	1037.6
0.0	721.2
0.0	589.6
0.0	410.6

0.0
0.0
$1230.0 \quad 1230.0$
-0.2
0.0
-0.018
$0.0 \quad 1037.6$
0.0
0.0
0.0
589.6
0.0
0.0
0.0
410.6
0.0
0.0

Table 2 (continued)

Eigenvector and Inverse Eigenvector Matrices for $\mathrm{HNS}^{32} 0$ Based on the Force Constants of this Work FREQUENCY $=3321.9 \mathrm{~cm}^{-1}$ EIGENVECTORS
$1.0312-0.0335$
$0.0005-0.0429$
0.0429
0.0

FREQUENCY $=1259.4 \mathrm{~cm}^{-1}$
$0.0082 \quad 0.2417 \quad-0.2219 \quad-0.4022 \quad 0.0202 \quad 0.0$
FREQUENCY $=1075.3 \mathrm{~cm}^{-1}$
$\begin{array}{llllll}0.0062 & 0.1750 & 0.2104 & -0.3769 & -0.0738 & 0.0\end{array}$
FREQUENCY $=932.7 \mathrm{~cm}^{-1}$
$\begin{array}{llllll}0.0086 & 0.1102 & 0.0079 & 0.8863 & -0.1230 & 0.0\end{array}$
FREQUENCY $=746.6 \mathrm{~cm}^{-1}$
0.0
0.0
0.0
0.0
0.0
1.2215

FREQUENCY $=433.7 \mathrm{~cm}^{-1}$
$\begin{array}{llllll}-0.0017 & 0.0158 & 0.0115 & 0.0707 & 0.2834 & 0.0\end{array}$

EIGENVECTOR INVERSE
FREQUENCY $=3321.9 \mathrm{~cm}^{-1}$
$\begin{array}{llllll}0.9680 & -0.0386 & 0.0006 & -0.0034 & 0.0086 & 0.0\end{array}$
FREQUENCY $=1259.4 \mathrm{~cm}^{-1}$
$\begin{array}{llllll}0.0535 & 1.9358 & -1.9954 & -0.2196 & 0.0284 & 0.0\end{array}$
FREQUENCY $=1075.3 \mathrm{~cm}^{-1}$
$0.0555 \quad 1.9230 \quad 2.5959 \quad-0.2824 \quad-0.1420 \quad 0.0$
FREQUENCY $=932.7 \mathrm{~cm}^{-1}$
0.10211 .6093
0.1288
$0.8824-0.3144$
0.0

Table 2 (continued)

FREQUENCY $=746.6 \mathrm{~cm}^{-1}$
$\begin{array}{llllll}0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.8187\end{array}$
FREQUENCY $=433.7 \mathrm{~cm}^{-1}$
$\begin{array}{llllll}-0.0916 & 1.0666 & 0.8740 & 0.3255 & 3.3521 & 0.0\end{array}$

Table 3

Calculated values of $R_{M N}$ for v_{3} and ν_{5} with $R_{S O}=0.15 \AA$ and $\Delta{ }_{N S O}=0.26$ Radian

v_{3}

v' $v^{\prime \prime}=0$
$0 \quad 0.055549$
10.140021
20.245643
$3 \quad 0.346050$
$4 \quad 0.414857$
$5 \quad 0.436694$
$6 \quad 0.411496$
$7 \quad 0.351593$
$8 \quad 0.274826$
$9 \quad 0.197751$
$10 \quad 0.131543$
v' $v^{\prime \prime}=0$
00.036467
10.103645
20.202506
30.313296
40.405846
50.452940
$-6 \quad 0.442376$
$7 \quad 0.381074$
8.0 .290026
90.194110
$10 \quad 0.112692$

Fig. 11 Calculated transition envelope, for $\Delta R_{N S}=\Delta R_{S 0}=0.15 \AA$ and
$\Delta \alpha_{\text {NSO }}=15^{\circ}$

Fig. 12 Correlation of $\Delta \mathbb{R}_{\text {NS }}$ and $\Delta{ }^{\text {NSO }}$ with different system origin-absorption maximum separations

C. Electronic States of Thionylimide

To achieve an understanding of the absorption spectrum of HNSO, it is necessary to establish the possible electronic states of HNSO. There are two possible ways to proceed: either the electronic states of HNSO can be correlated with the states of the isoelectronic molecule, SO_{2}, or the electronic states of HNSO can be derived from a reasonable set of dissociation products. These two methods will each be considered.

States of HNSO derived from dissociation products
The most probable dissociation products will result from the rupture of the weakest bond in the molecule. Some relevant dissociation energies are given below (23).

$\mathrm{SO}_{2(\mathrm{~g})} \rightarrow \mathrm{SO}_{(\mathrm{g})}+{ }^{0}(\mathrm{~g})$	$\Delta \mathrm{H}=5.9$ e.v.
$\mathrm{NS}_{(\mathrm{g})} \rightarrow \mathrm{N}_{(\mathrm{g})}+{ }^{\mathrm{S}}(\mathrm{g})$	$\Delta H=5.61$ e.v.
$\mathrm{HNO}_{(\mathrm{g})} \rightarrow \mathrm{H}_{(\mathrm{g})}+{ }^{\mathrm{NO}}(\mathrm{g})$	$\Delta H=2.11$ e.v.
$\mathrm{NH}_{3(\mathrm{~g})} \rightarrow \mathrm{H}_{(\mathrm{g})}+\mathrm{NH}_{2(\mathrm{~g})}$	$\Delta H=4.3$ e.v.

Although the bond energy of the NS radical is certainly greater than that in HNSO, it is reasonable to expect the $\mathrm{N}-\mathrm{H}$ bond to be the weakest in the molecule. Thus the most likely dissociation process is.

$$
\mathrm{HNSO}_{(\mathrm{g})} \rightarrow \mathrm{H}_{(\mathrm{g})}+\mathrm{NSO}_{(\mathrm{g})}
$$

The ground state of HNSO will be formed from the dissociation products in their ground states. The H atom will be in the $1 s^{1}{ }^{2} S$
atomic ground state. The nature of the ground state of NSO is more difficult to determine. $N S O$ is isoelectronic with NO_{2} and will probably have corresponding electron configurations and states. It is noted that NO_{2} belongs to the $\mathrm{C}_{2 \mathrm{v}}$ point group, whereas NSO belongs to the C_{s} point group. (See Table(4)for $C_{2 v}$ and C_{S} character tables and the correlation of the irreducible representations of the $C_{2 v}$ and C_{s} point groups.)
NO_{2} in its ground state has the following electron configuration (3):

$$
\left(5 a_{1}\right)^{2}\left(1 a_{2}\right)^{2}\left(4 b_{2}\right)^{2}\left(6 a_{1}\right) \ldots{ }^{2} A_{1}\left(C_{2 v}\right),{ }^{2} A^{\prime}\left(C_{s}\right)
$$

Here the numbers $(5,1,4,6)$ refer to the number of times a certain representation has appeared in the molecular orbital configuration. Thus $5 a_{1}$ refers to the fifth a_{1} molecular orbital. One can see that the NSO radical in its ground state will probably be in $a^{2} A^{\prime}$ state. Thus the ground state of HNSO will be formed from a $\left({ }^{2} S\right) H$ atom and a ($\left.{ }^{2} A^{\prime}\right)$ NSO radical. Using the building up principles (23) one obtains ${ }^{1,3} A^{\prime}$ states of $H N S O$. It is seen that, for molecules with even numbers of electrons, no partially filled degenerate orbitals, or any near lying unfilled orbitals, Hund's Rule (23) does not hold and the singlet has the lower energy. Thus, according to this approach the ground state of HNSO will be the singlet and the triplet will be the first excited state.

The first excited state of NO_{2} has the following electron configuration (23):

$$
\left(5 a_{1}\right)^{2}\left(1 a_{2}\right)^{2}\left(4 b_{2}\right)^{2}\left(2 b_{1}\right) \ldots{ }^{2} B_{1}\left(C_{2 v}\right),{ }^{2} A^{\prime \prime}\left(C_{s}\right)
$$

Thus the first excited state of NSO will be a ${ }^{2}$ A". state. From a $\left({ }^{2} S\right)$ H atom and a (${ }^{2} A^{\prime \prime}$) NSO radical one obtains (${ }^{1,3} \mathrm{~A}^{\prime \prime}$) HNSO. As we shall see, the triplet will have the lower energy, and the singlet will have the higher energy. A potential energy diagram based on these results is shown in fig. (13).

Correlation of the Electronic States of SO_{2} and HNSO
SO_{2} has the following ground state and low-lying excited state electron configurations (23).

$$
\begin{array}{lll}
\ldots\left(1 a_{2}\right)^{2}\left(4 b_{2}\right)^{2}\left(6 a_{1}\right)^{2}, & { }^{1} A_{1} & \text { (ground state) } \\
\ldots\left(1 a_{2}\right)^{2}\left(4 b_{2}\right)^{2}\left(6 a_{1}\right)^{1}\left(2 b_{1}\right)^{1}, & 1,3_{B_{1}} & \\
\ldots\left(1 a_{2}\right)^{2}\left(4 b_{2}\right)^{1}\left(6 a_{1}\right)^{2}\left(2 b_{1}\right)^{1}, & 1,3 A_{2} \\
\ldots\left(1 a_{2}\right)^{1}\left(4 b_{2}\right)^{2}\left(6 a_{1}\right)^{2}\left(2 b_{1}\right)^{1}, & 1,3_{B_{2}} &
\end{array}
$$

The first excited state of SO_{2}, giving rise to the transition at $3900 \AA$, has been identified as a ${ }^{3} \mathrm{~B}_{1}$ state (25). Evidence obtained by Hochstrasser and Marchetti (26) from matrix isolation studies shows another triplet state lying close to the ${ }^{3} B_{1}$ state, which is probably the ${ }^{3} A_{2}$ state. The $2900 \AA$ system of $S 0_{2}$, though much stronger than the $3900 \AA$ system of SO_{2}, is not as strong as would be expected for an allowed singlet transition. Dixon (22) has suggested that it may be a ${ }^{1} A_{2}-{ }^{1} A_{1}$ vibronicallowed transition where the ${ }^{1} A_{2}$ state is interacting via the b_{2} antisymmetric stretching vibration with a higher B_{1} electronic state to give ${ }^{1} B_{1}-{ }^{1} A_{1}$ vibronic bands.

On the basis of these results the following energy level diagram for SO_{2} is drawn.

Using the correlation table for $C_{2 v}$ and C_{S} point groups, the lowest four states in HNSO are predicted to be ${ }^{1} A^{\prime},{ }^{3} A$ ", ${ }^{3} A$ ", and $1^{\prime \prime \prime}$ by correlation with the known states of SO_{2}. This method gives the same results as the previous method except that the first triplet is ${ }^{3} A^{\prime \prime}$ instead of ${ }^{3} A^{\prime}$.

This discussion shows that the ground state of thionylimide is most likely to be a ${ }^{1} A^{\prime}$ electronic state. The first two excited electronic states are given as triplets by both methods. As noted in the experimental section, approximately 0.40 meter-atm. were necessary to observe the weak continuum in the $3440 \AA$ region. Such weak transitions are usually associated with spin forbidden transitions. The second triplet which is not observed may lie close to the first triplet or under the $2900 \AA$ system of SO_{2}, in either case being undetectable. The $2700 \AA$ system of thionylimide is probably the first singlet transition.

Diffuse bands are usually associated with predissociation. Predissociation occurs when an electronic state with discrete
energy levels has the same energy as an unbound or repulsive electronic state. Thus ${ }^{3} A$ ' shown in fig. (13) may be predissociating the ${ }^{1} A$ " upper state of the $2700 \AA$ system. One should note that, as predissociation gets stronger, the diffuse vibrational bands themselves may no longer be discernible above the background. It is therefore possible that the observed Franck-Condon Maximum and the banded structure can be from the same excited electronic state given the acceptance of the large shape change proposed in Section B.

Table 4
Character Tables for the Point Groups C_{s} and $C_{2 v}$

Correlation of the Irreducible Representations of the C_{s} and $C_{2 v}$ Point Groups

$C_{2 v}$	C_{S}
A_{1}, B_{2}	A^{\prime}
A_{2}, B_{1}	$A^{\prime \prime}$

Fig. (13) Possible Potential Energy Curves for Thionylimide

CHAPTER II

${ }^{2} \Sigma$ and ${ }^{3} \Sigma$ Electronic States of Linear Molecules in which One or More Quanta of a Degenerate Bending Vibration is Excited

2-1 Derivation of the Hamiltonian and its Matrix Elements

For a linear polyatomic molecule in a Σ electronic state, one normally assumes that the molecule is better described by Hund's Case (b) coupling where the spin is almost "free", being only coupled to the rotation of the molecule, due to the absence of any interaction coupling the spin to the axis of the molecule such as spin orbit coupling. In a Σ electronic state, a Hund's Case (a) representation, where the spin and vibrational angular momenta have well defined components along the axis of the molecule, is a good approximation as long as the molecule is not rotating or in low rotational quantum levels. At high rotational quantum numbers, a Hund's Case (b) representation is a better description, and the results obtained using a Case (a) hamiltonian will be transformed into Case (b) notation as needed.

The hamiltonian for a linear polyatomic molecule in a multiplet Σ electronic state in which one or more quanta of the degenerate bending vibration is excited is given below, following Van Vleck (27) and Watson (28).

$$
\begin{gather*}
\left.H=B(r)\left[J_{x}-S_{x}-G_{x}\right)^{2}+\left(J_{y}-S_{y}-G_{y}\right)^{2}\right]+2 \lambda\left(S_{z}{ }^{2}-\frac{1}{3} S^{2}\right)+ \tag{1}\\
\gamma\left(S_{z}^{2}-S^{2}+J_{x} S_{x}+J_{y} S_{y}\right)+\gamma^{\prime}\left(G_{z} S_{z}\right)
\end{gather*}
$$

The first term is the ordinary rotational energy and involves only the x and y components since the rotational angular momentum vector is perpendicular to the molecular axis, which is taken as the z axis. In eq. (1), ${ }^{J}(x, y),{ }^{S}(x, y)$, and $G_{(x, y)}$ are just the components of the total, the spin, and the vibrational angular momentum. The second term is the dipole-dipole spin-spin interaction, where λ is the spin-spin interaction constant. The third term is the spin-rotation interaction. The last term is a quasi spin-rotation interaction where the rotational motion arises from a degenerate bending vibration. This has been discussed by Chang and Chiu (29), but has not yet been seen experimentally.

Eq. (1) can be rewritten by first expanding and substituting with the following relationships:

$$
\begin{array}{ll}
{\underset{\sim}{u}}^{2}-J_{z}^{2}=J_{x}^{2}+J_{y}^{2} & \text { and } \tag{2}\\
J \pm=J_{x} \pm i J_{y}^{2}-S_{z}^{2}=S_{x}^{2}+S_{y}^{2} \\
& S_{ \pm}=S_{x} \pm i S_{y}
\end{array}
$$

Thus eq. (1) becomes

$$
\begin{align*}
H= & B(r)\left[\jmath^{2}-J_{z}^{2}+S_{\sim}^{2}-S_{z}^{2}\right]+S_{z}^{2}(2 \lambda+\gamma) \\
& -S_{\sim}^{2}\left(\gamma+\frac{2}{3} \lambda\right)+\gamma^{\prime} G_{z} S_{z}+\left(\frac{1}{2} \gamma-B\right)\left(J_{+} S_{-}+J_{-} S_{+}\right)- \\
& B\left(J_{+} G_{-}+J_{-} G_{+}\right)+B\left(S_{+} G_{-}+S_{-} G_{+}\right)+B\left(G_{x}^{2}+G_{y}^{2}\right) \tag{3}
\end{align*}
$$

We now have the hamiltonian in a form in which we can discuss its matrix elements. The matrix elements of J_{\sim} and $\underset{\sim}{S}$ are well known [see Van Vleck (27) and Hougen (30)] and are given below:

$$
\begin{align*}
J_{n}^{2}|J, P\rangle & =J(J+1) \hbar^{2}|J, P\rangle \\
S^{2}|S, \Sigma\rangle & =S(S+1) \hbar^{2}|S, \Sigma\rangle \\
J_{z}^{2}|J, P\rangle & =P \hbar|J, P\rangle \\
S_{z}|S, \Sigma\rangle & =\Sigma \hbar|S, \Sigma\rangle \\
J_{\mp}|J, P\rangle & =[J(J+1)-P(P+1)]^{1 / 2} \hbar|J, P \pm 1\rangle \\
S_{ \pm}|S, \Sigma\rangle & =[S(S+1)-\Sigma(\Sigma \pm 1)]^{1 / 2} \hbar|S, \Sigma \pm 1\rangle \tag{4}
\end{align*}
$$

Here P is the eigenvalue of the operator $J_{z} . P$ is equal to $(\ell+\Sigma)$, where ℓ is the vibrational angular momentum quantum number, i.e. the eigenvalue of G_{z}, and Σ is the eigenvalue of S_{z}. ${\underset{\sim}{s}}^{S}$ has the normal sign of i in $i t s$ commutation relationships but $\underset{\sim}{J}$ does not. This anomalous sign of \mathbf{i} comes from the fact that, although ${ }_{\sim}$ has the normal sign of i in its commutation relationships when $\underset{\sim}{J}$ is referred to a space fixed axis system, when $\underset{\sim}{J}$ is referred to the molecule fixed axis system the anomalous sign of i appears in the commutation relationships for $\underset{\sim}{J}$. The sign change comes from the direction cosines which are used to transform the space fixed axes to the molecule fixed axes.

The matrix elements of $G_{ \pm}$are more complex. To obtain them, one starts with the definition of the Cartesian component G_{α}, ($\alpha=x, y, z$)

$$
\begin{equation*}
G_{\alpha}=\underline{Q}^{\operatorname{tr}} \Sigma^{\alpha} \underline{P} \tag{5}
\end{equation*}
$$

which relates G_{α} to the vector of the normai coordinates Q and their conjugate momenta $\underline{P} . \underline{\zeta}^{\alpha}$ is the Coriolis coupling coefficient matrix and is defined such that

$$
\begin{equation*}
\left(\underline{\zeta}^{\alpha}\right)_{u v}=\left(\underline{\ell}_{M^{\alpha}}^{\underline{\ell}}{ }^{t r}\right)_{u v} \quad \text { (u and } v \text { are vibrations) } \tag{6}
\end{equation*}
$$

where ℓ is the transformation matrix that transforms the mass weighted Cartesian displacement coordinates, q, to normal coordinates, Q.

$$
\begin{equation*}
\underline{Q}=\underline{\ell} \underline{q} \tag{7}
\end{equation*}
$$

\underline{M}^{α} is one of Meal and Polo's cross product matrices [see Meal and Polo (31)]. One should note that $\underline{\varsigma}^{\alpha}$ is an antisymmetric matrix and therefore $\zeta^{\alpha} u v=-\zeta^{\alpha}{ }_{v u}$.

Most of the ζ coefficients are zero for linear molecules. The coefficient $\zeta_{u v}$ is only non-zero when the direct product of the irreducible representations of the vibrations u and v transforms as a rotation in the point group to which the molecule belongs. Thus in a symmetric triatomic linear molecule, only the $\sigma_{u}{ }^{+}$and π_{u} vibrations will have non-zero Coriolis coupling coefficients between them. Therefore only $\zeta_{23}\left(\zeta_{32}\right)$ will be non-zero because $\Gamma_{v_{2}} \times \Gamma_{v_{3}}=\pi_{u} \times \sigma_{u}{ }^{+}=\pi_{g}$ where π_{g} is the species of the rotations R_{x} and R_{y} in the $D_{\infty} h$ point group. For an unsymmetrical triatomic molecule only $\zeta_{21}^{\alpha}, \zeta^{\alpha}{ }_{12}, \zeta^{\alpha}{ }_{32}$, and ζ_{23}^{α} will be non-zero. For large molecules, the expression for G_{α} will become unwieldy. This thesis will therefore be restricted to unsymmetrical triatomic
molecules, but the formulae derived can be generalized for larger molecules. Eq. (5) for unsymmetrical triatomic molecules becomes

$$
\begin{equation*}
G_{\alpha}=\sum_{k=1,3}\left(Q_{2} \zeta_{2 k}^{\alpha} P_{k}+Q_{k} \zeta_{k 2}^{\alpha} P_{2}\right) \tag{8}
\end{equation*}
$$

Now defining $G_{ \pm}$as

$$
\begin{equation*}
G_{ \pm}=G_{x} \pm i G_{y} \tag{9}
\end{equation*}
$$

eq. (5) gives

$$
\begin{equation*}
G_{ \pm}=\sum_{k=1,3}\left(\pm i Q_{k} \zeta_{k 2}^{\alpha} P_{2 \pm} \pm i Q_{2 \pm} \zeta_{2 k}^{\alpha} P_{k}\right) ; \alpha=(x, y) \tag{10}
\end{equation*}
$$

and finally

$$
\begin{equation*}
G_{ \pm}=\sum_{k=1 ; 3} \zeta_{2 k}^{\alpha}\left[\pm i Q_{k} P_{2 \pm} \mp i P_{k} Q_{2 \pm}\right] \tag{11}
\end{equation*}
$$

The matrix elements of Q_{k} and P_{k} for a harmonic oscillator are given by Wilson, Decius, and Cross (32) and are

$$
\begin{align*}
& \left\langle v_{k}+1\right| P_{k}\left|v_{k}\right\rangle=i \sqrt{\frac{1}{2} \hbar v_{k}\left(v_{k}+1\right)} \\
& \left\langle v_{k}\right| P_{k}\left|v_{k}+1\right\rangle=-i \sqrt{\frac{5}{2} \hbar v_{k}\left(v_{k}+1\right)} \\
& \left\langle v_{k}+1\right| Q_{k}\left|v_{k}\right\rangle=\sqrt{\frac{h}{8} 2 \frac{1}{v_{k}}\left(v_{k}+1\right)} \\
& \left\langle v_{k}\right| Q_{k}\left|v_{k}+1\right\rangle=\sqrt{\frac{h}{8 \pi} 2 \frac{1}{v_{k}}\left(v_{k}+1\right)} \tag{12}
\end{align*}
$$

The matrix elements of i $P_{2 \pm} \mp Q_{2 \pm}$ for the doubly degenerate harmonic oscillator are given by Moffitt and Liehr (33), but will be given here in a slightly more useful form.

$$
\begin{align*}
& \left\langle v_{2} \pm 1, \ell+1\right| P_{+}\left|v_{2} \ell\right\rangle= \pm\left[\frac{1}{2} h v_{2}\right]^{\frac{1}{2}}\left[\left(v_{2}+1\right) \pm(\ell+1)\right]^{\frac{1}{2}} \\
& \left\langle v_{2} \pm 1, \ell-1\right| P_{-}\left|v_{2} \ell\right\rangle= \pm i\left[\frac{1}{2} h v_{2}\right]^{\frac{1}{2}}\left[\left(v_{2}+1\right) \mp(\ell-1)\right]^{\frac{1}{2}} \\
& \left\langle v_{2} \pm 1, \ell+1\right| Q_{+}\left|v_{2} \ell\right\rangle=\left[\frac{h}{8 \pi 2 v_{2}}\right]^{\frac{1}{2}}\left[\left(v_{2}+1\right) \pm(\ell+1)\right]^{\frac{1}{2}} \\
& \left\langle v_{2} \pm 1, \ell-1\right| Q_{-}\left|v_{2} \ell\right\rangle=\left[\frac{h}{8 \pi^{2} v_{2}}\right]^{\frac{1}{2}}\left[\left(v_{2}+1\right) \mp(\ell-1)\right]^{\frac{1}{2}} \tag{13}
\end{align*}
$$

Now it can be seen that for G_{-}and G_{+}there will be four types of non-zero matrix elements for each.
$\left\langle v_{2}+1, \ell \pm 1, v_{k}+1\right| G_{ \pm}\left|v_{2} \ell v_{k}\right\rangle=\mp \pi \zeta_{2 k} \Phi_{k}\left[\left(v_{k}+1\right)\left(v_{2} \pm \ell+2\right)\right]^{\frac{3}{2}}$
$\left\langle v_{2}-1, \ell \pm 1, v_{k}+1\right| G_{ \pm}\left|v_{2} \ell v_{k}\right\rangle= \pm \pi \zeta_{2 k} \Omega_{k}\left[\left(v_{k}+1\right)\left(v_{2} \bar{F}_{\ell}\right)\right] \frac{1}{2}$
$\left\langle v_{2}+1, \ell \pm 1, v_{k}-1\right| G_{ \pm}\left|v_{2} \ell v_{k}\right\rangle=\mp \hbar \zeta_{2 k} \Omega_{k}\left[v_{k}\left(v_{2} \pm \ell+2\right)\right]^{\frac{1}{2}}$
$\left\langle v_{2}-1, \ell \pm 1, v_{k}-1\right| G_{ \pm}\left|v_{2} i v_{k}\right\rangle= \pm \hbar \zeta_{2 k} \Phi_{k}\left[v_{k}\left(v_{2} \overline{\mp \ell}\right)\right]^{\frac{1}{2}}$
where $k=1,3$ and, following Mills (34), with the definitions

$$
\begin{equation*}
\left.\Omega_{k}=\frac{1 / 2}{2}\left[\sqrt{\frac{v_{2}}{v_{k}}}+\sqrt{\frac{\nu_{k}}{v_{2}}}\right] ; \quad \Phi_{k}=\frac{1 / 2}{\frac{v_{2}}{v_{k}}}-\sqrt{\frac{v_{k}}{v_{2}}}\right] \tag{15}
\end{equation*}
$$

Before beginning to evaluate the energy levels of the hamiltonian given in eq. (3), a suitable notation for the basis functions must be specified. Since the hamiltonian is set up in a Case (a) representation, where, as noted previously, the spin and vibrational angular momenta have well defined components along the molecular axis, a basis denoted by $\left\langle v_{2}, \ell, v_{k}, J, P, \Sigma\right|$ will be used. The symbols are as previously defined.

In eq. (3) the first four terms are diagonal in all quantum numbers. The last term $G_{x}{ }^{2}+G_{y}{ }^{2}$, as shown by Hougen (35), only contributes small amounts to the anharmonicity constants x_{12}, x_{23}, and will be neglected. The fifth term which represents the spinrotation interaction, is off-diagonal in Σ but diagonal in the vibrational quantum numbers. The sixth term involves $G_{ \pm}$and is therefore off-diagonal in the vibrational quantum numbers. It is this term which is responsible for the Coriolis interaction which resolves the degeneracy of states differing only in the sign of ℓ and brings about the familiar ℓ-type doubling. The seventh term is also off-diagonal in the vibrational quantum numbers and represents a "gyroscopic" spin-vibration interaction.

Since we are interested in the rotational energy levels in a given vibrational level, the elements off-diagonal in the vibrational quantum numbers must be taken into account correctly. This has been accomplished by the use of the Van Vleck transformation [Kemble (36)]
$<v \ell^{\prime}\left|H^{\sim}\right| v^{\prime} \ell^{\prime \prime}>=v^{\prime} \neq v \frac{\left\langle v^{\prime} \ell^{\prime}\right| H\left|v \ell^{\prime \prime \prime}><v \ell^{\prime \prime \prime}\right| H\left|V^{\prime} \ell^{\prime \prime}\right\rangle}{E_{v}-E_{v^{\prime}}}$
For the case $v_{2}=v_{k}=\ell=0$ in a triplet state, the application of the Van Vleck transformation can be easily demonstrated. The $v_{2}=v_{k}=\ell=0$ level will only interact with the $v_{2}=v_{k}=1, \ell= \pm 1$ levels via the sixth and seventh terms. Shown in Table(5) are the matrix elements of these two terms. Upon application of the Van Vleck transformation, one obtains the second order correction to the
matrix for the $v_{2}=v_{k}=\ell=0$ vibrational level. The result is shown below.

	$<000.3-1-1$	<0003001	<0000111
<000 J-1-11	$\bar{B}^{2}[4 J(J+7)]$	$-4 \bar{B}^{2} \sqrt{2 J(J+7)}$	0
$<000 J 001$		$\bar{B}^{2}[4 J(J+1)+8]$	$-4 \bar{B}^{2} \sqrt{2 J(J+1)}$
<0003111	symmetric		$\bar{\beta}^{2}[4 \mathrm{~J}(\mathrm{~J}+1)]$
$\left(\bar{B}^{2}=\frac{-B^{2} \zeta^{2} \Phi^{2}}{\omega_{k}+\omega_{2}}\right)$			

One can see that carrying out the Van V1eck transformation for higher vibrational levels will be very tedious. To avoid this procedure the results of carrying out the Van Vleck transformation in the general case were investigated, and the general forms of the resultant terms are tabulated in Table(6). The matrix elements of these operators can be evaluated using eqs. $(4,14)$ and are given in Table(7) in terms of q, the normal 1 -type doubling parameter for singlet states; $\tilde{\alpha}$, the Coriolis contribution to the effective B value for a given vibrational level; and \tilde{g}, the Coriolis contribution to g_{22}, the anharmonicity constant from the standard vibrational energy formula

$$
\begin{equation*}
E\left(v_{2}, l\right)=\omega_{2}\left(v_{2}+1\right)+g_{22^{\ell^{2}}} \tag{18}
\end{equation*}
$$

The matrix elements of the first three terms of the hamiltonian shown in eq. (3) are diagonal, and using eq. (4) are simply

$$
\begin{align*}
& \left\langle v_{2} \ell v_{k} J P_{\Sigma}\right| H_{\text {diag. }} \mid v_{2} \ell v_{k} J P_{\Sigma\rangle}=B\left[J(J+1)-(\ell+\Sigma)^{2}+\right. \\
& S(S+1)-\Sigma]^{2}+\Sigma^{2}(2 \lambda+\gamma)-S(S+1)\left(\gamma+\frac{2}{3} \lambda\right)+\gamma^{\prime} \ell \Sigma \tag{19}
\end{align*}
$$

The fifth term in eq. (3), the spin-rotation interaction, is off-diagonal in Σ, but is diagonal in v_{2}, ℓ, and v_{k}.

$$
\begin{align*}
& \left.\left\langle v_{2} \ell v_{k} J P, \Sigma \pm 1\right| H_{J} \cdot S \mid v_{2} \ell v_{k} J P_{\Sigma}\right)= \\
& \quad\left(\frac{l}{2} \gamma-B\right)[J(J+1)-(\ell+\Sigma)(\ell+\Sigma \pm 1)]^{\frac{1}{2}}[S(S+1)-\Sigma(\Sigma \pm 1)]^{\frac{1}{2}} \tag{20}
\end{align*}
$$

It is seen from eqs. $(19,20)$ and Table(7) that it is possible to incorporate B and $\tilde{\alpha}_{v}$ into an effective $B\left(B_{v}{ }^{\text {eff }}\right.$) for a given vibrational level since the quantum number dependence of B and $\tilde{\alpha}_{v}$ are the same.

2-2 Results and Discussion

The results deal with both ${ }^{2} \Sigma$ and ${ }^{3} \Sigma$ electronic states in which $v_{2}=1,2$ and $v_{k}=0$, where v_{2} corresponds to a degenerate bending vibration and v_{k} corresponds to a stretching vibration. These cases are the ones of prime interest because they are the cases most likely to be observed experimentally. Utịizing eqs. $(19,20)$ and Table (7), the matrix correct to second order can be immediately written down in the Case (a) representation. Since all the resulting matrices are doubly symmetric, they can be factorized into smaller sub-matrices using the Wang transformation (37) [see Appendix 2]. These sub-matrices correspond to either the Kronig (+) or (-) rotational levels. The resulting sub-matrices can be diagonalized. The results can be transformed to a Case (b) representation as needed.

${ }^{2}$ E Electronic States

For the level $v_{2}=1, \ell= \pm 1, v_{k}=0$, in a ${ }^{2}$ electronic state one obtains the matrix shown in Table (8)using eqs. $(19,20)$ and Table(7). Use of the Wang transformation yields the following pair of matrices.

$$
\begin{aligned}
& |\ell, \Sigma\rangle \quad \frac{1}{\sqrt{2}}\left\{1, \frac{1}{2}> \pm \mid-1,-\frac{1}{2}>\right\} \quad \frac{1}{\sqrt{2}}\left\{1,-\frac{1}{2}> \pm \mid-1, \frac{1}{2}>\right\}
\end{aligned}
$$

These two matrices (differing in the sign of the q terms) can easily be diagonalized to give four energy levels. The general energy equation is given below.

$$
\begin{align*}
E= & B_{1}\left[\left(J+\frac{1}{2}\right)^{2}-1\right]-\frac{1}{2} \gamma+\frac{1}{2} q\left(J+\frac{1}{2}\right) \pm \\
& \left\{\left[\frac{1}{2} \gamma^{\prime}-B_{1}+\frac{1}{2} q\left(J+\frac{1}{2}\right)^{2}\right]^{2}+\left[\frac{1}{2} \gamma-B_{1}+\frac{1}{2} q\left(J+\frac{1}{2}\right)^{2}\right]^{2}\left[\left(J+\frac{1}{2}\right)^{2}-1\right]\right\}^{\frac{1}{2}} \tag{22}
\end{align*}
$$

One should notice that in generating the four energy levels, one must be consistent in the choice of sign of the q terms, but this choice is independent of the sign of the square root. Since
the matrix can be diagonalized exactly, one just has to substitute ($N=J+\frac{1}{2}$) and $\left(N=J-\frac{3}{2}\right)$ to obtain the results in Case (b) notation. Thus eq. (22) becomes

$$
\begin{align*}
& F_{2}\left(N=J+\frac{1}{2}\right)=B_{1}\left(N^{2}-1\right)-\frac{1}{2} \gamma+\frac{7}{2} q N+\left\{\left[\frac{1}{2} \gamma^{\prime}-B_{1} 1^{\frac{1}{2} q} q\right]^{2}+\right. \\
& \left.\quad\left[\frac{1}{2} \gamma-B_{1} 1^{\frac{1}{2} q} q\right]^{2}\left[N^{2}-1\right]\right\}^{\frac{1}{2}} \tag{23}\\
& F_{1}\left(N=J-\frac{1}{2}\right)=B_{1}\left(N^{2}+2 N\right)-\frac{1}{2} \gamma+\frac{1}{2} q(N+1)-\left\{\left[\frac{3}{2} \gamma \gamma^{\prime}-B_{1} \pm \frac{1}{2} q(N+1)\right]^{2}+\right. \\
& \therefore \tag{24}\\
& \left.\quad\left[\frac{1}{2} \gamma-B_{1} 1^{ \pm \frac{1}{2} q}(N+1)\right]\left[N^{2}+2 N\right]\right\}^{\frac{1}{2}}
\end{align*}
$$

The above equations correspond to the formulae that Hill and Van Vleck (27) have derived for ${ }^{2}$ II electronic states if the terms in γ and q are omitted, and γ^{\prime} is substituted for the spin-orbit coupling constant, A. Thus one can see by analogy to ${ }^{2} \pi$ electronic states that, unless γ^{\prime} is large, the splitting it will cause will be quenched by the spin uncoupling, and will merge into the spin-rotation interaction splitting as the molecule rotates faster and faster; that is, the effect of $\gamma^{\prime} G_{z} S_{z}$ in coupling the spin to the molecular axis will be overcome by the term $-\left(B-\frac{1}{2} \gamma\right)\left(J_{+} S_{-}+J_{-} S_{+}\right)$. If γ^{\prime} is negligible and B is large compared with γ, the terms under the square root sign in eqs. $(23,24)$ can be simplified, and the equations reduce to the equations used for ${ }^{2} \pi$ vibronic levels of ${ }^{2} \Sigma$ electronic states given by Johns (38), where the spin doubling and e-type doubling are separate entities. These equations are given here.

$$
\begin{align*}
& F_{2}(N)=B[N(N+1)-1]-\frac{1}{2} \gamma(N+1) \pm \frac{1}{2} 9 N(N+1) \tag{25}\\
& F_{1}(N)=B[N(N+1)-1]+\frac{1}{2} \gamma(N) \quad \pm \frac{1}{2} 9 N(N+1) \tag{26}
\end{align*}
$$

Thus if γ^{\prime} is negligible and $B_{1} \pm \frac{1}{2} q\left(J+\frac{1}{2}\right) \gg \gamma$, the spin splitting and l-type doubling are indeed separate.

When two quanta of a degenerate bending vibration are excited, ${ }^{2} \Sigma(\ell=0)$ and ${ }^{2} \Delta(\ell= \pm 2)$ vibronic states are formed. Using eqs. $(19,20)$ and Table(7), the corresponding matrix can be written down. Upon application of the Wang transformation one produces the two 3×3 matrices given in Table(9). To obtain the Case (b) representation, where the rotational energy is diagonal, it is necessary to find the matrix \underline{S} such that

$$
\begin{equation*}
\underline{S} \underline{H}_{\text {rot }}(\text { case } a) \underline{s}^{-1}=H_{\text {rot }}(\text { case b }) \tag{27}
\end{equation*}
$$

To obtain the transformation matrix \underline{S} for the ${ }^{2} \Delta$ sub matrices one proceeds to set up the problem as follows. Written out in full eq. (27) becomes

$$
\left.\left.\begin{array}{rl}
\underline{s} & {\left[\begin{array}{cc}
B\left[\left(J+\frac{1}{2}\right)^{2}-2\right] & -B \sqrt{\left(J+\frac{1}{2}\right)^{2}-4} \\
-B \sqrt{\left(J+\frac{1}{2}\right)^{2}-4} & B\left[\left(J+\frac{1}{2}\right)^{2}-6\right]
\end{array}\right]} \\
\left(N=J-\frac{1}{2}\right) & \left(N=J+\frac{1}{2}\right)
\end{array}\right] \quad \begin{array}{cc}
B[N(N+7)-4] & 0 \\
0 & B[N(N+1)-4]
\end{array}\right] \quad .
$$

The Case (b) matrix is in terms of N and not J. To write the Case (b) matrix in terms of J, one substitutes $N=J+\frac{1}{2}$ and $N=J-\frac{3}{2}$ respectively, for the two N values. The Case (b) matrix becomes
$B\left[\begin{array}{cc}J^{2}-\frac{17}{4} & 0 \\ 0 & J^{2}+2 J-\frac{13}{4}\end{array}\right]$
Now, solving for the matrix \underline{S}^{-1}, one obtains for the lower eigenvalue, $B\left(J^{2}-\frac{17}{4}\right)$, the following simultaneous equations

$$
\left[\begin{array}{cc}
\left(J+\frac{1}{2}\right)^{2}-2-J^{2}+\frac{17}{4} & -\sqrt{\left(J+\frac{1}{2}\right)^{2}-4} \tag{29}\\
-\sqrt{\left(J+\frac{1}{2}\right)^{2}-4} & \left(J+\frac{1}{2}\right)^{2}-6-J^{2}+\frac{17}{4}
\end{array}\right] \quad\left[\begin{array}{l}
S_{12}^{-1} \\
S_{22}^{-1}
\end{array}\right]=0
$$

Therefore:

$$
S_{22}^{-1}=\sqrt{\frac{J+\frac{5}{2}}{2\left(J+\frac{1}{2}\right)}} \quad, \quad S_{12}^{-1}=\sqrt{\frac{1+\frac{3}{2}}{2\left(J+\frac{1}{2}\right)}}
$$

For the upper eigenvalue, $B\left(\mathrm{~J}^{2}+2 \mathrm{~J}-\frac{13}{4}\right)$ one similarly obtains

$$
S_{21}^{-1}=\sqrt{\frac{J-\frac{3}{2}}{2\left(J+\frac{1}{2}\right)}} \quad, \quad S_{11}^{-1}=\sqrt{\frac{J+\frac{5}{2}}{2\left(J+\frac{1}{2}\right)}}
$$

Thus

$$
\begin{array}{ll}
{\left[\frac{j+\frac{5}{2}}{2\left(J+\frac{1}{2}\right)}\right]^{\frac{1}{2}}} & -\left[\frac{J-\frac{3}{2}}{2(J+\sqrt{2})}\right]^{\frac{1}{2}} \tag{30}\\
{\left[\frac{J-\frac{3}{2}}{2\left(J+\frac{1}{2}\right)}\right]^{\frac{1}{2}}} & {\left[\frac{\mathrm{~s}+\frac{5}{2}}{2\left(J+\frac{1}{2}\right)}\right]^{\frac{1}{2}}}
\end{array}
$$

Since the hamiltonian was set up in a molecule-fixed axis system, care must be taken with the phases of the results when applying them to a space fixed axis system due to the previously mentioned anomalous sign of i in the commutation relationships of J. This would be important in doing intensity calculations for the branches of a band involving such a state [see Hougen (39)].

Transforming the entire Case (a) matrix results in the Case (b) matrix shown in Table(9). The γ^{\prime} terms have been omitted from the Case (b) matrix because they are likely to be negligible. There are terms off diagonal in γ in the Case (b) matrix that do not normally appear in the Case (b) formalism. These terms have been retained because the spin-rotation interaction in the Case (b) hamiltonian is usually written

$$
\begin{equation*}
H_{S \cdot R}=\gamma N \sim S_{\sim}^{N} \tag{31}
\end{equation*}
$$

This formalism is only good for Σ vibronic states, where N_{z} is zero, and in the above case N_{z} is definitely non-zero. This is discussed by Freed (40) and Carrington, et. al. (41).

$\mathbf{3}_{\Sigma \text { Electronic States }}$

The formulae for ${ }^{3} \Sigma$ electronic states are of interest because data are available for the zero point levels of molecules in 3_{Σ} states ($\mathrm{NCN}, \mathrm{HCCN}, \mathrm{C}_{2} \mathrm{~N}_{2}$), but as yet no bands involving degenerate vibrational levels have been analyzed. One can calculate energy level patterns for $v_{2}=1,2$ and determine what form the predicted energy level pattern will take. In triplet states there are effects from λ, the spin-spin interaction, which are not present in the doublet states. As in doublet states, the vibrational angular momentum will upset the normal spin splitting pattern until the rotation of the molecule quenches it by uncoupling it from the axis.

For the $v_{2}=1$ level $\left(v_{k}=0\right)$ in a $3_{\bar{\Sigma}}$ electronic state, one obtains from the Wang transformation two 3×3 matrices. These are shown in Table(10). To determine the corresponding Case (b) matrices one proceeds in the same manner as for the $v_{2}=2$ level in a ${ }^{2} \Sigma$ electronic state. The result is given in Table(10) below the Case (a) matrices. For $v_{2}=2$ the Wang transformation yields a 4×4 and a 5×5 matrix, shown in Table(11). The $(-)$ signs in the matrix correspond to the 4×4 matrix and the $(+)$ signs to the 5×5 matrix. The 4×4 matrix is comprised of the three ${ }^{3} \Delta$ states and the ${ }^{3} \Sigma_{1}$ state. The very complicated Case (b) matrix is given below the Case (a) matrix.

A computer program written by Merer was used to diagonalize the Case (a) matrices for $v_{2}=1,2$ for the following cases of
interest: the $\tilde{a}^{3} \Sigma_{u}{ }^{+}$state of $C_{2} N_{2}$ (42), the $\tilde{X}^{3} \Sigma_{g}^{-}$state of NCN (43), and the ${ }^{3} \Sigma$ states involved in the $3200 \AA$ transition of HCCN (4). There are published values for B, λ, and γ for the $v=0$ levels of $\mathrm{C}_{2} \mathrm{~N}_{2}$ and NCN. There is no information for g, but q can be calculated. Data for $H C C N$ are limited. The value $|\lambda|=0.43 \mathrm{~cm}^{-1}$ for the ground state of HCCN is obtainable from the ESR spectrum (44). The B value is approximately $0.36 \mathrm{~cm}^{-1}$. If the spin-rotation constant is small (0.001), λ in the upper state is estimated as being $1.7 \mathrm{~cm}^{-1}$ or $0.8 \mathrm{~cm}^{-1}$, depending on the sign of λ in the ground state, from the observed head-head separations.

Figures (14 a,b,c) show the results of these calculations although no attempt is made to show l-type doubling effects. The term $B\left[N(N+1)-\ell^{2}\right]$ has been substracted from the energy.

Examination of figs. (14 a,b,c) reveals that the $3_{I I}$ and $3^{3} \Delta$ vibronic levels do not have the same form as the ${ }^{3} \Sigma$ vibronic levels. It is also seen that, depending on the relative sizes of B, λ, and r, there must be a convergence of ${ }^{3} \Pi,{ }^{3} \Delta$, and ${ }_{\Sigma}{ }_{\Sigma}$ vibronic states at high N values. However, the normal ${ }^{3} \Sigma$ energy levels are not conformed to at low N values. In $\mathrm{C}_{2} \mathrm{~N}_{2}$ where λ and B are of the same order of magnitude and γ is large, the patterns for ${ }^{3} \Delta, 3^{3}$, and ${ }^{3} \Sigma$ converge very quickly and only for low values of N will any deviation from the normal ${ }^{3}$ 年 pattern be seen. The opposite is observed in HCCN where there is quite a large deviation between ${ }^{3} \pi,{ }^{3} \Delta$, and ${ }^{3} \Sigma$ vibronic levels.

As mentioned previously, the ℓ-type doubling is not shown in figs. (14a,b,c), although it was calculated for the $v_{4}=1$
level of HCCN. At high N values the normal e-type doubling pattern for singlets is followed given by the equation

$$
\begin{equation*}
\Delta \nu=q N(N+1) \tag{32}
\end{equation*}
$$

but at low N values the ℓ-type doubling pattern is erratic. With 9 set at $0.003 \mathrm{~cm}^{-1}$, the theoretical ℓ-type doubling was calculated and plotted in fig. (15) with the deviation from eq. (32) as a function of N.

In the analysis of actual bands (yet to be done), it will be found that the normal ${ }^{3}$ combination relations, based on the formulae for ${ }^{3} \Sigma$ levels given by Miller and Townes (45), used for evaluating the parameters λ and γ will break down as the rotational branches are followed back to the band origin. This can be illustrated by the following relationship,

$$
\begin{equation*}
F_{1}(N-1)-F_{2}(N-1)+F_{3}(N+1)-F_{2}(N+1)=-(2 \lambda-\gamma) \tag{33}
\end{equation*}
$$

where,as N decreases, the left hand side of the equation will become smaller than the right hand side. For $N=10$ in the ${ }^{3} \Delta$ vibronic level of the given state of $H C C N$, the difference will be nearly $0.4 \mathrm{~cm}^{-1}$. Also, the intensities will probably not follow the normal 3_{Σ} pattern and it may be necessary to examine the form of the intensities to analyze the bands.

TABLE 5
Elements off diagonal in the vibrational quantum numbers for the $v_{2}=0$ level in ${ }^{3} \Sigma$ states
|000J-1-1> |000J00> |000J11>

$<1,-1,0, \pm,-2,-1 \mid$	$-B \zeta \Phi \sqrt{2 J}(J+1)-4$		
$<1,-1,00, J,-1,0 \mid$	2 B ¢Ф	$-B \zeta \Phi \sqrt{2 J(J+1)}$	
$<1,-1,0, \mathrm{~J}, 0,1 \mid$		$2 В 弓 \Phi$	$-B \zeta \Phi \sqrt{2 J(J+1)}$
$<1,1,0, \mathrm{~J}, 0,-1 \mid$	$\mathrm{B}_{\zeta} \Phi \sqrt{2 J(J+7)}$	$-2 B_{\zeta}{ }^{\Phi}$	
< $1,1,0, \mathrm{~J}, 1,0 \mid$		$B \zeta \Phi \sqrt{2 J(J+1)}$	$-2 \mathrm{~B} \zeta \Phi$
$<1,1,0,3,2,11$			$B_{\zeta}{ }^{\text {d }} \sqrt{2 J(J+}$

Table 6 Effective Operators Arising from Second-Order Transformation of the Hamiltonian

$$
\begin{array}{cccc}
\text { Term } & \Delta \ell & \Delta P & \Delta \Sigma \\
B^{2}\left(J_{+} J_{-} G_{-} G_{+}+J_{-} J_{+} G_{+} G_{-}\right) / \Delta v & 0 & 0 & - \\
B^{2}\left(S_{+} S_{-} G_{-} G_{+}+S_{-} S_{+} G_{+} G_{-}\right) / \Delta v & 0 & - & 0 \\
-B^{2}\left(J_{-} S_{+} G_{+} G_{-}+J_{+} S_{-} G_{-} S_{+}\right) / \Delta v & 0 & \pm 1 & \pm 1 \\
-B^{2}\left(J_{+} S_{+} G_{-}{ }^{2}+J_{-} S_{-} G_{+}{ }^{2}\right) / \Delta v & \pm 2 & \pm 1 & \mp 1 \\
B^{2}\left(J_{+}{ }^{2} G_{-}{ }^{2}+J_{-}{ }^{2} G_{+}{ }^{2}\right) / \Delta v & \pm 2 & \pm 2 & - \\
B^{2}\left(S_{+}{ }^{2} G_{-}{ }^{2}+S_{-}{ }^{2} G_{+}{ }^{2}\right) / \Delta v & \pm 2 & - & \mp 2 \\
& \Delta v=\left(\omega_{2} \pm \omega_{k}\right)
\end{array}
$$

Table 7 Matrix Elements of the Effective Operators Given in Table 6, in Harmonic Approximation
$\left\langle v_{2} J \ell \Sigma\right| \tilde{H} \mid v_{2} J \ell \Sigma>\quad=\quad \tilde{g}_{\ell}^{2}-a v\left[J(J+1)-(\ell+\Sigma)^{2}+S(S+1)-\Sigma^{2}\right]$
$\left.\left\langle v_{2} J \ell \Sigma\right| \tilde{H} \left\lvert\, v_{2} J \cdot \ell \pm 2 \Sigma>=\frac{1}{4} q \sqrt{\left.v_{2} \mp \ell\right)\left(v_{2} \pm \ell+2\right.}\right.\right) \sqrt{J(J+1)-(\ell+\Sigma)(\ell+\Sigma \pm 1} \sqrt{J(J+1)-(\ell+\Sigma \pm 1)(\ell+\Sigma \pm 2)}$
$\left.\left\langle v_{2} J l \Sigma \pm 2\right| \tilde{H} \left\lvert\, v_{2} J l \pm 2 \Sigma>=\frac{1}{4} q \sqrt{\left(v_{2} \mp \ell\right)\left(v_{2} \pm l+2\right.}\right.\right) \sqrt{S(S+1)-\Sigma(\Sigma \pm 1)} \sqrt{S(S+1)-(\Sigma \pm 1)(\Sigma \pm 2)}$
$\left\langle v_{2} J \ell \Sigma \pm 1\right| H \left\lvert\, v_{2} J \ell \pm 2 \Sigma>=-\frac{1}{2} q \sqrt{\left(v_{2}+\ell\right)\left(v_{2} \pm \ell+2\right)} \sqrt{J(J+1)-(\ell+\Sigma \pm 1)(\ell+\Sigma \pm 2)} \sqrt{S(S+1)-\Sigma(\Sigma \pm 1)}\right.$
$\left\langle v_{2} J \ell \Sigma \pm 1\right| \tilde{H} \mid v_{2} J l \Sigma>=\quad=\quad \alpha_{v} \sqrt{J(J+7)-(l+\Sigma)(\ell+\Sigma \pm 1)} \sqrt{S(S+1)-\Sigma(\Sigma \pm 7)}$
where
$q=-4 B_{e}^{2} \sum_{k \neq 2}\left(\frac{\zeta_{2 k}{ }^{2} \Omega_{k}^{2}}{\omega_{2}-\omega_{k}}-\frac{\zeta_{2 k}{ }^{2} \Phi_{k}{ }^{2}}{\omega_{2}+\omega_{k}}\right)=\frac{2 B_{e}{ }^{2}}{\omega 2}\left(1+4 \underset{k \neq 2}{\sum_{k}} \frac{\zeta_{k}{ }^{2}{ }^{2} \omega_{2}^{2}}{\omega_{k}^{2}-\omega_{2}^{2}}\right)$, i.e. such that l-type doubling
of the $v_{2}=1$ level of a ${ }^{1} \Sigma$ electronic state is given by
$\dot{\alpha_{q}}=-2 B_{e}^{2} \sum_{k \neq 2}\left(\frac{\zeta^{2} 2 k}{}{ }^{2} \Omega_{k}{ }^{2} v_{2}-\frac{\omega_{2}-\omega_{k}}{\omega_{k}{ }^{2} \Phi_{k}{ }^{2}\left(v_{2}+2\right)} \omega_{2}{ }^{2}+\omega_{k} \quad\right.$ i.e. such that the effective B-value for the level
v_{2} is given by $\left(B_{e}^{-\alpha}\right)$, and $\stackrel{\tilde{\eta}}{\mathrm{g}}=2 \mathrm{~B}_{\mathrm{e}}^{2} \sum_{k \neq 2}\left(\frac{{ }^{2} 2 k^{2} \Omega k^{2}}{\omega_{2}-\omega_{2}}+\frac{\zeta_{2 k^{2} \Phi_{k}^{2}}^{\omega_{2}+\omega_{k}}}{{ }^{2}}\right)$. The quantity \hbar^{2} has been suppressed here.

Table 8

${ }^{-}$Matrix for $\mathrm{v}_{2}=1$ for ${ }^{2} \Sigma^{\prime}$ Electronic States Correct to Second Order

\|es>	\|1, 娄 $>$	$\left\|1,-\frac{1}{2}\right\rangle$	$\left\|-1, \frac{1}{2}\right\rangle$	$\left\|-1,-\frac{1}{2}\right\rangle$
$\left\|1 . \frac{1}{1}\right\rangle$	$B_{1}\left[J(J+1)-\frac{7}{4}\right]+\frac{1}{2} \gamma^{\prime}-\frac{1}{4} \gamma-$	$-\left(B_{1}-\frac{1}{2} \gamma\right) \sqrt{J(J+i)-\frac{7}{4}}$	$\frac{3 / 2}{} a_{1} \sqrt{\left[J(J+1)+\frac{1}{4}\right]}$	(J+1)-3/4](0)
$\left\|1,-\frac{1}{2}\right\rangle$ $\left\|-1, \frac{1}{2}\right\rangle$		$\begin{aligned} & B_{1}\left[J(J+1)+\frac{i}{4}\right]-\frac{1}{4} \gamma \\ & -\frac{1}{2} \gamma^{\prime} \end{aligned}$	$\begin{aligned} & -q \sqrt{J(J+1)} \\ & B_{1}\left[J(J+1)+\frac{1}{4}\right] \\ & -\frac{1}{4} \gamma-\frac{1}{2} \gamma^{\prime} \end{aligned}$	$\begin{gathered} \frac{3_{2}^{2}}{1} q_{1} \sqrt{\left[J(J+1)+\frac{1}{4}\right]\left[J(J+1)-\frac{3}{4}\right]} \\ -\left(B_{1}-\frac{1}{2} \gamma\right) \sqrt{J(J+1)-\frac{7}{4}} \end{gathered}$
$\mid-1,-\frac{3}{2}$	Symmetric			$B_{1}\left[J(J+1)-\frac{7}{4}\right]+\frac{3}{2} \gamma^{\prime}-\frac{3}{4} \gamma^{\prime}$

Table 9 Matrices for $v_{2}=2$ in a ${ }^{c} \Sigma$ Electronic State
Case (a) representation

The basis functions are the 'sum' functions of the Wang transformation for the upper signs in the third column, and 'difference' functions for the lower' signs; thus if the plus signs are taken, the basis functions are of the type

$$
{ }^{2}{ }_{5 / 2}>=2^{-\frac{1}{2}}\left\{\left|\ell=2, \Sigma=\frac{1}{2}, \mathrm{~J}\right\rangle+\mid \ell=-2, \Sigma=-\frac{1}{2}, \mathrm{~J}>\right\}
$$

For the ${ }^{2} \Sigma$ vibronic state this implies the $F_{1}\left(N=J-\frac{3}{2}\right)$ rotational levels for the upper signs, and the $F_{2}\left(N=J+\frac{1}{2}\right)$ rotational levels for the lower signs.

Case (b) representation

Again for the Σ_{Σ} state, the upper and lower signs correspond to F_{7} and F_{2} respectively, so that the non-vanishing off-diagonal elements occur only between ${ }^{2} \Delta\left(F_{1}\right)$ and ${ }^{2}{ }_{\Sigma}\left(F_{1}\right)$ or between ${ }^{2} \Delta\left(F_{2}\right)$ and ${ }^{2} \Sigma\left(F_{2}\right)$. The terms in γ^{\prime}. have been omitted (see text).

Table 10 Matrices for $\mathrm{v}_{2}=1$ in a 3_{Σ} electronic state

Case (a) representation

	$\left.\right\|^{3} \mathrm{I}_{2}>$	$\left.\right\|^{3} \mathrm{H}_{1}>$	$\left.\right\|^{3} \mathrm{IH}_{0}>$
$<^{3} \Pi_{2}$ l	$\gamma^{\prime}+B_{1}[J(J+1)-3]+2 \lambda-\gamma$	$\left(\frac{1}{2} \gamma-B_{1}\right) \sqrt{2 J(J+1)-4}$	$\pm \frac{1}{2} 9 \sqrt{ }(J+1)[J(J+1)-2]$
$<^{3} \mathrm{H}_{1}$ l		$B_{1}[J(J+1)+1]-2 \gamma \pm \frac{1}{2} \mathrm{q} ~(~ J ~ J ~+~) ~, ~$	$\left(\frac{3}{2} \gamma-B_{1} \mp q\right) \sqrt{2 J(J+1)}$
$<^{3} \Pi_{0} 1$	symm		$-\gamma^{\prime}+B_{1}[J(J+1)+1]+2 \lambda-\gamma \pm 9$

$\omega_{2}+g_{22}-\frac{4}{3} \lambda$ has been substracted from the diagonal elements. As in Table 9 , the basis functions are the Wang 'sum' or 'difference' functions for the upper and lower signs, respectively, for the q terms in the body of the table.

Case (b) representation

	$\mid N=J+1\left(F_{3}\right)>$	$1 \mathrm{~N}=\mathrm{J}\left(\mathrm{F}_{2}\right)>$	$\mid N=J-1\left(F_{1}\right)>$
$<N=J+11$	$\begin{aligned} & {\left[B_{1} \pm \frac{1}{2} q-\gamma /(J+1)\right]\left[J^{2}+3 J+1\right] \pm \frac{1}{2} q} \\ & -\frac{2}{3} \lambda\left(J^{2}+3 J-1\right) /(J+1)(2 J+1) \end{aligned}$	$-(\gamma J+2 \lambda) \sqrt{3+2} /(J+1) \sqrt{2 J+1}$	$-2 \lambda \sqrt{(J-1)(J+2)} /(2 J+1)$
$<N=J \mid$		$\begin{aligned} & {\left[B+F_{2} q-\gamma / J(J+1)\right]\left[J^{2}+J-1\right]} \\ & \mp \frac{1}{2} q+\frac{2}{3} \lambda[1-3 / J(J+1)] \end{aligned}$	$[\gamma(J+1)-2 \lambda] \sqrt{J-1} / J \sqrt{2 J+1}$
< $\mathrm{N}=\mathrm{J}-1$ \|	symm		$\begin{aligned} & {\left[B \pm \frac{3}{2} q+\gamma / J\right]\left[J^{2}-J-1\right] \pm \frac{1}{2} q} \\ & -\frac{2}{3} \lambda\left(J^{2}-J-3\right) / \cdot J(2 J+1) \end{aligned}$

$\omega_{2}+g_{22}$ has been subtracted from the diagonal elements, and the terms involving
γ^{\prime} have been omitted.

Table 11 Case (a) and Case (b) matrices for the $v_{2}=2$ level in ${ }^{3}$ state.

$\left({ }^{3}{ }_{\Sigma}{ }^{3}{ }_{\Delta}\right)$	$\left.\right\|^{3} \Delta_{3}{ }^{\text {d }}$	$\left.\right\|^{3} \Delta_{2}$ >	$\left.\left.\right\|^{3} \Delta_{1}\right\rangle$	$\left.\left.\right\|^{3} \Sigma_{1}\right\rangle$	$\left.\right\|^{3} \Sigma_{0}>$
$<{ }^{3} \Delta_{3}$ l	$4 \mathrm{~g}_{22}+\mathrm{B}_{2}[J(J+1)-8]+2 \lambda-\gamma$	$\left(\frac{1}{2} \gamma-B_{2}\right) \sqrt{2 J(J+1)-12}$	0	$(q / \sqrt{2}) \sqrt{J}(J+1)-2 \sqrt{(J+1)-6}$	60
$<{ }^{3} \Delta_{2}$		$4 \mathrm{~g}_{22}+\mathrm{B}_{2}[\mathrm{~J}(\mathrm{~J}+1)-2]-2 \gamma$	$\left(\frac{1}{2} \gamma-B_{2}\right) \sqrt{2 J(J+1)-4}$	$-2 q \sqrt{J(J+1)-2}$	$2 / 3(J+1) / 2(J+1)-2$
$<^{3}{ }^{4} 1$,		$4 \mathrm{~g}_{22}+\mathrm{B}_{2} \mathrm{~J}(\mathrm{~J}+1)+2 \lambda-\gamma$	$\left.9 \sqrt{2}\left\{1 \pm \frac{1}{2}\right](J \mp T)\right\}$	$-2 q \sqrt{2 J(J+7)}$
$<^{3} \Sigma_{1} 1$				$\mathrm{B}_{2} \mathrm{~J}(\mathrm{~J}+1)+2 \lambda-\gamma$	$2\left(\frac{1}{2} \gamma-B_{2}\right) \sqrt{J(J+1)}$
$<^{3} \Sigma_{0}$	symm				$B_{2}[J(J+1)+2]-2 \gamma \sim$

In Table 9 the basis functions are Wang 'sum' functions for the upper 4 signs and 'difference' functions for the lower signs; in the $v_{2}=2$ matrices, the single $\left.\right|^{3} \Sigma_{0}>$ function must be counted with the 'sum' functions giving a 5×5 matrix, whereas the 'difference' functions give a 4×4 matrix. The quantity $\frac{4}{3} \lambda$ has been subtracted from all diagonal elements.

Rotational energy less $\left[\operatorname{BN}(11+1)-l^{2}\right]$ in cm^{-1}

TRIPLET PATTERNS FOR NCN
$B=0.3968 \mathrm{~cm}^{-1}$
$\lambda=0.7835 \mathrm{~cm}^{-1}$
$\gamma=-0.001 \mathrm{~cm}^{-1}$

12	14	1	$\frac{1}{16}$
18	20		

Fig. 15 Departure of the ℓ-type doubling of a hypothetical state of HCCN , with $\mathrm{B}=0.36, \lambda=1.7, \gamma=-0.001$ and $q=0.003 \mathrm{~cm}^{-1}$, from the case (b) formula $\Delta v=q N(N+1)$ for the vibronic 3_{Π} level $\left(v_{4}=1\right)$.

References

1. W.W. Watson and A.E. Parker, Phys. Rev. 37, 1484 (1930).
J.H. Clements, Phys. Rev. 47, 224 (1935).
R.K. Asundi and R. Samue1, Proc. Ind. Acad. Sci. 2A, 30 (1935).
2. N. Metropolis and H. Beutler, Phys. Rev. 57, 1078 (1940).
N. Metropolis, Phys. Rev. 60, 283 (1941).
3. G. Herzberg, Electronic Spectra of Polyatomic Molecules,

Van Nostrand, Princeton, New Jersey, U.S.A., pg. 75 (1966).
4. A.J. Merer and D.N. Travis, Canad. J. Phys. 44, 353 (1966).
5. P.W. Schenk, Ber. 65, 94 (1942).
6. M. Becke-Goehring, R. Schwarz, and W. Spress, Z. Anorg.

Allg. Chem. 293, 294 (1958).
7. W.H. Kirchhoff, J.A.C.S. 90 2437 (1969).
8. G. Brauer, Preparative Methods of Inorganic Chemistry, Academic Press, New York, 1963.
9. A.J. Barnes and H.E. Hallam, Quarterly Rev. 23, 392 (1969).
10. P.W. Schenk, E. Krow, and H. Kartano-Soeratman, Monatsh 95, 710 (1964).
11. J. White, J. Opt. Soc. Am. 32, 285 (1942).
12. H. Richert, Z. Anorg. Allg. Chem. 309, 171 (1961).
13. J.H. Schachtschneider, Spectrochim, Acta. 19, 117 (1963).
14. E.B. Wilson, J.C. Decius, and P.C. Cross, Molecular Vibrations, McGraw-Hill, New York. 1955.
15. G.M. Barrow, Introduction to Molecular Spectroscopy, McGraw-Hill, New York, 233 (1962).
16. E. Hutchisson, Phys. Rev. 36, 410 (1930).
17. M. Wagner, Z. Naturf. 14a, 81 (1959).
18. F. Ansbacher, Z. Naturf. 14a, 889 (1959).
19. W.L. Smith and P.A. Warsop, Trans. Far. Soc. 65, 1165 (1968).
20. J.B. Coon, R.E. De Wames, and C.M, Lloyd, J. Molec. Spectroscopy 8, 285 (1962).
21. W.L. Smith, J. Phys. B. Proc. Phys. Soc., 2, 1 (1969).
22. R.N. Dixon, private communication.
23. G. Herzberg, Electronic Spectra of Polyatomic Molecules, Van Nostrand, Princeton, New Jersey, U.S.A. (1966).
24. R.T. Birge, Phys. Rev. 25, 240 (1925).
25. A.J. Merer, Disc. Far. Soc. 35, 127 (1963).
26. R.M. Hochstrasser and A.P. Marchetti, J. Mol. Spec. 35, 335 (1970).
27. J.H. Van Vleck, Rev. Mod. Phys. 23, 213 (1951).
28. J.K.G. Watson, Canad. J. Phys. 46, 1637 (1968).
29. C-F. Chang and Y-N. Chiu, J. Chem. Phys. 53, 2186 (1970).
30. J.T. Hougen, The Calculation of Rotational Energy Levels and Line Intensities in Diatomic Molecules. N.B.S.

Monograph HS 115, Wash. D.C. U.S.A.
31. J.H. Meal and S.R. Polo, J. Chem. Phys. 24, 1119 (1956).
32. E.B. Wilson, J.C. Decius, and P.C. Cross, Molecular Vibrations, Appendix III McGraw-Hill, New York, 1955.
33. W. Moffitt and A.D. Liehr, Phys. Rev. 106, 1195 (1957).
34. I.M. Mills, Pure and App. Chem. 11, 325 (1965).
35. J.T. Hougen, J. Chem. PHys. 36, 519 (1962).
36. E.C. Kemble, The Fundamentals of Quantum Mechanics, Dover Publications, New York, U.S.A. (1958).
37. S.C. Wang, Phys. Rev. 34, 243 (1929).
38. J.W.C. Johns, Canad. J. Phys. 39, 1739 (1961).
39. J.T. Hougen, Canad. J. Phys. 42, 433 (1964).
40. K.F. Freed, J. Chem. Phys. 45, 4214 (1966).
41. A. Carrington, B.J. Howard, D.H. Levy and J.C. Robertson, Mol. Phys. 15, 187 (1968).
42. J.H. Callomon and A.B. Davey, Proc. Phys. Soc. 83, 335 (1963).
43. G. Herzberg and D.N. Travis, Canad. J. Phys. 43, 353 (1966).
44. R.A. Bernheim, R.J. Kempf, J.V. Gramas and P.S. Skell, J. Chem. Phys. 43, 196 (1965).
45. S.L. Miller and C.H. Townes, Phys. Rev. 90, 537 (1953).

APPENDIX 1

Normal Coordinate Analysis

To solve the vibrational problem in polyatomic molecules, one begins by writing down the hamiltonian using cartesian displacement coordinates for the individual atoms $\left(\Delta x_{1}, \Delta y_{1}\right.$, $\Delta z_{1}, \Delta x_{2}, \Delta y_{2}, \ldots . . \Delta z_{n}$) in matrix form
$H=T+V=\frac{1}{2}{\underset{\sim}{X}}^{+r} \underset{\sim}{M} \underset{\sim}{\dot{X}}+\frac{1 / 2}{X_{\sim}^{+r}} \underset{\sim}{f} \underset{\sim}{X}$

Here $\underset{\sim}{M}$ is a $3 N \times 3 N$ ($N=$ number of atoms in the molecule) matrix with the following diagonal form
$\underset{\sim}{M}=$

Since eq. (1) is unwieldly because of the form of the potential energy, one introduces normal coordinates, Q_{k}, which one defines as fulfilling the following relationship.

$$
\begin{align*}
H & =\frac{3}{2} \sum_{k}^{3 N-6} P_{k}^{2}+z_{2}^{3} \sum_{k}^{3 N-6} \lambda_{k} Q_{k}^{2} \tag{3}\\
& =\frac{1}{2} \dot{Q}^{+r} \sum_{\sim}^{E} \dot{Q}+Q^{+r} \cdot \wedge Q
\end{align*}
$$

In this equation P_{k} is the momentum associated with the normal coordinate, Q_{k}, and $\tilde{\sim}^{\wedge}$ is the diagonal matrix of the eigenvalues corresponding to the observed frequencies ($\Lambda_{k}=4 \pi^{2}{ }^{v_{k}}$, v_{k} in cm^{-1}). Notice that k is an index for the normal coordinates.

Now we define the transformation matrix $\underset{\sim}{B}$ that transforms the vector of the cartesian displacement coordinates ($\underset{\sim}{x}$) into the \left. vector of the internal displacement coordinates (${\underset{\sim}{N}}^{(}\right)$(changes in bond angles and bond lengths).

$$
\begin{equation*}
\underset{\sim}{S}=\underset{\sim}{B} \underset{\sim}{X} \tag{4}
\end{equation*}
$$

Now we define the matrix $\underset{\sim}{G}$ such that

$$
\begin{equation*}
\underset{\sim}{G}={\underset{\sim}{B}}_{\sim_{\sim}^{-1}}^{{\underset{\sim}{c}}^{+r}} \tag{5}
\end{equation*}
$$

and the matrix $\underset{\sim}{L}$ such that

$$
\begin{equation*}
\underset{\sim}{S}=\frac{L}{\sim} \underset{\sim}{Q} . \tag{6}
\end{equation*}
$$

Now we define the matrix A such that

$$
\begin{equation*}
\underset{\sim}{B} A=E \tag{7}
\end{equation*}
$$

The matrix $\underset{\sim}{A}$ is introduced only because $\underset{\sim}{B}$, not being square, lacks a genuine inverse.

Now

$$
\begin{equation*}
\underset{\sim}{X}=\underset{\sim}{A} \tag{8}
\end{equation*}
$$

and then

$$
\begin{equation*}
\underset{\sim}{G}{\underset{\sim}{G}}^{-1}=\underset{\sim}{B}{\underset{\sim}{M}}^{-1}{\underset{\sim}{B}}^{+r}{\underset{\sim}{G}}^{-1}=\underset{\sim}{E} \tag{9}
\end{equation*}
$$

therefore
and

$$
\begin{align*}
& \underset{\sim}{A}={\underset{\sim}{M}}^{-1}{\underset{\sim}{B}}^{+r} \underset{\sim}{G}{ }^{-1} \tag{10}\\
& \underset{\sim}{X}={\underset{\sim}{M}}^{-1}{\underset{\sim}{B}}^{+r}{\underset{\sim}{G}}^{-1} \underset{\sim}{S} \tag{11}
\end{align*}
$$

Now substituting eq. (11) into the first part of eq. (1) one gets

$$
\begin{equation*}
2 T={\underset{\sim}{s}}^{\operatorname{tr}}{\underset{\sim}{G}}^{-1} \underset{\sim}{\dot{S}} \tag{12}
\end{equation*}
$$

Now using eq. (6) one gets
and therefore ${\underset{\sim}{~}}^{+r}{\underset{\sim}{G}}^{-1} \underset{\sim}{L}=\underset{\sim}{E}$ and ${\underset{\sim}{l}}^{+r} \underset{\sim}{r} \underset{\sim}{L}$
or as usually written

$$
\underset{\sim}{G} \underset{\sim}{F}=\frac{1}{d}
$$

In principle the unknown $\underset{\sim}{\underset{\sim}{f}}$ matrix could be calculated from the $\underset{\sim}{G}$ matrix and the observed frequencies (\AA): however, this is computationally difficult. Instead a trial force constant matrix is substituted, the calculated and observed frequencies are compared, and an appropriate adjustment is made to the trial force constant matrix. This process is repeated until a satisfactory agreement between the calculated and observed frequencies is obtained.

APPENDIX 2

The Wang Transformation is a similarity transformation that will break down matrices that are symmetric about both diagonals (doubly symmetric) into smaller sub-matrices. It is equivalent to writing the matrix in terms of a new set of basis functions which are sums and differences of the old basis functions. That is, the Wang Transformation is such that

$$
\begin{equation*}
\underset{\sim}{S} \underset{\sim}{H}{ }_{\sim}^{\prime}{\underset{\sim}{-1}}^{-1} \tag{1}
\end{equation*}
$$

where H^{\prime} is doubly symmetric and H consists of two smaller matrices. One should note that the important thing for this thesis is that the pre-transformed basis functions |e, \sum^{2} are neither symmetric nor antisymmetric under the symmetry operation, σ_{v}, but the "Wanged" basis functions, which are now sums and differences of the old basis functions, have the required symmetry properties.

The Wang Transformation is shown below for both a 3×3 and 4×4 matrix.
3×3

$$
\begin{aligned}
\frac{1}{\sqrt{2}}\left|\begin{array}{ccc}
1 & 0 & 1 \\
0 & \sqrt{2} & 0 \\
-1 & 0 & 1
\end{array}\right| \quad\left|\begin{array}{lll}
A & C & D \\
C & B & C \\
D & C & A
\end{array}\right| & \frac{1}{\sqrt{2}}\left|\begin{array}{ccc}
1 & 0 & -1 \\
0 & \sqrt{2} & 0 \\
1 & 0 & 0
\end{array}\right| \\
=\left|\begin{array}{ccc}
A-D & 0 & 0 \\
0 & B & \sqrt{2} C \\
0 & \sqrt{2} C & A+D
\end{array}\right| & =[A-D]+\left|\begin{array}{cc}
B & \sqrt{2} C \\
\sqrt{2} C & A+D
\end{array}\right|
\end{aligned}
$$

4×4

$$
\frac{1}{\sqrt{2}}\left|\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & -1 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right| \quad\left|\begin{array}{llll}
A & C & E & F \\
C & B & D & E \\
E & D & B & C \\
F & E & C & A
\end{array}\right| \quad \frac{1}{\sqrt{2}}\left|\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right|
$$

$$
=\left|\begin{array}{llll}
A-F & C-E & 0 & 0 \\
C-E & B-D & 0 & 0 \\
0 & 0 & B+D & C+E \\
0 & 0 & C+E & A+F
\end{array}\right|
$$

$$
=\quad\left|\begin{array}{ll}
A \pm F & C \pm E \\
C \pm E & B \pm D
\end{array}\right|
$$

[^0]: 1,5 Cell empty
 22.6 torr
 30.7 torr
 40.23 torr

