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~ ABSTRACT . |

- Thionylimide, HNSO, was prepared and its ultraviolet spectrum
recorded fof the first time. Two transitions are seen; a long
series of bands in the 27003 region and a continuum ending at
approximately 34402. Franck-Condon overlap calculations were
carried out to ascertain how large a shape change was occurring
in the 27003 system. Reasons for the diffuse nature of the bands
in the 27003 system and the continuous nature of the absorption
in the 34408 region are given.

In the second part of this -thésis, formulae for the rotational

32 electronic

energies of linear polyatomic molecules in 22 and
states in which one or more quanta of a degénerate bending vibration
are excited are derived. It is found in 22 electronic states

that the spin'ddubling and the g-type doubling are independent
provided the rotational constant B is much larger than y,‘the spin
rotation constant. In 32 electronic states departures from the
norma]ltriplet spin pattern occur at Tow N values, when fhe vibrational
'éngu]ar momentum is still mainly coupled to the axis of the

molecule. The effect is enhanced if.A,-the spin-spin interaction
constant,is large compared to B. At high N values the normal

triplet pattern is approéched as the vibrational angular momentum

is uncoupled from the axis of the molecule.
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INTRODUCTION

This thesis consisfs of two parts which are basically unrelated.
The first part deals with the molecule thionylimide (HNSO or DNSO)
and its ultraviolet spectrum. This study is prompted by the fact
that the first strong ultraviolet absorption system of the iso-
electronic molecule 802 has yet to be analyzed, despite many attempts
(],2). It is reasoned that, thionylimide being isoelectronic with
502 and having a similar shape, an understanding of the ultraviolet
spectrum of thionylimide would help decipher the 2900R system of
50,. In the end, though, due to the lack of information available
from the thionylimide spectrum resulting from its diffuseness, the
opposite occurred and preliminary results from 502 were used to
help explain the ultraviolet absorption spectrum of thionylimide.

In this thesis there is described the preparation of
thionylimide and the first observation of fts ultraviolet spéctrum.
Two absorptions have been seen: a long series of diffuse bands in
the 2700-2]003 region and a continuum at longer wavelengths.
Franck-Condon overlap ca]cujations were carried out for the 27OOR
system to see how large a shape change is necessary to explain
the observed spectrum, and whether this.shape change corré]ates' _
with the shape change occurring in the ZQOOR system of 302. Reasons
for the diffuseness of the bands in the 27008 system and the

continuous nature of the long wavelength system are given based on
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_the’e]eétrbnic structure of thfony]imide.

The second part of this thesis deals with the derivatiqn and
discussion of rotational energy formulae for linear polyatomic
molecules in doublet and triplet ¢ eleétronic states in which one
or more quanta of a degenerate bending vibration are excited. As
yet, no theoretical treatment exists for this topic(3), though with
the advent of flash photolysis techniques, several examples of
such molecules are now kndwn. In'particular, a system of HCCN at
3200-3400%, which is probably a 357 2 3 transition, shows
vibrational "hot" bands in the H-C-C degenekate bending vibration
"~ which have so far defied rotational‘analysis according to the
conventional energy level formulae for 32 states (4).

The hamiltonian has been written in "effective" form (i.e.
writing the electron spin interactions as parameters to be determined
experimentally) and its matrix elements given in a Case (a)
representation correct to éecond order. The results have been
given in Case (b) notation for some cases of interest. The results

are discussed in relationship to what would be seen in actual

molecules.
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CHAPTER I

THE ULTRAVIOLET SPECTRUM GF THIONYLIMIDE

1-1 Experimental

a. Preparation of HNSO and DNSO

| The commonest methods of making thionylimide are the
7 hydrolysis of NSF and the direct gas phase reaction of NH3
and soc1, (5,6). 1In all experiments reported here, thionyl-
imide was produced by the latter method. - This was because the
starting material was readily available and resu]ts.in a purer
product than by the hydrolysis of NSF.

Since 502 is always formed as a by-product during any

preparation of thionylimide, one must be extremely careful
to choose cond%tions which minimize the amount of 502 formed,
since Soz-absorbs throughout the ultraviolet. Kirchhoff (7),
during his microwave studies of thionylimide, discovered that
thionylimide could be prepafed reasonably free of 302 by using
low pressures of NH3’and SOC]2 in the exact stoichiometric proportions
for the reaction

3NH5 + socl, - 2NH4C1 + HNSO (N

bHigher pressures of reactant gases resulted in a higher percentage
of SO2 produced. Accordingly, Kirchhoff's conditions, 12 torr

NH3 and 4 torr SOC]Z, were followed for all experiments. It was
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found that'the amount of S0, impurity produced was very sensitive
to traces of water present in the apparatus or reagents (presumab1y
from the direct hydrolysis of SOC12). Thus the glass apparatus
had to be well flamed under vacuum prior to the preparation, and the
ammonia had to be carefully dried over sodium metal. S0C1, was
purified by trap to trap diSti]]ation to remove 502, ﬁC], and
dissolved air. It was never possible to prevént the férmation of
SO2 entirely, and an average sampTe of thionylimide contained
5% SO2 as judged from the ultraviolet spectrum. This is presumably
because reaction (1) is not the only reaction occurring (5,6).
A major difficulty with preparation of HNSO is that whenever the
gas is trapped in dry ice or liquid nitrogen, it immediately
polymerizes. It is thus not possib]é io"burify HNSO by fractional
distillation (see below).

DNSO Was prepared in an analogous way to HNSO except that
ND3 was used. The heavy ammonia was both prepared in the lab and
obtained from a cylinder. The ND3 prepared in the lab was synthesized
using MgsN, and D,0 in the following reaction (8):

60,0 + Mg N, —> 2 NDg + 3 Mg(OD)Z‘ (2)

In the preparatioﬁ an excess of Mg3N2 is used to produce a very

dry sample of ND3. The 020 used was from Stohler Isotopes (99.8% D).
The Mg3N2 was from Alpha Inorganics and had to be heated in vacuo prior
to use to remove "light" water hydroxides. The bottled'ND3 was from

Merck, Sharpe, and Dohme and was 99% D.



‘The samples of DNSO prepared were ascertained to be at Teast
70% D using matrix infra-red techniques. ' i

b. Apparatus and preparative method

The thionylimide was prepared in a standard all glass vacuum
line incorporating either a six or twoAtwenty—two liter reaction
vessels and a U tube trap (see fig. 1). Pumping was by means of a
rotary pump and an oil diffusion pump. Pressures were measured
with a thermocouple gauge and a manometer filled with Dow Corning 707

silicone fluid (12.8 mm oil = 1 mh Hg).

The actual preparation of thionylimide involved first filling
the reaction vessel with dry ammonia to the correct pressure and
then trapping the ammonia out in the U tube trap with Tiquid
nitrogen. The reaétion vessel was then filled with SOC12. The
ammonia was then evaporated back into the reaction bulb where it
reacted immediately with the SOC]Z,_forming a yellow-white
coating mostly of NH4C1 on the glass walls.

c. Identification and analysis of reactant products

Positive identification of the gas produced as thionylimide
was accomplished by infra-red and mass spectrometric techniques.
The infra-red spectrum was taken of a matrix isolated sahple at 4°K.
The thionylimide was diluted with argon in the ratio of 1:800.
Samples were deposited at 120.m1Crons pressure on a CsI window.
[See ref. (9) for a complete description of the matrix isolation
technique.] Spectra were taken on a Perkin-Elmer 225 infra-red

spectrophotometer. The matrix isolated spectrum was identical with



the gas phase spectrum except for small shifts caused presumably
by interactions with the matrix,and the absence of rotational
structure (see fig. 10). |

The mass spectrum of thionylimide was taken on a MS 9 mass
spectrometer. The mass spectrum showed a weak parent ion peak at
m/e = 63 (HNSO¥) and another peak at m/e = 15 (NH)'. There
)t

was a strong peak at m/e = 48 (SO) , but the SO+ may have come

from SO, for there was also a strong peak at m/e = 64 (502)+

d. Notes on other attempts to prepare pure thionylimide

Attempts to produce large pressures of thionylimide by
condensing successive batches in a trap and recohstituting
the monomer from the polymer by heating”xhe-trép to 70°C as
reported by Schenk (10) only yielded large amounts of 302 and very
Tittle tHiony]imide. It had been hoped that HNSO free of 502
could be produced by this method, but it turned out that Schenk's
results could not be reproduced at all.

e. Spectroscopic experiments

Preliminary ultraviolet spectra were takén on a Bausch
and Lomb 1.5 meter Eagle spectrograph,‘the experimental
arrangements having been as in fig. (2). The Tamp shown in fig. (2)
was a P.E.K. 75 watt high pressure xenon lamp. The one lens shown
focused an image of the lamp on the slit.. The cell shown is |
a 75 cm all quartz cell with Suprasil windows. With a 60 u slit
and cell pressures ranging fromv4 to ~ 0.2 torr, exposure times

were of the order of 4 seconds using Kodak SA-I film. For



calibration a 25 m.a. Westinghouse Iron hollow cathode Tamp was
used.

Higher resolution spectra (approximately 150,000 resolving
power) were taken in the second order of a 21 ft. Eagle
spectrograph as shown in fig. (3) with the previously mentioned
light source and cell. To 1ower-the exposure times, a 22.5 cm
focal length cylindrical lens was used to focus the image of
the arc on the slit as a 1ine. A Corning 9-54 filter placed
between the Tamp and the cell was used to prevent photolysis
of thionylimide. With a 20 u slit and cell pressures ranging
vfrom 4 torr to less than 0.1 torr, and using Kodak SA-I plates,
exposures wera of the order of two minutés. Calibration was with
a 120 m.a. iron hollow cathode lamp of the lab's own design.

In these experiments a moderately intense, but diffuse, band
system lying in the region 2700-21008 (to be discussed below).
was discovered. |

Temperature’studies_of the bands of this system were carried
out using the same experimental arrangement as above except that
the cell was wrapped with heating tape. The cell temperature was
controlled by regulating the épp]ied voltage to the heating tape.
The cell was heated in 25° steps to a maximum of 100°C. The cell
temperéture'was monitored using a Chromel-Alumel thermocouple in
conjunction with a Leeds and Northrup millivolt potentiometer.

The next exberiment was a search for weaker transitions of

thionylimide at longer wavelengths in the 3600 8 region. To do
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this a 4 meter White type (11) multiple reflexion cell was

built and used in conjunction with a reaction vessel consisting of
two twenty-two liter globes. The cell was constructed of 85 mm
pyrex tubing,'to the ends of which 6 inch sections of 3 inch
diameter pyrex pipe end-pieces with 0-ring grooves were blown on.
Normal pyrex pipe flanges were used to attach the end plates

which sea]ed the cell (see fig. 4). One cell end-plate carried

the Suprasil entrance and exit windows, while the other had the
external controls for the D mirrors. Inserted in the cell was a"boat"
to the front of which was attached the "shouldered" mirfor. |
The number of traversals of the cell was controlled by manipulation
of the D mirrors.

The cell was set up as in fig. (4) using the previously
mentioned lamp. Care had to be taken SO'thatvtheincoming cone of
light matched the aperture of the lWihite cell so as not to produce
stray light reflected off the inside walls of the cell (cone too
large) or to underfill the D mirror (cone too small). This critical
adjustment was done by moving the 35 cm lens shown in fig. (4)
relative to the Tlight source. After the light had passed through
the White cell, a 55 cm cylindrical lens focused the light on the
slit of the spectrograph. Corning 0-56 ahd 7-54 filters were
used to stop photolysis of.the sample by light with a wavelength
less than 30002, which was found to produce decomposition products on
the mirrors unless it was eliminated. With the White cell set for

24 traversals, or an effective path length of 96 meters, and a 80 u
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main slit, exposdres were of the order of four minutes using
Kodak IIa-0 plates and cell pressure ranging from 2.6 torr to
0.23 torr. The 120 m.a. iron hollow cathode lamp was again used
for calibration.

The White cell was also used to look at the weak "tail"
of the 27OOR system of thiony]imide. The cell was set up as
previously described except that the Corning filters were
replaced with an order separator in front of the main slit,
consisting of a foreslit, concave mirror, and quartz prism
, isee fig. 4). The order separation was necessary because the
filters could not completely e]imﬁnate the intense overlapping
first order radiation (A n 52008) from the xenon arc. Using
Kodak I-D film, an 80 u main slit, a 2 mm foreslit, gas cell
pressures'of the order of 0.2 torr, and 4 traversals, exposures
were of the order of 5 to 10 minutes. Calibration was as
previously described.

None of the White cell experiments were repeated with DNSO,
anq for DNSO only the 27003»system was photographed. Measurements
were made from contact prints of the plates. These are probably

good to * 25 en” .
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1-2 Results

Low resolution absorption spectra of thionylimide
taken on a Cary Model 14 spectrophotometer show moderately
strong absorption in the 2700-19003 range (see fig. 5,6,7).

The absorption maximum comes at 21703; the system obviously
continues past ]QOOR but could not be observed for experimental
reasons. On the long wavelength side of the absorption maximum

the system loses intensity rapidly and is no longer discernible

at 27008 where it is lost under the tail of the strong 29008 system
of 502 (see fig. 6). The main features of the Cary spectra are a
long series of absorption bands at the long wavelength end of the
syétem, which can be followed from 26898 to 2387R (see fig. 5,6,7).
The bands are most distinct at lower energies and, at the absorption
maximum, they are no 1ongef discernible,

At high resolution the bands noted above were found to be
entirely diffuse, not even showing any partially resolved rotational
| structure (see fig. 8). The‘band positions are given in
Table (1). Upon examination of Table (1), one will notice that the
bands are not regularly spaced and cannot be fitted into a single
progression;

The 27008 system of DNSO showed gevera] distinct differences
from that of HNSO. The baﬁds which stood out well in the spectra
of HNSO no 10nger do so in DNSO (compare fig. 5 and 6). The bands

in DNSO éppear not to have been shifted to any great extent,



-14-

though new bands at 25433 and 25308 have appeared and the band that
was at approximately 25353 in HNSO has disappeared. The Eand thaf |
was 25178 in HNSO has been shifted to 25158 in DNSO. The other
bands in the spectrum of DNSO do not appear to have changeQ position
re]atfve to thé bands in the spectrum of HNSO. |

The high résolution spectra of the 27OOR system of HNSO
showed three very weak bands between the bands of the main
progression. Due to the lack of contrast in the DNSO spectrum,
the corresponding bands could not be seen. Upon heating the cell,
these weak bands of HNSO appeared to gain intensity relative
to the other bands as the cell temperature rose, thus showing
them to be "hot" bands arising froh excited vibrational levels
in the ground state. Since the bands of the main progression did
not change in intensity, they are "cold" bands.

The ]ong'path experiments in the 34002 region did not disclose
any sharp or banded absorption of HNSO but only a cbntinﬁum
beginning at approximately 34408 (see fig. 9). Since SOC]2
also has continuou; absorption near this region,it was necessary
to show that the two continua were not identical. Comparison

-of the new continuous absorption and spectra of SOC]2 taken under
similar conditions §howed that thé two continua were not the same.
There are no other species involved in the preparative reaction
that have a continuous absorption in the ultraviolet.

The long path experiments in thel26853 region did not revéa]
any new bands in the tail of.the 27003 system of HNSO but
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did verify the existence of a band at 26868. From 26862 ‘
and to longer wavelengths, the 29003 system of SOZ rises in
intensity and it becomes impossible to separate the weak and

diffuse HNSO bands from the strong, sharp SO2 absorption.
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TABLE 1

A. HNSO Bands of the 27008 system

A Obs.
2689.

2671

2652.
2636.
2620.
2612.
2603.
2593.
2583.
2572.
2555,
2535,
2517,
2496.
- 2479.
2458,
2443,
2423,
2407 .
2386.

B

2556

- 2543,
2530.
2515.

2635.
2612,
2606.
2573,

*
HOT BANDS

A Vac.

23R8 . 0.20 R
.82 0.79
14 0.79
25 0.79
51 0.78
59 0.78
92 0.78
46 0.78
80 0.77
86 0.77
23 0.77
53 0.76
03 0.76
80 0.75
70 0.75
55 0.74
71 0.74
28 0.74
81 0.73
76 0.73
* DNSO BANDS

31 0.79
23" 0.78
78 0.78
36 0.77
.70 0.77
14 0.76
08 0.76
10 0.76

x Vac.

2690.
2672.
2652.
2637.
2623.
2613.
2604.
2594,
2584.
2573.

. 2556.
2536-
2517.

2497,
2480.
2459,
2444,
2424,
2408.
2387.

2636.
2613.

2607.
.13

2557.
2543,
2530,
.86

2574

2515

03 R

61
93
04
29
37
70
24
57
63
00

79
55
45
29
45
02
54
49
10
01
56

47

90
84

v Vac.

37174 cm”
37417
37694
37921
38120
38265
38392
38544
38691
38856
39124
39428
39717
40039
40315

40662

40909
41254
41519
41885

- 37935

38270
38550
38848

39127
- 39310

39513
39748

1
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f—3 Discussion ahd Interpretation of Results

As stated in the introduction, the reason for interest
in thionylimide is its similarity with 502. In the following
discussion, arguments will be made to further this point and
results from SO2 will be applied to thionylimide to help
explain the observed results. '

“a. Ground state normal coordinates

To understand the 2700 K system of thionylimide and the
vibrations active in the system, one must first determine the
normal modes of vibration in the ground state of the molecule.
Richert (12), in his normal coordinate analysis, tréatéd'
thionylimide as a triafomic molecule with-the N-H group as a
single atom. He used the set of diagonal force constants given
in Table (2)._ For this work, a full normal coordinate analysis using a
fuli set of diagonal force consténts (that {s neglecting all
interaction force constants) was carried out. The normal
coordinate analysis was carried out using the computér programs
written by Schachtschneider (13). The force constants were varied

4 34

until the calculated frequencies of HNSO, DNSO, HN3 SO, and DN

SO
1 :

agfeed to'within approximately 5 cm ° of the observed matrix
isolation frequencies ekcept for the vibrations involving a hydrogen
atom. No attempt was made to refine the forcé constants to

achieve a better fit of the calculated frequencies due to the

problem with anharmonicity and matrix effects (see below). The

final force constants are shown in Table(2),along with the
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observed and ca]cu]atéd‘frequencies. The large érrors in the calculated
HN stretching and HNS bending vibrational frequencies can be .
attributed to anharmonic effects which are always large in

molecules of this type. The anharmonic effects arise from the

fact that the H and D "sample" different parts of the vibrational
potentials and thus the anhakmonicity affects them quite

differently. No attempt was made to correct the observed

frequencies for anharmonicity to get a better fit. Table(2)includes

the resulting matrices L and Lf]

» where L is the matrix that
transforms the vector of normal coordinates Q to internal coordinates
'§, by the equations _

s=w (1)
or, in reverse, |

@=L"'s - (2)
“See Appendix f for a discussion 6f the formalism of the FG matrix

methods of Wilson, Decius, and Cross (14).

b. Franck-Condon calculation for the bands of the 27003 region

Now that the form of the normal coordinates in the ground
state i§ known, one can use the Franck-Condon principle to determine
what vibrations are active in the transition and how large a shape-
change is necessary to.explain the observed transition. The basis
of the Franck-Condon principle is that the electronic transition in
a molecule is assumed to take place so rapid]y compared to the

vibrational motion that the internuclear distance can be regarded
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as fixed during the transition (15). Translated into quantum mechanical
language, the strongeSt vibrational transitions according to the
Franck-Condon principle are those with the largest values of the

Franck-Condon overlap integral RMN’ defined as ‘

Ry = [y’ (@) 9" (@) a0 | (3)

where wM' and wN" are the vibrétiona1 wave functions in the
upper and lower electronic states respectively. The relative
intensity of a given band (M,N) in the electronic transition is equal
to the square of this integral. Thus one is correlating an "overlap"
between the upper and Tower electronic state vibrational wave functions
to the intensity of a given band. o |

As noted previously, the 27OOR sy;tem of thionylimide
consists of a long series of bands that did not undergo any great
change upon deuteration, though the bands did lose much of their
intensity relative to the background. From the fact'that.é Tong series
of bands is observed, one knows from the Franck-Condon principle
that a large change of shape is occurring in the transition. From the
fact that the observed series of bands is relatively insensitive to
déuterétion, one can say that the vibrations active in the transition;
and therefore the shape Change, do not involve the hydrogen atom and '
are centered in the S-0 end of the molecule. See Table (2) for a compar-
ison of the ground state HNSO and DNSO  frequencies. To get some idea
~of Which vibrations might be strongly active in the electronic |

transition and how much of a change of shape would be necessary to
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~ produce the observed absorption maximum, several rough Franck-Condon
overlap calculations were done.

Integrals of the type shown in eq. (3) were first evaluated by
Hutchisson(16) and later by Wagner (17), and Ansbacher (18).
In general, such integrals are not easy to evaluate because
Q' #Q"; in certain cases, however, and by using various approximations,
overlap integrals of the type shown in eq. (3) can be quite easy to
calculate. Smith and Warsop (19) have developed a method for

ca]cu]ating integrals of thé type
Rio = [y’ (@) 9" (@) d@' (@)
for large changes in shape. The integral shown in eq. (4) represents the
overlap between the zero vibrational Tevel of the lower electronic
state with the vibrational level, M, in the upper electronic state.
To evaluate integrals of the type shown in eq. (4), one begins

by relating the upper state normal coordinate Q' to the Tower state

normal coordinate Q" by the following relationship:

_Q.I._. "o g ‘ ' (5)
where A is a square matrix which transforms the vector of ground

state normal coordinates into the vector of upper state normal

coordinates, and d is the change in the origin of the normal
coordinates. Such a relationship is necessary so that Q' and Q"
are functions of the same variable so that the integral over dqQ'

will have some meaning.
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To simplify the relationship between Q' and Q", A is set
to the unit matrix. Setting A equal to the unit matrix is
rationalized by.Coon, et. al. (20), who_show that, for band
progressions that originate in the v = 0 level of the ground
electronic state, the vibrational wave function in the{ground state
is largely concentrated around the origin of the norma%'coordinate
and thus A _ _ ‘

Q¥ o o (6)
for a large pércentage of the time. This can easily be seen if
one graphs the harmonic oscillator wave functions for the v = 0
level. From this one can see that Q' will be vefy insensitive
to A (since Q" is zero most of the time) but will be sensitive

to d. With A set to the unit matrix,‘ga. (5) becomes

Q-Q+d (7)
" and thus eq. (4) becomes |
Rmo = p'(Q') " (Q' - d) dQ' _ (8)
Smith (21) has shown that for RMO under the above conditions
eq. (8)takes the form

' M M-2t- t
Ryp = (27 qu)1/2 exp(1/4 ¥7P) ™t (-x)
| | 2=0 (M- 2t) tI

uy1/2 o y
where q = _24\)'_\)1 p = y_\)_ Y = Q]/Zd
\)II v vl + \)ll
a _ 4r"ve X=v" =y (9)
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Thus, to carry out the calculation, all one needs to know
are the lower and upper state frequencies and di’ the shift in the
origin of the normal coordinate being considered.

The vector of normal coordinates, Q, ié related to that of the
internal symmetry coordinates by eq. (2). The vector of the
shifts in the origins of the normal coordinates, d, is related
to AS, the vector of changes in the internal symmetry coordinates,

in the same manner.

d=L" as o (10)
One should remember that in thionylimide, with.the change in

an internal symmetry coordinate being gqq@] to the change in the
corresponding internal coordinate, S represents directly the

changes in bond angles and bond lengths between the upper and
lower states.

To calculate d one must know the shape change occurring in the
transition. In thionylimide, due to the diffuseness of the observed
bands, no rotational ané]ysis could be done and thus it was impossible
to determine the structure of thionylimide in the excited sfate.

Thus, to calculate d, an appropriate excited state structure for thionyl-
imide had to be assumed. The change of shape occurring in the 2900&7

_ sysfem of SO2 was assumed to be the same as the shape change occurring

in the 27008 system of thionylimide. This is justified by the facts |
that the change of shape occurring in'thiony11mide'is occurring on

the SO end of the molecule, that both transitions have similar
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vibrational structures, and that both transitions are the first
strong transitions seen in each molecule.

In a preliminary band contour anaiysis of the (010)-(000)
band [Metropolis's vibrational numbering (2)1 of the 29008 system

|

of S0,, Dixon (22) has found that in the excited state, R, = 1.58 R

SO
. . "
and %050 = 105°. Since in the grqundAState RSO = 1.43 A and agsQ - 119°
(22), aRgg = 0.15 R and boggg = -15° for the transition. Using these

changes in bond lengths and bond angles and setting

BRgy = ARyc '. (11)

one can éa]cu]ate d. Since the shape change has beén reasoned

to be taking place around the S atom, only the overlap integrals

’for Vo, V3, and Vg [see table (2) for frequency assignments] need

be considered since only these vibrations will have appreciable di's.

Using egs. (10), and (11),

MRy | "5 .T
4 [ *s o |0.15A
d=1L" MRgq =L" 0.15A (12)
0
8o HNS
2 NSO 0,26
| 4yHNSO | IR
Thus the individual d,'s of interest become
d, = (1.936 - 1.995)(0.15) + (0.028)(0.26) = 0.052
dy = (1.923 + 2.596)(0.15) - (0.142)(0.26) = 0.674 _ (13)
d. = = 1.163

5 (1.067 + 0.874)(0.15) + (3.352)(0.26)
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From the above values of di for Vos V35 and vgs One can
see that V3 and vg will provide most of the intensity. One would
therefore expect a long series of band progressions in both
V3 and Vg - The reason d2 is small even thoUgh the vibration is centered
on the S-0 end of the molecule, is that it is mainly an asymmetric
stretching vibration, thus the change in RNS is counteracted by that
in RSO‘ |

Since we cannot be sure of the vibrational analysis of the 27OOR
system of thionylimide, the excited state frequencies cannot'be:
determined unambiguously. )

The NSO bending vibration, Vgs Was assumed to be 285 cm;] (the
predominant vibrational interval seen in the transition),
by éna]ogy with the 29008 system of 502, where the upper state bending
vibration (vz' = 318 cm-]) is similarly pfominent. This assignment
is supported by the three previously méntioned "hot" bands which are
all separated from bands known to be temperature-insensitive by the

1 to within + 25 em™! (i.e. for

ground state frequency vy = 453 cm
these diffuse bands within the accuracy of measurement ). The other
low-1ying frequency, the torsional vibrafion v6", at 759 cm'], cannot
give rise to "hot" bands of this type because, since it is a non-
totally symmetric vibration,; it must obey thé selection rule

A 96 =0, 2, ...} then, "hot" bandsvarising from the level

\@" = 1 are most likely to be sequence bands (A v=0). However, the

assignment of these "hot" bands as torsional sequence bands cannot
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. be enti}eiy ruled out, though it is less likely than their
assignment as the first members of ground state progressions
in v5", since these are favoured by the Boltzmann distribution
Taw, v3 was estimated using the ru]e'given‘by Birge (24)

for diatomic molecules: - }

r2, = constant | I - {(14)
where r = internuclear distance and w= vibration freéuency.

Thus:

r'zw' = r"zw"

o' = (L) = 859 on”!

(15)

A éomputer program written by Malm and Merer was used
to evaluate eq. (9) using the-previousfy determined_di's and
frequencies. The results of these é;Ié;{étions are given in
Table (3) and are graphed in Fig. (]1); A

Upon examination of the spectrum of thionylimide taken
" on the Cary 14 spectrophotometer (fig. 6), one can see that
the bands are not discernible along the whole transition, and
one must consider the possibility that.the absorption maximum
and the banded structure may not correspond to the same excited
state. The absorption maxihum comes -at approximately 2]702 (46083 cm'])
_and the first discernible band is at 26908 (37175 cm™)). If the
observed ébsorption maximum and the banded structure are taken as
arising from the same transition, the Franck-Condon maximum lies at

1

least 8900 cm ' from the'system origin. The value shown in fig. (11)

on the basis of Dixon's results for the 29008 system of S0, is

approximately 6000 an” .
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Thus the'calculated transition is too "short" in relation to

the observed transition provided the banded structure and the

observed absorption maximum belong to the same transition.
vFurther calculations were done to correlate changes

J'n'ARNS ( =-ARSO)_aﬁd Astoin the transition to the f]ength"

of the transition (or the position of the Franck-Condon maximum);

thus it was possible to see how iarge a shape change was

1

necessary for the Franck-Condon maximum to 1ie 8900 cm ' from

the system origin. The results are shown in fig. (12). From

fig. (12) one can see that to explain the value 8900 cm'] in

thionylimide, one needs ARy = 0.188 and Aq = 0.28 Radian or
_ NS NSO

other combinations from the graph. Thus one must accept

approximately RNS k 1.693, RSO ¥ 1.63 and o = 1140

NSO
in the excited state bf thionylimide to explain the 27008 system
of thiony]imide as a single transition. Such large changes

in shape are approaching the limit fér T > ¥ transitions if one
assumes one is seeing such a transition in thionylimide. The
largest change of shape known for a w - «* transition is in 02
where there is a 33% change in the internuclear distance; thus
in thionylimide where the = molecular orbital is spread over two
bonds, one would expect that the maximum changevin the NS or SO
bond would be 16.5% which is O.ZSR in the NS bond and 0.243

in the SO bond. These changes are not much larger than those

listed above which are needed to explain the 27008 system of

thionlyimide as a single transition.
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Table 2

Comparison of Reported Gas Phase Frequencies and Matrix Frequencies

Richert Matrix Meaning
(HNSO Q branches)  (HNSO)
-1 -1
vy 3345 cm 3309 cm VNH ‘
vy 1261 1249 . VogNaSym-
V3 1090 1083 - VoSN SYM-
Vg 911 900 ANH
Vg 453 447 WSO
vg 755 754 Yinso
Richert's Force Constants . .__Author's Force Constants
fis 8.2 mdyne R-1 7.48 wmdyne R-1
fso 86 " 8.4
fNH | | 6.1 | "
faNSO 0.6 " 0.598 f
Foyns 0.51 |
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Table 2 (continued)

Frequency fits for various isotopes using the force constants of

this work
HNs3 20 0BS. FREQ. CALC. FREQ. ~DIFFERENCE  PERCENT ERROR
| (em™)) (™) (cm™1) !
| |
1 3309.0 3321.6 -12.6 -0. 381
2 1249.0 1253.0 4.0 -0.318
3 1083.0 1067.9 15.1 1.393
4 900.0 928.3 . .28.3 -3.140
5 754.0 754.9 -0.9 ~0.117
6 447.0 437.8 9.2 2.061
HNS %o 0BS. FREQ. CALC. FREQ.  DIFFERENCE PERCENT ERROR
(em™ ) (™) ‘ (cm™) '
1 0.0 13321.6 0.0 0.0
2 1234.0 1239.3 _.-5.3 -0.429
3. 0.0 1064. 4 0.0 0.0
4 0.0 923.9 0.0 0.0
5 0.0 753.9 0.0 0.0
6 0.0 434.8 0.0 0.0
- pnsS2p ‘0BS. FREQ. CALC. FREQ.  DIFFERENCE PERCENT ERROR
(cm']) (cm-]) (cm-])
1 2450.0 2432.4 17.6 0.718
2 1245.0 1244.4 0.6 0.050
3 1048.0 1043.0 5.0 - 0.477
4 752.0 724.0 . 28.0 3.717
5  592.0 590.9 1.1 0.192
6 400.0 412.9 -12.9 -3.227
pns3%o O0BS. FREQ. CALC. FREQ.  DIFFERENCE PERCENT ERROR
(™) () ()
1 0.0 2432.4 0.0 0.0
2 1230.0 1230.0 . -0.2 -0.018
-3 0.0 1037.6 0.0 0.0
4 0.0 721.2 0.0 0.0
5 0.0 589.6 0.0 0.0
- 6 0.0 410.6 0.0 0.0
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Table 2 (continued)
Eigenvector and Inverse Eigenvector Matrices for HNS32
on the Force Constants of this Work

_]EIGENVECTORS
FREQUENCY = 3321.9 cm L

0 Based

1.0312 -0.0335 0.0005 -0.0429 0.0429 0.0

1

FREQUENCY 1259.4 cm

"

0.0082 0.2417 -0.2219 -0.4022 0.0202 0.0
1075.3  cm”

FREQUENCY

0.0062 0.1750 0.2104 -0.3769 -0.0738 0.0

1

FREQUENCY 932.7 cm”

0.0086 0.1102  0.0079 0.8863 -0.1230 0.0
.—-‘ . :

FREQUENCY = 746.6 cm o
0.0 0.0 0.0 0.0 0.0 1.2215
FREQUENCY = 433.7 cm !

-0.0017 0.0158 0.0115  0.0707 0.2834 0.0

EIGENVECTOR INVERSE

1

FREQUENCY 3321.9 cm

0.9680 -0.0386 0.0006 -0.0034 0.0086 0.0

1259.4 cm”!

-FREQUENCY

0.0535 1.9358 -1.9954 -0.2196 0.0284 0.0

FREQUENCY = 1075.3 cm’ |

0.0555 1.9230 2.5959 -0.2824 -0.1420 0.0
1

FREQUENCY 932.7 cm”

0.1021 1.6093 0.1288 0.8824 -0.3144 0.0
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Table 2 (continued)

FREQUENCY = 746.6 cm”|

0.0 0.0 0.0 0.0 0.0
FREQUENCY = 433.7 cm |

-0.0916 1.0666 0.8740  0.3255  3.352]

0.8187

0.0
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Table 3

Ca]culated Va]ues of RMN for v3 and‘v5 with RSO = 0.1SR
and Ad =0.26 Radian

NSO
V3 . V5
UPPER STATE FREQUENCY = 859.00 cm™' UPPER STATE FREQUENCY = 285.00 cm |
LOWER STATE FREQUENCY = 1050.00 cm™' LOWER STATE FREQUENCY = 450.00 cm™'
v =0 v'ov" =0

0.055549 .0 0.036467

0.140021 1 0.103645

0.245643 2 0.202506

0.346050 3 0.31329

-0.414857 4  0.405846

10.436694 5  0.452940

0.411496 ~==6  0.442376

0.351593 7 0.381074

0.274826 8 0.290026

0.197751 9 0.194110

0.131543 10 0.112692

— O 00 ~N OO P W NN - O <

. O
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1

| < ~ 6000 cm” ‘
yan | |
: |
| | | I
6000 cm” ! 4000 cm™! 2000 cm” !
ENERGY
Figf 11 Calculated transition egve]ope,
for ARNS = ARSO = 0.15 A and
_ 10
bapeg = 15
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C. Electronic States of Thionylimide

To achieve an understanding of the absorption spectrum of HNSO,
it is necessary to establish the possible electronic states of HNSO.
There are two possible ways to proceed: either the e]ectronic
states of HNSO can be corre]ated with the states of the isoelectronic
molecule, 502, or the e]ectron1c states of HNSO can be der1ved from
a reasonable set of dissociation products. These two methods

will each be considered,

States of HNSO derived from dissociation;produéts

The most probable dissociation products will result from the
- rupture of the weakest bond in the molecule. Some relevant

dissociation energies are given below (23)..

502(9) -> SO(g) + O(g) AH = 5.9 e.v.

NS(g) “* N(g) + S(g) AH = 5.61 e.\(:
HNO(g) -> H(g) + NO(g) AH = 2.17 e.v.
NH3(g) > H(g) + NHZ(Q) AH = 4.3 .e._V.

Although the bond energy of the NS radical is certainly greater
than that in HNSO,'it is reésOnab]e to expect the N-H bond to

be the weakest in the molecule. Thus the most 1ikely dissociation
process is’ - |

HNSO(g) = H(g) * NSO(q)

The ground state of HNSO will be formed from the dissociation

products in their ground states. The H atom will be in the 1s] 25
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étomic ground state. The nature of the ground state of NSO is
more difficult to determine. NSO is isoelectronic with NO2 and
will probably have corresponding electron configuraﬁions and states.
It is noted that NO2 belongs to the C2v point group, whereas |
NSO belongs to the C boint_group. (See Table(4)for Coy and Ce
character tables and the correlation of the irreducible represent-
ations of the C2v and CS point groups.) |

NOé in its ground state has the following electron config-
uration (3):

(52)2 (12,)7 (a,)% (62)) ... 28y (Cy), 2A' (C)

Here the numbers (5,1,4,6) refer fo the number of times a certain
representation has appeared in the holecqlar‘orbital configuration.
Thus Sa] refers to the fifth a; molecular orbital. One can see
that the NSO radical in 'its ground state will prObab]y be in

a 2A' state. Thus the ground state of HNSO will be formed from

a (S) H atom and a (%A') NSO radical. Using the building up

]’3A' states of HNSO. It is seen

principles (23) one obtains
that, for molecules with even numbers of electrons, no partially
filled degenerate orbitals, or any near lying unfilled orbitals,
Hund's Rule (23) does‘not hold and the singlet has the lower
energy. Thus, according to this approach the ground state of
HNSO will be the singlet and the triplet will be the first excited
state. |

The first excjted state of NO2 has the following electron
conffguration (23):

(5a])2’('1a2)2 (4b2)2(2b]) ... %, (CZV), 2

AII (CS)
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Thus the first excited state of NSO will be a °

A" state. From a
(25) H atom and a (ZA") NSO radical one obtains (]’3A") HNSO.

As we shall see, the irip]et will have the Tower energy, and

the singlet will have the higher energy. A potential energy diagram

based on these results is shown in fig. (13).

Correlation of the E]e;tronic States of 302 and HNSO

SO2 has the following ground state and low-lying excited
state electron configurations (23).
... (1a2)2(4b2)2(6a])2, : ]A] (ground state)
e (ay)?(aby) %6 (o), To38,
e (12 (6ap)P(2p) . TR,
cee (1ay) (40,02 (6a;)2(20))", 13,
The firs;‘exCited state of SOZ’ giving rise to the
transition at 39003, has been identified as a 381 state (25).
Evidence obtained by Hochstrasser ahd Marchetti (26) from matrix
isolation studies showé another triplet state lying close to the
3B] state, which is probably the 3A2 state. The 29OOR system of
S02, though much stronger than the 3QOOR system of 502, is not as
strong as would be expected for an allowed singlet transition.

Dixon (22) has suggested that it may be a ]Az 21

1

A] vibronic-

allowed transition where the 'A, state is interacting via the b,

antisymmetric stretching vibration with a higher B] electronic

state to give 181 - ]A]'vibronic bands.
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On the basis of these results the following energy level

diagram for 502 is drawn.

29622 om” ! ‘Az
~ 27000 cm” ) 3A2
25767 cn”! B,

0 cm'] ]A

Using the correlation table for C2v and CS point groups, the
1

lowest four states in HNSO are predicted to be 'A', SA", 3A". and
]A"fby correlation with the known states of 502. This method gives
the same results as the previous method except that the first
triplet is 3A“ instead of 3A'. e

This discussioh shows that the ground state of thionylimide
is most likely to be a 1A' electronic state. The first two
excited electronic states are given as triplets by both methods.
As noted in the experimental section, approximately 0.40 meter-atm,
were necessary to observe the weak continuum in the 344OR region.
Such weak transitions are usually associated with spin forbidden
transitions. The second triplet which is not observed may lie
close to the first triplet or under the 29003 system of 502,
in either case being undetectable. The 27OOX system of thionylimide
is probably the first singlet transition.

Diffuse bands are usually associated with predissociation.

Predissociation occurs when an electronic state with discrete
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energy levels has the same energy as an unbound or repu]sfvé
electronic state: Thus A" sHown in fig; (13) may be
predissociating the ]A" upper state of the 27002 system. HOne
should note that, as predissociation gets sfronger, the aiffuse
vibrational bands themselves may no longer be discernible above
the background. It is therefore possible that the observed
Franck-Condon Maximum and the banded structure can be frbm the
same excited electronic state given the acceptance of the

large shape change proposed in Section B.
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Table 4

Character Tables for the Point Groups Cs and CZV'

CS E gv.(yz) CZV E C2 av(xy) ov(yz) N

A 1 1 Y2 RX A] 1 1 1 1 z

A 1 -1 X Ry’RZ A2 1 1 .-] -1 RZ
B] 1 -1 1 -1 X R‘y
B2 1 -1 -1 | 1 y RZ

'

Correlation of the Irreducible Representations of the Cs and C2V

Point Groups

-C2v Cs

AI

B All
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H(%s) + NSO(ZA')

Fig. (13) Possible Potential

RN-H

_Energy Curves for Thionylimide
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CHAPTER II

’22 and 32 Electronic States of Linear Mo]ecd]es

‘in which One or More Quanta of a Degenerate Bending

“"Vibration is Excited

2-1 Derivation of the Hamiltonian ahd its Matrix Elements

For a linear ﬁo]yatomic molecule in a g electronic state,
one normallykassumes that the mo]ecuie is better deécribed by
Hund's Case (b) coupling where the spin is almost "free", being
only coupled to the rotation of thevmolecule, due to the absence
of any interaction coupling the spin fo;the,axis of the molecule
such as spin ofbit coupling. In a ¢ electronic state, a Hund's
Case (a) representation; where the spin and vibrational angular
momenta have wei] defined components along the axis of the
molecule, is a good approximation as long as the molecule is not
rotating or in low rotational quantum 1eve1s; At high rotational
quantum numbers, a Hund's Case (b) representation is a.better
description, and the results obtained using a Case (a) hamiltonian
will be transformed into Case (b) notation as needed.

| The hami}tonian for.a lTinear po]yafomic molecule in a
multiplet E electronic state in which one or more quanta.of the
degenerate bending vibration is eXcited is given below, following
Van Vleck (27) and Watson (28).

- B(r) [J,-S, -G )2 +‘(Jy-sy-ey)2.] +20(S 2-‘—52) +

2 2 + '
y(S -+ J S Jysy) +y (GZSZ)

(1)
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The first term is the ordinary rotational energy and involves
only the x and y components since the rotational angular momentum
vector is perpendicular to the molecular axis, which is taken

is. . s J , and G j
as the z axis | In eq. (1) ) an (x,y) are just

_ (x,9)? >(x,y
the components of the total, the spin, and the vibratiqpa] angular
momentum. The second term is the dipole-dipole spin-spin inter-
action, where X is the spin-spin interaction constant. The

third term is the spin-rotation interaction. The last term is

a quasi spin-rotation interaction where the rotational motion
arises from a degenerate bending vibration. This has been

~ discussed by Chang and Chiu (29), but has not yet been seen
experimentally. o o

Eq. (1) can be rewritten by first expanding and substituting

with the following relationships:

9207 = 920 and sPesf=sBst (@)
J + = JX + i Jy S+ = SX * i Sy

Thus eq. (1) becomes
Ho= B(r)[9%-0. % + §%-5 21 + s B(2ny)

_ 2y 2 ' 1
ST(vtgr) + v'6.S, * (5v-B)(J,S_+J S)) -
B(J,G_+0_6,) + B(S,6.+45.6,) + B(6,"+6,") (3)
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We now have the hamiltonian in a form in which we can discuss

its matrix elements. 'The matrix elements of J and Svare well
. v n,

known [see Yan Vleck (27) and Hougen (30)] and are giVen below:

v

L

,{JIZ[J',P> = J(a+1) n|a,P>

s81s,1> L= s(sH) n2s,

3,19, = Ph[J,P>

S,1S,5> = h|S,B>

39> = [3(3+)-P(E) T2 na,pats

S.[S,5> = [S(5+1)-2(z:1)1% ns,ze1> (4)

Here P is the eigenvalue of the operator JZ. P is equal to
(2+x), where % is the vibrational angular momentum quantum number,
i.e. the eigenvalue of Gz, and £ is the eigenvalue of SZ. § has
the normal sign of i in its commutation relationships but % does
}not. This anomalous sign of i comes from the fact that,‘a]though.
g has the normal sign of i in its commutation relationships when
Q is referred to a space fixed axis systém, when Q is referred
to the moiecule fixed axis system the anomalous sign of i appears .
in the commutation relationships for g. The sign change comes from: .
the direction cosines which afe used to transform the space fixed
axes to the molecule fixed axes.

The matrix elements of'Gt are more complex. To obtain them,

one starts with the definition of the Cartesian component Ga,

o o
G =Qtr E_ap' . . (5)

a —
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which relates G, to the vector of the normai coordinates Q

and their conjugate momenta P. 5? is the Coriolis coupling

coefficient matrix and is defined such that

) oty

= (2 M™% ‘(u and v are vibrations) (6)

uv - uv

where 2 is the transformation matrix that transforms the mass

weighted Cartesian displacement coordinates, g, to normal coordinates,

Q.

Q=29 . - (7)

M? is one of Meal and Polo's cross product matrices [sée Meal and

Polo (31)]. One should note that t® is an antisymmetric matrix

o

| a S e
and therefore ¢ uv S I

" Most of the ¢ éoefficients are zero for linear molecules.
The coefficient Cuv is only non-zero when the direct product
of the irreducible representations of the vibrations u and v
trahsforms as a rotation in the point group to which the molecule
belongs. Thus in a symmetric triatomic linear molecule, conly the

+ . . . A .
9 and " vibrations will have non-zero Coriolis coupling

coefficients between them. Therefore only P (532) will be

- +
- b (of = =
non-zero because mz X [;‘3 1Tu X ou ng

where g is the species of the rotations RX and Ry in the D h

point group. For an unsymmetrical triatomic molecule only

ﬁaz],Ca]z, Cu32, and C“23 will be non-zero. For large
molecules, the expression for Ga will become unwieldy. This

‘thesis will therefore be restricted to unsymmetrical triatomic
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molecules, but the formulae derived can be generalized for larger

molecules. Eq. (5) for unsymmetrical triatomic molecules becomes
) a a | »
6, k21,3 (@0 2P * Qs ioPp) - (8)

Now defining G4_as

G =G, +1iG (9) .

) _ . o . o . _
A L T £ 1 0t Pylie = (xy) (10)

and finally

6, = kzi;3 ket QPp, ¥ T Py, ] an

The matrix e]ements of Qk and Pk for-a harmonic oscillator

are given by Wilson, Decius, and Cross (32) and are
<Yk + 1P v > = i/%hvklvk+15
<vk]Pk|vk + 1> =—i/§hvklvk+1$

ST vy ’/%az %- (v, +1)
K

S Qv = /R
Vil Qv /12 5, ) )

The matrix elements of 11P2+

harmonic oscillator are given by Moffitt and Liehr (33), but

+Q,,. for the doubly degenerate

will be given here in a s]ight]yvmore useful form.
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1+

' ) . L 1
<V, & ],2+1|P+|v22> = 1[%hv2]2[(v2+1)i(2+1)]2

I+

Wy £ 1,8-1[P_[vpe> = & 10,170 (v,#1)¥(2-1)]7

' - h L %
W, % 1,2+1|Q+|v22> = Lgﬂzvz]z[(v2+1)t(2+1)]2 |
<V, = 1,2-1]Q |v, 2> = [h ]%[(v +])?(2-1)]%. % (13)'
2 * ARV, grlv,” V2 !

Now it can be seen that for G_ and G_ there will be four types of

non-zero matrix elements for .each.

— ‘ L
<v, * 1,241, vk+1|Gi|v22vk> + ﬁ;2k¢k[(vk+1)(v2ﬂ+2)]2

<y = 122l v A6 vty =k 11z, 2 LV 1) (v, Fe) Is

(14)

<V, + 1,2t1,.vk-1|Gi|v22vk> + ﬁQZka[vk(v2i2+2)]2

. . T ik
W, - 1,211, yk-I{Gilvzzvk> = t"h;2kq>k[vk(v2+z)]2

where k = 1,3 and, following Mills (34), with the definitions

Before beginning to evaluate the energy ievels of the
hamiltonian given in eq. (3), a suitable notation for the basis
functions must be'spec%fied. Since the hamiltonian is set up in
a Case (a) representation,k where, as noted previously, the spin
and vibrational angular momenta have well defined components along
the molecular axis, a basis denoted by <v2,Q,vk,J,P,z[ will be used,

The symbols are as previously defined.
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In eq. (3) the first four terms are.diagonal in all quantum

numbers. The last term ze + G 2

, y
contributes small amounts to the anharmonicity constants X195 Xo3s

. as shown by Hougen (35), only

and will be neglected. The fifth term which represents the spin-
rotation interaction, is off-diagonal in z but‘diagona? in the
vibrational quantum numbers. The sixth term involves é+ and is
therefore off-diagonal in the vibrational quantum numbe%s. It is
this term which is responsible for'the'Coriolis interaction which
resoives thé degeneracy of states differing only in the sigh of 2 and
brings about the familiar 2-type doubling. The seventh term is a]so‘
off—diagonal in the vibrational quantum numbers and. represents a
"gyroscopic" spin-vibration interaction. |

“Since we are interested in the rbtationa] énergy levels in a
given vibrational level, the eTements off-diagonal in the
vibrational Quantﬁm numbers must be taken into account correctly .
This has been accomplished by the use of the Van Vieck transformation

[Kemble (36)]

4" ) | 1 "w n 1,1t .
< VE'lHlV'E"> = v|;v fV L. IEIVSL><V2 lHIV.Z > (]6)

v

| - By \

For the case'v2=vk=2=0'in a trip]gt state, the application of
the Van Vleck transformation can be easily demonstrated. The
v2=vk=2=0 level will only interact with the v2=vk=1, g=+1 levels
via the sixth and seventh terms. Shown in Table(5)are the matrix
elements of these two terms. Upon application of the Van Vleck

transformation, one obtains the second order correction to the
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matrix for the v2=vk=2=0 vibrational level. The result is

shown below.

0 00J-1-1]  <000J00] <000J11]

<0 00 J-1-1| BA[4J(J+1)] . -4B% /IIHAT 0 (17)
©00J00 | B2[4d(J+1)+8] | -4B% /23(IFTY
<000J 11} - symmetric | F2[4J(J+1)]
o 8222
(B™= =3—)
K2

One can see that carrying out the Van Vleck transformation
-fok higher vibrational levels will be very'tedidus.‘ To avoid
this prpcedure the results of carrying out the Van Vleck transformation .-
in the general case were investigated;Jéﬁa_the general forms of
the resultant terms are tabulated in Tab1e(6)u The matrix elements
of these operators can be evaluated using egs. (4,14) and are given
in Table(7)in terms of q, the normal g-type doubling parameter for
singlet states; 3, the Coriolis contribution to the effective
~ B value for a given vibrational level; and a, the Coriolis contribution
.to 9o the anharmonicity constant from the standard vibrational
energy formula | |

2

E(vps2) = wy(vy + 1) + g,y08 (18)

The matrix elements of the first three terms of the hami]tohian

shown in eq. (3) are diagonal, and using eq. (4) are simply

- 2
<v22kaPz|Hdiag.|v22kaPz> = B[J(J+1)-(2+z)“ +

S(5+1)-11° + 22(2>\+y)-S(S+1)(y+—2§>\)+Y'Qz (19)
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The fifth term in eq. (3), the spin-rotation interaction,

is off-diagonal in £, but is diagonal in Vos L, and Vis

<v22kaP,Zi1|HJ.S|v22kaPZ)

|
: (20)
|

(%y-B)[J(J+1)-(i+z)(£+21])]%[S(Sf1)-z(211)]‘

It is seen from egs. (19,20) and Tab]e(7)that it iL possible

eff) for a given

to incorporate B and gv into an effective B (BV
yibrationa] level since the quantum number dependence of B and

")
@, are the same.

2-2 Results and Discussion

The results deal with both %3 ahd}?x_e]ectronic states

“in which v2=1,2 and vk=0, where Vo corresponds to a degenerate
bending vibration and vk.corresponds to a stretching vibration.
These céses are the ones of prime interest because they are thé
cases most likely to be observed experimentally. Utilizing

egs. (19;20) and Tab]e(7),the matrix correct to second order

can be immediate]y.written down in the Case (a) represéntation.
Since all the resulting matrices are doubly symmetric, they can be
factorized into sma]]er sub-métrices using the Wang |
transformation'(37) [see Appendix 2]. These sub-matrices correspond
to either the'Kronig (+) dr (-) rotational levels. The resulting
sub-matrices can be diagonalized. The results can be transformed

to a Case (b) representation as needed.
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22 Electronic States

For the Tevel v,=1, ¢=:1, Vk=0, in a %5 electronic state
one obtains the matrix shown in Table (8)using egs. (19,20) and
Table(7). Use of the Wang transformation yields the following
pair of matrices.

Il,2> /;:{I'I,lptl-],—;p} /’;T[“’_;?ﬂ_]';?}

L () Vips]-1,33) B LI+)-1] | -(By-1) 331 ) -2

V2

+Hay ' =Ly i%q]¢|JiJ+]5+%I|JEJ+15—%J

B[ (3+1) 5] %y

Lo 1,51]-1,)
3

symmetric v +(-qq ) /ITIFTY (21)
| 1

These two matrices (differing in the sign of the q terms)
can easily be diagonalized to givevfour energy levels. The

general energy equation is given below.
E = By (4)%-1]-4vq (J+)
(D' -By et (9+5) 2154 [y -B kg (3) 2120 (0+) -1y E (22)

One should notice that in generating the four energy levels,
one must be consistent in the choice of sign of the q terms, but

this choice is independent of the sign of the square root. Since
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the matrix can be diagonalized exactly, one just has to substitute
(N=J+%) and (N=J-%) to obtain the results in Case (b) notation.
Thus eq. (22) becomes

|
F o (N=d#3r)< B, (N2-1) -ty Pisgh ([ ' -BzaN] + |

Dirv-BqNI2[NP-113% | ‘ (23)

F](N=J—%)=B](N2+2N)-2YI%Q(N+1) -v{[%Y'-B]i%Q(N+1)]2 *

Dov-By2q(N+1)1IN>2N]2 | | (2

The above equations correspond to the formulae that Hill and

2

Van Vleck (27) have derived for “m electronic states if the terms

in vy and q are omitted, and vy' is substituted for the spin-orbit °

2H electronic

coupling constant, A. Thus one can see by analogy to
states that, unless y' is ]afge, fhe splitting it will cause will be
quenched by the spin uncoupling, and will merge into the spin-rotatiou
interaction splitting as the molecule rotates faster and faster;

that is, the effect of y'GZSZ in coupling the spin to the molecular
axis will be ouercome by the term -(B—%y)(J+S_ + J_S+). If v' is
ueg1igib1e and B is 1arge compared withby,.the terms under the

square root sign in egs. (23,24) can be simplified, and the equations
reduce to the equations used for 2n vibronic levels ofvzz electronic

states given by Johns (38), where the spin doubling and &-type doub]ing

are separate entities. These equations are given here.
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Fo(N)=BIN(MH)-1] - kv (N+1)

1+

LaN(N+) O (2s)

I+

Fy(=BIN(NT)-1T + 3ay(N) = Hgh(N1) (26)

Thus if y' is negligible and B]tbq(d+%)>>y, the spin splitting and
2-type doubling are indeed separate.

When two quanta of a degenerate bénding vibration are excited,
25 (2=0) and 2, (z=t25 vibronic states are formed. Using
eqs. (19,20) and Tab]e(7),the corresponding matrix can be written
down. Uponvapp1ication of . the Wané transformation one produces
the two 3 x 3 matrices given in Table(9). To obtain the Case (b)
representation, where the fotatibna] energy is diagonal, it is

necessary to find the matrix S such that

-1

§_ﬂr0t(case a) §' = ﬂrot(case b) (27)

To obtain the transformation matrix S for the 25 sub
matrices one proceeds to set up the problem as follows. Written

out in full eq. (27) becomes

B[ (J+%)%-2] Y/ wrenyariy B

Jdn
w

-B/(J+g)2-4 | B[ (J+5)2-6]
_ | - 28
(N=J%) : (N=J+%) (%)
BIN(N+1)-4] 0 ]

-4

0 . BIN(N+1)-4]
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The Case (b) matrix is in terms of N and not q. To write
the Case (b) matrix in terms of J, one substitutes N=J+% and

N=J-% respectively, for the two N values. The Case (b) matrix

becomes

i
\

o
N
—
~

0

o)
o
.

2 13
J° + 2J - T

Now, solving for the matrix.§f], one obtains for the Tlower
2 17

eigenvalue, B(J°- 4), the following simultaneous equations
, (J+%)2-2-J2+%Z- - -/(J+%)2-4 , s{;

, | - - -1 |7
Yy 2,17 S

(J+>) -6-J° - 22

Therefore:

5 3
S"] = J+? ) -*.-2—
T22 ’
: 2(J+L) 2(3+%)

For the upper e1genva1ue B(J +2J———0 one similarly obtains

(29)
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Thus

5 | 3]s
J+§ _ J-§
4 | 2(3+) ] L 2(34)
S = (30)
-5 |® weooF
| 2(4y) | | 2(34) |

Since.the hamiltonian was set up in a molecule-fixed axis
-system, care must be taken with the phases of the results when
applying them to a space fixed axis system due to the previously
mentioned anomalous sign of i in the commutation relationships of
J. This would be important in dbing intensity calculations for the
brancﬁes'of a band invo]ving such a state [see Hougen (39)].

‘Transforming the entire Case (a) matrix results in the Case (b)
matrix shown fn Table(9). The y"tefms have been omitted from the
Case (b) matrix because they are likely to be negligible. There
are_terms off diagonal in y in the Case (b) matrix that do not
normally appear jn the Case (b) formalism. These terms have -
~been retained because the spin-rotation interaction in the Case (b)

“hamiltonian is usually written
Hs.p = YN-R (31)
This formalism is only good for y vibronic states, where NZ is

zero, and in the above case Nz is definitely non-zero. This is

discussed by Freed (40) and Carrington, et. al. (41).
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32 Electronic States

The formulae for 32 electronic states are 6f interest because

data are available for the zero point levels of molecules in 32
states (NCN, HCCN, C2N2), but as yet no bands involving degenerate
vibrational levels have béen'ana]yzed. Qne can ca]cu1%te energy
Tevel patterns for v2=],2 ahd determine what form the bredicted
energy level pattern will take. In trip1et states there are

effects frdm_X, the spin-spin intekaction, which are not present

in the doublet states. As in doublet states, the vibrationa1
angular momentum will upéet the normal spin sp]itting pattern until
-the rotation of the molecule quenches it by uncbup]ing it from the
axis. '

For the v2=1 Tevel (vk=0) in a 3i—éTéEtronic state, one

obtains from the Wang transformation two 3 x 3 matrices. These

are shown in Table(10). To determine the'éorrésponding Case (b)
matrices one proceeds in the same manner as for the v2=2 Tevel

in_a 22 electronic state. The-result is given in Table(10)

below the Case (a) matrices. For Vo=2 the Wang transformation
yields a 4 x 4 and a 5 x 5 matrix, shown in Table(11). The

(-) signs 1n‘the hatrix corréspond to the 4 x 4 matrix and the

(+) signs to the 5 x 5 matrix. -Thev4 x 4 matrix is comprised of the

three 3

A states and the 321 state. The very complicated Case (b)
matrix is.given below the Case (a) matrix.
A computer program'written by Merer was used to diagonalize

‘the Case (a) matrices for v2=],2_for the fo]]oWing-cases‘of
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3 3:= state of NCN (43),

g
z states involved in the 3ZOOR transition of HCCN (4).

interest: _the'g
3

* £ CN 2'h');('
£, state of CoN, (42), the
and the
There are published values for B, A,‘and v for the v=0 levels of

C2N2 and NCN. There is no information for g, but g can be

calculated. Data for HCCN ake limited. .The valuelil = 0.43 cn”!

for the ground state of HCCN is obtainable from the ESR spectrum

1

(44). The B value is approximately 0.36 cm '. If the spin-rotation

constant is small (0.001),A'in the upper state is estimated as

1 1

being 1.7 cm ' or 0.8 cm ', depending on the sign of x in the

ground state, from the observed head-head separations.
Figures (14 a,b,c) show the results of these calculations

although no attempt is made to show g-type doubling effects. The

term B[N(N+1)~22] has been substracted from: the energy.

3

Examination of figs. (14 a,b,c) reveals that the "1 and

3A vibronic levels do not have the same form as the 32 vibronic

levels. It is also seen that, depending on the relative sizes

3 32

of B, », and y, there must be a convergence of 3n, A, and

vibronic states at high N values. However, the normal 32 energy

lTevels are not conformed to at low N values. In C2N2 wheré

~x and B are of the same order of magnitude and y is large,

3 32 converge very quickly and only

for low values of N will any deviation from the normal 32 pattern

the patterns for 3A, i, and

be seen. .The opposite is observed in HCCN where there is

quite a large deviation between 3n, 3A, and 3

£ vibronic levels,
As mentioned previous]y; the 2-type doubling is not shown in

figs.<(14 a,b,c), although it was calculated for the V4=1
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level of HCCN. At high N values the normal 2-type doubling pattern
for singlets is followed given by the equation

| Av = gN(N+T) | (32)
but at Tow N values the 2-type doubling pattern is erratic.

With q set at 0.003 cn”

, the theoretical «-type doubling was
calculated and plotted in fig. (15) with the deviation from eq. (32)
as a function of N. |

In theAanalysis of actual bands (yet to be done),it will be
found that the normal 32 combination relationsbased on the
formulae for 32 levels given by Mi]ier and Townes (45), used for.
éva]uating the parameters A and y will break down as the rotational
branches are followed back to the band_otjgjn. Thi§ can be

illustrated by the following relationship,

F](N-1)-F2(N-1)+F3(N+1)—F2(N+])=-(2A-y) : (33)

' where,as N decreases,the left hand side of the equatipn will become
smaller than the right hand side. For N=10 in the 34 vibronic _

level of the given state of HCCN,the difference will be nearly

0.4 cm']. Also,the intensities will probably not follow the normal

32 pattern and it may be necessary to examine the form of the

intensities to analvze the hands.
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TABLE 5

~Elements off dionna] in the vibrational quantum

1,-1,0,d,-2,-1]

1,-1,0,J,-1,0]
1,-1,0,J,0,1]

1,1,0,J,0,-1]
1,1,0,3,1,0]

3

numbers for the v, = 0 Tevel in "1 states
|000J-1-1> |000J00> - |000J11>
-Bzd Y2J(3+T)-%
2BCo -Bze v2J(J+T)
2Bre -Bzo v2J(J+T)
Bze v2J(J+T1) -2Bzo
B ~ Beo VZI(IFT] 2Bz o
: Bro V23(J+1)-4

1,1,0,J,2,1]




Table 6 Effective Opefators Arising from Second-Order Transformation of the Hamiltonian

Term

8%(J,0_6.6,
8%(s,5_6_6,

-B2(J_5,6,6_

-82(9, 5,6

8%(3,%._

2

2

+

<+

-+

+

+

J_3,6,6.)/av
S_5,6,6_)/av
J,5_6_5,)/8v
J_s_G+2))Av
3.%6,%)/av

s_26,2)/av

Selection Rules

Ay AP A%
0 0 -

0 - 0

0 1zl
2 1 ¥

2 2 -
+2 - *2

Meahing

Diagonal o« and 959 term
Diagonal a term resulting from spin
Vibrational y term

AP = + 1 2-type doubling all mu]tip]icities

1 Normal f-type doubling for singlets

! "Diagonal"2 -type doubling for triplets

_99..



Tab]e 7  Matrix Elements of the Effective Operators Given in Table 6, in Harmonic Approximation

v Y 2 2
w2 & [Hv,d 2 T > - 92°-a [J(J+1)-(2+2)45(S+1)-1"]
v ’ .
<v2Jz I |H|v2J.z + 235> = . %qVVzi&)(V212+2)/J(J+1)-(z+z)(z+z¢])/ﬂ(d+1)-(2+z:T)(z+2i2)
wpdn 5t 20H) vpde £ 2 2> = Jo I, TI(V,252) STSHTI-E(527) /STSH) = (521 (322)
n _

4
=50/, R) (v, 232 ) (T - (o) (a+222) /S(S+T) -2 (z4T)

Vodi I & T[H| vyde £ 22 > =
"
<v2Jz Z + 1|H| szn £ > = 3;/J(J+])-(Q+Z)(£+Zi]7¢$($+])-Z(Ei]j
where .
o g 2Q 2 . 2 o 2 5 2 2 ‘
q = -4B¢ ) 2k k. _ 2k k) . 2B [1+4 Y 2k “2 ), i.e. such that 2~type doubling
k#2 . k#2 . . '
Wp=y w2+wk‘ / w 9 “’i’ '-w% .
of the Vo = 1 level of a ]E electronic state is given by
Av = qJ(J+1)9
- 2 0, 20, %y t, 20, (v, +2) |
o = -ZBe ) 2k *k "2 - "2k "k ‘2 i.e. such that the effective B-value for the level
wpwg Wyt » )
RE v Yo oR2 2 2. 2 2\ . The quantity h° has been suppressed here.
v, is given by (Be-av), and g = 2B k;g (oo ty %8S . q yx i ppres

Wy =ty wytuy

_99-



"~ "Matrix for Vy = 1 for

Table 8
2

z*Electronic States Correct to Second Order

Bs 1.5 1,5 RES -1,
1% B, [(3+1) =Ly rf (B, -4y ) 7/ 9(3+1)-F3 0/ [9(3+1)461[3(3+1)-31(0)
o ,
1,5 B,[0(3+1) 4%y |-g/ 9(+1) hg,/ [9(+1)#][0(3+1)-3].
-1, S B, [3(+1) 4] (8,40 a(a+1)-L
“Hy-ky'
[41,-%> Symmetric

By LI(I41)-T] + 3" = ey

-Lg_



Table 9 Matrices for V,=2 in a 5 Electronic State

Case (a) representation

lZ

%597 "83/2>

. ."J . . . . )/ ' -;, <
2 51| 2uyt49,,tB,L(04)f 6]y v CarB)L(3#) %417 5 2l (3432110 () 24077
2. - Y. . 2_11,1/2
<A %J 20y+8go+B, [ (I+) - 2] q{2[(J+%) 113

vy

{i%(J+g)-1}

<2235| Symm | ZwZi(%Y-BZ)(J+%)+52(J+%)2-%Y

_89_

The basis functions are the 'sum' functions of thehmngtrahsformation for the upper signs in the

third column, and 'difference' functions for the lower'signs; thus if the plus signs are taken,
i v

the basis functions are of the type |

2A > =2_.;i{|2=2’z=l§’d> +|2 ="2’Z=_l§s\]>}

5/2 _
For the 22 vibronic state this implies the F] (N=J-%) rotational levels for the upper signs,

and the F2 (N=J+%) rotational levels for the lower signs.



Case (b) representation

|2A(F2)> | | |2A(Fi)> , o 1255
, : e 30,3 | . Upper sign: 0
Pali | 2uprigg By /20 I (04941 YLD er ign: -aL(-) (0w (05d)
| | S (J%)fi
Upper sign: qL(3-3)(d-%) (3+%)

. | o (3+)7" &
<2A(F])| - 2m2+4922+[82+y/2(d+%)]~ ~ Lower sign: 0 v
| , [(3-%) (I+5)-4]

il symm | o | 2w2+B (J+%) (34 + 1) sy (JH5T1)

Again for the 22 state, the upper and lower signs corr%spond to F] and F2 respectively, so that the
non-vanishing off -diagonal elements occur only between A(F Jand z(F ) or between ZA(FZ) and 2z(Fz).

The terms in y' have been omitted (see text). ' o



3

~ Table 10 Matrices for_v2 =11in a "z e1ectfonic state

Case {a) representation

3 3 3
| n2> | H.|> ] Ho>
Sy || B [0(I+1)-3]+20my  (y=By)/2I(IHT)G +3qVI(IFT)[I(IFT)-2]
Sy | B, [(J+1)+1]-2v24qd (3H1) - (y-B,FqY 23(3+1)
<3n0 | symm | _ -y'+B][J(J+1)+1]+2A-Y¢q

' Wy + 955 —%A has been substracted from the diagonal e]ements.»As in Table 9, the basis functions are
the Wang 'sum' or 'difference' functions for the upper and 1ower signs, respectively, for the q terms

in the body of the table.

-OL_.‘.



Case (b) representation

<N=J+]|

_<N=J|

<N=J-1|

wy + 90 has been subtracted from the diagonal e]ementé, and the terms

[N=J-](F])>

N=0+1(F,)> [N=J(F,)>
(8, s3g-v/ (3+1) 19243041 u3g ~(v3+20)VIFZ/ (341 /ZTFT

~£0(9%430-1)/(341) (2041)

Symm

v' have been omitted.

[BTq-v/d (J+1)][9%+d-1]

¥ 3q+8[1-3/0(3+1)]

A
‘.i

2/ (I=TY(9%2)/(20+1)
[y(3+1)-221/3T/ /23T

[Bskqty/d][9%-0-1]24q

| -%A(JZ-J—3)/~_J(2J+1)

involving

:-l[..
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Table 11 Case (a) and Case (b) matrices for the v,=2 Tevel in “1 state.

_l|3

(32} A) Ay> |3A2> |3A1> |3z]> ; Zy>
Sagl | 49,,*B,[3(041)-8142x-y  (4y-B,) /ZITIFTJ-TZ 0 (q/V2) /I TI2/IIFTT=6 0
<3A2| 4922+BZ[J(J+1)-2]—ZY (%Y-BZWZUZU+I$-H -2q/J(IF1)=2 q/I(IFTY I+ T)=2
<3A1 | : | | 4922+BZJ(JH J¥2x-y  q/2113:0(J+1)} -2q/23(JFTY
<321 | BZJ(JH Y42x-y 2(%«,-32)/3'(TT7+
N R . . : . L'
CSr | sm | o B,L3(3+1)42]-2y

In Table 9 the basis functions are Wang 'sum' functions fpr the upper 4 signs and 'difference' functions
for the Tower signs; in the Vo = 2 matrices, the single |320> function must be counted with the 'sum' functions
giving a 5 x 5 matrix, whereas the 'difference' functions give a 4 x 4 matrix. The quantity %A has

been subtracted from all diagonal elements.



Case (b) MATRIX
3 ' . .3

A z
: : : 4x4:-|N=J> '
. [N=J+1> [N=0> [N=0-1> - 5x5:-|N=J+1> ~ |N=d-1>
‘ 4x4:- 0
W] | 2uyrhogpHBY ) JL(4) 2_ya+4x /(J 1)(3+3) / (0=1)(9-2) (9+2) (3*3) 55 o/ FTIFTIIDIIFD) 0
2J+1 24+1 J(J+1) '
(342)-41-2=2)45) .
(J+1)(2J+1)
N=J| | 2w2+4922+_%[1 J(J+])] zy(g+1) -4 /(3+2) (J-2) 4x4:--q/3(J+1)(J-1)(J+2) 0O
S (J+41) (20+1) 5x5:- 0 .
: ‘ +[B-ﬁd—+]—)—][\](\]+] )-4] ‘
S
' ¥
N=J-1] ~ L 2uytAg,,- 3x(Q—-Q—lZ) 4x4:- 0
| | S J(23+1) :
, ! . /(d-1
ax4: - ' A 2 vid-2
- <N=J| ' - 4x4:- 2w2+BJ(J+1)+-3—)\-Y
. . _2)\ R
5x5: ' ' ‘ 5x5:- B(J+1)(J+2)+2w2 2J+1
<N=J+1 ’ - . . —
| | | RN ERCICN
. 2J+1
<N=J-1| symm o BJ(J-1
5 . 2
yJ--?:)\ ‘
J-1
4 23417
- The 5x5 matrix (Wang 'sum') is Kronig '-' for J even 414 vice versa for J odd ' 2w,

The 4x4 matrix (Wang 'difference) is Kronig '+' for J even



Rotational energy less [BN(NH)-SLZ] in cm~
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Rotational energy less [BN(N+1)f22] in cm'1
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Rotational energy less [BN(N+])—22] in cm
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APPENDIX 1

Norma] Coordinate Analysis

To solve the vibrational problem in polyatomic molecules,
one begins by writing down the hamiltonian using cartesian

displacement coordinates for the individual atoms (AX], AY1s

BZys DXps BYps weees ‘Azh) in matrix form
_ A o oyt oy ir : ‘
ERERE T LT ST S A S M

Here M js a 3N x 3N (N = number of atoms in the molecule) matrix

with the following diagonal form

o=
4

Since eq.. (1) is unwieldly because of the form of the potential
energy, one introduces norma] coordinates, Qk’ which one defines |

as fulfilling the following relationship.
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3N-6 ;N-6
%) p2 .o} 2 |
H=" P v e :
=30 EQ + 9"
ny nong n n

Iﬁ thié equation Pk is the momentum associated with the
normal coordinate, Qk’ and'Q %s the diagonal matrix of the
eigenvalues corresponding to the observed frequencies (Ak = 4ﬂ2vk Cs
v in cm-]). Notice that k is an index fér the normal coordinates.
Now we define the transformation matrix B that transforms
the qupor of the cartesian displacement coordinates (&) into the
vector of the internal displacement coordinates (§) (changes

in bond angles and bond 1ehgths);
5 = BX | @
Now we define the matrix g such that
- -1 ptr .
G = BN B (5)
and the matrix k such that
$=Lg . (6
Now we define the matrix A such that
BA=E . . (7
The matrix Q is introduced only because g, not being square,

lacks a genuine inverse.

Now
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and then _
’ -1 _ w1 gtr =1 _
g = RN ETET = g (9)
therefore
: _ - | '
A= wt gt gl L (10)
aV) v N A"
and e ()
Now substituting eq. (11) into the first part of eq. (1)
one gets _
o1 =strgts (12)
N N Ny
Now using eq. (6) one gets
. o
o= g e Qg T L (13)
1 -

and therefore LT G~
N n,

or as usually written

In principle the unknown E matrix could be calculated from the
G matrix and the observed frequencies (Q)i however, this is
computationally difficu1t. Instead a tfia] force constant matrix
is substituted, the calculated and oBS;rved frequencies are compared;
and an appropriate adjusfment is made to the trial force constant

matrix. This process is repeated until a satisfactory agreement

‘between the calculated and observéd frequencies is obtained.
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-APPENDIX 2

The waﬁg.Transformation is a similarity transformation that
will break down matrices that ére symmetric about both diagonals
(doubly symmetric) info smaller sub-matrices. It is equivalent
to writing the’matrix in terms of a new set of basis functions
which are sums and differences of the old basis functions. That is,
the Wang Transformation is sueh that |

SH"'S ' =H (1)
where H' is doubly symmetric and H consists of two smaller
matrices. One should note that the important thing for this
thesis is that the pre-transformed basis functions |2,I>
are»neither'symmétric nor ahtisymmefric.gnder the symmetry operation,
o, but the "Wanged" basis functions,—;hich are now suhs and
differences of the old basis functions,vhave the required symmetry
properties. -
: The Wang Transformation is'shown below for both.a 3 x 3 and 4°x 4

matrix.



N |~

N} =

1 0
0 2
10
A-D
0
0.
1 o0
0 1
0 -1
10
A-F
C-E
0
0
A+
C +

1
0
1
0
B
2 C
0 1
1 o0
1 0
0 1
C-E
B-D
0
0
F

V2 C
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A+D

M m O >

0

B+ D
C+E

1+

-

m ©o W O

= [A-D]+

C+E
A+F

NI

N |~
Q (o)

B
V2 ¢

V2 C
A+D




