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ABSTRACT 

E l e c t r o n paramagnetic resonance techniques have been 

used t o i n v e s t i g a t e the nature and p o s s i b l e e f f e c t s of adsorption 

of gaseous species on s e v e r a l adsorbents, i n p a r t i c u l a r s e v e r a l 

s y n t h e t i c z e o l i t e s , at temperatures from 77°K upwards. A n a l y s i s of 

the s p e c t r a obtained has been aided through computer s i m u l a t i o n of the 

various s p e c t r a and comparison of these to the a c t u a l observed 

s p e c t r a . 

The molecule c h l o r i n e d i o x i d e ( ClO^ ) has been s t u d i e d 

i n v a r i o u s low temperature matrices but l i t t l e has been p u b l i s h e d f o r 

"'CIO2 i n the adsorbed s t a t e . An attempt was made to f i n d an adsorbent 

such t h a t an i n e r t matrix might be approximated, to give a base from 

which to make comparisons. To t h i s end, adsorbents i n c l u d i n g s i l i c a 

g e l , s y n t h e t i c z e o l i t e s 13X, 10X, 4A, 5A, Na-mordenite and 

H-mordenite were i n v e s t i g a t e d . The r e s u l t s vary between those from 

s i l i c a g e l , where s p e c t r a y i e l d i n g EPR parameters s i m i l a r to other 
>• . . . 

matrices were obtained, to those from 13X where i t was evident t h a t 

two d i s t i n c t a d s o r p t i o n s i t e s of the ClO^ were present. In the 13X 

as i n the other s y n t h e t i c z e o l i t e s , EPR parameters markedly d i f f e r e n t 

from other s t u d i e s were found and were a t t r i b u t e d to the int e n s e 

e l e c t r o s t a t i c f i e l d s present i n these z e o l i t e s . R e s ults obtained 

at room temperature f o r these adsorbents ranged from ClO^ molecules 

f r e e l y r o t a t i n g i n the cages o f the z e o l i t e s to other molecules 

having hindered r o t a t i o n s . 



Nitrogen dioxide ( N0_ ) was also investigated with a 

view to f i n d i n g s i m i l a r i n t e r a c t i o n s . Although changes as marked 

as for Cl-2 compared to other studies were not observed, the 

s y n t h e t i c z e o l i t e H-mordenite y i e l d e d spectra c l o s e l y approximating 

those obtained i n s o l i d ^2^4 matrices. It i s proposed the NC^ molecules 

are caged i n the numerous side pockets emanating from the main channels 

i n t h i s z e o l i t e and are e f f e c t i v e l y i s o l a t e d from other NO^ molecules. 

The r e s u l t i n g spectra are s t r i k i n g l y more resolved than those 

obtained using other adsorbents and enabled accurate computer 

simulations to be made. 

The adsorption of n i t r i c oxide ( NO ) produced an e f f e c t 

not found with the other molecules. A new species was formed from 

a r e a c t i o n of the NO with H-mordenite and could not be removed at 

room temperature, i n d i c a t i n g a strong bond to the surface. The new 

species does not contain nitrogen as i d e n t i c a l spectra were obtained 

from adsorption of ^NO and "^NO. 

Attempts to observe spectra which could be assigned to 

the difluoroamino r a d i c a l from adsorption of tetrafluorohydrazine 

were unsuccessful. The spectra observed were assigned to a species 

having no hyperfine structure and an a n i s o t r o p i c g tensor. 
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CHAPTER ONE  

INTRODUCTION 

Surface s t u d i e s have grown i n i n t e r e s t over recent 

years due i n par t to both increased knowledge of the s t r u c t u r e 

of surfaces and a l s o to the a p p l i c a t i o n of d i f f e r e n t techniques 

to the study of t h i s area. Adsorption s t u d i e s , surface s t r u c t u r e 

s t u d i e s and stu d i e s of r e a c t i o n s on surfaces a l l have c o n t r i b u t e d 

g r e a t l y to our knowledge of surface phenomena. A great deal of 

i n t e r e s t and a c t i v i t y i n the a p p l i c a t i o n of spe c t r o s c o p i c techniques 

to problems i n both c a t a l y s i s and surface chemistry i s e v i d e n t . The 

fapt that i n f o r m a t i o n can be obtained at the molecular l e v e l r a t h e r 

than the system l e v e l has been a d r i v i n g f o r c e f o r co n t i n u i n g r a p i d 

growth i n t h i s area of i n t e r e s t . 

No one sp e c t r o s c o p i c technique can hope to provide 
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a l l the in f o r m a t i o n a v a i l a b l e from s t u d i e s of adsorbed s p e c i e s . 

Perhaps the most s u c c e s s f u l and widely used a p p l i c a t i o n has been 

th a t of i n f r a r e d spectroscopy. Many reviews have been w r i t t e n on 

i n f r a r e d spectroscopy as a p p l i e d to the study o f surfaces ( f o r example 

[1-6]). Gamma-ray resonance spectroscopy, although r e l a t i v e l y 

unexplored at present i n t h i s regard, has a l s o been used to some 

extent [ 7 ] . 

Magnetic Resonance techniques, both e l e c t r o n paramagnetic ; 

resonance, h e r e i n a f t e r c a l l e d EPR, and nuclear magnetic resonance, 

h e r e i n a f t e r c a l l e d NMR, ho l d promise of p r o v i d i n g answers to some 

of the complicated s i t u a t i o n s that a r i s e on surfaces i n systems 

i n v o l v i n g the g a s - s o l i d i n t e r f a c e . The a p p l i c a t i o n of these 

techniques i s s t i l l at a r e l a t i v e l y e a r l y stage. NMR s t u d i e s have 

been v a r i e d . The d e t e c t i o n of r e l a x a t i o n phenomena of molecules 

adsorbed on surfaces has been a prime area of i n t e r e s t ( f o r example 

[ 8 - f l l ] ) . Other NMR s t u d i e s have included such e f f e c t s as the study 

of chemical s h i f t s on various surfaces [12] and stu d i e s of adsorbed 

water [13-15]. 

The a p p l i c a t i o n of EPR to the study of adsorbed 

molecules has been very p r o d u c t i v e . The a b i l i t y of t h i s technique 

to detect small concentrations of paramagnetic species and to 

r e l a t e the unpaired e l e c t r o n charge d i s t r i b u t i o n to the molecular 

s t r u c t u r e has made t h i s an extremely u s e f u l method of i n v e s t i g a t i n g 

systems i n v o l v i n g s u r f a c e s . 

Many r e a c t i o n s which occur at surfaces a l s o i n v o l v e 

paramagnetic s p e c i e s . I t i s p o s s i b l e to s t a b i l i z e h i g h l y r e a c t i v e 
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molecules e i t h e r by adsorption i n t o porous media such as z e o l i t e s 

or molecular sieves ( f o r example [16-18]). C o n t r o l l e d r e a c t i o n 

of these 'trapped' molecules would then be p o s s i b l e to produce 

s p e c i f i c products, whereas corresponding r e a c t i o n s i n the gas phase 

may not be as s e l e c t i v e . Under s u i t a b l e c o n d i t i o n s , i n f o r m a t i o n 

about the adsorbed species such as i t s i d e n t i t y , s t a b i l i t y , motional 

s t a t e , chemical s t r u c t u r e , and i n t e r a c t i o n w i t h various surface 

f i e l d s can thus be obtained. 

The i n t e r a c t i o n s between paramagnetic molecules and i t s . 

surroundings can g r e a t l y a f f e c t the EPR spectrum. When the molecules 

under study are adsorbed on a surface or i n some way trapped, one 

would n a t u r a l l y expect some d i f f e r e n c e s i n the EPR parameters 

from those observed f o r 'f r e e ' molecules. These i n t e r a c t i o n s w i l l 

be r e f e r r e d to as matrix i n t e r a c t i o n s . M a t r i x i n t e r a c t i o n s determine 

the a b i l i t y of a paramagnetic molecule to r o t a t e or r e o r i e n t about 

various molecular axes. These i n t e r a c t i o n s can a l s o perturb the 

wave funct i o n s of the molecule and thus produce changes i n the 

components of both the g and h y p e r f i n e tensors of the molecules. 

This study i s concerned with the EPR s p e c t r a of 

paramagnetic molecules adsorbed on s y n t h e t i c z e o l i t e s and on s i l i c a 

g e l , and the e f f e c t s of such adsorption on the EPR parameters. 

B r i e f i n t r o d u c t i o n s on adsorption and the s t r u c t u r e of z e o l i t e s 

are given f o r completeness. In f a c t , a knowledge of the surface 

s t r u c t u r e of the adsorbents i s extremely b e n e f i c i a l to the 

i n t e r p r e t a t i o n of the observed phenomena. 
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A chapter on EPR i s in c l u d e d but the reader i s r e f e r r e d 

to other sources f o r a more d e t a i l e d coverage of the theory. 

Chapter Five gives some i n s i g h t i n t o the a p p l i c a t i o n of various 

s p e c t r o s c o p i c techniques to t h i s research area and presents 

background on the a p p l i c a t i o n of the EPR technique to some surface 

phenomena. 

The remainder of t h i s t h e s i s i n c l u d e s a d i s c u s s i o n 

of the experimental techniques and the r e s u l t s obtained from the 

various systems i n v e s t i g a t e d . 
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CHAPTER TWO  

ADSORPTION 

The components of a s o l i d ( i o n s , atoms, or molecules) 

are subject to forces which are i n e q u i l i b r i u m deep w i t h i n the 

l a t t i c e but are unbalanced near the su r f a c e . This r e s u l t s i n an 

a t t r a c t i v e f o r c e f i e l d only extending a few angstroms, but enough 

to a t t r a c t molecules of a l i q u i d or gas i n the immediate p r o x i m i t y . 

These forces cause molecules to become attached to the s u r f a c e , 

the phenomenon being known as adsorption. The term was introduced 

by Kayser [19] i n 1881 to denote the condensation of gases on f r e e 

s u r f a c e s . Desorption i s the complementary process, the removal 

of gases from the s u r f a c e , w h i l e the surface i s termed the 

adsorbent. The p h y s i c a l adsorption bond deriv e s from s i m i l a r 

cohesional forces as those r e s p o n s i b l e f o r condensation whereas 

chemical adsorption or chemisorption a l t e r s the nature of the 
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adsorbed s p e c i e s . Adsorption i s commonly measured i n terms of 

the mass adsorbed as a f u n c t i o n of pressure, the measurements 

undertaken at constant temperature. The r e s u l t i n g p l o t s are 

termed adsorption isotherms„ 

2.1 Surfaces. 

I t i s convenient to d i s t i n g u i s h between e x t e r n a l and 

i n t e r n a l surfaces when co n s i d e r i n g the large a v a i l a b l e surface 

areas of the adsorbents normally used. The e x t e r n a l surface 

of a s o l i d f r e q u e n t l y represents no more than one percent of the t o t a l 

surface a c c e s s i b l e to gas molecules, the a d d i t i o n a l i n t e r n a l surface 

a r i s i n g from the w a l l s of the pores, cracks or i n t e r s t i c e s w i t h i n the 

s o l i d . I t i s obvious a l s o that the s m a l l e r the p a r t i c l e s , the 

l a r g e r w i l l be the e x t e r n a l s u r f a c e . The demarcation l i n e between 

these two kinds of surfaces i s a r b i t r a r y , but the term ' i n t e r n a l 

s u r f a c e ' , then, would comprise the w a l l s of a l l c r a c k s , pores and 

c a v i t i e s which are deeper than they are wide. This i n t e r n a l surface 

must of course be open to the e x t e r i o r of the s o l i d and i n porous 

s o l i d s i s g e n e r a l l y s e v e r a l orders of magnitude gr e a t e r than the 

e x t e r n a l s u r f a c e . The concern of t h i s study i s with porous systems 

having large i n t e r n a l s u r f a c e s . 

A convenient c l a s s i f i c a t i o n of pores has been given by 

Dubinin [20]. Pores of width below %2oR are termed micropores, those 

of width above 200$ are termed macropores, w h i l e those i n between 

are considered t r a n s i t i o n a l or intermediate pores. 
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2.2 C l a s s i f i c a t i o n of Isotherms. 

Many adsorption isotherms have now been determined and 

have been found to be of f i v e d i f f e r e n t types, each type c h a r a c t e r i s t i c 

of a d i f f e r e n t surface makeup. These have been c l a s s i f i e d by Brunauer, 

Deming, Deming and T e l l e r [21] and are shown i n f i g u r e 1 . 

Adsorption isotherms are g e n e r a l l y analyzed by reference 

to an equation i n which the c a p a c i t y of a complete monolayer 

appears as a parameter. Knowing the c r o s s - s e c t i o n a l area of the 

adsorbate molecules, the s p e c i f i c surface area of the adsorbent can 

be c a l c u l a t e d from the monolayer c a p a c i t y . 

Type I i s of main i n t e r e s t i n t h i s study and i s 

o u t l i n e d below. Langmuir [22] was the f i r s t t o attempt an 

i n t e r p r e t a t i o n of adsorption phenomena and type I isotherms are 

commonly c a l l e d Langmuir isotherms. 

The isotherm i s c h a r a c t e r i z e d by the equation 

1+aP 

where V i s the volume of vapour adsorbed at an e q u i l i b r i u m pressure P; 

V , the volume of vapour adsorbed at f u l l monolayer coverage; and a, 

a constant. I t i s obvious from observation of the isotherm that 

a s a t u r a t i o n of the surface appears to occur at higher gas pressures, 

not always the case as seen f o r the other types. 

Langmuir assumed that i n i t i a l l y , a l l gas molecules s t r i k i n g 

a surface would condense on i t . Once completely covered by adsorbate 



O R D I N A l E S : A d s o r p t i o n , ( m g / g ) 

A B S C I S S A E " : R e l a t i v e vapour p ressure P/P 0 

( s c a l e d 0 to 1.0) 

FIGURE 1. Fi v e d i f f e r e n t types of adsorption isotherms, 
as c l a s s i f i e d by Rrunauer, Deming, Deming and T e l l e r . 
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molecules, f u r t h e r condensation would cease s i n c e the surface forces 

would be n e u t r a l i z e d . S a t u r a t i o n i n t h i s instance i s i n the form 

of a s i n g l e monolayer over the surface. Before t h i s l i m i t i s 

reached, part of the surface must be vacant and Langmuir assumed a 

dynamic e q u i l i b r i u m between the condensation of gas molecules h i t t i n g 

the f r e e surface and the evaporation of condensed molecules 

from the occupied s u r f a c e . The r a t e of condensation should be 

p r o p o r t i o n a l to the s p e c i f i c surface S; the pressure of the 

adsorbate P; and the f r a c t i o n of the surface not yet covered, (1 - 0 ) , 

so t h a t : 

r a t e of condensation = uSP(l - 6 ) (2-2) 

where u i s a constant. The r a t e of evaporation i s a l s o p r o p o r t i o n a l 

to the s p e c i f i c surface S; the f r a c t i o n of surface already covered, 

6; and the r a t e evaporation would occur i f the surface were completely 

covered, V , such that 

r a t e of evaporation = Sv9. (2-3) 

At s o r p t i o n e q u i l i b r i u m , 

SuP(l-G) = Sv6 (2-4) 

By d e f i n i t i o n , 8 = V/V^ and r e p l a c i n g by the constant a, 

equation (2-4) becomes the Langmuir equation given by equation (2-1). 

The use of the Langmuir equation i s l i m i t e d at the present time almost 

e n t i r e l y to chemisorption s t u d i e s , assuming here t h a t surface coverage 

does not exceed a monolayer. 
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Type I isotherms are f r e q u e n t l y encountered i n 

adsorption s t u d i e s o f microporous s o l i d s , the s a t u r a t i o n i n t h i s 

case being a complete f i l l i n g of the pores with adsorbate molecules. 

Any s l i g h t r i s e i n the isotherm would then come from m u l t i l a y e r 

adsorption on the r e l a t i v e l y small e x t e r n a l surface of these 

microporous s o l i d s . 

made, i n c l u d i n g the p o s s i b i l i t y o f m u l t i l a y e r a d s o r p t i o n . 

In 1938, Bruhauer, Emmett and T e l l e r [23] proposed a theory which 

r e t a i n e d the Langmuir concept of dynamic e q u i l i b r i u m but extended 

the process to i n c l u d e m u l t i l a y e r a d s o r p t i o n . I t was assumed that 

the condensation-evaporation c h a r a c t e r i s t i c s of the second and 

subsequent l a y e r s are the same as those of the surface of the 

bulk adsorbate. The assumptions f o r the i n i t i a l monolayer are the 

same as f o r Langmuir. The equation i s c h a r a c t e r i z e d by 

Extensions of the Langmuir theory of adsorption have been 

P 1 P 
P 

c - l (2-5) V(P -P) + V c m o V c m 

P i s the saturated vapour pressure of the adsorbate and c i s a 

constant r e l a t e d to the d i f f e r e n t i a l heat of adsorption by 

the equation 

c = expCCHL-H )/RT) (2-6) 
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where H and H are the heats of adsorption i n the f i r s t l a y e r 

and the heat of l i q u i f i c a t i o n , r e s p e c t i v e l y . Equation (2-5) 

reduces to the Langmuir equation when P/P Q i s very low and c 

i s very l a r g e . 

The BET theory, as i t i s c a l l e d , i s s t i l l the best known 

and most widely used today f o r both porous and non-porous adsorbents. 

Whichever theory i s used, however, to represent a p h y s i c a l adsorption 

isotherm, agreement i s r a r e l y complete between the formula and 

experimental r e s u l t s . This i s due to the the assumptions of e n e r g e t i c 

homogeneity of the adsorption s i t e s and a l s o o f a gradual formation 

of a polymolecular adsorption l a y e r . These assumptions are not 

v a l i d f o r the porous adsorbents i n use today. 

2.3 Volume F i l l i n g of Pores. 

Numerous experimental and t h e o r e t i c a l s t u d i e s i n recent 

years ( f o r example [24]) lead to the c o n c l u s i o n that adsorption 

i n micropores d i f f e r s q u a l i t a t i v e l y from adsorption on wide pore 

and non-porous adsorbents. Microporous adsorbents only have been 

used i n t h i s study. The concepts 'surface' and 'adsorption i n l a y e r s ' 

lose t h e i r p h y s i c a l meaning i n these systems and i t i s n a t u r a l to 

expect that adsorption i n micropores leads to a f i l l i n g of a l i m i t e d 

micropore adsorption space, Wq. When working w i t h microporous 

adsorbents, the value of V m of the BET and Langmuir equations may 

not be considered as equal to the volume of the monomolecular 

l a y e r covering the surface of the adsorbent. I t s value i s near to that 

of the volume of the micropores, and t h e r e f o r e a l s o to W , the 
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constant of the Dubinin - Radushkevich equation. This equation 

i s c h a r a c t e r i s t i c of adsorption isotherms obtained from experiments 

on microporous adsorbents, and i s given by [25] 

W 
a = __o 

V 

/BT 2 A P N 2 

-expj j l o g _s 
Vi 2 - V ' 

(2-7) 
P 

V i s the volume of the amount adsorbed, a; T, the temperature; B, 

a constant independent of temperature and r e p r e s e n t i n g the b a s i c 

c h a r a c t e r i s t i c of the porous s t r u c t u r e of the adsorbent; 3, the 

a f f i n i t y c o e f f i c i e n t given by the r a t i o o f the d i f f e r e n t i a l molar 

work of adsorption of a given vapour to that of a vapour chosen 

as a standard; P , the s a t u r a t e d vapour pressure of the sorbate; 

and P, the pressure of the adsorbate. The constants Wq and B 

then c h a r a c t e r i z e the adsorptive p r o p e r t i e s of the given adsorbent 

whereas P- , 3, and V describe the adsorptive p r o p e r t i e s of the 

adsorbate. 

At the present s t a t e of the theory of adsorption 

i n t e r a c t i o n s , s u f f i c i e n t l y complete i n f o r m a t i o n on the adsorption 

f i e l d i n micropores can be obtained only from adsorption experiments, 

The theory t h e r e f o r e , has a somewhat phenomenological character and 

i s being c o n s t a n t l y r e - i n v e s t i g a t e d . 

2.4 Adsorption Forces. 

London [26] i n 1 9 3 0 , showed that there was a very general 

for c e between atoms such that 

A . *D = ~xV (2"8) 

where <J> i s the: p o t e n t i a l 
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energy of the two i s o l a t e d atoms separated by a distance X; A, a 

constant r e l a t e d to the p o l a r i z a b i l i t i e s of the atoms and n an 

i n t e g e r , u s u a l l y given as 6. The negative s i g n denotes a t t r a c t i o n . 

This f o r c e i s termed a d i s p e r s i o n f o r c e and a r i s e s as a small 

p e r t u r b a t i o n of the motions of o r b i t a l e l e c t r o n s on each other 

leading to a t t r a c t i o n of the atoms. D i s p e r s i o n forces are a d d i t i v e 

such that an adsorbate molecule near the surface of an adsorbent 

experiences a t o t a l a t t r a c t i o n which i s the sum of a l l p a i r s of 

i n t e r a c t i o n s . 

In a d d i t i o n , short range r e p u l s i v e forces are a l s o u n i v e r s a l l y 

a s s o c i a t e d w i t h p h y s i c a l a d s o r p t i o n , given by 

* R V 1 v (2-9) 

where B i s a constant and m an i n t e g e r , g e n e r a l l y much l a r g e r than, h. 1 

Consequently, the r e p u l s i o n i s important only at very short distances 

of s e p a r a t i o n . 

I t i s assumed then, that both r e p u l s i o n and a t t r a c t i o n 

energies of t h i s type have the same form and the t o t a l p o t e n t i a l i s 

g e n e r a l l y given by 

* = ; * D + * R = - f n + f m ^ 

where m > n. .This equation has been a p p l i e d to a v a r i e t y of 

physiochemical systems. A r e l a t i o n of t h i s form was f i r s t 

introduced i n t o the theory of gases by Lennard-Jones [27] where 

n = 6 and m =•12 and equation (2-10) i s g e n e r a l l y r e f e r r e d to as the 

Lennard-Jones (6-12) p o t e n t i a l . 
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Other a t t r a c t i o n forces are a l s o present i f the adsorbent 

i s i o n i c i n nature and the adsorbate p o l a r . Strong e l e c t r o s t a t i c 

f i e l d s F are known tp be present on i o n i c s u r f a c e s . Barrer [28] has 

defined v a r ious energy terms that c o n t r i b u t e to the p h y s i c a l bond 

i n these systems. These are: P o l a r i z a t i o n energy fy^, 

F i e l d - d i p o l e energy $p > F i e l d gradient-quadrupole energy Q ) ^ , 

D i p o l e - d i p o l e energy $^> Dipole-quadrupole energy a n d 

Quadrupole-quadrupole energy ^QQ* 

2.4.1 P o l a r i z a t i o n Energy. 

P o l a r i z a t i o n a r i s e s when the adsorbent i s 

het e r o p o l a r , c r e a t i n g l o c a l e l e c t r o s t a t i c f i e l d s which may 

p o l a r i z e adsorbate molecules having some p o l a r i z a b i l i t y . Then, 

?p = - | F 2 (2-11), 

The s t r e n g t h of t h i s i n t e r a c t i o n i s obviously d i r e c t l y dependent 

on both a and F. 

2.4.2 F i e l d - d i p o l e Energy. 

Molecules possessing permanent d i p o l e moments a l s o 

i n t e r a c t w i t h F, the energy of i n t e r a c t i o n given by 

* F | J = - FycosG (2-12) 

where y i s the d i p o l e moment of the adsorbed molecule and 8 the 

angle the axis, of the d i p o l e makes with the f i e l d . I t i s expected 

(l>P w i l l assume an appreciable value only i f the adsorbate molecule 

can approach w i t h i n a short d i s t a n c e of the surface [29]. 
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2.4.3 F i e l d Gradient - quadrupole Energy. 

Recently, the importance of the presence of a 

permanent quadrupole i n c e r t a i n adsorbate molecules has been 

recognized [30] . A quadrupole i s p i c t u r e d as a r i s i n g from 

separation of equal and opposite d i p o l e s , the magnitude of the moment 

being p r o p o r t i o n a t e to the product of the d i p o l e moment and the 

separation of the d i p o l e s . T h e " l o c a l f i e l d s F w i l l normally have 

ass o c i a t e d w i t h them a f i e l d gradient F which can i n t e r a c t p o w e r f u l l y 

w i t h molecules possessing permanent quadrupole moments. 1 

The i n t e r a c t i o n s of the poles a l s o c o n t r i b u t e to the 

bond energy though t h e i r c o n t r i b u t i o n s are normally much s m a l l e r 

than those p r e v i o u s l y mentioned. 

D i s p e r s i o n f o r c e s , then, are always present when 

con s i d e r i n g p h y s i c a l adsorption and, unless the adsorbate molecule 

has a permanent d i p o l e moment, w i l l represent the major c o n t r i b u t i o n 

to the t o t a l adsorption energy, E l e c t o s t a t i c forces are present i f 

the s o l i d i s i o n i c and become s i g n i f i c a n t and perhaps predominant i f 

the adsorbed molecule has a large d i p o l e moment. 

I t i s evident that the exact forces i n v o l v e d depend upon 

the p h y s i c a l and chemical p r o p e r t i e s of both the adsorbate and 

adsorbent. The favoured adsorption s i t e s are a l s o determined 

by these properties,, 
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CHAPTER THREE 

ZEOLITES 

Over 200 years ago, a Swedish m i n e r a l o g i s t and chemist, 

Baron Cronstedt, observed that c e r t a i n minerals appeared to melt and 

b o i l at the same time when heated. He named these minerals z e o l i t e s 

from the Greek words "zeo" meaning to b o i l and " l i t h o s " meaning stone. 

L i t t l e a t t e n t i o n was given these z e o l i t e s u n t i l the 1920's when t h e i r 

s e l e c t i v e adsorption property was n o t i c e d . McBain [31], i n 

d i s c u s s i n g the s i g n i f i c a n c e of these r e s u l t s , coined the term 

"molecular s i e v e s " f o r these z e o l i t e s . In the l a t e 1930*s, Barrer [32] 

began a thorough i n v e s t i g a t i o n of the adsorptive p r o p e r t i e s of these 

m a t e r i a l s which l e d t o considerable i n t e r e s t among the s c i e n t i f i c 

community. 

About 40 z e o l i t e s occur i n nature but much i n t e r e s t has 
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a l s o been given to s y n t h e t i c v a r i e t i e s . Barrer synthesized the z e o l i t e 

mordenite and s e v e r a l other s y n t h e t i c v a r i e t i e s [33-35]. By the 

e a r l y 1950's many d i f f e r e n t s y n t h e t i c z e o l i t e s had been prepared 

i n the Linde research l a b o r a t o r y [36, 37]. Some are analogs of z e o l i t e 

m a t e r i a l s ; others, new v a r i e t i e s not found i n nature. Many 

present-day commercial operations simply were not p o s s i b l e or p r a c t i c a l 

p r i o r to the advent of these m a t e r i a l s . They have permitted the 

development of s e l e c t i v e adsorption as a p r a c t i c a l a l t e r n a t i v e to the 

long e s t a b l i s h e d s e p a r a t i o n methods of d i s t i l l a t i o n , a b s o r p t i o n , 

e x t r a c t i o n and f r a c t i o n a l c r y s t a l l i z a t i o n . 

Molecular sieves ( z e o l i t e s ) are c r y s t a l l i n e metal . 

a l u m i n o s i l i c a t e s with a three-dimensional i n t e r c o n n e c t i n g network 

s t r u c t u r e of SiO. and A10. t e t r a h e d r a . The fundamental b u i l d i n g 
4 ' 4 

block of any z e o l i t e c r y s t a l i s a tetrahedron of four oxygen ions 

surrounding a s i l i c o n or aluminium i o n ( f i g u r e 2). The t r i v a l e n c y 

of aluminium causes the AIO^ tetrahedron to be n e g a t i v e l y charged 

r e q u i r i n g an a d d i t i o n a l c a t i o n to e l e c t r i c a l l y n e u t r a l i z e the 

system. The oxygens are shared between neighbouring t e t r a h e d r a and 

balance the charge of the s i l i c o n i o n . The charge bal a n c i n g c a t i o n s 

are the exchangeable ions of the z e o l i t e s t r u c t u r e . 

The remainder of the b u i l d i n g blocks of the z e o l i t e s , i n 

order of i n c r e a s i n g complexity are: (a) r i n g s ; (b) primary cages; 

and (c) secondary cages and channels. 

Rings;are formed of the s i l i c o n and aluminium t e t r a h e d r a 

by oxygen b r i d g e s . The cages are composed of va r i o u s s i z e d r i n g s 
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FIGURE 2. . The fundamental b u i l d i n g b l o c k s of z e o l i t e 
a) SlO. tetrahedron b) A l p . tetrahedron. 
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so that access to them i s governed by the r i n g dimensions. The 

pore opening of the 4-membered r i n g s (tetrahedra) i s n e g l i g i b l e . 

The 6-membered r i n g s have an opening of 2.2.% diameter. 8-membered 

r i n g s have a pore diameter of 4.3 A* w h i l e 12-membered r i n g s have 

a pore diameter of 8.9 X. 

The s t r u c t u r e s of many z e o l i t e s c o n s i s t o f simple 

arrangements of polyhedra formed from the r i n g s . The truncated 

octahedron, a l s o known as the s o d a l i t e cage, i s a w e l l known example 

of such a primary cage ( f i g u r e 3 ). This cage contains 24 s i l i c o n 

(aluminium) t e t r a h e d r a and i s composed of s i x 4-membered r i n g s and 

eight 6-membered r i n g s . The f r e e diameter of the i n t e r n a l c a v i t y i s 
o 

6.6 A, and access i s through the 6-membered r i n g s . 

Secondary cages appear on the packing of the simpler primary 

cages to form the t o t a l z e o l i t e s t r u c t u r e . Cages of i n t e r e s t are 

discussed when the s t r u c t u r e s of s p e c i f i c z e o l i t e s are reviewed. 

A s t r u c t u r a l formula of the type 
Me , [(A10 o) ( S i O J ] -M HJD x/n L v 2^x ^ 2 Jy 2 

i s o f t e n used to i l l u s t r a t e the r e l a t i o n between chemical composition and 

s t r u c t u r e of z e o l i t e s . Me stands f o r the metal i o n s ; x,y and n are 

i n t e g e r s ; and M i s the number of Ĥ O molecules i n t h i s u n i t c e l l formula. 

The p o r t i o n i n brackets represents the framework s t r u c t u r e . 

The r a t i o y/x v a r i e s between 1 and 5. According t o an e m p i r i c a l 

r u l e of Loewenstein [38], A10 t e t r a h e d r a can be j o i n e d only to 
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F I G U R E 3. The truncated octahedron, or s o d a l i t e cage. 



SiO^ t e t r a h e d r a and never to another AIO^ tetrahedron, thus g i v i n g 

the l i m i t to the r a t i o of 1:1. The f a c t t h a t only a l i m i t e d number 

of s i l i c o n / a l u m i n i u m r a t i o s are observed would indeed i n d i c a t e that 

there i s an ordering i n the r i n g s of the A l and S i . The metal 

ions needed f o r charge compensation occupy s i t e s adjacent to the 

c a v i t i e s i n the z e o l i t e s and are g e n e r a l l y a v a i l a b l e f o r exchange 

with other i o n s . Although mono- and d i - v a l e n t ions are the most 

common, t r i - , t e t r a - and even penta-valent ions have been found. 

S y n t h e t i c v a r i e t i e s c o n t a i n i n g Ge^ + and Ga^ + s u b s t i t u t e d f o r S i ^ + and 

A l " 5 * have a l s o been prepared [39,. 40] . 

3.1 Adsorption i n Z e o l i t e s . 

As a.consequence of t h e i r porous s t r u c t u r e , z e o l i t e s 

are i n many cases able to contain adsorbate molecules i n great 

v a r i e t y and yet i n a h i g h l y s e l e c t i v e manner. Since t h e i r s t r u c t u r e 

i s composed of continuous, o f t e n i n t e r p e n e t r a t i n g channel systems, 

entry i s governed by r i n g s of various dimensions located 

p e r i o d i c a l l y . t h r o u g h o u t the s t r u c t u r e . 

The v a r i e t y and dimensions of the various adsorbates 

capable of e n t e r i n g the z e o l i t e s i s t h e r e f o r e c o n t r o l l e d not by the 

dimensions of the c a v i t i e s , but by the dimensions of the r i n g s or 

"windows" p e r m i t t i n g access to them. Owing to r i n g puckering, 

not a l l r i n g s c o n t a i n i n g the same number of t e t r a h e d r a are 

equivalent i n s i z e [41]. S t r u c t u r e s w i t h , f o r example, 8-membered 

ri n g s can t h e r e f o r e exert a wide range of molecular s i e v i n g 

behaviour based on r i n g d i s t o r t i o n alone. 
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The number, s i z e , valency and l o c a t i o n i n the l a t t i c e 

of z e o l i t i c c a t i o n s have important e f f e c t s on the s i z e and shape 

of the entry pores to the l a r g e r c a v i t i e s . They a l s o have a 

profound e f f e c t on adsorption energies. The c a t i o n s are present 

i n the same channels as the adsorbate molecules. They are o f t e n 

recessed i n t o 6-ring windows which do not normally f u n c t i o n as the 

main access to the channel system. Sometimes the cations are a l s o 

located i n polyhedra which are not themselves able to h o l d 

adsorbate molecules. These c a t i o n s , of course, would not hinder 

the m i g r a t i o n of adsorbate molecules. Other c a t i o n s , however, may 

remain near windows c o n t r o l l i n g access to the pore system of 

the z e o l i t e . This i n f l u e n c e may be moderated i n three ways 

[42,43]: 

1. Changing the s i z e of the c a t i o n s through exchange 

(K + ^ N a + , f o r example) 

2. Changing the number of c a t i o n s through exchange 

(2Na -tr- Ca , f p r example) 

3. Changing the number of c a t i o n s through syn t h e s i s 

(NaAl £ S i , f o r example) 

The e f f e c t of the t h i r d c o n s i d e r a t i o n using s y n t h e s i s i s t w o - f o l d . 

Besides removing the i n f l u e n c i n g c a t i o n , a given r i n g s i z e may 

decrease s l i g h t l y w i t h higher s i l i c o n content [44] s i n c e S i - 0 bonds 

are s l i g h t l y s h o r t e r than Al-0 bonds. The S i / A l r a t i o may a l s o 

a f f e c t the p o s i t i o n s of the c a t i o n s ( f i g u r e 4). Anything other 

than a 1:1 r a t i o of S i / A l w i l l g r e a t l y a f f e c t the arrangement 

of the c a t i o n . w i t h respect to the t e t r a h e d r a charge i t i s b a l a n c i n g . 



-23-

FIGURE 4.-
ratios'; 

Cation p o s i t i o n f o r z e o l i t e s of v a r y i n g S i / A l 
(a) 1/2 (b) 1/1 
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This i s e s p e c i a l l y t r u e when mono-valent cat i o n s are replaced 

by d i - or t r i - v a l e n t ones. 

In a d d i t i o n to the pore geometry of the z e o l i t e s , the 

various adsorption forces discussed p r e v i o u s l y a l s o determine 

s e l e c t i v i t y i n a d s o r p t i o n . The p o l a r i t y of the adsorbate molecules 

becomes very important s i n c e strong i n t e r a c t i o n s may occur 

between the z e o l i t e and p o l a r adsorbate molecules. 

C l u s t e r s of molecules are present i n the c a v i t i e s when 

they are s a t u r a t e d . These c l y s t e r s may be j o i n e d by contact w i t h 

other c l u s t e r s through the windows. The number of molecules i n any 

c l u s t e r i s not n e c e s s a r i l y an i n t e g e r s i n c e a molecule may be shared 

between two c a v i t i e s or cages i f i t happens to be l o c a t e d i n the 

window between the two. When the c a v i t i e s are not s a t u r a t e d and 

the number of adsorbate molecules i s s m a l l , they are d i s t r i b u t e d , 

not n e c e s s a r i l y u n i f o r m l y , throughout the e n t i r e a c c e s s i b l e pore 

volume. 

Although the e n t i r e pore volume i s a v a i l a b l e f o r 

adsorption, c e r t a i n adsorption s i t e s are more favoured than others 

and w i l l n e c e s s a r i l y be f i l l e d f i r s t . These are due p r i m a r i l y to 

the cations which are exposed i n the c r y s t a l l a t t i c e . These 

cati o n s act as s i t e s of strong p o s i t i v e charge which e l e c t r o s t a t i c a l l y 

a t t r a c t the negative ends of p o l a r molecules. Molecules can a l s o 

have d i p o l e s induced i n them under the i n f l u e n c e of these l o c a l i z e d 

charges. These induced d i p o l e s are, however, f a r weaker and l e s s 

s t r o n g l y a t t r a c t e d . 
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5.2 Str u c t u r e s of Z e o l i t e s . 

5.2.1 X,Y Type. 

The c r y s t a l s t r u c t u r e of the s y n t h e t i c z e o l i t e s 

types X and Y i s s i m i l a r to t h a t of the n a t u r a l l y o c c u r r i n g 

f a u j a s i t e [45]. The framework c o n s i s t s of a t e t r a h e d r a l 

arrangement of s o d a l i t e cages, i n a diamond type l a t t i c e , l i n k e d 

by hexagonal faces with s i x bridge oxygen ions [46,47] ( f i g u r e 5). 

The u n i t c e l l formula f o r the type 13X s y n t h e t i c z e o l i t e i s 

N a96« A 1 02^96^ S i 02^96' ' 2 6 4 H 2 ° 

This i s a sodium X s i e v e and has the same c h a r a c t e r i s t i c 

s t r u c t u r e as the sodium Y sieve except f o r a lower S i / A l r a t i o 

and consequently more sodium ions per u n i t c e l l . The r a t i o i s 

u s u a l l y 1:1 f o r the X s t r u c t u r e and 17:7 f o r the Y. 

The volume enclosed by t h i s array of cages i s the supercage, 

i n t h i s case termed a type I I 26-hedron cage, or f a u j a s i t e cage 

( f i g u r e 6 ). I t i s composed of 48 atoms of s i l i c o n (aluminium) and 

96 oxygen atoms. The cage has 18 square faces, four 6-membered 

r i n g s , and four 12-membered r i n g s . The l a t t e r are the most important 

ports of entry i n t o the supercage. The openings of these r i n g s i s 

approximately 8-9 A* and the i n t e r n a l diameter of the cage i s 12.5 A. 

The volume of the supercage i s about 850 A* whereas the volume of 
0 3 

the s o d a l i t e cages i s about 160 A . 

Thus there are three cage types present i n type X z e o l i t e s : 

the f a u j a s i t e cages, the s o d a l i t e cages and the hexagonal prisms 
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FIGURK 5. The . s t r u c t u r a l framework of the X type syn
t h e t i c z e o l i t e . 
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FIGURE 6. The' t y p e I I 26-hedron cage, o r f a u j a s i t e cage. 
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formed by the b r i d g i n g oxygens j o i n i n g the s o d a l i t e cages. The 

hexagonal prism c a v i t i e s can u s u a l l y only be entered from 

the s o d a l i t e cages through the hexagonal faces where the opening 

i s about 2 X i n diameter. The type X s t r u c t u r e t h e r e f o r e contains 

two independent, three dimensional networks of c a v i t i e s - one of 

s o d a l i t e cages l i n k e d through hexagonal prisms and one of the super-

cages l i n k e d by sharing r i n g s of 12 t e t r a h e d r a - the two systems 

interconnected by r i n g s of 6 t e t r a h e d r a . 

3.2.1.1 Cation P o s i t i o n s . 

From a c r y s t a l l o g r a p h i c study of s y n t h e t i c Na 13X, 

Broussard and Shoemaker [46] were able to l o c a t e p r e c i s e l y only 

48 out of the 80 Na + cations r e q u i r e d per u n i t c e l l of t h e i r 

sampleo X-ray st u d i e s of a calcium-exchanged n a t u r a l f a u j a s i t e 

by P i c k e r t , Rabo and a s s o c i a t e s [48,49] y i e l d e d a more e x p l i c i t 

p i c t u r e of the c a t i o n d i s t r i b u t i o n . Three c a t i o n s i t e s were 

described ( f i g u r e 7). s i t e s (16 per u n i t c e l l ) are l o c a t e d i n 

the i n t e r i o r of;the hexagonal prisms, p o s i t i o n e d between two 

puckered 6-membered r i n g s i n s i x - f o l d c o o r d i n a t i o n to oxygen. 

Sj i s e f f e c t i v e l y hidden from the z e o l i t e surface as a consequence 

of i t s i n t i m a t e c o o r d i n a t i o n to the framework i o n s . The s i t e s 

(32 per u n i t c e l l ) are found i n the hexagonal faces (6-membered 

r i n g s ) at the mouths of the s o d a l i t e cages. The c a t i o n s here have 

t h r e e - f o l d oxygen i o n c o o r d i n a t i o n , sites are l o c a t e d next 

to the 4-membered r i n g s on the surface of the supercage. The order 

of preference of c a t i o n s seems to be S over S T T over S T T T . 
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F I G U R E 7. Cation s i t e s i n Na 13X s y n t h e t i c z e o l i t e . 
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Since Sj and S^j s i t e s are more than s u f f i c i e n t to accommodate the 

b i v a l e n t c a t i o n s , the S^^^ s i t e s are probably only populated i n the 

u n i v a l e n t forms of the zeolites„ 

The sodium i o n can be replaced by a mu l t i t u d e of others, 

depending on ion s i z e and charge. Among those more commonly 
• + + , + + ++ ^ + + ++ '-, ++ exchanged are L i , K , Rb , Cs , Ca , Sr , Ba , and Cu . The 

sodium can a l s o be replaced by ammonium ions and these i n t u r n 

decomposed to y i e l d a decationated z e o l i t e . 

Replacement of sodium ions f o r calcium ions decreases 

the p e r m e a b i l i t y of the z e o l i t e from approximately 13 X i n 13X 

to 10 X i n 10X, a calcium exchanged form of the sodium z e o l i t e . 

Thus, decreasing the number of cat i o n s (2Na + £ C a + + ) a c t u a l l y 

decreases the adsorptive a b i l i t y of the X z e o l i t e . This i s due to 

the f a c t that the cations i n i t i a l l y r eplaced are those i n the hexa

gonal prisms, which have no e f f e c t on the pore openings i n the 

z e o l i t e . Replacement of the cat i o n s at the open r i n g s of the 

supercage a c t u a l l y increases the r e t a r d i n g e f f e c t of the c a t i o n i c 

p o t e n t i a l due to the increased s i z e and charge of the c a t i o n s . 

3.2.2 A Type. : 

In the A type s t r u c t u r e , the primary cage a l s o c o n s i s t s 

of s o d a l i t e cages. In t h i s i nstance they are j o i n e d through the 

square faces (4-membered r i n g s ) by four b r i d g i n g oxygen ions i n a 

cubic array [50] (see f i g u r e 8). In the sodium form, commonly c a l l e d 

4A, the s t r u c t u r e i s represented by the formula 

N a 1 2 ( ( A 1 0 2 ) 1 2 ( S i 0 2 ) 1 2 ) . 2 7 H 2 0 . 
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FIGURE 8. The s t r u c t u r a l framework of the A type 
s y n t h e t i c z e o l i t e . 
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As seen from the formula, the S i / A l r a t i o i n t h i s case should 

be 1:1. This type of s t a c k i n g o f the s o d a l i t e cages g i v e s a roughly 

s p h e r i c a l supercage, termed a type I 26-hedron cage ( f i g u r e 9 ) . 

I t c o n s i s t s of the same number of s i l i c o n (aluminium) atoms, 48, 

and oxygen atoms, 96, as the supercage of the X type s t r u c t u r e . 

In terms of r i n g s i z e s composing the cage, i t has eighteen 4-membered 

rin g s (square f a c e s ) , e i g h t 6-membered r i n g s (hexagons), and s i x 

8-membered r i n g s (octagons). The diameter of t h i s 26-hedron cage 
o o3 xs 11.4 A and the volume i s 775 A . 

As i n the X type s t r u c t u r e , there are three cage types: 

the supercage, the s o d a l i t e cage and the square prisms, formed by 

the oxygen atoms l i n k i n g the s o d a l i t e cages. The supercages, sometimes 

c a l l e d truncated cubooctahedra, are found i n a cubic arrangement 

with respect to each other. Access i s through the 8-membered 

rin g s w i t h a pore diameter of 4.2 X,. and are the l a r g e s t 8-membered 

ri n g s to be found i n z e o l i t e s s i n c e the r i n g i s planar [51]. The 

A type s t r u c t u r e t h e r e f o r e c o n s i s t s of one three-dimensional network 
o 

of c a v i t i e s having a maximum diameter of 11.4 A and a minimum of 

4.2 %. Access to the s o d a l i t e cages i s through the d i s t o r t e d 

6-membered r i n g s of diameter 2.2 A* but access i s only through the 

c e n t r a l c a v i t y system. 

3.2.2.1 Cation P o s i t i o n s . 

The a v a i l a b l e p o s i t i o n s f o r cat i o n s i n the A type s t r u c t u r e 

are at the center of the eight 6-membered r i n g s o f the s o d a l i t e cages 

at the corners of the supercage, s i t e A, and i n 12 a v a i l a b l e p o s i t i o n s 
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F I G U R F , 9. The type I 26-hedron cage. 
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adjacent to the 8-membered r i n g s d e f i n i n g the supercage, s i t e B. 

For 4A, the sodium form, eight of the twelve c a t i o n s of a u n i t c e l l 

are found i n s i t e A, while the other four are s t a t i s t i c a l l y 

d i s t r i b u t e d i n t o the twelve s i t e B l o c a t i o n s [50,52]. S i t e A 

i s t h e r e f o r e f i l l e d p r e f e r e n t i a l l y to s i t e B. Replacement of the 

sodium ions by calcium ions to form the 5A s y n t h e t i c z e o l i t e , 

a c t u a l l y increases-the e f f e c t i v e opening to the c e n t r a l pore 

system to approximately 5 $ i n diameter. Since the twelve sodium 

ions are replaced by s i x calcium i o n s , these w i l l be loc a t e d i n 

s i t e A, le a v i n g the 8-membered r i n g s c l e a r e r and y i e l d i n g a l a r g e r 

access to the supercage. The sodium ions may a l s o be replaced 

by ions such as L i + , K +, Rb +, C s + , T l + , Ag +, NH 4
+, Mg 2 +, S r 2 + , 

B a 2 + , H g 2 + , C d 2 + , Z n 2 + , C o 2 + , and N i 2 + . 

3.2.3 Mordenite. 

The z e o l i t e mordenite belongs to that c l a s s i f i c a t i o n 

c h a r a c t e r i z e d by the predominance of 5-membered r i n g s of 

tet r a h e d r a . The geometrical p a t t e r n of the a l u m i n o s i l i c a t e 

framework i s d i f f e r e n t from the A and X type s t r u c t u r e s i n that the 

buildup i s of chains r a t h e r than of polyhedra ( f i g u r e 10a). There 

are s i x p o s s i b l e simple s t r u c t u r e s formed by d i f f e r e n t l a t e r a l 

bondings of the chains to one another and a c r o s s - s e c t i o n of that 

found i n mordenite i s shown i n f i g u r e 10b. The r e s u l t i s a 

two-dimensional, t u b u l a r pore system, u n l i k e the three-dimensional 

pore systems of A and X s t r u c t u r e s [53]. The u n i t c e l l of an i d e a l 

sodium mordenite i s given by the formula 

Na g • (A10 2) • ( S i 0 2 ) 4 Q • 24H 20 
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(a) 

(b) 

FIGURE 10. The s t r u c t u r a l framework of s y n t h e t i c morden 
i t c • • 
(a) c h a r a c t e r i s t i c chain s t r u c t u r e 
(b) c r o s s - s e c t i o n a l area o f a'chain 
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Thus, mordenite contains a hi g h e r S i / A l r a t i o , 5:1. As shown 

i n f i g u r e 10b, the channels are circumscribed by 12-membered r i n g s 

of t e t r a h e d r a ; l a r g e d e v i a t i o n s from p l a n a r i t y , however make a 

planar p r o j e c t i o n much sm a l l e r than a 12-membered r i n g of the X type 

s t r u c t u r e . The major and minor diameters are thus 7.0 X and 5.8 A*, 

r e s p e c t i v e l y . These large channels are i n t e r s e c t e d p e r p e n d i c u l a r l y 

by s m a l l e r channels circumscribed by 8-membered r i n g s having a 

minimum f r e e diameter of 3.9 X and leading to the next main channel. 

However, halfway to the neighbouring main channel, the s i d e channels 

branch through two d i s t o r t e d 8-membered r i n g s o f 2.8 A* f r e e diameter 

which open i n t o the main channel. 

3.2.3.1 Cation P o s i t i o n s . 

In Na-mordenite, a sodium i o n r e s t s at the center of each 

d i s t o r t e d 8-membered r i n g , e f f e c t i v e l y i s o l a t i n g the main channels 

from one another, and l e a v i n g each main channel l i n e d with two 

rows of si d e pockets [54]. These pockets have a low r a t i o of volume 

to c r o s s - s e c t i o n a l area of t h e i r entrances ( f i g u r e 11). The other 

cat i o n s are located i n the main channels and occupy at random some of 

the 8- and 12-foid p o s i t i o n s a v a i l a b l e [53]. 
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O o xygen 

HI O x y g e n in p l a n e of paper 

O C a t i o n s 

F I G U R E 11. C a t i o n p o s i t i o n s i n s y n t h e t i c lnordeni te 
Aluminium arid S i l i c o n at the centers of each t e t r a 
hedron are not shown. 
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CHAPTER FOUR  

ELECTRON PARAMAGNETIC RESONANCE 

4.1 Theory. 
* 

The b a s i s of e l e c t r o n paramagnetic resonance (EPR) i s 

concerned with the i n t r i n s i c s p i n of an e l e c t r o n and i t s a s s o c i a t e d 

magnetic moment. An a p p l i e d magnetic f i e l d H allows only c e r t a i n 

d i s c r e t e o r i e n t a t i o n s of the precessing d i p o l e s with respect to the 

magnetic f i e l d , the o r i e n t a t i o n s corresponding to d i f f e r e n t energy 

l e v e l s . I r r a d i a t i o n of the system with electromagnetic energy of 

the appropriate frequency induces t r a n s i t i o n s between these magnetic 

energy l e v e l s . 

* 

The term e l e c t r o n s p i n resonance, ESR, i s le s s general than EPR, 

since the former does not take i n t o account o r b i t a l magnetism. 
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Th e energy f o r these t r a n s i t i o n s i s given by the equation 

hv = gm (4-1) 

where h i s Planck's constant; v the frequency of the r a d i a t i o n ; g, 

a numerical f a c t o r o f t e n c l o s e to 2; (3, the Bohr magneton; and H, 

the magnetic f i e l d . A magnetic f i e l d of 3000 gauss r e q u i r e s a 

frequency of about 9 Gigahertz to induce the t r a n s i t i o n s . This 

corresponds to a wavelength of approximately 3 centimeters, which i s i n 

the microwave region of the electromagnetic spectrum. 

R e l a x a t i o n processes must n e c e s s a r i l y be present such that 

the energy absorbed by spins i n the higher energy l e v e l can be 

d i s s i p a t e d i n such a manner as to permit t h e i r r e t u r n to the ground 

energy l e v e l . Otherwise p o p u l a t i o n between the energy l e v e l s would 

eq u a l i z e and absorption would cease. This e s s e n t i a l l y i s achieved 

through the phenomenom of ' s p i n - l a t t i c e r e l a x a t i o n ' , where the 

'spin system' i n t e r a c t s w i t h i t s surroundings i n such a way as to 

provide paths f o r t h i s process, and a l s o through s p i n - s p i n r e l a x a t i o n . 

The p o p u l a t i o n of these two l e v e l s , when i n thermal e q u i l i b r i u m 

at a given f i e l d and temperature, may be represented by the 

Boltzmann equation. Thus, i f the populations of the upper and lower 

l e v e l s are and r e s p e c t i v e l y , 
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where 3, g, and H are defined i n equation (4-1); k, Boltzmann's 

constant; and T , the s p i n temperature de f i n e d by equation (4-2) i n 

terms of the instantaneous r e l a t i v e populations of the two s p i n 

l e v e l s . I f the po p u l a t i o n d i f f e r e n c e at a given time t i s AN, e q u i l i b 

rium w i l l be reached at a r a t e given by 

dAN/dt = da /dt. - dN 2/dt (4-3) 

Given that and are the p r o b a b i l i t i e s of t r a n s i t i o n s from the 

upper and lower l e v e l s r e s p e c t i v e l y , we can w r i t e 

dAN/dt = 2W9 

where T now i s the l a t t i c e temperature. From equation (4-4) 

i t i s e a s i l y shown that 

dAN _ 2W (AN -AN) (4-5) 
dt 1 ° 

which has the s o l u t i o n 

AN - AN q[1 - expC-t/T )] (4-6) 

where = 1/2W. T^, the s p i n - l a t t i c e r e l a x a t i o n time i s seen as 

the i n v e r s e of a l a t t i c e - i n d u c e d t r a n s i t i o n p r o b a b i l i t y . The s p i n -

l a t t i c e r e l a x a t i o n i s thus c h a r a c t e r i z e d by a r e l a x a t i o n time T^ 

and the s p i n system t r a n s f e r s energy to the l a t t i c e at the r a t e 1/T^. 

S i m i l a r l y , the r e l a x a t i o n time T^ c h a r a c t e r i z e s a s p i n - s p i n r e l a x a t i o n 

process, a process which depends on the e f f e c t of l o c a l magnetic f i e l d s 

generated by neighboring s p i n s . 

V kT 
(4-4) 
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A consequence of the existence of these r e l a x a t i o n 

processes i s that the s p e c t r a l l i n e s observed f o r the t r a n s i t i o n s 

between the sp i n l e v e l s have a f i n i t e width and are o f t e n 

discussed i n terms of a ' l i n e s h a p e 1 . 

Various mechanisms may be r e s p o n s i b l e f o r broadening 

of these s p e c t r a l l i n e s . P o r t i s [55] has c l a r i f i e d the d i s t i n c t i o n 

between the two main c l a s s e s of broadening, homogeneous broadening 

and inhomogeneous broadening. Homogeneous broadening i s that 

associated with t r a n s i t i o n s between s p i n l e v e l s which are not 

themselves sharply defined but are somewhat broadened. Thermal 

e q u i l i b r i u m of the s p i n system i s maintained throughout resonance as 

the energy absorbed from the microwave f i e l d i s d i s t r i b u t e d to a l l 

the s p i n s . Sources of homogeneous broadening i n c l u d e [55]: 

(a) s p i n - l a t t i c e r e l a x a t i o n ; (b) d i p o l a r i n t e r a c t i o n between l i k e 

s p i n s ; (c) i n t e r a c t i o n w i t h the r a d i a t i o n f i e l d ; and (d) d i f f u s i o n 

of e x c i t a t i o n through the sample. An inhomogeneously broadened l i n e 

c o n s i s t s of a s p e c t r a l d i s t r i b u t i o n of i n d i v i d u a l resonant l i n e s 

merged to form an o v e r a l l lineshape. The d i s t i n c t i o n between 

homogeneous and inhomogeneous broadening i s t h a t the 

inhomogeneous broadening comes from i n t e r a c t i o n s e x t e r n a l to the 

s p i n system and/must be sl o w l y v a r y i n g over the time r e q u i r e d f o r 

a s p i n t r a n s i t i o n . Inhomogeneities i n the magnetic f i e l d cause 

energy to be t r a n s f e r r e d only to those spins whose l o c a l f i e l d s 

s a t i s f y the resonance c o n d i t i o n . The resonance i s thus a r t i f i c i a l l y 

broadened i n an inhomogeneous manner. Other sources of inhomogeneous 
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broadening are [55]: (a) h y p e r f i n e i n t e r a c t i o n ; and (b) anisotropy 

broadening. 

The shape o f the absorption spectrum i s thus determined 

by the types of i n t e r a c t i o n s between the environment and the s p i n 

system. The widths of these l i n e s , however, depends on the st r e n g t h 

of the i n t e r a c t i o n s and the r e l a x a t i o n time. A system where 

r e l a x a t i o n i s c o n t r o l l e d by s p i n - l a t t i c e i n t e r a c t i o n s and thermal 

e q u i l i b r i u m of the s p i n system i s maintained throughout resonance 

has a lineshape approximated by a L o r e n t z i a n f u n c t i o n [56], c h a r a c t e r i z e d 

by the equation 

f (H-H ) = 2 A H i 3 (4-7) 

u [ ( H - H Q ) 2
 + AH 2] 

AHj^ here represents the width of the absorption l i n e at h a l f 

the maximum i n t e n s i t y , and 'H , the resonance f i e l d . I t i s customary 

however, i n EPR, to d i s p l a y the f i r s t d e r i v a t i v e of the spectrum. 

Although many i n t e r a c t i o n s i n f l u e n c e the l i n e w i d t h , the 

Heisenberg u n c e r t a i n t y p r i n c i p l e sets the u l t i m a t e minimum width 

which may be s t a t e d as 

A H % = i t f C4"8) 

where T now corresponds to the r e l a x a t i o n time. E i t h e r T^ or T^ 

can be the c o n t r o l l i n g r e l a x a t i o n time, or both may be i n f l u e n t i a l . 

I t i s thus p o s s i b l e , i n c e r t a i n cases, to determine r e l a x a t i o n times 

from the observed s p e c t r a . 

Another commonly encountered lineshape i s a Gaussian f u n c t i o n 
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[56], characterized by 

f ( H - V - i s ^ « P f ^ # - ] 

This generally occurs i n an inhomogeneous spin system described 

above. Gaussian and Lorentzian lineshapes are compared i n figure 12. 

Although these two lineshape functions are the most common, 

combinations and variations of these have also been observed and 

are described i n reference [57]. 

When the nucleus also possesses a magnetic moment, i t 

can interact with the magnetic f i e l d and the electronic magnetic 

moment. This may r e s u l t , not i n l i n e broadening, but i n the 

appearance of resolved hyperfine structure. This hyperfine mechanism 

accounts for the multiplet character of the spectrum. The theory of 

EPR i s well covered i n many a r t i c l e s and reviews (for example 

[58-61]) and only pertinent theory w i l l be further discussed. 

The problem of expressing interactions affecting electronic 

energy levels i s usually approached through the application of the 

Hamiltonian operator. When applied to the time-dependent 

Schrodinger equation, t h i s approach yields the eigenvalues and 

eigenfunctions of the permitted energy levels. Abragam and Pryce [62] 

have shown that the behaviour of a spin system can be described by a 
1spin-Hamiltonian', a p a r t i c u l a r part of the overall Hamiltonian. 

Perturbation theory i s generally used i n the solution of the energy 

levels. This representation has the same effect as replacing the 

interaction of the f i e l d with the o r b i t a l angular momentum by an 

anisotropic coupling between the electron spin and the external 
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FIGURE .12. 
curves. 

L o r e n t z i a n and Gaussian f i r s t d e r i v a t i v e 
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magnetic f i e l d , the s p i n here now being termed the f i c t i c i o u s s p i n . 

A p p l i c a t i o n s of t h i s spin-Hamiltonian approach to EPR are considered 

i n reviews by Bleaney and Stevens [63], Bowers and Owens [64] 

and C a r r i n g t o n and Longuet-Higgins [65]. 

The spin-Hamiltonian f o r a system c o n s i s t i n g of one 

e l e c t r o n w i t h s p i n S=% and a nucleus of s p i n I may be w r i t t e n as 

£%f= -BH-g.S + ftS.J_.I_ - -frYl/H + I/Q-I. (4-10) 

where the terms represent e l e c t r o n i c Zeeman, h y p e r f i n e , n u c l e a r 

Zeeman and nuc l e a r quadrupole i n t e r a c t i o n , r e s p e c t i v e l y . 

4.1.1 E l e c t r o n i c Zeeman I n t e r a c t i o n . 

The most general expression r e p r e s e n t i n g the Zeeman 

i n t e r a c t i o n between a magnetic f i e l d H and the e l e c t r o n s p i n S i s 

given by 

J^f = 3 H-g-S (4-11) 

H and S_ are expressed as v e c t o r s , and g, the spe c t r o s c o p i c 

s p l i t t i n g f a c t o r , or g value, i s u s u a l l y expressed as a tensor 

r a t h e r than t h e : f r e e e l e c t r o n value g g = 2.0023. The g f a c t o r equals 

the constant g g when (a) the e l e c t r o n possesses s p i n angular momentum 

only, and (b) the g tensor i s i s o t r o p i c . Deviations from g e are due 

to o r b i t a l magnetic moment c o n t r i b u t i o n s , due to s p i n o r b i t c o u p l i n g , 

which a l t e r the e f f e c t i v e magnetic moment and g i s o f t e n found to be 

a n i s o t r o p i c . The anisotropy may be described by the tensor g, which 
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has the form 

XX g x y g x z 

'yx gyy 

'zx g'zy g z z 

(4-12) 

The S_, then, does not g e n e r a l l y represent the pure s p i n , and i s o f t e n 

termed the e f f e c t i v e or f i c t i c i o u s s p i n . 

EPR may be described as the measurement of the Zeeman 

e n e r g y w h i c h i s g e n e r a l l y of the order of 0 - 1 cm - 1. In 

essence, EPR i s concerned w i t h the manner i n which the other 

Hamiltonian terms perturb or are perturbed by t h i s Zeeman energy. 

4.1.2 The Hyperfine I n t e r a c t i o n . 

The h y p e r f i n e , or e l e c t r o n s p i n - n u c l e a r s p i n 

i n t e r a c t i o n r e s u l t s from the i n t e r a c t i o n of the magnetic moment 

of the unpaired e l e c t r o n and the magnetic moment of any n u c l e i 

w i t h i n i t s o r b i t a l . This i n t e r a c t i o n a r i s e s " i n two q u i t e d i f f e r e n t 

ways. The f i r s t i s e s s e n t i a l l y the c l a s s i c a l i n t e r a c t i o n of the two 

dip o l e s separated by a dis t a n c e r . I t would then be expected 

that t h i s i n t e r a c t i o n should depend upon t h e i r mutual o r i e n t a t i o n . 

Consequently, we r e f e r to i t as the a n i s o t r o p i c or d i p o l a r h y p e r f i n e 

i n t e r a c t i o n . 

The second form of i n t e r a c t i o n i s n o n - c l a s s i c a l and i s 

known as the Fermi or contact i n t e r a c t i o n . I t i s determined by 

the unpaired e l e c t r o n d e n s i t y at the nucleus, and i s i s o t r o p i c . The 

o v e r a l l h y p e r f i n e s p l i t t i n g observed, then, would c o n s i s t of an 

a n i s o t r o p i c component superimposed upon an i s o t r o p i c term. 
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Rapid r e o r i e n t a t i o n of the paramagnetic s p e c i e s , f o r example 

i n s o l u t i o n , can average the a n i s o t r o p i c s to zero. 

The expression f o r the h y p e r f i n e i n t e r a c t i o n i n the 

s p i n Hamiltonian i s given by 

J^f f = *S.T.I (4-13) 

where T i s a tensor r e p r e s e n t i n g the coupling between the e l e c t r o n 

and nuclear s p i n angular momentum v e c t o r s , S and I , and i s a 

combination of both d i p o l a r and contact terms. The d i p o l a r term 

may be w r i t t e n as 

I-S 3(1.r) ( S T ) 
^ d i p : = SeSlBeBl ~ (4-14) 

r r*> 

and the contact or Fermi term w r i t t e n as 

^ f o n t . = Aoi-I (4-15) , 

where 

A o = - (if) 8egieeei I ̂ (o)| 2
 (4-i6) 

2 

and | ^ ( 0 ) | i s the s p i n 'density' of the unpaired e l e c t r o n at the 

nucleus. Here gj and 3j are the nuclear g f a c t o r and magneton 

defined correspondingly to those f o r the e l e c t r o n ; r_, the radius 

v e c t o r between the e l e c t r o n and n u c l e a r moments; r , i s the distance 

between them; and A ,the i s o t r o p i c h y p e r f i n e coupling constant. 

The tensor form of T i s i d e n t i c a l to that p r e v i o u s l y 

described f o r g, although c o n t r i b u t i o n s from both d i p o l a r and 
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contact i n t e r a c t i o n s may be separated i n each term. Thus 

T T T 
XX xy xz 

T T T 
yx yy yz 

•T T T 
zx zy zz 

(4-17) 

and 

T . .' = A 6.. + BAA (4-18) 

In g e n e r a l , the hy p e r f i n e i n t e r a c t i o n (of the order 
- 2 - 1 

0 - 1 0 cm ) i s found to be s m a l l e r than the Zeeman l e v e l s , each 

l e v e l being s p l i t i n t o 21+1 s u b l e v e l s . 

4.1.3 Other I n t e r a c t i o n s . 

Nuclear quadrupole i n t e r a c t i o n s are even s m a l l e r i n 

magnitude but on occasion may have to be in c l u d e d to e x p l a i n 

EPR r e s u l t s s a t i s f a c t o r i l y . For n u c l e i with s p i n I > h, the 

nuclear quadrupole i n t e r a c t i o n may be expressed by 

= I - Q - I (4-19) 

where Q i s again represented by a tensor, of the same form as 

f o r g and T. The e f f e c t i s a small but c a l c u l a b l e s h i f t of the 

hyperfine l i n e s . 

The l a s t term to be mentioned i s the i n t e r a c t i o n of 

the n u c l e a r moments with the magnetic f i e l d , the nuc l e a r Zeeman 

i n t e r a c t i o n , expressed as 

g i B i I - H (4-20) 
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A l l symbols are as defined p r e v i o u s l y . This term i s a l s o 

g e n e r a l l y small and may be ignored i n a f i r s t order treatment. 

4.1.4 EPR Spectra. 

The a n i s o t r o p i e s present i n both the g f a c t o r and the 

hyperfine s p l i t t i n g s cause the EPR spectrum to depend on the 

o r i e n t a t i o n of the species under c o n s i d e r a t i o n w i t h respect to 

the e x t e r n a l magnetic f i e l d . Studies of o r i e n t e d species i n s i n g l e 

c r y s t a l s are n e c e s s a r i l y lengthy and o f t e n r e q u i r e considerable 

refinement of experimental procedure and mathematical a n a l y s i s to 

achieve a high :degree of p r e c i s i o n i n the e v a l u a t i o n of the g 

and h y p e r f i n e t e n s o r s . 

I f the paramagnetic molecules are contained i n a 

p o l y c r y s t a l l i n e or amorphous host, as i s u s u a l l y the case i n 

studies on s u r f a c e s , the observed EPR spectrum w i l l be a complex 

s u p e r p o s i t i o n of l i n e s due to a l l o r i e n t a t i o n s of the randomly 

o r i e n t e d molecules. This i s not n e c e s s a r i l y to say that the molecul 

are themselves randomly o r i e n t e d w i t h respect to the s u r f a c e , but 

r a t h e r the adsorption s i t e s are randomly o r i e n t e d . Information can 

be obtained from such observations and i s g e n e r a l l y achieved by 

computing s p e c t r a l l i n e shapes f o r a number of commonly o c c u r r i n g 

c o n d i t i o n s f o r known or guessed p r i n c i p a l values of the g and 

hyperfine t e n s o r s . The p r i n c i p a l values are those obtained on 

d i a g o n a l i z a t i o n of the r e s p e c t i v e t e n s o r s . 

Sands [66] obtained a resonance lineshape by assuming a 

random d i s t r i b u t i o n of s p i n o r i e n t a t i o n s , and then averaging the 
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resonant magnetic f i e l d s over a l l o r i e n t a t i o n s . S i m i l a r methods 

of c a l c u l a t i n g these s o - c a l l e d powder or p o l y c r y s t a l l i n e s p e c t r a have 

been developed by Bloembergen and Rowland [67], Kobin and Poole [68] 

and Kneubuhl [69]. 

In d e r i v i n g t h e o r e t i c a l lineshapes f o r these media, 

completely random o r i e n t a t i o n w i t h respect to the e x t e r n a l magnetic 

f i e l d on a macroscopic s c a l e i s assumed. Thus the microscopic 

environment may be ordered or disordered without a f f e c t i n g the v a l i d i t y 

of the c a l c u l a t i o n s . 

F o llowing the treatment of Sands [66], an example of a 

c a l c u l a t i o n of a powder .lineshape f o r an a x i a l l y symmetric case i s 

o u t l i n e d . For the resonance c o n d i t i o n given i n equation (4-1), we 

have 

•g = ( g / / cos 29 + g j s i n 2 e ) ^ (4-21) 

where 0 r e l a t e s the p o s i t i o n of the g tensor to the a p p l i e d 

magnetic f i e l d (see f i g u r e 16, page 75). Here gxx> gyV» %zz
 a r e the 

p r i n c i p a l g values and g x x = g y y = g | and g^ = gjj . Since a l l 

o r i e n t a t i o n s are e q u a l l y probable, one must sum over a l l the 

absorptions. With the frequency v constant and sweeping the magnetic 

f i e l d H, then absorption of energy w i l l occur at f i e l d s given by 

H = j- {gj/ cos 26 + g ^ s i n 2 e ) " % (4-22) 

f o r each 8. The number of spins N having an o r i e n t a t i o n w i t h 

respect to the a p p l i e d magnetic f i e l d between 8 and 8 + d8 i s 
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given by 

dN = (No/2)sined6 (4T23) 

where N i s the t o t a l number of s p i n s . This becomes, from o r 

equation (4-^22) 

^ / u ^ r r 2._ 2 , M m , m 2 _ 2 ,h A u (4-24) dN = ( N 0 / 2 ) ( 4 H S / H - i ) [ ( g ; / - g | ) [ 2 ( H 0 / H ) - g | ] 2 dH 

where H q = h v/2g* ^ p l o t of d N / ^ vs H y i e l d s the expected powder 

spectrum. P l o t s of t h i s and a l s o of a n i s o t r o p i c cases are given i n 

Chapter Seven. 



CHAPTER FIVE 

ADSORPTION STUDIES 

As introduced e a r l i e r , many sp e c t r o s c o p i c techniques have 

found wide use i n adsorption s t u d i e s . Reviews i n v o l v i n g some of the 

more common techniques have been given i n the i n t r o d u c t i o n . This 

chapter w i l l be concerned w i t h s t u d i e s using the EPR technique and 

t h e i r a p p l i c a t i o n to the surfaces under c o n s i d e r a t i o n . The l i s t of 

stud i e s given i s by no means complete, but y i e l d s enough i n s i g h t 

i n t o the scope of EPR i n t h i s area. 

I d e a l l y , one may expect to o b t a i n three types o f 

information from s p e c t r o s c o p i c experiments: 

1, The i d e n t i t y of the a c t i v e s i t e s on the surfaces 

2, The i d e n t i t y of p h y s i c a l l y adsorbed or chemisorbed species 

3, The nature of the i n t e r a c t i o n between an a c t i v e s i t e and an 

adsorbed molecule. 
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The terra ' a c t i v e s i t e ' i s broadly d e f i n e d . I t can be a 

s i t e on a surface capable of adsorbing molecules from the gas phase, 

or can r e f e r to s p e c i f i c s i t e s which induce chemical r e a c t i o n s . I t 

i s o f t e n d i f f i c u l t to d i s t i n g u i s h between them. 

No sp e c t r o s c o p i c technique i s u n i v e r s a l l y a p p l i c a b l e 

f o r o b t a i n i n g a l l three types o f i n f o r m a t i o n . Magnetic resonance 

techniques are most u s e f u l i n o b t a i n i n g i n f o r m a t i o n o f type 1 

although i t i s p o s s i b l e i n some cases to o b t a i n types 2 and 3 a l s o . 

EPR techniques h o l d considerable promise of e l u c i d a t i n g some of the 

complicated and confusing s i t u a t i o n s that a r i s e on surfaces i n systems 

i n v o l v i n g the g a s - s o l i d i n t e r f a c e , 

Studies of the nature o f surfaces themselves, p r i o r to any 

adsorption, comprised much of the e a r l i e r work of the EPR technique 

i n t h i s area. Low temperature s t u d i e s of various carbon samples gave 

narrow EPR s i g n a l s due to various f r e e r a d i c a l s present on the surface 

[70,71]. Further s t u d i e s o f the e f f e c t s of added gaseous oxygen to 

these samples ( f o r example [72^74]) produceid v a r i o u s RC - 0 - 0 

r a d i c a l s . Not a l l r a d i c a l centers are n e c e s s a r i l y on the su r f a c e ; 

however, these r e a c t i o n s w i t h oxygen presumably i n v o l v e r a d i c a l s 

at the i n t e r f a c e . Most s t u d i e s of t h i s type have as t h e i r main i n t e r e s t 

i n t e r n a l r a t h e r than surface e f f e c t s and consequently w i l l not be 

discussed here.. More recent s t u d i e s of t h i s type have i n v o l v e d the 

use of r a d i a t i o n and the study of the defects formed i n va r i o u s 

substances [75T78]. EPR techniques here provide very u s e f u l i n f o r m a t i o n 

about the type of d e f e c t , i t s environment and c r y s t a l f i e l d symmetry. 



-54-

5.1 EPR Studies of Radicals on Surfaces. 

5.1.1 N o n - Z e o l i t i c Adsorbents. 

Many of the e a r l i e r s t u d i e s of paramagnetic species on 

surfaces were done on g l a s s e s , s i l i c a g e l s , aluminas, semiconductors, 

and various c a t a l y t i c s u r f a c e s . An e a r l y study by Faber and 

Rogers [79] i n v o l v e d adsorption of manganese ( I I ) , copper ( I I ) , and oxy 

vanadium (IV) on various c a t i o n and anion exchange r e s i n s , a c t i v a t e d 

c h a r c o a l , z e o l i t e and s i l i c a g e l . T h e i r purpose was an attempt to 

f u r t h e r understand the bonding and environment of t r a n s i t i o n ions i n 

unknown surroundings on the b a s i s of t h e i r EPR s p e c t r a . 

Russian workers c a r r i e d out s t u d i e s of f r e e r a d i c a l s 

produced on s i l i c a g e l surfaces i n the e a r l y 1960's. Hydrogen 

atoms were produced by low t e m p e r a t u r e y - i r r a d i a t i o n of the s i l i c a 

gel s u r f a c e , the atoms being produced from the adsorbed water molecules 

or from the surface hydroxyl groups [80-82]. The hydrogen 

atoms formed were s t a b i l i z e d on the surface and the i n f l u e n c e of the 

surface on the EPR parameters s t u d i e d . The magnitude of the hyper

f i n e s p l i t t i n g was found to agree c l o s e l y with values f o r a f r e e 

hydrogen atom although the width of the components v a r i e d w i t h the 

nature of the surface under study. This suggests that the 'binding' 

of the atoms to the surface must occur without s i g n i f i c a n t change 

i n the s p i n d e n s i t y of the unpaired e l e c t r o n i n the atom. A 

d e f i n i t e i n t e r a c t i o n , however, between the surface and the atom i s 

i n d i c a t e d by l i n e w i d t h v a r i a t i o n s depending on the type of s u r f a c e . 

Accurate q u a n t i t a t i v e a n a l y s i s of these e f f e c t s was not thought p o s s i b l 
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owing to the lack of r e l i a b l e data concerning the surface s t r u c t u r e 

of such s o l i d s . Wide v a r i a t i o n s i n surface p r o p e r t i e s e x i s t among 

various s i l i c a gels [83], the d i f f e r e n c e s being caused by conc e n t r a t i o n 

of surface hydroxyl groups and d i f f e r i n g degrees of surface r e g u l a r i t y 

or c r y s t a l l i n i t y . Other f r e e r a d i c a l s have been s t a b i l i z e d on 

s i l i c a g e l s u r f a c e s , notably e t h y l and methyl [84-88], i n each case 

the r a d i c a l being formed on i r r a d i a t i o n of adsorbed molecules on the 

surface. 

The s t a b i l i z a t i o n of f r e e r a d i c a l s at the surface of s o l i d s 

i s of considerable i n t e r e s t i n regard to heterogeneous c a t a l y s i s and 

surface s t r u c t u r e ; EPR techniques have provided v a l u a b l e i n f o r m a t i o n 

to both areas„ Benzene adsorbed on s i l i c a g e l , when i r r a d i a t e d w i t h 

u l t r a v i o l e t l i g h t , produced phenyl r a d i c a l s , benzene c a t i o n r a d i c a l s 

and benzene c a t i o n dimer r a d i c a l s [89]. Radiolys'is of monocarboxylic 

acids adsorbed on s i l i c a g e l [90] has been s t u d i e d using the EPR 

technique to o b t a i n i n f o r m a t i o n concerning the r a d i c a l s produced i n 

the adsorbed s t a t e and.also the nature of t h e i r thermal motion. 

Monomeric and dimeri c c a t i o n r a d i c a l s have a l s o been observed i n 

Y - i r r a d i a t e d b e n z e n e - s i l i c a g e l systems [91]. Other r a d i c a l ions > 

have a l s o been formed by d i r e c t i n t e r a c t i o n of adsorbates w i t h the 

s o l i d [92-93.];. These are g e n e r a l l y produced as a r e s u l t o f e l e c t r o n 

t r a n s f e r from the adsorbent to the adsorbate having a high e l e c t r o n 

a f f i n i t y . 

Porous Vycpr glass has a l s o provided a convenient 

s t a b i l i z i n g medium f o r free r a d i c a l s , T u r k e v i t c h and F u j i t a [94] 

reported the s t a b i l i z a t i o n of the methyl r a d i c a l at room temperature . 
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and s t u d i e d i t s r e a c t i v i t y w i t h various added gases. Further s t u d i e s 

[95-97] of the methyl r a d i c a l on porous glass have been c a r r i e d 

out and r e s u l t s have i n d i c a t e d both p h y s i c a l l y trapped r a d i c a l s 

and those which have i n t e r a c t e d w i t h surface s i t e s . The aim was to 

explore the general usefulness of porous glass as a f r e e r a d i c a l 

host and/or the r e l a t i o n s h i p between a p o s s i b l e c a t a l y s t and f r e e 

r a d i c a l host. A novel type of methyl r a d i c a l trapped i n porous 

Vycor glass at.77°K has r e c e n t l y been reported, haying an extremely 

small h y p e r f i n e coupling constant compared to that of the planar 

methyl r a d i c a l , probably i n d i c a t i n g a non-planar s t r u c t u r e f o r 

the adsorbed r a d i c a l [98]. 

As mentioned p r e v i o u s l y , workers i n the area of hetero

geneous c a t a l y s i s have e x t e n s i v e l y employed the EPR technique. 

Knowledge of the mechanisms of heterogeneous c a t a l y s i s may be obtained 

from i n v e s t i g a t i o n s of the elementary acts i n v o l v e d , and of the s t r u c t u r e s 

and p r o p e r t i e s of intermediates t a k i n g part i n c a t a l y t i c r e a c t i o n s . 

The resonance s i g n a l can provide evidence as to the nature of the 

paramagnetic species on or i n the surface: and a l s o as to the 

s t r u c t u r e and chemical composition of the c a t a l y s t . V a r i a t i o n s i n the 

s i g n a l produced by d i f f e r e n t methods of p r e p a r a t i o n and processing 

may a l s o provide i n f o r m a t i o n on the c a t a l y s t s t r u c t u r e and the nature 

of the chemical bonds formed on adsorption. 

Another p o s s i b i l i t y of applying EPR to heterogeneous 

c a t a l y s i s problems i s a l s o a v a i l a b l e . This would i n v o l v e the study 

of chemical r e a c t i o n s and of the adsorption process with a view 
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to o b t a i n i n g s i g n a l s from l a b i l e intermediate products on the 

c a t a l y t i c s u r f a c e . Petcherskaya et a l [99] have shown the EPR 

method, to be a p p l i c a b l e i n i n v e s t i g a t i o n s of c r y s t a l l i n e 

p r o p e r t i e s , chemical composition and e l e c t r o n i c p r o p e r t i e s of 

various oxide c a t a l y s t s . S i m i l a r s t u d i e s and reviews thereon have 

been published [100,101], 

5.1.2 Z e o l i t e Adsorbents. 

Various z e o l i t e s have found widespread use as adsorbents 

mainly due to the c r y s t a l l o g r a p h i c a l l y w e l l - d e f i n e d s t r u c t u r e and 

a l s o to some knowledge of the e l e c t r o n i c p r o p e r t i e s of the s u r f a c e . 

As mentioned i n an e a r l i e r chapter,,a very important c h a r a c t e r i s t i c 

of z e o l i t e s i s that i t i s p o s s i b l e to vary the e l e c t r o n i c s t r u c t u r e 

of the surface by a simple s u b s t i t u t i o n pf v a r i o u s c a t i o n s of 

d i f f e r e n t s i z e s and charge w h i l e the l a t t i c e remains unchanged. 

The l o c a t i o n of the c a t i o n s can be assumed t o be the same, provided 

there i s not a l a r g e s i z e d i f f e r e n c e . Stamires and T u r k e v i t c h [102] 

s t u d i e d y - i r r a d i a t e d s y n t h e t i c z e o l i t e s v a r y i n g the S i / A l r a t i o . 

Most of the defects produced are paramagnetic centers and EPR 

has proved u s e f u l i n p r o v i d i n g i n f o r m a t i o n about the type of 

defect and i t s environment. The same authors [103] a l s o s t u d i e d the 

adsorption of a number of molecules on these z e o l i t e s . E l e c t r o n 

charge-transfer complexes were found when molecules with low i o n i z a t i o n 

p o t e n t i a l s were adsorbed. The purpose of. the study was to examine 

the z e o l i t e s as acceptors i n r e a c t i o n s of t h i s type, and because of 

t h e i r c r y s t a l l i n e s t r u c t u r e , show the existence of w e l l - d e f i n e d 
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e l e c t r o n accepting s i t e s i n the l a t t i c e . 

Studies of r a d i c a l c a t i o n s formed on the adsorption of 

aromatic hydrocarbons on zeo l i t e s ' are a l s o present i n the l i t e r a t u r e 

( f o r example..[104]) . R a d i c a l s produced by i r r a d i a t i o n pf adsorbed 

species have a l s o been i n v e s t i g a t e d . E l e c t r o n i r r a d i a t i o n of 

mesitylene adsorbed on 13X produced s e v e r a l r a d i c a l s [105]. 

Adsorbed 0^. species on various Y type z e o l i t e s have a l s o been 1 

s t u d i e d ( f o r example [106,107]). The h i g h l y r e a c t i v e methyl r a d i c a l 

has been trapped i n a z e o l i t e m a t r i x and s t a b i l i z e d f o r long periods 

at temperatures below 90°K [108]. The r a d i c a l was generated by 

Y - i r r a d i a t i o n of methane on type A z e o l i t e . The f r e e r a d i c a l NO^ 

was produced by the d i r e c t r e a c t i o n of NO^ and atomic oxygen 

and trapped w i t h i n the siev e c a v i t i e s of 13X [109]. 

: The c a t a l y t i c p r o p e r t i e s pf molecular-sieve z e o l i t e s have 

been recognized f o r many years, but i n t e n s i v e i n v e s t i g a t i o n has gotten 

under way only w i t h i n the l a s t two decades. Z e o l i t e s are suggested 

as c a t a l y s t s i n such r e a c t i o n s as cra c k i n g i s o m e r i z a t i o n and 

a l k y l a t i o n [110]. EPR can be used f o r s t r u c t u r a l determinations of 

the c a t a l y s t s , which helps to i d e n t i f y the c a t a l y t i c centers. 

5.2 S p e c i a l Adsorption E f f e c t s . 

P h y s i c a l adsorption i s a r e v e r s i b l e process and molecules 

so adsorbed may be e a s i l y removed from the surface by pumping. 

Chemisbrption u s u a l l y i n v o l v e s stronger forces and i s o f t e n . 

i r r e v e r s i b l e at moderate temperatures. Weak chemisprption i s oft e n 

i n d i s t i n g u i s h a b l e from p h y s i c a l adsorption. P e r t u r b a t i o n of the 
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adsorbed molecules, d i s t i n c t from a chemical r e a c t i o n between the 

surface and adsorbate, i s g e n e r a l l y considered to be a p h y s i c a l 

adsorption process. 

The r o t a t i o n a l freedom of p h y s i c a l l y adsorbed molecules i s 

an important f a c t o r to be considered. Depending on the adsorbing 

temperature, the adsorbed molecule may have no a x i s of f r e e r o t a t i o n , 

p o s s i b l y f r e e r o t a t i o n about an a x i s p e r p e n d i c u l a r to the surface o r, 

even f r e e r o t a t i o n , about three:mutually p e r p e n d i c u l a r axes. The 

p o s s i b i l i t y of hindered r o t a t i o n about any or a l l these axes i s a l s o 

to.be considered and i n many cases appears to be important. The 

o r i e n t a t i o n pf the adsorbed molecules i s . a l s o of importance. This 

depends on the various adsorption forces, present i n a given adsorbate-

adsorbent system. I f the surface or c a v i t i e s of the adsorbent 

are considered as the host matrix to the adsorbed molecules then i t i s 

Clear the matrix can have a pronounced e f f e c t on the molecule. This 

n e c e s s a r i l y a f f e c t s the EPR spectrum and i t may p o s s i b l y a f f e c t the 

spectrum recorded by any other s p e c t r o s c o p i c technique. These w i l l be 

termed matrix i n t e r a c t i o n s and w i l l be discussed i n more d e t a i l 

when the experimental r e s u l t s are i n t e r p r e t e d . 

Other adsorption e f f e c t s need a l s o to be considered. 

E l e c t r o s t a t i c forces p l a y an impprtant role, i n p h y s i c a l a d s o r p t i o n . The 

equations of e l e c t r o s t a t i c s , given by equations (2-11) and (2-12) i n 

Chapter Two, may be a p p l i e d to the adsorption of gases on z e o l i t i c 

molecular s i e v e s . The sep a r a t i o n of molecules by these sieves i s 

due i n large p a r t , not to the s i z e of the molecules, but by 

e l e c t r o s t a t i c forces between the adsorbate and the strong e l e c t r i c 

http://to.be
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f i e l d s present i n the s i e v e s . I t i s these e l e c t r i c f i e l d s which w i l l 

be discussed at present. 

King and Benson [111], i n e x p l a i n i n g the low temperature 

adsorption of the hydrogen isotopes on alumina, have shown that 

the adsorbent has very strong surface e l e c t r i c f i e l d s , d i s t r i b u t e d 

over various s i t e s on the s u r f a c e . They have s u c c e s s f u l l y used 

equations (2-11) and (2-12) f o r t h e i r r e s u l t s . The f i e l d s were, 

found to a r i s e from normal s t r u c t u r a l vacancies i n the c r y s t a l 

l a t t i c e s , vacancies wh^ch were present to maintain e l e c t r i c a l 

n e u t r a l i t y . These same authors a l s o found evidence [112] that 

e l e c t r o s t a t i c i n t e r a c t i o n s a l s o p l a y a dominant r o l e i n the 

p h y s i c a l adsorption of gases on z e o l i t e s . I t was found that o- and pr 

hydrogen could be separated on s y n t h e t i c z e o l i t e s 5A and 13X. In t h i s 

case, separation must be r e l a t e d to some type of hindered r o t a t i o n 

s i n c e these species d i f f e r only i n r o t a t i o n a l energy. Strong 

e l e c t r q s t a t i c f o r c e s can produce such large b a r r i e r s to r o t a t i o n . 

The o r i g i n of these e l e c t r i c f i e l d s was then i n v e s t i g a t e d . I t was 

found that the c a t i o n s , because of t h e i r l o c a l uncompensated charge, 

produce very s t r o n g e l e c t r i c f i e l d s and these c a t i o n s serve as the 

adsorption s i t e s . Thus the s i e v i n g p r o p e r t i e s of these 'molecular 

s i e v e s ' are due only i n p a r t to the s i z e o f the cages and channels 

present i n the l a t t i c e . 

The c a t i o n d e n s i t y of the u n i t c e l l of z e o l i t e s can be 

v a r i e d s y s t e m a t i c a l l y by v a r y i n g the AIO^ content w i t h respect to the 

SiO^ content between w e l l - d e f i n e d l i m i t s . Removal or s u b s t i t u t i o n 

of the cations can a l s o create changes i n the s i t e s a v a i l a b l e f o r 
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adsorption. Rabo et a l [113] s t u d i e d the e f f e c t of the c a t i o n on the 

c a t a l y t i c a c t i v i t y of various s y n t h e t i c z e o l i t e s by comparing the 

sodium form, the calcium form and the d e c a t i o n i z e d form of the 

z e o l i t e s . They found a p o s i t i v e r e l a t i o n s h i p between the number of 

c a t i o n s i t e s and the c a t a l y t i c a c t i v i t y . Further r e p o r t s by these 

and other workers have s u b s t a n t i a t e d the importance of these large 

e l e c t r o s t a t i c f i e l d s of the cat i o n s as adsorption and c a t a l y t i c centers 

[114,115], The p o l a r i z a t i o n of the adsorbed molecules by the 

e l e c t r o s t a t i c f i e l d s has a l s o been suggested as being a s s o c i a t e d 

w i t h the c a t a l y t i c a c t i v i t y of the z e o l i t e s . C a l c u l a t i o n s by 

H o i j t i n k [116,117] on.the p o l a r i z a t i o n o f aromatic molecules i n a 

l i n e a r e l e c t r i c f i e l d g i ve support to t h i s hypothesis. Gibbons 

and Barrer [118,119] have c a l c u l a t e d the e l e c t r o s t a t i c energy 

c o n t r i b u t i o n s to adsorption energies f o r molecules with both d i p o l e and 

quadrupole moments f o r various c a t i o n exchanged z e o l i t e s . I t was 

th u s ^ p o s s i b l e t o see the e f f e c t of s i z e and charge of the cations on 

these energies. 

Adsorption according to these e l e c t r o s t a t i c models of 

i n t e r a c t i o n between the adsorbate and the strong e l e c t r i c f i e l d s 

present i n the z e o l i t e s can a l s o p r e d i c t the p r e f e r r e d o r i e n t a t i o n • 

of the molecules on the su r f a c e . The e l e c t r i c f i e l d normal to the 

surface w i l l act i n the d i r e c t i o n o f gr e a t e s t p o l a r i z a b i l i t y and 

cause t h i s to be. the p r e f e r r e d o r i e n t a t i o n . P o l a r molecules should then 

be r e a d i l y o r i e n t e d by the i n t e r n a l f i e l d s of the s o l i d and one should 

be able to p r e d i c t t h i s o r i e n t a t i o n . The molecules would a l s o be 

assumed to execute small o s c i l l a t i o n s about an e q u i l i b r i u m p o s i t i o n 

with respect to the s u r f a c e . 
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CHAPTER SIX : 

EXPERIMENTAL 

6.1 Vacuum System. 

The m a t e r i a l s used i n t h i s study were handled i n a 

pyrex glass vacuum system constructed i n the Chemistry department 

glassblpwing shop at U.B.C. Te f l o n stopcocks with ' v i t o n ' 

Curings were used i n the gas handling p a r t so as not to introduce 

i m p u r i t i e s v i a r e a c t i o n w i t h any stopcock grease. The stopcocks 

were manufactured by Ace Glass Incorporated, Vineland, New Jerse y . 

Where grease was necessary, a Haloflurocarbon l u b r i c a n t , 

KEL-F #90 grease, a product o f 3M Company, was used. KEL-F i s q u i t e 

unreactive to most c o r r o s i v e or r e a c t i v e chemicals. Pumping was v i a 

a 'Veecb' o i l d i f f u s i o n pump backed by a Welsch Duo Seal r o t a r y pump. 

The u l t i m a t e vacuum was of the order of 10 ^ t o r r . Both an NRC 

Thermocouple vacuum gauge and an NRC I o n i z a t i o n gauge were used as 
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pressure measuring devices. An NRC Model 831 detector was used i n 

conjunction w i t h these gauges. A diagram of the vacuum system i s 

given i n f i g u r e 13a. 

6.2 Sample Tubes. 

Figure }3b shows the sample tubes used i n the experiments. 

Quartz tubing of 4 mm. outer diameter was used f o r the part of the 

tube to be placed i n the EPR spectrometer. The diameter was 

determined by the s i z e of the l i q u i d n i t r o g e n dewar to be used f o r 

low temperature experiments. A t e f l o n stopcock was used here a l s o 

to prevent any. p o s s i b l e r e a c t i o n s of the sample w i t h grease. Glass 

wool plugs were placed above the sample and i n the c o n s t r i c t i o n to 

prevent p o s s i b l e s c a t t e r i n g of the sample during evacuation. A small 

c y l i n d r i c a l furnace was used which f i t around the sample tube. The 

furnace was capable of temperatures i n excess pf 673°K. 

6.3 Adsorbents. 

The Linde D i v i s i o n of the Union Carbide Corporation k i n d l y 

s u p p l i e d samples of the s y n t h e t i c z e o l i t e s 4A, 5A, 10X and 13X. 

The samples were white powders,and d i d not have any added b i n d e r s . 

The usual commercial form of these z e o l i t e s i s p e l l e t s of various s i z 

and a c l a y binder i s added tp f a c i l i t a t e the molding. As an 

adsorption m a t e r i a l , the b i n d e r i s r e l a t i v e l y i n e r t but may introduce 

unknown i m p u r i t i e s [120]. G e n e r a l l y , the p e l l e t s are approximately 

15 per cent b i n d e r , so these s p e c i a l samples were requested. The l o t 

number f o r the 4A i s 470017; the 5A, M580031; 10X, 1080001; and 13X, 

1370014. : . 
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used' i n these experiments. 
b) The sample tubes used i n these experiments. 
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Th e s y n t h e t i c mordenites (Zeolons) were s u p p l i e d by 

the Norton Company of Worcester, Mass., i n the same form as were the 

Linde products. The l o t number of the sodium mordenite i s 

HB 79-80E and that f o r the hydrogen mordenite, HB 91-92E. 

The s i l i c a g e l samples used were of a t h i n l a y e r chromagraphic 

sorbent marketed by the M a l l i n c k r o d t Chemical Works. The brand name 

i s S i l l C A R TLC-7GF. 

The ions i n the Linde s y n t h e t i c z e o l i t e s were 

exchanged f o l l o w i n g standard procedures. Sherry [121] gives an 

account of the exchange p r o p e r t i e s of various z e o l i t e s and a l s o 

describes the c o n d i t i o n s r e q u i r e d f o r a number of s p e c i f i c exchanges. 

6.4 Sample P r e p a r a t i o n . 

Sample tubes c o n t a i n i n g the adsorbents were degassed 

f o r a p e r i o d of g e n e r a l l y 4-6 hours at a temperature of approximately 

523°K at a pressure of l e s s than 5x10*"^ t o r r . This p e r i o d was 

s u f f i c i e n t to remove any water from the adsorbents. The gases to be 

studied were then adsorbed onto the surfaces at room temperature 

f o r s e v e r a l minutes. The pressure of gas adsorbed v a r i e d f o r the 

d i f f e r e n t systems and w i l l be given i n each appropriate s e c t i o n . 

EPR s p e c t r a were recorded at 77°K on the spectrometers 

to be described l a t e r i n t h i s chapter. A Varian V-4546 l i q u i d 

n i t r o g e n dewar, shown i n f i g u r e 14b, was used f o r the low temperature 

s t u d i e s . The dewar was f a b r i c a t e d e n t i r e l y from s e l e c t e d quartz to 

pass u l t r a v i o l e t l i g h t with a minimum of background s i g n a l s . 



-66-

5mm i.d; 

11mm o.d. 

(a) 

7 ^ 

im i.d. 

•11 mm o.d. 

( b ) 

•FIGURE 14. a) Quartz dev/ar used f o r v a r i a b l e temperature 
EPR experiments. 

b) A Va r i a n V-4546 l i q u i d n i t r o g e n dev/ar. 
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V a r i a b l e temperature experiments were performed using a 

s p e c i a l l y designed quartz dewar, shown i n f i g u r e 14a. Dry n i t r o g e n 

gas was passed through a heat exchanger placed i n a l a r g e dewar 

f i l l e d w i t h a coolant such as l i q u i d n i t r o g e n or a dry ice-acetone 

mixture. The gas was cooled to the approximate temperature of the 

coolant and passed through the quartz dewar, c o o l i n g the sample. 

The temperature at the sample was c o n t r o l l e d by the r a t e of flow of 

the gas and was measured using a copper-constantan thermocouple. 

The wave guide near the c a v i t y was kept f r e e from condensed moisture 

by passing dry n i t r o g e n gas through i t . 

6.5 Gases. 

6.5.1. C h l o r i n e Dioxide ClO^. 

The c h l o r i n e d i o x i d e used i n t h i s study was k i n d l y 

s u p p l i e d by Pr o f e s s o r F. Aubke of t h i s U n i v e r s i t y . In h i s method 

of p r e p a r a t i o n [122], a mixture of 12.2 gm. of potassium c h l o r a t e , 

10 gm. o x a l i c a c i d and a c h i l l e d s o l u t i o n o f 10.8 gm. of 

concentrated s u l f u r i c a c i d i n 40 ml. of water was slo w l y heated oh a 

steam bath (the mole r a t i o KCIO^ : H^C^-2H 20 : H 2S0 4 was 1:0-8:1.1) 

The r e a c t i o n i s c h a r a c t e r i z e d by the f o l l o w i n g equation: 

2KC10 3 + 2H 2S0 4 + H 2C 20 4-2H 20 -> 2C1C>2 + 2CC>2 + 4H 20 + 2KHS04. (6-1) 

The C10 2 and C0 2 produced were passed through a P 2
U ^ drying tube and 

cooled to 195°K. Pumping on the sample at t h i s temperature removed 

the CO,,. Further p u r i f i c a t i o n was achieved through a trap to trap 

d i s t i l l a t i o n from 195°K to 77°K. The C10 2 was stored i n a dry i c e -
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t r i c h l o r o e t h y l e n e bath at 195°K. „ 

6.5.2. Nitrogen.Dioxide NC^. 

The n i t r o g e n d i o x i d e used i n t h i s study was purchased 

from Matheson of Canada, L i m i t e d . The p u r i t y of the gases i n the 

containers was > 99.5 percent. Further p u r i f i c a t i o n was achieved 

by pumping on the s o l i d i f i e d gas i n a container immersed i n a dry 

ice-acetone bath. The p u r i f i e d gas was stored i n a glass sample bulb. 

6.5.3 N i t r i c Oxide NO. 
14 

The n i t r i c oxide, NO, was purchased from Matheson of 

Canada, L i m i t e d , and the reported p u r i t y i s > 98.5 percent. The gas 

was passed through a t r a p immersed i n an isopentane-pentane-dry i c e 

bath at approximately 133°K and stored i n a glass sample bulb. 

Further p u r i f i c a t i o n was achieved by pumping on the sample at l i q u i d 

n i t r o g e n temperature. 

The ^-N s u b s t i t u t e d sample of n i t r i c oxide was purchased 

from the Isomet Corporation, New Jersey and had a reported p u r i t y of 

> 99.3 percent 1 5N0. 

6.5.4 T e t r a f l u o r o h y d r a z i n e ̂ F ^ . 

The t e t r a f l u o r o h y d r a z i n e used i n t h i s study was purchased 

from A i r Products and Chemicals Incorporated, Pennsylvania. The 

research grade gas had a reported p u r i t y o f > 99 percent and was used 

d i r e c t l y from the container without any f u r t h e r p u r i f i c a t i o n . 
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6.6 Spectrometers. 

The m a j o r i t y of the measurements were c a r r i e d out 

on a Va r i a n E-3 X-band EPR spectrometer system. The operating 

frequency of the k l y s t r o n i s 8.8 to 9.6 GĤ , t r a n s m i t t e d to the 

c a v i t y through a 4-port c i r c u l a t o r . The magnetic f i e l d of t h i s 

system was su p p l i e d by a four in c h electromagnet having a usable a i r 

gap of 1.2 inches, capable of homogeneous magnetic f i e l d s i n 

excess of 6 k i l o g a u s s . Homogeneity was such as to a l s o r e s o l v e 

70 mG l i n e s . The magnetic f i e l d was modulated through a 100 kH 
Li 

f i e l d modulation u n i t i n t h i s system. A Varian E-4531 c a v i t y of 

rec t a n g u l a r mode TEJQ2 was used f o r the experiments. This 

spectrometer system has a c a l i b r a t e d f i e l d c o n t r o l and a l s o 

c a l i b r a t e d frequency and power meters. The magnetic f i e l d i n t e n s i t y 

was measured as a f u n c t i o n of the proton resonance i n an NMR probe, 

while being frequency modulated by a magnetometer constructed by the 

Chemistry Department E l e c t r o n i c s Shop. The magnetometer output was 

di s p l a y e d on an Hewlett-Packard 5245L frequency counter. This counter 

was a l s o used to measure the microwave frequency of the k l y s t r o n by 

means of a 5255A frequency converter. A block diagram of t h i s EPR 

system i s shown i n f i g u r e 15. 

A p o r t i o n o f the experimental s p e c t r a was recorded using 

a Varian V-4500 100 kH^ EPR spectrometer m o d i f i e d by the Chemistry 

Department E l e c t r o n i c s Shop. The operating frequency i s about 9 GH . 

A standard V a r i a n r e c t a n g u l a r c a v i t y , model V-4531 was used w i t h t h i s 

spectrometer. A maximum f i e l d of about 9 k i l o g a u s s was a t t a i n a b l e 

from the Varian V-4012A 12 inch magnet having a 2.5 inch gap between 
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the p o l e s . Frequency and f i e l d i n t e n s i t y measurements were 

performed as p r e v i o u s l y described. 

Further measurements were c a r r i e d out on a spectrometer 

s i m i l a r to that j u s t d e scribed, although a V a r i a n V-3900 magnet 

capable of 15 k i l o g a u s s s u p p l i e d the magnetic f i e l d . A 

Varian V-2501 F i e l d a i l Mark I I Magnetic F i e l d Regulator c o n t r o l l e d 

the magnetic f i e l d . The remainder of the spectrometer was 

e s s e n t i a l l y the same. 
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' CHAPTER-SEVEN • 

ANALYSIS OF ELECTRON PARAMAGNETIC RESONANCE SPECTRA 

The task of a s s i g n i n g numerical values to the parameters 

i n the s p i n Hamiltonian given by equation (4-10) can, i n some 

cases, be q u i t e formidable. The consistency of the assigned values 

must be checked through, g e n e r a l l y by means of a t h e o r e t i c a l c a l c u l a t i o n . 

Various methods used f o r the c a l c u l a t i o n of resonance f i e l d s have 

been reviewed by Swalen and Gladney [123], and some computer 

programs a v a i l a b l e to t h i s end are discussed. Gladney [123,124] 

has w r i t t e n a program which, though r e s t r i c t e d , i s g e n e r a l l y 

a p p l i c a b l e to many EPR problems. Many papers have si n c e been 

published on the subject [125-128]. 

A completely general and extremely v e r s a t i l e method of 

resonance f i e l d c a l c u l a t i o n has r e c e n t l y been published [129]. 

A method i s proposed f o r c a l c u l a t i n g EPR t r a n s i t i o n f i e l d s f o r a 

general s p i n Hamiltonian w i t h no r e s t r i c t i o n s . The method has a l s o 
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been supplemented with the c a l c u l a t i o n of t r a n s i t i o n p r o b a b i l i t i e s . 

The i n c l u s i o n of a lineshape to the calculated resonance f i e l d 

positions enables one to simulate EPR spectra. 

The EPR spectrum of a p o l y c r y s t a l l i n e or powder sample 

involves a s p a t i a l average over d i f f e r e n t orientations of the spins 

with respect to the d i r e c t i o n of the magnetic f i e l d , the resonance 

f i e l d s f or each o r i e n t a t i o n being calculated u s u a l l y by one of the 

aforementioned methods. A b r i e f summary of a method given for 

solving the spin problem described by a spin Hamiltonian and the 

a p p l i c a t i o n of these r e s u l t s to the simulation of EPR spectra w i l l 

be given f o r completeness. McClung [130] has recently published a 

simple method to solve a spin Hamiltonian f o r an orthorhombic 

paramagnetic' center i n a r i g i d l a t t i c e . The Hamiltonian i s 

r e s t r i c t e d i n the sense that nuclear Zeeman and quadrupole terms are 

neglected and the g and hyperfine tensors are assumed to be 

simultaneously diagonalized i n the same axis system. The s o l u t i o n i s 

given for a paramagnetic species with electron spin S=h and one 

nuclear spin I. Although somewhat less general i n a p p l i c a t i o n , 

the technique i s i n s t r u c t i v e . 

The spin Hamiltonian i s then 

| T H + h S-T-I_ (7-1) 

where the symbols have been defined previously. Experimental data 

are not n e c e s s a r i l y c o l l e c t e d i n a molecular coordinate frame, 

whereas (7-1) operates i n a molecular frame. We must r e f e r to some 
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experimental or l a b o r a t o r y frame of reference. A 'tensor frame' 

i s defined as the a x i s system i n which that tensor i s d i a g o n a l . 

For our s p i n Hamiltonian, the g tensor frame i s taken as the 

molecular frame. For t h i s example, the T tensor i s a l s o 

diagonal i n the molecular frame. G e n e r a l l y , E u l e r coordinate 

transformations are used to reduce the frames to the form wanted 

f o r stydy. These transformations correspond to r o t a t i o n of the 

ve c t o r networks by the appropriate angles. This w i l l o f t e n be the 

case when the molecule i s i n a host matrix such as a c r y s t a l and 

i t s molecular coordinates are i m p l i c i t l y defined w i t h respect 

to the c r y s t a l axes. Appropriate transformations are a l s o r e q u i r e d 

when the g and h y p e r f i n e tensor frames are not c o i n c i d e n t . In t h i s 

case, g e n e r a l l y the g tensor frame i s taken as the molecular frame 

and the hyper f i n e tensor frame transformed a c c o r d i n g l y . 

McLung uses the f o l l o w i n g technique to solve the 

Hamiltonian. The e l e c t r o n s p i n operator, S_, i s quantized along 

the d i r e c t i o n of g-H to allow exact treatment of the Zeeman term. 

Q u a n t i z a t i o n of the nuclear s p i n operator I_, along the d i r e c t i o n of 

T-S ĵ then leads to an expression f o r the h y p e r f i n e i n t e r a c t i o n which 

i s most s u i t a b l e f o r a p e r t u r b a t i o n treatment. Figure 16 shows the 

r e l a t i o n s h i p s of the frames used. G e n e r a l l y H_ i s a large s t a t i c 

magnetic f i e l d a p p l i e d along the l a b o r a t o r y Z a x i s . (X,Y,Z) i s the 

lab o r a t o r y frame and ( x , y , z ) , the molecular frame. The angles 8 and 

<}> r e l a t e the p o s i t i o n of the a p p l i e d magnetic f i e l d to the g and T 

tensor frames (the molecular frame). 
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FIGURE 16. 
system. 

The molecular and magnetic f i e l d coordinate 
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The h y p e r f i n e term may g e n e r a l l y be t r e a t e d as a 

p e r t u r b a t i o n w h i c h s p l i t s t h e e l e c t r o n i c Zeeman l e v e l s 

o f t h e s p i n s y s tem. U s i n g t h e z e r o - o r d e r b a s i s f u n c t i o n s 

| S , M s > | I, M x > , 

second-rprder p e r t u r b a t i o n t h e o r y [131] y i e l d s t h e e i g e n v a l u e s 

EM SM! = .gBoHoMs + h ™ S M l - h V ^ T ^ [S (S+ l ) - Mg ?]Mj 
2g60HoT 

2 / 2 „ 2 2 „2 , - 2 
I (g T - g T ) s m ' z z ^ & a & a zzJ 
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where g = C g^sin 2 9 + g ^ c o s 2 0 ) ^ (7-3) 

2 2 2 2 ^ g = (g cos <j> + g s i n cj>) 2 (7-4) "a xx • ayy . 

T = ( g 2 T 2 s i n 2 9 + g ^ T 2
z c o s 2 0 ) ^ (7-5) 

T = ( g 2 T 2 c o s 2 <J> + g 2 T 2 s i n 2 (JoVg (7-6) a xx xx . yy yy ^ J b • J 

E,, ,, are the eigenvalues of the b a s i s f u n c t i o n s named above: MS,MT 

, 3 Q , the Bohr magneton; H , the magnitude of the a p p l i e d magnetic 

f i e l d ; h, Planck's constant, with a l l other terms being p r e v i o u s l y 

d e f i n e d . In the l i m i t of a x i a l symmetry, t h i s r e s u l t reduces to that 

of Bleaney (132). 

. Once the magnetic f i e l d H i s computed f o r various values 

of 0 and cj) f o r the appropriate Mg and M^ v a l u e s , i t i s p o s s i b l e 

to simulate the EPR spectrum. An appropriate l i n e shape must be 

added to each t r a n s i t i o n , u s u a l l y i n the form of a Gaussian or a 

Lorent z i a n l i n e shape. Mr. J.C. T a i t of t h i s l a b o r a t o r y has w r i t t e n 

such a program. D i f f e r e n t programs may be used to generate the 

resonance f i e l d s f o r use i n t h i s program, the choice being determined 

by the complexity of the problem. 

Considerable infor m a t i o n i s a v a i l a b l e from powder s p e c t r a , 

even though the observed EPR spectrum i s a complex s u p e r p o s i t i o n of 

l i n e s due to a l l o r i e n t a t i o n s of. the randomly o r i e n t e d molecules. 

The major loss of inform a t i o n i s d e r i v e d from the f a c t that the 

o r i e n t a t i o n of the molecule i n the host cannot be determined from 

the spectrum alone. Line-shapes of powder s p e c t r a have been discussed 
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by a number of authors and reference has been made to some of these 

i n Chapter Four. Assuming that the g and h y p e r f i n e tensors are 

d i a g o n a l i z e d i n the same frame and c o n s i d e r i n g , f o r the present, no 

magnetic nucleus i n the molecule, f i g u r e 17 shows some g e n e r a l i z e d 

line-shapes. Figure 17a d e p i c t s the spectrum expected f o r a species 

w i t h an a x i a l l y symmetric g tensor, i . e . g = g '= g l and g = g//. 

The s o l i d l i n e denotes the i d e a l i z e d absorption and the broken l i n e 

a p o s s i b l e r e a l a b s o r p t i o n . The r e a l a b s o r ption, represented by 

some smoothly v a r y i n g line-shape, c o n s i s t s of many sources of 

broadening. Figure 17b de p i c t s the spectrum, both i d e a l i z e d and r e a l , 

f o r a species w i t h a f u l l y a n i s o t r o p i c g tensor. I t i s r e a d i l y seen 

that these complex l i n e shapes cont a i n a number of sharp, r e a d i l y 

observable peaks. These correspond to molecules which are o r i e n t e d 

so that the magnetic f i e l d l i e s along one of the p r i n c i p a l axes of 

the molecule, the r e s u l t . b e i n g that the components of the g and 

T tensors are r e a d i l y determined from the p o s i t i o n s of these l i n e s . 

The explanation l i e s i n the f a c t that when the magnetic f i e l d l i e s 

along one of the molecular axes, the resonance f i e l d f o r the p a r t i c u l a r 

t r a n s i t i o n under study i s a maximum or a minimum w i t h respect to 

v a r i a t i o n s i n 9. and cj>. This r e s u l t s i n a p i l i n g - u p of the number of 

randomly o r i e n t e d molecules whose resonance f i e l d s are i n the v i c i n i t y 

of one of the p r i n c i p a l axes, and causes an abrupt and r e a d i l y 

observable change i n the i n t e n s i t y of the EPR absorption at these p o i n t s . 

When:a magnetic nucleus i s present i n the molecule, the 

spe c t r a are more complicated, but can g e n e r a l l y be analyzed i n terms . 

of the absorption curves j u s t discussed. Complications may a r i s e 



-79-

FIGURE 17. Generalized li'neshapes of powder EPR 
s p e c t r a f o r a species w i t h no h y p e r f i n e s t r u c t u r e . 

a) a x i a l l y symmetric g tensor 
b) f u l l y a n i s o t r o p i c g tensor 



-80-

through the appearance of e x t r a l i n e s owing to the occurrence of 

u s u a l l y forbidden t r a n s i t i o n s , or due to s t a t i o n a r i t i e s caused when 

the g and h y p e r f i n e tensors t r y to s h i f t the l i n e s i n opposite 

d i r e c t i o n s . 

One can then, under favourable c o n d i t i o n s , determine the 

components of the g and hy p e r f i n e tensors from a powder EPR spectrum. 

In complicated i n s t a n c e s , approximate s t a r t i n g values f o r these 

tensors.could probably be obtained from the s p e c t r a , and more p r e c i s e 

determination done by f i t t i n g a computer simulated spectrum to the 

observed spectrum. Powder EPR s p e c t r a cannot provide i n f o r m a t i o n 

about the o r i e n t a t i o n of the p r i n c i p a l axes of the g and hy p e r f i n e 

tensors w i t h respect to the molecular axes, nor can informa t i o n be 

obtained about which component i s as s o c i a t e d w i t h a s p e c i f i c molecular 

a x i s . This must be determined by comparison with t h e o r e t i c a l estimates 

of these q u a n t i t i e s along the various molecular axes. 



CHAPTER EIGHT 

CHLORINE DIOXIDE, ClCy 

C h l o r i n e d i o x i d e i s one of the few s t a b l e gases t h a t i s 

paramagnetic i n i t s normal chemical s t a t e . The nuc l e a r s p i n of the 

c h l o r i n e atom i s I=2~« u u e i n p a r t perhaps to i t s extremely high 

r e a c t i v i t y , i n v e s t i g a t i o n s using EPR techniques have n°t been 

extensive. Several years ago, Bennett and Ingram [133] reported 

the spectrum of C10 2 i n a d i l u t e f l u i d s o l u t i o n of e t h y l a l c o h o l . 

The spectrum c o n s i s t e d of a broad l i n e at room temperature, separating 

i n t o four components on c o o l i n g . More recent s t u d i e s of ClO^ i n 

various solvents at low temperatures have produced b e t t e r r e s o l v e d 

s p e c t r a , the r e s o l u t i o n i n some cases being good enough to d i s t i n g u i s h 
37 

the h y p e r f i n e s p l i t t i n g s due to the C l isotope [134]. 

The spectrum reported i n r i g i d s u l f u r i c a c i d at 77°K i s 

somewhat b e t t e r r e s o l v e d , although complex [135]. Here again, features 
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due to the CI isotope may be d i s t i n g u i s h e d from those due to the 
35 

predominant CI. I r r a d i a t e d potassium p e r c h l o r a t e has provided 

a source of trapped ClO^ molecules i n the c r y s t a l environment. Two 

independent s t u d i e s [136,137] of the CIC^ molecule i n such c r y s t a l s 

have led to s i m i l a r a n a l y s i s of the s p e c t r a . The p r i n c i p a l values 

of both the g and h y p e r f i n e tensors were obtained from these s p e c t r a 

whereas the r i g i d s o l u t i o n s p e c t r a could y i e l d w i t h c e r t a i n t y only 

one p r i n c i p a l value of each of these tensors. 

8.1 S i l i c a G e l . 

S i l i c a g e l was i n i t i a l l y chosen as an adsorbent due i n pa r t 

to i t s high surface area and the f a c t that the s i l i c o n nucleus 
29 " •'• (except f o r . S i of n a t u r a l abundance l e s s than 5%) does not have 

a nuclear s p i n . This would provide a m a g n e t i c a l l y i n e r t 

environment e l i m i n a t i n g a p o s s i b l e source of l i n e broadening. 

Adsorption of CIC^ at room temperature at pressures higher than 
-3 

8 x 10 t o r r produced a b r i g h t yellow c o l o u r i n g of the s i l i c a g e l 

when cooled to 77°K. Spectra recorded f o r these pressures were 

composed of extremely broad l i n e s i n d i c a t i n g f a r too high a 

concentration of ClO^. To avoid d i p o l a r broadening, l e s s than a mono-

l a y e r must be adsorbed. Pressures of le s s than 1 x 10 t o r r of ClO^ 

produced much,clearer s p e c t r a , w i t h r e a d i l y r e s o l v a b l e f e a t u r e s . 

There was no c o l o u r a t i o n of the s i l i c a g e l at these pressures. 

An e q u i l i b r a t i o n time of up to 20 minutes was needed f o r maximum 

s i g n a l s t r e n g t h , i n d i c a t i n g slow s o r p t i o n of the CIC^ molecules 

throughout the surface of the s i l i c a g e l . The samples could be 
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stored at room temperature and recooled to 77 K with no l o s s 

of s i g n a l . Pumping at room temperature removes very l i t t l e 

CIC^ i n d i c a t e d by very l i t t l e change i n the spectrum, but the 

ClO^ may be removed from the s i l i c a g e l by pumping at higher 

temperatures. 

. The surface of the s i l i c a g e l i s not uniform, and a 

large v a r i e t y of adsorption centers are p o s s i b l e w i t h the 

p o s s i b i l i t y of 'densely' populated areas on the surface. This 

would account f o r the i n a b i l i t y to observe s p e c t r a w i t h a small 

enough l i n e w i d t h to d i s t i n g u i s h a l l the features c l e a r l y . 

X 

o 

Figure 18 
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In conformity w i t h e a r l i e r works, the a x i s system f o r the 

magnetic parameters o f the C10 2 has been chosen so that the z-axis 

l i e s along the two-fold symmetry a x i s , y i s perpe n d i c u l a r to z i n 

the plane of the molecule, and x, the t h i r d orthogonal a x i s 

(see f i g u r e 18). 
Figure 19 shows a t y p i c a l spectrum of CIO,, adsorbed on 

s i l i c a g e l , recorded at 77°K. Ch l o r i n e has two n a t u r a l l y o c c u r r i n g 
35 • 37 

isotopes C l and C l i n the r a t i o of approximately 3:1. Both 

isotopes have a nuc l e a r s p i n of I = 3/2, and the r a t i o of t h e i r 

magnetic moments i s 0.82089:0.68329. The observed spectrum i s then 
35 37 

e s s e n t i a l l y a s u p e r p o s i t i o n o f two s p e c t r a , C10 2 and C10 2, 

with the r a t i o of the corresponding h y p e r f i n e components given by the 

r a t i o of the r e s p e c t i v e magnetic moments. 

The values f o r the components o f the hype r f i n e and g tensors 

were obtained by comparison of the recorded s p e c t r a to simulated EPR 

spec t r a using the various programs p r e v i o u s l y mentioned. The 

simulated spectrum i s shown i n f i g u r e 20. Both T and g were found to 

be a n i s o t r o p i c . The r e s u l t s are t a b u l a t e d i n Table 1. 

The main d i s t i n g u i s h a b l e features of the spectrum are those 

a s s o c i a t e d w i t h the x component of the hy p e r f i n e tensor, p a r t i c u l a r l y 

those a s s o c i a t e d w i t h nij=±3/2. These are the outer l i n e s of the 

spectrum. Both the y and z components are concentrated i n the c e n t r a l 

p o r t i o n of the spectrum. 

Figure 21 shows a spectrum of C10 2 adsorbed on s i l i c a g e l , 

recorded at room temperature. Features due to the isotopes are not 

di s c e r n a b l e here. From the spectrum, the C10_ appears to be f r e e l y 



TABLE 1 

Reference 

137 

Hyperfine components 
(gauss) 

For 3 5 C 1 0 2 only 

Linewidth 
used f o r 
si m u l a t i o n s 
('gauss) 

Medium Reference 

137 

• T 
XX 

T T , A g g g yy z z o xx yy . z z 
KCIO^ . @ 77°K 

Reference 

137 79.9 -13.4 -12.5 18.0 2.0018 2.0167 2.0111 KCIO^ . @ 77°K 

137 72.7 - 9.6 -10.0 18.0 2.0025 2.017 2.011 H 2S0 4 @ 77°K " 

136 74.7 -10.8 -11.5 17.5 2.0016 2.01667 2.01214 KC10, @ 106°K 4 
135 70.5 2.0015 '"H?SO @ 77°K 

±0.2 GAUSS ± 0.0005 ADSORBED ON .... . 
t h i s work 76.1 -17.0. - 7.9 , 17.1 2.0023 2.0123 " • 2.0115 3.5 s i l i c a g e l @ 77°K 

t h i s work 74.9 

77.0 

-16.7 - 7.8 16.8 2.0023 

2.0023 

2.0023 

2.0123 

2.0123 

2.0123 

2.0115 

2.0115 

2.0115 

H-mordenite @ 77°K 
i 

t h i s work 

74.9 

77.0 -17.2 - 8.0 17.3 

2.0023 

2.0023 

2.0023 

2.0123 

2.0123 

2.0123 

2.0115 

2.0115 

2.0115 

8.0 Na-mordenite @ 77°K 

t h i s work 82.2 -18.4 - 8.5 18.4 

2.0023 

2.0023 

2.0023 

2.0123 

2.0123 

2.0123 

2.0115 

2.0115 

2.0115 2.5 4A @ • ' 77°K 

t h i s work 

t h i s work 

81,6 

84.5 

- 1 8 . 3 - 8.5 18.3 2.0023 2.0123 2.0115 

2.0115 

5A @ 77°K t h i s work 

t h i s work 

81,6 

84.5 -18.9 - 8.8 18.9 2.0023 2.0123 

2.0115 

2.0115 2.0 13X s i t e I I I § 77°K 

t h i s work 77.5 -17.4 - 8.0 17.3 2.0023 2.0123 2.0115 2.0- 13X s i t e I I @ 77°K 

t h i s work 79.0 .-17.7 - 8.2 17.7 2.0023 . 2.0123 2.0115 

2.0115 
10X @ 77°K j 

t h i s work 77.2 -17.3 - 8.0 17.3 2.0023 2.0123 

2.0115 

2.0115 LiX @ 77°K 
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FIGURE .19. EPR spectrum of c h l o r i n e d i o x i d e adsorbed on 
s i l i c a g e l , recorded at 77° K. 



FIGURE 20. Computer simulated EPR spectrum of c h l o r i n e 
d i o x i d e adsorbed on s i l i c a g e l , recorded at 77° K. 
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r o t a t i n g on the s i l i c a g e l surface or i n the pores, and the i s o t r o p i c 

parameters are in c l u d e d i n Table 1. A simulated spectrum i s shown 

i n f i g u r e 22. 

8.2 Na and H-Mbrdenite. 

ClO^ adsorbed on H-mordenite and recorded at 77°K y i e l d s 

e s s e n t i a l l y an i d e n t i c a l spectrum to th a t obtained on s i l i c a g e l . The 

components of the h y p e r f i n e tensor are s l i g h t l y d i f f e r e n t and are 

l i s t e d i n Table 1. These, along w i t h those a s s o c i a t e d with the other 

adsorbents, w i l l be discussed l a t e r . 

Na-mordenite produces some i n t e r e s t i n g r e s u l t s . Under 

s i m i l a r c o n d i t i o n s of sample p r e p a r a t i o n , the spectrum at 77°K appears 

much broader and cannot be improved by pumping. U n l i k e s i l i c a g e l , 

the sample shows no co l o u r . A t y p i c a l spectrum i s shown i n f i g u r e 23. 

The x components of the hyper f i n e tensor are s t i l l r e a d i l y 

d i s c e r n a b l e and the values are l i s t e d i n Table 1. The spectrum 

recorded at room temperature, u n l i k e that of s i l i c a g e l , i n d i c a t e s 

that some features may have been p a r t i a l l y averaged due to some 

motional process of the CIC^. The most l i k e l y would be a r o t a t i o n 

about the z a x i s , averaging the hy p e r f i n e and g tensor components 

of the x and y axes. A spectrum simulated under these c o n d i t i o n s however, 

does not match the observed spectrum (see f i g u r e s 25 and 26). This 

suggests that the r o t a t i o n i s hindered. Spectra recorded at higher 

temperatures show only a decrease i n s i g n a l height and i t i s l i k e l y 

d i f f u s i o n of the CIC^ molecules w i l l occur at these elevated temperatures. 

At 373°K, the CIO i s completely removed from.the Na-mordenite. 



FIGURE 22'.' Computer s i m u l a t e d EPR s p e c t r u m o f c h l o r i n e 
d i o x i d e 'adsorbed on s i l i c a g e l , r e c o r d e d a t room temp
e r a t u r e . 



FIGURE 23. EPR spectrum of c h l o r i n e d i o x i d e adsorbed on 
Na-mordenite, recorded at 77° K. . . 
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Figure 24 shows a simulated spectrum f o r CIC^ adsorbed on 

Na-mordenite, recorded at 77°K. Figures 25 and 26 show ClO^ 

adsorbed on Na-mordenite, recorded at room temperature, observed and 

simulated, r e s p e c t i v e l y . . 

8.5 4A and 5A S y n t h e t i c Z e o l i t e s . 

Figure 27 shows a t y p i c a l spectrum of ClO^ adsorbed on 

4A s y n t h e t i c z e o l i t e , recorded at 77°K. The l i n e w i d t h i s g r e a t l y 

decreased from that observed on e i t h e r s i l i c a g e l or the s y n t h e t i c 

mordenites. Consequently, the features i n the c e n t r a l p o r t i o n of. 

the spectrum (corresponding to the y and z components of the hyper

f i n e s p l i t t i n g ) are b e t t e r defined. There i s a s u b s t a n t i a l i n c r e a s e 

i n the magnitude of the components of the h y p e r f i n e tensor, and the 

r e s u l t s are given i n Table 1. Figure 28 shows a simulated spectrum 

corresponding to C10 adsorbed on 4A. 

Adsorption on 5A s y n t h e t i c z e o l i t e again y i e l d s a s i m i l a r 

spectrum and has not been shown here. The outermost features of the 

spectrum are somewhat broadened, which p o s s i b l y suggests the existence 

of two adsorption s i t e s . This w i l l be discussed l a t e r . Spectra 

recorded at room temperature are markedly changed, although the 

ClO^ does not appear to be f r e e l y r o t a t i n g . A p a r t i a l r o t a t i o n or 

some other form of hindered r o t a t i o n appears evident. The 

h y p e r f i n e and g tensors are given i n Table 1. 

8.4. 13X S y n t h e t i c Z e o l i t e . 

A t y p i c a l spectrum of C10„ adsorbed on 13X s y n t h e t i c 
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.FT.GURE 25. EPR spectrum of. c h l o r i n e dioxide, adsorbed on 
Na-mordenite, recorded at room temperature. 



ICURE 26. Computer simulated EPR spectrum of c h l o r i n e 
d i o x i d e adsorbed on Na-mordenite, recorded at room 
temperature. 
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27. EPR spectrum of c h l o r i n e d i o x i d e adsorbed 
y n t h e t i c z e o l i t e , recorded at 77° K. 
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z e o l i t e i s shown i n f i g u r e 29. The spectrum was recorded at 77°K. 

A simulated spectrum i s shown i n f i g u r e 30. I t i s evident from 

the spectrum that two adsorption s i t e s are present i n the z e o l i t e . 

The outermost components (itij = ± 3/2, x a x i s ) show t h i s q u i t e c l e a r l y . 

A l i n e w i d t h d i f f e r e n c e between the two s i t e s enables them to be more 

r e a d i l y d i s t i n g u i s h e d , p a r t i c u l a r l y i n the c e n t r a l p o r t i o n of the 

spectrum. Table 1 l i s t s the components of the h y p e r f i n e and g tensors 

f o r the two s i t e s . 

Further pumping increases the r e s o l u t i o n o f the l i n e s 

although the ClO^ can be removed from n e i t h e r s i t e by pumping at room 

temperature. V a r i a b l e temperature (annealing type) experiments were 

performed i n the hope that the ClO^ would be removed p r e f e r e n t i a l l y 

from one of the s i t e s . U n f o r t u n a t e l y , l i n e broadening at temperatures 

higher than 77°K made i t impossible f o r accurate observations to be 

made. I t i s apparent that the ClO^ does not remain r i g i d l y trapped 

i n the z e o l i t e as the temperature i s r a i s e d , but the exact type of 

motion could not be determined. 

8.5 IPX S y n t h e t i c Z e o l i t e . 

The calcium exchanged form of the 13X z e o l i t e , 10X, was 

a l s o used as an adsorbent. The s p e c t r a recorded at 77°K were s i m i l a r 

to those on 13X although the presence of two s i t e s was not as obvious. 

The reasons f o r t h i s w i l l be discussed l a t e r . The l i n e w i d t h i s broader 

than that observed on 13X. The spectrum at room temperature was 

s i m i l a r to that observed on s i l i c a g e l , i n d i c a t i n g f r e e r o t a t i o n of 

C10 ? i n 10X at t h i s temperature. This i s u n l i k e the 13X sample, 
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where the motion of the ClO^ was s t i l l hindered at room temperature. 

Table 1 gives the components of the h y p e r f i n e and g t e n s o r s . 

8.6 Lithium Exchanged 13X S y n t h e t i c Z e o l i t e . . 

Lithium was exchanged f o r the sodium i n a sample of 13X 

and CIO2 then adsorbed as before. The spectrum recorded at 77°K 

d i d not show two d i s t i n c t s i t e s as d i d the 13X, and the l i n e s were 

somewhat broader. Table 1 gives the components of the h y p e r f i n e and 

g tensors. 

8.7 D i s c u s s i o n . 

CIO2 i s a bent molecule and has the symmetry p r o p e r t i e s 

of the C 2 v p o i n t group. Q u a l i t a t i v e d i s c u s s i o n s of the e l e c t r o n i c 

s t r u c t u r e of t h i s type of molecule (AB 2). have been given by M u l l i k e n 

[138] and Walsh [139]. Following the m o l e c u l a r - c o r r e l a t i o n diagrams 

given by these authors, the ground s t a t e has the c o n f i g u r a t i o n 

... ( l b p 2 ( 3 b 2 ) 2 ( l a 2 ) 2 ( 4 & 1 ) 2 (2bp , - \ 

The b 1 o r b i t a l ' c o n s i s t s of the p o r b i t a l s of the c h l o r i n e and oxygens 

with p o s s i b l e admixture from the c h l o r i n e d o r b i t a l , and i s a n t i -r xz ' 
bonding. 

Although an i s o t r o p i c h y p e r f i n e s p l i t t i n g would not be. 

expected from an e l e c t r o n i n a b^ o r b i t a l , the odd e l e c t r o n i s expected 

to cause a p o l a r i z a t i o n of the inner s - o r b i t a l s on the c h l o r i n e and 

oxygen atoms. This would introduce a small i s o t r o p i c h y p e r f i n e 

component. An a n i s o t r o p i c h y p e r f i n e tensor w i t h the maximum p r i n c i p a l 

value observed when the f i e l d i s p e r p e n d i c u l a r to the molecular plane 
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(alorig the x - a x i s ) i s a l s o expected, of opposite s i g n to the s m a l l e r 

in-plane p r i n c i p a l v a l u e s , s i n c e the unpaired e l e c t r o n i s i n a b j 

o r b i t a l . 

The d e v i a t i o n s from the f r e e e l e c t r o n value g , g e n e r a l l y 

termed g - s h i f t s , may be represented by the general formula 

(excluding d o r b i t a l s ) 

A g i i = f ( c i c i > XCV Ap) (8-1) 
. . E r E 2 • 

where f ( c ^ , A C 1 , A Q) i s a f u n c t i o n of the s p i n - o r b i t c oupling constants 

on the atbms; c h l o r i n e and oxygen (A and A ), and the products of the 

c o e f f i c i e n t s of the o r b i t a l s on the atoms. The denominator i s the 

energy d i f f e r e n c e of the two s t a t e s which are mixing. The various 

s t a t e s which are.allowed to mix and c o n t r i b u t e to the g-tensor may 

be determined using group theory [182] . For C10 2, the dominant 

g - s h i f t a f f e c t s - g and i s expected to be large and p o s i t i v e . The 

s h i f t i n the x d i r e c t i o n , Ag should be c l o s e to zero, and n e g l i g i b l e 
XX '. 

i f d o r b i t a l s are neglected. A S Z Z ^ s expected to be p o s i t i v e , 

and l e s s than Ag 
&yy 

The s t r u c t u r a l parameters f o r c h l o r i n e d i o x i d e have been 

obtained by C u r l et a l [140,141] as a r e s u l t of a microwave study, 

and Ward [142] who combined : UV s p e c t r o s c o p i c data w i t h high 

r e s o l u t i o n IR data. The r e s u l t s are summarized below. 

r Cl-0 (8) 

^OCIO (°) 

reference 140, 141 

1.471 

117.6 

reference 142 

1.472 

117.4 
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Using the preceding i n f o r m a t i o n , the r e s u l t s of c h l o r i n e 

d i o x i d e adsorbed on various surfaces may be analyzed. The r e s u l t s 

obtained from the present work and those of.previous workers are 

summarized i n Table 1. 

A general d i s c u s s i o n o f the adsprptioh of c h l o r i n e d i o x i d e 

on these surfaces i s u s e f u l p r i o r tp the d i s c u s s i o n pf the i n d i v i d u a l 

cases. C h l o r i n e d i o x i d e has been found to possess a s u b s t a n t i a l 

d i p o l e moment, 1.784 D. [143]. This d i p o l e moment, together w i t h 

the quadrupole moment due to the c h l o r i n e nucleus with 1=3/2, play 

important r o l e s i n the adsorption as d e t a i l e d p r e v i o u s l y i n Chapter Two. 

The strong a t t r a c t i v e f o r c e due tp the i o n i c charges of the adsorbent 

i n t e r a c t s with these m u l t i p o l e moments and i s c h a r a c t e r i z e d by 

the changes observed i n the components of the g and hy p e r f i n e tensors 

as compared to these components observed f o r c h l o r i n e d i o x i d e 

i s o l a t e d i n other media. 

I t i s important i n ̂ h i s d i s c u s s i o n to analyze these 

observed parameter changes i n terms of adsorption - i . e . the s i t e of 

adsorption; the p o s i t i o n of the c h l o r i n e d i o x i d e i n r e l a t i o n to the 

trapping s i t e ; any movement of the c h l o r i n e d i o x i d e on the surface 

or at.the s i t e . 

Buckingham £144] has considered the i n t e r a c t i o n p o t e n t i a l 

energy u ^ of two.charge d i s t r i b u t i o n s 1 and 2 possessing charge 

q and m u l t i p o l e moments \i, 0, .... <f>„ F' , i 3 ^ are the p o t e n t i a l 

and i t s d e r i v a t i v e s at the center of mass of 2 due to the charges of 1. 



-104-

Hence 

u12 = ¥ 2 " ^2 F2z " ^ e 2 F 2 z z " ( 8 _ 2 ) 

Assuming the adsorption center t o be a p o s i t i v e charge as 

p r e v i o u s l y discussed f o r the z e o l i t e s , then the favorable r e l a t i v e 

o r i e n t a t i o n s f o r a charge-dipole i n t e r a c t i o n and a charge-

quadrupole i n t e r a c t i o n are as f o l l o w s : 

+ 

charge-dipole charge-quadrupole 

where + represents a p o s i t i v e charge; —^-represents a d i p o l e ; and | 

represents a quadrupole. The adsorption i n the z e o l i t e s expected 

f o r ClO^ according t o t h i s model i s discussed i n the next 

paragraph. 

These same adsorption s i t e s ( p o s i t i v e charges) can produce 

strong e l e c t r i c f i e l d s which, i n a d d i t i o n to p r o v i d i n g a d d i t i o n a l 

a t t r a c t i v e forces f o r adsorption, can a l s o determine the r e l a t i v e 

p o s i t i o n of the adsorbed molecule. In the presence of an e l e c t r i c 

f i e l d the d i p o l e s (or induced d i p o l e s i f the molecule does not 

possess a permanent moment) are o r i e n t e d i n the same d i r e c t i o n as the 

f i e l d . I t has been shown [145] that even f o r pronouncedly aniso

t r o p i c d i p o l a r molecules, the mean p o l a r i z a b i l i t y i n a homogeneous 

e x t e r n a l e l e c t r i c f i e l d i s p r a c t i c a l l y equal to (a +a~+a )/., where 
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aj» a2' a n c* a 3 a r e t n e molecular p o l a r i z a b i l i t i e s i n the three axes. 

We thus expect c h l o r i n e d i o x i d e to be adsorbed on the surfaces 

studied as 

0 
cr 

The c h l o r i n e atom i s assumed to be the p o s i t i v e end of the molecule. 

Assuming s u b s t a n t i a l l y strong a d s o r p t i o n , the only probable movement 

aside from p o s s i b l e s l i g h t wagging as i n d i c a t e d by the arrows i n 

the f i g u r e , would.be a r o t a t i o n about the z a x i s of the molecule 

( b i s e c t i n g the O-Cl-0 bond angle). 

C a l c u l a t i o n s of these e l e c t r i c f i e l d s have been 

performed by P i c k e r t et a l [48] and more r e c e n t l y by Dempsey [146] 

and a p p l i e d to various z e o l i t e s . The c a l c u l a t i o n s were performed 

by 'growing' the c r y s t a l on a computer. The b a s i c q u a n t i t y of 

i n t e r e s t i s the e l e c t r o s t a t i c p o t e n t i a l at e i t h e r an ion s i t e j or 

at a point i n f r e e space. Thus 

' •r'hsiyv.j C8"3) 

where q. , i s the charge at i o n i i n the b a s i s at l a t t i c e p o i n t k, 

distance r. , . from the p o t e n t i a l p o i n t j . The e l e c t r o s t a t i c 
1 J K > 1 

energy of t h i s b a s i s i s 

X qj<f>j C8-4) i 

http://would.be
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summed over the ions of the b a s i s or some p r o p o r t i o n of these, 

depending on the symmetry. Another q u a n t i t y of i n t e r e s t i s the 

e l e c t r o s t a t i c f i e l d F given by 

F = - grad cf> (8-5) 

Eva l u a t i o n of <f> at any point i n the c r y s t a l was done usi n g the 

transformation method of Ewald [147]. Values of the f i e l d F and the 

components of the f i e l d gradient tensor were a l s o derived by 

Dempsey using the Ewald method. Th e i r r e s u l t s w i l l be a p p l i e d to 

the EPR spec t r a of c h l o r i n e d i o x i d e adsorbed on the s y n t h e t i c 

z e o l i t e 13X and these i n turn r e l a t e d to the other adsorbents. 

Before d i s c u s s i n g the parameters obtained from the spectrum 

of ClO^ adsorbed on 13X, i t should be pointed out that these parameters 

were obtained without i n c l u d i n g the quadrupole i n t e r a c t i o n term 

i n the s p i n Hamiltonian. Byberg et a l [136] have shown t h i s i n t e r a c t i o n 

to be of importance i n the ClO^ molecule trapped i n i r r a d i a t e d 

KCIO^, i n p a r t i c u l a r g i v i n g r i s e to 1 f o r b i d d e n * t r a n s i t i o n s of high 

i n t e n s i t y i n c e r t a i n molecular o r i e n t a t i o n s w i t h respect to the 

magnetic, f i e l d . When the o f f - d i a g o n a l tensor elements o f ^ ^ ^ 

become comparable to the diagonal p a r t s q f ^ ^ ^ . a n c ^ ^ ^ co n s i d e r a b l 

mixing of nuclear s p i n s t a t e s occurs. The s e l e c t i o n r u l e 

AMj. = 0 (8-6) 

breaks down and t r a n s i t i o n s w i t h 

AMj = + 1,-AM = ± 2- (8-7) 
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become observable as w e l l . Several s p e c t r a were simulated i n c l u d i n g 

the quadrupole i n t e r a c t i o n but the observed l i n e w i d t h masked 

these f e a t u r e s . The d e v i a t i o n s of the simulated s p e c t r a from the 

experimental s p e c t r a , i n p a r t i c u l a r l i n e i n t e n s i t i e s , are presumed 

due to t h i s i n t e r a c t i o n . 

Figure 29 c l e a r l y shows two d i s t i n c t adsorption s i t e s 

on the 13X, the hyperfine s p l i t t i n g constants d i f f e r i n g c o n s i d e r a b l y 

between the two s i t e s . The constants are i n f a c t much l a r g e r than 

those p r e v i o u s l y observed i n other media (see Table 1 ) . The two 

s i t e s are very l i k e l y a s s o c i a t e d w i t h the surface c a t i o n s at s i t e s 

SJJ and SJJJ, as described i n Chapter Three. 

The large change i n the parameters i n d i c a t e s that the 

intense e l e c t r i c f i e l d s a s s o ciated w i t h the c a t i o n s d i s t o r t 

the e l e c t r o n i c s t r u c t u r e of the CIC^. Both s i t e s show an increased 

h y p e r f i n e s p l i t t i n g constant i n d i c a t i n g an increase i n unpaired 

e l e c t r o n d e n s i t y at the c h l o r i n e nucleus. Our model of ClO^ 

adsorbed i s such that the d i p o l e moment i s o r i e n t e d along the e l e c t r i c 

f i e l d d i r e c t i o n , w i t h the oxygen end of the molecule c l o s e s t to the c a t i o n . 

One would then expect a net s h i f t i n e l e c t r o n d e n s i t y towards the 

oxygen end of the molecule and a decrease i n the h y p e r f i n e s p l i t t i n g 

constants. The opposite i n f a c t i s the case. The unpaired e l e c t r o n 

occupies the antibonding b^ o r b i t a l and the unpaired e l e c t r o n 

d e n s i t y s h i f t s towards the c h l o r i n e . This e f f e c t a r i s e s because i t 

i s e n e r g e t i c a l l y .more fav o r a b l e f o r the two e l e c t r o n s i n the bonding 

o r b i t a l to be c l o s e r to the c a t i o n than to have the s i n g l y occupied 
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antibonding o r b i t a l c l o s e to the c a t i o n . Orthogonality c o n d i t i o n s 

ensure that i f the bonding o r b i t a l s h i f t s towards the c a t i o n , 

the antibonding o r b i t a l must s h i f t away from i t . The experimental 

r e s u l t s agree w i t h the proposed model. 

The p r e v i o u s l y mentioned c a l c u l a t i o n s of Dempsey of the e l e c t r i c 

f i e l d s i n 13X show the f i e l d at S^^. to be much l a r g e r than that at 

'SJJ. I t i s reasonable then, to assign the s i t e w i t h the l a r g e s t 

s h i f t to SJJJ. The t h i r d s i t e , S j , as o u t l i n e d i n Chapter Three, i s 

i n a c c e s s i b l e to adsorbed molecules and t h e r e f o r e i s not observed. 

Two other z e o l i t e s having the same b a s i c X s t r u c t u r e as 13X 

were a l s o used as adsorbents. 10X i s a calcium z e o l i t e whereas the 

13X i s of course sodium. I t i s expected that only one s i t e should 

be observed f o r a 100 percent exchanged form s i n c e two sodium 

cations are replaced by a s i n g l e doubly-charged calcium, thus l e a v i n g 

s i t e SJJJ unoccupied. In f a c t , the manufacturers s t a t e that the 

z e o l i t e i s only 75 percent exchanged, l e a v i n g the p o s s i b i l i t y of 

sodium cations i n s i t e s and a v a i l a b l e f o r ad s o r p t i o n , as 

the c a t i o n s i n these s i t e s are exchanged a f t e r those i n S^. The 

spectrum of C10 2 on 10X i s consequently l e s s r e s o l v e d than the 13X 

but only one site.-appears to be present. 

A l i t h i u m exchanged X s t r u c t u r e z e o l i t e i s expected to show 

two d i s t i n c t s i t e s s i m i l a r to 13X, with increased s h i f t s i n the 

hyperf i n e s p l i t t i n g constants due to the smaller s i z e of the l i t h i u m 

c a t i o n . Only one d i s t i n c t s i t e was observed although i n d i c a t i o n s of a 

second s i t e , much.less populated, were evident. I t i s reasonable to 

assume that the S s i t e contains adsorbed water r e t a i n e d from the 
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exchange process and so i s u n a v a i l a b l e f o r adsorption of CIC^. 

The observed s i t e i s then a s s o c i a t e d w i t h S J J , and approximates that of 

S J J i n 13X. An increased e l e c t r i c f i e l d i n t e n s i t y i s p o s t u l a t e d f o r 

the l i t h i u m z e o l i t e due to the increased charge/size r a t i o . The 

decreased s i z e of the c a t i o n , however, decreases the extent of exposure 

of the c a t i o n to the c a v i t i e s p r o v i d i n g l e s s contact w i t h the ClO^ 

molecules even though the s p e c i f i c e l e c t r i c f i e l d i n t e n s i t y at the 

c a t i o n surface i s stronger. 

The spectrum observed on s i l i c a g e l , although l e s s 

resolved than on the z e o l i t e s , i s h e l p f u l i n a n a l y z i n g the parameters 

obtained. The i s o t r o p i c s p l i t t i n g constant obtained from the room 

temperature spectrum i s 17.1 gauss. This i s i n good agreement with 

those obtained from the other s t u d i e s mentioned and i s to be 

expected, s i n c e t h i s should vary l i t t l e from medium to medium. The 

i s o t r o p i c s p l i t t i n g constant obtained from the a n i s o t r o p i c spectrum 

( i . e . T = A + B ; the observed s p l i t t i n g . T i s composed of xx o xx ^ £" xx r 

both i s o t r o p i c [A ] and a n i s o t r o p i c [B ] p a r t s ) agrees w i t h that 

observed. This o f f e r s a d d i t i o n a l support to the assigned values^ 

of the parameters. 

Some mention should be made of the r a t h e r l a r g e value 

assigned to the h y p e r f i n e component along the y-axis of the 

molecule (across the oxygens i n the plane of the molecule). I t seems 

reasonable to expect some change i n t h i s component from the 'free s t a t e ' 

value due to the manner i n which the CIC^ i s adsorbed. A decrease 

i n the O-Cl-0 bond angle i s probable, p o s s i b l y accounting f o r t h i s 

observed change.. Agreement of the c a l c u l a t e d i s o t r o p i c value to 
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that observed lends support to t h i s view. 

The parameters obtained from the spe c t r a observed on the 

z e o l i t e s 4A and 5A are i n agreement with the arguments proposed 

f o r the other z e o l i t e s . The e l e c t r i c f i e l d s produced by the cat i o n s 

are l e s s intense than those i n 13X as i n d i c a t e d by the parameters. The 

c a t i o n s i t e s are l e s s w e l l defined as compared to 13X and only one 

s i t e appears evident. 

C h l o r i n e d i o x i d e adsorbed on the mordenite samples 

i n d i c a t e a l s o a much le s s intense e l e c t r i c f i e l d at the adsorption 

s i t e s . The spectrum recorded at room temperature i n d i c a t e s some 

motion of the CIC^, although somewhat more r e s t r i c t e d than that observed 

on s i l i c a g e l . Rot a t i o n about the z-axis of the ClO^ molecule seems 

most probable, but a spectrum simulated f o r t h i s case does not agree 

with the observed spectrum and a r e s t r i c t e d r o t a t i o n i s assumed. 

Accurate measurements of the hyp e r f i n e and g tensor components was 

not p o s s i b l e due to the large observed l i n e w i d t h . 

The measured components of the g tensor were i n agreement 

with those p r e d i c t e d f o r a molecule such as CIO • g i s c l o s e to 
Z. XX 

the f r e e - s p i n v a lue, as i s g e n e r a l l y found f o r an e l e c t r o n i n a b^ 

o r b i t a l composed of p^-atomic o r b i t a l s . Comparing t h i s to the Se02 

r a d i c a l [148] where a negative Ag i s a s s o c i a t e d w i t h admixture of 
the selenium d • l e v e l i n t o the b, o r b i t a l , i t i s reasonable to xz . 1 ' 
assume l i t t l e p a r t i c i p a t i o n of the 3d c h l o r i n e o r b i t a l i n C102- The 

values f o r Ag and A g z z are a l s o i n agreement w i t h theory, A g ^ having 

a large p o s i t i v e . v a l u e with Ag < Ag < Ag & r - & x x s z z & y y 
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- CHAPTER NINE 

NITROGEN DIOXIDE, NQ2 

Nitrogen d i o x i d e , l i k e CIO,,, i s a s t a b l e paramagnetic 

molecule whose normal chemical s t a t e i s a gas. The EPR 

technique has f r e q u e n t l y been used to study t h i s molecule i n the 

gaseous and l i q u i d phases [149,150]. One of the purposes of the 

present study was to compare the spectrum of the adsorbed molecule 

to the w e l l - e s t a b l i s h e d s p e c t r a of NO^ i n a v a r i e t y of environments. 

P a r t i c u l a r a t t e n t i o n w i l l be given to comparison of spec t r a on other 

adsorbents and i n various m a t r i c e s . 

The reported s p e c t r a of NO^ i n various p o l y c r y s t a l l i n e 

media g e n e r a l l y show l i n e w i d t h s of the order of 10-20 gauss, 

l i m i t i n g the amount of d e t a i l which can be re s o l v e d [151,152]. More 

recent s t u d i e s of NO i n N„0 have produced s p e c t r a w i t h much sm a l l e r 
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l i n e w i d t h s , r e v e a l i n g g r e a t e r d e t a i l [150, 153]. EPR s p e c t r a of 

NO^ adsorbed on z i n c oxide [154, 155] and on magnesium oxide [156] 

are a l s o not w e l l r e s o l v e d . Comparison of these sp e c t r a to those 

of t h i s study w i l l be made i n the d i s c u s s i o n . 

9.1 S i l i c a G e l . 

The spectrum recorded at 77°K f o r NO^ adsorbed on s i l i c a 

g e l i s shown i n f i g u r e 31. The expected p a t t e r n of three groups 
14 

of l i n e s due to the i n t e r a c t i o n of the odd e l e c t r o n w i t h the N 

nucleus, which has a nuclear s p i n 1=1, was observed. The complexity 

of the spectrum a r i s e s from the f a c t that both the g and hy p e r f i n e 

tensors are a n i s o t r o p i c . The spectrum i s complicated f u r t h e r by 

broadening of those l i n e s a s s ociated with t r a n s i t i o n s i n v o l v i n g 

nij = ± 1 compared to those with m̂. = 0, together w i t h an over

lapping of some l i n e s . The observed l i n e width a l s o overshadows 

some f e a t u r e s . Table 2 gives the g and hy p e r f i n e tensor components 

derived from the computer s i m u l a t i o n of the.spectrum. Figure 32 shows 

the computer f i t t e d spectrum. The spectrum observed on s i l i c a g e l 

i s comparable i n r e s o l u t i o n t o those obtained on other adsorbents 

as yet reported i n the l i t e r a t u r e . 

When the temperature was r a i s e d from 77°K a broadening 

of the spectrum occurred. S p e c i f i c changes i n the spectrum occur i f 

the adsorbed NO^ begins to r o t a t e about a given a x i s on warming. The 

l i n e w i d t h of the spectrum even at 77°K makes i t d i f f i c u l t to 

d i s t i n g u i s h a x i a l l y symmetric tensors from completely a n i s o t r o p i c ones. 



TABLE 2 

Reference 

Hyperfine components 
(gauss) 

g-value -

• 

Reference T 
XX 

T 
yy 

T 
zz 

A 
0 

g x x 

2.007 

gyy. 

1 g { medium 
s z z 

154 52 47 65 54.6 

g x x 

2.007 1.994 2.003 adsorbed on ZnO @ 77°K 

156 53.0 49.0 66.4 56.5 2.005 1.9915 2.002 adsorbed.on MgO g 77°K 

156 50.0 47.9 66.4 54.8 2.0058 1.9920 

1.9922 

2.00.18 s o l i d N O @ 77°K 

153 50.3 48.2 67.3 55.25 2.0061 

1.9920 

1.9922 2.0022 s o l i d N^O @ 77°K 
• 

150 50.2 49.6 68.3 56.0 2.0065 1.9960 2.0029 . s o l i d N 2 0 4 @ 77°K 

(+0.2) gauss (±0.0005) 

t h i s work 52.3 48.7 67.8 56.3 2.0051 1.9926 2.0019 adsorbed on s i l i c a gel 
@ 77°K 

t h i s work 53.1 51.0 65.5 56.5 2.0066 1.9956 2.0029 adsorbed on 13X § 77°K 

t h i s work 50.1 48.1 66.7 55.1 2.0062 1.9926 2.0025 adsorbed on H-mordenite 
' (a 77°K 

t h i s work 71.1 67.7 93.8 77.5 2.0062 1.9926 2.0025 adsorbed on H-morderiite 
i • @ 77°K 
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Th e increased broadening due to the increase i n temperature makes 

i t impossible i n t h i s case. At approximately 200°K, the NO^ 

appears to be f r e e l y r o t a t i n g on the s i l i c a g e l , s i n c e the s t r u c t u r e 

on the three groups of l i n e s i s completely broadened. Above t h i s 

temperature, the spectrum could not be discerned from the 

background. When the sample was recooled, the s i g n a l was recovered 

unchanged. 

9.2 -15X S y n t h e t i c Z e o l i t e . 

The spectrum at 77°K of NO^ adsorbed on 13X s y n t h e t i c 

z e o l i t e i s s i m i l a r to that observed on s i l i c a g e l . The parameters 

derived from the. spectrum are given i n Table 2. Line broadening 

i s somewhat more evident i n t h i s case. D i f f e r e n t i a t i o n between 

a x i a l l y symmetric and f u l l y a n i s o t r o p i c tensors i s very d i f f i c u l t . 

Figure 33 shows a t y p i c a l spectrum w h i l e f i g u r e s 34 and 35 show computer 

simulated s p e c t r a f o r f u l l y a n i s o t r o p i c and a x i a l l y symmetric tensors 

r e s p e c t i v e l y . 

A comparison of f i g u r e s 34 and 35 shows the s i m i l a r i t y 

of the two s p e c t r a and the d i f f i c u l t y that might be encountered 

i n a n a l y z i n g s p e c t r a w i t h the l i n e w i d t h s g e n e r a l l y found. The 

spectrum corresponding to a x i a l l y symmetric tensors could be caused 

by r o t a t i o n of the NO^ about the z - a x i s . No spectrum was observed 

at room temperature. 

9.3 H-Mordenite. 

Figure. 36 shows a t y p i c a l spectrum of NO adsorbed 
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FIGURE 34. Computer simulated EPR spectrum of n i t r o g e n 
d i o x i d e adsorbed on 13X s y n t h e t i c z e o l i t e , recorded at 
77° K. 
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on H-mordenite, recorded at 77°K. I t should be noted that 

much higher pressures of NG^ were needed to observe s p e c t r a than . 

those r e q u i r e d f o r ClO^. Probable reasons f o r t h i s phenomenon 

w i l l be given i n the d i s c u s s i o n . An obvious fe a t u r e of the 

spectrum i s the reduced l i n e w i d t h as compared to NCh, adsorbed 

on other surfaces y i e l d i n g a w e l l r e s o l v e d a n i s o t r o p i c set of 

t r i p l e t s . The r e s o l u t i o n compares to that observed f o r NO^ 

trapped i n a N^O^ matrix at 77°K as reported by Schaafsma et a l [153] 

and James et a l [150]. A computer simulated spectrum i s shown 

i n f i g u r e 37 and the r e s u l t s are given i n Table 2. The consequences 

of the narrow linevyidth w i l l a l s o be discussed l a t e r . 

The spectrum f o r ^NG^ adsorbed on H-mordenite i s shown 

i n f i g u r e 38, and a simulated spectrum i n f i g u r e 39. The parameters 

obtained are given i n Table 2 and agree with those expected f o r 

with I = h. 

An attempt was made to record s p e c t r a at higher temperatures 

with a view to ob t a i n i n f o r m a t i o n on p o s s i b l e motional processes of 

the NO^ s i n c e the narrow l i n e w i d t h at 77°K should enable any 

new features to be e a s i l y seen. U n f o r t u n a t e l y , t h i s was not the 

case and l i n e broadening at higher temperatures obscured a l l 

d e t a i l s . 

9.4 Discussion..' • 

NO^, l i k e ClO^ i s a l s o a bent molecule with the symmetry 

p r o p e r t i e s o f the C„ po i n t group. Following the approach of 
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FIGURE 33. EPR s p e c t r u m o f * N n i t r o g e n di.oxide ad
s o r b e d on H-mordenite, r e c o r d e d a t 77° K. 



-124-



-125-

Walsh [139], the ground s t a t e has the c o n f i g u r a t i o n 

... ( 3 a 1 ) 2 ( l b 1 ) 2 ( 3 b 2 ) 2 ( l a 2 ) 2 ( 4 a . 1 ) , ^ 

The unpaired e l e c t r o n occupies an a^ o r b i t a l , d e l o c a l i z e d and construct

ed from both s and p o r b i t a l s on the c e n t r a l n i t r o g e n atom. The 

hyperf i n e s p e c t r a should thus d i s p l a y a considerable i s o t r o p i c 

s p l i t t i n g and the anisotropy should be such that i t s maximum value 

occurs when the axi s of the molecule i s a l i g n e d along the 

magnetic f i e l d . The assignment of the molecular axes i s shown below , 

N—-*y 

where the x-axis i s pe r p e n d i c u l a r to the plane of the molecule. 

The dominant g - s h i f t , as with C10 2, 1 S expected to 

be along the y-axis although i n t h i s case i t w i l l be negative. 

These g - s h i f t s are determined from the general formula given by 

equation (8-1). The g-value along the d i r e c t i o n of the maximum 

value of the hyper f i n e tensor should be c l o s e t o the free s p i n 

value or s l i g h t l y g r e a t e r . The s h i f t along z, ̂ % z z w i l l a l s o 

be small and p o s i t i v e . 
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Table 2 incl u d e s the r e s u l t s of NO^ observed i n various 

matrices and adsorbed on surfaces other than those s t u d i e d here. 

The r e s u l t s of this.work are a l s o i n c l u d e d . Comparison of the 

spectrum of adsorbed NO^ w i t h the w e l l - e s t a b l i s h e d s p e c t r a i n a 

v a r i e t y of environments i s the subject of the f o l l o w i n g d i s c u s s i o n . 

The d i p o l e moment of NQ^ i s conside r a b l y l e s s than that 

of ClO^, being .29 D [157,158], and.on t h i s b a s i s alone, one would 

expect somewhat weaker adsorption i n comparable s i t u a t i o n s . The 

ni t r o g e n nucleus has a nuclear s p i n 1 = 1 and so a quadrupole moment 

can a l s o a f f e c t the absorption spectrum. The weaker adsorption 

forces are s u b s t a n t i a t e d by the. l o s s of spectrum on warming the sample 

to room temperature. This i s i n cont r a s t to the r e s u l t s of 

Colburn et a l [159] who observed the spectrum of r a p i d l y tumbling 

NO^ molecules at room temperature i n 13X z e o l i t e s . The pressures 

of NO;, i n e q u i l i b r i u m w i t h the z e o l i t e s were,however, s e v e r a l orders 

of magnitude l a r g e r than those i n the present experiments. The 

pressures needed to observe the NO^ sp e c t r a were however,, much 

higher than those needed f o r ClO^ i n d i c a t i n g a much reduced adsorption 

a t t r a c t i o n . 

The expected o r i e n t a t i o n of NO^ on adsorption d i f f e r s from 

that of CIQ2 s i n c e the d i p o l e moment i s a l i g n e d i n the opposite 

d i r e c t i o n . One would expect, then, that the n i t r o g e n nucleus w i l l 

be c l o s e s t to the adsorption s i t e s . R o t a t i o n about the molecular 

z-axis would seem more probable, then, i n t h i s case than w i t h CIO . 
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The r e s u l t s observed from the adsorption on s i l i c a g e l 

are q u i t e s i m i l a r to those reported f o r the adsorption of NO^ 

on MgO [156]. The i s o t r o p i c h y p e r f i n e s p l i t t i n g of 56.3 gauss i s 

i n good agreement w i t h , and v a r i e s l i t t l e from, that observed on 

other s u r f a c e s . In f a c t , the i s o t r o p i c p o r t i o n of the h y p e r f i n e 

tensor changes l i t t l e between the surfaces s t u d i e d and NO^ molecules 

trapped i n other media. The f i e l d s inherent i n these d i f f e r e n t 

environments vary from very weak i n the i n e r t gas matrices to very 

strong i n the s y n t h e t i c z e o l i t e s . This i m p l i e s that the s-character 

of the molecular o r b i t a l of the n i t r o g e n i s not a p p r e c i a b l y 

a f f e c t e d by the surroundings of the molecule. Small changes,however 

are observed f o r the a n i s o t r o p i c components, but are s m a l l e r than 

the l i n e w i d t h used f o r the s i m u l a t i o n s , The assignment of g values 

agrees with that expected f o r t h i s molecule:.: g i s g r e a t e r than 
XX 

the f r e e s p i n value g ; g i s l e s s than g ; and g very n e a r l y 
e yy e z z . 

equals g e . This i s i n accordance with the work on the i s o e l e c t f o n i c 

molecule C0~ [160]. 

The observed spectrum of NO^ adsorbed on the z e o l i t e 

13X i s not as s t r i k i n g as that f o r ClO^ f o r s e v e r a l reasons. 

D i r e c t evidence f o r two d i s t i n c t adsorption s i t e s i s not immediately 

obvious. The lineshape i s somewhat d i f f e r e n t from that observed 

on the other surfaces and the spectrum i s best simulated using a 

Lorentzian r a t h e r than a Gaussian lineshape f u n c t i o n . The g 

values are s i m i l a r . t o those observed on other surfaces and the 

d e v i a t i o n s i n the a n i s o t r o p i c components of the h y p e r f i n e tensor are 
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l e s s than the l i n e w i d t h . The only n o t i c e a b l e e f f e c t of adsorption 

i s the d i f f e r e n t lineshape. The strong e l e c t r i c f i e l d s i n the 

c a v i t i e s of the z e o l i t e do not have the pronounced e f f e c t s observed 

i n the case of ClO^. This i s s u r p r i s i n g i n that the approach of 

the n i t r o g e n nucleus i s much c l o s e r to the o r i g i n of the f i e l d s 

than was the c h l o r i n e nucleus, due of course to the proposed mode 

of adso r p t i o n . ' 

NO^ adsorbed on H-mordenite y i e l d e d a spectrum which 

enabled a more p r e c i s e assignment of parameters. The h y p e r f i n e 

components are c l e a r l y seen and the g tensor r e a d i l y measured. 

The assignment i s very cl o s e to that of Schaafsma et a l [153], 

of the components of both the g and hy p e r f i n e t e n s o r s . The 

adsorption s i t e s i n H-mordenite are thought to be i n the s i d e 

pockets l i n i n g the main c y l i n d r i c a l tubes of the s t r u c t u r e 

(see Figure 11), Each pocket has space s u f f i c i e n t ' f o r only one 

molecule reducing broadening due to recombination of the r a d i c a l to 

form N^O^ and a l s o d i p o l a r broadening caused by other NC^ molecules. 

In the experiments of Schaafsma et a l , s o l i d N^O^ was 

chqsen as the host matrix due to i t s i n e r t n e s s towards NO^ and the 

absence of any i n t e r n a l e l e c t r i c f i e l d s , being a molecular r a t h e r 

than an i o n i c matrix. D i s t o r t i o n of the NO^ due to s p a t i a l e f f e c t s 

should a l s o be minimized s i n c e the s t r u c t u r e of the guest and 

host molecules are- the same. In l i g h t of the s i m i l a r i t y of the 

parameters obtained from the spectrum of NO^ adsorbed on 

H-mordenite to those i n s o l i d N„0., i t appears adsorption, i n t h i s case, 
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has l i t t l e or no e f f e c t on the NO^. I t i s l i k e l y , then, that 

the 'trapping pockets' of HT-mordenite serve only as i s o l a t i o n 

cages f o r the NO^ molecules and have l i t t l e e f f e c t on i t s 

e l e c t r o n i c s t r u c t u r e . This i s i n accord w i t h the parameters 

observed f o r ClO^ adsorbed on t h i s same z e o l i t e , the e f f e c t being 

the smallest f o r a l l the z e o l i t e s s t u d i e d . 
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CHAPTER TEN 

NITRIC OXIDE, NO 

N i t r i c oxide i s another s t a b l e paramagnetic molecule 

which normally e x i s t s i n the gas phase. Beringer arid C a s t l e [161] 

have analyzed i n d e t a i l the spectrum of NO i n the gas phase, where 

complexities due to o r b i t a l , s p i n and r o t a t i o n a l i n t e r a c t i o n s 

are present. E a r l y attempts to detect NO trapped i n ra r e gas 

matrices were unsuccessful [162]. That i t does not give r i s e to a 

detec t a b l e spectrum i n these matrices i s not s u r p r i s i n g as the 

i n t e r a c t i o n with the environment i s probably not s u f f i c i e n t t o . 

quench the o r b i t a l motion of the paramagnetic e l e c t r o n s u f f i c i e n t l y . 

This s h a l l be discussed below. 

The NO molecule i n i t s ground s t a t e i s not paramagnetic. 
2 ' • 2 NO i s a TT molecule. The ground s t a t e of the molecule ( TTJ ) i s 

nonmagnetic s i n c e s p i n and o r b i t a l angular moments are a n t i p a r a l l e l , 

and the o r b i t a l magnetism j u s t cancels the s p i n magnetism. 
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The paramagnetic character of NO r e s u l t s from the ^3/2 s t ^ t e j 

a consequence of the s p i n and o r b i t a l momenta being a l i g n e d . The 
2 -1 7i\^2 s t a t e i s separated by 121 cm from the ground s t a t e . Both 

st a t e s are appreciably populated except at temperatures below. 

about 50°K. 

Sorp t i o n and magnetic s u s c e p t i b i l i t y s t u d i e s on n i t r i c 

o x i d e - s i l i c a g e l systems [163, 164] have i n d i c a t e d a p a r t i a l 

quenching o f the o r b i t a l angular momentum. I t thus appears that 

c e r t a i n environments may quench the o r b i t a l angular momentum and 

enable the EPR. s p e c t r a to be recorded. Recently, Lunsford [165-167], 

Gardner and Weinberger [168], and Hoffman and Nelson [169] have 
2 

reported s p e c t r a of NO i n a TT s t a t e adsorbed on MgO, ZnO and various 

z e o l i t e s , i n which the o r b i t a l momentum seems s u b s t a n t i a l l y 

quenched by the surface f i e l d s of the adsorbents. These surface 

f i e l d s were s t u d i e d as w e l l as the e f f e c t of the adsorption on the NO, 

The r e s u l t s to be presented here are i n accord w i t h those 

p r e v i o u s l y reported, although i n the present work a r e a c t i o n o f 

the.NO with c e r t a i n surfaces was observed i n a d d i t i o n . P r e p a r a t i o n 

of the samples i s the same as f o r the adsorption of NO^. 

10.1 S i l i c a G e l . 

Attempts were made to observe the spectrum of NO 

adsorbed on s i l i c a g e l at 77°K but were un s u c c e s s f u l . Although 

Solbakken et a l [163, 164] reported that the f i r s t molecules 
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adsprbed at t h i s temperature were i n the e x c i t e d s t a t e '"'3/2 a n ^ 

continued up to n e a r l y monolayer coverage, no spectrum was 

observed. 

10.2 13X S y n t h e t i c Z e o l i t e . 

The speptrum observed f o r NO adsorbed on 13X s y n t h e t i c 

z e o l i t e at 77°K< i s shown i n f i g u r e 40. No h y p e r f i n e s t r u c t u r e was 

evident and the spectrum appears s i m i l a r to t h a t reported by 

Gardner et a l [168]. The parameters were assigned by comparison 

to the simulated spectrum, f i g u r e 41, and are given i n Table 3. 

Since any hy p e r f i n e s t r u c t u r e i s apparently l e s s than the l i n e w i d t h , 

the e f f e c t s of t h i s and any other broadening i n t e r a c t i o n s were 

included i n the l i n e w i d t h and the spectrum was simulated using an 

a x i a l l y symmetric g tensor. 

10.3 H-Mordenite. 

The spectrum observed at 77°K f o r NO adsorbed on 

s y n t h e t i c H-mordenite i t a l s o s i m i l a r to that reported by 

Gardner et a l [168] and to that of Lunsford [165] reported on MgO. 

Some s t r u c t u r e i s evident and as an a i d to a n a l y s i s , the spectrum 

of "̂ NO was al s o .recorded. Figures 42 and:43 show the s p e c t r a f o r 
14 15 

NO and NO r e s p e c t i v e l y . S i m u l a t i o n was attempted i n a s i m i l a r 

manner tp that of.the 13X sample using an; a x i a l l y symmetric g tensor, 

but now i n c l u d i n g h y p e r f i n e s p l i t t i n g s . The r e s u l t s are shown i n 

Table 3. I t i s obvious from the r e s u l t i n g s p e c t r a , shown i n 
14 15 

f i g u r e s 44 and 45 r e s p e c t i v e l y f o r NO and NO, that the s i t u a t i o n 
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3ferenc-e 
g values (gauss) Hyperfine components 

3ferenc-e £ R g xx byy "zz T 
xx 

T 
yy 

T. 
ZZ ' 

•- " : Medium 

165 

g l g// 

1.996 1.996 1.89 35 < 10 14 
NO. adsorbed on MgO 

@ • 77°-K 
169 1.994 1.994 1.873 28 14 

NO adsorbed on 4A 
3 77°K 

166 1.997 1.997 1.91 31 
-14 
. NO adsorbed on ZnS 

@ 77°K 
168 1.970 1.970 1.7S6 14 : 

NO..adsorbed on 13X 
• @ 77°K 

168 1.967 1.967 1.773 14 
NO adsorbed on H _mordenite 

§ 77°K 
168 1.990 . • .. 1.990 1.859 

- 14 
NO adsorbed on 5A 
. § 77°K 

±0.001 +0.001 ±0.01 ±1 Line width used f o r 
si m u l a t i o n s (gauss) 

t h i s work 1.967 1.967 1.78 90.0 14 
NO adsorbed on 13X 

@ 77°K 
t h i s work 1.994 1.994 1.S7 23 

38 

35.0 14 
NO adsorbed on H-mordenite 

• .. Q 77°K 
this-work v 1.994 . V.- 1.994 • 1.87 ' 

L ' ' • • 

23 

38 ,v • : 35.0 ^NO adsorbed on H-mordenite 
8 77°K ' 
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FIGURE 40. EPR spectrum of n i t r i c oxide adsorbed on 
13X s y n t h e t i c z e o l i t e , recorded at 77° K. 
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FIGURR 41. Computer s i m u l a t e d EPR s p e c t r u m o f n i t r i c 
oxi.de a d s o r b e d on 13X s y n t h e t i c ' z e o l i t e , r e c o r d e d a t 
77° K. • ' 

http://oxi.de
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FIGURE 42. ERR spectrum>of N n i t r i c oxide adsorbed 
on Ilr-mordenite, recorded at 77° K. 
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FIGURE 43. EPR spectrum of • • N. n i t r i c oxide adsorbed 

on H-mordenite, recorded at 77° K. 
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i s more complex than t h i s . Both samples were evacuated to remove 

as irjuch adsorbed species as p o s s i b l e w i t h the r e s u l t i n g spectrum 

shown i n f i g u r e 46, The spectrum then observed at 77°K was i d e n t i c a l 

i n both cases and showed considerable s t r u c t u r e . 

10.4 D i s c u s s i o n . 

I n t e r a c t i o n of the surface f i e l d s w i t h AB type 

Tr-radicals quenches the o r b i t a l momentum of these r a d i c a l s . An 
* 

unsymmetrieal environment l i f t s the degeneracy of the 2pir q r b i t a l s 

(TT and TT o r b i t a l s , d e f i n i n g the N-0 bond as the z - a x i s ) . For the NO 
x y 

* 

molecule, the unpaired e l e c t r o n w i l l be i n the 2piTx level, i n t h e , 

absence of any, s p i n - o r b i t i n t e r a c t i o n . 
2 

. E x p l i c i t formulae f o r the g tensor of an e l e c t r o n i n a TT 

s t a t e were given by Kanzig et a l [170]: A i s the c r y s t a l f i e l d 

s p l i t t i n g ; A the s p i n - o r b i t coupling constant; E, the e f f e c t i v e 
2 2 energy d i f f e r e n c e between the ;Tr l e v e l s and the £ l e v e l s ; and k, 

the e f f e c t i v e g f a c t o r f o r the o r b i t a l c o n t r i b u t i o n (k=l f o r the 
f r e e molecule). The equations are given by 

(10-3) 
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The apparent a x i a l symmetry of the observed s p e c t r a (due mainly 

to the l i n e w i d t h ) i n d i c a t e s A/E must be s m a l l . The c a l c u l a t i o n s 

of Gardner et a l on the 13X and H-mordenite [168] w i l l not be 

repeated here s i n c e the same adsorbents were used. 

The species formed on adsorption of NO on H-mprdenite 

and subsequent pumping pf the.sample, i s indeed c u r i o u s . I t i s reaspn r 

able that the NO i s e a s i l y removed by pumping si n c e i t s d i p o l e moment 

i s much l e s s than that of NO,,. A value of 0.158 0 was reported by 

Stogryn [171] 0 The species i s . o b v i o u s l y not due to a n i t r p g e n 

c o n t a i n i n g molecule s i n c e no change i n s t r u c t u r e was observed on 

adsorption of ^NO and ^NO, the. nuclear s p i n of ^ N being I=h 

14 

i n c o n t r a s t to 1=1 f o r N. Numerous attempts, at a n a l y s i s using 

Computer simulated spep^ra were made with no success. The presence 

of more than one species i s p o s s i b l e but no evidence f o r t h i s was 

given by t e s t s of i n c r e a s i n g the microwave power l e v e l . 

The r e a c t i o n of NO w i t h the surface of H-mordenite 

has produced a species s t r o n g l y attached to the s u r f a c e . F a i l u r e 

to remove the species by pumping i s evidence of t h i s . I t i s l i k e l y 

the NO has reacted w i t h some part of the surface to form a species which, 

i f not chemisorbed, i s very s t r o n g l y attached. Terenin and cp-workers 

[172], when studying the absorption of NO oh various z e o l i t e s using 

i n f r a r e d spectroscopy, found that NO was adsorbed as N 20 ? the oxygen 

freed by the r e a c t i o n probably being adsorbed. T h e i r assignment 

was shown to be c o r r e c t by adsorbing N^O d i r e c t l y . The formation pf 
N̂ O would account f o r i d e n t i c a l s p e c t r a being observed f o r ^NO and 
14 

NO s i n c e N„0 i s not paramagnetic. The r e a c t i o n of the oxygen 
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atpm with the H-rjnordenite would then be r e s p p n s i b l e f o r the 

observed spectrum. 
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CHAPTER ELEVEN 

DIFUJORAMINO RADICAL, Np 2 

The NF^ r a d i c a l e x i s t s i n e q u i l i b r i u m w i t h i t s dimer . 

t e t r a f l u o r p h y d r a z i n e , N^F^, at normal temperatures. The 

d i s s o c i a t i o n of N^F^ i n t o NF^ r a d i c a l s has been s t u d i e d p r e v i o u s l y 

( f o r example [173, 174]), and i t has been shown that the di f l u o r a m i n o 

r a d i c a l i s q u i t e s t a b l e and i s capable of e x i s t i n g i n d e f i n i t e l y 

i n the f r e e s t a t e . At rpom temperature and-atmospheric pressure, 

the r a d i c a l i s present to the extent of only 0.05 per cent. The 

r a d i c a l c oncentration reaches 90 per cent only at 573°K and one 

atmosphere, at 423°K and 1 mm, or at 298°K and 10 ^ atmospheres. 

The EPR spectrum observed i n the gas phase c o n s i s t e d of 

a s i n g l e broad l i n e showing no hy p e r f i n e s t r u c t u r e due to e i t h e r 

the n i t r o g e n or the f l u o r i n e s [173]. I s o t r o p i c s p e c t r a showing 
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resolve d h y p e r f i n e s t r u c t u r e have been observed f o r NF„ d i s s o l v e d 

i n pprfluorpdimethylhexane [175] and i n l i q u i d [174]. Adrian 

et a l [176] st u d i e d the KV^ r a d i c a l i n an argon m a t r i x , but were 

unable t o o f f e r any f i r m i d e n t i f i c a t i o n of the a n i s o t r o p i c components. 

Farmer et a l [177] reported r e s u l t s f o r NF- i n both argon and 

krypton matrices at 4.2°K. Unfp r t u n a t e l y , n e i t h e r of these s t u d i e s 

y i e l d e d the a n i s o t r o p i c h y p e r f i n e parameters. More r e c e n t l y , 

Kasai and Whipple [178] st u d i e d the r a d i c a l i n a neon matrix at 

4°K and were able to assign t;he observed p r i n c i p a l tensor components to 

the molecular axes. A recent paper by McDpweTl et a l [179] reported . 

a d e t a i l e d study of how an i n e r t gas matrix and appropriate p h y s i c a l . 

con d i t i o n s together may i n f l u e n c e the nature and extent of the 

o r i e n t a t i o n pf a paramagnetic s p e c i e s , u s i n g NF^ as an example, 

The work.accomplished a complete a n a l y s i s o f the sp e c t r a a nd a l s o 

a temperature, study. 

Results of the adsorption of the NF^ r a d i c a l on 

H-mordenite are reported here, 

11.1 H-Mprdenite. 

The spectrum observed f o r ̂ F ^ adsorbed on H-mordehite 

at 77°K i s shown i n f i g u r e 47. Several experiments were attempted 

with varying concentrations but t h i s was the only r e p r o d u c i b l e 

spectrum observed. The observed s p l i t t i n g s are not s i m i l a r to those 

p r e v i o u s l y observed f o r the NF^ r a d i c a l i n other media. H-mordenite 

was used as the adsorbent f o r these experiments s i n c e i t has 
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produced consistent results with the other r a d i c a l s . Computer 

simulations of the pbserved spectrum are shown i n figure 48. The 

parameters are given i n Table 4. 

,11.2 Discussion. 

The NF^ ra d i c a l i s valence ispelectronic with CIC^, haying 

the unpaired electron i n a b^ antibonding TT o r b i t a l . The ground, 
2 

electronic state of tjie molecule i s Bj, The expected EPR spectrum 

of the r a d i c a l should show hyperfine s p l i t t i n g due to both the 

fluorines and the nitrogen. The lack of hyperfine structure could 

be attributed to rapid recombination of the r a d i c a l s , i n f a c t , rapid 

recombination could even obliterate the entire spectrum., The 

spectrum observed i n 5A molecular sieve by Colburn et a l [180] did, 
indeed show well resolved hyperfine structure with measured 
14 19 

N and F couplings of 16 and 56 gauss respectively. The 

reported g value was 2.009. It was assumed the I^F^ was screened out 

of the zeol i t e eliminating much l i n e broadening and the spectrum 

was due to freely rotating NF 2 r a d i c a l s . 

The spectrum observed i n this study has been attributed 

to a species having an anisotropic g tensor with no observable 

hyperfine structure. Table 4 gives the assigned values. Figure 48a 

i s an attempt to simulate the spectrum as due to an isotropic 

g value with observed s p l i t t i n g s due to a nitrogen nucleus. A 

good f i t could not be obtained with regard t° either i n t e n s i t i e s or 

l i n e positions. As was the case vvith NO adsorbed on H-mordenite, 

the NF or N ?F. has probably reacted with the surface to fprm a 
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TABLE 4 

Reference g-values 
(± 0.0005) 

I s o t r o p i c Hyperfine 
component (gauss) 

t h i s work 
f i g u r e 48b 

8 x x g y y hz A, o . t h i s work 
f i g u r e 48b 

2.0151 2.0084 2.0025 

t h i s work ' 
f i g u r e 48a 

1 •" i ri 1 — 

TI— ? — n — | — : ^— • 

2.0100 
, . , —p. , — 

'7.8 
J—. , ii • i ' j . — , , . in i , 1 
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(a) 

•3219.593 234:599 '3249.599 3254.529 
FIELD (GRUSS) 

.593 

(b) 

i r — * T 
3215.559- '3228.2£9 3230.529 • -3253.659 32S6.3S9 -.3279.059 FIELD (GfiUSS) 

.FIGURE 48. Computer simulated EPR s p e c t r a of species 
formed on ad s o r p t i o n of N F on H-mordenite, recorded 

,0 -- 2 4 at 77^ K 
a) i s o t r o p i c g and h y p e r f i n e tensor 
M a n i s o t r o o i c a t e n s o r , no h v o c r f i n c 
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non-paramagnetic species and a paramagnetic species having no 

observable h y p e r f i n e s t r u c t u r e . 
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GHAPTER. TWELVE  

SUMMARY 

This chapter- i s intended as a summary of the work completed; 

i n t h i s t h e s i s w i t h a view to p o s s i b l e f u r t h e r a p p l i c a t i o n s of 

stud i e s i n t h i s area., Greater amounts o f inf o r m a t i o n are. steadily-

becoming a v a i l a b l e on the topology of the various surfaces, s t u d i e d , 

the area where lack of knowledge has been the most outstanding. 

More d e t a i l e d conclusions could then be reached concerning the 

i n t e r a c t i o n s at these g a s - s o l i d i n t e r f a c e s . 

The main species which has been s t u d i e d here, c h l o r i n e 

d i o x i d e , has shown widely d i f f e r e n t i n t e r a c t i o n s w i t h the various 

adsorbents used. The H-mordenite samples y i e l d e d EPR s p e c t r a 

having measured parameters the l e a s t changed from those obtained 

i n media other than adsorbents. This i n d i c a t e s the C1C* molecules 
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are p h y s i c a l l y trapped i n the i n t e r i o r of t h i s z e o l i t e , having 

l i t t l e i n t e r a c t i o n w i t h the i n t e r n a l e l e c t r o s t a t i c f i e l d s . The 

i n t e r a c t i o n with s i l i c a g e l i s somewhat s i m i l a r , although the 

amorphous s t r u c t u r e of this,, adsorbent makes i t d i f f i c u l t to 

q u a n t i t a t i v e l y place the CIC^ molecules i n any p a r t i c u l a r area of 

i t s i n t e r n a l s u r f a c e . 13X, on the other hand, has an ordered 

s t r u c t u r e which enables one, from data obtained from the 

experiments, to v i s u a l i z e the a c t u a l adsorption s i t e s i n v o l v e d . 

These have been discussed i n Chapter E i g h t . The r e s u l t s f o r the 

other z e o l i t e s may s i m i l a r l y be analyzed with regard to 

adsorption s i t e s and i n t e r a c t i o n s w i t h the i n t e r n a l surface 

f i e l d s . 

A p u b l i c a t i o n concerning a study of ClO^ adsorbed on 

s y n t h e t i c z e o l i t e s [181] has r e c e n t l y appeared i n the l i t e r a t u r e . 

The s p e c t r a obtained on the z e o l i t e s 13X and 10X were not analyzed 

i n terms of a c t u a l adsorption s i t e s , probably due to the f a c t 

that s u c c e s s f u l computer s i m u l a t i o n of the s p e c t r a could not be 

obtained. The two d i s t i n g u i s h a b l e s i t e s observed i n the present 

study were not n o t i c e d . The l i n e w i d t h s f o r the s p e c t r a reported i n 

t h e i r p u b l i c a t i o n would have o b l i t e r a t e d these f e a t u r e s . 

This same paper by P i e t r z a k and Wood a l s o contained a 

study of NG^ adsorbed on these same z e o l i t e s . The paper contained 

comparable s p e c t r a to these obtained i n t h i s study f o r the 13X 

s y n t h e t i c z e o l i t e . Results obtained here f o r N0 9 were not 
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s i g n i f i c a n t l y d i f f e r e n t from those of NC^ s t u d i e d i n other media. 

In f a c t , the s p e c t r a observed on the s y n t h e t i c z e o l i t e H-mordenite 

i s i n e x c e l l e n t agreement to that f o r N0„ i n an NO. ma t r i x , both 

media s t u d i e d at 77°K. The proposed adsorption s i t e s f o r the 

N0 2 molecules i n t h i s z e o l i t e are the small pockets l i n i n g the main 

passage-ways. In the case of ClO^, the observed s p e c t r a c o r r e l a t e d 

w e l l w i t h the s t r u c t u r e s of the 13X z e o l i t e s , whereas f o r NO^ t h i s 

was not so. S p e c i f i c adsorption s i t e s may only be assigned to the 

z e o l i t e , H-mordenite. This i s a t t r i b u t e d to the f a c t that C10 2 

has a l a r g e r d i p o l e moment than N0 2 which enables i t to i n t e r a c t 

more s t r o n g l y with s p e c i f i c c a t i o n s i t e s i n 13X. In H-mordenite, 

these s i t e s are not as w e l l - d e f i n e d , and coupled w i t h the small d i p p l 

moment of the N0 2, the observed s p e c t r a suggest the molecules to be 

confined i n these s i d e pockets. 

The s p e c t r a observed f o r n i t r i c oxide adsorbed on 

various z e o l i t e s show yet another p o s s i b l e e f f e c t of adsor p t i o n . 

While the spec t r a which are f i r s t apparent on adsorption are 

s i m i l a r to those observed by others on a v a r i e t y of s u r f a c e s , pumping 

of the sample to decrease.the c o n c e n t r a t i o n of the NO.on the 

surface y i e l d s a new spectrum. This i s assigned to a species 

formed by a r e a c t i o n of the NO molecules with the su r f a c e , This new 

species has been shown not to contain n i t r o g e n . This i s 

confirmed by the f a c t that i d e n t i c a l EPR sp e c t r a are observed 
15 14 

f o r both NO and NO. The observance of chemical r e a c t i o n s 

on surfaces e i t h e r through the formation of a new species or a 
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change i n the s p e c t r a f o r the o r i g i n a l species i s then another 

area w i t h wide p o s s i b i l i t i e s . 

The use then, of the EPR technique, i n the study of the 

g a s - s o l i d i n t e r f a c e can g e n e r a l l y be categorized i n three areas: 

Information about the nature of the surfaces i s 

p o s s i b l e i n many cases and the opportunity f o r study here i s 

l i m i t e d only to the number of surfaces which y i e l d EPR s i g n a l s . 

The a d d i t i o n of gaseous molecules to these surfaces 

widens the scope c o n s i d e r a b l y . In these cases, as was found f o r 

ClO^, t h i s technique may provide an " i n e r t matrix!' which perhaps 

enables the species i n question to be s t u d i e d w i t h g r e a t e r 

f a c i l i t y than other EPR techniques, or may even provide a means 

of study where others have not as yet been found. Included i n t h i s 

area a l s o are the p o s s i b i l i t i e s of r e a c t i o n of the gaseous 

molecules w i t h the surfaces to y i e l d new s p e c i e s ; e i t h e r a new 

adsorbed s p e c i e s , or even s p e c t r a now due to the s u r f a c e , whereas 

before the adsorption, none was evident. The l a t t e r was the 

case w i t h n i t r i c oxide. The o p p o r t u n i t i e s are extremely large 

i n t h i s p a r t i c u l a r area. 

The l a s t general area where the use of EPR has found 

value i n these s t u d i e s i s i n the area of the dynamical behaviour 

of the adsorbed molecules. The motion of the adsorbed molecules, 

e i t h e r hindered or f r e e may be s t u d i e d at a v a r i e t y of temperatures 

by t h i s technique. The p u b l i c a t i o n of P i e t r z a k and Wood [181] 

mentioned e a r l i e r was such a study, although i t was not completely 
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s u c c e s s f u l i n the ease of CIO2. 

The o p p o r t u n i t i e s f o r f u t u r e work i n t h i s area, 

complemented by other spectroscopic, techniques, look promising. 

The EPR technique has c e r t a i n l y not been explored t o i t s f u l l e s t 

i n any of the three areas mentiqned. Since knowledge of the 

surfaces i s v i t a l to an. understanding of the r e s u l t s , the more 

accurate the i n f o r m a t i o n a v a i l a b l e i n t h i s area, the b e t t e r the 

conclusions. To t h i s end, perhaps a combination of XRD and EPR 

techniques would prove very v a l u a b l e . M o d i f i c a t i o n s to the surfaces 

could then be s t u d i e d i n regard to t h e i r e f f e c t on the observed 

s p e c t r a . A s i n g l e species could then be s t u d i e d i n , g r e a t e r d e t a i l 

by v a r y i n g the surface c o n d i t i o n s s y s t e m a t i c a l l y . In any 

Case, the fu t u r e leaves much to be discovered i n t h i s area. 
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APPENDIX 

I M P L I C I T R G A L * 3 { A - H , 0 - Z ) 

p I M E N S I U N H ( 9 L , 9 1 ) , T P ( 9 L , 9 1 ) , G ( 9 1 , 9 1 ) , G 2 ( 9 I , 9 i ) , A ( 9 L,9 I), 

I A A 2 ( 9 1 , 9 1 ) , A A L R H 2 ( 9 1 , 9 i ) > C U 9 1 , 9 1 ) , C 2 ( 9 1 , 9 1 ) , C 4 ( 9 \ , 9 1 ) , C i? ( 9 1 , 9 1 ) , 

2 C 6 ( 9 1 , 9 1 ) , P H I ( 9 1 . ) ,. S P ( 9 j } , C P ( 9 1 ) , S T ( 9 1 ) , C T ( 9 1 ) , S P 2 < 9 1 ) , C P 2 ( 9 j ) , 

3 S T 2 ( 9 1 ) , C T 2 ( 9 l > ,C5R2rH] , G A L ^ H 2 l 9 i ) t P H I i l { 9 1 ) » r i T L E ( 2 0 ) 

R t A 0 ( 5 , 3 3 3 ) T I T L E 

RE AO 8 9 4 ) N T I M E S » N T i l F . T A , N P H I 

K O U N T = 0 

R E A D ( 5 , a 9 0 ) G X , G Y , G Z , F R E Q, $ P I N 

R E A D ( ' 5 , 3 9 1 ) A X , A Y , A Z 1 ! ' ' • .' ' " ~ ~ 

W R I T E ( 6 , B 3 3 ) T I T L . E 

W R I T E ( 6 , 3 9 9 ) F R E Q 

W K I T E ( 6 , 8 3 Q ) G X , G Y , G Z 

W R I T E ( 6 , 3 9 6 ) A X , A Y , A Z : . 

W R I T E ( 6 , 3 9 7 ) S P I N , , M T H E T A , M ? H I 

3 B 3 F O R M A T ( 2 0 A 4 ) 

3 9 0 F O R M A T ( 3 T 1 0 . 5 ) 

8 9 1 F O R M A T ( "3 F-1 0 . 3 ) 

3 9 4 F O R M A T ( 3 1 3 ) 

8 9 9 F O R M A T ( I X , • T H E F R E Q U E N C Y . I S . S F I O . 5 , 1 M H Z • ' ) 

3 3 0 F O R M A K j X , ' G.X = V,F10.!>,J G Y f It F l O . 5 , 1 G Z - ' , F 1 0 . 5 ), 

8 9 8 F O R M A T ( I X , ' A X = ' , F 1 0 . 3 , » A Y ? J , r I 0,3> • ' A Z ~ ' , f : 1 0 . 3 , » ' I N G A U S S ' 

8 9 7 F O R M A T ! L X , ••' 5 P I N - ' * F L O . 1 , • N T H E T A = • , I 3 , « . N 1 P H U * , I 3 ) 

S T A R T = S C L O C K ( 0 . 0 ) 

F R E Q = F RE4} * l . 0 0 + 0 6 . 

A X = A X * G X * U 3 9 9 6 2 6 4 0 1 - 0 6 

A Y = A 'Y * G Y * L . 3 9 9 6 2 6 4 D + 0 6 
A Z = A Z « ; G Z * 1 . 3 9 9 6 2 6 4 0 + 0 6 

G X 2 = G X * G X : 

G Y 2 - G Y * G Y 

G Z 2 = G Z * G Z • •• 

A X 2 = A X * A X : . ' 

A Y 2 - A Y * A Y i : • 

A Z 2 = A Z * A Z 

A X Y 2 ~ A X 2 * A Y 2 

G A X 2 = G X 2 * - V X 2 

G A Y 2 s = G Y 2 * A Y 2 

G A Z 2 = G Z 2 * A Z 2 

B O O . 9 2 7 3 2 0 - 2 0 

H H = 6 . 6 2 5 l 7 l " J - 2 7 ' 

R A D = 1 . 7 4 5 3 3 9 2 5 1 9 9 4 3 0 - 0 2 

D P H I = N P H I , : 

I F ( N P H l . G T . 1 ) Q P H I = 9 0 . D O / F L O A T I N P H I r - i ) 

A I = ( A X 2 * A X 2 - 2 . 0 0 * A X 2 * A Y 2 + A Y 2 -? A Y 2 ) * G X 2 * G Y 2 
A 2 - A 1 * G A Z 2 

A 3 - H H / 6 0 ' • 

A 3 = A 3 * A 5 

A 4 = 5 P I N * J S J M N + 1 . 0 0 )  



-167r 

A 6 = A 5 * = F R E ' J 
SMI=SPIN 

11 Bl=SMi*SMI 
B 2 = A 3 * 8 1 / 2 . 0 D 0 ; 

B 3 - A 3 * ( A 4 - i i I ) / 4 . O Q 0 

B 4 = A 5 » S M I ' 

C 

I F ( S M I . L T . S P I N ) G Q T O 5 6 

P H I . C U = 0 . 0 0 0 
P H I D ( 1 ) = P H T ( 1 ) 

A A P = D P H I * K 4 0 
D I V = 1 . 0 / F L 0 4 T ( N T H E T A * - 1 ) 

C T ( 1) = i . 0 0 

C T 2 ( 1 ) = 1 . 0 0 
S T ( l ) = 0 . J O 

S T 2 ( 1 ) = 0 . 3 0 

D O 1 7 I = 2 , N T H F T A 

C T ( 1 ) - = C T ( I - 1 ) - 0 I V 

P T 2 ( I > = C T ( I ) f C F( I ) 

S T { I ) = <)S J••<T ( u o o - c r 2 ( I ) ) 

17 s r 2.{ n = s r ( i ) * s r (11 

I F { N P H i . L t . . l ) G i 3 T p 6 0 

O f J 9 3 ' l ? 2 » N P H I ••  

P H I { I ) - P H I.( I ~ 1 ) + A A P , 

9 0 P H I O t I ) = P H I D ( [ r l J t D P H I 

6 0 D O 8 9 N P = L , N P H l 

S P I N P ) = D S I N ( P H I ( N P ) ) 

• C P ( N P > = O C O S ( P H I I N P ) ) 

S P 2 1 N P ) r S >:( M P ) * S P ( N P ) 

C P 2 ( N P ) - C * M N ' , ) * C P < N P ) 

C S P 2 ( N P ) = C P 2 { N P ) - S P 2 ( N P ) 

G A L P H 2 { N P ) •- G X 2 * C P 2. ( N ? ) * G Y 2 * S P 2 ( N P ) 

8 9 C O N T I N U E : 

D O 4 3 rtP^l-.NPHl 

• 0 0 4 3 N T = I j J i T J l E T A , 

G ( N T , N 9 ) = u S ):< T { i i A L P H 2 ( N P ) * S T 2 ( N T ) +GZ.2 * C T 2 ( N T ) ) 

G 2 { N T f fNiP ) - G (•'•) T , N P ) 4? r3 { N T , N f j ) 

A A L P H 2 ( 1 i T , h ? ) = ( G A X 2 * C ? 2 ( N P ) + G A Y 2 * S P 2 ( N P ) > / 0 2 ( N T , N P ) 

A ( N T , ii P > «= J :S Q 7 T { G 2 ( N T , : ^ P ) * A A L P H 2 ( N T , N P ) * S T 2 ( N T ) + G A Z 2 * C T 2 (, N T ) ) / G ( N T 

I M P ) . 

A A 2 ( N T t N P )•= A ( N T T N P ) * A ( N T t N P ) : •  

C 1 ( N T , N P ) ='M ( N T rtiPi) * A \L P H 2 ( N T , N P ) 
C 2 ( N T r N P » - G A L P H 2 ( N P ) « ? A A 2 ( N T , H P ) 

C 4 ( N T , N P ) ^ G 2 ( N T » N P ) * G 2 ( N T , N P ) ' * C 2 ( N T , N P ) 

C S ( N T , N P j = C 4 ( N T , N>> ) T A A L P H 2 ( N T , N P ) 

C 6 ( N T , t M P ) = - v 2 ( N T , N ? ) * p 4 ( N T , N P ) 

T P ( N T , N P ) = " G 2 2 f G A L P H 2 ( N P ) / G 2 ( N T , N P ) 

4 B C O N T I N U E r 
5 6 D O 5 B N P = l . , N P f | I 

D O 5 3 N T = I , N T M E T A 

1 1 2 2 B 3 ~ ( B 4 r A ( N T f N I?) - A 6 ) / G ( N T t N P ) 
r.VJ2 = ..W><=-J:i 

C C = tt 2 ( ( G 7.2 v ( C M N T , N P ) - G A L P H 2 ( N P ) * A Z 2 ) * * 2 ^ S T 2 ( N T ) # C T 2 ( N T ) ) / ' C 6 { N T , 

1 P ) +• ( A I - S O 2 ( N T ) * C S P 2 ( N P ) ) / C 4 ( N T , N P ) ) •+ ( B 3 / G 2 ( N T , N P ) ) * ( ( C L ( N T , N P ) * A 7 . 

2 ) / C 2 ( N T , M P ) <N G A L P H 2 ( N P ) * A X Y 2 ) / C I ( N T , N P i + i A 2 - C T 2 ( N T ) * Q ^ ! > 2 ( N P ) J - / C 5 ! 

3 T , N P ) ) 

X = B 3 2 - C e * " 4 . 0 0 
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H{NT,NP)=(-83+DSQ*T(X))/2.pQ 
C 
5 3 CONTINUE 
C 

I FJSM_I_.LT ._SP (N._OR,KOONTrGT.O )G0 TO XI 11 
iiiiRI T f i ( I , 6 0 3 ) ( C J ( I ) , 1 = L , N T H E T A ) 

W R I T F ( 1 , P O O ) ( P H I 0 ( I ) , 1 = 1 , N P H I > 

1 1 1 1 W R I T E ( 6 , 1 0 0 0 ) 

W R I T E ( o , 1 0 Q 2 ) P H I D I 1 ) 

D O 7 0 N P = I , N P H f ' 

I F ( N P . G T . 1 ) W R I T E ( 6 , 1 0 0 3 ) P H I D ( N P ) 
D O 8 0 .MT= I , N T H E T A i 4 

K = N T + 1 

L = N T f 2 

M = N T « - 3 

W ^ I T E { 6 , 1 0 0 1 ) H ( N T , N P ) , T P i N T , N P ) , H ( K , N P ) , T f » ( K , N P n H { L , N P ) t T P ( L » N P ) 

. 1 H ( M , N P ) , T P ( M , M P ) '' ' • 

8 0 C O N T I N U E 1 ' ~ ~ ' ~ ^ n ^ 

7 0 C O N T I N U E : 

L O O O F O R M A T I L H 1 , 3 ( / > , 3 X , ^ ( • F I E L 3 ( G A U $ S ) • , 3 X , • I \ l T E N , S I T Y » , 2 X ) / / ) 

1 0 0 1 F 0 K M A T < 5 X , t+(F3. 2 , 5 X , F 3 . 5 , 5 X ) ) 

1 0 Q 2 F O R M A T ! * P H 1 ~ ' > F 5 t 1» ' ' 0 c G R L E S ' ) 

1 0 0 3 F O R M A T ! 3 ( / ) , ' P H I - ' , - F 5 . 1 / ) , 

oo 3o i =i t f i P - H i ' 
3 0 W R I T F ( 1 , 6 0 1 ) [ H ( J , I ) , J * l , N T H E T A ) 

PQ 3 1 i = 1 t N P H l ' 

3 1 W R I T t ( 1 , 6 0 2 ) ( T P ( J , I ) , J = l , N T H E T A ) 

6 0 0 F O R M A T ( 1 J F 6 . 2 ) 

5 Q 1 • F O R M A T ( 1 0 F c i . 2 ) 

6 0 2 F O R M A T ! 1 0 F 3.5) 
6 0 3 F O R M A T ( 1 J F O .4 ) 
C 

S M I -O - 1 . 0 0 

I F ( S M I .LT . - S P I N ) G O T O 5 
GO TO 11 

5 ' T I M E = 5 C L g C - ^ ( S T A R T ) 
W R I T £ ( 6 , 3 5 p ) T I M F 
N I ' I M C - 5 - i N T I K F S - l 
KOUNT^KO'JNTt-l 
I F ( N T I M E S . G T . Q ) GO T O 4 

. 3 5 0 FORMA TJ J H 0 _ f _ T j Mb R E jUIi<FI)< » F 3 . 3 , ' S E C O N 0 S J / )_ 

S T O P ' ' 
END 

T 
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