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ABSTRACT 

The e l e c t r i c discharge method of generating, s inglet-molecular 

oxygen was demonstrated to be a useful technique for preparative scale 

oxygenations of sui table organic substrates. Representative examples 

of known s ingle t oxygen acceptors were exposed to discharge-generated 
' o 

s ing le t oxygen while dissolved i n organic solvents at -78 or adsorbed 

onto s o l i d supports at room temperature. Typ ica l oxygenation products 

vere obtained i n general ly good y i e l d s . The various known methods of 

generating s ingle t molecular oxygen and the r e l a t i v e advantages and 

disadvantages of the e l e c t r i c discharge method are-discussed. 

Adsorption of substrates onto s o l i d surfaces appears to have no 

effect on the course of the addi t ion of s ing le t oxygen to the organic 

moiety. The success of t h i s technique i s perhaps due to the increase 

i n the surface area of contact between the substrate and s ing le t 

oxygen.. 

Exploratory oxygenations o f ' l ,U-d ienes and epoxides adsorbed onto 

s o l i d surfaces were a l l unsuccessful. 
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I . INTRODUCTION 

A. Oxidation by Molecular Oxygen 

Oxygen, because of i t s key ro le i n t e r r e s t i a l ' l i f e processes, i s the 

s ingu la r ly most extensively studied molecule i n the f i e l d s of chemistry 

and biochemistry. The accumulation of experimental observations over the 

past centuries has shown that organic substrates undergo two general types 

of reactions with molecular oxygen:"*" ( l ) r a d i c a l mediated autoxidations 

and (2) sens i t i zed photooxygenations. 

Radica l autoxidation reactions require some type of chemical or u l t r a ­

v i o l e t r ad i a t ion to i n i t i a t e the formation of r ad ica l s which cont ro l the 

degradative oxidat ion of a wide va r i e ty of organic substances i n chain 

processes. When the concentration of the i n i t i a l oxidat ion products, 

usua l ly peroxides and hydroperoxides, bu i lds up beyond a c r i t i c a l va lue , 

the i n i t i a l l y slow react ion can r ap id ly accelerate; to combustion ra tes , 

y i e l d i n g simply water, carbon d iox ide , and carbon monoxide as f i n a l pro­

ducts. Since these are chain processes, the quantum y i e l d s are generally 

much greater than uni ty and are inverse ly propor t ional to the square root 
2 

of the l i g h t i n t e n s i t y . . 

Sens i t ized photooxygenation reac t ions , on the other hand, require 

the presence of a " sens i t i ze r " (a dye or natural pigment) as w e l l as l i g h t 

and molecular oxygen. The quantum y i e l d s are no greater than uni ty and • 
2 3 

are independent of the l i g h t i n t e n s i t y . ' The sens i t i ze r absorbs low 

energy l i g h t and in teracts with molecular oxygen to form an ac t ive i n t e r ­

mediate which transfers a molecule of "ac t ive" oxygen to the acceptor to 

give the product peroxide. The f i e l d of sens i t i zed photooxygenation 
h 5 

reactions has been thoroughly reviewed i n a r t i c l e s by Bowen, Arbuzov, 6 7 8 Gol ln i ck and Schenck, G o l l n i c k , and Foote. 
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B . ' His tory of the Sensi t ized Photooxygenation Reaction 

The dye-sensi t ized damage or destruct ion of b i o l o g i c a l systems by 

9 

l i g h t i n the presence of oxygen has been known since 1900. This pheno­

menon, which i s commonly known as "phot'odynamic ac t ion" , i s a t t r ibuted to 

i r r e v e r s i b l e oxidat ive degradation of essen t i a l c e l l u l a r components. ^ 

11 12 

Straub and Noack suggested that the s e n s i t i z i n g dye perhaps forms 

intermediate peroxides which transfer oxygen to a substrate and regenerate 

the o r i g i n a l dye. 
13 

Asca r ido le , a natural peroxide f i r s t i so la t ed by Gutig' i n 1908 from 

chemopodium o i l , was bel ieved to be synthesized i n plants from a-terpinene 

(Eq. l ) . Although attempts to autoxidize the diene y ie lded only polymers,"^ 
°2 

* II | 

Eq. 1 

Schenck"*"^ i n 19hh succeeded i n photooxygenating i t to ascaridole i n the 

presence of various sens i t i ze r s i n various solvents. He proposed that a 

s imi l a r oxygenation process occurs i n v ivo under the photosensi t iz ing 

influence of ch lo rophy l l . 

. . •• • One of the f i r s t known " a r t i f i c i a l " photoperoxides was synthesized by 

l 6 
Moureau and Dufraisse i n 1926.- They found that d i l u t e solutions of 

rubrene i n various solvents r a p i d l y l o s t t h e i r colour on exposure to l i g h t 

IT l 8 

and a i r . The product, which was l a t e r established ' to be the transan-

nular peroxide, decomposed, when heated, to the o r i g i n a l hydrocarbon with 

accompanying luminescence and evolut ion of oxygen gas ( E q . . 2 ) . This unique 
Ph Ph Ph 

' h v / a i r i , -i -in n - i 
< > | J J°^0J J Eq. 2 

A 

Ph Ph Ph Ph 

revers ib le binding of oxygen, which at leas t s u p e r f i c i a l l y p a r a l l e l s the 
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act ion of haemoglobin i n v i v o , i n i t i a t e d a great deal of in teres t i n 

photosensi t ized oxygenation from a biochemical as w e l l as a chemical 

point of view. 

Since these i n i t i a l observations, photosensit ized oxygenation of a 

v a r i e t y of organic substrates has been extensively invest igated for both 

synthetic and mechanistic purposes.^ ^ 

C . ' Mechanism of the Sensi t ized Photooxygenation Reaction 

19-22 
The e a r l i e s t mechanistic studies were by Gaffron s t a r t ing i n 

1926. In the d i r ec t photooxygenation ( i . e . the substrate also acts as the 

s e n s i t i z e r ) of ruhrene, he showed that two molecules of rubrene are re ­

quired for the formation of one molecule of stable endoperoxide (Eq. 3). 

2Ru + 0 2 —^—> Ru0 2 + Ru Eq. 3 

He postulated an acceptor-act ivat ion mechanism i n which the important 

step was the formation of an act ivated double molecule of rubrene (Eq. k-6), 

Ru ——> Ru Eq. Jl 

Ru + Ru : > (Ru) 2 '. Eq. 5 
. . * -
(Ru) 2 + 0 2 > RuO + Ru Eq. 6 

Although Gaffron's mechanism adequately explained the d i rec t photo­

oxygenation of rubrene, i t could not be extended on a general basis to 

i n d i r e c t (dye-sehsit ized) photooxygenation react ions . Because the absorp­

t i o n bands of many substrates are at shorter wavelengths than those of the 

dyes used, the exci ted dye molecules do not have su f f i c i en t energy to 

e l e c t r o n i c a l l y exc i te the acceptor molecules. 

23 
Schonberg i n 1935 postulated instead that the exci ted sens i t i ze r 



(e i ther the substrate or added dye) reacts with t r i p l e t oxygen to form a 

sensi t izer-oxygen complex. This "moloxide" then transfers the oxygen 

molecule to the substrate to give the product peroxide and regenerate the 

2U-28 
s e n s i t i z e r . This mechanism was strongly advocated by Schenck, who i s 

probably the main contr ibutor to the f i e l d of photosensit ized oxygenations. 

29-33 

An al ternate mechanism was proposed by Kautsky i n 1931. He 

assumed that the in t e rac t ion of exci ted s ens i t i ze r with t r i p l e t oxygen 

r e su l t s not i n the formation of a sensi t izer-oxygen complex but rather i n 

phys i ca l t ransfer of energy from the s ens i t i ze r to oxygen to give s ing le t 

oxygen and the deactivated s e n s i t i z e r . Single t oxygen then reacts with the 

acceptor to give the product peroxide. Kautsky elegantly demonstrated the 

v a l i d i t y of h is mechanism by showing tha t , when substrate and sens i t i ze r 

were adsorbed onto p h y s i c a l l y separate grains of s i l i c a ge l and the system 

exposed to l i g h t i n the presence of oxygen, the substrate was e f f i c i e n t l y 

oxygenated. Evident ly some gaseous intermediate, presumably s ing le t 

oxygen, was able to diffuse' across the space separating sens i t i ze r and 

substrate. 

Both the energy-transfer mechanism and the complex-formation mechan-
. k 

ism are consistent, wi th the k i n e t i c studies which have been ca r r i ed out. ' 
2H 3h 35 

. ' ' The only s ign i f i can t difference l i e s i n the nature of the act ive 

oxygenating intermediate: a sensi t izer-oxygen complex or s ingle t molecular 

oxygen (Eq. 7 -10) . 

S h v > •'"S E x c i t a t i o n Eq. 7 
1 3 

S > S Intersystem Crossing Eq. 8 
3 3 

S + 0 2 > S-0 2 Complex Formation Eq. 9a 

S-0 2 + A > S + A 0 2 Termination Eq. 10a 

3 S + 3 0 2 > S + 102 Energy Transfer Eq. 9b 

1 0 + A *——> A 0 2 Termination Eq. 10b 



Although most workers preferred to bel ieve i n the sensit izer-oxygen complex, 

the controversy remained unresolved u n t i l more thorough invest igat ions of 

the phys i ca l and chemical properties of s ing le t molecular oxygen were 

ca r r i ed out. 

36,37 D. Theoret ica l Descr ipt ion of Single t Molecular Oxygen" 

3„-The three lowest energy e lec t ronic states of molecular oxygen ( E 

"*"A , and E + ) a l l a r i se from the same e lec t ronic configurat ion. They g g 
d i f f e r only i n the way two of the sixteen electrons occupy the pa i r of 

degenerate antibonding o r b i t a l s . The arrangement of the two electrons i n 
* * 

the set of " r ea l " o r b i t a l s T T ^ and ir i s shown p i c t o r i a l l y with c i r c l e s and 

arrows below: 37 

V g 

g 

o 
LO 
© 

Q 
G 
G 

3 -
„ _ The ground state E has the two electrons with spins p a r a l l e l ( t r i p -

g 
l e t s ta te) but opposite o r b i t a l angular momentum (E s ta te ) . This state i s 

responsible for the d i r a d i c a l behavior and paramagnetic properties of • -

molecular oxygen. 

The next two e lec t ronic s ta tes , which are 22.5 k c a l and 37.5 k ca l 

above the ground s ta te , both have the two electrons with spins paired 

(s ingle t s ta tes ) . In the lower s ingle t s ta te , both electrons have t h e i r 

o r b i t a l angular momenta i n the same d i r e c t i o n . This state i s therefore a 

doubly degenerate A state ( o r b i t a l angular momentum quantum number i s ±2). 

The upper s ingle t s ta te , l i k e the ground s ta te , has zero o r b i t a l angular 
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momentum (E s ta te ) . 

Any perturbation which destroys the c y l i n d r i c a l symmetry of the molec­

ule (e .g . the approach of a second molecule) resu l t s i n the mixing of the 

"^"E+ state with one of the "*~A components (the upper one i n the diagram). 

Since t h i s perturbation always s t a b i l i z e s the "*"A . component at the expense 

of the "*"E+ s ta te , t h i s '''A component becomes the most energe t ica l ly faver­
t s 6 • • 

36 

able state for concerted addi t ion react ions . The other component has 

i t s electrons i n separate o r b i t a l s and should react as a " d i r a d i c a l " s i m i ­

l a r to the ground s ta te . The "*"E+ s ta te , having both electrons i n the same-

o r b i t a l , would not be expected to undergo one-electron f r ee - rad ica l reac­

t i o n s . In f ac t , i t probably displays a repuls ive in te rac t ion with a l l 
37 

approaching molecules. 

E . Discovery of Singlet Molecular Oxygen 

The v i s i b l e red emission produced i n the decomposition react ion of 

hydrogen peroxide with hypochlori te sa l t s or a lka l ine bromine or chlor ine 
38 

was f i r s t noted by Malle t i n 1927. The s igni f icance of t h i s observation 
was not appreciated for the next several decades, even though i t was 

39-1+1 v 1+2 mentioned occas ional ly i n the l i t e r a t u r e . In I960, S e l i g e r ' s report 
that the spectrum .of t h i s emission consisted of a narrow band centred at 

o 
63^8 A focused new at tent ion on t h i s chemiluminescence phenomenon. Khan 

and Kasha l a t e r observed a second band at 7032 A i n addi t ion to one at . 
0 -1 

633li A . The 1567 cm spacing between these two bands c lose ly corresponded 
to the ground state lowest v i b r a t i o n a l spacing of molecular oxygen (1556 

cm "*"), thus impl ica t ing the involvement of molecular oxygen i n the emission. 

They t en t a t i ve ly assigned the two peaks to the (0,0) and ( 0 , l ) bands of the 

1 + 3 -
oxygen E E t r ans i t i ons shif ted by so lva t ion . 

Meanwhile, Ogryzlo and coworkers were studying the emission spectrum 
1+5 • 

of gaseous oxygen subjected to e l e c t r i c discharge. Mass spectrometric, 



- 7 - • 

46 47 c a l o r i m e t r i c , and spectroscopic studies of t h i s system had shown that 

the oxygen gas stream contained about 10% OpC^A ) and about 0.1% 0 ( ^ E + ) . 
g <- g 

o 
The spectrum consisted of not only the two known sharp bands at 7 6 0 0 A 

o 1 + 3 — 
and 8 6 0 0 A from the (0,0) and ( 0 , l ) t r ans i t i ons i n the E •->• E system, 

g g 
but also the same two diffuse bands observed by Khan and Kasha. Ogryzlo 
re invest igated the hydrogen peroxide-hypochlorite system and observed an 

0 1 + 3 — add i t iona l extemely weak band at 7600 A corresponding to the E -K E~ 
0 0 

emission. Since the 6340 A and 7030 A bands obviously could not belong to 

1 + 3 -
the E -> E system, Ogryzlo assigned them to unique one-photon double-

48 

molecule t r ans i t i ons previously postulated by E l l i s and Kneser . i n t h e i r 

in te rp re ta t ion of the l i q u i d oxygen absorption spectrum. Two exci ted ("*"A ) 

oxygen molecules i n a c o l l i s i o n a l complex undergo simultaneous deact ivat ion 

with the energies of both molecules released i n a s ingle photon (Eq. l l ) . 

2( 1 A ) — * 2( 3 E") + hv Eq. 11 

This assignment has since been corroborated by the observation that the 

i n t e n s i t i e s of these two bands depends on the square of the 0_( A ) con-
6 

1*9-51 
cen t ra t ion . -Thus, Ogryzlo 's in te rpre ta t ion of the emission spectra 

of oxygen i n the hydrogen peroxide-hypochlori te and e l e c t r i c discharge 

systems had revealed that exci ted s ing le t oxygen could be conveniently 

generated i n both systems. 

F . ' I d e n t i f i c a t i o n of the Act ive Intermediate i n the Sensi t ized 

Photooxygenation Reaction 

Organic chemists were prompt to u t i l i z e the two methods of generating 

s ing le t molecular oxygen to c l a r i f y the mechanism of the dye-sensi t ized 

photooxygenation reac t ion . 
52 

Foote i n 1964 demonstrated that s ing le t oxygen produced i n the 
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hypochlorite-hydrogen peroxide system reacts with a wide va r i e ty of sub­

strates to give products i d e n t i c a l to those of the sens i t i zed photooxygen­

at ion reac t ion . In addi t ion to synthesizing t y p i c a l photoproducts i n 

syn the t i ca l l y useful y i e l d s , he subsequently compared product d i s t r i bu t ions 

and s t e r e o s e l e c t i v i t y , r e l a t i v e r e a c t i v i t i e s of acceptors, and the r a t i o 

of the decay rate to the react ion rate of the intermediate for the two 

53-55 

reac t ions . A l l comparisons were shown to be i d e n t i c a l wi th in exper­

imental e r ro r . 

Meanwhile, Corey and Taylor also effected the oxygenation of several 

t y p i c a l photooxygenation substrates using radiofrequency discharge-gener­

ated s ing le t oxygen. Although the system at t h i s time was r e l a t i v e l y 

i n e f f i c i e n t (low y i e l d s and inconveniently long react ion times) and the 

number of successful ly oxygenated substrates very l i m i t e d , the resu l t s at 

leas t served t o . i l l u s t r a t e that the same products a r i se from photooxygen­

a t ion and discharge-generated s ing le t oxygen. 

Foote 's and Corey's work provided overwhelming, though only circum­

s t a n t i a l evidence i n favor of Kautsky 1 s energy-transfer mechanism for the 

sens i t i zed photooxygenation reac t ion . 
29-

More d i r ec t evidence was provided by Kautsky's o r i g i n a l experiments 
32 -

which demonstrated that the intermediate must be gaseous i n order to 

bridge the space between phys i ca l l y separated substrate and s e n s i t i z e r . -

These experiments have recent ly been ref ined by two groups of workers, ' 

but the r e su l t s are e s sen t i a l l y the same as Kautsky 's . 

Perhaps the most d i r ec t and compelling evidence i n favor of the 

involvement of s ing le t oxygen i n the sens i t i zed photooxygenation react ion 

was the detect ion by phys ica l methods of OpC^A ) generated by gas-phase 
59 

photosens i t iza t ion with aromatic hydrocarbons. F a l i c k was the f i r s t to 

observe the cha rac t e r i s t i c fou r - l ine electron paramagnetic resonance 
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spectrum of Og("'"Â ) due to the o r b i t a l magnetic moment of the electrons i n 

gaseous oxygen subjected to an e l e c t r i c discharge. Kea rns^ and Wasserman 

^ simultaneously reported the observation of t h i s cha rac te r i s t i c spectrum 

i n gaseous mixtures of naphthalene or naphthalene der ivat ives and oxygen 

subjected to u l t r a v i o l e t i r r a d i a t i o n . The formation of sing l e t ( A ) 
6 

60 

oxygen by t h i s process was found to be h igh ly e f f i c i e n t ($=0 . 5 ) • 

Although these experiments were r e s t r i c t e d to the gas-phase, they provided 

strong support for the energy-transfer mechanism i n the sens i t ized photo­

oxygenation react ion i n so lu t ion . 

F i n a l l y , after decades of dormancy, Kautsky's s ingle t oxygen mechanism 

i s r ece iv ing the recogni t ion i t deserves from workers i n the f i e l d of the 

sen i t i zed photooxygenation reac t ion . 

Theo re t i c a l l y , both s ing le t states of oxygen may be generated i f the 
62 

t r i p l e t energy of the sens i t i ze r i s s u f f i c i e n t l y high (E >38 k c a l ) . 
However, OA Z ) i s so quickly relaxed by c o l l i s i o n s to 0 o ( A ) that i t i s 

& -̂ 6 
not l i k e l y to have a chance to react . On the other hand, O^^A ) has a 

l i f e t i m e long enough to be consistent with that of the ac t ive intermediate. 

55 37 

' Many ef fec t ive sens i t i ze r s have t r i p l e t energies s i g n i f i c a n t l y 

lower than 38 k c a l and can therefore generate only 0?("'"A ) . In add i t ion , 

the chemistry of the intermediate i s i d e n t i c a l to that of 0p("*"A ) generated 

by e l e c t r i c discharge and decomposition of hydrogen peroxide. There 

appears to be l i t t l e doubt that the ac t ive intermediate i s 0 g( 1A ) and not 
o 2 ( V ) . 
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I I . CHEMICAL REACTIVITY OF SINGLET OXYGEN 

Single t molecular oxygen i s known to be a h ighly se lec t ive reagent 

which undergoes no react ion at a l l wi th most organic compounds. Of those 

substrates found to be r eac t ive , two types have received p a r t i c u l a r l y 

thorough study:̂ ~T>5**>55 Conjugated 1,3-dienes give 1 ,U-endoperoxides 

as i n i t i a l products which often undergo subsequent rearrangement and 

(2) o l e f ins containing an a l l y l i c hydrogen give a,3-unsaturated hydroperox 

ides i n which the double bond has migrated to the a l l y l i c p o s i t i o n . A 

t h i r d , and more recent ly studied react ion of s ingle t oxygen i s the d i rec t 

1.2- cyc loaddi t ion to an o l e f i n to give carbonyl fragments v i a a dioxetane 

intermediate. 

A. l , U - C y c l o a d d i t i 6 n (Die l s -Alder Reaction) 

Single t oxygen adds d i r e c t l y to the l , U - p o s i t i o n s of most conjugated 

1.3- dienes, inc lud ing c y c l i c and s -c is -d ienes , heterocycles (furans, 

py r ro les , thiophenes, oxazo le s , e t c . ) , and p o l y c y c l i c aromatics, to give 

l,U-endoperoxides as i n i t i a l products(Eq. 12). Molecular o r b i t a l and stat 

S 0 

+ > I Eq. 12 
• . X 0 

-0 

c o r r e l a t i o n s c l e a r l y p r e d i c t t h a t t h e c o n c e r t e d 1 , U - c y c l o a d d i t i o n o f 

s ingle t oxygen to s-cis-dienes i s thermally allowed i n a manner analagous 
36 

to the D i e l s - A l d e r react ion of o l e f i n s . The i n i t i a l addi t ion products 

often undergo f a c i l e rearrangement and/or react ion with solvent to give 

more stable products. Representative examples of the 1 ,U -cycloaddi t ion 

react ion of s ing le t oxygen wi th 1,3-dienes are as follows (Eq. 13-16): 
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a-Terpinene: 15 

Eq. 13 

Tetraphenylcyclopentadienone 55a,62 

Ph 

Ph 

Ph 

Ph 

o 2 Ph 
> 

Ph 

Ph 0 0 

- C 0
 > Ph-f^Vph Ph P h 7 Th 

Eq. lU 

1,3-Dipheny1i s obenz ofuran: 

Ph 

63,61* 

o6--
Ph 

9,10 -Diphenylanthrac ene: 

Ph 

65,66 

-0 

Ph 

Ph. 

Eq. 15 

Eq. 16 

' B . " 1,3-Cycloaddition'(Ene-Type Reaction) 

S ing le t oxygen reacts with o le f ins which contain an a l l y l i c hydrogen 

to give a ,3-unsaturated hydroperoxides i n which the double bond has shif ted 

to the a l l y l i c pos i t i on of the o r i g i n a l o l e f i n (Eq. 17). This react ion of 

H 00H 

0, 
C f - C 2 = C 3 -

Eq. 17 

s ing l e t oxygen i s analagous to the well-known ene-reaction of o le f ins 67 
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Most of the experimental evidence favors a concerted mechanism in v o l v -

ing a c y c l i c six-membered t r a n s i t i o n state. ' Invariably the double 

bond i s s h i f t e d to the a l l y l i c p o s i t i o n , thereby r u l i n g out any mechanism 

i n v o l v i n g hydrogen a b s t r a c t i o n as the f i r s t step to form an a l l y l i c r a d i c a l , 

which would give a mixture of two hydroperoxides (Eq.. 1 8 ) . . 

Eq. 18 

00- 00-

The migrating hydrogen has been shown to be abstracted from the same 

side of the double bond to which the oxygen becomes attached. Photo­

s e n s i t i z e d oxygenations of c h o l e s t e r o l s deuterated at the 7 a - and 7 B-posi-

t i o n s showed almost exclusive migration of the 7a-hydrogen (Eq. 1 9 ) . 

Eq. 19 
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Since the g-methyl group at C^Q s t e r i c a l l y hinders 3-attack by oxygen, the 

oxygen attack on the double bond must be c i s to the migrating hydrogen. 

This s t e r e o s e l e c t i v e hydrogen abstra c t i o n can be r a t i o n a l i z e d by a two 

step mechanism i n which the oxygen f i r s t attacks the double bond to give a 

d i r a d i c a l or i o n i c intermediate which then' s t e r e o s e l e c t i v e l y abstracts an 
7 

a l l y l i c hydrogen atom or proton. However, the absence of any d e f i n i t e 

•Markovnikov d i r e c t i n g e f f e c t with n o n s t e r i c a l l y hindered unsymmetric double 

bonds provides strong evidence against any.ionic or d i r a d i c a l intermediate.. 
55b 

For example, 2-methyl-2-butene gives almost equal amounts of secon­

dary and t e r t i a r y alcohols a f t e r reduction (Eq. 20). Ionic or r a d i c a l 
OH OH 

C ? 3 / H 3 1) \ . I / H 2 C^2 I 

CH 3 H \ H CH 3 j" 

intermediates would also be expected to ex h i b i t a noticeable substituent 

e f f e c t on product d i s t r i b u t i o n . However, the photosensitized or chemical 

.oxygenation of trimethylstyrene gave the same product d i s t r i b u t i o n with a 

v a r i e t y of meta and'para substituents (Y) on the phenyl r i n g ^ ^ (Eq. 21). 

CH_ CH„ . 1 CH OH .OH .CH_ \ / 3 1) 0 ^ 1 | ^ , 2 
,C = C V > w g n > C C—CH_ + C H — C C 

• ^ d i V s . X 2 1 

Y ^C^-Y 

Polar solvents would be expected to s t a b i l i z e i o n i c intermediates, but no 

solvent e f f e c t was observed on the r a t i o of the decay rate to the rea c t i o n 

rate of the intermediate. The s t e r e o s e l e c t i v i t y of the re a c t i o n and the 

lack of a Markovnikov-type d i r e c t i n g e f f e c t , substituent e f f e c t , or solvent 

e f f e c t are consistent with a concerted c y c l o a d d i t i o n of s i n g l e t oxygen to 

the o l e f i n exactly analagous to the mechanism of the ene^reaction of 
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o l e f i n s 5 5 b (Eq. 22), 

E q . 22 

70 

F e n i c a l and c o w o r k e r s have r e c e n t l y r e p o r t e d e v i d e n c e a g a i n s t t h i s 

c o n c e r t e d mechanism. P h o t o o x y g e n a t i o n o f t e t r a m e t h y l e t h y l e n e and 1 , 2 - d i -

m e t h y l c y c l o h e x e n e i n t h e p r e s e n c e o f sodium a z i d e gave a z i d o - a l c o h o l s as 

t h e m a j o r p r o d u c t s a f t e r r e d u c t i o n ( E q . 23 and 2k). The n o r m a l o x y g e n a t i o n 

C N ^ / C H 3 1 ) 

/ 
C H 3 

\ 2) Na SO 3 I 3 / i 

CH„ . J I I T CH„ I 

CH CH_ n _ OH 

I I % I 
CH„ + X C C CH, Eq. 23 

N - OH 

1) a 0 2 - N 3 
2) -Na 2S0 ' 

CH„ 

Eq. 2k 

p r o d u c t s o f t h e s e a c c e p t o r s were f o u n d t o be u n r e a c t i v e t o w a r d s a z i d e i o n . 

S i n c e t h e f o r m a t i o n o f t h e azido-compounds i s c o n s i s t e n t o n l y w i t h a r e a c ­

t i o n , p a t h w h i c h i n v o l v e s an i n t e r m e d i a t e s u s c e p t i b l e t o n u c l e o p h i l i c 

a t t a c k b y a z i d e i o n , t h e y r u l e d out t h e c o n c e r t e d e n e - t y p e mechanism as a 

p o s s i b l e r o u t e t o a l l y l i c h y d r o p e r o x i d e s . 

However, an a l t e r n a t e e x p l a n a t i o n o f t h e i r r e s u l t s ' d o e s n o t r u l e o u t 

t h e c o n c e r t e d mechanism (Eq. 2 5 ) . I f t h e a l l y l i c h y d r o p e r o x i d e i s formed 

by a c o n c e r t e d c y c l o a d d i t i o n mechanism ( p a t h a ) , w h i l e a s p e c i e s w h i c h i s 

s u s c e p t i b l e t o n u c l e o p h i l i c a t t a c k i s a l s o formed i n r a p i d e q u i l i b r i u m w i t h 

t h e r e a c t a n t s , a t t a c k o f t h i s s p e c i e s by a z i d e i o n c o u l d g i v e t h e a z i d o -
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hydroperoxide (path b ) . Two possible structures of the intermediate [ i ] 

are a dioxetane or an ion ic perepoxide.. The product d i s t r i b u t i o n would 

CH3 CH, 

> 
path (a) 3 
path (b) 

(fast) 

[I] 

00H 
I 

-C CH, 
I / 
CH„ 

N, 
N_ CH_ |3 i 3 

-> CH—C C CH0-
I I 3 

CH 3 OOH 

Eq. 25 

depend on the r e l a t i v e rates of the two pathways. In view o f . t h i s a l t e r ­

nate explanation for the formation of azido-hydroperoxides and the evidence 

previously discussed, the concerted ene-type mechanism s t i l l appears to be 

the most l i k e l y path for the formation of a l l y l i c hydroperoxides. 

The rate o.f the ene-type react ion i s markedly increased by a l k y l 

subs t i tuents . - For example, 2,3-dimethylbutene i s the most react ive ene-

type acceptor known, whereas 2-methyl-2-butene and 2-butene are progres­

s i v e l y less r e a c t i v e . T h i s observed enhancement of rate by electron 

donating a l k y l substituents i s consistent with the e l e c t r o p h i l i c nature of 

s ing le t oxygen. 

The ene-type react ion i s not r e s t r i c t e d to simple o l e f i n s . Model 

compounds of carotenoids react with s ing le t oxygen to give unusual a l l e n i c 

a lcohols i n low y i e l d s i n addi t ion to the t y p i c a l addi t ion products (Eq. 
71 72 

26). ' These a l l e n i c products, which are remarkably s imi l a r i n structure 

to fucoxanthin and other carotenoids, may be v i s u a l i z e d as r e su l t i ng from 

an ene-type react ion on the c y c l i c double bond. 

1) V R 

2) Na 2 S0 3 

Eq. 26 
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C . 1,2-Cycloaddition 

Many electron r i c h o le f ins undergo a t h i r d mode of react ion with 

s ing le t oxygen: d i r ec t 1,2-cycloaddition to form unstable 1,2-peroxides 
7 73-75 

(dioxetanes) which thermally fragment to carbonyl compounds ' (Eq. 27). 

h R2 V 

0 0 

II II 
Eq. 27 

R R 2 R 3 R i 

This r eac t ion normally requires spec ia l ac t iva t ion of the double bond (e .g . 

alkoxy subst i tuents) or the absence of an act ive a l l y l i c hydrogen. Indene, 

when photooxygenated i n the presence of sodium azide , gave an azido hydro­

peroxide af ter reduction instead of the normal oxygenation product, homo-

73 
phthalaldehyde (Eq. 28). The intermediate, presumably a dioxetane, i s 

Eq. 28 a^CHO 

"CHO 

intercepted by the nuc leophi l i c azide ion . Dioxetanes which have been 

synthesized by chemical methods or by photosensit ized oxygenation at low 

temperatures a l l undergo thermal decomposition to give only carbonyl f rag-
7^-77 

ments. Molecular o r b i t a l and state corre la t ions for.dioxetane fo r -
74 mation predic t that (2 + 2 ) addi t ion i s allowed, but that (2 + 2 ) S 8L S S 

addi t ion may be forbidden unless the o l e f i n has a low i r - i o n i z a t i o n poten-

t i a l . A stepwise ion ic mechanism i s also conceivable. 

The oxygenation of enamines also gives carbonyl f r a g m e n t s ^ but 

no intermediate dioxetane has yet been i so la t ed or detected i n these 
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react ions . In f ac t , the resu l t s of temperature dependent nmr studies 

were inconsistent wi th a dioxetane intermediate. Dimeric or polymeric 

peroxides were suggested as poss ible intermediates. 
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I I I . LABORATORY SOURCES OF SINGLET OXYGEN 

A. Sens i t ized Photooxygenation 

Sensi t ized photooxygenation i s the o ldes t , the most p r a c t i c a l , and 

s t i l l the most widely u t i l i z e d technique for react ing s ingle t oxygen with 
k-8 

sui table acceptors. In general , the technique consists of i r r a d i a t i n g 

sui table sensi t izer-acceptor mixtures i n so lu t ion with low energy v i s i b l e 

l i g h t i n the presence of oxygen. The most e f f i c i e n t sens i t i ze r s are those 

which give l o n g - l i v e d t r i p l e t s i n high quantum y i e l d s , since oxygenation 
8 l 

general ly proceeds v i a the t r i p l e t state of the s e n s i t i z e r . Some common­

l y used sens i t i ze r s are rose bengal, methylene b lue , hematoporphyrine, and 

t ryp ta f l av ine . In order to minimize photochemical side reactions of the 

acceptor, products, or s e n s i t i z e r , a monochromator or color f i l t e r i s often 

used to s e l e c t i v e l y populate only the desired exci ted state of the sens i ­

t i z e r . • -

The key step i n the mechanism of the sens i t ized photooxygenation 

react ion (Eq. 7-10) i s the t ransfer of energy from t r i p l e t s ens i t i ze r to 

t r i p l e t oxygen to give s ingle t oxygen, I n i t i a l photoexci tat ion of the 

sens i t i ze r followed by intersystem crossing to the t r i p l e t state gives the 

t r i p l e t s e n s i t i z e r . Subsequent energy-transfer from t r i p l e t s ens i t i ze r to 

t r i p l e t oxygen to give s ing le t s ens i t i ze r and s ing le t oxygen i s a sp in -

allowed process. . . 

B. Chemical Oxygenation 

l ) - Hetero ly t ic Decomposition of Hydrogen Peroxide 

Hydrogen peroxide i n . a l k a l i n e so lu t ion i s h e t e r o l y t i c a l l y decomposed 

by hypochlori te ion or bromine to give s ing le t molecular oxygen (Eq. 29 and 

30). 
"0-0-H + "0-C1 > 1 0 2 + HO" + C l " Eq. 29 
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~0-0-H + Br-Br > 1 q 2 + H B r + Br~ E<1' 3 0 

55a 

Using sodium hypochlori te as the oxidant, Foote made extensive use 

of t h i s method of generating s ing le t oxygen for "both preparative and k i n e t i c 

purposes. The technique simply consis ts of slowly adding aqueous sodium 

hypochlori te below the surface of a s t i r r e d a lka l ine so lu t ion of acceptor . 

and excess hydrogen peroxide i n methanol, ethanol, or a mixture of methanol 

and t -bu tanol . High y i e l d s (up to 80%) were obtained with the more reac­

t i v e acceptors, but with less reac t ive acceptors large excesses of hypo­

c h l o r i t e were required to obtain s ign i f i can t y i e l d s . Because of s o l u b i l i t y 

problems a r i s i n g from a l i m i t e d choice of sui table solvents , the oxygen­

at ion of even some highly react ive acceptors (e .g . subst i tuted polyacenes) 

was very i n e f f i c i e n t . S o l u b i l i t y problems and r a d i c a l side reactions 

ser ious ly l imi t - the synthetic u t i l i t y of the hydrogen peroxide-hypochlorite 

method of generating s ing le t oxygen. 
82 

A two-phase system devised by McKeown and Waters overcomes the 

s o l u b i l i t y problem to a great extent. The acceptor i s dissolved i n an 

upper organic layer and bromine i s slowly added with s t i r r i n g to a lower 

aqueous a lka l ine hydrogen peroxide l aye r . Single t oxygen formed i n the 

aqueous layer r i s e s up through the organic layer where oxygenation occurs. 

Bromination and other side reactions again l i m i t the synthetic u t i l i t y of 

t h i s technique. 

2) Thermal Decomposition of Ozone Adducts 

•Ozonolysis of a number of organic and inorganic substrates, inc luding 

t e r t i a r y amines, phosphines, su l f i de s , su l foxides , and su i tab ly subst i tuted 
83 

1-olefins, occurs with concomitant evolut ion of gaseous oxygen, which has 
for some time been suspected to have s ing le t multiplicity.56,8U,85 8U s o Thompson f i r s t reported i n 1961 that at -TO ozone and t r i a r y l phosphites 
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form s t ab l e 1:1 adducts which give the corresponding phosphate and molecu-

l a r oxygen upon warming (Eq. 31 and 32). Murray and Kaplan demonstrated 

(Ar0) 3 P + 0 3 — > ( A r 0 ) 3 P ^ O Eq. 31 

0 

( A r 0 ) 3 P ^ ^0 —^—> (Ar0) 3 P=0 + 102 Eq. 32 

that ifche evolved gas exhib i t s the cha rac te r i s t i c gas phase reactions and 

86 

epr spectrum of s ing le t oxygen. 

. _A s y n t h e t i c a l l y useful technique for oxygenating s ingle t oxygen accep­

tors i n so lu t ion with the t r i pheny l phosphite-ozone adduct was developed 

by MuDrray and Kaplan. The adduct i s formed by passing ozone in to a 
o 

methylene ch lor ide so lu t ion of the phosphite at -78 followed by nitrogen 

purglaag t o remove excess ozone. A cold methylene'chloride so lu t ion of the 

acceptor i s then added and the so lu t ion allowed to warm slowly to room 

temperature. The product i s i so l a t ed and analysed by standard techniques. 

"The nature of the reac t ive intermediate i n so lu t ion has not been 

unambiguously i d e n t i f i e d . Although the products are i d e n t i c a l to those of 
• 88 s ing l e t oxygen reac t ions , B a r t l e t t and Mendenhall have shown that , at 

l ea s t i n the case of tetramethylethylene, the acceptor reacts with the 
o o 

ozonide at temperatures (-60 to -70 ) far below that at which oxygen 
O Q t T Orr 

evo lu t ion i s detectable (-35 ) . Murray and Kaplan, on the other hand, 
o 

found that rubrene reacts appreciably only at higher temperatures (-35 to 
o 

-25 ) . These re su l t s indicate that at low temperatures the t r i a r y l phos­

phi te adduct d i r e c t l y donates molecular oxygen to some acceptors but not to 

others . However, at higher temperatures probably a l l acceptors react with 

free s i n g l e t oxygen evolved by the decomposition of the adduct and perhaps 

some a l so react d i r e c t l y with the adduct. 



- 21 -

Even some r e l a t i v e l y unreactive substrates such as isopropyl ether 

and isopropyl a lcohol have been observed to form ozone adducts, probably 
0 89 

hydrot r ioxides , at low temperatures (-70 ) . Decomposition of these 
.0 

adducts at higher temperatures (>-10 ) leads to evolut ion of gaseous oxy­

gen or , i f su i table acceptors are added, formation of t y p i c a l s ing le t 

oxygen reac t ion products i n y i e l d s up to 6l%. Many other organic substrates 

inc lud ing hydrocarbons, amines, and aldehydes also form unstable ozonolysis 

products or intermediates which are suspected to give s ing le t oxygen upon 
, ... 89 
decomposition. 

These methods of generating s ing le t oxygen a l l suffer from several 

inherent disadvantages. The necessi ty of low temperatures gives r i s e to 

s o l u b i l i t y problems with some substrates. The ozonide and i t s decomposition 

products may catalyze side reactions and must be removed during the f i n a l 

workup of products. -

3) Thermal Decompositon of Polyacene Peroxides 

Many subst i tuted and unsubstituted polyacenes undergo Die l s -Alde r 
6 7 

addi t ion of s ing le t oxygen to give transannular peroxides. ' Some of 

these peroxides have the in te res t ing property of thermally decomposing to 

give gaseous oxygen and the o r i g i n a l polyacene. 
90 

Wasserman and Scheffer demonstrated that the thermal decomposition 

of 9,10-diphenylanthracene peroxide provides a convenient source of s ing­

l e t oxygen subject to temperature cont ro l (Eq. 33). Mixtures of peroxide 

Ph Ph 

Eq.' 33 

Ph Ph 

and acceptor i n benzene or chloroform were ref luxed for two to four days 

to give products i n y i e ld s up to 95%. The react ive intermediate i s probab-



l y s i n g l e t oxygen, but d i r ec t t ransfer of oxygen from peroxide to substrate 

has not been r igo rous ly ru led out. The'necessi ty of elevated temperatures 

l i m i t s t h i s method to oxygenations invo lv ing thermally stable compounds. 

Removal of 9,10-diphenylanthracene during workup sometimes provides a 

major inconvenience. .-' 

€ . E l e c t r i c "Discharge ' . 

The external generation of s ing le t oxygen i n an e l e c t r i c discharge i s 

probaTQly the leas t ambiguous method known for generating s ing le t oxygen, 

but a l s o the most complicated t e chno log i ca l l y . A microwave or r ad io f re -

quency generator and an e f f i c i e n t fas t - f low system are the major requi re ­

ments. A stream of gaseous oxygen at reduced pressures (<5 mm) i s passed 

through an e l e c t r i c discharge which produces oxygen atoms and e l e c t r o n i c a l l y 

exc i ted oxygen molecules. The addi t ion of an iner t gas such as helium 

enables the discharge to operate at a higher t o t a l pressure without de­

creasing the y i e l d of s ing le t oxygen. 

• T h i s method, f i r s t reported by Foner and Hudson i n 195° , i s capable 

of cont inuous ly converting about 10% of the ground state oxygen i n a gas 

stream in to 0p(**~A ) ̂ 9 , 5 0 , 9 1 Qxygen atoms, which are produced i n about 

% y i e l d , are e a s i l y removed by recombination on a mercuric oxide coating 

immediately after the discharge without decreasing the concentration of 

il A 92 93 0„( A ) . ' The gas stream also contains a minor but steady concentra-d g 

t ion o f ^2^^g^ ( ^ o ^ 0.1%) produced by a bimolecular reac t ion between 

two O - ^ A ) (Eq. 3*0.50 The l i f e t i m e s of both 0 ) and 0 ( 1 Z + ) are 

. 20_( 1A ) 0_(V) + 0_(V) Eq. 3*4 . 
. . . . 2 e 2 g 2 g 

determined mainly by w a l l deac t iva t ion under the usual condit ions of the 

discharge system (<5 m m ) . 5 ^ ' ^ Since the rate of c o l l i s i o n a l deact iva t ion 

of O-Ĉ z"*̂ ) i s much faster than that of 0o(^"A ) , the steady concentration 



of 0 ("*"Z+) i s expected to be much less than that of 0 ("*"A ) . 
• . S 2 g 

The concentration of C> ( A ) can be conveniently determined from the 
2 g 

o o 

i n t e n s i t i e s of the 63^0 A and 7030 A bands corresponding to the simultane­

ous deact ivat ion of two 0„("'"A ) (Eq. 3 5 ) . ^ ^ The i n t e n s i t i e s are pro-
2 g 

20 o ( 1 A ) > 20_( 3Z~) + hv Eq. 35 
2 g 2 g 

por t iona l to the square of the O^^A ) concentration. • 
• 2 6 

Use of the e l e c t r i c discharge method of generating s ing le t oxygen has 

been almost completely r e s t r i c t e d to gas phase react ions . Previous to our 

95 

inves t iga t ions the only reported app l i ca t ion of t h i s method to the 

l i q u i d phase was due' to Corey and T a y l o r ^ i n 196k. A stream of oxygen 

gas enriched i n s ing le t oxygen after being subjected to an e l e c t r i c d i s ­

charge was bubbled through a so lu t ion of the acceptor i n various organic 

solvents . Unfortunately t h e i r system proved to be' p a r t i c u l a r l y i n e f f i c i e n t . 

The y i e l d s were very poor, react ion times inconveniently long, and the 

number of reac t ive substrates l i m i t e d . A more e f f i c i e n t system was 

c l e a r l y des i rab le . 
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IV. RESEARCH OBJECTIVES 

A convenient and ef fec t ive laboratory method of generating the meta-

stable "'"A state of oxygen has been rendered highly desirable by the ' 

recent renaissance of in teres t i n the phys ica l and chemical properties of 

s ing le t oxygen. However, no i dea l source of s ingle t oxygen has yet been 

discovered; each known source has i t s own pa r t i cu l a r disadvantages. 

Sens i t ized photooxygenation requires l i g h t and s e n s i t i z e r , both of 

which may in terac t d i r e c t l y with the substrate or products. Sens i t i ze r 

b leaching , usua l ly the r e su l t of oxygenation, i s a lso encountered. The 

l i m i t a t i o n of useful solvents to those s u f f i c i e n t l y polar to d isso lve 

adequate amounts of s ens i t i ze r can be disadvantageous i n some cases. For 

example, s o l u b i l i t y problems of non-polar substrates and solvent addi t ion 

react ions can occur more r e a d i l y i n polar solvents . Removal of s ens i t i ze r 

during workup provides an add i t iona l inconvenience. 

The presence of extraneous chemical species i n the chemical methods 

gives r i s e to competitive side reactions which can complicate analysis of 

the reac t ion and s i g n i f i c a n t l y decrease the y i e l d of oxygenation products. 

Free r a d i c a l oxidat ion becomes s ign i f i can t when large excesses of hypo­

c h l o r i t e are required to oxygenate unreactive acceptors. Base induced, 

s ide react ions can r e a d i l y occur under the h ighly a lka l i ne conditions of 

hydrogen peroxide decomposition. When bromine i s used as the oxidant, 

bromination of o l e f i n i c substrates and products can also r ead i ly occur. 

Di rec t i n t e rac t ion of the t r i a r y l phosphite-ozone adduct with some 

acceptors has complicated the analysis of the mechanism of oxygenation by 
o 

t h i s method. The necessi ty of low temperatures (<-T0 ) to form the 

t r i a r y l phosphite-ozone adducts resu l t s i n s o l u b i l i t y problems and the 
o 

necessi ty of high temperatures (>60 ) to decompose 9,10-diphenylanthracene 

peroxide re su l t s i n the enhancement of undesirable side react ions , 
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espec i a l l y i f e i ther reactants or products are not p a r t i c u l a r l y stable 

thermal ly . Aqueous workup i n the hydrogen peroxide-hypochlorite method 

and removal of side products (9,10-diphenylanthracene and t r ipheny l phos­

phate) i n other chemical methods can be major inconveniences. 

The e l e c t r i c discharge method of generating s ingle t oxygen, used 

mainly by spectroscopists and k i n e t i c i s t s for gas phase react ions , i s 

p o t e n t i a l l y the mildest and the most d i rec t method of react ing s ingle t 

oxygen with sui table acceptors. The r e l a t i v e l y crude system used by Corey 
56 

and Taylor to oxygenate several known s ing le t oxygen acceptors has since 
l | Q 50 

been considerably improved by Ogryzlo and coworkers. ' By t h i s method, 

a stream of oxygen gas enriched i n s ing le t oxygen [about 10% ^(^"A ) a n ^ 

0.1% O ^ J T ) ] can be d i r e c t l y reacted with sui table acceptors without the 

interference of extraneous chemicals, l i g h t , or extremes of temperature. 

The f i r s t 'objective of t h i s research was to determine the synthetic 

a p p l i c a b i l i t y of the e l e c t r i c discharge method of generating s ing le t 

oxygen. Neither the o r i g i n a l so lu t ion experiments by Corey and Taylor nor 
96-98 

l a t e r gas phase experiments conveniently produced syn the t i ca l ly useful 

amounts of oxygenated products. Hence, we f e l t i t h ighly desirable to 

design and test ah e l e c t r i c discharge system which could be conveniently 

u t i l i z e d for preparative scale oxygenations of sui table acceptors. 

•The second objective was the inves t iga t ion of s ingle t oxygen reactions 

wi th acceptors adsorbed onto s o l i d surfaces. With the exception of 

Kautsky 1 s o r i g i n a l experiments, i n which the substrate and sens i t i ze r 

were adsorbed onto p h y s i c a l l y separate p a r t i c l e s of s i l i c a ge l or alumina, 

and two more recent extensions of these experiments, a l l reported s ing le t 

oxygen reactions have been ca r r i ed out wi th the acceptor dissolved i n 

so lu t ion or i n the gas phase. The sens i t i zed oxygenation of acceptors 

adsorbed onto s o l i d supports has never been shown to be a useful technique 
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for preparative scale react ions . We wished to demonstrate that t h i s 

adsorption technique, when used i n conjunction with discharge-generated 

s ing le t oxygen, could i n fact be successful ly u t i l i z e d for preparative 

scale oxygenations. In add i t ion , we wished to invest igate the differences , 

i f any, i n the oxygenation reactions of acceptors adsorbed onto s o l i d 

surfaces as compared to those i n solution' or i n the gas phase. 

" The t h i r d and l a s t objective was an exploratory search for previously 

undiscovered s ing le t oxygen acceptors containing funct ional groups other 

than the usual 1,3-diene or o l e f i n i c groups. 
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V . RESULTS 
95 99 The oxygenation apparatus i s that of Ogryzlo ' and i s described i n 

the experimental sec t ion. The substrates, products, and y i e ld s of the 

successful oxygenation reactions are summarized below (Table l ) . 

Table 1 - Oxygenation Results 

Substrate Product Y i e l d 
A B C 

CH CH 
(1) 

CH 0 OOH 
^ 1 ,C C CH 0 

CH CH 
(2) 

- -

cr 
(3) • 

Ĉ CDOH 
(h) 

NA 33% NA 

0 
p h ^ A ^ P h T T 
P h / -*Ph 

(5) 

0 0 
p h - < _ V - P h 

P h (6) P h 

76% 76% 86% 

Ph 

(7) 

0 $ 
(8) 

82% 91% NA 

Ph 
(9) 

Ph 

Ph 
(10) 

6h% 79% 6o% 

Ph Ph 

Ph Ph 
(11) 

Ph Ph 
(12) . 

NA 73% NA 

(A) i n so lu t ion 
(B) on mic roc rys t a l l i ne ce l lu lose adsorbent 
(C) on s i l i c a ge l adsorbent 
(NA) not attempted 
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o . 

The solu t ion phase reactions were a l l car r ied out at -78 ' i n toluene 

with the exception of tetramethylethylene ( l ) , which was oxygenated i n 

methanol. The oxygenation reactions on s o l i d supports were a l l car r ied 

out at room temperature on mic roc rys t a l l i ne ce l lu lose or s i l i c a ge l adsor­

bents. A l l products were i d e n t i f i e d "by comparison of spect ra l and phys ica l 

data with those of authentic samples or with those reported i n the l i t e r a ­

ture . Add i t i ona l comparisons were made after sodium borohydride reduction 

of the hydroperoxides (_2) and ( 4 ) to the corresponding a lcohols . A l l 

y i e ld s were based on unrecovered s t a r t ing m a t e r i a l . ' Control experiments 

without the e l e c t r i c discharge operating showed no detectable react ion of 

substrates with ground state oxygen. 

A. .- Oxygenation of Tetramethylethylene (TME) 

A methanolic so lu t ion of tetramethylethylene (_l) was exposed to 
• o 

discharge-generated s ing le t oxygen at -78 . Removal of solvent and d i s t i l ­

l a t i o n of the product in vacuo gave a lh% y i e l d of the hydroperoxide (_2), 

' but no attempt was made to recover unreacted TME. Reduction of the hydro­

peroxide with excess sodium borohydride gave the corresponding a l coho l . 

The mar .and i r spectra of the hydroperoxide and the a lcohol were i n good 
55a 100 55a agreement with those reported. Photosensit ized and chemical 

oxygenations of TME are reported to give 82% and 65% y i e l d s respec t ive ly . 

Attempts to oxygenate TME adsorbed onto mic roc rys ta l l ine ce l lu lose or 

s i l i c a ge l were unsuccessful. The substrate was h ighly v o l a t i l e , even as 
o 

a s o l i d at -78 , and was quickly car r ied off by the gas stream. 

B. Oxygenation of 1-Phenylcyclohexene 

Oxygenation of 1-phenylcyclohexene (_3_) on ce l lu lose by discharge- , 

generated s ingle t oxygen gave, i n addi t ion to a mixture of uncharacterized 

products, a 33% y i e l d of crude 3-hydroperoxy-2-phenylcyclohexene (JO after 

chromatography. The nmr spectrum was consistent with the assigned s t ructure . 
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Reduction of the hydroperoxide ( J O with excess sodium borohydride 

gave the corresponding a l coho l . The nmr and i r spectra were consistent 

with the assigned structure and the melting point of the phenylurethane 

was i n good agreement with that reported. 

C. Oxygenation of Tetraphenylcyclopentadienone 

Tetraphenylcyclopentadienone (_5_), when oxygenated by discharge-

generated s ing le t oxygen, gave c i s -d ibenzoyls t i lbene (6) . The y i e l d s were 

i n toluene so lu t ion and 76% and 86% on ce l lu lose and s i l i c a ge l respec­

t i v e l y . The melt ing points and i r spectra were i n good agreement with 

those reported. 55a>62 p n o ^ o s e n s j _ ^ i z e ^ 2 c h e m i c a l ^ 8 , oxygenations of 

(5) are reported to give (_6_) i n 65% and 50% y i e l d s respec t ive ly . 

D. Oxygenation of 1,3-Diphenylisobenzofuran 

' - Photooxygenation of 1,3-diphenylisobenzofuran (_J_) i s reported to 
63 

give a high y i e l d of o-dibenzoylbenzene (_8_). The react ion was repeated 
i n carbon d i s u l f i d e to give a 17% y i e l d of (8) . The melting point of the 

' 6k product was i n good agreement wi th that reported and the nmr and i r 

spectra were consistent with the assigned s t ructure . 

. Oxygenation of (7) by discharge-generated s ing le t oxygen gave (8_) i n 

82% y i e l d i n toluene so lu t ion and 91% y i e l d on c e l l u l o s e . The melting 

point and the nmr and i r spectra were i n good agreement with those of the 

photoproduct. 

E . Oxygenation of 9,10-Diphenylanthracene 

The photooxygenation of 9,10-diphenylanthracene (_9_) i s reported to 
_ . 66 

give the endoperoxide (lO) i n 8l% y i e l d . Repet i t ion of the photooxygen-

. ation i n carbon d i s u l f i d e gave a 50% y i e l d of (10) , which decomposed with 

evolut ion of gas when heated. The melt ing point of the product was s imi l a r 

66 

to that reported and the i r spectrum was consistent with the assigned 

s t ructure . 
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Oxygenation of (_9_) by discharge-generated s ingle t oxygen gave (10) i n 

y i e l d s of 6k% i n toluene so lu t ion and 79% and 60% on ce l lu lose and s i l i c a 

ge l r espec t ive ly . The melting points and i r spectra of the products 

corresponded to those of the photoproduct. 

F . Oxygenation of Rubrene 

The photooxygenation of rubrene ( l l ) i s reported to give the endo-

peroxide (12) i n 80% y i e l d . " ^ ' " ^ ^ The react ion was repeated i n carbon 

d i s u l f i d e to give an 8l% y i e l d of the endoperoxide (12.), which decomposed 

with evolut ion of gas when heated. The melt ing point c lose ly corresponded 

to that reported"*"^ and the i r spectrum was consistent with the assigned 

s t ructure . 

Oxygenation of ( l l ) on ce l lu lose by discharge-generated s ing le t 

oxygen gave a 73% y i e l d of (12). The melt ing point and i r spectrum 

corresponded to ' those of the photoproduct. 

G. Miscellaneous Unsuccessful Oxygenation Reactions 

A number of compounds which were adsorbed onto ce l lu lose and subjected 

to discharge-generated s ingle t oxygen were found to be unsuitable substrates 

under the experimental conditions for various reasons. Choles te ro l , a 

known s ingle t oxygen a c c e p t o r w a s only very s l i g h t l y oxygenated even 

after prolonged exposure. Norbornadiene and cyclohexene oxide were too 
o 

v o l a t i l e even at -78 and dimethyl norbornadien-l,2-dicarboxylate and to lan 

were too unreact ive. Hexamethyl (Dewar benzene) and 9,10-epoxy-l,U,5,8,-

tetrahydronaphthalene were both react ive but gave only in t rac tab le t a r s . 
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VI. DISCUSSION 

The experimental results show that the e l e c t r i c discharge method of 

generating singlet oxygen can be u t i l i z e d for oxygenations on a scale use-, 

f u l to synthetic organic chemists. Suitable acceptors can be e f f i c i e n t l y 

oxygenated both i n solution and on s o l i d surfaces, but the l a t t e r method i s 

generally preferred. The experimental setup i s d e f i n i t e l y a great improve­

ment over that used by Corey and Taylor"^ and can serve as a useful a l t e r ­

native to other methods of oxygenation. 

The major advantages of the substrate adsorption technique arise from 

i t s inherent s i m p l i c i t y ; the acceptor i s exposed only to a stream of 

oxygen gas enriched i n singlet oxygen. Extraneous chemicals which can 

lead to undesirable side reactions are a l l eliminated. Oxygenations on 

s o l i d surfaces can be run at any desired temperature, whereas those i n 

solution generally require low temperatures to prevent excessive solvent 

evaporation. S o l u b i l i t y problems which are inevitable i n the solution 

reactions are eliminated by adsorbing substrates on s o l i d surfaces. The 

workup procedure i s greatly s i m p l i f i e d , since the products can be isolated 

d i r e c t l y from the solution or eluted from the s o l i d support without the 

necessity of removing extraneous chemicals and side products. 

On the other hand, the major disadvantages of the method are the 

r e l a t i v e l y high i n i t i a l cost of the apparatus and the necessity of reduced 

pressures within the system. Because of the l a t t e r r e s t r i c t i o n , solution 

phase reactions must be run at s u f f i c i e n t l y low temperatures to prevent 

excessive solvent and/or substrate evaporation. Although the adsorption 

technique eliminates the problem of solvent evaporation, the substrate 

i t s e l f must be r e l a t i v e l y non-volatile. For example, tetramethylethylene 
. . . . o 

proved to be too v o l a t i l e even at -78 to be oxygenated by t h i s method. 

Substrates ' adsorbed onto s o l i d surfaces' showed no difference i n 
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r e a c t i v i t y towards s ing le t oxygen as compared to those i n so lu t ion . The 

same products were i so la ted i n comparable .yields i n a l l cases. Although 

103 

quenching studies indicate that s i l i c a ge l quenches s ing le t oxygen 

much more e f f i c i e n t l y than c e l l u l o s e , l i t t l e difference was observed i n 

the y i e l d or duration of oxygenation reactions on the two adsorbents. The 

only s i g n i f i c a n t effect of the s o l i d support was to enhance the rate of 

oxygenation by increasing the area of contact between the substrate and 

s ing le t oxygen.-

Exploratory oxygenations of l ,U-dienes and epoxides adsorbed onto 

c e l l u l o s e were a l l unsuccessful. Some substrates were completely unreac-

t i v e and others gave only in t rac tab le t a r s . This area of research 

d e f i n i t e l y requires further i nves t iga t ion . 
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V I I . EXPERIMENTAL 

Discharge Apparatus and Operation / • 

/ 95 99 The experimental setup (Figure 1) i s that of Ogryzlb. 

NEEDLE 
VALVE 

0, 

/ 

MERCURY 
RESERVOIR. 

QUARTZ• 

MICROWAVE 
CAVITY T Q p A y T H v 0 N 2̂ 50 Mc 
= = - ^ " MICROWAVE GENERATOR 

REACTOR 
.VESSEL 

BYPASS 

\ 

VACUUM 
"PUMP 

MANOMETER 

•MAGNETICALLY STIRRED SAMPLE 

F I G . ! . - O X Y G E N A T I O N A P P A R A T U S . 

A pyrex f a s t - f l o v system vas equipped with a vacuum pump (Prec is ion Sc ien­

t i f i c C o . , Model 75) -and a needle valve to maintain a continuous flow rate 

of about 0.2 mmol/sec and a pressure of about 5 mm Hg wi th in the flow 

system. The microwave cav i ty was a foreshortened l/h wave coax ia l type 
104 

with a coupling adjustment. With the gas flow r e s t r i c t e d to the bypass, 

the microwave discharge was i n i t i a t e d with a Tesla c o i l and maintained i n 

a short (about 10 cm) sect ion of a i r - coo led 9 mm OD quartz-glass tubing by 

a Raytheon 2^50 Mc, 100 W generator operating at 70-80 W. In order to 

remove oxygen atoms from the gas f low, a f i l m of mercuric oxide was coated 
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onto the ins ide w a l l of the tubing immediately after the discharge by 

d i s t i l l i n g a small amount of mercury through the discharge. The gas flow 

was f i n a l l y diver ted through the reactor vessel for the duration of the 

oxygenation reac t ion . The mercuric oxide coating was renewed occas ional ly 

(about every 15 min) by d i s t i l l i n g add i t iona l mercury through the discharge. 

General 

Oxygen was from Canadian L i q u i d A i r , . L t d . ; c e l l u lo se powder was W. & R. 

Bals ton , L t d . standard grade; act ivated s i l i c a ge l for oxygenations was 

Davison Chemical commercial grade (100-200 mesh); and act ivated s i l i c a 

ge l for chromatography was from E. Merck Ag. Darmstadt (<0.08 mm). 

Infrared ( i r ) spectra were recorded on a Perkin-Elmer Model 137 

spectrophotometer. Nuclear magnetic resonance (nmr) spectra were recorded 

on a Varian A - 6 0 or Varian T -60 spectrometer. Melt ing points were deter­

mined on a Fish'er-Johns melt ing point block and are a l l uncorrected. 

Gas - l i qu id p a r t i t i o n chromatography (glpc) was car r ied out on a Varian 

Aerograph Model 90-P instrument. A l l y i e l d s were based on unrecovered 

s ta r t ing ma te r i a l . 

Oxygenation of Tetramethylethylene i n Solut ion 

• A so lu t ion of 5.00 g (59.k mmol) of tetramethylethylene ' ( l) (Chemical 
o 

Samples Co.) i n 200 ml of methanol was cooled to - 7 8 and exposed to 

s ingle t oxygen with continuous s t i r r i n g for 1 hr . The so lu t ion was concen­

t ra ted and d i s t i l l e d to give 0.923 g (7-93 mmol, lk%) of hydroperoxide (_2), 
bp 2k (5 mm) [ l i t . 53-55 (12 mm)]. The i r spectrum (neat) and nmr 

55a 

spectrum (CCl^) were i n good agreement with those reported. . 

Reduction of Hydroperoxide (2) 

Hydroperoxide (2) , O.kO g (.3.3 mmol), was reduced by dropwise addi t ion 

- with continuous s t i r r i n g of a so lu t ion of 0.52 g (13.7 mmol) of sodium 

borohydride i n 15 ml of ethanol over a period of about 2 min. P u r i f i c a t i o n 



- 35 -

of .the crude product by glpc gave 'the corresponding a lcoho l . The i r 

spectrum (CCl^) and nmr spectrum (CCl^) were i n good agreement with those 

,. . 55a reported. 

Oxygenation of 1-Phenylcyclohexene on Cel lu lose 

1-Phenylcyclohexene (3) (Ald r i ch Chemical Co . , I n c . ) , 2.00 g (12.6 

mmol), was adsorbed onto 5 g of cellulose.powder and exposed to s ing le t 

oxygen wi th continuous s t i r r i n g for 3 hr . The powder was extracted with 

200 ml of ether i n 20 ml por t ions , the solvent evaporated, and the l i q u i d 

residue chromatographed on act ivated s i l i c a ge l with hexane-ether (.1:1) 

to g i v e , i n addi t ion to 1.13 g of a mixture of uncharacterized products, 

0.700 g (3.68 mmol, 33%) of crude hydroperoxide (k): nmr (CCl^) T 0.76 

(s , 1, OOH), 2.79 (m, 5, Ph) , .3 .80 ( t , 1, C=CH), 5-25 (m, 1, CR"), 7 .30-

9.00 ( m , 6, C H 2 ) . • 

Reduction o f Hydroperoxide jk) 

A so lu t ion of 0.600 g (.3.15 mmol) of hydroperoxide (U) i n 5 ml of 
o 

methanol at 0 . was reduced by the addi t ion of 0.109 g (2.88 mmol) of 

sodium borohydride i n small portions with continuous s t i r r i n g over a period 

of 5 min. P u r i f i c a t i o n of the crude product by glpc gave the corresponding 

a lcoho l : . i r (neat) 2.69 (m), 2.98 ( s ) , 3.30 (m), 3.^2 ( s ) , 6.07 M, 

6.23 (m), 6.69 (m), 6.93 (m), 7.20 (m), 7 .Hi (m), 7.50 (m), 7.85 (m), 

7.97 (m), 8.h5 (w), 8.62 (m), 9.23 (m), 9.^3 ( s ) , 9.6k (m), 10.00 (m), ' 

10.27 ( s ) , 10.61 (m), 10.86 (m), 10.97 (m), 11.38 (w), 11.78 (w), 12.20 (w), 

12.93 (m), 13.18 ( s ) , 13.50 (m) y; nmr ( C D C l ^ T 2.70 (m, 5, Ph) , 3.92 

( t , 1, C=CH), 5.^8 (m, 1, CH), 7.^9 (s , 1, OH), 7.60-8.70 (m, 6, C H 2 ) ; 
0 i m 0 

phenylurethane mp 153.5-155 ( l i t . 152-153 ). 

Oxygenation of Tetraphenylcyclopentadienone i n Solut ion 

A so lu t ion of 2.00 g (5.15 mmol) of tetraphenylcyclopentadienone (_5_) 
o 

( A l d r i c h Chemical C o . , Inc . ) i n 300 ml of toluene was cooled to -78 and 
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exposed to s ingle t oxygen with continuous s t i r r i n g for 1+.5 h r . Ethanol, 

200 m l , was added to the pale purple so lu t ion and the t o t a l so lu t ion concen-
o 

t ra ted to about 100 ml and cooled to 0 to give 1.55 g (3.95 mmol, 76%) of 
0 62 0 

c is -d ibenzoyls t i lbene (6), mp 2lU.5-2l6 ( l i t . 215-216 ) . The i r spectrum 

(KBr) was i n good agreement with that reported (Nujo l ) . "^ 3 , 

Oxygenation of the Dienone (J5_) on Cel lu lose and on S i l i c a Gel 

The dienone (_5_), 0.200 g (0.515 mmol), was adsorbed onto 5 g of c e l l u ­

lose powder and exposed to s ingle t oxygen with continuous s t i r r i n g for 

3 h r . The powder was extracted with 200 ml of chloroform i n 20 ml por t ions , 

the solvent evaporated, and the s o l i d residue chromatographed on s i l i c a ge l 

with benzene to give 0.092 g of s t a r t ing mater ia l and 0.083 g (0.211+ mmol, 
o 

76%) of (_6), mp 211-21U . The i r spectrum was i d e n t i c a l to that of the 

so lu t ion product. 

The dienone (_5_), 0.200 g (0.515 mmol), was adsorbed onto 5 g of 

ac t ivated s i l i c a ge l and treated i n the same manner as above to give 0.137 
o 

g of s t a r t ing mater ia l and 0.055 g ( O . l U l mmol, 86%) of (6_), mp 2ll+-2l6 . 

The i r spectrum was i d e n t i c a l to that of the so lu t ion product. . 

Photooxygenation of 1,3-Diphenylisobenzofuran 

A so lu t ion of 0.100 g (0.370 mmol) of 1,3-diphenylisobenzofuran (j_) 

(A ld r i ch Chemical C o . , Inc . ) i n 1+0 ml of carbon d i s u l f i d e was vigorously 

s t i r r e d i n an open pyrex ' f l a sk and i r r ad i a t ed with a G.E. 275 W Sunlamp 

from a distance of 1 f t for 6 h r . The solvent was evaporated and the s o l i d 

residue r e c r y s t a l l i z e d three times from methanol to give 0.018 g (O.063 
o Q, o 

mmol, 17%) of _o-dibenzoylbenzene (8): mp 1UU-1U6 ( l i t . ll+5 ) ; i r (KBr) 

3.30 (m), 6.02 ( s ) , 6.26 (m), 6.35 (m), 6.91 (m), 7.63 (m), 7.89 ( s ) , 8.1+8 

(m), 8.66 (m), 9.10 (w), 9.33 (w), 9.7U (w), 9.98 (w), 10.22 (w), 10.35 (w), 

10.66 ( s ) , 10.80 (m), 11.71+ (w), 12.1+3 (w), 12.87 is), 13.00 (m), 13.1+8 (m) 

u; nmr (CDC1„) T 2.15-2.95 (aromatic protons on ly ) . 
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Oxygenation of 1,3-Diphenylisobenzofuran i n Solut ion 

A so lu t ion of 0.200 g (O.7I+O mmol) of (j_) i n 150 ml of toluene was 
o 

cooled to -78 and exposed to s ing le t oxygen with continuous s t i r r i n g for 

3 h r . The solvent was evaporated and the s o l i d residue chromatographed 

on ac t iva ted s i l i c a ge l with benzene-ether mixtures to give 0.026 g of 
o 

s t a r t i ng mater ia l and 0.151 g (0.527 mmol/ 82%) of (_8), mp 1H2-IU5 . The 

i r and nmr spectra were i d e n t i c a l to those of the photoproduct. 

Oxygenation of 1,2-Diphenylisobenzofuran on Cel lu lose Powder 

' The furan (j_), 0.200 g (0.7^0 mmol), was adsorbed onto 5 g of c e l l u ­

lose powder and exposed to s ingle t oxygen with continuous s t i r r i n g for 

3 h r . The powder was extracted with 200 ml of chloroform i n 20 ml por t ions , 

the solvent evaporated, and the s o l i d residue chromatographed to give 
0.096 g of s t a r t ing mater ia l and 0.100 g (0.3^9 mmol, 91%) of (8_), mp lU2-

o 

1^5.5 . The i r -and nmr spectra were i d e n t i c a l to-those of the photoproduct. 

Photooxygenation of 9,10-Diphenylanthracene 

Dry a i r was bubbled in to a so lu t ion of 3.00 g (9-09 mmol) of 9>10-

diphenylanthracene (_9_) (A ld r i ch Chemical C o . , Inc . ) i n 1 1. of carbon 

d i s u l f i d e v i a a f r i t t e d glass dispers ion tube and i r r ad ia t ed for U8 hr 

wi th continuous s t i r r i n g . The so lu t ion was concentrated to about 100 m l , 

added to 350 ml of hexane, and concentrated to 250 ml . After standing 

overnight , the white c r y s t a l l i n e product was co l l ec ted and r e c r y s t a l l i z e d 

from carbon d i s u l f i d e to give I.63 g ( .̂50 mmol, 50%) of the peroxide ( lO) , 
o - 66 o 

mp 162-167 dec. ( l i t . dec. at 180 under vacuum). The i r spectrum 

(CDC13) had p r i n c i p a l bands at 3.32 (m), 6.23 (m), 6.71 (m), 6.88 ( s ) , 

7.60 (m), 8.01 (w), 9.68 (w), 10.15 (m), 10.90 (m), 11.05 (m), 11.21 (m) u . 

Oxygenation of 9,10-Diphenylanthracene i n Solut ion 
A so lu t ion of 1.00 g (3.03 mmol) of (_9_) i n 350 ml of toluene was 

o 
cooled to -78 and exposed to s ing le t oxygen with continuous s t i r r i n g for 
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11 h r . The solvent was evaporated and the s o l i d residue chromatographed 

on ac t iva ted s i l i c a ge l with benzene-hexane mixtures to g ive , i n addi t ion 

to O.6U5 g of s t a r t ing ma te r i a l , 0.21+9 g (0.687 mmol, 6h%) of (10), mp 167-
o 

172 dec. The i r spectrum was i d e n t i c a l to that of the photoproduct. 

Oxygenation of 9,10-Diphenylanthracene on Cel lu lose and S i l i c a Gel 

9,10-Diphenylanthracene (_9_), 0.200 g (O.606 mmol), was adsorbed onto 

5 g of c e l l u l o s e powder and exposed to s ing le t oxygen with continuous 

s t i r r i n g for 3 hr . The powder was extracted with 200 mi of chloroform i n 

20 ml por t ions , the solvent evaporated, and the s o l i d residue chromato­

graphed on act ivated s i l i c a ge l with benzene-hexane ( l : l ) to give 0.lU6 g 
o 

of s t a r t i ng mater ia l and 0.pl+7 g '(0.130.mmol, 79%) of (10), mp 166-168 

dec. The i r spectrum was i d e n t i c a l to that of the photoproduct. 

9,10-Diphenylanthracene (9), 0.200 g (O.606 mmol), was adsorbed onto 

5 g of ac t ivated s i l i c a ge l and treated i n the same manner as above to give 
0.1U6 g of s t a r t ing mater ia l and 6.01+2 g (0.1l6 mmol, 60%) of (10), mp 167-

o 

169 dec. The i r spectrum was i d e n t i c a l to that of the photoproduct. 

Photooxygenation of Rubrene 

A so lu t ion of 1.00 g (1.88 mmol) of rubrene ( l l ) (Ald r i ch Chemical 

C o . , Inc . ) i n 500 ml of carbon d i s u l f i d e i n an open f lask was allowed to 

stand i n sunlight for 2 days. The solvent was evaporated and the s o l i d 

r e c r y s t a l l i z e d from carbon d i s u l f i d e to give 0.86 g (1.52 mmol, 8l%) of 
• o 26 o 

rubrene peroxide (12), mp l6l-171 dec. ( l i t . rapid dec. at 150 under 

vacuum). The i r spectrum (KBr) had p r i n c i p a l bands at 3.27 (m), 5.10 (w), 

6.2U (w), 6.67 ( s ) , 6.80 (m), 6.93 ( s ) , 7.17 (w), 7.38 (m), 7.69 (v), 

7.95 (w), 8.1+0 (w), 8.63 ( v ) , 9.31 (w), 9.5L (w), 9-72 (m), 9-95 U ) , 

10.26 (m), 10.1+2 (w), 10.98 (m), 12.81+ ( s ) , 13.01+ ( s ) , 13.77 (s) y. 

Oxygenation of Rubrene on Cel lu lose Powder 

Rubrene, 0.100 g (0.188 mmol), was adsorbed onto 5 g of ce l l u lo se 
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powder and exposed to s ing le t oxygen with continuous s t i r r i n g for 3 hr . 

The powder was extracted with 200 ml of chloroform i n 20 ml por t ions , the 

solvent evaporated, and the s o l i d residue chromatographed on act ivated 

s i l i c a ge l with benzene-hexane ( l : l ) to give 0.053 g of s t a r t ing mater ia l 
o 

and 0.038 g (O.O67 mmol, 73%) of rubrene peroxide (12_), mp 155-162 dec. 

The i r spectrum was i d e n t i c a l to that of the photoproduct. 
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