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ABSTRACT

The dependence of the point properties at the
nucleus, electron density (Q®(0) ) and spin density
(Q°(0) ), on the nuclear cusp is examined for lithium
atomic configuration interaction (CI) wave functions.
Several series of CI wave functions with 18 and fewer
terms. are studied. Importance of the triplet core
spin function to Q°(0) is substantiated.

Necessary, but not sufficient, spin and electron
integral cusp conditions are applied as linear constraints.
For the functions studied, Q5(0) improves on applying
the spin cusp constraint if the free variational spin
cusp is greater than -Z, but becomes worse otherwise.
The electron cusp constraint invariably overcorrects
Qe(O). The effect of necessary off-diagonal weighting
constraints is also examined. No obvious trends could
be found. It is concluded that forcing CI functions
with a small number of terms to satisfy necessary
diagonal or off-diagonal integral cusp conditions
has very limited usefulness. A good QS(O) can be ob-
tained without constraining by (1) including triplet

core spin terms. (2) optimizing orbital exponents.



ii

Sufficient nuclear cusp constraints are developed
for CI wave functions. The generalized cusp-satisfying
CI function has multiconfigurational SCF form with the
correct cusp for each orbital. Sample calculations
with a small Ybasis set are presented. These simple
functions give extremely good QS(O) expectation values
but convergence of QS(O) with respect to basis set
size is yet to be tested. The most interesting dis-
covery is the appearance of Dirac Or—like correction
basis orbitals from energy minimization of the orbital
exponents.

A scheme is depicted classifying previous and
present work on cusp constraints in terms of necessity

and/or sufficiency.
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CHAPTER I

PRELIMINARIES

1.1 Introduction

The postulates of quantum mechanics state that
to describe a system mathematically one needs to
decide on a Hamiltonian for that system and then to
solve the corresponding Schrodinger equation. Instead
of the true Hamiltonian which can rarely be deduced,
one uses the non-relativistic, spinless, time-independent
Hamiltonian in many problems of molecular physics
or quantum chemistry. Moreover, for molecules, the
Born-Oppenheimer approximation is usually used to
parametrize the nuclear coordinates. This type of
simplified Hamiltonian will be implied throughout
this thesis. Solutions of the resulting (simplified)
Schrodinger equation will be called exact. These
exact wave functions contain all the information
needed to calculate any observable of the system
by using the appropriate Hermitian operator. ’Such
a procedure will yield, what will be called, exact

*
expectation values.

£

Note that experimentally derived values of observables

are sometimes adjusted to yield an experimental estimate
for the exact value. For example, the relativistic con-
tribution to the true energy is usually subtracted

from the true energy giving the exact energy.



The complexity of many-body interactions makes
exact analytic solution of the simplified Schrodinger
equation impossible save for a small number of two
and three particle systems. There are two general
procedures that can be followed at this stage.
Either the Hamiltonian may be simplified further in
a way to allow exact solution of the approximate
Schrodinger equation--for example, the Hartree-Fock
method, or approximate methods may be used to solve
the exact Schrodinger equation--for example, series
expansion of the solution. Often the two procedures
are combined. The solutions from both routes are

referred to as approximate wave functions.

In either case energy is almost always used as
the criterion for obtaining the wave function. This
is because there is an easily applied minimum energy:.
principle. The true ground state is determined
uniquely by the lowest eigenvalue of the exact
Hamiltonian. The energy, & , of an approximate
wave function, &V , approaches the exact energy
as &7 becomes more and more similar to the exact
wave function Z% . This is true for other obser-
vables also. But they do not necessarily approach

their exact values monotonically. Here lies a problem:



the use of energy as a criterion for an approximate
wave function does not always ensure reliable expec-
tation values of operators other than the Hamiltonian.
This is especially true for point-properties—--those
properties like the hyperfine splitting, or electron
density at the nucleus--which depend on the value of
the wave function at a single point in space.

Can reliable expectation values be calculated?
There are two distinct approaches to this problem.,
First, extremely accurate approximate wave functions
can be calculated. These must be essentially exact
to be sure of obtaining accurate expectation values.
The effort needed to obtain such an accurate wave
function rapidly increases beyond feasibility with
the number of particles. Thus only the hydrogen,
helium and lithium atoms and the /fz-molecule have
been described well enough for the accurate prediction
of all (nonrelativistic) properties. To make reliable
estimates of properfies of more interesting species,
such as transition metal complexes, or even small-
sized organic compounds seems out of the question
at present. |

Now for a moment contrast these accurate wave
functions with simpler types. ©Simple wave functions,

though not necessarily giving dependable property



values when determined by the energy criterion are

easy to construct and easy to calculate (comparatively
speaking). Of course their complexity also grows
tremendously with the number of particles, but can

be lessened by careful application of chemical in-
tuition--difficult to do for the more complicated
accurate wave functions. The second approach--the

one partially explored in this thesis--utilizes the
simplicity of these smaller, less accurate wave func-
tions, together with the existence of other criteria

as well as energy for wave function determination,

to arrive at a reliable method for calculating atomic
and molecular properties. These other criteria include
known characteristics, theoretical or experimental,
which the exact wave function must exhibit. The quantum-
mechanical virial theorem, the hypervirial theorems,
the cusp conditions, experimentally known expectation
values and the vanishing of net forces are conditions
that can aid the characterization of an approximate
wave function. Naturally only the exact wave function
will satisfy all possible conditions. The usual
procedure is to force fulfilment of those conditions
affecting the property one wishes to calculate.

Different properties will have a different set of



conditions*. The parameters in the functional form
chosen to approximate the exact wavefunction are
minimized with respect to energy while being constrained
to satisfy the desired set of conditions. This is

the idea behind the quantum-chemical theory of constraints.

1.2 Object of this work

The work reported in this thesis will test the
serviceability of nuclear cusp constraints as aids
to make simple approximate wave functions yield good
point properties at.the nucleus. The lithium atom
has been chosen as the system to be investigated
for the following reasons:

(1) Several accurate treatments for lithium

are available?’ ©, 7,

(ii) The system is accessible experimentally.
8, 9, 10, 11, 12

(iii) The lithium atom has correlation phen-
omena characteristic of more complicated
systems but is simple enough to reveal
the results of the method of constraints
without undue computational problems.

Thus, properties of constrained simple lithium functions

can be compared with results of both accurate calculations

For instance, constraining the net forces to vanish,
satisfaction of the hypervirial theorems; and fercing
the correct cusp behavior should improve calculated
force constants, transition probability calculations
and contact properties respectively [1, 2, 3, 471 .



and/or experiment allowing a meaningful assessment

of the usefulness of nuclear cusp constraints.

1.3 :Burvey of following chapters

Chapter II consists of background material nec-
essary for understanding why the present work was
undertaken. Cusp and coalesence conditions are
defined and their applicability to approximate wave
functions explained.

The effects on spin and electron density at the
nucleus, of forcing approximate configuration inter-
action wave functions to satisfy integral cusp cond-
itions are presented in Chapter III. ©Several approaches
are described. |

Sufficient conditions for ensuring a correct
cusp are developed and applied to approximate lithium
wave functions in Chapter IV.

Chapter V summarizes the work presented in
Chapters III and IV. A scheme classifying cusp
conditions and constraints with respect to necessity
and sufficiency is tabled.

Appendix A is a list of atomic units used in
this work. Definitions and forms of certain basic

types of approximate wave functions are presented



in Appendix B. Knowledge of these types is assuméd
in.the text. Methods for applying linear constraints
to variationally determined approximate wave functions
are outlined in Appendix C. Appendix D discusses

the integrals needed in this work and Appendix E
contains the description and properties of the complete

series of functions defined in Section 3.3.



CHAPTER II

BACKGROUND

2.1 Review of 2S ground state lithium atomic wave

functions and contact properties

To understand the reasons for development and
application of special constraint techniques to calculate
nuclear point properties, a look at some of the past
work on lithium wave functions is necessary. No attempt
to cover the vast literature is made but important
aspects pertaining to the problem will be briefly
discussed. A collectionirof some of the more signi-
ficant calculations is presented in Table I.* Entries
are energy ordered--the best at the bottom. A glance
at the table reveals that wave functions so ordered--
with energy as a criterion of accuracy--are not in
the same sequence when the spin density at the nucleus,
Q°%(0),is a criterion. The difficulties in calculating

both Q°(0) and the corresponding electron density,Q°(0),

*

Other workers--see [13, 14, 15, 16, 17] --have
also tabulated lithium groundstate calculations
from the literature.
References [5, 6, 18, 19, 20, 21, 22, 23, 24, 25, 26]
contain calculations that have appeared in the liter-
ature since Iunell's tabulation %17] in 1968.



Table 1. Representative wave functions from the literature for the lithium 28 groundstate.

Spin density - Electron density
Description of Reference Energy at the nucleus at the nucleus
wave function

Q%(0) % error® Refer- Q%(0) % error? Refer-—

ence ence

1 1limited CI, including

functions e-%" where

d =1.75, 3.5, 7.0 27 -7.431849 0.2284 + 1.3 27

2 analytical HF 28 —7.43%2727 0.1667  +27.9 29 13.8203 +0.1 29°
3 UHF | 29 ~7.432751 0.2248 + 2.8 29 13.8204 +0.1 29c
4 PUHF of Sachs®’ 17 ~7.432768 0.1866 +19.3 17
5 EHF (projected) 20 -7.4%32813 0.2412 - 4.% 20
© open shell, 2 determin-

ants, ©,- spin '

function 30 -7 4436 0.3002 -29.8 31 13.519% +2.3 2
/7 open shell, 3 determin-

ants, (spin a

optimized) 32,33  =7.4436 0.2417% - 4.5 13 13.5240 +2.2 =

8 open shell, SEHF, 2
determinants, 6, Ne}
spin function 17 =7.447529 0.2055 +11.2 1Y



Table I. Representative wave:functions from the literature for the lithium 28 groundstate.

(continued)
Spin density Electron density
Description of Reference Energy at the nucleus at the nucleus
wave function S 3 p B
Q°(0) % error® Refer- @ (0) % error  Refer-
ence ence
~9 open shell, SEHF, 3 det-
erminants €Spin optim~
ized) 17 =-7.4475326 00,2265 + 2.1 17
10 G1-EHF (projected) 21 =7.447560 00,2095 + 9.4 21 13.864 -0.2 21
11 EHF (spin-optimized) 24,25 -7.447565 0.2265 + 2.1 24,25 15.8646 -0.2 25
12 s-type basis, 330 term ‘
CI (no T4 23 =7.448520 0.2278 +.1.5 23
13 s,p-type basis, 310 term
CI (no rij) 23 -7.472680 0.2398 - 3.7 23
14 scaled 208-term CI (no
T, .)with 2 non-linear
J' parameters 34 -7.473%69
15 45 term CI (no ri.), _
STO basis J 35 -7.47710  0.2065 +10.7 13 13.8661 +0.2 36

Ot

16 15 term correlated func-
tion, ©, spin function 37 -7 4771



Table I. Representative wave functions from the literature for the lithium 28 groundstate.
(continued)

Spin density Electron density
Description of Reference Energy at the nucleus ] at the nucleus
wave function

Q%(0) % error® Refer- Q%(0) % error® Refer-

ence ence
i? 60 term correlated func- _
tion, ©, spin function 6 -7.478010 0.2405 - 4.0 © 132.8%27 0.0 38
18 100 term correlated func-
tion(spin optimized) o -7.478025 0.2313 0.0 6 15.834]1 === 58
19 Bruckner-Goldstone ) =7 478 0.230
Diagrammatic Perturbation 5 +0.002 +0.002 0.0 5
20 Exact (Experimental £
QS(0) ) 39 -7.478069 0.2313 — 8
8% error = Q°(0) (experimental) - Q°(0) (calculated) x 100%
Qs(0) (experimental)
b% error = Q°(0) (Larsson, #18) - Q°(0) (calculated) x 100%
Q€(0) (Larsson, #18)
CCalculated from data in reference. -

dCalculated in this work to be QS(O) = 0.2425.

eCalculated in the course of this work.

fSee reference [40] .
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*
23 and Larsson?.

are evident from the work of Jacobs
Jacobs studied the convergence properties of
configuration interaction (CI) wave functions and

found erratic values of Q°(0) for Ii and Q%(0) for

He for wvarious expansions converging in energy.

Even Larsson's 100 term correlated function**, the

most accurate lithium groundstaté function available,

has not converged in these particular properties be-
cause another 100 term correlated function, identical

in energy, gives a Q%(0), Q°(0) different from the

values listed in Table I, by 0.07% and 0.1% resPectively;
For larger systems errors in QS(O) of 25-50% seem

to be common. See, for example, the calculations

on boron, carbon, nitrogen, oxygen and fluorine by

Schaefer et alfL1

Some technique for systematic-
ally calculating such point properties is clearly
needed, especially for larger systems where formation
of accurate correlated functions becomes virtually
impossible. Cusp constraints may provide a method.

First of all, for what is the spin density,

Q%(0), useful? It provides an important contribution

*
From results communicated to Professor D. P. Chong.

* %
A brief description of various wave function app-
roximations is given in Appendix B.



to the hyperfine interaction energy. This type of

interaction arises from the coupling of electronic

and nuclear electric and magnetic fields. The resultant

splitting of ' energy levels can be accurately measured

for alkali metal atoms in atomic beam magnetic res-
onance experiments. IExperimental results from the
alkali metal group can be exploited as a check in
developing theoretical techniques of forming wave
functions. Improved techniques will then enable
theoreficalianalyses of more complex systems where
experiments are not so easily interpreted.

The hyperfine energy*, A Epg , has major contri-
butions from Fermi contact, magnetic dipole-dipole,
and electric quadrupole interactions. For an S-state
only the Fermi contact term, describing electronic

spin interactions at or within the nucleus, is non-

zero and
BB =h0r =L L)t 4, Q) (2n1)

where

7@} <’5 :§:£J;4 A}f‘}>

(2.1.2)

*
See _more completevdutlines and further references
in [41, 427 .
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/6Cv ,/AQQ are the magnitudes of the magnetic moments
of the nucleus and an electron respectively; Z

is the nuclear spin and Jkt),the Dirac delta function.

For Li’
A7 = 803.512 Mc/sec [8] .
Substituting the accepted values Ly = 3/2,
,AZN = 3.256310 nuclear magnetons43, /Aké = 1.00116

Bohr magnetons,into (2.1.1) one obtains the experimental

spin density
Q°(0) = 0.2313 a;° in atomic units.

The quantity, Q°(0), is the greatest‘source of error
in theoretical hyperfine calculations for light atoms.
The reason for this is the inadequacy of approximate
wave functions to describe in detail correlation
effects and core polarization.

The correlation problem is concerned with the
description of the instantaneous repulsions among
electrons. Techniques of formulating approximate
wave functions must attempt to deal with this to
obtain helpful results, especially in problems of

interest to chemists. The correlation energy, E

corr’
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defined as the difference between the Hartree-Fock
(HF) energy, Eyp, of a system and the exact energy,
E,

Ecorr = Egp - E (2.1.3)
provides a measurement of the interaction. EHF is
chosen as a reference because the HF method neglects
short-range interactions completely; each electron

is assumed to move in a potential created by average
movements of all other electrons. Consequently an
electron never experiences direct repulsive forces

in a HF function. (Application of the Pauli principle
by antisymmetrizing the function helps somewhat,
though, automatically including correlation between
electrons of the same spin). Consider now the specific
case, the lithium 2S ground state. Its HF function

can be written

Yie =AL Qstixt) @) go) osB) )] (2-1.4)

in terms of functions of atomic coordinates, & ,
the usual spin functions o< /? and u/7 s, the
antisymmetrization operator. ©Since the ls contri-

butions cancel exactly,only the 2s orbital contributes
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to the spin density (real orbitals assumed)

Qjﬁ/a/ = (ﬂ,{; (0), (2.1.5)

and provides but 72% of the experimental value (Table I).
One might conclude that this result is due to lack

of correlation,but there is another important effect--
core polarization.*

Exchange forces are more attractive between
electrons with the same spin than electrons with
different spins. The unpaired 28 electron thus
exerts a different force on each core electron and

so the K shell orbitals should also be different--
that is there should be a split K 8hell. But the

HF method forces the functional form of the o and
£ spin core orbitals to be the same. In the
X %
unrestricted Hartree-Fock (UHF) method  this part-

icular restriction is relaxed,

Yiwe = AL Qs ) Pisl) g1 oses) ], (2:1.6)

*
Sometimes referred to as exchange, or spin, polarization.
* %
The UHF method is more correctly referred_to as
the spin-polarized Hartree-Fock method iz} .
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allowing polarization of the core orbitals by the
unpaired spin. Now the K shell can contribute to the

spin density;

Q:0) = Qo) —P50) + B ll) (2.1.7)

and one can see the spectacular improvement from

HF — UHF in Table I. But (wr is no longer an
eigenfiunction~ of the total spin. A small quartet
contribution exists. ©Since’spin operators commute
with the non-relativistic Hamiltonian, and sincé a
spin dependent property is being calculated it is
desirable from a physical viewpoint that a wave func-
tion have sharp spin. Perhaps it is this lack of
sharp spin in UHF fuhctions that causes tremendous
errors——e#en the wrong sign--in spin densities of
cértain systems?oq If the quartet component is
annihilated from a lithium ground state UHF function
the spin projected unrestricted Hartree-Fock (PUHF)
function--a pure doublet state--is obtained (for

Li 25, still),but it has a poorer spin density(Table
I). The quartet component has a non-negligible con-

tribution. An improvement to the PUHF procedure is

to project a UHF-type function and then minimize the-
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21 20

enefgy. Goddard™", Kaldor, Schaefer and Harris
have obtained reasonable, but still erratically
behaving spin densities by applying this method--~
called the spin-extended Hartree-Fock (SEHF) tech-
nique-~to lithium. Q%(0) is dependent updn the basis
set used in these calculations.

Expansions such as configuration interaction
(CI) or correlated functions can describe correlation
in principle but sheer technical problems have pre-
vented accurate calculations on systems larger than
lithium by means of these approaches. Brueckner-
Goldstone many-body perturbation theory does provide
a well-defined procedure for calculating wave functioens
and properties to any desired accuracy. However, it
also becomes unwieldy for systems more complex than
the first row elements.

Separation of core polarization from correlation
effects is difficult for approximate functions.
Radial, or 'in-out', correlation can appear to split
the core when small basis sets are used, giving one
core electron a.slightly different probability dis-
tribution from the other. Chang, Pu and Das5 est-
imate by the many-body perturbation approach that

correlation and core polarization contribute 15%
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and 80% respectively of the difference between the
HF and exact spin densities. Core polarization seems
to be an important attributeto build into an approx-
iﬁate function.

The existence of two degenerate spin functions
for doublet spin states of three electrons further
complicates the computational problem. These functions

are usually designated.

e, = ocﬁx —/ya(o( =/0(/€ —-ﬂo()o(
| (2.1.8)
92_=020<o<ﬁ —'o<’80< —p’xo(

e, , corresponding to the coupling of a singlet
core with the doublet valence shell, and &, , a
triplet core with the doublet valence shell. The
most general three electron doublet function can be

written as the linear combination
®=q,6 +a,o, . (2.1.9)

G, would be expected to describe a more stable
core and indeed ©, has a small effect on energy.
14, 50, 44 For a fully optimized function, however,

ag:# 0. More important in the present context,



20

ay has a profound effect on spin density6’ 17, 24, 25,

present work perhaps by improving the description
of core polarization. The projection operator used
in PUHF or SEHF functions fixes the ratio al/a2
'to a value not necessarily the best for energy or
other properties. Reéently both Ladner and Goddard25,
Kaldor and Harris24 have overcome this restriction in
theif spin-optimized SEHF functions. Dependence of
Q%(0) on ©2 may be seen in Table I. The difficulty
need not occur in CI or correlated expansions since
al/a2 is implicitly optimized in the secular equations.
If an accurate spin density is desired the
neglect of relativistic effects must be exémined.
These effects should be greatest near the nucleus
where an electron has maximum kinetic energy and hence
might be important for Fermi contact interactions.
A good discussion of relativistic corrections is
presented by Tterlikkis, Mahanti and Das.45 Sélving
the Dirac-Hartree-Fock (DHF) relativistic equations
for the alkali series enabled the correction
'QEHF(O) - QEF(O) to be determined. Their results

indicate that relativistic corrections are small for

lithium (0.2%), sodium (0.7%) and potassium (2%).
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Electron density

Q) = <ZN JQ’)} (2.1.10)

is needed to express the isomer shift in MSssbauer
spectroscopy?6 Although core polarization is not
so important, since orbital contributions are summed
(in contrast to QS(Q) ), the basic difficulties of
calculating a point property remain. Discussion of
theoretical conditions that, if imposed on approx-
imate functions, might improve these properties are

now presented.

2.2 What are cusp and coalescence conditions?

Consider the usual (non-relativistic, time-
*

independent) Hamiltonian in atomic units for a
system of N charged particles:
~ =7 +V
(2.2.1)
where

N N
. / 2 2, Z;
I= = VE = =

=/ ¢ (< k‘J

T, V, are the kinetic and potential energy operators:

?7; s Z; , the mass and charge of the 1 th

particle.
The Coulomb potential contains singularities at the

set of points {Paczo}» , that is, at the coalescence

*
See Appendix A.



of any two (or more) particles. The eigenfunctions
of H belong to Hilbert space and must be continuous
(save for a finite number of points), square integ-
rable, and bounded everywhere%7; Because an exact
wave function must be finite, even at the singular

points of the Coulomb potential, it must fulfil the

- . 2
conditions known as coalescence conditions-. Coale-

scence conditions are referred to as cusp conditions

for the case when the wave function has no node at
the point of coalescence.
To illuminate the preceding remarks examine

an exact one-electron hydrogenic 1ls wave function%8

Zﬂ/s(/,’) = /\/exp/—Zk) where N is the
normalization constant and Z, the atomic number. ZV
is continuous everywhere but not differentiable since
the derivatives éﬁ? ,éj? ,214 , do not exist at

dx 2% Jz
r = 0, the coalescence of the electron with the

nucleus. However there is a cusp--a discontinuity

in the slope--described by the cusp condition,

oY = -z,
dr /F=0

at the only point of coalescence (r = 0). All hyd-
rogenic wave functions satisfy this relationship

but the coalescence condition for non-s states is



trivial.
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Any well-behaved eigenfunction of a Ham-

iltonian must satisfy the coalescence conditions.

The ratio 14265@7 is then constant and does not

contain singularities when gy is an exact eigen-

function of H.

49, 50 The following distinctions

are emphasized to keep terminology clear in the re-

mainder

1.

of the thesis:

A cusp of a function, f(x), is the point,
f(xo), at a discontinuity of the slope,
f'(x), where f(x) changes its direction.
It is also associated with a value:
f'(xo)/f(xo).

A doalescence condition is any mathemat-
ical relationship which an exact wave
function must satisfy at one of its
cusps.

A cusp condition is a case of a coalescence
condition when the wave function has

no node at the singularity.

Coalescence is the spatial coincidence
of two or more particles. Only the two
particle case is considered in this work.
When the particles are both electrons

it is electron-electron coalescence;

when one is an electron, the other a
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nucleus, it is electron-nucleus, or
nuclear coalescence.
The cusp and coalescence conditions for molecular

and atomic wave functions will now be reviewed.

2.5 Theory of coalescence conditions for exact wave

functions
Kato47 derived, for an N-electron, spinless,

atomic wave function, the differential cusp conditions

“A
_9__%/5,,41,.-‘,5,)/ = -Z Y0t b ) (2.3.1)
ot k=0

for electron-nucleus coalescence

/\
and/é Vit b nti)

‘___‘__4' //— k} . // (205-2)
dta )/71—10 2 %"’ Lok o)

for electron-electron coalescence. Here Z is tgs
atomic charge of the nucleus in atomic units; Z4’

is the average of 29 about a small sphere with

center at the coalescing particles; and r = (51 +‘£2)/2.
A nonrelativistic Hamiltonian and the heavy-nucleus
.approximation were used in Kato's derivation as well

as the assumption that only two particles were coales-

51

cing. OSteiner used the same assumptions and obtained

cusp conditions for the probability or, electron,
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density--the diagonal element of the first order

density matrix.

‘gf/m = -27 () (2.3.3)

Equivalent integrated forms of Kato's cusp conditions

given by Bingel,who extended them to molecules48

52 .

and subsequently proved them rigorously;~ are:

Yitibtomt) =Wk, M/=2:6)  (2.3.10)

#Fi @ (hnth) + OF)
and

%/f/;’fz)m[/v) = %/f;,f;,{’s"”[N)"//"E"/&) (2.3.2a)

+A/_7-7- .CKI)[.?J'”I’V) +§//72.z M

~

The condition‘(2.3.la) is satisfied for any nucleus,
nuclear charge ZZ°< , at the origin of the coordinate
system. The vector a is not determined by the Coulomb
singularity but has magnitude depending on the coordi-
nates of the non-coalescing particles and direction
parallel to the electric field produced by these

52 48

particles<™. Bingel also found cusp conditions

for the general first order density matrix including
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spin, extending Steiner's derivation to include the

spin density cusp.

o e°
or

Note that the spherical averaging operator needed

) = —2F (&5@)) ' (2.3.4)
F=o0

to express the differential cusp conditions (2.2.1)
and (2.3.2) precludes any possibility of obtaining
coalescence conditions from these expressions that
are not trivial in nature.

Cusp conditions for the special cases of the
helium atom and hydrogen molecule have been found
and discussed by Roothaan and coworkers.49’ >0
Their method was to explicitly consider the ratio,

Ff&&”&y , for the exact (spinless) wave function.

Among the necessary relations needed to keep this

ratio constant are conditions on ZZ/ similar to
* O . . .
those of Kato. Higher order Coulomb singularities

(coalescence of more than two particles) may be
examined this way. For more complicated cases,
however, this approach becomes very involved. ©Pack
and Byers Brown2 were the first to derive rigor-

ously equations similar to (2.3.la) and (2.3%.2a)

%
The conditions of Roothaan et al appear the same

as Kato's,but a different set of independent variables

has been used.
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allowing non-trivial coalescence conditions as well
as cusp conditions to be found. They also removed
the heavy-nucleus approximation. A brief outline
of their instructive method is presented here:

The general N-particle Schrodinger equation
using the Hamiltonian (2.2.1) was éolved in the region
of coalescence of two particles (labelled 'l' and
'2' for convenience)--that is, in the manifold of
points /z £ € » iy > e for all %7 ¥/,
and € , some small positive constant. Transforming
the space-fixed position coordinates 47 , ‘f; to

the center of mass and relative coordinates

and —
Fra = Fr —F, S =
~ ~~

—~

m/,!_’/ +h71§
729, + 777,

of the two particles, allowed the Schrodinger equation
to be rewritten in the vicinity of the coalescence

as

. <
W-£)Yy =2 - L 7, +C9/h§}]Z/=0 (2.3.5)
/’/z 'Z/(/«Z
CZ; is the LaPlacian operator for the variable
L2 ’//%u is the reduced mass, Z1,Z, the charges
of the particles, and.Cynﬁf) contains all other terms

of the Hamiltonian of order equal to or greater than
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zero in /5; . As 4, — 0, OUt,°)—>constant.

The general bounded solution of (2.3.5) has form

o +A
Y = = > rthmh Yo (0, ®) (2.3.6)
£L=0 m=—p

where ,[}1 = (/',9,¢) and the );m ‘5are spherical har-
monics. For electron-nucleus coalescence, with the
nucleus at the origin, /;, Dbecomes the radius vector
l; of the electron. Substituting (2.3%.6) into

the differential equation (2.3.5), expanding

as a power series in F,

"F:(m//') = = ﬁi”?‘) K (2.3.7)

k=0

and solving, Pack and Byers Brown found a unique

solution, true for /;,; £ €,

%sﬁ){m-_ YAm( 'd’)[/ +—_//ZJ

(205’08)
%

Z ﬁ-n m A+l,m(5,d>) + @'(V,;'_)}

m=-X-

where ¥ = 23,2?1//Q21
They defined A , @ parameter related to the nodal

. ‘
structure of the system, to be the smallest value

*

The physical meaning of A as defined here is

lost when the system does not have spherical symmetry
about the coalescence.Examples are electron-electron
coalescence in atoms, or any type of coalescence in
molecules.
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()
of £ for which ﬁ:m % O at the coalescence of the
two particles. The equivalent differential form

of equation (2.3.8) is 55

/\
l -
9_5_2_?2_ = & /—’—- (ﬁ) (2.3.8a)
=0

- p
+ g
(9 V{?_ hL=o l A Iz
-\ . P
where gFe angular average operator, y, 1s modified
<+
€
to = /QSZXSHﬁ(9,¢) . This equation gives
M= -2

non-trivial coalescence conditions for the case of
a node at coalescence in contrast to earlier approaches.
For the (usual) nodeless case A is zero and Kato's

cusp conditions can be recovered as

Q?ﬁ = y(@)h;:O .

a l(lz_ h"‘-: o

¥ is 1/2 for electron-electron coalescence and

g =-—%/2 for electron-nucleus coalescence--the
same value that Kato found, but with a mass correction
to the heavy-nucleus approximation.™* Note again that

* %
all exact spinless wave functions must have an ex-

pansion like (2.3%.8) around a Coulomb singularity.

*

AL =1 if mass corrected atomic units are used.
See Appendix A.
* X

Matsen's 'spinless' wave functions are not really
spinless. ©Spin is represented implicitly by applying
appropriate permutations of the symmetric group to
a spatial solution of the Schrodinger equation.
See [16] for further information.
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But a spinless wave function is not realistic.
Any physically acceptable, quantum-mechanical wave
function must contain spin coordinates for its part-
icles. Let us restrict the discussion now to the
specific case of N-electron atomic and molecular wave
functions. In the Born—Oppenheimér, or heavy-nucleus,
approximation the nuclear coordinates do not appear
explicitly and only the electronic coordinates need
be considered.* (Also the Pauli principle for a system
of identical fermions must be obeyed leading to a
wave function antigymmetric with respect to the inter-
change of any two sets of electronic coordinates).
In the nonrelativistic approximation both the total-
spin operator and an arbitrary spin-component operator

commute with tle Hamiltonian.

[ H]=[:,H] =0 (2.5.9)

Thus it is desirable that a wave function with spin,
@5),1 , should have sharp total (electronic) spin

and a sharp spin component:

ﬂjz@s,m S(s+1) -@-s,n

I

(2.3.10)

2Xz‘fsn4 = Pqé@sJA

*The effects of nuclear spins on the wave function
can be included, if necessary, as perturbations.



31

where @g'm = é (kS ) FeSo, 0 FnSw) is a function
of space and spin coordinates, 4&' and S; , of
each electron. Any wave function containing spin

22

can be expanded54’

@s,n = KZ%/17»51“;_/2/)Qs,m,-k/f,,sz,...SN), (2.3.11)

Here d@snis not normalized. The spin functions
{E%mﬂk} constitute the complete set of linearly inde-
pendent spin functions for N electrons. They are
eigenfunctions of Ja and _QJ;_- having eigenvalues
S(S+1) and M respectively. The functions {Z%] are
formed by symmetric group operations on some spatial
solution of the Schrodinger equation and are all
degenerate energy eigenfunctions. ©Since an exact
spatial solution satisfies the coalescence conditions
(2.3.8) each ;4: must also, necessitating the satis—
faction of (2.3.8) by an (exact) spin containing
function, éﬁz}1 . And as spherically averaging
does not affect the argument, the differential cusp
conditions of Kato (2.3.1), (2.3.2) also apply.

These preceding approaches all have the same
general limitations: |

1. They only treat two particle coalescence.

Higher order singularities, when /?j <€
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for several ¢,  , are assumed not to
occur. Thus the behaviour of exact wave
functions at (Coulomb singularities has
been investigated for a limited number
of points in the manifold

{hy =0 ; ,J=1,N; [=#Q/}.

2. 'They really treat only the spherically
symmetric part of the cusp. A spherical
average over the wave function in equations
(2.3.1a), (2.3.2a), (2.3.8) must be taken
if relationships involving completely
determined quantities are désired. The
angular dependence of the Coulomb cusp
arises from the other (N-2) particles.e’ e

In a physical sense these limitations are not
severe. The value of the approaches is that necessary
conditions for the behaviour of exact wave functions

(with spin) at the most important Coulomb singularities

have'been derived.

' . *
2.4 Cusp calculation methods for approximate wave functions

*

Observe the following distinctions to avoid later
confusion. Cusp and coalescence conditions given by
equations (2.3.1), (2.3.2), (2.3.8) are the ones
mentioned and applied in this thesis. An exact
wave function necessarily satisfies these conditions,
although they are not the only ones. Approximate
wave functions can satisfy them also in a necessary
and/or sufficient way. These aspects of cusp condition
applications will be discussed more fully later in the
text.
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Wave functions (with their derivatives) obtained
by approximate methods do not necessarily have the
same types of discontinuities as the corresponding
exact functions. 1If one is striving to copy an exact
function, as is usually the case, the approximation
could give better point properties if it has the -
correct behaviour at the singular points. Pluvinag656
was among the first to apply this reasoning; Kato47
‘was the first to provide a general tool* for describing
Coulomb singularities. In this light it is of general
"ihterest to analyse the importance of the cusp.
How might the proper cusp be important for approximate
wave functions? To answer this look at its effect
on expectation values. First, the energy.

The electron-electron cusp seems, at first glance,
to be directly related to the correlation problem.
A proper description of correlation phenomena surely
involves the behaviour of the wave function at electron
coalescence when two electrons approach the same point
in space. Correlated wave functions (containing
interelectronic coordinates, ﬁy , explicitly) converge
more rapidly than configuration interaction (CI)

expansions without rij .35’57 The difference could

*

The absence of a treatment for the higher order sing-
ularities should not be too serious [49] . Three
- body effects appear to be much less important than
two body interactions in defining atomic and molecular
properties. See, for example reference [5] .
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be that correlated functions can easily represent exact

electron cusps. CI functions for helium with a finite

57

number of terms cannot possibly since the occurrence

of only even powers of rij

tates (%é%ﬂﬁrg=o = 0. (Compare with (2.3.2) ).

in any expansion necessi-

Analyses by Gilbert58 and Gimarc, Cooney and Parr,*
however, subscribe that adequate description of the
Coulomb hole contributes more to correlation energy
than does proper cusp behaviour. The cusp region

lies inside the energy-important part of the Coulomb
hole. ©Since electron-nucleus contribution to correl-
ation energy is negligible**.it would seem that the
accuracy of cusps, both electron-electron and electron-
nucleus has little to do with the accuracy of energy.

. There remains the question with respect to other
expectation values. Recall that there is little
connection between the accuracy of approximate energy
and accuracy of different, approximate properties.
Consequently the conclusions reached in the previous
paragraph for energy may not be valid for other obser-
vables. Reiterating section 1.2, the object of this
thesis will be to examine the relationship of the cusp

to certain properties--~the electron and spin densities

*
Quoted by Gimarc and Parr [57} .
* k

This conclusion of Coulson and Neilson for the case
of helium was quoted by Gilbert [58] .
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at the nucleus. Previous work done on this specific

59, 60

problem will be reviewed in a later section.

The next step is to decide how to evaluate cusps
for approximate wave functions. Obviously if a function
satisfies equations (2.3.1), (2.3.2) or (2.3.8) it
has a proper cusp, but this approach is not practical
for almost all wave functions, due to the tediousness
of the algebra, nor does it give an estimate of the
closeness of the cusp to the correct value (37 .

FEasier methods exist.

The electron~nucleus cusp evaluation for self-
consistent field (SCF) orbitals is well documenteds8+23
(However the remarks concernihg electron-electron
cusps in CI functions made earlier in this section
also apply to SCF functions; it is difficulr for a
wave function without explicit rij correlation to

have the correct electron-electron cusp). An exact

SCF orbital has the general form

Dpom (F,6,8) = FEFnolt) Yomlo,9) . (2.4.1)

n ’ ya y 7 are the usual orbital quantum numbers;
g}}hj are the spherical harmonics. To satisfy the
general coalescence conditions (2.3.8a) for electron-

nucleus coalescence it is sufficient that the radial
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part of @him, Pj{%gﬂﬁa obey

It — _z2 2.4.2
(/+1) —9—;—&')}%0 Z £.,0) . (2.4.2)
Numerical solutions of‘the HartreefFock (HF) equations
- have this condition built into them automatically

and consequently should ha?e good cusp values. One
indication of convergence of the non-exact, analytical

HF solutions is the closeness of the ratio

&+1) _8_721_) (2.4.23)
75,12/0) a" ”—:O

' . ..28 .

to & = -Z. Roothaan, Sachs and Weiss have mentioned

this as an accuracy test of their HF wave functions

el has evaluated the

in the region r—> 0. Clementi
ratio for analytical HF orbitals of helium through
argon. |

Another method for cusp evaluation is due to
Chong?3 He changed the form of the coalescence conditions
(2.3.8) to relationships between expectation values

of SCF orbitals, called integral coalescence cond-

itions. If an SCF orbital, @hem(*;€¢#) , has a
correct cusp the radial function 'f%pﬁd , (see

(2.4.1) ), must necessarily satisfy

Z_ ,J =
ﬁ*’fwﬁ") f//—)//ﬁ +dr)7£"’{H O  (2.4.3)
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The formula éZr) = Té%%i has been used here, correct
for the spherically symmetric radial function. &(f)
is the Dirac delta function. Equation (2.4.3) can

be extended easily to include the full orbital exp-
ression. The spin dependence of SCF orbitals leads

to no problems; arguments presented earlier can imme-
diately permit equations (2.4.2) and (2.4.3) to be
applied to any SCF spin orbital. In Dirac notation,

*
now, the integral coalescence conditions for SCF

spin orbitals appear like

{ Drim(ro,63l L2(Z; +3H)7% | Rufrods) (24

rﬂ+1

The deviation from zero of this integral will give
an estimate of how close the one-electron SCF orbital
¢%mm comes to having the proper cusp behaviour at
the nucleus.

Cl wave functions need a different approach..
The ratio, (2.4.2a), using differential coalescence
conditions may be all right for checking the cusp of
SCF orbitals, but it cannot be applied to many-electron

CI functions. Because CI functions do not have the

. _
For the case of atoms, not molecules, equation (2.4.3)
contains a 'pseudo-~integration' which only involves
taking a limit. Chong's integral conditions (2.4.4)
are thus necessary and sufficient for atoms.
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simple independent particle interpretation of SCF
wave functions the integral coalescence conditions
(2.4.4) cannot be used directly either. Chong62

has been able to find coalescence conditions for CI1
functions corresponding to (2.4.4) by genéralizing
the cusp relations of Steiner (2.3.3) for electron
density and of Bingel (2.3.4) for both electron and
spin density. He obtained equations for integral

spin, and integral electron coalescence conditions

which can be written compactly as
‘ N 4
<@5,M!J)QI@S,H> -/—-;-7<¢5,M Iozz , @S,H>' (2.4.5)

a = s or e designates the spin or electron conditions
respectively. Yy A have the same meaning as in

(2.3.8). zfsg ,aZj' are the one-electron gradient

and density operators evaluated at the nucleus.

o= 2 A5l

; (2.4.6)

s L ) )
15 = Z—kp—&é‘(‘){j&—) K)Jzé (2.4.7)
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cf(r) is the Dirac delta function. Note that for
singlet spin states, <}32> = O and the spin coal-
escence conditions become trivial. For the nodeless
case, A = 0, 5{?8 are the usual density operators,
and integral cusp conditions are expressed. Spin density

at the nucleus is given by

S0 = {Fd50) (2.4.8)
477

and likewise electron density is

e - {507 (2.4.9)

B

v/l

The expressibns (2.4.5) are necessary relations
for exact wave functions but they are extremely useful
in cusp evaluation for any approximate function.

Here, as before, the correctness of the cusp is indi-
cated by the values of the integrals in (2.4.5) for
the wave function being examined. The value of the

approximate cusp,

>\+|) <@/J)Q/?> ) A= 6,5
2R

is to be compared with that of the exact cusp

(2.4.10)

=

)

Yy = -z. (2.4.11)
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The approach in this work is to force trial wave func-

tions, in various ways, to have

J:‘ =Y (2.4.12)

Evidence that this procedure is expected to lead to

improved properties is presented in the next section.

2.5 Use of cusp and coalescence conditions for im-

provement of approximate wave functions

Touched upon in the introduction was the fact
that expectation values of point properties are rather
special compared with the usual type of observable,
They depend on the value of a wave function at a single
point and are not averaged out over the space surrounding
the system. Thus a wave function that might be quite
good when considered throughout space could, indeed,
be exceptionally poor at or near certain points.
For few examples is this observation more true than
the spin density at the nucleus. (See Table I).
Any improvement of the approximate function towards
the exact in the nuclear region should hopefully im-
prove such point properties as the electron and spin
densities there. Naturally other factors--correlation
and core polarization for examples--also influence

the wave function and these may override any improvement,
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at the cusp. But surely a wave function should have
the correct behaviour at a point of non-analyticity,
and surely theoretical conditions 1ike the cusp re-
lations are Jjust as valid as minimum energy for deter-
mining the function.

This reasoning--that a function with a correct
cusp is a better function--has been seized on by many

workers. Roothaan, Weiss and Kolosqg’50

constructed
correlated functions for helium and the hydrogen mol-
ecule which have the correct electron-electron and
electron-nucleus cusps. Conroy65 has used special
cusp-satisfying bases in his unique calculations and

Parr, Weare and Weber64

have investigated cusp-satis-
fying Hulthén orbitals. Kelly and Roothaan65 presented
a treatment that shows how to choose a Slater-type
orbital (STO) basis so that atomic SCF orbitals will

satisfy the coalescence conditions at the nucleus;

merely use the set of STO's
1s, 3s, 4S,i%5.; 2P, 4Dy 5Pyes.; 3d, 5d, 6d,... (2.5.1)

where the first orbital of any angular symmetry

( £ = n-1) has fixed orbital exponent

J; = Z s (2.5.2)
n
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the members { 2s, 3p, 4d,...} are not present, and
all other exponents are free to be varied. Any atomic
SCF orbital expressed as a linear combination of members
from this special set will automatically have the cor-
rect behaviour at the nuclear cusp.' This choice of
basis is becoming quite normal in SCF-type atomic

21, 65,

calculations. 66, 67 Another procedure is

available for SCF calculations--a constrained variational

68 based on their

approach of Handy, Parr and Weber
elegant constraint procedure ( [ 69) and Appendix C)

~--but is discussed in Chapter IV. The assumption

that a better wave function is obtained is the only
apparent rationale behind this flurry of producing
cusp-satisfying approximate wave functiomns.

With a view towards clarifying the question,
'Does a good cusp really mean an intrinsically better

0 examined the

wave function?', Chong and Schrader
statistical correlation between electron density and
cusp in various helium wave fﬁnctions ranging from
simple SCF to highly correlated ones. They discovered
a strong correlation between the error in the nuclear
cusp and the error in the electron density at the
nucleus. ©See figure 1. When compared with the low

degree of correlation between the error in the cusp

and the accuracy of energy, this result becomes important
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Figure 1. Correlation between error in nuclear cusp and error in Qe(O) for He

wave functions, found by Chong and Schrader.60
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implying that improvement of the cusp does improve

at least the electron density, Qe(O). A high corre-

lation between the electron-electron cuspi’and the
expectation value <f5?rh)> was also found but here

a larger correspondence between the cusp value and
the energy exists making a similar conclusion invalid
for the point density <Q§(Hd>.

59

Having this Jjustification Chong and Yue applied
the theory of linear constraints (Appendix C) to wvarious
helium CI (without rij) functions of 3-8 terms with

the idea of forcing simple, easily calculated wave

functions to have a good Qe(O). The conclusions of
60

Chong and Schrader are qualitatively substantiated
in their study. A fairly flexible function was found
to be necessary to absorb the effect of the constraint.
In the cases tested though, the application of the
cusp constraint, Jje = & , (see the text preceding
(2.4.12) ), while improving Q%(0), led to a slight
over~correction. Unfortunately, errors in the values
<r'2> , <r’1> did not decrease upon constraint
as might be expected from an improvement of the func-
tion near the nucleus. This approach of Chong and
Yue with respect to cusp satisfaction, however, is
unique and needs further investigation. It will be

used in the next chapter on lithium wave functions

to check possible improvements in both Q%(0) and Q°(0).
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CHAPTER III

INTEGRAL CUSP CONSTRAINTS AND APPLICATIONS
TO LITHIUM °g GROUNDSTATE FUNCTIONS

3.1 Formation of constraints

The correlation between error in nuclear cusp
and error in Q%(0) for approximate helium wave functions6o,
discussed in Section 2.5, led to the discovery that
when a He CI wave function was forced to have a good
cusp value, lje = -4, its electron density improved59,
providing the function had enough linear parameters
to absorb the effect of constraining. Attempts to
substantiate these results for:1Li 28 groundstate
wave functions are described in this chapter. Of prim-
ary interest though is the additional possibility of
correlations between Q°(0) and L€ or st , since

the states of helium exemined’?? ©©

have no spin den-
(4 S .
sity. Because I need not equal J: for approximate
wave functions, the effect of a double constraint,
e S
.E = jj = -2 is tested. Various off-diagonal
'weighting' constraints are developed and applied as

well.
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Note the following points:

(1) Integral cusp constraints are only necessary
conditions and the fact that [ = = ~Z
does not mean the function has the correct
cusp.

(2) Since [ is a ratio, constraining it
does not dictate a value for Q%'5(0).

(3) There is no immediate interest in devel-
oping é constraint for the electron-electron
cusp.

In constrained variation one wishes to minimize

the energy of an approximate wave function subject
to a certain number (k) of constraints. The basic
procedure is to define constraint operators,(:[ ,
describing the attributes to be constrained, so that
when the constraints are satisfied, (GZ> = O for
each ¢ . The modified variational principle takes

the form

K
Y+ Zrese—EJIY) =0 (3.1.1)

where H is the Hamiltonian for the systen, Ec is the

energy of the constrained eigenfunction and A( ’
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the Lagrange multipliers, are to be determined. The

term single constraint means K = 1. ILikewise K = 2

implies a double constraint. Appendix C contains a

summary of methods to solve (3.1.1). Following ChongBB’62
and Chong and Yue59 the constraint operators employed
in this work for the nuclear cusp condition have the

form

7 :&L//OQ "'/0‘27‘_) ) =65 (3.1.2)

Q a

where /Qq”:,k&)__o —)’aZA:o and k& ,X
are defined in equations (244.7). When such a cons-
traint is imposed, <G = O implies

CHL)

= =0 = = —Z (3.1.3)
<02)=o>

as desired. The donstrained variational solution

of (3.1.1) is the eigenvéctor having the lowest eigen-

value of the matrix representation of the fictitious

Hamiltonian

{;}ct = /7/ * é A(éi (3.1.4)

=1/
and satisfying <C;5> = 0. Thus é; must be Hermitian.
The operator ;Z is Hermitian but Q&y is not; hence

the form for &  in (3.1.2). This is not a unique
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choice. A whole hierarchy of Hermitian combinations
of £ and &/ will also lead to (3.1.3), )
for example. The results obtained from different@9 s
are expected to be qualitatively the same.

A diagonal constraint results in the condition

CWIe/Y) =0 (3.1.5)

and is best solved using the well-developed methods
of Byers Brown, Chong and Rasiel.7o’ 71, 72 An off-

diagonal constraint,

(¢/G’/%>=0,» &Y (3.1.6)

where ¢5 may be an excited state or even an (almost)
arbitrary weighting function, is easily imposed by

the recently published method of Weber and Handye.s9
All wave functions in this work are initially

characterized by their free variational form--that

is, with no constraint imposed save normalization.

The usual Slater-type orbital (STO) one-electron basis,

{x3,

Xnem(he,0) =M 7= 1y t6,0) (3.1.7)

_ TNz 5)3n
Mo = Z/_.‘Zn)./_
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is always employed. The orbital exponents,.f s
if varied, are successively optimized by parabolic

50

~interpolation to minimum energy. One iteration cycle
is completed when all exponents have been optimized
once. Usually two or three cycles will ensure a mini-
mized energy providing the initial estimates of the
exponents are reasonable. Since the spin function

©, in (2.1.8) does not contribute significantly
towards energy, it is not included until after ex-
ponent optimization. Terms containing ©2 will be
designated ©, -type terms, or triplet core spin
terms.

To solve (3.1.1) a transformation of all matrices
from configurational space to the basis of free var-
iational eigenfunctions {g{} is advantageous for
two reasons:

(1) An orthonormal basis simplifies calculations.

(2) This transformation leads to conceptual

advantages--a constrained function appears

as the free variational groundstate eigen-

function with small ‘corrective' terms.

Zi =8, += a8, (3.1.8)
- = <y

la:| < |
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The severity of the imposed constraint can be estimated
by either the rate of convergence towards the correct

constrained function, or the energy sacrifice

- E . .
c free variational

3.2 Exploratory calculations

It was hoped at the start of this work that reas-
onable spin densities could be obtained merely by con-
straining any simple function to satisfy the nuclear
cusp conditions. Consequently a rather naive initial
approach was taken. The first wave:functions examined
did not lead to unambiguous conclusions. They did,
however, illustrate the computational difficulties
encountered and irndicated a more refined approach to
be described in the next (3.3) section.

Two types of functions were developed for this
initial study. The first type was comprised of a
series of functions having 4—8 terms and partially
(not completely) optimized orbital exponents. The
7 and 8 term functions, containing triplet core spin
terms and some p-type angular correlation, are actually
quite good in spite of their simplicity but are not
flexible engugh for a meaningful study on the effect

of constraining. The second type, a series of 10—15
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terms, with an increasing number of triplet core spin
terms, and with p-type correlation, had orbital éxpo—
nents transplanted from the ILi CI functions of Weiss.35
This group is poor indeed with respect to energy, but
slightly more flexible than the first series.

Several different attempts to solve (B.i.l) for
single constraints are now discussed with '@Z , the
seven term function from the first group, as an exam-
ple. It became necessary to investigate this aspect
when the perturbation approach7o failed to give an
initial wvalue to % , the Lagrange multiplier, for
several functions. Series divergences, exponent over-
flows, etc., are characteristic results of attempting
to constrain inflexible_functions using a perturbation-
type approach. ©Since prediction of which functions
cause difficulties is uncertain, finding a foolproof
method of solving (3.1.1) is helpful.

The free vafiational description of Zg; , with
its properties free and constrained is listed in Table
II. Although Q°(0) shows a 2% improvement, the energy
sacrifice, AE, for the constraint =¥ is high;
the strange value of QS(O) also indicates the severity
of this constraint. Contrast with the corresponding
case £s - ¥ . The function, @7 , is atypical

but it provides a good test case. These cusp constraints
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provide the first example of failure of the perturb-
ation -approach; the desired behaviour is illustrated
in Table III by a flexible (for a 2 electron system)
7 term helium wave function, ¢% , of Yue and Chong59_
and compared with the behaviour of zz (Li).

Only the parametrization approach remains. Here
fictitional wave functions are calculated from (3.1.1)
for different values of A until, for some optimum,

)opt , @& root of

O =LPICIT,)=Xcy=0 .21
wherez}/)) is found from (3.1.1). At >\ = )\opt

) =0=XZ 6|7 . (3.2.2)

The problem is that unless one approximately knows
Jopt » it can be difficult to locate. To understand
better what is involved in solving (5.2.1)(})} was
plotted against A for several functions. The curve
for_;z R é: = éfe , is shown in figure 2(A).

This 'titration' curve is typical for any constraint
as can easily be ascertained by considering C?ﬁ) for
)>> O and >\<< O. When >\>> 0, ﬁﬁbtf-\\’z)é and
QZQ) is the eigenfiinction having the lowest eigen-

value é‘};d.()) %) C, » £, being the lowest
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Table II. Description and Properties of 2%; .

STO basis: s Y3 X s Azs Kap X35

Exponent : 3,298 2.068 0.433 0.63%39 3,992 1.090

Configurations: ¥,s X4 Xis & 5 Xis Xis'X1§ 6, » XisXi3 X256, ,

Xis Xi5 X256 (sz)l)(;sen N (sz)lelgen 3
XisXis’ X356

Linear coefficients: -0.108016, 0.004854, 0.540761,
for the groundstate ~0.004979, -0.030853%, +0.007831,
+0.092132

Prgp- Ereg Single Comstraints
erties: Variational .y £s= Yy

-£ 7.466022 < 7.340290 7 . 466004

AE -— 0.125732 0.000018

3 -— 0.80683335x10™2 -0.99947345x10™F
Q°(0) 0.22702 2.40254 0.18609

Q%(0) 13.45413 13.9220% 13.45457

Ire -2.89513 -3.00000 -2.89500

s -3%.12497 -3.81128 -3%.00000
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Table III. Term-wise comparison of convergence for
perturbation expansion of A E, the energy

sacrifice from the [€ = ¥  constraint
¢4[59] for helium ‘Y for lithium

Correct A 1.021239x107° . 0.806833x10™°
vOrder of
contribution
g1 3.749950x10™7 1.43056x10 1
g(2) ~1.855863x10"° _2.56846x10
5(3) ~1.26147x1077 ~1.91646x10™>
g(4) ~9.4319x10™ 1Y ~1.68385x107°>
5(5) ~6.7909x10" 12 ~1.47305%10™
5(6) -4.699x10™ 14 ~1.28706x107°
5(7) -3.109x10" 16 ~1.12355x1070
Sum of .
%8”-‘,’@12?322“ SENL 1, 881376x1070  SEWL 0.15300
Correct " "

AE 1.8813%78%x10~° | 0.12573
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| ~ /B - , .
eigenvalue of G . Thus <é> <Zﬁé)//%)> ¢

When>\<< o, ﬁf;cta’ "//\/C; and fﬁct{)) Q’«-—U/Cn
where C» is the highest eigenvalue of (; . Thus

€7 (2]l 200>

These relations are compactly described

C/+oo}=c, , Clt-c0)=cn | (%.2.%)

and are illustrated in figure 2(A) also. The feature
which appears to cause difficulty is the extreme siope
(»500) of CA) as it crosses the A axis at dopr .
Great sensitivity of<é> to ) might be anticipated
from the nature of the curve, and is found; >\op-t

must be computed to 5-8 figures to ensure a small
value (L 10-3) for (C;> . The constrained energy is
not nearly so sensitive. The fictitious energy E.,c,.‘t{))

is the lowest eigenvalue of the fictitious Hamiltonian

//}ct = H *IC ; (3.2.4)
when ) = Aopt

EePe) = (B HACO=CH) = £, (D) (3+2:5)

where Efme is the real energy of the constrained func-

tion. E,c,-ct/,)) and f}moA) are plotted in figure 2(B)
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Figure 2. (A) Graph of {8) versus A  for the ground
: : state of ZP, in electronic cusp constraint
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and true energy, & ={/) versus A ,
for ground state of 2?7 in electronic
cusp(constraint.
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e

for the 'S = ¥ constraint of ZZ . Because C())
is a monotonically decreasing curve (easily proved
from results of the perturbation approach in Appen-
dix C) it has but one zero, )==A°Pt , at which point
Etrue = Efict’ defining the constrained ground state .

As seen in figure 2(B), E = Ep; . when d =0

true
as well.

An analytical approximation of the 'titration'
curve could provide what the perturbation approach
failed to--the initial estimate of Aopt. Several
functional forms were investigated, utilizing as read-
ily obtainable parameters the extreme eigenvalues of
the matrix representation of G , the free variational
expectation value <C?§=o and various derivatives of

C]a)at ) = 0. They are described here for the
possible use and enjoyment of others doing constrained

variations.

The basic parameters are defined:

X = C‘(+ oo)
f =cC(-0o0)
cC =((o)

B =cw)==z2£c%
p =c®) =64

i See (3.2.3)
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K
where Cfﬁﬁﬂ = £§§%JA=0

order perturbation energy associated with the fict-

k)
, and £  is the £

*
itious Hamiltonian (3.2.4). Define

R - (x—f)/2 . Moo= (X+B)a

and the reduced quantities

Then the general functional form

CO) == M — Rlanh AlA=L) ; BL constants (3.2.6)

has a zero at

A. - Qrem)Q-cm) 1n%t2338j$§ (A= (3.2.7)

*

If the fictitional energy is expanded in the pertur-
bation series (see the perturbation approach in App-
endix C) '

E,(,’cf/)) — E(o)+.)£.//)+)z£/z)+”“. _ (H./.) 67>’
then Clo) = af%t) =g |
) /a=o
C/KO) = aZEFict) ::,ZE/Z}
2= ) )=0
C'h) = Jgfa'cf) =¢rF
D)3 =0
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If the value of the second derivative is used (C///O}

instead of C ),

[c—m o
—A-o == A [1 +coshdn .______1*"‘”")] /ﬂfj[z——jf-:n?)?)(/;j::; ’ (A,J

1 ~C+7M

Now redefine R,
R = (x —/?)/77
Then
CH) = M — R arclan £/)-L) (3.2.8)

has a zero at

Ao - 1 cos(c-m) §inci.‘C‘ . (81\::(5-2-9)

b cos m

’ /,
1f C ) is used instead of C /o)

_/_I_o _ o+ Vsin g(c-m) sin ¢ (81\=(5.2.1O)

cCOs nm

Cubic factors as arguments of the tanﬁ'or arctan func-
tions were tried also. The general form for these

ChH) = M ~Rilanh AL -LY +a], a4, constants

G:\==(5.2.11>
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and

Cl) = M = Rarctan ELO-LP+a] (D=(.2.12)

where R is defined as in (%3.2.6) or (3.2.8) for tanh
or arctan functions respectively. Table IV gives the
results obtained from % for the fe= ¥ con-—
straint. The parameters used for each evaluation are
given in the 'Parameter' column. Ah estimate lun=A°ﬂ
should have at least the correct ordér of magnitude

to bé helpful. Remember that this illustrative case
is pathological; less severe constraint problems

( _fs =¥ for example) can be solved easily with
these methods or‘any others.

One other exotic application of the parametriz-
ation approach was. tried. ©Since the convergence of
the perturbation series (see Table III) depends on

I)I , the coordinate system for a titration curve
such as in figure 2 was shiftéd, making use of the
estimates-lio just discussed. The transformation

can be seen as follows:

froe =H*+IC =(H+A.6)+66 = H'+4C

where JA is a new perturbation parameter. However
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Table IV. Analytical parametrizations of L% =¥
constraint on % .

Equation | Parameters employed 14&0 a
A c(+o00 ), C(0), C'(0), 0.054
A, c(+o00 ), €(0), €"(0) +0.0221
G c(+00 ), C(0), €'(0), C"(0) 0.015
C C(+00 ), C(0), C'(0) (a=0) 0.059
C C(+00 ), C(0), C"(0) (a=0) 0.025
B, c(+00 ), ©(0), C'(0) 0.02

B, c(+00 ), C(0), ¢"(0) 0.012
D c(+o° ), ¢(0), ¢'(0), C"(0) 0.010
D c(xo0 ), c(0), C'(0) (a=0) 0.059
D c(+00 ), ¢(0), €"(0) (a=0) 0.017

a‘I‘he correct value is

Dopt = 0.00806833%5.
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the new perturbation series did not always converge
rapidly enoﬁgh.

Having discarded more sophisticated approaches
of solving (3.1.1) for single cusp constraints by
parametrization the method finally settled upon was
a combination of regula falsi with half interwvals.
(Even regula falsi was not sufficiént by itself because
the steepness of the curve (3.2.1) at Aoﬂ' sometimes
led to impossibly slow convergences). Chong's fast
perturbation-iteration method72 was employed for moét

st =¥ type constraints since these were usually
imposed easily.

From this exploratory study came some preliminary
conclusions noted now without further description of
wave functions or expectation values. ZExcept for Larsson's
results6 the profound. effect of Oz -type terms on
Q%(0) was not well documented at the time this work
was started. It appears that inclusion of these terms
improves QS(O) only for partially or fully optimized
CI functions. (See the excellent value of Q°(0) for

.&Z in Table II). Jje = X' constraints invariably
overcorrected Q°(0) often leaving a similar error of
opposite sign, while J:s =¥ constraihts yielded
poorer spin densities than the free variational values.

A paradoxical situation exists. Optimized (with respect
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to energy) CI functions having an appreciable percen-
tage of B,~type terms give good Q°(0) vélues, but
do not constrain easily, while less accurate, but more
flexible wave functions do not give a reliable Q5(0)
in any case. The idea of constfained variation does
not appear to work; Optimum CI functions for a many-
electron case, however, are unpractical to construct
and thus do not provide a good route to accurate QS(O)
calculations. So a further attempt was made to show
QS(O) improvement with cusp constraints using method-
ically constructed CI functions. These functions must
be long enough to absorb the constraint, parfially
optimized with respect to important exponents, and

they must contain  ©a-type terms.

3.3 PSystematic study

CI functions now discussed provide a reasonable
description of both core polarization and correlation
effects. It should not be too difficult to obtain
similar functions capable of giving good spin densities
and other properties for at least the first row ele-
ments. The main purpose here, again, is to try to
find a favourable correlation between cusp constraints
and spin densities. The formation of these CI functions

proceeded as follows:
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2

A 78S function for groundstate lithium was rep-

resented as

= AL 0l P50 PusB)o,]
¢ = ALPs (3.3.1)

c/{ the antisymmetrization operator, and the & % ,
like analytical Hartree-Fock orbitals. These orbitals

were linearly expanded in terms of STO's, {kf} .

w/s = a/ X/S +—4, XZ.S

Y5 = @, X5 4, Xis (323.2)

<z§s ==‘23)G§ 't4£?k§§

The notation is straight forward; STO's with the same
orbital angular momentum quantum number ( £ ) and
designated with the same prime (') have identical
orbital exponents. é was expanded as a CI function
(with the accompanying products of @; 5and léfs taken
as independent linear coefficients) in terms of STO
configurations. Thus the key wave function has eight

terms
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é.s ":/[ {4/ ()(/s )(/s’)(z'Q) +ta, [X/s Xz_s')(zs”) +Q; /st)//s/kz;-/)
"’4,‘ //(zs A% Xz’g)“" Qs /X/s 2//5//2/35'”) e /}’/5/\/25/ /‘FBS{/)

+a7(stXIs’X3;/)+Q8 (;(7_51/7_’5)’3;)} §|] (3.3.3)

Because s is not equal to &5 core polarization

is built into the wave function. There is a minimum
of non-linear parameters to vary and absence of config-
urations mixing the @'.’s‘avoids interference between
terms. The three orbital exponents, s , -5:-/ s

)‘;// were optimized for the first four terms, ( @4 e
With these values as initial estimates a single optim-
ization cycle for @8 provided the final values of
these non-linear parameters. p-type correlation was
next included. Three trial additions of two terms

each were compared:

i

5, = (8] +AL{a (%2 XopXop) +@0(Xat Xop i)} 0]

l(; = { @33 + u/('[ { Aq (7(:3'" sz}’zp) + Qi (X5 XBP)@}D)}SJ

@.{,’ = {@J +V4[{aq(7<|§'7(zp)(zp) (3.3.4)

+Qio {)(L/S/ XZPX'LP)} 9|]
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Here { ég} means the terms in @8 with only the linear
coefficients to be recalculated. The additional ex-
ponents, ~ﬁ? ’ 5; , were partially optimized with
one cycle in each 10-term function. The simplest,

@m , had the lowest energy and the other two were
discarded. Next the eight poséible triplet core spin
terms were added one at a time, in no special order,
changing no exponents, to é/o » yielding a sequence of
functions from 10 to 18 terms in length, with O to 8

62 -type terms ( Do Q_S|8 ). Because the
triplet core terms were added somewhat arbitrarily,
one other function, §§$q , was computed, incorporating
the four ©, ~-type terms producing the largest indiv-
idual fractional energy decreases in the above series.
Both single ( L = ¥ , Y2 -¥ ) and double
( I* =;l?s'<= ¥ ) cusp constraints were applied
to each function. Descriptions of é,o ’ @.q. and @.e
are found in Table V. Table VI contains their free
variational and constrained properties. Similar tables
for the complete series are in Appéndix E,.

First examine the free variational properties
(Table VI). DNote that €, -type terms do not con-

tribute significantly to the energy, the total increment,

E 3

Double diagonal constraints are easily imposed by
the method of Chong and Benston E?E] described in
Appendix C, making use of the results for single
constraints.
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Table V. Descriptions of _@,0 s @,* , @w .

STO Basis Orbitals: X, Xas,Xis"y X251 Xa5 X35, Xap, X3p

Orbital Exponents:

Configurations

@m—‘

e

Free Variational

Coefficients:

é/o

ﬂif :

3.168, 5 168, 2.840, 2. 840 0.765,
0.765, &.974, 4.974

1lsls'2s" g,
2sls'2s" e,
lsls'3s"e,
2sls'3s"6,
2s"(2p)le,

, ls2s'2s"e, |,
, 2s2s'2s"©v |
, 1ls2s'3s"©, ,
, 2s2s'3s"©,
, 2s"(3p)2e,

*
{@40} , lsls'2s"@, , ls2s'2s"e, ,

2sls'2s" 6,

, 282s'2s" 62

fé‘*}*, 1sls'3s"®. , 1ls2s'3s"©, ,

2sls'3s" O,

+0.196099;
+0.024179;
-0.16546%;
-0.0144%6.

+0.195868;
0.022274;

—0.164641;
~0.014436
-0.056793;

+0.196595;
+0.021249;
-0.156697;
-0.014440;
~0.196107;
-0.143961;

, 282s'3s"©,

+0.334607; -0.230831;
+0.16165%; +0.229143;
+0.018404; -0.010172;

+0.337217; -0.230859;

+0.161696; +0.226320;

+0.019763; -0.010174;
~0.58%381; +0.052004;
+0.012474,

+0.349087; -0.239527;
+0.160845; +0.215740;
+0.020425; -0.010176;
-2.035945; 0.181852;
+0.036096; 1.605262;
0.153566; -0.026107.

See the text following (3.3.4)

notation { §;} -

for the meaning of the



Table VI. Free variational and constrained properties of @,0 R ,@;‘,. ,@,3 (defined in Table V)

Q%(0)

Function Constraint -Energy Q°(0) re re AE )
®,, None 7.467389 0.2677 13.7522 -2.9732 -3.2795 -— 0.0
=y 0.467254 0.2753 13,9191 -3,0000 -3.2973 0.000135 +0.579772x10 %
[S=vy 7.465334 0.1715 13.5519 -2.9447 -3.0000 0.002055 =-0.521667x10"°
e[S~y 7.464736 0.1686 13.8901 -3.0000 -3.0000 0.002653 X =+0.125277x107°
¥=-0.585347x10"°
P, None 7.467429 0.2136 13,7500 -2.9728 -2.9790  -—- 0.0
=y 7.467291 0.2153 13.9192 -3.0000 -2.9870 0.000138 0.582329x10*
=y 7467429 0.2150 13.7500 -2.9728 ~3.0000 ~1070 0.891716x107°
[e=0=¥  7.467291 0.21635 13.9192 -3.0000 -3.0000 0.000138 : X=0.582305x10"*
X=0.534754x10~°
D None 7.46749@ 0.2287 13.7501 -2.9729 -3.,0542 —— 0.0
=y 2.467360 0.2312 13.9178 -3.0000 -3.0590 0.000135 +0.572685x10 "
=y 7.467496 0.2246 13.7501 -2.9729 -3.0000 ~107/  -0.239282x107
re=rey 7.467360 0.2267 13.9178 -3.0000 -3.,0000 0.000135 >\‘E=+o.'572745x10‘4
' ® =-0.252666x1077
Larsson's 7.478025 0.2313 13.8341

100 term

correlated function

(see entry 18 Table I)

89
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Ed_i,s - E@,o , being only 0.000106 hartrees. The
effect on Q%(0) is negligible also; @ and @,8 have
essentially the same electron density. Qé(O), however,
improves tremendously. The high stability of the final
value (that of Qfm ) cannot be seen in Table VI but
is evident from the complete table in Appendix E.

From these complete results one can see certain triplet'
core spin terms contribute more than others to Q°(0).
Only about half of the possible &z terms are necessary*
but because the important ones are difficult to pick
out inclusion of all of them seems advisable. Since
most computer time is spent on exponent optimization
the triplet core spin terms can be added practically
as a bonus,

Constraining seems to be a waste of time though.
In almost every case the wave function deteriorates.

Jje =Y constraints épply corrections to Q€(0)
as Yue and Chong59 found for He but the error 'improves'
from =~-<0.6% to =~ +0.5% which really is not sufficient
Jjustification for cusp constraints. The Jje constraint
is consistently the best of the three constraints im-~
posed. Forcing .ES = ¥ is of little use. When
several S, -type terms are present the constraints
are easy to apply and properties are not changed much.

When there are only a few, or none, the constraint

*
See §h4q in Appendix E for the demonstration.
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becomes more severe indicating that fine adjustments
in the wave function, affecting spin properties depend
on triplet core spin terms. No significance is attached
to the double constraint results. Because imposing
the electron cusp condifion was more severe than for
the spin cusp, forcing _Ee:= jjs = ¥ invariably
approximated the single constraint Xje =¥ . A
final point is that the free variational §°(0) is so
good for i_,g that constraining would not be necessary
even if it worked. No trend in improvements for Q°(0)
resulting from forcing st:=3/ can be seen from
this study.

It is possible that for approximate wave functions
there is an empirical 'effective' 3/, rather than the
theoretical & = -Z. A further theoretical condition
is re . Ijs with & unspecified but one can con-
fidently predict that the minimum energy for such a
constraint will occur at L < =-['$ Q—"I-g\-ee variational
for the series @,—> @\s . To locate an effective
and i?s '

were imposed on several functions for different values

e
¥’ the single constraints L =¥~

of & . The actual dependence of Q°(0), Q°(0) on
the cusp constraints was more evident during these

calculations than in the preceding study.



71

Q°(0) is shown as a function of the constraint
_Es - ¥ in figure 3(A) for @,o , @w , @]g .
It has a linear dependence on l?s . ©One can see for
these functions (also for all others tested) that if
the free variational Ijs is greater than =% = -3
a spin cusp constraint will improve Q%(0). (Ideally
the lines should pass through (0.231, -3.000) ).
See the complete set of properties in Appendix E to
verify this. It is evident also that there is no
'effective' ¥ value. The scatter of points where
the lines cross the experimental value (0.231%) pre-
cludes this. A similar graph of Q®(0) versus |
L -¥ in figure 3(B) also shows a linear depen-
dence. That the ©, -type terms do not influence
- Q%(0) is obvious; the lines for all functions, a@n, ,
@,4 R @,3 , are superimposed. Why Ec = -Z over-
corrects Q°(0) is clear for these cases. An effective
¥~ for Q®(0) cannot be said to exist even though

7/

all lines pass Q%(0) = 13.83 [éé\ at O = -2.985 -

A

because the functions @w through @'g are all too
similar in electron density. A comparison of figures
3(A) and 3(B) will affirm that calculation is more
difficult for Q°(0) than Q°(0) and will reflect the
scatter of Q°(0) values in Table I. Figure 4, (A)
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Figure 3. (A) QS(O);as a function of the constraint®™
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and (B), shows Q°(0) as a function of I?e - &7 and
Q®(0) as a function of st - ¥’ . Previous con-
clusions are bornme out: 1) The spin cusp constraint
adjusts only minute details of a wavé function without
affecting Q%(0) at all. 2) The electron cusp constraint
is not likely to improve spin densities. Finally it

must be concluded that these diagonal cusp constraints
are not useful for improving QS(O). If non-linear para-
meters are optimized and ©, -type spin terms are

included the wave function should have a good spin

density at the nucleus without any constraint.

3.4 Off-diagonal cusp constraints with weighting functions

Since attempts thus far to apply the philosophy
of constrained variation towards calculating better
spin densities have failed, the problem must be re-
examined. If qg¢1satisfies nuclear cusp conditions
the integration in (2.4.5) can be seen as an artifact,

merely allowing an evaluation of the expression

. 737
/_/iz:»oz Pr ——A’) @s,n . (3.4.1)

. *
(Compare with (2.3.1) ). Replacement of - @gm in
*
(2.4.5) by an arbitrary function, ¥ , Seems reason-

able in this light. To apply this new concept,
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restrictions on f? must be examined.
Iif &7 is a spatial eigenfunction satisfying

(2.3.8) for the case of nuclear cusp, the condition

//*/%; -i{j,o)yd? =0  a=es  (3.4.2)

is valid for ahy well-behaved function 76 . OSpin
must be included in 7g when the spin containing
function éxﬁ4is considered because integration over

a single spin variable is undefined. To avoid trivial
conditions f? should be an eigenfunction of gJ’g

and 52972 with the same spin functions &~ as @.;,M .
Then

<7£//)2&/\=‘: - J’oz;=o}/§s,/w> =0 (3.4.3)

is valid. (Compare with (2.4.5) ). This suggests

the off-diagonal nuclear cusp conStraints,

FIEI Y=L ~8ma YD =0, avess Gt

on an approximate 37 . The function, 70 , can be

thought of as a weighting function. In particular

f7 may be antisymmetric with respect to interchange

of electron coordinates. If 7(, = éZ’ the diagonal



cusp constraint (3.2.1) is recovered.
The traditional approach to constrained variation,
described in the text at equation (3.1.1), forces
<Gi> = 0. In the working basis set, {EK} , (usually
the basis of free variational eigenvectors) this rela-

tion is expressed in matrix notation

a@a'C.a =0. (3.4.5)

@Q  is the constrained (column) eigenvector sought,
% = 2Q(§¢ )
[4

and >Cc' = [Ckz,z) > Cke =<§/</é0</§2> (3.4.6)

In contrast, the method of Weber and Handy69 minimizes

energy while constraining

-+
ﬁ(. a —._:0 (5-4-7)

where /ZH is a column vector containing necessary
information about the ¢™ constraint condition.
In the off-diagonal case, (3.1.6) can be expanded

in a basis {§,§} as
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2°c, a =0 (3.4.8)

for 4) = Zék g,: . Then

¢ :/g"zt ’ Ci;=(Cxei) ; G ,('=(§l/)&q(3'4°9)
ﬁ ( ) k2 k/{ L9

Note the important distinctibn between (3.4.9) with
(3.4.6), and (3.1.2). The procedure of Weber and
Handy does not need an Hermitian G: operator., If
,@- is fixed, the constraints, ﬁ;‘@, are imposed
in a one-step matrix diagonalization procedure. The
diagonal constraint case, (3.4.5), can be handled,

but an iteration procedure on @ is necessary:

#
@/(—I C[aK =0 ,
a, = & .

(3.4.10)

Several types of weighting functions were tested

to determine their effect on Q°(0) and Q®(0). The first

tried was 7C = éf; ,{fiK} the set of free variational

eigenvectors. Since the {51} are energy ordered

(Sc|HISS = Ex <5 /5> , £ .=~
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the constraint (3.4.4) amounts to weighting by energy.
Computations are simpie for this choice because the

matrix elements (3.4.9), <§}(///ﬁ—d’oﬁ/§>=—‘<§k/fk&"322}/§2>
had been evaluated for diagonal constraints. The results

of weighting dig with selected*§§;
(g)}/éoa”/%> =C , a=es

are presented in Table VII. Both electron and spin
cusp single constraints and the double constraint

were carried out (for & = -Z). The values of

Jzeﬁ are included so the consequences of fr = Efs R
the groundstate eigenvector, can be seen. In all

three cases, (e), (s), (e,s), £ - & closely dup-
licated the results of the diagonal constraints in sec-
tion.%.3%, Table VI. The appropriate _Eeﬁ equal -4

to within 3-4 decimal places.** Constrained energies
are the same to 10~° hartree and Q%(0), Q°(0) values

also only differ in the Brd, 4th

decimal places. This
is to be expected since the overwhelming contribution
to the constrained ih; is g% . (See equation

(3.1.8) ). The significance is that the off-diagonal,

one-step method of Weber and Handy can be used to

*
Realize that the groundstate of _@-,,‘ is & . @m
changes to some #* & when constrained.
* % '

This shows that the integral cusp conditions are only
necessary, for if the correct cusp existed, ['= )y
always.



Energy weighted off-diagonal cusp constraints on diy .

Table VII.
Constraint Weighting _E CAEx10°  @5(0) Q8(0) re r°
Function

None —_— 7 467429 —_— 0.2136 13%.7500 -2.9728 -2.9790

a=e 5 7.467291 138 0.2152 1%.9211 -3.0000 -2.9860
" g, 7. 467429 0 0.2137 1%3.7502 -2.9728 -2.9808
" g, 7467390 39 0.1668 13.7575 -2.9742 -2.1698
" g, 7.467251 178 0.2100 1%.5580 -2.9426 -2.9445
" Sy 7. 466214 1215 0.18%9 14,2010 -3.0468 -2.4299

a=s g 7 467429 0 0.2150  13.7500 -2.9728 -2.9999
" £, 7.467199 230 0.0810 13.7287 -2.9698 +1.9146
" £, 7.467248 181 0.1387 13.6719 -2.9611 -1.4761
" g 7. 467429 0 0.2154 13,7500 -2.9728 -3.0053
" [ 7 . 467427 2 0.2001 1%.7509 -2.9729 -2.7689

a=e,s €, 7.467291. 138 0.2162 13.9211 -3.0000 -2.9999
) g 7.467167 262 0.0660 15.7501 -2.9704 +3.6892
" 5 7.467162 267 0.1860 13.5676 -2.9445 -2.6295
u g, 7.467250 179 0.2153 13.5579 -2.9426 -3.0185
Y = 7. 466202 1227 0.2144 14,2055 -3.0475 -2.9572

ol
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closely duplicate the results of any diagonal constraint
providing (3.1.8) holds. Computational problems des-
cribed in 3.2 are bypassed and no iteration is necessary.
The weighting method with 7C = fs thus seems ideal
for pre-testing the effects of various constraints.

As far as weighting with other energy eigenfunctions

is concerned, £ - s K > 1, unpredictable,
random, poor results occur.,

Configuration weighting was next attempted. Con-
figurations,{ZZ} , have an energy associated with them
but they are more spatial in character than the energy
eigenfunctions{?,(} , ( & = ;QU% ). Putting

f’ = &z is a kind of spatial weighting. Again,
results are random and meaningless and will not even
be presented.

Application of Weber and Handy's method to the
diagonal cusp constraint case with (3.4.10) was inves-
tigated. If convergence*;was rapid, computational
problems of the sort mentioned in %.2 would be avoided
and the_exact diagonal constraint <§Z@3@Z> = 0 would
be imposed. After convergence was:-achieved slight

differences from the pure diagonal approach (3.1.1)

were found even though Ij = from both methods.

*

The initial guess Qo = §, , in (3.4.10) did not
converge when an Hermitian & was used but oscillated
back to Quk =§ . Groundstate energy and the over-
1ap;ga+@L were employed as convergence critera.
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A comparison of the two approaches to diagonal constraints
for §L4 is presented in Table VIII for academic interest.
The reason for the anomalous results was not a program
error but imposition of a different constraint. For

the pure, original diagonal technique the constraint
natrix € = ﬂD 4—031— was unambiguously employed.

The Hermitian constraint matrix that developed during

"iteration had the form

Pe e +&&P

where é? is the constrained eigenvector and need
not equal @ , the constrained eigenvector for the

first case. Both these eigenvectors give the condition

a’Pe = GPE=0 o [=v.

A final exploration of the weighting concept em-
ployed £ - W , where WV = A (Z/s(/}(’({/)l//sé)/gé)Zzs(?)@((’i))’
the X%sﬁs are STO's having orbital exponents
Sis =270 , “gs =1.3 (¢ . (° is a variable
parameter. The values of .f; s 5:5 for (0 = 1 were
chosen with Slater's rules. Now the wave function to
be constrained cah be weighted in selected regions.

/
Of special interest is the extrapolation ,43 —> 0.
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Table VIII., Comparison of the diagonal and off-diagonal
iterative methods for diagonal constraints.
Example: é,*, JZP= Y constraint

Wave function diagonal method iterative method
attribute (see equation (3.4.5)) (see equation(3.4.10))
Energy - 7.4672914 - 7.4672913
(o) 0.215387 10.215193

Q% (0) 13.919166 13.920945

Ee - 3,000000 - 3.000000

s - 2.986952 - 2.985937

a, + 0.9999931 + 0.9999933

a, - 0.1996x1077 - 0.1757x107°
2 + 0.2666x1077 + 0.2446x1077
a, + 0.2031x10™"* + 0.2099x10™%*
*a. = coefficient in constrained wave function of

i
the i% free variational eigenfunction.
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Pﬂ/ becomes a Dirac J’—like function, weighting
the nuclear regions to an extreme degree. Q°(0) is
plotted against ¢ and ‘Zé in figure 5(A). Figure
'5(B) shows the corresponding relations of Q°(0). for
electronic cusp constraints on @,q_ . Negative results
are obtained. A sampling of the corresponding results
for spin cusp constraints is shown in Table IX. An
interesting maximum exists around (9 = 1/4 but is
certainly coincidental. Similar studies were carried
out on 0 and QZ, of the same series of functions
with the same discouraging results. Energy sacrifices,
except for the obviously distorted cases, were negligible.
Investigation of multiple weighting constraints

is important-because'if (3.4.4) is true for all members
of a complete set, an approximate wave function must
have the correct cusp. Thus if {H-/&&“—M“}/Zbis
forced to be zero for many f; functions perhaps

297 will more closely satisfy the nuclear cusp con-
dition. The method of Weber and Handy simplifies con-
straint calculations. Different weights\were applied
simultaneously to éz; R éz* and.‘éz7 . Combinations
of /47?7 , and 35 , the free variational eigenfunction,
were used in both electronic and spin cusp constraints.
Representative results for qu are presented in Table

X, Use of the diagonal iteration technique to force
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Table IX. Q%(0), Q%(0) for the off-diagonal weights
W (€) in spin cusp constraints of Py

é Q%(0) Q°(0)
25 -0.1307 13.6474
10 -0.2005 1%.7062
8 ~0.1243; 13.7244
5 +0.0%81 13.7443
2 +0.1817 13.7499
1 +0.2144 13.7500
1/2 +0.2260 13.7503
1/4 +0.2233 13.7505
1/8 +0.2148 13.7501
0.2135 13.7500

Free variational results
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Table X. Multiple weighting constraints on ‘QZ .

W%U:Wy/a?)

 Number of Constraints AE(energy Q°(0) Q%(0)

simultan- sacrifice

ggggtraints conggiaggts)
3 wig), Wa W%  0.0135 0.0983 13.6157
3 g, Wwvk), we) 0.0140 0.0662 13%.2261
2 £, Wtk 0.0000 0.2181 13.7517
2 §5, W) 0.0001 0.2227 13%.7513
2 with), w2) 0.0001 0.2094 1%.7519
3 w) WeHW%  0.0018 0.1968 13.9758
3 S, %), W%  0.0009 0.2052 13.8953
2 €€, %) 0.0009 0.2038 13.8998
2 g5 wz) 0.0009 0.2083 13%.8952
2 kAN 0.0001 0.2162 13.9211
4 5555 w%,WY%)  0.0009 0.2205 13.8990
6 ESEWG). W%, o.0197 o.0u07 13.7131

* Wq/(o/or §q

, 3 a = e,s gives the type of constraint

applied.



<2//6/?/} = O along with <M(6}/(;/Z/> = ... =0

did not produce significantly different results from
the case <§;/G°/ZV> = (W/KOJ/C;’/W> = eee =0

as expected. No definite trends could be determined.
The extreme number of possible constraints also confuses
the problem.

In conclusion, off-diagonal weighting constraints
have offered no sure method for improving spin and
electron densities. A more realistic form for /%%Z%V
is // X/s(P57)ex Z/s/f;.)/?)(:.s(f_;)l?() , weighting
only one electron at a time but this was not tried.

The general technique could perhaps be improved concep-

tually and might be useful for other properties.
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CHAPTER IV

SUFFICIENT CONDITIONS FOR CORRECT CUSP

4.1 Theory

The failure of necessary cusp constraints to provide
accurate descriptions of wave functions at.nuclear
coalescence is by now obvious. That these constraints
need not force the correct Behaviour at the cusp is
re-emphasized. The weighting constraint results in
Chapter III demonstrate this fact. Constraining ‘27 ,

(yygyg.yéyZZ)= 0 does not guarantee{ZZ@?L)Q/&z>= 0

as would be found if 34/ had the proper cusp. Are there
practical, sufficient restrictions on a function that
will provide the correct cusp? For an answer a return

to first principles is indicated.

.The necessary and sufficient nuclear coalescence
conditions in differential form for any wave function

are embodied in (2.3%.8a),

9;/‘,\‘5\ — _a_/__(_/—é-\) (4.1.1)’«\:(2.5.8&)
ka f,(=o [+ /7: Fe=0
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and hold in turn for each electron (K = 1, N). Define

an operator

p,lk) = /@m/(_)o_;_ - L)L T (4.1.2)
K

k=0 1A ] K
where
/ +>\ 3
m=-)

n5=con5taﬁt

takes the spherical average about the point of coales-
cence of the Kt electronic coordinates as in (2.3%.8a).
7éhﬂe)is a one-electron cusp evaluation operator.

The nuclear coalescence conditions of a spinless wave

function satisfying (2.3.8) are written concisely,

%)Je}_@ =0 (4.1.4)

Extension to spin-space is straightforward. The nuclear
coalescence condition for an exact spin-containing func-

tion (see (2.3.11) ) is

75/\&)@;»7 = Z/ﬁ)/k) %«)6,< =0 (4.1.5)

as each a&, satisfies (4.1.4). An approximate wave

function with spin,‘z; , has the correct cusp if and



only if

7@&) % =0 . (4.1.6)

The present discussion will be limited to nuclear cusp
conditions for CI wave.functions. That is, P, equals
zero (and will be suppressed). Specialized conditions
derived from (4.1.6) will be only sufficient because a
configuration interaction expansion is not.a unigue func-
tional form.

An n-term CI function with sharp spin and orbital
angular momentum and sharp Z components-—-an eigehfunction
of xfz ’ gfl ,gd; ,;f; --1s usually expanded in

the form
n |
Y, = Z <t/ (4.1.7)
=/

The{t:? are variationally determined linear coefficients.

The {%} are eigenfunctions ofxf~ , L ,/JZ yol =

having the same eigenvalues asZZr and are described
by a predetermined, fixed linear combination of Slater

determinants {d)K} ’

%. frroend ? a(..,ﬂ ¢! - (4.1.8)



Since 76%@7 operates only on the Kt electron each Slater
determinant is conveniently expanded into cofactors

of the one-electron functions for the K& electron:

g, = |xiost  xiosta)  xqsk)
X f(:d s X2 Sie) Xg @)s; @)
xiaste)  X@siE)  xie)si)

3
= > X K)Sm& Opm (4.1.9)
mz=|

where 5'»!; k) = o« or /f and ¢If,, is the cofactor
in ¢& of the K% row and m# column. Q&; - 1s thus

a function of all electronic and spin coordinates but
those of the Kt electron. The explicit case for lithium
has been depicted to avoid notational difficulties.

The superscript £ is added when needed to distinguish
the one-electron orbitals belonging to different deter-
minants. In this work only STO's,{Zz} (defined in
(3.1.7) ), are considered although the approach can

be developed for any basis set. The Pauli principle
makes the choice of K irrelevant. Operating on (app-
roximate) ‘z€} with the cusp evaluation operator

one obtains

ﬁk/%r = ZC(az,zﬂ/(/)(f;;(K)sfn(K) ;n (4.1.10)
G, m
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which must equal zero if the cusp is correct.

In general, S,:(/() ¢;:7 + O, unless there is
a linear dependence in the set {X{} . Sufficient con-
ditions for cusp satisfaction are found by letting the

K
coefficient of 5£Jk)¢%m equal zero for each 2, 7 s

) Xtk) S coa, =0 .

(4.1.11)

The system of equations, :%;ngce> = 0, =100,
# of determinants, leads trivially to an identically
zero wave function. This means that‘/ﬂﬁyjzis O when
‘fa%ﬂ}ﬁn&7= O for each member of the set,{l?} .

The expression

k) Xmlk) =0 | (4.1.12)

is an orbital cusp condition and must be evaluated

explicitly to find the conditions for STO's:

=l —y|x 1 . x
70A=0Ynzm (re,¢) /{;‘ZZ(C)/, ‘)’) 4/7/4/‘@{/% (4.1.13)
e €'fr>/’/m (6, ¢)}

The discussion can be restricted to s—type orbitals
since the spherical averaging operator ensures that

all STO's with .¢>0 automatically satisfy (4.1.12).
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Equation (4.1.13) reduces to

%ﬁ(m = [ —XsO)(S*¢) n=|

+ (’Xzs) h=d
r Jr=o

) n>3 (4.1.14)

For the orbital cusp condition to hold,
(1) 7@)(,59 O implying § = - = %,
(2) .%Q}QSEEC)is not possible, (4.1.14a)
(3) 767(,”"15:—0 is satisfied for all orbitals
except Xis , Xas -
These are precisely the conditions (2.5.1), (2.5.2)
given for STO's by Roothaan and Kelly65 with a different
derivation when only cusp conditions ( A = Q) are
considered. The present treatment can easily be extended
to include coalescence conditions.
Another approach exists. Examine (4.1.10). If
any cofactors are equal, j; = (kzn’ = ...., there

will be other relationships to investigate. A more

general expression of (4.1.10) is

PK) 7, = % | <sz( cm,-,g&))(,fé@)
*$¥W4d ¢&§n:] ,

/ k / /
S,f,'&) ¢j’m' =5£mk) ¢/’;ﬂ for all Z , 7

(4.1.15)
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All equal cofactors, and spins for the Kt electron,
have been factored out. Two explicit cases are now
presented to show what is involved; (4.1.15) is too

indeterminate to give recognizable cusp conditions:

Case 1
The simplest possible case has a basis of three

STO's--a, a', b (a # a'). The Slater determinants

are defined

¢,

¢, = (a'v/=0), £6G)RE) L) <6)= (2,4 4) (+.1.16)

i

(aojt) , 46)BE) , 868 <6)) = (a, B, 4)

The notation is short for (4.1.9), identifying a deter-
minant by its principle diagonal. X and X
within the brackets in (#.1.16) imply the spin-orbitals

X and)(ﬁ respectively. The CI function appears

%1 :;C/Z// +Cz% 3 %-“-‘45, , %=¢1 . (4.1.17)

K
z}

K
(The sum (4.1.8) has but one term). Now 4%, =
and (4.1.15) reduces to
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K Yor = &){c, (aoc b +LpdS + Lo )
76 c % .+Cz(d’e<<)§f, +Z,/§7¢2’§ + Ao §bf3)

= [ pk)(Cak) +ca k)]« ¢k

+[pk) 6] A (G 9z + o)
+()( ¢, d)lg +’Cz (PIZ(B)

(4.1.18)

To find the cusp conditions for this function equate

to zero coefficients of @; for all £ , 7 .

(1) pb =0
(2) bp [cla + c2a'] = 0 (4.1.19)

Equation (1) implies that if 70 g;' = 0, orbital b
must satisfy the orbital cusp condition, (4.1.12).
That is, b must fit into the scheme (4.1.l4a). Such
STO's will be written X{ . Thus pb=0 and b is
chosen by the rules (4.1.14a). Equation (2) fixes‘the

* ' -
ratio between cq and Cyt

*
Note that pX 1is a constant; all functional depend-
ences have been removed.
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‘2 = -pa .
cq pa' - (4.1.20)

a,a' must not satisfy the orbital cusp condition if
new relations are to be found. (If pa= O, but pa'ze O
the function, %Z , collapses to a single term).
Of course there are no longer secular equations for

this case:

U, =al¥ “—;f% %) (#.1.21)

If © = Xpgm , 4> O,the set of orbitals having sharp

Zz s (om = +2,t4-1,,.. 0 ), may need to be in-

cluded in the basis ensuring sharp total angular momen-
2 . .

tum for cr * If ;2; has S symmetry this particular

example covers only the cases

b= X Sp =2

X ns n>a

No basis orbital needs to satisfy the orbital
cusp condition in this example. The Slater determinants,
{d)L} , and eigenfunctions of JZ , ofl ,Jz ,fz
for a 2S function, {Z%{} , are listed in Table

XI. Only ©) -type terms are included in {@%} H
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Table XI. The set of Slater determinants, {(;bL} s
and eigenfunctions, WJ of of° , L R
_(Jz , Iz for the 2S wave function des-
cribed in case 2 of section 4.1.

= (a,B,c) ¢Z= (a',B',c)

,= (b,d,c) Go= (b',3",c)

d,= (a',B,c) Gu= (a',B,c")

.= (b,a',c) Ga= (b,a',c")
= (a,B',c) Gis= (a,B',c")

= (v',a,c) Bu= (v',3,c")
= (a,b,c') D= (a',B',c")
¢,= (b,'é,c.') ¢/¢= (p',a',c')
%= ¢/+¢z ZZ—= ¢y +¢/o
Y, = ¢% + ¢9 ‘Zg== O&' + ¢£L
Y = &s + & b = Bz + Pre

%= ?; +¢8 /A ¢/r+¢/a
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addition of triplet core spin terms will be demonstrated
shortly. Any different set M)l} will cause a break-

down in the following equations. The CI function is
g
ZICI = 2}- Ce % .
(=

If %“//Z}cz = 0, either each element of {'l/(z must
obey the orbital cusp condition, {X¢§E€§2;;} ,

or the following set of equations must be satisfied:

( ~ ( =

© 0O OO0 OO0 OO0 O .
OO0 0000 O0OX™®™OO H
HH R OOOOO®OOGOO

O 0O 00O R OOOHHO
O 0O O0Om,mROOO O OO
OO OO OK OF OO O
Oqp O O O OHKFH OO O O
RO O O OO OO0 OO0

(4.1.22)

r
\

where o = pa , 5 =pb , ¥ =pc . There
pa’ ) b pc'

are seven linearly independent equations and eight

unknowns. The solutions to a constant (normalization)

factor are:
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c; = 1 Cg =0(,3
cy = —X e = X
Cz == B Co = 65’
¢, =~¥ cg =-XBY¥ (4.1.23)

The linear coefficients have been completely fixed.
From previous experience triplet core spin terms

should be included. Table XII contains the additional

elements needed in Table XI for {de and {2//‘} .

If all possible €, -type terms are not included

the equations will breakdown. Now

/¢
%Z = Z Cg%‘ .
(=/

The only variationally determined linear parameter,
k, couples the &, and ©2 terms. The coefficient
sets {cl—% C8} , and {C9';?C163 are both defined

by the equations (4.1.22), the solutions being

¢c. ,1i=1,8 as in (4.1.23)

=ke; ,1i=1,8 (4.1.24)

Other cases, with various combinations of the

sets g)(i} and {X_‘} , 1ead to similar results. Always
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Table XII. Additional ;dﬂ} and ”ﬂ; elements for
Table XI when ©, -type spin terms are

included.
¢/7= (a’aab> ¢ZI= (a},E,b')
B = (a',3,0) INCUCIRS
r = (2,3,0") Gy (2,8",0")
¢1o= (a,c',b) @yf (a',c',b")

a%’= @, - ¢Q *-2¢n
Y= O3 - @y 2%
U= Os - G +284
%2 = 9, - & +2¢2,
%= ¢9 - ¢/o +1¢11
V= Pr = P +2¢,
%f P - ¢/¢ +202,
U - Gis = Gr +2ay
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the coefficients resemble (4.1.23). A tremendous con-
ceptual simplification can be made when relationships
between the c;'s are examined. Equations (4.1.23)

can be rewritten

cqy = 1 c5 = clc2c5
Cs =— X Cg = ©€9CoCy
3 =—f Co = CC3Cy
Cy ==Y Cg = CpzCy (4.1.25)

Now a cusp-satisfying ?¥ZI becomes

_ ' T T '
aZI = (a+c2a R b+05b y C*CyC )
+ (b+05b’, a+c2a', c+cye') (4.1.25a)
defining T to a constant factor as a spin-projected

different orbitals for different spins (DODS) wave

*

function. Each orbital of the function (4.1.25) sat-

isfies the orbital cusp condition, for example
p(k) (a(k) + coa'(k) ) = 0 (4.1.26)

Important generalizations follow immediately.

Let the basis {Xd be replaced by appropriate linear

*

UHF functions are included in the group of DODS func-
tions. Reasons for the present classification are
given in Appendix B.
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combinations, E’Q%}a
e = Zdt'jkj (4.1.27)
J

the standard form for analytical HF orbitals. A doub-
let, three-electron CI function can be formed from

this basis:

%I — ZC(% , (4.1.28)

where

2?? = /¢%355?,4Q~)4‘(¢Zw>EZ;,QZn)

for ©&,~-type terms

(O%J aé;,<?%z)"@7%v,;2§.:QQn)

+02/@,@;,W/m) for ©,— type terms

and the c; are linear variational coefficients. For

70/() %I = 0 each orbital must satisfy the gen-

eralized orbital cusp condition

7(7%) Gitk) = o

which holds either if HX; =0 for the basis {X/]

or if an appropriate linear constraint is applied to
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@' . At least two of the X in (4.1.27) should
not satisfy 76:Y = O if the linear constraint is to be
possible, showing why equations (4.1.19), (4.1.22)
can break down.

Finally, the spin cusp condition is a trivial
consequence of the electron cusp condition. One can
see from (4.1.15) that a spin cusp evaluation operator,
70&?}§J;&%} , will give exactly the same restrictions
on Z?ZI*.as p(k) since Qf;(k) will operate only
on the spin, S?(k).

4.2 Applications to the lithium 2S groundstate

Expression (4.1.28) poses difficult computational
problems because the orbitals (¢, must be variation-
ally determined (with or without constraining) as well
as Z%ZI . Tractable proéedures for calculating spin-
optimized extended Hartree-Fock wave functions have been

recently developed24’25

, making that method an attrac-
tive scheme to test the effectiveness of cusp constraints.

The form of such functions resembles the 'ZZ; in (4.1.28),

AL @) PeI@,6) (6, +46:)]

where k is variationally determined as in (4.1.24).

Nuclear cusp constraints by the method of Weber and
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*
69 or of Chong55 can be applied to each ¢% .

Weber, Handy and Parr68

Handy
have already done this for
Hartree-Fock functions, the primary reason being to
decrease the number of linear pafameters by satisfying
a theoretical condition. But HF functions are not good
enough, as discussed in Chapter I, .to accurately pre-
dict spin dehsities, the object of this work. For tech-
nical reasons the spin—optimiied EHF approach was dis-
carded and all functions are cast in a CI format.
This drastically limits the number of terms in the
expansion (4.1.27) but has the advantages:

(1) No SCF iterations on {Qﬂ} are necessary.

(2) &, , ©2 spin terms are easily included.

(3) Angular correlation can be added if desired

while maintaining sharp sz ’ a(é .

Implement@tion, : of the last:gbrrespond" to a gener-
alization of the EHF method which has not been accom-
pliéhed yet. ©Since simple wave functions are desired,
expansion (4.1.26) will be restricted to two or three
terms. The approach illustrated by cases 1 and 2 in
4.1 is utilized in this section. Orbitals like the

one in (4.1.26) will be called cusp-satisfying orbitals

(CS0) and will be designated

a(k) - ( a'ki a'(k)= a—a'= a—a' (4.2.1)
pa' (k)

*
For atoms.
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where 7@}//5 = j?;j (fis-2)> ,747(25 = Sis and

377

%)( =0for X % Xis s Xgs - Thus (4.1.25a)

becomes

Al a—a'(1) —b'(2) c—c'(3) o]

(a—a'y, >—b', c—¢') + (b—b', =—3a', c—c')

Y

(4.2.2)

As before for cases 1 and 2, neither of the basis

orbitals X or X~ in X

X—X

must be individually
cusp satisfying. |

For exploratory purposes a simple Cl wave function
formed from the basis {;;} was calculated. The func-
.tion and its properties appear in Table XIII. Although
it is much less extensive, this is the same type of
basis used by Roothaan and coworkers65’66, Goddard25
and others. All exponents were partially optimized
except ,Zs = Z. Energy-wise the function is little
better than HF-type functions (Table I). Such a basis
makes cusp satisfaction trivial but there are disadvan-
tages in this approach as applied to simple CI func-
tions. First, expression of core polarization is
difficult. The orbital making dominant contributions

to the core is fixed. Second, X,s STO's are not

allowed. Thus the 2s electronic function in lithium
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Table XIII. Illustrative calculation: 3%-term CI
function formed from {Zi} basis.

STO basis: orbital exponent
3.0000
X5
X3s 3.1126
X34 0.3000
};; 0.94%5

CI function:
¥ = 0.77849(1s,T5,3s")
+ 0.16375 [ (1s,35,35") + (3s,T5,3s") |
- 0.000339[ (1s,38",3s") + (3s',T5,38")]

Properties:
-E Q°(0)(% error) Q®(0)(% error) _Ee=jjs
7.43%618% 0.1243(46.3) 1%.6266(1.5) -3,0000
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must include several X@g orbitals increasing the
possibility of multiple energy minima.

Cusp-satisfying orbitals of the type X—X

are far more flexible. Any Xzs or XIS with the stip-
ulation 515=# Z is acceptable. The first functions
*
studied had the form (4.2.2)
% :—./[ (7(.5"’)56)(7(3/5’—-)()3”)@25 (9/ '/'/(/92)] (4.2.%)

where (/25 is w 4 .
Xis—Xs (=]

—Xis—'xﬁ? (=2

Xos—Xss (=3
k was either placed equal to zero or variationally
determined (spin-optimized). The problem of exponent
optimization was simplified by fitting each CSO into

the (DODS) function

V= (X b Yos ) HXE T Xos) (h.2)

of Hurst et alBO in the appropriate position and
roughly optimizing its pair of exponents. The expon-
ents thus obtained were placed in (4.2.3) and varied

again to be sure a roughly minimum energy resulted.

%
The notation is different from that in Chapter III.
(1) Every orbital exponent can be different;
5is need not equal §yq .
(2) Wave functions are not numbered according to
the number of terms.
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Exponents and properties are shown in Table XIV,
There are several points to note. Spin-optimization
(k # O cases) is very important here as before. The
maximum error in Q°(0) for the k % O cases is 4%.
Q®(0) values are correct within 1%. These are very
good numbers for such simple functions.
The best orbital exponents calculated for the

function (4.2.4) by Hurst et 212 are s - 3.298,

55 = 2.068, S = 0.6%9. The best s CSO's

are seen to be Jjust these orbitals with Dirac =

like functions as corrections for the cusp, as a

Xis orbital with an exponent as large as 13.0 or

20.0 is highly concentrated near the nucleus.

X5 = Xis— } (52 - ng’ (4.2.5)

3

¥ 05-2) ?) = X\5-0.0011837X{s
for .fm = 3,5, fé = 20.0. A corresponding ér—
like correction for the Q%s CSO could not be found.
This is a very interesting result because Nesbet27
(first entry in Table I) included Xs ér—type
basis elements in his CI and HF functions without any
apparent Jjustification. As is evident in Table I
he was not attempting to obtain a good energy, only
a good spin density and chose his basis elements

accordingly. The linear coefficients and configurations



Table X1V,

*
Simple DODS wave functions with CSO's.

Orbital Exponents

STO Xis X A Xis Xis Xis  Xas  Xis
Function
v 3.3 20.0 2.065 13.0 0.60 0.80 === ——o
/A 3.3 20.0 2.065 13.0 0,95 --- 0.68 ---
?, 3.3 20.0 2.065 13.0 === === 0.70 1.80
Properties
Function Energy Q°(0)(% error) Q®(0)(% error) jzeﬁ
(absolute) (absolute)
4 k=0 —7.445434 0.2174(6.0) 1%.9626(.9) -%,0000
’ k#0 -7 . 445435 0.2232(%.5) 13.9625(.9) -3.0000
v, k=0 -7 445419 0.2160(6.6) 13.9614(.9) -%.0000
R k+0 -7 . 445420 0.2224(%.8) 13.9613(.9) -3.0000
A k=0 -7 .445308 0.2265(2.,1) 13.9553(.9) -3.0000
3 k+0 -7.4453%29 0.2341(1.2) 13.9552(.9) -3,0000
Hurst et al® k=0 -7 . 4436 0.3002(29.8) 13.5193(2.3)
Brigman and
Matsen k#0 ~-7.44%6 0.2417(4.5) 1%.5240(2.2)
Best -7 . 478069° 0.23123(0.0) 13.8341%(0.0) -3 .0000%

60T

*
Functions are defined in equation (4.2.3).

gFrom Table I, entry 6.
From Table I, entry 7.

CReference

[39]

dReference
Reference

Theoretical wvalue.
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of his functions are not listed in reference27 S0
his cusp values could not be calculated.

These CSO's resemble Hulthén orbitals, described
by Weare, Weber and Parr§4 Compare the Os Hulthén

orbital

Osug = N, [ exp(—er) —-exp(—ﬁr)] w
with a s CSO

Yls Xls X!s /ﬁ_/i))(/g = s[ef\'P('f") ( )GXP—S’rJ
and a @,s CSO

215 [T '

23 zs = Xas (1,25 Xis = /1/25 €Xp@§|”)—exp€§k)]xr.
Apparently only Os and 1p Hulthén orbitals have been
investigated but they give substantial improvements

in energy over STO' 564

Perhaps this explains the slight
energy improvement of the CSO functions over those

of Matsen and coworkersao’ 52 shown in Table XIV for
comparison.

Slightly more complicated wave functions were

also investigated. An n orbital CSO, Xi~ 7~ Xn s

can be incorporated into a CI function without formal
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constraint procedures as follows. The orbital, QV s

AL = % ic ke =o (4.2.6)

can be expressed (to a normalization constant)

— ¢ (xe 22}‘ , & sum of CSO's.
Qa Eéi ( (X 7@k3 ) '

The choice of 'Xj is arbitrary. The case n = 3 for

QZS CSO's is demonstrated in Table XV for the func-

tion

2%2; = 267[-62<QZLC%§ /6;/"k191):]:

H

&

—_— Y — . — —
X5 Xis +CXS5X5 = XisTXis—Xs

H

Z

yof—iVM"fClXVL—iKMI == }my__ w__ ‘g

(4.2.7)

X&E__ i;

&

There are actually three independent linear coefficients
(without the normalization factor) in the CI expaﬁsion
instead of two for a legitimate DODS function because

c5 = ¢ ¢y is free to vary. Jﬂ—type corrections

also exist in this function. Whether or not they would



Table XV. (1) gz;_ , a true CI function with two 3-orbital CSO's representing
* : .

the core .
(2) ZZ; , a spin-optimized  CI ~ function with p correlation in the
- * %

core .

Orbital Exponents

STO xls s X\; : t,g Xas is X.;'_'s z”é )(z.p,ap
Function
Y, 3,5 2.2 20.0 15.0 0.7 1.82 3.0 2.5 ——-
A 3.2 24,0 2.065 14,0 0.7 1.8 =—=— -— 5.0
Properties
Function Energy Q°(0)(% error) Q®(0)(% error) res
Z_ﬁ,, k=0 -7 446249 0.2298(0.6) 1%.808%(0.2) -3.0000
k%0 -7 . 446276 0.2299(0.6) 1%.8095(0.2) -3,0000
Z]; k&0 -7 467491 0.2296(0.7) 13.9203(0.6) ~3%,0000

Y., is defined by equation (4.2.7).

;Z is defined by equation (4.2.8).

cTt
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be found with energy minimization subject to a con-
straint applied by Weber and Handy's method is unknown.
A CI function with p correlation, Z?} , was
constructed from Zg . 1f a configuration involving
the product XapXzp had been included, 7 would be a

true DODS function.

@5 =V{{[C’(YI;—X{S Xii— /?)"'Cz (l/zp)z (4.2.8)

—————
_

+¢3 (X3p) D ( Xz Xgs) 81+ 9:]}

For the Ckmﬂﬁéfls configurations k = O automatically.
The restfiction.ﬁy =53p simplified exponent optim-
ization. Thus 2%? can be expanded as a four term

CI function. Its exponents and properties are pre-
sented in Table XV. When compared with the entries

in Table I it is seen to be a very good function indeed
for its size.

With the exception of_éz and.;Z all of these cusp-
satisfying functions are true DODS functions. Self
consistency is trivial for a two-orbital expansion
with a linear constraint.

The success with CSO's may be fortuitous. To
test this distinct pdssibility the stability of prop-
erties with respect to the C( -like corrections
was examined for the spin-optimized (k = O) éZ; .
Figure 6 shows a rough energy contour map as a function

7 <4 .
of,Es and J;s . Figure 77 shows the same energy
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Figure 6. Energy contour map of Z;; (Table XIV)

w

Energy versus exponents -ﬁ' ’ Jrs of
ér ~type cusp correction orbitals.
\fl S///
13.0 14.0 15.0 16.0
Ss 20,0 =7.445329 \ =7.445339( <7 445317 -7.445277
21.0 =7 445344 JHU5327
22.0 -7.445326 7 . 445302
2.0 =7.4A5324 JA45253D  -7.445310
24.0 ~7.44%3 45343\ ~7.445317

25.0 -7.445 7 HA5349 | =7 A44B345

26.0 =7.44530 % -7.445348 -7 ,445%46

JA4453521
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Pigure 7. Properties of % (Table XIV) corresponding
to energy contours in figure 6.

4
/5

13.0 14.0 15.0 16.0
74 20.0 QS= 0.2341 \Q%= 0.233 QS; 0.2334
Q%=1%.9552 |Q®=13.8858 Q°-=13.8273

21.0 Q%= 0.2340 0.2337
Q€=1%.9028 13.8442
22.0 0.2347 QS= 0.233%6
R=13%.9875 Q%=13.809%
23.0
4.0
25.0 : 0.2343
213, - =13.8471
26.0 Q§= 0.23%5 = 0.2352 A2345
Q€=14.0%61\ Q%=13.9665 Qe 1%.8576
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contours superimposed on the corresponding properties.
The sensitivity of properties to changes in -J?; ’
53; is seen to be small around the energy minimum.
The main energy contributions come from X is ’ (;
STO's. Optimization with respect to Jis , l;‘ is
more easily accomplished and a sensitivity study not
as essential. These figures answer the question, 'Can
any Jh—type exponent be employed in a basis?’
Another test for CSO's lies in increasing the

size of basis. Schaefer et al4l

compare the basis
dependence of Q°(0) for previously calculated SEHF
functions of the first row elements, boron through
fluorine, and conclude that a large basis ensures
stability of properties.

Perhaps the present successes do not arise from
satisfaction of the nuclear\cﬁsp condition. Recall
that NeSbet'327fresults with | 5.—type functions are
excellent also. A true CI wave function, :@g’ (16
terms) was formed with the same basis as the cusp-satis-
fying function, ZZ , but with free variation of all
linear coefficients. A second true CI function, Qgﬂ,
(4 terms) did not use the é——type ‘Xis cusp correction
orbitals. The effects of these J. orbitals can be
seen in Table XVI. Zzg (Table XIV), of course,

utilizes the éﬁ orbitals and has the correct cusp.



Table XVI. True CI functions formed from STO basis listed in Table XIV.

CI Corresponding Configurations Spin
Function CSO Function Functions
%/ . (wigh r & X5 Xis Xas o XisXjs Xis > Xis Xis Xas & s &5

orbitals Xis X5 Xis 5 X X/8 Xas , Xia XS Xs
Xys X/5 Xzs 5 Xrs Xis Xo's
(8 (without Xis Xi§ Xas 5 Xis X2 Xis e ,6
3 v § orbitals) ? 772
Properties
Function Energy Q°(0)(% error) QF(0)(% error) T _ES
/A -7 . 445560 0.2239(3.2) 13.9086(0.5) -2.9249 -1.9217
aZ” -7 444890 0.2416(4.4) 1%3.4671(2.7) -2.8956 -3%.125%

41T
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One must keep in mind that the function of Brigman and
Matsen* has a reasonable spin density (entry 7 in
Table I) in the first place. _g?% closely duplicates
their results as expected. Addition of é— ~type or-
bitals to the basis improves Q°(0) considerably and in
fact, 2Zg/ , With a very poor cusp, has properties
similar to 222 . The progression from Z%?’(l6 term
CI) to j?g/ (2 term cusp-satisfying function), however,
shows a 2.2% improvement of the error in Q°(0) at the
expense of a tiny sacrifice in energy (2 x 1074 a.u.).
The better spin density of ZZZ is apparently due to
cusp satisfaction.

Unfortunately it could be concluded from this
study, taking into account the rather good spin densities
of gyg/ and the function of Brigman and Matsen, that

_éﬂ -type orbitals ratharthapcorrect cusp conditions
might_be responsible for the excellent results. Authors
5y 1hy 15, 74 have criticized Nesbet27 in varying
degrees for including Jﬁ—type terms in his bases.
This work does demonstrate that nuclear cusp conditions
provide a theoretical avenue to Nesbet's approach even
though they cannot yet be said to affect, to any great
extent, the accuracy of calculated spin density.
Further investigation will determine the generality

of CSO0's. The spin-optimized EHF methods of Goddard

*

The function of Brigman and Matsen [32] is essentially
the function of Hurst et al [30] with a tripleticore.
spin term.
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and Ladner25, Kaldor and Harris24 are ideal for such
a study. Effects of exponent optimization, size of
STO basis, inclusion of ér -type terms with and
without nuclear cusp constraints, and extension of

CS0's to larger systems should be examined.

4,3 Application to the lowest lithium 2P state

The method of two-orbital CSO's is now utilized
to calculate Q5(0) for the lithium 2P state. A
function similar to &% , i = 1,2,3 for lithium <8
with CSO's,

Y, = AL (xsx5 x5—XarrcXaplorke)] 4.3.1)

was partially optimized. ér -type cusp corrections
were also found here, at minimum energy. Since )(np
trivially satisfies the nuclear cusp condition no con-
straint is needed to be applied to the orbital,

QZP = ><2p+cly3p . The more general coalescence
conditions (2.3.8a) could have determined Cy- The
function properties are compared with previously published
results in Table XVII, ordered by energy. Whereas
CS0's for lithium 28 groundstate give similar results
to the spin-optimized calculations (compare the eleventh

entry in Table I with properties listed in Table XIV),



Table XVII, Calculations on the lowest 2P state of lithium.

Spin density Electron density

Description of Reference Energy at the nucleus at the nucleus

wave functions

Q%(0) Reference Q°(0) Reference

HF 42 -7.365069 0.00000 42 13.6534 42

UHF 42 -7.365076 -0.01747 42 13.6535 42

PUHF 42 -7.365080 -0.00582 42 13.6535 42

GF 42 -7.365091 -0.02304 42 13.6534 42

Spin-optimized DODS with a.b a a

CS0's present™’ -7.377569 -0.0223%4 present 13.5501 present

Spin-optimized EHF o4 -7.380087 -0.0169 24 |

Spin-optimized EHF 25 -7.380116 -0.0172 25 1%.7065

208 -term CI 23 -7.40366

45-term CI 67 -7.408%8 -0.02222 75

Experimental 67 -7.41016 -0.0181 10

& $5=3,27, % =2.08,§00,5¢=17.0, JSp =0.526 for the function defined in (4.3.1).
If= p* =-3.0000

bMultlpllcatlon of exgonents by the scale factor 1.00144 gives a function with prop-
erties E=-7.377584, Q°(0)=-0.02226, Q®(0)=13.6031.
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for lithium “2P there is a substantial difference.

Goddard42

has cast doubt on the reliability of the ex-
perimental spin density. If the presently accepted
experimental value is actually too low then the spin-
optimized DODS function may be better than the spin-
optimized EHF functions. On the other hand inclusion
of correlation in the K shell orbitals will‘decrease
the magnitude of the calculated (DODS) value somewhat.

More work with a larger basis is definitely needed

to assess the value of CS0's,
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CHAPTER V

SUMMARY AND CONCLUDING REMARKS

The hypothesis that satisfaction of nuclear cusp
conditions should lead to good point properties at the
nucleus, was investigated for approximate wave functions
by employing several different cusp constraints.
Forcing necessary integral cusp conditions, although
correcting the free variational electron density at
the nucleus (as found by Chong and Yue for helium
CI functions) invariably overcorrected to an extent
that the magnitudes of error before and after con-
straint were similar. No generally applicable rela-
tionships between spin density at the nucleus and cusp
constraints were found. The CI functions with e, -
type spin terms studied had the property that if the
free variational value of l?s was greater than -2
some improvement occured upon forcing I?S = -Z while
the opposite was true when..[?g was less than -Z.
Necessary weighting constraints did not appear to be
useful for calculating Q%’S(0). But weighting with

the free variational groundstate eigenvector closely
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approximated traditional diagonal constraint results
while utilizing the method of Weber and Handy69 to
avoid computational problems. For constraints that

are not too severe, (the constrained function is almost
equal to the free variational function), this weighting
procedure should provide a good estimate of a true
diagonal constraint with less effort.

Sufficient nuclear cusp constraints were applied
to CI wave functions. The resulting form resembled
analytical, spin-optimized, extended Hartree-Fock
functions. Only a minuscule basis was employed, because
the constraint functions were evaluated in configur-
ation interaction form. The most important result
was the appearance of Dirac Cy ~like orbitals cor-
recting the cusp when energy was roughly minimized.
Very good spin densities for the lithium 2S ground-
state were calculated but further tests are necessary
to determine if cusp satisfaction is responsible.
Questions to be answered include

(1) Wili a larger basis adversely effect Q°(0)?

(2) Will é—-like corrections, demonstrated

by Nesbet27 and by this work to improve
Q°(0), appear when a larger basis is used?
Only studies with a larger basis in conjunction with

the constrained variation methods of Weber and Handy
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or Chong will indicate whether satisfaction of nuclear
cusp conditions truly affect point properties at the
nucleus.

A scheme for nuclear cusp conditions found in
Table XVIII unifies the various approaches. The nec-

essary and sufficient cusp condition is written

oK) Y =0 (5.1.1)

for any electron. The one-electron form of this con-
dition dictates that individual electron orbitals in
ZZV must satisfy the cusp condition.

The one-electron orbital basis can be composed
of either single functions, {X&} , Oor more generally,
linear combinations of functions, {CR} , @O ==jg;diKXk .
The former case leads to the basis {2;} , ;tﬂ%gﬁkjgfc’ R
originally derived in a different manner by Roothaan
and Kelly®? - Very recently, Goddard’® utilized this
type of basis for analytical EHF atomic wave functions
of boron through fluorine with the expressed purpose
of improving Q%(0) values. He concluded that Q°(0)
converged much faster (with respect to the size of the
basis) with {Xi} than {X{} . The drawbacks of this
approach are large. No. Xz_s orbital, or Xls with

3is = Z can be employed. Free variation of these



Table XVIII.

Hierarchy of necessary and sufficient cusp conditions for atoms.

a

Wave function

Sufficient cc?

Necessary and
Sufficient cc

b
Necessary cc

Exact,fﬁ

CI function without

rij’ @7

SCF one-electron
orbital, @

STO cusp-satis-
fying basis
{xde

STO cusp-satis-
fying basis of
Roothgan and
Kelly® »{xd

1) Katot!

2) Pack and Byers
Brown

3) o9 =0°

cso's {@}°

1) Integral cusp
constraints of
Chong55

2) Cusp constraints
of Weber, Handy
and Parr6

3) ©80's { @}

1)

Integral cusp cggd—
itions of Chong

N

2)

Integral cusp
constgsints of
Chong C
Weighted cusp
constraints®

aNecessity and sufficiency refer to cusp conditions after wave function type is

specified.

bCusp conditions (cc).

®This work.

set
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two orbitals should be important both for energy and
description of the region about the nucleus. Goddard's
conclusions do reinforce the idea behind this work.

.The more general one-electron orbitals, {QQ} ,
can be linearly constrained to satisfy sufficient and
necessary cusp conditions. The resulting cusp-satisfying
orbitals, {g&} , are flexible and do not show the dis-
advantages of the set,{z;} .

The Pauli principle ensures that

) =0 (5.1.2)
% pls 4

is also a necessary and sufficient condition. Thus
the weighted cusp constraints are derived immediately

by integration:

(FIZ KTy =0 (5.1.3)

These conditions are sufficient if they hold for each
member of a complete set. The necessary cusp conditions

are the special case,

Integration destroys sufficiency because orbital over-
laps contribute to the quantity </7%?§ék/ia&ather
than just ( 70&}? ).
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There is a final comment on cusp and coalescence
conditions. Experiments are being performed on positron-
electron annihilations in molecules. One would expect
effects from annihilation to be extremely dependent
on the wave function at coalescence.77 The usefulness
and application of cusp constraints should still be
examined with respect to this important new

development.
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APPENDIX A

ATOMIC UNITS

A discussion of the significance and usefulness
of atomic units (a.u.) is found in reference [78] .
A recent tabulation of values of the fundamental con-
stants appears in [79] . The basic a.u. are defined

here in c.g.s. units.

Quantity a.u.
mass 1 =M = 9.1091x10—28 g.
charge 1 =e = 4.80298x10710 e.s.u.
2 -
length 1 bohr = & = ﬁ __ = 5.29167x10 9cm.
M €* 20
angular momentum 1 = A = A = 1.0544x10 “’erg sec.
L7

energy 1 hartree = &~ = 4.5594x10-11 erg

ao —21
magnetic moment 1l bohr magneton = CZ? = 9.2732x10 erg

L7 C Gauss

For atomic (as opposed to molecular) calculations a

different definition of mass is used:

e e et et

1 = /A( = Zﬂef4 where ™ is the mass of the
| e *M
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nucleus. The a.u. for length, energy, etc. are re-

defined

SN
I
M
i

mass corrected bohr

b

mass corrected hartree.

o
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APPENDIX B

SOME IMPORTANT TYPES OF APPROXIMATE
ATOMIC WAVE FUNCTIONS

First a remark on the symmetry of atomic wave
functions. The non-relativistic Hamiltonian for an
atom commutes with Jz , Il ’ ,Q/Z ’ Iz , the
total spin and orbital angular momenta and their Z
components respectively. An exact wave function, therefore,
has sharp values for these observables and it seems
proper that approximate wave functions should too. |
Because electrons are fermions, the Pauli principle
holds also. The antisymmetrization operator, u/(, will
designate this symmetry.

The most widely used approximation in atomic and
molecular physics is the Hartree-Fock (HF) method
arrived at by considering each electron to be in an
average potential field created by all other electrons.
This results directly in a single particle interpreta-
tion for the approximate function where an electron
cannot experience direct interactions with the others.
The HF function is the very best, with energy as a

criterion, antisymmetrized product of one-electron



1%6

spin orbitals:

Y, =AWt

The Z? may be expanded iﬁ a complete set of one-electron
functions. If this expansion is truncated for prac-
tical applications, an analytical HF approximation'to
the true HF function results.
There are a number of :c‘es’crictionsl'7 that must
be made on the most general HF orbitals so that the
function will be an eigenfunction of k/z ’ 3(2 ’
o > Lz
(1) The spin orbital, 29? , should be separable

into spin and orbital components.

Vilt,s) = Q)5 p=o,g

The more general (unrestricted) case is

Viir.e) = Fitr)dd) + A1 e

(2) The orbital should be separable into radial

*
and angular components.

Prre.¢) = UMK (o,8)

%
The present discussion applies to atoms only.
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(3) If (2) is true, é/gﬂ? should be independent

*

Of m’( .
(4) If (1) is true, C{#) should be independent
*
of s .

Closed-shell systems present no problems. All the above
restrictions automatically hold and the resulting
best function is called the restricted Hartree-Fock
(RHF) or (usually) Just the HF function. Open-shell
systems having an unpaired spin exhibit core polariz-
ation only if (4) is lifted. This is called the un-
restricted Hartree-Fock (UHF) approximation, ambiguously
since only one restriction has been lifted. It is
also referred to as a spin-polarized Hartree-Fock.
Releasing of the restrictions (2), (3) has not been
investigated to any extent.

| Sharpness of ,%/Z R OZ’Z, QJ;_ ,oZ; can be
restored to unrestricted functions by the appropriate
projection operator(s). The projected unrestricted
Hartree-Fock (PUHF) is thus obtained by projecting a
(minimized) UHF function to have sharp o~ . Spin
projection before minimization is physically more real-
istic, resulting in the extended Hartree-Fock (EHF),
also referred to as spin-polarized projected Hartree-

Fock or spin extended Hartree-Fock (SEHF).

*The present discussion applies to atoms only.
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Such projected functions are no longer true HF
functions since they contain more than one determinant,
but they have an independent particle interpretation
if they are calculated with averaged Coulomb potentials.

The independent particle interpretation of the
HF method, although leading to conceptual advantages,
also provides serious shortcomings. Electrons are per-
mitted by the functional form of the HF function to
come too close together. The Pauli principle auto-
matically provides a 'Fermi hole' for correlating the
movement of two electrons with parallel spins-~the
(determinantal) wave function can vanish identically.
The 'correlation hole' or 'Coulomb hole' describing
the instantaneous interactions between two electrons
of different spins does not exist in HF functions.

The method of different orbitals for different
spins (DODS) improves on the HF procedure by allowing
electrons having different spins (and thus not affected
by the Pauli principle) to occupy different spatial
positions. To be an eigenfunction of %yz a DODS func-
tion is usually spin projected. The term, DODS, is
collective, including all UHF, EHF, etc. (except RHF)
functions but implying a degree of approximation

below that of analytical HF derived functions. For
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example if

%EHF = %p/@ﬂx W/élg@gx)

where ﬁ) is a spin projection operator, the orbitals
¢7 are expanded in the same one-electron basis,

usually relatively large,

W/S-’—_—- ZQ(')(C N ¢/§= Zézk( , etec.
whereas for

é%;us =:0/7/%7(¢25°<¢25}9425°‘)

the orbitals (Y are expanded in a small basis--so
that their resemblence to accurate analytical HF-type
orbitals is in notation only--~that can be different .

for each orbital.

W/S =X, , Dis =Xz , cte.

A remark on open and closed shells can be made here.
'Open shell' can refer to an atom like lithium with an
unfilled outer shell or it can refer to a split shell

described by the DODS method. Helium for example
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has a closed ¥ shell but a DODS description is an open
shell description. Entriés 6, 7, 8, 9 in Table I could
be more accurately labelled as functions having split

K shells.

There are two main types of functions containing
correlation: a configuration interaction (CI) function
(a kind of generalization of the DODS method), and a
correlated function (sometimes referred to as a
Hylleraas-type function). Both, of necessity, depart
from the independent particle picture. A Cl function
consists of a sum of antisymmetrized products of one-

electron spin orbitals.

Ver =AZ @ TG 11 205D

A complete one-electron basis with all possible pro-
ducts can describe an exact function. In practice
Z?ZI is truncated and the @Q@} determined by the usual
secular‘equations. If a full basis (in the sense that
all combinations of any particular truncated set of
@’ , with all possidle £ , 22, S  quantum
numbers, are present) is used, ZZ; is automatically
an eigenfunction of j&ﬂa ’ <272 , kf; , ;fé- . Or
determinants may be grouped to individually be eigen-
functions of these operators (the examples in the text).

Any complete set of one-electron functions will generate
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a CI function, Gaussian orbitals, Slater-type orbitals

(ST0's), Laguerre polynomials, etc. STO's provide

a physically realistic basis. The CI approach suffers

from slow convergence and the growing number of impor-

tant configurations with the number of particles.
Correlated wave functions contain interelectronic

coordinates, T explicitly and so are not expanded

2

i

in a one-electron basis set. ©Such a function for =S

lithium atom could appear?’ 80

Zyﬁ/ﬁ 2 Pijxemn (C?/)'km'? S C(i})”’“” ©:)]

The ©( terms are the two linearly independent spin
doublet functions for three electrons, and the c's
are variationally determined linear coefficients,

A form for the Ziis

K

Dijwomn = K KK 1L 671 exp (-t r~¥5)

Factors like I.‘ijj s, 1 rj could be included as
17 F13

well, Disadvantages of this method are:
(1) The number of possible (/5 increases trem-
endously with the number of electrons.
(2) The necessary integrals can be complicated

to evaluate.
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APPENDIX C

CONSTRAINED VARIATION

C.l Introduction

Constrained variation is a technique that builds
selected information, either of a theoretical or em-
pirical nature, into a variationally determined approx-
imate wave function. The purpose is the anticipated
improvement over the free variational function in related
expectation values. Basically the problem is the mini-
mization of energy of a trial function while forcing
it to have predetermined properties. Since the procedure
removes degrees of freedom in the variational coeffic-
ients of the trial function it results in an energy
sacrifice, ZlE, from the energy of a free variational
function.

The idea of constrained variation was first intro-

81

duced by Mukherji and Karplus and basic theory was

developed by Rasiel and Whitman82 70

and Byers Brown.
Initial successes in applicationsSl’ 82, 85 have led

to refinements69’ 71, 72, 73 and further applications.
3’ 4) 59,

84, 85 Methods of solving constrained secular

equations are now presented.
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C.2 BSingle constraints

The energy of a trial function EZV R

e - S PIHIYY /K P/ P> (c.2.1)

is to be minimized subject to a constraint

(OIMI D))y = <« (c.2.2)

conveniently expressed

C = ‘/éf>>'==C7 3
C - Mo .

(C.2.3)

04;( can be any observable or attribute not commuting

with A/ . The modified variational principle becomes

SE +)dc =o0

or more explicitly

<Orfzp///£/ —£ FNC YD =0 (C.2.4)

The determination of the Lagrange multiplier, A y

constitutes the major problem in applying constraints.
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The form of (C.2.4) restricts G to be an Hermitian

70

operator. Byers Brown has developed the most exten-
sive treatment of constrained variation by considering

A as a perturbation parameter. In this perturbation

approach the energy in (C.2.4) is designated as Eg; .,

a fictitious energy and is expanded in a power series

o (C.2.5)
Erioy = = A E®
h=0o

where E<1> is the it order perturbation energy. Since

Epiot(A) =(H#AE)

%’i@ = <é°> = C()) by the Hellmann~Feynman

theorem. When the constraint (C.2.3) is satisfied,

A ==A°Pt , the optimum value of A . Because

CO))= > "ne” | (C.2.6)
h=| .

o
(35,%1«) = > )\oplt h Y =0. (C.2.7)
QA )‘—'/\op‘t =t

The series (C.2.5) must converge rapidly if a pertur-
bation approach is to be of value and can be truncated
after 'k' terms. The E(i) are readily evaluated for the

Rayleigh-Schrddinger perturbation expansion and a value
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for ‘Aopt can be obtained by inverting the power series

(C.2.7)

A opt &= Ao Z ah( m) (C.2.8)

£®

Properties can be evaluated by a double perturbation

approach, or directly from the wave function satisfying

<5/§P/{H“E +AOC\:}I?>—EO (C.2.9)

The closeness of the approximation, Acmt ‘==,Ao R
depends on the convergence of the inverted series and
the truncation errors involved.

The parametrization :aLmoI‘oach7l avoids the -question

of convergence occuring in the perturbation approach.
It is simple to apply; (C.2.4) is repeatedly solved
for different wvalues of A until C( Aopt ) = O is
found. The problem here is that a good initial guess
for )opt is difficult. If one is fortunate enough to
closely estimate )opt , 1t may be obtained to high
accuracy by successive linear interpolations or extra-
polations of C( A ).

72

Chong has developed a perturbation-iteration

approach by incorporating parametrization into the per-

turbation approach. C( A ) is expanded in a Taylor
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series about an estimate An . For >\h+1' = An + X
K p
Cpr) = COW) + S X"Dul) ) (C.2.10)
m'=|

K m-n’ |
where Dm’(Aw) = > (Z’/))h (m+1) E™T
m=n’
[ﬂﬁ]are the binomial coefficients. Equation (C.2.8)

provides an initial guess, )\o .

COn) = PO IV K P0.) PB.)) 15
evaluated with the solution to (C.2.9) for A;q .
Since An# = )ogt is desired C{ A p+; ) is set to zero
and inversion of the truncated series (C.2.10) gives
an estimate for X . Usually a very few iterations

suffice to give )optto desired accuracy.

C.B Multiple constraints
70

Byers Brown extended his perturbation approach
to include multiple constraints. The variation principle

SE + ZALCch =0 (C.3.1)

Resulting series expansions and inversions are not
easily worked out and thus his extension is not too

practical.
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Chong and Benston75 observed approximate linear

relationships in double constraints. The constraint

conditions

(Gjl> :CI ()upt 3 7(op't) = O

(G2 =Ca(Dopt, 7{0,,1:) =0, (C.3.2)

A 5 77 the two Lagrange multipliers, are closely

estimated by solving

C, () ,7() = Ao + Aud + Fh2_77

Cl ())7?) = /C}z_o + Hz,) +Hz_z_77 (0-5-5) |

fOI’ C‘ = Cl = O at ) = Aop‘t [ 72 = 7?0Pt .
The coefficients {qu}can be initially determined from
the expectation values of Gf, , and CZ; for the

free variational and singly constrained eigenfunctions,

C‘(O’O‘ = Rio = <(°0'> (free variational)
Cy_(0,0) = A0 = <(§z> 1

G (A;Pt )O) = Mo * H//)/opt =0

C. (Aﬁpi‘,o) = Azo + Qzaxopt

c (o, %Lt) = Ao + A7 pe

G, (0,Népt) = Ao+ A2 70fe =0 (G.5.8)
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/ .
/ . : .
where )opt,17opt are optimum single constraint values.

The secular equation

(SUIfH-E+26 +7&[/P? =0

is solved using Aopt,‘akpt from (C.3.3). Accurate
evaluations of C; (Qopt, opt) , Caf >iop;‘t s Nopt) are
made enabling the set of points (C.3.4) to be improved.
Iteration proceeds until (C.%.2) holds. Usually only
one or two cycles are needed.

An alternative to this approach is successive
parametrization. The best ,A for some value of

t
77 is found so that C|(>se:ﬁ)

= 0. A is fixed
and a new 72 is found giving Caz (D, ﬁbesf) = 0.

The process is repeated until self-consistency is
achieved. Loeb and Rasie186 have employed this method.
The disadvantage is that matrix eigenfunctions must

be found at each step in the parametrization while

equations (C.3.2) are simple, linear, algebraic equations.

C.4 Off-diagonal constraints

Al]l methods discussed so far have been diagonal,

<y1CIY > =2
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An off-diagonal constraint

SUWE/ P >=0 , ¥FF (C.4.1)

can be imposed by defining a new pseudo-diagonal con-

straint operator84

C=CIUXY +IYXYIE . (C.4.2)

The constraint condition (C.4.1) becomes

Cl=¢plE WD =0 (0.5

where ;?7' is fixed and 'ZZ/ is variationally deter-
mined. Self-consistency is achieved by reforming

7
Qf after every calculation of 297 .

C.5 Off-diagonal linear constrained variation of

Weber and Handy

No iteration or parametrization is necessary in
this one-step approach. Multiple constraints are
handled easily. The presentation of Weber and Handy69
is followed.

Define the constrained wave function

U = =c Uk
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represented by the column vector, (@ , in some
orthonormal basis set {@%} . Weber and Handy consid-

ered the constraint conditions

%97_6 =0 , =100, M (¢.5.1)
[4

where each 76%‘ defines a constraint. The set {ﬁ?(}
A\
can be orthogonalized to{?bg} where

ks

Frpe - &

The resulting constrained secular equations are

Vod
M -eZ)c = —% _Zwa. (C.5.%)

=/

Z is the unit matrix, /%/ is the Hamiltonian
matrix in the basis f&%} , and & 1is the (constrained)
energy of 227 . The beauty of the method lies in the
elimination of the Lagrange multipliers,,hk . Mult-

ARA
iplying (C.5.3) by Zﬁﬁe one obtains

—
— 1 = # e
—— r—— C. .4

2 )k' Jéjg Vi (C.5.4)
These values for the A'S are substituted into (C.5.3)

which is then manipulated into the set of secular

equations
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(B—-eZ)c =o (C.5.5)

where L =/7 —A ) HIT~-A ) , an Hermitian
matrix an A = % Pr %Dk . en

is diagonalized, 7% extraneous roots, €¢( , appear
because 777 degrees of freedom are absorbed in the
constraints. Weber and Handy show that these 277
roots all have value zero. Off-diagonal constrained

variation is thus reduced to orthogonalization of the

setsz%} and solution of (C.5.5).
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APPENDIX D

INTEGRAL CALCULATION

D.1 Primitive integrals for Slater-type orbitals

(STO's)

A general STO has the form

an+i h-l
Xvum (vr,e,d) =z//%% Fle gk}fvm(‘;»d’) (D.1.1)

The k}wfsare the usual spherical harmonics. Primitive

integrals are those arising between one-electron basis
functions. In energy calculations the following prim-

itive integrals occur for atoms:
overlap integrals, Sy, =/—X}‘/t} X, () &2
kinetic energy integrals, —{.{/)(?a_—)vzyj(,t) dr
nuclear attraction integrals, zaﬁhzjﬁ_)sajcyg

Coulomb and exchange

integrals /}’fé;/kf/{;)/:_/_ Xidl) X o () CZ/Z}Q/Z‘L

87

Analytical formulae are given by Roothaan:



153

For cusp calculations the following primitive

integrals arise:
electron density e »*
at the nucleus, 3¢ —'ﬁ(('/f),g—(ﬁ%z X;te) e

dient at th =S |
Beleus, % Gy /X7 Q’);O/:(:)Z 5; X (k)2
/

Formulae are easily derived for these integrals from

the definition of STO's (D.1.1):

@“J. _ W , for X¢ , XJ both X5 orbitals
= CS;
Bl
o , if X¢ , Xj are not both Xis
orbitals
GiJ‘ — —__S Se f)? , 1f X¢ 7(J' are Xis orbitals

+5; U[sESP  » if X is a Xes orbital and

X;is a X;s orbital

) , for all other combinations
of orbitals

The spherical averaging operator defined in the text
has not been shown, but it ensures that all £ , 24 ,
£ ,... orbitals ( £> 0) give a zero contribution

to the cusp.
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D.2 Collection of primitive integrals

The integrals directly employed in atomic cal-

culations are those between Slater determinants

{d%} where

b = AL T )] (D.2.1)

V{ is the antisymmetrization operator, {X} are
STO's and Yk are spin functions o< s '@ . The
general method of handling these is given by Slater.88
For three electron functions with 5 = 1/2 = S, a sim-

plified approach can be used. If general primitive

integrals are designated

Ty =/ Xk Tl X6

the Slater determinants (D.2.1) may be compactly written

ok

®; = (e (o) ,—F(z)]g(?_) ) 9(3)o<(3)) , cte..

fl

(ate) , be) &) , cBG)ed))

Then
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R = < S|
= {am)x0) A(z)}g(z_) Gl )| KZ’; 2t {G(l Jo<(1) £2) /Qz) 8(3)0((3)
+£0)81) §G102) @) <(3) + ;//}x(/)e(z)o/(z)ﬁ//fé)
~11B0) €6)se] 96)%6) — itz s) e

~ 94/70) 772}/&/2) cl)l) ).

if ;7k) is spinless the spins may be integrated out

immediately.

3
Fop = (an a)co)| 3 3 | e fe 36) —gufered)
K=t
= 72@ Ss# Sc‘_j +Sae ﬂfij +Sae Sbr 7{(:5

~fag SrSce —SagFérSce —Sag Serlze

in terms of primitive overlap and ;t_ integrals.
Ifji}?k contains spin--for example, the spin density

. "‘g’—()' JZ{(}

operator, ;E; TR ~-the spin functions may

be operated on and then integrated out in an analogous

way.
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Further integral collections, between eigenfunctions
2 .
of Qﬂﬂ , etc., as used in the text, are trivial, con-
sisting of linear combinations of the integrals be-

tween Slater determinants.
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APPENDIX E

DESCRIPTIONS AND PROPERTIES OF THE
WAVE FUNCTIONS é/o THROUGH @ /8

The Slater-type orbital basis for this series is
defined in Table V, as are the configurations in _S-l_sxo ’
the key wave function. The significance of _@ﬂm is
explained in the text following equation (3.3.4).

The notation, ;(_@c} , used below, means the entire

collection of configurations making up the CI function,
é( . Properties of _@-o through _¢;8 are listed

in Table XIX. The functions # through _@/‘g have

the configurations

$,: {3}, 1515257e,

b {83, I525%25%0,
@13: {én?j ) 2515’25”62
b.: {353, 2525%as’e,
@/5.’ {§IL+§> /sis’35 e,
Bz (Bsi, 15255,
Dr: (B, as/5'3s"es
Pt (9§, asas3s" &,

‘v P e s w
@/#Q: {_?;0} y) /5/525 92_ ) /5»250?562) /S/S_?S 92/ /5-—2535 QZ



Table XIX. Free variational and constrained properties of the wave functions 7o through _25,,
Function Constraint -Energy Q°(0)  Q%(0) re rs DE )
@L None 7.467389 0.2677 13%.7522 -2.9732 -3%.2795 _—— 0.0  _,
re=x 7.467254  0.2753 13.9191 -3.0000 -3.297% 0.000135 +0.579772x10_,
F=y 7.465334  0,1715 13.5519 -2.9447 -3.0000 0.002055 -0.521667x10" 3
ge=r%= 7.46473%36 0.1686 13.8901 -3.0000 =-3.0000 0.002653 X, =+0.125277x10_3
X ==0.585347x10
d, None 7.467408 0.2244 13,7538 -2.97%7 -3.1545 @ -—- 0.0 _,
pe= 7.467278 0.2265 13.9179 -3.0000 -3.1587 0.000130 +0.569242x10_,
=y 7.467394 0.1867 13.7524 -2.9736 -3.0000 .0.000014 -0.621749x10 _u
pe=ri=y 7.467264 0.,1879 1%.9168 =-3.0000 =3.0000 0.000144 X =+0.569979x10_,
) =-0.615931x10"
& None 7.467418 0.2148 13.7512 -2.9730 -2.9487 —— 0.0
72 pe=x 7.467283 0.2197 13%.9189 -3.0000 -3.0193 0.000136 +0.578992x10~
=¥ 7.467418 0.2201 13%.7518 -2.9731 -3.0000 0.0 +0.608938x10 5 _y
pe=pi=y 7.467282 0.2177 13.9190 -3.0000 -3.0000 0.00013%7 X -+0.579931%10 5
 =-0.227478x107
& None 7467424 00,2048 13.7515 -2.9731 -2.7800 -— 0.0 _y
72 pes 7.467289 0.2088 13.9189 -3.0000 -2.8446 0.000135 +0.5776325x10,
DSz 7.467420 0.,2229 13.7527 -2.9733 =3.0000 0.000004 +0.144304x10 _
7€ =P5=d 7.467287 0.2219 13%.9187 -3.0000 =-3.0000 0.000137 Ai-+o 574#015x10_,
X =+0.100169x10
'._J
) None 7.467429 0.2135 13,7500 -2.9728 -2.9790 —— 0.0 _, p
% pesy 7.467291 0.2153 13.9192 -3.0000 -2.9870 0.000138 +0.582329x10
3oy 7.467429 0.2150 13.7500 -2.9728 -3.0000 0.0 +0,.891716x10~ "
pe=Fs-x 7.467291 0.2163 13.9192 -%.0000 -3.0000 0.000138 A5_+o 582305x10~ 6

X’ =+0. 554754le



Table XIX (continued)

Function Constraint -Energy Q5(0) Q%(0) re st NE N
¢% None 7.467483 0,2269 13%.7529 -2.9736 -3.0271 —_— 0.0 4
=y 7.467354 0.2297 13.9168 -%.,0000 -%.0380 0.000129 +0.563295x10 5
D=y 7.467483 00,2248 13.7529 -2.97%6 =3,0000 0.0 -0.121657x10" -4
pesli=y 7.467354 0.2268 13.9168 -3%,0000 -%.0000 0.000129 )e_+o 56340%x10~ 5
» =-0.166013x%10
& None 7.467490 0.2289 13.7510 -2.9730 -3.0622 —_— 0.0 _
=y 7.467356 0.2310 13.9176 -3%.0000 -%.0596 0.000134 +0.570254x10 s
=y 7.467490 0.2241 1%.7509 -2.973%1 =3.0000 0.0 -0.278766x10 _u
pe=rs=y 7.467356 0.2264 13.9176 -%,0000 -3.0000 0,000134 X=+0.570195x10" c
¥=-0.258561x10
D, None 7.467492 0,2298 13.7511 -2.9731 -3.0754 _— 0.0
ﬂf=x 7.467359 0.2320 13.9176 -=3.0000 -3.0741 0,00013% +0.569446x10~ 5 _
12=§ 7.467491 0.2240 13,7511 -2.9731 -3.0000 0.000001 -0. 557156x10 4
£e=p’=y 7.467358 0.226% 13,9176 -%.0000 -%.0000 0.000134 X,=+0.569374x10" 5
) =-0.320967x10
D None 7.467495 0.2287 13.7501 -2.9729 -3,0542 _— 0.0
L=y 7.467360 0.2312 13%.9178 -3.0000 -3.0590 0.000135 +0.572685x10
rs= 7.4674905  0.2246 13.7501 -2.9729 -%,0000 0.0 -0,239282x10 5 i
re=ps=y 7.467360 0.2267 13.9178 -3%3,0000 -%.0000 0.000135 ¥Zio. 5722745%10"
¥ ==0.252666x10"°
p—t
Do one 7.467479 0.2304 13.7521 -2.973% -3.03%94 _— 0.0 u 3
[ =¥ 7.467348 0.2360 1%.9172 -3,0000 -%.0988 0.000131 +0.566694x10 <
V=y 7.467479 0.2260 13%.7517 -=2.973%2 -%,0000 0.0 -0.487691x10
Larsson's 7.478025 0.2313 1%.8341
100 term
correlated

function, see
entry 18 in Table 1



