THE DETERMINATION AND REFINEMENT OF THE STRUCTURES OF SOME CHIORINATED CARBOHYDRATES by

REINHOLD HOGE B.Sc.(Hon.), University of British Columbia, 1965.

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

In the Department
of

Chemistry

We aocept this thesis as conforming to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA December, 1968.

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and Study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. it is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of \qquad
The University of British Columbia Vancouver 8, Canada

Date

ABSTRACT

Supervisor: Professor James Trotter.
The crystal and molecular structures of three chlorinated carbohydrates whose formal nomenclatures are
methyl 2-chloro-2-deoxy- $\alpha-$ D-galactopyranoside methyl 4,6-dichloro-4,6-dideoxy- α-D-glucopyranoside, and
methyl 4,6-dichloro-4,6-dideoxy- α-D-galactopyranoside have been determined by X-ray diffraction using various methods. A scintillation counter was used in each case to collect the datas for the first, Cuka radiation was used; for the second and third, MoK $_{\alpha}$ radiation was used. The structure of the 2-chloro-galactoside was solved by a combination of the Patterson method and trial and error methods. Two possible positions of the ohlorine atom found from the Patterson function were differentiated by minimizing R (using $h k 0$ projection data only) in rotation of a model of the molecule about each chlorine position. A model was used to go from the solved two dimensional structure to three dimensions. Successive Fourier summations and block diagonal least squares refinement established the crystal to be composed of a mixture of the α and β anomers of methyl 2-chloro-2-deoxy-D-galactopyranoside in the approximate ratio of $2 \alpha: 1 \beta$. Both the α and β anomers are in their expected

C-1 (chair) conformations. Hydrogen bonding involving $O(3), O(4)$ and $O(6)$ links molecules together into infinite sheets, two molecules thick and perpendicular to the x-axis. Mean bond distances ares $C-C=1.53 \mathrm{~A}$, $C-0=1.42 \mathrm{~A}$ and $C-C 1=1.75 \mathrm{~A}$.

The structure of the 4,6-dichloro-glucoside was solved by a combination of the Patterson method (to locate the two chlorines), successive Fourier summations (to locate the carbons and oxygens), block diagonal least squares refinement, and a difference synthesis (to locate eight of the hydrogens). The absolute configuration was determined by the anomalous dispersion method (CuK α_{α} radiation). The molecule is in the expected $C-1$ conformation. Hydrogen bonding, involving $O(2)$ and $O(3)$, links molecules together into infinite chains parallel to the y-axis; the mean planes of the molecules are approximately perpendicular to the direction of these chains. Mean bond distances are $C-C=1.52 \mathrm{~A}, C=0=1.42 \mathrm{~A}$ and $\mathrm{C}=\mathrm{Cl}=$ 1.78 A.

The structure of the 4,6-dichloro-galactoside was solved by direct methods applied to the two dimensional data of two centrosymmetric projections. A series of programs, employing the Vand-Pepinsky method of phasing reflexions contained in Sayre relationships, was written to do this. After refinement using block diagonal least squares, the two solutions were combined into the three
dimensional solution, which was further refined. A difference Fourier sumation revealed the position of six hydrogens. The molecule is again in the expected C-1 conformation. Hydrogen bonding involved $O(1), O(2)$, and $0(3)$ in a complicated network which includes a bifurcated hydrogen bond. As in the 2-chloro-galactoside, molecules are linked by hydrogen bonds into infinite sheets, two molecules thick and perpendicular to the x-axis, but whereas in that structure the basic symmetry elements propagating the networks of bonding were unit cell translations and two-fold rotation axes, the basic elements propagating the networks in 4,6-dichloro-galactoside are unit cell translations and two-fold sorew axes. Mean bond distances in this structure are: $C-C=1.53 \mathrm{~A}$, $C-0=1.45 \mathrm{~A}$, and $C-C l=1.80 \mathrm{~A}$.

TABLE OF CONTENTS

Page
TITLE PAGE 1
ABSTRACT 11
TABLE OF CONTENTS ∇
LIST OF TABLES Vi1
LIST OF FIGURES vii1
ACKNOWLEDGEMENTS x
GENERAL INTRODUCTION 1
PART I: THE STRUCTURES OF THREE CHLORINATED CARBOHYDRATES

1. METHYL 2-CHLORO-2-DEOXY- α-D-GALACTOPYRANOSIDE
Introduction 4
Experimental 5
Structure Analysis 6
a. Two Dimensional (xy) solution and 6 refinement 11
Discussion
a. Molecular Structure and dimensions 15
b. Hydrogen bonding 18
2. METHYL 4,6-DICHLORO-4;6-DIDEOXY- α-D-GLUCOPYRANOSIDE
Introduction 25
Experimental 26
Structure Analysis 27
Absolute Configuration 29
Discussion 30
Direct Methods on xz projection 42

PART I: (cont'd.)3. METHYL, 4,6-DICHLORO-4,6-DIDEOXY- α-D-GALACTOPYRANOSIDEIntroduction46
Experimental 46
Structure Analysis
a. Direct methods on $x y$ projection 48
b. Direot methods on $x z$ projection 55
c. Three Dimensional Refinement 57
Discussion
a. Molecular structure and dimensions 61
b. Hydrogen bonding 65
PART II: DESCRIPTIONS OP PROGRAMS
Direct Methods Programs
Introduction 74

1. PREDIR 75
2. SAYRE 79
3. SIGNS 83
4. ESIGND 91
Rotation program for c-axis projection of $\mathrm{P}_{1}{ }^{2}{ }_{1}{ }^{2}$ 94
A contouring program (CONTUR) for three dimensional Fourier maps 96
BIBLIOGRAPHY 102APPENDIX (Source Deck listings for programs in Part II).

LIST OF TABLES

Methyl 2-chloro-2-deoxy- α-D-galactopyranoside
I Measured and calculated structure amplitudes . . 21
II Final position and thermal parameters including their standard deviations 22

III Bond lengths and valency angles 23
IV Shorter intermolecular distances 24
Methyl 4,6-dichloro-4,6-dideoxy- $\alpha-D-$ glucopyranoside
V Measured and calculated structure amplitudes ... 35
VI Final position and thermal parameters $\begin{gathered}\text { including their standard deviations } 36\end{gathered}$
VII Bond lengths and valency angles 38
VIII Shorter intermolecular distances 40
XI Determination of the absolute configuration with Cu-K radiation 41

Methyl 4,6-dichloro-4,6-dideoxy- α-D-galactopyranoside
X Measured and calculated structure amplitudes . . . 68
XI Final position and thermal parameters including their standard deviations69
XII Bond lengths and valency angles 71
XIII Shorter intermolecular distances 73

LIST OF FIGURES

Methyl 2-chloro-2-deoxy- α-D-galactopyranos1de

1 Approximate representation of model used for rotation program (ROT).8

2 Results for two possible chlorine positions as R versus (4) plots.9

3 Superimposed sections of electron density distribution (contours at $1,2,3 . . e^{3} A^{3}$) and a drawing of the molecule16
Packing diagram; view along 0 175 Hydrogen bonding; view along c of near originregion (the dotted $0^{\prime \prime} s$ have been offset forclarity)5
Methyl 4,6-diohloro-4,6-dideoxy- α-D-glncopyra- noside
6Superimposed sections of electron density
distribution (contours at $1,2,3 \ldots .0 / A^{3}$ forC and $0 ; 1,5,10 \ldots 0 / A^{3}$ for $C 1$) and a drawingof the moleoule31
Packing diagram; view along b 33
8 Hydrogen bonding; view along 0 34
9 E-map of xz-projection (contours on arbitrary scale) with final refined solution superimposed 45
Methyl 4,6-dichloro-4,6-dideoxy- α-D-galactopy- ranoside
1011 Electron density map of xy-projection (contourson arbitrary scale) based on phases calculatedusing all non-hydrogen atoms except$O(1), C(2)$ and $C(4)$53
12 Final electron density map of xy-projection (contours on absolute scale: e/ $A^{2} x$ l00) with the refined structure superimposed. 54
13 E-map of xz-projection (contours on arbitrary scale) with the initially postulated structure superimposed 58
14 Final electron density map of xz-projeotion (contours on absolute scalet e/A A^{2} 100) with the refined structure superimposed 59
15 Superimposed sections of the electron density distribution (oontours at $1,2,3 \ldots \mathrm{e} / \mathrm{A}^{3}$) and a drawing of the moleoule. 63
16 Packing diagram; view along c 64
17 Hydrogen bonding; view along b 66

ACKNOWLEDG EMENTS

I wish to express my appreciation to Dr. J. Trotter for his constant interest and enoouragement during the course of this research.

I also wish to thank Dr. J.K.N. Jones for the orystal samples used for this thesis.

Finally, I would like to thank the
National Research Council of Canada which, in the form of a Bursary and three Studentships during 1965-1969; has provided financial support for this work.

GENERAL INTRODUCTION

Since l913, when Bragg used it to determine the first crystal structure, X-ray diffraction has been used to solve many thousands of structures. The theory and standard techniques of the science of X-ray crystallography, culminating in a representation of a orystal in terms of its electron density (the "Fourier") may be found in any of many standard reference books on the field, ${ }^{1-5}$ and will not be described nere. Standard techniques now include not only "trial and error" methods and the Patterson method but also direct methods. 6 -9 Although they have been successfully applied to structure determinations in non-centrosymeste space groups,? direct methods are by far easiest to apply to (and have in the majority of cases been applied to) structure determinations in centrosymmetric space (and plane) groups.

The series of three compounds which were studied for this thesis were chosen because they lend themselves to a variety of methods of solution. The two pertinent features of these compounds are that

1. although the structures of all three belong to non-centrosymmetric space groups (as a necessary consequence of the fact that they are optically active non-racemates), they each belong to space groups having projections as centrosymmetric plane groups, and that
2. the structure of each has one short axis (of circa 5 A) of projection along which it can be assumed to have no overlap and to be easily recognizable.

This thesis is thus mainly concerned with the procedures of structure determination (of which the most important part is that employing direct methods). Secondary emphasis is put on the actual crystal and molecular structures of the compounds analysed. The most important feature of the orystal structures of the chlorinated carbohydrates is the hydrogen bonding they contain. Replacement of a hydroxyl group with a chlorine should not alter the shape of the molecule (because of the similarity of the size of Cl and OH). Were efficient packing the only consideration in determining the crystal structure, a chlorinated carbohydrate would be expected to have the same structure as a non-chlorinated one. However, because of hydrogen bonding, replacement of a hydroxyl group removes one possible donor to a hydrogen bond with resultant alteration of the crystal structure (e.g. methyl 4,6-dichloro-4,6-dideoxy- α-D-glucopyranoside belongs to space $C 2,10$ while methyl α-D-glucopyranoside belongs to $\mathrm{P}_{1}{ }^{2} 1_{1}{ }^{2}{ }^{11}$).

This thesis is divided into two parts. The first describes the structure analysis of the three chlorinated carbohydrates studied, which are (respectively)
methyl 2-chloro-2-deoxy- α-D-galactopyranoside, methyl 4,6-dichloro-4,6-dideozy- α-D-gluoopyranoside, and, methyl 4,6-diohloro-4,6-dideoxy- α-D-galactopyranoside. The second part desoribes the main programs written for speoial purposes in these analyses. These include a collection of four programs for generating solutions by direct methods, completely general for the primitive centrosymmetric plane groups of the oblique and rectangular systems. Also included 18 the trial and error program used for the methyl 2-chloro-galactoside and a general program for contouring the electron density grids produced by the Fourier summation program used by the X-ray Crystallography group.

PART I

THE STRUCTURE OF

THREE CHLORINATED CARBOHYDRATES

1. THE STRUCTURE OF METHYL 2-CHLORO-2-DEOXY- $\alpha-D-G A L A C T O P Y R A N O S I D E$

Introduction

The compound analysed below was prepared by chloromethylation of a $3,4,6$ tri-0-acetyl-hexal. ${ }^{12}$ The heal used was a sample of D-glucal which can yield four possible products the α and β anomers of methyl 2 -chloro-2-deoxy-D-glucopyranoside and the α and β anomers of methyl 2-chloro-2-deoxy-D-mannopyranoside. A crystal of the product is below, however, shown to be composed predominantly of methyl 2-chloro-2-deoxy- α-D-galactopyranoside (although the β anomer is also present). The reaction performed on the heal should not invert the configuration at $C(4)$ (the only difference between a glucoside and a galactoside). Only if the starting material is D-galactal (possibly present as an impurity in the D-glucal sample) can the results be explained. The proposed reaction is

RATIO

Experimental

Crystals are colourless plates elongated along b. The crystal ohosen had dimensions $1.0 \times 0.5 \times 0.1 \mathrm{~mm}$. Unit cell and space group data were determined from rotation and Weissenberg photographs (CuK $)_{\text {) . }}$

CBYSTAL DATA (λ, CuK $_{\alpha}=1.5418$ A)
Methyl 2-chloro-2-deoxy- α-D-galac topyranoside $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{O}_{5} \mathrm{Cl}, \mathrm{M}=212.7$
Orthorhombic $a=29.57 \pm 0.05, b=6.92 \pm 0.03$, $c=4.69 \pm 0.02 \mathrm{~A}$.
$U=959.7 A^{3}$
$D_{m}=1.45 \mathrm{gm} / 00$ (flotation in carbon tetrachloridebenzene).
$Z=4, D_{C}=1.470 \mathrm{gm} / \mathrm{co}$.
Absorption coefficient for X-rays, $\mu\left(\mathrm{CuK}_{\alpha}\right)=35.1 \mathrm{~cm}^{-1}$ $F(000)=448$

Absent spectra $h 00$ when $h=2 n+1$ $0 k 0$ when $k=2 n+1$

Space group is $\mathrm{PR}_{1} \mathrm{Z}_{1} 2\left(\mathrm{D}_{2}{ }^{3}\right)$
The intensities of the reflexions were measured on a General Electric XRD - 5 manually operated spectrogoniometer with a scintillation counter. CuK_{α} radiation was used together with a Ni-filter and pulse-height analyser. of 662 reflexions with $2 \theta\left(\mathrm{CuK}_{\alpha}\right) \leq 119.48$ (minimum interpianar spacing 0.89 A), 278 whose net intensities (corrected for background) were less than 50 counts, (maximum counts 56470 for (1 0 1)) were classified as "unobserved" and were included in the analysis with $F_{o}=0.6 \mathrm{~F}$ (threshold). The crystal was mounted with b parallel to the ϕ-axis of the goniostat. A general background correction was made
for each reflexion (scanned for $\Delta(2 \theta)=2^{\circ}$) with special treatment given to reflexions occurring on streaks of lower order reflezions. Lorentz and polarization factors were applied, and the structure amplitudes derived.

Structure Analysis
a. Two Dimensional ($x y$) solution and refinement

The three-dimensional Patterson function presents two possible chlorine atom positions, one at ($0.05,0,0$), and the other at $(0.167,0,0.10)$, each appearing to be equally likely positions. Due to the shortness of the z-axis, the mean plane of the molecule can be expected to lie approximately porpendicular to z. A model of methyl 2-chloro-2-deoxy- α-D-mannopyranoside, the proposed constituent of the erystal investigated, was used to oalculate approximate relative positions in projection, of at least 11 of the 13 atoms. Radial coordinates (r, θ) of the 6 carbons and 4 oxygens in the model used (a rough diagram of which follows) were oalculated using ohlorine as the origin, assigning $C(2)$ a θ value close to 0.0 , and assigning the olockwise direction to increasing values of θ. The radial coordinates of the eleven atoms are:

atom	$r(A)$	θ (radians
$0(1)$	3.0	+1.005
$0(3)$	2.7	-0.930
$0(4)$	4.9	-0.459
$0(5)$	3.94	+0.302
$c(1)$	2.64	+0.482
$C(2)$	1.70	-0.026
$C(3)$	2.66	-0.457
$C(4)$	4.10	-0.300
$C(5)$	4.5	+0.017
$C(6)$	5.8	-0.026

A program (ROT; see Appendix) was written which would rotate the non-chlorine atoms about a given fixed position for a chlorine, starting with $\Theta \in$ at 0 with the $C l(2)-C(2)$ bond parallel to the y-axis. This program uses the projection data, $F(h k 0)$, to calculate the disorepancy value, R, for different values of Θ, as the model 18 rotated clockwise about the chlorine by small increments through 2π radians. The meaning of the various parameters referred to above is best illustrated by a diagram (Figure 1) which follows.

The results; on 76 reflexions of highest intensity, for the two possible chlorine atom positions are shown in Figure 2, as plotted by the program.

The minimum value of $\mathrm{B}, 0.480$, with Cl at $(0.05,0.0)$ occurred for Θ equal to 0.855 (angles between π and $3 \pi / 2$ need not be considered as for those values, the molecule lies on a two-fold axis). Seven cycles of refinement by the method of least squares on all two dimensional data resulted in the following reductions in the R-value: 0.594 (1nitial), $0.526,0.483,0.461,0.446,0.433,0.412$, and 0.391. As $O(3), O(4), C(3)$ and $C(5)$ still had large positive shifts (~ 5.0) indicated to already large values of thermal parameters ($B \approx 7.0$), these atoms were deleted from a Fourier summation. The peaks on the Fourler map, apart from those corresponding to the atoms used in the phasing, bore no recognizable relation to a carbohydrate molecule.

Figure 1. Approximate representation of model used for rotation program (ROT).

Cl at $(0.167,0.00)$

Figure 2. Results for two possible chlorine positions as R versue Θ plots.

The minimum value of $\mathrm{B}, 0.499$, with the chlorine atom at $(0.167,0.0)$ occurred for $\Theta\left(\begin{array}{l}\text { equal to } 4.175 .\end{array}\right.$ Seven cycles of refinement by least squares, again on all two dimensional data, resulted in the following reductions in the R - value: 0.590 (initial), 0.532 , $0.492,0.467,0.449,0.430,0.415$, and 0.402. Now however, only $O(4)$ and $O(1)$ still had large positive shifts (~ 7.0) indicated to large values of thermal parameters ($B \approx 6.0$). A Fourier summation based on the calculated phases of the remaining nine atoms clearly indicated the actual positions of the excluded atoms. The position,in projection, of $0(4)$ needed to be shifted by 0.7 A , and that of $0(1)$, by 1.3 A . Further Fourier summations placed all thirteen atoms.(The atom which had previously been labelled $O(1)$ became $C(7)$. Five cycles of least squares refinement (applying after each cycle only 50% of the indicated shifts) resulted in the following reductions in Ri 0.283 (initial), $0.226,0.203$, $0.189,0.182,0.176$

As the $C(4)$ to $C(5)$ distance in projection was 1.64 A , an attempt was made to redefine the positions of the two atoms involved by a Fourier summation from which they were excluded. The final four cycles of least squares refinement (each atom was given an initial temperature factor B , of $4.0 \mathrm{~A}^{2}$; 50% of the calculated shifts applled after each cycle) gave after each cycle, the
following R- values: 0.337 (initial), $0.262,0.202$, and 0.189. The $C(4)$ to $C(5)$ distance was now 1.52 A , and no other bond was larger in projection than its expected value in three dimensions.
b. Three Dimensional Refinement

The only model which could successfully be fitted onto the two dimensional refined structure was one in which $C l(2)$ and $O(4)$ were inverted with respect to mannoside proposed as the constituent of the orystal. As the z-coordinate of $\mathrm{Cl}(2)$ is known, only two possible solutions exist, which are related by reflexion through the plane $z=z_{\text {Cl }}$. Least-squares refinement of the temperature factors, scale, and z-coordinates was carried out for the two possibilities. The first yielded for two cycles, the following values of $\mathrm{R}: 0.457$ (initial), 0.419 , and 0.412 ; the second yielded: 0.290 (initial), 0.243 , and 0.222 . When all the coordinates were allowed to shift, the R - value for the second possibility was reduced to 0.192 in two further oycles of refinement.

The data had originally been mounted with minimum observable" intensity as 50 counts (maximum recorded was 56470 for 10 1). Any reflexion which has a net intensity of less than 50 would be excluded from the calculation of R. As $1 t$ was felt that this value excluded too many reflexions, the counter data was again processed reducing
this value to 9, and at the same time adjusting the readings of nine reflexions which on the basis of Weissenberg films appeared to have values very different from those originally estimated from the counter. Of the 662 reflexions recorded, 578 (87%) were now classified as observed with the remaining 84 olassified as unobserved. As the solution proposed above (except for the inversion at the two centres) is the enantiamorph of the correct configuration, subsequent work was carried out on the above structure mirrored through $y=0$. After three cyoles of refinement by least squares; the R - value was 0.26. A Fourier sumation with phases based on all 13 non-hydrogen atoms, was oarried out to try to relocate $C(7)$ and $O(1)$ which had temperature factors (7.7 and 6.8 respectively) higher than was expected. (Also the $C(1)$ $0(1)$ bond length of 1.16 for the refined structure was Very short). In this Fourier map C(?) and $O(1)$ appeared in the refined positions with maximum density of $4.2 e / A^{3}$ and $7.0 \quad / A^{3}$, respectively. However, $O(1)$ was greatly extended in the z-direotion, enough so that two distinct maxima occurred in that direction and that both an α OMe and a β-OMe group could be postulated as attached to the rest of the pyranose ring. Two 0-Me groups (with temperature factors $B=7.0$ for each atom) were introduced into the structure factor calculation, the oxygens separated in the z-direction by approximately $2 / 5 \mathrm{c}$, the carbons by approximately $1 / 4 \mathrm{c}$ (the oxygens were also slightly
displaced in y-direction). After one cycze of refinement, the R - value was reduced to 0.218 . The temperature factors on the β group were, however, larger than those on the α-group. When each group was tried separately for one cycle (100% of the indicated shifts to the thermal parameters were applied), the results were

$$
\begin{array}{ll}
\alpha \text {-group: } & \begin{array}{l}
\text { R- Values } 0.255 \text { (initial) } 0.244 \text { (final) } \\
\text { final temperature factors for } C \text { and } 0,
\end{array} \\
& 8.9 \text { and } 9.4 \text { respectively. } \\
\beta \text {-group: } & \text { R- values } 0.294 \text { (initial), } 0.285 \text { (final) } \\
& \text { final temperature factors for } C \text { and } 0, \\
& 11.4 \text { and } 9.9 \text { respectively. }
\end{array}
$$

The α-group gave better agreement but the problem persisted, especially after a Fourier summation with the phases of oniy ten atoms (deleting $C(1), O(1)$ and $C(7)$ revealed both the α-growp and β-group s.lthough the latter was somewhat weaker. The best fit to the data appeared to be a combination of the two structures in the approximate ratio of $2 \alpha: 1 \beta$. Subsequent refinements were carried out on a postuiated structure consisting of $2 / 30(1)-C(7)$ in the α position and $1 / 3 \quad 0(1)-c(7)$ in the β position. Five cycles of least squares refinement produced the following reductions in the R - value: 0.232 (initial), $0.211,0.201,0.189,0.185$, and 0.183 . When anisotropic thermal parameters were introduced for the ten atoms excluding $O(1)$ and $C(7)$, and $C(1)$ which was separated into two positions separated by 0.5 A , and the scale changed slightiy, five cycles of block-diagonal least squares refinement on all parameters, except those of
$C(1)$, resulted in these reauctions in the R - ralue: 0.189 (initial), $0.176,0.168,0.194,0.149$, and 0.147 . The weighting scheme whion was noftror the refinement of this structure and others in this thesis assigns $\sqrt{w}=1$ when $\left|F_{0}\right| \leq F *$, and $\sqrt{m}=\mathbb{R}_{3}$. men $\left|I_{0}\right|>P *$ For the final stages of the refinement to here given a value of 6.0 .

A final difference Dourier synthesib showed only
 e / A^{3}, the maximumpalue attalned being $0.6 \mathrm{~d} / \mathrm{A}^{3}$. One very encouraging sign for the correctness of the above refinement was that reflexiono ol, after the refinement of the structure which inalitad oniy an α - ONe group, had |Fol / |Fo| as 52.4/9.7, while arter refinoment of the rinal mixed structure, had |Fo|/|Po| as 43.7/41.2.

Prior to the final computation of structure factors, the intensities of the reflezione with the worst agreement between observed and caloulated values of the structure factors were reestimated using films. The following seven reflexions were then inoluded with a revised value of intensity for the recalculation of observed structure factor magnitudes which appear in Table I\& 022,334 , $120,011,211,231$ and 1012 . A these changes are small and f ew in numbere, they do not alter the previous results or the final R-value. The final positional and thermal parametere are givon in Table II, the bond lengths and valency angles in Table III, and the shorter intermolecular distmee in Table IV.

Discussion

a. Molecular Structure and Dimensions

The crystal structure investigated has been shown to be a mixture of an α-galactoside and a β-galactoside In the approximate ratio of 281. $O(1)$ and $C(7)$ were shown in the refinement to occupy two distinct positions $(\alpha$ and $\beta)$. In the actual crystal which contains a mixture of the two structures, instead of the rest of the atoms occupying the mean positions indicated by the refinement, they occupy slightly different positions depending upon whether the terminal group 1 s or β. This group would affect the position of C(I) most (and for this reason, $C(1)$ was separated into $C(1)$ and $C\left(1^{\prime}\right)$ and $O(3), 0(4)$, and $O(6)$ least (espeoially as these are hydrogen bonded among themselves).

The conformation of the molecule is shown in Figure 3 in projection along c. The $\alpha(C(1)-0(1)-C(7))$ group appears with solid lines, the $\beta\left(C\left(1^{\circ}\right)-0\left(1^{\circ}\right)-C\left(7^{\circ}\right)\right)$ group appears with broken lines. Both the α-anomer and the β-anomer have a chair form pyranose ring on which the substituents have conformations (α ila2e3e4a5e; β;le2e3e4a5e). The packing of the molecule in the unit cell is shown in Figure 4. The bond length and the valency angles in the molecule are given in Table III. The values for the $C(1)-0(1)-C(7)$ and $C\left(1^{\circ}\right)-0\left(1^{\prime}\right)-C\left(7^{\circ}\right)$ group have been included but will be less accurate than the rest. The range of the carboncarbon distances (not including those in the terminal

Figure 3. Superimposed sections of electron density distribution (contours at $1,2,3 \ldots e / A^{3}$) and a drawing of the molecule.

Figure 4. Packing diagram; View along c.
group) is $1.48-1.60 \mathrm{~A}(\sigma=0.02)$, with a mean value of $1.52(\sigma=0.01)$ while the range for the $C-0$ distances (again excluding those in the terminal group) is 1.40 $1.45 \mathrm{~A}(\sigma=0.02)$, with a mean value of $1.42 \mathrm{~A}(\sigma=0.01)$. The variation in valency angles (not including those involving atoms of the "terminal" group) is from 104° to $114^{\circ}\left(\sigma^{\circ}=2^{\circ}\right)$ with a mean value of 110.5°. The standard deviations quoted above are those estimated from the inverses of the diagonal elements of the matrix of the normal equations used to calculate shifts to parameters in the least squares refinement. A block diagonal matrix is used to approximate the correct full matrix. Estimates of the standard deviations tend to be too low in such an approximation because of the neglect of the interatomic interactions. Also, for a structure which is a mixture, the parameters refined for each atom (except $O(1)$ and $C(7)$ which are separated into distinct positions) give the "average" position of each atom with the possibility that the bond lengths and angles may not correspond to either molecule in particular.
b. Intermolecular distances and hydrogen bonding

All intermolecular distances less than 4.0 A were calculated and those less than 3.6 A are included in Table IV. The three shortest approaches that occur correspond to possible H-bonds between the three atoms $O(3), O(4)$ and $O(6)$. Figure 5 shows the arrangement of

Figure 5. Hydrogen bonding; view along c of near origin region (the dotted 0's have been offset for clarity).
atoms around the origin and shows these close approaches. Two hydrogen bonding sohemes are possible, both of which correspond to a hydrogen bonding network which spirals along the z-direction. The two ares

1. $0(4)$-H (lower level)... $0(3)-$ H (level of molecule represented)... O(6)-H...O(4)-H... 0(3)-H (higher level)...etc.
2. $\mathrm{O}(4) \ldots \mathrm{H}-\mathrm{O}$ (3) ... $\mathrm{H}-\mathrm{O}(6) \ldots \mathrm{H}-\mathrm{O}(4) \ldots \mathrm{H}-\mathrm{O}$ (3).

If the bonding hydrogens are located between oxygens then the successive H-O-C angles for the two schemes would be

$$
\begin{aligned}
& \text { 1. } 141^{\circ}-122^{\circ}-119^{\circ}-141^{\circ}-122^{\circ} \text { etc. } \\
& \text { 2. } \quad-87^{\circ}-115^{\circ}-111^{\circ}-87^{\circ} \text { etc. }
\end{aligned}
$$

Assuming that these angles tend toward the tetrahedral angle (E-0-H in water is 105°, in ordinary ice $0^{\prime}-0-0^{\prime \prime}$ is tetrahedral), the second scheme is the most probable one.

Only two other short approaches oocur, $C\left(7^{\prime}\right)-0\left(1^{\prime}\right)$, a distance of 3.09 A and $\mathrm{O}(4)-\mathrm{C}(3)$, a distance of 3.15 A . The former separation involves the $\beta_{\text {-group }}$ whose position is poorly defined; the latter arises as a consequence of the hydrogen bond of $O(4)$ to the oxygen attached to $C(3)$ (1.e. $O(3)$) and corresponds to a van der Waals separation.

TABLE I
Measured and calculated structure amplitudes (x 10). Unobserved reflexions have $F_{0}=-0.6 \mathrm{~F}$ (threshold).

TABLE II

FINAL POSITIONAL PARAMETERS (fractional), ISOTROPIC THERMAL
PARAMETERS $\left(A^{2}\right)$, AND ANISOTROPIC THERMAL PABAMETERS
$\left(\exp -\left\{b_{11} n^{2}+b_{12} h k+b_{13} k 1+b_{22} k^{2}+b_{23} k 1+b_{33^{1}} 1^{2}\right\}\right)$,
together with estimated standard deviations in parenthesis, referring to the last decimal positions of respective values.

Atom	x	y	2	B
C1(2)	$0.1665(2)$	-0.0036(7)	$0.0952(13)$	7.83(15) :
C(2)	$0.1329(4)$	$0.169(2)$	$0.267(4)$	4.6 (4)
C(3)	$0.0948(5)$	$0.233(2)$	$0.082(3)$	$6.1(5)$
c (4) C 5)	$0.0661(5)$ $0.0969(5)$	$0.391(2)$ $0.548(2)$	$0.253(4)$ $0.343(4)$	$5.7(4)$ $4.6(4)$
c (6)	0.0739 (5)	$0.700(2)$	$0.523(3)$	$6.0(4)$
0(3)	$0.0665(3)$	$0.077(1)$	-0.001 (2)	5.3(3)
0 (4)	0.0448 (3)	$0.299(1)$	$0.497(2)$	$5.1(2)$
$0(5)$	0.1330 (4)	$0.481(2)$	$0.516(2)$	$5.9(3)$
$0(6)$	0.0388 (3)	$0.797(2)$	0.385 (3)	6.3(3)
c (7) 0	0.21.92(8)	$0.526(5)$ $0.401(2)$	$0.282(6)$ $0.185(4)$	$7.4(6)$ $5.9(3)$
$0(1)$ $c(70)$	$0.1858(4)$ $0.2315(12)$	$0.401(2)$ $0.501(6)$	$0.185(4)$ $0.415(8)$	$5.9(3)$ $4.6(8)$
0 (10)	0.1944 (8)	0.314 (4)	$0.530(6)$	$5.4(6)$
c(1)	0.1650	0.317	0.436	5.0
C(1')	0.1564	0.336	0.343	5.0

	b_{11}	$b_{12} \quad b_{13}$	b_{22}	$\mathrm{b}_{23} \quad \cdots \quad \mathrm{~b}_{33}$
C1(2)	$0.00218(6)$	$0.0018(5) \quad 0.006(1)$	$0.032(1)$	-0.013(5) 0.126 (4)
C(2)	0.0013(1)	-0.0010(12) 0.006(2)	0.019 (3)	-0.007(11)0.074(8)
C(3)	$0.0024(2)$	-0.0013(14)-0.002(2)	0.021 (3)	-0.042(9) 0.069(8)
C (4)	0.0019(2)	-0.0009(15) 0.007(2)	0.019 (3)	-0.009(11)0.068(9)
C(5)	0.0017(2)	-0.0003(13)-0.004 (2)	0.017 (3)	0.025(10)0.086(9)
C(6)	$0.0024(2)$	-0.0005(17) 0.002(2)	0.029 (4)	-0.001 (13)0.049(7)
0(3)	0.0019(1)	-0.0013(9) 0.006(1)	0.020(2)	$0.011(7) 0.069(5)$
0 (4)	0.0018(1)	-0.0014(9) 0.002(2)	0.024 (2)	-0.021 (8) 0.063(5)
0(5)	$0.0022(1)$	-0.0011(11)-0.003(2)	0.025(2)	-0.006(10)0.070(5)
0(6)	$0.0017(1)$	-0.0014(9) 0.004(2)	0.025 (3)	-0.005(10)0.103(7)

TABLE III

BOND LENGTHS AND VALENCY ANGLES

1	j	D(ij)	1	1	k	$\begin{aligned} & \text { Angle } \\ & (1 \text { jk) } \end{aligned}$
Cl(2)	c(2)	1.75 A	C(1)	O(1)	C(7)	106.5°
0 (1)	C(1)	1.45	C(10)	0 (1)	C(70)	102.9
0 (1)	$\mathrm{c}\left(1{ }^{\circ} \mathrm{l}\right.$	1.43	$\mathrm{C}(2)$	c(1)	0 (1)	96.1
0 (1)	$\mathrm{C}(7)$	1.39	C(2)	C(10)	$0\left(1{ }^{\prime}\right)$	117.4
0(3)	C(7) $\mathrm{c}(3)$	1.78 1.42	$0(5)$ $0(5)$	C(1)	0(1)	99.5 96.1
$0(4)$	c (4)	1.45	0 (5)	c(1)	c(2)	103.2
0 (5)	C(1)	1.52	0 (5)	c(1)	C(2)	118.3
0 (5)	c(1)	1.46	c(1)	C(2)	Cl(2)	109.2
0 (5)	$\mathrm{C}(5)$	1.42	c(3)	C(2)	Cl(2)	111.4
0 (6)	C (6)	1.40	C(2)	c (3)	0 (3)	112.2
$\mathrm{C}(1)$	$\mathrm{c}(2)$	1.61	c (4)	c(3)	$0(3)$	110.2
C(1)	C (2)	1.40	C(3)	C(4)	$0(4)$	109.1
C(2)	c(3)	1.49	c(5)	C (4)	c (4)	111.2
C(3)	C(4)	1.60	C(4)	C(5)	c (6)	113.2
C(4)	C(5)	1.48	0 (5)	C(5)	$0(6)$	104.5
C(5)	c(6)	1.51	C(5)	C (6)	c (6)	114.4
			c(1)	0 (5)	C(5)	125.0
			C(1)	0 (5)	c(5)	105.5
			C(1)	c (2)	C(3)	122.8
			C(10)	C(2)	c(3)	106.2
(distances not			$\mathrm{C}(2)$	C(3)	C(4)	108.3
involving			C(3)	C(4)	c (5)	108.6
O(1'), C (10) ,or C(7')			C(4)	C (5)	0 (5)	112.6

$$
\begin{gathered}
\text { (angles not involving } \\
0\left(1^{\circ}\right), c\left(1^{\prime}\right), \text { or } C\left(7^{\prime}\right) \\
\sigma=2^{\circ}
\end{gathered}
$$

TABLE IV

SHORTER INTERMOLECULAB DISTANCES (3.6A)

K^{I}	Y^{1}	1	$D\left(X^{I}-Y^{1}\right)$
O(5)	O(1)	II	3.55 A
C(7 ${ }^{\circ}$)	O(1')	VI	3.09
0(1')	C1(2)	II	3.54
0 (4)	C(3)	II	3.15
0(5)	C(3)	II	3.36
C (4)	0(6)	V	3.42
c (6)	O(3)	IV	3.44
c (6)	0 (3)	III	3.59
C (6)	O(4)	V	3.51
0 (4)	O(3)	II	2.89
0 (6)	O(3)	III	2.78
$0(6)$	$0(3)$	IV	3.56
0(6)	0(4)	III	3.52
O(4)	O(6)	V	2.61

Symmetry Code

I	\mathbf{x}	\mathbf{y}	z
II	\mathbf{x}	\mathbf{y}	$z+1$
III	\mathbf{x}	$\mathbf{y}+1$	z
IV	\mathbf{x}	$\mathbf{y}+1$	$z+1$
V	$-\mathbf{x}$	$-y+1$	z
VI	$-x+\frac{1}{2}$	$y+\frac{1}{2}$	$-z+1$

2. THE CRYSTAL AND MOLECULAR STRUCTURE OF METHYL 4,6-DICHLORO-4,6-DIDEOXY- α-DGLUCOPYRANOSIDE

Introduction
Methyl 4,6-diohloro-4,6-dideoxy- α-D-glucopyranoside is prepared by reaction of methyl α-D-galactopyranoside with sulphuryl chloride, followed by desulphation. 13 The reaction goes as follows

The present crystal structure investigation of the compound was undertaken with three objects in view: to examine the use of direct methods of orystal structure analysis for non-centrosymmetrical structures; to attempt to measure the absolute configuration using the anomalous gcattering of the chlorine atoms ($f^{n}=0.7$ for $C u K_{a}$ radiation); and to obtain further details of the geometry and dimensions of carbohydrate molecules. Since the structure was readily determined from the Patterson function the first object has not been pursued, but the structure and absolute configuration have been determined.

Experimental

Crystals of the compound (from chloroform/petroleum ether) are colourless plates, elongated along b, with (001) developed. Unit cell and space group data were determined from rotation and Weissenberg photographs and on the G.E. spectrogoniometer.

Crystal data

$$
\left(\lambda, \mathrm{CuK}_{a}=1.5418 \mathrm{~A} ; \lambda, \mathrm{MoK}_{a}=0.7107 \mathrm{~A}\right)
$$

Methyl 4,6-dichloro-4,6-dideoxy- $\alpha-$ D-glucopyranoside

$$
\begin{aligned}
& \mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{Cl}_{2}, \mathrm{M} . \mathrm{W}_{0}=231.1 \\
& \text { m. } 119-121^{\circ} ;[\alpha]_{D}=+122^{\circ}(\mathrm{c}, 1.9) \\
& \text { Monoclinic, } \begin{aligned}
\mathrm{a} & =16.51 \pm 0.03, \\
b & =5.06 \pm 0.01 \\
c & =13.16 \pm 0.03 \mathrm{~A}, \beta=115.6^{\circ} \pm 0.1^{\circ} . \\
& U=991 \mathrm{~A} 3^{3}
\end{aligned}
\end{aligned}
$$

$$
D_{m}=1.54 \text { (flotation in carbon tetrachloride- }
$$ acetone)

$$
\begin{aligned}
& z=4, D_{c}=1.55 \mathrm{~g} . \mathrm{cm} .^{-3} \\
& \begin{array}{c}
\text { Absorption } \\
58 \mathrm{~cm},-1
\end{array} \\
& \mu\left(\text { MoK }_{a}\right)=6.4 \mathrm{~cm} .^{-1} \\
& F(000)=480 \\
& \text { Absent spectra: hkl when } h+k=2 n+1 \\
& \text { Space group is } \mathrm{C} 2\left(\mathrm{C}_{2}{ }^{3}\right) \mathrm{Cm} \text { and } \mathrm{C} 2 / \mathrm{m} \text { being } \\
& \text { excluded since the compound is optically active. }
\end{aligned}
$$

The intensities of the reflexions were measured on a General Electric XRD 5 Spectrogoniometer, using a scintillation counter, MoK radiation (Zr filter and pulse height analyser), and a $\theta-2 \theta$ soan. of 810 reflexions with $2 \theta\left(\right.$ MoK $\left._{a}\right) \leq 47^{\circ}$ (minimum interplanar spacing, 0.89 A), 544 had intensities greater than 1.5 times the background. The 266 reflexions with intensities less than 1.5 times the background were classified as unobserved, and were included in the analysis with $\left|F_{0}\right|=0.6 \mathrm{~F}(\mathrm{threshold})$. The crystal was mounted with b parallel to the ϕ axis of the goniostat, and had cross-section $0.2 \times 0.05 \mathrm{~mm}$; no absorption corrections were applied. The intensities were corrected for background (which was approximately a function of θ only), Lorentz and polarization factors were applied, and the structure amplitudes were derived.

Structure Analysis

The chlorine atom positions were determined from the three-dimensional Patterson function as ($0.067,0,0.192$) and $(0.125,0.5,0)$. A three-dimensional electron-density
distribution, computed with phases based on the chlorine atoms ($R=0.48$) had false mirror planes at $y=0$ and $\frac{1}{2}$, but the whole molecule was nevertheless clearly indicated, and coordinates were obtained for all non-hydrogen atoms, except $C(1)$ and $C(6)$, which were poorly resolved. A second Fourier summation revealed the positions of these two atoms. The structure was then refined by least-squares methods, with minimization of $\Sigma w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$, with $\sqrt{W}=1$ when $\left|F_{0}\right| \leq F^{*}$, and $\sqrt{W}=F^{*} /\left|F_{0}\right|$ when $\left|F_{0}\right|>F^{*}$. Analysis of the values of $w\left(\left|F_{0}\right|-\left|F_{c}\right|\right)^{2}$ during the course of the refinement indicated $F *=25$ as being appropriate. The scattering factors of the International Tables were used, without correction for anomalous dispersion, since the corrections are negligible for MoK_{α} radiation. R, initially 0.33 , was reduced by five isotropic cycles to 0.13 , and by five further anisotropic cycles to 0.11. At this stage, an ($F_{0}-F_{c}$) synthesis revealed the positions of all the hydrogen atoms, except the three methyl hydrogens and the hydrogen bonded to $0(2)$ [in fact the measured $O(3)-H(8)$ distance is about 1.3 A in an intermolecular $0(3) \ldots 0(2)$ hydrogen bond of length 2.70 A, so that $H(8)$ appears only slightly closer to $0(3)$ than to $O(2)$, and its exact location is doubtful]. Two further cycles of least-squares, in which the hydrogens were included but not refined, completed the refinement, the final R being 0.09 for the 544 observed reflexions.

The measured and final calculated structure factors are listed in Table V_{0}. Sections of the final threedimensional electron-density distribution are shown in Figure 6, together with a drawing of the structure. A final difference map showed maximum fluctuations of ± 0.6 e. A^{-3} near the two-fold axes and the chlorine atoms.

The final positional and thermal parameters are given in Table $\mathrm{VI}_{\text {, }}$ the bond lengths and valency angles in Table VII, and the shorter intermolecular distances in Table VIII.

Absolute Configuration

As a final step in the analysis the absolute configuration of the molecule was determined by the anomalous dispersion method. ${ }^{14}$. Structure factors were calculated for all the hkl and $\bar{h} \bar{k} \bar{I}$ reflexions, using scattering factors for the chlorines of the forms

$$
f=\left(f_{C l}+f_{C l}^{\prime}\right)+1 f_{C l}^{n}
$$

For Cuk radiation, $f^{0}=0.3$, $f^{\prime \prime}=0.7 .^{15}$ Thirty-two pairs of reflexions with the largest differences between $F_{c}(h k l)$ and $P_{c}(\bar{h} \bar{k} \bar{I})$ were chosen, and the intensities were measured with a scintillation counter and CuK_{α} radiation. The crystal was mounted about b, so that with a quartercircle orienter it was necessary to use two mountings to perform the measurements. The intensities of the hkl and $\bar{h} k \overline{1}$ reflexions were recorded, the crystal was remounted upside down, and the $h \bar{k} l$ and $\bar{h} \bar{k} \bar{l}$ intensities were measured.
$I_{0}(h k l)$ was taken as the average of the first two readings, and $I_{0}(\bar{h} \bar{k} \bar{l})$ the average of the second set. The results (Table IX) indicate (unamblguously, apart from one reflexion of those measured) that the parameters used to caloulate the structure factors (those of Table VI referred to a right-handed set of axes) represent the true absolute configuration. All the diagrams depiot the correct absolute configuration of D-glucose.

Discussion

The analysis has established the structure and absolute configuration of methyl 4,6-dichloro-4,6-dideoxy- α-Dglucopyranoside, the molecule having the usual chair conformation (Figure 6). The C-C bond distances (Table VII) are in the range $1.50-1.55 \mathrm{~A}(\sigma=0.04 \mathrm{~A})$, mean 1.524 A ($\sigma=0.02 \mathrm{~A}$), and the range of $C-0$ distances is $1.39-1.44 \mathrm{~A}$ $(\sigma=0.04 \mathrm{~A})$, mean $1.422 \mathrm{~A}(\sigma=0.02 \mathrm{~A})$. The C-Cl distances are 1.75 and 1.81 A , mean $1.78 \mathrm{~A}(\sigma=0.03 \mathrm{~A})$. None of the individual bond distances differs significantly from the mean lengths. The mean distances are similar to those in other pyranoid sugars. 16 The carbon valenoy angles within the ring vary from 107° to $110^{\circ}\left(\sigma=2^{\circ}\right)$, mean 108.6° $\left(\sigma=1^{\circ}\right)$, and the angle at $0(5)$ is 113°, perhaps slightly larger than the tetrahedral angle, as is commonly found in other sugars. ${ }^{16}$ The external angles are in the range 106° to $114^{\circ}\left(\sigma=2^{\circ}\right)$.

Figure 6. Superimposed sections of electron density distribution (contours at $1,2,3 \ldots e / A^{3}$ for C and $0 ; 1,5,10 \ldots e / A^{3}$ for $C 1$) and a drawing of the molecule.

The bond lengths and valenoy angles involving hydrogen (Table VII) have been determined less precisely, and the methyl hydrogens and the hydrogen bonded to $O(2)$ have not been located. The range for C-H bonds 18 0.9-1.3 A ($\sigma=0.3 \mathrm{~A}$), and for H-C-X angles $\left(X=C, 0\right.$, or Cl) $92^{\circ}-128^{\circ}$ $\left(\sigma=17^{\circ}\right)$. The average values are 1.1 A and 109°, and the differences between individual values are not significant.

The packing of the molecules in the unit cell (Fig.7) and the shorter intermolecular distances (Table IV) indicate the presence of one definite hydrogen bond, $0(3) \ldots 0\left(2^{\text {IV }}\right)=$ 2.70 A , and a second possible bond, $0(2) . .0\left(3^{I V}\right)=3.08 \mathrm{~A}$. This latter distance 18 however at the extreme of hydrogen bond distances usually found ${ }^{16}$ (2.68-3.04 A). The angles at $O(2)$ and $O(3)$ (Figure 8) support the assignment of $H(8)$ to $O(3)$, and the hydrogen bonding scheme: ...O(2III) H...O(3) - H...O(2IV) -H... The other intermolecular distances correspond to van der Waals interactions.

Figure 7. Packing diagram; view along b.

Figure 8. Hydrogen bonding; view along-a.

TABLE V

Measured and calculated structure amplitudes. Unobserved reflexions have $F_{j}=-0.6 \mathrm{~F}$ (threshold).

TABLE VI

FINAL POSITIONAL PARAMETERS (fractional), ISOTROPIC THERMAL
PARAMETERS $\left(A^{2}\right)$, AND ANISOTROPIC THERMAL PARAMETERS
$\left(\exp -\left(b_{11} h^{2}+b_{12} h k+b_{13} k 1+b_{22} k^{2}+b_{23} k 1+b_{33} 1^{2}\right)\right)$,
together with estimated standard deviations in parenthesis,
referring to the last decimal positions of respective values.

Atom	\mathbf{x}	V	2	B	
C1 (4)	0.0641 (5)	0	$0.1968(6)$	$5.05(17)$	
C1(6)	$0.1209(6)$	$0.494(3)$	-0.0064(7)	$6.59(23)$	
0(1)	$0.3742(10)$	$0.032(6)$	$0.3496(14)$	4.3(4)	
0 (2)	$0.3543(13)$	$0.387(6)$	$0.4963(16)$	$5.0(5)$	
0(3)	0.1633(12)	0.344 (5)	$0.4098(14)$	$4.7(5)$	
$0(5)$	$0.2866(12)$	$0.313(5)$	$0.1989(14)$	$4.4(5)$	
C(1)	0.3441 (16)	$0.293(7)$	$0.3131(19)$	$3.8(6)$	
C(2)	$0.2954(17)$	$0.401(7)$	$0.3790(19)$	3.9(6)	
C(3)	$0.2145(15)$	$0.235(6)$	$0.3563(18)$	3.3(6)	
C(4)	$0.1548(15)$	$0.233(7)$:	$0.2269(20)$	3.7 (6)	
$C(5)$	$0.2093(18)$	$0.141(8)$	$0.1648(22)$	$3.9(6)$	
c (6)	$0.1583(22)$	$0.172(9)$	$0.0381(26)$	5.4 (8)	
C(7)	0.4457 (19)	-0.052(10)	$0.3236(25)$	6.1(10)	

	b_{11}	b_{12}	b_{13}	b_{22}	b_{23}	b_{33}
$C_{1}(4)$	$0.0052(3)$	$-0.006(3)$	$0.0053(5)$	$0.057(4)$	$-0.002(3)$	$0.0087(5)$
$C 1(6)$	$0.0090(4)$	$0.003(4)$	$0.0073(7)$	$0.061(4)$	$0.003(4)$	$0.0092(6)$
$0(1)$	$0.0044(7)$	$-0.001(6)$	$0.0056(12)$	$0.054(11)$	$-0.007(7)$	$0.0073(11)$
$0(2)$	$0.0052(9)$	$-0.002(6)$	$0.0038(17)$	$0.059(12)$	$-0.008(8)$	$0.0080(14)$
$0(3)$	$0.0053(7)$	$0.004(6)$	$0.0066(13)$	$0.052(12)$	$0.001(7)$	$0.0077(12)$
$0(5)$	$0.0053(7)$	$-0.003(6)$	$0.0062(12)$	$0.057(11)$	$0.005(7)$	$0.0060(10)$
$C(1)$	$0.0047(10)$	$-0.001(8)$	$0.0047(17)$	$0.050(15)$	$0.008(9)$	$0.0049(14)$
$C(2)$	$0.0048(10)$	$-0.003(7)$	$0.0052(17)$	$0.039(13)$	$-0.005(8)$	$0.0053(15)$
$C(3)$	$0.0040(9)$	$0.008(6)$	$0.0050(15)$	$0.037(12)$	$0.004(8)$	$0.0050(14)$
$C(4)$	$0.0035(9)$	$0.002(7)$	$0.0038(18)$	$0.045(15)$	$0.003(9)$	$0.0059(16)$
$C(5)$	$0.0043(11)$	$0.005(8)$	$0.0032(21)$	$0.050(15)$	$-0.002(10)$	$0.0060(18)$
$C(6)$	$0.0068(14)$	$-0.004(10)$	$0.0065(25)$	$0.060(20)$	$-0.007(12)$	$0.0079(20)$
$C(7)$	$0.0061(12)$	$0.010(9)$	$0.0101(22)$	$0.072(23)$	$-0.008(13)$	$0.0123(22)$

Hydrogen positional parameters (B taken as $3.0 \mathrm{~A}^{2}$ for all hydrogen atoms).

$\begin{gathered} \text { Hydrogen } \\ \text { atom } \\ \hline \end{gathered}$	Attached \qquad	X	Y	2
H(1)	C(1)	0.392	0.417	0.325
H(2)	C(2)	0.275	0.600	0.358
H(3)	C(3)	0.225	0.042	0.375
H(4)	C(4)	0.125	0.433	0.208
H(5)	C(5)	0.233	-0.017	0.167
H(6)	c (6)	0.100	0.000	0.033
H(7)	c (6)	0.200	0.117	0.000
H(8)	C(3)	0.158	0.150	0.467

TABLE VII
Bond Lengths and Valency Angles

1	j	$D(11)$	1	j	k	$\begin{gathered} \text { Angle } \\ (i \nmid k) \end{gathered}$
Cl(6)	C(6)	1.75 A	Cl (4)	C(4)	C(5)	107.9°
C1(4)	C(4)	1.81	C1 (4)	C(4)	c(3)	108.3
O(1)	C(7)	1.43	C1 (6)	C(6)	C (5)	114.2
O(1)	C(1)	1.42	C(6)	C (5)	C(4)	112.5
O(2)	C(2)	1.43	C (6)	C (5)	O(5)	106.0
$0(3)$	C(3)	1.42	0 (3)	C(3)	C(4)	108.3
0 (5)	C(1)	1.39	0(3)	C (3)	C (2)	110.7
0 (5)	C(5)	1.44	O(2)	C(2)	C (3)	108.6
C(1)	c(2)	1.52	0(2)	0(2)	C(1)	108.6
C(2)	C(3)	1.50	C (7)	C(1)	C(1)	113.7
C(3)	C (4)	1.55	O(1)	C(1)	0 (5)	114.0
C (4)	c (5)	1.53	O(1)	C(1)	C(2)	109.?
C(5)	c (6)	1.52	$0(5)$	C(1)	C(2)	108.1
			C(1)	c (2)	C (3)	109.4
$\sigma=0.04 \mathrm{~A}$			C(2)	C(3)	C(4)	108.0
			C(3)	C(4)	C(5)	110.3
			C (4)	C(5)	0 (5)	107.3
			C(5)	$0(5)$	C(1)	113.0

$$
\sigma=1.7-2.0^{\circ}
$$

Bond Lengths and Angles Involving Hydrogens

1	1	$D(11)$	k	Angle (1,kg)
H(1)	C(1)	1.0 A	$\left\{\begin{array}{l} 0(1) \\ 0(5) \\ c(2) \end{array}\right.$	$\begin{aligned} & 113^{\circ} \\ & 105 \\ & 106 \end{aligned}$
H(2)	C(2)	1.1	$\left\{\begin{array}{l} c(1) \\ c(3) \\ 0(2) \end{array}\right.$	$\begin{aligned} & 112 \\ & 109 \\ & 109 \end{aligned}$
H(3)	C(3)	1.0	$\left\{\begin{array}{l}C(2) \\ C(4) \\ 0(3)\end{array}\right.$	$\begin{aligned} & 117 \\ & 103 \\ & 109 \end{aligned}$
H(4)	C (4)	1.1	$\left\{\begin{array}{l} c(3) \\ c(5) \\ c 1(4) \end{array}\right.$	$\begin{aligned} & 105 \\ & 118 \\ & 107 \end{aligned}$
H(5)	C(5)	0.9	$\left\{\begin{array}{l}C(4) \\ 0(5) \\ C(6)\end{array}\right.$	$\begin{array}{r} 128 \\ 103 \\ 99 \end{array}$
H(6)	C(6)	1.3	$\left\{\begin{array}{l} c(5) \\ c 1(6) \end{array}\right.$	$\begin{array}{r} 92 \\ 118 \end{array}$
H(7)	C(6)	1.1	$\left\{\begin{array}{l} c(5) \\ c l(6) \end{array}\right.$	$\begin{aligned} & 109 \\ & 108 \end{aligned}$
H(8)	O(3)	1.3	C(3)	102

Mean
1.1 A
109°

TABLE VIII

Shorter Intermolecular Distances

$\mathrm{X}^{\text {I }}$	Y^{1}	1	$D\left(X^{I}-Y^{1}\right)$
O(2)	O(3)	III	2.70 A
O(2)	O(3)	IV	3.08
O(3)	O(2)	III	3.08
O(3)	O(2)	IV	2.70
0 (2)	C(3)	III	3.17
O(3)	C(7)	V	3.31
C(2)	O(3)	III	3.40
O(3)	c(3)	III	3.48
C1(6)	C(6)	II	3.49
C(2)	O(1)	II	3.53

Symmetry Code

I	x	y	z
II	x	$y+1$	z
III	$-x+\frac{1}{2}$	$y+\frac{1}{2}$	$-z+1$
IV	$-x+\frac{1}{2}$	$y-\frac{1}{2}$	$-z+1$
V	$x-\frac{1}{2}$	$y+\frac{1}{2}$	z

TABLE IX

Determination of the Absolute Configuration (Cuk α_{α} radiation)

h k 1	$\left\|F_{0}\left(n_{k l}\right)\right\|$	$\left\|\mathrm{Fa}_{\mathrm{c}}(\overline{\mathrm{h}} \mathrm{K} \overline{\mathrm{I}})\right\|$	$\frac{\left\|F_{c}(h k I)\right\|^{2}}{\left\|F_{c}(\bar{h} \bar{k} \bar{I})\right\|^{2}}$	$\frac{I_{0}(h k I)}{I_{0}(\bar{k} \bar{K} \bar{I})}$
110	6.9	6.3	1.20	1.11
111	45.3	43.4	1.09	1.09
112	17.7	15.9	1.24	1.30
114	15.2	13.7	1.23	1.18
115	6.0	5.4	1.24	1.09
1111	2.1	1.5	1.96	1.44
310	10.4	11.7	0.79	0.67
315	27.6	28.8	0.92	0.93
311	62.4	64.2	0.95	0.91
3110	12.3	11.2	1.21	1.24
512	6.8	7.4	0.84	0.83
$\begin{array}{llll}5 & 1 \\ 5 & 1 \\ 7 & 12\end{array}$	27.1	24.7	1.20	1.18
$\begin{array}{llll}5 & 1 & 12 \\ 7 & 1 \\ 7\end{array}$	10.2	8.9	1.31	1.16
715	44.6 17.5	46.5	0.92 1.14	1.97 1.15
7110	12.1	13.4	0.82	0.91
910	16.5	15.5	1.13	1.14
915	10.9	9.4	1.35	1.26
916	13.3	14.4	0.85	0.88
1118	9.9	10.7	0.86	1.02
020	30.1	32.9	0.84	0.85
021	31.3	28.9	1.17	1.13
0210	10.7	12.0	0.80	0.84
422	21.1	22.8	0.82	0.87
625	11.5	10.4	1.22	1.22
823	13.5	12.5	1.17	1.09
1029	4.4	5.1	0.74	0.85
1227	12.4	11.4	1.18	1.23
12212	$7 \cdot 7$	7.1	1.18	1.04
1131	6.2	6.9	0.81	0.73
443 444	11.4 12.6	10.4 13.5	1.20 0.87	1.08 0.86

The XZ Projection of the Glucoside by Direct Methods

The set of four programs (described later) for solving centrosymmetric projections by direct methods were written after the glucoside structure had been solved by the conventional methods described earlier. However, the direct methods programs were tried on this structure both to test the initial versions of the programs and to suggest alterations and additions to be made to them. The initial results will not be presented but the following is a description of a run made on the glucoside $X Z$ projection with the programs in their final form:

The PREDIR program was run with all the threedimensional data with $\sin \theta / \lambda$ less than 0.5 (596 reflexions) placed into 10 ranges of $\sin \theta / \lambda$. A primitive cell was assumed by fitting the data to a structure consisting of 2 molecules in the unit cell. The weights used for the first two ranges were 0.0 and 1.00 respectively. The scale constant found was 2.45, the average temperature factor found was 5.00 , and the probability coefficient $\sigma_{3} / \sigma_{2}{ }^{3 / 2}$. was 0.26. The statistics for the 596 reflexions after scaling were $\left.\langle | E\rangle=0.84,\langle | E|^{2}\right\rangle=0.99 .\left|E\left(n^{\prime}, 0,1\right)\right|$ Where $h^{\prime}=h / 2$ were then put out on tape for those 66 reflexions where $|E| \geqslant 1.0$.

The 35 reflexions with $|E| \geqslant 1.4$ were introduced into the Sayre program and 68 Sayre relationships were found.

When the relationships which included reflexions \#2l and 22 ($(4,7)$ and (4,8) respectively) were deleted as these reflexions each occurred in only 2 Sayre relationships of "relatively" low probability, the number of relationships was reduced to 64. Each reflexion which occurred in this smaller group occurred in at least 2 relationships and where a reflexion occurred in only 2, those relationships were of "relatively" high probability. The probability that no more than 8 relationships fail in 64 was calculated to be approximately 0.998.

At this stage the signs of these 33 reflexions for the correctly solved structure were calculated to assure that the origin fixing reflexions would be assigned phases to gield the identical solution to that already solved by the convential methods. As a result reflexion \#l (0 5) was assigned as 4 , and $\# 32(70-2)$ as - for the SIGNS program run next. Out of 31931 solutions registering no more than 4 fallures in the first group, 1818 solutions satisfy the additional condition that no more than 8 relationships fail in all. Of the latter number the 24 solutions which also satisfy the condition that for no reflexion $\vec{t}^{1 s}$ is the sum over \vec{k} of $\left|E_{k}\right|\left|E_{\vec{k}}\right|\left|E_{k} \boldsymbol{k}_{k}\right|$ (the sum taken only over relations that fail) greater than 10.0 . This corresponds to the statement that in no possible solution is any sign indicated to be the opposite of that predicted to a probability of greater than 0.995. A linear
dependence arose suoh that for any combination of failures reflexion \#34 could be arbitrarily assigned a + or - sign. Apart from the two perfectly consistent solutions where no fallure of Sayre relationship occur, the correct solution has the lowest value of the above test. However, there are 3 sets of solutions (1.e. 6 solutions) with the same minimum value. Nevertheless, the correct solution would be readily apparent on drawing up all the above 8 possible solutions since such a large number of signs (33) are determined. The E-map for the correct solution with $17+$ signs and 16 - signs extracted from tape by the ESIGND program and drawn up by the CONTUR program 18 shown in Figure 9 with the model of the correct solution superimposed (Note $a^{\prime}=a / 2$).

Figure 9. E-map of xz-projection (contours on arbitrary scale) with final refined solution superimposed.

3. THE STRUCTURE OF METHYL 4,6-DIGHLORO-4,6-DIDEOXY- α-D-GALACTOPYRANOSIDE

Introduction
Methyl 4,6-diohloro-4,6-dideoxy- α-D-galac topyranoside 18 prepared by reaction of methyl $\alpha-D-g l u c o p y r a n o-$ side with sulphyryl ohloride followed by desulphation. 13,17 The steps in the reaction are similar to those involved in the preparation of the glucoside whose structure analysis precedes this one.

Although chemical evidence ${ }^{13}$ had established the absolute configuration of the dichloro-dideoxy hexose product, the actual crystal structure and the nature of the hydrogen bonding in the solid were unknown. This compound also showed promise for application of direct methods to its structure determination.

Experimental
Crystals (from chloroform) of this galactoside are colourless needles elongated in the c-direction. A suitable crystal was cut to about 0.10 mm . from a well formed needle of diameter 0.05 mm . and used in all subsequent work. Unit cell and space group data were determined from rotation and Weissenberg photographs and on the G.E. spectrogoniometer. (Approximate values of the cell dimensions were obtained from film. Using these, 18 arbitrarilly selected medium intensity reflexions were found on the counter, and their 2θ values accurately measured. More accurate values
of a, b, and c were then found by applying three oycles of refinement by least-squares to these parameters using the 2θ data in a program (CELDIM) written by Simon Whitlow to do this).

Crystal Data $\left(\lambda, M_{\alpha}=0.7107 \mathrm{~A}\right)$

Methyl 4,6-dichloro-4,6-dideoxy- α-D-galactopyranoside
$\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{Cl}_{2}, \mathrm{M}=231.1$
m.p. $158^{\circ} \mathrm{C},\left[\alpha_{D}=+184\right.$

Orthorhombic: $a=23.12(\sigma=0.05)$,
$b=8.18(\sigma=0.02)$
$0=5.091(\sigma=0.004) \mathrm{A}$
$\mathrm{U}=962.8 \mathrm{~A}^{3}$
$\mathrm{Dm}_{\mathrm{m}}=1.59 \mathrm{gm} \mathrm{cm}^{-3}$ (suspended in $\mathrm{CCl}_{4}, \rho_{20^{\circ}}=1.595$)
$Z=4, D_{\mathrm{D}}=1.595 \mathrm{gm} \mathrm{cm}-3$
Absorption coefficient for X-rays,

$$
\mu\left(\mathrm{CuK}_{\alpha}\right)=60 \mathrm{~cm}^{-1} \mu\left(\text { MoK }_{\alpha}\right)=6.6 \mathrm{~cm}^{-1}
$$

$F(000)=480$
Absent spectras: h 00 when $\mathrm{h}=2 \mathrm{n}+1$
$0 k 0$ when $k=2 n+1$
and 001 when $1=2 n+1$
Space group is $\mathrm{P}_{1} 2_{1} 2_{1}\left(D_{2}{ }^{4}\right)$
The intensities of the reflexions were measured on a General Electric XRD 6 automated (Datex card controlled) spectrogoniometer, with a scintillation counter, MoK $_{\alpha}$ radiation (Zr filter and pulse-height analyser), and a 2θ scan. The orystal (of length 0.10 mm . and diameter
0.05 mm.) was mounted with c parallel to the ϕ axis of the goniostat. of 807 reflexions with $2 \theta\left(\right.$ MoK $\left._{\alpha}\right) \leqslant 45.58^{\circ}$ (minimum interplanar spacing 0.92 A), 201 whose net intensities (corrected for background which was recorded for each reflexion before and after the scan: of $\sim 2^{\circ}$) were less than 30 counts (maximum counts of 29440 for (800)), were classified as "unobserved" and were included in the analysis (but not in calculation of R-values) with $\left|F_{0}\right|=0.6 \mathrm{~F}$ (threshold). Lorentz and polarization factors were applied but no absorption corrections were made.

Struoture Analysis

a. Direct Methods on the $x y$-projection.

The shortness of the c-axis indicated that the mean plane of the molecule lay perpendicular to the c-axis. It was hoped that if direct methods were carried out on the xy projection, and several solutions were possible for the structure, the correct one would be apparent on simple inspection of all these solutions (a program had previously been written which could rapidly draw contoured Fourier maps on U.B.C. Calcomp 565 12" drum plotter).

Using the PREDIR program (later described), the full three dimensional data was divided into nine ranges of $\sin \theta / \lambda$ for each of which the average intensity was calculated $\left(\langle I\rangle_{\theta}\right)$. The average temperature factor, B, and the overall scale, K , were determined by least-squares using
the $\langle I\rangle_{\theta}$ versus $\sin \theta / \lambda$ data (the first range was excluded as it included too few reflexions) in the equation

$$
\Sigma f^{2}=K \exp \left[B(\sin \theta / \lambda)^{2}\right]\langle I\rangle_{\theta}
$$

where $\Sigma f^{2}=8 f_{C l}^{2}+16 f_{0}^{2}+28 f_{C}{ }^{2}+48 f_{H}{ }^{2}$
B was found to be 6.824 and K to be 22.9. These constants, however, are normally quoted for soalling of \sqrt{I} and not $I\left(B_{\sqrt{I}}=B / 2=3.42\right.$ and $\left.K_{\sqrt{I}}=\sqrt{K}=4.79\right)$. As the reasonableness of the temperature factor indicated that the soaling could now be acoepted, $|E(h k l)|$'s where

$$
E^{2}(h k l)=\frac{I(h k l) \cdot \exp \left(B(\sin \theta / \lambda)^{2}\right)}{\Sigma f^{2}} \text {, }
$$

were calculated. $E(h k O)$ data where $|E| \geqslant 1.0$, were output on tape for subsequent work by direct methods.

The average value of $|E|$ for the three dimensional data was 0.852, a clear indication of an acentric distribution $(\langle | E\rangle$ is 0.886 for acentric and 0.798 for centric distributions), and further indication for acceptance of the above scaling.

All possible Sayre relationships among the 2 ? reflexions (hko data only; plane group pgg) with $|E| \geqslant 1.30$ were found by the SAYRE program (if their probability of holding was greater than 0.60) which was run next. Fiftyfour relationships (-
) were found in which each of the 26 reflexions occurring in relationships occur in at least two relationships (reflexion \#22, (ll 60) with $E=1.68$ occurs in no relationships).

Solutions were then generated by the SIGNS program. Reflexion \#12 (9 30) and \#21 (9 20) were given signs of + to define the origin as they were strong reflexions and occurred in the greatest number of Sayre relationships. The probability that, in the correct solution, no more than ten Sayre relationships (out of 54) fall was calculated in the previous program to be approximately 0.88. As the maximum number of failures in the first group that could be handled was at the time of this work limited to four, all solutions satisfying the condition that no more than four relationships fail in the first group and no more than ten fail in all, were examined. Out of the 880 solutions satisfying these conditions; only 16 solutions also satisfy the condition tested for by ITEST, that is, that for no reflexion \vec{h} in a possible solution is the sign indicated be the opposite of that in the solution to a probability greater than 0.985 (i.e. $\sum_{\vec{h}}\left|E_{\hat{h}}\right|\left|E_{\underline{k}}\right|\left|E_{\vec{h}} \overrightarrow{\mathbb{k}}\right| \geqslant 11.5$, the summation being over relations that fail). All 16 of these were plotted, but only the first (the "most probable," i.e. with the lowest value of the opposite indication of sign) had a distribution of peaks to which a model could be fitted. That solution, which proved to be correct in every sign, had only two fallures of Sayre relationships, \#21 $\mathrm{E}(10 \mathrm{l}$ 0)* $\mathrm{E}(920) * \mathrm{E}(1930) \approx+$ with probability 0.785; and
\#36 E(9 20 0) $\mathrm{E}(1930) * \mathrm{E}(1050) \approx-$ with probability 0.782.

For that solution, no relations in the first group failed, and two signs (\#17 and \#2l) were indicated to be the opposite of that in the solution to a probability of 0.93 ($\Sigma E E E=7.0$). The E-map (a Fourier whose coefficients are the $E(h k O)$'s of known phase) for this solution is given in Figure 10 with the structure initially postulated, superimposed.

Five cycles of refinement by the method of leastsquares of only the isotropic temperature factors and scale were carried out (50% of the calculated shifts applied after each cycle). All behaved well except $0(1)$, $C(2)$ and $C(4)$ whose temperature factors went to $10.5,10.0$ and $16.6 \mathrm{~A}^{2}$, respectively. A Fourier summation based on the calculated phases of the remaining ten atoms was carried out and the missing atoms were relocated (Figure 11). Note that $C(7)$ is noticeably shifted towards $O(1)$ from the position in which it was included in the Fourier summation. Five cycles of least-squares refinement of the positional parameters (x and y) and isotropic temperature factors ($B=3.0 A^{2}$ initially) of all 13 non-hydrogen atoms, together with the scale, K, were carried out, applying after each cycle, 50% of the indicated shifts. The successive values of R were: 0.283 (initially), $0.174,0.130,0.113,0.110$ and 0.109. The final Fourier map for the $x y$-projection appears in Figure 12 with the refined structure superimposed.

GALACTOSIDE. . E - MAP. . X Y PROJECTION

Figure 10. E-map of $x y$-projection (contours on arbitrary scale) with the initially postulated structure superimposed.

GALACTOSIDE. F - MAP.. X Y PROJECTION.. O-1, C-2, C-4 MISSING

Figure 11. Electron density map of xy-projection (contours on arbitrary scale based on phases calculated using all non-hydrogen atoms except $0(1), C(2)$ and $C(4)$.

GALACTOSIDE. . F - MAP. . X Y PROJECTION. . AFTER REFINEMENT

Figure 12. Final electron density map of xy-projection (contours on absolute scale: e/A A^{2} 100) with the refined structure superimposed.

As the z-axis is such a short axis some doubt initially existed as to whether the space group was $\mathrm{P}_{1} \mathrm{Z}_{1} \mathrm{Z}_{1}$ or $\mathrm{P}_{1} \mathrm{Z}_{1} 2$, the absence of only 001 and 003 not being conclusive proof of the former. After the solution of the projeotion, the former space group is confirmed to be correct since in the latter space group Cl(6)...Cl(6) across a centre in projeotion would be across a two-fold axis in three dimensions and would put $\mathrm{Cl}(6) . . . \mathrm{Cl}(6)$ non-bonding distance at 2.8 .

Attempts were made to solve the structure three dimensionally by superimposing a model on the projection and, to $f 1 x$ the z-coordinate of the molecule, using the postulate that $O(3)$ of one molecule is hydrogen bonded to $0(2)$ of the nelghbouring molecule (hydrogen bond distance ~ 2.7 A). As these attempts proved unsuccessful, it was decided to try direct methods on the $x z$ projection as in that direction there is no overlap of one molecule on another, as the x-coordinates of all the atoms are known, as the phases of the $h 00$ data are known, and as the molecule occupies a roughly predictable position because of the hydrogen bonding of $0(3)$ to $0(2)$.
b. Direct Methods on the $x z-p r o j e c t i o n$

PREDIR was again run with the same input parameters as before, but this time normal structure factors (E's) of the type ($n 01$) where $|E| \geqslant 1.0$ were output on tape.

All possible Sayre relationships (59) among the 26
reflexions with $|E| \geqslant 1.0$ were found by SAYRE but the number of relationships was reduced to 55 by exclusion of those relationships involving reflexions \#15 (10 0 3) and \#16 (8 0 5) as their signs cannot be determined to a sufficient probability. As a result, no reflexion of either even-odd or odd-even parity occurred in a Sayre relationship. Reflexion \#14 (201)with $|E|=1.93$ was arbitrarily given a + sign even though it occurred in no relationship. The other origin determining reflexion chosen was \#21 (11 0 3) because of its magnitude ($|\mathrm{E}|=$ 1.55) and because of its frequent occurrence in relationships. The phase of the structure invarient reflexions \#1 (8 0 0), \#2 (10 0 0), \#3 (16 0 0) and \#4 (2400) were already known from the solution of the xy-projection.

The SIGNS program was run with the above origin determining reflexions assigned as + and the other four reflexions assigned their proper signs. Out of 514 solutions which satisfied the condition that no more than four Sayre relationships fall in the first group and no more than 15 fail in all (80% probability of finding the correct solution in this set), only eight solutions satisfied the auxiliary condition that for no reflexion is its sign indicated to be opposite to a probability of greater than 0.983 ($\mathrm{EEEE}>11.0$).

The two most probable solutions, 1.e. the two with the lowest values of ITEST, differred only in the sign
of one minor reflexion, \#24 (21 0 3, $|E|=1.23$). As the E-maps of both solutions would be almost indistinguishable, only one was drawn up, that shown in Figure 13 with the postulated structure superimposed. Subsequent refinement of this postulated structure established that the second most probable solution which contained $14+$ signs and 10 - signs was correct in every sign.

Four cycles of least-squares refinement of only the z-coordinates of the 13 non-hydrogen atoms was carried out giving successive R-values of 0.252 (initially), 0.204 , $0.180,0.170$, and 0.168 . A Fourier based on all 13 atoms with the parameters of the last cycle was summed and, as the shift indicated (but not applied) to the temperature factor of $C(7)$ was abnormally high ($+6.2 A^{2}$), this atom was relocated from the resulting contour map (not shown). Five more cycles of least-squares refinement were then carried out, again shifting only the z-coordinate of each atom (50% of calculated shifts applied after each cycle). The successive R-values were 0.167 (initially), 0.145, $0.138,0.137,0.136$, and 0.137 . The final xz projection Fourier map with the refined structure superimposed is shown in Figure 14 following.
c. Full three dimensional refinement.

The $x y-$ and $x z-$ projection data were combined with suitable translations of the coordinates since the projections of the screw axes of $P 2_{1} 2_{1} 2_{1}$ which become the

GALACTOSIDE -- X Z PROJ--- E MAP

Figure 13. E-map of xz-projection (contours on arbitrary scale) with the initially postulated structure superimposed.

Figure 14. Final electron density map of xz-projection (contours on absolute scale: e/A A^{2} l00) with the refined structure superimposed.
centres of inversion in two dimensions, are not at 0,0 as they are in the plane group pgg. Full three dimensional refinement on all parameters (applying 50% of calculated shifts) with $F^{*}=25.0$ in the standard weighting scheme noted earlier, was carried out yielding, for 7cycles of refinement, successive R-values of 0.186 (initially), $0.162,0.155,0.151,0.148,0.146,0.144$, and 0.143. Refinement was continued incorporating anisotropic temperature factors, and yielding, for four cyoles, successive R-values of 0.143 (initially), $0.133,0.128$, 0.126 , and 0.125 . As this R-value was rather large in comparison to the expeoted acouracy of the data, a reappraisal was made of the value which should be classified as a minimum observable intensity. It was noted that the background was of the order of 300 counts, (the maximum intensity reflexion (800) on this scale had a scan of 29440 counts). A value of 100 as the net counts for a minimum observable reflexion was substituted for 30 which was previously used (On the average, 100 would correspond to a reflexion whose standard deviation is $\sqrt{100+2 \times 300}=$ $\sqrt{7} 00 \approx 26 \approx 100 / 4$). On this basis,only reflexions with net counts greater than 4σ are classified as observed. of the 807 reflexions recorded, only 335 (41.5\%) were now classified as observable. Using the parameters which previously gave an R-value of 0.125 , a recalculation of R using the new observable reflexions yielded a value
of 0.077. Four cycles of refinement by least-squares, applying 50% of the calculated shifts after each cycle and weighting reflexions by the standard scheme (see before) where $F^{*}=25.0$, yielded the R-values: 0.077 (initial), $0.071,0.070,0.069$ and 0.068. A difference Fourler summed over only observable reflexions indicated the positions of the six hydrogens given in Table XI. The hydrogens on $O(2)$ and $O(3)$, however, were not found. After reflecting the moleoule through $z=\frac{1}{2}$ to make the solution contain the correct optical enantiomorph, and after including the previousiy found hydrogens all with 1sotropic temperature factors of $3.0 \mathrm{~A}^{2}$, a structure factor calculation revealed that the R -value had decreased to 0.0596. The measured and final calculated structure factors are listed in Table X. A final difference synthesis showed fluctuation of $-0.3 \mathrm{e} / \mathrm{A}^{3}$ to $+0.3 \mathrm{e} / \mathrm{A}^{3}$. The final positional and thermal parameters are in Table XI, bond lengths and valency angles are in Table XII, and the shorter intermolecular distances are in Table XIII.

Discussion

a. Molecular Structure and Dimensions

The foregoing analysis has established the structure of methyl 4,6-diohloro-4,6-dideoxy- α-D-galactopyranoside. That the crystal contains the α-anomer of the galactoside has been established, but that it contains the D-enantio-
morph has not. As the latter can be inferred from the preparation, the anamolous dispersion method was not used on this crystal to ascertain its absolute configuration. All drawings depict the correct enantiomorph referred to a right handed set of axes.

Figure 15 shows the conformation and conflguration of the molecule in projection along the z-axis. The conformation adopted is the chair form of the pyranose ring on which substituents are attached in the manner la2e3e4a5e
 The packing of molecules in the unit cell is shown in Figure 16.

The bond lengths and valency angles in the molecule are given in Table XII. The ranges for the C-C bond lengths is $1.51-1.54 \mathrm{~A}(\sigma=0.02 \mathrm{~A})$, of which the average value is 1.532 $\mathrm{A}(\sigma=0.01 \mathrm{~A})$. The two $C-C l$ bond lengths have an average value of $1.80 \mathrm{~A}(\sigma=0.01)$. The $C-0$ bond lengths are in the range $1.48-1.41 \mathrm{~A}(\sigma=0.02)$ with the lengths involving the glycosidic oxygen, $O(1)$, at the extremes (Jefferey and Rosenstein ${ }^{16}$ have noted that in monosaccharides, $C(1)-O(1)$ tends to be shorter than the normal c-0 bond), the other C-0 bond lengths covering a narrower range. The average C-O bond length is $1.45 \mathrm{~A}(\sigma=0.01)$. The mean value for $C-C$ is as found in other carbohydrates ${ }^{16}$, but the $C-0$ value is at the upper range of those found. Except, perhaps, for those involving $O(1)$, none of the individual bond lengths differ significantly from their means.

Figure 15. Superimposed sections of the electron density distribution (contours at $1,2,3 \ldots e / A^{3}$) and a drawing of the molecule.

Figure 16. Packing diagram; view along c.

Within the ring the carbon valency angles range between 109.2° and $110.3^{\circ}\left(\sigma=1.3^{\circ}\right)$ with a mean value of $109.7\left(\sigma=0.7^{\circ}\right)$. The angle at $0(5)$ is 115.0°, larger than the tetrahedral angle as is commonly found in other simple sugars. ${ }^{16}$ The external angles are in the range $104^{\circ}-116^{\circ}\left(\sigma=1.3^{\circ}\right)$. Table XII gives the bond lengths and valency angles for six hydrogens, calculated from their coordinates as they appeared on a difference synthesis. They range in bond length between 0.93 A and 1.22 A with a mean value of 1.04 A . The valency angles in which they occur range between 97° and 134° with a mean value of 109.9°. The standard deviation of the mean values quoted in Table XII is the root-mean-square-deriation from the mean.
b. Hydrogen Bonding in the Structure

Table XIII contains the intermolecular distances which are less than 3.6 A . The shorter distances represent possible hydrogen bonding and these are included in Fig.i7, a view along the y-axis of the near origin region of the unit cell. Only two independent hydrogens per molecule are avallable for hydrogen bonding: one on $0(2)$, the other on $0(3)$. A possible hydrogen bonding scheme is

Figure 17. Hydrogen bonding; view along b.

The hydrogen on $0(3)$ of molecule (I) is postulated to be directed between $O(1)$ and $O(2)$ of molecule III to form a bifurcated ${ }^{19,20}$ hydrogen bond. Two reasons make a bifurcated hydrogen bond reasonable:

1. The distances $O(3)^{I} \ldots O(2)^{I I I}$ and $O(3)^{I} \ldots O(1)^{I I I}$ are both within the limits of hydrogen bonding found in carbohydrates $(2.68-3.04 \mathrm{~A})^{16}$
2. If the hydrogen on $O(3)^{I}$ is directed between $O(1)$ and $O(2)$ then the angle $\mathrm{H}-\mathrm{O}(3)-\mathrm{C}(3)$ would be oloser to the tetrahodral angle then it would be were the hydrogen directed to only one oxygen.

One interesting short approach existing in the structure is that of $O(2)^{\text {IV }} \ldots \mathrm{Cl}(4)^{\mathrm{I}}(3.28 \mathrm{~A})$. It is tempting to postulate hydrogen bonding between the two atoms, possibly as a bifurcated system in which $O(2)^{\mathrm{IV}}$ is hydrogen bonded to both $O(3)^{I}$ and $C l(4)^{I}$. However, this oxygen-chlorine distance is longer than that usually found in hydrogen bonding (2.86-3.21 A; mean 3.07 A), ${ }^{3}$ and more probably corresponds to only van der Waals interaction between the two atoms. The other intermolecular distances in Table XIII correspond to van der Waals separations.

TABLE X
Measured and calculated structure amplitudes（x 10）． Unobserved reflexions have $F_{0}=-0.6 \mathrm{~F}$（threshold）．

（tay		（1）		（10cccc	
		（1）	${ }_{\substack{\text { a }}}^{\substack{2}}$	crer	（tack
（120			Stas	crer	
为					
			${ }_{2}^{3}$		
	－7\％	（12	（120	${ }^{19}$	（1）
mi	${ }_{\text {in }}^{\text {in }}$	（13			
				coiction	¢
1					
（13）			${ }^{20}{ }_{20}^{20}$	${ }_{20}^{275}$	
（18）		－ 7108		（15	
（10	－		（tay		（105
	（10）			（108	
	近		384		
cticler	（1）			cren	
	－${ }_{\text {－}}^{109}$				
（ex		（16，	（14．		
	$\frac{126}{150}$				
（10）		（	（tat	（180	coic
			，	（tat	
	（1）		${ }_{\substack{\text { a }}}^{\substack{12}}$	\％	
		（erse		\％	
\％					
	crers			188	
－				（12	
				165	，
		（1az			
		（12			（1）
（10，	，		170 100	，	
	（120	（2ab	（10）		${ }_{\text {－}}^{\substack{40 \\ 80}}$
	（1）				
	tit	（10）	\％	14 \％－－	
	（tas	，	20．		（1）
		Stern	Himitis	－170	
		cose		（18120，	
				（100	
（10	（1）		${ }_{12}^{12}$	${ }^{3}$	\％
（10）			\％		
				！	
${ }_{\circ}^{\circ}$					
： 146			\％		＇sen
		（ist		，	号
		，	${ }^{4}$	（1i	
－					：
（ell		2^{2}	，		\cdots
\％			－		
${ }_{\text {\％}}^{\substack{160}}$	（180	$1{ }^{\circ}$		－	：$: \ldots$
［－730			＂	－${ }^{3}$	

TABLE XI

FINAL POSITIONAL PARAMETERS (fractional), ISOTROPIC THERMAL

PARAMETERS (A^{2}), AND ANISOTROPIC THERMAL PARAMETERS
$\left(\exp -\left\{b_{11} h^{2}+b_{12} h k+b_{13} h 1+b_{22^{2}} k^{2}+b_{23} k 1+b_{33} 1^{2}\right\}\right)$,
together with estimated standard deviations in parenthesis,
referring to the last decimal positions of the parameters.

Atom	x	V	2	B	
C1(4)	$0.13114(15)$	$0.8545(5)$	$0.7650(8)$	$3.35(7)$	
C1 (6)	$0.24867(17)$	0.8354 (6)	$0.2494(11)$	4.67 (10)	
O(1)	$0.0912(4)$	$0.3636(12)$	$0.283(2)$	3.7(2)	
O(2)	-0.0039 (4)	$0.4807(13)$	$0.538(2)$	3.9(3)	
$0(3)$	$0.0190(4)$	0.8233(11)	0.487 (2)	3.7(3)	
0 (5)	$0.1535(4)$	$0.4975(11)$	0.576 (2)	2.9(2)	
C(1)	$0.0977(6)$	$0.4213(16)$	0.541 (3)	3.4 (4)	
C(2)	$0.0521(5)$	$0.5526(17)$	0.601 (3)	2.7(3)	
C(3)	$0.0598(5)$	$0.6982(16)$	0.417 (3)	2.4 (3)	
C(4)	$0.1217(6)$	$0.7667(16)$	0.442 (3)	3.0(3)	
C(5)	$0.1653(5)$	$0.6295(16)$	0.400 (3)	2.7(3)	
C(6)	0.2276 (6)	$0.6713(17)$	0.455 (3)	3.5 (4)	
C(7)	$0.1218(7)$	$0.2077(18)$	$0.246(4)$	5.3(5)	

	b_{11}	$b_{12} \quad b_{13}$	$\mathrm{b}_{22} \quad \mathrm{~b}_{23}$	b_{33}
C1(4)	$0.00170(6)$	-0.0006(4) -0.0008(9)	0.0156(5).0.009(3)	0.027 (1)
C1(6)	$0.00217(8)$	-0.0014(5) -0.0036(11)	$0.0203(6) \quad 0.002(3)$	$0.056(2)$
O(1)	$0.0024(2)$	$0.0007(10) 0.004(2)$	$0.0105(14)-0.003(7)$	$0.043(5)$
0(2)	0.0016 (2)	-0.0057(11) 0.000(2)	0.0209(19) 0.006(7)	0.049 (5)
0 (3)	$0.0024(2)$	$0.0027(11) 0.002(2)$	$0.0132(17) 0.014(6)$	0.046 (5)
0 (5)	0.0012(2)	$0.0006(10) 0.005(2)$	0.0134(16) 0.003(6)	$0.035(4)$
C(1)	0.0019 (3)	-0.0027(14) 0.009(3)	0.0089(21) 0.007(7)	0.019(6)
C(2)	$0.0006(2)$	-0.0026(14) 0.003(2)	$0.0128(24)-0.021(8)$	0.035(7)
C(3)	0.0009 (3)	-0.0024(13) 0.004(3)	$0.0095(24)-0.011(7)$	$0.042(7)$
C (4)	$0.0022(3)$	$0.0027(15) 0.013(3)$	$0.0082(21) 0.007(7)$	$0.022(6)$
C(5)	$0.0010(3)$	$0.0002(12) 0.001(2)$	$0.0060(20)-0.030(7)$	$0.038(6)$
C(6)	0.0016 (3)	-0.0024(15)-0.004(3)	$0.0124(24)-0.013(9)$	0.046 (8)
C(7)	$0.0031(4)$	$0.0017(18) 0.013(5)$	$0.0136(26) 0.004(12)$	$0.071(10)$

POSITIONAL PARAMETERS OF HYDROGENS (Not refined; B taken as $3.0 \mathrm{~A}^{2}$ for all hydrogen)

Hydrogen atom	Attached to	x	y	z
$H(1)$	$\mathrm{C}(1)$	0.1037	0.321	0.700
$\mathrm{H}(2)$	$\mathrm{C}(2)$	0.0691	0.618	0.800
$\mathrm{H}(3)$	$\mathrm{C}(3)$	0.0648	0.630	0.267
$\mathrm{H}(4)$	$\mathrm{C}(4)$	0.1317	0.842	0.300
$\mathrm{H}(5)$	$\mathrm{C}(7)$	0.0994	0.145	0.133
$\mathrm{H}(6)$	$\mathrm{C}(7)$	0.1512	0.182	0.367

TABLE XII

Bond Lengths and Valency Angles

$$
\sigma=1.1^{\circ}-1.3^{\circ}
$$

Bond Lengths and Angles Involving Hydrogens

1	1	$D(11)$	$\underline{4}$	Angle (11 k)
H(I)	C(1)	1.17	$\left\{\begin{array}{l} 0(1) \\ 0(5) \\ c(2) \end{array}\right.$	$\begin{array}{r} 115^{\circ} \\ 97 \\ 116 \end{array}$
H(2)	C(2)	1.22	$\left\{\begin{array}{l}c(1) \\ c(3) \\ 0(2)\end{array}\right.$	$\begin{array}{r} 105 \\ 97 \\ 131 \end{array}$
H(3)	C(3)	0.96	$\left\{\begin{array}{l}C(2) \\ C(4) \\ 0(3)\end{array}\right.$	$\begin{array}{r} 93 \\ 100 \\ 134 \end{array}$
H(4)	C(4)	0.99	$\left\{\begin{array}{r}c(3) \\ c(5) \\ c 1(4)\end{array}\right.$	$\begin{aligned} & 112 \\ & 102 \\ & 113 \end{aligned}$
H(5)	C(7)	0.93	O(1)	107
H(6)	$C(7)$	0.94	O(1)	217
	σ Mean	$\begin{aligned} & 0.12 \\ & 1.04 \end{aligned}$		$\begin{gathered} 12^{\circ} \\ 109.9 \end{gathered}$

TABLE XIII

Shorter Intermolecular Distances ($\leqslant 3.6$ A)

X^{I}	Y^{1}	1	$D\left(X^{I}-Y^{1}\right)$
$C I(4)$	$O(2)$	$I V$	3.28
$C 1(4)$	$C(4)$	$I I$	3.55
$0(3)$	$0(1)$	III	2.92
$0(3)$	$0(2)$	IV	2.78
$0(3)$	$0(2)$	III	3.00
$0(3)$	$C(2)$	$I V$	3.28
$O(3)$	$C(7)$	$I I I$	3.60
$0(3)$	$0(2)$	$I I I$	3.54

Symmetry Code

I	x	y	z
II	x	y	$z+1$
III	$-x$	$y+\frac{1}{2}$	$-z+\frac{1}{4}$
IV	$-x$	$y+\frac{1}{2}$	$-z+3 / 2$

PART II

DESCRIPTION OF PROGRAMS

DIRECT METHODS PROGRAMS

Introduction

A Sayres relationship in a centrosymmetric space group relates the signs of three large reflexions as

$$
S\left(P_{\vec{h}}\right) \cdot S\left(F_{\vec{k}}\right) \cdot S\left(F_{\vec{h}-\vec{k}}\right) \approx+1
$$

where S means "the sign of." The probability of the relation holding is a function of the magnitudes of the reflexions involved.

Following is a description of a set of four programs which attempt to solve two dimensional projections using Sayre relationships in the Vand and Pepinsky approach to the Cochran and Douglas procedure. ${ }^{8}$ The set of programs begins with unscaled three-dimensional (or two dimensional) |Fol's as output by DATAPREP (our data processing program) and produces in the end a tape suitable for input to FOURIE (our Fourier summation program) containing up to six possible solutions at one time. For working with direct methods, either unitary scattering factors, $U^{\prime} s$ (Woolfson ${ }^{8}$ p.4), or normalized structure factors, E's (Karle \& Karle ${ }^{7}$ p.855) can be used. As the trend is toward increasing use of the latter, these are used in all subsequent work. A simple definition of $|E|$ is that it is the ratio of the actual observed (properly scaled) magnitude of F to that expected for its value of $\sin \theta / \lambda$ which is simply $\left|\Sigma_{n} \mathrm{r}^{2}\right|^{\frac{1}{2}}$ where the summation is over atoms in the unit cell. In terms of E's the expression used to calculate the probability of the above

Sayre relationship holding is

$$
P=\frac{1}{2}+\frac{1}{2} \tanh \left\{\sigma_{3} / \sigma_{2} 3 / 2\left|E_{\vec{h}} \cdot E_{\vec{k}} \cdot E_{\vec{h}-\vec{k}}\right|\right\}
$$

where $\sigma_{3} / \sigma_{2} 3 / 2$ is a constant dependent upon the constituents of the unit cell.

No allowance is made in this set of programs for specification of any but the tape unit normally specifiable for all programs, 1.e., 00, 01, 02, 03, and 04. With the exception of PREDIR and ESIGND (see later), input and output can be on different files of the same tape. The tape output from these programs has been made to be oompletely compatible with our regular programs (DPAUTO \& LSSQR \& PATTER) so that output from any of these programs, except of course ESIGND (c.f.ISSQR) can be intermixed with regular structure factor data, and so that all four direct methods programs, DPAUTO, LSSQR \& PATTER are able to read to appropriate files on intermixed tapes.

(1) PREDIR

This program accepts a three-dimensional (preferably but not necessarily) structure factor tape prepared by DATAPREP and scales the $\left|F_{0}\right|^{\prime} / s$ based on a knowledge of the composition of the unit cell. The data tape is first scanned to find the limits of $\sin \theta / \lambda$. The tape is then reread and the unscaled intensities placed into a specified number of equal ranges of $\sin \theta / \lambda$. Two tables similar to Tables 1.1 and 1.2 of Woolfson ${ }^{8}$ (p.8) are constructed, and for each range, $\Sigma_{\mathrm{N}^{2}}{ }^{2} /\langle\mathrm{I}\rangle$ is computed.

Assuming an average temperature factor (B) can be used for all the data, one can wrlte for each range of $\sin \theta / \lambda(=s):$

$$
\begin{equation*}
\Sigma_{N} f^{2} /\langle I\rangle=K \exp \left(+B S^{2}\right) \tag{1}
\end{equation*}
$$

This can be rewritten as:

$$
\begin{equation*}
\log \left(\sum_{N} \mathrm{r}^{2} /\langle\mathrm{I}\rangle\right)=\log \mathrm{K}+\mathrm{BS}^{2} \tag{2}
\end{equation*}
$$

Least-squares is used to find the 'best' value of K and B in equation (2).

This program then computes and outputs E's both printed and on tape, the latter exactly identical to the ordinary structure factor tape produced by DATAPREP except that $|F|$ becomes $|E|$ and P^{2} beoomes E^{2}. (For interpretation of EPSILON in the printed output, see the footnote in Karle \& Karle ${ }^{7}$, p.855).

As a final check on the method of soaling the data, average values of both $|E|^{2}$ and $|E|$ are output, the latter indicating the presence or absence of a centric distribution of atoms in the structure.

Two useful options are included to ensure that scaling (and subsequently, caloulation of $\left.\langle | E\rangle \text { and }\langle | E|^{2}\right\rangle$) is carried out for only the best part of the data. These ares (1) Weights can be specifled for the first two ranges of S. (2) The limiting value of S can be specified to be smaller than actually contained on tape. The necessity of the first option is that the first two ranges may not contain enough reflexions to make $\langle I\rangle$
statistically significant there. The necessity of the second is that at high values of S, many reflexions become too weak to be measured and are classified as "unobserved." However, E's are calculated and output for all the data on the input tape.

The data cards for input to the PREDIR program are as follows:
POSITION DESCRIPTION FORMAT

Card 1

1-2	INPUT tape unit no.	12
3-4	INFILE - file no. ($=1$ if left blank)	I2
5-6	OUTPUT tape unit no. (if any) (OUTPUT \neq	I2
7-8	$\text { OUTFIL - Output file no. (}=1 \text { if left }$	I2
9-10	NINTVL - no, of intervals of $\mathrm{S}(=10$ if left blank)	I2
11-12	IPROJ - if output is projection (along $i=x, 2=y, 3=z)$	I2
13-14	IRALP - if an index is to be halved on tape output specify here	I2
16-20	STLMAX - maximum value of s for scaling if other than limit of data on tape	I2.
21-25	MINEPR - minimum value of E for printer output	F5.2
26-30	MINETP - minimum value of E for tape output (usually l.0)	F5.2
31-35	$\begin{aligned} & \text { WEIGHT (1) - weight for first range } \\ & \text { for scaling } \end{aligned}$	F5. 2
36-40	$\begin{aligned} & \text { WEIGHT (2) - weight for second range } \\ & \text { for scaling } \end{aligned}$	F5. 2

Card 2	(Multiplicity factors for extending data to whole of reciprocal lattice)	
1-5	MULTAX - (as in FOURIE) multiplicity of axial reflexions	F5.3
6-10	MULTPL (1) - of 0 kl data	F5.3
11-15	MULTPL (2) - of holdata	F5.3
16-20	MULTPL (3) - of hko data	F5.3
Card 3	(Specification of systematic absences in data; a blank card must be included if, as in PI, no systematio absences oocur)	
1-2	NEXT - no. of sets of extinctions following	I2
3-5	BLANK	3 x
6	IEX (1,1) Specifioation of	II
7	IEX (1,2) lst set of extinctions	I1
8	IEX (1,3) e.g. hk 0 ($\mathrm{h}=2 \mathrm{n} \rightarrow 1102$	II
9	EXMULT (1) $0011=4 n \rightarrow 0014$	II
10	BLANK $\quad \mathrm{h} 00 \mathrm{~h}=2 \mathrm{n} \rightarrow 1002$	IX
11-15	repeat of 6-10 for 2nd set of extinctions	
16-20	repeat of 6-10 for 3rd set of extinctions	

Card 4 (Composition of primitive unit cell)
1-2 NCURV - no. of atom types I2
3-4 NATOMS (1) - no. of atoms of type 1 present I2
5-6 NATOMS (2) - no. of atoms of type 2 present I2
7-8
etc.
(The specification of atoms must be in the same order as f's are contained on tape produced by DATAPREP)

Cards 5 - (4 + NCURV)
Scattering factor cards in order on card 4 and on input tape. (The contents of these cards are described in writings for the DATAPREP program).
(2) SAYRE

This program accepts the projection data output of PREDIR, and reads into the four parity groups those reflexions whose |E| is not less than a specified value (MINE). For internal workings in the program, the first non-zero index is H, the second K. Each reflexion is given an identity (retained in SIGNS and ESIGND) which is its position on the tape when only those reflexions not less than MINE are counted. The program then systematioally finds all Sayre relationships knowing the plane group to which the data belongs (only the following four are handled, p 2 , pmm , pmg (pgm), or pgg). The probability with which each relation holds is computed and allowance is made for relations of the type $\operatorname{sign}(\mathrm{HK}) \approx \ddagger 1$ (Σ_{1} type) as their probability is not given by the same expression as that of a general Sayre relation.

Each reflexion is then listed in parity groups together with the number of relationships in which it occurs non-trivially (i.e. with its sign not squared). The Sayre relations are printed out in two ways, the second being an optional addition to the first:

1. a listing in which each relationship occurs uniquely and in the order in which it is generated, and
2. a listing by reflexion, in descending value of $|E|$, of all relationships in which that reflexion oocurs.

The Sayre relations can also be output on tape in a simple binary form which the next program in the series (SIGNS) can use as input for determining the possible signs of reflexions.

This program terminates by beginning again; therefore, several different options may be specified and output can be on separate files of the same tape, delaying the decision of how best to handle the data until the output is seen for each cycle.

The limits of the various dimensional arrays are given in comment cards at the beginning of the source deck for this program. As the output of this program $1 s$ the input of the next, these dimensions also apply there. Three options are built into the program to eliminate unwanted relationships (besides the obvious reduction made by specifying a different value of the minimum $|E|$ (MINE) to be read from the input tape). In the order in which they will be applied to the data, these are:

1. Specification of a minimum probability acceptable for a relation. This is done by specifying a minimum value of the triple product of E's
$\left(\left|E_{1}\right| *\left|E_{2}\right| *\left|E_{3}\right|\right)$ going into a relation (ACCEEE). The main purpose of this is to eliminate most Σ_{1} - type relationships which, because of their modified probability expression, tend to have low probabilities.
2. Specification of reflexions which are not to be considered for relationships (ISCRAT (I), $I=1$, NSCRAT). This is done on a rerun of the program and used in a case where MINE is very small, e.g. 1.0 , and some reflexions of the low value of |E| have an insufficient number of relationships determining their sign.
3. Specification that a cyclic process is to be carried out on the relations remaining after 1. and 2. have been applied, during each cycle of which a reflexion is found occurring in only one Sayre relation and that relation is eliminated. The end result of this process is that each reflexion, for which a sign is to be found by the SIGNS program, occurs in at least two different relationships.

The need for 3. is obrious when one looks at the method of generation of solutions by the next program. Two almost identical solutions of a structure in which all signs are identical except the sign of the reflexion which occurs in only one relation will, on elimination of that
relation, be replaced by only one solution in which that sign is indeterminate. (Note that the only difference between the two solutions is that the relationship referred to will hold for one sign of the reflexion and fail for the other). option 3. should, therefore, be used except when a relationship of the above type has a probability (~.98) large enough to assume that it does not fail. For this case, that relation should be retained but other less probable relations of the type should be eliminated selectively by the use of option 2 . The data cards for input to the SAYRE program are as follows:

Card 1

1-2 INPUT tape I2
3-4 INFILE I2
5-6 OUTPUT tape if any. (OUTPUT $=$ or \neq INPUT) I2
$7 \% 8 \quad$ OUTFIL I2
9-10 IPROJ - the type of projection on tape ($1=x, 2=y, 3=z$) I2
11-12 ISPACE $\frac{1}{4}$ for $\mathrm{p} 2 ; 2$ for pmm ; 3 for pmg , 4 for pgg, 5 for pgm I2
13-14 IPRINT - 1 suppress printout of relation- ships by reflexion I2
15-16 IONE -1 if elimination of reflexions occurring in only one relationship is desired (option \#3) I2
17-18 NSCRAT -no, of reflexions to be scatched (option \#2) I2
19-20 BLANK 2X

21-30	PROBCF - probability coefficient as output by PREDIR	F10.0
31-40	MINE - minimum value of E for acceptable reflexion input into the program from tape	F10.0
41-50	ACCEEE - minimum acceptable value of triple product for accepting a relationship	F10.0
51-52	ISCRAT (1) - the no. of a reflexion to be eliminated	I2
53-54	ISCRAT (2) - the no. of another reflexion to be eliminated	I2
-		-
-	ISCRAT (NSCRAT) NSCRAT ≤ 10	I2

> Cards 2,3 etc.: repeat of Card 1 for specifying different parameters in reoyoling of program.

3. SIGNS

This program produces solutions from the output of the SAYRE program by the Vand \& Pepinsky method (Woolfson ${ }^{8}$ pp.101-6) which can be viewed as a time saving version of the Cochran \& Douglas method (Woolfson ${ }^{8}$ pp.94-100; Rollett ${ }^{9}$ pp. 167-171). No attempt will be made to deacribe these as they are very adequately described in the references quoted. The original version of this program was based on the Cochran \& Douglas method but as the test later described was visualized, the program was rewritten to carry out the fallure tests by the Vand \& Pepinsky method.

A brief description of the latter program follows:
Individual Sayre relationships are stored in binary form, up to four words, in a way similar to that pictured In Rollett ${ }^{9}$ (p.170) except that provision is made for up to 105 relationships among up to 35 reflexions. These relationships are stored in the variable IXS, dimensioned as IXS $(4,105)$. The 4 aignifies that up to 4 words can be used to store a single relationship. The first word is used exolusively for indicating which x 's (in the notation of Woolfson) oocur in that relationship. The first bit of the second word is the sign associated with the relation, and each subsequent bit extending to 3 words is used eonsecutively to indicate s's (again Woolfion's notation).
e.g. $-x_{1} x_{9} x_{15}=S_{37}$ would be represented as;

Ixs (1,37) $=01000000010000010 . . .0 . .00$

IXS $(2,37)=10000 \ldots \quad . . .0 . .00$
$\operatorname{IXS}(3,37)=00100 \ldots$
...0... 00
$\operatorname{IXS}(4,37)=($ if 1 ess than 70 relationships occur, this word would not be used)

The manipulations of "additions of remainders modulo $2^{\prime \prime}$ (1.e. addition of bits modulo 2) are accomplished in this program by the use of the built-in functions AND, OR, and COMPL avallable for the 7040/7044 system as described in the programing manual ${ }^{21}$ (p.38). The actual addition modulo 2 is complicated by the fact that the above are "real" functions.

The addition of I to J modulo 2 , in the sense that each bit of I is added modulo 2 to each bit of J, to produce K, would be accomplished by the following statements:

```
    EQUIVALENCE (XI,I), (XJ,J), (XK,K)
    \(X=\operatorname{AND}(I, J)\)
    \(X=\operatorname{COMPL}(X)\)
    \(\mathbf{Y}=\mathbf{O R}(\mathbf{I}, \mathrm{J})\)
\(X K K\) AND \((X, Y)\)
```

The complication introduced by EQUIVALENCE is necessary since the variables to be manipulated by $A N D, O R$, and COMPL, when used in other parts of the program, must be used in integer mode but without the conversion accomplished by a statement such as

$$
\mathrm{XK}=\mathrm{K}
$$

The identity of a given reflexion here is the same as in SAYRE, i.e. it is its position on the tape containing E's when only those reflexions with $|E| \geqslant a$ preset value (MINE in SAYRE) are counted.

It sometimes happens that in trying to systematically solve the set of equations for each of the x 's (by the procedure described in Rollett), a linear dependency of $x^{\prime} s$ which oannot be resolved, is found for the first group. In this eventuality, instead of only one solution existing for one set of fallures of relations in the first group, there now exists 2^{N} solutions for that set, where N equals (the number of reflexions) minus (the number of equations in the first group). This program can handle ≤ 4, and will output up to 16 solutions for any one group of fallures.

The program now follows Woolfson ${ }^{8}$ (p.101-5) closely. The relations that fail in the second group when none fall in the first are stored in IVP1(I), $I=1,3$ [cf. IXS (37,I), $I=2,4]$. The relations that fail when e.g. the Nth relation in the first group fails is given by IVP (I, N), $\mathrm{I}=1,3$ [again cf. IXS $(37, I), I=2,4]$. Note that IVP (I, N) shows also that the Nth relation in the first group falls. No allowance, though, is made to reject a particular solution on the basis of a partial "summation" as indicated in Rollett ${ }^{9}$ (p .105).

Each solution which is within the limits of a certain test described below (ITEST) and which obeys a preset limit on the number of failures in the first group (≤ 5) and a preset limit on those in all, 18 printed out together with the value of that test, the number of plus signs in
the solution, the numbers of the particular Sayre relations which fail, and the value of
$\sum_{\vec{h}}\left(\sum_{\overrightarrow{\mathrm{g}}}\left|E_{\vec{h}}\right|\left|E_{\vec{k}}\right|\left|E_{\vec{h}-\vec{k}}\right|\right)^{2}$
where \vec{h} is a reflexion contained in a Sayre relation that falls, and
$\left|E_{h}\right|\left|E_{k}\right|\left|E_{\vec{h}}-\vec{k}\right|$ is the value of the triple product of C!s for a Sayre relationship containing \boldsymbol{h}.

There is also an optional output on tape of the signs for the various reflexions in solutions. Th1s output is compatible with the next program which, by merely specifying the number of the solution(s) desired, produces a similated structure factor tape (of E's) for input to the Fourier program.

The chief test incorporated into SIGNS is called ITEST and will now be described.

ITEST Will reject any solution for which, for any h, the following expression exceeds a preset value:
$\sum_{\vec{h}}\left|E_{\vec{h}}\right|\left|E_{\vec{k}}\right| E_{\vec{h}-\vec{k}} \mid$
where \vec{h} is a reflexion contained in a Sayre relationship that fails
and $\left|E_{\vec{n}}\right|\left|E_{\vec{k}}\right| E_{\vec{h}} \vec{r} \mid$ is the value of the triple

For a solution which is within the bounds imposed above, the maximum value attained for any \vec{h} will be printed out under the heading of SMAX.

This test, for any \vec{h}, indicates the probability with which its sign is indicated to be the opposite of that which is predicted. It is in the nature of the solutions
produced by the Vand \& Pepinsky method (or Cochran \& Douglas method for that matter), that somewhere in the ilst satisfying the limiting conditions on fallures in the first group and failures in all, there exists the correct solution to the structure with each sign correct. If the predicted probabilities of the relations holding for that solution are correct, then it is very unlikely that a relation of say 0.99 probability falls and hence all solutions where sueh a relation fails can be rejected as 1mprobable. Another way of looking at this fallure is that one reflexion in the Sayre relationship is indicated to be the opposite sign to that given in the 'solution' to a probability of 99\%.

The preceding indicates a simple way of incorporating a test into the program which uses the actual probabilities of Sayre relationships. However, this test can be extended further to include those oases where no individual relation has a probability of say 99\% or better. This extension, which is the actual test in ITEST, follows from the expressions for the probability of Sayre relations holding.

The probability of one relation indicating the sign of reflexion h to be positive $1 s$ given by

$$
\begin{equation*}
P+(\vec{h}) \approx \frac{1}{2}+\frac{1}{2} \tanh \sigma_{3} \sigma_{2}-3 / 2\left|E_{h}\right| E_{k} E_{h}-\vec{k} \tag{4}
\end{equation*}
$$

But because this function is antisymmetric about $P=\frac{1}{2}$. the equation can be rewritten to express the probability that the sign of E_{h}, whatever it is, is given by the
particular Sayre relation in question, as follows,
$P(\vec{h}) \approx \frac{1}{2}+\frac{1}{2} \tanh \sigma_{3} \sigma_{2}-3 / 2\left|E_{\vec{h}}\right|\left|E_{\vec{k}}\right|\left|E_{\vec{h}-\vec{k}}\right|$.
When more Sayre relationships are used to indicate the sign of \vec{h} (4) becomes,
$\mathrm{P}+(\overrightarrow{\mathrm{h}}) \approx \frac{1}{2}+\frac{1}{2} \tanh \sigma_{3} \sigma_{2}^{-3 / 2} \sum\left|E_{\hat{h}}\right| E_{\underline{E}} \mathbb{E}_{\overrightarrow{\mathrm{h}}-\overrightarrow{\mathrm{K}}}$
(see Rollett ${ }^{9}$ or Karle \& Karle ${ }^{7}$)
and if all the relations indicate the same sign for \vec{h}
becomes in the general case

$$
\begin{equation*}
\left.P(\vec{h}) \approx \frac{1}{2}+\frac{1}{2} \tanh \sigma_{3} \sigma_{2}-3 / 2 \sum\left|\varepsilon_{\vec{h}}\right|\left|\varepsilon_{\vec{k}}\right| \varepsilon_{\vec{h}-\vec{k}} \right\rvert\, \tag{7}
\end{equation*}
$$

Now, by the nature of the method of forming solutions, the actual relations which fall for any solution are known. If (6) contained only Bayre relations that failed, then (7) becomes the probability that the sign of E_{h} is predicted to be the opposite of that which appears in the solution.

The foregoing nov Indicates the test in its most general form. Because of the form of equation (7), it is easier to work with a value of the summation of triple products, rather than an actual value of the probability, and hence, the oriterion becomes a maximum on the value of triple products of $\mathrm{E}^{\prime} \mathrm{s}$ (EMAX in the program).

Note that a better expression for the probability that the sign of $\mathrm{E}_{\vec{h}}$ is opposite to that predicted is

but the simpler form where only the first term in brackets
is used, should be sufficient if its limiting value is set high enough, (e.g. a value of the triple product corresponding to a probability of ~ 0.99).

Also note, that the test is only a method of rejecting a large number of improbable solutions and does not necessarily indicate which of the remaining solutions is the correct one. However, it is nevertheless suggested that the remaining solutions be tried in the order of increasing value of SMAX. The test's chief usefulness is that it permits one to extend the Sayre relationsh1ps to low values of E (as low as say, l.0), and provides a good criterion for the rejection of the vast majority of possible solutions which are produced when, as in this case, individual Sayre relations have a probability of holding only a little removed from 50%. The data cards for the SIGNS program are as follows: Card 1

1-2	INPUT tape unit	12
3-4	INPILE	12
5-6	OUTPUY tape unit no. (if any) (preferable $=$ INPUT)	12
7-8	OUTPIL	12
9-10	NFAILI limiting value of no. of fallures in first group ($\leqslant 5$)	I2
11-12	NFAIL2 limiting value of no. of fallures in all ($\leqslant 20$)	12
13-20	EMAX - upper limit of sEEE in ITEST	F8.0

Card 2

4. ESIGND program

This program accepts a tape of $|E|(h k l) ' s$ and a tape (which may be the same as the last) containing solutions from SIGN program. It produces another tape suitable for the FOURIE program, containing E-values with their proper signs (if any) for up to six solutions at once specified only by the number of the solution as it appears in the SIGNS program. The six solutions on the output tape are put in consecutive words after the floating point $\underline{h}, \underline{k}, \underline{1}{ }^{\prime}$.

Each solution is, therefore, capable of being called in the Fourier program by specifying different numbers, $1-6$, as coefficients for Fourier summation (Fo, Fc, Ac, Bo, $B C$ now no longer have their original meaning but are just E_{0} 's for different (up to 6) solutions of the SIGNS program).

A typical run would have E's in file 14 of P69 on unit 03 and have signs in file 16 of the same tape; the output of five different solutions would be the scratch unit 02. The input for the Fourier program run immediately after on IBSYS, would be 02 with output on the disk unit ll for the first pass (ooefficient $=1$); the next four passes would be output on the same unit 11, with the Fourier cards duplicated for each pass except that the coefficients specified would be $2,3,4$, and 5 for respective passes. Unit 11 then provides the input for the CONTUR program where one specifies that that unit contains five passes to be drawn (IPROJ $=+1$ for labelling), and the contoured map would be output as usual on Unit 04 for which a small L - tape should suffice.

Note that the contouring interval to be used for the CONTUR program is roughly predictable. For the case of ~ 25 reflexions of average $E \sim 1.5$, specify $C / V=1.0$, and $m P(000)$ as 0.0 . Then, as the trigonometric functions in the summation can never exceed a value of 1.0 , the Fourier summation can never exceed 40 (a value with POURIE outputs as 4000). A highest value of 1000 should suffice to contour any E-map that results. The data card for the ESIGND program contains the following information:

$$
\begin{array}{lll}
\text { 1-2 } & \text { INE - input tape unit for E's } & \text { I2 } \\
3-4 & \text { IFE - file \# on INE } & \text { I2 } \\
5-6 & \text { INS - input tape unit for signs } & \\
& & \text { I2 } \tag{I2}
\end{array}
$$

```
7-8 IFS - file # on INS I2
9-10 OUTPUT - tape unit no. I2
11-12 NPOSS - no. of solutions to be output ($6) I2
13-20 MINE - same as in SAYRE (but not as in
                                    PREDIR)
                                    F8.0
21-25 IPOSS (1) - the no. of the f1rst solution I5
26-30 IPOSS (2) - the no. of the second solution I5
31-35
\(\dot{\vdots}\)
IPOSS (NPOSS)
```I5

The following two points should be noted:
1. the numbers in IPOSS must be in increasing order.
2. IFE 18 usually the same as IFS.

\section*{ROT PROGRAM}

This program was written exlusively for the methyl 2-chloro-2-deoxy- \(\alpha\)-D-galactopyranoside structure to find the correct solution in the \(x y\) projection knowing the position of only the chlorine and the relative positions (in radial coordinates) of up to six carbon atoms and up to six oxygen atoms. This program calculates the Rvalue for \(h k 0\) projection data (\(\leqslant 300\)) with \(\mid\) Fol (hko) \(\geqslant\) a specified value, as the molecule is rotated by small increments about the fixed chlorine position. The various (\(\mathrm{R}, \theta\)) are output on tape unit 11 in preparation for plotting a \(R\) versus \(\theta\) curve by a U.B.C. library program. (In this program it is assumed that Fol (h k I) data \([\leqslant 2000\) reflexions including end of group symbols] is in file \#3 of a tape mounted on logical tape unit 03).

The data cards for the ROT program are as follows:

\section*{POSITION \\ DESCRIPTION \\ FORMAT}

Card 1
\begin{tabular}{lll}
1-10 & A - length of a-axis (A) & F10.0 \\
11-20 & B - length of b-axis (A) & Fl0.0 \\
\(21-30\) & THETA - initial value of (radians) & F10.0 \\
\(31-40\) & THEINC - increment in © & F10.0 \\
41-50 & THEMAX - maximum value of \(\Theta\) & F10.0 \\
Card 2 &
\end{tabular}

1-10 FOMN - minimum |Fo(h k 0) | to be used F10.0
11-20 TCL - temperature factor (B) of Cl F10.0
\begin{tabular}{lll}
\(21-30\) & TO - temperature factor (B) of \(0 \ldots\) & F10.0 \\
\(31-40\) & TC - temperature factor (B) of C & F10.0
\end{tabular}
41-45 NO - no. of 0 - atoms in molecule in
asymmetric unit (\(\leqslant 6\))

45-50 NC - no. of C- atoms in molecule (\(\leqslant 6\)) I5

56-60 IFCAL - \(0 \Rightarrow\) no printout of Fo/Fc for structure with minimum R

I5
Card 3
1-10 CLX - x/a coordinate of Cl F10.0

11-20 CLY - y/b coordinate of Cl
F10.0
Card 4
\begin{tabular}{lll}
1-10 RADO(1) - r for O\#1 & Fl0.0 \\
11-20 ANGO(1) - \(\theta\) for O\#1 & & Flo.0 \\
Caid \(4+\) NO & & \\
\hline
\end{tabular}
\begin{tabular}{rll}
\(1-10\) & RADO (NO) - \(\mathbf{r}\) for O\#NO & F10.0 \\
\(11-20\) & ANGO(NO) - for O\#NO & F10.0
\end{tabular}

Card \(5+\mathrm{NO}\)
1-10 RADC(1) - r for C\#1
F10.0
11-20 ANGC(1) - \(\theta\) for C\#1
F10.0
Card \(5+\mathrm{NO}+\mathrm{NC}\)

> l-10 RADC (NC) -r for C\#NC Flo.0

11-20 ANGC(NC) - \(\theta\) for C \#NC F1O.0

\section*{CONTUR PROGRAM}

This program accopts a tape (IN12) prepared by the FOURIE program containing a specified number of passes (NPASSS) and produoes oontoured maps for specified contours (\(C(I), I=1\), NCONTU) on U.B.C.'s Calcomp 565 12 inch drum plotter. Each map (pass) w1ll normally be contoured in turn, all sections of one pass being done before the next pass 18 begun. An option, however, exists which will ellow two passes to be joined in each section with the result that corresponding sections for two passes are read consecutively and drawn up as one larger section. Another option (NEWZ) allows specification of a different axis of sections to that contained on the input tape, by-passing the need for repreparing the structure factor tape.

The size of the maps are specified in cm./A (SCALER). If not speciried, the maps will be drawn ten inches wide, the limit of U.B.C.'s Calcomp plotter. If a scale is specified which requires more than the ten inch width of the plotter, ten inches of the map for all sections will be drawn first, thereafter, units (PARTS) of up to ten inches will be drawn as many times as is needed to complete the map.

Each PART (a "part" of a section not greater than ten inches) is first read in from IN12 and the number of points is increased four-fold (RHOO(61,61)) by linear
interpolation, introducing one point between every two adjacent points of the original Fourier grid. On this finer grid contouring is commenced by searching for possible contours which begin on the outside of the map (and thus finish on the outside). After contours of this type are drawn, interior contours (which finish at the same place they begin) are then searched for along the vertical direction only, and drawn if they have not been drawn already. Regions between grid points are represented in ICON \((61,121)\) and when, for instance, an Nth contour is drawn between two grid points, note is made of it in ICON by adding \(2^{\mathrm{N}}-1\) to the appropriate word of core (turning the Nth bit on).

In searching for the start of a contour between 2 grid points, all NCONTU contours are treated simultaneously (but only if they occur between points such that the second has a higher value than the first), before going on to the next interval. In continuing the drawing of a contour line, a note is made of the direction in which the contour has approached a grid quadrilateral to facilitate finding a new exit point for the contour.

direction \(\rightarrow(1,0)\)

new direction ! \((0,-1)\)

Only three possible such exit points exist for the contour depicted above and it becomes a simple matter of checking which can be used. When a contour comes back on itself (or in the case of exterior contours, When a contour again reaches the outside), it is complete and search for new contours can recommence where the now completed one started. Contour lines consist of straight IInes between edges of the quadrilateral grid, their position on the edges being determined by linear interpolation.

Labelling of the contour maps consists of identification of each section by its height in \(1 / 120^{\prime}\) ths and of each third contour (beginning with \(C(1)\)) with special symbols noted at the beginning of the plot. When all contouring to be done on a specified input tape is complete, the message, END OF ALL PASSES, is drawn out on the plotter paper.

As only logical units 03 and 04 can be used for loading and unloading tapes, and as a plotter tape must always be mounted on 04 for the CONTUR program (at U.B.C. plotting is off-line; plotting instructions are first output on tape unit 04 before actual plotting is done), it is impossible to run FOURIE and CONTUR consecutively plotting out a Fourier map and at the same time saving the tape output of the FOURIE program. This leaves two alternatives:
1. Saving the Fourier map - The FOURIE program \(1 s\) run one day inputting the structure factor tape on 04 , and outputting the Fourier map on 03. The next day this prepared Fourier map 18 remounted on 03 to be used by the CONTUR program for preparing a plot tape on 04. 2. Not saving the Fourier map - The FOURIE and CONTUR programs are run consecutively and concurrently with the structure factor tape on 03 and output of the Fourier map on scratch disc utility 11 (or 12). The latter unit provides input to the CONTUR program which prepares a plot tape on unit 04.

NOTE: A program (PROJ) whose input will not be described here, was also written which together with a special version of the CONTUR program (PROJCN), produces projected views of the three dimensional electron density maps (Figures 3, 6 and 15). This was done to save the large amounts of paper and computer time required for contouring on a large soale, full three-dimensional maps which would otherwise have to be produced for this by the regular CONTUR program.

The data cards for the CONT UR program are as
follows:
POSITION
DESCRIPTION
FORMAT
Card 1

3-4 NPASSS - no. of passes on IN12 I2
5-6 NPAIRS - no. of pairs of passes to be

joined in each section
beginning at pass \#1
7-8 NEWZ - new axis of sections, if any
\((1\) for \(x, 2\) for \(y, 3\) for \(z)\)
Card 2
1-80 ANYTHING for identification
13A6, A2
Card 3
\begin{tabular}{|c|c|c|}
\hline 1 & \[
\left.\begin{array}{l}
\text { IDENTITY OF AAXIS } \\
\text { IDENTITY OF BAXIS }
\end{array}\right\} 1 \text { for } x, 2 \text { for } y, 3 \text { for } z
\] & II \\
\hline 3-4 & NCONTU - no. of contours \(\leqslant 16\) & I2 \\
\hline 5-6 & IPASS - +1 if program to begin again after plotting IN12 & I2 \\
\hline 7-8 & \[
\begin{aligned}
\text { ILAB - -1 suppresses all non-essential } \\
\text { labeling }
\end{aligned}
\] & I2 \\
\hline 9-10 & IPR - +l if Fouriers are series of projections & 12 \\
\hline 11-20 & AAXIS - length of axis (A) along plotter paper & F10.0 \\
\hline 21-30 & BAXIS - length of axis (A) across 10 inch width & F10.0 \\
\hline 31-40 & THETA - angle (deg.) between AAXIS + BAXIS (90.0 if BLANK) & F10.0 \\
\hline 41-50 & SCALE - Cm./A (plot fills width of paper if BLANK) & F10.0 \\
\hline 51-60 & CLKMAX - time allowed for this program (normally BLANK) & F10.0 \\
\hline
\end{tabular}

\section*{Card 4}
\begin{tabular}{|c|c|c|}
\hline 1-10 & \(C(1)\) - first contour & F10.0 \\
\hline . & - & - \\
\hline - & - & - \\
\hline \(71-80\) & \[
\dot{c}(8) \text { - eighth contour (read only if }
\] & F10.0 \\
\hline \multicolumn{3}{|l|}{Card 5 (included only if NCONTU \(>8\))} \\
\hline 1-10 & C(9) - ninth contour & F10.0 \\
\hline - & - & - \\
\hline 71-80 & \(\dot{C}(16)\) - sixteenth contour & Fio. 0 \\
\hline
\end{tabular}

The following points should be noted for the CONTUR

\section*{program:}
1. Repeat cards 1 through 4 (or 5) if last set of 4 (or 5) cards had IPASS \(=+1\).
2. AAXIS + BAXIS are w.r.t. UNIT CELC, not ASYMMETRIC UNIT.
3. Contours must be in increasing order.
4. Plotter tape 18 always mounted on 04.
5. If two passes are to be joined, they must be in natural order; they must be of equal dimensions along all three directions; and, the end of one pass must be the same as the start of the other pass along one axis in the plane of sections.

\section*{BIBLIOGBAPHY}
1. H. Lipson and W. Cochran, "The Determination of Crystal Structures," G.Bell and Sons Ltd., 3rd edn., 1966.
2. J.M. Robertson, "Organio Crystals and Molecules," Cornell University Press, 1953.
3. G.H. Stout and L.H. Jensen, "X-ray Structure Determination A Practical Guide, "Macilillan Co., 1968.
4. M.J.Buerger, "Vector Space," John Wiley and Sons Ltd., 1959.
5. G.N. Remachandran, ed., "Advanced Methods of Crystallography," Academic Press, 1964.
6. H. Hauptman and J. Karle, "The Solution of the Phase Problem - I. The Centrosymmetric Crystal," American Crystallographic Ass., 1953.
7. J. Karle and I.L. Karle, Acta Cryst., 1966, \(21,849\).
8. M.M. Woolfson, "Direot Methods in Crystallography," Oxford University Press, 1961.
9. J.S. Rollett, "Computing Methods in Crystallography," Clarendon Press, Oxford. 1965.
10. B. Hoge and J. Trotter, J.Chem. Soc. (A), 1968, 267.
11. H.M. Berman and S.H. Kim, Acta Cryst., 1968, B24, 897.
12. J.K.N. Jones, Private Communication, 1967.
13. J.K.N. Jones; M.B. Perry and I.C. Turner, Canad.J.Chem., 1960, 38, 1122.
14. J.M. Bijvoet, A. F. Peerdeman and A.J. van Bommel, Nature, 1951, 168, 271.
15. "International Tables for X-Ray Crystallography," Kynoch Press, Birmingham, 1962, vol. III.
16. G.A. Jeffrey and R.D. Rosenstein, Advanc.Carbohyd.Chem., 1964, 19, 1.
17. P.D. Bragg, J.K.N. Jones, and J.C. Turner, Canad.J.Chem., 1959, 37, 1412.

Bibliography (cont'd.)
18. R.E. Reeves, J.A.C.S., 1950, 72, 1499.
19. W.C. Hamilton and J.A. Ibers, "Hydrogen Bonding in Solids," W. A. Benjamin, Inc., 1968.
20. J.D. Donohue in "Structural Chemistry and Molecular Biology, " Ed. A. Rich and N. Davidson, Freeman Press, 1968, pp.450-456.
21. "IBM 7040/7044 Operating System (16/32K) Fortran IV Language," IBM Corp., Programming Systems Publications, 1964.

\section*{APPENDIX}
(Source deck listings of programs in Part II)

ITEST3 \(=0\)
 ASSIGN 4 TO IENDF
 CALL EOF (INPUT, IENDF)
 2 REWIND INPUT
 NFILE = INFILE

```

23:NREFL(I) = 0
9. READ (INPUT) II, IGPEN, SSOLS,
(FX(I),I=1,3), FREL,FSQR,(FCURV(I),I=1,8)
IF(IGPEN .NE.O) GO TO 9
IF(II .NE. O) GO TO 11
STOLS = SQRTI(SSOLS)
IF (STOLS •GT. MAXSL) GO.TO }
I = (STOLS - MINSL) / XINTVL + 1.0
IF (STOLS .EQ. MAXSL) I = NINTVL
I\dot{F} (STOLS .EQ. MINSL) I = I
NREFL(I) = NREFL(I) + I
NZEROS = 0
DO 14 J = 1. 3
IF (FX(J).GT. 0.25 •OR\bulletFX(J).LT.(-0.25)).GO TO 14
NZEROS = NZEROS + 1
JZERO = J
14 CONTINUE
IF (NZEROS .NE. O) GO TO.lO
ADDF2 = FSQR
ADDNF = 1
10 IF (NZEROS .NE: 2) GO TO 12
ADDF2 = FSQR * MULTAX
ADDNF = MULTAX
GO TO 13
12. ADOF 2 = FSQR * MULTPL(JZERO)
ADDNF = MULTPL(JZERO)
13 IF (NEXT .EQ. 0).GO TO 17
DO 15 J= I, NEXT
DO 16 K=1, 3
IF (IEX(J,K) .EQ. O.AND.FX(K).NE.O.O) GO TO 15
CONTINUE
ADDNF = ADDNF * FLOAT(EXMULT(J))
GO TO 17
CONTINUE
SUMF2(I) = SUME2(I) + ADDF2
SUMNF(I) = SUMNF(I) + ADDNF
GO TO }
II PRINT 18
18 FORMAT(///8H RANGE 8H STOLS ,12H REFLEXIONS ,1OH SUMREFL ,

```


XI = SUME2 / XNO
PRINT 53,NO, SUME, SUME2, \(\times 2, X 1\)
53 FORMAT (// 11H NO. REFL =, I7, 3X, 8H SUM E =, F9.19 3X
\(1,9 H\) SUM E2 \(=\), F9.1, \(3 X, 12 H\) AVERAGE \(E=F 6.3,3 X\),
\(213 H\) AVERAGE E2 \(=\), F6.3)
PRINT 54
54 FORMAT (/ 102H INOTE... IDEALLY, @AVERAGE E@ HAS THE VALUE 0.798 F IOR CENTRIC AND 0.886 FOR NON-CENTRIC DISTRIBUTIONS,
 PRINT 55

55 FORMAT (10X, 49H WHILE @AVERAGE E2@ HAS THE VALUE 1.OOO FOR BOTH 1) \({ }_{\text {STOP }}\) END
SENTRY

\$IBFTC SAYRE DECK
C THIS PROGRAM IDENTICAL TO \(07 / 15 / 68\) EXCEPT FOR FORMATS OF TAPE
\(C\) ISPACE IS.... 1 FOR P2, 2 FOR PMM, 3 FOR PMG, 4 FOR PGG, AND 5 FOR PGM
C NO MORE THAN 35 REFLEXIONS IN ALL
C NO MORE THAN 20 REFLEXIONS PER PARITY GROUP
C NO MUKE THAN 105 SAYRE RELATIONS TO BE GENERATED
\(C\) NO MORE THAN 10 REFLEXIONS TO BE SCRATCHED BY @ISCRAT@.
INTEGER OUTPUT, OUTFIL
INTEGER PLUS

REAL MINE
DATA PLUS, MINUS / \(1 \mathrm{H}+\), \(1 \mathrm{H}-1\)
PRINTOUT

DIMENSION \(F(3), F \operatorname{FCURV}(8), \operatorname{ICOUNT}(4), \operatorname{IH}(4,20), \operatorname{IK}(4,20), E(4,20)\)
DIMENSION IOCCUR(4, 20), IDENT (4, 20)
DIMENSION I2N(35), IXS(4,105), PROBIB(105)
DIMENSION IREFL(35), EREFL(35), ID(3,105), ISIGID(105), EEEID(105) PRINTOU
DIMENSION IR1 20), IR2(20), EE(20), IS(20), PRO!20) PRINTOUT
DIMENSION NOCCUR (35), ISCRAT (10) *
INTEGER OPLUS, OMINUS : *
DATA OPLUS, OMINUS \(/ 0000000000000,0400000000000 \%\) : *
DIMENSION NA(35) FRR
DATA NA/3H \(1,3 \mathrm{H} \quad 2,3 \mathrm{H} \quad 3,3 \mathrm{H} \quad 4,3 \mathrm{H} \quad 5,3 \mathrm{H} \quad 6,3 \mathrm{H} \quad 7,3 \mathrm{H} \quad 8,3 \mathrm{H} \quad 9,3 \mathrm{H}\) IFOR
10, \(\quad 3 \mathrm{H} \quad 11,3 \mathrm{H} \quad 12,3 \mathrm{H} \quad 13,3 \mathrm{H} \quad 14,3 \mathrm{H} \quad 15,3 \mathrm{H} \quad 16,3 \mathrm{H} \quad 17,3 \mathrm{H} \quad 18,3 \mathrm{H} \quad 19,3 \mathrm{H}\) IFOR
20, \(\quad 3 \mathrm{H} 21,3 \mathrm{H} .22,3 \mathrm{H} 23,3 \mathrm{H} 24,3 \mathrm{H} 25,3 \mathrm{H} 26,3 \mathrm{H} 27,3 \mathrm{H}, 28,3 \mathrm{H} 29,3 \mathrm{H}\) 2FOR
30, \(3 \mathrm{H} \mathrm{31,3H} 32,3 \mathrm{H} \mathrm{33,3H34,3H35}\),
EQUIVALENCE (XL, IL):

\section*{DUMMY \(=0.0\)}

52 READ 9, INPUT, INFILE, OUTPUT, OUTFIL, IPROJ, ISPACE, IPRINT
1., IONE, NSCRAT

2 , PROBCF, MINE, ACCEEE, (ISCRAT(I), I = 1, NSCRAT)
9 FORMAT (9I2, \(2 \mathrm{X}, 3 \mathrm{FIO.0}, 1012\))
C @ACCEEE@ IS ACCEPTABLE VALUE OF TRIPLE PRUDUCT
CALL POSN (INPUT, INFILE)
DO \(20 \mathrm{I}=1,4\)
\(I \cdot H(I, I)=0\)
\(\operatorname{IK}(1,1)=0\)
\(E(I, 1)=0.0\)
20 ICOUNT(I) \(=0\)
DO 23 I = 1,4
DO \(23 \mathrm{~J}=1,20\)

10. FORMAT (6H1 H1, \(2 X, 2 H K 1,4 X, 2 H H 2,2 X, 2 H K 2,4 X, 2 H H 3,2 X, 2 H K 3\)


```

    DO 78 I = 1, NSAYRE
    IF (IXS(1, I) .EQ. 0) GO TO 78
    WRITE (OUTPUT) (IXS(J, I), J = I,NR) : EEEID(I), (DUMMY, J=N, 16)
    78 CONTINUE *
        END FILE OUTPUT
        REWIND OUTPUT
        PRINT 4, NS, OUTPUI, OUIFIL
        FORMAT(// 4H THE, I 3.
    1. 63H RELATIONSHIPS AS DESCRIBED. EARLIER HAS NOW BEEN OUTPUT
    2 ON UNIT, I3, 5H FILE, I3)
        GO TO }5
        END
    $IBFTC POSN DECK
            SUBROUTINE POSN (INPUI,INFILE)
            ASSIGN 14 1O IENDF
            CALL EOF (INPUT, IENDF)
    12 REWIND INPUT
    NFILE = INFILE
    14 IF (NFILE -LE. 1) GO 1O 13
    NFILE = NFILE - 1
    18- READ (INPUT) II
    GO TO 18
    13 RETURN
    END
    $IBFTC PROBN DECK
        SUBROUTINE PROBN (NSAYRE, AVPROB)
        PRINT 2
    2 FORMAT ( 102HIPROBABILIIY THAI CORRECI sTRuCiuRE INvOLvEu NO MORE
        ITHAN N FAILURES OF INDIVIDUAL:OAIRE RELAIIONSHIPM,
            DIMENSION P(100), IADD(IU)
            XSAYRE = NSAYRE
            P(1)= AVPROB ** XSAYRE
            P1 = P(1)
            X = 1.0
            DO 3 I = 1, NSAYRE
            X = X * FLOAT(NSAYRE - I + I) / FLOAT(I)
            P1 = P1./ AVPROB * (1.0 - AVPROB)
            P(I+1)=P(I)+X*P1
            DO.4 I = 1, 10
    4 IADD(1)=1-1
    ```
```

PRINT 7, (IADD(J), J= = 1, 10)
7 FORMAT 1 /1 9H FAILURES,
14,917)
NS =NSAYRE + 1, 10
IQ1 = I - 1
IQ2 = I
IQ3 = IQ2 + 9
IF (IQ3.GT.NS , IQ3 = NS
5 PRINT 6; IQ1, (P(J), J= IQ2, IQ3)
6.FORMAT (/I5, 2H//, 2X, 10F7.4)
RETURN
END

```
\$ENTRY
\(\qquad\)

\(\qquad\)
. J = IARB (2)
ARBITRAR
ARBITRAR
IMULI(J, \(1+2)=-1\)
\(\operatorname{IMULT}(J, I+3)=-1\)
IF (NARB EQ. 2) GO TO 88
ARBITRAR
ARBIIRAR
DO \(90 \mathrm{I}=5,8\)
90.IMULT(J, I \()=-1\)

ARBI IRAR
DO 91 I \(=13\), 16
91 IMULT(J, I) =-1 \(J=\operatorname{IARB}(4)\)
\(D O 92 I=9,16\)

ARBITRAR.
\(\frac{92 \text { IMULT(J, I } 1=-1}{55}\) CONTINUE
CONTINUE
88 IF IOUTPUT •NE• O) CALL POSN (OUTPUT, OUTFIL)
\[
\text { NPOSSO }=0
\]

DO 102 J \(=1\), NS
102 IVPI(J) = IZERO
DO \(1001=\) IFINK, M
\(X L=A N D(I N E G, I X S(2, I))\)
\(X L=\operatorname{COMPL}(X L)\)
-IF IIL.LT. O) GO TO 100
DO \(101 \mathrm{~J}=1\), NS

3
```

    LL = I 2N(K)
    DO 104 J = IFINK, M
    XL = AND (IXS(L + 1, J), LL)
    IF(IL •EQ. O) GO TO 104
    DO 110 K = 1, NS
    110 XVP(K,I) = OR(IVP(K,I),IXS(K + I, J)
    104 CONTINUE
    C NOW SUBTRACT S@S OF FIRST GROUP
    DO 111 K = 1, NS
    XL = COMPL(IS(K))
    111 XVP(K,I) = AND(IVP(K,I),IL)
    C THE FOLLOWING STATEMENT MAKES @IVP@ SHOW ALSO FAILURES IN GROUP 1
    IVP(L,I) = IVP(L,I) + LL
    103 CONTINUE
    NFAIL=0
    DO 148.I = 1, NS
    IFAIL(I) = IVPI(I)
    CALL ICOUNT (IFAIL(I), NONES)
    148 NFAIL = NFAIL + NONES
    NINALL = 1
    IF (NFAIL •GT•NFAIL2) GO.TO 48
    NPOSSO = NPOSSO + NMULT
    CALL ITEST
    48 CONTINUE
    IF (NFAILI •LT. 1).GO TO 49
    DO 47 I1 = 1; IFIN
    NFAIL=0
    DO 147 I = l, NS
    X = AND (IVP1(I),.IVP(I, I1))
    X = COMPL(X)
    Y=OR(IVPI(I), IVP(I, II))
    XFAIL (I) = AND(X, Y)
    CALL ICOUNT (IFAILII), NONES )
    147 NFAIL = NFAIL + NONES
    NINALL = NINALLL + 1
    IF (NFAIL •GT• NFAIL2) GO TO 47
    NPOSSO = NPOSSO + NMULT
    CALL ITEST
    47 CONTINUE
    IF (NFAILI \bulletLT. 2) GO TO:49
    ```
\(\left.\begin{array}{ll} \\ & I F I N I=I F I N-1\end{array}\right)\)

\$IBFTC ESIGND DECK,REF
REAL MINUS, MINE
INTEGER OUTPUT
DATA PLUS, MINUS, BLANK / \(2 \mathrm{H}+\), \(2 \mathrm{H}-, 2 \mathrm{H}\) /
DIMENSION SIGNS(6, 35), SE(6), FH(3), IPOSS(6)
READ 1, INE, IFE, INS, IFS, OUTPUT, NPOSS, NINE, (IPOSS(I), I = 1 ,
1 NPOSS)
1 FORMAT (612, F8.0, 6I5)
CALL POSN(INS, IFS)
\(K=0\)
DO \(151=1\), NPOSS
\(16 \quad K=K+1\)
READ (INS) (SIGNS(I, J), J = 1,16)
READ (INS) (SIGNSII, J), J=17, 321
READ (INS) (SIGNSII, J), J \(=33,35\))
IF (IPOSS(I) . NE. K) GO TO 16.
DO \(17 \mathrm{~J}=1,35\)
IF (SIGNS(I, J) .NE. PLUS) GO TO 18
SIGNS(I, J) \(=1.0\)
GO TO 17
18 IF (SIGNSII, J) •NE. MINUS) GO TO 19
SIGNS(I, J) \(=-1.0\)
GO TO 17
19 SIGNS(I, J) \(=0.0\)
17 CONTINUE
15 CONTINUE
REWIND INS
REWIND OUTPUT
CALL POSN (INE, IFE)
DO \(7 \mathrm{~L}=1\), 6
\(S E(L)=0.0\)
PRINT II, INE, IFE, MINE, INS, IFS, OUTPUT
11 FORMAT (24 H THE REFLEXIONS ON UNIT, 12, 6H FILE , I2,
\(123 H\) WITH @E@ NOT LESS THAN. F7.3.34H WILL BE ASSIGNED SIGNS AS O
\(2 N\) UNIT, \(13,5 H\) FILE, \(13,4 H\) ANDT \(/ 10 X, 24 H\) WILL BE OUTPUT ON UN
3IT, 12, 12 H AS FOLLOWS \(/ 1 /\)
PRINT 12
12 FORMAT \(1 X, 5 H I G P E N, 3 X, 2 H F H, 4 X, 2 H F K, 4 X, 2 H F L, 8 X, 2 H E 1,5 X\),
1 2HE2, \(5 \mathrm{X}, 2 \mathrm{HE} 3,5 \mathrm{X}, 2 \mathrm{HE} 4,5 \mathrm{X}, 2 \mathrm{HE} 5,5 \mathrm{X}, 2 \mathrm{HE} 6 / 1\)
DO 2 I = 1, 36

\(\square\)

\section*{CONTUR PROGRAM}

ITHE UTV SUBROUTINE IS A U.B.C. COMPUTING CENIRE PROGRAM 10 RESERVE BUFFERS FOR, AND TO ALLOW THE USE AS VARIABLES OF, TAPE UNITS 01, O2, 03, 04, 11, 12, 13, AND. 14)
\$IBFTC CONTUR DECK
```

START $=$ CLOCK $(0.0)$
REWIND 4
CALL PLOTS
DIMENSION LAXI(3).
DIMENSION RHO(31, 31), IDIV(16)
DIMENSION LABEL(14), LQ(12)
DIMENSION LIMIT(10), TDEL|A(10), HGHIr(lu)
DATALLAXI / 18HX AXISY AXIOL AXIO/
DIMENSION XYZ(3)
DATA XYZ(1), XYZ(2),XYZ(3)/ 1HX, 1HY, 1HL/
REAL LX, LY, LYSECT, LYAXI>(lU), LrIU, LiLEF,

```

```

            DIMMENSION ICYCLX(241), ICrCLr(241)
                            @
            DIMENSION KHOO(61,61),ICON(61, 121)
            DIMENSION C(16)
            COMMON INI2, NPASSS, NEWZ, ICON, ICYCLX, LABEL, LIMII,HGHIY,IDIV,C
            SYMBL(1)=0
        SYMBL(4)=5:_@@@
        SYMBL(7)=2
        SYMBL(10)=1
        SYMBL(13)=12 @ 
            100 FORMAT (5I2)
            101 . FORMAT (13AG, A2)
            102 FORMAT (2II, 4I2, 5F10.0)
            108 FORMAT ( 8F10.0)
            117 FORMAT 1 1X, 12HTAPE UNIT =, I2, 3X, 1OHNPASSES =,I2, 3X,
            1 9HNPAIRS = I2, 3X, 7HNEWL = , I2 1
    118 FORMAT (9H TITLE- ,13A6, A2)
    119 FORMAT (1X, 5HNA =, I2, 3x, 5HNB=, 12, 3n, gHNCONiv=, 12, 3^̈,
        1 8HIPASS =, I2, 3x, 7HILAB = I2, 3%, 6HIPR =, 121
    120 FORMAT(5X,.8HAAXIS = ,F8.3, 3^,
                        8HBAXIS =, F8.3, 3X,
                8HTHETA = , F8.2, 3x,
                        9HSCALER =, F7.2, 3x,
                        9HCLKMAX = , F6.1)
    121 FORMAT (1X, 12HCONIOURS AI 16F7.U)
    ```
 123 FORMAT \(1 / / 1 X\), 94 HALL IIMES SHOWN BELOW ARE MINUIES ELAPSED SINCE

CALL PLOT \((X, Y,+3)\)

CALL PLOT (\(X, Y,+1\))
\(X=L X+S H I F T\)
PPASS •NE. 1 .AND. M.NE. 21
CALL PLOT \((x\), ORIGIN, +2)

109 FORMAT, \(/ 12 \mathrm{X}, 18 \mathrm{HLAYOUT}\) FOR SECTION, I2, 5 H PASS; I2,

INPU \(=\) INPUT
IF (IORDER.EQ. O , GO TO 20

GO TO 23
20. READ (INPU) ((RHOO (I, J), I = I, INX), J=1, INY)

DO \(233 \mathrm{~J}=\) JINIT, LIMJ
\(=\mathrm{N}+1\)

3


```

    IO WRITE (ITAPE)((RHO(I, J,K), J=1, IP2),K=1, LIM)
    16 CONTINUE
        REWIND }1
        REWIND }1
        IF (NEWZ •NE. JJ) GO TO 17
        WRITE ( 01 ) IX20, IX10, IX30, IDX2, IDX1, IDX3, IP2, IP1, IP3,
        l JJ, II, KK
            DO 18.K = 1, IP2
            READ (13) ((RHO(I,J,1), J = 1,IP11), I = 1, IP3)
            READ (14) ((RHO(I,J,I), J = IP120, IPI), I = 1, IP3)
    18 WRITE(O1) ((RHO(I,J,1),J=1, IP1),I=1,IP3)
            GO TO 11
    17 WRITE(01, IX30, IX20, IX10, IDX3, IDX2, IDX1, IP3, IP2, IPI,
            1 KK, JJ, II
            DO 19 K = 1, IP3
            READ (13) ((RHO(I,J,1), J=1,IPP2), I = 1;IP11)
            READ (14) ((RHO(I,J,I), J=1,IP2),I=IP120,IP1)
    19 WRITE (1) (TRHO(I,J,1), J=1, IP2), I = 1, IP1).
    1 1 ~ P R I N T ~ 7 , ~ L A X I ( N E W Z )
    7 FORMAT (5X, 6H (THE, A6, 3OH IS NOW THE AXIS OF SECTIONS);
    CONTINUE
    REWIND INPUT
            INPUT =1
            RETURN
    9 PRINT 4,NEWZ
    4 FORMAT (13H ERROR--AXIS, I2, 15H DOES NOT EXIST, 
            STOP
            ENU
    $ENTRY
    ```
```

